WorldWideScience

Sample records for chloride channel function

  1. Functional architecture of the CFTR chloride channel.

    Science.gov (United States)

    Linsdell, Paul

    2014-02-01

    Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ATP-binding cassette (ABC) family of membrane transport proteins. CFTR is unique among ABC proteins in that it functions not as an active transporter but as an ATP-gated Cl(-) channel. As an ion channel, the function of the CFTR transmembrane channel pore that mediates Cl(-) movement has been studied in great detail. On the other hand, only low resolution structural data is available on the transmembrane parts of the protein. The structure of the channel pore has, however, been modeled on the known structure of active transporter ABC proteins. Currently, significant barriers exist to building a unified view of CFTR pore structure and function. Reconciling functional data on the channel with indirect structural data based on other proteins with very different transport functions and substrates has proven problematic. This review summarizes current structural and functional models of the CFTR Cl(-) channel pore, including a comprehensive review of previous electrophysiological investigations of channel structure and function. In addition, functional data on the three-dimensional arrangement of pore-lining helices, as well as contemporary hypotheses concerning conformational changes in the pore that occur during channel opening and closing, are discussed. Important similarities and differences between different models of the pore highlight current gaps in our knowledge of CFTR structure and function. In order to fill these gaps, structural and functional models of the membrane-spanning pore need to become better integrated.

  2. Function of chloride intracellular channel 1 in gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Peng-Fei Ma; Jun-Qiang Chen; Zhen Wang; Jin-Lu Liu; Bo-Pei Li

    2012-01-01

    AIM:To investigate the effect of chloride intracellular channel 1 (CLIC1) on the cell proliferation,apoptosis,migration and invasion of gastric cancer cells.METHODS:CLIC1 expression was evaluated in human gastric cancer cell lines SGC-7901 and MGC-803 by real time polymerase chain reaction (RT-PCR).Four segments of small interference RNA (siRNA) targeting CLIC1 mRNA and a no-sense control segment were designed by bioinformatics technology.CLIC1 siRNA was selected using Lipofectamine 2000 and transfected transiently into human gastric cancer SGC-7901 and MGC-803 cells.The transfected efficiency was observed under fluorescence microscope.After transfection,mRNA expression of CLIC1 was detected with RT-PCR and Western blotting was used to detect the protein expression.Proliferation was examined by methyl thiazolyl tetrazolium and apoptosis was detected with flow cytometry.Polycarbonate membrane transwell chamber and Matrigel were used for the detection of the changes of invasion and migration of the two cell lines.RESULTS:In gastric cancer cell lines SGC-7901 and MGC-803,CLIC1 was obviously expressed and CLIC1 siRNA could effectively suppress the expression of CLIC1 protein and mRNA.Proliferation of cells transfected with CLIC1 siRNA3 was enhanced notably,and the highest proliferation rate was 23.3% (P =0.002) in SGC-7901 and 35.55% (P =0.001) in MGC-803 cells at 48 h.The G2/M phase proportion increased,while G0/G1 and S phase proportions decreased.The apoptotic rate of the CLIC1 siRNA3 group obviously decreased in both SGC-7901 cells (62.24%,P =0.000) and MGC-803 cells (52.67%,P =0.004).Down-regulation of CLIC1 led to the inhibition of invasion and migration by 54.31% (P =0.000) and 33.62% (P =0.001) in SGC-7901 and 40.74% (P =0.000) and 29.26% (P =0.002) in MGC-803.However,there was no significant difference between the mock group cells and the negative control group cells.CONCLUSION:High CLIC1 expression can efficiently inhibit proliferation and

  3. Modulation of chloride channel functions by the plant lignan compounds kobusin and eudesmin

    Directory of Open Access Journals (Sweden)

    Yu eJiang

    2015-11-01

    Full Text Available Plant lignans are diphenolic compounds widely present in vegetables, fruits and grains. These compounds have been demonstrated to have protective effect against cancer, hypertension and diabetes. In the present study, we showed that two lignan compounds, kobusin and eudesmin, isolated from Magnoliae Flos, could modulate intestinal chloride transport mediated by cystic fibrosis transmembrane conductance regulator (CFTR and calcium-activated chloride channels (CaCCs chloride channels. The compounds potentiated CFTR channel function in both FRT cells and in HT-29 cells. The modulating effects of kobusin and eudesmin on the activity of CaCCgie (CaCC expressed in gastrointestinal epithelial cells were also investigated, and the result showed that both compounds could stimulate CaCCgie-mediated short-circuit currents and the stimulation was synergistic with ATP. In ex vivo studies, both compounds potentiated CFTR and CaCCgie chloride channel activities in mouse colonic epithelia. Remarkably, the compounds showed inhibitory effects toward ANO1/CaCC-mediated short-circuit currents in ANO1/CaCC-expressing FRT cells, with IC50 values of 75 M for kobusin and 100 M for eudesmin. In charcoal transit study, both compounds mildly reduced gastrointestinal motility in mice. Taken together, these results revealed a new kind of activity displayed by the lignan compounds, one that is concerned with the modulation of chloride channel function.

  4. Functional modifications of acid-sensing ion channels by ligand-gated chloride channels.

    Directory of Open Access Journals (Sweden)

    Xuanmao Chen

    Full Text Available Together, acid-sensing ion channels (ASICs and epithelial sodium channels (ENaC constitute the majority of voltage-independent sodium channels in mammals. ENaC is regulated by a chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR. Here we show that ASICs were reversibly inhibited by activation of GABA(A receptors in murine hippocampal neurons. This inhibition of ASICs required opening of the chloride channels but occurred with both outward and inward GABA(A receptor-mediated currents. Moreover, activation of the GABA(A receptors modified the pharmacological features and kinetic properties of the ASIC currents, including the time course of activation, desensitization and deactivation. Modification of ASICs by open GABA(A receptors was also observed in both nucleated patches and outside-out patches excised from hippocampal neurons. Interestingly, ASICs and GABA(A receptors interacted to regulate synaptic plasticity in CA1 hippocampal slices. The activation of glycine receptors, which are similar to GABA(A receptors, also modified ASICs in spinal neurons. We conclude that GABA(A receptors and glycine receptors modify ASICs in neurons through mechanisms that require the opening of chloride channels.

  5. Chloride channels in stroke

    Institute of Scientific and Technical Information of China (English)

    Ya-ping ZHANG; Hao ZHANG; Dayue Darrel DUAN

    2013-01-01

    Vascular remodeling of cerebral arterioles,including proliferation,migration,and apoptosis of vascular smooth muscle cells (VSMCs),is the major cause of changes in the cross-sectional area and diameter of the arteries and sudden interruption of blood flow or hemorrhage in the brain,ie,stroke.Accumulating evidence strongly supports an important role for chloride (Clˉ) channels in vascular remodeling and stroke.At least three Clˉ channel genes are expressed in VSMCs:1) the TMEM16A (or Ano1),which may encode the calcium-activated Clˉ channels (CACCs); 2) the CLC-3 Clˉ channel and Clˉ/H+ antiporter,which is closely related to the volume-regulated Clˉ channels (VRCCs); and 3) the cystic fibrosis transmembrane conductance regulator (CFTR),which encodes the PKA-and PKC-activated Clˉ channels.Activation of the CACCs by agonist-induced increase in intracellular Ca2+ causes membrane depolarization,vasoconstriction,and inhibition of VSMC proliferation.Activation of VRCCs by cell volume increase or membrane stretch promotes the production of reactive oxygen species,induces proliferation and inhibits apoptosis of VSMCs.Activation of CFTR inhibits oxidative stress and may prevent the development of hypertension.In addition,Clˉ current mediated by gammaaminobutyric acid (GABA) receptor has also been implicated a role in ischemic neuron death.This review focuses on the functional roles of Clˉ channels in the development of stroke and provides a perspective on the future directions for research and the potential to develop Clˉ channels as new targets for the prevention and treatment of stroke.

  6. Two tonoplast MATE proteins function as turgor-regulating chloride channels in Arabidopsis

    Science.gov (United States)

    Zhang, Haiwen; Zhao, Fu-Geng; Tang, Ren-Jie; Yu, Yuexuan; Song, Jiali; Wang, Yuan; Li, Legong; Luan, Sheng

    2017-01-01

    The central vacuole in a plant cell occupies the majority of the cellular volume and plays a key role in turgor regulation. The vacuolar membrane (tonoplast) contains a large number of transporters that mediate fluxes of solutes and water, thereby adjusting cell turgor in response to developmental and environmental signals. We report that two tonoplast Detoxification efflux carrier (DTX)/Multidrug and Toxic Compound Extrusion (MATE) transporters, DTX33 and DTX35, function as chloride channels essential for turgor regulation in Arabidopsis. Ectopic expression of each transporter in Nicotiana benthamiana mesophyll cells elicited a large voltage-dependent inward chloride current across the tonoplast, showing that DTX33 and DTX35 each constitute a functional channel. Both channels are highly expressed in Arabidopsis tissues, including root hairs and guard cells that experience rapid turgor changes during root-hair elongation and stomatal movements. Disruption of these two genes, either in single or double mutants, resulted in shorter root hairs and smaller stomatal aperture, with double mutants showing more severe defects, suggesting that these two channels function additively to facilitate anion influx into the vacuole during cell expansion. In addition, dtx35 single mutant showed lower fertility as a result of a defect in pollen-tube growth. Indeed, patch-clamp recording of isolated vacuoles indicated that the inward chloride channel activity across the tonoplast was impaired in the double mutant. Because MATE proteins are widely known transporters of organic compounds, finding MATE members as chloride channels expands the functional definition of this large family of transporters. PMID:28202726

  7. Effect of a chloride channel activator, lubiprostone, on colonic sensory and motor functions in healthy subjects

    OpenAIRE

    Sweetser, Seth; Busciglio, Irene A.; Camilleri, Michael; Bharucha, Adil E.; Szarka, Lawrence A.; Papathanasopoulos, Athanasios; Burton, Duane D.; Eckert, Deborah J.; Zinsmeister, Alan R.

    2008-01-01

    Lubiprostone, a bicyclic fatty acid chloride channel activator, is efficacious in treatment of chronic constipation and constipation-predominant irritable bowel syndrome. The study aim was to compare effects of lubiprostone and placebo on colonic sensory and motor functions in humans. In double-blind, randomized fashion, 60 healthy adults received three oral doses of placebo or 24 μg lubiprostone per day in a parallel-group, placebo-controlled trial. A barostat-manometry tube was placed in th...

  8. Lubiprostone: a chloride channel activator.

    Science.gov (United States)

    Lacy, Brian E; Levy, L Campbell

    2007-04-01

    In January 2006 the Food and Drug Administration approved lubiprostone for the treatment of chronic constipation in men and women aged 18 and over. Lubiprostone is categorized as a prostone, a bicyclic fatty acid metabolite of prostaglandin E1. Lubiprostone activates a specific chloride channel (ClC-2) in the gastrointestinal (GI) tract to enhance intestinal fluid secretion, which increases GI transit and improves symptoms of constipation. This article reviews the role of chloride channels in the GI tract, describes the structure, function, and pharmacokinetics of lubiprostone, and discusses clinically important data on this new medication.

  9. Spatiotemporal coupling of cAMP transporter to CFTR chloride channel function in the gut epithelia.

    Science.gov (United States)

    Li, Chunying; Krishnamurthy, Partha C; Penmatsa, Himabindu; Marrs, Kevin L; Wang, Xue Qing; Zaccolo, Manuela; Jalink, Kees; Li, Min; Nelson, Deborah J; Schuetz, John D; Naren, Anjaparavanda P

    2007-11-30

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel localized at apical cell membranes and exists in macromolecular complexes with a variety of signaling and transporter molecules. Here, we report that the multidrug resistance protein 4 (MRP4), a cAMP transporter, functionally and physically associates with CFTR. Adenosine-stimulated CFTR-mediated chloride currents are potentiated by MRP4 inhibition, and this potentiation is directly coupled to attenuated cAMP efflux through the apical cAMP transporter. CFTR single-channel recordings and FRET-based intracellular cAMP dynamics suggest that a compartmentalized coupling of cAMP transporter and CFTR occurs via the PDZ scaffolding protein, PDZK1, forming a macromolecular complex at apical surfaces of gut epithelia. Disrupting this complex abrogates the functional coupling of cAMP transporter activity to CFTR function. Mrp4 knockout mice are more prone to CFTR-mediated secretory diarrhea. Our findings have important implications for disorders such as inflammatory bowel disease and secretory diarrhea.

  10. Spatiotemporal Coupling of cAMP Transporter to CFTR Chloride Channel Function in the Gut Epithelia

    Science.gov (United States)

    Li, Chunying; Krishnamurthy, Partha C.; Penmatsa, Himabindu; Marrs, Kevin L.; Wang, Xue Qing; Zaccolo, Manuela; Jalink, Kees; Li, Min; Nelson, Deborah J.; Schuetz, John D.; Naren, Anjaparavanda P.

    2007-01-01

    SUMMARY Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel localized at apical cell membranes and exists in macromolecular complexes with a variety of signaling and transporter molecules. Here we report that the multidrug resistance protein 4 (MRP4), a cAMP transporter, is functionally and physically associates with CFTR. Adenosine-stimulated CFTR-mediated chloride currents are potentiated by MRP4 inhibition, and this potentiation is directly coupled to attenuated cAMP efflux through the apical cAMP transporter. CFTR single-channel recordings and FRET-based intracellular cAMP dynamics suggest that a compartmentalized coupling of cAMP transporter and CFTR occurs via the PDZ scaffolding protein, PDZK1, forming a macromolecular complex at apical surfaces of gut epithelia. Disrupting this complex abrogates the functional coupling of cAMP transporter activity to CFTR function. MRP4 knockout mice are more prone to CFTR-mediated secretory diarrhea. Our findings have important implications for disorders such as inflammatory bowel disease and secretory diarrhea. PMID:18045536

  11. [Post-translational ligation of split CFTR severed before TMD2 and its chloride channel function].

    Science.gov (United States)

    Zhu, Fuxiang; Gong, Xiandi; Liu, Zelong; Yang, Shude; Qu, Huige; Chi, Xiaoyan

    2010-12-01

    Mutations of cystic fibrosis transmembrane conductance regulator (CFTR) gene leads to cystic fibrosis, an autosomal recessive genetic disorder affecting a number of organs including the lung airways, pancreas and sweat glands. In order to investigate the post-translational ligation of CFTR with reconstructed functional chloride ion channel and the split Ssp DnaB intein-mediated protein trans-splicing was explored to co-deliver CFTR gene into eukaryotic cells with two vectors. The human CFTR cDNA was split after Glu838 codon before the second transmembrane dome (TMD2) into two halves of N- and C-parts and fused with the coding sequences of split Ssp DnaB intein. Pair of eukaryotic expression vectors pEGFP-NInt and pEYFP-IntC were constructed by inserting them into the vectors pEGFP-N1 and pEYFP-N1 respectively. The transient expression was carried out for observing the ligation of CFTR by Western blotting and recording the chloride current by patch clamps when cotransfection of the pair of vectors into baby hamster kidney (BHK) cells. The results showed that an obvious protein band proven to be ligated intact CFTR can be seen and a higher chloride current and activity of chloride channel were recorded after cotransfection. These data demonstrated that split Ssp DnaB intein could be used as a strategy in delivering CFTR gene by two vectors providing evidence for application of dual adeno-associated virus (AAV) vectors to overcome the limitation of packaging size in cystic fibrosis gene therapy.

  12. Requirement for chloride channel function during the hepatitis C virus life cycle

    OpenAIRE

    Igloi, Z; Mohl, BP; Lippiat, JD; Harris, M.; Mankouri, J

    2015-01-01

    Hepatocytes express an array of plasma membrane and intracellular ion channels, yet their role during the hepatitis C virus (HCV) life cycle remains largely undefined. Here, we show that HCV increases intracellular hepatic chloride (Cl−) influx that can be inhibited by selective Cl− channel blockers. Through pharmacological and small interfering RNA (siRNA)-mediated silencing, we demonstrate that Cl− channel inhibition is detrimental to HCV replication. This represents the first observation o...

  13. Effect of a chloride channel activator, lubiprostone, on colonic sensory and motor functions in healthy subjects.

    Science.gov (United States)

    Sweetser, Seth; Busciglio, Irene A; Camilleri, Michael; Bharucha, Adil E; Szarka, Lawrence A; Papathanasopoulos, Athanasios; Burton, Duane D; Eckert, Deborah J; Zinsmeister, Alan R

    2009-02-01

    Lubiprostone, a bicyclic fatty acid chloride channel activator, is efficacious in treatment of chronic constipation and constipation-predominant irritable bowel syndrome. The study aim was to compare effects of lubiprostone and placebo on colonic sensory and motor functions in humans. In double-blind, randomized fashion, 60 healthy adults received three oral doses of placebo or 24 microg lubiprostone per day in a parallel-group, placebo-controlled trial. A barostat-manometry tube was placed in the left colon by flexible sigmoidoscopy and fluoroscopy. We measured treatment effects on colonic sensation and motility with validated methods, with the following end points: colonic compliance, fasting and postprandial tone and motility indexes, pain thresholds, and sensory ratings to distensions. Among participants receiving lubiprostone or placebo, 26 of 30 and 28 of 30, respectively, completed the study. There were no overall effects of lubiprostone on compliance, fasting tone, motility indexes, or sensation. However, there was a treatment-by-sex interaction effect for compliance (P = 0.02), with lubiprostone inducing decreased fasting compliance in women (P = 0.06) and an overall decreased colonic tone contraction after a standard meal relative to fasting tone (P = 0.014), with greater effect in women (P lubiprostone 24 microg does not increase colonic motor function. The findings of decreased colonic compliance and decreased postprandial colonic tone in women suggest that motor effects are unlikely to cause accelerated colonic transit with lubiprostone, although they may facilitate laxation. Effects of lubiprostone on sensitivity deserve further study.

  14. Regulated trafficking of the CFTR chloride channel

    NARCIS (Netherlands)

    Braakman, L.J.; Kleizen, B.; Jonge, H.R. de

    2000-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR), the ABC transporter encoded by the cystic fibrosis gene, is localized in the apical membrane of epithelial cells where it functions as a cyclic AMP-regulated chloride channel and as a regulator of other ion channels and transporters. Wh

  15. Expression pattern and function of alternative splice variants of glutamate-gated chloride channel in the housefly Musca domestica.

    Science.gov (United States)

    Kita, Tomo; Ozoe, Fumiyo; Ozoe, Yoshihisa

    2014-02-01

    Glutamate-gated chloride channels (GluCls) mediate fast inhibitory neurotransmission in invertebrate nervous systems. cDNAs encoding two alternative splice variants (MdGluClB and C) of the GluCl subunit were cloned from the housefly Musca domestica. The expression patterns of three variants, including the previously reported MdGluClA, differed among the body parts (head, thorax, abdomen, and leg) of the adult housefly and among developmental stages (embryo, larva, pupa, and adult). The MdGluClA and B transcripts were abundant in the central nervous system of the adult, whereas the MdGluClC transcript was expressed in the central nervous system and as the predominant variant in the peripheral tissues. The sensitivities to the agonist glutamate and the allosteric activator ivermectin B1a did not differ between channels containing MdGluCl variants when they were singly or co-expressed in Xenopus oocytes. By contrast, MdGluClA and B channels were more sensitive to the channel blockers fipronil and picrotoxinin than was MdGluClC channels. Heteromeric channels containing different subunit variants were more sensitive to picrotoxinin than were homomeric channels. Heteromeric channels were more sensitive to fipronil than were homomeric MdGluClC channels but not than homomeric MdGluClA and B channels. These results suggest that functionally indistinguishable but pharmacologically distinct GluCls are expressed in a spatially and temporally distinct manner in the housefly.

  16. Effect of a selective chloride channel activator, lubiprostone, on gastrointestinal transit, gastric sensory, and motor functions in healthy volunteers.

    Science.gov (United States)

    Camilleri, Michael; Bharucha, Adil E; Ueno, Ryuji; Burton, Duane; Thomforde, George M; Baxter, Kari; McKinzie, Sanna; Zinsmeister, Alan R

    2006-05-01

    Chloride channels modulate gastrointestinal neuromuscular functions in vitro. Lubiprostone, a selective type 2 chloride channel (ClC-2) activator, induces intestinal secretion and has been shown to relieve constipation in clinical trials; however, the effects of lubiprostone on gastric function and whole gut transit in humans are unclear. Our aim was to compare the effects of the selective ClC-2 activator lubiprostone on maximum tolerated volume (MTV) of a meal, postprandial symptoms, gastric volumes, and gastrointestinal and colonic transit in humans. We performed a randomized, parallel-group, double-blind, placebo-controlled study evaluating the effects of lubiprostone (24 microg bid) in 30 healthy volunteers. Validated methods were used: scintigraphic gastrointestinal and colonic transit, SPECT to measure gastric volumes, and the nutrient drink ("satiation") test to measure MTV and postprandial symptoms. Lubiprostone accelerated small bowel and colonic transit, increased fasting gastric volume, and retarded gastric emptying. MTV values were reduced compared with placebo; however, the MTV was within the normal range for healthy adults in 13 of 14 participants, and there was no significant change compared with baseline measurements. Lubiprostone had no significant effect on postprandial gastric volume or aggregate symptoms but did decrease fullness 30 min after the fully satiating meal. Thus the ClC-2 activator lubiprostone accelerates small intestinal and colonic transit, which confers potential in the treatment of constipation.

  17. [Role and function of voltage-gated chloride channels of the CIC family and their defects leading to genetic diseases].

    Science.gov (United States)

    Dołowy, Krzysztof; Bednarczyk, Piotr; Hordejuk, Renata; Dworakowska, Beata; Nurowska, Ewa; Jarzabek, Wanda

    2002-01-01

    There are 9 channels of the ClC family in mammals and few others in fishes, plants, yeast and bacteria. The ClC channels are present in different tissues and play a role in transmembrane potential stabilization, transepithelial transport, cell volume regulation, acidification of intracellular organelles. The genetic defects of ClC-1 chloride channel lead to myotonias, the defect in ClC-5 channel to the formation of stones in kidney, while the defect in ClC-Kb channel leads to the Bartter's syndrome.

  18. Presynaptic Localization and Possible Function of Calcium-Activated Chloride Channel Anoctamin 1 in the Mammalian Retina.

    Directory of Open Access Journals (Sweden)

    Ji Hyun Jeon

    Full Text Available Calcium (Ca(2+-activated chloride (Cl(- channels (CaCCs play a role in the modulation of action potentials and synaptic responses in the somatodendritic regions of central neurons. In the vertebrate retina, large Ca(2+-activated Cl(- currents (ICl(Ca regulate synaptic transmission at photoreceptor terminals; however, the molecular identity of CaCCs that mediate ICl(Ca remains unclear. The transmembrane protein, TMEM16A, also called anoctamin 1 (ANO1, has been recently validated as a CaCC and is widely expressed in various secretory epithelia and nervous tissues. Despite the fact that tmem16a was first cloned in the retina, there is little information on its cellular localization and function in the mammalian retina. In this study, we found that ANO1 was abundantly expressed as puncta in 2 synaptic layers. More specifically, ANO1 immunoreactivity was observed in the presynaptic terminals of various retinal neurons, including photoreceptors. ICl(Ca was first detected in dissociated rod bipolar cells expressing ANO1. ICl(Ca was abolished by treatment with the Ca(2+ channel blocker Co(2+, the L-type Ca(2+ channel blocker nifedipine, and the Cl(- channel blockers 5-nitro-2-(3-phenylpropylamino benzoic acid (NPPB and niflumic acid (NFA. More specifically, a recently discovered ANO1-selective inhibitor, T16Ainh-A01, and a neutralizing antibody against ANO1 inhibited ICl(Ca in rod bipolar cells. Under a current-clamping mode, the suppression of ICl(Ca by using NPPB and T16Ainh-A01 caused a prolonged Ca(2+ spike-like depolarization evoked by current injection in dissociated rod bipolar cells. These results suggest that ANO1 confers ICl(Ca in retinal neurons and acts as an intrinsic regulator of the presynaptic membrane potential during synaptic transmission.

  19. Regulated trafficking of the CFTR chloride channel.

    Science.gov (United States)

    Kleizen, B; Braakman, I; de Jonge, H R

    2000-08-01

    The cystic fibrosis transmembrane conductance regulator (CFTR), the ABC transporter encoded by the cystic fibrosis gene, is localized in the apical membrane of epithelial cells where it functions as a cyclic AMP-regulated chloride channel and as a regulator of other ion channels and transporters. Whereas a key role of cAMP-dependent phosphorylation in CFTR-channel gating has been firmly established, more recent studies have provided clear evidence for the existence of a second level of cAMP regulation, i.e. the exocytotic recruitment of CFFR to the plasma membrane and its endocytotic retrieval. Regulated trafficking of the CFTR Cl- channel has sofar been demonstrated only in a subset of CFTR-expressing cell types. However, with the introduction of more sensitive methods to measure CFTR cycling and submembrane localization, it might turn out to be a more general phenomenon that could contribute importantly to both the regulation of CFTR-mediated chloride transport itself and to the regulation of other transporters and CFTR-modulated cellular functions. This review aims to summarize the present state of knowledge regarding polarized and regulated CFTR trafficking and endosomal recycling in epithelial cells, to discuss present gaps in our understanding of these processes at the cellular and molecular level, and to consider its possible implications for cystic fibrosis.

  20. Functional and molecular identification of a TASK-1 potassium channel regulating chloride secretion through CFTR channels in the shark rectal gland: implications for cystic fibrosis.

    Science.gov (United States)

    Telles, Connor J; Decker, Sarah E; Motley, William W; Peters, Alexander W; Mehr, Ali Poyan; Frizzell, Raymond A; Forrest, John N

    2016-12-01

    In the shark rectal gland (SRG), apical chloride secretion through CFTR channels is electrically coupled to a basolateral K(+) conductance whose type and molecular identity are unknown. We performed studies in the perfused SRG with 17 K(+) channel inhibitors to begin this search. Maximal chloride secretion was markedly inhibited by low-perfusate pH, bupivicaine, anandamide, zinc, quinidine, and quinine, consistent with the properties of an acid-sensitive, four-transmembrane, two-pore-domain K(+) channel (4TM-K2P). Using PCR with degenerate primers to this family, we identified a TASK-1 fragment in shark rectal gland, brain, gill, and kidney. Using 5' and 3' rapid amplification of cDNA ends PCR and genomic walking, we cloned the full-length shark gene (1,282 bp), whose open reading frame encodes a protein of 375 amino acids that was 80% identical to the human TASK-1 protein. We expressed shark and human TASK-1 cRNA in Xenopus oocytes and characterized these channels using two-electrode voltage clamping. Both channels had identical current-voltage relationships (outward rectifying) and a reversal potential of -90 mV. Both were inhibited by quinine, bupivicaine, and acidic pH. The pKa for current inhibition was 7.75 for shark TASK-1 vs. 7.37 for human TASK-1, values similar to the arterial pH for each species. We identified this protein in SRG by Western blot and confocal immunofluorescent microscopy and detected the protein in SRG and human airway cells. Shark TASK-1 is the major K(+) channel coupled to chloride secretion in the SRG, is the oldest 4TM 2P family member identified, and is the first TASK-1 channel identified to play a role in setting the driving force for chloride secretion in epithelia. The detection of this potassium channel in mammalian lung tissue has implications for human biology and disease.

  1. Effects of Small Molecule Calcium-Activated Chloride Channel Inhibitors on Structure and Function of Accessory Cholera Enterotoxin (Ace of Vibrio cholerae.

    Directory of Open Access Journals (Sweden)

    Tanaya Chatterjee

    Full Text Available Cholera pathogenesis occurs due to synergistic pro-secretory effects of several toxins, such as cholera toxin (CTX and Accessory cholera enterotoxin (Ace secreted by Vibrio cholerae strains. Ace activates chloride channels stimulating chloride/bicarbonate transport that augments fluid secretion resulting in diarrhea. These channels have been targeted for drug development. However, lesser attention has been paid to the interaction of chloride channel modulators with bacterial toxins. Here we report the modulation of the structure/function of recombinant Ace by small molecule calcium-activated chloride channel (CaCC inhibitors, namely CaCCinh-A01, digallic acid (DGA and tannic acid. Biophysical studies indicate that the unfolding (induced by urea free energy increases upon binding CaCCinh-A01 and DGA, compared to native Ace, whereas binding of tannic acid destabilizes the protein. Far-UV CD experiments revealed that the α-helical content of Ace-CaCCinh-A01 and Ace-DGA complexes increased relative to Ace. In contrast, binding to tannic acid had the opposite effect, indicating the loss of protein secondary structure. The modulation of Ace structure induced by CaCC inhibitors was also analyzed using docking and molecular dynamics (MD simulation. Functional studies, performed using mouse ileal loops and Ussing chamber experiments, corroborate biophysical data, all pointing to the fact that tannic acid destabilizes Ace, inhibiting its function, whereas DGA stabilizes the toxin with enhanced fluid accumulation in mouse ileal loop. The efficacy of tannic acid in mouse model suggests that the targeted modulation of Ace structure may be of therapeutic benefit for gastrointestinal disorders.

  2. Effects of Small Molecule Calcium-Activated Chloride Channel Inhibitors on Structure and Function of Accessory Cholera Enterotoxin (Ace) of Vibrio cholerae

    Science.gov (United States)

    Chatterjee, Tanaya; Sheikh, Irshad Ali; Chakravarty, Devlina; Chakrabarti, Pinak; Sarkar, Paramita; Saha, Tultul; Chakrabarti, Manoj K.; Hoque, Kazi Mirajul

    2015-01-01

    Cholera pathogenesis occurs due to synergistic pro-secretory effects of several toxins, such as cholera toxin (CTX) and Accessory cholera enterotoxin (Ace) secreted by Vibrio cholerae strains. Ace activates chloride channels stimulating chloride/bicarbonate transport that augments fluid secretion resulting in diarrhea. These channels have been targeted for drug development. However, lesser attention has been paid to the interaction of chloride channel modulators with bacterial toxins. Here we report the modulation of the structure/function of recombinant Ace by small molecule calcium-activated chloride channel (CaCC) inhibitors, namely CaCCinh-A01, digallic acid (DGA) and tannic acid. Biophysical studies indicate that the unfolding (induced by urea) free energy increases upon binding CaCCinh-A01 and DGA, compared to native Ace, whereas binding of tannic acid destabilizes the protein. Far-UV CD experiments revealed that the α-helical content of Ace-CaCCinh-A01 and Ace-DGA complexes increased relative to Ace. In contrast, binding to tannic acid had the opposite effect, indicating the loss of protein secondary structure. The modulation of Ace structure induced by CaCC inhibitors was also analyzed using docking and molecular dynamics (MD) simulation. Functional studies, performed using mouse ileal loops and Ussing chamber experiments, corroborate biophysical data, all pointing to the fact that tannic acid destabilizes Ace, inhibiting its function, whereas DGA stabilizes the toxin with enhanced fluid accumulation in mouse ileal loop. The efficacy of tannic acid in mouse model suggests that the targeted modulation of Ace structure may be of therapeutic benefit for gastrointestinal disorders. PMID:26540279

  3. Functional differences in pore properties between wild-type and cysteine-less forms of the CFTR chloride channel.

    Science.gov (United States)

    Holstead, Ryan G; Li, Man-Song; Linsdell, Paul

    2011-10-01

    Studies of the structure and function of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel have been advanced by the development of functional channel variants in which all 18 endogenous cysteine residues have been mutated ("cys-less" CFTR). However, cys-less CFTR has a slightly higher single-channel conductance than wild-type CFTR, raising questions as to the suitability of cys-less as a model of the wild-type CFTR pore. We used site-directed mutagenesis and patch-clamp recording to investigate the origin of this conductance difference and to determine the extent of functional differences between wild-type and cys-less CFTR channel permeation properties. Our results suggest that the conductance difference is the result of a single substitution, of C343: the point mutant C343S has a conductance similar to cys-less, whereas the reverse mutation, S343C in a cys-less background, restores wild-type conductance levels. Other cysteine substitutions (C128S, C225S, C376S, C866S) were without effect. Substitution of other residues for C343 suggested that conductance is dependent on amino acid side chain volume at this position. A range of other functional pore properties, including interactions with channel blockers (Au[CN] (2) (-) , 5-nitro-2-[3-phenylpropylamino]benzoic acid, suramin) and anion permeability, were not significantly different between wild-type and cys-less CFTR. Our results suggest that functional differences between these two CFTR constructs are of limited scale and scope and result from a small change in side chain volume at position 343. These results therefore support the use of cys-less as a model of the CFTR pore region.

  4. Identification and functional expression of a glutamate- and avermectin-gated chloride channel from Caligus rogercresseyi, a southern Hemisphere sea louse affecting farmed fish.

    Directory of Open Access Journals (Sweden)

    Isabel Cornejo

    2014-09-01

    Full Text Available Parasitic sea lice represent a major sanitary threat to marine salmonid aquaculture, an industry accounting for 7% of world fish production. Caligus rogercresseyi is the principal sea louse species infesting farmed salmon and trout in the southern hemisphere. Most effective control of Caligus has been obtained with macrocyclic lactones (MLs ivermectin and emamectin. These drugs target glutamate-gated chloride channels (GluCl and act as irreversible non-competitive agonists causing neuronal inhibition, paralysis and death of the parasite. Here we report the cloning of a full-length CrGluClα receptor from Caligus rogercresseyi. Expression in Xenopus oocytes and electrophysiological assays show that CrGluClα is activated by glutamate and mediates chloride currents blocked by the ligand-gated anion channel inhibitor picrotoxin. Both ivermectin and emamectin activate CrGluClα in the absence of glutamate. The effects are irreversible and occur with an EC(50 value of around 200 nM, being cooperative (n(H = 2 for ivermectin but not for emamectin. Using the three-dimensional structure of a GluClα from Caenorabditis elegans, the only available for any eukaryotic ligand-gated anion channel, we have constructed a homology model for CrGluClα. Docking and molecular dynamics calculations reveal the way in which ivermectin and emamectin interact with CrGluClα. Both drugs intercalate between transmembrane domains M1 and M3 of neighbouring subunits of a pentameric structure. The structure displays three H-bonds involved in this interaction, but despite similarity in structure only of two these are conserved from the C. elegans crystal binding site. Our data strongly suggest that CrGluClα is an important target for avermectins used in the treatment of sea louse infestation in farmed salmonids and open the way for ascertaining a possible mechanism of increasing resistance to MLs in aquaculture industry. Molecular modeling could help in the design of new

  5. Phosphatase inhibitors activate normal and defective CFTR chloride channels

    OpenAIRE

    Becq, F; Jensen, T J; Chang, X B; Savoia, A.; Rommens, J M; Tsui, L C; Buchwald, M; Riordan, J R; Hanrahan, J W

    1994-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is regulated by phosphorylation and dephosphorylation at multiple sites. Although activation by protein kinases has been studied in some detail, the dephosphorylation step has received little attention. This report examines the mechanisms responsible for the dephosphorylation and spontaneous deactivation ("rundown") of CFTR chloride channels excised from transfected Chinese hamster ovary (CHO) and human airway epi...

  6. Cystic fibrosis transmembrane regulator inhibitors CFTR(inh)-172 and GlyH-101 target mitochondrial functions, independently of chloride channel inhibition.

    Science.gov (United States)

    Kelly, Mairead; Trudel, Stephanie; Brouillard, Franck; Bouillaud, Frederick; Colas, Julien; Nguyen-Khoa, Thao; Ollero, Mario; Edelman, Aleksander; Fritsch, Janine

    2010-04-01

    Two highly potent and selective cystic fibrosis (CF) transmembrane regulator (CFTR) inhibitors have been identified by high-throughput screening: the thiazolidinone CFTR(inh)-172 [3-[(3-trifluoromethyl)phenyl]-5-[(4-carboxyphenyl)methylene]- 2-thioxo-4-thiazolidinone] and the glycine hydrazide GlyH-101 [N-(2-naphthalenyl)-((3,5-dibromo-2,4-dihydroxyphenyl)methylene)glycine hydrazide]. Inhibition of the CFTR chloride channel by these compounds has been suggested to be of pharmacological interest in the treatment of secretory diarrheas and polycystic kidney disease. In addition, functional inhibition of CFTR by CFTR(inh)-172 has been proposed to be sufficient to mimic the CF inflammatory profile. In the present study, we investigated the effects of the two compounds on reactive oxygen species (ROS) production and mitochondrial membrane potential in several cell lines: the CFTR-deficient human lung epithelial IB3-1 (expressing the heterozygous F508del/W1282X mutation), the isogenic CFTR-corrected C38, and HeLa and A549 as non-CFTR-expressing controls. Both inhibitors were able to induce a rapid increase in ROS levels and depolarize mitochondria in the four cell types, suggesting that these effects are independent of CFTR inhibition. In HeLa cells, these events were associated with a decrease in the rate of oxygen consumption, with GlyH-101 demonstrating a higher potency than CFTR(inh)-172. The impact of CFTR inhibitors on inflammatory parameters was also tested in HeLa cells. CFTR(inh)-172, but not GlyH-101, induced nuclear translocation of nuclear factor-kappaB (NF-kappaB). CFTR(inh)-172 slightly decreased interleukin-8 secretion, whereas GlyH-101 induced a slight increase. These results support the conclusion that CFTR inhibitors may exert nonspecific effects regarding ROS production, mitochondrial failure, and activation of the NF-kappaB signaling pathway, independently of CFTR inhibition.

  7. Cystic Fibrosis Gene Encodes a cAMP-Dependent Chloride Channel in Heart

    Science.gov (United States)

    Hart, Padraig; Warth, John D.; Levesque, Paul C.; Collier, Mei Lin; Geary, Yvonne; Horowitz, Burton; Hume, Joseph R.

    1996-06-01

    cAMP-dependent chloride channels in heart contribute to autonomic regulation of action potential duration and membrane potential and have been inferred to be due to cardiac expression of the epithelial cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In this report, a cDNA from rabbit ventricle was isolated and sequenced, which encodes an exon 5 splice variant (exon 5-) of CFTR, with >90% identity to human CFTR cDNA present in epithelial cells. Expression of this cDNA in Xenopus oocytes gave rise to robust cAMP-activated chloride currents that were absent in control water-injected oocytes. Antisense oligodeoxynucleotides directed against CFTR significnatly reduced the density of cAMP-dependent chloride currents in acutely cultured myocytes, thereby establishing a direct functional link between cardiac expression of CFTR protein and an endogenous chloride channel in native cardiac myocytes.

  8. Functional modulation of cerebral gamma-aminobutyric acidA receptor/benzodiazepine receptor/chloride ion channel complex with ethyl beta-carboline-3-carboxylate: Presence of independent binding site for ethyl beta-carboline-3-carboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, J.; Kuriyama, K. (Kyoto Prefectural Univ. of Medicine (Japan))

    1990-05-01

    Effect of ethyl beta-carboline-3-carboxylate (beta-CCE) on the function of gamma-aminobutyric acid (GABA)A receptor/benzodiazepine receptor/chloride ion channel complex was studied. Beta-CCE noncompetitively and competitively inhibited (3H)flunitrazepam binding to benzodiazepine receptor, but not (3H)muscimol binding to GABAA receptor as well as t-(3H)butylbicycloorthobenzoate (( 3H) TBOB) binding to chloride ion channel, in particulate fraction of the mouse brain. Ro15-1788 also inhibited competitively (3H) flunitrazepam binding. On the other hand, the binding of beta-(3H)CCE was inhibited noncompetitively and competitively by clonazepam and competitively by Ro15-1788. In agreement with these results, benzodiazepines-stimulated (3H)muscimol binding was antagonized by beta-CCE and Ro15-1788. Gel column chromatography for the solubilized fraction from cerebral particulate fraction by 0.2% sodium deoxycholate (DOC-Na) in the presence of 1 M KCl indicated that beta-(3H)CCE binding site was eluted in the same fraction (molecular weight, 250,000) as the binding sites for (3H)flunitrazepam, (3H)muscimol and (3H)TBOB. GABA-stimulated 36Cl- influx into membrane vesicles prepared from the bovine cerebral cortex was stimulated and attenuated by flunitrazepam and beta-CCE, respectively. These effects of flunitrazepam and beta-CCE on the GABA-stimulated 36Cl- influx were antagonized by Ro15-1788. The present results suggest that the binding site for beta-CCE, which resides on GABAA receptor/benzodiazepine receptor/chloride ion channel complex, may be different from that for benzodiazepine. Possible roles of beta-CCE binding site in the allosteric inhibitions on benzodiazepine binding site as well as on the functional coupling between chloride ion channel and GABAA receptor are also suggested.

  9. The CIC-3 chloride channels in cardiovascular disease

    Institute of Scientific and Technical Information of China (English)

    Dayue Darrel DUAN

    2011-01-01

    CIC-3 is a member of the CIC voltage-gated chloride(Cl-) channel superfamily. Recent studies have demonstrated the abundant expression and pleiotropy of CIC-3 in cardiac atrial and ventricular myocytes, vascular smooth muscle cells, and endothelial cells.CIC-3 Cl- channels can be activated by increase in cell volume, direct stretch of β1-integrin through focal adhesion kinase and many active molecules or growth factors including angiotensin Ⅱ and endothelin-1-mediated signaling pathways, Ca2+/calmodulin-dependent protein kinase Ⅱ and reactive oxygen species. CIC-3 may function as a key component of the volume-regulated Cl- channels, a superoxide anion transport and/or NADPH oxidase interaction partner, and a regulator of many other transporters. CIC-3 has been implicated in the regulation of electrical activity, cell volume, proliferation, differentiation, migration, apoptosis and intracellular pH. This review will highlight the major findings and recent advances in the study of CIC-3 Cl- channels in the cardiovascular system and discuss their important roles in cardiac and vascular remodeling during hypertension, myocardial hypertrophy, ischemia/reperfusion, and heart failure.

  10. Inhibition of nitrite-induced toxicity in channel catfish by calcium chloride and sodium chloride

    Science.gov (United States)

    Tommasso J.R., Wright; Simco, B.A.; Davis, K.B.

    1980-01-01

    Environmental chloride has been shown to inhibit methemoglobin formation in fish, thereby offering a protective effect against nitrite toxicity. Channel catfish (Ictalurus punctatus) were simultaneously exposed to various environmental nitrite and chloride levels (as either CaCl2 or NaCl) in dechlorinated tap water (40 mg/L total hardness, 47 mg/L alkalinity, 4 mg/L chloride, pH = 6.9-7.1, and temperature 21-24°C). Methemoglobin levels in fish simultaneously exposed to 2.5 mg/L nitrite and up to 30 mg/L chloride as either CaCl2 or NaCl were similar but significantly lower than in unprotected fish. Exposure to 10 mg/L nitrite and 60 mg/L chloride resulted in methemoglobin levels similar to those of the controls; most unprotected fish died. Fish exposed to 10 mg/L nitrite had significantly lower methemoglobin levels when protected with 15.0 mg/L chloride as CaCl2 than with NaCl. Fish exposed to nitrite in the presence of 60 mg/L chloride (as either CaCl2 or NaCl) had similar 24-h LC50 values that were significantly elevated above those obtained in the absence of chloride. Calcium had little effect on tolerance to nitrite toxicity in channel catfish in contrast to its large effect reported in steelhead trout (Salmo gairdneri).

  11. Chloride channels of platelets%血小板氯通道

    Institute of Scientific and Technical Information of China (English)

    陈晓琳; 尹松梅

    2004-01-01

    Chloride channels distribute widely in the body, and participate in many physiological actions and regulatory processes. Based on their physiological roles and molecular structures, six kinds of chloride channels have been identified: (1) The chloride channels family; (2) Cystic fibrosis transmembrane conductance regulator; (3) Swelling-activated chloride channels; (4) Calcium-activated chloride channels; (5) The p64 (CLIC) gene family; (6) γ-aminobutyric acid and glycine receptors. The chloride channels do exist in platelets, and their appearances are dependent on the presence of intracellular calcium. Blocking agents of chloride channels inhibit the thrombin-activated platelet aggregation and the elevation of the intracellular calcium concentration in a dose-dependent manner. It is suggested that chloride channels play a role in the activation of platelets. In addition, chloride channels act on both the cell volume regulation and the intracellular pH regulation in platelets.

  12. Epithelial Sodium and Chloride Channels and Asthma

    Institute of Scientific and Technical Information of China (English)

    Wen Wang; Hong-Long Ji

    2015-01-01

    Objective:To focus on the asthmatic pathogenesis and clinical manifestations related to epithelial sodium channel (ENaC)/chlorine ion channel.Data Sources:The data analyzed in this review were the English articles from 1980 to 2015 from journal databases,primarily PubMed and Google Scholar.The terms used in the literature search were:(1) ENaCs;cystic fibrosis (CF) transmembrane conductance regulator (CFTR);asthma/asthmatic,(2) ENaC/sodium salt;CF;asthma/asthmatic,(3) CFTR/chlorine ion channels;asthma/asthmatic,(4) ENaC/sodium channel/scnn1a/scnn1b/scnn1g/scnn1d/amiloride-sensitive/amiloride-inhibtable sodium channels/sodium salt;asthma/asthmatic,lung/pulmonary/respiratory/tracheal/alveolar,and (5) CFTR;CF;asthma/asthmatic (ti).Study Selection:These studies included randomized controlled trials or studies covering asthma pathogenesis and clinical manifestations related to ENaC/chlorine ion channels within the last 25 years (from 1990 to 2015).The data involving chronic obstructive pulmonary disease and CF obtained from individual studies were also reviewed by the authors.Results:Airway surface liquid dehydration can cause airway inflammation and obstruction.ENaC and CFTR are closely related to the airway mucociliary clearance.Ion transporters may play a critical role in pathogenesis of asthmatic exacerbations.Conclusions:Ion channels have been the center of many studies aiming to understand asthmatic pathophysiological mechanisms or to identify therapeutic targets for better control of the disease.

  13. Identification of Herbal Compound lmperatorin with Adverse Effects on ANO1 and CFTR Chloride Channels

    Institute of Scientific and Technical Information of China (English)

    HAO Feng; YI Fei; ZHANG Di; NING Yan; SU Wei-heng; FENG Xue-chao; YANG Hong; MA Tong-hui

    2011-01-01

    Calcium-activated chloride channels(CaCCs) are the crucial regulators of transepithelial fluid secretion,smooth muscle contraction and sensory transduction. Recently, compelling evidence has indicated that TMEM 16A(ANO 1 or anoctamin-i ) is a bona fide calcium-acvtivated chloride channel. A few small molecule CaCCs regulators are available for functional and therapeutic studies. We screened 126 natural compounds from Chinese herbs. Screening was performed with an iodide influx assay in Fischer rat thyroid epithelial cells to coexpress ANOI and an iodide-sensitive fluorescent indicator(EYFP-HI48Q/I152L). lmperatorin, a coumarin compound, was identifled to inhibit ANOl-mediated chloride transport activated by multiple calcium-elevating agonists. The inhibitory effect is dose-dependent with IC50 ~14.63 μmol/L. Interestingly, imperatorin activated CFTR chloride channel with EC50 ~35.52 μmol/L. The adverse effects of imperatorin on CaCC and CFTR chloride channels will make it useful in pharmacological dissection of chloride transport in airway and intestinal epithelium. Further studies are required to evaluate the therapeutic effects of imperatorin on hypertension, asthma and certain tumors.

  14. The ABC protein turned chloride channel whose failure causes cystic fibrosis

    OpenAIRE

    Gadsby, David C.; Vergani, Paola; Csanády, László

    2006-01-01

    CFTR chloride channels are encoded by the gene mutated in patients with cystic fibrosis. These channels belong to the superfamily of ABC transporter ATPases. ATP-driven conformational changes, which in other ABC proteins fuel uphill substrate transport across cellular membranes, in CFTR open and close a gate to allow transmembrane flow of anions down their electrochemical gradient. New structural and biochemical information from prokaryotic ABC proteins and functional information from CFTR ch...

  15. Lack of conventional ATPase properties in CFTR chloride channel gating.

    Science.gov (United States)

    Schultz, B D; Bridges, R J; Frizzell, R A

    1996-05-01

    CFTR shares structural homology with the ABC transporter superfamily of proteins which hydrolyze ATP to effect the transport of compounds across cell membranes. Some superfamily members are characterized as P-type ATPases because ATP-dependent transport is sensitive to the presence of vanadate. It has been widely postulated that CFTR hydrolyzes ATP to gate its chloride channel. However, direct evidence of CFTR hydrolytic activity in channel gating is lacking and existing circumstantial evidence is contradictory. Therefore, we evaluated CFTR chloride channel activity under conditions known to inhibit the activity of ATPases; i.e., in the absence of divalent cations and in the presence of a variety of ATPase inhibitors. Removal of the cytosolic cofactor, Mg2+, reduced both the opening and closing rates of CFTR suggesting that Mg2+ plays a modulatory role in channel gating. However, channels continued to both open and close showing that Mg2+ is not an absolute requirement for channel activity. The nonselective P-type ATPase inhibitor, vanadate, did not alter the gating of CFTR when used at concentrations which completely inhibit the activity of other ABC transporters (1 mM). Higher concentrations of vanadate (10 mM) blocked the closing of CFTR, but did not affect the opening of the channel. As expected, more selective P-type (Sch28080, ouabain), V-type (bafilomycin A1, SCN-) and F-type (oligomycin) ATPase inhibitors did not affect either the opening or closing of CFTR. Thus, CFTR does not share a pharmacological inhibition profile with other ATPases and channel gating occurs in the apparent absence of hydrolysis, although with altered kinetics. Vanadate inhibition of channel closure might suggest that a hydrolytic step is involved although the requirement for a high concentration raises the possibility of previously uncharacterized effects of this compound. Most conservatively, the requirement for high concentrations of vanadate demonstrates that the binding site for

  16. Conformational changes opening and closing the CFTR chloride channel: insights from cysteine scanning mutagenesis.

    Science.gov (United States)

    El Hiani, Yassine; Linsdell, Paul

    2014-12-01

    Cystic fibrosis, the most common lethal genetic disease affecting young people in North America, is caused by failure of the chloride ion channel known as CFTR (cystic fibrosis transmembrane conductance regulator). CFTR belongs to the large family of ATP-binding cassette (ABC) membrane transporters. In CFTR, ATP-driven events at the nucleotide-binding domains (NBDs) open and close a gate that controls chloride permeation. However, the conformational changes concomitant with opening and closing of the CFTR gate are unknown. Diverse techniques including substituted cysteine accessibility method, disulfide cross-linking, and patch-clamp recording have been used to explore CFTR channel structure. Here, we consider the architecture of both the open and the closed CFTR channel. We review how CFTR channel structure changes between the closed and the open channel conformations and portray the relative function of both cytoplasmic and vestigial gates during the gating cycle. Understanding how the CFTR channel gates chloride permeation is central for understanding how CFTR defects lead to CF. Such knowledge opens the door for novel ways to maximize CFTR channel activity in a CF setting.

  17. Physiology and Pathophysiology of CLC-1: Mechanisms of a Chloride Channel Disease, Myotonia

    Directory of Open Access Journals (Sweden)

    Chih-Yung Tang

    2011-01-01

    Full Text Available The CLC-1 chloride channel, a member of the CLC-channel/transporter family, plays important roles for the physiological functions of skeletal muscles. The opening of this chloride channel is voltage dependent and is also regulated by protons and chloride ions. Mutations of the gene encoding CLC-1 result in a genetic disease, myotonia congenita, which can be inherited as an autosmal dominant (Thomsen type or an autosomal recessive (Becker type pattern. These mutations are scattered throughout the entire protein sequence, and no clear relationship exists between the inheritance pattern of the mutation and the location of the mutation in the channel protein. The inheritance pattern of some but not all myotonia mutants can be explained by a working hypothesis that these mutations may exert a “dominant negative” effect on the gating function of the channel. However, other mutations may be due to different pathophysiological mechanisms, such as the defect of protein trafficking to membranes. Thus, the underlying mechanisms of myotonia are likely to be quite diverse, and elucidating the pathophysiology of myotonia mutations will require the understanding of multiple molecular/cellular mechanisms of CLC-1 channels in skeletal muscles, including molecular operation, protein synthesis, and membrane trafficking mechanisms.

  18. Non-specific activation of the epithelial sodium channel by the CFTR chloride channel

    OpenAIRE

    Nagel, Georg; Szellas, Tanjef; Riordan, John R.; Friedrich, Thomas; Hartung, Klaus

    2001-01-01

    The genetic disease cystic fibrosis is caused by mutation of the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR). Controversial studies reported regulation of the epithelial sodium channel (ENaC) by CFTR. We found that uptake of 22Na+ through ENaC is modulated by activation of CFTR in oocytes, coexpressing CFTR and ENaC, depending on extracellular chloride concentration. Furthermore we found that the effect of CFTR activation could be mimicked by other chloride ...

  19. Cystic fibrosis transmembrane conductance regulator chloride channel blockers: Pharmacological, biophysical and physiological relevance

    Institute of Scientific and Technical Information of China (English)

    Paul; Linsdell

    2014-01-01

    Dysfunction of the cystic fibrosis transmembrane con-ductance regulator(CFTR) chloride channel causes cys-tic fibrosis, while inappropriate activity of this channeloccurs in secretory diarrhea and polycystic kidney dis-ease. Drugs that interact directly with CFTR are there-fore of interest in the treatment of a number of diseasestates. This review focuses on one class of small mol-ecules that interacts directly with CFTR, namely inhibi-tors that act by directly blocking chloride movementthrough the open channel pore. In theory such com-pounds could be of use in the treatment of diarrheaand polycystic kidney disease, however in practice allknown substances acting by this mechanism to inhibitCFTR function lack either the potency or specificity forin vivo use. Nevertheless, this theoretical pharmaco-logical usefulness set the scene for the developmentof more potent, specific CFTR inhibitors. Biophysically,open channel blockers have proven most useful as ex-perimental probes of the structure and function of theCFTR chloride channel pore. Most importantly, the useof these blockers has been fundamental in developing afunctional model of the pore that includes a wide innervestibule that uses positively charged amino acid sidechains to attract both permeant and blocking anionsfrom the cell cytoplasm. CFTR channels are also subjectto this kind of blocking action by endogenous anionspresent in the cell cytoplasm, and recently this blocking effect has been suggested to play a role in the physio-logical control of CFTR channel function, in particular as a novel mechanism linking CFTR function dynamically to the composition of epithelial cell secretions. It has also been suggested that future drugs could target this same pathway as a way of pharmacologically increasing CFTR activity in cystic fibrosis. Studying open channel blockers and their mechanisms of action has resulted in significant advances in our understanding of CFTR as a pharmacological target in disease states, of

  20. The Validation of Nematode-Specific Acetylcholine-Gated Chloride Channels as Potential Anthelmintic Drug Targets.

    Science.gov (United States)

    Wever, Claudia M; Farrington, Danielle; Dent, Joseph A

    2015-01-01

    New compounds are needed to treat parasitic nematode infections in humans, livestock and plants. Small molecule anthelmintics are the primary means of nematode parasite control in animals; however, widespread resistance to the currently available drug classes means control will be impossible without the introduction of new compounds. Adverse environmental effects associated with nematocides used to control plant parasitic species are also motivating the search for safer, more effective compounds. Discovery of new anthelmintic drugs in particular has been a serious challenge due to the difficulty of obtaining and culturing target parasites for high-throughput screens and the lack of functional genomic techniques to validate potential drug targets in these pathogens. We present here a novel strategy for target validation that employs the free-living nematode Caenorhabditis elegans to demonstrate the value of new ligand-gated ion channels as targets for anthelmintic discovery. Many successful anthelmintics, including ivermectin, levamisole and monepantel, are agonists of pentameric ligand-gated ion channels, suggesting that the unexploited pentameric ion channels encoded in parasite genomes may be suitable drug targets. We validated five members of the nematode-specific family of acetylcholine-gated chloride channels as targets of agonists with anthelmintic properties by ectopically expressing an ivermectin-gated chloride channel, AVR-15, in tissues that endogenously express the acetylcholine-gated chloride channels and using the effects of ivermectin to predict the effects of an acetylcholine-gated chloride channel agonist. In principle, our strategy can be applied to validate any ion channel as a putative anti-parasitic drug target.

  1. The Validation of Nematode-Specific Acetylcholine-Gated Chloride Channels as Potential Anthelmintic Drug Targets.

    Directory of Open Access Journals (Sweden)

    Claudia M Wever

    Full Text Available New compounds are needed to treat parasitic nematode infections in humans, livestock and plants. Small molecule anthelmintics are the primary means of nematode parasite control in animals; however, widespread resistance to the currently available drug classes means control will be impossible without the introduction of new compounds. Adverse environmental effects associated with nematocides used to control plant parasitic species are also motivating the search for safer, more effective compounds. Discovery of new anthelmintic drugs in particular has been a serious challenge due to the difficulty of obtaining and culturing target parasites for high-throughput screens and the lack of functional genomic techniques to validate potential drug targets in these pathogens. We present here a novel strategy for target validation that employs the free-living nematode Caenorhabditis elegans to demonstrate the value of new ligand-gated ion channels as targets for anthelmintic discovery. Many successful anthelmintics, including ivermectin, levamisole and monepantel, are agonists of pentameric ligand-gated ion channels, suggesting that the unexploited pentameric ion channels encoded in parasite genomes may be suitable drug targets. We validated five members of the nematode-specific family of acetylcholine-gated chloride channels as targets of agonists with anthelmintic properties by ectopically expressing an ivermectin-gated chloride channel, AVR-15, in tissues that endogenously express the acetylcholine-gated chloride channels and using the effects of ivermectin to predict the effects of an acetylcholine-gated chloride channel agonist. In principle, our strategy can be applied to validate any ion channel as a putative anti-parasitic drug target.

  2. The Validation of Nematode-Specific Acetylcholine-Gated Chloride Channels as Potential Anthelmintic Drug Targets

    Science.gov (United States)

    Wever, Claudia M.; Farrington, Danielle; Dent, Joseph A.

    2015-01-01

    New compounds are needed to treat parasitic nematode infections in humans, livestock and plants. Small molecule anthelmintics are the primary means of nematode parasite control in animals; however, widespread resistance to the currently available drug classes means control will be impossible without the introduction of new compounds. Adverse environmental effects associated with nematocides used to control plant parasitic species are also motivating the search for safer, more effective compounds. Discovery of new anthelmintic drugs in particular has been a serious challenge due to the difficulty of obtaining and culturing target parasites for high-throughput screens and the lack of functional genomic techniques to validate potential drug targets in these pathogens. We present here a novel strategy for target validation that employs the free-living nematode Caenorhabditis elegans to demonstrate the value of new ligand-gated ion channels as targets for anthelmintic discovery. Many successful anthelmintics, including ivermectin, levamisole and monepantel, are agonists of pentameric ligand-gated ion channels, suggesting that the unexploited pentameric ion channels encoded in parasite genomes may be suitable drug targets. We validated five members of the nematode-specific family of acetylcholine-gated chloride channels as targets of agonists with anthelmintic properties by ectopically expressing an ivermectin-gated chloride channel, AVR-15, in tissues that endogenously express the acetylcholine-gated chloride channels and using the effects of ivermectin to predict the effects of an acetylcholine-gated chloride channel agonist. In principle, our strategy can be applied to validate any ion channel as a putative anti-parasitic drug target. PMID:26393923

  3. The ABC protein turned chloride channel whose failure causes cystic fibrosis.

    Science.gov (United States)

    Gadsby, David C; Vergani, Paola; Csanády, László

    2006-03-23

    CFTR chloride channels are encoded by the gene mutated in patients with cystic fibrosis. These channels belong to the superfamily of ABC transporter ATPases. ATP-driven conformational changes, which in other ABC proteins fuel uphill substrate transport across cellular membranes, in CFTR open and close a gate to allow transmembrane flow of anions down their electrochemical gradient. New structural and biochemical information from prokaryotic ABC proteins and functional information from CFTR channels has led to a unifying mechanism explaining those ATP-driven conformational changes.

  4. The ABC protein turned chloride channel whose failure causes cystic fibrosis

    Science.gov (United States)

    Gadsby, David C.; Vergani, Paola; Csanády, László

    2006-03-01

    CFTR chloride channels are encoded by the gene mutated in patients with cystic fibrosis. These channels belong to the superfamily of ABC transporter ATPases. ATP-driven conformational changes, which in other ABC proteins fuel uphill substrate transport across cellular membranes, in CFTR open and close a gate to allow transmembrane flow of anions down their electrochemical gradient. New structural and biochemical information from prokaryotic ABC proteins and functional information from CFTR channels has led to a unifying mechanism explaining those ATP-driven conformational changes.

  5. Genetically encoded optical sensors for monitoring of intracellular chloride and chloride-selective channel activity

    Directory of Open Access Journals (Sweden)

    Piotr Bregestovski

    2009-12-01

    Full Text Available This review briefly discusses the main approaches for monitoring chloride (Cl−, the most abundant physiological anion. Noninvasive monitoring of intracellular Cl− ([Cl−]i is a challenging task owing to two main difficulties: (i the low transmembrane ratio for Cl−, approximately 10:1; and (ii the small driving force for Cl−, as the Cl− reversal potential (ECl is usually close to the resting potential of the cells. Thus, for reliable monitoring of intracellular Cl−, one has to use highly sensitive probes. From several methods for intracellular Cl− analysis, genetically encoded chloride indicators represent the most promising tools. Recent achievements in the development of genetically encoded chloride probes are based on the fact that yellow fluorescent protein (YFP exhibits Cl−-sensitivity. YFP-based probes have been successfully used for quantitative analysis of Cl− transport in different cells and for high-throughput screening of modulators of Cl−-selective channels. Development of a ratiometric genetically encoded probe, Clomeleon, has provided a tool for noninvasive estimation of intracellular Cl− concentrations. While the sensitivity of this protein to Cl− is low (EC50 about 160 mM, it has been successfully used for monitoring intracellular Cl− in different cell types. Recently a CFP–YFP-based probe with a relatively high sensitivity to Cl− (EC50 about 30 mM has been developed. This construct, termed Cl-Sensor, allows ratiometric monitoring using the fluorescence excitation ratio. Of particular interest are genetically encoded probes for monitoring of ion channel distribution and activity. A new molecular probe has been constructed by introducing into the cytoplasmic domain of the Cl−-selective glycine receptor (GlyR channel the CFP–YFP-based Cl-Sensor. This construct, termed BioSensor-GlyR, has been successfully expressed in cell lines. The new genetically encoded chloride probes offer means of screening

  6. Noise analysis and single-channel observations of 4 pS chloride channels in human airway epithelia.

    OpenAIRE

    Duszyk, M; French, A S; Man, S F

    1992-01-01

    Apical membranes of human airway epithelial cells have significant chloride permeability, which is reduced in cystic fibrosis (CF), causing abnormal electrochemistry and impaired mucociliary clearance. At least four types of chloride channels have been identified in these cells, but their relative roles in total permeability and CF are unclear. Noise analysis was used to measure the conductance of chloride channels in human nasal epithelial cells. The data indicate that channels with a mean c...

  7. Recovery of mucosal barrier function in ischemic porcine ileum and colon is stimulated by a novel agonist of the ClC-2 chloride channel, lubiprostone.

    Science.gov (United States)

    Moeser, Adam J; Nighot, Prashant K; Engelke, Kory J; Ueno, Ryuji; Blikslager, Anthony T

    2007-02-01

    Previous studies utilizing an ex vivo porcine model of intestinal ischemic injury demonstrated that prostaglandin (PG)E(2) stimulates repair of mucosal barrier function via a mechanism involving Cl(-) secretion and reductions in paracellular permeability. Further experiments revealed that the signaling mechanism for PGE(2)-induced mucosal recovery was mediated via type-2 Cl(-) channels (ClC-2). Therefore, the objective of the present study was to directly investigate the role of ClC-2 in mucosal repair by evaluating mucosal recovery in ischemia-injured intestinal mucosa treated with the selective ClC-2 agonist lubiprostone. Ischemia-injured porcine ileal mucosa was mounted in Ussing chambers, and short-circuit current (I(sc)) and transepithelial electrical resistance (TER) were measured in response to lubiprostone. Application of 0.01-1 microM lubiprostone to ischemia-injured mucosa induced concentration-dependent increases in TER, with 1 microM lubiprostone stimulating a twofold increase in TER (DeltaTER = 26 Omega.cm(2); P lubiprostone (1 microM) stimulated higher elevations in TER despite lower I(sc) responses compared with the nonselective secretory agonist PGE(2) (1 microM). Furthermore, lubiprostone significantly (P lubiprostone stimulated elevations in TER and reductions in mannitol flux in ischemia-injured intestine associated with structural changes in tight junctions. Prostones such as lubiprostone may provide a selective and novel pharmacological mechanism of accelerating recovery of acutely injured intestine compared with the nonselective action of prostaglandins such as PGE(2).

  8. Differential distribution of glutamate- and GABA-gated chloride channels in the housefly Musca domestica.

    Science.gov (United States)

    Kita, Tomo; Ozoe, Fumiyo; Azuma, Masaaki; Ozoe, Yoshihisa

    2013-09-01

    l-Glutamic acid (glutamate) mediates fast inhibitory neurotransmission by affecting glutamate-gated chloride channels (GluCls) in invertebrates. The molecular function and pharmacological properties of GluCls have been well studied, but not much is known about their physiological role and localization in the insect body. The distribution of GluCls in the housefly (Musca domestica L.) was thus compared with the distribution of γ-aminobutyric acid (GABA)-gated chloride channels (GABACls). Quantitative PCR and ligand-binding experiments indicate that the GluCl and GABACl transcripts and proteins are predominantly expressed in the adult head. Intense GluCl immunostaining was detected in the lamina, leg motor neurons, and legs of adult houseflies. The GABACl (Rdl) immunostaining was more widely distributed, and was found in the medulla, lobula, lobula plate, mushroom body, antennal lobe, and ellipsoid body. The present findings suggest that GluCls have physiological roles in different tissues than GABACls.

  9. 氯离子通道与肾脏病%Chloride channels and kidney diseases

    Institute of Scientific and Technical Information of China (English)

    蒲金赟(综述); 周建华(审校)

    2016-01-01

    氯离子是生物体内一类重要的阴离子,参与多种生理活动的调节。由相关基因突变引起的离子通道蛋白功能缺陷可导致离子通道功能异常,形成离子通道病。在肾脏,位于不同部位的肾小管上皮细胞的基侧质膜和顶质膜上分布有多种氯离子通道。研究发现,肾脏电压门控氯离子通道与Bartter综合征和Dent病有关;囊性纤维化跨膜转运调节体所致囊性纤维化病可累及肾脏。文章综述氯离子通道在维持正常肾脏功能中的作用及其机制,以及相关基因缺陷所致的肾脏疾病。%Chloride ion is an important anion in organisms, managing various physiological events. A particular gene mu-tation leads to involved channel deifciency and to develop channelopathy. In kidney, different chloride channels distribute along certain fractions of the renal tubule, located at apical and basolateral membranes of tubular epithelial cells. Previous studies dis-covered that voltage-sensitive chloride channels in kidney are associated with Bartter syndrome and Dent’s disease. In addition, the kidney can be involved by cystic ifbrosis resulting from dysfunction of cystic ifbrosis transmembrane conductance regulator. In this review, the function and mechanism of chloride channels in maintenance of normal renal function, and the renal diseases caused by related gene defects were discussed.

  10. Effects of antigliomatin from the scorpion venom of Buthus martensii Karsch on chloride channels on C6 glioma cells

    Institute of Scientific and Technical Information of China (English)

    Zan Wang; Mingxian Li; Hongmei Meng; Min Huang; Weihong Lin; Li Cui; Shao Wang

    2011-01-01

    Using whole-cell patch-clamp recordings, the effects of antigliomatin were observed on chloride channels on C6 glioma cells cultured in vitro. Antigliomatin was extracted from the venom of the scorpion Buthus martensii Karsch. Chloride channels are closed under normal osmotic pressure. When osmotic pressure was reduced to 120, 110 and 100 mV, the cell volume enlarged, chloride channels opened, and the chloride channel current increased. Three minutes after antigliomatin treatment, the chloride channel current decreased in a dose-dependent manner. These results show that antigliomatin extracted from the venom of the scorpion Buthus martensii Karsch diminishes chloride channel currents on C6 glioma cells.

  11. Cadmium regulates the expression of the CFTR chloride channel in human airway epithelial cells.

    Science.gov (United States)

    Rennolds, Jessica; Butler, Susie; Maloney, Kevin; Boyaka, Prosper N; Davis, Ian C; Knoell, Daren L; Parinandi, Narasimham L; Cormet-Boyaka, Estelle

    2010-07-01

    Cadmium is a toxic heavy metal ranked seventh on the Priority List of Hazardous Substances. As a byproduct of smelters, cadmium is a prevalent environmental contaminant. It is also a major component of cigarette smoke, and its inhalation is associated with decreased pulmonary function, lung cancer, and chronic obstructive pulmonary disease. Ion channels, including the cystic fibrosis transmembrane conductance regulator (CFTR), play a central role in maintaining fluid homeostasis and lung functions. CFTR is mostly expressed in epithelial cells, and little is known about the effect of cadmium exposure on lung epithelial cell function. We show that exposure to cadmium decreases the expression of the CFTR protein and subsequent chloride transport in human airway epithelial cells in vitro. Impairment of CFTR protein expression was also observed in vivo in the lung of mice after intranasal instillation of cadmium. We established that the inhibitory effect of cadmium was not a nonspecific effect of heavy metals, as nickel had no effect on CFTR protein levels. Finally, we show that selected antioxidants, including alpha-tocopherol (vitamin E), but not N-acetylcysteine, can prevent the cadmium-induced suppression of CFTR. In summary, we have identified cadmium as a regulator of the CFTR chloride channel present in lung epithelial cells. Future strategies to prevent the deleterious effect of cadmium on epithelial cells and lung functions may benefit from the finding that alpha-tocopherol protects CFTR expression and function.

  12. The Split Personality of Glutamate Transporters: A Chloride Channel and a Transporter.

    Science.gov (United States)

    Cater, Rosemary J; Ryan, Renae M; Vandenberg, Robert J

    2016-03-01

    Transporters and ion channels are conventionally categorised into distinct classes of membrane proteins. However, some membrane proteins have a split personality and can function as both transporters and ion channels. The excitatory amino acid transporters (EAATs) in particular, function as both glutamate transporters and chloride (Cl(-)) channels. The EAATs couple the transport of glutamate to the co-transport of three Na(+) ions and one H(+) ion into the cell, and the counter-transport of one K(+) ion out of the cell. The EAAT Cl(-) channel is activated by the binding of glutamate and Na(+), but is thermodynamically uncoupled from glutamate transport and involves molecular determinants distinct from those responsible for glutamate transport. Several crystal structures of an EAAT archaeal homologue, GltPh, at different stages of the transport cycle, alongside numerous functional studies and molecular dynamics simulations, have provided extensive insights into the mechanism of substrate transport via these transporters. However, the molecular determinants involved in Cl(-) permeation, and the mechanism by which this channel is activated are not entirely understood. Here we will discuss what is currently known about the molecular determinants involved in EAAT-mediated Cl(-) permeation and the mechanisms that underlie their split personality.

  13. Regulation of CFTR chloride channel macroscopic conductance by extracellular bicarbonate.

    Science.gov (United States)

    Li, Man-Song; Holstead, Ryan G; Wang, Wuyang; Linsdell, Paul

    2011-01-01

    The CFTR contributes to Cl⁻ and HCO₃⁻ transport across epithelial cell apical membranes. The extracellular face of CFTR is exposed to varying concentrations of Cl⁻ and HCO₃⁻ in epithelial tissues, and there is evidence that CFTR is sensitive to changes in extracellular anion concentrations. Here we present functional evidence that extracellular Cl⁻ and HCO₃⁻ regulate anion conduction in open CFTR channels. Using cell-attached and inside-out patch-clamp recordings from constitutively active mutant E1371Q-CFTR channels, we show that voltage-dependent inhibition of CFTR currents in intact cells is significantly stronger when the extracellular solution contains HCO₃⁻ than when it contains Cl⁻. This difference appears to reflect differences in the ability of extracellular HCO₃⁻ and Cl⁻ to interact with and repel intracellular blocking anions from the pore. Strong block by endogenous cytosolic anions leading to reduced CFTR channel currents in intact cells occurs at physiologically relevant HCO₃⁻ concentrations and membrane potentials and can result in up to ∼50% inhibition of current amplitude. We propose that channel block by cytosolic anions is a previously unrecognized, physiologically relevant mechanism of channel regulation that confers on CFTR channels sensitivity to different anions in the extracellular fluid. We further suggest that this anion sensitivity represents a feedback mechanism by which CFTR-dependent anion secretion could be regulated by the composition of the secretions themselves. Implications for the mechanism and regulation of CFTR-dependent secretion in epithelial tissues are discussed.

  14. Cystic fibrosis transmembrane conductance regulator: a chloride channel gated by ATP binding and hydrolysis.

    Science.gov (United States)

    Bompadre, Silvia G; Hwang, Tzyh-Chang

    2007-08-25

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that belongs to the ATP-binding cassette (ABC) transporter superfamily. Defective function of CFTR is responsible for cystic fibrosis (CF), the most common lethal autosomal recessive disorder in Caucasian populations. The disease is manifested in defective chloride transport across the epithelial cells in various tissues. To date, more than 1400 different mutations have been identified as CF-associated. CFTR is regulated by phosphorylation in its regulatory (R) domain, and gated by ATP binding and hydrolysis at its two nucleotide-binding domains (NBD1 and NBD2). Recent studies reveal that the NBDs of CFTR may dimerize as observed in other ABC proteins. Upon dimerization of CFTR's two NBDs, in a head-to-tail configuration, the two ATP-binding pockets (ABP1 and ABP2) are formed by the canonical Walker A and B motifs from one NBD and the signature sequence from the partner NBD. Mutations of the amino acids that interact with ATP reveal that the two ABPs play distinct roles in controlling ATP-dependent gating of CFTR. It was proposed that binding of ATP to the ABP2, which is formed by the Walker A and B in NBD2 and the signature sequence in NBD1, is critical for catalyzing channel opening. While binding of ATP to the ABP1 alone may not increase the opening rate, it does contribute to the stabilization of the open channel conformation. Several disease-associated mutations of the CFTR channel are characterized by gating defects. Understanding how CFTR's two NBDs work together to gate the channel could provide considerable mechanistic information for future pharmacological studies, which could pave the way for tailored drug design for therapeutical interventions in CF.

  15. Synthesis and Characterization of A Small Molecule CFTR Chloride Channel Inhibitor

    Institute of Scientific and Technical Information of China (English)

    HE Cheng-yan; ZHANG Heng-jun; SU Zhong-min; ZHOU Jin-song; YANG Hong; MA Tong-hui

    2004-01-01

    A thiazolidinone CFTR inhibitor(CFTRinh-172) was synthesized by a three-step procedure with trifluromethylaniline as the starting material. The synthesized CFTR inhibitor was characterized structurally by means of 1H NMR and functionally in a CFTR-expressing cell line FRT/hCFTR/EYFP-H148Q by both fluorescent and electrophysiological methods. A large amount(100 g) of high-quality small molecule thiazolidinone CFTR chloride channel inhibitor, CFTRinh-172, can be produced with this simple three-step synthetic procedure. The structure of the final product 2-thioxo-3-(3-trifluromethylphenyl)-5-[4-carboxyphenyl-methylene]-4-thiazolidinone was confirmed by 1H NMR. The overall yield was 58% with a purity over 99% as analyzed by HPLC. The synthesized CFTRinh-172 specifically inhibited CFTR chloride channel function in a cell-based fluorescence assay(Kd≈1.5 μmol/L) and in a Ussing chamber-based short-circuit current assay(Kd≈0.2 μmol/L), indicating better quality than that of the commercial combinatorial compound. The synthesized inhibitor is nontoxic to cultured cells at a high concentration and to mouse at a high dose. The synthetic procedure developed here can be used to produce a large amount of the high-quality CFTRinh-172 suitable for antidiarrheal studies and for creation of cystic fibrosis models in large animals. The procedure can be used to synthesize radiolabled CFTRinh-172 for in vivo pharmacokinetics studies.

  16. CFTR chloride channel in the apical compartments: spatiotemporal coupling to its interacting partners.

    Science.gov (United States)

    Li, Chunying; Naren, Anjaparavanda P

    2010-04-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel located primarily at the apical or luminal surfaces of epithelial cells in the airway, intestine, pancreas, kidney, sweat gland, as well as male reproductive tract, where it plays a crucial role in transepithelial fluid homeostasis. CFTR dysfunction can be detrimental and may result in life-threatening disorders. CFTR hypofunctioning because of genetic defects leads to cystic fibrosis, the most common lethal genetic disease in Caucasians, whereas CFTR hyperfunctioning resulting from various infections evokes secretory diarrhea, the leading cause of mortality in early childhood. Therefore, maintaining a dynamic balance between CFTR up-regulating processes and CFTR down-regulating processes is essential for maintaining fluid and body homeostasis. Accumulating evidence suggests that protein-protein interactions play a critical role in the fine-tuned regulation of CFTR function. A growing number of proteins have been reported to interact directly or indirectly with CFTR chloride channel, suggesting that CFTR might be coupled spatially and temporally to a wide variety of interacting partners including ion channels, receptors, transporters, scaffolding proteins, enzyme molecules, signaling molecules, and effectors. Most interactions occur primarily between the opposing terminal tails (amino or carboxyl) of CFTR protein and its binding partners, either directly or mediated through various PDZ scaffolding proteins. These dynamic interactions impact the channel function, as well as localization and processing of CFTR protein within cells. This article reviews the most recent progress and findings about the interactions between CFTR and its binding partners through PDZ scaffolding proteins, as well as the spatiotemporal regulation of CFTR-containing macromolecular signaling complexes in the apical compartments of polarized cells lining the secretory epithelia.

