WorldWideScience

Sample records for chlamydomonas reinhardtii erg3

  1. Trophic transfer of gold nanoparticles from Euglena gracilis or Chlamydomonas reinhardtii to Daphnia magna

    International Nuclear Information System (INIS)

    Lee, Woo-Mi; Yoon, Sung-Ji; Shin, Yu-Jin; An, Youn-Joo

    2015-01-01

    Understanding the trophic transfer of nanoparticles (NPs) is important because NPs are small enough to easily penetrate into organisms. In this study, we evaluated the trophic transfer of gold NPs (AuNPs) within the aquatic food chain. We observed AuNPs transfer from 2 species of primary producers (Chlamydomonas reinhardtii or Euglena gracilis) to the primary consumer (Daphnia magna). Also, bioaccumulation of AuNPs in E. gracilis was higher than that in C. reinhardtii. The reasons for the difference in Au accumulation may be the physical structure of these organisms, and the surface area that is available for interaction with NPs. C. reinhardtii has a cell wall that may act as a barrier to the penetration of NPs. The size of E. gracilis is larger than that of C. reinhardtii. This study demonstrates the trophic transfer of AuNPs from a general producer to a consumer in an aquatic environment. - Highlights: • This study evaluated the trophic transfer of AuNPs in an aquatic food chain. • Chlamydomonas reinhardtii and Euglena gracilis were selected as the primary producers. • Daphnia magna was used as the primary consumer. • The bioaccumulation of AuNPs in E. gracilis was higher than that in C. reinhardtii. • AuNPs were transferred from C. reinhardtii and E. gracilis to D. magna. - Gold nanoparticles can transfer from primary producers (Chlamydomonas reinhardtii or Euglena gracilis) to the primary consumer (Daphnia magna) in an aquatic environment

  2. Evidences of oxidative stress during hydrogen photoproduction in sulfur-deprived cultures of Chlamydomonas reinhardtii

    Czech Academy of Sciences Publication Activity Database

    Sáens, M. E.; Bišová, Kateřina; Touloupakis, E.; Faraloni, C.; Dario Di Marzio, W.; Torzillo, G.

    2015-01-01

    Roč. 40, č. 30 (2015), s. 10410-10417 ISSN 0360-3199 Institutional support: RVO:61388971 Keywords : Oxidative stress * Chlamydomonas reinhardtii * H-2 production Subject RIV: EE - Microbiology, Virology Impact factor: 3.205, year: 2015

  3. Bioenergetics of growth and lipid production in Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Küçük, Kübra; Tevatia, Rahul; Sorgüven, Esra; Demirel, Yaşar; Özilgen, Mustafa

    2015-01-01

    The study of thermodynamic aspects of the lipid, e.g., raw material for biodiesel, production in microalgae is important, as the non-lipid producing biological activities of the algal cultivation consume part of the solar energy captured during photosynthesis in expense of the exergetic efficiency of the lipid production process. The cultivation of Chlamydomonas reinhardtii (a unicellular biflagellate fresh-water microalga) is modeled as a three-step chemical mechanism representing growth, respiration, and lipid production. Further, the comprehensive thermodynamic analysis of these mechanisms is presented. The cumulative degree of perfection of the cellular proliferation, after excluding the lipid synthesis, fluctuates with no trend around 0.52 ± 0.19. The exergy analysis has indicated that C. reinhardtii prefers to maximize the lipid production when it is difficult to generate new cells. Under batch production of algal biomass, the highest heat and exergy loss per unit biomass production are accountable under the most favorable biological growth conditions, whereas the highest exergetic efficiency of the lipid production accounted under the least favorable growth conditions, which is in line with the previous studies. - Highlights: • Biomass, lipid production and respiration modeled as three-step chemical reaction. • CDP (cumulative degree of perfection) is calculated based on the model. • The CDP of the algae, after excluding the lipids, is about 0.52 ± 0.19. • Chlamydomonas reinhardtii maximized lipid production when it was difficult to grow

  4. Nonthermal effect of microwave irradiation on nitrite uptake in Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Pedrajas, C.; Cotrino, J.