  17. Mercury toxicity in the shark (Squalus acanthias) rectal gland: apical CFTR chloride channels are inhibited by mercuric chloride.

    Science.gov (United States)

    Ratner, Martha A; Decker, Sarah E; Aller, Stephen G; Weber, Gerhard; Forrest, John N

    2006-03-01

    In the shark rectal gland, basolateral membrane proteins have been suggested as targets for mercury. To examine the membrane polarity of mercury toxicity, we performed experiments in three preparations: isolated perfused rectal glands, primary monolayer cultures of rectal gland epithelial cells, and Xenopus oocytes expressing the shark cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In perfused rectal glands we observed: (1) a dose-dependent inhibition by mercury of forskolin/3-isobutyl-1-methylxanthine (IBMX)-stimulated chloride secretion; (2) inhibition was maximal when mercury was added before stimulation with forskolin/IBMX; (3) dithiothrietol (DTT) and glutathione (GSH) completely prevented inhibition of chloride secretion. Short-circuit current (Isc) measurements in monolayers of rectal gland epithelial cells were performed to examine the membrane polarity of this effect. Mercuric chloride inhibited Isc more potently when applied to the solution bathing the apical vs. the basolateral membrane (23 +/- 5% and 68 +/- 5% inhibition at 1 and 10 microM HgCl2 in the apical solution vs. 2 +/- 0.9% and 14 +/- 5% in the basolateral solution). This inhibition was prevented by pre-treatment with apical DTT or GSH; however, only the permeant reducing agent DTT reversed mercury inhibition when added after exposure. When the shark rectal gland CFTR channel was expressed in Xenopus oocytes and chloride conductance was measured by two-electrode voltage clamping, we found that 1 microM HgCl2 inhibited forskolin/IBMX conductance by 69.2 +/- 2.0%. We conclude that in the shark rectal gland, mercury inhibits chloride secretion by interacting with the apical membrane and that CFTR is the likely site of this action.

  18. Tgf-beta downregulation of distinct chloride channels in cystic fibrosis-affected epithelia.

    Directory of Open Access Journals (Sweden)

    Hongtao Sun

    Full Text Available The cystic fibrosis transmembrane conductance regulator (CFTR and Calcium-activated Chloride Conductance (CaCC each play critical roles in maintaining normal hydration of epithelial surfaces including the airways and colon. TGF-beta is a genetic modifier of cystic fibrosis (CF, but how it influences the CF phenotype is not understood.We tested the hypothesis that TGF-beta potently downregulates chloride-channel function and expression in two CF-affected epithelia (T84 colonocytes and primary human airway epithelia compared with proteins known to be regulated by TGF-beta.TGF-beta reduced CaCC and CFTR-dependent chloride currents in both epithelia accompanied by reduced levels of TMEM16A and CFTR protein and transcripts. TGF-beta treatment disrupted normal regulation of airway-surface liquid volume in polarized primary human airway epithelia, and reversed F508del CFTR correction produced by VX-809. TGF-beta effects on the expression and activity of TMEM16A, wtCFTR and corrected F508del CFTR were seen at 10-fold lower concentrations relative to TGF-beta effects on e-cadherin (epithelial marker and vimentin (mesenchymal marker expression. TGF-beta downregulation of TMEM16A and CFTR expression were partially reversed by Smad3 and p38 MAPK inhibition, respectively.TGF-beta is sufficient to downregulate two critical chloride transporters in two CF-affected tissues that precedes expression changes of two distinct TGF-beta regulated proteins. Our results provide a plausible mechanism for CF-disease modification by TGF-beta through effects on CaCC.

  19. Channel properties of the splicing isoforms of the olfactory calcium-activated chloride channel Anoctamin 2.

    Science.gov (United States)

    Ponissery Saidu, Samsudeen; Stephan, Aaron B; Talaga, Anna K; Zhao, Haiqing; Reisert, Johannes

    2013-06-01

    Anoctamin (ANO)2 (or TMEM16B) forms a cell membrane Ca(2+)-activated Cl(-) channel that is present in cilia of olfactory receptor neurons, vomeronasal microvilli, and photoreceptor synaptic terminals. Alternative splicing of Ano2 transcripts generates multiple variants with the olfactory variants skipping exon 14 and having alternative splicing of exon 4. In the present study, 5' rapid amplification of cDNA ends analysis was conducted to characterize the 5' end of olfactory Ano2 transcripts, which showed that the most abundant Ano2 transcripts in the olfactory epithelium contain a novel starting exon that encodes a translation initiation site, whereas transcripts of the publically available sequence variant, which has an alternative and longer 5' end, were present in lower abundance. With two alternative starting exons and alternative splicing of exon 4, four olfactory ANO2 isoforms are thus possible. Patch-clamp experiments in transfected HEK293T cells expressing these isoforms showed that N-terminal sequences affect Ca(2+) sensitivity and that the exon 4-encoded sequence is required to form functional channels. Coexpression of the two predominant isoforms, one with and one without the exon 4 sequence, as well as coexpression of the two rarer isoforms showed alterations in channel properties, indicating that different isoforms interact with each other. Furthermore, channel properties observed from the coexpression of the predominant isoforms better recapitulated the native channel properties, suggesting that the native channel may be composed of two or more splicing isoforms acting as subunits that together shape the channel properties.

  20. Stimulation effect of wide type CFTR chloride channel by the naturally occurring flavonoid tangeretin.

    Science.gov (United States)

    Jiang, Yu; Yu, Bo; Wang, Xue; Sui, Yujie; Zhang, Yaofang; Yang, Shuang; Yang, Hong; Ma, Tonghui

    2014-12-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated chloride channel expressed in the apical membrane of serous epithelial cells. Both deficiency and overactivation of CFTR may cause fluid and salt secretion related diseases. In the present study, we identified tangeretin from Pericarpium Citri Reticulatae Viride as a CFTR activator using high-throughput screening based on FRT cell-based fluorescence assay. The activation effect of tangeretin on CFTR chloride channel and the possible underlying mechanisms were investigated. Fluorescence quenching tests showed that tangeretin dose- and time-dependently activated CFTR chloride channel, the activity had rapid and reversible characteristics and the activation effect could be completely reversed by the CFTR specific blocker CFTRinh-172. Primary mechanism studies indicated that the activation effect of tangeretin on CFTR chloride channel was FSK dependent as well as had additional effect with FSK and IBMX suggesting that tangeretin activates CFTR by direct interacting with the protein. Ex-vivo tests revealed that tangeretin could accelerate the speed of the submucosal gland fluid secretion. Short-circuit current measurement demonstrated that tangeretin activated rat colonic mucosa chloride current. Thus, CFTR Cl(-) channel is a molecular target of natural compound tangeretin. Tangeretin may have potential use for the treatment of CFTR-related diseases like cystic fibrosis, bronchiectasis and habitual constipation.

  1. Effect of trimethyllead chloride on slowly activating (SV) channels in red beet (Beta vulgaris L.) taproots.

    Science.gov (United States)

    Trela, Zenon; Burdach, Zbigniew; Przestalski, Stanisław; Karcz, Waldemar

    2012-12-01

    The patch-clamp technique was used to examine the effect of trimethyllead chloride (Met(3)PbCl) on SV channel activity in red beet (Beta vulgaris L.) taproot vacuoles. It was found that in the control bath the macroscopic currents showed the typical slow activation and a strong outward rectification of the steady-state currents. An addition of Met(3)PbCl to the bath solution blocked, in a concentration-dependent manner, SV currents in red beet vacuoles. The time constant τ increased several times in the presence of 100 μM trimethyllead chloride at all voltages tested. When single channel properties were analyzed, only little channel activity could be recorded in the presence of 100 μM Met(3)PbCl. Trimethyllead chloride decreased significantly (by about one order of magnitude) the open probability of single channels. The recordings of single channel activity obtained in the presence and absence of Met(3)PbCl showed that organolead only slightly (by ca. 10%) decreased the unitary conductance of single channels. It was also found that Met(3)PbCl diminished significantly the number of SV channel openings, whereas it did not change the opening times of the channels. Taken together, these results suggest that Met(3)PbCl binding site is located outside the channel selectivity filter.

  2. CLC channel function and dysfunction in health and disease

    Directory of Open Access Journals (Sweden)

    Gabriel eStölting

    2014-10-01

    Full Text Available CLC channels and transporters are expressed in most tissues and fulfill diverse functions. There are four human CLC channels, ClC-1, ClC-2, ClC-Ka and ClC-Kb, and five CLC transporters, ClC-3 through -7. Some of the CLC channels additionally associate with accessory subunits. Whereas barttin is mandatory for the functional expression of CLC-K, GlialCam is a facultative subunit of ClC-2 which modifies gating and thus increases the functional variability within the CLC family. Isoform-specific ion conduction and gating properties optimize distinct CLC channels for their cellular tasks. ClC-1 preferentially conducts at negative voltages, and the resulting inward rectification provides a large resting chloride conductance without interference with the muscle action potential. Exclusive opening at voltages negative to the chloride reversal potential allows for ClC-2 to regulate intracellular chloride concentrations. ClC-Ka and ClC-Kb are equally suited for inward and outward currents to support transcellular chloride fluxes. Every human CLC channel gene has been linked to a genetic disease, and studying these mutations has provided much information about the physiological roles and the molecular basis of CLC channel function. Mutations in the gene encoding ClC-1 cause myotonia congenita, a disease characterized by sarcolemmal hyperexcitability and muscle stiffness. Loss-of-function of ClC-Kb/barttin channels in patients suffering from Bartter syndrome identified the determinants of chloride conductances in the limb of Henle. Mutations in CLCN2 were found in patients with CNS disorders but the functional role of this isoform is still not understood. Recent links between ClC-1 and epilepsy and ClC-Ka and heart failure suggested novel cellular functions of these proteins. This review aims to survey the knowledge about physiological and pathophysiological functions of human CLC channels in the light of recent discoveries from biophysical, physiological

  3. Anion conductance selectivity mechanism of the CFTR chloride channel.

    Science.gov (United States)

    Linsdell, Paul

    2016-04-01

    All ion channels are able to discriminate between substrate ions to some extent, a process that involves specific interactions between permeant anions and the so-called selectivity filter within the channel pore. In the cystic fibrosis transmembrane conductance regulator (CFTR) anion-selective channel, both anion relative permeability and anion relative conductance are dependent on anion free energy of hydration--anions that are relatively easily dehydrated tend to show both high permeability and low conductance. In the present work, patch clamp recording was used to investigate the relative conductance of different anions in CFTR, and the effect of mutations within the channel pore. In constitutively-active E1371Q-CFTR channels, the anion conductance sequence was Cl(-) > NO3(-) > Br(-) > formate > SCN(-) > I(-). A mutation that disrupts anion binding in the inner vestibule of the pore (K95Q) disrupted anion conductance selectivity, such that anions with different permeabilities showed almost indistinguishable conductances. Conversely, a mutation at the putative narrowest pore region that is known to disrupt anion permeability selectivity (F337A) had minimal effects on anion relative conductance. Ion competition experiments confirmed that relatively tight binding of permeant anions resulted in relatively low conductance. These results suggest that the relative affinity of ion binding in the inner vestibule of the pore controls the relative conductance of different permeant anions in CFTR, and that the pore has two physically distinct anion selectivity filters that act in series to control anion conductance selectivity and anion permeability selectivity respectively.

  4. An improved ivermectin-activated chloride channel receptor for inhibiting electrical activity in defined neuronal populations

    DEFF Research Database (Denmark)

    Lynagh, Timothy Peter; Lynch, Joseph W

    2010-01-01

    for surgically implanted stimulus delivery methods and their use of nonhuman receptors. A third silencing method, an invertebrate glutamate-gated chloride channel receptor (GluClR) activated by ivermectin, solves the stimulus delivery problem as ivermectin is a safe, well tolerated drug that reaches the brain...

  5. Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction

    Science.gov (United States)

    Huang, Fen; Zhang, Hongkang; Wu, Meng; Yang, Huanghe; Kudo, Makoto; Peters, Christian J.; Woodruff, Prescott G.; Solberg, Owen D.; Donne, Matthew L.; Huang, Xiaozhu; Sheppard, Dean; Fahy, John V.; Wolters, Paul J.; Hogan, Brigid L. M.; Finkbeiner, Walter E.; Li, Min; Jan, Yuh-Nung; Jan, Lily Yeh; Rock, Jason R.

    2012-01-01

    Mucous cell hyperplasia and airway smooth muscle (ASM) hyperresponsiveness are hallmark features of inflammatory airway diseases, including asthma. Here, we show that the recently identified calcium-activated chloride channel (CaCC) TMEM16A is expressed in the adult airway surface epithelium and ASM. The epithelial expression is increased in asthmatics, particularly in secretory cells. Based on this and the proposed functions of CaCC, we hypothesized that TMEM16A inhibitors would negatively regulate both epithelial mucin secretion and ASM contraction. We used a high-throughput screen to identify small-molecule blockers of TMEM16A-CaCC channels. We show that inhibition of TMEM16A-CaCC significantly impairs mucus secretion in primary human airway surface epithelial cells. Furthermore, inhibition of TMEM16A-CaCC significantly reduces mouse and human ASM contraction in response to cholinergic agonists. TMEM16A-CaCC blockers, including those identified here, may positively impact multiple causes of asthma symptoms. PMID:22988107

  6. Interaction between 2 extracellular loops influences the activity of the cystic fibrosis transmembrane conductance regulator chloride channel.

    Science.gov (United States)

    Broadbent, Steven D; Wang, Wuyang; Linsdell, Paul

    2014-10-01

    Activity of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is thought to be controlled by cytoplasmic factors. However, recent evidence has shown that overall channel activity is also influenced by extracellular anions that interact directly with the extracellular loops (ECLs) of the CFTR protein. Very little is known about the structure of the ECLs or how substances interacting with these ECLs might affect CFTR function. We used patch-clamp recording to investigate the accessibility of cysteine-reactive reagents to cysteines introduced throughout ECL1 and 2 key sites in ECL4. Furthermore, interactions between ECL1 and ECL4 were investigated by the formation of disulfide crosslinks between cysteines introduced into these 2 regions. Crosslinks could be formed between R899C (in ECL4) and a number of sites in ECL1 in a manner that was dependent on channel activity, suggesting that the relative orientation of these 2 loops changes on activation. Formation of these crosslinks inhibited channel function, suggesting that relative movement of these ECLs is important to normal channel function. Implications of these findings for the effects of mutations in the ECLs that are associated with cystic fibrosis and interactions with extracellular substances that influence channel activity are discussed.

  7. Slow conversions among subconductance states of cystic fibrosis transmembrane conductance regulator chloride channel.

    OpenAIRE

    Tao, T.; Xie, J; Drumm, M L; Zhao, J.; Davis, P B; Ma, J.

    1996-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel exhibits multiple subconductance states. To study the regulation of conductance states of the CFTR channel, we expressed the wild-type CFTR protein in HEK 293 cells, and isolated microsomal membrane vesicles for reconstitution studies in lipid bilayer membranes. A single CFTR channel had a dominant conductance of 7.8 pS (H), plus two sub-open states with conductances of approximately 6 pS (M) and 2.7 pS (L) in 200...

  8. K(v)7 channels: function, pharmacology and channel modulators.

    Science.gov (United States)

    Dalby-Brown, William; Hansen, Henrik H; Korsgaard, Mads P G; Mirza, Naheed; Olesen, Søren-P

    2006-01-01

    K(v)7 channels are unique among K(+) channels, since four out of the five channel subtypes have well-documented roles in the development of human diseases. They have distinct physiological functions in the heart and in the nervous system, which can be ascribed to their voltage-gating properties. The K(v)7 channels also lend themselves to pharmacological modulation, and synthetic openers as well as blockers of the channels, regulating neuronal excitability, have existed even before the K(v)7 channels were identified by cloning. In the present review we give an account on the focused efforts to develop selective modulators, openers as well as blockers, of the K(v)7 channel subtypes, which have been undertaken during recent years, along with a discussion of the K(v)7 ion channel physiology and therapeutic indications for modulators of the neuronal K(v)7 channels.

  9. Molecular cloning and characterization of novel glutamate-gated chloride channel subunits from Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Vanessa Dufour

    Full Text Available Cys-loop ligand-gated ion channels (LGICs mediate fast ionotropic neurotransmission. They are proven drug targets in nematodes and arthropods, but are poorly characterized in flatworms. In this study, we characterized the anion-selective, non-acetylcholine-gated Cys-loop LGICs from Schistosoma mansoni. Full-length cDNAs were obtained for SmGluCl-1 (Smp_096480, SmGluCl-2 (Smp_015630 and SmGluCl-3 (Smp_104890. A partial cDNA was retrieved for SmGluCl-4 (Smp_099500/Smp_176730. Phylogenetic analyses suggest that SmGluCl-1, SmGluCl-2, SmGluCl-3 and SmGluCl-4 belong to a novel clade of flatworm glutamate-gated chloride channels (GluCl that includes putative genes from trematodes and cestodes. The flatworm GluCl clade was distinct from the nematode-arthropod and mollusc GluCl clades, and from all GABA receptors. We found no evidence of GABA receptors in S. mansoni. SmGluCl-1, SmGluCl-2 and SmGluCl-3 subunits were characterized by two-electrode voltage clamp (TEVC in Xenopus oocytes, and shown to encode Cl⁻-permeable channels gated by glutamate. SmGluCl-2 and SmGluCl-3 produced functional homomers, while SmGluCl-1 formed heteromers with SmGluCl-2. Concentration-response relationships revealed that the sensitivity of SmGluCl receptors to L-glutamate is among the highest reported for GluCl receptors, with EC₅₀ values of 7-26 µM. Chloride selectivity was confirmed by current-voltage (I/V relationships. SmGluCl receptors are insensitive to 1 µM ivermectin (IVM, indicating that they do not belong to the highly IVM-sensitive GluClα subtype group. SmGluCl receptors are also insensitive to 10 µM meclonazepam, a schistosomicidal benzodiazepine. These results provide the first molecular evidence showing the contribution of GluCl receptors to L-glutamate signaling in S. mansoni, an unprecedented finding in parasitic flatworms. Further work is needed to elucidate the roles of GluCl receptors in schistosomes and to explore their potential as drug targets.

  10. Identifying interacting proteins of a Caenorhabditis elegans voltage-gated chloride channel CLH-1 using GFP-Trap and mass spectrometry.

    Science.gov (United States)

    Zhou, Zi-Liang; Jiang, Jing; Yin, Jiang-An; Cai, Shi-Qing

    2014-06-25

    Chloride channels belong to a superfamily of ion channels that permit passive passage of anions, mainly chloride, across cell membrane. They play a variety of important physiological roles in regulation of cytosolic pH, cell volume homeostasis, organic solute transport, cell migration, cell proliferation, and differentiation. However, little is known about the functional regulation of these channels. In this study, we generated an integrated transgenic worm strain expressing green fluorescence protein (GFP) fused CLC-type chloride channel 1 (CLH-1::GFP), a voltage-gated chloride channel in Caenorhabditis elegans (C. elegans). CLH-1::GFP was expressed in some unidentified head neurons and posterior intestinal cells of C. elegans. Interacting proteins of CLH-1::GFP were purified by GFP-Trap, a novel system for efficient isolation of GFP fusion proteins and their interacting factors. Mass spectrometry (MS) analysis revealed that a total of 27 high probability interacting proteins were co-trapped with CLHp-1::GFP. Biochemical evidence showed that eukaryotic translation elongation factor 1 (EEF-1), one of these co-trapped proteins identified by MS, physically interacted with CLH-1, in consistent with GFP-Trap experiments. Further immunostaining data revealed that the protein level of CLH-1 was significantly increased upon co-expression with EEF-1. These results suggest that the combination of GFP-Trap purification with MS is an excellent tool to identify novel interacting proteins of voltage-gated chloride channels in C. elegans. Our data also show that EEF-1 is a regulator of voltage-gated chloride channel CLH-1.

  11. Chloride channels in stellate cells are essential for uniquely high secretion rates in neuropeptide-stimulated Drosophila diuresis.

    Science.gov (United States)

    Cabrero, Pablo; Terhzaz, Selim; Romero, Michael F; Davies, Shireen A; Blumenthal, Edward M; Dow, Julian A T

    2014-09-30

    Epithelia frequently segregate transport processes to specific cell types, presumably for improved efficiency and control. The molecular players underlying this functional specialization are of particular interest. In Drosophila, the renal (Malpighian) tubule displays the highest per-cell transport rates known and has two main secretory cell types, principal and stellate. Electrogenic cation transport is known to reside in the principal cells, whereas stellate cells control the anion conductance, but by an as-yet-undefined route. Here, we resolve this issue by showing that a plasma membrane chloride channel, encoded by ClC-a, is exclusively expressed in the stellate cell and is required for Drosophila kinin-mediated induction of diuresis and chloride shunt conductance, evidenced by chloride ion movement through the stellate cells, leading to depolarization of the transepithelial potential. By contrast, ClC-a knockdown had no impact on resting secretion levels. Knockdown of a second CLC gene showing highly abundant expression in adult Malpighian tubules, ClC-c, did not impact depolarization of transepithelial potential after kinin stimulation. Therefore, the diuretic action of kinin in Drosophila can be explained by an increase in ClC-a-mediated chloride conductance, over and above a resting fluid transport level that relies on other (ClC-a-independent) mechanisms or routes. This key segregation of cation and anion transport could explain the extraordinary fluid transport rates displayed by some epithelia.

  12. Self-cleavage of Human CLCA1 Protein by a Novel Internal Metalloprotease Domain Controls Calcium-activated Chloride Channel Activation*♦

    Science.gov (United States)

    Yurtsever, Zeynep; Sala-Rabanal, Monica; Randolph, David T.; Scheaffer, Suzanne M.; Roswit, William T.; Alevy, Yael G.; Patel, Anand C.; Heier, Richard F.; Romero, Arthur G.; Nichols, Colin G.; Holtzman, Michael J.; Brett, Tom J.

    2012-01-01

    The chloride channel calcium-activated (CLCA) family are secreted proteins that regulate both chloride transport and mucin expression, thus controlling the production of mucus in respiratory and other systems. Accordingly, human CLCA1 is a critical mediator of hypersecretory lung diseases, such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis, that manifest mucus obstruction. Despite relevance to homeostasis and disease, the mechanism of CLCA1 function remains largely undefined. We address this void by showing that CLCA proteins contain a consensus proteolytic cleavage site recognized by a novel zincin metalloprotease domain located within the N terminus of CLCA itself. CLCA1 mutations that inhibit self-cleavage prevent activation of calcium-activated chloride channel (CaCC)-mediated chloride transport. CaCC activation requires cleavage to unmask the N-terminal fragment of CLCA1, which can independently gate CaCCs. Gating of CaCCs mediated by CLCA1 does not appear to involve proteolytic cleavage of the channel because a mutant N-terminal fragment deficient in proteolytic activity is able to induce currents comparable with that of the native fragment. These data provide both a mechanistic basis for CLCA1 self-cleavage and a novel mechanism for regulation of chloride channel activity specific to the mucosal interface. PMID:23112050

  13. Self-cleavage of human CLCA1 protein by a novel internal metalloprotease domain controls calcium-activated chloride channel activation.

    Science.gov (United States)

    Yurtsever, Zeynep; Sala-Rabanal, Monica; Randolph, David T; Scheaffer, Suzanne M; Roswit, William T; Alevy, Yael G; Patel, Anand C; Heier, Richard F; Romero, Arthur G; Nichols, Colin G; Holtzman, Michael J; Brett, Tom J

    2012-12-07

    The chloride channel calcium-activated (CLCA) family are secreted proteins that regulate both chloride transport and mucin expression, thus controlling the production of mucus in respiratory and other systems. Accordingly, human CLCA1 is a critical mediator of hypersecretory lung diseases, such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis, that manifest mucus obstruction. Despite relevance to homeostasis and disease, the mechanism of CLCA1 function remains largely undefined. We address this void by showing that CLCA proteins contain a consensus proteolytic cleavage site recognized by a novel zincin metalloprotease domain located within the N terminus of CLCA itself. CLCA1 mutations that inhibit self-cleavage prevent activation of calcium-activated chloride channel (CaCC)-mediated chloride transport. CaCC activation requires cleavage to unmask the N-terminal fragment of CLCA1, which can independently gate CaCCs. Gating of CaCCs mediated by CLCA1 does not appear to involve proteolytic cleavage of the channel because a mutant N-terminal fragment deficient in proteolytic activity is able to induce currents comparable with that of the native fragment. These data provide both a mechanistic basis for CLCA1 self-cleavage and a novel mechanism for regulation of chloride channel activity specific to the mucosal interface.

  14. Silent S-Type Anion Channel Subunit SLAH1 Gates SLAH3 Open for Chloride Root-to-Shoot Translocation.

    Science.gov (United States)

    Cubero-Font, Paloma; Maierhofer, Tobias; Jaslan, Justyna; Rosales, Miguel A; Espartero, Joaquín; Díaz-Rueda, Pablo; Müller, Heike M; Hürter, Anna-Lena; Al-Rasheid, Khaled A S; Marten, Irene; Hedrich, Rainer; Colmenero-Flores, José M; Geiger, Dietmar

    2016-08-22

    Higher plants take up nutrients via the roots and load them into xylem vessels for translocation to the shoot. After uptake, anions have to be channeled toward the root xylem vessels. Thereby, xylem parenchyma and pericycle cells control the anion composition of the root-shoot xylem sap [1-6]. The fact that salt-tolerant genotypes possess lower xylem-sap Cl(-) contents compared to salt-sensitive genotypes [7-10] indicates that membrane transport proteins at the sites of xylem loading contribute to plant salinity tolerance via selective chloride exclusion. However, the molecular mechanism of xylem loading that lies behind the balance between NO3(-) and Cl(-) loading remains largely unknown. Here we identify two root anion channels in Arabidopsis, SLAH1 and SLAH3, that control the shoot NO3(-)/Cl(-) ratio. The AtSLAH1 gene is expressed in the root xylem-pole pericycle, where it co-localizes with AtSLAH3. Under high soil salinity, AtSLAH1 expression markedly declined and the chloride content of the xylem sap in AtSLAH1 loss-of-function mutants was half of the wild-type level only. SLAH3 anion channels are not active per se but require extracellular nitrate and phosphorylation by calcium-dependent kinases (CPKs) [11-13]. When co-expressed in Xenopus oocytes, however, the electrically silent SLAH1 subunit gates SLAH3 open even in the absence of nitrate- and calcium-dependent kinases. Apparently, SLAH1/SLAH3 heteromerization facilitates SLAH3-mediated chloride efflux from pericycle cells into the root xylem vessels. Our results indicate that under salt stress, plants adjust the distribution of NO3(-) and Cl(-) between root and shoot via differential expression and assembly of SLAH1/SLAH3 anion channel subunits.

  15. The chloride channel inhibitor NS3736 [corrected] prevents bone resorption in ovariectomized rats without changing bone formation

    DEFF Research Database (Denmark)

    Schaller, Sophie; Henriksen, Kim; Sveigaard, Christina

    2004-01-01

    formation. This study indicates that chloride channel inhibitors are highly promising for treatment of osteoporosis. INTRODUCTION: The chloride channel inhibitor, NS3736, blocked osteoclastic acidification and resorption in vitro with an IC50 value of 30 microM. When tested in the rat ovariectomy model......: In conclusion, we show for the first time that chloride channel inhibitors can be used for prevention of ovariectomy-induced bone loss without impeding bone formation. We speculate that the coupling of bone resorption to bone formation is linked to the acidification of the resorption lacunae, thereby enabling...

  16. Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Kai [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); College of Life Science and Technology, Jinan University, Guangzhou (China); Chen, Maoyun [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); College of pharmacy, Jinan University, Guangzhou (China); Xiang, Yangfei; Ma, Kaiqi [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); Jin, Fujun [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); College of pharmacy, Jinan University, Guangzhou (China); Wang, Xiao [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Wang, Xiaoyan; Wang, Shaoxiang [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); Wang, Yifei, E-mail: twang-yf@163.com [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China)

    2014-04-18

    Highlights: • We analyze the anti-HSV potential of chloride channel inhibitors. • Tamoxifen and NPPB show anti-HSV-1 and anti-ACV-resistant HSV-1 activities. • HSV-1 infection induces intracellular chloride concentration increasing. • Tamoxifen and NPPB inhibit HSV-1 early infection. • Tamoxifen and NPPB prevent the fusion process of HSV-1. - Abstract: Herpes simplex virus type 1 (HSV-1) infection is very common worldwide and can cause significant health problems from periodic skin and corneal lesions to encephalitis. Appearance of drug-resistant viruses in clinical therapy has made exploring novel antiviral agents emergent. Here we show that chloride channel inhibitors, including tamoxifen and 5-nitro-2-(3-phenyl-propylamino) benzoic acid (NPPB), exhibited extensive antiviral activities toward HSV-1 and ACV-resistant HSV viruses. HSV-1 infection induced chloride ion influx while treatment with inhibitors reduced the increase of intracellular chloride ion concentration. Pretreatment or treatment of inhibitors at different time points during HSV-1 infection all suppressed viral RNA synthesis, protein expression and virus production. More detailed studies demonstrated that tamoxifen and NPPB acted as potent inhibitors of HSV-1 early entry step by preventing viral binding, penetration and nuclear translocation. Specifically the compounds appeared to affect viral fusion process by inhibiting virus binding to lipid rafts and interrupting calcium homeostasis. Taken together, the observation that tamoxifen and NPPB can block viral entry suggests a stronger potential for these compounds as well as other ion channel inhibitors in antiviral therapy against HSV-1, especially the compound tamoxifen is an immediately actionable drug that can be reused for treatment of HSV-1 infections.

  17. CFTR chloride channel is a molecular target of the natural cancer preventive agent resveratrol.

    Science.gov (United States)

    Yang, Shuang; Yu, B O; Sui, Yujie; Zhang, Yaofang; Wang, Xue; Hou, Shuguang; Ma, Tonghui; Yang, Hong

    2013-09-01

    The naturally occurring polyphenol compound resveratrol (RES) has been receiving wide attention because of its variety of health benefits and favourable biological activities. Previous studies have shown that RES could induce intestinal chloride secretion in mouse jejunum and stimulate cAMP-dependent Cl- secretion in T84, primary cultured murine nasal septal and human sinonasal epithelial cells, but the precise molecular target is not clear. We therefore tested the hypothesis that RES may stimulate the activity of cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. Using cell-based fluorescent assays, transepithelial short-circuit current measurements and excised inside-out patch-clamp analysis; we found that RES dose-dependently potentiate CFTR Cl- channel activities, which was reversed by CFTR inhibitors CFTR(inh)-172 and GlyH101. Transepithelial Cl- secretion by CFTR-expressing FRT cells was stimulated by RES with half maximal concentration -80 microM. Intracellular cAMP content was not elevated by RES in FRT cells. Excised inside-out patch-clamp analysis indicated that RES significantly increased the chloride currents of CFTR. In ex vivo studies, RES stimulated the transmucosal chloride current of rat colon by short-circuit current assay. These data suggested that CFTR is a molecular target of RES. Our findings add a new molecular target to RES, and RES may represent a novel class of therapeutic lead compounds in treating CFTR-related diseases including CF and habitual constipation.

  18. Design and Synthesis of Photoaffinity Probe Candidates for the GABA-gated Chloride Channel

    Institute of Scientific and Technical Information of China (English)

    LIU Shang-Zhong; LI Qing-X.

    2006-01-01

    In order to characterize binding sites of insecticidal compounds on GABA gated chloride channel, new photoaffinity probe candidates based on 5e-t-butyl-2e-[4-(substituted-propynyl)phenyl]-1,3-dithiane for the noncompetitive blocker (NCB) site of the γ-aminobutyric acid (GABA)-gated chloride channel were designed and synthesized, and their potency as an inhibitor on NCB was measured by 4'-ethynyl-4-n-[2,3-3H2]-propylbicycloorthobenzoate (3H EBOB) assay. The synthesized compounds showed high inhibition activities with half maximum inhibition concentrations (IC50) of lower than 35 nmol/L and were very stable in binding conditions as well photoreacted quickly at 300 nm light. These new compounds are expected to be good photoaffinity labeling probes if radioisotope iodine is incorporated.

  19. Blockade of chloride channels by DIDS stimulates renin release and inhibits contraction of afferent arterioles

    DEFF Research Database (Denmark)

    Jensen, B L; Skøtt, O

    1996-01-01

    arterioles with the chloride channel blocker 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). Renin secretion was equally enhanced by omission of extracellular calcium and by addition of 0.5 mM DIDS. The inhibitory effect of calcium was blocked by DIDS. The stimulatory effects of low calcium [with....... Norepinephrine (5 x 10(-7)-1 x 10(-6) M) and angiotensin II (1 x 10(-8)-10(-6) M) evoked reversible and dose-dependent contractions of microperfused rabbit afferent arterioles. DIDS (0.5 mM) did not affect the basal diameter of the arterioles but strongly inhibited the response to angiotensin II and attenuated...... the duration of the contractile response to norepinephrine. The results support the hypothesis that DIDS-sensitive calcium-activated chloride channels are involved in regulation of renin release and in the afferent arteriolar contraction after angiotensin II but do not play a pivotal role in the response...

  20. Contribution of a lysine residue in the first transmembrane segment to the selectivity filter region in the CFTR chloride channel.

    Science.gov (United States)

    Negoda, Alexander; El Hiani, Yassine; Cowley, Elizabeth A; Linsdell, Paul

    2017-02-21

    The anion selectivity and conductance of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel are determined predominantly by interactions between permeant anions and the narrow region of the channel pore. This narrow region has therefore been described as functioning as the "selectivity filter" of the channel. Multiple pore-lining transmembrane segments (TMs) have previously been shown to contribute to the selectivity filter region. However, little is known about the three-dimensional organization of this region, or how multiple TMs combine to determine its functional properties. In the present study we have used patch clamp recording to identify changes in channel function associated with the formation of disulfide cross-links between cysteine residues introduced into different TMs within the selectivity filter. Cysteine introduced at position L102 in TM1 was able to form disulfide bonds with F337C and T338C in TM6, two positions that are known to play key roles in determining anion permeation properties. Consistent with this proximal arrangement of L102, F337 and T338, different mutations at L102 altered anion selectivity and conductance properties in a way that suggests that this residue plays an important role in determining selectivity filter function, albeit a much lesser role than that of F337. These results suggest an asymmetric three-dimensional arrangement of the key selectivity filter region of the pore, as well as having important implications regarding the molecular mechanism of anion permeation.

  1. Chloride channels are involved in sperm motility and are downregulated in spermatozoa from patients with asthenozoospermia.

    Science.gov (United States)

    Liu, Shan-Wen; Li, Yuan; Zou, Li-Li; Guan, Yu-Tao; Peng, Shuang; Zheng, Li-Xin; Deng, Shun-Mei; Zhu, Lin-Yan; Wang, Li-Wei; Chen, Li-Xin

    2016-06-03

    Human spermatozoa encounter an osmotic decrease from 330 to 290 mOsm l-1 when passing through the female reproductive tract. We aimed to evaluate the role of chloride channels in volume regulation and sperm motility from patients with asthenozoospermia. Spermatozoa were purified using Percoll density gradients. Sperm volume was measured as the forward scatter signal using flow cytometry. Sperm motility was analyzed using computer-aided sperm analysis (CASA). When transferred from an isotonic solution (330 mOsm l-1 ) to a hypotonic solution (290 mOsm l-1 ), cell volume was not changed in spermatozoa from normozoospermic men; but increased in those from asthenozoospermic samples. The addition of the chloride channel blockers, 4,4'-diisothiocyanatostilbene-2,2'- isulfonic acid (DIDS) or 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) to the hypotonic solution caused the normal spermatozoa to swell but did not increase the volume of those from the asthenozoospermic semen. DIDS and NPPB decreased sperm motility in both sets of semen samples. The inhibitory effect of NPPB on normal sperm motility was much stronger than on spermatozoa from the asthenozoospermic samples. Both sperm types expressed ClC-3 chloride channels, but the expression levels in the asthenozoospermic samples were much lower, especially in the neck and mid-piece areas. Spermatozoa from men with asthenozoospermia demonstrated lower volume regulating capacity, mobility, and ClC-3 expression levels (especially in the neck) than did normal spermatozoa. Thus, chloride channels play important roles in the regulation of sperm volume and motility and are downregulated in cases of asthenozoospermia.

  2. Photoaffinity Probe Candidates for Gamma-aminobutyric Acid (GABAA)-Gated Chloride Channel

    Institute of Scientific and Technical Information of China (English)

    Shang Zhong LIU; Qing Xiao LI

    2004-01-01

    New photoaffinity ligand candidates were synthesized based on 5-t-butyl-2-(4- (substituted-ethynyl)phenyl)-1, 3-dithiane for the noncompetitive blocker site on the gamma- aminobutyric acid -gated chloride channel. Their half-maximal inhibition concentrations ranged from 4 to 32 nmol/L as measured by 4'-ethynyl-4-n-[2,3-3H2]-propylbicycloorthobenzoate (3H EBOB) assay.

  3. Diet-dependent hypercalciuria in transgenic mice with reduced CLC5 chloride channel expression

    OpenAIRE

    Luyckx, Valerie A.; LeClercq, Baudouin; Dowland, Lara K.; Yu, Alan S. L.

    1999-01-01

    Dent’s disease is an X-linked inherited disorder characterized by hypercalciuria, nephrocalcinosis, nephrolithiasis, low molecular weight proteinuria, Fanconi’s syndrome, and renal failure. It is caused by inactivating mutations in CLC5, a member of the CLC voltage-gated chloride channel family. CLC5 is known to be expressed in the endosomal compartment of the renal proximal tubule, where it may be required for endosomal acidification and trafficking. Although the Fanconi’s syndrome and low m...

  4. Activation Effect of Cathartic Natural Compound Rhein to CFTR Chloride Channel

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated chloride channel expressed in intestinal exocrine glands, which plays a key role in intestinal fluid secretion. A natural anthraquinone activator of CFTR Cl- channel, rhein, was identified by screening 217 single compounds from Chinese herbs via a cellbased halide-sensitive fluorescent assay. Rhein activates CFTR Cl- transportation in a dose-dependent manner in the presence of cAMP with a physiological concentration. This study provides a novel molecular pharmacological mechanism for the laxative drugs in Traditional Chinese Medicine such as aloe, cascara and senna.

  5. Myotonia congenita-associated mutations in chloride channel-1 affect zebrafish body wave swimming kinematics.

    Directory of Open Access Journals (Sweden)

    Wei Cheng

    Full Text Available Myotonia congenita is a human muscle disorder caused by mutations in CLCN1, which encodes human chloride channel 1 (CLCN1. Zebrafish is becoming an increasingly useful model for human diseases, including muscle disorders. In this study, we generated transgenic zebrafish expressing, under the control of a muscle specific promoter, human CLCN1 carrying mutations that have been identified in human patients suffering from myotonia congenita. We developed video analytic tools that are able to provide precise quantitative measurements of movement abnormalities in order to analyse the effect of these CLCN1 mutations on adult transgenic zebrafish swimming. Two new parameters for body-wave kinematics of swimming reveal changes in body curvature and tail offset in transgenic zebrafish expressing the disease-associated CLCN1 mutants, presumably due to their effect on muscle function. The capability of the developed video analytic tool to distinguish wild-type from transgenic zebrafish could provide a useful asset to screen for compounds that reverse the disease phenotype, and may be applicable to other movement disorders besides myotonia congenita.

  6. Myotonia Congenita-Associated Mutations in Chloride Channel-1 Affect Zebrafish Body Wave Swimming Kinematics

    Science.gov (United States)

    Cheng, Wei; Tian, Jing; Burgunder, Jean-Marc; Hunziker, Walter; Eng, How-Lung

    2014-01-01

    Myotonia congenita is a human muscle disorder caused by mutations in CLCN1, which encodes human chloride channel 1 (CLCN1). Zebrafish is becoming an increasingly useful model for human diseases, including muscle disorders. In this study, we generated transgenic zebrafish expressing, under the control of a muscle specific promoter, human CLCN1 carrying mutations that have been identified in human patients suffering from myotonia congenita. We developed video analytic tools that are able to provide precise quantitative measurements of movement abnormalities in order to analyse the effect of these CLCN1 mutations on adult transgenic zebrafish swimming. Two new parameters for body-wave kinematics of swimming reveal changes in body curvature and tail offset in transgenic zebrafish expressing the disease-associated CLCN1 mutants, presumably due to their effect on muscle function. The capability of the developed video analytic tool to distinguish wild-type from transgenic zebrafish could provide a useful asset to screen for compounds that reverse the disease phenotype, and may be applicable to other movement disorders besides myotonia congenita. PMID:25083883

  7. State-dependent blocker interactions with the CFTR chloride channel: implications for gating the pore.

    Science.gov (United States)

    Linsdell, Paul

    2014-12-01

    Chloride permeation through the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel is subject to voltage-dependent open-channel block by a diverse range of cytoplasmic anions. However, in most cases the ability of these blocking substances to influence the pore opening and closing process has not been reported. In the present work, patch clamp recording was used to investigate the state-dependent block of CFTR by cytoplasmic Pt(NO2)4(2-) ions. Two major effects of Pt(NO2)4(2-) were identified. First, this anion caused fast, voltage-dependent block of open channels, leading to an apparent decrease in single-channel current amplitude. Secondly, Pt(NO2)4(2-) also decreased channel open probability due to an increase in interburst closed times. Interestingly, mutations in the pore that weakened (K95Q) or strengthened (I344K, V345K) interactions with Pt(NO2)4(2-) altered blocker effects both on Cl(-) permeation and on channel gating, suggesting that both these effects are a consequence of Pt(NO2)4(2-) interaction with a single site within the pore. Experiments at reduced extracellular Cl(-) concentration hinted that Pt(NO2)4(2-) may have a third effect, possibly increasing channel activity by interfering with channel closure. These results suggest that Pt(NO2)4(2-) can enter from the cytoplasm into the pore inner vestibule of both open and closed CFTR channels, and that Pt(NO2)4(2-) bound in the inner vestibule blocks Cl(-) permeation as well as interfering with channel opening and, perhaps, channel closure. Implications for the location of the channel gate in the pore, and the operation of this gate, are discussed.

  8. High glucose inhibits ClC-2 chloride channels and attenuates cell migration of rat keratinocytes

    Directory of Open Access Journals (Sweden)

    Pan F

    2015-08-01

    Full Text Available Fuqiang Pan, Rui Guo, Wenguang Cheng, Linlin Chai, Wenping Wang, Chuan Cao, Shirong LiDepartment of Plastic and Reconstructive Surgery, Southwestern Hospital, Third Military Medical University, Chongqing, People’s Republic of China Background: Accumulating evidence has demonstrated that migration of keratinocytes is critical to wound epithelialization, and defects of this function result in chronic delayed-healing wounds in diabetes mellitus patients, and the migration has been proved to be associated with volume-activated chloride channels. The aim of the study is to investigate the effects of high glucose (HG, 25 mM on ClC-2 chloride channels and cell migration of keratinocytes.Methods: Newborn Sprague Dawley rats were used to isolate and culture the keratinocyte in this study. Immunofluorescence assay, real-time polymerase chain reaction, and Western blot assay were used to examine the expression of ClC-2 protein or mRNA. Scratch wound assay was used to measure the migratory ability of keratinocytes. Transwell cell migration assay was used to measure the invasion and migration of keratinocytes. Recombinant lentivirus vectors were established and transducted to keratinocytes. Whole-cell patch clamp was used to perform the electrophysiological studies.Results: We found that the expression of ClC-2 was significantly inhibited when keratinocytes were exposed to a HG (25 mM medium, accompanied by the decline of volume-activated Cl- current (ICl,vol, migration potential, and phosphorylated PI3K as compared to control group. When knockdown of ClC-2 by RNAi or pretreatment with wortmannin, similar results were observed, including ICl,vol and migration keratinocytes were inhibited.Conclusion: Our study proved that HG inhibited ClC-2 chloride channels and attenuated cell migration of rat keratinocytes via inhibiting PI3K signaling.Keywords: high glucose, keratinocytes, ClC-2, cell migration, PI3K

  9. CFTR chloride channel as a molecular target of anthraquinone compounds in herbal laxatives

    Institute of Scientific and Technical Information of China (English)

    Hong YANG; Li-na XU; Cheng-yan HE; Xin LIU; Rou-yu FANG; Tong-hui MA

    2011-01-01

    Aim: To clarify whether CFTR is a molecular target of intestinal fluid secretion caused by the anthraquinone compounds from laxative herbal plants.Methods: A cell-based fluorescent assay to measure I- influx through CFTR chloride channel. A short-circuit current assay to measure transcellular Cl- current across single layer FRT cells and freshly isolated colon mucosa. A closed loop experiment to measure colon fluid secretion in vivo.Results: Anthraquinone compounds rhein, aloe-emodin and 1,8-dihydroxyanthraquinone (DHAN) stimulated l- influx through CFTR chloride channel in a dose-dependent manner in the presence of physiological concentration of cAMP. In the short-circuit current assay,the three compound enhanced Cl- currents in epithelia formed by CFTR-expressing FRT cells with EC5o values of 73±1.4, 56±1.7, and 50±0.5 μmol/L, respectively, and Rhein also enhanced Cl- current in freshly isolated rat colonic mucosa with a similar potency. These effects were completely reversed by the CFTR selective blocker CFTRinh-172. In in vivo closed loop experiments, rhein 2 mmol/L stimu-lated colonic fluid accumulation that was largely blocked by CFTRinh-172. The anthraquinone compounds did not elevate cAMP level in cultured FRT cells and rat colonic mucosa, suggesting a direct effect on CFTR activity.Conclusion: Natural anthraquinone compounds in vegetable laxative drugs are CFTR potsntiators that stimulated colonic chloride and fluid secretion. Thus CFTR chloride channel is a molecular target of vegetable laxative drugs.

  10. Shikonin inhibits intestinal calcium-activated chloride channels and prevents rotaviral diarrhea

    Directory of Open Access Journals (Sweden)

    Yu Jiang

    2016-08-01

    Full Text Available Secretory diarrhea remains a global health burden and causes major mortality in children. There have been some focuses on antidiarrheal therapies that may reduce fluid losses and intestinal motility in diarrheal diseases. In the present study, we identified shikonin as an inhibitor of TMEM16A chloride channel activity using cell-based fluorescent-quenching assay. The IC50 value of shikonin was 6.5 μM. Short-circuit current measurements demonstrated that shikonin inhibited Eact-induced Cl current in a dose-dependent manner, with IC50 value of 1.5 μM. Short-circuit current measurement showed that shikonin exhibited inhibitory effect against CCh-induced Cl currents in mouse colonic epithelia but did not affect cytoplasmic Ca2+ concentration as well as the other major enterocyte chloride channel CFTR. Characterization study found that shikonin inhibited basolateral K+ channel activity without affecting Na+/K+-ATPase activities. In-vivo studies revealed that shikonin significantly delayed intestinal motility in mice and reduced stool water content in a neonatal mice model of rotaviral diarrhea without affecting the viral infection process in-vivo. Taken together, the results suggested that shikonin inhibited enterocyte CaCCs, the inhibitory effect was partially through inhbition of basolateral K+ channel acitivty, and shikonin could be a lead compound in the treatment of rotaviral secretory diarrhea.

  11. Synthesis of functional aromatic multisulfonyl chlorides and their masked precursors.

    Science.gov (United States)

    Percec, V; Bera, T K; De, B B; Sanai, Y; Smith, J; Holerca, M N; Barboiu, B; Grubbs, R B; Fréchet, J M

    2001-03-23

    The synthesis of functional aromatic bis(sulfonyl chlorides) containing an acetophenone and two sulfonyl chloride groups, i.e., 3,5-bis[4-(chlorosulfonyl)phenyl]-1-acetophenone (16), 3,5-bis(chlorosulfonyl)-1-acetophenone (17), and 3,5-bis(4-(chlorosulfonyl)phenyloxy)-1-acetophenone (18) via a sequence of reactions, involving in the last step the quantitative oxidative chlorination of S-(aryl)- N,N'-diethylthiocarbamate, alkyl- or benzyl thiophenyl groups as masked nonreactive precursors to sulfonyl chlorides is described. A related sequence of reactions was used for the synthesis of the aromatic trisulfonyl chloride 1,1,1-tris(4-chlorosulfonylphenyl)ethane (24). 4-(Chlorosulfonyl)phenoxyacetic acid, 2,2-bis[[[4-(chlorosulfonyl)phenoxyacetyl]oxy]methyl]-1,3-propanediyl ester (27), 5,11,17,23-tetrakis(chlorosulfonyl)-25,26,27,28-tetrakis(ethoxycarbonylmethoxy)calix[4]arene (38), 5,11,17,23,29,35-hexakis(chlorosulfonyl)-37,38,39,40,41,42-hexakis(ethoxycarbonylmethoxy)calix[6]arene (39), 5,11,17,23,29,35,41,47-octakis(chlorosulfonyl)-49,50,51,52,53,54,55,56-octakis(ethoxycarbonylmethoxy)calix[8]arene (40), 5,11,17,23-tetrakis(tert-butyl)-25,26,27,28-tetrakis(chlorosulfonyl phenoxyacetoxy)calix[4]arene (44), 5,11,17,23,29,35-hexakis(tert-butyl)-37,38,39,40,41,42-hexakis(chlorosulfonylphenoxyacetoxy)calix[6]arene (45), and 5,11,17,23,29,35,41,47-octakis(tert-butyl)-49,40,51,52,53,54,55,56-octakis(chlorosulfonylphenoxyacetoxy)calix[8]arene (46) were synthesized by two different multistep reaction procedures, the last step of both methods consisting of the chlorosulfonation of compounds containing suitable activated aromatic positions. 2,4,6-Tris(chlorosulfonyl)aniline (47) was obtained by the chlorosulfonation of aniline. The conformation of two series of multisulfonyl chlorides i.e., 38, 39, 40 and 44, 45, 46, was investigated by (1)H NMR spectroscopy. The masked nonreactive precursor states of the functional aromatic multisulfonyl chlorides and the aromatic

  12. The H-loop in the Second Nucleotide-binding Domain of the Cystic Fibrosis Transmembrane Conductance Regulator is Required for Efficient Chloride Channel Closing

    OpenAIRE

    Kloch, Monika; Milewski, Michał; Nurowska, Ewa; Dworakowska, Beata; Cutting, Garry R.; Dołowy, Krzysztof

    2010-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-binding cassette (ABC) transporter that functions as a cAMP-activated chloride channel. The recent model of CFTR gating predicts that the ATP binding to both nucleotide-binding domains (NBD1 and NBD2) of CFTR is required for the opening of the channel, while the ATP hydrolysis at NBD2 induces subsequent channel closing. In most ABC proteins, efficient hydrolysis of ATP requires the presence of the invariant histidine res...

  13. Identification of natural coumarin compounds that rescue defective DeltaF508-CFTR chloride channel gating.

    Science.gov (United States)

    Xu, Li-Na; Na, Wan-Li; Liu, Xin; Hou, Shu-Guang; Lin, Sen; Yang, Hong; Ma, Tong-Hui

    2008-08-01

    1. Deletion of phenylalanine at position 508 (DeltaF508) of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is the most common mutation causing cystic fibrosis (CF). Effective pharmacological therapy of CF caused by the DeltaF508-CFTR mutation requires the rescue of both intracellular processing and channel gating defects. 2. We identified a class of natural coumarin compounds that can correct the defective DeltaF508-CFTR chloride channel gating by screening a collection of 386 single natural compounds from Chinese medicinal herbs. Screening was performed with an iodide influx assay in Fischer rat thyroid epithelial cells coexpressing DeltaF508-CFTR and an iodide-sensitive fluorescent indicator (YFP-H148Q/I152L). 3. Dose-dependent potentiation of defective DeltaF508-CFTR chloride channel gating by five coumarin compounds was demonstrated by the fluorescent iodide influx assay and confirmed by an Ussing chamber short-circuit current assay. Activation was fully abolished by the specific CFTR inhibitor CFTR(inh)-172. Two potent compounds, namely imperatorin and osthole, have activation K(d) values of approximately 10 micromol/L, as determined by the short-circuit current assay. The active coumarin compounds do not elevate intracellular cAMP levels. Activation of DeltaF508-CFTR by the coumarin compounds requires cAMP agonist, suggesting direct interaction with the mutant CFTR molecule. Kinetics analysis indicated rapid activation of DeltaF508-CFTR by the coumarin compounds, with half-maximal activation of CFTR activators may represent a new class of natural lead compounds for the development of pharmacological therapies for CF caused by the DeltaF508 mutation.

  14. Arsenic promotes ubiquitinylation and lysosomal degradation of cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels in human airway epithelial cells.

    Science.gov (United States)

    Bomberger, Jennifer M; Coutermarsh, Bonita A; Barnaby, Roxanna L; Stanton, Bruce A

    2012-05-18

    Arsenic exposure significantly increases respiratory bacterial infections and reduces the ability of the innate immune system to eliminate bacterial infections. Recently, we observed in the gill of killifish, an environmental model organism, that arsenic exposure induced the ubiquitinylation and degradation of cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel that is essential for the mucociliary clearance of respiratory pathogens in humans. Accordingly, in this study, we tested the hypothesis that low dose arsenic exposure reduces the abundance and function of CFTR in human airway epithelial cells. Arsenic induced a time- and dose-dependent increase in multiubiquitinylated CFTR, which led to its lysosomal degradation, and a decrease in CFTR-mediated chloride secretion. Although arsenic had no effect on the abundance or activity of USP10, a deubiquitinylating enzyme, siRNA-mediated knockdown of c-Cbl, an E3 ubiquitin ligase, abolished the arsenic-stimulated degradation of CFTR. Arsenic enhanced the degradation of CFTR by increasing phosphorylated c-Cbl, which increased its interaction with CFTR, and subsequent ubiquitinylation of CFTR. Because epidemiological studies have shown that arsenic increases the incidence of respiratory infections, this study suggests that one potential mechanism of this effect involves arsenic-induced ubiquitinylation and degradation of CFTR, which decreases chloride secretion and airway surface liquid volume, effects that would be proposed to reduce mucociliary clearance of respiratory pathogens.

  15. ClC-1 chloride channels: state-of-the-art research and future challenges

    Directory of Open Access Journals (Sweden)

    Paola eImbrici

    2015-04-01

    Full Text Available The voltage-dependent ClC-1 chloride channel belongs to the CLC channel/transporter family. It is a homodimer comprising two individual pores which can operate independently or simultaneously according to two gating modes, the fast and the slow gate of the channel. ClC-1 is preferentially expressed in the skeletal muscle fibers where the presence of an efficient Cl- homeostasis is crucial for the correct membrane repolarization and propagation of action potential. As a consequence, mutations in the CLCN1 gene cause dominant and recessive forms of Myotonia Congenita, a rare skeletal muscle channelopathy caused by abnormal membrane excitation, and clinically characterized by muscle stiffness and various degrees of transitory weakness. Elucidation of the mechanistic link between the genetic defects and the disease pathogenesis is still incomplete and, at this time, there is no specific treatment for Myotonia Congenita. Still controversial is the subcellular localization pattern of ClC-1 channels in skeletal muscle as well as its modulation by some intracellular factors. The expression of ClC-1 in other tissues such as in brain and heart and the possible assembly of ClC-1/ClC-2 heterodimers further expand the physiological properties of ClC-1 and its involvement in diseases. A recent de novo CLCN1 truncation mutation in a patient with generalized epilepsy indeed postulates an unexpected role of this channel in the control of neuronal network excitability. This review summarizes the most relevant and state-of-the-art research on ClC-1 chloride channels physiology and associated diseases.

  16. Effects of chloride channel blockers on hypotonicity-induced contractions of the rat trachea

    Science.gov (United States)

    Coelho, Roberta R; Souza, Emmanuel P; Soares, Pedro M G; Meireles, Ana Vaneska P; Santos, Geam C M; Scarparo, Henrique C; Assreuy, Ana Maria S; Criddle, David N

    2003-01-01

    We have investigated the inhibitory effects of blockers of volume-activated (Clvol) and calcium-activated (ClCa) chloride channels on hypotonic solution (HS)-induced contractions of rat trachea, comparing their effects with those of the voltage-dependent calcium channel (VDCC) blocker nifedpine. HS elicited large, stable contractions that were partially dependent on the cellular chloride gradient; a reduction to 41.45±7.71% of the control response was obtained when extracellular chloride was removed. In addition, HS-induced responses were reduced to 26.8±5.6% of the control by 1 μM nifedipine, and abolished under calcium-free conditions, indicating a substantial requirement for extracellular calcium entry, principally via VDCCs. The established Clvol blockers tamoxifen (⩽10 μM) and 4,4′-diisothiocyanatostilbene-2,2′-disulphonic acid (1–100 μM), at concentrations previously reported to inhibit Clvol in smooth muscle, did not significantly inhibit HS-induced contractions. In contrast, the recognized ClCa blocker niflumic acid (NFA; 1–100 μM) produced a reversible, concentration-dependent inhibition of HS responses, with a reduction to 36.6±6.4% of control contractions at the highest concentration. The mixed Clvol and ClCa blocker, 5-nitro 2-(3-phenylpropylamine) benzoic acid (NPPB; 10–100 μM) also elicited concentration-related inhibition of HS-induced contractions, producing a decrease to 35.9±11.3% of the control at 100 μM. Our results show that HS induces reversible, chloride-dependent contractions of rat isolated trachea that were inhibited by NFA and NPPB, while exhibiting little sensitivity to recognized blockers of Clvol. The data support the possibility that opening of calcium-activated chloride channels under hypotonic conditions in respiratory smooth muscle may ultimately lead to VDCC-mediated calcium entry and contraction. PMID:14691057

  17. Glutamate-gated chloride channels of Haemonchus contortus restore drug sensitivity to ivermectin resistant Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Susan K Glendinning

    Full Text Available Anthelmintic resistance is a major problem in livestock farming, especially of small ruminants, but our understanding of it has been limited by the difficulty in carrying out functional genetic studies on parasitic nematodes. An important nematode infecting sheep and goats is Haemonchus contortus; in many parts of the world this species is resistant to almost all the currently available drugs, including ivermectin. It is extremely polymorphic and to date it has proved impossible to relate any sequence polymorphisms to its ivermectin resistance status. Expression of candidate drug-resistance genes in Caenorhabditis elegans could provide a convenient means to study the effects of polymorphisms found in resistant parasites, but may be complicated by differences between the gene families of target and model organisms. We tested this using the glutamate-gated chloride channel (GluCl gene family, which forms the ivermectin drug target and are candidate resistance genes. We expressed GluCl subunits from C. elegans and H. contortus in a highly resistant triple mutant C. elegans strain (DA1316 under the control of the avr-14 promoter; expression of GFP behind this promoter recapitulated the pattern previously reported for avr-14. Expression of ivermectin-sensitive subunits from both species restored drug sensitivity to transgenic worms, though some quantitative differences were noted between lines. Expression of an ivermectin-insensitive subunit, Hco-GLC-2, had no effect on drug sensitivity. Expression of a previously uncharacterised parasite-specific subunit, Hco-GLC-6, caused the transgenic worms to become ivermectin sensitive, suggesting that this subunit also encodes a GluCl that responds to the drug. These results demonstrate that both orthologous and paralogous subunits from C. elegans and H. contortus are able to rescue the ivermectin sensitivity of mutant C. elegans, though some quantitative differences were observed between transgenic lines in

  18. Glutamate-gated chloride channels of Haemonchus contortus restore drug sensitivity to ivermectin resistant Caenorhabditis elegans.

    Science.gov (United States)

    Glendinning, Susan K; Buckingham, Steven D; Sattelle, David B; Wonnacott, Susan; Wolstenholme, Adrian J

    2011-01-01

    Anthelmintic resistance is a major problem in livestock farming, especially of small ruminants, but our understanding of it has been limited by the difficulty in carrying out functional genetic studies on parasitic nematodes. An important nematode infecting sheep and goats is Haemonchus contortus; in many parts of the world this species is resistant to almost all the currently available drugs, including ivermectin. It is extremely polymorphic and to date it has proved impossible to relate any sequence polymorphisms to its ivermectin resistance status. Expression of candidate drug-resistance genes in Caenorhabditis elegans could provide a convenient means to study the effects of polymorphisms found in resistant parasites, but may be complicated by differences between the gene families of target and model organisms. We tested this using the glutamate-gated chloride channel (GluCl) gene family, which forms the ivermectin drug target and are candidate resistance genes. We expressed GluCl subunits from C. elegans and H. contortus in a highly resistant triple mutant C. elegans strain (DA1316) under the control of the avr-14 promoter; expression of GFP behind this promoter recapitulated the pattern previously reported for avr-14. Expression of ivermectin-sensitive subunits from both species restored drug sensitivity to transgenic worms, though some quantitative differences were noted between lines. Expression of an ivermectin-insensitive subunit, Hco-GLC-2, had no effect on drug sensitivity. Expression of a previously uncharacterised parasite-specific subunit, Hco-GLC-6, caused the transgenic worms to become ivermectin sensitive, suggesting that this subunit also encodes a GluCl that responds to the drug. These results demonstrate that both orthologous and paralogous subunits from C. elegans and H. contortus are able to rescue the ivermectin sensitivity of mutant C. elegans, though some quantitative differences were observed between transgenic lines in some assays. C

  19. Evidence for a channel for the electrogenic transport of chloride ion in the rat hepatocyte

    Energy Technology Data Exchange (ETDEWEB)

    Bear, C.E.; Petrunka, C.N.; Strasberg, S.M.

    1985-05-01

    Chloride is the major inorganic anion in bile but its mechanism of passage from blood to bile is uncertain. Specific membrane channels account for most net inorganic anion flux in other cell types such as the proximal tubular cell and red blood cell; disulfonic stilbenes inhibit anion movement through these channels. Therefore, we have sought the presence of similar channels in the hepatocyte. Net inorganic anion flux or conductance was initiated in isolated rat hepatocytes by valinomycin in the presence of an outward potassium gradient. Potassium concentration in the extracellular medium increased from 2.75 +/- 0.02 in control cell suspensions to 3.15 +/- 0.04 in valinomycin-treated cell suspensions. Membrane potential difference (Em) (mV), determined as the distribution of (/sup 14/C)tetraphenyl phosphonium ion was -28 mV in control cells and -42 mV in valinomycin-treated cells. Intracellular chloride concentration (/sup 36/Cl-) (mEq per liter of cell water) decreased significantly from 38.6 in control cells to 32.0 in valinomycin-treated cells. The observed intracellular concentrations (/sup 36/Cl-) in both control and valinomycin-treated cell suspensions closely approximates values predicted on the basis of the Nernst equation: 41 and 29 (mEq per liter of cell water), respectively, suggesting that the chloride ion is passively distributed on the basis of the membrane potential difference. Furthermore, net rate-limited cell water loss of approximately 15% of control values was associated with the above valinomycin-stimulated changes in ion distribution, as assessed using three methods of cell water volume determination.

  20. The Influence of Mineral Functional Materials on Chloride Ion Penetration of Concrete

    Institute of Scientific and Technical Information of China (English)

    HU Hongmei; MA Baoguo

    2005-01-01

    The mechanism of chloride ion penetration in high performance concrete was analyzed. The experimental results indicate that there are two important reasons that influence the anti-chloride penetration of high performance concrete. One is the function effect of mineral functional material, so that it increases concrete's capability to resist chloride ion penetration. The other is combined action of mineral functional material's original capability of binding the chloride ion (physical adsorption) and physicochemical adsorption after hydration.

  1. Chloride channel-dependent copper acquisition of laccase in the basidiomycetous fungus Cryptococcus neoformans

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The CLC chloride channel gene CLC-A of the pathogen yeast Cryptococcus neoformans was previously reported to be critical for multicopper laccase activity and growth at an elevated pH.This study reports that copper homeostasis was impaired in the clc-a mutant.This was demonstrated by the substantial decrease of the intracellular quantity of copper under copper-limited growth as determined by flame atomic absorption spectrometry.CLC-A is a critical factor in copper homeostasis which is required for copper acquisition of laccase in C.neoformans.

  2. Mitochondria-Rich Cells as Experimental Model in Studies of Epithelial Chloride Channels

    DEFF Research Database (Denmark)

    Willumsen, Niels J.; Amstrup, Jan; Møbjerg, Nadja

    2002-01-01

    -actin localised in the submembrane domain in the neck region of the flask-shaped mr cell. (ii) The other identified Cl- pathway of mr cells is mediated by small-conductance apical CFTR chloride channels as concluded from its activation via ß-adrenergic receptors, ion selectivity, genistein stimulation...... and inhibition by glibenclamide. bbCFTR has been cloned, and immunostaining has shown that the gene product is selectively expressed in mr cells. There is cross-talk between the two pathways in the sense that activation of the conductance of the mr cell by voltage clamping excludes activation via receptor...

  3. Covalent organic polymer functionalization of activated carbon surfaces through acyl chloride for environmental clean-up

    DEFF Research Database (Denmark)

    Mines, Paul D.; Thirion, Damien; Uthuppu, Basil;

    2017-01-01

    Nanoporous networks of covalent organic polymers (COPs) are successfully grafted on the surfaces of activated carbons, through a series of surface modification techniques, including acyl chloride formation by thionyl chloride. Hybrid composites of activated carbon functionalized with COPs exhibit...

  4. Slow conversions among subconductance states of cystic fibrosis transmembrane conductance regulator chloride channel.

    Science.gov (United States)

    Tao, T; Xie, J; Drumm, M L; Zhao, J; Davis, P B; Ma, J

    1996-02-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel exhibits multiple subconductance states. To study the regulation of conductance states of the CFTR channel, we expressed the wild-type CFTR protein in HEK 293 cells, and isolated microsomal membrane vesicles for reconstitution studies in lipid bilayer membranes. A single CFTR channel had a dominant conductance of 7.8 pS (H), plus two sub-open states with conductances of approximately 6 pS (M) and 2.7 pS (L) in 200 mM KCl with 1 mM MgCl2 (intracellular) and 50 mM KCl with no MgCl2 (extracellular), with pH maintained at 7.4 by 10 mM HEPES-Tris on both sides of the channel. In 200 mM KCl, both H and L states could be measured in stable single-channel recordings, whereas M could not. Spontaneous transitions between H and L were slow; it took 4.5 min for L-->H, and 3.2 min for H-->L. These slow conversions among subconductance states of the CFTR channel were affected by extracellular Mg; in the presence of millimolar Mg, the channel remained stable in the H state. Similar phenomena were also observed with endogenous CFTR channels in T84 cells. In high-salt conditions (1.5 M KCl), all three conductance states of the expressed CFTR channel, 12.1 pS, 8.2 pS, and 3.6 pS, became stable and seemed to gate independently from each other. The existence of multiple stable conductance states associated with the CFTR channel suggests two possibilities: either a single CFTR molecule can exist in multiple configurations with different conductance values, or the CFTR channel may contain multimers of the 170-kDa CFTR protein, and different conductance states are due to different aggregation states of the CFTR protein.

  5. Huntington disease skeletal muscle is hyperexcitable owing to chloride and potassium channel dysfunction.

    Science.gov (United States)

    Waters, Christopher W; Varuzhanyan, Grigor; Talmadge, Robert J; Voss, Andrew A

    2013-05-28

    Huntington disease is a progressive and fatal genetic disorder with debilitating motor and cognitive defects. Chorea, rigidity, dystonia, and muscle weakness are characteristic motor defects of the disease that are commonly attributed to central neurodegeneration. However, no previous study has examined the membrane properties that control contraction in Huntington disease muscle. We show primary defects in ex vivo adult skeletal muscle from the R6/2 transgenic mouse model of Huntington disease. Action potentials in diseased fibers are more easily triggered and prolonged than in fibers from WT littermates. Furthermore, some action potentials in the diseased fibers self-trigger. These defects occur because of decreases in the resting chloride and potassium conductances. Consistent with this, the expression of the muscle chloride channel, ClC-1, in Huntington disease muscle was compromised by improper splicing and a corresponding reduction in total Clcn1 (gene for ClC-1) mRNA. Additionally, the total Kcnj2 (gene for the Kir2.1 potassium channel) mRNA was reduced in disease muscle. The resulting muscle hyperexcitability causes involuntary and prolonged contractions that may contribute to the chorea, rigidity, and dystonia that characterize Huntington disease.

  6. An ivermectin-sensitive glutamate-gated chloride channel from the parasitic nematode Haemonchus contortus.

    Science.gov (United States)

    McCavera, Samantha; Rogers, Adrian T; Yates, Darran M; Woods, Debra J; Wolstenholme, Adrian J

    2009-06-01

    Nematode glutamate-gated chloride channels are targets of the macrocyclic lactones, the most important group of anthelmintics available. In Xenopus laevis oocytes, channels formed by the GluClalpha3B subunit from the parasite Haemonchus contortus were more sensitive to l-glutamate (EC(50) = 27.6 +/- 2.7 microM) than those formed by the homologous subunit from Caenorhabditis elegans (EC(50) = 2.2 +/- 0.12 mM). Ibotenate was a partial agonist (EC(50) = 87.7 +/- 3.5 microM). The H. contortus channels responded to low concentrations of ivermectin (estimated EC(50) = approximately 0.1 +/- 1.0 nM), opening slowly and irreversibly in a highly cooperative manner: the rate of channel opening was concentration-dependent. Responses to glutamate and ivermectin were inhibited by picrotoxinin and fipronil. Mutating an N-terminal domain amino acid, leucine 256, to phenylalanine increased the EC(50) for l-glutamate to 92.2 +/- 3.5 microM, and reduced the Hill number from 1.89 +/- 0.35 to 1.09 +/- 0.16. It increased the K(d) for radiolabeled ivermectin binding from 0.35 +/- 0.1 to 2.26 +/- 0.78 nM. Two other mutations (E114G and V235A) had no effect on l-glutamate activation or ivermectin binding: one (T300S) produced no detectable channel activity, but ivermectin binding was similar to wild-type. The substitution of any aromatic amino acid for Leu256 had similar effects in the radioligand binding assay. Molecular modeling studies suggested that the GluCl subunits have a fold similar to that of other Cys-loop ligand-gated ion channels and that amino acid 256 was unlikely to play a direct role in ligand binding but may be involved in mediating the allosteric properties of the receptor.

  7. A High-affinity Activator of G551D-CFTR Chloride Channel Identified By High Throughput Screening

    Institute of Scientific and Technical Information of China (English)

    ZHAO Lu; HE Cheng-yan; LIU Yan-li; ZHOU Hong-lan; ZHOU Jin-song; SHANG De-jing; YANG Hong

    2004-01-01

    A stably transfected CHO cell line coexpressing G551D-CFTR and iodide-sensitive yellow fluorescent protein mutant EYFP-H148Q-I152L was successfully established and used as assay model to identify small-molecule activators of G551D-CFTR chloride channel from 100000 diverse combinatorial compounds by high throughput screening on a customized Beckman robotic system. A bicyclooctane compound was identified to activate G551D-CFTR chloride channel with high-affinity(Kd=1.8 μmol/L). The activity of the bicyclooctane compound is G551D-CFTR-specific, reversible and non-toxic. The G551D-CFTR activator may be useful as a tool to study the mutant G551D-CFTR chloride channel structure and transport properties and as a candidate drug to cure cystic fibrosis caused by G551D-CFTR mutation.

  8. Effect of Trimethyltin Chloride on Slow Vacuolar (SV) Channels in Vacuoles from Red Beet (Beta vulgaris L.) Taproots.

    Science.gov (United States)

    Trela, Zenon; Burdach, Zbigniew; Siemieniuk, Agnieszka; Przestalski, Stanisław; Karcz, Waldemar

    2015-01-01

    In the present study, patch-clamp techniques have been used to investigate the effect of trimethyltin chloride (Met3SnCl) on the slow vacuolar (SV) channels in vacuoles from red beet (Beta vulgaris L.) taproots. Activity of SV channels has been measured in whole-vacuole and cytosolic side-out patch configurations. It was found that addition of trimethyltin chloride to the bath solution suppressed, in a concentration-dependent manner, SV currents in red beet vacuoles. The time constant, τ, increased significantly in the presence of the organotin. When single channel activity was analyzed, only little channel activity could be recorded at 100 μM Met3SnCl. Trimethyltin chloride added to the bath medium significantly decreased (by ca. threefold at 100 μM Met3SnCl and at 100 mV voltage, as compared to the control medium) the open probability of single channels. Single channel recordings obtained in the presence and absence of trimethyltin chloride showed that the organotin only slightly (by <10%) decreased the unitary conductance of single channels. It was also found that Met3SnCl significantly diminished the number of SV channel openings, whereas it did not change the opening times of the channels. Taking into account the above and the fact that under the here applied experimental conditions (pH = 7.5) Met3SnCl is a non-dissociated (more lipophilic) compound, we suggest that the suppression of SV currents observed in the presence of the organotin results probably from its hydrophobic properties allowing this compound to translocate near the selectivity filter of the channel.

  9. TRPC1 regulates calcium-activated chloride channels in salivary gland cells.

    Science.gov (United States)

    Sun, Yuyang; Birnbaumer, Lutz; Singh, Brij B

    2015-11-01

    Calcium-activated chloride channel (CaCC) plays an important role in modulating epithelial secretion. It has been suggested that in salivary tissues, sustained fluid secretion is dependent on Ca(2+) influx that activates ion channels such as CaCC to initiate Cl(-) efflux. However direct evidence as well as the molecular identity of the Ca(2+) channel responsible for activating CaCC in salivary tissues is not yet identified. Here we provide evidence that in human salivary cells, an outward rectifying Cl(-) current was activated by increasing [Ca(2+)]i, which was inhibited by the addition of pharmacological agents niflumic acid (NFA), an antagonist of CaCC, or T16Ainh-A01, a specific TMEM16a inhibitor. Addition of thapsigargin (Tg), that induces store-depletion and activates TRPC1-mediated Ca(2+) entry, potentiated the Cl(-) current, which was inhibited by the addition of a non-specific TRPC channel blocker SKF96365 or removal of external Ca(2+). Stimulation with Tg also increased plasma membrane expression of TMEM16a protein, which was also dependent on Ca(2+) entry. Importantly, in salivary cells, TRPC1 silencing, but not that of TRPC3, inhibited CaCC especially upon store depletion. Moreover, primary acinar cells isolated from submandibular gland also showed outward rectifying Cl(-) currents upon increasing [Ca(2+)]i. These Cl(-) currents were again potentiated with the addition of Tg, but inhibited in the presence of T16Ainh-A01. Finally, acinar cells isolated from the submandibular glands of TRPC1 knockout mice showed significant inhibition of the outward Cl(-) currents without decreasing TMEM16a expression. Together the data suggests that Ca(2+) entry via the TRPC1 channels is essential for the activation of CaCC.

  10. Discovery of functional antibodies targeting ion channels.

    Science.gov (United States)

    Wilkinson, Trevor C I; Gardener, Matthew J; Williams, Wendy A

    2015-04-01

    Ion channels play critical roles in physiology and disease by modulation of cellular functions such as electrical excitability, secretion, cell migration, and gene transcription. Ion channels represent an important target class for drug discovery that has been largely addressed, to date, using small-molecule approaches. A significant opportunity exists to target these channels with antibodies and alternative formats of biologics. Antibodies display high specificity and affinity for their target antigen, and they have the potential to target ion channels very selectively. Nevertheless, isolating antibodies to this target class is challenging due to the difficulties in expression and purification of ion channels in a format suitable for antibody drug discovery in addition to the complexity of screening for function. In this article, we will review the current state of ion channel biologics discovery and the progress that has been made. We will also highlight the challenges in isolating functional antibodies to these targets and how these challenges may be addressed. Finally, we also illustrate successful approaches to isolating functional monoclonal antibodies targeting ion channels by way of a number of case studies drawn from recent publications.

  11. Ovine congenital myotonia associated with a mutation in the muscle chloride channel gene.

    Science.gov (United States)

    Monteagudo, Luis Vicente; Tejedor, María Teresa; Ramos, Juan José; Lacasta, Delia; Ferrer, Luis Miguel

    2015-04-01

    Congenital myotonia (CM) is characterised by a delay in muscular relaxation after sudden contractions. In a recent outbreak of ovine CM affecting 1% of new-born lambs in a Spanish flock of Rasa Aragonesa sheep, a comparative pathology approach was taken: because a mutation in the muscle chloride channel gene (CLCN1) was identified as responsible for CM in goats, the same gene was sequenced in the affected lambs. A non-synonymous single nucleotide variation (SNV) in the second exon of CLCN1 was associated with this pathology. Rams carrying this SNV heterozygously were thereafter identified and replaced by wild-type homozygous young males. No additional CM cases were detected in subsequent lambing seasons.

  12. Novel chloride channel gene mutations in two unrelated Chinese families with myotonia congenita

    Directory of Open Access Journals (Sweden)

    Gao Feng

    2010-12-01

    Full Text Available Myotonia congenita (MC is a genetic disease characterized by mutations in the muscle chloride channel gene (CLCN1. To date, approximately 130 different mutations on the CLCN1 gene have been identified. However, most of the studies have focused on Caucasians, and reports on CLCN1 mutations in Chinese population are rare. This study investigated the mutation of CLCN1 in two Chinese families with MC. Direct sequencing of the CLCN1 gene revealed a heterozygous mutation (892G>A, resulting in A298T in one family and a compound heterozygous mutations (782A>G, resulting in Y261C; 1679T>C, resulting in M560T in the other family, None of the 100 normal controls had these mutations. Our findings add more to the available information on the CLCN1 mutation spectrum, and provide a valuable reference for studying the mutation types and inheritance pattern of CLCN1 in the Chinese population.

  13. Emerging role of cystic fibrosis transmembrane conductance regulator- an epithelial chloride channel in gastrointestinal cancers

    Institute of Scientific and Technical Information of China (English)

    Yuning Hou; Xiaoqing Guan; Zhe Yang; Chunying Li

    2016-01-01

    Cystic fibrosis transmembrane conductance regulator(CFTR), a glycoprotein with 1480 amino acids, has been well established as a chloride channel mainly expressed in the epithelial cells of various tissues and organs such as lungs, sweat glands, gastrointestinal system, and reproductive organs. Although defective CFTR leads to cystic fibrosis, a common genetic disorder in the Caucasian population, there is accumulating evidence that suggests a novel role of CFTR in various cancers, especially in gastroenterological cancers, such as pancreatic cancer and colon cancer. In this review, we summarize the emerging findings that link CFTR with various cancers, with focus on the association between CFTR defects and gastrointestinal cancers as well as the underlying mechanisms. Further study of CFTR in cancer biology may help pave a new way for the diagnosis and treatment of gastrointestinal cancers.

  14. Participation of GABAA Chloride Channels in the Anxiolytic-Like Effects of a Fatty Acid Mixture

    Directory of Open Access Journals (Sweden)

    Juan Francisco Rodríguez-Landa

    2013-01-01

    Full Text Available Human amniotic fluid and a mixture of eight fatty acids (FAT-M identified in this maternal fluid (C12:0, lauric acid, 0.9 μg%; C14:0, myristic acid, 6.9 μg%; C16:0, palmitic acid, 35.3 μg%; C16:1, palmitoleic acid, 16.4 μg%; C18:0, stearic acid, 8.5 μg%; C18:1cis, oleic acid, 18.4 μg%; C18:1trans, elaidic acid, 3.5 μg%; C18:2, linoleic acid, 10.1 μg% produce anxiolytic-like effects that are comparable to diazepam in Wistar rats, suggesting the involvement of γ-aminobutyric acid-A (GABAA receptors, a possibility not yet explored. Wistar rats were subjected to the defensive burying test, elevated plus maze, and open field test. In different groups, three GABAA receptor antagonists were administered 30 min before FAT-M administration, including the competitive GABA binding antagonist bicuculline (1 mg/kg, GABAA benzodiazepine antagonist flumazenil (5 mg/kg, and noncompetitive GABAA chloride channel antagonist picrotoxin (1 mg/kg. The FAT-M exerted anxiolytic-like effects in the defensive burying test and elevated plus maze, without affecting locomotor activity in the open field test. The GABAA antagonists alone did not produce significant changes in the behavioral tests. Picrotoxin but not bicuculline or flumazenil blocked the anxiolytic-like effect of the FAT-M. Based on the specific blocking action of picrotoxin on the effects of the FAT-M, we conclude that the FAT-M exerted its anxiolytic-like effects through GABAA receptor chloride channels.

  15. Conformational change opening the CFTR chloride channel pore coupled to ATP-dependent gating.

    Science.gov (United States)

    Wang, Wuyang; Linsdell, Paul

    2012-03-01

    Opening and closing of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel are controlled by ATP binding and hydrolysis by its nucleotide binding domains (NBDs). This is presumed to control opening of a single "gate" within the permeation pathway, however, the location of such a gate has not been described. We used patch clamp recording to monitor access of cytosolic cysteine reactive reagents to cysteines introduced into different transmembrane (TM) regions in a cysteine-less form of CFTR. The rate of modification of Q98C (TM1) and I344C (TM6) by both [2-sulfonatoethyl] methanethiosulfonate (MTSES) and permeant Au(CN)(2)(-) ions was reduced when ATP concentration was reduced from 1mM to 10μM, and modification by MTSES was accelerated when 2mM pyrophosphate was applied to prevent channel closure. Modification of K95C (TM1) and V345C (TM6) was not affected by these manoeuvres. We also manipulated gating by introducing the mutations K464A (in NBD1) and E1371Q (in NBD2). The rate of modification of Q98C and I344C by both MTSES and Au(CN)(2)(-) was decreased by K464A and increased by E1371Q, whereas modification of K95C and V345C was not affected. These results suggest that access from the cytoplasm to K95 and V345 is similar in open and closed channels. In contrast, modifying ATP-dependent channel gating alters access to Q98 and I344, located further into the pore. We propose that ATP-dependent gating of CFTR is associated with the opening and closing of a gate within the permeation pathway at the level of these pore-lining amino acids.

  16. Mutations at the signature sequence of CFTR create a Cd(2+)-gated chloride channel.

    Science.gov (United States)

    Wang, Xiaohui; Bompadre, Silvia G; Li, Min; Hwang, Tzyh-Chang

    2009-01-01

    The canonical sequence LSGGQ, also known as the signature sequence, defines the adenosine triphosphate (ATP)-binding cassette transporter superfamily. Crystallographic studies reveal that the signature sequence, together with the Walker A and Walker B motifs, forms the ATP-binding pocket upon dimerization of the two nucleotide-binding domains (NBDs) in a head-to-tail configuration. The importance of the signature sequence is attested by the fact that a glycine to aspartate mutation (i.e., G551D) in cystic fibrosis transmembrane conductance regulator (CFTR) results in a severe phenotype of cystic fibrosis. We previously showed that the G551D mutation completely eliminates ATP-dependent gating of the CFTR chloride channel. Here, we report that micromolar [Cd(2+)] can dramatically increase the activity of G551D-CFTR in the absence of ATP. This effect of Cd(2+) is not seen in wild-type channels or in G551A. Pretreatment of G551D-CFTR with the cysteine modification reagent 2-aminoethyl methane thiosulfonate hydrobromide protects the channel from Cd(2+) activation, suggesting an involvement of endogenous cysteine residue(s) in mediating this effect of Cd(2+). The mutants G551C, L548C, and S549C, all in the signature sequence of CFTR's NBD1, show robust response to Cd(2+). On the other hand, negligible effects of Cd(2+) were seen with T547C, Q552C, and R553C, indicating that a specific region of the signature sequence is involved in transmitting the signal of Cd(2+) binding to the gate. Collectively, these results suggest that the effect of Cd(2+) is mediated by a metal bridge formation between yet to be identified cysteine residue(s) and the engineered aspartate or cysteine in the signature sequence. We propose that the signature sequence serves as a switch that transduces the signal of ligand binding to the channel gate.

  17. Functional multimerization of mucolipin channel proteins.

    Science.gov (United States)

    Curcio-Morelli, Cyntia; Zhang, Peng; Venugopal, Bhuvarahamurthy; Charles, Florie A; Browning, Marsha F; Cantiello, Horacio F; Slaugenhaupt, Susan A

    2010-02-01

    MCOLN1 encodes mucolipin-1 (TRPML1), a member of the transient receptor potential TRPML subfamily of channel proteins. Mutations in MCOLN1 cause mucolipidosis-type IV (MLIV), a lysosomal storage disorder characterized by severe neurologic, ophthalmologic, and gastrointestinal abnormalities. Along with TRPML1, there are two other TRPML family members, mucolipin-2 (TRPML2) and mucolipin-3 (TRPML3). In this study, we used immunocytochemical analysis to determine that TRPML1, TRPML2, and TRPML3 co-localize in cells. The multimerization of TRPML proteins was confirmed by co-immunoprecipitation and Western blot analysis, which demonstrated that TRPML1 homo-multimerizes as well as hetero-multimerizes with TRPML2 and TRPML3. MLIV-causing mutants of TRPML1 also interacted with wild-type TRPML1. Lipid bilayer re-constitution of in vitro translated TRPML2 and TRPML3 confirmed their cation channel properties with lower single channel conductance and higher partial permeability to anions as compared to TRPML1. We further analyzed the electrophysiological properties of single channel TRPML hetero-multimers, which displayed functional differences when compared to individual TRPMLs. Our data shows for the first time that TRPMLs form distinct functional channel complexes. Homo- and hetero-multimerization of TRPMLs may modulate channel function and biophysical properties, thereby increasing TRPML functional diversity.

  18. Piezo channels: from structure to function.

    Science.gov (United States)

    Volkers, Linda; Mechioukhi, Yasmine; Coste, Bertrand

    2015-01-01

    Mechanotransduction is the conversion of mechanical stimuli into biological signals. It is involved in the modulation of diverse cellular functions such as migration, proliferation, differentiation, and apoptosis as well as in the detection of sensory stimuli such as air vibration and mechanical contact. Therefore, mechanotransduction is crucial for organ development and homeostasis and plays a direct role in hearing, touch, proprioception, and pain. Multiple molecular players involved in mechanotransduction have been identified in the past, among them ion channels directly activated by cell membrane deformation. Most of these channels have well-established roles in lower organisms but are not conserved in mammals or fail to encode mechanically activated channels in mammals due to non-conservation of mechanotransduction property. A family of mechanically activated channels that counts only two members in human, piezo1 and 2, has emerged recently. Given the lack of valid mechanically activated channel candidates in mammals in the past decades, particular attention is given to piezo channels and their potential roles in various biological functions. This review summarizes our current knowledge on these ion channels.

  19. Increased Expression of the Calcium-Activated Chloride Channel in Hclca1 in Airways of Patients with Obstructive Chronic Bronchitis

    Directory of Open Access Journals (Sweden)

    Hans-Peter Hauber

    2005-01-01

    Full Text Available BACKGROUND: Interleukin (IL-9 and its effect on enhancing the human calcium-activated chloride channel 1 (hCLCA1 expression have been shown to induce mucin production. Increased expression of hCLCA1 may, in turn, contribute to mucus overproduction in chronic obstructive pulmonary disease (COPD with a chronic bronchitis (CB phenotype.

  20. A monomer is the minimum functional unit required for channel and ATPase activity of the cystic fibrosis transmembrane conductance regulator.

    Science.gov (United States)

    Ramjeesingh, M; Li, C; Kogan, I; Wang, Y; Huan, L J; Bear, C E

    2001-09-04

    The cystic fibrosis transmembrane conductance regulator (CFTR) normally functions as a phosphorylation-regulated chloride channel on the apical surface of epithelial cells, and lack of this function is the primary cause for the fatal disease cystic fibrosis (CF). Previous studies showed that purified, reconstituted CFTR can function as a chloride channel and, further, that its intrinsic ATPase activity is required to regulate opening and closing of the channel gate. However, these previous studies did not identify the quaternary structure required to mediate conduction and catalysis. Our present studies show that CFTR molecules may self-associate in CHO and Sf9 membranes, as complexes close to the predicted size of CFTR dimers can be captured by chemical cross-linking reagents and detected using nondissociative PAGE. However, CFTR function does not require a multimeric complex for function as we determined that purified, reconstituted CFTR monomers are sufficient to mediate regulated chloride conduction and ATPase activity.

  1. The H-loop in the second nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator is required for efficient chloride channel closing.

    Science.gov (United States)

    Kloch, Monika; Milewski, Michał; Nurowska, Ewa; Dworakowska, Beata; Cutting, Garry R; Dołowy, Krzysztof

    2010-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-binding cassette (ABC) transporter that functions as a cAMP-activated chloride channel. The recent model of CFTR gating predicts that the ATP binding to both nucleotide-binding domains (NBD1 and NBD2) of CFTR is required for the opening of the channel, while the ATP hydrolysis at NBD2 induces subsequent channel closing. In most ABC proteins, efficient hydrolysis of ATP requires the presence of the invariant histidine residue within the H-loop located in the C-terminal part of the NBD. However, the contribution of the corresponding region (H-loop) of NBD2 to the CFTR channel gating has not been examined so far. Here we report that the alanine substitution of the conserved dipeptide HR motif (HR-->AA) in the H-loop of NBD2 leads to prolonged open states of CFTR channel, indicating that the H-loop is required for efficient channel closing. On the other hand, the HR-->AA substitution lead to the substantial decrease of CFTR-mediated current density (pA/pF) in transfected HEK 293 cells, as recorded in the whole-cell patch-clamp analysis. These results suggest that the H-loop of NBD2, apart from being required for CFTR channel closing, may be involved in regulating CFTR trafficking to the cell surface.

  2. Expression of CLC-K chloride channels in the rat cochlea.

    Science.gov (United States)

    Qu, Chunyan; Liang, Fenghe; Hu, Wei; Shen, Zhijun; Spicer, Samuel S; Schulte, Bradley A

    2006-03-01

    Current models of the lateral K+ recycling pathway in the mammalian cochlea include two multicellular transport networks separated from one another by three interstitial gaps. The first gap is between outer hair cells and Deiters cells, the second is between outer sulcus cells and type II spiral ligament fibrocytes and the third is between intermediate and marginal cells in the stria vascularis. K+ taken up by cells bordering these interstitial spaces is accompanied by Cl-. Maintaining appropriate electrolyte balance and membrane potentials in these cells requires a mechanism for exit of the resorbed Cl-. One possible candidate for regulating this Cl- efflux is ClC-K, a chloride channel previously thought to be kidney specific. Here, we demonstrate the expression of both known isoforms of ClC-K in the organ of Corti, spiral ligament and stria vascularis of the rat cochlea by immunohistochemical, Western blot and RT-PCR analysis. These results indicate a role for ClC-K in mediating Cl- recycling in the cochlea. The widespread expression of both ClC-K isoforms in the cochlea may help to explain the symptoms of Bartter's syndrome Type III, a mutation in the hClC-Kb gene (human homologue of ClC-K2), which results in renal salt wasting without deafness. These data support the hypothesis that both isoforms of ClC-K are co-expressed in some cell membranes and account for the preservation of hearing in the presence of a mutation in only one channel isoform.

  3. Interactions between permeant and blocking anions inside the CFTR chloride channel pore.

    Science.gov (United States)

    Linsdell, Paul

    2015-07-01

    Binding of cytoplasmic anionic open channel blockers within the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel is antagonized by extracellular Cl(-). In the present work, patch clamp recording was used to investigate the interaction between extracellular Cl(-) (and other anions) and cytoplasmic Pt(NO2)4(2-) ions inside the CFTR channel pore. In constitutively open (E1371Q-CFTR) channels, these different anions bind to two separate sites, located in the outer and inner vestibules of the pore respectively, in a mutually antagonistic fashion. A mutation in the inner vestibule (I344K) that greatly increased Pt(NO2)4(2-) binding affinity also greatly strengthened antagonistic Cl(-):blocker interactions as well as the voltage-dependence of block. Quantitative analysis of ion binding affinity suggested that the I344K mutation strengthened interactions not only with intracellular Pt(NO2)4(2-) ions but also with extracellular Cl(-), and that altered blocker Cl(-)- and voltage-dependence were due to the introduction of a novel type of antagonistic ion:ion interaction inside the pore that was independent of Cl(-) binding in the outer vestibule. It is proposed that this mutation alters the arrangement of anion binding sites inside the pore, allowing both Cl(-) and Pt(NO2)4(2-) to bind concurrently within the inner vestibule in a strongly mutually antagonistic fashion. However, the I344K mutation does not increase single channel conductance following disruption of Cl(-) binding in the outer vestibule in R334Q channels. Implications for the arrangement of ion binding sites in the pore, and their functional consequences for blocker binding and for rapid Cl(-) permeation, are discussed.

  4. Expression of calcium-activated chloride channels Ano1 and Ano2 in mouse taste cells.

    Science.gov (United States)

    Cherkashin, Alexander P; Kolesnikova, Alisa S; Tarasov, Michail V; Romanov, Roman A; Rogachevskaja, Olga A; Bystrova, Marina F; Kolesnikov, Stanislav S

    2016-02-01

    Specialized Ca(2+)-dependent ion channels ubiquitously couple intracellular Ca(2+) signals to a change in cell polarization. The existing physiological evidence suggests that Ca(2+)-activated Cl(-) channels (CaCCs) are functional in taste cells. Because Ano1 and Ano2 encode channel proteins that form CaCCs in a variety of cells, we analyzed their expression in mouse taste cells. Transcripts for Ano1 and Ano2 were detected in circumvallate (CV) papillae, and their expression in taste cells was confirmed using immunohistochemistry. When dialyzed with CsCl, taste cells of the type III exhibited no ion currents dependent on cytosolic Ca(2+). Large Ca(2+)-gated currents mediated by TRPM5 were elicited in type II cells by Ca(2+) uncaging. When TRPM5 was inhibited by triphenylphosphine oxide (TPPO), ionomycin stimulated a small but resolvable inward current that was eliminated by anion channel blockers, including T16Ainh-A01 (T16), a specific Ano1 antagonist. This suggests that CaCCs, including Ano1-like channels, are functional in type II cells. In type I cells, CaCCs were prominently active, blockable with the CaCC antagonist CaCCinh-A01 but insensitive to T16. By profiling Ano1 and Ano2 expressions in individual taste cells, we revealed Ano1 transcripts in type II cells only, while Ano2 transcripts were detected in both type I and type II cells. P2Y agonists stimulated Ca(2+)-gated Cl(-) currents in type I cells. Thus, CaCCs, possibly formed by Ano2, serve as effectors downstream of P2Y receptors in type I cells. While the role for TRPM5 in taste transduction is well established, the physiological significance of expression of CaCCs in type II cells remains to be elucidated.

  5. Salt, chloride, bleach, and innate host defense.

    Science.gov (United States)

    Wang, Guoshun; Nauseef, William M

    2015-08-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense.

  6. Comparative pharmacology of flatworm and roundworm glutamate-gated chloride channels: Implications for potential anthelmintics

    Directory of Open Access Journals (Sweden)

    Timothy Lynagh

    2014-12-01

    Full Text Available Pharmacological targeting of glutamate-gated chloride channels (GluCls is a potent anthelmintic strategy, evidenced by macrocyclic lactones that eliminate numerous roundworm infections by activating roundworm GluCls. Given the recent identification of flatworm GluCls and the urgent need for drugs against schistosomiasis, flatworm GluCls should be evaluated as potential anthelmintic targets. This study sought to identify agonists or modulators of one such GluCl, SmGluCl-2 from the parasitic flatworm Schistosoma mansoni. The effects of nine glutamate-like compounds and three monoterpenoid ion channel modulators were measured by electrophysiology at SmGluCl-2 recombinantly expressed in Xenopus laevis oocytes. For comparison with an established anthelmintic target, experiments were also performed on the AVR-14B GluCl from the parasitic roundworm Haemonchus contortus. l-Glutamate was the most potent agonist at both GluCls, but l-2-aminoadipate, d-glutamate and d-2-aminoadipate activated SmGluCl-2 (EC50 1.0 ± 0.1 mM, 2.4 ± 0.4 mM, 3.6 ± 0.7 mM, respectively more potently than AVR-14B. Quisqualate activated only SmGluCl-2 whereas l-aspartate activated only AVR-14B GluCls. Regarding the monoterpenoids, both GluCls were inhibited by propofol, thymol and menthol, SmGluCl-2 most potently by thymol (IC50 484 ± 85 μM and least potently by menthol (IC50 > 3 mM. Computational docking suggested that agonist and inhibitor potency is attributable to particular interactions with extracellular or membrane-spanning amino acid residues. These results reveal that flatworm GluCls are pharmacologically susceptible to numerous agonists and modulators and indicate that changes to the glutamate γ-carboxyl or to the propofol 6-isopropyl group can alter the differential pharmacology at flatworm and roundworm GluCls. This should inform the development of more potent compounds and in turn lead to novel anthelmintics.

  7. AB095. Increased expression of TMEM16A/Ano1 chloride channel associated with diabetic erectile dysfunction

    Science.gov (United States)

    Ruan, Yajun; Chen, Yingwei; Li, Mingchao; Wang, Tao; Yang, Jun; Rao, Ke; Wang, Shaogang; Yang, Weimin; Liu, Jihong; Ye, Zhangqun

    2016-01-01

    Objective To investigate the presence, location and functional role of TMEM16A/anotamin-1 (Ano1) calcium-activated chloride channel (CaCC) in the penile of rats with diabetic erectile dysfunction. Methods Eight-week-old male Sprague-Dawley (SD) rats were administrated streptozotocin (diabetic) or citrate buffer (control) randomly. Erectile function was measured by cavernous nerve electrostimulation at 12th week after diabetes was induced. The effect of Ano1 specific inhibitor—T16Ainh-A01 on intracavernous pressure (ICP) was evaluated. Then the penile tissues were harvested for molecular exploration. Real-time PCR and Western Blotting were used to assess the expression of Ano1 in penile tissues. Immunofluorescent labelling of penile tissue allowed localization of Ano1. Cavernous smooth muscle cell (CSMC) was cultured in high glucose medium. The change of Ano1 was measured using Western Blotting. The proliferation of CSMC was evaluated by cell counting kit-8 (CCK-8). Results Erectile function was impaired in diabetic rats. The expression of Ano1 was increased in rats with diabetic erectile dysfunction at mRNA and protein levels. Immunofluorescent labelling revealed the presence of Ano1 mainly in cavernous smooth muscle cells. The inhibition of Ano1 increased the ICP of DED rats. High glucose in vitro enhanced the proliferation of CSMC and the expression level of Ano1. Conclusions Ano1 is expressed in rat penile tissue and is increased with diabetes mellitus. The inhibition of Ano1 increased the ICP of DED rats. The alerted Ano1 may be associated with diabetic erectile dysfunction. It is a potential therapy target for ED in the future.

  8. The Cullin 4A/B-DDB1-Cereblon E3 Ubiquitin Ligase Complex Mediates the Degradation of CLC-1 Chloride Channels.

    Science.gov (United States)

    Chen, Yi-An; Peng, Yi-Jheng; Hu, Meng-Chun; Huang, Jing-Jia; Chien, Yun-Chia; Wu, June-Tai; Chen, Tsung-Yu; Tang, Chih-Yung

    2015-05-29

    Voltage-gated CLC-1 chloride channels play a critical role in controlling the membrane excitability of skeletal muscles. Mutations in human CLC-1 channels have been linked to the hereditary muscle disorder myotonia congenita. We have previously demonstrated that disease-associated CLC-1 A531V mutant protein may fail to pass the endoplasmic reticulum quality control system and display enhanced protein degradation as well as defective membrane trafficking. Currently the molecular basis of protein degradation for CLC-1 channels is virtually unknown. Here we aim to identify the E3 ubiquitin ligase of CLC-1 channels. The protein abundance of CLC-1 was notably enhanced in the presence of MLN4924, a specific inhibitor of cullin-RING E3 ligases. Subsequent investigation with dominant-negative constructs against specific subtypes of cullin-RING E3 ligases suggested that CLC-1 seemed to serve as the substrate for cullin 4A (CUL4A) and 4B (CUL4B). Biochemical examinations further indicated that CUL4A/B, damage-specific DNA binding protein 1 (DDB1), and cereblon (CRBN) appeared to co-exist in the same protein complex with CLC-1. Moreover, suppression of CUL4A/B E3 ligase activity significantly enhanced the functional expression of the A531V mutant. Our data are consistent with the idea that the CUL4A/B-DDB1-CRBN complex catalyses the polyubiquitination and thus controls the degradation of CLC-1 channels.

  9. Physiological roles and diseases of tmem16/anoctamin proteins: are they all chloride channels?

    Institute of Scientific and Technical Information of China (English)

    Charity DURAN; H Criss HARTZELL

    2011-01-01

    The Tmem16 gene family was first identified by bioinformatic analysis in 2004. In 2008, it was shown independently by 3 laboratories that the first two members (Tmem16A and Tmem16B) of this 10-gene family are Ca2+-activated Cl- channels. Because these proteins are thought to have 8 transmembrane domains and be anion-selective channels, the alternative name, Anoctamin (anion and octa=8),has been proposed. However, it remains unclear whether all members of this family are, in fact, anion channels or have the same 8-transmembrane domain topology. Since 2008, there have been nearly 100 papers published on this gene family. The excitement about Tmem16 proteins has been enhanced by the finding that Ano1 has been linked to cancer, mutations in Ano5 are linked to several forms of muscular dystrophy (LGMDL2 and MMD-3), mutations in Ano10 are linked to autosomal recessive spinocerebellar ataxia,and mutations in Ano6 are linked to Scott syndrome, a rare bleeding disorder. Here we review some of the recent developments in understanding the physiology and structure-function of the Tmem16 gene family.

  10. Cytoplasmic pathway followed by chloride ions to enter the CFTR channel pore.

    Science.gov (United States)

    El Hiani, Yassine; Negoda, Alexander; Linsdell, Paul

    2016-05-01

    Most ATP-binding cassette (ABC) proteins function as ATP-dependent membrane pumps. One exception is the cystic fibrosis transmembrane conductance regulator (CFTR), an ABC protein that functions as a Cl(-) ion channel. As such, the CFTR protein must form a continuous pathway for the movement of Cl(-) ions from the cytoplasm to the extracellular solution when in its open channel state. Extensive functional investigations have characterized most parts of this Cl(-) permeation pathway. However, one region remains unexplored-the pathway connecting the cytoplasm to the membrane-spanning pore. We used patch clamp recording and extensive substituted cysteine accessibility mutagenesis to identify amino acid side-chains in cytoplasmic regions of CFTR that lie close to the pathway taken by Cl(-) ions as they pass from the cytoplasm through this pathway. Our results suggest that Cl(-) ions enter the permeation pathway via a single lateral tunnel formed by the cytoplasmic parts of the protein, and then follow a fairly direct central pathway towards the membrane-spanning parts of the protein. However, this pathway is not lined continuously by any particular part of the protein; instead, the contributions of different cytoplasmic regions of the protein appear to change as the permeation pathway approaches the membrane, which appears to reflect the ways in which different cytoplasmic regions of the protein are oriented towards its central axis. Our results allow us to define for the first time the complete Cl(-) permeation pathway in CFTR, from the cytoplasm to the extracellular solution.

  11. Mechanism of interaction of niflumic acid with heterologously expressed kidney CLC-K chloride channels.

    Science.gov (United States)

    Picollo, Alessandra; Liantonio, Antonella; Babini, Elena; Camerino, Diana Conte; Pusch, Michael

    2007-04-01

    CLC-K Cl(-) channels belong to the CLC protein family. In kidney and inner ear, they are involved in transepithelial salt transport. Mutations in ClC-Kb lead to Bartter's syndrome, and mutations in the associated subunit barttin produce Bartter's syndrome and deafness. We have previously found that 3-phenyl-CPP blocks hClC-Ka and rClC-K1 from the extracellular side in the pore entrance. Recently, we have shown that niflumic acid (NFA), a nonsteroidal anti-inflammatory fenamate, produces biphasic behavior on human CLC-K channels that suggests the presence of two functionally different binding sites: an activating site and a blocking site. Here, we investigate in more detail the interaction of NFA on CLC-K channels. Mutants that altered block by 3-phenyl-2-(p-chlorophenoxy)propionic acid (CPP) had no effect on NFA block, indicating that the inhibition binding site of NFA is different from that of 3-phenyl-CPP and flufenamic acid. Moreover, NFA does not compete with extracellular Cl(-) ions, suggesting that the binding sites of NFA are not located deep in the pore. Differently from ClC-Ka, on the rat homologue ClC-K1, NFA has only an inhibitory effect. We developed a quantitative model to describe the complex action of NFA on ClC-Ka. The model predicts that ClC-Ka possesses two NFA binding sites: when only one site is occupied, NFA increases ClC-Ka currents, whereas the occupation of both binding sites leads to channel block.

  12. Functional reconstitution and channel activity measurements of purified wildtype and mutant CFTR protein.

    Science.gov (United States)

    Eckford, Paul D W; Li, Canhui; Bear, Christine E

    2015-03-09

    The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a unique channel-forming member of the ATP Binding Cassette (ABC) superfamily of transporters. The phosphorylation and nucleotide dependent chloride channel activity of CFTR has been frequently studied in whole cell systems and as single channels in excised membrane patches. Many Cystic Fibrosis-causing mutations have been shown to alter this activity. While a small number of purification protocols have been published, a fast reconstitution method that retains channel activity and a suitable method for studying population channel activity in a purified system have been lacking. Here rapid methods are described for purification and functional reconstitution of the full-length CFTR protein into proteoliposomes of defined lipid composition that retains activity as a regulated halide channel. This reconstitution method together with a novel flux-based assay of channel activity is a suitable system for studying the population channel properties of wild type CFTR and the disease-causing mutants F508del- and G551D-CFTR. Specifically, the method has utility in studying the direct effects of phosphorylation, nucleotides and small molecules such as potentiators and inhibitors on CFTR channel activity. The methods are also amenable to the study of other membrane channels/transporters for anionic substrates.

  13. Benzopyrimido-pyrrolo-oxazine-dione (R)-BPO-27 Inhibits CFTR Chloride Channel Gating by Competition with ATP.

    Science.gov (United States)

    Kim, Yonjung; Anderson, Marc O; Park, Jinhong; Lee, Min Goo; Namkung, Wan; Verkman, A S

    2015-10-01

    We previously reported that benzopyrimido-pyrrolo-oxazinedione BPO-27 [6-(5-bromofuran-2-yl)-7,9-dimethyl-8,10-dioxo-11-phenyl-7,8,9,10-tetrahydro-6H-benzo[b]pyrimido [4',5':3,4]pyrrolo [1,2-d][1,4]oxazine-2-carboxylic acid] inhibits the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel with low nanomolar potency and reduces cystogenesis in a model of polycystic kidney disease. We used computational chemistry and patch-clamp to show that enantiomerically pure (R)-BPO-27 inhibits CFTR by competition with ATP, whereas (S)-BPO-27 is inactive. Docking computations using a homology model of CFTR structure suggested that (R)-BPO-27 binds near the canonical ATP binding site, and these findings were supported by molecular dynamics simulations showing a lower binding energy for the (R) versus (S) stereoisomers. Three additional lower-potency BPO-27 analogs were modeled in a similar fashion, with the binding energies predicted in the correct order. Whole-cell patch-clamp studies showed linear CFTR currents with a voltage-independent (R)-BPO-27 block mechanism. Single-channel recordings in inside-out patches showed reduced CFTR channel open probability and increased channel closed time by (R)-BPO-27 without altered unitary channel conductance. At a concentration of (R)-BPO-27 that inhibited CFTR chloride current by ∼50%, the EC50 for ATP activation of CFTR increased from 0.27 to 1.77 mM but was not changed by CFTRinh-172 [4-[[4-oxo-2-thioxo-3-[3-trifluoromethyl)phenyl]-5-thiazolidinylidene]methyl]benzoic acid], a thiazolidinone CFTR inhibitor that acts at a site distinct from the ATP binding site. Our results suggest that (R)-BPO-27 inhibition of CFTR involves competition with ATP.

  14. Chloride channels in the plasma membrane of a foetal Drosophila cell line, S2

    DEFF Research Database (Denmark)

    Asmild, Margit; Willumsen, Niels J.

    2000-01-01

    S2 cells, Cl- Channels, Expression system, Drosophila, Inward rectifier, Outward rectifier, Patch clamp......S2 cells, Cl- Channels, Expression system, Drosophila, Inward rectifier, Outward rectifier, Patch clamp...

  15. A solid phase honey-like channel method for synthesizing urea-ammonium chloride cocrystals on industrial scale

    Science.gov (United States)

    Xue, Bingchun; Mao, Meiling; Liu, Yanhong; Guo, Jinyu; Li, Jing; Liu, Erbao

    2016-05-01

    Unanticipated a new and simple urea-ammonium chloride cocrystal synthesis method on industrial scale was found during attempts to produce a kind of granulated compound fertilizer. The aggregation of fertilizer powder can make the interaction among particles from loose to close, which generate mechanical pressure and in turn act as the driving force to benefit cocrystal growth. Additionally, the honeycomb-like channels constructed by other coexisting compound make the water evaporates more moderate, which can help the formation of supersaturated solution at suitable rate, further promote the growth of cocrystal. This approach possibly opens a new route toward the developing methodologies for cocrystal synthesis.

  16. Regulation of the membrane insertion and conductance activity of the metamorphic chloride intracellular channel protein CLIC1 by cholesterol.

    Directory of Open Access Journals (Sweden)

    Stella M Valenzuela

    Full Text Available The Chloride Intracellular ion channel protein CLIC1 has the ability to spontaneously insert into lipid membranes from a soluble, globular state. The precise mechanism of how this occurs and what regulates this insertion is still largely unknown, although factors such as pH and redox environment are known contributors. In the current study, we demonstrate that the presence and concentration of cholesterol in the membrane regulates the spontaneous insertion of CLIC1 into the membrane as well as its ion channel activity. The study employed pressure versus area change measurements of Langmuir lipid monolayer films; and impedance spectroscopy measurements using tethered bilayer membranes to monitor membrane conductance during and following the addition of CLIC1 protein. The observed cholesterol dependent behaviour of CLIC1 is highly reminiscent of the cholesterol-dependent-cytolysin family of bacterial pore-forming proteins, suggesting common regulatory mechanisms for spontaneous protein insertion into the membrane bilayer.

  17. Regulation of the membrane insertion and conductance activity of the metamorphic chloride intracellular channel protein CLIC1 by cholesterol.

    Science.gov (United States)

    Valenzuela, Stella M; Alkhamici, Heba; Brown, Louise J; Almond, Oscar C; Goodchild, Sophia C; Carne, Sonia; Curmi, Paul M G; Holt, Stephen A; Cornell, Bruce A

    2013-01-01

    The Chloride Intracellular ion channel protein CLIC1 has the ability to spontaneously insert into lipid membranes from a soluble, globular state. The precise mechanism of how this occurs and what regulates this insertion is still largely unknown, although factors such as pH and redox environment are known contributors. In the current study, we demonstrate that the presence and concentration of cholesterol in the membrane regulates the spontaneous insertion of CLIC1 into the membrane as well as its ion channel activity. The study employed pressure versus area change measurements of Langmuir lipid monolayer films; and impedance spectroscopy measurements using tethered bilayer membranes to monitor membrane conductance during and following the addition of CLIC1 protein. The observed cholesterol dependent behaviour of CLIC1 is highly reminiscent of the cholesterol-dependent-cytolysin family of bacterial pore-forming proteins, suggesting common regulatory mechanisms for spontaneous protein insertion into the membrane bilayer.

  18. Effet of Mercuric Chloride and Cadmium Chloride on Gonadal Function and Its regulation in Sexually Mature Common Carp Cyprinus carpio

    Institute of Scientific and Technical Information of China (English)

    DilipMUKHERJEE; VinodKumar; 等

    1994-01-01

    Gnadal function in fish,Cyprinus carpio was significantly affected by sublethal doses of mecuric chloride(HgCl2)and cadmium chloride(CdCl2)in chronic(45days)exposure,Parameters investigated were nonesterified(NE)and esterified(E)cholesterol of ovary, liver and serum and ovarian 3β-Hydroxysteroid and 17β-Hydroxysteroid dehydrogenase enzyme activity and servum and pituitary gonadotropin(GtH)levels.Both the pollutats were able to reduce the hypothalamic extract(HE)or gonadotropin releasing hormone (GnRH)induced pituiteray GtH release in vitro.Short term(96h)exposure of the fish to the polltants had no significant effect on the gonadal founction.In addition to the deleterious effect of pollutants on the gonadal steroidogenesis and pituitary gonadotropin release,using [4-14C] cholesterol as a tracer it was found that for 45 days exposure,HgCl2 had an adverse effect on the transport of cholesterol from circulation to ovary.

  19. Rattlesnake Phospholipase A2 Increases CFTR-Chloride Channel Current and Corrects ∆F508CFTR Dysfunction: Impact in Cystic Fibrosis.

    Science.gov (United States)

    Faure, Grazyna; Bakouh, Naziha; Lourdel, Stéphane; Odolczyk, Norbert; Premchandar, Aiswarya; Servel, Nathalie; Hatton, Aurélie; Ostrowski, Maciej K; Xu, Haijin; Saul, Frederick A; Moquereau, Christelle; Bitam, Sara; Pranke, Iwona; Planelles, Gabrielle; Teulon, Jacques; Herrmann, Harald; Roldan, Ariel; Zielenkiewicz, Piotr; Dadlez, Michal; Lukacs, Gergely L; Sermet-Gaudelus, Isabelle; Ollero, Mario; Corringer, Pierre-Jean; Edelman, Aleksander

    2016-07-17

    Deletion of Phe508 in the nucleotide binding domain (∆F508-NBD1) of the cystic fibrosis transmembrane regulator (CFTR; a cyclic AMP-regulated chloride channel) is the most frequent mutation associated with cystic fibrosis. This mutation affects the maturation and gating of CFTR protein. The search for new high-affinity ligands of CFTR acting as dual modulators (correctors/activators) presents a major challenge in the pharmacology of cystic fibrosis. Snake venoms are a rich source of natural multifunctional proteins, potential binders of ion channels. In this study, we identified the CB subunit of crotoxin from Crotalus durissus terrificus as a new ligand and allosteric modulator of CFTR. We showed that CB interacts with NBD1 of both wild type and ∆F508CFTR and increases their chloride channel currents. The potentiating effect of CB on CFTR activity was demonstrated using electrophysiological techniques in Xenopus laevis oocytes, in CFTR-HeLa cells, and ex vivo in mouse colon tissue. The correcting effect of CB was shown by functional rescue of CFTR activity after 24-h ΔF508CFTR treatments with CB. Moreover, the presence of fully glycosylated CFTR was observed. Molecular docking allowed us to propose a model of the complex involving of the ABCβ and F1-like ATP-binding subdomains of ΔF508-NBD1. Hydrogen-deuterium exchange analysis confirmed stabilization in these regions, also showing allosteric stabilization in two other distal regions. Surface plasmon resonance competition studies showed that CB disrupts the ∆F508CFTR-cytokeratin 8 complex, allowing for the escape of ∆F508CFTR from degradation. Therefore CB, as a dual modulator of ΔF508CFTR, constitutes a template for the development of new anti-CF agents.

  20. Inhibition of ANO1/TMEM16A Chloride Channel by Idebenone and Its Cytotoxicity to Cancer Cell Lines.

    Directory of Open Access Journals (Sweden)

    Yohan Seo

    Full Text Available The expression levels of anoctamin 1 (ANO1, TMEM16A, a calcium-activated chloride channel (CaCC, are significantly increased in several tumors, and inhibition of ANO1 is known to reduce cell proliferation and migration. Here, we performed cell-based screening of a collection of natural products and drug-like compounds to identify inhibitors of ANO1. As a result of the screening, idebenone, miconazole and plumbagin were identified as novel ANO1 inhibitors. Electrophysiological studies showed that idebenone, a synthetic analog of coenzyme Q10, completely blocked ANO1 activity in FRT cells expressing ANO1 without any effect on intracellular calcium signaling and CFTR, a cAMP-regulated chloride channel. The CaCC activities in PC-3 and CFPAC-1 cells expressing abundant endogenous ANO1 were strongly blocked by idebenone. Idebenone inhibited cell proliferation and induced apoptosis in PC-3 and CFPAC-1 cells, but not in A549 cells, which do not express ANO1. These data suggest that idebenone, a novel ANO1 inhibitor, has potential for use in cancer therapy.

  1. Neuroprotective effects of ClC-3 chloride channel in glutamate-induced retinal ganglion cell RGC-5 apoptosis

    Institute of Scientific and Technical Information of China (English)

    Li Yu; Ning Han; Ligang Jiang; Yajuan Zheng; Lifeng Liu

    2011-01-01

    Transforming growth factor β plays a role in regulation of apoptosis in ClC-3 and the Smads signaling pathway, although the underlying mechanisms remain unclear. The present study determined possible signal transduction mechanisms based on CIC-3 expression, which accordingly affected apoptosis of retinal ganglion cells in a glutamate-induced retinal ganglion cell RGC-5 apoptosis model. Results revealed significantly increased cell survival rate and significantly decreased apoptosis rate following apoptosis of ClC-3 cDNA-transfected glutamate-induced retinal ganglion cells. Following inhibition of the ClC-3 chloride channel using RNAi technology, cell survival and apoptosis rates were reversed. In addition, expression of transforming growth factor β2, Smads2, Smads3, Smads4, and Smads7 increased to varying degrees. These results suggest that ClC-3 chloride channel plays a protective role in glutamate-induced apoptosis of retinal ganglion cells, and transforming growth factor β/Smads signal transduction pathways are involved in this process.

  2. Basolateral potassium channels of rabbit colon epithelium: role in sodium absorption and chloride secretion.

    Science.gov (United States)

    Turnheim, Klaus; Plass, Herbert; Wyskovsky, Wolfgang

    2002-02-18

    In order to assess the role of different classes of K(+) channels in recirculation of K(+) across the basolateral membrane of rabbit distal colon epithelium, the effects of various K(+) channel inhibitors were tested on the activity of single K(+) channels from the basolateral membrane, on macroscopic basolateral K(+) conductance, and on the rate of Na(+) absorption and Cl(-) secretion. In single-channel measurements using the lipid bilayer reconstitution system, high-conductance (236 pS), Ca(2+)-activated K(+) (BK(Ca)) channels were most frequently detected; the second most abundant channel was a low-conductance K(+) channel (31 pS) that exhibited channel rundown. In addition to Ba(2+) and charybdotoxin (ChTX), the BK(Ca) channels were inhibited by quinidine, verapamil and tetraethylammonium (TEA), the latter only when present on the side of the channel from which K(+) flow originates. Macroscopic basolateral K(+) conductance, determined in amphotericin-permeabilised epithelia, was also markedly reduced by quinidine and verapamil, TEA inhibited only from the lumen side, and serosal ChTX was without effect. The chromanol 293B and the sulphonylurea tolbutamide did not affect BK(Ca) channels and had no or only a small inhibitory effect on macroscopic basolateral K(+) conductance. Transepithelial Na(+) absorption was partly inhibited by Ba(2+), quinidine and verapamil, suggesting that BK(Ca) channels are involved in basolateral recirculation of K(+) during Na(+) absorption in rabbit colon. The BK(Ca) channel inhibitors TEA and ChTX did not reduce Na(+) absorption, probably because TEA does not enter intact cells and ChTX is 'knocked off' its extracellular binding site by K(+) outflow from the cell interior. Transepithelial Cl(-) secretion was inhibited completely by Ba(2+) and 293B, partly by quinidine but not by the other K(+) channel blockers, indicating that the small (<3 pS) K(V)LQT1 channels are responsible for basolateral K(+) exit during Cl(-) secretion. Hence

  3. Control of sensory neuron excitability by serotonin involves 5HT2C receptors and Ca(2+)-activated chloride channels.

    Science.gov (United States)

    Salzer, Isabella; Gantumur, Enkhbileg; Yousuf, Arsalan; Boehm, Stefan

    2016-11-01

    Serotonin (5HT) is a constituent of the so-called "inflammatory soup" that sensitizes nociceptors during inflammation. Nevertheless, receptors and signaling mechanisms that mediate an excitation of dorsal root ganglion (DRG) neurons by 5HT remained controversial. Therefore, capsaicin-sensitive nociceptive neurons dissociated from rat DRGs were used to investigate effects of 5HT on membrane excitability and currents through ligand- as well as voltage-gated ion channels. In 58% of the neurons tested, 5HT increased action potential firing, an effect that was abolished by the 5HT2 receptor antagonist ritanserin, but not by the 5HT3 antagonist tropisetron. Unlike other algogenic mediators, such as PGE2 and bradykinin, 5HT did not affect currents through TTX-resistant Na(+) channels or Kv7 K(+) channels. In all neurons investigated, 5HT potentiated capsaicin-evoked currents through TRPV1 channels, an effect that was attenuated by antagonists at 5HT2A (4 F 4 PP), 5HT2B (SB 204741), as well as 5HT2C (RS 102221) receptors. 5HT triggered slowly arising inward Cl(-) currents in 53% of the neurons. This effect was antagonized by the 5HT2C receptor blocker only, and the current was prevented by an inhibitor of Ca(2+)-activated chloride channels (CaCC). The 5HT-induced increase in action potential firing was also abolished by this CaCC blocker and by the TRPV1 inhibitor capsazepine. Amongst the subtype selective 5HT2 antagonists, only RS 102221 (5HT2C-selectively) counteracted the rise in action potential firing elicited by 5HT. These results show that 5HT excites DRG neurons mainly via 5HT2C receptors which concomitantly mediate a sensitization of TRPV1 channels and an opening of CaCCs.

  4. Prevention of secretory diarrhea by ethanol extract of Bistortae rhizoma through inhibition of chloride channel

    Directory of Open Access Journals (Sweden)

    Bo Yu

    2015-08-01

    Full Text Available Inhibition of cystic fibrosis transmembrane conductance regulator (CFTR and Ca2+-activated Cl- channel (CaCC represents an attractive approach for the treatment of secretory diarrhea. The aim of the study is to investigate the molecular basis of the anti-diarrheal effect of traditional Chinese herbal anti-diarrheal medicine Bistortae rhizoma. Fluorescence quenching assay indicated that the 40% methanol /water fraction (D5 dose-dependently inhibited both CFTR and CaCC function in transfected Fischer rat thyroid (FRT cells. Ex vivo studies indicated that D5 inhibited both forskolin (FSK-activated CFTR current and CCh-induced CaCC current in rat colonic mucosa. In the mouse closed-loop model, intraluminal application of D5 (200 µg/mL significantly reduced cholera toxin-stimulated fluid secretion. In the intestinal motility model, D5 significantly delayed intestinal peristalsis in mice. Our research suggests that CFTR and CaCC-mediated intestinal epithelial Cl- secretion inhibiting and gastrointestinal motility delaying may account for the anti-diarrheal activity of B. rhizoma.

  5. Changes in cationic selectivity of the nicotinic channel at the rat ganglionic synapse: a role for chloride ions?

    Directory of Open Access Journals (Sweden)

    Oscar Sacchi

    Full Text Available The permeability of the nicotinic channel (nAChR at the ganglionic synapse has been examined, in the intact rat superior cervical ganglion in vitro, by fitting the Goldman current equation to the synaptic current (EPSC I-V relationship. Subsynaptic nAChRs, activated by neurally-released acetylcholine (ACh, were thus analyzed in an intact environment as natively expressed by the mature sympathetic neuron. Postsynaptic neuron hyperpolarization (from -40 to -90 mV resulted in a change of the synaptic potassium/sodium permeability ratio (P(K/P(Na from 1.40 to 0.92, corresponding to a reversible shift of the apparent acetylcholine equilibrium potential, E(ACh, by about +10 mV. The effect was accompanied by a decrease of the peak synaptic conductance (g(syn and of the EPSC decay time constant. Reduction of [Cl(-](o to 18 mM resulted in a change of P(K/P(Na from 1.57 (control to 2.26, associated with a reversible shift of E(ACh by about -10 mV. Application of 200 nM αBgTx evoked P(K/P(Na and g(syn modifications similar to those observed in reduced [Cl(-](o. The two treatments were overlapping and complementary, as if the same site/mechanism were involved. The difference current before and after chloride reduction or toxin application exhibited a strongly positive equilibrium potential, which could not be explained by the block of a calcium component of the EPSC. Observations under current-clamp conditions suggest that the driving force modification of the EPSC due to P(K/P(Na changes represent an additional powerful integrative mechanism of neuron behavior. A possible role for chloride ions is suggested: the nAChR selectivity was actually reduced by increased chloride gradient (membrane hyperpolarization, while it was increased, moving towards a channel preferentially permeable for potassium, when the chloride gradient was reduced.

  6. Nanomolar-Potency Aminophenyl-1,3,5-triazine Activators of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Chloride Channel for Prosecretory Therapy of Dry Eye Diseases.

    Science.gov (United States)

    Lee, Sujin; Phuan, Puay-Wah; Felix, Christian M; Tan, Joseph-Anthony; Levin, Marc H; Verkman, Alan S

    2017-02-09

    Dry eye disorders are a significant health problem for which limited therapeutic options are available. CFTR is a major prosecretory chloride channel at the ocular surface. We previously identified, by high-throughput screening, aminophenyl-1,3,5-triazine CFTRact-K089 (1) that activated CFTR with EC50 ≈ 250 nM, which when delivered topically increased tear fluid secretion in mice and showed efficacy in an experimental dry eye model. Here, functional analysis of aminophenyl-1,3,5-triazine analogs elucidated structure-activity relationships for CFTR activation and identified substantially more potent analogs than 1. The most potent compound, 12, fully activated CFTR chloride conductance with EC50 ≈ 30 nM, without causing cAMP or calcium elevation. 12 was rapidly metabolized by hepatic microsomes, which supports its topical use. Single topical administration of 25 pmol of 12 increased tear volume in wild-type mice with sustained action for 8 h and was without effect in CFTR-deficient mice. Topically delivered 12 may be efficacious in human dry eye diseases.

  7. Effect of antiallergic herbal agents on chloride channel-3 and immune microenvironment in nasal mucosal epithelia of allergic rhinitis rabbits

    Institute of Scientific and Technical Information of China (English)

    WANG Li-feng; XU Li-juan; GUO Feng-hua; WANG Li-na; SHEN Xiao-hong

    2010-01-01

    Background Allergic rhinitis (AR) is a Th2 dominant cytokine response. Chloride channel-3 (CIC-3) plays an important role in nasal mucosal edema and inflammatory pathologic changes in AR. Antiallergic herbal agents (AHA) are antiallergic herbal products. In the previous study, we have demonstrated that AHA clearly inhibited allergic medium and relieved allergic reaction of AR. The aim of this study was to evaluate the function of CIC-3 and discuss the possible therapeutic effects of AHA on immune microenvironment in AR.Methods AHA were produced and used to treat AR. An animal model of an AR rabbit was established by ovalbumin (OVA). The rhinitis rabbits were randomly divided into three groups: AHA treated group (AHATG), model group (MG) and healthy control group (HCG). The expressions of CIC-3 protein were examined by immunohistochemical method. The mucosal epithelial cells of all the rabbit groups were primarily cultured with tissue culture method in vitro with or without rhlL-4 or rhlL-2. Furthermore, the expressions of CIC-3 mRNA were detected by real-time PCR. The levels of monocyte chemotactic factor-1 (MCP-1) and vascular cell adhesion molecule-1 (VCAM-1) protein in culture supernatants were measured by ELISA.Results The expressions of CIC-3 mRNA increased more in mucosal epithelial cells of MG than those in AHATG and HCG (P0.05).Conclusions AHA can inhibit the secretions of CIC-3, MCP-1 and VCAM-1 in mucosal epithelia and improve inflammatory reaction of AR. CIC-3 plays an important role in the secretion of cytokines and mucosal inflammatory response in AR. RhlL-4 can enhance the secretion of CIC-3, MCP-1 and VCAM-1 in mucosal epithelial cells, especially during the AR process. These enhanced effects of rhlL-4 were significantly suppressed by AHA. The secretions of CIC-3, MCP-1 and VCAM-1 can not be induced obviously by rhlL-2 in mucosal epithelial cells in AR.

  8. Functional role of anion channels in cardiac diseases

    Institute of Scientific and Technical Information of China (English)

    Da-yue DUAN; Luis LH LIU; Nathan BOZEAT; Z Maggie HUANG; Sunny Y XIANG; Guan-lei WANG; Linda YE; Joseph R HUME

    2005-01-01

    In comparison to cation (K+, Na+, and Ca2+) channels, much less is currently known about the functional role of anion (Cl-) channels in cardiovascular physiology and pathophysiology. Over the past 15 years, various types of Cl- currents have been recorded in cardiac cells from different species including humans. All cardiac Cl- channels described to date may be encoded by five different Cl- channel genes: the PKA- and PKC-activated cystic fibrosis tansmembrane conductance regulator (CFTR), the volume-regulated ClC-2 and ClC-3, and the Ca2+-activated CLCA or Bestrophin. Recent studies using multiple approaches to examine the functional role of Cl- channels in the context of health and disease have demonstrated that Cl- channels might contribute to: 1) arrhythmogenesis in myocardial injury; 2) cardiac ischemic preconditioning; and 3) the adaptive remodeling of the heart during myocardial hypertrophy and heart failure. Therefore,anion channels represent very attractive novel targets for therapeutic approaches to the treatment of heart diseases. Recent evidence suggests that Cl- channels,like cation channels, might function as a multiprotein complex or functional module.In the post-genome era, the emergence of functional proteomics has necessitated a new paradigm shift to the structural and functional assessment of integrated Cl- channel multiprotein complexes in the heart, which could provide new insight into our understanding of the underlying mechanisms responsible for heart disease and protection.

  9. Dental enamel cells express functional SOCE channels.

    Science.gov (United States)

    Nurbaeva, Meerim K; Eckstein, Miriam; Concepcion, Axel R; Smith, Charles E; Srikanth, Sonal; Paine, Michael L; Gwack, Yousang; Hubbard, Michael J; Feske, Stefan; Lacruz, Rodrigo S

    2015-10-30

    Dental enamel formation requires large quantities of Ca(2+) yet the mechanisms mediating Ca(2+) dynamics in enamel cells are unclear. Store-operated Ca(2+) entry (SOCE) channels are important Ca(2+) influx mechanisms in many cells. SOCE involves release of Ca(2+) from intracellular pools followed by Ca(2+) entry. The best-characterized SOCE channels are the Ca(2+) release-activated Ca(2+) (CRAC) channels. As patients with mutations in the CRAC channel genes STIM1 and ORAI1 show abnormal enamel mineralization, we hypothesized that CRAC channels might be an important Ca(2+) uptake mechanism in enamel cells. Investigating primary murine enamel cells, we found that key components of CRAC channels (ORAI1, ORAI2, ORAI3, STIM1, STIM2) were expressed and most abundant during the maturation stage of enamel development. Furthermore, inositol 1,4,5-trisphosphate receptor (IP3R) but not ryanodine receptor (RyR) expression was high in enamel cells suggesting that IP3Rs are the main ER Ca(2+) release mechanism. Passive depletion of ER Ca(2+) stores with thapsigargin resulted in a significant raise in [Ca(2+)]i consistent with SOCE. In cells pre-treated with the CRAC channel blocker Synta-66 Ca(2+) entry was significantly inhibited. These data demonstrate that enamel cells have SOCE mediated by CRAC channels and implicate them as a mechanism for Ca(2+) uptake in enamel formation.

  10. Characterization of a critical role for CFTR chloride channels in cardioprotection against ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Sunny Yang XIANG; Linda L YE; LI-lu Marie DUAN; Li-hui LIU; Zhi-dong GE; John A AUCHAMPACH; Garrett J GROSS; Dayue Darrel DUAN

    2011-01-01

    Aim: To further characterize the functional role of cystic fibrosis transmembrane conductance regulator (CFTR) in early and late (second window) ischemic preconditioning (IPC)- and postcondtioning (POC)-mediated cardioprotection against ischemia/reperfusion (I/R) injury.Methods: CFTR knockout (CFTR-/-) mice and age- and gender-matched wild-type (CFTR+/+) and heterozygous (CFTR+/-) mice were used.In in vivo studies, the animals were subjected to a 30-min coronary occlusion followed by a 40-min reperfusion. In ex vivo (isolate heart) studies, a 45-min global ischemia was applied. To evaluate apoptosis, the level of activated caspase 3 and TdT-mediated dUTP-X nick end labeling (TUNEL) were examined.Results: In the in vivo I/R models, early IPC significantly reduced the myocardial infarct size in wild-type (CFTR+/+) (from 40.4%±5.3% to 10.4%±2.0%, n=8, P<0.001) and heterozygous (CFTR+/-) littermates (from 39.4%±2.4% to 15.4%±5.1%, n=6, P<0.001) but failed to protect CFTR knockout (CFTR-/-) mice from I/R induced myocardial infarction (46.9%±6.2% vs 55.5%±7.8%, n=6, P>0.5). Similar results were observed in the in vivo late IPC experiments. Furthermore, in both in vivo and ex vivo I/R models, POC significantly reduced myocardial infarction in wild-type mice, but not in CFTR knockout mice. In ex vivo I/R models, targeted inactivation of CFTRgene abolished the protective effects of IPC against I/R-induced apoptosis.Conclusion: These results provide compelling evidence for a critical role for CFTR Cl- channels in IPC- and POC-mediated cardioprotection against I/R-induced myocardial injury.

  11. Dissection of the Mechanical Impedance Components of the Outer Hair Cell Using a Chloride-Channel Blocker

    Science.gov (United States)

    Harasztosi, Csaba; Gummer, Anthony W.

    2011-11-01

    The voltage-dependent chloride-channel blocker anthracene-9-carboxylic acid (9AC) has been found to reduce the imaginary but not the real part of the mechanical impedance of the organ of Corti, suggesting that the effective stiffness of outer hair cells (OHCs) is reduced by 9AC. To examine whether 9AC interacts directly with the motor protein prestin to reduce the membrane component of the impedance, the patch-clamp technique in whole-cell configuration was used to measure the nonlinear capacitance (NLC) of isolated OHCs and, as control, prestin-transfected human embryonic kidney 293 (HEK293) cells. Extracellular application of 9AC significantly reduced the NLC of both OHCs and HEK293 cells. Intracellular 9AC did not influence the blocking effect of the extracellular applied drug. These results suggest that 9AC interacts directly with prestin, reducing the effective stiffness of the motor, and that the interaction is extracellular.

  12. Functional diversity and evolutionary dynamics of thermoTRP channels.

    Science.gov (United States)

    Saito, Shigeru; Tominaga, Makoto

    2015-03-01

    Animals have evolved sophisticated physiological systems for sensing ambient temperature since changes in environmental temperatures affect various biological processes. Thermosensitive transient receptor potential (thermoTRP) channels serve as thermal sensors in diverse animal species. They are multimodal receptors that are activated by temperature as well as other physical and chemical stimuli. Since thermoTRP channels are calcium permeable non-selective cation channels, their activation leads to an influx of calcium and sodium ions into the cell and triggers downstream signal transduction. ThermoTRP channels have been characterized in diverse animal species over the past several years, illuminating the diversification of thermoTRP channels in the course of evolution. The gene repertoires of thermoTRP channels differ among animal species. Additionally, in some cases, the temperature and chemical sensitivities among orthologous thermoTRP channels vary among species. The evolutionary flexibility of thermoTRP channels enabled them to contribute to unique physiological systems such as infrared sensation in snakes and bats and seasonal adaptation in silk moth. On the other hand, the functional differences of thermoTRP channels among species have been utilized for understanding the molecular basis for their activation (or inhibition) mechanisms, and amino acid residues (or domains) responsible for the respective channel properties have been identified in various thermoTRP channels. Here we summarize the current understanding of the functional diversity and evolutionary dynamics of thermoTRP channels.

  13. Propofol suppresses synaptic responsiveness of somatosensory relay neurons to excitatory input by potentiating GABAA receptor chloride channels

    Directory of Open Access Journals (Sweden)

    Goldstein Peter A

    2005-01-01

    Full Text Available Abstract Propofol is a widely used intravenous general anesthetic. Propofol-induced unconsciousness in humans is associated with inhibition of thalamic activity evoked by somatosensory stimuli. However, the cellular mechanisms underlying the effects of propofol in thalamic circuits are largely unknown. We investigated the influence of propofol on synaptic responsiveness of thalamocortical relay neurons in the ventrobasal complex (VB to excitatory input in mouse brain slices, using both current- and voltage-clamp recording techniques. Excitatory responses including EPSP temporal summation and action potential firing were evoked in VB neurons by electrical stimulation of corticothalamic fibers or pharmacological activation of glutamate receptors. Propofol (0.6 – 3 μM suppressed temporal summation and spike firing in a concentration-dependent manner. The thalamocortical suppression was accompanied by a marked decrease in both EPSP amplitude and input resistance, indicating that a shunting mechanism was involved. The propofol-mediated thalamocortical suppression could be blocked by a GABAA receptor antagonist or chloride channel blocker, suggesting that postsynaptic GABAA receptors in VB neurons were involved in the shunting inhibition. GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs were evoked in VB neurons by electrical stimulation of the reticular thalamic nucleus. Propofol markedly increased amplitude, decay time, and charge transfer of GABAA IPSCs. The results demonstrated that shunting inhibition of thalamic somatosensory relay neurons by propofol at clinically relevant concentrations is primarily mediated through the potentiation of the GABAA receptor chloride channel-mediated conductance, and such inhibition may contribute to the impaired thalamic responses to sensory stimuli seen during propofol-induced anesthesia.

  14. The secret life of CFTR as a calcium-activated chloride channel.

    Science.gov (United States)

    Billet, Arnaud; Hanrahan, John W

    2013-11-01

    cAMP-stimulated anion conductance is defective in cystic fibrosis (CF). The regulatory domain of CFTR, the anion channel protein encoded by the CF gene, possesses an unusually high density of consensus sequences for phosphorylation by protein kinase A (14 in a stretch of CFTR is viewed primarily as a cAMP-stimulated anion channel, and most studies have focused on this mode of activation. However, there is growing evidence that CFTR also responds to Ca(2+)-mobilizing secretagogues and contributes substantially to cholinergic and purinergic responses in native tissues. G protein-coupled receptors that signal through Gαq can stimulate CFTR channels by activating Ca(2+)-dependent adenylyl cyclase and tyrosine kinases, and also by inhibiting protein phosphatase type 2A. Here we review evidence for these novel mechanisms of CFTR activation and discuss how they may help explain previous observations.

  15. The Ketogenic Diet and Potassium Channel Function

    Science.gov (United States)

    2014-10-01

    The overall objective of this Discovery Award is to explore the hypothesis the ketogenic diet regulates neuronal excitability by influencing...potassium channel activity via the auxiliary potassium channel subunit Kv Beta 2. To test this hypothesis we have examining the impact of the ketogenic diet on...vitro bursting activity (seizures) which is reversed by treatment with the ketogenic diet (KD). Conversely, the latency to the first in vitro burst

  16. The tyrosine kinase p60c-src regulates the fast gate of the cystic fibrosis transmembrane conductance regulator chloride channel.

    OpenAIRE

    Fischer, H.; Machen, T E

    1996-01-01

    The role of the tyrosine kinase p60c-src on the gating of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel was investigated with the cell-attached and excised patch clamp technique in conjunction with current noise analysis of recordings containing multiple channels per patch. Spectra of CFTR-generated current noise contained a low-frequency and a high-frequency Lorentzian noise component. In the cell-attached mode, the high-frequency Lorentzian was significantl...

  17. The CLC-2 Chloride Channel Modulates ECM Synthesis, Differentiation, and Migration of Human Conjunctival Fibroblasts via the PI3K/Akt Signaling Pathway.

    Science.gov (United States)

    Sun, Lixia; Dong, Yaru; Zhao, Jing; Yin, Yuan; Zheng, Yajuan

    2016-06-09

    Recent evidence suggests that chloride channels are critical for cell proliferation, migration, and differentiation. We examined the effects of transforming growth factor (TGF)-β1 on chloride channel expression and associations with human conjunctival fibroblast (HConF) biology. To investigate the potential role of chloride channel (CLC)-2 in migration, transition to myofibroblasts and extracellular matrix (ECM) synthesis of HconF, a small interfering RNA (siRNA) approach was applied. TGF-β1-induced migration and transition of fibroblasts to myofibroblasts characterized by α-smooth muscle actin (α-SMA) expression, supported by increased endogenous expression of CLC-2 protein and mRNA transcripts. ECM (collagen I and fibronectin) synthesis in HConF was enhanced by TGF-β1. CLC-2 siRNA treatment reduced TGF-β1-induced cell migration, transition of fibroblasts to myofibroblasts, and ECM synthesis of HConF. CLC-2 siRNA treatment in the presence of TGF-β1 inhibited phosphorylation of PI3K and Akt in HConF. These findings demonstrate that CLC-2 chloride channels are important for TGF-β1-induced migration, differentiation, and ECM synthesis via PI3K/Akt signaling in HConF.

  18. Na+ channel function, regulation, structure, trafficking and sequestration

    Science.gov (United States)

    Chen-Izu, Ye; Shaw, Robin M; Pitt, Geoffrey S; Yarov-Yarovoy, Vladimir; Sack, Jon T; Abriel, Hugues; Aldrich, Richard W; Belardinelli, Luiz; Cannell, Mark B; Catterall, William A; Chazin, Walter J; Chiamvimonvat, Nipavan; Deschenes, Isabelle; Grandi, Eleonora; Hund, Thomas J; Izu, Leighton T; Maier, Lars S; Maltsev, Victor A; Marionneau, Celine; Mohler, Peter J; Rajamani, Sridharan; Rasmusson, Randall L; Sobie, Eric A; Clancy, Colleen E; Bers, Donald M

    2015-01-01

    This paper is the second of a series of three reviews published in this issue resulting from the University of California Davis Cardiovascular Symposium 2014: Systems approach to understanding cardiac excitation–contraction coupling and arrhythmias: Na+ channel and Na+ transport. The goal of the symposium was to bring together experts in the field to discuss points of consensus and controversy on the topic of sodium in the heart. The present review focuses on Na+ channel function and regulation, Na+ channel structure and function, and Na+ channel trafficking, sequestration and complexing. PMID:25772290

  19. Cloning and characterization of CLCN5, the human kidney chloride channel gene implicated in Dent disease (an X-linked hereditary nephrolithiasis)

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, S.E.; Van Bakel, I.; Craig, I.W. [Univ. of Oxford (United Kingdom)] [and others

    1995-10-10

    Dent disease, an X-linked familial renal tubular disorder, is a form of Fanconi syndrome associated with proteinuria, hypercalciuria, nephrocalcinosis, kidney stones, and eventual renal failure. We have previously used positional cloning to identify the 3{prime} part of a novel kidney-specific gene (initially termed hClC-K2, but now referred to as CLCN5), which is deleted in patients from one pedigree segregating Dent disease. Mutations that disrupt this gene have been identified in other patients with this disorder. Here we describe the isolation and characterization of the complete open reading frame of the human CLCN5 gene, which is predicted to encode a protein of 746 amino acids, with significant homology to all known members of the ClC family of voltage-gated chloride channels. CLCN5 belongs to a distinct branch of this family, which also includes the recently identified genes CLCN3 and CLCN4. We have shown that the coding region of CLCN5 is organized into 12 exons, spanning 25-30 kb of genomic DNA, and have determined the sequence of each exon-intron boundary. The elucidation of the coding sequence and exon-intron organization of CLCN5 will both expedite the evaluation of structure/function relationships of these ion channels and facilitate the screening of other patients with renal tubular dysfunction for mutations at this locus. 31 refs., 5 figs.

  20. Kv7 channels can function without constitutive calmodulin tethering.

    Directory of Open Access Journals (Sweden)

    Juan Camilo Gómez-Posada

    Full Text Available M-channels are voltage-gated potassium channels composed of Kv7.2-7.5 subunits that serve as important regulators of neuronal excitability. Calmodulin binding is required for Kv7 channel function and mutations in Kv7.2 that disrupt calmodulin binding cause Benign Familial Neonatal Convulsions (BFNC, a dominantly inherited human epilepsy. On the basis that Kv7.2 mutants deficient in calmodulin binding are not functional, calmodulin has been defined as an auxiliary subunit of Kv7 channels. However, we have identified a presumably phosphomimetic mutation S511D that permits calmodulin-independent function. Thus, our data reveal that constitutive tethering of calmodulin is not required for Kv7 channel function.

  1. Kv7 Channels Can Function without Constitutive Calmodulin Tethering

    Science.gov (United States)

    Alberdi, Araitz; Alaimo, Alessandro; Etxeberría, Ainhoa; Fernández-Orth, Juncal; Zamalloa, Teresa; Roura-Ferrer, Meritxell; Villace, Patricia; Areso, Pilar; Casis, Oscar; Villarroel, Alvaro

    2011-01-01

    M-channels are voltage-gated potassium channels composed of Kv7.2-7.5 subunits that serve as important regulators of neuronal excitability. Calmodulin binding is required for Kv7 channel function and mutations in Kv7.2 that disrupt calmodulin binding cause Benign Familial Neonatal Convulsions (BFNC), a dominantly inherited human epilepsy. On the basis that Kv7.2 mutants deficient in calmodulin binding are not functional, calmodulin has been defined as an auxiliary subunit of Kv7 channels. However, we have identified a presumably phosphomimetic mutation S511D that permits calmodulin-independent function. Thus, our data reveal that constitutive tethering of calmodulin is not required for Kv7 channel function. PMID:21980481

  2. Role of T-type channels in vasomotor function

    DEFF Research Database (Denmark)

    Kuo, Ivana Y-T; Howitt, Lauren; Sandow, Shaun L;

    2014-01-01

    Low-voltage-activated T-type calcium channels play an important role in regulating cellular excitability and are implicated in conditions, such as epilepsy and neuropathic pain. T-type channels, especially Cav3.1 and Cav3.2, are also expressed in the vasculature, although patch clamp studies...... make a small contribution to vascular tone at low intraluminal pressures, although the relevance of this contribution is unclear. By contrast, these channels play a larger role in vascular tone of small arterioles, which would be expected to function at lower intra-vascular pressures. Upregulation of T......-type channel function following decrease in nitric oxide bioavailability and increase in oxidative stress, which occurs during cardiovascular disease, suggests that a more important role could be played by these channels in pathophysiological situations. The ability of T-type channels to be rapidly recruited...

  3. Activation of a cGMP-sensitive calcium-dependent chloride channel may cause transition from calcium waves to whole-cell oscillations in smooth muscle cells

    DEFF Research Database (Denmark)

    Jacobsen, Jens Christian; Aalkjær, Christian; Nilsson, Holger;

    2007-01-01

    waves sweeping through the cytoplasm when the SR is stimulated to release calcium. A rise in cyclic guanosine monophosphate (cGMP) leads to the experimentally observed transition from waves to whole-cell calcium oscillations. At the same time membrane potential starts to oscillate and the frequency...... approximately doubles. In this transition, the simulated results point to a key role for a recently discovered cGMP-sensitive calcium-dependent chloride channel. This channel depolarizes the membrane in response to calcium released from the SR. In turn, depolarization causes uniform opening of L-type calcium...... onset of oscillations in membrane potential within the individual cell may underlie sudden intercellular synchronization and the appearance of vasomotion. Key words: Vasomotion, Chloride channel, cGMP, Mathematical model, Calcium waves....

  4. The KCNQ1 potassium channel: from gene to physiological function

    DEFF Research Database (Denmark)

    Jespersen, Thomas; Grunnet, Morten; Olesen, Søren-Peter

    2005-01-01

    The voltage-gated KCNQ1 (KvLQT1, Kv7.1) potassium channel plays a crucial role in shaping the cardiac action potential as well as in controlling the water and salt homeostasis in several epithelial tissues. KCNQ1 channels in these tissues are tightly regulated by auxiliary proteins and accessory...... factors, capable of modulating the properties of the channel complexes. This paper reviews the current knowledge about the KCNQ1 channel with a major focus on interacting proteins and physiological functions....

  5. Regulation of sodium channel function by bilayer elasticity

    DEFF Research Database (Denmark)

    Lundbaek, Jens A; Birn, Pia; Hansen, Anker J

    2004-01-01

    be a general mechanism regulating membrane protein function, we examined whether voltage-dependent skeletal-muscle sodium channels, expressed in HEK293 cells, are regulated by bilayer elasticity, as monitored using gramicidin A (gA) channels. Nonphysiological amphiphiles (beta-octyl-glucoside, Genapol X-100......, Triton X-100, and reduced Triton X-100) that make lipid bilayers less "stiff", as measured using gA channels, shift the voltage dependence of sodium channel inactivation toward more hyperpolarized potentials. At low amphiphile concentration, the magnitude of the shift is linearly correlated to the change...... in gA channel lifetime. Cholesterol-depletion, which also reduces bilayer stiffness, causes a similar shift in sodium channel inactivation. These results provide strong support for the notion that bilayer-protein hydrophobic coupling allows the bilayer elastic properties to regulate membrane protein...

  6. Meroterpenoid Chrodrimanins Are Selective and Potent Blockers of Insect GABA-Gated Chloride Channels.

    Directory of Open Access Journals (Sweden)

    Yan Xu

    Full Text Available Meroterpenoid chrodrimanins, produced from Talaromyces sp. YO-2, are known to paralyze silkworm (Bombyx mori larvae, but their target is unknown. We have investigated the actions of chrodrimanin B on ligand-gated ion channels of silkworm larval neurons using patch-clamp electrophysiology. Chrodrimanin B had no effect on membrane currents when tested alone at 1 μM. However, it completely blocked the γ-aminobutyric acid (GABA-induced current and showed less pronounced actions on acetylcholine- and L-glutamate-induced currents, when delivered at 1 μM for 1 min prior to co-application with transmitter GABA. Thus, chrodrimanins were also tested on a wild-type isoform of the B. mori GABA receptor (GABAR RDL using two-electrode voltage-clamp electrophysiology. Chrodrimanin B attenuated the peak current amplitude of the GABA response of RDL with an IC50 of 1.66 nM. The order of the GABAR-blocking potency of chrodrimanins B > D > A was in accordance with their reported insecticidal potency. Chrodrimanin B had no open channel blocking action when tested at 3 nM on the GABA response of RDL. Co-application with 3 nM chrodrimanin B shifted the GABA concentration response curve to a higher concentration and further increase of chrodrimanin B concentration to 10 nM; it reduced maximum current amplitude of the GABA response, pointing to a high-affinity competitive action and a lower affinity non-competitive action. The A282S;T286V double mutation of RDL, which impairs the actions of fipronil, hardly affected the blocking action of chrodrimanin B, indicating a binding site of chrodrimanin B distinct from that of fipronil. Chrodrimanin B showed approximately 1,000-fold lower blocking action on human α1β2γ2 GABAR compared to RDL and thus is a selective blocker of insect GABARs.

  7. Meroterpenoid Chrodrimanins Are Selective and Potent Blockers of Insect GABA-Gated Chloride Channels.

    Science.gov (United States)

    Xu, Yan; Furutani, Shogo; Ihara, Makoto; Ling, Yun; Yang, Xinling; Kai, Kenji; Hayashi, Hideo; Matsuda, Kazuhiko

    2015-01-01

    Meroterpenoid chrodrimanins, produced from Talaromyces sp. YO-2, are known to paralyze silkworm (Bombyx mori) larvae, but their target is unknown. We have investigated the actions of chrodrimanin B on ligand-gated ion channels of silkworm larval neurons using patch-clamp electrophysiology. Chrodrimanin B had no effect on membrane currents when tested alone at 1 μM. However, it completely blocked the γ-aminobutyric acid (GABA)-induced current and showed less pronounced actions on acetylcholine- and L-glutamate-induced currents, when delivered at 1 μM for 1 min prior to co-application with transmitter GABA. Thus, chrodrimanins were also tested on a wild-type isoform of the B. mori GABA receptor (GABAR) RDL using two-electrode voltage-clamp electrophysiology. Chrodrimanin B attenuated the peak current amplitude of the GABA response of RDL with an IC50 of 1.66 nM. The order of the GABAR-blocking potency of chrodrimanins B > D > A was in accordance with their reported insecticidal potency. Chrodrimanin B had no open channel blocking action when tested at 3 nM on the GABA response of RDL. Co-application with 3 nM chrodrimanin B shifted the GABA concentration response curve to a higher concentration and further increase of chrodrimanin B concentration to 10 nM; it reduced maximum current amplitude of the GABA response, pointing to a high-affinity competitive action and a lower affinity non-competitive action. The A282S;T286V double mutation of RDL, which impairs the actions of fipronil, hardly affected the blocking action of chrodrimanin B, indicating a binding site of chrodrimanin B distinct from that of fipronil. Chrodrimanin B showed approximately 1,000-fold lower blocking action on human α1β2γ2 GABAR compared to RDL and thus is a selective blocker of insect GABARs.

  8. Regions of KCNQ K+ Channels Controlling Functional Expression

    Directory of Open Access Journals (Sweden)

    Frank eChoveau

    2012-10-01

    Full Text Available KCNQ1-5 α-subunits assemble to form K+ channels that play critical roles in the function of numerous tissues. The channels are tetramers of subunits containing six transmembrane domains. Each subunit consists of a pore region (S5-pore-S6 and a voltage sensor domain (S1-S4. Despite similar structures, KCNQ2 and KCNQ3 homomers yield small current amplitudes compared to other KCNQ homomers and KCNQ2/3 heteromers. Two major mechanisms have been suggested as governing functional expression. The first involves control of channel trafficking to the plasma membrane by the distal part of the C-terminus, containing two coiled-coiled domains, required for channel trafficking and assembly. The proximal half of the C-terminus is the crucial region for channel modulation by signaling molecules such as calmodulin, which may mediate C- and N-terminal interactions. The N-terminus of KCNQ channels has also been postulated as critical for channel surface expression. The second mechanism suggests networks of interactions between the pore helix and the selectivity filter, and between the pore helix and the S6 domain that govern KCNQ current amplitudes. Here, we summarize the role of these different regions in expression of functional KCNQ channels.

  9. Molecular modeling of mechanosensory ion channel structural and functional features.

    Science.gov (United States)

    Gessmann, Renate; Kourtis, Nikos; Petratos, Kyriacos; Tavernarakis, Nektarios

    2010-09-16

    The DEG/ENaC (Degenerin/Epithelial Sodium Channel) protein family comprises related ion channel subunits from all metazoans, including humans. Members of this protein family play roles in several important biological processes such as transduction of mechanical stimuli, sodium re-absorption and blood pressure regulation. Several blocks of amino acid sequence are conserved in DEG/ENaC proteins, but structure/function relations in this channel class are poorly understood. Given the considerable experimental limitations associated with the crystallization of integral membrane proteins, knowledge-based modeling is often the only route towards obtaining reliable structural information. To gain insight into the structural characteristics of DEG/ENaC ion channels, we derived three-dimensional models of MEC-4 and UNC-8, based on the available crystal structures of ASIC1 (Acid Sensing Ion Channel 1). MEC-4 and UNC-8 are two DEG/ENaC family members involved in mechanosensation and proprioception respectively, in the nematode Caenorhabditis elegans. We used these models to examine the structural effects of specific mutations that alter channel function in vivo. The trimeric MEC-4 model provides insight into the mechanism by which gain-of-function mutations cause structural alterations that result in increased channel permeability, which trigger cell degeneration. Our analysis provides an introductory framework to further investigate the multimeric organization of the DEG/ENaC ion channel complex.

  10. Molecular modeling of mechanosensory ion channel structural and functional features.

    Directory of Open Access Journals (Sweden)

    Renate Gessmann

    Full Text Available The DEG/ENaC (Degenerin/Epithelial Sodium Channel protein family comprises related ion channel subunits from all metazoans, including humans. Members of this protein family play roles in several important biological processes such as transduction of mechanical stimuli, sodium re-absorption and blood pressure regulation. Several blocks of amino acid sequence are conserved in DEG/ENaC proteins, but structure/function relations in this channel class are poorly understood. Given the considerable experimental limitations associated with the crystallization of integral membrane proteins, knowledge-based modeling is often the only route towards obtaining reliable structural information. To gain insight into the structural characteristics of DEG/ENaC ion channels, we derived three-dimensional models of MEC-4 and UNC-8, based on the available crystal structures of ASIC1 (Acid Sensing Ion Channel 1. MEC-4 and UNC-8 are two DEG/ENaC family members involved in mechanosensation and proprioception respectively, in the nematode Caenorhabditis elegans. We used these models to examine the structural effects of specific mutations that alter channel function in vivo. The trimeric MEC-4 model provides insight into the mechanism by which gain-of-function mutations cause structural alterations that result in increased channel permeability, which trigger cell degeneration. Our analysis provides an introductory framework to further investigate the multimeric organization of the DEG/ENaC ion channel complex.

  11. Layer by layer growth of silver chloride nanoparticle within the pore channels of SBA-15/SO3H mesoporous silica (AgClNP/SBA-15/SO3K): Synthesis, characterization and antibacterial properties

    Science.gov (United States)

    Rostamnia, Sadegh; Doustkhah, Esmail; Estakhri, Saba; Karimi, Ziba

    2016-02-01

    The growth of silver chloride nanoparticles within the pore channels of functionalized SBA-15 mesoporous was achieved by sequential dipping steps in alternating bath of potassium chloride and silver nitrate under ultrasound irradiation at pH=9. The effects of sequential dipping steps in growth of the AgCl nanoparticles have been studied. The growth and formation of AgCl nanoparticles inside the sulfonated SBA-15 were characterized by X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Antibacterial activity of the synthesized materials was investigated against Escherichia coli (E.coli) using the conventional diffusion-disc method. The materials showed high antibacterial activity.

  12. Ca(2+)-activated chloride channel activity during Ca(2+) alternans in ventricular myocytes.

    Science.gov (United States)

    Kanaporis, Giedrius; Blatter, Lothar A

    2016-11-01

    Cardiac alternans, defined beat-to-beat alternations in contraction, action potential (AP) morphology or cytosolic Ca transient (CaT) amplitude, is a high risk indicator for cardiac arrhythmias. We investigated mechanisms of cardiac alternans in single rabbit ventricular myocytes. CaTs were monitored simultaneously with membrane currents or APs recorded with the patch clamp technique. A strong correlation between beat-to-beat alternations of AP morphology and CaT alternans was observed. During CaT alternans application of voltage clamp protocols in form of pre-recorded APs revealed a prominent Ca(2+)-dependent membrane current consisting of a large outward component coinciding with AP phases 1 and 2, followed by an inward current during AP repolarization. Approximately 85% of the initial outward current was blocked by Cl(-) channel blocker DIDS or lowering external Cl(-) concentration identifying it as a Ca(2+)-activated Cl(-) current (ICaCC). The data suggest that ICaCC plays a critical role in shaping beat-to-beat alternations in AP morphology during alternans.

  13. Phylogenetic shadowing of a histamine-gated chloride channel involved in insect vision.

    Science.gov (United States)

    Iovchev, Mladen; Boutanaev, Alexander; Ivanov, Ivaylo; Wolstenholme, Adrian; Nurminsky, Dmitry; Semenov, Eugene

    2006-01-01

    A recently identified gene, hclA (synonym: ort), codes for an ionotrophic histamine receptor subunit in Drosophila melanogaster, and known hclA mutations lead to defects in the visual system, neurologic disorders and changed responsiveness to neurotoxins. To investigate whether this novel class of receptors is common across the Insecta, we analysed the genomes of 15 other insect species (Diptera, Hymenoptera, Coleoptera, Lepidoptera) and revealed orthologs of hclA in all of them. The predicted receptor domain of HCLA is extensively conserved (86-100% of identity) among the 16 proteins. Minor changes in the amino acid sequence that includes the putative transmembrane domains (TMs) 1-3 were found in non-drosophilid species only. Substantial amino acid variability was observed in the signal polypeptides, the intracellular loop domains and in TM4, in good accordance with known data on sequence variations in ligand-gated ion channels. Pairwise comparisons revealed three consensus sequences for N-glycosylation, conserved in HCLAs of all species studied, as well as a drosophilid-specific putative phosphorylation site. Real-time PCR analysis demonstrated that hclA-mRNA is abundant in heads of adult Drosophila. However, species- and sex-specific variations of the hclA expression levels were also observed.

  14. The chloride intracellular channel 5A stimulates podocyte Rac1, protecting against hypertension-induced glomerular injury.

    Science.gov (United States)

    Tavasoli, Mahtab; Li, Laiji; Al-Momany, Abass; Zhu, Lin-Fu; Adam, Benjamin A; Wang, Zhixiang; Ballermann, Barbara J

    2016-04-01

    Glomerular capillary hypertension elicits podocyte remodeling and is a risk factor for the progression of glomerular disease. Ezrin, which links podocalyxin to actin in podocytes, is activated through the chloride intracellular channel 5A (CLIC5A)-dependent phosphatidylinositol 4,5 bisphosphate (PI[4,5]P2) accumulation. Because Rac1 is involved in podocyte actin remodeling and can promote PI[4,5]P2 production we determined whether CLIC5A-dependent PI[4,5]P2 generation and ezrin activation are mediated by Rac1. In COS7 cells, CLIC5A expression stimulated Rac1 but not Cdc42 or Rho activity. CLIC5A also stimulated phosphorylation of the Rac1 effector Pak1 in COS7 cells and in cultured mouse podocytes. CLIC5A-induced PI[4,5]P2 accumulation and Pak1 and ezrin phosphorylation were all Rac1 dependent. In DOCA/Salt hypertension, phosphorylated Pak increased in podocytes of wild-type, but not CLIC5-deficient mice. In DOCA/salt hypertensive mice lacking CLIC5, glomerular capillary microaneurysms were more frequent and albuminuria was greater than in wild-type mice. Thus, augmented hypertension-induced glomerular capillary injury in mice lacking CLIC5 results from abrogation of Rac1-dependent Pak and ezrin activation, perhaps reducing the tensile strength of the podocyte actin cytoskeleton.

  15. Emerging approaches to probing ion channel structure and function

    Institute of Scientific and Technical Information of China (English)

    Wei-Guang Li; Tian-Le Xu

    2012-01-01

    Ion channels,as membrane proteins,are the sensors of the cell.They act as the first line of communication with the world beyond the plasma membrane and transduce changes in the external and internal environments into unique electrical signals to shape the responses of excitable cells.Because of their importance in cellular communication,ion channels have been intensively studied at the structural and functional levels.Here,we summarize the diverse approaches,including molecular and cellular,chemical,optical,biophysical,and computational,used to probe the structural and functional rearrangements that occur during channel activation (or sensitization),inactivation (or desensitization),and various forms of modulation.The emerging insights into the structure and function of ion channels by multidisciplinary approaches allow the development of new pharmacotherapies as well as new tools useful in controlling cellular activity.

  16. Activation of a cGMP-sensitive calcium-dependent chloride channel may cause transition from calcium waves to whole cell oscillations in smooth muscle cells

    DEFF Research Database (Denmark)

    Jacobsen, Jens Christian Brings; Aalkjær, Christian; Nilsson, Holger;

    2007-01-01

    waves sweeping through the cytoplasm when the sarcoplasmic reticulum (SR) is stimulated to release calcium. A rise in cGMP leads to the experimentally observed transition from waves to whole cell calcium oscillations. At the same time, membrane potential starts to oscillate and the frequency...... approximately doubles. In this transition, the simulated results point to a key role for a recently discovered cGMP-sensitive calcium-dependent chloride channel. This channel depolarizes the membrane in response to calcium released from the SR. In turn, depolarization causes a uniform opening of L-type calcium...

  17. Methodological considerations to understand the sensory function of TRP channels.

    Science.gov (United States)

    Meseguer, Víctor M; Denlinger, Bristol L; Talavera, Karel

    2011-01-01

    Transient Receptor Potential channels are exquisite molecular transducers of multiple physical and chemical stimuli, hence the raising interest to study their relevance to Sensory Biology. Here we discuss a number of aspects of the biophysical and pharmacological properties of TRP channels, which we consider essential for a clear understanding of their sensory function in vivo. By examining concrete examples extracted from recent literature we illustrate that TRP channel research is a field in motion, and that many established dogmas on biophysical properties, drug specificity and physiological role are continuously reshaped, and sometimes even dismantled.

  18. Bile acids stimulate chloride secretion through CFTR and calcium-activated Cl- channels in Calu-3 airway epithelial cells.

    Science.gov (United States)

    Hendrick, Siobhán M; Mroz, Magdalena S; Greene, Catherine M; Keely, Stephen J; Harvey, Brian J

    2014-09-01

    Bile acids resulting from the aspiration of gastroesophageal refluxate are often present in the lower airways of people with cystic fibrosis and other respiratory distress diseases. Surprisingly, there is little or no information on the modulation of airway epithelial ion transport by bile acids. The secretory effect of a variety of conjugated and unconjugated secondary bile acids was investigated in Calu-3 airway epithelial cells grown under an air-liquid interface and mounted in Ussing chambers. Electrogenic transepithelial ion transport was measured as short-circuit current (Isc). The taurine-conjugated secondary bile acid, taurodeoxycholic acid (TDCA), was found to be the most potent modulator of basal ion transport. Acute treatment (5 min) of Calu-3 cells with TDCA (25 μM) on the basolateral side caused a stimulation of Isc, and removal of extracellular Cl(-) abolished this response. TDCA produced an increase in the cystic fibrosis transmembrane conductance regulator (CFTR)-dependent current that was abolished by pretreatment with the CFTR inhibitor CFTRinh172. TDCA treatment also increased Cl(-) secretion through calcium-activated chloride (CaCC) channels and increased the Na(+)/K(+) pump current. Acute treatment with TDCA resulted in a rapid cellular influx of Ca(2+) and increased cAMP levels in Calu-3 cells. Bile acid receptor-selective activation with INT-777 revealed TGR5 localized at the basolateral membrane as the receptor involved in TDCA-induced Cl(-) secretion. In summary, we demonstrate for the first time that low concentrations of bile acids can modulate Cl(-) secretion in airway epithelial cells, and this effect is dependent on both the duration and sidedness of exposure to the bile acid.

  19. MiR-101 and miR-144 regulate the expression of the CFTR chloride channel in the lung.

    Science.gov (United States)

    Hassan, Fatemat; Nuovo, Gerard J; Crawford, Melissa; Boyaka, Prosper N; Kirkby, Stephen; Nana-Sinkam, Serge P; Cormet-Boyaka, Estelle

    2012-01-01

    The Cystic Fibrosis Transmembrane conductance Regulator (CFTR) is a chloride channel that plays a critical role in the lung by maintaining fluid homeostasis. Absence or malfunction of CFTR leads to Cystic Fibrosis, a disease characterized by chronic infection and inflammation. We recently reported that air pollutants such as cigarette smoke and cadmium negatively regulate the expression of CFTR by affecting several steps in the biogenesis of CFTR protein. MicroRNAs (miRNAs) have recently received a great deal of attention as both biomarkers and therapeutics due to their ability to regulate multiple genes. Here, we show that cigarette smoke and cadmium up-regulate the expression of two miRNAs (miR-101 and miR-144) that are predicted to target CFTR in human bronchial epithelial cells. When premature miR-101 and miR-144 were transfected in human airway epithelial cells, they directly targeted the CFTR 3'UTR and suppressed the expression of the CFTR protein. Since miR-101 was highly up-regulated by cigarette smoke in vitro, we investigated whether such increase also occurred in vivo. Mice exposed to cigarette smoke for 4 weeks demonstrated an up-regulation of miR-101 and suppression of CFTR protein in their lungs. Finally, we show that miR-101 is highly expressed in lung samples from patients with severe chronic obstructive pulmonary disease (COPD) when compared to control patients. Taken together, these results suggest that chronic cigarette smoking up-regulates miR-101 and that this miRNA could contribute to suppression of CFTR in the lungs of COPD patients.

  20. Cloning and characterization of genes encoding alpha and beta subunits of glutamate-gated chloride channel protein in Cylicocyclus nassatus.

    Science.gov (United States)

    Tandon, Ritesh; LePage, Keith T; Kaplan, Ray M

    2006-11-01

    The invertebrate glutamate-gated chloride channels (GluCls) are receptor molecules and targets for the avermectin-milbemycin (AM) group of anthelmintics. Mutations in GluCls are associated with ivermectin resistance in the soil dwelling nematode Caenorhabditis elegans and the parasitic nematode Cooperia oncophora. In this study, full-length cDNAs encoding alpha and beta subunits of GluCl were cloned and sequenced in Cylicocyclus nassatus, a common and important cyathostomin nematode parasite of horses. Both genes possess the sequence characteristics typical of GluCls, and phylogenetic analysis confirms that these genes are evolutionarily closely related to GluCls of other nematodes and flies. Complete coding sequences of C. nassatus GluCl-alpha and GluCl-beta were subcloned into pTL1 mammalian expression vector, and proteins were expressed in COS-7 cells. Ivermectin-binding characteristics were determined by incubating COS-7 cell membranes expressing C. nassatus GluCl-alpha and GluCl-beta proteins with [(3)H]ivermectin. In competitive binding experiments, fitting the data to a one site competition model, C. nassatus GluCl-alpha was found to bind [(3)H]ivermectin with a high amount of displaceable binding (IC(50)=208 pM). Compared to the mock-transfected COS-7 cells, the means of [(3)H]ivermectin binding were significantly different for C. nassatus GluCl-alpha and the Haemonchus contortus GluCl (HcGluCla) (p=0.018 and 0.023, respectively) but not for C. nassatus GluCl-beta (p=0.370). This is the first report of orthologs of GluCl genes and in vitro expression of an ivermectin-binding protein in a cyathostomin species. These data suggest the likelihood of a similar mechanism of action of AM drugs in these parasites, and suggest that mechanisms of resistance may also be similar.

  1. Speciation of La(III) chloride complexes in water and acetonitrile: a density functional study.

    Science.gov (United States)

    Bühl, Michael; Sieffert, Nicolas; Partouche, Aurélie; Chaumont, Alain; Wipff, Georges

    2012-12-17

    Car-Parrinello molecular dynamics (CMPD) simulations and static computations are reported at the BLYP level of density functional theory (DFT) for mixed [LaCl(x)(H(2)O)(y)(MeCN)(z)](3-x) complexes in aqueous and nonaqueous solution (acetonitrile). Both methodologies predict coordination numbers (i.e., x + y + z) that are successively lower than nine as the Cl content increases from x = 0 to 3. While the static DFT method with implicit solvation through a polarizable continuum model overestimates the binding strength of chloride and erroneously predicts [LaCl(2)(H(2)O)(5)](+) as global free-energy minimum, constrained CPMD simulations with explicit solvent and thermodynamic integration reproduce the weak binding of chloride in water reasonably well. Special attention is called to the dipole moments of coordinated water molecules as function of coligands and solvent, evaluated through maximally localized Wannier function centers along the CPMD trajectories. Cooperative polarization of these water ligands by the metal cation and the surrounding solvent is remarkably sensitive to fluctuations of the La-O distances and, to a lesser extent, on the La-water tilt angles. The mean dipole moment of water ligands is rather insensitive to the other coligands, oscillating around 3.2 D, 3.5 D, and 3.3 D in MeCN, water, and [dmim]Cl solution, respectively, the latter being an archetypical ionic liquid.

  2. Network Packet Length Covert Channel Based on Empirical Distribution Function

    Directory of Open Access Journals (Sweden)

    Lihua Zhang

    2014-06-01

    Full Text Available Network packet length covert channel modulates secret message bits onto the packet lengths to transmit secret messages. In this paper, a novel network packet length covert channel is proposed. The proposed scheme is based on the empirical distribution function of packet length series of legitimate traffic. Different from the existing schemes, the lengths of packets which are generated by the covert sender follow the distribution of normal traffic more closely in our scheme. To validate the security of the proposed scheme, the state-of-the-art packet length covert channel detection algorithm is adopted. The experimental results show that the packet length covert channel provides a significant performance improvement in detection resistance meanings

  3. Influenza matrix protein 2 alters CFTR expression and function through its ion channel activity.

    Science.gov (United States)

    Londino, James D; Lazrak, Ahmed; Jurkuvenaite, Asta; Collawn, James F; Noah, James W; Matalon, Sadis

    2013-05-01

    The human cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic AMP-activated chloride (Cl(-)) channel in the lung epithelium that helps regulate the thickness and composition of the lung epithelial lining fluid. We investigated whether influenza M2 protein, a pH-activated proton (H(+)) channel that traffics to the plasma membrane of infected cells, altered CFTR expression and function. M2 decreased CFTR activity in 1) Xenopus oocytes injected with human CFTR, 2) epithelial cells (HEK-293) stably transfected with CFTR, and 3) human bronchial epithelial cells (16HBE14o-) expressing native CFTR. This inhibition was partially reversed by an inhibitor of the ubiquitin-activating enzyme E1. Next we investigated whether the M2 inhibition of CFTR activity was due to an increase of secretory organelle pH by M2. Incubation of Xenopus oocytes expressing CFTR with ammonium chloride or concanamycin A, two agents that alkalinize the secretory pathway, inhibited CFTR activity in a dose-dependent manner. Treatment of M2- and CFTR-expressing oocytes with the M2 ion channel inhibitor amantadine prevented the loss in CFTR expression and activity; in addition, M2 mutants, lacking the ability to transport H(+), did not alter CFTR activity in Xenopus oocytes and HEK cells. Expression of an M2 mutant retained in the endoplasmic reticulum also failed to alter CFTR activity. In summary, our data show that M2 decreases CFTR activity by increasing secretory organelle pH, which targets CFTR for destruction by the ubiquitin system. Alteration of CFTR activity has important consequences for fluid regulation and may potentially modify the immune response to viral infection.

  4. Interactions between permeation and gating in the TMEM16B/anoctamin2 calcium-activated chloride channel

    OpenAIRE

    Betto, Giulia; Cherian, O. Lijo; Pifferi, Simone; Cenedese, Valentina; Boccaccio, Anna; Menini, Anna

    2014-01-01

    At least two members of the TMEM16/anoctamin family, TMEM16A (also known as anoctamin1) and TMEM16B (also known as anoctamin2), encode Ca2+-activated Cl− channels (CaCCs), which are found in various cell types and mediate numerous physiological functions. Here, we used whole-cell and excised inside-out patch-clamp to investigate the relationship between anion permeation and gating, two processes typically viewed as independent, in TMEM16B expressed in HEK 293T cells. The permeability ratio se...

  5. Fluorescence-based high-throughput functional profiling of ligand-gated ion channels at the level of single cells.

    Directory of Open Access Journals (Sweden)

    Sahil Talwar

    Full Text Available Ion channels are involved in many physiological processes and are attractive targets for therapeutic intervention. Their functional properties vary according to their subunit composition, which in turn varies in a developmental and tissue-specific manner and as a consequence of pathophysiological events. Understanding this diversity requires functional analysis of ion channel properties in large numbers of individual cells. Functional characterisation of ligand-gated channels involves quantitating agonist and drug dose-response relationships using electrophysiological or fluorescence-based techniques. Electrophysiology is limited by low throughput and high-throughput fluorescence-based functional evaluation generally does not enable the characterization of the functional properties of each individual cell. Here we describe a fluorescence-based assay that characterizes functional channel properties at single cell resolution in high throughput mode. It is based on progressive receptor activation and iterative fluorescence imaging and delivers >100 dose-responses in a single well of a 384-well plate, using α1-3 homomeric and αβ heteromeric glycine receptor (GlyR chloride channels as a model system. We applied this assay with transiently transfected HEK293 cells co-expressing halide-sensitive yellow fluorescent protein and different GlyR subunit combinations. Glycine EC50 values of different GlyR isoforms were highly correlated with published electrophysiological data and confirm previously reported pharmacological profiles for the GlyR inhibitors, picrotoxin, strychnine and lindane. We show that inter and intra well variability is low and that clustering of functional phenotypes permits identification of drugs with subunit-specific pharmacological profiles. As this method dramatically improves the efficiency with which ion channel populations can be characterized in the context of cellular heterogeneity, it should facilitate systems

  6. Two-pore channels (TPCs): Novel voltage-gated ion channels with pleiotropic functions.

    Science.gov (United States)

    Feijóo-Bandín, Sandra; García-Vence, María; García-Rúa, Vanessa; Roselló-Lletí, Esther; Portolés, Manuel; Rivera, Miguel; González-Juanatey, José Ramón; Lago, Francisca

    2017-01-02

    Two-pore channels (TPC1-3) comprise a subfamily of the eukaryotic voltage-gated ion channels (VGICs) superfamily that are mainly expressed in acidic stores in plants and animals. TPCS are widespread across the animal kingdom, with primates, mice and rats lacking TPC3, and mainly act as Ca(+) and Na(+) channels, although it was also suggested that they could be permeable to other ions. Nowadays, TPCs have been related to the development of different diseases, including Parkinson´s disease, obesity or myocardial ischemia. Due to this, their study has raised the interest of the scientific community to try to understand their mechanism of action in order to be able to develop an efficient drug that could regulate TPCs activity. In this review, we will provide an updated view regarding TPCs structure, function and activation, as well as their role in different pathophysiological processes.

  7. CFTR and calcium-activated chloride channels in primary cultures of human airway gland cells of serous or mucous phenotype.

    Science.gov (United States)

    Fischer, Horst; Illek, Beate; Sachs, Lorne; Finkbeiner, Walter E; Widdicombe, Jonathan H

    2010-10-01

    Using cell culture models, we have investigated the relative importance of cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated chloride channels (CaCC) in Cl secretion by mucous and serous cells of human airway glands. In transepithelial recordings in Ussing chambers, the CFTR inhibitor CFTR(inh)-172 abolished 60% of baseline Cl secretion in serous cells and 70% in mucous. Flufenamic acid (FFA), an inhibitor of CaCC, reduced baseline Cl secretion by ∼20% in both cell types. Methacholine and ATP stimulated Cl secretion in both cell types, which was largely blocked by treatment with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) and partially by mucosal FFA or CFTR(inh)-172 with the exception of methacholine responses in mucous cells, which were not blocked by FFA and partially (∼60%) by CFTR(inh)-172. The effects of ionomycin on short-circuit current (I(sc)) were less than those of ATP or methacholine. Forskolin stimulated Cl secretion only if Cl in the mucosal medium was replaced by gluconate. In whole cell patch-clamp studies of single isolated cells, cAMP-induced Cl currents were ∼3-fold greater in serous than mucous cells. Ionomycin-induced Cl currents were 13 times (serous) or 26 times (mucous) greater than those generated by cAMP and were blocked by FFA. In serous cells, mRNA for transmembrane protein 16A (TMEM16A) was ∼10 times more abundant than mRNA for CFTR. In mucous cells it was ∼100 times more abundant. We conclude: 1) serous and mucous cells both make significant contributions to gland fluid secretion; 2) baseline Cl secretion in both cell types is mediated predominantly by CFTR, but CaCC becomes increasingly important after mediator-induced elevations of intracellular Ca; and 3) the high CaCC currents seen in patch-clamp studies and the high TMEM16A expression in intact polarized cells sheets are not reflected in transepithelial current recordings.

  8. Murine calcium-activated chloride channel family member 3 induces asthmatic airway inflammation independently of allergen exposure

    Institute of Scientific and Technical Information of China (English)

    MEI Li; HE Li; WU Si-si; ZHANG Bo; XU Yong-jian; ZHANG Zhen-xiang; ZHAO Jian-ping

    2013-01-01

    Background Expression of murine calcium-activated chloride channel family member 3 (mCLCA3) has been reported to be increased in the airway epithelium of asthmatic mice challenged with ovalbumin (OVA).However,its role in asthmatic airway inflammation under no OVA exposure has not yet been clarified.Methods mCLCA3 plasmids were transfected into the airways of normal BALB/c mice.mCLCA3 expression and airway inflammation in mouse lung tissue were evaluated.Cell differentials and cytokines in bronchoalveolar lavage fluid (BALF) were analyzed.The expression of mCLCA3 protein and mucus protein mucin-5 subtype AC (MUC5AC) were analyzed by Western blotting.The mRNA levels of mCLCA3,MUC5AC and interleukin-13 (IL-13) were determined quantitatively.Results mCLCA3 expression was not detected in the control group while strong immunoreactivity was detected in the OVA and mCLCA3 plasmid groups,and was strictly localized to the airway epithelium.The numbers of inflammatory cells in lung tissue and BALF were increased in both mCLCA3 plasmid and OVA groups.The protein and mRNA levels of mCLCA3 and MUC5AC in the lung tissue were significantly increased in the mCLCA3 plasmid and OVA groups compared to the control group.The level of IL-13,but not IL-4,IL-5,IFN-γ,CCL2,CCL5 or CCL11,was significantly increased compared with control group in BALF in the mCLCA3 plasmid and OVA groups.The level of IL-13 in the BALF in the mCLCA3 plasmid group was much higher than that in the OVA group (P <0.05).The level of mCLCA3 mRNA in lung tissue was positively correlated with the levels of MUC5AC mRNA in lung tissue,IL-13 mRNA in lung tissue,the number of eosinophils in BALF,and the content of IL-13 protein in BALF.The level of IL-13 mRNA in lung tissue was positively correlated with the number of eosinophils in BALF and the level of MUC5AC mRNA in lung tissue.Conclusion These findings suggest that increased expression of a single-gene,mCLCA3,could simulate an asthma attack,and its mechanism may

  9. Effects of nickel chloride on the erythrocytes and erythrocyte immune adherence function in broilers.

    Science.gov (United States)

    Li, Jian; Wu, Bangyuan; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Tang, Kun; Yin, Shuang

    2014-11-01

    This study was conducted to investigate the immune adherence function of erythrocytes and erythrocyte induced by dietary nickel chloride (NiCl2) in broilers fed on a control diet and three experimental diets supplemented with 300, 600, and 900 mg/kg NiCl2 for 42 days. Blood samples were collected from five broilers in each group at 14, 28, and 42 days of age. Changes of erythrocyte parameters showed that total erythrocyte count (TEC), hemoglobin (Hb) contents, and packed cell volume (PCV) were significantly lower (p erythrocyte osmotic fragility (EOF) was higher (p erythrocyte immune adherence function indicated that erythrocyte C3b receptor rosette rate (E-C3bRR) was significantly decreased (p erythrocyte immune complex rosette rate (E-ICRR) was markedly increased (p erythrocytic integrity, erythrocytic ability to transport oxygen, and erythrocyte immune adherence function in broilers. Impairment of the erythrocytes and erythrocyte immune adherence function was one of main effect mechanisms of NiCl2 on the blood function.

  10. Structural and functional diversity of acidic scorpion potassium channel toxins.

    Directory of Open Access Journals (Sweden)

    Zong-Yun Chen

    Full Text Available BACKGROUND: Although the basic scorpion K(+ channel toxins (KTxs are well-known pharmacological tools and potential drug candidates, characterization the acidic KTxs still has the great significance for their potential selectivity towards different K(+ channel subtypes. Unfortunately, research on the acidic KTxs has been ignored for several years and progressed slowly. PRINCIPAL FINDINGS: Here, we describe the identification of nine new acidic KTxs by cDNA cloning and bioinformatic analyses. Seven of these toxins belong to three new α-KTx subfamilies (α-KTx28, α-KTx29, and α-KTx30, and two are new members of the known κ-KTx2 subfamily. ImKTx104 containing three disulfide bridges, the first member of the α-KTx28 subfamily, has a low sequence homology with other known KTxs, and its NMR structure suggests ImKTx104 adopts a modified cystine-stabilized α-helix-loop-β-sheet (CS-α/β fold motif that has no apparent α-helixs and β-sheets, but still stabilized by three disulfide bridges. These newly described acidic KTxs exhibit differential pharmacological effects on potassium channels. Acidic scorpion toxin ImKTx104 was the first peptide inhibitor found to affect KCNQ1 channel, which is insensitive to the basic KTxs and is strongly associated with human cardiac abnormalities. ImKTx104 selectively inhibited KCNQ1 channel with a K(d of 11.69 µM, but was less effective against the basic KTxs-sensitive potassium channels. In addition to the ImKTx104 toxin, HeTx204 peptide, containing a cystine-stabilized α-helix-loop-helix (CS-α/α fold scaffold motif, blocked both Kv1.3 and KCNQ1 channels. StKTx23 toxin, with a cystine-stabilized α-helix-loop-β-sheet (CS-α/β fold motif, could inhibit Kv1.3 channel, but not the KCNQ1 channel. CONCLUSIONS/SIGNIFICANCE: These findings characterize the structural and functional diversity of acidic KTxs, and could accelerate the development and clinical use of acidic KTxs as pharmacological tools and

  11. Lack of the sodium-driven chloride bicarbonate exchanger NCBE impairs visual function in the mouse retina.

    Directory of Open Access Journals (Sweden)

    Gerrit Hilgen

    Full Text Available Regulation of ion and pH homeostasis is essential for normal neuronal function. The sodium-driven chloride bicarbonate exchanger NCBE (Slc4a10, a member of the SLC4 family of bicarbonate transporters, uses the transmembrane gradient of sodium to drive cellular net uptake of bicarbonate and to extrude chloride, thereby modulating both intracellular pH (pH(i and chloride concentration ([Cl(-](i in neurons. Here we show that NCBE is strongly expressed in the retina. As GABA(A receptors conduct both chloride and bicarbonate, we hypothesized that NCBE may be relevant for GABAergic transmission in the retina. Importantly, we found a differential expression of NCBE in bipolar cells: whereas NCBE was expressed on ON and OFF bipolar cell axon terminals, it only localized to dendrites of OFF bipolar cells. On these compartments, NCBE colocalized with the main neuronal chloride extruder KCC2, which renders GABA hyperpolarizing. NCBE was also expressed in starburst amacrine cells, but was absent from neurons known to depolarize in response to GABA, like horizontal cells. Mice lacking NCBE showed decreased visual acuity and contrast sensitivity in behavioral experiments and smaller b-wave amplitudes and longer latencies in electroretinograms. Ganglion cells from NCBE-deficient mice also showed altered temporal response properties. In summary, our data suggest that NCBE may serve to maintain intracellular chloride and bicarbonate concentration in retinal neurons. Consequently, lack of NCBE in the retina may result in changes in pH(i regulation and chloride-dependent inhibition, leading to altered signal transmission and impaired visual function.

  12. Reactive Scattering Wave Functions by Linear Combination of Arrangement Channels

    Institute of Scientific and Technical Information of China (English)

    邓从豪; 冯大诚; 蔡政亭

    1994-01-01

    The similarity and dissimilarity of reactive scattering wave functions and molecular orbitalby linear combination of atomic orbitals(LCAOMO)are examined.Based on the similarity a method is pro-posed to construct the reactive scattering wave functions by linear combination of arrangement channel wavefunctions(LCACSW).Based on the dissimilarity,it is shown that the combination coefficients can be deter-mined by solving s set of simultaneous algebraic equations.The elements of the reactive scattering matrix areshown to be related to the combination coefficients of open arrangement channels.The differential and totalreactive scattering cross-section derived by this method agrees completely with that derived by other meth-ods.

  13. Acid-sensing ion channels: trafficking and synaptic function

    Directory of Open Access Journals (Sweden)

    Zha Xiang-ming

    2013-01-01

    Full Text Available Abstract Extracellular acidification occurs in the brain with elevated neural activity, increased metabolism, and neuronal injury. This reduction in pH can have profound effects on brain function because pH regulates essentially every single biochemical reaction. Therefore, it is not surprising to see that Nature evolves a family of proteins, the acid-sensing ion channels (ASICs, to sense extracellular pH reduction. ASICs are proton-gated cation channels that are mainly expressed in the nervous system. In recent years, a growing body of literature has shown that acidosis, through activating ASICs, contributes to multiple diseases, including ischemia, multiple sclerosis, and seizures. In addition, ASICs play a key role in fear and anxiety related psychiatric disorders. Several recent reviews have summarized the importance and therapeutic potential of ASICs in neurological diseases, as well as the structure-function relationship of ASICs. However, there is little focused coverage on either the basic biology of ASICs or their contribution to neural plasticity. This review will center on these topics, with an emphasis on the synaptic role of ASICs and molecular mechanisms regulating the spatial distribution and function of these ion channels.

  14. Efficient Synthesis of Functionalized Benzimidazoles and Perimidines: Ytterbium Chloride Catalyzed CmC Bond Cleavage%Efficient Synthesis of Functionalized Benzimidazoles and Perimidines: Ytterbium Chloride Catalyzed CmC Bond Cleavage

    Institute of Scientific and Technical Information of China (English)

    Cai, Lijian; Ji, Xiaofeng; Yao, Zhigang; Xu, Fan; Shen, Qi

    2011-01-01

    An efficient method is developed for the synthesis of functionalized benzimidazoles and perimidines by the condensation of aryl diamines with β-carbonyl compounds catalyzed by ytterbium chloride. The reactions give good yields under mild conditions. A mechanism involving a lanthanide activated C--C bond cleavage is proposed.

  15. 公丁香提取物抑制CFTR氯离子通道的发现与研究%The extract of clove inhibits CFTR chloride channel

    Institute of Scientific and Technical Information of China (English)

    栾剑; 张耀方; 杨红

    2015-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an epithelial chloride chan‐nel .In recent years ,the blockers of CFTR become the new hot spot in the treatment of secretory di‐arrhea .The aim of this research is using high‐throughput screening techniques screened blockers of CFTR chloride channel from traditional Chinese medicine .In this study ,after 40000 fractions of Chi‐nese herbal medicine have been screened ,clove extract was found .In cell‐based fluorescence assays and voltage clamp experiments ,the best active fraction‐E06 significantly blocks CFTR chloride chan‐nel .Therefore ,clove extract screened from traditional Chinese medicine blocks CFTR chloride chan‐nel and provides a theoretical basis for the in‐depth study of anti‐diarrheal drugs .%囊性纤维化跨膜电导调节因子(CFTR)是一种上皮细胞顶膜中表达的氯离子通道,是近年来治疗分泌型腹泻的新热点。利用高通量筛选技术,自中国传统中药中筛选能够抑制CFTR氯离子通道的中药组分。结果显示,自500种中草药的40000种中药组分中筛选到公丁香。经细胞荧光实验和电压膜片钳实验验证公丁香最佳活性孔———E06对CFTR具有明显的抑制作用,IC50=103 mg/L 。本研究结果为深入探讨公丁香的抗泻药物研发提供理论依据。

  16. Regulatory R region of the CFTR chloride channel is a dynamic integrator of phospho-dependent intra- and intermolecular interactions.

    Science.gov (United States)

    Bozoky, Zoltan; Krzeminski, Mickael; Muhandiram, Ranjith; Birtley, James R; Al-Zahrani, Ateeq; Thomas, Philip J; Frizzell, Raymond A; Ford, Robert C; Forman-Kay, Julie D

    2013-11-19

    Intrinsically disordered proteins play crucial roles in regulatory processes and often function as protein interaction hubs. Here, we present a detailed characterization of a full-length disordered hub protein region involved in multiple dynamic complexes. We performed NMR, CD, and fluorescence binding studies on the nonphosphorylated and highly PKA-phosphorylated human cystic fibrosis transmembrane conductance regulator (CFTR) regulatory region, a ∼200-residue disordered segment involved in phosphorylation-dependent regulation of channel trafficking and gating. Our data provide evidence for dynamic, phosphorylation-dependent, multisite interactions of various segments of the regulatory region for its intra- and intermolecular partners, including the CFTR nucleotide binding domains 1 and 2, a 42-residue peptide from the C terminus of CFTR, the SLC26A3 sulphate transporter and antisigma factor antagonist (STAS) domain, and 14-3-3β. Because of its large number of binding partners, multivalent binding of individually weak sites facilitates rapid exchange between free and bound states to allow the regulatory region to engage with different partners and generate a graded or rheostat-like response to phosphorylation. Our results enrich the understanding of how disordered binding segments interact with multiple targets. We present structural models consistent with our data that illustrate this dynamic aspect of phospho-regulation of CFTR by the disordered regulatory region.

  17. Optical Sensing Properties of Dithiocarbamate-Functionalized Microspheres, Using a Polyvinylpyridine-Polyvinylbenzyl Chloride Copolymer

    Directory of Open Access Journals (Sweden)

    Ziad M. Shakhsher

    2010-10-01

    Full Text Available In this study, a new modified optical chemical sensor based on swellable polymer microspheres is developed using a 5% copolymer of polyvinylpyridine-polyvinyl -benzyl chloride microspheres functionalized as the corresponding dithiocarbamate. This sensor demonstrated significant enhancements in sensitivity, dynamic range and response time. These improvements are related to the presence of pyridine in the polymer backbone, which is believed to increase the space between the groups, thus decreasing steric hindrance, and hence increasing substitution of the dithiocarbamate group. The hydrophilicity of pyridine also allows free movement of the solvent and analyte to and from the inside of the microspheres. These dithiocarbamate-derivatized polymer microspheres were embedded in a hydrogel matrix of polyvinylalcohol cross-linked with glutaraldehyde. This sensor responded selectively to Hg2+ solutions of different concentrations (1 × 10−5 M to 0.1 M. The observed turbidity measured as absorbance varied between 1.05 and 1.75 units at a wavelength of 700 nm. The response is based on the interaction between the metal cations with the negative charges of the deprotonated dithiocarbamate functional group, which led to neutratization of the charges and thus to polymer shrinking. As a result, an increase in the turbidity of the sensing element due to a change in the refractive index between the hydrogel and the polymer microspheres occured. The changes in the turbidity of the sensing element were measured as absorbance using a conventional spectrophotometer.

  18. Optical sensing properties of dithiocarbamate-functionalized microspheres, using a polyvinylpyridine-polyvinylbenzyl chloride copolymer.

    Science.gov (United States)

    Shakhsher, Ziad M; Odeh, Imad M A; Rajabi, Inas M S; Khatib, Mahmoud K

    2010-01-01

    In this study, a new modified optical chemical sensor based on swellable polymer microspheres is developed using a 5% copolymer of polyvinylpyridine-polyvinyl-benzyl chloride microspheres functionalized as the corresponding dithiocarbamate. This sensor demonstrated significant enhancements in sensitivity, dynamic range and response time. These improvements are related to the presence of pyridine in the polymer backbone, which is believed to increase the space between the groups, thus decreasing steric hindrance, and hence increasing substitution of the dithiocarbamate group. The hydrophilicity of pyridine also allows free movement of the solvent and analyte to and from the inside of the microspheres. These dithiocarbamate-derivatized polymer microspheres were embedded in a hydrogel matrix of polyvinylalcohol cross-linked with glutaraldehyde. This sensor responded selectively to Hg(2+) solutions of different concentrations (1 × 10(-5) M to 0.1 M). The observed turbidity measured as absorbance varied between 1.05 and 1.75 units at a wavelength of 700 nm. The response is based on the interaction between the metal cations with the negative charges of the deprotonated dithiocarbamate functional group, which led to neutratization of the charges and thus to polymer shrinking. As a result, an increase in the turbidity of the sensing element due to a change in the refractive index between the hydrogel and the polymer microspheres occurred. The changes in the turbidity of the sensing element were measured as absorbance using a conventional spectrophotometer.

  19. Basic functions of telecommunication channel elements for successful information transmission

    Directory of Open Access Journals (Sweden)

    Milorad S. Markagić

    2011-04-01

    the observed messages. Coder of messages generated by a message source should be transmitted to the recipient. For that purpose, an appropriate communication channel is used, with appropriate electrical signals as material bearers of the message. Definition of the code and the code system The set of combinations of digits that mirrors the elements of the set A is called a code. The established rule considers situations when each symbol from the set A is associated with the combination of elements of the set B. The function f defining this translation must be defined. This replacement is called a code replacement. Signal coder A coder performs signal transformation of coded messages to an electrical signal adapted for transmission via the transmission system. The most common signals are voltage transmission via cable connection or an electromagnetic field in the radio transmission. Modern systems for transferring discrete messages contain codecs and modems. Portable system A portable system is the medium for signal transmission from the source to the point of receipt. It can be wired and wireless. A wired transmission system is used in the stationary elements of communication systems. Wireless signal transmission is used in all conditions and it is more rational, efficient and economical. On their way through the transmission system, signals are subject to a variety of interferences. For a better insight into the interference impact, the source of interference is added to the whole system. Conclusion The model of the telecommunication channel is a complex system of a series of mutually dependent elements. Effectiveness of these elements is evaluated by the performances of the probability that the transfer of information through the channel will be successful. In a thus modeled telecommunication channel, regardless of the technical means used which is either a system or a circuit, the place and role of each element can be considered, which is the basis for consideration

  20. Transient Receptor Potential Mucolipin 1 (TRPML1) and Two-pore Channels Are Functionally Independent Organellar Ion Channels*

    OpenAIRE

    2011-01-01

    NAADP is a potent second messenger that mobilizes Ca2+ from acidic organelles such as endosomes and lysosomes. The molecular basis for Ca2+ release by NAADP, however, is uncertain. TRP mucolipins (TRPMLs) and two-pore channels (TPCs) are Ca2+-permeable ion channels present within the endolysosomal system. Both have been proposed as targets for NAADP. In the present study, we probed possible physical and functional association of these ion channels. Exogenously expressed TRPML1 showed near com...

  1. Interactions between permeation and gating in the TMEM16B/anoctamin2 calcium-activated chloride channel.

    Science.gov (United States)

    Betto, Giulia; Cherian, O Lijo; Pifferi, Simone; Cenedese, Valentina; Boccaccio, Anna; Menini, Anna

    2014-06-01

    At least two members of the TMEM16/anoctamin family, TMEM16A (also known as anoctamin1) and TMEM16B (also known as anoctamin2), encode Ca(2+)-activated Cl(-) channels (CaCCs), which are found in various cell types and mediate numerous physiological functions. Here, we used whole-cell and excised inside-out patch-clamp to investigate the relationship between anion permeation and gating, two processes typically viewed as independent, in TMEM16B expressed in HEK 293T cells. The permeability ratio sequence determined by substituting Cl(-) with other anions (PX/PCl) was SCN(-) > I(-) > NO3 (-) > Br(-) > Cl(-) > F(-) > gluconate. When external Cl(-) was substituted with other anions, TMEM16B activation and deactivation kinetics at 0.5 µM Ca(2+) were modified according to the sequence of permeability ratios, with anions more permeant than Cl(-) slowing both activation and deactivation and anions less permeant than Cl(-) accelerating them. Moreover, replacement of external Cl(-) with gluconate, or sucrose, shifted the voltage dependence of steady-state activation (G-V relation) to more positive potentials, whereas substitution of extracellular or intracellular Cl(-) with SCN(-) shifted G-V to more negative potentials. Dose-response relationships for Ca(2+) in the presence of different extracellular anions indicated that the apparent affinity for Ca(2+) at +100 mV increased with increasing permeability ratio. The apparent affinity for Ca(2+) in the presence of intracellular SCN(-) also increased compared with that in Cl(-). Our results provide the first evidence that TMEM16B gating is modulated by permeant anions and provide the basis for future studies aimed at identifying the molecular determinants of TMEM16B ion selectivity and gating.

  2. Tributyltin chloride leads to adiposity and impairs metabolic functions in the rat liver and pancreas.

    Science.gov (United States)

    Bertuloso, Bruno D; Podratz, Priscila L; Merlo, Eduardo; de Araújo, Julia F P; Lima, Leandro C F; de Miguel, Emilio C; de Souza, Leticia N; Gava, Agata L; de Oliveira, Miriane; Miranda-Alves, Leandro; Carneiro, Maria T W D; Nogueira, Celia R; Graceli, Jones B

    2015-05-19

    Tributyltin chloride (TBT) is an environmental contaminant used in antifouling paints of boats. Endocrine disruptor effects of TBT are well established in animal models. However, the adverse effects on metabolism are less well understood. The toxicity of TBT in the white adipose tissue (WAT), liver and pancreas of female rats were assessed. Animals were divided into control and TBT (0.1 μg/kg/day) groups. TBT induced an increase in the body weight of the rats by the 15th day of oral exposure. The weight gain was associated with high parametrial (PR) and retroperitoneal (RP) WAT weights. TBT-treatment increased the adiposity, inflammation and expression of ERα and PPARγ proteins in both RP and PR WAT. In 3T3-L1 cells, estrogen treatment reduced lipid droplets accumulation, however increased the ERα protein expression. In contrast, TBT-treatment increased the lipid accumulation and reduced the ERα expression. WAT metabolic changes led to hepatic inflammation, lipid accumulation, increase of PPARγ and reduction of ERα protein expression. Accordingly, there were increases in the glucose tolerance and insulin sensitivity tests with increases in the number of pancreatic islets and insulin levels. These findings suggest that TBT leads to adiposity in WAT specifically, impairing the metabolic functions of the liver and pancreas.

  3. Ultrasensitive Detection of Ferulic Acid Using Poly(diallyldimethylammonium chloride Functionalized Graphene-Based Electrochemical Sensor

    Directory of Open Access Journals (Sweden)

    Lin-jie Liu

    2014-01-01

    Full Text Available The electrochemical redox of ferulic acid (FA was investigated systematically by cyclic voltammetry (CV with a poly(diallyldimethylammonium chloride functionalized graphene-modified glassy carbon electrode (PDDA-G/GCE as a working electrode. A simple and sensitive differential pulse voltammetry (DPV technique was proposed for the direct quantitative determination of FA in Angelica sinensis and spiked human urine samples for the first time. The dependence of the intensities of currents and potentials on nature of the supporting electrolyte, pH, scan rate, and concentration was investigated. Under optimal conditions, the proposed sensor exhibited excellent electrochemical sensitivity to FA, and the oxidation peak current was proportional to FA concentration in the range of 8.95×10-8 M ~5.29×10-5 M, with a relatively low detection limit of 4.42×10-8 M. This fabricated sensor also displayed acceptable reproducibility, long-term stability, and high selectivity with negligible interferences from common interfering species. Besides, it was applied to detect FA in Angelica sinensis and biological samples with satisfactory results, making it a potential alternative tool for the quantitative detection of FA in pharmaceutical analysis.

  4. Metal bridges illuminate transmembrane domain movements during gating of the cystic fibrosis transmembrane conductance regulator chloride channel.

    Science.gov (United States)

    El Hiani, Yassine; Linsdell, Paul

    2014-10-10

    Opening and closing of the cystic fibrosis transmembrane conductance regulator are controlled by ATP binding and hydrolysis by the cytoplasmic nucleotide-binding domains. Different conformational changes in the channel pore have been described during channel opening and closing; however, the relative importance of these changes to the process of gating the pore is not known. We have used patch clamp recording to identify high affinity Cd(2+) bridges formed between pairs of pore-lining cysteine residues introduced into different transmembrane α-helices (TMs). Seven Cd(2+) bridges were identified forming between cysteines in TMs 6 and 12. Interestingly, each of these Cd(2+) bridges apparently formed only in closed channels, and their formation stabilized the closed state. In contrast, a single Cd(2+) bridge identified between cysteines in TMs 1 and 12 stabilized the channel open state. Analysis of the pattern of Cd(2+) bridge formation in different channel states suggests that lateral separation and convergence of different TMs, rather than relative rotation or translation of different TMs, is the key conformational change that causes the channel pore to open and close.

  5. TMEM16A is associated with voltage-gated calcium channels in mouse retina and its function is disrupted upon mutation of the auxiliary α2δ4 subunit

    Science.gov (United States)

    Caputo, Antonella; Piano, Ilaria; Demontis, Gian Carlo; Bacchi, Niccolò; Casarosa, Simona; Santina, Luca Della; Gargini, Claudia

    2015-01-01

    Photoreceptors rely upon highly specialized synapses to efficiently transmit signals to multiple postsynaptic targets. Calcium influx in the presynaptic terminal is mediated by voltage-gated calcium channels (VGCC). This event triggers neurotransmitter release, but also gates calcium-activated chloride channels (TMEM), which in turn regulate VGCC activity. In order to investigate the relationship between VGCC and TMEM channels, we analyzed the retina of wild type (WT) and Cacna2d4 mutant mice, in which the VGCC auxiliary α2δ4 subunit carries a nonsense mutation, disrupting the normal channel function. Synaptic terminals of mutant photoreceptors are disarranged and synaptic proteins as well as TMEM16A channels lose their characteristic localization. In parallel, calcium-activated chloride currents are impaired in rods, despite unaltered TMEM16A protein levels. Co-immunoprecipitation revealed the interaction between VGCC and TMEM16A channels in the retina. Heterologous expression of these channels in tsA-201 cells showed that TMEM16A associates with the CaV1.4 subunit, and the association persists upon expression of the mutant α2δ4 subunit. Collectively, our experiments show association between TMEM16A and the α1 subunit of VGCC. Close proximity of these channels allows optimal function of the photoreceptor synaptic terminal under physiological conditions, but also makes TMEM16A channels susceptible to changes occurring to calcium channels. PMID:26557056

  6. Altered expression of renal bumetanide-sensitive sodium-pota-ssium-2 chloride cotransporter and Cl- channel -K2 gene in angiotensin Ⅱ-infused hypertensive rats

    Institute of Scientific and Technical Information of China (English)

    YE Tao; LIU Zhi-quan; SUN Chao-feng; ZHENG Yong; MA Ai-qun; FANG Yuan

    2005-01-01

    Background Little information is available regarding the effect of angiotensin Ⅱ (Ang Ⅱ) on the bumetanide-sensitive sodium-potassium-2 chloride cotransporter (NKCC2), the thiazide-sensitive sodium-chloride cotransporter (NCC), and the Cl- channel (CLC)-K2 at both mRNA and protein expression level in Ang Ⅱ-induced hypertensive rats. This study was conducted to investigate the influence of Ang Ⅱ with chronic subpressor infusion on nephron-specific gene expression of NKCC2, NCC and CLC-K2. Results Ang Ⅱ significantly increased blood pressure and up-regulated NKCC2 mRNA and protein expression in the kidney. Expression of CLC-K2 mRNA in the kidney increased 1.6 fold (P<0.05).There were no changes in NCC mRNA or protein expression in AngII-treated rats versus control. Conclusions Chronic subpressor Ang Ⅱ infusion can significantly alter NKCC2 and CLC-K2 mRNA expression in the kidney, and protein abundance of NKCC2 in kidney is positively regulated by Ang Ⅱ. These effects may contribute to enhanced renal Na+ and Cl- reabsorption in response to Ang Ⅱ.

  7. Mutation in S6 domain of HCN4 channel in patient with suspected Brugada syndrome modifies channel function.

    Science.gov (United States)

    Biel, Stephanie; Aquila, Marco; Hertel, Brigitte; Berthold, Anne; Neumann, Thomas; DiFrancesco, Dario; Moroni, Anna; Thiel, Gerhard; Kauferstein, Silke

    2016-10-01

    Diseases such as the sick sinus and the Brugada syndrome are cardiac abnormalities, which can be caused by a number of genetic aberrances. Among them are mutations in HCN4, a gene, which encodes the hyperpolarization-activated, cyclic nucleotide-gated ion channel 4; this pacemaker channel is responsible for the spontaneous activity of the sinoatrial node. The present genetic screening of patients with suspected or diagnosed Brugada or sick sinus syndrome identified in 1 out of 62 samples the novel mutation V492F. It is located in a highly conserved site of hyperpolarization-activated cyclic nucleotide-gated (HCN)4 channel downstream of the filter at the start of the last transmembrane domain S6. Functional expression of mutant channels in HEK293 cells uncovered a profoundly reduced channel function but no appreciable impact on channel synthesis and trafficking compared to the wild type. The inward rectifying HCN4 current could be partially rescued by an expression of heteromeric channels comprising wt and mutant monomers. These heteromeric channels were responsive to cAMP but they required a more negative voltage for activation and they exhibited a lower current density than the wt channel. This suggests a dominant negative effect of the mutation in patients, which carry this heterozygous mutation. Such a modulation of HCN4 activity could be the cause of the diagnosed cardiac abnormality.

  8. Sodium chloride salinity reduces Cd uptake by edible amaranth (Amaranthus mangostanus L.) via competition for Ca channels.

    Science.gov (United States)

    Mei, XiuQin; Li, SongSong; Li, QuSheng; Yang, YuFeng; Luo, Xuan; He, BaoYan; Li, Hui; Xu, ZhiMin

    2014-07-01

    Soil salinity is known to enhance cadmium (Cd) accumulation in crops. However, the mechanism by which this occurs independent of the surrounding soil remains unclear. In this study, root adsorption and uptake of salt cations and Cd by edible amaranth under NaCl salinity stress were investigated in hydroponic cultures with 0, 40, 80, 120, and 160mM of NaCl and 27nM Cd. The dominant Cd species in the nutrient solution changed from free Cd(2+) to Cd chlorocomplexes as NaCl salinity increased. High salinity significantly reduced K, Ca, and Cd root adsorption and K, Ca, Mg, and Cd uptake. High salinity decreased root adsorption of Cd by 43 and 58 percent and Cd uptake by 32 and 36 percent in salt-tolerant and salt-sensitive cultivars, respectively. Transformation of Cd from free ion to chlorocomplexes is unlikely to have significantly affected Cd uptake by the plant because of the very low Cd concentrations involved. Application of Ca ion channel blocker significantly reduced Na, K, Ca, Mg, and Cd uptake by the roots, while blocking K ion channels significantly reduced Na and K uptake but not Ca, Mg, and Cd uptake. These results suggest that Na was absorbed by the roots through both Ca and K ion channels, while Cd was absorbed by the roots mainly through Ca ion channels and not K ion channels. Salinity caused a greater degree of reduction in Cd adsorption and uptake in the salt-sensitive cultivar than in the salt-tolerant cultivar. Thus, competition between Na and Cd for Ca ion channels can reduce Cd uptake at very low Cd concentrations in the nutrient solution.

  9. Pharmacological analysis of epithelial chloride secretion mechanisms in adult murine airways.

    Science.gov (United States)

    Gianotti, Ambra; Ferrera, Loretta; Philp, Amber R; Caci, Emanuela; Zegarra-Moran, Olga; Galietta, Luis J V; Flores, Carlos A

    2016-06-15

    Defective epithelial chloride secretion occurs in humans with cystic fibrosis (CF), a genetic defect due to loss of function of CFTR, a cAMP-activated chloride channel. In the airways, absence of an active CFTR causes a severe lung disease. In mice, genetic ablation of CFTR function does not result in similar lung pathology. This may be due to the expression of an alternative chloride channel which is activated by calcium. The most probable protein performing this function is TMEM16A, a calcium-activated chloride channel (CaCC). Our aim was to assess the relative contribution of CFTR and TMEM16A to chloride secretion in adult mouse trachea. For this purpose we tested pharmacological inhibitors of chloride channels in normal and CF mice. The amplitude of the cAMP-activated current was similar in both types of animals and was not affected by a selective CFTR inhibitor. In contrast, a CaCC inhibitor (CaCCinh-A01) strongly blocked the cAMP-activated current as well as the calcium-activated chloride secretion triggered by apical UTP. Although control experiments revealed that CaCCinh-A01 also shows inhibitory activity on CFTR, our results indicate that transepithelial chloride secretion in adult mouse trachea is independent of CFTR and that another channel, possibly TMEM16A, performs both cAMP- and calcium-activated chloride transport. The prevalent function of a non-CFTR channel may explain the absence of a defect in chloride transport in CF mice.

  10. Effects of glycoprotein Ⅱb/Ⅲa antagonists and chloride channel blockers on platelet cytoplasmic free calcium

    Institute of Scientific and Technical Information of China (English)

    YIN Song-mei; XIE Shuang-feng; NIE Da-nian; LI Yi-qing; LI Hai-ming; MA Li-ping; WANG Xiu-ju; WU Yu-dan; FENG Jian-hong

    2005-01-01

    @@ Platelet activation plays an important role in thrombosis. Platelet glycoprotein Ⅱb/Ⅲa (GP Ⅱb/Ⅲa) is the receptor of fibrinogen. Platelet cross-linking with fibrinogen through GPⅡb/Ⅲa is the process of thrombosis. Ca2+ is an important intracellular second messenger in platelet activation. It has been reported that GPⅡb/Ⅲa receptors were involved in the calcium influx of activated platelet, and GPⅡb/Ⅲa receptor had characteristics of calcium channel or an adjacent calcium channel.

  11. The tyrosine kinase p60c-src regulates the fast gate of the cystic fibrosis transmembrane conductance regulator chloride channel.

    Science.gov (United States)

    Fischer, H; Machen, T E

    1996-12-01

    The role of the tyrosine kinase p60c-src on the gating of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel was investigated with the cell-attached and excised patch clamp technique in conjunction with current noise analysis of recordings containing multiple channels per patch. Spectra of CFTR-generated current noise contained a low-frequency and a high-frequency Lorentzian noise component. In the cell-attached mode, the high-frequency Lorentzian was significantly dependent on the membrane potential, while the low-frequency Lorentzian was unaffected. Excision of forskolin-stimulated patches into ATP-containing solution significantly reduced the amplitude of the voltage-dependent high-frequency Lorentzian. Addition of the tyrosine kinase p60c-src to excised, active, CFTR-containing membrane patches increased mean currents by 54%, increased the corner frequency of the low-frequency Lorentzian, and recovered the high-frequency Lorentzian and its characteristics. Treatment with lambda-phosphatase inactivated src-induced currents and changes in gating. When active patches were excised under conditions in which patch-associated tyrosine phosphatases were blocked with sodium vanadate, the high-frequency gating remained relatively unchanged. The results suggest that CFTR's open probability and its voltage-dependent fast gate are dependent on tyrosine phosphorylation, and that membrane-associated tyrosine phosphatases are responsible for inactivation of the fast gate after patch excision.

  12. Extracts from plants used in Mexican traditional medicine activate Ca(2+)-dependent chloride channels in Xenopus laevis oocytes.

    Science.gov (United States)

    Rojas, A; Mendoza, S; Moreno, J; Arellano, R O

    2003-01-01

    The two-electrode voltage-clamp technique was employed to investigate the effects of chloroform-methanol (1:1) extracts derived from five medicinal plants on Xenopus laevis oocytes. When evaluated at concentrations of 1 to 500 microg/ml, the extracts prepared from the aerial parts of Baccharis heterophylla H.B.K (Asteraceae), Chenopodium murale L. (Chenopodiaceae), Desmodium grahami Gray (Leguminosae) and Solanum rostratum Dun (Solanaceae) produced concentration-dependent oscillatory inward currents in the oocytes, while the extract of Gentiana spathacea did not induce any response. The reversal potential of the currents elicited by the active extracts was -17 +/- 2 mV and was similar to the chloride equilibrium potential in oocytes. These ionic responses were independent of extracellular calcium. However, they were eliminated by overnight incubation with BAPTA-AM (10 microM), suggesting that the currents were dependent on intracellular Ca2+ increase. Thus the plant extracts activate the typical oscillatory Ca(2+)-dependent Cl- currents generated in the Xenopus oocyte membrane more probably via a mechanism that involves release of Ca2+ from intracellular reservoirs. These observations suggest that Xenopus oocyte electrophysiological recording constitutes a suitable assay for the study of the mechanisms of action of herbal medicines.

  13. Deregulation of apoptotic volume decrease and ionic movements in multidrug-resistant tumor cells: role of chloride channels

    DEFF Research Database (Denmark)

    Poulsen, Kristian Arild; Andersen, E C; Hansen, C F;

    2010-01-01

    Changes in cell volume and ion gradients across the plasma membrane play a pivotal role in the initiation of apoptosis. Here we explore the kinetics of apoptotic volume decrease (AVD) and ion content dynamics in wild-type (WT) and multidrug-resistant (MDR) Ehrlich ascites tumor cells (EATC). In WT......3728 inhibited AVD and completely abolished the differences in AVD, ionic movements, and caspase 3 activation between WT and MDR EATC. Finally, the maximal capacity of volume-regulated anion channel was found to be strongly repressed in MDR EATC. Together, these data suggest that impairment of AVD...

  14. Protection of Coronary Endothelial Function during Cardiac Surgery: Potential of Targeting Endothelial Ion Channels in Cardioprotection

    Directory of Open Access Journals (Sweden)

    Qin Yang

    2014-01-01

    Full Text Available Vascular endothelium plays a critical role in the control of blood flow by producing vasoactive factors to regulate vascular tone. Ion channels, in particular, K+ channels and Ca2+-permeable channels in endothelial cells, are essential to the production and function of endothelium-derived vasoactive factors. Impairment of coronary endothelial function occurs in open heart surgery that may result in reduction of coronary blood flow and thus in an inadequate myocardial perfusion. Hyperkalemic exposure and concurrent ischemia-reperfusion during cardioplegic intervention compromise NO and EDHF-mediated function and the impairment involves alterations of K+ channels, that is, KATP and KCa, and Ca2+-permeable TRP channels in endothelial cells. Pharmacological modulation of these channels during ischemia-reperfusion and hyperkalemic exposure show promising results on the preservation of NO and EDHF-mediated endothelial function, which suggests the potential of targeting endothelial K+ and TRP channels for myocardial protection during cardiac surgery.

  15. Alternatively spliced isoforms of TRIP8b differentially control h channel trafficking and function

    NARCIS (Netherlands)

    Lewis, A.S.; Schwartz, E.; Chan, C.S.; Noam, Y.; Shin, M.; Wadman, W.J.; Surmeier, D.J.; Baram, T.Z.; Macdonald, R.L.; Chetkovich, D.M.

    2009-01-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels (h channels) are the molecular basis for the current, I-h, which contributes crucially to intrinsic neuronal excitability. The subcellular localization and biophysical properties of h channels govern their function, but the mechanism

  16. Function and regulation of the channel-kinase TRPM7 in health and disease

    NARCIS (Netherlands)

    Visser, D.; Middelbeek, J.; Leeuwen, F.N. van; Jalink, K.

    2014-01-01

    Transient receptor potential (TRP) cation channels represent a large and diverse family of ion channels that act as important transducers of sensory information. The Melastatin subfamily member TRPM7 has garnered much interest due to its functional kinase domain; a unique feature among ion channels.

  17. Eag1 K+ Channel: Endogenous Regulation and Functions in Nervous System

    Science.gov (United States)

    Tokay, Tursonjan; Zhang, Guangming; Sun, Peng

    2017-01-01

    Ether-à-go-go1 (Eag1, Kv10.1, KCNH1) K+ channel is a member of the voltage-gated K+ channel family mainly distributed in the central nervous system and cancer cells. Like other types of voltage-gated K+ channels, the EAG1 channels are regulated by a variety of endogenous signals including reactive oxygen species, rendering the EAG1 to be in the redox-regulated ion channel family. The role of EAG1 channels in tumor development and its therapeutic significance have been well established. Meanwhile, the importance of hEAG1 channels in the nervous system is now increasingly appreciated. The present review will focus on the recent progress on the channel regulation by endogenous signals and the potential functions of EAG1 channels in normal neuronal signaling as well as neurological diseases.

  18. Eag1 K+ Channel: Endogenous Regulation and Functions in Nervous System

    Directory of Open Access Journals (Sweden)

    Bo Han

    2017-01-01

    Full Text Available Ether-à-go-go1 (Eag1, Kv10.1, KCNH1 K+ channel is a member of the voltage-gated K+ channel family mainly distributed in the central nervous system and cancer cells. Like other types of voltage-gated K+ channels, the EAG1 channels are regulated by a variety of endogenous signals including reactive oxygen species, rendering the EAG1 to be in the redox-regulated ion channel family. The role of EAG1 channels in tumor development and its therapeutic significance have been well established. Meanwhile, the importance of hEAG1 channels in the nervous system is now increasingly appreciated. The present review will focus on the recent progress on the channel regulation by endogenous signals and the potential functions of EAG1 channels in normal neuronal signaling as well as neurological diseases.

  19. Dehydrocostuslactone, a sesquiterpene lactone activates wild-type and ΔF508 mutant CFTR chloride channel.

    Science.gov (United States)

    Wang, Xue; Zhang, Yao-Fang; Yu, Bo; Yang, Shuang; Luan, Jian; Liu, Xin; Yang, Hong

    2013-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) represents the main cAMP-activated Cl⁻ channel expressed in the apical membrane of serous epithelial cells. Both deficiency and overactivation of CFTR may cause fluid and salt secretion related diseases. The aim of this study was to identify natural compounds that are able to stimulate wild-type (wt) and ΔF508 mutant CFTR channel activities in CFTR-expressing Fischer rat thyroid (FRT) cells. We found that dehydrocostuslactone [DHC, (3aS, 6aR, 9aR, 9bS)-decahydro-3,6,9-tris (methylene) azuleno [4,5-b] furan-2(3H)-one)] dose dependently potentiates both wt and ΔF508 mutant CFTR-mediated iodide influx in cell-based fluorescent assays and CFTR-mediated Cl⁻ currents in short-circuit current studies, and the activations could be reversed by the CFTR inhibitor CFTRinh-172. Maximal CFTR-mediated apical Cl⁻ current secretion in CFTR-expressing FRT cells was stimulated by 100 μM DHC. Determination of intracellular cAMP content showed that DHC modestly but significantly increased cAMP level in FRT cells, but cAMP elevation effects contributed little to DHC-stimulated iodide influx. DHC also stimulated CFTR-mediated apical Cl⁻ current secretion in FRT cells expressing ΔF508-CFTR. Subsequent studies demonstrated that activation of CFTR by DHC is forskolin dependent. DHC represents a new class of CFTR potentiators that may have therapeutic potential in CFTR-related diseases.

  20. Ecohydrologic function and disturbance of desert ephemeral stream channels

    Science.gov (United States)

    Bedford, D.; Macias, M.; Miller, D. M.; Newlander, A.; Perkins, K. S.; Sandquist, D. R.; Schwinning, S.

    2011-12-01

    In response to rare high-intensity or long duration rainstorms, runoff in desert ephemeral channels can redistribute water through landscapes and potentially serve as a resource subsidy. We are using transect studies, mapping, monitoring and manipulation experiments to investigate the ecohydrologic relations of these pervasive features with vegetation in the eastern Mojave Desert, USA. We focus on a gently sloping piedmont transected by a ~100 year old railroad that alters natural channel flow by diverting it through staggered culverts to areas downslope of the railroad. This creates three distinct ecohydrologic zones: 1) relatively undisturbed areas above the railroad, 2) areas below the railroad that receive enhanced flow where water is diverted through culverts (enhanced zones), and 3) areas below the railroad where water flow from upslope has been blocked (deprived zones). In all areas we found that vegetation cover and density are higher adjacent to stream channels and decrease with distance from the channels. Relative to the undisturbed areas, vegetation cover is higher in the enhanced areas, and lower in the deprived. Species-specific vegetation changes included higher cover of the drought deciduous sub-shrub Ambrosia dumosa in deprived zones and higher cover of the evergreen drought-tolerant shrub Larrea tridentata in enhanced zones. Using simulated channel runoff experiments, we found that most Larrea within 3 m, and Ambrosia within 1.5 m of an undisturbed stream channel physiologically responded to a water pulse and the responses persisted for over a month. Less pronounced responses were seen adjacent to channels in the deprived zones, and did not persist as long. Electrical resistance imaging of the watering experiments shows that water infiltrates vertically in channels and spreads laterally at depth; vegetation use of channel water in the deprived zones appears to be reduced. While we have no information on the pace of vegetation change due to channel

  1. Null mutation of chloride channel 7 (Clcn7) impairs dental root formation but does not affect enamel mineralization

    NARCIS (Netherlands)

    J. Guo; T.J.M. Bervoets; K. Henriksen; V. Everts; A.L.J.J. Bronckers

    2016-01-01

    ClC-7, located in late endosomes and lysosomes, is critical for the function of osteoclasts. Secretion of Cl− by the ruffled border of osteoclasts enables H+ secretion by v-H+-ATPases to dissolve bone mineral. Mice lacking ClC-7 show altered lysosomal function that leads to severe lysosomal storage.

  2. Sodium Channel (Dys)Function and Cardiac Arrhythmias

    NARCIS (Netherlands)

    C.A. Remme; C.R. Bezzina

    2010-01-01

    P>Cardiac voltage-gated sodium channels are transmembrane proteins located in the cell membrane of cardiomyocytes. Influx of sodium ions through these ion channels is responsible for the initial fast upstroke of the cardiac action potential. This inward sodium current thus triggers the initiation an

  3. Protective role of acidic pH-activated chloride channel in severe acidosis-induced contraction from the aorta of spontaneously hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Zhiyong Ma

    Full Text Available Severe acidic pH-activated chloride channel (ICl,acid has been found in various mammalian cells. In the present study, we investigate whether this channel participates in reactions of the thoracic aorta to severe acidosis and whether it plays a role in hypertension. We measured isometric contraction in thoracic aorta rings from spontaneously hypertensive rats (SHRs and normotensive Wistar rats. Severe acidosis induced contractions of both endothelium-intact and -denuded thoracic aorta rings. In Wistar rats, contractions did not differ at pH 6.4, 5.4 and 4.4. However, in SHRs, contractions were higher at pH 5.4 or 4.4 than pH 6.4, with no difference between contractions at pH 5.4 and 4.4. Nifedipine, ICl,acid blockers 5-nitro-2-(3-phenylpropylamino benzoic acid (NPPB and 4,4'-diisothiocyanatostilbene-2, 2'-disulfonic acid (DIDS inhibited severe acidosis-induced contraction of aortas at different pH levels. When blocking ICl,acid, the remnant contraction was greater at pH 4.4 than pH 5.4 and 6.4 for both SHRs and Wistar rats. With nifedipine, the remnant contraction was greatly reduced at pH 4.4 as compared with at pH 6.4 and 5.4. With NPPB or DIDS, the ratio of remnant contractions at pH 4.4 and 5.4 (R4.4/5.4 was lower for SHRs than Wistar rats (all 1. Furthermore, patch clamp recordings of ICl,acid and intracellular Ca(2+ measurements in smooth muscle cells confirmed these findings. ICl,acid may protect arteries against excess vasoconstriction under extremely acidic extracellular conditions. This protective effect may be decreased in hypertension.

  4. TMEM16A:钙激活氯通道研究进展%TMEM16A:progress in calcium activated chloride channels

    Institute of Scientific and Technical Information of China (English)

    刘雅妮; 张海林

    2011-01-01

    钙激活氯通道(calcium-activated chloride channels,CaCCs)组织分布广泛,参与了众多生理过程,如感觉传导、神经和心肌兴奋性调节、腺体和上皮分泌等,甚至可能参与细胞分裂周期与细胞增殖.钙激活氯通道生理病理意义如此重要,但直到2008年才报道了跨膜蛋白16A(transmembrane protein 16A,TMEM16A)为钙激活氯通道的分子基础,同时研究揭示TMEM16A在一些肿瘤组织中表达明显上调.该文即对钙激活氯通道的生理、病理学意义进行综述.%The Ca + activated Cl channels ( CaCCs ) play a variety of physiological roles in many organs and tissues, including transduction of sensory stimuli, regulation of neuronal and cardiac excitability, and transepithelial Cl secretion. In addition, CaCCs may be involved in the cell division cycle and cell proliferation. The molecular identity of CaCCs remained controversial until 2008 when TMEM16A, a member of the transmembraneprotein 16 family, was identified as an important subunit of CaCCs. In this review, the physiological and pathophysiological roles of CaCCs are discussed.

  5. δ-opioid Receptor Induced Inhibition of Sodium Channel Function

    Institute of Scientific and Technical Information of China (English)

    康学智; 顾全保; 丁光宏; 晁东满; 王英伟; G Balboni; LH Lazarus; 夏萤

    2008-01-01

    Objective: To study the precise role of DOR in the regulation of sodium channels at present. Methods: With Xenopus oocytes co-expressing sodium channel subtype 2 (Nav1.2) and DOR. Results: 1) Nav1.2 expression induced tetrodotoxin-sensitive inward currents; 2) DOR expression reduced the inward currents; 3) activation of DOR reduced the amplitude of the current and rightly shifted the activation curve of the current in the oocytes with both Nav1.2 and DOR, but not in ones with Nav1.2 alone; 4) the DOR agonist-induced inhibition of Nav1.2 currents was in a dose-dependent manner and saturable; 5) the DOR agonist had no effect on naive oocytes. Conclusion: These data represent the first demonstration that activation of DOR inhibits Na+ channel function by decreasing the amplitude of sodium currents and increasing its threshold of activation. This novel finding has far-reaching impacts on novel solutions of certain neurological disorders such as hypoxic/ischemic injury, epilepsy and pain. Also, our data may improve the understanding of the mechanisms underlying acupuncture since acupuncture is known to activate the brain opioid system.%目的:研究δ-阿片受体表达和激活对钠通道1.2亚型的电流特性的影响.方法:用双电极电压钳技术,在δ-阿片受体和钠通道亚型1.2共表达的非洲爪蟾第V期卵母细胞上,观察δ-阿片受体表达和/或激活后,钠通道1.2亚型电流特性的变化.结果:1)钠通道1.2亚型的表达产生河豚毒素(tetrodotoxin,TTX)敏感的内向电流;2)δ-阿片受体的表达减少钠通道激活电流的幅度;3)δ-阿片受体和钠通道1.2亚型共表达的卵母细胞中,δ-阿片受体激动剂可以抑制钠通道激活电流的幅度和电导,而只有钠通道1.2亚型表达的卵母细胞则无此现象;4)δ-阿片受体激动剂抑制钠电流的作用具有剂量依赖关系,并能达到饱和状态;5)δ-阿片受体激动剂对未表达外派陛蛋白的卵母细胞无影响.结论:本结

  6. Glutamate-gated chloride channel subunit cDNA sequencing of Cochliomyia hominivorax (Diptera: Calliphoridae): cDNA variants and polymorphisms.

    Science.gov (United States)

    Lopes, Alberto Moura Mendes; de Carvalho, Renato Assis; de Azeredo-Espin, Ana Maria Lima

    2014-09-01

    The New World screwworm (NWS) Cochliomyia hominivorax (Coquerel) is one of the major myiasis-causing flies that injures livestock and leads to losses of ~US$ 2.7 billions/year in the Neotropics. Ivermectin (IVM), a macrocyclic lactone (ML), is the most used preventive insecticide for this parasite and targets the glutamate-gated chloride (GLUCLα) channels. Several authors have associated altered GluClα homologues to MLs resistance in invertebrates, although studies about resistance in NWS are limited to other genes. Here, we aimed to characterise the NWS GluClα (ChGluClα) cDNA and to search for alterations associated with IVM resistance in NWS larvae from a bioassay. The open reading frame of the ChGluClα comprised 1,359 bp and encoded a sequence of 452 amino acids. The ChGluClα cDNAs of the bioassay larvae showed different sequences that could be splice variants, which agree with the occurrence of alternative splicing in GluClα homologues. In addition, we found cDNAs with premature stop codons and the K242R SNP, which occurred more frequently in the surviving larvae and was located close to mutation (L256F) involved in ML resistance. Although these alterations were in low frequency, the ChGluClα sequencing will allow further studies to find alterations in the gene of resistant natural populations.

  7. Mapping of long-range INS promoter interactions reveals a role for calcium-activated chloride channel ANO1 in insulin secretion.

    Science.gov (United States)

    Xu, Zhixiong; Lefevre, Gaelle M; Gavrilova, Oksana; Foster St Claire, Mark B; Riddick, Gregory; Felsenfeld, Gary

    2014-11-25

    We used circular chromatin conformation capture (4C) to identify a physical contact in human pancreatic islets between the region near the insulin (INS) promoter and the ANO1 gene, lying 68 Mb away on human chromosome 11, which encodes a Ca(2+)-dependent chloride ion channel. In response to glucose, this contact was strengthened and ANO1 expression increased, whereas inhibition of INS gene transcription by INS promoter targeting siRNA decreased ANO1 expression, revealing a regulatory effect of INS promoter on ANO1 expression. Knockdown of ANO1 expression caused decreased insulin secretion in human islets, establishing a physical proximity-dependent feedback loop involving INS transcription, ANO1 expression, and insulin secretion. To explore a possible role of ANO1 in insulin metabolism, we carried out experiments in Ano1(+/-) mice. We observed reduced serum insulin levels and insulin-to-glucose ratios in high-fat diet-fed Ano1(+/-) mice relative to Ano1(+/+) mice fed the same diet. Our results show that determination of long-range contacts within the nucleus can be used to detect novel and physiologically relevant mechanisms. They also show that networks of long-range physical contacts are important to the regulation of insulin metabolism.

  8. Chloride ingress prediction

    DEFF Research Database (Denmark)

    Frederiksen, Jens Mejer; Geiker, Mette Rica

    2008-01-01

    Prediction of chloride ingress into concrete is an important part of durability design of reinforced concrete structures exposed to chloride containing environment. This paper presents experimentally based design parameters for Portland cement concretes with and without silica fume and fly ash...... in marine atmospheric and submersed South Scandinavian environment. The design parameters are based on sequential measurements of 86 chloride profiles taken over ten years from 13 different types of concrete. The design parameters provide the input for an analytical model for chloride profiles as function...

  9. Chloride ingress prediction

    DEFF Research Database (Denmark)

    Frederiksen, Jens Mejer; Geiker, Mette Rica

    2008-01-01

    Prediction of chloride ingress into concrete is an important part of durability design of reinforced concrete structures exposed to chloride containing environment. This paper presents the state-of-the art: an analytical model which describes chloride profiles in concrete as function of depth...... makes physical sense for the design engineer, i.e. the achieved chloride diffusion coefficients at 1 year and 100 years, D1 and D100 respectively, and the corresponding achieved chloride concentrations at the exposed concrete surface, C1 and C100. Data from field exposure supports the assumption of time...... dependent surface chloride concentrations and the diffusion coefficients. Model parameters for Portland cement concretes with and without silica fume and fly ash in marine atmospheric and submerged South Scandinavian environment are suggested in a companion paper based on 10 years field exposure data....

  10. Thionyl chloride assisted functionalization of amorphous carbon nanotubes: A better field emitter and stable nanofluid with better thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, S.K.; Jha, A. [School of Materials Science and Nanotechnology, Jadavpur University, Kolkata 700 032 (India); Chattopadhyay, K.K., E-mail: kalyan_chattopadhyay@yahoo.com [Thin Film & Nanoscience Laboratory, Department of Physics, Jadavpur University, Kolkata 700 032 (India); School of Materials Science and Nanotechnology, Jadavpur University, Kolkata 700 032 (India)

    2015-06-15

    Highlights: • Thionyl chloride assisted functionalization of amorphous carbon nanotubes (a-CNTs). • Improved dispersion enhanced thermal conductivity of engine oil. • Again f-a-CNTs showed enhanced field emission property compared to pure a-CNTs. - Abstract: Amorphous carbon nanotubes (a-CNTs) were synthesized at low temperature in open atmosphere and further functionalized by treating them in thionyl chloride added stearic acid-dichloro methane solution. The as prepared functionalized a-CNTs (f-a-CNTs) were characterized by Raman spectroscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy, transmission and scanning electron microscopy. The nanofluid was prepared by dispersing f-a-CNTs in engine oil using ultrasonic treatment. The effective thermal conductivity of as prepared nanofluid was investigated at different loading (volume fraction of f-a-CNTs). Obtained experimental data of thermal conductivity were compared with the predicted values, calculated using existing theoretical models. Stability of the nanofluid was tested by means of zeta potential measurement to optimize the loading. The as prepared f-a-CNTs sample also showed improved field emission result as compared to pristine a-CNTs. Dependence of field emission behavior on inter electrode distance was investigated too.

  11. Putative Structural and Functional Coupling of the Mitochondrial BKCa Channel to the Respiratory Chain.

    Directory of Open Access Journals (Sweden)

    Piotr Bednarczyk

    Full Text Available Potassium channels have been found in the inner mitochondrial membranes of various cells. These channels regulate the mitochondrial membrane potential, the matrix volume and respiration. The activation of these channels is cytoprotective. In our study, the single-channel activity of a large-conductance Ca(2+-regulated potassium channel (mitoBKCa channel was measured by patch-clamping mitoplasts isolated from the human astrocytoma (glioblastoma U-87 MG cell line. A potassium-selective current was recorded with a mean conductance of 290 pS in symmetrical 150 mM KCl solution. The channel was activated by Ca(2+ at micromolar concentrations and by the potassium channel opener NS1619. The channel was inhibited by paxilline and iberiotoxin, known inhibitors of BKCa channels. Western blot analysis, immuno-gold electron microscopy, high-resolution immunofluorescence assays and polymerase chain reaction demonstrated the presence of the BKCa channel β4 subunit in the inner mitochondrial membrane of the human astrocytoma cells. We showed that substrates of the respiratory chain, such as NADH, succinate, and glutamate/malate, decrease the activity of the channel at positive voltages. This effect was abolished by rotenone, antimycin and cyanide, inhibitors of the respiratory chain. The putative interaction of the β4 subunit of mitoBKCa with cytochrome c oxidase was demonstrated using blue native electrophoresis. Our findings indicate possible structural and functional coupling of the mitoBKCa channel with the mitochondrial respiratory chain in human astrocytoma U-87 MG cells.

  12. Median-plane sound localization as a function of the number of spectral channels using a channel vocoder.

    Science.gov (United States)

    Goupell, Matthew J; Majdak, Piotr; Laback, Bernhard

    2010-02-01

    Using a vocoder, median-plane sound localization performance was measured in eight normal-hearing listeners as a function of the number of spectral channels. The channels were contiguous and logarithmically spaced in the range from 0.3 to 16 kHz. Acutely testing vocoded stimuli showed significantly worse localization compared to noises and 100 pulses click trains, both of which were tested after feedback training. However, localization for the vocoded stimuli was better than chance. A second experiment was performed using two different 12-channel spacings for the vocoded stimuli, now including feedback training. One spacing was from experiment 1. The second spacing (called the speech-localization spacing) assigned more channels to the frequency range associated with speech. There was no significant difference in localization between the two spacings. However, even with training, localizing 12-channel vocoded stimuli remained worse than localizing virtual wideband noises by 4.8 degrees in local root-mean-square error and 5.2% in quadrant error rate. Speech understanding for the speech-localization spacing was not significantly different from that for a typical spacing used by cochlear-implant users. These experiments suggest that current cochlear implants have a sufficient number of spectral channels for some vertical-plane sound localization capabilities, albeit worse than normal-hearing listeners, without loss of speech understanding.

  13. Functional Characterization of Cnidarian HCN Channels Points to an Early Evolution of Ih.

    Directory of Open Access Journals (Sweden)

    Emma C Baker

    Full Text Available HCN channels play a unique role in bilaterian physiology as the only hyperpolarization-gated cation channels. Their voltage-gating is regulated by cyclic nucleotides and phosphatidylinositol 4,5-bisphosphate (PIP2. Activation of HCN channels provides the depolarizing current in response to hyperpolarization that is critical for intrinsic rhythmicity in neurons and the sinoatrial node. Additionally, HCN channels regulate dendritic excitability in a wide variety of neurons. Little is known about the early functional evolution of HCN channels, but the presence of HCN sequences in basal metazoan phyla and choanoflagellates, a protozoan sister group to the metazoans, indicate that the gene family predates metazoan emergence. We functionally characterized two HCN channel orthologs from Nematostella vectensis (Cnidaria, Anthozoa to determine which properties of HCN channels were established prior to the emergence of bilaterians. We find Nematostella HCN channels share all the major functional features of bilaterian HCNs, including reversed voltage-dependence, activation by cAMP and PIP2, and block by extracellular Cs+. Thus bilaterian-like HCN channels were already present in the common parahoxozoan ancestor of bilaterians and cnidarians, at a time when the functional diversity of voltage-gated K+ channels was rapidly expanding. NvHCN1 and NvHCN2 are expressed broadly in planulae and in both the endoderm and ectoderm of juvenile polyps.

  14. Physiologic and pathophysiologic consequences of altered sialylation and glycosylation on ion channel function.

    Science.gov (United States)

    Baycin-Hizal, Deniz; Gottschalk, Allan; Jacobson, Elena; Mai, Sunny; Wolozny, Daniel; Zhang, Hui; Krag, Sharon S; Betenbaugh, Michael J

    2014-10-17

    Voltage-gated ion channels are transmembrane proteins that regulate electrical excitability in cells and are essential components of the electrically active tissues of nerves, muscle and the heart. Potassium channels are one of the largest subfamilies of voltage sensitive channels and are among the most-studied of the voltage-gated ion channels. Voltage-gated channels can be glycosylated and changes in the glycosylation pattern can affect ion channel function, leading to neurological and neuromuscular disorders and congenital disorders of glycosylation (CDG). Alterations in glycosylation can also be acquired and appear to play a role in development and aging. Recent studies have focused on the impact of glycosylation and sialylation on ion channels, particularly for voltage-gated potassium and sodium channels. The terminal step of sialylation often affects channel activation and inactivation kinetics. The presence of sialic acids on O or N-glycans can alter the gating mechanism and cause conformational changes in the voltage-sensing domains due to sialic acid's negative charges. This manuscript will provide an overview of sialic acids, potassium and sodium channel function, and the impact of sialylation on channel activation and deactivation.

  15. Transient receptor potential mucolipin 1 (TRPML1) and two-pore channels are functionally independent organellar ion channels.

    Science.gov (United States)

    Yamaguchi, Soichiro; Jha, Archana; Li, Qin; Soyombo, Abigail A; Dickinson, George D; Churamani, Dev; Brailoiu, Eugen; Patel, Sandip; Muallem, Shmuel

    2011-07-01

    NAADP is a potent second messenger that mobilizes Ca(2+) from acidic organelles such as endosomes and lysosomes. The molecular basis for Ca(2+) release by NAADP, however, is uncertain. TRP mucolipins (TRPMLs) and two-pore channels (TPCs) are Ca(2+)-permeable ion channels present within the endolysosomal system. Both have been proposed as targets for NAADP. In the present study, we probed possible physical and functional association of these ion channels. Exogenously expressed TRPML1 showed near complete colocalization with TPC2 and partial colocalization with TPC1. TRPML3 overlap with TPC2 was more modest. TRPML1 and to some extent TRPML3 co-immunoprecipitated with TPC2 but less so with TPC1. Current recording, however, showed that TPC1 and TPC2 did not affect the activity of wild-type TRPML1 or constitutively active TRPML1(V432P). N-terminally truncated TPC2 (TPC2delN), which is targeted to the plasma membrane, also failed to affect TRPML1 and TRPML1(V432P) channel function or TRPML1(V432P)-mediated Ca(2+) influx. Whereas overexpression of TPCs enhanced NAADP-mediated Ca(2+) signals, overexpression of TRPML1 did not, and the dominant negative TRPML1(D471K) was without affect on endogenous NAADP-mediated Ca(2+) signals. Furthermore, the single channel properties of NAADP-activated TPC2delN were not affected by TRPML1. Finally, NAADP-evoked Ca(2+) oscillations in pancreatic acinar cells were identical in wild-type and TRPML1(-/-) cells. We conclude that although TRPML1 and TPCs are present in the same complex, they function as two independent organellar ion channels and that TPCs, not TRPMLs, are the targets for NAADP.

  16. Ion-Pair Halogen Bonds in 2-Halo-Functionalized Imidazolium Chloride Receptors: Substituent and Solvent Effects.

    Science.gov (United States)

    Nunes, Rafael; Costa, Paulo J

    2017-01-03

    The interaction of 2-halo-functionalized imidazolium derivatives (n-X(+) ; X=Cl, Br, I) with a chloride anion through ion-pair halogen bonds (n-X⋅Cl) was studied by means of DFT and ab initio calculations. A method benchmark was performed on 2-bromo-1H-imidazol-3-ium in association with chloride (1-Br⋅Cl); MP2 yielded the best results when compared with CCSD(T) calculations. The interaction energies (ΔE) in the gas phase are high and, although the electrostatic interaction is strong owing to the ion-pair nature of the system, large X⋅⋅⋅Cl(-) Wiberg bond orders and contributions from charge transfer (nCl- →σ*C-X) are obtained. These values drop considerably in chloroform and water; this shows that solvent plays a role in modulating the interaction and that gas-phase calculations are particularly unrealistic for experimental applications. The introduction of electron-withdrawing groups in the 4,5-positions of the imidazolium (e.g., -NO2 , -F) increases the halogen-bond strength in both the gas phase and solvent, including water. The effect of the substituents on the 1,3-positions (N-H groups) also depends on the solvent. The variation of ΔE can be predicted through a two-parameter linear regression that optimizes the weights of charge-transfer and electrostatic interactions, which are different in vacuum and in solvent (chloroform and water). These results could be used in the rational design of efficient chloride receptors based on halogen bonds that work in solution, in particular, in an aqueous environment.

  17. Null mutation of chloride channel 7 (Clcn7) impairs dental root formation but does not affect enamel mineralization.

    Science.gov (United States)

    Guo, Jing; Bervoets, Theodore J M; Henriksen, Kim; Everts, Vincent; Bronckers, Antonius L J J

    2016-02-01

    ClC-7, located in late endosomes and lysosomes, is critical for the function of osteoclasts. Secretion of Cl(-) by the ruffled border of osteoclasts enables H(+) secretion by v-H(+)-ATPases to dissolve bone mineral. Mice lacking ClC-7 show altered lysosomal function that leads to severe lysosomal storage. Maturation ameloblasts are epithelial cells with a ruffled border that secrete Cl(-) as well as endocytose and digest large quantities of enamel matrix proteins during formation of dental enamel. We tested the hypothesis that ClC-7 in maturation ameloblasts is required for intracellular digestion of matrix fragments to complete enamel mineralization. Craniofacial bones and developing teeth in Clcn7(-/-) mice were examined by micro-CT, immunohistochemistry, quantified histomorphometry and electron microscopy. Osteoclasts and ameloblasts in wild-type mice stained intensely with anti-ClC-7 antibody but not in Clcn7(-/-) mice. Craniofacial bones in Clcn7(-/-) mice were severely osteopetrotic and contained 1.4- to 1.6-fold more bone volume, which was less mineralized than the wild-type littermates. In Clcn7(-/-) mice maturation ameloblasts and osteoclasts highly expressed Ae2 as in wild-type mice. However, teeth failed to erupt, incisors were much shorter and roots were disfigured. Molars formed a normal dental crown. In compacted teeth, dentin was slightly less mineralized, enamel did not retain a matrix and mineralized fairly normal. We concluded that ClC-7 is essential for osteoclasts to resorb craniofacial bones to enable tooth eruption and root development. Disruption of Clcn7 reduces bone and dentin mineral density but does not affect enamel mineralization.

  18. Polymer-clay nanocomposites obtained by solution polymerization of vinyl benzyl triammonium chloride in the presence of advanced functionalized clay

    Indian Academy of Sciences (India)

    Raluca Ianchis; Dan Donescu; Ludmila Otilia Cinteza; Violeta Purcar; Cristina Lavinia Nistor; Critian Petcu; Cristian Andi Nicolae; Raluca Gabor; Silviu Preda

    2014-05-01

    Polymer-clay nanocomposites were synthesized by solution polymerization method using advanced functionalized clay and vinyl benzyl trimethyl ammonium chloride as monomer. First stage consisted in the silylation of a commercial organo-modified clay-Cl 20A using alkoxysilanes with different chain lengths. In the second step, the synthesis and characterization of polymer-nanocomposites were followed. To evaluate the clay functionalization process as well as the final polymer-clay products, thermogravimetric,X-ray diffraction, dynamic light scattering, Fourier transform infrared spectroscopy and three test liquid contact angles analyses were used. The loss of ammonium ions from commercial clay, the grafting degree, the lengths and the nature of alkyl chain influence the dispersion of the advanced modified clay into the polymer solution and, furthermore, the properties of the final polymer-clay nanocomposite film.

  19. Loss of chloride channel ClC-5 impairs endocytosis by defective trafficking of megalin and cubilin in kidney proximal tubules.

    Science.gov (United States)

    Christensen, Erik I; Devuyst, Olivier; Dom, Geneviève; Nielsen, Rikke; Van der Smissen, Patrick; Verroust, Pierre; Leruth, Michèle; Guggino, William B; Courtoy, Pierre J

    2003-07-08

    Loss of the renal endosome-associated chloride channel, ClC-5, in Dent's disease and knockout (KO) mice strongly inhibits endocytosis of filtered proteins by kidney proximal tubular cells (PTC). The underlying mechanism remains unknown. We therefore tested whether this endocytic failure could primarily reflect a loss of reabsorption by the multiligand receptors, megalin, and cubilin, caused by a trafficking defect. Impaired protein endocytosis in PTC of ClC-5 KO mice was demonstrated by (i) a major decreased uptake of injected 125I-beta 2-microglobulin, but not of the fluid-phase tracer, FITC-dextran, (ii) reduced labeling of endosomes by injected peroxidase and for the endogenous megalin/cubilin ligands, vitamin D- and retinol-binding proteins, and (iii) urinary appearance of low-molecular-weight proteins and the selective cubilin ligand, transferrin. Contrasting with preserved mRNA levels, megalin and cubilin abundance was significantly decreased in kidney extracts of KO mice. Percoll gradients resolving early and late endosomes (Rab5a, Rab7), brush border (villin, aminopeptidase M), and a dense peak comprising lysosomes (acid hydrolases) showed a disappearance of the brush border component for megalin and cubilin in KO mice. Quantitative ultrastructural immunogold labeling confirmed the overall decrease of megalin and cubilin in PTC and their selective loss at the brush border. In contrast, total contents of the rate-limiting endocytic catalysts, Rab5a and Rab7, were unaffected. Thus, impaired protein endocytosis caused by invalidation of ClC-5 primarily reflects a trafficking defect of megalin and cubilin in PTC.

  20. Triple functional shared channel in WDM PON by orthogonal modulation and network coding

    Science.gov (United States)

    Lu, Yang; Wei, Yizhen; Hu, Miao; Zhou, Xuefang; Qian, Zhengfeng; Li, Qiliang

    2015-02-01

    A triple functional shared channel in WDM PON is proposed. The channel can be applied for broadcasting, duplex inter-ONU-communication or dynamical bandwidth allocation, increasing the flexibility and the resource utilization of the scheme. The three applications could be achieved by the same hardware, with different software operations. One example scheme is demonstrated. The test results show error free operation is achieved after for the downstream transmission, upstream transmission and the proposed three applications in shared channel after 25 km transmission.

  1. Monitoring Ion Channel Function In Real Time Through Quantum Decoherence

    CERN Document Server

    Hall, L T; Cole, J H; Städler, B; Caruso, F; Mulvaney, P; Wrachtrup, J; Hollenberg, L C L

    2009-01-01

    In drug discovery research there is a clear and urgent need for non-invasive detection of cell membrane ion channel operation with wide-field capability. Existing techniques are generally invasive, require specialized nano structures, or are only applicable to certain ion channel species. We show that quantum nanotechnology has enormous potential to provide a novel solution to this problem. The nitrogen-vacancy (NV) centre in nano-diamond is currently of great interest as a novel single atom quantum probe for nanoscale processes. However, until now, beyond the use of diamond nanocrystals as fluorescence markers, nothing was known about the quantum behaviour of a NV probe in the complex room temperature extra-cellular environment. For the first time we explore in detail the quantum dynamics of a NV probe in proximity to the ion channel, lipid bilayer and surrounding aqueous environment. Our theoretical results indicate that real-time detection of ion channel operation at millisecond resolution is possible by d...

  2. Functional expression of T-type Ca2+ channels in spinal motoneurons of the adult turtle.

    Directory of Open Access Journals (Sweden)

    Martha Canto-Bustos

    Full Text Available Voltage-gated Ca2+ (CaV channels are transmembrane proteins comprising three subfamilies named CaV1, CaV2 and CaV3. The CaV3 channel subfamily groups the low-voltage activated Ca2+ channels (LVA or T-type a significant role in regulating neuronal excitability. CaV3 channel activity may lead to the generation of complex patterns of action potential firing such as the postinhibitory rebound (PIR. In the adult spinal cord, these channels have been found in dorsal horn interneurons where they control physiological events near the resting potential and participate in determining excitability. In motoneurons, CaV3 channels have been found during development, but their functional expression has not yet been reported in adult animals. Here, we show evidence for the presence of CaV3 channel-mediated PIR in motoneurons of the adult turtle spinal cord. Our results indicate that Ni2+ and NNC55-0396, two antagonists of CaV3 channel activity, inhibited PIR in the adult turtle spinal cord. Molecular biology and biochemical assays revealed the expression of the CaV3.1 channel isotype and its localization in motoneurons. Together, these results provide evidence for the expression of CaV3.1 channels in the spinal cord of adult animals and show also that these channels may contribute to determine the excitability of motoneurons.

  3. Two cystic fibrosis transmembrane conductance regulator mutations have different effects on both pulmonary phenotype and regulation of outwardly rectified chloride currents.

    OpenAIRE

    Fulmer, S B; Schwiebert, E M; M.M. Morales; Guggino, W B; Cutting, G R

    1995-01-01

    Cystic fibrosis (CF), a disorder of electrolyte transport manifest in the lungs, pancreas, sweat duct, and vas deferens, is caused by mutations in the CF transmembrane conductance regulator (CFTR). The CFTR protein has been shown to function as a cAMP-activated chloride channel and also regulates a separate protein, the outwardly rectifying chloride channel (ORCC). To determine the consequence of disease-producing mutations upon these functions, mutant CFTR was transiently expressed in Xenopu...

  4. Cochlear function in mice lacking the BK channel alpha, beta1, or beta4 subunits

    NARCIS (Netherlands)

    Pyott, Sonja J; Meredith, Andrea L; Fodor, Anthony A; Vázquez, Ana E; Yamoah, Ebenezer N; Aldrich, Richard W

    2007-01-01

    Large conductance voltage- and calcium-activated potassium (BK) channels are important for regulating many essential cellular functions, from neuronal action potential shape and firing rate to smooth muscle contractility. In amphibians, reptiles, and birds, BK channels mediate the intrinsic frequenc

  5. Localization and function of ATP-sensitive potassium channels in human skeletal muscle

    DEFF Research Database (Denmark)

    Nielsen, Jens Jung; Kristensen, Michael; Hellsten, Ylva

    2003-01-01

    The present study investigated the localization of ATP-sensitive K+ (KATP) channels in human skeletal muscle and the functional importance of these channels for human muscle K+ distribution at rest and during muscle activity. Membrane fractionation based on the giant vesicle technique...

  6. Kv3.4 channel function and dysfunction in nociceptors.

    Science.gov (United States)

    Ritter, David M; Zemel, Benjamin M; Lepore, Angelo C; Covarrubias, Manuel

    2015-01-01

    Recently, we reported the isolation of the Kv3.4 current in dorsal root ganglion (DRG) neurons and described dysregulation of this current in a spinal cord injury (SCI) model of chronic pain. These studies strongly suggest that rat Kv3.4 channels are major regulators of excitability in DRG neurons from pups and adult females, where they help determine action potential (AP) repolarization and spiking properties. Here, we characterized the Kv3.4 current in rat DRG neurons from adult males and show that it transfers 40-70% of the total repolarizing charge during the AP across all ages and sexes. Following SCI, we also found remodeling of the repolarizing currents during the AP. In the light of these studies, homomeric Kv3.4 channels expressed in DRG nociceptors are emerging novel targets that may help develop new approaches to treat neuropathic pain.

  7. Chloride channels in toad skin

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Rasmussen, B E

    1982-01-01

    A study of the voltage and time dependence of a transepithelial Cl- current in toad skin (Bufo bufo) by the voltage-clamp method leads to the conclusion that potential has a dual role for Cl- transport. One is to control the permeability of an apical membrane Cl-pathway, the other is to drive Cl...

  8. Effect of safflower yellow pigment sodium chloride injection on hemorheology and blood coagulation function in patients with hip replacement surgery

    Institute of Scientific and Technical Information of China (English)

    Zhi Wang; Wei-Xin Yang; Xiu-Hua Zhang; Xian Jiang

    2016-01-01

    Objective:To investigate the effect of safflower yellow pigment sodium chloride injection on hemorheology and coagulation function in patients with hip replacement surgery.Methods:A total of 80 cases of hip joint replacement were divided into two groups according to the random number table method, 40 cases in each group. Patients in two groups were conducted with regular hip replacement, postoperative conventional symptomatic treatment. Based on it, patients of the observation group started to get the safflower yellow pigment and sodium chloride injection in the first week after operation, intravenous injection. A total of 3 weeks of treatment. blood rheological index were compared including plasma viscosity, whole blood viscosity at high shear, low shear whole blood viscosity, red blood cell hematocrit and blood coagulation indexes: prothrombin time (PT), activation activated partial thromboplastin time (APTT), thrombin time (TT), D-Dimer (D-D), fibrinogen (FIB) between the two groups postoperative 1 week, postoperative 2 weeks and postoperative 4 weeks.Results:The plasma viscosity, high shear viscosity of whole blood, low shear viscosity of whole blood, D-D in control group postoperative 2 week and 4 week were significantly higher than that of preoperative 1 week; while red blood cell volume, PT, APTT, TT, Fib were significantly lower than preoperative 1 week (P0.05). The PT, APTT in observation group postoperative 2 week and 4 week were significantly increased compared with preoperative 1 week, and the TT in observation group postoperative 4 week was significantly increased compared with preoperative 1 week (P<0.05); The plasma viscosity, high shear viscosity of whole blood, low shear viscosity of whole blood, D-D in observation group were significantly lower, while the PT, APTT, TT, Fib in observation group were significantly higher than that in control group in the same time point (P<0.05).Conclusions:Hip replacement will cause the change of blood rheology in

  9. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy

    Science.gov (United States)

    Pollak, Julia; Rai, Karan G.; Funk, Cory C.; Arora, Sonali; Lee, Eunjee; Zhu, Jun; Price, Nathan D.; Paddison, Patrick J.; Ramirez, Jan-Marino; Rostomily, Robert C.

    2017-01-01

    Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs) are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance. PMID:28264064

  10. Bacterial mechanosensitive channels--MscS: evolution's solution to creating sensitivity in function.

    Science.gov (United States)

    Naismith, James H; Booth, Ian R

    2012-01-01

    The discovery of mechanosensing channels has changed our understanding of bacterial physiology. The mechanosensitive channel of small conductance (MscS) is perhaps the most intensively studied of these channels. MscS has at least two states: closed, which does not allow solutes to exit the cytoplasm, and open, which allows rapid efflux of solvent and solutes. The ability to appropriately open or close the channel (gating) is critical to bacterial survival. We briefly review the science that led to the isolation and identification of MscS. We concentrate on the structure-function relationship of the channel, in particular the structural and biochemical approaches to understanding channel gating. We highlight the troubling discrepancies between the various models developed to understand MscS gating.

  11. The unique contribution of ion channels to platelet and megakaryocyte function.

    Science.gov (United States)

    Mahaut-Smith, M P

    2012-09-01

    Ion channels are transmembrane proteins that play ubiquitous roles in cellular homeostasis and activation. In addition to their recognized role in the regulation of ionic permeability and thus membrane potential, some channel proteins possess intrinsic kinase activity, directly interact with integrins or are permeable to molecules up to ≈1000 Da. The small size and anuclear nature of the platelet has often hindered progress in understanding the role of specific ion channels in hemostasis, thrombosis and other platelet-dependent events. However, with the aid of transgenic mice and 'surrogate' patch clamp recordings from primary megakaryocytes, important unique contributions to platelet function have been identified for several classes of ion channel. Examples include ATP-gated P2X1 channels, Orai1 store-operated Ca2+ channels, voltage-gated Kv1.3 channels, AMPA and kainate glutamate receptors and connexin gap junction channels. Furthermore, evidence exists that some ion channels, such as NMDA glutamate receptors, contribute to megakaryocyte development. This review examines the evidence for expression of a range of ion channels in the platelet and its progenitor cell, and highlights the distinct roles that these proteins may play in health and disease.

  12. Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel

    Energy Technology Data Exchange (ETDEWEB)

    Leng, Q.; Mercier, R.W.; Yao, W.; Berkowitz, G.A.

    1999-11-01

    Cyclic nucleotide-gated (cng) non-selective cation channels have been cloned from a number of animal systems. These channels are characterized by direct gating upon cAMO or cGMO binding to the intracellular portion of the channel protein, which leads to an increase in channel conductance. Animal cng channels are involved in signal transduction systems; they translate stimulus-induced changes in cytosolic cyclic nucleotide into altered cell membrane potential and/or cation flux as part of a signal cascade pathway. Putative plant homologs of animal cng channels have been identified. However, functional characterization (i.e., demonstration of cyclic-nucleotide-dependent ion currents) of a plant cng channel has not yet been accomplished. The authors report the cloning and first functional characterization of a plant member of this family of ion channels. The Arabidopsis cDNA AtCNGC2 encodes a polypeptide with deduced homology to the {alpha}-subunit of animal channels, and facilitates cyclic nucleotide-dependent cation currents upon expression in a number of heterologous systems. AtCNGC2 expression in a yeast mutant lacking a low-affinity K{sup +} uptake system complements growth inhibition only when lipophilic nucleotides are present in the culture medium. Voltage clamp analysis indicates that Xenopus lawvis oocytes injected with AtCNGC2 cRNA demonstrate cyclic-nucleotide-dependent, inward-rectifying K{sup +} currents. Human embryonic kidney cells (HEK293) transfected with AtCNGC2 cDNA demonstrate increased permeability to Ca{sup 2+} only in the presence of lipophilic cyclic nucleotides. The evidence presented here supports the functional classification of AtCNGC2 as a cyclic-nucleotide-gated cation channel, and presents the first direct evidence identifying a plant member of this ion channel family.

  13. PERTURBATION OF VOLTAGE-SENSITIVE Ca2+ CHANNEL FUNCTION BY VOLATILE ORGANIC SOLVENTS.

    Science.gov (United States)

    The mechanisms underlying the acute neurophysiological and behavioral effects of volatile organic compounds (VOCs) remain to be elucidated. However, the function of neuronal ion channels is perturbed by VOCs. The present study examined effects of toluene (TOL), trichloroethylene ...

  14. Cobalt Chloride Induces Expression and Function of Breast Cancer Resistance Protein (BCRP/ABCG2) in Human Renal Proximal Tubular Epithelial Cell Line HK-2.

    Science.gov (United States)

    Nishihashi, Katsuki; Kawashima, Kei; Nomura, Takami; Urakami-Takebayashi, Yumiko; Miyazaki, Makoto; Takano, Mikihisa; Nagai, Junya

    2017-01-01

    The human breast cancer resistance protein (BCRP/ABCG2), a member of the ATP-binding cassette transporter family, is a drug transporter restricting absorption and enhancing excretion of many compounds including anticancer drugs. The cis-regulatory elements in the BCRP promoter include a hypoxia response element, i.e., the DNA binding site for hypoxia-inducible factor-1 (HIF-1). In this study, we investigated the effect of cobalt chloride, a chemical inducer of HIF-1α, on the expression and function of BCRP in human renal proximal tubular cell line HK-2. Cobalt chloride treatment significantly increased the mRNA expression of not only glucose transporter 1 (GLUT1), a typical HIF-1 target gene mRNA, but also ABCG2 mRNA in HK-2 cells. The BCRP inhibitor Ko143-sensitive accumulation of BCRP substrates such as Hoechst33342 and mitoxantrone was significantly enhanced by cobalt chloride treatment. In addition, treatment with cobalt chloride significantly increased the Ko143-sensitive accumulation of fluorescein isothiocyanate-labeled methotrexate in HK-2 cells. Furthermore, cobalt chloride treatment attenuated the cytotoxicity induced by mitoxantrone and methotrexate, which might be, at least in part, due to the increase in BCRP-mediated transport activity via HIF-1 activation. These findings indicate that HIF-1 activation protects renal proximal tubular cells against BCRP substrate-induced cytotoxicity by enhancing the expression and function of BCRP in renal proximal tubular cells.

  15. Functional coupling of TRPV4 channels and BK channels in regulating spontaneous contractions of the guinea pig urinary bladder.

    Science.gov (United States)

    Isogai, Ayu; Lee, Ken; Mitsui, Retsu; Hashitani, Hikaru

    2016-09-01

    We investigated the role of TRPV4 channels (TRPV4) in regulating the contractility of detrusor smooth muscle (DSM) and muscularis mucosae (MM) of the urinary bladder. Distribution of TRPV4 in DSM and MM of guinea-pig bladders was examined by fluorescence immunohistochemistry. Changes in the contractility of DSM and MM bundles were measured using isometric tension recording. Intracellular Ca(2+) dynamics were visualized by Cal-520 fluorescent Ca(2+) imaging, while membrane potential changes were recorded using intracellular microelectrode technique. DSM and MM expressed TRPV4 immunoreactivity. GSK1016790A (GSK, 1 nM), a TRPV4 agonist, evoked a sustained contraction in both DSM and MM associated with a cessation of spontaneous phasic contractions in a manner sensitive to HC-067047 (10 μM), a TRPV4 antagonist. Iberiotoxin (100 nM) and paxilline (1 μM), large conductance Ca(2+)-activated K(+) (BK) channel blockers restored the spontaneous contractions in GSK. The sustained contractions in DSM and MM were reduced by nifedipine (10 μM), a blocker of L-type voltage-dependent Ca(2+) channels (LVDCCs) by about 40 % and by nominally Ca(2+)-free solution by some 90 %. GSK (1 nM) abolished spontaneous Ca(2+) transients, increased basal Ca(2+) levels and also prevented spontaneous action potential discharge associated with DSM membrane hyperpolarization. In conclusion, Ca(2+) influx through TRPV4 appears to activate BK channels to suppress spontaneous contractions and thus a functional coupling of TRPV4 with BK channels may act as a self-limiting mechanism for bladder contractility during its storage phase. Despite the membrane hyperpolarization in GSK, Ca(2+) entry mainly through TRPV4 develops the tonic contraction.

  16. Control channels in the brain and their influence on brain executive functions

    Science.gov (United States)

    Meng, Qinglei; Choa, Fow-Sen; Hong, Elliot; Wang, Zhiguang; Islam, Mohammad

    2014-05-01

    In a computer network there are distinct data channels and control channels where massive amount of visual information are transported through data channels but the information streams are routed and controlled by intelligent algorithm through "control channels". Recent studies on cognition and consciousness have shown that the brain control channels are closely related to the brainwave beta (14-40 Hz) and alpha (7-13 Hz) oscillations. The high-beta wave is used by brain to synchronize local neural activities and the alpha oscillation is for desynchronization. When two sensory inputs are simultaneously presented to a person, the high-beta is used to select one of the inputs and the alpha is used to deselect the other so that only one input will get the attention. In this work we demonstrated that we can scan a person's brain using binaural beats technique and identify the individual's preferred control channels. The identified control channels can then be used to influence the subject's brain executive functions. In the experiment, an EEG measurement system was used to record and identify a subject's control channels. After these channels were identified, the subject was asked to do Stroop tests. Binaural beats was again used to produce these control-channel frequencies on the subject's brain when we recorded the completion time of each test. We found that the high-beta signal indeed speeded up the subject's executive function performance and reduced the time to complete incongruent tests, while the alpha signal didn't seem to be able to slow down the executive function performance.

  17. Excitotoxic death induced by released glutamate in depolarized primary cultures of mouse cerebellar granule cells is dependent on GABAA receptors and niflumic acid-sensitive chloride channels.

    Science.gov (United States)

    Babot, Zoila; Cristòfol, Rosa; Suñol, Cristina

    2005-01-01

    Excitotoxic neuronal death has been linked to neurological and neurodegenerative diseases. Several studies have sought to clarify the involvement of Cl(-) channels in neuronal excitotoxicity using either N-methyl-D-aspartic acid (NMDA) or alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainic acid agonists. In this work we induced excitotoxic death in primary cultures of cerebellar granule cells by means of endogenously released glutamate. Excitotoxicity was provoked by exposure to high extracellular K(+) concentrations ([K(+)](o)) for 5 min. Under these conditions, a Ca(2+)-dependent release of glutamate was evoked. When extracellular glutamate concentration rose to between 2 and 4 microM, cell viability was significantly reduced by 30-40%. The NMDA receptor antagonists (MK-801 and D-2-amino-5-phosphonopentanoic acid) prevented cell death. Exposure to high [K(+)](o) produced a (36)Cl(-) influx which was significantly reduced by picrotoxinin. In addition, the GABA(A) receptor antagonists (bicuculline, picrotoxinin and SR 95531) protected cells from high [K(+)](o)-triggered excitotoxicity and reduced extracellular glutamate concentration. The Cl(-) channel blockers niflumic acid and 5-nitro-2-(3-phenylpropylamino)benzoic acid also exerted a neuroprotective effect and reduced extracellular glutamate concentration, even though they did not reduce high [K(+)](o)-induced (36)Cl(-) influx. Primary cultures of cerebellar granule cells also contain a population of GABAergic neurons that released GABA in response to high [K(+)](o). Chronic treatment of primary cultures with kainic acid abolished GABA release and rendered granule cells insensitive to high [K(+)](o) exposure, even though NMDA receptors were functional. Altogether, these results demonstrate that, under conditions of membrane depolarization, low micromolar concentrations of extracellular glutamate might induce an excitotoxic process through both NMDA and GABA(A) receptors and niflumic acid-sensitive Cl

  18. Discrete-state representation of ion permeation coupled to fast gating in a model of CLC-chloride channels: analytic estimation of the state-to-state rate constants.

    Science.gov (United States)

    Coalson, Rob D; Cheng, Mary Hongying

    2011-09-01

    Analytical estimation of state-to-state rate constants is carried out for a recently developed discrete state model of chloride ion motion in a CLC chloride channel (Coalson and Cheng, J. Phys. Chem. B 2010, 114, 1424). In the original presentation of this model, the same rate constants were evaluated via three-dimensional Brownian dynamics simulations. The underlying dynamical theory is an appropriate single- or multiparticle three-dimensional Smoluchowski equation. Taking advantage of approximate geometric symmetries (based on the details of the model channel geometry), well-known formulas for state-to-state transition rates are appealed to herein and adapted as necessary to the problem at hand. Rates of ionic influx from a bulk electrolyte reservoir to the nearest binding site within the channel pore are particularly challenging to compute analytically because they reflect multi-ion interactions (as opposed to single-ion dynamics). A simple empirical correction factor is added to the single-ion rate constant formula in this case to account for the saturation of influx rate constants with increasing bulk Cl(-) concentration. Overall, the agreement between all analytically estimated rate constants is within a factor of 2 of those computed via three-dimensional Brownian dynamics simulations, and often better than this. Current-concentration curves obtained using rate constants derived from these two different computational approaches agree to within 25%.

  19. Atmospheric channel transfer function estimation from experimental free-space optical communications data

    Science.gov (United States)

    Reinhardt, Colin N.; Tsintikidis, Dimitris; Hammel, Stephen; Kuga, Yasuo; Ritcey, James A.; Ishimaru, Akira

    2012-03-01

    Using an 850-nanometer-wavelength free-space optical (FSO)communications system of our own design, we acquired field data for the transmitted and received signals in fog at Point Loma, CA for a range of optical depths within the multiple-scattering regime. Statistical estimators for the atmospheric channel transfer function and the related coherency function were computed directly from the experimental data. We interpret the resulting channel transfer function estimates in terms of the physics of the atmospheric propagation channel and fog aerosol particle distributions. We investigate the behavior of the estimators using both real field-test data and simulated propagation data. We compare the field-data channel transfer function estimates against the outputs from a computationally-intensive radiative-transfer theory model-based approach, which we also developed previously for the FSO multiple-scattering atmospheric channel. Our results show that the data-driven channel transfer function estimates are in close agreement with the radiative transfer modeling, and provide comparable receiver signal detection performance improvements while being significantly less time and computationally-intensive.

  20. Correlation of apical fluid-regulating channel proteins with lung function in human COPD lungs.

    Directory of Open Access Journals (Sweden)

    Runzhen Zhao

    Full Text Available Links between epithelial ion channels and chronic obstructive pulmonary diseases (COPD are emerging through animal model and in vitro studies. However, clinical correlations between fluid-regulating channel proteins and lung function in COPD remain to be elucidated. To quantitatively measure epithelial sodium channels (ENaC, cystic fibrosis transmembrane conductance regulator (CFTR, and aquaporin 5 (AQP5 proteins in human COPD lungs and to analyze the correlation with declining lung function, quantitative western blots were used. Spearman tests were performed to identify correlations between channel proteins and lung function. The expression of α and β ENaC subunits was augmented and inversely associated with lung function. In contrast, both total and alveolar type I (ATI and II (ATII-specific CFTR proteins were reduced. The expression level of CFTR proteins was associated with FEV1 positively. Abundance of AQP5 proteins and extracellular superoxide dismutase (SOD3 was decreased and correlated with spirometry test results and gas exchange positively. Furthermore, these channel proteins were significantly associated with severity of disease. Our study demonstrates that expression of ENaC, AQP5, and CFTR proteins in human COPD lungs is quantitatively associated with lung function and severity of COPD. These apically located fluid-regulating channels may thereby serve as biomarkers and potent druggable targets of COPD.

  1. Cytosolic chloride ion is a key factor in lysosomal acidification and function of autophagy in human gastric cancer cell.

    Science.gov (United States)

    Hosogi, Shigekuni; Kusuzaki, Katsuyuki; Inui, Toshio; Wang, Xiangdong; Marunaka, Yoshinori

    2014-06-01

    The purpose of the present study was to clarify roles of cytosolic chloride ion (Cl(-) ) in regulation of lysosomal acidification [intra-lysosomal pH (pHlys )] and autophagy function in human gastric cancer cell line (MKN28). The MKN28 cells cultured under a low Cl(-) condition elevated pHlys and reduced the intra-lysosomal Cl(-) concentration ([Cl(-) ]lys ) via reduction of cytosolic Cl(-) concentration ([Cl(-) ]c ), showing abnormal accumulation of LC3II and p62 participating in autophagy function (dysfunction of autophagy) accompanied by inhibition of cell proliferation via G0 /G1 arrest without induction of apoptosis. We also studied effects of direct modification of H(+) transport on lysosomal acidification and autophagy. Application of bafilomycin A1 (an inhibitor of V-type H(+) -ATPase) or ethyl isopropyl amiloride [EIPA; an inhibitor of Na(+) /H(+) exchanger (NHE)] elevated pHlys and decreased [Cl(-) ]lys associated with inhibition of cell proliferation via induction of G0 /G1 arrest similar to the culture under a low Cl(-) condition. However, unlike low Cl(-) condition, application of the compound, bafilomycin A1 or EIPA, induced apoptosis associated with increases in caspase 3 and 9 without large reduction in [Cl(-) ]c compared with low Cl(-) condition. These observations suggest that the lowered [Cl(-) ]c primarily causes dysfunction of autophagy without apoptosis via dysfunction of lysosome induced by disturbance of intra-lysosomal acidification. This is the first study showing that cytosolic Cl(-) is a key factor of lysosome acidification and autophagy.

  2. Effect of Chloride ion and Zirconium hydride on thr corrosion and SCC behaviors of functionally graded Zirconium alloy p.683

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Y. [Department of Metallurgical and Materials Engineering, Sunmoon University, Asam (Korea, Republic of); Kim, B. G.; Lee, J. W.; Kang, Y. H. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2000-07-01

    Effect of chloride ion and zirconium hydride on the corrosion and stress corrosion cracking behaviors of functionally graded zirconium alloy was studied to develop an advanced nuclear cladding tubing. The functionally graded zirconium alloy had composition gradient of niobium, which was prepared with a hot pressing followed by cold deformation. The corrosion rates and potentials decreased with increasing FeCl{sub 3} and hydride content. The corrosion potentials before and after hydriding are -4.3 V{sub SHE}, 8.8x10{sup -5} A{sub cm}{sup -2} and -12.5 V{sub SHE}, 3.9x10{sup -4} A{sub cm}{sup -2}, respectively. The stress corrosion cracking susceptibility decreased with elongation rate, indicating the saturation value at 5x10{sup -7} sec{sup -1}. SEM observation showed that brittle fracture with corrosion products and pits were observed on the failed surface of hydrided zirconium alloy, suggesting anodic dissolution occurred during exposure after cracking growth along zirconium hydrides. (author)

  3. Scorpion Potassium Channel-blocking Defensin Highlights a Functional Link with Neurotoxin.

    Science.gov (United States)

    Meng, Lanxia; Xie, Zili; Zhang, Qian; Li, Yang; Yang, Fan; Chen, Zongyun; Li, Wenxin; Cao, Zhijian; Wu, Yingliang

    2016-03-25

    The structural similarity between defensins and scorpion neurotoxins suggests that they might have evolved from a common ancestor. However, there is no direct experimental evidence demonstrating a functional link between scorpion neurotoxins and defensins. The scorpion defensin BmKDfsin4 from Mesobuthus martensiiKarsch contains 37 amino acid residues and a conserved cystine-stabilized α/β structural fold. The recombinant BmKDfsin4, a classical defensin, has been found to have inhibitory activity against Gram-positive bacteria such as Staphylococcus aureus, Bacillus subtilis, and Micrococcus luteusas well as methicillin-resistant Staphylococcus aureus Interestingly, electrophysiological experiments showed that BmKDfsin4,like scorpion potassium channel neurotoxins, could effectively inhibit Kv1.1, Kv1.2, and Kv1.3 channel currents, and its IC50value for the Kv1.3 channel was 510.2 nm Similar to the structure-function relationships of classical scorpion potassium channel-blocking toxins, basic residues (Lys-13 and Arg-19) of BmKDfsin4 play critical roles in peptide-Kv1.3 channel interactions. Furthermore, mutagenesis and electrophysiological experiments demonstrated that the channel extracellular pore region is the binding site of BmKDfsin4, indicating that BmKDfsin4 adopts the same mechanism for blocking potassium channel currents as classical scorpion toxins. Taken together, our work identifies scorpion BmKDfsin4 as the first invertebrate defensin to block potassium channels. These findings not only demonstrate that defensins from invertebrate animals are a novel type of potassium channel blockers but also provide evidence of a functional link between defensins and neurotoxins.

  4. Functional role of voltage gated Ca2+ channels in heart automaticity

    Directory of Open Access Journals (Sweden)

    Pietro eMesirca

    2015-02-01

    Full Text Available Pacemaker activity of automatic cardiac myocytes controls the heartbeat in everyday life. Cardiac automaticity is under the control of several neurotransmitters and hormones and is constantly regulated by the autonomic nervous system to match the physiological needs of the organism. Several classes of ion channels and proteins involved in intracellular Ca2+ dynamics contribute to pacemaker activity. The functional role of voltage-gated calcium channels (VGCCs in heart automaticity and impulse conduction has been matter of debate for 30 years. However, growing evidence shows that VGCCs are important regulators of the pacemaker mechanisms and play also a major role in atrio-ventricular impulse conduction. Incidentally, studies performed in genetically modified mice lacking L-type Cav1.3 (Cav1.3-/- or T-type Cav3.1 (Cav3.1-/- channels show that genetic inactivation of these channels strongly impacts pacemaking. In cardiac pacemaker cells, VGCCs activate at negative voltages at the beginning of the diastolic depolarization and importantly contribute to this phase by supplying inward current. Loss-of-function of these channels also impairs atrio-ventricular conduction. Furthermore, inactivation of Cav1.3 channels promotes also atrial fibrillation and flutter in knockout mice suggesting that these channels can play a role in stabilizing atrial rhythm. Genomic analysis demonstrated that Cav1.3 and Cav3.1 channels are widely expressed in pacemaker tissue of mice, rabbits and humans. Importantly, human diseases of pacemaker activity such as congenital bradycardia and heart block have been attributed to loss-of-function of Cav1.3 and Cav3.1 channels. In this article, we will review the current knowledge on the role of VGCCs in the generation and regulation of heart rate and rhythm. We will discuss also how loss of Ca2+ entry through VGCCs could influence intracellular Ca2+ handling and promote atrial arrhythmias.

  5. Expanded functional diversity of shaker K(+ channels in cnidarians is driven by gene expansion.

    Directory of Open Access Journals (Sweden)

    Timothy Jegla

    Full Text Available The genome of the cnidarian Nematostella vectensis (starlet sea anemone provides a molecular genetic view into the first nervous systems, which appeared in a late common ancestor of cnidarians and bilaterians. Nematostella has a surprisingly large and diverse set of neuronal signaling genes including paralogs of most neuronal signaling molecules found in higher metazoans. Several ion channel gene families are highly expanded in the sea anemone, including three subfamilies of the Shaker K(+ channel gene family: Shaker (Kv1, Shaw (Kv3 and Shal (Kv4. In order to better understand the physiological significance of these voltage-gated K(+ channel expansions, we analyzed the function of 18 members of the 20 gene Shaker subfamily in Nematostella. Six of the Nematostella Shaker genes express functional homotetrameric K(+ channels in vitro. These include functional orthologs of bilaterian Shakers and channels with an unusually high threshold for voltage activation. We identified 11 Nematostella Shaker genes with a distinct "silent" or "regulatory" phenotype; these encode subunits that function only in heteromeric channels and serve to further diversify Nematostella Shaker channel gating properties. Subunits with the regulatory phenotype have not previously been found in the Shaker subfamily, but have evolved independently in the Shab (Kv2 family in vertebrates and the Shal family in a cnidarian. Phylogenetic analysis indicates that regulatory subunits were present in ancestral cnidarians, but have continued to diversity at a high rate after the split between anthozoans and hydrozoans. Comparison of Shaker family gene complements from diverse metazoan species reveals frequent, large scale duplication has produced highly unique sets of Shaker channels in the major metazoan lineages.

  6. Scanning MscL Channels with Targeted Post-Translational Modifications for Functional Alterations.

    Directory of Open Access Journals (Sweden)

    Irene Iscla

    Full Text Available Mechanosensitive channels are present in all living organisms and are thought to underlie the senses of touch and hearing as well as various important physiological functions like osmoregulation and vasoregulation. The mechanosensitive channel of large conductance (MscL from Escherichia coli was the first protein shown to encode mechanosensitive channel activity and serves as a paradigm for how a channel senses and responds to mechanical stimuli. MscL plays a role in osmoprotection in E. coli, acting as an emergency release valve that is activated by membrane tension due to cell swelling after an osmotic down-shock. Using an osmotically fragile strain in an osmotic down-shock assay, channel functionality can be directly determined in vivo. In addition, using thiol reagents and expressed MscL proteins with a single cysteine substitution, we have shown that targeted post-translational modifications can be performed, and that any alterations that lead to dysfunctional proteins can be identified by this in vivo assay. Here, we present the results of such a scan performed on 113 MscL cysteine mutants using five different sulfhydryl-reacting probes to confer different charges or hydrophobicity to each site. We assessed which of these targeted modifications affected channel function and the top candidates were further studied using patch clamp to directly determine how channel activity was affected. This comprehensive screen has identified many residues that are critical for channel function as well as highlighted MscL domains and residues that undergo the most drastic environmental changes upon gating.

  7. Functional mutagenesis screens reveal the 'cap structure' formation in disulfide-bridge free TASK channels.

    Science.gov (United States)

    Goldstein, Matthias; Rinné, Susanne; Kiper, Aytug K; Ramírez, David; Netter, Michael F; Bustos, Daniel; Ortiz-Bonnin, Beatriz; González, Wendy; Decher, Niels

    2016-01-22

    Two-pore-domain potassium (K2P) channels have a large extracellular cap structure formed by two M1-P1 linkers, containing a cysteine for dimerization. However, this cysteine is not present in the TASK-1/3/5 subfamily. The functional role of the cap is poorly understood and it remained unclear whether K2P channels assemble in the domain-swapped orientation or not. Functional alanine-mutagenesis screens of TASK-1 and TRAAK were used to build an in silico model of the TASK-1 cap. According to our data the cap structure of disulfide-bridge free TASK channels is similar to that of other K2P channels and is most likely assembled in the domain-swapped orientation. As the conserved cysteine is not essential for functional expression of all K2P channels tested, we propose that hydrophobic residues at the inner leaflets of the cap domains can interact with each other and that this way of stabilizing the cap is most likely conserved among K2P channels.

  8. On Green's function for 3-D wave-body interaction in a channel

    DEFF Research Database (Denmark)

    Xia, Jinzhu

    1997-01-01

    An analytical and numerical study is presented for efficient evaluation of the Green's function that satisfies the linear free surface condition and the non-penetration condition on the channel bottomand the side walls. the formulation is based on the open-sea green's function and the complete se...

  9. Structure of the channeling electrons wave functions under dynamical chaos conditions

    CERN Document Server

    Shul'ga, N F; Tarnovsky, A I; Isupov, A Yu

    2015-01-01

    The stationary wave functions of fast electrons axially channeling in the silicon crystal near [110] direction have been found numerically for integrable and non-integrable cases, for which the classical motion is regular and chaotic, respectively. The nodal structure of the wave functions in the quasi-classical region, where the energy levels density is high, is agreed with quantum chaos theory predictions.

  10. Transient Receptor Potential Channels Contribute to Pathological Structural and Functional Remodeling After Myocardial Infarction

    Science.gov (United States)

    Davis, Jennifer; Correll, Robert N.; Trappanese, Danielle M.; Hoffman, Nicholas E.; Troupes, Constantine D.; Berretta, Remus M.; Kubo, Hajime; Madesh, Muniswamy; Chen, Xiongwen; Gao, Erhe; Molkentin, Jeffery D.; Houser, Steven R.

    2014-01-01

    Rationale The cellular and molecular basis for post myocardial infarction (MI) structural and functional remodeling is not well understood. Objective To determine if Ca2+ influx through transient receptor potential (canonical) (TRPC) channels contributes to post-MI structural and functional remodeling. Methods and Results TRPC1/3/4/6 channel mRNA increased after MI in mice and was associated with TRPC-mediated Ca2+ entry. Cardiac myocyte specific expression of a dominant negative (dn: loss of function) TRPC4 channel increased basal myocyte contractility and reduced hypertrophy and cardiac structural and functional remodeling after MI while increasing survival. We used adenovirus-mediated expression of TRPC3/4/6 channels in cultured adult feline myocytes (AFMs) to define mechanistic aspects of these TRPC-related effects. TRPC3/4/6 over expression in AFMs induced calcineurin (Cn)-Nuclear Factor of Activated T cells (NFAT) mediated hypertrophic signaling, which was reliant on caveolae targeting of TRPCs. TRPC3/4/6 expression in AFMs increased rested state contractions and increased spontaneous sarcoplasmic reticulum (SR) Ca2+ sparks mediated by enhanced phosphorylation of the ryanodine receptor. TRPC3/4/6 expression was associated with reduced contractility and response to catecholamines during steady state pacing, likely due to enhanced SR Ca2+ leak. Conclusions Ca2+ influx through TRPC channels expressed after MI activates pathological cardiac hypertrophy and reduces contractility reserve. Blocking post-MI TRPC activity improved post-MI cardiac structure and function. PMID:25047165

  11. Expression and function of Oat1 and Oat3 in rat kidney exposed to mercuric chloride

    Energy Technology Data Exchange (ETDEWEB)

    Di Giusto, Gisela; Torres, Adriana M. [Universidad Nacional de Rosario, CONICET, Area Farmacologia, Facultad de Ciencias Bioquimicas y Farmaceuticas, Rosario (Argentina); Anzai, Naohiko; Endou, Hitoshi [Kyorin University School of Medicine, Department of Pharmacology and Toxicology, Tokyo (Japan); Ruiz, Maria L. [Universidad Nacional de Rosario, CONICET, Instituto de Fisiologia Experimental, Facultad de Ciencias Bioquimicas y Farmaceuticas, Rosario (Argentina)

    2009-10-15

    This study was designed to evaluate the expression and function of the organic anion transporters, Oat1 and Oat3, in rats exposed to a nephrotoxic dose of HgCl{sub 2}. Oat1 protein expression increased in renal homogenates and decreased in renal basolateral membranes from HgCl{sub 2} rats, while Oat3 protein abundance decreased in both kidney homogenates and basolateral membranes. The lower protein levels of Oat1 and Oat3 in basolateral membranes explain the lower uptake capacity for p-aminohippurate (in vitro assays) and the diminution of the systemic clearance of this organic anion (in vivo studies) observed in treated rats. Since both transporters mediate mercury access to the renal cells, their down-regulation in basolateral membranes might be a defensive mechanism developed by the cell to protect itself against mercury injury. The pharmacological modulation of the expression and/or the function of Oat1 and Oat3 might be an effective therapeutic strategy for reducing the nephrotoxicity of mercury. (orig.)

  12. Voltage Gated Ion Channel Function: Gating, Conduction, and the Role of Water and Protons

    Directory of Open Access Journals (Sweden)

    Alisher M. Kariev

    2012-02-01

    Full Text Available Ion channels, which are found in every biological cell, regulate the concentration of electrolytes, and are responsible for multiple biological functions, including in particular the propagation of nerve impulses. The channels with the latter function are gated (opened by a voltage signal, which allows Na+ into the cell and K+ out. These channels have several positively charged amino acids on a transmembrane domain of their voltage sensor, and it is generally considered, based primarily on two lines of experimental evidence, that these charges move with respect to the membrane to open the channel. At least three forms of motion, with greatly differing extents and mechanisms of motion, have been proposed. There is a “gating current”, a capacitative current preceding the channel opening, that corresponds to several charges (for one class of channel typically 12–13 crossing the membrane field, which may not require protein physically crossing a large fraction of the membrane. The coupling to the opening of the channel would in these models depend on the motion. The conduction itself is usually assumed to require the “gate” of the channel to be pulled apart to allow ions to enter as a section of the protein partially crosses the membrane, and a selectivity filter at the opposite end of the channel determines the ion which is allowed to pass through. We will here primarily consider K+ channels, although Na+ channels are similar. We propose that the mechanism of gating differs from that which is generally accepted, in that the positively charged residues need not move (there may be some motion, but not as gating current. Instead, protons may constitute the gating current, causing the gate to open; opening consists of only increasing the diameter at the gate from approximately 6 Å to approximately 12 Å. We propose in addition that the gate oscillates rather than simply opens, and the ion experiences a barrier to its motion across the

  13. Voltage Gated Ion Channel Function: Gating, Conduction, and the Role of Water and Protons

    Energy Technology Data Exchange (ETDEWEB)

    Kariev, Alisher M.; Green, Michael E.

    2012-02-26

    Ion channels, which are found in every biological cell, regulate the concentration of electrolytes, and are responsible for multiple biological functions, including in particular the propagation of nerve impulses. The channels with the latter function are gated (opened) by a voltage signal, which allows Na+ into the cell and K+ out. These channels have several positively charged amino acids on a transmembrane domain of their voltage sensor, and it is generally considered, based primarily on two lines of experimental evidence, that these charges move with respect to the membrane to open the channel. At least three forms of motion, with greatly differing extents and mechanisms of motion, have been proposed. There is a “gating current”, a capacitative current preceding the channel opening, that corresponds to several charges (for one class of channel typically 12–13) crossing the membrane field, which may not require protein physically crossing a large fraction of the membrane. The coupling to the opening of the channel would in these models depend on the motion. The conduction itself is usually assumed to require the “gate” of the channel to be pulled apart to allow ions to enter as a section of the protein partially crosses the membrane, and a selectivity filter at the opposite end of the channel determines the ion which is allowed to pass through. We will here primarily consider K+ channels, although Na+ channels are similar. We propose that the mechanism of gating differs from that which is generally accepted, in that the positively charged residues need not move (there may be some motion, but not as gating current). Instead, protons may constitute the gating current, causing the gate to open; opening consists of only increasing the diameter at the gate from approximately 6 Å to approximately 12 Å. We propose in addition that the gate oscillates rather than simply opens, and the ion experiences a barrier to its motion across the channel that is tuned

  14. Transcorneal permeation of diclofenac as a function of temperature from film formulation in presence of triethanolamine and benzalkonium chloride.

    Science.gov (United States)

    Mohapatra, Rajaram; Senapati, Sibananda; Sahoo, Chinmaya; Mallick, Subrata

    2014-11-01

    The objective of this report was to evaluate the transcorneal permeation of diclofenac potassium (DCP) as a function of temperature from hydroxypropyl methylcellulose (HPMC) matrix film containing triethanolamine (TEM) as plasticizer and benzalkonium chloride (BKC) as preservative. Activation energy (Ea), enthalpy (ΔH), entropy (ΔS) and free energy (ΔG) of permeation, diffusion and partition were evaluated to understand the underlying mechanism of permeation. Permeation improved with the presence of both the plasticizer and preservative compared to preservative alone. Further, increased amount of TEM in the film increased drug transport across the cornea. Decreased Ea value of the film supported the fact. Rise of temperature from 26 to 30, 34 and 40 °C increased permeation in all the films. Ocular residence of the film in vivo in the rabbit revealed that the film swelled by pronounced lachrymal fluid uptake and traces of hydrogel remained still at the end of 6 h of application. Absence of characteristic exothermic peak of the drug in the thermogram of film formulations indicated the molecular dispersion of drug in polymer matrix. Scanning electron microscopy indicated that the drug crystal size decreased with increasing concentration of TEM in presence of BKC due to effective wetting of drug particles by the polymer.

  15. Oxygen as a regulator of MA-10 cell functions: effect of cobalt chloride on vascular endothelial growth factor production.

    Science.gov (United States)

    Kumar, A; Rani, L; Dhole, B; Chaturvedi, P K

    2012-05-01

    Mammalian testis functions at a temperature and oxygen tension (pO(2)) lower than the core body. Hypoxia-inducible factor-1α (HIF-1α) mediates the adaptive responses to hypoxia such as production of angiogenic vascular endothelial growth factor (VEGF) in a variety of cells and tissues. VEGF production in Leydig cells is stimulated by luteinising hormone (LH)/cAMP. We have conducted experiments to find out whether HIF-1α is involved in LH/cAMP-induced secretion of VEGF by Leydig cell-derived MA-10 cells. Both cobalt chloride (CoCl(2)), an inducer of hypoxia, and 8-Br-cAMP enhanced HIF-1α activity followed by an increase in VEGF secretion. However, there was no change in mRNA levels of HIF-1α. Inhibition of HIF-1α activity by cyclosporine A (CsA) inhibited a rise in VEGF production in response to CoCl(2) as well as 8-Br-cAMP. Inhibitors of protein kinase A (PKA), extracellular regulated kinase 1/2 (ERK1/2) and phosphatidyl inositol-3 kinase/Akt (PI3-K/Akt) inhibited the increase in VEGF levels in response to both CoCl(2) and 8-Br-cAMP. The data suggest that HIF-1α is a mediator of hypoxia- as well as 8-Br-cAMP-stimulated production of VEGF in MA-10 cells; both the stimuli act through a common signalling cascade.

  16. Nitidine chloride-assisted bio-functionalization of reduced graphene oxide by bovine serum albumin for impedimetric immunosensing.

    Science.gov (United States)

    Li, Yu; Zhang, Zhao; Zhang, Yuting; Deng, Dongmei; Luo, Liqiang; Han, Baosan; Fan, Chunhai

    2016-05-15

    A novel protocol of label-free electrochemical impedance immunosensor based on bovine serum albumin-nitidine chloride-reduced graphene oxide (BSA-NC-rGO) nanocomposite was proposed for quantitative determination of carcino-embryonic antigen (CEA). BSA was anchored to rGO via the aromatic plane of NC by π-stacking interaction to realize bio-functionalization of rGO, and then gold nanoparticles (AuNPs) were electrodeposited onto the surface of BSA-NC-rGO nanocomposite. The morphology, conductivity and interaction of different nanocomposites were characterized by scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and UV-vis spectrum. CEA monoclonal antibody (anti-CEA) was conjugated to AuNPs via gold-thiol chemistry to construct electrochemical immunosensing platform, and the specific immunoreaction between CEA and anti-CEA was monitored by EIS. Under optimum conditions, CEA could be quantified in a wide range of 0.1-200 ng mL(-1) (R=0.9948) with low detection limit of 0.067 ng mL(-1). The proposed immunosensor exhibited great potential for detecting blood samples.

  17. Influence of salinity on the localization and expression of the CFTR chloride channel in the ionocytes of Dicentrarchus labrax during ontogeny.

    Science.gov (United States)

    Bodinier, Charlotte; Boulo, Viviane; Lorin-Nebel, Catherine; Charmantier, Guy

    2009-03-01

    The expression and localization of the cystic fibrosis transmembrane conductance regulator (CFTR) were determined in four osmoregulatory tissues during the ontogeny of the sea-bass Dicentrarchus labrax acclimated to fresh water and sea water. At hatch in sea water, immunolocalization showed an apical CFTR in the digestive tract and integumental ionocytes. During the ontogeny, although CFTR was consistently detected in the digestive tract, it shifted from the integument to the gills. In fresh water, CFTR was not present in the integument and the gills, suggesting the absence of chloride secretion. In the kidney, the CFTR expression was brief from D4 to D35, prior to the larva-juvenile transition. CFTR was apical in the renal tubules, suggesting a chloride secretion at both salinities, and it was basolateral only in sea water in the collecting ducts, suggesting chloride absorption. In the posterior intestine, CFTR was located differently from D4 depending on salinity. In sea water, the basolateral CFTR may facilitate ionic absorption, perhaps in relation to water uptake. In fresh water, CFTR was apical in the gut, suggesting chloride secretion. Increased osmoregulatory ability was acquired just before metamorphosis, which is followed by the sea-lagoon migration.

  18. Effects of lorazepam tolerance and withdrawal on GABA[sub A] receptor operated chloride channels in mice selected for differences in ethanol withdrawal severity

    Energy Technology Data Exchange (ETDEWEB)

    Allan, A.M.; Baier, L.D.; Zhang, Xiaoying (Washington Univ. School of Medicine, St. Louis, MO (United States))

    1992-01-01

    Withdrawal seizure prone (WSP) and withdrawal seizure resistant (WSR) mice were treated with 5 mg/kg lorazepam for 7 days via implanted osmotic mini pumps. Following chronic drug treatment, brains were assayed for GABA-mediated chloride flux (GABA-Cl[sup [minus

  19. Cystic fibrosis transmembrane conductance regulator: a chloride channel gated by ATP binding and hydrolysis%囊性纤维化跨膜电导调节体:ATP结合和水解门控Cl-通道

    Institute of Scientific and Technical Information of China (English)

    BOMPADRE; Silvia; G; HWANG; Tzyh-Chang

    2007-01-01

    囊性纤维化跨膜电导调节体(cystic fibrosis transmembrane conductance regulator,CFTR)是一种Cl-通道,属于ATP结合(ATP-binding cassette,ABC)转运体超家族.CFTR功能缺陷是高加索人种中普遍存在的致死性常染色体隐性遗传疾病囊性纤维化(cystic fibrosis,CF)发生的主要原因.这种疾病患者各组织上皮细胞内Cl-转运失调.目前,与CF相关的不同突变超过1 400种.CFTR调节(regulatory,R)域负责调控,核苷酸结合域(nucleotide-binding domains,NBDs)NBD1和NBD2负责ATP结合和水解门控.近期研究发现CFTR的NBDs与其它ABC蛋白一样可以二聚化.二聚化过程中,NBD1和NBD2首-尾相连,一个NBD上的WalkerA和B模块与另一个NBD提供的标签序列(signature sequence)形成ATP结合袋(ATP-binding pockets,ABPs)ABP1和ABP2.ABPs中与ATP结合相关的氨基酸突变实验揭示,ABP1和ABP2在CFTR的ATP依赖门控中发挥不同作用.ABP2由NBD2上的Walk A和B模块与NBD1提供的标签序列形成,它与ATP结合催化通道开放,而ABP1单独与ATP结合不能促进通道开放,只能稳定通道构象.有一些CFTR突变相关疾病的特征就是门控失调,进一步深入研究CFTR的NBD1和NBD2如何通过相互作用而达到通道门控,将为药理学研究提供更多所需的机制信息,有利于为CF治疗的药物设计铺平道路.%The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that belongs to the ATP-binding cassette (ABC) transporter superfamily. Defective function of CFTR is responsible for cystic fibrosis (CF), the most common lethal autosomal recessive disorder in Caucasian populations. The disease is manifested in defective chloride transport across the epithelial cells in various tissues. To date, more than 1400 different mutations have been identified as CF-associated. CFTR is regulated by phosphorylation in its regulatory (R) domain, and gated by ATP binding and hydrolysis at its two nucleotide-binding domains (NBD1

  20. Touch, Tension, and Transduction - The Function and Regulation of Piezo Ion Channels.

    Science.gov (United States)

    Wu, Jason; Lewis, Amanda H; Grandl, Jörg

    2017-01-01

    In 2010, two proteins, Piezo1 and Piezo2, were identified as the long-sought molecular carriers of an excitatory mechanically activated current found in many cells. This discovery has opened the floodgates for studying a vast number of mechanotransduction processes. Over the past 6 years, groundbreaking research has identified Piezos as ion channels that sense light touch, proprioception, and vascular blood flow, ruled out roles for Piezos in several other mechanotransduction processes, and revealed the basic structural and functional properties of the channel. Here, we review these findings and discuss the many aspects of Piezo function that remain mysterious, including how Piezos convert a variety of mechanical stimuli into channel activation and subsequent inactivation, and what molecules and mechanisms modulate Piezo function.

  1. NIFLUMIC ACID BLOCKS NATIVE AND RECOMBINANT T-TYPE CHANNELS

    OpenAIRE

    Balderas, E; Arteaga-Tlecuitl, R; Rivera, M; Gomora, JC; Darszon, A.

    2012-01-01

    Voltage-dependent calcium channels are widely distributed in animal cells, including spermatozoa. Calcium is fundamental in many sperm functions such as: motility, capacitation and the acrosome reaction, all essential for fertilization. Pharmacological evidence has suggested T-type calcium channels participate in the acrosome reaction. Niflumic acid (NA), a non-steroidal anti-inflammatory drug commonly used as chloride channel blocker, blocks T-currents in mouse spermatogenic cells and Cl− ch...

  2. Toxic β-Amyloid (Aβ) Alzheimer's Ion Channels: From Structure to Function and Design

    Science.gov (United States)

    Nussinov, Ruth

    2012-02-01

    interacting α-helices that robustly prevent ion leakage, rather than hydrogen-bonded β-strands. Moreover, in comparison with β-rich antimicrobial peptide (AMP) such as a protegrin-1 (PG-1), both Aβ and PG-1 are cytotoxic, and capable of forming fibrils and dynamic channels which consist of subunits with similar dimensions. These combined properties support a functional relationship between amyloidogenic peptides and β-sheet-rich cytolytic AMPs, suggesting that PG-1 is amyloidogenic and amyloids may have an antimicrobial function.

  3. Modulatory mechanisms and multiple functions of somatodendritic A-type K+ channel auxiliary subunits

    Directory of Open Access Journals (Sweden)

    Henry Hungtao Jerng

    2014-03-01

    Full Text Available Auxiliary subunits are non-conducting, modulatory components of the multi-protein ion channel complexes that underlie normal neuronal signaling. They interact with the pore-forming α-subunits to modulate surface distribution, ion conductance, and channel gating properties. For the somatodendritic subthreshold A-type potassium (ISA channel based on Kv4 α-subunits, two types of auxiliary subunits have been extensively studied: Kv channel-interacting proteins (KChIPs and dipeptidyl peptidase-like proteins (DPLPs. KChIPs are cytoplasmic calcium-binding proteins that interact with intracellular portions of the Kv4 subunits, whereas DPLPs are type II transmembrane proteins that associate with the Kv4 channel core. Both KChIPs and DPLPs genes contain multiple start sites that are used by various neuronal populations to drive the differential expression of functionally distinct N-terminal variants. In turn, these N-terminal variants generate tremendous functional diversity across the nervous system. Here, we focus our review on (1 the molecular mechanism underlying the unique properties of different N-terminal variants, (2 the shaping of native ISA properties by the concerted actions of KChIPs and DPLP variants, and (3 the surprising ways that KChIPs and DPLPs coordinate the activity of multiple channels to fine-tune neuronal excitability. Unlocking the unique contributions of different auxiliary subunit N-terminal variants may provide an important opportunity to develop novel targeted therapeutics to treat numerous neurological disorders.

  4. The unc-8 and sup-40 genes regulate ion channel function in Caenorhabditis elegans motorneurons

    Energy Technology Data Exchange (ETDEWEB)

    Shreffler, W.; Magardino, T.; Shekdar, K.; Wolinsky, E. [New York Univ. Medical School, NY (United States)

    1995-03-01

    Two Caenorhabditis elegans genes, unc-8 and sup-40, have been newly identified, by genetic criteria, as regulating ion channel function in motorneurons. Two dominant unc-8 alleles cause motorneuron swelling similar to that of other neuronal types in dominant mutants of the deg-1 gene family, which is homologous to a mammalian gene family encoding amiloride-sensitive sodium channel subunits. As for previously identified deg-1 family members, unc-8 dominant mutations are recessively suppressed by mutations in the mec-6 gene, which probably encodes a second type of channel component. An unusual dominant mutation, sup-41 (lb125), also co-suppresses unc-8 and deg-1, suggesting the existence of yet another common component of ion channels containing unc-8 or deg-1 subunits. Dominant, transacting, intragenic suppressor mutations have been isolated for both unc-8 and deg-1, consistent with the idea that, like their mammalian homologues, the two gene products function as multimers. The sup-40 (lb130) mutation dominantly suppresses unc-8 motorneuron swelling and produces a novel swelling phenotype in hypodermal nuclei. sup-40 may encode an ion channel component or regulator that can correct the osmotic defect caused by abnormal unc-8 channels. 37 refs., 6 figs., 3 tabs.

  5. Gompertz type dechanneling functions for protons in , and Si crystal channels

    Science.gov (United States)

    Petrović, S.; Erić, M.; Kokkoris, M.; Nešković, N.

    2007-03-01

    In this work the energy dependences of the Gompertz type sigmoidal dechanneling function parameters for protons in , and Si crystal channels is investigated theoretically. The proton energy range considered is between 1 and 10 MeV. The original dechanneling functions are generated using a realistic Monte Carlo computer simulation code. We show that the Gompertz type dechanneling function, having two parameters, lc and k, representing the dechanneling range and rate, respectively, approximate accurately the original dechanneling function. It is also shown that the energy dependences of parameters lc and k can be approximated by a linear function and a sum of two exponential functions, respectively. The results obtained can be used for accurate reproduction of experimental proton channeling spectra recorded in the backscattering geometry.

  6. Active membrane having uniform physico-chemically functionalized ion channels

    Science.gov (United States)

    Gerald, II, Rex E; Ruscic, Katarina J; Sears, Devin N; Smith, Luis J; Klingler, Robert J; Rathke, Jerome W

    2012-09-24

    The present invention relates to a physicochemically-active porous membrane for electrochemical cells that purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. One dimension of the pore surface has a macroscopic length (1 nm-1000 .mu.m) and is directed parallel to the direction of an electric field, which is produced between the cathode and the anode electrodes of an electrochemical cell. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

  7. Combined effects of simulated acid rain and lanthanum chloride on chloroplast structure and functional elements in rice.

    Science.gov (United States)

    Hu, Huiqing; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2016-05-01

    Acid rain and rare earth element (REE) pollution exist simultaneously in many agricultural regions. However, how REE pollution and acid rain affect plant growth in combination remains largely unknown. In this study, the combined effects of simulated acid rain and lanthanum chloride (LaCl3) on chloroplast morphology, chloroplast ultrastructure, functional element contents, chlorophyll content, and the net photosynthetic rate (P n) in rice (Oryza sativa) were investigated by simulating acid rain and rare earth pollution. Under the combined treatment of simulated acid rain at pH 4.5 and 0.08 mM LaCl3, the chloroplast membrane was smooth, proteins on this membrane were uniform, chloroplast structure was integrated, and the thylakoids were orderly arranged, and simulated acid rain and LaCl3 exhibited a mild antagonistic effect; the Mg, Ca, Mn contents, the chlorophyll content, and the P n increased under this combined treatment, with a synergistic effect of simulated acid rain and LaCl3. Under other combined treatments of simulated acid rain and LaCl3, the chloroplast membrane surface was uneven, a clear "hole" was observed on the surface of chloroplasts, and the thylakoids were dissolved and loose; and the P n and contents of functional elements (P, Mg, K, Ca, Mn, Fe, Ni, Cu, Zn and Mo) and chlorophyll decreased. Under these combined treatments, simulated acid rain and LaCl3 exhibited a synergistic effect. Based on the above results, a model of the combined effects of simulated acid rain and LaCl3 on plant photosynthesis was established in order to reveal the combined effects on plant photosynthesis, especially on the photosynthetic organelle-chloroplast. Our results would provide some references for further understanding the mechanism of the combined effects of simulated acid rain and LaCl3 on plant photosynthesis.

  8. A Study on Ionospheric HF Channel with Bitemporal Response and Scattering Function

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    At first the bitemporal response method is introduced to solve the scattering function of the ionospheric channel. We can get the scattering function as a function of the group path time delay and Doppler frequency. Thus Doppler effect resulting from the continuous movement of the ionosphere is analyzed to study the characteristics of the various ionospheric irregularities and disturbance. many possible problems and correction are researched lastly.

  9. Bilayer lipid membranes supported on Teflon filters: a functional environment for ion channels.

    Science.gov (United States)

    Phung, Thai; Zhang, Yanli; Dunlop, James; Dalziel, Julie

    2011-03-15

    Many ion channel proteins have binding sites for toxins and pharmaceutical drugs and therefore have much promise as the sensing entity in high throughput technologies and biosensor devices. Measurement of ionic conductance changes through ion channels requires a robust biological membrane with sufficient longevity for practical applications. The conventional planar BLM is 100-300 μm in diameter and typically contains fewer than a dozen channels whereas pharmaceutical screening methods in cells use current recordings for many ion channels. We present a new, simple method for the fabrication of a disposable porous-supported bilayer lipid membrane (BLM) ion channel biosensor using hydrated Teflon (polytetrafluoroethylene, PTFE) filter material (pore size 5 μm, filter diameter=1 mm). The lipid layer was monitored for its thickness and mechanical stability by electrical impedance spectroscopy. The results showed membrane capacitances of 1.8±0.2 nF and membrane resistances of 25.9±4.1 GΩ, indicating the formation of lipid bilayers. The current level increased upon addition of the pore-forming peptide gramicidin. Following addition of liposomes containing voltage-gated sodium channels, small macroscopic sodium currents (1-80 pA) could be recorded. By preloading the porous Teflon with sodium channel proteoliposomes, prior to BLM formation, currents of 1-10 nA could be recorded in the presence of the activator veratridine that increased with time, and were inhibited by tetrodotoxin. A lack of rectification suggests that the channels incorporated in both orientations. This work demonstrates that PTFE filters can support BLMs that provide an environment in which ion channels can maintain their functional activity relevant for applications in drug discovery, toxin detection, and odour sensing.

  10. Mechanism of functional interaction between potassium channel Kv1.3 and sodium channel NavBeta1 subunit

    Science.gov (United States)

    Kubota, Tomoya; Correa, Ana M.; Bezanilla, Francisco

    2017-01-01

    The voltage-gated potassium channel subfamily A member 3 (Kv1.3) dominantly expresses on T cells and neurons. Recently, the interaction between Kv1.3 and NavBeta1 subunits has been explored through ionic current measurements, but the molecular mechanism has not been elucidated yet. We explored the functional interaction between Kv1.3 and NavBeta1 through gating current measurements using the Cut-open Oocyte Voltage Clamp (COVC) technique. We showed that the N-terminal 1–52 sequence of hKv1.3 disrupts the channel expression on the Xenopus oocyte membrane, suggesting a potential role as regulator of hKv1.3 expression in neurons and lymphocytes. Our gating currents measurements showed that NavBeta1 interacts with the voltage sensing domain (VSD) of Kv1.3 through W172 in the transmembrane segment and modifies the gating operation. The comparison between G-V and Q-V with/without NavBeta1 indicates that NavBeta1 may strengthen the coupling between hKv1.3-VSD movement and pore opening, inducing the modification of kinetics in ionic activation and deactivation. PMID:28349975

  11. Gain-of-function mutation in TASK-4 channels and severe cardiac conduction disorder.

    Science.gov (United States)

    Friedrich, Corinna; Rinné, Susanne; Zumhagen, Sven; Kiper, Aytug K; Silbernagel, Nicole; Netter, Michael F; Stallmeyer, Birgit; Schulze-Bahr, Eric; Decher, Niels

    2014-07-01

    Analyzing a patient with progressive and severe cardiac conduction disorder combined with idiopathic ventricular fibrillation (IVF), we identified a splice site mutation in the sodium channel gene SCN5A. Due to the severe phenotype, we performed whole-exome sequencing (WES) and identified an additional mutation in the KCNK17 gene encoding the K2P potassium channel TASK-4. The heterozygous change (c.262G>A) resulted in the p.Gly88Arg mutation in the first extracellular pore loop. Mutant TASK-4 channels generated threefold increased currents, while surface expression was unchanged, indicating enhanced conductivity. When co-expressed with wild-type channels, the gain-of-function by G88R was conferred in a dominant-active manner. We demonstrate that KCNK17 is strongly expressed in human Purkinje cells and that overexpression of G88R leads to a hyperpolarization and strong slowing of the upstroke velocity of spontaneously beating HL-1 cells. Thus, we propose that a gain-of-function by TASK-4 in the conduction system might aggravate slowed conductivity by the loss of sodium channel function. Moreover, WES supports a second hit-hypothesis in severe arrhythmia cases and identified KCNK17 as a novel arrhythmia gene.

  12. Voltage dependence of rate functions for Na+ channel inactivation within a membrane

    CERN Document Server

    Vaccaro, Samuel R

    2015-01-01

    The inactivation of a Na+ channel occurs when the activation of the charged S4 segment of domain IV, with rate functions $\\alpha_{i}$ and $\\beta_{i}$, is followed by the binding of an intracellular hydrophobic motif which blocks conduction through the ion pore, with rate functions $\\gamma_{i}$ and $\\delta_{i}$. During a voltage clamp of the Na+ channel, the solution of the master equation for inactivation reduces to the relaxation of a rate equation when the binding of the inactivation motif is rate limiting ($\\alpha_{i} \\gg \\gamma_{i}$ and $\\beta_{i} \\gg \\delta_{i}$). The voltage dependence of the derived forward rate function for Na+ channel inactivation has an exponential dependence on the membrane potential for small depolarizations and approaches a constant value for larger depolarizations, whereas the voltage dependence of the backward rate function is exponential, and each rate has a similar form to the Hodgkin-Huxley empirical rate functions for Na+ channel inactivation in the squid axon.

  13. Channels Active in the Excitability of Nerves and Skeletal Muscles across the Neuromuscular Junction: Basic Function and Pathophysiology

    Science.gov (United States)

    Goodman, Barbara E.

    2008-01-01

    Ion channels are essential for the basic physiological function of excitable cells such as nerve, skeletal, cardiac, and smooth muscle cells. Mutations in genes that encode ion channels have been identified to cause various diseases and disorders known as channelopathies. An understanding of how individual ion channels are involved in the…

  14. Asymmetric functional contributions of acidic and aromatic side chains in sodium channel voltage-sensor domains

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Elstone, Fisal D; Niciforovic, Ana P

    2014-01-01

    Voltage-gated sodium (NaV) channels mediate electrical excitability in animals. Despite strong sequence conservation among the voltage-sensor domains (VSDs) of closely related voltage-gated potassium (KV) and NaV channels, the functional contributions of individual side chains in Nav VSDs remain...... largely enigmatic. To this end, natural and unnatural side chain substitutions were made in the S2 hydrophobic core (HC), the extracellular negative charge cluster (ENC), and the intracellular negative charge cluster (INC) of the four VSDs of the skeletal muscle sodium channel isoform (NaV1.......4). The results show that the highly conserved aromatic side chain constituting the S2 HC makes distinct functional contributions in each of the four NaV domains. No obvious cation-pi interaction exists with nearby S4 charges in any domain, and natural and unnatural mutations at these aromatic sites produce...

  15. Utility of N-aryl 2-aroylhydrazono-propanehydrazonoyl chlorides as precursors for synthesis of new functionalized 1,3,4-thiadiazoles with potential antimicrobial activity

    Directory of Open Access Journals (Sweden)

    Abdou O. Abdelhamid

    2015-11-01

    Full Text Available Starting from N-aryl 2-aroylhydrazono-propanehydrazonoyl chlorides, a series of new functionalized 1,3,4-thiadiazoles were prepared. The structures of the compounds prepared were confirmed by both elemental and spectral analyses as well as by alternate synthesis. The mechanisms of the studied reactions are outlined. The antimicrobial activities of the compounds prepared were screened and the results showed that most of such compounds exhibit considerable activities.

  16. Dual regulation of the native ClC-K2 chloride channel in the distal nephron by voltage and pH.

    Science.gov (United States)

    Pinelli, Laurent; Nissant, Antoine; Edwards, Aurélie; Lourdel, Stéphane; Teulon, Jacques; Paulais, Marc

    2016-09-01

    ClC-K2, a member of the ClC family of Cl(-) channels and transporters, forms the major basolateral Cl(-) conductance in distal nephron epithelial cells and therefore plays a central role in renal Cl(-) absorption. However, its regulation remains largely unknown because of the fact that recombinant ClC-K2 has not yet been studied at the single-channel level. In the present study, we investigate the effects of voltage, pH, Cl(-), and Ca(2+) on native ClC-K2 in the basolateral membrane of intercalated cells from the mouse connecting tubule. The ∼10-pS channel shows a steep voltage dependence such that channel activity increases with membrane depolarization. Intracellular pH (pHi) and extracellular pH (pHo) differentially modulate the voltage dependence curve: alkaline pHi flattens the curve by causing an increase in activity at negative voltages, whereas alkaline pHo shifts the curve toward negative voltages. In addition, pHi, pHo, and extracellular Ca(2+) strongly increase activity, mainly because of an increase in the number of active channels with a comparatively minor effect on channel open probability. Furthermore, voltage alters both the number of active channels and their open probability, whereas intracellular Cl(-) has little influence. We propose that changes in the number of active channels correspond to them entering or leaving an inactivated state, whereas modulation of open probability corresponds to common gating by these channels. We suggest that pH, through the combined effects of pHi and pHo on ClC-K2, might be a key regulator of NaCl absorption and Cl(-)/HCO3 (-) exchange in type B intercalated cells.

  17. Targeted deletion of Kcne2 impairs HCN channel function in mouse thalamocortical circuits.

    Directory of Open Access Journals (Sweden)

    Shui-Wang Ying

    Full Text Available BACKGROUND: Hyperpolarization-activated, cyclic nucleotide-gated (HCN channels generate the pacemaking current, I(h, which regulates neuronal excitability, burst firing activity, rhythmogenesis, and synaptic integration. The physiological consequence of HCN activation depends on regulation of channel gating by endogenous modulators and stabilization of the channel complex formed by principal and ancillary subunits. KCNE2 is a voltage-gated potassium channel ancillary subunit that also regulates heterologously expressed HCN channels; whether KCNE2 regulates neuronal HCN channel function is unknown. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the effects of Kcne2 gene deletion on I(h properties and excitability in ventrobasal (VB and cortical layer 6 pyramidal neurons using brain slices prepared from Kcne2(+/+ and Kcne2(-/- mice. Kcne2 deletion shifted the voltage-dependence of I(h activation to more hyperpolarized potentials, slowed gating kinetics, and decreased I(h density. Kcne2 deletion was associated with a reduction in whole-brain expression of both HCN1 and HCN2 (but not HCN4, although co-immunoprecipitation from whole-brain lysates failed to detect interaction of KCNE2 with HCN1 or 2. Kcne2 deletion also increased input resistance and temporal summation of subthreshold voltage responses; this increased intrinsic excitability enhanced burst firing in response to 4-aminopyridine. Burst duration increased in corticothalamic, but not thalamocortical, neurons, suggesting enhanced cortical excitatory input to the thalamus; such augmented excitability did not result from changes in glutamate release machinery since miniature EPSC frequency was unaltered in Kcne2(-/- neurons. CONCLUSIONS/SIGNIFICANCE: Loss of KCNE2 leads to downregulation of HCN channel function associated with increased excitability in neurons in the cortico-thalamo-cortical loop. Such findings further our understanding of the normal physiology of brain circuitry critically

  18. A discrete-time channel simulator driven by measured scattering functions

    NARCIS (Netherlands)

    Walree, P.A. van; Jenserud, T.; Smedsrud, M.

    2008-01-01

    In-situ measurements of the scattering function are used to drive a channel simulator developed in the context of underwater acoustic telemetry. Two operation modes of the simulator are evaluated. A replay mode is accomplished by interpolation of measured impulse responses. A second, stochastic mode

  19. A clustering technique for digital communications channel equalization using radial basis function networks.

    Science.gov (United States)

    Chen, S; Mulgrew, B; Grant, P M

    1993-01-01

    The application of a radial basis function network to digital communications channel equalization is examined. It is shown that the radial basis function network has an identical structure to the optimal Bayesian symbol-decision equalizer solution and, therefore, can be employed to implement the Bayesian equalizer. The training of a radial basis function network to realize the Bayesian equalization solution can be achieved efficiently using a simple and robust supervised clustering algorithm. During data transmission a decision-directed version of the clustering algorithm enables the radial basis function network to track a slowly time-varying environment. Moreover, the clustering scheme provides an automatic compensation for nonlinear channel and equipment distortion. Computer simulations are included to illustrate the analytical results.

  20. Structure of the channeling electrons wave functions under dynamical chaos conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shul’ga, N.F. [National Science Center “Kharkov Institute of Physics and Technology”, 1, Akademicheskaya St., Kharkov 61108 (Ukraine); V.N. Karazin National University, 4, Svodody Sq., Kharkov 61022 (Ukraine); Syshchenko, V.V., E-mail: syshch@yandex.ru [Belgorod National Research University, 85, Pobedy St., Belgorod 308015 (Russian Federation); Tarnovsky, A.I. [Belgorod National Research University, 85, Pobedy St., Belgorod 308015 (Russian Federation); Isupov, A.Yu. [Laboratory of High Energy Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow region (Russian Federation)

    2016-03-01

    The stationary wave functions of fast electrons axially channeling in the silicon crystal near [1 1 0] direction have been found numerically for integrable and non-integrable cases, for which the classical motion is regular and chaotic, respectively. The nodal structure of the wave functions in the quasi-classical region, where the energy levels density is high, is agreed with quantum chaos theory predictions.

  1. The activation effect of nobiletin on cystic fibrosis transmembrane conductance regulator chloride channel%川陈皮素对囊性纤维化跨膜传导调节因子的激活作用

    Institute of Scientific and Technical Information of China (English)

    杨爽; 于波; 张耀方; 王雪; 杨红

    2013-01-01

    Aim of the present study is to investigate activation effect of nobiletin on cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel activity.CFTR-mediated iodide influx assay and patch-clamp tests were done on FRT cells stably co-transfected with human CFTR and EYFP/H148Q.Nobiletin potently activated CFTR chloride channel activity in a dose-and time-dependent manner.The CFTR blocker CFTRinh-172 could completely reverse the effect.Preliminary mechanism study indicated that nobiletin activated CFTR chloride channel through a direct binding way.In addition,ex vivo tests done on mice trachea showed that nobiletin time-dependently stimulated submucosal gland fluid secretion.Nobiletin may be a therapeutic lead compound in treating CFTR-related diseases including disseminated bronchiectasis.%本实验利用荧光淬灭实验和膜片钳技术在稳定表达人CFTR和荧光绿蛋白突变体EYFP/H148Q的Fischer大鼠甲状腺上皮细胞(Fischer rat thyroid,FRT)上,测定川陈皮素(nobiletin)对囊性纤维化跨膜传导因子(cystic fibrosis transmembrane conductance regulator,CFTR)氯离子通道的激活作用.结果发现,川陈皮素以剂量依赖的方式激活CFTR氯离子通道的C1-转运活性,且这种活性是快速、可逆的,并能够被CFTR特异性抑制剂CFTRinh-172完全抑制.初步的分子机制研究表明,川陈皮素是以与CFTR直接作用来激活通道活性的.进一步的研究结果显示,川陈皮素能够有效刺激小鼠气管黏膜下腺液体分泌速度.因此,川陈皮素可能发展成为治疗包括支气管扩张在内的CFTR相关疾病的先导药物.

  2. Stimulation of wild-type, F508del- and G551D-CFTR chloride channels by non toxic modified pyrrolo[2,3-b]pyrazine derivatives

    Directory of Open Access Journals (Sweden)

    Luc eDannhoffer

    2011-08-01

    Full Text Available Cystic Fibrosis is a major inherited disorder involving abnormalities of fluid and electrolyte transport in a number of different organs due to abnormal function of Cystic Fibrosis Transmembrane conductance Regulator (CFTR protein. We recently identified a family of CFTR activators, which contains the hit: RP107 [7-n-butyl-6-(4-hydroxyphenyl[5H]-pyrrolo[2,3-b]pyrazine]. Here, we further evaluated the effect of the chemical modifications of the RP107-OH radical on CFTR activation. The replacement of the OH radical by a fluorine atom at position 2 (RP193 or 4 (RP185 significantly decreased the toxicity of the compounds without altering the ability to activate CFTR, especially for RP193. The non-toxic compound RP193 has no effect on cAMP production but stimulates the channel activity of wild-type CFTR in stably transfected CHO cells, in human bronchial epithelial NuLi-1 cells and in primary culture of human bronchial epithelial cells. Whole cell and single patch clamp recordings showed that RP193 induced a linear, time and voltage-independent current, which was fully inhibited by two different and selective CFTR inhibitors (CFTRinh-172 and GPinh-5a. Moreover, RP193 stimulates CFTR in temperature-rescued CuFi-1 (F508del/F508del human bronchial epithelial cells and in CHO cells stably expressing G551D-CFTR. This study shows that it is feasible to reduce cytotoxicity of chemical compounds without affecting their potency to activate CFTR and to rescue the class 2 F508del-CFTR and class 3 G551D-CFTR CF mutant activities.

  3. The role of chloride anion and CFTR in killing of Pseudomonas aeruginosa by normal and CF neutrophils.

    Science.gov (United States)

    Painter, Richard G; Bonvillain, Ryan W; Valentine, Vincent G; Lombard, Gisele A; LaPlace, Stephanie G; Nauseef, William M; Wang, Guoshun

    2008-06-01

    Chloride anion is essential for myeloperoxidase (MPO) to produce hypochlorous acid (HOCl) in polymorphonuclear neutrophils (PMNs). To define whether chloride availability to PMNs affects their HOCl production and microbicidal capacity, we examined how extracellular chloride concentration affects killing of Pseudomonas aeruginosa (PsA) by normal neutrophils. PMN-mediated bacterial killing was strongly dependent on extracellular chloride concentration. Neutrophils in a chloride-deficient medium killed PsA poorly. However, as the chloride level was raised, the killing efficiency increased in a dose-dependent manner. By using specific inhibitors to selectively block NADPH oxidase, MPO, and cystic fibrosis transmembrane conductance regulator (CFTR) functions, neutrophil-mediated killing of PsA could be attributed to three distinct mechanisms: CFTR-dependent and oxidant-dependent; chloride-dependent but not CFTR- and oxidant-dependent; and independent of any of the tested factors. Therefore, chloride anion is involved in oxidant- and nonoxidant-mediated bacterial killing. We previously reported that neutrophils from CF patients are defective in chlorination of ingested bacteria, suggesting that the chloride channel defect might impair the MPO-hydrogen peroxide-chloride microbicidal function. Here, we compared the competence of killing PsA by neutrophils from normal donors and CF patients. The data demonstrate that the killing rate by CF neutrophils was significantly lower than that by normal neutrophils. CF neutrophils in a chloride-deficient environment had only one-third of the bactericidal capacity of normal neutrophils in a physiological chloride environment. These results suggest that CFTR-dependent chloride anion transport contributes significantly to killing PsA by normal neutrophils and when defective as in CF, may compromise the ability to clear PsA.

  4. Gradually-varied flow profiles in open channels analytical solutions by using Gaussian hypergeometric function

    CERN Document Server

    Jan, Chyan-Deng

    2014-01-01

    Gradually-varied flow (GVF) is a steady non-uniform flow in an open channel with gradual changes in its water surface elevation. The evaluation of GVF profiles under a specific flow discharge is very important in hydraulic engineering. This book proposes a novel approach to analytically solve the GVF profiles by using the direct integration and Gaussian hypergeometric function. Both normal-depth- and critical-depth-based dimensionless GVF profiles are presented. The novel approach has laid the foundation to compute at one sweep the GVF profiles in a series of sustaining and adverse channels, w

  5. Functional Alterations of Ion Channels From Cardiac Fibroblasts in Heart Diseases

    Directory of Open Access Journals (Sweden)

    Gracious R. Ross

    2016-11-01

    Full Text Available In an aged population, cardiovascular disease is the leading cause of fatality and morbidity. Age-related fibrotic remodeling of the heart contributes to progressive myocardial dysfunction. Cardiac fibroblasts (CF, responsible for the maintenance of extracellular matrix and fibrosis process, play an important role in cardiac health and disease. CFs influence myocardial function by their chemical, electrical and mechanical interactions with cardiomyocytes through extracellular matrix deposition or secretion of cytokines and growth factors. These, in turn, are modulated by ion channels, macromolecular pores in the plasma membrane that allow selective ionic fluxes of major ions like K+, Ca2+, Na+ or Cl-, which affect membrane potential and cellular signal transduction. The importance of ion channels in modulating various functions of CFs, including proliferation, differentiation, secretion and apoptosis, is being recognized from recent studies of CFs from animal models and tissue from patients with various cardiac pathologies. Understanding the role of ion channels in CFs under physiological conditions and their alterations in age-related cardiac diseases may help facilitate development of novel therapeutic strategies to limit cardiac fibrosis and its adverse effect on myocardial function. This narrative review summarizes the knowledge gained thus far on ion channels in CFs and their relationship with cardiac diseases in human and experimental animal models.

  6. Dechlorination of Aromatic Chlorides in Aqueous System Catalyzed by Functionalized MontK10 Supported Palladium-tin

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A novel bisupporter bimetal catalyst PVP-PdCl2-SnCl4/MontK10-PEG400, using for dehalogenation of insoluable aromatic halides in aqueous system, has shown high dechlorination activity and selectivity, without any organic solvent or phase transfer catalyst. The conversion of aromatic chlorides can reach 100%. The catalyst is easy to prepare and has good reusability.

  7. Chloride : The queen of electrolytes?

    NARCIS (Netherlands)

    Berend, Kenrick; van Hulsteijn, Leonard Hendrik; Gans, Rijk O. B.

    2012-01-01

    Background: Channelopathies, defined as diseases that are caused by mutations in genes encoding ion channels, are associated with a wide variety of symptoms and have been documented extensively over the past decade. In contrast, despite the important role of chloride in serum, textbooks in general d

  8. Conditional fast expression and function of multimeric TRPV5 channels using Shield-1.

    Science.gov (United States)

    Schoeber, Joost P H; van de Graaf, Stan F J; Lee, Kyu Pil; Wittgen, Hanneke G M; Hoenderop, Joost G J; Bindels, René J M

    2009-01-01

    A recently described novel controllable method to regulate protein expression is based on a mutated FK506-binding protein-12 (mtFKBP) that is unstable and rapidly degraded in mammalian cells. This instability can be conferred to other proteins directly fused to mtFKBP. Binding of a synthetic cell-permeant ligand (Shield-1) to mtFKBP reverses the instability, allowing conditional expression of mtFKBP-fused proteins. We adapted this strategy to study multimeric plasma membrane proteins using the ion channel TRPV5 as model protein. mtFKBP-TRPV5 forms functional ion channels and its expression can be controlled in a time- and dose-dependent fashion using Shield-1. Moreover, in the presence of Shield-1, mtFKBP-TRPV5 formed heteromultimeric channels with untagged TRPV5, which were codegraded upon washout of Shield-1, providing a strategy to study multimeric plasma membrane protein complexes without the need to destabilize all individual subunits.

  9. Opposite effects of the S4-S5 linker and PIP2 on voltage-gated channel function: KCNQ1/KCNE1 and other channels

    Directory of Open Access Journals (Sweden)

    Frank S Choveau

    2012-07-01

    Full Text Available Voltage-gated potassium (Kv channels are tetramers, each subunit presenting six transmembrane segments (S1-S6, with each S1-S4 segments forming a voltage-sensing domain (VSD and the four S5-S6 forming both the conduction pathway and its gate. S4 segments control the opening of the intracellular activation gate in response to changes in membrane potential. Crystal structures of several voltage-gated ion channels in combination with biophysical and mutagenesis studies highlighted the critical role of the S4-S5 linker (S4S5L and of the S6 C-terminal part (S6T in the coupling between the VSD and the activation gate. Several mechanisms have been proposed to describe the coupling at a molecular scale. This review summarizes the mechanisms suggested for various voltage-gated ion channels, including a mechanism that we described for KCNQ1, in which S4S5L is acting like a ligand binding to S6T to stabilize the channel in a closed state. As discussed in this review, this mechanism may explain the reverse response to depolarization in HCN-like channels. As opposed to S4S5L, the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2, stabilizes KCNQ1 channel in an open state. Many other ion channels (not only voltage-gated require PIP2 to function properly, confirming its crucial importance as an ion channel co-factor. This is highlighted in cases in which an altered regulation of ion channels by PIP2 leads to channelopathies, as observed for KCNQ1. This review summarizes the state of the art on the two regulatory mechanisms that are critical for KCNQ1 and other voltage-gated channels function (PIP2 and S4-S5L, and assesses their potential physiological and pathophysiological roles.

  10. Opposite Effects of the S4-S5 Linker and PIP(2) on Voltage-Gated Channel Function: KCNQ1/KCNE1 and Other Channels.

    Science.gov (United States)

    Choveau, Frank S; Abderemane-Ali, Fayal; Coyan, Fabien C; Es-Salah-Lamoureux, Zeineb; Baró, Isabelle; Loussouarn, Gildas

    2012-01-01

    Voltage-gated potassium (Kv) channels are tetramers, each subunit presenting six transmembrane segments (S1-S6), with each S1-S4 segments forming a voltage-sensing domain (VSD) and the four S5-S6 forming both the conduction pathway and its gate. S4 segments control the opening of the intracellular activation gate in response to changes in membrane potential. Crystal structures of several voltage-gated ion channels in combination with biophysical and mutagenesis studies highlighted the critical role of the S4-S5 linker (S4S5(L)) and of the S6 C-terminal part (S6(T)) in the coupling between the VSD and the activation gate. Several mechanisms have been proposed to describe the coupling at a molecular scale. This review summarizes the mechanisms suggested for various voltage-gated ion channels, including a mechanism that we described for KCNQ1, in which S4S5(L) is acting like a ligand binding to S6(T) to stabilize the channel in a closed state. As discussed in this review, this mechanism may explain the reverse response to depolarization in HCN-like channels. As opposed to S4S5(L), the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP(2)), stabilizes KCNQ1 channel in an open state. Many other ion channels (not only voltage-gated) require PIP(2) to function properly, confirming its crucial importance as an ion channel cofactor. This is highlighted in cases in which an altered regulation of ion channels by PIP(2) leads to channelopathies, as observed for KCNQ1. This review summarizes the state of the art on the two regulatory mechanisms that are critical for KCNQ1 and other voltage-gated channels function (PIP(2) and S4S5(L)), and assesses their potential physiological and pathophysiological roles.

  11. Selective oxidation of vinyl chloride on Ag2O(100), Cu2O(100), and Au2O(100) surfaces: A density functional theory study

    Science.gov (United States)

    Ren, Rui-Peng; Cheng, Lu; Lv, Yong-Kang

    2014-12-01

    Vinyl chloride (VC) is the simplest asymmetric olefin molecule and is greatly harmful to the environment and human health. To find an effective oxidation approach to decrease VC emission, the selective oxidation reaction of the VC molecule on Ag2O(100), Cu2O(100), and Au2O(100) surfaces has been investigated by using density functional theory in the present work. Five different reaction pathways in two steps on the three surfaces have been proposed and discussed. The result shows that the formation of chloroacetadehyde is more favored than the formation of chloroethylene epoxide and acetyl chloride, and the activation energy of chloroacetadehyde formation on the Ag2O(100) surface is lower than that on the other two surfaces.

  12. KCNQ channels show conserved ethanol block and function in ethanol behaviour.

    Directory of Open Access Journals (Sweden)

    Sonia Cavaliere

    Full Text Available In humans, KCNQ2/3 channels form an M-current that regulates neuronal excitability, with mutations in these channels causing benign neonatal familial convulsions. The M-current is important in mechanisms of neural plasticity underlying associative memory and in the response to ethanol, with KCNQ controlling the release of dopamine after ethanol exposure. We show that dKCNQ is broadly expressed in the nervous system, with targeted reduction in neuronal KCNQ increasing neural excitability and KCNQ overexpression decreasing excitability and calcium signalling, consistent with KCNQ regulating the resting membrane potential and neural release as in mammalian neurons. We show that the single KCNQ channel in Drosophila (dKCNQ has similar electrophysiological properties to neuronal KCNQ2/3, including conserved acute sensitivity to ethanol block, with the fly channel (IC(50 = 19.8 mM being more sensitive than its mammalian ortholog (IC(50 = 42.1 mM. This suggests that the role of KCNQ in alcohol behaviour can be determined for the first time by using Drosophila. We present evidence that loss of KCNQ function in Drosophila increased sensitivity and tolerance to the sedative effects of ethanol. Acute activation of dopaminergic neurons by heat-activated TRP channel or KCNQ-RNAi expression produced ethanol hypersensitivity, suggesting that both act via a common mechanism involving membrane depolarisation and increased dopamine signalling leading to ethanol sedation.

  13. Electrochemical Study and Application on Shikonin at Poly(diallyldimethylammonium chloride) Functionalized Graphene Sheets Modified Glass Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    AN Jing; LI Ji-ping; CHEN Wen-xia; YANG Chun-xia; HU Fang-di; WANG Chun-ming

    2013-01-01

    The electrochemical behaviors of shikonin at a poly(diallyldimethylammonium chloride) functionalized graphene sheets modified glass carbon electrode(PDDA-GS/GCE) have been investigated.Shikonin could exhibit a pair of well-defined redox peaks at the PDDA-GS/GCE located at 0.681 V(Epa) and 0.662 V(Epc)[vs.saturated calomel electrode(SCE)] in 0.1 mol/L phosphate buffer solution(pH=2.0) with a peak-to-peak separation of about 20 mV,revealing a fast electron-transfer process.Moreover,the current response was remarkably increased at PDDAGS/GCE compared with that at the bare GCE.The electrochemical behaviors of shikonin at the modified electrode were investigated.And the results indicate that the reaction involves the transfer of two electrons,accompanied by two protons and the electrochemical process is a diffusional-controlled electrode process.The electrochemical parameters of shikonin at the modified electrode,the electron-transfer coefficient(α),the electron-transfer number(n) and the electrode reaction rate constant(ks) were calculated to be as 0.53,2.18 and 3.6 s-1,respectively.Under the optimal conditions,the peak current of differential pulse voltammetry(DPV) increased linearly with the shikonin concentration in a range from 9.472×10-8 mol/L to 3.789×10-6 mol/L with a detection limit of 3.157×10-8 mol/L.The linear regression equation was Ip=0.7366c+0.7855(R=0.9978; Ip:10 7 A,c:10-8 mol/L).In addition,the modified glass carbon electrode also exhibited good stability,selectivity and acceptable reproducibility that could be used for the sensitive,simple and rapid determination of shikonin in real samples.Therefore,the present work offers a new way to broaden the analytical application of graphene in pharmaceutical analysis.

  14. Functional and Modeling Studies of the Transmembrane Region of the TRPM8 Channel.

    Science.gov (United States)

    Bidaux, Gabriel; Sgobba, Miriam; Lemonnier, Loic; Borowiec, Anne-Sophie; Noyer, Lucile; Jovanovic, Srdan; Zholos, Alexander V; Haider, Shozeb

    2015-11-03

    Members of the transient receptor potential (TRP) ion channel family act as polymodal cellular sensors, which aid in regulating Ca(2+) homeostasis. Within the TRP family, TRPM8 is the cold receptor that forms a nonselective homotetrameric cation channel. In the absence of TRPM8 crystal structure, little is known about the relationship between structure and function. Inferences of TRPM8 structure have come from mutagenesis experiments coupled to electrophysiology, mainly regarding the fourth transmembrane helix (S4), which constitutes a moderate voltage-sensing domain, and about cold sensor and phosphatidylinositol 4,5-bisphosphate binding sites, which are both located in the C-terminus of TRPM8. In this study, we use a combination of molecular modeling and experimental techniques to examine the structure of the TRPM8 transmembrane and pore helix region including the conducting conformation of the selectivity filter. The model is consistent with a large amount of functional data and was further tested by mutagenesis. We present structural insight into the role of residues involved in intra- and intersubunit interactions and their link with the channel activity, sensitivity to icilin, menthol and cold, and impact on channel oligomerization.

  15. Functional expression of TRPM8 and TRPA1 channels in rat odontoblasts.

    Directory of Open Access Journals (Sweden)

    Maki Tsumura

    Full Text Available Odontoblasts produce dentin during development, throughout life, and in response to pathological conditions by sensing stimulation of exposed dentin. The functional properties and localization patterns of transient receptor potential (TRP melastatin subfamily member 8 (TRPM8 and ankyrin subfamily member 1 (TRPA1 channels in odontoblasts remain to be clarified. We investigated the localization and the pharmacological, biophysical, and mechano-sensitive properties of TRPM8 and TRPA1 channels in rat odontoblasts. Menthol and icilin increased the intracellular free Ca(2+ concentration ([Ca(2+]i. Icilin-, WS3-, or WS12-induced [Ca(2+]i increases were inhibited by capsazepine or 5-benzyloxytriptamine. The increase in [Ca(2+]i elicited by allyl isothiocyanate (AITC was inhibited by HC030031. WS12 and AITC exerted a desensitizing effect on [Ca(2+]i increase. Low-temperature stimuli elicited [Ca(2+]i increases that are sensitive to both 5-benzyloxytriptamine and HC030031. Hypotonic stimulation-induced membrane stretch increased [Ca(2+]i; HC030031 but not 5-benzyloxytriptamine inhibited the effect. The results suggest that TRPM8 channels in rat odontoblasts play a role in detecting low-temperature stimulation of the dentin surface and that TRPA1 channels are involved in sensing membrane stretching and low-temperature stimulation. The results also indicate that odontoblasts act as mechanical and thermal receptor cells, detecting the stimulation of exposed dentin to drive multiple cellular functions, such as sensory transduction.

  16. Functional insights into modulation of BKCa channel activity to alter myometrial contractility

    Directory of Open Access Journals (Sweden)

    Ramón A Lorca

    2014-07-01

    Full Text Available The large-conductance voltage- and Ca2+-activated K+ channel (BKCa is an important regulator of membrane excitability in a wide variety of cells and tissues. In myometrial smooth muscle, activation of BKCa plays essential roles in buffering contractility to maintain uterine quiescence during pregnancy and in the transition to a more contractile state at the onset of labor. Multiple mechanisms of modulation have been described to alter BKCa channel activity, expression, and cellular localization. In the myometrium, BKCa is regulated by alternative splicing, protein targeting to the plasma membrane, compartmentation in membrane microdomains, and posttranslational modifications. In addition, interaction with auxiliary proteins (i.e., β1- and β2-subunits, association with G-protein coupled receptor signaling pathways, such as those activated by adrenergic and oxytocin receptors, and hormonal regulation provide further mechanisms of variable modulation of BKCa channel function in myometrial smooth muscle. Here, we provide an overview of these mechanisms of BKCa channel modulation and provide a context for them in relation to myometrial function.

  17. Effect of daurisoline on HERG channel electrophysiological function and protein expression.

    Science.gov (United States)

    Liu, Qiangni; Mao, Xiaofang; Zeng, Fandian; Jin, Si; Yang, Xiaoyan

    2012-09-28

    Daurisoline (1) is a bis-benzylisoquinoline alkaloid isolated from the rhizomes of Menispermum dauricum. The antiarrhythmic effect of 1 has been demonstrated in different experimental animals. In previous studies, daurisoline (1) prolonged action potential duration (APD) in a normal use-dependent manner. However, the electrophysiological mechanisms for 1-induced prolongation of APD have not been documented. In the present study, the direct effect of 1 was investigated on the hERG current and the expression of mRNA and protein in human embryonic kidney 293 (HEK293) cells stably expressing the hERG channel. It was shown that 1 inhibits hERG current in a concentration- and voltage-dependent manner. In the presence of 10 μM 1, steady-state inactivation of V(1/2) was shifted negatively by 15.9 mV, and 1 accelerated the onset of inactivation. Blockade of hERG channels was dependent on channel opening. The expression and function of hERG were unchanged by 1 at 1 and 10 μM, while hERG expression and the hERG current were decreased significantly by 1 at 30 μM. These results indicate that 1, at concentrations below 30 μM, exerts a blocking effect on hERG, but does not affect the expression and function of the hERG channel. This may explain the relatively lower risk of long QT syndrome after long-term usage.

  18. Importance of NPA motifs in the expression and function of water channel aquaporin-1

    Institute of Scientific and Technical Information of China (English)

    JIANG Yong; MA TongHui

    2007-01-01

    The asparagine-proline-alanine sequences (NPA motifs) are highly conserved in aquaporin water channel family. Crystallographic studies of AQP1 structure demonstrated that the two NPA motifs are in the narrow central constriction of the channel, serving to bind water molecules for selective and efficient water passage. To investigate the importance of the two NPA motifs in the structure, function and biogenesis of aquaporin water channels, we generated AQP1 mutations with NPA1 deletion, NPA2 deletion and NPA1,2 double deletion. The coding sequences of the three mutated cDNAs were subcloned into the mammalian expression vector pcDNA3.1 to form expression plasmids. We established stably transfected CHO cell lines expressing these AQP1 mutants. Immunofluorescence indicated that all the three mutated AQP1 proteins are expressed normally on the plasma membrane of stably transfected CHO cells, suggesting that deletion of NPA motifs does not influence the expression and intracellular processing of AQP1. Functional analysis demonstrated that NPA1 or NPA2 deletion reduced AQP1 water permeability by 49.6% and 46.7%, respectively, while NPA1,2 double deletion had little effect on AQP1 water permeability. These results provide evidence that NPA motifs are important for water per-meation but not essential for the expression, intracellular processing and the basic structure of AQP1 water channel.

  19. Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels.

    Science.gov (United States)

    Yu, Yin; Zhang, Yahui; Martin, James A; Ozbolat, Ibrahim T

    2013-09-01

    Organ printing is a novel concept recently introduced in developing artificial three-dimensional organs to bridge the gap between transplantation needs and organ shortage. One of the major challenges is inclusion of blood-vessellike channels between layers to support cell viability, postprinting functionality in terms of nutrient transport, and waste removal. In this research, we developed a novel and effective method to print tubular channels encapsulating cells in alginate to mimic the natural vascular system. An experimental investigation into the influence on cartilage progenitor cell (CPCs) survival, and the function of printing parameters during and after the printing process were presented. CPC functionality was evaluated by checking tissue-specific genetic marker expression and extracellular matrix production. Our results demonstrated the capability of direct fabrication of cell-laden tubular channels by our newly designed coaxial nozzle assembly and revealed that the bioprinting process could induce quantifiable cell death due to changes in dispensing pressure, coaxial nozzle geometry, and biomaterial concentration. Cells were able to recover during incubation, as well as to undergo differentiation with high-level cartilage-associated gene expression. These findings may not only help optimize our system but also can be applied to biomanufacturing of 3D functional cellular tissue engineering constructs for various organ systems.

  20. TRPM7-like channels are functionally expressed in oocytes and modulate post-fertilization embryo development in mouse

    Science.gov (United States)

    Carvacho, Ingrid; Ardestani, Goli; Lee, Hoi Chang; McGarvey, Kaitlyn; Fissore, Rafael A.; Lykke-Hartmann, Karin

    2016-01-01

    The Transient Receptor Potential (TRP) channels are a family of cationic ion channels widely distributed in mammalian tissues. In general, the global genetic disruption of individual TRP channels result in phenotypes associated with impairment of a particular tissue and/or organ function. An exception is the genetic ablation of the TRP channel TRPM7, which results in early embryonic lethality. Nevertheless, the function of TRPM7 in oocytes, eggs and pre-implantation embryos remains unknown. Here, we described an outward rectifying non-selective current mediated by a TRP ion channel in immature oocytes (germinal vesicle stage), matured oocytes (metaphase II eggs) and 2-cell stage embryos. The current is activated by specific agonists and inhibited by distinct blockers consistent with the functional expression of TRPM7 channels. We demonstrated that the TRPM7-like channels are homo-tetramers and their activation mediates calcium influx in oocytes and eggs, which is fundamental to support fertilization and egg activation. Lastly, we showed that pharmacological inhibition of the channel function delays pre-implantation embryo development and reduces progression to the blastocyst stage. Our data demonstrate functional expression of TRPM7-like channels in mouse oocytes, eggs and embryos that may play an essential role in the initiation of embryo development. PMID:27681336

  1. Functional Expression Profile of Voltage-Gated K(+) Channel Subunits in Rat Small Mesenteric Arteries.

    Science.gov (United States)

    Cox, Robert H; Fromme, Samantha

    2016-06-01

    Multiple K v channel complexes contribute to total K v current in numerous cell types and usually subserve different physiological functions. Identifying the complete compliment of functional K v channel subunits in cells is a prerequisite to understanding regulatory function. It was the goal of this work to determine the complete K v subunit compliment that contribute to functional K v currents in rat small mesenteric artery (SMA) myocytes as a prelude to studying channel regulation. Using RNA prepared from freshly dispersed myocytes, high levels of K v 1.2, 1.5, and 2.1 and lower levels of K v 7.4 α-subunit expressions were demonstrated by quantitative PCR and confirmed by Western blotting. Selective inhibitors correolide (K v 1; COR), stromatoxin (K v 2.1; ScTx), and linopirdine (K v 7.4; LINO) decreased K v current at +40 mV in SMA by 46 ± 4, 48 ± 4, and 6.5 ± 2 %, respectively, and K v current in SMA was insensitive to α-dendrotoxin. Contractions of SMA segments pretreated with 100 nmol/L phenylephrine were enhanced by 27 ± 3, 30 ± 8, and 7 ± 3 % of the response to 120 mmol/L KCl by COR, ScTX, and LINO, respectively. The presence of K v 6.1, 9.3, β1.1, and β1.2 was demonstrated by RT-PCR using myocyte RNA with expressions of K vβ1.2 and K v 9.3 about tenfold higher than K vβ1.1 and K v 6.1, respectively. Selective inhibitors of K v 1.3, 3.4, 4.1, and 4.3 channels also found at the RNA and/or protein level had no significant effect on K v current or contraction. These results suggest that K v current in rat SMA myocytes are dominated equally by two major components consisting of K v 1.2-1.5-β1.2 and K v 2.1-9.3 channels along with a smaller contribution from K v 7.4 channels but differences in voltage dependence of activation allows all three to provide significant contributions to SMA function at physiological voltages.

  2. Influence of hypertonic sodium chloride hydroxyethyl starch 40 injection on cardiac and pulmonary function state of patients with radical surgery of esophageal cancer

    Institute of Scientific and Technical Information of China (English)

    Na Wang; Wen-Yun Xu; Juan Pu; Qing-Qing Zhang; Mou-Li Tian

    2016-01-01

    Objective:To study the influence degree of hypertonic sodium chloride hydroxyethyl starch 40 injection (HSH 40) for the cardiac and pulmonary function state of patients with radical surgery of esophageal cancer.Methods:A total of 60 patients with radical surgery of esophageal cancer in our hospital from January 2014 to January 2016 were divided into the control group and the observation group, and 30 cases in each group according to the method of random number table. The control group was treated with conventional treatment, and the observation group was treated with HSH 40 on the treatment of the control group. The cardiac and pulmonary function indexes of two groups before and after the treatment at different time after the treatment were compared.Results:The hemodynamic indexes, pulmonary circulation indexes, right heart function indexes and oxygenation indexes of the two groups before the treatment had no significant differences (allP>0.05), while the hemodynamic indexes, pulmonary circulation indexes, right heart function indexes and oxygenation indexes of the observation group at different time after treatment were all significantly better than those of the control group(allP>0.05).Conclusions:The influence of hypertonic sodium chloride hydroxyethyl starch 40 injection for the cardiac and pulmonary function state of patients with radical surgery of esophageal cancer is better, and the application effect for the surgical patients is better.

  3. Isotype-specific activation of cystic fibrosis transmembrane conductance regulator-chloride channels by cGMP-dependent protein kinase II

    NARCIS (Netherlands)

    P.J. French (Pim); J. Bijman (Jan); M.J. Edixhoven (Marcel); A.B. Vaandrager (Arie); B.J. Scholte (Bob); S.M. Lohmann (Suzanne); A.C. Nairn; H.R. de Jonge (Hugo)

    1995-01-01

    textabstractType II cGMP-dependent protein kinase (cGKII) isolated from pig intestinal brush borders and type I alpha cGK (cGKI) purified from bovine lung were compared for their ability to activate the cystic fibrosis transmembrane conductance regulator (CFTR)-Cl- channel in excis

  4. [The influence of an isotonic solution containing benzalkonium chloride and a hypertonic seawater solution on the function of ciliary epithelium from the nasal cavity in vitro].

    Science.gov (United States)

    Laberko, E L; Bogomil'sky, M R; Soldatsky, Yu L; Pogosova, I E

    2016-01-01

    The objective of the present study was to evaluate the influence of an isotonic saline solution containing benzalconium chloride and of a hypertonic seawater solution on the function of ciliary epithelium in the nasal cavity in vitro. To this effect, we investigated the cytological material obtained from 35 children presenting with adenoid tissue hypertrophy. The tissue samples were taken from the nasal cavity by the standard method. A cellular biopsy obtained from each patient was distributed between three tubes that contained isotonic saline solution supplemented by benzalconium chloride (0.1 mg/ml), a hypertonic seawater solution, and a standard physiological saline solution. It was shown that the number of the viable cells in both isotonic solutions was statistically comparable and significantly higher than in the hypertonic solution (p<0.05). The ciliary beat frequency of the cells embedded in the two isotonic solutions was not significantly different but considerably exceeded that in the hypertonic seawater solution (p<0.05). Thus, the present study has demonstrated the absence of the ciliotoxic influence of isotonic saline solution containing benzalconium chloride at a concentration of 0.1 mg/ml and the strong ciliotoxic effect of the hypertonic seawater solution. This finding gives reason to recommend isotonic solutions for the regular application whereas hypertonic solutions can be prescribed only during infectious and/or inflammatory ENT diseases.

  5. Calcium-channel blockers and other factors influencing delayed function in renal allografts.

    Science.gov (United States)

    Ferguson, C J; Hillis, A N; Williams, J D; Griffin, P J; Salaman, J R

    1990-01-01

    A retrospective analysis was undertaken to examine the influence of calcium-channel blocking drugs on early renal allograft function. Delayed function was defined as the need for dialysis or a reduction in serum creatinine of less than 15% within 4 days of transplantation. The drug histories of 172 patients were examined. After exclusions, the data from 138 patients were analysed. No patient was taking any calcium-channel blocking drug other than nifedipine. Thirty-one patients were taking nifedipine at the time of transplantation and these had a delayed function rate of 16% compared with 40% for 107 patients not taking nifedipine (chi 2, P less than 0.05). Delayed function occurred in 61% of cases when the donor age was over 50 years compared with 29% with younger donors (chi 2, P less than 0.05). A total ischaemic time of longer than 24 h and administration of inotropic support to the donor were associated with delayed function (chi 2, P less than 0.05). Administration to the donor of mannitol, steroids, phenoxybenzamine and heparin had no effect on the rate of delayed function. Recipients treated with low-dose dopamine in the perioperative period had no advantage. Elevated trough whole blood concentrations of cyclosporin in the first week after transplant were associated with delayed function (Mann-Whitney U, P less than 0.05).

  6. Relaxation of endothelin-1-induced pulmonary arterial constriction by niflumic acid and NPPB: mechanism(s) independent of chloride channel block.

    Science.gov (United States)

    Kato, K; Evans, A M; Kozlowski, R Z

    1999-03-01

    We investigated the effects of the Cl- channel blockers niflumic acid, 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) and 4, 4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) on endothelin-1 (ET-1)-induced constriction of rat small pulmonary arteries (diameter 100-400 microm) in vitro, following endothelium removal. ET-1 (30 nM) induced a sustained constriction of rat pulmonary arteries in physiological salt solution. Arteries preconstricted with ET-1 were relaxed by niflumic acid (IC50: 35.8 microM) and NPPB (IC50: 21.1 microM) in a reversible and concentration-dependent manner. However, at concentrations known to block Ca++-activated Cl- channels, DIDS (channel blockers. When L-type Ca++ channels were blocked by nifedipine (10 microM), the ET-1-induced (30 nM) constriction was inhibited by only 5.8%. However, niflumic acid (30 microM) and NPPB (30 microM) inhibited the ET-1-induced constriction by approximately 53% and approximately 60%, respectively, both in the continued presence of nifedipine and in Ca++-free physiological salt solution. The Ca++ ionophore A23187 (10 microM) also evoked a sustained constriction of pulmonary arteries. Surprisingly, the A23187-induced constriction was also inhibited in a reversible and concentration-dependent manner by niflumic acid (IC50: 18.0 microM) and NPPB (IC50: 8.8 microM), but not by DIDS (channel blockade. One possibility is that these compounds may block the Ca++-dependent contractile processes.

  7. TRPV1 channels are functionally coupled with BK(mSlo1 channels in rat dorsal root ganglion (DRG neurons.

    Directory of Open Access Journals (Sweden)

    Ying Wu

    Full Text Available The transient receptor potential vanilloid receptor 1 (TRPV1 channel is a nonselective cation channel activated by a variety of exogenous and endogenous physical and chemical stimuli, such as temperature (≥42 °C, capsaicin, a pungent compound in hot chili peppers, and allyl isothiocyanate. Large-conductance calcium- and voltage-activated potassium (BK channels regulate the electric activities and neurotransmitter releases in excitable cells, responding to changes in membrane potentials and elevation of cytosolic calcium ions (Ca(2+. However, it is unknown whether the TRPV1 channels are coupled with the BK channels. Using patch-clamp recording combined with an infrared laser device, we found that BK channels could be activated at 0 mV by a Ca(2+ influx through TRPV1 channels not the intracellular calcium stores in submilliseconds. The local calcium concentration around BK is estimated over 10 μM. The crosstalk could be affected by 10 mM BAPTA, whereas 5 mM EGTA was ineffectual. Fluorescence and co-immunoprecipitation experiments also showed that BK and TRPV1 were able to form a TRPV1-BK complex. Furthermore, we demonstrated that the TRPV1-BK coupling also occurs in dosal root ganglion (DRG cells, which plays a critical physiological role in regulating the "pain" signal transduction pathway in the peripheral nervous system.

  8. TRPV1 channels are functionally coupled with BK(mSlo1) channels in rat dorsal root ganglion (DRG) neurons.

    Science.gov (United States)

    Wu, Ying; Liu, Yongfeng; Hou, Panpan; Yan, Zonghe; Kong, Wenjuan; Liu, Beiying; Li, Xia; Yao, Jing; Zhang, Yuexuan; Qin, Feng; Ding, Jiuping

    2013-01-01

    The transient receptor potential vanilloid receptor 1 (TRPV1) channel is a nonselective cation channel activated by a variety of exogenous and endogenous physical and chemical stimuli, such as temperature (≥42 °C), capsaicin, a pungent compound in hot chili peppers, and allyl isothiocyanate. Large-conductance calcium- and voltage-activated potassium (BK) channels regulate the electric activities and neurotransmitter releases in excitable cells, responding to changes in membrane potentials and elevation of cytosolic calcium ions (Ca(2+)). However, it is unknown whether the TRPV1 channels are coupled with the BK channels. Using patch-clamp recording combined with an infrared laser device, we found that BK channels could be activated at 0 mV by a Ca(2+) influx through TRPV1 channels not the intracellular calcium stores in submilliseconds. The local calcium concentration around BK is estimated over 10 μM. The crosstalk could be affected by 10 mM BAPTA, whereas 5 mM EGTA was ineffectual. Fluorescence and co-immunoprecipitation experiments also showed that BK and TRPV1 were able to form a TRPV1-BK complex. Furthermore, we demonstrated that the TRPV1-BK coupling also occurs in dosal root ganglion (DRG) cells, which plays a critical physiological role in regulating the "pain" signal transduction pathway in the peripheral nervous system.

  9. Chloride transference during electrochemical chloride extraction process

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Chemical titration method and lab-made chloride probes were jointly adopted to investigate the effects of water-to-cement (W/C) ratio and the impressed current density on chloride transport for cement-based materials during electrochemical chloride extraction (ECE) process.The dissolution of bound chlorides and the effect of current density on dissolution were analyzed.The variations of chloride concentration at different depths and the chloride transference process were monitored.Test results show that W/C ratios adopted have slight influence on chloride extraction,while chloride extraction efficiency is mainly determined by the impressed current density.During ECE process a portion of bound chloride ions dissolved and the amount of bound chlorides released is directly proportional to current density.

  10. The RNA Exosome Channeling and Direct Access Conformations Have Distinct In Vivo Functions

    Directory of Open Access Journals (Sweden)

    Jaeil Han

    2016-09-01

    Full Text Available The RNA exosome is a 3′–5′ ribonuclease complex that is composed of nine core subunits and an essential catalytic subunit, Rrp44. Two distinct conformations of Rrp44 were revealed in previous structural studies, suggesting that Rrp44 may change its conformation to exert its function. In the channeling conformation, (Rrp44ch, RNA accesses the active site after traversing the central channel of the RNA exosome, whereas in the other conformation, (Rrp44da, RNA gains direct access to the active site. Here, we show that the Rrp44da exosome is important for nuclear function of the RNA exosome. Defects caused by disrupting the direct access conformation are distinct from those caused by channel-occluding mutations, indicating specific functions for each conformation. Our genetic analyses provide in vivo evidence that the RNA exosome employs a direct-access route to recruit specific substrates, indicating that the RNA exosome uses alternative conformations to act on different RNA substrates.

  11. Functional unit size of the neurotoxin receptors on the voltage-dependent sodium channel.

    Science.gov (United States)

    Angelides, K J; Nutter, T J; Elmer, L W; Kempner, E S

    1985-03-25

    Radiation inactivation was used in situ to determine the functional unit sizes of the neurotoxin receptors of the voltage-dependent sodium channel from rat brain. Frozen or lyophilized synaptosomes were irradiated with high energy electrons generated by a linear accelerator and assayed for [3H]saxitoxin, 125I-Leiurus quinquestriatus quinquestriatus (alpha-scorpion toxin), 125I-Centruroides suffusus suffusus (beta-scorpion toxin), and batrachotoxinin-A 20 alpha-[3H]benzoate binding activity. The functional unit size of the neurotoxin receptors determined in situ by target analysis are 220,000 for saxitoxin, 263,000 for alpha-scorpion toxin, and 45,000 for beta-scorpion toxin. Analysis of the inactivation curve for batrachotoxinin-A 20 alpha-benzoate binding to the channel yields two target sizes of Mr approximately 287,000 (50%) and approximately 51,000 (50%). The results are independent of the purity of the membrane preparation. Comparison of the radiation inactivation data with the protein composition of the rat brain sodium channel indicates that there are at least two functional components.

  12. Innovative polymer nanocomposite electrolytes: nanoscale manipulation of ion channels by functionalized graphenes.

    Science.gov (United States)

    Choi, Bong Gill; Hong, Jinkee; Park, Young Chul; Jung, Doo Hwan; Hong, Won Hi; Hammond, Paula T; Park, Hoseok

    2011-06-28

    The chemistry and structure of ion channels within the polymer electrolytes are of prime importance for studying the transport properties of electrolytes as well as for developing high-performance electrochemical devices. Despite intensive efforts on the synthesis of polymer electrolytes, few studies have demonstrated enhanced target ion conduction while suppressing unfavorable ion or mass transport because the undesirable transport occurs through an identical pathway. Herein, we report an innovative, chemical strategy for the synthesis of polymer electrolytes whose ion-conducting channels are physically and chemically modulated by the ionic (not electronic) conductive, functionalized graphenes and for a fundamental understanding of ion and mass transport occurring in nanoscale ionic clusters. The functionalized graphenes controlled the state of water by means of nanoscale manipulation of the physical geometry and chemical functionality of ionic channels. Furthermore, the confinement of bound water within the reorganized nanochannels of composite membranes was confirmed by the enhanced proton conductivity at high temperature and the low activation energy for ionic conduction through a Grotthus-type mechanism. The selectively facilitated transport behavior of composite membranes such as high proton conductivity and low methanol crossover was attributed to the confined bound water, resulting in high-performance fuel cells.

  13. Functional characterization of two novel scorpion sodium channel toxins from Lychas mucronatus.

    Science.gov (United States)

    Xu, Lingna; Li, Tian; Liu, Honglian; Yang, Fan; Liang, Songping; Cao, Zhijian; Li, Wenxin; Wu, Yingliang

    2014-11-01

    The diverse α-scorpion toxins are invaluable pharmacological tools and potential drugs targeting sodium channels, but the pharmacological profiles of most toxins remains unknown so far. Here, we reported pharmacological activities of two novel α-scorpion toxins LmαTX3 and LmαTX5 from the Lychas mucronatus. Using the expression vector pET-28a, the recombinant LmαTX3 and LmαTX5 were separated by RP-HPLC and identified by MALDI-TOF-MS. Subsequently, sodium channels rNav1.2, mNav1.4, hNav1.5 and hNav1.7 were used for evaluating the pharmacological activities of LmαTX3 and LmαTX5 toxins. The electrophysiological experiments showed that both 10 μM recombinant LmαTX3 and LmαTX5 seriously inhibited the fast inactivation of mNav1.4 and hNav1.5 channels, moderately affected hNav1.7 channel, and hardly modulated rNav1.2 channel. The dose-response experiments further indicated the EC50 values of LmαTX3 were 4.98 ± 0.79 μM for mNav1.4, 1.23 ± 0.31 μM for hNav1.5 and 31.46 ± 2.32 μM for hNav1.7 channels, respectively. Similar pharmacological profiles of recombinant LmαTX5 were also observed, and its EC50 values were 4.53 ± 1.38 μM, 1.03 ± 0.43 μM and 67.62 ± 2.31 μM for mNav1.4, hNav1.5 and hNav1.7, respectively. In addition, the recombinant LmαTX3 from the vector pET-14b had much less effect on the fast inactivation of mNav1.4, hNav1.5 and hNav1.7 channels, which indicated that the expression vector pET-14b likely played a critical role in toxin function. Together, these findings first highlighted that scorpion toxins from L. mucronatus were a new molecular resource of discovering pharmacological probes and prospective drugs targeting sodium channels in the future.

  14. Functional Importance of L- and P/Q-Type Voltage-Gated Calcium Channels in Human Renal Vasculature

    DEFF Research Database (Denmark)

    Hansen, Pernille B; Poulsen, Christian B; Walter, Steen

    2011-01-01

    in kidney function. It was hypothesized that human renal vascular excitation-contraction coupling involves different subtypes of channels. In human renal artery and dissected intrarenal blood vessels from nephrectomies, PCR analysis showed expression of L-type (Ca(v) 1.2), P/Q-type (Ca(v) 2.1), and T-type......, and L- and P/Q-type channels are of functional importance for the depolarization-induced vasoconstriction. The contribution of P/Q-type channels to contraction in the human vasculature is a novel mechanism for the regulation of renal blood flow and suggests that clinical treatment with calcium blockers......Calcium channel blockers are widely used for treatment of hypertension, because they decrease peripheral vascular resistance through inhibition of voltage-gated calcium channels. Animal studies of renal vasculature have shown expression of several types of calcium channels that are involved...

  15. Coupled-channels calculations of nonelastic cross sections using a density-functional structure model

    CERN Document Server

    Nobre, G P A; Escher, J E; Thompson, I J; Dupuis, M; Terasaki, J; Engel, J

    2010-01-01

    A microscopic calculation of the reaction cross-section for nucleon-nucleus scattering has been performed by explicitly coupling the elastic channel to all particle-hole (p-h) excitation states in the target and to all one-nucleon pickup channels. The p-h states may be regarded as doorway states through which the flux flows to more complicated configurations, and subsequently to long-lived compound nucleus resonances. Target excitations for 40,48Ca, 58Ni, 90Zr and 144Sm were described in a QRPA framework using a Skyrme functional. Reaction cross sections calculated in this approach were compared to predictions of a fitted optical potential and to experimental data, reaching very good agreement. Couplings between inelastic states were found to be negligible, while the couplings to pickup channels contribute significantly. For the first time observed reaction cross-sections are completely accounted for by explicit channel coupling, for incident energies between 10 and 40 MeV.

  16. The G. L. Brown Prize Lecture. Hypoxic regulation of ion channel function and expression.

    Science.gov (United States)

    Peers, Chris

    2002-07-01

    Acute hypoxia regulates the activity of specific ion channels in a rapid and reversible manner. Such effects underlie appropriate cellular responses to hypoxia which are designed to initiate cardiorespiratory reflexes and contribute importantly to other tissue responses, all of which are designed to improve tissue O2 supply. These responses include excitation of chemoreceptors as well as pulmonary vasoconstriction and systemic vasodilatation. However, such responses may also contribute to the adverse responses to hypoxia, such as excitotoxicity in the central nervous system. Whilst numerous ion channel types are known to be modulated by acute hypoxia, the nature of the O2 sensor in most tissues remains to be identified. Prolonged (chronic) hypoxia regulates functional expression of ion channels, and so remodels excitability of various cell types. Whilst this may contribute to adaptive responses such as high-altitude acclimatization, such altered channel expression may also contribute to the onset of pathological disorders, including Alzheimer's disease. Indeed, evidence is emerging that production of pathological peptides associated with Alzheimer's disease is increased during prolonged hypoxia. Such effects may account for the known increased incidence of this disease in patients who have previously endured hypoxic episodes, such as congestive heart failure and stroke. Identification of the mechanisms coupling hypoxia to the increased production of these peptides is likely to be of therapeutic benefit.

  17. Functional effects of spinocerebellar ataxia type 13 mutations are conserved in zebrafish Kv3.3 channels

    OpenAIRE

    Mock Allan F; Richardson Jessica L; Hsieh Jui-Yi; Rinetti Gina; Papazian Diane M

    2010-01-01

    Abstract Background The zebrafish has been suggested as a model system for studying human diseases that affect nervous system function and motor output. However, few of the ion channels that control neuronal activity in zebrafish have been characterized. Here, we have identified zebrafish orthologs of voltage-dependent Kv3 (KCNC) K+ channels. Kv3 channels have specialized gating properties that facilitate high-frequency, repetitive firing in fast-spiking neurons. Mutations in human Kv3.3 caus...

  18. Expression and function of K(V)2-containing channels in human urinary bladder smooth muscle.

    Science.gov (United States)

    Hristov, Kiril L; Chen, Muyan; Afeli, Serge A Y; Cheng, Qiuping; Rovner, Eric S; Petkov, Georgi V

    2012-06-01

    The functional role of the voltage-gated K(+) (K(V)) channels in human detrusor smooth muscle (DSM) is largely unexplored. Here, we provide molecular, electrophysiological, and functional evidence for the expression of K(V)2.1, K(V)2.2, and the electrically silent K(V)9.3 subunits in human DSM. Stromatoxin-1 (ScTx1), a selective inhibitor of K(V)2.1, K(V)2.2, and K(V)4.2 homotetrameric channels and of K(V)2.1/9.3 heterotetrameric channels, was used to examine the role of these channels in human DSM function. Human DSM tissues were obtained during open bladder surgeries from patients without a history of overactive bladder. Freshly isolated human DSM cells were studied using RT-PCR, immunocytochemistry, live-cell Ca(2+) imaging, and the perforated whole cell patch-clamp technique. Isometric DSM tension recordings of human DSM isolated strips were conducted using tissue baths. RT-PCR experiments showed mRNA expression of K(V)2.1, K(V)2.2, and K(V)9.3 (but not K(V)4.2) channel subunits in human isolated DSM cells. K(V)2.1 and K(V)2.2 protein expression was confirmed by Western blot analysis and immunocytochemistry. Perforated whole cell patch-clamp experiments revealed that ScTx1 (100 nM) inhibited the amplitude of the voltage step-induced K(V) current in freshly isolated human DSM cells. ScTx1 (100 nM) significantly increased the intracellular Ca(2+) level in DSM cells. In human DSM isolated strips, ScTx1 (100 nM) increased the spontaneous phasic contraction amplitude and muscle force, and enhanced the amplitude of the electrical field stimulation-induced contractions within the range of 3.5-30 Hz stimulation frequencies. These findings reveal that ScTx1-sensitive K(V)2-containing channels are key regulators of human DSM excitability and contractility and may represent new targets for pharmacological or genetic intervention for bladder dysfunction.

  19. Mechanism of block of single protopores of the Torpedo chloride channel ClC-0 by 2-(p-chlorophenoxy)butyric acid (CPB).

    Science.gov (United States)

    Pusch, M; Accardi, A; Liantonio, A; Ferrera, L; De Luca, A; Camerino, D C; Conti, F

    2001-07-01

    We investigated in detail the mechanism of inhibition by the S(-) enantiomer of 2-(p-chlorophenoxy)butyric acid (CPB) of the Torpedo Cl(-)channel, ClC-0. The substance has been previously shown to inhibit the homologous skeletal muscle channel, CLC-1. ClC-0 is a homodimer with probably two independently gated protopores that are conductive only if an additional common gate is open. As a simplification, we used a mutant of ClC-0 (C212S) that has the common gate "locked open" (Lin, Y.W., C.W. Lin, and T.Y. Chen. 1999. J. Gen. Physiol. 114:1-12). CPB inhibits C212S currents only when applied to the cytoplasmic side, and single-channel recordings at voltages (V) between -120 and -80 mV demonstrate that it acts independently on individual protopores by introducing a long-lived nonconductive state with no effect on the conductance and little effect on the lifetime of the open state. Steady-state macroscopic currents at -140 mV are half-inhibited by approximately 0.5 mM CPB, but the inhibition decreases with V and vanishes for V > or = 40 mV. Relaxations of CPB inhibition after voltage steps are seen in the current responses as an additional exponential component that is much slower than the gating of drug-free protopores. For V = 60 mV) with an IC50 of approximately 30-40 mM. Altogether, these findings support a model for the mechanism of CPB inhibition in which the drug competes with Cl(-) for binding to a site of the pore where it blocks permeation. CPB binds preferentially to closed channels, and thereby also strongly alters the gating of the single protopore. Since the affinity of CPB for open WT pores is extremely low, we cannot decide in this case if it acts also as an open pore blocker. However, the experiments with the mutant K519E strongly support this interpretation. CPB block may become a useful tool to study the pore of ClC channels. As a first application, our results provide additional evidence for a double-barreled structure of ClC-0 and ClC-1.

  20. Ion channels in inflammation.

    Science.gov (United States)

    Eisenhut, Michael; Wallace, Helen

    2011-04-01

    Most physical illness in vertebrates involves inflammation. Inflammation causes disease by fluid shifts across cell membranes and cell layers, changes in muscle function and generation of pain. These disease processes can be explained by changes in numbers or function of ion channels. Changes in ion channels have been detected in diarrhoeal illnesses, pyelonephritis, allergy, acute lung injury and systemic inflammatory response syndromes involving septic shock. The key role played by changes in ion transport is directly evident in inflammation-induced pain. Expression or function of all major categories of ion channels like sodium, chloride, calcium, potassium, transient receptor potential, purinergic receptor and acid-sensing ion channels can be influenced by cyto- and chemokines, prostaglandins, leukotrienes, histamine, ATP, reactive oxygen species and protons released in inflammation. Key pathways in this interaction are cyclic nucleotide, phosphoinositide and mitogen-activated protein kinase-mediated signalling, direct modification by reactive oxygen species like nitric oxide, ATP or protons and disruption of the cytoskeleton. Therapeutic interventions to modulate the adverse and overlapping effects of the numerous different inflammatory mediators on each ion transport system need to target adversely affected ion transport systems directly and locally.

  1. Functional characterization and analgesic effects of mixed cannabinoid receptor/T-type channel ligands

    Directory of Open Access Journals (Sweden)

    You Haitao

    2011-11-01

    Full Text Available Abstract Background Both T-type calcium channels and cannabinoid receptors modulate signalling in the primary afferent pain pathway. Here, we investigate the analgesics activities of a series of novel cannabinoid receptor ligands with T-type calcium channel blocking activity. Results Novel compounds were characterized in radioligand binding assays and in vitro functional assays at human and rat CB1 and CB2 receptors. The inhibitory effects of these compounds on transient expressed human T-type calcium channels were examined in tsA-201 cells using standard whole-cell voltage clamp techniques, and their analgesic effects in response to various administration routes (intrathecally, intraplantarly, intraperitoneally assessed in the formalin model. A series of compounds were synthesized and evaluated for channel and receptor activity. Compound NMP-7 acted as non-selective CB1/CB2 agonist while NMP4 was found to be a CB1 partial agonist and CB2 inverse agonist. Furthermore, NMP-144 behaved as a selective CB2 inverse agonist. All of these three compounds completely inhibited peak Cav3.2 currents with IC50 values in the low micromolar range. All compounds mediated analgesic effects in the formalin model, but depending on the route of administration, could differentially affect phase 1 and phase 2 of the formalin response. Conclusions Our results reveal that a set of novel cannabinioid receptor ligands potently inhibit T-type calcium channels and show analgesic effects in vivo. Our findings suggest possible novel means of mediating pain relief through mixed T-type/cannabinoid receptor ligands.

  2. Amphiphile regulation of ion channel function by changes in the bilayer spring constant

    DEFF Research Database (Denmark)

    Lundbæk, Jens August; Koeppe, R.E.; Andersen, Oluf Sten

    2010-01-01

    Many drugs are amphiphiles that, in addition to binding to a particular target protein, adsorb to cell membrane lipid bilayers and alter intrinsic bilayer physical properties (e. g., bilayer thickness, monolayer curvature, and elastic moduli). Such changes can modulate membrane protein function b......-dependent sodium channels in living cells. The use of gA channels as molecular force probes provides a tool for quantitative, predictive studies of bilayer-mediated regulation of membrane protein function by amphiphiles....... by altering the energetic cost (Delta G(bilayer)) of bilayer deformations associated with protein conformational changes that involve the protein-bilayer interface. But amphiphiles have complex effects on the physical properties of lipid bilayers, meaning that the net change in Delta G(bilayer) cannot...... be predicted from measurements of isolated changes in such properties. Thus, the bilayer contribution to the promiscuous regulation of membrane proteins by drugs and other amphiphiles remains unknown. To overcome this problem, we use gramicidin A (gA) channels as molecular force probes to measure the net...

  3. Protocol of Secure Key Distribution Using Hash Functions and Quantum Authenticated Channels (KDP-6DP

    Directory of Open Access Journals (Sweden)

    Mohammed M.A. Majeed

    2010-01-01

    Full Text Available Problem statement: In previous researches, we investigated the security of communication channels, which utilizes authentication, key distribution between two parties, error corrections and cost establishment. In the present work, we studied new concepts of Quantum Authentication (QA and sharing key according to previous points. Approach: This study presented a new protocol concept that allows the session and key generation on-site by independently applying a cascade of two hash functions on a random string of bits at the sender and receiver sides. This protocol however, required a reliable method of authentication. It employed an out-of-band authentication methodology based on quantum theory, which uses entangled pairs of photons. Results: The proposed quantum-authenticated channel is secure in the presence of eavesdropper who has access to both the classical and the quantum channels. Conclusion/Recommendations: The key distribution process using cascaded hash functions provides better security. The concepts presented by this protocol represent a valid approach to the communication security problem.

  4. Recombinant Expression and Functional Characterization of Martentoxin: A Selective Inhibitor for BK Channel (α + β4

    Directory of Open Access Journals (Sweden)

    Jie Tao

    2014-04-01

    Full Text Available Martentoxin (MarTX, a 37-residue peptide purified from the venom of East-Asian scorpion (Buthus martensi Karsch, was capable of blocking large-conductance Ca2+-activated K+ (BK channels. Here, we report an effective expression and purification approach for this toxin. The cDNA encoding martentoxin was expressed by the prokaryotic expression system pGEX-4T-3 which was added an enterokinase cleavage site by PCR. The fusion protein (GST-rMarTX was digested by enterokinase to release hetero-expressed toxin and further purified via reverse-phase HPLC. The molecular weight of the hetero-expressed rMarTX was 4059.06 Da, which is identical to that of the natural peptide isolated from scorpion venom. Functional characterization through whole-cell patch clamp showed that rMarTX selectively and potently inhibited the currents of neuronal BK channels (α + β4 (IC50 = 186 nM, partly inhibited mKv1.3, but hardly having any significant effect on hKv4.2 and hKv3.1a even at 10 μM. Successful expression of martentoxin lays basis for further studies of structure-function relationship underlying martentoxin or other potassium-channel specific blockers.

  5. Accelerated evolution and functional divergence of scorpion short-chain K+ channel toxins after speciation.

    Science.gov (United States)

    Gao, Bin; Zhu, Shunyi

    2012-10-01

    The α-KTx14 subfamily of scorpion toxins is a group of short-chain polypeptides affecting K(+) channels, including five known members which are restrictedly distributed in Mesobuthus martensii. Here, we describe seven new α-KTx14 peptides from M. martensii and its sibling species Mesobuthus eupeus, two of which (termed MarKTX-3 and MeuKTX-1) were chemically synthesized and refolded for structural and functional studies. Electrophysiological recordings of effects of these two peptides on an array of voltage-gated potassium channels revealed that MarKTX-3 was capable of inhibiting five mammalian K(v)1 isoforms (rK(v)1.1-rK(v)1.5) and the Drosophila Shaker channel with low potency whereas MeuKTX-1 lacks such activity. Circular dichroism spectroscopy analysis combined with homology modeling demonstrates that MarKTX-3 and MeuKTX-1 both adopt a similar cysteine-stabilized α-helical and β-sheet fold. Evolutionary analysis indicates accelerated amino acid substitutions in the mature-peptide-encoding regions of orthologous α-KTx14 peptides after speciation, thereby providing evidences for adaptive evolution and functional divergence of this subfamily.

  6. 功能化石墨烯对亚甲基蓝的吸附性能%Adsorption of functionalized graphene on methylthionine chloride

    Institute of Scientific and Technical Information of China (English)

    唐艳茹; 丁鹏; 成宝海; 张敏; 常超

    2011-01-01

    The functionalized graphene was prepared by electrolyzed the electrolyte. This investigation concerned the adsorption of functionalized graphene towards methylthionine chloride. All results show that the electrolysis method is a simple and effective preparation method. And the adsorption quantity of functionalized graphene on methylthionine chloride can reach more than 300 mg· L-1 and was 3 times than that of graphite. The adsorption quantity will increases along with the acidity increasing, Under the condition of 20℃, pH = 8, the adsorption was able to reach the adsorption equilibrium within 60 minutes.%制备了功能化石墨烯,并研究了不同条件下功能化石墨烯对亚甲基蓝的吸附性能.结果表明,电解法是一种制备功能化石墨烯的简单有效方法,其对亚甲基蓝的吸附量可达300 mg/g以上,是普通石墨对亚甲基蓝的吸附量的3倍;并且吸附量随着pH值的增加而递增;在pH为8,温度是20℃时,功能化石墨烯对亚甲基蓝的吸附可在60 min时达到吸附平衡.

  7. Functional protein expression of multiple sodium channel alpha- and beta-subunit isoforms in neonatal cardiomyocytes.

    Science.gov (United States)

    Kaufmann, Susann G; Westenbroek, Ruth E; Zechner, Christoph; Maass, Alexander H; Bischoff, Sebastian; Muck, Jenny; Wischmeyer, Erhard; Scheuer, Todd; Maier, Sebastian K G

    2010-01-01

    Voltage-gated sodium channels are composed of pore-forming alpha- and auxiliary beta-subunits and are responsible for the rapid depolarization of cardiac action potentials. Recent evidence indicates that neuronal tetrodotoxin (TTX) sensitive sodium channel alpha-subunits are expressed in the heart in addition to the predominant cardiac TTX-resistant Na(v)1.5 sodium channel alpha-subunit. These TTX-sensitive isoforms are preferentially localized in the transverse tubules of rodents. Since neonatal cardiomyocytes have yet to develop transverse tubules, we determined the complement of sodium channel subunits expressed in these cells. Neonatal rat ventricular cardiomyocytes were stained with antibodies specific for individual isoforms of sodium channel alpha- and beta-subunits. alpha-actinin, a component of the z-line, was used as an intracellular marker of sarcomere boundaries. TTX-sensitive sodium channel alpha-subunit isoforms Na(v)1.1, Na(v)1.2, Na(v)1.3, Na(v)1.4 and Na(v)1.6 were detected in neonatal rat heart but at levels reduced compared to the predominant cardiac alpha-subunit isoform, Na(v)1.5. Each of the beta-subunit isoforms (beta1-beta4) was also expressed in neonatal cardiac cells. In contrast to adult cardiomyocytes, the alpha-subunits are distributed in punctate clusters across the membrane surface of neonatal cardiomyocytes; no isoform-specific subcellular localization is observed. Voltage clamp recordings in the absence and presence of 20 nM TTX provided functional evidence for the presence of TTX-sensitive sodium current in neonatal ventricular myocardium which represents between 20 and 30% of the current, depending on membrane potential and experimental conditions. Thus, as in the adult heart, a range of sodium channel alpha-subunits are expressed in neonatal myocytes in addition to the predominant TTX-resistant Na(v)1.5 alpha-subunit and they contribute to the total sodium current.

  8. Store-operated Ca2+ channels in airway epithelial cell function and implications for asthma

    Science.gov (United States)

    Samanta, Krishna; Parekh, Anant B.

    2016-01-01

    The epithelial cells of the lung are at the interface of a host and its environment and are therefore directly exposed to the inhaled air-borne particles. Rather than serving as a simple physical barrier, airway epithelia detect allergens and other irritants and then help organize the subsequent immune response through release of a plethora of secreted signals. Many of these signals are generated in response to opening of store-operated Ca2+ channels in the plasma membrane. In this review, we describe the properties of airway store-operated channels and their role in regulating airway epithelial cell function. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’. PMID:27377718

  9. New Insights into the Functions of Transcription Factors that Bind the RNA Polymerase Secondary Channel.

    Science.gov (United States)

    Zenkin, Nikolay; Yuzenkova, Yulia

    2015-06-25

    Transcription elongation is regulated at several different levels, including control by various accessory transcription elongation factors. A distinct group of these factors interacts with the RNA polymerase secondary channel, an opening at the enzyme surface that leads to its active center. Despite investigation for several years, the activities and in vivo roles of some of these factors remain obscure. Here, we review the recent progress in understanding the functions of the secondary channel binding factors in bacteria. In particular, we highlight the surprising role of global regulator DksA in fidelity of RNA synthesis and the resolution of RNA polymerase traffic jams by the Gre factor. These findings indicate a potential link between transcription fidelity and collisions of the transcription and replication machineries.

  10. Berberine Reduces cAMP-Induced Chloride Secretion in T84 Human Colonic Carcinoma Cells through Inhibition of Basolateral KCNQ1 Channels.

    LENUS (Irish Health Repository)

    Alzamora, Rodrigo

    2011-01-01

    Berberine is a plant alkaloid with multiple pharmacological actions, including antidiarrhoeal activity and has been shown to inhibit Cl(-) secretion in distal colon. The aims of this study were to determine the molecular signaling mechanisms of action of berberine on Cl(-) secretion and the ion transporter targets. Monolayers of T84 human colonic carcinoma cells grown in permeable supports were placed in Ussing chambers and short-circuit current measured in response to secretagogues and berberine. Whole-cell current recordings were performed in T84 cells using the patch-clamp technique. Berberine decreased forskolin-induced short-circuit current in a concentration-dependent manner (IC(50) 80 ± 8 μM). In apically permeabilized monolayers and whole-cell current recordings, berberine inhibited a cAMP-dependent and chromanol 293B-sensitive basolateral membrane K(+) current by 88%, suggesting inhibition of KCNQ1 K(+) channels. Berberine did not affect either apical Cl(-) conductance or basolateral Na(+)-K(+)-ATPase activity. Berberine stimulated p38 MAPK, PKCα and PKA, but had no effect on p42\\/p44 MAPK and PKCδ. However, berberine pre-treatment prevented stimulation of p42\\/p44 MAPK by epidermal growth factor. The inhibitory effect of berberine on Cl(-) secretion was partially blocked by HBDDE (∼65%), an inhibitor of PKCα and to a smaller extent by inhibition of p38 MAPK with SB202190 (∼15%). Berberine treatment induced an increase in association between PKCα and PKA with KCNQ1 and produced phosphorylation of the channel. We conclude that berberine exerts its inhibitory effect on colonic Cl(-) secretion through inhibition of basolateral KCNQ1 channels responsible for K(+) recycling via a PKCα-dependent pathway.

  11. Berberine Reduces cAMP-Induced Chloride Secretion in T84 Human Colonic Carcinoma Cells through Inhibition of Basolateral KCNQ1 Channels.

    LENUS (Irish Health Repository)

    Alzamora, Rodrigo

    2012-02-01

    Berberine is a plant alkaloid with multiple pharmacological actions, including antidiarrhoeal activity and has been shown to inhibit Cl(-) secretion in distal colon. The aims of this study were to determine the molecular signaling mechanisms of action of berberine on Cl(-) secretion and the ion transporter targets. Monolayers of T84 human colonic carcinoma cells grown in permeable supports were placed in Ussing chambers and short-circuit current measured in response to secretagogues and berberine. Whole-cell current recordings were performed in T84 cells using the patch-clamp technique. Berberine decreased forskolin-induced short-circuit current in a concentration-dependent manner (IC(50) 80 +\\/- 8 muM). In apically permeabilized monolayers and whole-cell current recordings, berberine inhibited a cAMP-dependent and chromanol 293B-sensitive basolateral membrane K(+) current by 88%, suggesting inhibition of KCNQ1 K(+) channels. Berberine did not affect either apical Cl(-) conductance or basolateral Na(+)-K(+)-ATPase activity. Berberine stimulated p38 MAPK, PKCalpha and PKA, but had no effect on p42\\/p44 MAPK and PKCdelta. However, berberine pre-treatment prevented stimulation of p42\\/p44 MAPK by epidermal growth factor. The inhibitory effect of berberine on Cl(-) secretion was partially blocked by HBDDE ( approximately 65%), an inhibitor of PKCalpha and to a smaller extent by inhibition of p38 MAPK with SB202190 ( approximately 15%). Berberine treatment induced an increase in association between PKCalpha and PKA with KCNQ1 and produced phosphorylation of the channel. We conclude that berberine exerts its inhibitory effect on colonic Cl(-) secretion through inhibition of basolateral KCNQ1 channels responsible for K(+) recycling via a PKCalpha-dependent pathway.

  12. Berberine reduces cAMP-induced chloride secretion in T84 human colonic carcinoma cells through inhibition of basolateral KCNQ1 channels

    Directory of Open Access Journals (Sweden)

    Rodrigo eAlzamora

    2011-06-01

    Full Text Available Berberine is a plant alkaloid with multiple pharmacological actions, including antidiarrhoeal activity and has been shown to inhibit Cl- secretion in distal colon. The aims of this study were to determine the molecular signalling mechanisms of action of berberine on Cl- secretion and the ion transporter targets. Monolayers of T84 human colonic carcinoma cells grown in permeable supports were placed in Ussing chambers and short-circuit current measured in response to secretagogues and berberine. Whole-cell current recordings were performed in T84 cells using the patch-clamp technique. Berberine decreased forskolin-induced short-circuit current in a concentration-dependent manner (IC50 80  8 M. In apically permeabilized monolayers and whole-cell current recordings, berberine inhibited a cAMP-dependent and chromanol 293B-sensitive basolateral membrane K+ current by 88%, suggesting inhibition of KCNQ1 K+ channels. Berberine did not affect either apical Cl- conductance or basolateral Na+-K+-ATPase activity. Berberine stimulated p38 MAPK, PKC and PKA, but had no effect on p42/p44 MAPK and PKC. However, berberine pre-treatment prevented stimulation of p42/p44 MAPK by epidermal growth factor. The inhibitory effect of berberine on Cl- secretion was partially blocked by HBDDE (65 %, an inhibitor of PKC and to a smaller extent by inhibition of p38 MAPK with SB202190 (15 %. Berberine treatment induced an increase in association between PKC and PKA with KCNQ1 and produced phosphorylation of the channel. We conclude that berberine exerts its inhibitory effect on colonic Cl- secretion through inhibition of basolateral KCNQ1 channels responsible for K+ recycling via a PKC-dependent pathway.

  13. Similar expression patterns of bestrophin-4 and cGMP dependent Ca2+-activated chloride channel activity in the vasculature

    DEFF Research Database (Denmark)

    Bouzinova, Elena V.; Larsen, Per; Matchkov, Vladimir

    2008-01-01

    Bestrophin protein is involved in ion transport across the basolateral membrane of the retinal pigment epithelium. The mammalian genome encodes 4 members of the bestrophin family. Bestrophins have been proposed to comprise a new family of Ca2+-activated Cl- channels1. We have recently demonstrated......- current in SMCs of different origins. Immunohistochemistry identified bestrophin-4 both in endothelial and SMCs of the vascular tree in the brain, heart, kidney and mesentery, but not in the lungs. We suggest that bestrophin-4 is important for the cGMP dependent, Ca2+ activated Cl- conductance in many...

  14. Functional analysis of metabolic channeling and regulation in lignin biosynthesis: a computational approach.

    Directory of Open Access Journals (Sweden)

    Yun Lee

    Full Text Available Lignin is a polymer in secondary cell walls of plants that is known to have negative impacts on forage digestibility, pulping efficiency, and sugar release from cellulosic biomass. While targeted modifications of different lignin biosynthetic enzymes have permitted the generation of transgenic plants with desirable traits, such as improved digestibility or reduced recalcitrance to saccharification, some of the engineered plants exhibit monomer compositions that are clearly at odds with the expected outcomes when the biosynthetic pathway is perturbed. In Medicago, such discrepancies were partly reconciled by the recent finding that certain biosynthetic enzymes may be spatially organized into two independent channels for the synthesis of guaiacyl (G and syringyl (S lignin monomers. Nevertheless, the mechanistic details, as well as the biological function of these interactions, remain unclear. To decipher the working principles of this and similar control mechanisms, we propose and employ here a novel computational approach that permits an expedient and exhaustive assessment of hundreds of minimal designs that could arise in vivo. Interestingly, this comparative analysis not only helps distinguish two most parsimonious mechanisms of crosstalk between the two channels by formulating a targeted and readily testable hypothesis, but also suggests that the G lignin-specific channel is more important for proper functioning than the S lignin-specific channel. While the proposed strategy of analysis in this article is tightly focused on lignin synthesis, it is likely to be of similar utility in extracting unbiased information in a variety of situations, where the spatial organization of molecular components is critical for coordinating the flow of cellular information, and where initially various control designs seem equally valid.

  15. Synthesis and characterisation of NS13558: a new important tool for addressing KCa1.1 channel function ex vivo

    DEFF Research Database (Denmark)

    Bentzen, Bo Hjorth; Andersen, Rune Wederkinck; Olesen, Søren-Peter

    2009-01-01

    to modulate the channel. Here, we address this issue by synthesising a methylated analogue of the tool KCa1.1 channel activator NS11021. The compound (NS13558) is designed as a structurally closely related and biologically inactive analogue of NS11021. NS13558 did not elicit any significant opening of cloned......-reperfusion injuries. Furthermore, the study demonstrates a novel way of combining an activator of the KCa1.1 channel (NS11021) and its structurally closely related inactive analogue NS13558 to address the functional role of KCa1.1 channels, and we believe these novel tools may constitute a valuable addition...

  16. Mutant connexin 50 (S276F) inhibits channel and hemichannel functions inducing cataract

    Indian Academy of Sciences (India)

    Yuanyuan Liu; Chen Qiao; Tanwei Wei; Fang Zheng; Shuren Guo; Qiang Chen; Ming Yan; Xin Zhou

    2015-06-01

    This study was designed to detect the expression, detergent resistance, subcellular localization, and channel and hemichannel functions of mutant Cx50 to understand the forming mechanism for inducing congenital cataract by a novel mutation p.S276F in connexin 50 (Cx50) reported previously by us. HeLa and human lens epithelial (HLE) cells were transfected with wild-type Cx50 and mutant Cx50 (S276F). We examined the functional characteristics of mutant Cx50 (S276F) in comparison with those of wild-type Cx50 using immunoblot, confocal fluorescence microscopy, dye transfer analysis and dye uptake assay. The mutant and wild-type Cx50 were expressed in equal levels and could efficiently localize to the plasma membrane without transportation and assembly problems. Scrape loading dye transfer was significantly evident in cells transfected with wild-type Cx50 compared to those in cells transfected with mutant Cx50 and cotransfected with wild-type and mutant Cx50. The dye uptake was found to be significantly lower in cells transfected with mutant Cx50 than in cells transfected with wild-type Cx50 and cells cotransfected with wild-type and mutant Cx50. The transfected HeLa and HLE cell lines showed similar performance in all the experiments. These results indicated that the mutant Cx50 (S276F) might inhibit the function of gap junction channel in a dominant negative manner, but inhibit the hemichannel function in a recessive negative manner.

  17. Functional remodeling of Ca2+-activated Cl- channel in pacing induced canine failing heart

    Institute of Scientific and Technical Information of China (English)

    Ning Li; Kejuan Ma; Siyong Teng; Jonathan C.Makielski; Jielin Pu

    2008-01-01

    Objective To determine whether Ca2+ activated Cl- current(Icl(Ca)) contributes to the functional remodeling of the failing heart.Methods Whole cell patch-clamp recording technique was employed to record the Icl(Ca) in cardiac myocytes enzymatically isolatedfrom rapidly pacing induced canine failing hearts at room temperature and compared that of the normal hearts (Nor).Results Thecurrent density of DIDS(200M)sensitive Icl(Ca) induced by intracellular Ca2+ release trigged by L-type Ca2+ current(Ica,L)wassignificantly decreased in heart failare(HE)cells compared to Nor cells.At membrane voltage of 20mV,the Icl(Ca) density was 3.02±0.54 pA/pF in Nor(n=6)vs.1.31±0.25 pA/pF in HF(n=8)cells,(P<0.01),while the averaged Ica,L density did not show differencebetween two groups.The time constant of current decay of Icl(Ca) was similar in both types of cells.On the other hand,in intra cellularCa2+ clamped mode,where the[Ca2+];was maintained at 100nmol/L,Icl(Ca) density be increased significantly in HF cells when themembrane voltage at+30mV or higher.Conclusions Our results suggest that Icl(Ca) density was decreased in pacing induced failingheart but the channel function be enhanced.Impaired Ca2+ handing in HF cells rather than reduced,Icl(Ca) channel function itself may havecaused this abnormality.The Icl(Ca) density reduction might contribute to the prolongation of action potential in failing heart.The Icl(Ca)channel function up-rugulation is likely to cause cardiac arrhythmia by inducing a delayed after depolarization,when Ca2+ overloadoccurred in diastolic failing heart cells.

  18. Offset correction system for 128-channel self-triggering readout chip with in-channel 5-bit energy measurement functionality

    Energy Technology Data Exchange (ETDEWEB)

    Otfinowski, P., E-mail: potfin@agh.edu.pl; Grybos, P.; Szczygiel, R.; Kasinski, K.

    2015-04-21

    We report on a novel, two-stage 8-bit trimming solution dedicated for multichannel systems with reduced trim DAC area occupancy. The presented design was used for comparator offset correction in a 128-channel particle tracking, self-triggering readout system and manufactured in 180 nm CMOS process. The 8-bit trim DAC has a range of ±165 mV, current consumption of 3.2 µA and occupies an area of 37 µm×17 µm in each channel, which corresponds to a 6-bit conventional current steering DAC with similar linearity.

  19. Tribenzylammonium chloride

    Directory of Open Access Journals (Sweden)

    Waly Diallo

    2014-05-01

    Full Text Available Single crystals of the title salt, C21H21NH+·Cl−, were isolated as a side product from the reaction involving [(C6H5CH23NH]2[HPO4] and Sn(CH33Cl in ethanol. Both the cation and the anion are situated on a threefold rotation axis. The central N atom in the cation has a slightly distorted tetrahedral environment, with angles ranging from 107.7 to 111.16 (10°. In the crystal, the tribenzylammonium cations and chloride anions are linked through N—H...Cl and C—H...Cl hydrogen bonds, leading to the formation of infinite chains along [001]. The crystal studied was a merohedral twin.

  20. Functional coupling between sodium-activated potassium channels and voltage-dependent persistent sodium currents in cricket Kenyon cells.

    Science.gov (United States)

    Takahashi, Izumi; Yoshino, Masami

    2015-10-01

    In this study, we examined the functional coupling between Na(+)-activated potassium (KNa) channels and Na(+) influx through voltage-dependent Na(+) channels in Kenyon cells isolated from the mushroom body of the cricket Gryllus bimaculatus. Single-channel activity of KNa channels was recorded with the cell-attached patch configuration. The open probability (Po) of KNa channels increased with increasing Na(+) concentration in a bath solution, whereas it decreased by the substitution of Na(+) with an equimolar concentration of Li(+). The Po of KNa channels was also found to be reduced by bath application of a high concentration of TTX (1 μM) and riluzole (100 μM), which inhibits both fast (INaf) and persistent (INaP) Na(+) currents, whereas it was unaffected by a low concentration of TTX (10 nM), which selectively blocks INaf. Bath application of Cd(2+) at a low concentration (50 μM), as an inhibitor of INaP, also decreased the Po of KNa channels. Conversely, bath application of the inorganic Ca(2+)-channel blockers Co(2+) and Ni(2+) at high concentrations (500 μM) had little effect on the Po of KNa channels, although Cd(2+) (500 μM) reduced the Po of KNa channels. Perforated whole cell clamp analysis further indicated the presence of sustained outward currents for which amplitude was dependent on the amount of Na(+) influx. Taken together, these results indicate that KNa channels could be activated by Na(+) influx passing through voltage-dependent persistent Na(+) channels. The functional significance of this coupling mechanism was discussed in relation to the membrane excitability of Kenyon cells and its possible role in the formation of long-term memory.

  1. Effects of Dual-Channel Functional Electrical Stimulation on Gait Performance in Patients with Hemiparesis

    Directory of Open Access Journals (Sweden)

    Shmuel Springer

    2012-01-01

    Full Text Available The study objective was to assess the effect of functional electrical stimulation (FES applied to the peroneal nerve and thigh muscles on gait performance in subjects with hemiparesis. Participants were 45 subjects (age 57.8 ± 14.8 years with hemiparesis (5.37 ± 5.43 years since diagnosis demonstrating a foot-drop and impaired knee control. Thigh stimulation was applied either to the quadriceps or hamstrings muscles, depending on the dysfunction most affecting gait. Gait was assessed during a two-minute walk test with/without stimulation and with peroneal stimulation alone. A second assessment was conducted after six weeks of daily use. The addition of thigh muscles stimulation to peroneal stimulation significantly enhanced gait velocity measures at the initial and second evaluation. Gait symmetry was enhanced by the dual-channel stimulation only at the initial evaluation, and single-limb stance percentage only at the second assessment. For example, after six weeks, the two-minute gait speed with peroneal stimulation and with the dual channel was 0.66 ± 0.30 m/sec and 0.70 ± 0.31 m/sec, respectively (. In conclusion, dual-channel FES may enhance gait performance in subjects with hemiparesis more than peroneal FES alone.

  2. Microparticle-mediated transfer of the viral receptors CAR and CD46, and the CFTR channel in a CHO cell model confers new functions to target cells.

    Directory of Open Access Journals (Sweden)

    Gaëlle Gonzalez

    Full Text Available Cell microparticles (MPs released in the extracellular milieu can embark plasma membrane and intracellular components which are specific of their cellular origin, and transfer them to target cells. The MP-mediated, cell-to-cell transfer of three human membrane glycoproteins of different degrees of complexity was investigated in the present study, using a CHO cell model system. We first tested the delivery of CAR and CD46, two monospanins which act as adenovirus receptors, to target CHO cells. CHO cells lack CAR and CD46, high affinity receptors for human adenovirus serotype 5 (HAdV5, and serotype 35 (HAdV35, respectively. We found that MPs derived from CHO cells (MP-donor cells constitutively expressing CAR (MP-CAR or CD46 (MP-CD46 were able to transfer CAR and CD46 to target CHO cells, and conferred selective permissiveness to HAdV5 and HAdV35. In addition, target CHO cells incubated with MP-CD46 acquired the CD46-associated function in complement regulation. We also explored the MP-mediated delivery of a dodecaspanin membrane glycoprotein, the CFTR to target CHO cells. CFTR functions as a chloride channel in human cells and is implicated in the genetic disease cystic fibrosis. Target CHO cells incubated with MPs produced by CHO cells constitutively expressing GFP-tagged CFTR (MP-GFP-CFTR were found to gain a new cellular function, the chloride channel activity associated to CFTR. Time-course analysis of the appearance of GFP-CFTR in target cells suggested that MPs could achieve the delivery of CFTR to target cells via two mechanisms: the transfer of mature, membrane-inserted CFTR glycoprotein, and the transfer of CFTR-encoding mRNA. These results confirmed that cell-derived MPs represent a new class of promising therapeutic vehicles for the delivery of bioactive macromolecules, proteins or mRNAs, the latter exerting the desired therapeutic effect in target cells via de novo synthesis of their encoded proteins.

  3. Correlation functions with fusion-channel multiplicity in W3 Toda field theory

    CERN Document Server

    Belavin, Vladimir; Foda, Omar; Santachiara, Raoul

    2016-01-01

    Current studies of WN Toda field theory focus on correlation functions such that the WN highest-weight representations in the fusion channels are multiplicity-free. In this work, we study W3 Toda 4-point functions with multiplicity in the fusion channel. The conformal blocks of these 4-point functions involve matrix elements of a fully-degenerate primary field with a highest-weight in the adjoint representation of sl3, and a semi-degenerate primary field with a highest-weight in the fundamental representation of sl3. We show that, when the fusion rules are obeyed, the matrix elements of the fully-degenerate adjoint field, between two arbitrary descendant states, can be computed explicitly, on equal footing with the matrix elements of the semi-degenerate fundamental field. Using null-state conditions, we obtain a fourth-order Fuchsian differential equation for the conformal blocks. Using Okubo theory, we show that, due to the presence of multiplicities, this differential equation belongs to a class of Fuchsian...

  4. Aging-associated changes in motor axon voltage-gated Na(+) channel function in mice.

    Science.gov (United States)

    Moldovan, Mihai; Rosberg, Mette Romer; Alvarez, Susana; Klein, Dennis; Martini, Rudolf; Krarup, Christian

    2016-03-01

    Accumulating myelin abnormalities and conduction slowing occur in peripheral nerves during aging. In mice deficient of myelin protein P0, severe peripheral nervous system myelin damage is associated with ectopic expression of Nav1.8 voltage-gated Na(+) channels on motor axons aggravating the functional impairment. The aim of the present study was to investigate the effect of regular aging on motor axon function with particular emphasis on Nav1.8. We compared tibial nerve conduction and excitability measures by threshold tracking in 12 months (mature) and 20 months (aged) wild-type (WT) mice. With aging, deviations during threshold electrotonus were attenuated and the resting current-threshold slope and early refractoriness were increased. Modeling indicated that, in addition to changes in passive membrane properties, motor fibers in aged WT mice were depolarized. An increased Nav1.8 isoform expression was found by immunohistochemistry. The depolarizing excitability features were absent in Nav1.8 null mice, and they were counteracted in WT mice by a Nav1.8 blocker. Our data suggest that alteration in voltage-gated Na(+) channel isoform expression contributes to changes in motor axon function during aging.

  5. Fatty Acid Regulation of Voltage- and Ligand-Gated Ion Channel Function

    Science.gov (United States)

    Antollini, Silvia S.; Barrantes, Francisco J.

    2016-01-01

    Free fatty acids (FFA) are essential components of the cell, where they play a key role in lipid and carbohydrate metabolism, and most particularly in cell membranes, where they are central actors in shaping the physicochemical properties of the lipid bilayer and the cellular adaptation to the environment. FFA are continuously being produced and degraded, and a feedback regulatory function has been attributed to their turnover. The massive increase observed under some pathological conditions, especially in brain, has been interpreted as a protective mechanism possibly operative on ion channels, which in some cases is of stimulatory nature and in other cases inhibitory. Here we discuss the correlation between the structure of FFA and their ability to modulate protein function, evaluating the influence of saturation/unsaturation, number of double bonds, and cis vs. trans isomerism. We further focus on the mechanisms of FFA modulation operating on voltage-gated and ligand-gated ion channel function, contrasting the still conflicting evidence on direct vs. indirect mechanisms of action. PMID:27965583

  6. Fatty Acid Regulation of Voltage- and Ligand-Gated Ion Channel Function.

    Science.gov (United States)

    Antollini, Silvia S; Barrantes, Francisco J

    2016-01-01

    Free fatty acids (FFA) are essential components of the cell, where they play a key role in lipid and carbohydrate metabolism, and most particularly in cell membranes, where they are central actors in shaping the physicochemical properties of the lipid bilayer and the cellular adaptation to the environment. FFA are continuously being produced and degraded, and a feedback regulatory function has been attributed to their turnover. The massive increase observed under some pathological conditions, especially in brain, has been interpreted as a protective mechanism possibly operative on ion channels, which in some cases is of stimulatory nature and in other cases inhibitory. Here we discuss the correlation between the structure of FFA and their ability to modulate protein function, evaluating the influence of saturation/unsaturation, number of double bonds, and cis vs. trans isomerism. We further focus on the mechanisms of FFA modulation operating on voltage-gated and ligand-gated ion channel function, contrasting the still conflicting evidence on direct vs. indirect mechanisms of action.

  7. Ion Flux Dependent and Independent Functions of Ion Channels in the Vertebrate Heart: Lessons Learned from Zebrafish

    OpenAIRE

    Mirjam Keßler; Steffen Just; Wolfgang Rottbauer

    2012-01-01

    Ion channels orchestrate directed flux of ions through membranes and are essential for a wide range of physiological processes including depolarization and repolarization of biomechanical activity of cells. Besides their electrophysiological functions in the heart, recent findings have demonstrated that ion channels also feature ion flux independent functions during heart development and morphogenesis. The zebrafish is a well-established animal model to decipher the genetics of cardiovascular...

  8. P2X7 on Mouse T Cells: One Channel, Many Functions

    OpenAIRE

    Rissiek, Björn; Haag, Friedrich; Boyer, Olivier; Koch-Nolte, Friedrich; Adriouch, Sahil

    2015-01-01

    The P2X7 receptor is an adenosine triphosphate (ATP)-gated cation channel that is expressed by several cells of the immune system. P2X7 is best known for its proinflammatory role in promoting inflammasome formation and release of mature interleukin (IL)-1β by innate immune cells. Mounting evidence indicates that P2X7 is also an important regulatory receptor of murine and human T cell functions. Murine T cells express a sensitive splice variant of P2X7 that can be activated either by non-coval...

  9. Functional study of the effect of phosphatase inhibitors on KCNQ4 channels expressed in Xenopus oocytes

    Institute of Scientific and Technical Information of China (English)

    Tzu-rong SU; Cay-huyen CHEN; Shih-jen HUANG; Chun-yi LEE; Mao-chang SU; Gwan-hong CHEN; Shuan-yow LI; Jiann-jou YANG; Min-jon LIN

    2009-01-01

    Aim: KCNQ4 channels play an important part in adjusting the function of cochlear outer hair cells. The aim of this study was to investigate the effects of ser/thr phosphatase inhibitors on human KCNQ4 channels expressed in Xenopus laevis oocytes. Methods: Synthetic cRNA encoding human KCNQ4 channels was injected into Xenopus oocytes. We used a two-electrode voltage clamp to measure the ion currents in the oocytes. Results: Wild-type KCNQ4 expressed in Xenopus oocytes showed the typical properties of slow activation kinetics and low threshold activation. The outward K~+ current was almost completely blocked by a KCNQ4 blocker, linopirdine (0.25 mmol/L). BIMI (a PKC inhibitor) prevented the effects of PMA (a PKC activator) on the KCNQ4 current, indicating that PKC may be involved in the regulation of KCNQ4 expressed in the Xenopus oocyte system. Treatment with the ser/thr phosphatase inhibitors, cyclosporine (2 μmoVL), calyculin A (2 μmol/L) or okadaic acid (1 μmol/L), caused a significant positive shift in V_(1/2) and a decrease in the conductance of KCNQ4 chan-nels. The V_(1/2) was shifted from-14.6±0.5 to-6.4±0.4 mV by cyclosporine, -18.8±0.5 to-9.2±0.4 mV by calyculin A, and-14.1±0.5 to -0.7±0.6 mV by okadaic acid. Moreover, the effects of these phosphatase inhibitors (okadaic acid or calyculin A) on the induction of a positive shift of V_(1/2) were augmented by further addition of PMA. Conclusion: These results indicate that ser/thr phosphatase inhibitors can induce a shift to more positive potentials of the activation curve of the KCNQ4 current. It is highly likely that the phosphatase functions to balance the phosphorylated state of substrate protein and thus has an important role in the regulation of human KCNQ4 channels expressed in Xenopus oocytes.

  10. Membrane cholesterol modulates Kv1.5 potassium channel distribution and function in rat cardiomyocytes.

    Science.gov (United States)

    Abi-Char, Joëlle; Maguy, Ange; Coulombe, Alain; Balse, Elise; Ratajczak, Philippe; Samuel, Jane-Lise; Nattel, Stanley; Hatem, Stéphane N

    2007-08-01

    Membrane lipid composition is a major determinant of cell excitability. In this study, we assessed the role of membrane cholesterol composition in the distribution and function of Kv1.5-based channels in rat cardiac membranes. In isolated rat atrial myocytes, the application of methyl-beta-cyclodextrin (MCD), an agent that depletes membrane cholesterol, caused a delayed increase in the Kv1.5-based sustained component, I(kur), which reached steady state in approximately 7 min. This effect was prevented by preloading the MCD with cholesterol. MCD-increased current was inhibited by low 4-aminopyridine concentration. Neonatal rat cardiomyocytes transfected with Green Fluorescent Protein (GFP)-tagged Kv1.5 channels showed a large ultrarapid delayed-rectifier current (I(Kur)), which was also stimulated by MCD. In atrial cryosections, Kv1.5 channels were mainly located at the intercalated disc, whereas caveolin-3 predominated at the cell periphery. A small portion of Kv1.5 floated in the low-density fractions of step sucrose-gradient preparations. In live neonatal cardiomyocytes, GFP-tagged Kv1.5 channels were predominantly organized in clusters at the basal plasma membrane. MCD caused reorganization of Kv1.5 subunits into larger clusters that redistributed throughout the plasma membrane. The MCD effect on clusters was sizable 7 min after its application. We conclude that Kv1.5 subunits are concentrated in cholesterol-enriched membrane microdomains distinct from caveolae, and that redistribution of Kv1.5 subunits by depletion of membrane cholesterol increases their current-carrying capacity.

  11. Functional prokaryotic-eukaryotic chimera from the pentameric ligand-gated ion channel family.

    Science.gov (United States)

    Duret, Guillaume; Van Renterghem, Catherine; Weng, Yun; Prevost, Marie; Moraga-Cid, Gustavo; Huon, Christèle; Sonner, James M; Corringer, Pierre-Jean

    2011-07-19

    Pentameric ligand-gated ion channels (pLGICs), which mediate chemo-electric signal transduction in animals, have been recently found in bacteria. Despite clear sequence and 3D structure homology, the phylogenetic distance between prokaryotic and eukaryotic homologs suggests significant structural divergences, especially at the interface between the extracellular (ECD) and the transmembrane (TMD) domains. To challenge this possibility, we constructed a chimera in which the ECD of the bacterial protein GLIC is fused to the TMD of the human α1 glycine receptor (α1GlyR). Electrophysiology in Xenopus oocytes shows that it functions as a proton-gated ion channel, thereby locating the proton activation site(s) of GLIC in its ECD. Patch-clamp experiments in BHK cells show that the ion channel displays an anionic selectivity with a unitary conductance identical to that of the α1GlyR. In addition, pharmacological investigations result in transmembrane allosteric modulation similar to the one observed on α1GlyR. Indeed, the clinically active drugs propofol, four volatile general anesthetics, alcohols, and ivermectin all potentiate the chimera while they inhibit GLIC. Collectively, this work shows the compatibility between GLIC and α1GlyR domains and points to conservation of the ion channel and transmembrane allosteric regulatory sites in the chimera. This provides evidence that GLIC and α1GlyR share a highly homologous 3D structure. GLIC is thus a relevant model of eukaryotic pLGICs, at least from the anionic type. In addition, the chimera is a good candidate for mass production in Escherichia coli, opening the way for investigations of "druggable" eukaryotic allosteric sites by X-ray crystallography.

  12. Dual-channel functional electrical stimulation improvements in speed-based gait classifications

    Directory of Open Access Journals (Sweden)

    Springer S

    2013-02-01

    Full Text Available Shmuel Springer,1,2 Yocheved Laufer,1 Meni Becher,1,2 Jean-Jacques Vatine3,41Department of Physical Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, 2Clinical Department, Bioness Neuromodulation, Ra'anana, 3Outpatient and Research Division, Reuth Medical Center, Tel Aviv, 4Department of Rehabilitation Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, IsraelBackground: Functional electrical stimulation (FES is becoming an accepted treatment method for enhancing gait performance in patients who present with gait difficulties resulting from hemiparesis. The purpose of this study was to test whether individuals with hemiparesis who have varied gait speeds, which place them in different functional categories, benefit to the same extent from the application of FES.Methods: Thirty-six subjects with chronic hemiparesis demonstrating foot-drop and deficits in knee and/or hip control were fitted with a dual-channel FES system activating the dorsiflexors and hamstring muscles. Gait was assessed during a 2-minute walk test with and without stimulation. A second assessment was conducted after 6 weeks of daily use. Analysis was performed with the subjects stratified into three functional ambulation classes according to their initial gait categories.Results: The dual-channel FES improved the gait velocity of all three subgroups. No minimal gait velocity was required in order to gain benefits from FES. For example, subjects with limited household ambulation capabilities improved their gait speed by 63.3% (from 0.30 ± 0.09 m/sec to 0.49 ± 0.20 m/sec; P < 0.01, while subjects with functional community ambulation capabilities improved their gait speed by 25.5% (from 0.90 ± 0.11 m/sec to 1.13 ± 0.22 m/sec; P < 0.01.Conclusion: Dual-channel FES positively affects gait velocity in patients with chronic hemiparesis, regardless of their initial gait velocity. Furthermore, gait velocity gains may be large enough

  13. The Caenorhabditis elegans iodotyrosine deiodinase ortholog SUP-18 functions through a conserved channel SC-box to regulate the muscle two-pore domain potassium channel SUP-9.

    Directory of Open Access Journals (Sweden)

    Ignacio Perez de la Cruz

    2014-02-01

    Full Text Available Loss-of-function mutations in the Caenorhabditis elegans gene sup-18 suppress the defects in muscle contraction conferred by a gain-of-function mutation in SUP-10, a presumptive regulatory subunit of the SUP-9 two-pore domain K(+ channel associated with muscle membranes. We cloned sup-18 and found that it encodes the C. elegans ortholog of mammalian iodotyrosine deiodinase (IYD, an NADH oxidase/flavin reductase that functions in iodine recycling and is important for the biosynthesis of thyroid hormones that regulate metabolism. The FMN-binding site of mammalian IYD is conserved in SUP-18, which appears to require catalytic activity to function. Genetic analyses suggest that SUP-10 can function with SUP-18 to activate SUP-9 through a pathway that is independent of the presumptive SUP-9 regulatory subunit UNC-93. We identified a novel evolutionarily conserved serine-cysteine-rich region in the C-terminal cytoplasmic domain of SUP-9 required for its specific activation by SUP-10 and SUP-18 but not by UNC-93. Since two-pore domain K(+ channels regulate the resting membrane potentials of numerous cell types, we suggest that the SUP-18 IYD regulates the activity of the SUP-9 channel using NADH as a coenzyme and thus couples the metabolic state of muscle cells to muscle membrane excitability.

  14. New aspects of HERG K⁺ channel function depending upon cardiac spatial heterogeneity.

    Directory of Open Access Journals (Sweden)

    Pen Zhang

    Full Text Available HERG K(+ channel, the genetic counterpart of rapid delayed rectifier K(+ current in cardiac cells, is responsible for many cases of inherited and drug-induced long QT syndromes. HERG has unusual biophysical properties distinct from those of other K(+ channels. While the conventional pulse protocols in patch-clamp studies have helped us elucidate these properties, their limitations in assessing HERG function have also been progressively noticed. We employed AP-clamp techniques using physiological action potential waveforms recorded from various regions of canine heart to study HERG function in HEK293 cells and identified several novel aspects of HERG function. We showed that under AP-clamp IHERG increased gradually with membrane repolarization, peaked at potentials around 20-30 mV more negative than revealed by pulse protocols and at action potential duration (APD to 60%-70% full repolarization, and fell rapidly at the terminal phase of repolarization. We found that the rising phase of IHERG was conferred by removal of inactivation and the decaying phase resulted from a fall in driving force, which were all determined by the rate of membrane repolarization. We identified regional heterogeneity and transmural gradient of IHERG when quantified with the area covered by IHERG trace. In addition, we observed regional and transmural differences of IHERG in response to dofetilide blockade. Finally, we characterized the influence of HERG function by selective inhibition of other ion currents. Based on our results, we conclude that the distinct biophysical properties of HERG reported by AP-clamp confer its unique function in cardiac repolarization thereby in antiarrhythmia and arrhythmogenesis.

  15. Insulin-secreting INS-1E cells express functional TRPV1 channels.

    Science.gov (United States)

    Fågelskiöld, Amanda Jabin; Kannisto, Kristina; Boström, Anna; Hadrovic, Banina; Farre, Cecilia; Eweida, Mohamed; Wester, Kenneth; Islam, Md Shahidul

    2012-01-01

    We have studied whether functional TRPV1 channels exist in the INS-1E cells, a cell type used as a model for β-cells, and in primary β-cells from rat and human. The effects of the TRPV1 agonists capsaicin and AM404 on the intracellular free Ca (2+) concentration ([Ca (2+)]i) in the INS-1E cells were studied by fura-2 based microfluorometry. Capsaicin increased [Ca (2+)]i in a concentration-dependent manner, and the [Ca (2+)]i increase was dependent on extracellular Ca (2+). AM404 also increased [Ca (2+)]i in the INS-1E cells. Capsazepine, a specific antagonist of TRPV1, completely blocked the capsaicin- and AM404-induced [Ca (2+)]i increases. Capsaicin did not increase [Ca (2+)]i in the primary β-cells from rat and human. Whole cell patch clamp configuration was used to record currents across the plasma membrane in the INS-1E cells. Capsaicin elicited inward currents that were inhibited by capsazepine. Western blot analysis detected TRPV1 proteins in the INS-1E cells and the human islets. Immunohistochemistry was used to study the expression of TRPV1, but no TRPV1 protein immunoreactivity was detected in the human islet cells and the human insulinoma cells. We conclude that the INS-1E cells, but not the primary β-cells, express functional TRPV1 channels.

  16. Molecular characterization and functional expression of the Apis mellifera voltage-dependent Ca2+ channels.

    Science.gov (United States)

    Cens, Thierry; Rousset, Matthieu; Collet, Claude; Charreton, Mercedes; Garnery, Lionel; Le Conte, Yves; Chahine, Mohamed; Sandoz, Jean-Christophe; Charnet, Pierre

    2015-03-01

    Voltage-gated Ca(2+) channels allow the influx of Ca(2+) ions from the extracellular space upon membrane depolarization and thus serve as a transducer between membrane potential and cellular events initiated by Ca(2+) transients. Most insects are predicted to possess three genes encoding Cavα, the main subunit of Ca(2+) channels, and several genes encoding the two auxiliary subunits, Cavβ and Cavα2δ; however very few of these genes have been cloned so far. Here, we cloned three full-length cDNAs encoding the three Cavα subunits (AmelCav1a, AmelCav2a and AmelCav3a), a cDNA encoding a novel variant of the Cavβ subunit (AmelCavβc), and three full-length cDNAs encoding three Cavα2δ subunits (AmelCavα2δ1 to 3) of the honeybee Apis mellifera. We identified several alternative or mutually exclusive exons in the sequence of the AmelCav2 and AmelCav3 genes. Moreover, we detected a stretch of glutamine residues in the C-terminus of the AmelCav1 subunit that is reminiscent of the motif found in the human Cav2.1 subunit of patients with Spinocerebellar Ataxia type 6. All these subunits contain structural domains that have been identified as functionally important in their mammalian homologues. For the first time, we could express three insect Cavα subunits in Xenopus oocytes and we show that AmelCav1a, 2a and 3a form Ca(2+) channels with distinctive properties. Notably, the co-expression of AmelCav1a or AmelCav2a with AmelCavβc and AmCavα2δ1 produces High Voltage-Activated Ca(2+) channels. On the other hand, expression of AmelCav3a alone leads to Low Voltage-Activated Ca(2+) channels.

  17. Transient receptor potential channel polymorphisms are associated with the somatosensory function in neuropathic pain patients.

    Directory of Open Access Journals (Sweden)

    Andreas Binder

    Full Text Available Transient receptor potential channels are important mediators of thermal and mechanical stimuli and play an important role in neuropathic pain. The contribution of hereditary variants in the genes of transient receptor potential channels to neuropathic pain is unknown. We investigated the frequency of transient receptor potential ankyrin 1, transient receptor potential melastin 8 and transient receptor potential vanilloid 1 single nucleotide polymorphisms and their impact on somatosensory abnormalities in neuropathic pain patients. Within the German Research Network on Neuropathic Pain (Deutscher Forscbungsverbund Neuropathischer Schmerz 371 neuropathic pain patients were phenotypically characterized using standardized quantitative sensory testing. Pyrosequencing was employed to determine a total of eleven single nucleotide polymorphisms in transient receptor potential channel genes of the neuropathic pain patients and a cohort of 253 German healthy volunteers. Associations of quantitative sensory testing parameters and single nucleotide polymorphisms between and within groups and subgroups, based on sensory phenotypes, were analyzed. Single nucleotide polymorphisms frequencies did not differ between both the cohorts. However, in neuropathic pain patients transient receptor potential ankyrin 1 710G>A (rs920829, E179K was associated with the presence of paradoxical heat sensation (p = 0.03, and transient receptor potential vanilloid 1 1911A>G (rs8065080, I585V with cold hypoalgesia (p = 0.0035. Two main subgroups characterized by preserved (1 and impaired (2 sensory function were identified. In subgroup 1 transient receptor potential vanilloid 1 1911A>G led to significantly less heat hyperalgesia, pinprick hyperalgesia and mechanical hypaesthesia (p = 0.006, p = 0.005 and pG (rs222747, M315I to cold hypaesthesia (p = 0.002, but there was absence of associations in subgroup 2. In this study we found no evidence that genetic

  18. Analysis of the 802.11e Enhanced Distributed Channel Access Function

    CERN Document Server

    Inan, Inanc; Ayanoglu, Ender

    2007-01-01

    The IEEE 802.11e standard revises the Medium Access Control (MAC) layer of the former IEEE 802.11 standard for Quality-of-Service (QoS) provision in the Wireless Local Area Networks (WLANs). The Enhanced Distributed Channel Access (EDCA) function of 802.11e defines multiple Access Categories (AC) with AC-specific Contention Window (CW) sizes, Arbitration Interframe Space (AIFS) values, and Transmit Opportunity (TXOP) limits to support MAC-level QoS and prioritization. We propose an analytical model for the EDCA function which incorporates an accurate CW, AIFS, and TXOP differentiation at any traffic load. The proposed model is also shown to capture the effect of MAC layer buffer size on the performance. Analytical and simulation results are compared to demonstrate the accuracy of the proposed approach for varying traffic loads, EDCA parameters, and MAC layer buffer space.

  19. Aging-associated changes in motor axon voltage-gated Na(+) channel function in mice

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Rosberg, Mette Romer; Alvarez, Susana

    2016-01-01

    Accumulating myelin abnormalities and conduction slowing occur in peripheral nerves during aging. In mice deficient of myelin protein P0, severe peripheral nervous system myelin damage is associated with ectopic expression of Nav1.8 voltage-gated Na(+) channels on motor axons aggravating...... the functional impairment. The aim of the present study was to investigate the effect of regular aging on motor axon function with particular emphasis on Nav1.8. We compared tibial nerve conduction and excitability measures by threshold tracking in 12 months (mature) and 20 months (aged) wild-type (WT) mice....... With aging, deviations during threshold electrotonus were attenuated and the resting current-threshold slope and early refractoriness were increased. Modeling indicated that, in addition to changes in passive membrane properties, motor fibers in aged WT mice were depolarized. An increased Nav1.8 isoform...

  20. CHARACTERIZING THE BROWN DWARF FORMATION CHANNELS FROM THE INITIAL MASS FUNCTION AND BINARY-STAR DYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Thies, Ingo; Pflamm-Altenburg, Jan; Kroupa, Pavel; Marks, Michael [Helmholtz-Institut für Strahlen- und Kernphysik (HISKP), Universität Bonn, Nussallee 14-16, D-53115 Bonn (Germany)

    2015-02-10

    The stellar initial mass function (IMF) is a key property of stellar populations. There is growing evidence that the classical star-formation mechanism by the direct cloud fragmentation process has difficulties reproducing the observed abundance and binary properties of brown dwarfs and very-low-mass stars. In particular, recent analytical derivations of the stellar IMF exhibit a deficit of brown dwarfs compared to observational data. Here we derive the residual mass function of brown dwarfs as an empirical measure of the brown dwarf deficiency in recent star-formation models with respect to observations and show that it is compatible with the substellar part of the Thies-Kroupa IMF and the mass function obtained by numerical simulations. We conclude that the existing models may be further improved by including a substellar correction term that accounts for additional formation channels like disk or filament fragmentation. The term ''peripheral fragmentation'' is introduced here for such additional formation channels. In addition, we present an updated analytical model of stellar and substellar binarity. The resulting binary fraction and the dynamically evolved companion mass-ratio distribution are in good agreement with observational data on stellar and very-low-mass binaries in the Galactic field, in clusters, and in dynamically unprocessed groups of stars if all stars form as binaries with stellar companions. Cautionary notes are given on the proper analysis of mass functions and the companion mass-ratio distribution and the interpretation of the results. The existence of accretion disks around young brown dwarfs does not imply that these form just like stars in direct fragmentation.

  1. 呼吸道上皮细胞钠/氯离子通道与支气管哮喘%Epithelial sodium and chloride channels and bronchial asthma

    Institute of Scientific and Technical Information of China (English)

    王雯; 吉宏龙

    2015-01-01

    支气管哮喘(简称哮喘)是一种慢性气道疾病,表现为气道高反应性和气道炎症导致的可逆性气道阻塞.研究显示,呼吸道上皮细胞钠/氯离子通道(ENaC/CFTR)调节黏液纤毛系统从而参与了慢性气道疾病的发病机制.ENaC及CFTR共同调节黏液的水质层,从而影响气道纤毛清除能力.调节上皮通道蛋白的特异性拮抗剂或激活剂将为哮喘和其他慢性气道疾病的预防和治疗开拓新的研究前景.%Bronchial asthma (asthma) is a chronic respiratory disease characterized by reversible airway obstruction with bronchial hyper-responsiveness and inflammation.Airway cilia system is implicated in the pathogenesis of chronic airway diseases.Epithelial sodium channels (ENaC) and cystic fibrosis transmembrane conductance regulator (CFTR) are closely related to the mucociliary clearance.ENaC and CFTR jointly adjust the water layer of mucus, which affects the airway cilia clearance ability.Specific antagonists or activating agents of ENaC and CFTR could be novel pharmaceutical interventions for the prevention and treatment of asthma as well as other chronic airway diseases.

  2. Fabrication of functionally gradient materials with internal channels in ceramics and ceramic composites

    Science.gov (United States)

    Shin, Hyea-Weon

    Functionally Gradient Materials (FGMs) are inhomogeneous materials whose compositions vary from one phase to another. By tailoring the inhomogeneous properties, FGMs can be used to reduce the stresses that are caused by severe thermal gradients. Thermal gradient loading can further be compensated by heat transfer into a cooling fluid circulating in a network of channels and manifolds. In an envisioned application, heat from a localized source is transferred to the cooling fluid, easing sharp thermal loads while minimizing the unwanted spread of heat energy to the ambient surroundings. This study reports on the fabrication of functionally gradient ceramics and the embedding of simple internal channels within these ceramics. Functional gradiency (variation of composition) is built in via the layering of different components across the thickness of a plate sample. Traditional powder processing techniques are applied to fabricate the test pieces, and recently developed methods of joining are used to build assemblies from individually sintered plate layers. For a well-formed FGM to be made, materials parameters need to be selected based on mechanical, thermal and chemical properties. As a class, ceramics are hard, wear-resistant, refractory, electrically and thermally insulative, nonmagnetic, chemically stable, and oxidation-resistant. However, because of their brittleness, ceramics with minute channels are difficult to machine. Instead, for this study, a graphite fugitive phase is used as a spacer to support channel volumes within a ceramic powder compact; during pre-sintering, the graphite burns out to expose a network of channels. Full sintering fixes the final shape. At the operating temperatures of the ovens used in our fabrication study, sintering of alumina, partially stabilized zirconia, fully stabilized zirconia and hydroxyapatite have been successful, and these ceramic powders form the basis of the present fabrication studies. Inhomogeneities inherent in the

  3. Modulating effect of calcium activated potassium and chloride channels on detrusor instability%钙激活钾/氯通道对大鼠逼尿肌不稳定调节作用的实验研究

    Institute of Scientific and Technical Information of China (English)

    杨航; 宋波; 金锡御; 杨昕

    2003-01-01

    目的研究钙激活钾/氯通道对逼尿肌不稳定的调节作用的变化,探讨其在逼尿肌不稳定(Detrusor instability,DI)发生中的作用.方法采用Wistar大鼠DI模型,常规制备正常及DI逼尿肌条,体外张力测定其自发收缩频率和幅度,观察通道阻断剂及开放剂的作用.结果 DI组自发收缩频率与张力较对照组显著增加.大电导钙激活钾通道(Big conductance calcium activated potassium channel,BKca)阻断后,对照组频率降低而张力增加,DI组仅频率明显提高,开放后对照组频率与张力均降低,DI组仅频率明显下降.小电导钙激活钾通道(Small conductance calcium activated potassium channel,SKca)阻断后两组的频率与张力均明显增加,而开放后则对照组均降低,DI组仅频率下降.钾通道阻断或开放后对照组频率与张力的变化幅度明显高于DI组.钙激活氯通道(Calcium activated chloride channel,Clca)阻断后,DI组频率与张力下降,而对照组无明显改变.结论钙激活钾/氯通道反馈调节逼尿肌的收缩,DI时Kca作用下调而Clca作用上调,提示钙相关的调节异常在DI的发生中具有重要作用.

  4. Clustering and Functional Coupling of Diverse Ion Channels and Signaling Proteins Revealed by Super-resolution STORM Microscopy in Neurons.

    Science.gov (United States)

    Zhang, Jie; Carver, Chase M; Choveau, Frank S; Shapiro, Mark S

    2016-10-19

    The fidelity of neuronal signaling requires organization of signaling molecules into macromolecular complexes, whose components are in intimate proximity. The intrinsic diffraction limit of light makes visualization of individual signaling complexes using visible light extremely difficult. However, using super-resolution stochastic optical reconstruction microscopy (STORM), we observed intimate association of individual molecules within signaling complexes containing ion channels (M-type K(+), L-type Ca(2+), or TRPV1 channels) and G protein-coupled receptors coupled by the scaffolding protein A-kinase-anchoring protein (AKAP)79/150. Some channels assembled as multi-channel supercomplexes. Surprisingly, we identified novel layers of interplay within macromolecular complexes containing diverse channel types at the single-complex level in sensory neurons, dependent on AKAP79/150. Electrophysiological studies revealed that such ion channels are functionally coupled as well. Our findings illustrate the novel role of AKAP79/150 as a molecular coupler of different channels that conveys crosstalk between channel activities within single microdomains in tuning the physiological response of neurons.

  5. Comparison of the chloride channel activator lubiprostone and the oral laxative Polyethylene Glycol 3350 on mucosal barrier repair in ischemic-injured porcine intestine

    Institute of Scientific and Technical Information of China (English)

    Adam J Moeser; Prashant K Nighot; Birgit Roerig; Ryuji Ueno; Anthony T Blikslager

    2008-01-01

    AIM: To investigate the effects of lubiprostone and Polyethylene Glycol 3350 (PEG) on mucosal barrier repair in ischemic-injured porcine intestine.METHODS: Ileum from 6 piglets (approximately 15 kg body weight) was subjected to ischemic conditions by occluding the local mesenteric circulation for 45 min in vivo. Ileal tissues from each pig were then harvested and mounted in Ussing chambers and bathed in oxygenated Ringer's solution in vitro. Intestinal barrier function was assessed by measuring transepithelial electrical resistance (TER) and mucosal-to-serosal fluxes of 3H-mannitol and 14C-inulin. Statistical analyses of data collected over a 120-min time course included 2-way ANOVA for the effects of time and treatment on indices of barrier function.RESULTS: Application of 1 μmol/L lubiprostone to the mucosal surface of ischemic-injured ileum in vitro induced significant elevations in TER compared to non-treated tissue. Lubiprostone also reduced mucosal-to-serosal fluxes of 3H-mannitol and 14C-inulin. Alternatively, application of a polyethylene laxative (PEG, 20 mmol/L) to the mucosal surface of ischemic tissues significantly increased flux of 3H-mannitol and 14C-inulin.CONCLUSION: This experiment demonstrates that lubiprostone stimulates recovery of barrier function in ischemic intestinal tissues whereas the PEG laxative had deleterious effects on mucosal repair. These results suggest that, unlike osmotic laxatives, lubiprostone stimulates repair of the injured intestinal barrier.

  6. An alpha-catulin homologue controls neuromuscular function through localization of the dystrophin complex and BK channels in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Linu S Abraham

    2010-08-01

    Full Text Available The large conductance, voltage- and calcium-dependent potassium (BK channel serves as a major negative feedback regulator of calcium-mediated physiological processes and has been implicated in muscle dysfunction and neurological disorders. In addition to membrane depolarization, activation of the BK channel requires a rise in cytosolic calcium. Localization of the BK channel near calcium channels is therefore critical for its function. In a genetic screen designed to isolate novel regulators of the Caenorhabditis elegans BK channel, SLO-1, we identified ctn-1, which encodes an α-catulin homologue with homology to the cytoskeletal proteins α-catenin and vinculin. ctn-1 Mutants resemble slo-1 loss-of-function mutants, as well as mutants with a compromised dystrophin complex. We determined that CTN-1 uses two distinct mechanisms to localize SLO-1 in muscles and neurons. In muscles, CTN-1 utilizes the dystrophin complex to localize SLO-1 channels near L-type calcium channels. In neurons, CTN-1 is involved in localizing SLO-1 to a specific domain independent of the dystrophin complex. Our results demonstrate that CTN-1 ensures the localization of SLO-1 within calcium nanodomains, thereby playing a crucial role in muscles and neurons.

  7. Accounting for Finite Size of Ions in Nanofluidic Channels Using Density Functional Theory

    Science.gov (United States)

    McCallum, Christopher; Gillespie, Dirk; Pennathur, Sumita

    2016-11-01

    The physics of nanofluidic devices are dominated by ion-wall interactions within the electric double layer (EDL). A full understanding of the EDL allows for better exploitation of micro and nanofluidic devices for applications such as biologic separations, desalination, and energy conversion, Although continuum theory is generally used to study the fluidics within these channels, in very confined geometries, high surface charge channels, or significant solute concentration systems, continuum theories such as Poisson-Boltzmann cease to be valid because the finite size of ions is not considered. Density functional theory (DFT) provides an accurate and efficient method for predicting the concentration of ions and the electrostatic potential near a charged wall because it accounts for more complex electrostatic and hard-sphere correlations. This subsequently allows for a better model for ion flux, fluid flow, and current in electrokinetic systems at high surface charge, confined geometries, and concentrated systems. In this work, we present a theoretical approach utilizing DFT to predict unique flow phenomena in nanofluidic, electrokinetic systems. CBET-1402736 from the National Science Foundation.

  8. Regulation of mitochondrial function by voltage dependent anion channels in ethanol metabolism and the Warburg effect.

    Science.gov (United States)

    Lemasters, John J; Holmuhamedov, Ekhson L; Czerny, Christoph; Zhong, Zhi; Maldonado, Eduardo N

    2012-06-01

    Voltage dependent anion channels (VDAC) are highly conserved proteins that are responsible for permeability of the mitochondrial outer membrane to hydrophilic metabolites like ATP, ADP and respiratory substrates. Although previously assumed to remain open, VDAC closure is emerging as an important mechanism for regulation of global mitochondrial metabolism in apoptotic cells and also in cells that are not dying. During hepatic ethanol oxidation to acetaldehyde, VDAC closure suppresses exchange of mitochondrial metabolites, resulting in inhibition of ureagenesis. In vivo, VDAC closure after ethanol occurs coordinately with mitochondrial uncoupling. Since acetaldehyde passes through membranes independently of channels and transporters, VDAC closure and uncoupling together foster selective and more rapid oxidative metabolism of toxic acetaldehyde to nontoxic acetate by mitochondrial aldehyde dehydrogenase. In single reconstituted VDAC, tubulin decreases VDAC conductance, and in HepG2 hepatoma cells, free tubulin negatively modulates mitochondrial membrane potential, an effect enhanced by protein kinase A. Tubulin-dependent closure of VDAC in cancer cells contributes to suppression of mitochondrial metabolism and may underlie the Warburg phenomenon of aerobic glycolysis. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.

  9. Atom-by-atom engineering of voltage-gated ion channels: Magnified insights into function and pharmacology

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Kim, Robin Y; Ahern, Christopher A

    2015-01-01

    Unnatural amino acid incorporation into ion channels has proven to be a valuable approach to interrogate detailed hypotheses arising from atomic resolution structures. In this short review, we provide a brief overview of some of the basic principles and methods for incorporation of unnatural amin...... acids into proteins. We also review insights into the function and pharmacology of voltage-gated ion channels that have emerged from unnatural amino acid mutagenesis approaches....

  10. Constructing Ionic Liquid-Filled Proton Transfer Channels within Nanocomposite Membrane by Using Functionalized Graphene Oxide.

    Science.gov (United States)

    Wu, Wenjia; Li, Yifan; Chen, Pingping; Liu, Jindun; Wang, Jingtao; Zhang, Haoqin

    2016-01-13

    Herein, nanocomposite membranes are fabricated based on functionalized graphene oxides (FGOs) and sulfonated poly(ether ether ketone) (SPEEK), followed by being impregnated with imidazole-type ionic liquid (IL). The functional groups (acidic group or basic group) on FGOs generate strong interfacial interactions with SPEEK chains and then adjust their motion and stacking. As a result, the nanocomposite membranes possess tunable interfacial domains as determined by its free volume characteristic, which provides regulated location for IL storage. The stored ILs act as hopping sites for water-free proton conduction along the FGO-constructed interfacial channels. The microstructure at SPEEK-FGO interface governs the IL uptake and distribution in nanocomposite membrane. Different from GO and vinyl imidazole functionalized GO (VGO), the presence of acidic (-SO3H) groups confers the p-styrenesulfonic acid functionalized GO (SGO) incorporated nanocomposite membrane loose interface and strong electrostatic attraction with imidazole-type IL, imparting an enhanced IL uptake and anhydrous proton conductivity. Nanocomposite membrane containing 7.5% SGO attains the maximum IL uptake of 73.7% and hence the anhydrous conductivity of 21.9 mS cm(-1) at 150 °C, more than 30 times that of SPEEK control membrane (0.69 mS cm(-1)). In addition, SGOs generate electrostatic attractions to the ILs confined within SGO-SPEEK interface, affording the nanocomposite membrane enhanced IL retention ability.

  11. Ion flux dependent and independent functions of ion channels in the vertebrate heart: lessons learned from zebrafish.

    Science.gov (United States)

    Keßler, Mirjam; Just, Steffen; Rottbauer, Wolfgang

    2012-01-01

    Ion channels orchestrate directed flux of ions through membranes and are essential for a wide range of physiological processes including depolarization and repolarization of biomechanical activity of cells. Besides their electrophysiological functions in the heart, recent findings have demonstrated that ion channels also feature ion flux independent functions during heart development and morphogenesis. The zebrafish is a well-established animal model to decipher the genetics of cardiovascular development and disease of vertebrates. In large scale forward genetics screens, hundreds of mutant lines have been isolated with defects in cardiovascular structure and function. Detailed phenotyping of these lines and identification of the causative genetic defects revealed new insights into ion flux dependent and independent functions of various cardiac ion channels.

  12. Ion Flux Dependent and Independent Functions of Ion Channels in the Vertebrate Heart: Lessons Learned from Zebrafish

    Directory of Open Access Journals (Sweden)

    Mirjam Keßler

    2012-01-01

    Full Text Available Ion channels orchestrate directed flux of ions through membranes and are essential for a wide range of physiological processes including depolarization and repolarization of biomechanical activity of cells. Besides their electrophysiological functions in the heart, recent findings have demonstrated that ion channels also feature ion flux independent functions during heart development and morphogenesis. The zebrafish is a well-established animal model to decipher the genetics of cardiovascular development and disease of vertebrates. In large scale forward genetics screens, hundreds of mutant lines have been isolated with defects in cardiovascular structure and function. Detailed phenotyping of these lines and identification of the causative genetic defects revealed new insights into ion flux dependent and independent functions of various cardiac ion channels.

  13. Functional mutagenesis screens reveal the ‘cap structure’ formation in disulfide-bridge free TASK channels

    Science.gov (United States)

    Goldstein, Matthias; Rinné, Susanne; Kiper, Aytug K.; Ramírez, David; Netter, Michael F.; Bustos, Daniel; Ortiz-Bonnin, Beatriz; González, Wendy; Decher, Niels

    2016-01-01

    Two-pore-domain potassium (K2P) channels have a large extracellular cap structure formed by two M1-P1 linkers, containing a cysteine for dimerization. However, this cysteine is not present in the TASK-1/3/5 subfamily. The functional role of the cap is poorly understood and it remained unclear whether K2P channels assemble in the domain-swapped orientation or not. Functional alanine-mutagenesis screens of TASK-1 and TRAAK were used to build an in silico model of the TASK-1 cap. According to our data the cap structure of disulfide-bridge free TASK channels is similar to that of other K2P channels and is most likely assembled in the domain-swapped orientation. As the conserved cysteine is not essential for functional expression of all K2P channels tested, we propose that hydrophobic residues at the inner leaflets of the cap domains can interact with each other and that this way of stabilizing the cap is most likely conserved among K2P channels. PMID:26794006

  14. Regulation of high-voltage-activated Ca(2+) channel function, trafficking, and membrane stability by auxiliary subunits.

    Science.gov (United States)

    Felix, Ricardo; Calderón-Rivera, Aida; Andrade, Arturo

    2013-09-01

    Voltage-gated Ca(2+) (CaV) channels mediate Ca(2+) ions influx into cells in response to depolarization of the plasma membrane. They are responsible for initiation of excitation-contraction and excitation-secretion coupling, and the Ca(2+) that enters cells through this pathway is also important in the regulation of protein phosphorylation, gene transcription, and many other intracellular events. Initial electrophysiological studies divided CaV channels into low-voltage-activated (LVA) and high-voltage-activated (HVA) channels. The HVA CaV channels were further subdivided into L, N, P/Q, and R-types which are oligomeric protein complexes composed of an ion-conducting CaVα1 subunit and auxiliary CaVα2δ, CaVβ, and CaVγ subunits. The functional consequences of the auxiliary subunits include altered functional and pharmacological properties of the channels as well as increased current densities. The latter observation suggests an important role of the auxiliary subunits in membrane trafficking of the CaVα1 subunit. This includes the mechanisms by which CaV channels are targeted to the plasma membrane and to appropriate regions within a given cell. Likewise, the auxiliary subunits seem to participate in the mechanisms that remove CaV channels from the plasma membrane for recycling and/or degradation. Diverse studies have provided important clues to the molecular mechanisms involved in the regulation of CaV channels by the auxiliary subunits, and the roles that these proteins could possibly play in channel targeting and membrane Stabilization.

  15. Viral Membrane Channels: Role and Function in the Virus Life Cycle.

    Science.gov (United States)

    Sze, Ching Wooen; Tan, Yee-Joo

    2015-06-23

    Viroporins are small, hydrophobic trans-membrane viral proteins that oligomerize to form hydrophilic pores in the host cell membranes. These proteins are crucial for the pathogenicity and replication of viruses as they aid in various stages of the viral life cycle, from genome uncoating to viral release. In addition, the ion channel activity of viroporin causes disruption in the cellular ion homeostasis, in particular the calcium ion. Fluctuation in the calcium level triggers the activation of the host defensive programmed cell death pathways as well as the inflammasome, which in turn are being subverted for the viruses' replication benefits. This review article summarizes recent developments in the functional investigation of viroporins from various viruses and their contributions to viral replication and virulence.

  16. Discovery of functional monoclonal antibodies targeting G-protein-coupled receptors and ion channels.

    Science.gov (United States)

    Wilkinson, Trevor C I

    2016-06-15

    The development of recombinant antibody therapeutics is a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Despite this growth, however, certain classes of important molecular targets have remained intractable to therapeutic antibodies due to complexity of the target molecules. These complex target molecules include G-protein-coupled receptors and ion channels which represent a large potential target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these target proteins. Given this opportunity, substantial effort has been applied to address the technical challenges of targeting these complex membrane proteins with monoclonal antibodies. In this review recent progress made in the strategies for discovery of functional monoclonal antibodies for these challenging membrane protein targets is addressed.

  17. Functional effects of spinocerebellar ataxia type 13 mutations are conserved in zebrafish Kv3.3 channels

    Directory of Open Access Journals (Sweden)

    Mock Allan F

    2010-08-01

    Full Text Available Abstract Background The zebrafish has been suggested as a model system for studying human diseases that affect nervous system function and motor output. However, few of the ion channels that control neuronal activity in zebrafish have been characterized. Here, we have identified zebrafish orthologs of voltage-dependent Kv3 (KCNC K+ channels. Kv3 channels have specialized gating properties that facilitate high-frequency, repetitive firing in fast-spiking neurons. Mutations in human Kv3.3 cause spinocerebellar ataxia type 13 (SCA13, an autosomal dominant genetic disease that exists in distinct neurodevelopmental and neurodegenerative forms. To assess the potential usefulness of the zebrafish as a model system for SCA13, we have characterized the functional properties of zebrafish Kv3.3 channels with and without mutations analogous to those that cause SCA13. Results The zebrafish genome (release Zv8 contains six Kv3 family members including two Kv3.1 genes (kcnc1a and kcnc1b, one Kv3.2 gene (kcnc2, two Kv3.3 genes (kcnc3a and kcnc3b, and one Kv3.4 gene (kcnc4. Both Kv3.3 genes are expressed during early development. Zebrafish Kv3.3 channels exhibit strong functional and structural homology with mammalian Kv3.3 channels. Zebrafish Kv3.3 activates over a depolarized voltage range and deactivates rapidly. An amino-terminal extension mediates fast, N-type inactivation. The kcnc3a gene is alternatively spliced, generating variant carboxyl-terminal sequences. The R335H mutation in the S4 transmembrane segment, analogous to the SCA13 mutation R420H, eliminates functional expression. When co-expressed with wild type, R335H subunits suppress Kv3.3 activity by a dominant negative mechanism. The F363L mutation in the S5 transmembrane segment, analogous to the SCA13 mutation F448L, alters channel gating. F363L shifts the voltage range for activation in the hyperpolarized direction and dramatically slows deactivation. Conclusions The functional properties of

  18. Enhanced muscle shortening and impaired Ca2+ channel function in an acute septic myopathy model.

    Science.gov (United States)

    Friedrich, Oliver; Hund, Ernst; von Wegner, Frederic

    2010-04-01

    Myopathies in critically ill patients are increasingly documented. Various animal models of chronic sepsis have been employed to investigate reduced membrane excitability or altered isometric contractility of skeletal muscle. In contrast, immediate changes occurring during acute sepsis are significantly under-characterised; L-type Ca(2+) channel function or isotonic shortening are examples. We recorded slowly activating L-type Ca(2+) currents (I (Ca)) in voltage-clamped single intact mouse skeletal muscle fibres and tested the effects of acute challenge with serum fractions from critical illness myopathy patients (CIM). Using a high-speed camera system, we simultaneously recorded unloaded fibre shortening during isotonic contractions with unprecedented temporal resolution (approximately 1,600 frames/s). Time courses of fibre lengths and shortening velocity were determined from automated imaging algorithms. CIM fractions acutely induced depression of I (Ca) amplitudes with no shifts in I (Ca)-V-relations. Voltage-dependent inactivation was unaltered and I (Ca) activation and inactivation kinetics were prolonged compared to controls. Unexpectedly, maximum unloaded speed of shortening was slightly faster following CIM serum applications, suggesting a direct action of CIM serum on weak-binding-state cross-bridges. Our results are compatible with a model where CIM serum might acutely reduce a fraction of functional L-type Ca(2+) channels and could account for reduced SR Ca(2+) release and force production in CIM patients. Acute increase in isotonic shortening velocity might be an early diagnostic feature suitable for testing in clinical studies. The acute challenge model is also robust against atrophy or fibre type changes that ordinarily would have to be considered in chronic sepsis models.

  19. Domain structure and function of matrix metalloprotease 23 (MMP23): role in potassium channel trafficking.

    Science.gov (United States)

    Galea, Charles A; Nguyen, Hai M; George Chandy, K; Smith, Brian J; Norton, Raymond S

    2014-04-01

    MMP23 is a member of the matrix metalloprotease family of zinc- and calcium-dependent endopeptidases, which are involved in a wide variety of cellular functions. Its catalytic domain displays a high degree of structural homology with those of other metalloproteases, but its atypical domain architecture suggests that it may possess unique functional properties. The N-terminal MMP23 pro-domain contains a type-II transmembrane domain that anchors the protein to the plasma membrane and lacks the cysteine-switch motif that is required to maintain other MMPs in a latent state during passage to the cell surface. Instead of the C-terminal hemopexin domain common to other MMPs, MMP23 contains a small toxin-like domain (TxD) and an immunoglobulin-like cell adhesion molecule (IgCAM) domain. The MMP23 pro-domain can trap Kv1.3 but not closely-related Kv1.2 channels in the endoplasmic reticulum, preventing their passage to the cell surface, while the TxD can bind to the channel pore and block the passage of potassium ions. The MMP23 C-terminal IgCAM domain displays some similarity to Ig-like C2-type domains found in IgCAMs of the immunoglobulin superfamily, which are known to mediate protein-protein and protein-lipid interactions. MMP23 and Kv1.3 are co-expressed in a variety of tissues and together are implicated in diseases including cancer and inflammatory disorders. Further studies are required to elucidate the mechanism of action of this unique member of the MMP family.

  20. Francisella tularensis Catalase Restricts Immune Function by Impairing TRPM2 Channel Activity.

    Science.gov (United States)

    Shakerley, Nicole L; Chandrasekaran, Akshaya; Trebak, Mohamed; Miller, Barbara A; Melendez, J Andrés

    2016-02-19

    As an innate defense mechanism, macrophages produce reactive oxygen species that weaken pathogens and serve as secondary messengers involved in immune function. The Gram-negative bacterium Francisella tularensis utilizes its antioxidant armature to limit the host immune response, but the mechanism behind this suppression is not defined. Here we establish that F. tularensis limits Ca(2+) entry in macrophages, thereby limiting actin reorganization and IL-6 production in a redox-dependent fashion. Wild type (live vaccine strain) or catalase-deficient F. tularensis (ΔkatG) show distinct profiles in their H2O2 scavenging rates, 1 and 0.015 pm/s, respectively. Murine alveolar macrophages infected with ΔkatG display abnormally high basal intracellular Ca(2+) concentration that did not increase further in response to H2O2. Additionally, ΔkatG-infected macrophages displayed limited Ca(2+) influx in response to ionomycin, as a result of ionophore H2O2 sensitivity. Exogenously added H2O2 or H2O2 generated by ΔkatG likely oxidizes ionomycin and alters its ability to transport Ca(2+). Basal increases in cytosolic Ca(2+) and insensitivity to H2O2-mediated Ca(2+) entry in ΔkatG-infected cells are reversed by the Ca(2+) channel inhibitors 2-aminoethyl diphenylborinate and SKF-96365. 2-Aminoethyl diphenylborinate but not SKF-96365 abrogated ΔkatG-dependent increases in macrophage actin remodeling and IL-6 secretion, suggesting a role for H2O2-mediated Ca(2+) entry through the transient receptor potential melastatin 2 (TRPM2) channel in macrophages. Indeed, increases in basal Ca(2+), actin polymerization, and IL-6 production are reversed in TRPM2-null macrophages infected with ΔkatG. Together, our findings provide compelling evidence that F. tularensis catalase restricts reactive oxygen species to temper macrophage TRPM2-mediated Ca(2+) signaling and limit host immune function.

  1. Reduced Calcium Channel Function in Drosophila Disrupts Associative Learning in Larva and Behavior in Adults

    Directory of Open Access Journals (Sweden)

    Robin L. Cooper

    2008-01-01

    Full Text Available The temperature sensitive nature of a mutation in the Cacophony gene, which codes for the alpha subunit in the voltage-gated Ca2+ channel, reduces Ca2+ influx when exposed to non-permissive temperatures. We investigated the subtle nature in the impact for this mutation on whole animal function, in regards to learning and memory, in larvae and adults. The effects in acutely reducing evoked Ca2+ influx in nerve terminals during various behavioural assays greatly decreased the ability of larval Drosophila to learn, as demonstrated in associative learning assays. These assays are based on olfaction and gustation with association to light or dark environments with negative reinforces. Adult flies also showed defects in olfaction and sense of light when the animal is acutely depressed in normal Ca2+ influx within the nervous system. We demonstrated that this particular mutation does not alter cardiac function acutely. Thus, implying that the alpha 1 subunit mutation which retards neuronal function is not relevant for the pace maker and cardiac contractility as indexed by heart rate.

  2. Functional imaging of muscle oxygenation using a 200-channel cw NIRS system

    Science.gov (United States)

    Yamamoto, Katsuyuki; Niwayama, Masatsugu; Kohata, Daisuke; Kudo, Nobuki; Hamaoka, Takatumi; Kime, Ryotaro; Katsumura, Toshihito

    2001-06-01

    Functional imaging of muscle oxygenation using NIRS is a promising technique for evaluation of the heterogeneity of muscle function and diagnosis of peripheral vascular disease or muscle injury. We have developed a 200-channel imaging system that can measure the changes in oxygenation and blood volume of muscles and that covers wider area than previously reported systems. Our system consisted of 40 probes, a multiplexer for switching signals to and from the probes, and a personal computer for obtaining images. In each probe, one two-wavelength LED (770 and 830 nm) and five photodiodes were mounted on a flexible substrate. In order to eliminate the influence of a subcutaneous fat layer, a correction method, which we previously developed, was also used in imaging. Thus, quantitative changes in concentrations of oxy- and deoxy-hemoglobin were obtained. Temporal resolution was 1.5 s and spatial resolution was about 20 mm, depending on probe separations. Exercise tests (isometric contraction of 50% MVC) on the thigh with and without arterial occlusion were conducted, and changes in muscle oxygenation were imaged using the developed system. Results showed that the heterogeneity of deoxygenation and reoxygenation during exercise and recovery periods, respectively, were clearly observed. These results suggest that optical imaging of dynamic change in muscle oxygenation using NIRS would be useful not only for basic physiological studies but also for clinical applications with respect to muscle functions.

  3. Functional importance of T-type voltage-gated calcium channels in the cardiovascular and renal system

    DEFF Research Database (Denmark)

    Hansen, Pernille B L

    2015-01-01

    Over the years, it has been discussed whether T-type calcium channels Cav3 play a role in the cardiovascular and renal system. T-type channels have been reported to play an important role in renal hemodynamics, contractility of resistance vessels, and pacemaker activity in the heart. However...... to the conclusion that Cav3.1 and Cav3.2 channels have important, but different, functions in mice. T-type Cav3.1 channels affect heart rate, whereas Cav3.2 channels are involved in cardiac hypertrophy. In the vascular system, Cav3.2 activation leads to dilation of blood vessels, whereas Cav3.1 channels are mainly.......2, are expressed in blood vessels, the kidney, and the heart. Studies with gene-deficient mice have provided a way to investigate the Cav3.1 and Cav3.2 channels and their role in the cardiovascular system. This review discusses the results from these knockout mice. Evaluation of the literature leads...

  4. Evaluation of six channelized Hotelling observers in combination with a contrast sensitivity function to predict human observer performance

    Science.gov (United States)

    Goffi, Marco; Veldkamp, Wouter J. H.; van Engen, Ruben E.; Bouwman, Ramona W.

    2015-03-01

    Standard methods to quantify image quality (IQ) may not be adequate for clinical images since they depend on uniform backgrounds and linearity. Statistical model observers are not restricted to these limitations and might be suitable for IQ evaluation of clinical images. One of these statistical model observers is the channelized Hotelling observer (CHO), where the images are filtered by a set of channels. The aim of this study was to evaluate six different channel sets, with an additional filter to simulate the human contrast sensitivity function (CSF), in their ability to predict human observer performance. For this evaluation a two alternative forced choice experiment was performed with two types of background structures (white noise (WN) and clustered lumpy background (CLB)), 5 disk-shaped objects with different diameters and 3 different signal energies. The results show that the correlation between human and model observers have a diameter dependency for some channel sets in combination with CLBs. The addition of the CSF reduces this diameter dependency and in some cases improves the correlation coefficient between human- and model observer. For the CLB the Partial Least Squares channel set shows the highest correlation with the human observer (r2=0.71) and for WN backgrounds it was the Gabor-channel set with CSF (r2=0.72). This study showed that for some channels there is a high correlation between human and model observer, which suggests that the CHO has potential as a tool for IQ analysis of digital mammography systems.

  5. Inhibiting endoplasmic reticulum stress by lithium chloride contributes to the integrity of blood-spinal cord barrier and functional recovery after spinal cord injury

    Science.gov (United States)

    He, Zili; Zhou, Yulong; Wang, Qingqing; Li, Jiawei; Zheng, Zengming; Chen, Jian; Zhang, Hongyu; Wang, Zhouguang; Xu, Huazi; Xiao, Jian

    2017-01-01

    Endoplasmic reticulum (ER) stress play important roles in the spinal cord injury (SCI), which including blood-spinal cord barrier (BSCB) disruption. Lithium chloride (LiCl) is a clinical drug for bipolar mood disorders and contributes to neuroprotection. This study aims to investigate the effects of LiCl on BSCB disruption and the ER stress pathway induced by spinal cord injury. We examined the integrity of the BSCB with Evans Blue dye and macrophages extravasation, measured the microvessels loss, the junction proteins degeneration, the activation ER stress, and the locomotor function recovery. Our data indicated that LiCl treatment could attenuates BSCB disruption and improved the recovery of functional locomotion in rats SCI model, reduced the structure damage and number loss of microvessels, increased the expressions of junction proteins, including p120, β-catenin, occludin, and claudin-5, via reversed the upregulated ER stress associated proteins. In addition, LiCl significantly inhibited the increase of ER stress markers and prevents loss of junction proteins in thapsigargin (TG)-treated human brain microvascular endothelial cells (HBMEC). These findings suggest that LiCl treatment alleviates BSCB disruption and promote the neurological function recovery after SCI, partly through inhibiting the activation of ER stress.

  6. Mutation of neuronal channels of sodium and chloride associated with generalized epilepsy with febrile seizures plus (gefs+ Mutaciones de los canales neuronales de sodio y cloro asociadas a epilepsia generalizada con convulsiones febriles plus

    Directory of Open Access Journals (Sweden)

    Gabriel Bedoya Berrío

    2004-02-01

    Full Text Available Generalized Epilepsy with Febrile Seizures Plus (GEFS+ is a frequent entity characterized by generalized seizures with a wide phenotypic variety; the age of onset is 3 months and it persists beyond 6 years. Seizures may or may not be induced by fever. The disease has shown an autosomic dominant trait, incomplete penetrance and association with mutations on the genes that encode voltage-dependent sodium channels and the chloride neuronal channels on the central nervous system. The wide spectrum GEFS+ phenotype has been related with others entities such as Severe Myoclonic Epilepsy of Infancy (SMEI and Intractable Childhood Epilepsy with Frequent Generalized Tonic-Clonic Seizures (ICEGTC; they have mutations in common with GEFS+ according to several recently published articles. This review compiles up to date information about EGCF+ with the aim of giving the reader a knowledge of this entity and of its association with mutations that participate in its pathogenesis. La Epilepsia Generalizada Con Convulsiones Febriles Plus (EGCF+, es una entidad relativamente común. Se caracteriza por convulsiones de tipo generalizado con una gran variabilidad fenotípica; se presenta desde los 3 meses de edad y persiste más allá de los 6 años; las convulsiones pueden ser precipitadas por fiebre pero se presentan también sin ella. La enfermedad se ha asociado a herencia autosómica dominante con penetrancia incompleta, en la que intervienen mutaciones de los genes que codifican los canales iónicos de sodio dependientes del voltaje y de los canales iónicos de cloro en las neuronas del Sistema Nervioso Central (SNC. El amplio fenotipo de la EGCF+ se ha encontrado en asociación con otras entidades como la Epilepsia Mioclónica Severa del Lactante (EMSL y la Epilepsia Generalizada Tónico-Clónica Intratable de la Infancia (EGTCII, las cuales han presentado mutaciones comunes con las de la EGCF+, según informes recientemente publicados. Esta revisi

  7. TRPA1 channels in Drosophila and honey bee ectoparasitic mites share heat sensitivity and temperature-related physiological functions

    Directory of Open Access Journals (Sweden)

    Guangda Peng

    2016-10-01

    Full Text Available The transient receptor potential cation channel, subfamily A, member 1 (TRPA1 is conserved between many arthropods, and in some has been shown to function as a chemosensor for noxious compounds. Activation of arthropod TRPA1 channels by temperature fluctuations has been tested in only a few insect species, and all of them were shown to be activated by heat. The recent identification of chemosensitive TRPA1 channels from two honey bee ectoparasitic mite species (VdTRPA1 and TmTRPA1 have provided an opportunity to study the temperature-dependent activation and the temperature-associated physiological functions of TRPA1 channels in non-insect arthropods. We found that both mite TRPA1 channels are heat sensitive and capable of rescuing the temperature-related behavioral defects of a Drosophila melanogaster trpA1 mutant. These results suggest that heat-sensitivity of TRPA1 could be conserved between many arthropods despite its amino acid sequence diversity. Nevertheless, the ankyrin repeats (ARs 6 and 7 are well-conserved between six heat-sensitive arthropod TRPA1 channels and have critical roles for the heat activation of VdTRPA1.

  8. TRPA1 Channels in Drosophila and Honey Bee Ectoparasitic Mites Share Heat Sensitivity and Temperature-Related Physiological Functions

    Science.gov (United States)

    Peng, Guangda; Kashio, Makiko; Li, Tianbang; Dong, Xiaofeng; Tominaga, Makoto; Kadowaki, Tatsuhiko

    2016-01-01

    The transient receptor potential cation channel, subfamily A, member 1 (TRPA1) is conserved between many arthropods, and in some has been shown to function as a chemosensor for noxious compounds. Activation of arthropod TRPA1 channels by temperature fluctuations has been tested in only a few insect species, and all of them were shown to be activated by heat. The recent identification of chemosensitive TRPA1 channels from two honey bee ectoparasitic mite species (VdTRPA1 and TmTRPA1) have provided an opportunity to study the temperature-dependent activation and the temperature-associated physiological functions of TRPA1 channels in non-insect arthropods. We found that both mite TRPA1 channels are heat sensitive and capable of rescuing the temperature-related behavioral defects of a Drosophila melanogaster trpA1 mutant. These results suggest that heat-sensitivity of TRPA1 could be conserved between many arthropods despite its amino acid sequence diversity. Nevertheless, the ankyrin repeats (ARs) 6 and 7 are well-conserved between six heat-sensitive arthropod TRPA1 channels and have critical roles for the heat activation of VdTRPA1. PMID:27761115

  9. Functional coupling between heterologously expressed dopamine D(2) receptors and KCNQ channels

    DEFF Research Database (Denmark)

    Ljungstrom, Trine; Grunnet, Morten; Jensen, Bo Skaaning

    2003-01-01

    Activation of KCNQ potassium channels by stimulation of co-expressed dopamine D(2) receptors was studied electrophysiologically in Xenopus laevis oocytes and in mammalian cells. To address the specificity of the interaction between D(2)-like receptors and KCNQ channels, combinations of KCNQ1...... activation of the KCNQ channels was confirmed by co-expression of other neuronal K(+) channels (BK, K(V)1.1, and K(V)4.3) with the D(2L) receptor in Xenopus oocytes. None of these K(+) channels responded to stimulation of the D(2L) receptor. In the mammalian brain, dopamine D(2) receptors and KCNQ channels...... co-localise postsynaptically in several brain regions, so modulation of neuronal excitability by dopamine release could in part be mediated via an effect on KCNQ channels....

  10. Wavelet Packet Function Based RAKE/Adaptive Multichannel DFE for a WPMA System over Frequency Selective Rayleigh Fading Channels

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiaodong; BI Guangguo

    2001-01-01

    A wavelet packet function based multiple access (WPMA) system is developed in this paper to maximize capacity and improve receiver performance over frequency selective multipath fading channels. To design an efficient receiver that mitigates residual multiple access interference (MAI) and intersymbol interference, while improving received signal-to-interference and noise ratio (SINR) simultaneously on the uplink, a multichannel decision feedback equalizer (DFE) following a wavelet packet function based RAKE receiver is proposed. Simulation results show that, over GSM TU channels the developed receiver performs quite well if the power of each user is perfectly controlled or the space diversity combining (SDC) technique is applied.

  11. Distinct functional defect of three novel Brugada syndrome related cardiac sodium channel mutations

    Directory of Open Access Journals (Sweden)

    Juang Jyh-Ming

    2009-02-01

    Full Text Available Abstract The Brugada syndrome is characterized by ST segment elevation in the right precodial leads V1-V3 on surface ECG accompanied by episodes of ventricular fibrillation causing syncope or even sudden death. The molecular and cellular mechanisms that lead to Brugada syndrome are not yet completely understood. However, SCN5A is the most well known responsible gene that causes Brugada syndrome. Until now, more than a hundred mutations in SCN5A responsible for Brugada syndrome have been described. Functional studies of some of the mutations have been performed and show that a reduction of human cardiac sodium current accounts for the pathogenesis of Brugada syndrome. Here we reported three novel SCN5A mutations identified in patients with Brugada syndrome in Taiwan (p.I848fs, p.R965C, and p.1876insM. Their electrophysiological properties were altered by patch clamp analysis. The p.I848fs mutant generated no sodium current. The p.R965C and p.1876insM mutants produced channels with steady state inactivation shifted to a more negative potential (9.4 mV and 8.5 mV respectively, and slower recovery from inactivation. Besides, the steady state activation of p.1876insM was altered and was shifted to a more positive potential (7.69 mV. In conclusion, the SCN5A channel defect related to Brugada syndrome might be diverse but all resulted in a decrease of sodium current.

  12. Hypothyroid state reduces calcium channel function in 18-day pregnant rat uterus.

    Science.gov (United States)

    Parija, S C; Mishra, S K; Raviprakash, V

    2006-01-01

    Hypothyroidism significantly reduced the mean amplitude and increased the mean frequency of spontaneous rhythmic contractions in 18 day pregnant rat uterus. Nifedipine (10(-12)-10(-9) M) and diltiazem (10(-10)-10(-6) M) caused concentration related inhibition of the myogenic responses of the uterine strips obtained from both pregnant and hypothyroid state. However, nifedipine was less potent (IC50:2.11 x 10(-11) M) in pregnant hypothyroid state as compared to pregnant control (IC50: 3.1 x 10(-12) M). Similarly, diltiazem was less potent (IC50: 3.72 x 10(-9) M) in inhibiting the uterine spontaneous contractions in hypothyroid than in pregnant rat uterus (IC50:5.37 x 10(-10) M). A similar decrease in the sensitivity to nifedipine and diltiazem for reversal of K+ (100 mM)-induced tonic contraction and K(+)-stimulated 45Ca2+ influx was observed with these calcium channel antagonists in uterus obtained from hypothyroid pregnant rats compared to the controls. Nifedipine-sensitive influx of 45Ca(2+)-stimulated either by K+ (100 mM) or by Bay K8644 (1,4-dihydro-2,6-methyl-5-nitro-4-[2'-(trifluromethyl)phenyl]-3-pyridine carboxylic acid methyl ester) (10(-9) M) was significantly less in uterine strips from hypothyroid rats compared to controls. The results suggest that the inhibition of uterine rhythmic contractions may be attributable to a reduction in rat myometrial Ca2+ channel function in the hypothyroid state.

  13. Fading probability density function of free-space optical communication channels with pointing error

    Science.gov (United States)

    Zhao, Zhijun; Liao, Rui

    2011-06-01

    The turbulent atmosphere causes wavefront distortion, beam wander, and beam broadening of a laser beam. These effects result in average power loss and instantaneous power fading at the receiver aperture and thus degrade performance of a free-space optical (FSO) communication system. In addition to the atmospheric turbulence, a FSO communication system may also suffer from laser beam pointing error. The pointing error causes excessive power loss and power fading. This paper proposes and studies an analytical method for calculating the FSO channel fading probability density function (pdf) induced by both atmospheric turbulence and pointing error. This method is based on the fast-tracked laser beam fading profile and the joint effects of beam wander and pointing error. In order to evaluate the proposed analytical method, large-scale numerical wave-optics simulations are conducted. Three types of pointing errors are studied , namely, the Gaussian random pointing error, the residual tracking error, and the sinusoidal sway pointing error. The FSO system employs a collimated Gaussian laser beam propagating along a horizontal path. The propagation distances range from 0.25 miles to 2.5 miles. The refractive index structure parameter is chosen to be Cn2 = 5×10-15m-2/3 and Cn2 = 5×10-13m-2/3. The studied cases cover from weak to strong fluctuations. The fading pdf curves of channels with pointing error calculated using the analytical method match accurately the corresponding pdf curves obtained directly from large-scale wave-optics simulations. They also give accurate average bit-error-rate (BER) curves and outage probabilities. Both the lognormal and the best-fit gamma-gamma fading pdf curves deviate from those of corresponding simulation curves, and they produce overoptimistic average BER curves and outage probabilities.

  14. Functional Characterization of TRPV4 As an Osmotically Sensitive Ion Channel in Articular Chondrocytes

    Science.gov (United States)

    Phan, Mimi N.; Leddy, Holly A.; Votta, Bartholomew J.; Kumar, Sanjay; Levy, Dana S.; Lipshutz, David B.; Lee, Sukhee; Liedtke, Wolfgang; Guilak, Farshid

    2010-01-01

    Objective Transient receptor potential vanilloid 4 (TRPV4) is a Ca2+ permeable channel that can be gated by tonicity (osmolarity) and mechanical stimuli. Chondrocytes, the cells in cartilage, respond to their osmotic and mechanical environments; however, the molecular basis of this signal transduction is not fully understood. The objective of this study was to demonstrate the presence and functionality of TRPV4 in chondrocytes. Methods TRPV4 protein expression was measured by immunolabeling and Western blotting. In response to TRPV4 agonist/antagonists, osmotic stress, and interleukin-1 (IL-1), changes in Ca2+ signaling, cell volume, and prostaglandin E2 (PGE2) production were measured in porcine chondrocytes using fluorescence microscopy, light microscopy, or immunoassay, respectively. Results TRPV4 was expressed abundantly at the RNA and protein level. Exposure to 4αPDD, a TRPV4 activator, caused Ca2+ signaling in chondrocytes, which was blocked by the selective TRPV4 antagonist, GSK205. Blocking TRPV4 diminished the chondrocytes' response to hypo-osmotic stress, reducing the fraction of Ca2+ responsive cells, regulatory volume decrease (RVD), and PGE2 production. Ca2+ signaling was inhibited by removal of extracellular Ca2+ or depletion of intracellular stores. Specific activation of TRPV4 restored defective RVD caused by IL-1. Chemical disruption of the primary cilium eliminated Ca2+ signaling in response to either 4αPDD or hypo-osmotic stress. Conclusion TRPV4 is present in articular chondrocytes, and chondrocyte response to hypo-osmotic stress is mediated by this channel, which involves both an extracellular Ca2+ and intracellular Ca2+ release. TRPV4 may also be involved in modulating the production or influence of pro-inflammatory molecules in response to osmotic stress. PMID:19790068

  15. Influence of salinity on the localization of Na+/K +-ATPase, Na+/K+/2Cl- cotransporter (NKCC) and CFTR anion channel in chloride cells of the Hawaiian goby (Stenogobius hawaiiensis)

    Science.gov (United States)

    McCormick, S.D.; Sundell, K.; Bjornsson, Bjorn Thrandur; Brown, C.L.; Hiroi, J.

    2003-01-01

    Na+/K+-ATPase, Na+/K+/2Cl- cotransporter (NKCC) and cystic fibrosis transmembrane conductance regulator (CFTR) are the three major transport proteins thought to be involved in chloride secretion in teleost fish. If this is the case, the levels of these transporters should be high in chloride cells of seawater-acclimated fish. We therefore examined the influence of salinity on immunolocalization of Na +/K+-ATPase, NKCC and CFTR in the gills of the Hawaiian goby (Stenogobius hawaiiensis). Fish were acclimated to freshwater and 20??? and 30??? seawater for 10 days. Na+/K +-ATPase and NKCC were localized specifically to chloride cells and stained throughout most of the cell except for the nucleus and the most apical region, indicating a basolateral/tubular distribution. All Na+/K +-ATPase-positive chloride cells were also positive for NKCC in all salinities. Salinity caused a slight increase in chloride cell number and size and a slight decrease in staining intensity for Na+/K +-ATPase and NKCC, but the basic pattern of localization was not altered. Gill Na+/K+-ATPase activity was also not affected by salinity. CFTR was localized to the apical surface of chloride cells, and only cells staining positive for Na+/K+-ATPase were CFTR-positive. CFTR-positive cells greatly increased in number (5-fold), area stained (53%) and intensity (29%) after seawater acclimation. In freshwater, CFTR immunoreactivity was light and occurred over a broad apical surface on chloride cells, whereas in seawater there was intense immunoreactivity around the apical pit (which was often punctate in appearance) and a light subapical staining. The results indicate that Na+/K +-ATPase, NKCC and CFTR are all present in chloride cells and support current models that all three are responsible for chloride secretion by chloride cells of teleost fish.

  16. Loss-of-function mutations in sodium channel Nav1.7 cause anosmia.

    Science.gov (United States)

    Weiss, Jan; Pyrski, Martina; Jacobi, Eric; Bufe, Bernd; Willnecker, Vivienne; Schick, Bernhard; Zizzari, Philippe; Gossage, Samuel J; Greer, Charles A; Leinders-Zufall, Trese; Woods, C Geoffrey; Wood, John N; Zufall, Frank

    2011-04-14

    Loss of function of the gene SCN9A, encoding the voltage-gated sodium channel Na(v)1.7, causes a congenital inability to experience pain in humans. Here we show that Na(v)1.7 is not only necessary for pain sensation but is also an essential requirement for odour perception in both mice and humans. We examined human patients with loss-of-function mutations in SCN9A and show that they are unable to sense odours. To establish the essential role of Na(v)1.7 in odour perception, we generated conditional null mice in which Na(v)1.7 was removed from all olfactory sensory neurons. In the absence of Na(v)1.7, these neurons still produce odour-evoked action potentials but fail to initiate synaptic signalling from their axon terminals at the first synapse in the olfactory system. The mutant mice no longer display vital, odour-guided behaviours such as innate odour recognition and avoidance, short-term odour learning, and maternal pup retrieval. Our study creates a mouse model of congenital general anosmia and provides new strategies to explore the genetic basis of the human sense of smell.

  17. The Low-Threshold Calcium Channel Cav3.2 Determines Low-Threshold Mechanoreceptor Function

    Directory of Open Access Journals (Sweden)

    Amaury François

    2015-01-01

    Full Text Available The T-type calcium channel Cav3.2 emerges as a key regulator of sensory functions, but its expression pattern within primary afferent neurons and its contribution to modality-specific signaling remain obscure. Here, we elucidate this issue using a unique knockin/flox mouse strain wherein Cav3.2 is replaced by a functional Cav3.2-surface-ecliptic GFP fusion. We demonstrate that Cav3.2 is a selective marker of two major low-threshold mechanoreceptors (LTMRs, Aδ- and C-LTMRs, innervating the most abundant skin hair follicles. The presence of Cav3.2 along LTMR-fiber trajectories is consistent with critical roles at multiple sites, setting their strong excitability. Strikingly, the C-LTMR-specific knockout uncovers that Cav3.2 regulates light-touch perception and noxious mechanical cold and chemical sensations and is essential to build up that debilitates allodynic symptoms of neuropathic pain, a mechanism thought to be entirely A-LTMR specific. Collectively, our findings support a fundamental role for Cav3.2 in touch/pain pathophysiology, validating their critic pharmacological relevance to relieve mechanical and cold allodynia.

  18. P2X7 on mouse T cells: one channel, many functions

    Directory of Open Access Journals (Sweden)

    Björn eRissiek

    2015-05-01

    Full Text Available The P2X7 receptor is an adenosine triphosphate (ATP-gated cation channel that is expressed by several cells of the immune system. P2X7 is best known for its proinflammatory role in promoting inflammasome formation and release of mature IL-1β by innate immune cells. Mounting evidence indicates that P2X7 is also an important regulatory receptor of murine and human T cell functions. Murine T cells express a sensitive splice variant of P2X7 that can be activated either by non-covalent binding of ATP or, in the presence of nicotinamide adenine dinucleotide (NAD+, by its covalent ADP-ribosylation catalyzed by the ecto-ADP-ribosyltransferase ARTC2.2. Prolonged activation of P2X7 by either one of these pathways triggers the induction of T cell death. Conversely, lower concentrations of ATP can activate P2X7 to enhance T cell proliferation and production of IL-2. In this review we will highlight the molecular and cellular consequences of P2X7 activation on mouse T cells and its versatile role in T cell homeostasis and activation. Further, we will discuss important differences in the function of P2X7 on human and murine T cells.

  19. Evidence for functional interaction of plasma membrane electron transport, voltage-dependent anion channel and volume-regulated anion channel in frog aorta

    Indian Academy of Sciences (India)

    Rashmi P Rao; J Prakasa Rao

    2010-12-01

    Frog aortic tissue exhibits plasma membrane electron transport (PMET) owing to its ability to reduce ferricyanide even in the presence of mitochondrial poisons, such as cyanide and azide. Exposure to hypotonic solution (108 mOsmol/kg H2O) enhanced the reduction of ferricyanide in excised aortic tissue of frog. Increment in ferricyanide reductase activity was also brought about by the presence of homocysteine (100 M dissolved in isotonic frog Ringer solution), a redox active compound and a potent modulator of PMET. Two plasma-membrane-bound channels, the volume regulated anion channel (VRAC) and the voltage-dependent anion channel (VDAC), are involved in the response to hypotonic stress. The presence of VRAC and VDAC antagonists–tamoxifen, glibenclamide, fluoxetine and verapamil, and 4,4′-diisothiocyanatostilbene-2,2′-disulphonic acid (DIDS), respectively–inhibited this enhanced activity brought about by either hypotonic stress or homocysteine. The blockers do not affect the ferricyanide reductase activity under isotonic conditions. Taken together, these findings indicate a functional interaction of the three plasma membrane proteins, namely, ferricyanide reductase (PMET), VDAC and VRAC.

  20. Mutational consequences of aberrant ion channels in neurological disorders.

    Science.gov (United States)

    Kumar, Dhiraj; Ambasta, Rashmi K; Kumar, Pravir

    2014-11-01

    Neurological channelopathies are attributed to aberrant ion channels affecting CNS, PNS, cardiac, and skeletal muscles. To maintain the homeostasis of excitable tissues, functional ion channels are necessary to rely electrical signals, whereas any malfunctioning serves as an intrinsic factor to develop neurological channelopathies. Molecular basis of these disease is studied based on genetic and biophysical approaches, e.g., loci positional cloning, whereas pathogenesis and bio-behavioral analysis revealed the dependency on genetic mutations and inter-current triggering factors. Although electrophysiological studies revealed the possible mechanisms of diseases, analytical study of ion channels remained unsettled and therefore underlying mechanism in channelopathies is necessary for better clinical application. Herein, we demonstrated (i) structural and functional role of various ion channels (Na(+), K(+), Ca(2+),Cl(-)), (ii) pathophysiology involved in the onset of their associated channelopathies, and (iii) comparative sequence and phylogenetic analysis of diversified sodium, potassium, calcium, and chloride ion channel subtypes.

  1. Computational Methods for Structural and Functional Studies of Alzheimer's Amyloid Ion Channels.

    Science.gov (United States)

    Jang, Hyunbum; Arce, Fernando Teran; Lee, Joon; Gillman, Alan L; Ramachandran, Srinivasan; Kagan, Bruce L; Lal, Ratnesh; Nussinov, Ruth

    2016-01-01

    Aggregation can be studied by a range of methods, experimental and computational. Aggregates form in solution, across solid surfaces, and on and in the membrane, where they may assemble into unregulated leaking ion channels. Experimental probes of ion channel conformations and dynamics are challenging. Atomistic molecular dynamics (MD) simulations are capable of providing insight into structural details of amyloid ion channels in the membrane at a resolution not achievable experimentally. Since data suggest that late stage Alzheimer's disease involves formation of toxic ion channels, MD simulations have been used aiming to gain insight into the channel shapes, morphologies, pore dimensions, conformational heterogeneity, and activity. These can be exploited for drug discovery. Here we describe computational methods to model amyloid ion channels containing the β-sheet motif at atomic scale and to calculate toxic pore activity in the membrane.

  2. Characterization of the high-pressure structural transition and thermodynamic properties in sodium chloride: a computational investigation on the basis of the density functional theory.

    Science.gov (United States)

    Lu, Cheng; Kuang, Xiao-Yu; Zhu, Qin-Sheng

    2008-11-06

    Using first-principles calculations, the elastic constants, the thermodynamic properties, and the structural phase transition between the B1 (rocksalt) and the B2 (cesium chloride) phases of NaCl are investigated by means of the pseudopotential plane-waves method. The calculations are performed within the generalized gradient approximation to density functional theory with the Perdew-Burke-Ernzerhof exchange-correlation functional. On the basis of the third-order Birch-Murnaghan equation of states, the transition pressure Pt between the B1 phase and the B2 phase of NaCl is determined. The calculated values are generally speaking in good agreement with experiments and with similar theoretical calculations. From the theoretical calculations, the shear modulus, Young's modulus, rigidity modulus, and Poisson's ratio of NaCl are derived. According to the quasi-harmonic Debye model, we estimated the Debye temperature of NaCl from the average sound velocity. Moreover, the pressure derivatives of elastic constants, partial differentialC11/partial differentialP, partial differentialC12/partial differentialP, partial differentialC44/partial differentialP, partial differentialS11/partial differential P, partial differentialS12/partial differentialP, and partial differentialS44/partial differentialP, for NaCl crystal are investigated for the first time. This is a quantitative theoretical prediction of the elastic and thermodynamic properties of NaCl, and it still awaits experimental confirmation.

  3. The Structural Basis and Functional Consequences of Interactions Between Tetrodotoxin and Voltage-Gated Sodium Channels

    Directory of Open Access Journals (Sweden)

    C. Ruben

    2006-04-01

    Full Text Available Abstract: Tetrodotoxin (TTX is a highly specific blocker of voltage-gated sodium channels. The dissociation constant of block varies with different channel isoforms. Until recently, channel resistance was thought to be primarily imparted by amino acid substitutions at a single position in domain I. Recent work reveals a novel site for tetrodotoxin resistance in the P-region of domain IV.

  4. What controls the width function shape, and can it be used for channel network comparison and regionalization ?

    Science.gov (United States)

    Moussa, Roger

    2010-05-01

    The width function captures the essential features of the catchment's Geomorphologic Instantaneous Unit Hydrograph (GIUH) response. This paper aims to identify the morphometric properties which control the shape of the width function, and assess whether these properties can be used as similarity indices for catchment comparison (see Moussa R. 2008. What controls the width function shape, and can it be used for channel network comparison and regionalization?. Water Resources Research, 44, 20 p., W08456, doi:10.1029/2007WR006118). A new deterministic iterative model of the width function is proposed on the basis of a conceptualization of the topology of the channel network, and exploiting the morphometric characteristics of internal and external nodes. Tests are carried out on eleven French catchments and compared to the reference Peano catchment. Results show that the morphometric properties of three main internal and external nodes such as the drained area, the distance to the outlet and the position on the channel network, are useful descriptors for modeling the width function and for representing the scaling properties of a channel network. While the GIUHs based on Horton-Strahler ratios are strongly related to the method used to extract the channel network from the DEM, the new indices defined herein are independent of the method used. They are sufficient descriptors to reproduce the main shape of the width function, the peak, the time to peak, and the main properties such as non-negativity, non-stationarity and power law decay of the spectrum. They may be used to establish catchment typology, to compare catchments, and to classify the width function peaks for catchment regionalization. Despite its simple conceptual structure, the width function model developed in this paper seems to capture the main morphometric factors which control the width function shape. The morphometric properties of both internal and external nodes of the channel network, are

  5. EFFECT OF VIRGIN OLIVE OIL (OLEA EUROPEA. L ON KIDNEY FUNCTION IMPAIRMENT AND OXIDATIVE STRESS INDUCED BY MERCURIC CHLORIDE IN RATS

    Directory of Open Access Journals (Sweden)

    Youcef Necib

    2013-01-01

    Full Text Available The study was designed to investigate the possible protective role of virgin olive oil in mercuric chloride induced renal stress, by using biochemical approaches. The effects of virgin olive oil on mercuric chloride induced oxidative and renal stress were evaluated by serum creatinine, urea and uric acid levels, kidney tissue lipid peroxidation, GSH levels, GSH-Px and GST activities. Administration of mercuric chloride induced significant increase in serum: interleukine1, interleukine6 and Tumor Necrosis Factor α (TNFα levels, creatinine, urea and uric acid concentration showing renal stress. Mercuric chloride also induced oxidative stress, as indicate by decreased kidney tissue of GSH level, GSH-Px and GST activities along with increase the level of lipid peroxidation. Furthermore, treatment with mercuric chloride caused a marked elevation of kidney weight and decreased body weight. Virgin olive oil treatment markedly reduced elevated serum: IL1, IL6, TNFα, creatinine, urea and uric acid levels and conteracted the deterious effects of mercuric chloride on oxidative stress markers changes caused by HgCl2 in kidney. Our results indicate that virgin olive oil could have a beneficial role against mercuric chloride induced oxidative and renal stress in rat.

  6. Functional and pharmacological consequences of the distribution of voltage-gated calcium channels in the renal blood vessels

    DEFF Research Database (Denmark)

    Hansen, P B L

    2013-01-01

    -type is usually associated with vascular contractility. However, the L-, T- and P-/Q-types of calcium channels are present in the renal vasculature and are differentially involved in controlling vascular contractility, thereby contributing to regulation of kidney function and blood pressure. In the preglomerular...

  7. The foot structure from the type 1 ryanodine receptor is required for functional coupling to store-operated channels.

    Science.gov (United States)

    Sampieri, Alicia; Diaz-Muñoz, Mauricio; Antaramian, Anaid; Vaca, Luis

    2005-07-01

    In the present study we have explored structural determinants of the functional interaction between skeletal muscle ryanodine receptor (RyR1) and transient receptor potential channel 1 (TRPC1) channels expressed in Chinese hamster ovary cells. We have illustrated a functional interaction between TRPC1 channels and RyR1 for the regulation of store-operated calcium entry (SOCE) initiated after releasing calcium from a caffeine-sensitive intracellular calcium pool. RNA interference experiments directed to reduce the amount of TRPC1 protein indicate that RyR1 associates to at least two different types of store-operated channels (SOCs), one dependent and one independent of TRPC1. In contrast, bradykinin-induced SOCE is completely dependent on the presence of TRPC1 protein, as we have previously illustrated. Removing the foot structure from RyR1 results in normal caffeine-induced release of calcium from internal stores but abolishes the activation of SOCE, indicating that this structure is require for functional coupling to SOCs. The footless RyR1 protein shows a different cellular localization when compared with wild type RyR1. The later protein shows a higher percentage of colocalization with FM-464, a marker of plasma membrane. The implications of the foot structure for the functional and physical coupling to TRPC and SOCs is discussed.

  8. 硫化氢激活H9c2心肌细胞容积调节性氯通道%Hydrogen Sulfide Activated Volume-Regulated Chloride Channel in H9c2 Cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    杨春涛; 左婉红; 赵斌; 赵磊; 蔡典其; 陈丽新; 王立伟; 冯鉴强; 廖新学

    2012-01-01

    目的 观察硫化氨(H2S)对H9c2心肌细胞容积调节性氯通道(VRCC)的影响.方法 培养大鼠H9c2 心肌细胞,用H2S供体硫氢化钠(NaHS)处理H9c2心肌细胞.分别应用Western blot和全细胞膜片钳技术分析蛋白的表达和VRCC的开放和关闭.结果 等张灌流液处理的H9c2心肌细胞可记录到微弱的背景氯电流.低张灌流液处理可明显增加H9c2心肌细胞的氯电流(P<0.0l),高张灌流液处理则可减弱这种增强作用(P<0.05).Western blot检测显示H9c2心肌细胞上存在ClC-3氯通道蛋白的表达.用400 μmol/L NaHS处理0~30 min可激活H9c2心肌细胞上的氯通道,高张灌流液处理抑制NaHS处理诱导的氯通道激活.400μmol/L NaHS处理0~30min对H9c2心肌细胞ClC-3氯通道蛋白的表达无明显影响(P>0.05).结论 H9c2心肌细胞存在VRCC和ClC-3氯通道蛋白的表达,H2S处理可激活VRCC而不影响ClC-3氯通道蛋白的表达.%Aim To investigate the effect of hydrogen sulfide (H2S) on volume-regulated chloride channel (VRCC). Methods H9c2 cardiomyoeytes were cultured and treated with sodium hydrosulfide (NaHS, a H2S donor). Expression of C1C-3 protein and VRCC chloride current (/c-VRCc) were measured by Western blot assay and whole cell patch clamp, respectively. Results When H9c2 cardiomyocytes were placed in the isotonic solution, la was slightly activated. Hypotonicity obviously enhanced la(P 0. 05). Conclusions Both VRCC and C1C-3 protein were expressed in H9c2 cardiomyocytes. H2S activated VRCC in a ClC-3-independent manner.

  9. Molecular and functional characterization of Kv7 K+ channel in murine gastrointestinal smooth muscles

    DEFF Research Database (Denmark)

    Jepps, Thomas Andrew; Greenwood, Iain A; Moffatt, James D

    2009-01-01

    Members of the K(v)7 voltage-gated K(+) channel family are important determinants of cardiac and neuronal membrane excitability. Recently, we and others have shown that K(v)7 channels are also crucial regulators of smooth muscle activity. The aim of the present study was to assess the K(v)7 expre...

  10. Probing the structure-function relationship of alpha-latrotoxin-formed channels with antibodies and pronase.

    Science.gov (United States)

    Chanturiya, A N; Nikolaenko, A N; Shatursky OYa; Lishko, V K

    1996-10-01

    The major toxic component of black widow spider (Latrodectus mactans tredecimguttatus) venom, alpha-latrotoxin, is known to form ionic channels in different membranes. In order to probe the extramembrane domains of alpha-latrotoxin molecule, alpha-latrotoxin channels in planar lipid membrane were treated with antibodies to latrotoxin or with pronase added to different sides of the membrane. It was found that antibody addition to the same side as the toxin (cis) decreased channel conductance only at positive potentials across the membrane. In contrast, trans side addition of antibodies changed the channel conductance at both positive and negative potentials: at positive potential conductance first slightly increased then decreased by more then 50%; at negative potential it decreased much more quickly, to only about 20% of the initial value. No dependence on membrane potential was found for pronase treatment of incorporated channels. For both cis and trans application of pronase, channel selectivity for Ca2+, Mg2+, Ba2+ and K+, Na+, Li+ ions did not change significantly but Cd2+ block was decreased. Trans pronase treatment also resulted in some rectification of I/V curves and an increase in channel conductance. We interpret these findings as evidence that alpha-latrotoxin channel has protruding parts on both sides of the membrane and that its conformation in the membrane depends on membrane potential.

  11. Extracellular pH dynamically controls cell surface delivery of functional TRPV5 channels.

    NARCIS (Netherlands)

    Lambers, T.T.; Oancea, E.; Groot, T. de; Topala, C.N.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2007-01-01

    Extracellular pH has long been known to affect the rate and magnitude of ion transport processes among others via regulation of ion channel activity. The Ca(2+)-selective transient receptor potential vanilloid 5 (TRPV5) channel constitutes the apical entry gate in Ca(2+)-transporting cells, contribu

  12. The effects of Tmc1 Beethoven mutation on mechanotransducer channel function in cochlear hair cells.

    Science.gov (United States)

    Beurg, Maryline; Goldring, Adam C; Fettiplace, Robert

    2015-09-01

    Sound stimuli are converted into electrical signals via gating of mechano-electrical transducer (MT) channels in the hair cell stereociliary bundle. The molecular composition of the MT channel is still not fully established, although transmembrane channel-like protein isoform 1 (TMC1) may be one component. We found that in outer hair cells of Beethoven mice containing a M412K point mutation in TMC1, MT channels had a similar unitary conductance to that of wild-type channels but a reduced selectivity for Ca(2+). The Ca(2+)-dependent adaptation that adjusts the operating range of the channel was also impaired in Beethoven mutants, with reduced shifts in the relationship between MT current and hair bundle displacement for adapting steps or after lowering extracellular Ca(2+); these effects may be attributed to the channel's reduced Ca(2+) permeability. Moreover, the density of stereociliary CaATPase pumps for Ca(2+) extrusion was decreased in the mutant. The results suggest that a major component of channel adaptation is regulated by changes in intracellular Ca(2+). Consistent with this idea, the adaptive shift in the current-displacement relationship when hair bundles were bathed in endolymph-like Ca(2+) saline was usually abolished by raising the intracellular Ca(2+) concentration.

  13. Characterizations of a loss-of-function mutation in the Kir3.4 channel subunit

    DEFF Research Database (Denmark)

    Calloe, Kirstine; Ravn, Lasse Steen; Schmitt, Nicole;

    2007-01-01

    and two-electrode voltage-clamp revealed that Kir3.4-G247R basal current was reduced compared to wild-type Kir3.4 and co-expression with the muscarinic acetylcholine receptor type 2 showed that also the acetylcholine induced current was severely reduced in Kir3.4-G247R, indicating that the mutation...... interfered with activation by the stimulatory G betagamma-subunits. Co-expression of Kir3.4-G247R with wild-type Kir3.4 or Kir3.1 had a compensating effect on both basal current levels and the response to muscarinic stimulation suggesting the function of Kir3.4-G247R is compensated in vivo. This may explain......Kir3.4 and Kir3.1 potassium channel subunits mediate the acetylcholine induced inwardly rectifying current I(KACh) in the heart. We found a glycine to arginine substitution in codon 247 of Kir3.4 in a patient with a single episode of atrial fibrillation (AF). Expression in Xenopus laevis oocytes...

  14. Machinery Fault Diagnosis Using Two-Channel Analysis Method Based on Fictitious System Frequency Response Function

    Directory of Open Access Journals (Sweden)

    Kihong Shin

    2015-01-01

    Full Text Available Most existing techniques for machinery health monitoring that utilize measured vibration signals usually require measurement points to be as close as possible to the expected fault components of interest. This is particularly important for implementing condition-based maintenance since the incipient fault signal power may be too small to be detected if a sensor is located further away from the fault source. However, a measurement sensor is often not attached to the ideal point due to geometric or environmental restrictions. In such a case, many of the conventional diagnostic techniques may not be successfully applicable. In this paper, a two-channel analysis method is proposed to overcome such difficulty. It uses two vibration signals simultaneously measured at arbitrary points in a machine. The proposed method is described theoretically by introducing a fictitious system frequency response function. It is then verified experimentally for bearing fault detection. The results show that the suggested method may be a good alternative when ideal points for measurement sensors are not readily available.

  15. On the ecohydrologic function and disturbance effects of ephemeral desert stream channels

    Science.gov (United States)

    Bedford, David; Schwinning, Susan; Newlander, April; Miller, David; Sandquist, Darren

    2010-05-01

    Ephemeral stream channels are widespread features throughout desert landscapes, particularly on alluvial fans. These channels range in width from a few tens of centimeters to many meters. Runoff in these channels can redistribute water from upper portions of the landscape in response to rare high-intensity or long duration rainstorms. Visual observations suggest that shrubland vegetation is often clustered at higher cover alongside these channels. We are using transect studies, mapping, monitoring and manipulation experiments to investigate the hydrologic relations of these features to vegetation in the eastern Mojave Desert of the USA. We use a piedmont that is perpendicularly transected by a ~100 year old railroad that alters natural flow by diverting it through staggered culverts to areas below the railroad. This creates an opportunity to study: 1) relatively undisturbed areas above the railroad, 2) areas below the railroad that receive enhanced flow where water is diverted through culverts (enhanced) and, 3) areas below the railroad where water flow from upslope has been blocked (deprived). In all areas we found that vegetation cover and density is higher alongside stream channels and decreases with distance from the channels. In all but the deprived areas, vegetation is nearly absent in the stream channels. Relative to the upper undisturbed areas, vegetation cover is higher in the enhanced areas, and lower in the deprived areas; however, when diversion is not considered cover above and below the road is equal overall. Furthermore, species-specific differences were present. The drought deciduous sub-shrub Ambrosia dumosa shows increased cover in deprived areas and in all areas peaked closer to the channel margin than the evergreen drought-tolerant shrub Larrea tridentata, we believe due to differences in root morphology. In a simulated channel runoff event, we found that vegetation within 3 meters of the stream channel physiologically responded (elevated water

  16. Functional characterization of Kv channel beta-subunits from rat brain.

    Science.gov (United States)

    Heinemann, S H; Rettig, J; Graack, H R; Pongs, O

    1996-06-15

    1. The potassium channel beta-subunit from rat brain, Kv beta 1.1, is known to induce inactivation of the delayed rectifier channel Kv1.1 and Kv1.4 delta 1-110. 2. Kv beta 1.1 was co-expressed in Xenopus oocytes with various other potassium channel alpha-subunits. Kv beta 1.1 induced inactivation in members of the Kv1 subfamily with the exception of Kv 1.6; no inactivation of Kv 2.1, Kv 3.4 delta 2-28 and Kv4.1 channels could be observed. 3. The second member of the beta-subunit subfamily, Kv beta 2, had a shorter N-terminal end, accelerated inactivation of the A-type channel Kv 1.4, but did not induce inactivation when co-expressed with delayed rectifiers of the Kv1 channel family. 4. To test whether this subunit co-assembles with Kv alpha-subunits, the N-terminal inactivating domains of Kv beta 1.1 and Kv beta 3 were spliced to the N-terminus of Kv beta 2. The chimaeric beta-subunits (beta 1/ beta 2 and beta 3/ beta 2) induced fast inactivation of several Kv1 channels, indicating that Kv beta 2 associates with these alpha-subunits. No inactivation was induced in Kv 1.3, Kv 1.6, Kv2.1 and Kv3.4 delta 2-28 channels. 5. Kv beta 2 caused a voltage shift in the activation threshold of Kv1.5 of about -10 mV, indicating a putative physiological role. Kv beta 2 had a smaller effect on Kv 1.1 channels. 6. Kv beta 2 accelerated the activation time course of Kv1.5 but had no marked effect on channel deactivation.

  17. The K+ channel opener 1-EBIO potentiates residual function of mutant CFTR in rectal biopsies from cystic fibrosis patients.

    Directory of Open Access Journals (Sweden)

    Eva K Roth

    Full Text Available BACKGROUND: The identification of strategies to improve mutant CFTR function remains a key priority in the development of new treatments for cystic fibrosis (CF. Previous studies demonstrated that the K⁺ channel opener 1-ethyl-2-benzimidazolone (1-EBIO potentiates CFTR-mediated Cl⁻ secretion in cultured cells and mouse colon. However, the effects of 1-EBIO on wild-type and mutant CFTR function in native human colonic tissues remain unknown. METHODS: We studied the effects of 1-EBIO on CFTR-mediated Cl⁻ secretion in rectal biopsies from 47 CF patients carrying a wide spectrum of CFTR mutations and 57 age-matched controls. Rectal tissues were mounted in perfused micro-Ussing chambers and the effects of 1-EBIO were compared in control tissues, CF tissues expressing residual CFTR function and CF tissues with no detectable Cl⁻ secretion. RESULTS: Studies in control tissues demonstrate that 1-EBIO activated CFTR-mediated Cl⁻ secretion in the absence of cAMP-mediated stimulation and potentiated cAMP-induced Cl⁻ secretion by 39.2±6.7% (P<0.001 via activation of basolateral Ca²⁺-activated and clotrimazole-sensitive KCNN4 K⁺ channels. In CF specimens, 1-EBIO potentiated cAMP-induced Cl⁻ secretion in tissues with residual CFTR function by 44.4±11.5% (P<0.001, but had no effect on tissues lacking CFTR-mediated Cl⁻ conductance. CONCLUSIONS: We conclude that 1-EBIO potentiates Cl⁻secretion in native CF tissues expressing CFTR mutants with residual Cl⁻ channel function by activation of basolateral KCNN4 K⁺ channels that increase the driving force for luminal Cl⁻ exit. This mechanism may augment effects of CFTR correctors and potentiators that increase the number and/or activity of mutant CFTR channels at the cell surface and suggests KCNN4 as a therapeutic target for CF.

  18. Channel-mediated lactic acid transport: a novel function for aquaglyceroporins in bacteria.

    Science.gov (United States)

    Bienert, Gerd P; Desguin, Benoît; Chaumont, François; Hols, Pascal

    2013-09-15

    MIPs (major intrinsic proteins), also known as aquaporins, are membrane proteins that channel water and/or uncharged solutes across membranes in all kingdoms of life. Considering the enormous number of different bacteria on earth, functional information on bacterial MIPs is scarce. In the present study, six MIPs [glpF1 (glycerol facilitator 1)-glpF6] were identified in the genome of the Gram-positive lactic acid bacterium Lactobacillus plantarum. Heterologous expression in Xenopus laevis oocytes revealed that GlpF2, GlpF3 and GlpF4 each facilitated the transmembrane diffusion of water, dihydroxyacetone and glycerol. As several lactic acid bacteria have GlpFs in their lactate racemization operon (GlpF1/F4 phylogenetic group), their ability to transport this organic acid was tested. Both GlpF1 and GlpF4 facilitated the diffusion of D/L-lactic acid. Deletion of glpF1 and/or glpF4 in Lb. plantarum showed that both genes were involved in the racemization of lactic acid and, in addition, the double glpF1 glpF4 mutant showed a growth delay under conditions of mild lactic acid stress. This provides further evidence that GlpFs contribute to lactic acid metabolism in this species. This lactic acid transport capacity was shown to be conserved in the GlpF1/F4 group of Lactobacillales. In conclusion, we have functionally analysed the largest set of bacterial MIPs and demonstrated that the lactic acid membrane permeability of bacteria can be regulated by aquaglyceroporins.

  19. Enhanced Temporal Resolution with Ion Channel-Functionalized Sensors Using a Conductance-Based Measurement Protocol.

    Science.gov (United States)

    Agasid, Mark T; Comi, Troy J; Saavedra, S Scott; Aspinwall, Craig A

    2017-01-17

    The binding of a target analyte to an ion channel (IC), which is readily detected electrochemically in a label-free manner with single-molecule selectivity and specificity, has generated widespread interest in using natural and engineered ICs as transducers in biosensing platforms. To date, the majority of developments in IC-functionalized sensing have focused on IC selectivity or sensitivity or development of suitable membrane environments and aperture geometries. Comparatively little work has addressed analytical performance criteria, particularly criteria required for temporal measurements of dynamic processes. We report a measurement protocol suitable for rapid, time-resolved monitoring (≤30 ms) of IC-modulated membrane conductance. Key features of this protocol include the reduction of membrane area and the use of small voltage steps (10 mV) and short duration voltage pulses (10 ms), which have the net effect of reducing the capacitive charging and decreasing the time required to achieve steady state currents. Application of a conductance protocol employing three sequential, 10 ms voltage steps (-10 mV, -20 mV, -30 mV) in an alternating, pyramid-like arrangement enabled sampling of membrane conductance every 30 ms. Using this protocol, dynamic IC measurements on black lipid membranes (BLMs) functionalized with gramicidin A were conducted using a fast perfusion system. BLM conductance decreased by 76 ± 7.5% within 30 ms of switching from solutions containing 0 to 1 M Ca(2+), which demonstrates the feasibility of using this approach to monitor rapid, dynamic chemical processes. Rapid conductance measurements will be broadly applicable to IC-based sensors that undergo analyte-specific gating.

  20. Fluorescence Spectrometric Determination of Drugs Containing -Methylene Sulfone/Sulfonamide Functional Groups Using N1-Methylnicotinamide Chloride as a Fluorogenic Agent

    Directory of Open Access Journals (Sweden)

    Khaled M. Elokely

    2011-01-01

    Full Text Available A simple spectrofluorometric method has been developed, adapted, and validated for the quantitative estimation of drugs containing -methylene sulfone/sulfonamide functional groups using N1-methylnicotinamide chloride (NMNCl as fluorogenic agent. The proposed method has been applied successfully to the determination of methyl sulfonyl methane (MSM (1, tinidazole (2, rofecoxib (3, and nimesulide (4 in pure forms, laboratory-prepared mixtures, pharmaceutical dosage forms, spiked human plasma samples, and in volunteer's blood. The method showed linearity over concentration ranging from 1 to 150 g/mL, 10 to 1000 ng/mL, 1 to 1800 ng/mL, and 30 to 2100 ng/mL for standard solutions of 1, 2, 3, and 4, respectively, and over concentration ranging from 5 to 150 g/mL, 10 to 1000 ng/mL, 10 to 1700 ng/mL, and 30 to 2350 ng/mL in spiked human plasma samples of 1, 2, 3, and 4, respectively. The method showed good accuracy, specificity, and precision in both laboratory-prepared mixtures and in spiked human plasma samples. The proposed method is simple, does not need sophisticated instruments, and is suitable for quality control application, bioavailability, and bioequivalency studies. Besides, its detection limits are comparable to other sophisticated chromatographic methods.

  1. A tale of switched functions: from cyclooxygenase inhibition to M-channel modulation in new diphenylamine derivatives.

    Directory of Open Access Journals (Sweden)

    Asher Peretz

    Full Text Available Cyclooxygenase (COX enzymes are molecular targets of nonsteroidal anti-inflammatory drugs (NSAIDs, the most used medication worldwide. However, the COX enzymes are not the sole molecular targets of NSAIDs. Recently, we showed that two NSAIDs, diclofenac and meclofenamate, also act as openers of Kv7.2/3 K(+ channels underlying the neuronal M-current. Here we designed new derivatives of diphenylamine carboxylate to dissociate the M-channel opener property from COX inhibition. The carboxylate moiety was derivatized into amides or esters and linked to various alkyl and ether chains. Powerful M-channel openers were generated, provided that the diphenylamine moiety and a terminal hydroxyl group are preserved. In transfected CHO cells, they activated recombinant Kv7.2/3 K(+ channels, causing a hyperpolarizing shift of current activation as measured by whole-cell patch-clamp recording. In sensory dorsal root ganglion and hippocampal neurons, the openers hyperpolarized the membrane potential and robustly depressed evoked spike discharges. They also decreased hippocampal glutamate and GABA release by reducing the frequency of spontaneous excitatory and inhibitory post-synaptic currents. In vivo, the openers exhibited anti-convulsant activity, as measured in mice by the maximal electroshock seizure model. Conversion of the carboxylate function into amide abolished COX inhibition but preserved M-channel modulation. Remarkably, the very same template let us generating potent M-channel blockers. Our results reveal a new and crucial determinant of NSAID-mediated COX inhibition. They also provide a structural framework for designing novel M-channel modulators, including openers and blockers.

  2. The secretory KCa1.1 channel localises to crypts of distal mouse colon: functional and molecular evidence.

    Science.gov (United States)

    Sørensen, Mads V; Strandsby, Anne B; Larsen, Casper K; Praetorius, Helle A; Leipziger, Jens

    2011-11-01

    The colonic epithelium absorbs and secretes electrolytes and water. Ion and water absorption occurs primarily in surface cells, whereas crypt cells perform secretion. Ion transport in distal colon is regulated by aldosterone, which stimulates both Na(+) absorption and K(+) secretion. The electrogenic Na(+) absorption is mediated by epithelial Na(+) channel (ENaC) in surface cells. Previously, we identified the large conductance Ca(2+)-activated K(+) channel, K(Ca)1.1 or big potassium (BK) channel, as the only relevant K(+) secretory pathway in mouse distal colon. The exact localisation of K(Ca)1.1 channels along the crypt axis is, however, still controversial. The aim of this project was to further define the localisation of the K(Ca)1.1 channel in mouse distal colonic epithelium. Through quantification of mRNA extracted from micro-dissected surface and crypt cells, we confirmed that Na(+)/K(+)/2Cl(-) (NKCC1) is expressed primarily in the crypts and γ-ENaC primarily in the surface cells. The K(Ca)1.1 α-subunit mRNA was like NKCC1, mainly expressed in the crypts. The crypt to surface expression pattern of the channels and transporters was not altered when plasma aldosterone was elevated. The mRNA levels for NKCC1, γ-ENaC and K(Ca)1.1 α-subunit were, however, under these circumstances substantially augmented (K(Ca)1.1 α-subunit, twofold; NKCC1, twofold and ENaC, tenfold). Functionally, we show that ENaC-mediated Na(+) absorption and BK channel-mediated K(+) secretion are two independent processes. These findings show that K(Ca)1.1-mediated K(+) secretion mainly occurs in the crypts of the murine distal colon. This is in agreement with the general model of ion secretion being preferentially located to the crypt and not surface enterocytes.

  3. Relevance of quantum mechanics on some aspects of ion channel function.

    Science.gov (United States)

    Roy, Sisir; Llinás, Rodolfo

    2009-06-01

    Mathematical modeling of ionic diffusion along K ion channels indicates that such diffusion is oscillatory, at the weak non-Markovian limit. This finding leads us to derive a Schrödinger-Langevin equation for this kind of system within the framework of stochastic quantization. The Planck's constant is shown to be relevant to the Lagrangian action at the level of a single ion channel. This sheds new light on the issue of applicability of quantum formalism to ion channel dynamics and to the physical constraints of the selectivity filter.

  4. Dystrophin is required for the normal function of the cardio-protective K(ATP channel in cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Laura Graciotti

    Full Text Available Duchenne and Becker muscular dystrophy patients often develop a cardiomyopathy for which the pathogenesis is still unknown. We have employed the murine animal model of Duchenne muscular dystrophy (mdx, which develops a cardiomyopathy that includes some characteristics of the human disease, to study the molecular basis of this pathology. Here we show that the mdx mouse heart has defects consistent with alteration in compounds that regulate energy homeostasis including a marked decrease in creatine-phosphate (PC. In addition, the mdx heart is more susceptible to anoxia than controls. Since the cardio-protective ATP sensitive potassium channel (K(ATP complex and PC have been shown to interact we investigated whether deficits in PC levels correlate with other molecular events including K(ATP ion channel complex presence, its functionality and interaction with dystrophin. We found that this channel complex is present in the dystrophic cardiac cell membrane but its ability to sense a drop in the intracellular ATP concentration and consequently open is compromised by the absence of dystrophin. We further demonstrate that the creatine kinase muscle isoform (CKm is displaced from the plasma membrane of the mdx cardiac cells. Considering that CKm is a determinant of K(ATP channel complex function we hypothesize that dystrophin acts as a scaffolding protein organizing the K(ATP channel complex and the enzymes necessary for its correct functioning. Therefore, the lack of proper functioning of the cardio-protective K(ATP system in the mdx cardiomyocytes may be part of the mechanism contributing to development of cardiac disease in dystrophic patients.

  5. Voltage-Gated Channels as Causative Agents for Epilepsies

    Directory of Open Access Journals (Sweden)

    Mutasem Abuhamed

    2008-01-01

    Full Text Available Problem statement: Epilepsy is a common neurological disorder that afflicts 1-2% of the general population worldwide. It encompasses a variety of disorders with seizures. Approach: Idiopathic epilepsies were defined as a heterogeneous group of seizure disorders that show no underlying cause .Voltage-gated ion channels defect were recognized etiology of epilepsy in the central nervous system. The aim of this article was to provide an update on voltage-gated channels and their mutation as causative agents for epilepsies. We described the structures of the voltage-gated channels, discuss their current genetic studies, and then review the effects of voltage-gated channels as causative agents for epilepsies. Results: Channels control the flow of ions in and out of the cell causing depolarization and hyper polarization of the cell. Voltage-gated channels were classified into four types: Sodium, potassium calcium ands chloride. Voltage-gated channels were macromolecular protein complexes within the lipid membrane. They were divided into subunits. Each subunit had a specific function and was encoded by more than one gen. Conclusion: Current genetic studies of idiopathic epilepsies show the importance of genetic influence on Voltage-gated channels. Different genes may regulate a function in a channel; the channel defect was directly responsible for neuronal hyper excitability and seizures.

  6. Prenatal susceptibility to carcinogenesis by xenobiotic substances including vinyl chloride.

    OpenAIRE

    Rice, J M

    1981-01-01

    The carcinogenicity of vinyl chloride for experimental animals when administered transplacentally is reviewed in comparison with known transplacental carcinogens, including those that, like vinyl chloride, are dependent on enzyme-mediated metabolic conversion to a reactive intermediate in maternal or fetal tissues. Vinyl chloride is converted by mixed-function oxidases to the reactive metabolite chlorooxirane, the carcinogenicity of which is also reviewed. Vinyl chloride is unequivocally a tr...

  7. Mice with deficient BK channel function show impaired prepulse inhibition and spatial learning, but normal working and spatial reference memory.

    Directory of Open Access Journals (Sweden)

    Marei Typlt

    Full Text Available Genetic variations in the large-conductance, voltage- and calcium activated potassium channels (BK channels have been recently implicated in mental retardation, autism and schizophrenia which all come along with severe cognitive impairments. In the present study we investigate the effects of functional BK channel deletion on cognition using a genetic mouse model with a knock-out of the gene for the pore forming α-subunit of the channel. We tested the F1 generation of a hybrid SV129/C57BL6 mouse line in which the slo1 gene was deleted in both parent strains. We first evaluated hearing and motor function to establish the suitability of this model for cognitive testing. Auditory brain stem responses to click stimuli showed no threshold differences between knockout mice and their wild-type littermates. Despite of muscular tremor, reduced grip force, and impaired gait, knockout mice exhibited normal locomotion. These findings allowed for testing of sensorimotor gating using the acoustic startle reflex, as well as of working memory, spatial learning and memory in the Y-maze and the Morris water maze, respectively. Prepulse inhibition on the first day of testing was normal, but the knockout mice did not improve over the days of testing as their wild-type littermates did. Spontaneous alternation in the y-maze was normal as well, suggesting that the BK channel knock-out does not impair working memory. In the Morris water maze knock-out mice showed significantly slower acquisition of the task, but normal memory once the task was learned. Thus, we propose a crucial role of the BK channels in learning, but not in memory storage or recollection.

  8. Effect of Functional Nano Channel Structures Different Widths on Injection Molding and Compression Molding Replication Capabilities

    DEFF Research Database (Denmark)

    Calaon, M.; Tosello, G.; Garnaes, J.

    The present study investigates the capabilities of the two employed processes, injection molding (IM) and injection compression molding (ICM) on replicating different channel cross sections. Statistical design of experiment was adopted to optimize replication quality of produced polymer parts wit...

  9. Surface adsorption in strontium chloride ammines

    DEFF Research Database (Denmark)

    Ammitzbøll, Andreas L.; Lysgaard, Steen; Klukowska, Agata

    2013-01-01

    An adsorbed state and its implications on the ab- and desorption kinetics of ammonia in strontium chloride ammine is identified using a combination of ammonia absorption measurements, thermogravimetric analysis, and density functional theory calculations. During thermogravimetric analysis, ammoni...

  10. Effects of lithium chloride on outward potassium currents in acutely isolated hippocampal CA1 pyramidal neurons

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chaofeng; DU Huizhi; YANG Pin

    2006-01-01

    Although lithium possesses neuroprotective functions, the molecular mechanism underlying its actions has not been fully elucidated. In the present paper, the effects of lithium chloride on voltage-dependent potassium currents in the CA1 pyramidal neurons acutely isolated from rat hippocampus were studied using the whole-cell patch-clamp technique. Depolarizing test pulses activated two components of outward potassium currents: a rapidly activating and inactivating component, IA and a delayed component, IK. Results showed that lithium chloride increased the amplitude of IA in a concentration-dependent manner. Half enhancement concentration (EC50) was 22.80±5.45 μmol·L-1. Lithium chloride of 25 μmol·L-1 shifted the steady-state activation curve and inactivation curve of IA to more negative potentials, but mainly affected the activation kinetics. The amplitude and the activation processes of IK were not affected by lithium chloride. The effects of lithium chloride on potassium channel appear to possess neuroprotective properties by Ca2+-lowing effects modulate neuronal excitability by activating IA in rat hippocampal neurons.

  11. Chloride equilibrium potential in salamander cones

    Directory of Open Access Journals (Sweden)

    Bryson Eric J

    2004-12-01

    Full Text Available Abstract Background GABAergic inhibition and effects of intracellular chloride ions on calcium channel activity have been proposed to regulate neurotransmission from photoreceptors. To assess the impact of these and other chloride-dependent mechanisms on release from cones, the chloride equilibrium potential (ECl was determined in red-sensitive, large single cones from the tiger salamander retinal slice. Results Whole cell recordings were done using gramicidin perforated patch techniques to maintain endogenous Cl- levels. Membrane potentials were corrected for liquid junction potentials. Cone resting potentials were found to average -46 mV. To measure ECl, we applied long depolarizing steps to activate the calcium-activated chloride current (ICl(Ca and then determined the reversal potential for the current component that was inhibited by the Cl- channel blocker, niflumic acid. With this method, ECl was found to average -46 mV. In a complementary approach, we used a Cl-sensitive dye, MEQ, to measure the Cl- flux produced by depolarization with elevated concentrations of K+. The membrane potentials produced by the various high K+ solutions were measured in separate current clamp experiments. Consistent with electrophysiological experiments, MEQ fluorescence measurements indicated that ECl was below -36 mV. Conclusions The results of this study indicate that ECl is close to the dark resting potential. This will minimize the impact of chloride-dependent presynaptic mechanisms in cone terminals involving GABAa receptors, glutamate transporters and ICl(Ca.

  12. Normal axonal ion channel function in large peripheral nerve fibers following chronic ciguatera sensitization.

    Science.gov (United States)

    Vucic, Steve; Kiernan, Matthew C

    2008-03-01

    Although the acute clinical effects of ciguatera poisoning, due to ingestion of ciguatoxin, are mediated by activation of transient Na+ channels, the mechanisms underlying ciguatera sensitization remain undefined. Axonal excitability studies were performed by stimulating the median motor and sensory nerves in two patients with ciguatera sensitization. Excitability parameters were all within normal limits, thereby arguing against dysfunction of axonal membrane ion channels in large-diameter fibers in ciguatera sensitization.

  13. Potential L-Type Voltage-Operated Calcium Channel Blocking Effect of Drotaverine on Functional Models.

    Science.gov (United States)

    Patai, Zoltán; Guttman, András; Mikus, Endre G

    2016-12-01

    Drotaverine is considered an inhibitor of cyclic-3',5'-nucleotide-phophodiesterase (PDE) enzymes; however, published receptor binding data also support the potential L-type voltage- operated calcium channel (L-VOCC) blocking effect of drotaverine. Hence, in this work, we focus on the potential L-VOCC blocking effect of drotaverine by using L-VOCC-associated functional in vitro models. Accordingly, drotaverine and reference agents were tested on KCl-induced guinea pig tracheal contraction. Drotaverine, like the L-VOCC blockers nifedipine or diltiazem, inhibited the KCl-induced inward Ca(2+)- induced contraction in a concentration- dependent fashion. The PDE inhibitor theophylline had no effect on the KCl-evoked contractions, indicating its lack of inhibition on inward Ca(2+) flow. Drotaverine was also tested on the L-VOCC-mediated resting Ca(2+) refill model. In this model, the extracellular Ca(2+) enters the cells to replenish the emptied intracellular Ca(2+) stores. Drotaverine and L-VOCC blocker reference molecules inhibited Ca(2+) replenishment of Ca(2+)-depleted preparations detected by agonist-induced contractions in post-Ca(2+) replenishment Ca(2+)-free medium. Theophylline did not modify the Ca(2+) store replenishment after contraction. It seems that drotaverine, but not theophylline, inhibits inward Ca(2+) flux. The addition of CaCl2 to Ca(2+)-free medium containing the agonist induced inward Ca(2+) flow and subsequent contraction of Ca(2+)-depleted tracheal preparations. Drotaverine, similar to the L-VOCC blockers, inhibited inward Ca(2+) flow and blunted the slope of CaCl2-induced contraction in agonist containing Ca(2+)-free medium with Ca(2+)-depleted tracheal preparations. These results show that drotaverine behaves like L-VOCC blockers but, unlike PDE inhibitors using L-VOCC associated in vitro experimental models.

  14. Probability distribution functions of turbulence in seepage-affected alluvial channel

    Science.gov (United States)

    Sharma, Anurag; Kumar, Bimlesh

    2017-02-01

    The present experimental study is carried out on the probability distribution functions (PDFs) of turbulent flow characteristics within near-bed-surface and away-from-bed surfaces for both no seepage and seepage flow. Laboratory experiments were conducted in the plane sand bed for no seepage (NS), 10% seepage (10%S) and 15% seepage (15%) cases. The experimental calculation of the PDFs of turbulent parameters such as Reynolds shear stress, velocity fluctuations, and bursting events is compared with theoretical expression obtained by Gram-Charlier (GC)-based exponential distribution. Experimental observations follow the computed PDF distributions for both no seepage and seepage cases. Jensen-Shannon divergence (JSD) method is used to measure the similarity between theoretical and experimental PDFs. The value of JSD for PDFs of velocity fluctuation lies between 0.0005 to 0.003 while the JSD value for PDFs of Reynolds shear stress varies between 0.001 to 0.006. Even with the application of seepage, the PDF distribution of bursting events, sweeps and ejections are well characterized by the exponential distribution of the GC series, except that a slight deflection of inward and outward interactions is observed which may be due to weaker events. The value of JSD for outward and inward interactions ranges from 0.0013 to 0.032, while the JSD value for sweep and ejection events varies between 0.0001 to 0.0025. The theoretical expression for the PDF of turbulent intensity is developed in the present study, which agrees well with the experimental observations and JSD lies between 0.007 and 0.015. The work presented is potentially applicable to the probability distribution of mobile-bed sediments in seepage-affected alluvial channels typically characterized by the various turbulent parameters. The purpose of PDF estimation from experimental data is that it provides a complete numerical description in the areas of turbulent flow either at a single or finite number of points.

  15. Functional and molecular characterization of voltage-gated sodium channels in uteri from nonpregnant rats.

    Science.gov (United States)

    Seda, Marian; Pinto, Francisco M; Wray, Susan; Cintado, Cristina G; Noheda, Pedro; Buschmann, Helmut; Candenas, Luz

    2007-11-01

    We investigated the function and expression of voltage-gated Na(+) channels (VGSC) in the uteri of nonpregnant rats using organ bath techniques, intracellular [Ca(2+)] fluorescence measurements, and RT-PCR. In longitudinally arranged whole-tissue uterine strips, veratridine, a VGSC activator, caused the rapid appearance of phasic contractions of irregular frequency and amplitude. After 50-60 min in the continuous presence of veratridine, rhythmic contractions of very regular frequency and slightly increasing amplitude occurred and were sustained for up to 12 h. Both the early and late components of the contractile response to veratridine were inhibited in a concentration-dependent manner by tetrodotoxin (TTX). In small strips dissected from the uterine longitudinal smooth muscle layer and loaded with Fura-2, veratridine also caused rhythmic contractions, accompanied by transient increases in [Ca(2+)](i), which were abolished by treatment with 0.1 microM TTX. Using end-point and real-time quantitative RT-PCR, we detected the presence of the VGSC alpha subunits Scn2a1, Scn3a, Scn5a, and Scn8a in the cDNA from longitudinal muscle. The mRNAs of the auxiliary beta subunits Scbn1b, Scbn2b, Scbn4b, and traces of Scn3b were also present. These data show for the first time that Scn2a1, Scn3a, Scn5a, and Scn8a, as well as all VGSC beta subunits are expressed in the longitudinal smooth muscle layer of the rat myometrium. In addition, our data show that TTX-sensitive VGSC are able to mediate phasic contractions maintained over long periods of time in the uteri of nonpregnant rats.

  16. Proper Voltage-Dependent Ion Channel Function in Dysferlin-Deficient Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Lena Rubi

    2015-06-01

    Full Text Available Background/Aims: Dysferlin plays a decisive role in calcium-dependent membrane repair in myocytes. Mutations in the encoding DYSF gene cause a number of myopathies, e.g. limb-girdle muscular dystrophy type 2B (LGMD2B. Besides skeletal muscle degenerative processes, dysferlin deficiency is also associated with cardiac complications. Thus, both LGMD2B patients and dysferlin-deficient mice develop a dilated cardiomyopathy. We and others have recently reported that dystrophin-deficient ventricular cardiomyocytes from mouse models of Duchenne muscular dystrophy show significant abnormalities in voltage-dependent ion channels, which may contribute to the pathophysiology in dystrophic cardiomyopathy. The aim of the present study was to investigate if dysferlin, like dystrophin, is a regulator of cardiac ion channels. Methods and Results: By using the whole cell patch-clamp technique, we compared the properties of voltage-dependent calcium and sodium channels, as well as action potentials in ventricular cardiomyocytes isolated from the hearts of normal and dysferlin-deficient (dysf mice. In contrast to dystrophin deficiency, the lack of dysferlin did not impair the ion channel properties and left action potential parameters unaltered. In connection with normal ECGs in dysf mice these results suggest that dysferlin deficiency does not perturb cardiac electrophysiology. Conclusion: Our study demonstrates that dysferlin does not regulate cardiac voltage-dependent ion channels, and implies that abnormalities in cardiac ion channels are not a universal characteristic of all muscular dystrophy types.

  17. Evidence for functional diversity between the voltage-gated proton channel Hv1 and its closest related protein HVRP1.

    Directory of Open Access Journals (Sweden)

    Iris H Kim

    Full Text Available The Hv1 channel and voltage-sensitive phosphatases share with voltage-gated sodium, potassium, and calcium channels the ability to detect changes in membrane potential through voltage-sensing domains (VSDs. However, they lack the pore domain typical of these other channels. NaV, KV, and CaV proteins can be found in neurons and muscles, where they play important roles in electrical excitability. In contrast, VSD-containing proteins lacking a pore domain are found in non-excitable cells and are not involved in neuronal signaling. Here, we report the identification of HVRP1, a protein related to the Hv1 channel (from which the name Hv1 Related Protein 1 is derived, which we find to be expressed primarily in the central nervous system, and particularly in the cerebellum. Within the cerebellar tissue, HVRP1 is specifically expressed in granule neurons, as determined by in situ hybridization and immunohistochemistry. Analysis of subcellular distribution via electron microscopy and immunogold labeling reveals that the protein localizes on the post-synaptic side of contacts between glutamatergic mossy fibers and the granule cells. We also find that, despite the similarities in amino acid sequence and structural organization between Hv1 and HVRP1, the two proteins have distinct functional properties. The high conservation of HVRP1 in vertebrates and its cellular and subcellular localizations suggest an important function in the nervous system.

  18. Expression and function of calcium-activated potassium channels following in-stent restenosis in a porcine coronary artery model

    Directory of Open Access Journals (Sweden)

    Mais F. Absi

    2012-04-01

    Functional analysis using 1-EBIO and Bradykinin produced hyperpolarization of neointimal but not medial myocytes, which indicated the expression of functional endothelial SK3 and IKCa in the former and not in the latter. The expression of IKCa and SK3 within the neointimal layer suggested that some degree of recovery of both endothelial as well as smooth muscle regeneration had occurred. Future development of selective modulators of IKCa and SK3 channels may decrease the progression of ISR and improve coronary vascular function after stent placement, and is an area for future investigation.

  19. Gain-of-function defects of astrocytic Kir4.1 channels in children with autism spectrum disorders and epilepsy

    Science.gov (United States)

    Sicca, Federico; Ambrosini, Elena; Marchese, Maria; Sforna, Luigi; Servettini, Ilenio; Valvo, Giulia; Brignone, Maria Stefania; Lanciotti, Angela; Moro, Francesca; Grottesi, Alessandro; Catacuzzeno, Luigi; Baldini, Sara; Hasan, Sonia; D’Adamo, Maria Cristina; Franciolini, Fabio; Molinari, Paola; Santorelli, Filippo M.; Pessia, Mauro

    2016-01-01

    Dysfunction of the inwardly-rectifying potassium channels Kir4.1 (KCNJ10) represents a pathogenic mechanism contributing to Autism-Epilepsy comorbidity. To define the role of Kir4.1 variants in the disorder, we sequenced KCNJ10 in a sample of affected individuals, and performed genotype-phenotype correlations. The effects of mutations on channel activity, protein trafficking, and astrocyte function were investigated in Xenopus laevis oocytes, and in human astrocytoma cell lines. An in vivo model of the disorder was also explored through generation of kcnj10a morphant zebrafish overexpressing the mutated human KCNJ10. We detected germline heterozygous KCNJ10 variants in 19/175 affected children. Epileptic spasms with dysregulated sensory processing represented the main disease phenotype. When investigated on astrocyte-like cells, the p.R18Q mutation exerted a gain-of-function effect by enhancing Kir4.1 membrane expression and current density. Similarly, the p.R348H variant led to gain of channel function through hindrance of pH-dependent current inhibition. The frequent polymorphism p.R271C seemed, instead, to have no obvious functional effects. Our results confirm that variants in KCNJ10 deserve attention in autism-epilepsy, and provide insight into the molecular mechanisms of autism and seizures. Similar to neurons, astrocyte dysfunction may result in abnormal synaptic transmission and electrical discharge, and should be regarded as a possible pharmacological target in autism-epilepsy. PMID:27677466

  20. Exploring Arterial Smooth Muscle Kv7 Potassium Channel Function using Patch Clamp Electrophysiology and Pressure Myography

    Science.gov (United States)

    Brueggemann, Lioubov I.; Mani, Bharath K.; Haick, Jennifer; Byron, Kenneth L.

    2012-01-01

    Contraction or relaxation of smooth muscle cells within the walls of resistance arteries determines the artery diameter and thereby controls flow of blood through the vessel and contributes to systemic blood pressure. The contraction process is regulated primarily by cytosolic calcium concentration ([Ca2+]cyt), which is in turn controlled by a variety of ion transporters and channels. Ion channels are common intermediates in signal transduction pathways activated by vasoactive hormones to effect vasoconstriction or vasodilation. And ion channels are often targeted by therapeutic agents either intentionally (e.g. calcium channel blockers used to induce vasodilation and lower blood pressure) or unintentionally (e.g. to induce unwanted cardiovascular side effects). Kv7 (KCNQ) voltage-activated potassium channels have recently been implicated as important physiological and therapeutic targets for regulation of smooth muscle contraction. To elucidate the specific roles of Kv7 channels in both physiological signal transduction and in the actions of therapeutic agents, we need to study how their activity is modulated at the cellular level as well as evaluate their contribution in the context of the intact artery. The rat mesenteric arteries provide a useful model system. The arteries can be easily dissected, cleaned of connective tissue, and used to prepare isolated arterial myocytes for patch clamp electrophysiology, or cannulated and pressurized for measurements of vasoconstrictor/vasodilator responses under relatively physiological conditions. Here we describe the methods used for both types of measurements and provide some examples of how the experimental design can be integrated to provide a clearer understanding of the roles of these ion channels in the regulation of vascular tone. PMID:23007713

  1. Chloride regulates afferent arteriolar contraction in response to depolarization

    DEFF Research Database (Denmark)

    Hansen, P B; Jensen, B L; Skott, O

    1998-01-01

    . The results show that K+-induced contraction of smooth muscle cells in the afferent arteriole is highly sensitive to chloride, whereas neurotransmitter release and ensuing contraction is not dependent on chloride. Thus, there are different activation pathways for depolarizing vasoconstrictors......-Renal vascular reactivity is influenced by the level of dietary salt intake. Recent in vitro data suggest that afferent arteriolar contractility is modulated by extracellular chloride. In the present study, we assessed the influence of chloride on K+-induced contraction in isolated perfused rabbit...... afferent arterioles. In 70% of vessels examined, K+-induced contraction was abolished by acute substitution of bath chloride. Consecutive addition of Cl- (30, 60, 80, 100, 110, and 117 mmol/L) restored the sensitivity to K+, and half-maximal response was observed at 82 mmol/L chloride. The calcium channel...

  2. Surface expression and channel function of TRPM8 are cooperatively controlled by transmembrane segments S3 and S4.

    Science.gov (United States)

    Kühn, Frank J P; Winking, Mathis; Kühn, Cornelia; Hoffmann, Daniel C; Lückhoff, Andreas

    2013-11-01

    TRPM8 is a voltage-dependent cation channel additionally gated by cold temperatures, menthol, and icilin. Stimulation by the chemical agonists is at least in part mediated by a conserved sequence motif in transmembrane segment S3. Based on molecular dynamics simulation studies for TRPM8 a gating model was recently developed which predicts a direct electrostatic interaction between S3 and S4. Here, we performed charge reversal mutations to pinpoint possible interactions of the putative S4 voltage sensor with S3. The charge reversals R842D, R842E, and D835R in S4 prevented channel glycosylation and function, indicating a deficient insertion into the plasma membrane. The mutations R842D and R842E were specifically rescued by the reciprocal charge reversal D802R in S3. The alternative charge reversal in S3, D796R, failed to compensate for the dysfunction of the mutants R842D and R842E. Remarkably, the double charge reversal mutants R842D + D802R and R842E + D802R retained intrinsic voltage-sensitivity, although the critical voltage sensor arginine was substituted by a negatively charged residue. Likewise, the insertion of three additional positively charged residues into S4 did not crucially change the voltage-sensitivity of TRPM8 but abolished the sensitivity to icilin. We conclude that S4 does not play a separate role for the gating of TRPM8. Instead, the cooperation with the adjacent segment S3 and the combined charges in these two segments is of general importance for both channel maturation and channel function. This mechanism distinguishes TRPM8 from other voltage-dependent cation channels within and outside the TRP family.

  3. Role of Quercetin in Modulating Chloride Transport in the Intestine

    Science.gov (United States)

    Yu, Bo; Jiang, Yu; Jin, Lingling; Ma, Tonghui; Yang, Hong

    2016-01-01

    Epithelial chloride channels provide the pathways for fluid secretion in the intestine. Cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated chloride