    1989-01-01

    When cells of the unicellular green alga Chlamydomonas reinhardtii were subjected to microwave irradiation at 2.45 GHz, nitrite uptake kinetics still obeyed the Michaelis-Menten equation, the Km of the process remaining constant, whereas V max increased, which indicates an enhanced nonthermal permeability in irradiated cells. (author)

  5. Enhanced methane production of Chlorella vulgaris and Chlamydomonas reinhardtii by hydrolytic enzymes addition

    International Nuclear Information System (INIS)

    Mahdy, Ahmed; Mendez, Lara; Ballesteros, Mercedes; González-Fernández, Cristina

    2014-01-01

    Highlights: • Methane production of microalgae biomass is hampered by their cell wall. • Pretreatment should be designed in accordance to the microalgae specie. • Fresh Chlamydomonas reinhardtii exhibited high anaerobic biodegradability. • Chlorella vulgaris anaerobic biodegradability was enhanced by 50% using protease pretreatment. - Abstract: The effect of enzymatic hydrolysis on microalgae organic matter solubilisation and methane production was investigated in this study. Even though both biomasses, Chlamydomonas reinhardtii and Chlorella vulgaris, exhibited similar macromolecular distribution, their cell wall composition provided different behaviors. The addition of carbohydrolase (Viscozyme) and protease (Alcalase) resulted in high carbohydrates and protein solubilisation on both biomasses (86–96%). Despite the high carbohydrate solubilisation with the carbohydrolase, methane production was enhanced by 14% for C. vulgaris, while hydrolyzed C. reinhardtii did not show any improvement. The addition of protease to C. reinhardtii increased methane production by 1.17-fold. The low enhancement achieved together with the inherent high biodegradability of this biomass would not justify the cost associated to the enzyme addition. On the other hand, C. vulgaris hydrolyzed with the protease resulted in 86% anaerobic biodegradability compared to 54% of the raw biomass. Therefore, the application of protease prior anaerobic digestion of C. vulgaris could be a promising approach to decrease the energetic input required for cell wall disruption

  6. Identification of an NADP/thioredoxin system in Chlamydomonas reinhardtii

    Science.gov (United States)

    Huppe, H. C.; Picaud, A.; Buchanan, B. B.; Miginiac-Maslow, M.

    1991-01-01

    The protein components of the NADP/thioredoxin system, NADP-thioredoxin reductase (NTR) and thioredoxin h, have been purified and characterized from the green alga, Chlamydomonas reinhardtii. The analysis of this system confirms that photoautotrophic Chlamydomonas cells resemble leaves in having both an NADP- and ferrodoxin-linked thioredoxin redox system. Chlamydomonas thioredoxin h, which is smaller on sodium dodecyl sulfate-polyacrylamide gel electrophoresis than thioredoxin m from the same source, cross-reacted with antisera to thioredoxin h from spinach (Spinacia oleracea L.) and wheat germ (Triticum vulgaris L.) but not with antisera to m or f thioredoxins. In these properties, the thioredoxin h resembled a thioredoxin from Chlamydomonas, designated Ch1, whose sequence was reported recently (P. Decottignies et al., 1991, Eur. J. Biochem. 198, 505-512). The differential reactivity of thioredoxin h with antisera was used to demonstrate that thioredoxin h is enriched outside the chloroplast. The NTR was purified from Chlamydomonas using thioredoxin h from the same source. Similar to its counterpart from other organisms, Chlamydomonas NTR had a subunit size of approx. 36 kDa and was specific for NADPH. Chlamydomonas NTR effectively reduced thioredoxin h from the same source but showed little activity with the other thioredoxins tested, including spinach thioredoxin h and Escherichia coli thioredoxin. Comparison of the reduction of Chlamydomonas thioredoxins m and h by each of the endogenous thioredoxin reductases, NTR and ferredoxin-thioredoxin reductase, revealed a differential specificity of each enzyme for thioredoxin. Thus, NTR showed increased activity with thioredoxin h and ferredoxin-thioredoxin reductase with thioredoxins m and f.

  7. Systems Biology of Lipid Body Formation in the Green Alga Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, Ursula [Washington Univ., St. Louis, MO (United States)

    2017-11-10

    The project aimed to deepen our understanding of alga triacylglycerol (TAG) production to undergird explorations of using algal TAG as a source of biodiesel fuel. Our published contributions included the following: 1) Development of a rapid assay for TAG in algal cultures which was widely distributed to the algal community. 2) A comprehensive transcriptome analysis of the development of the ultra-high-TAG “obese” phenotype In Chlamydomonas reinhardtii. 3) A comprehensive biochemical and ultrastructural analysis of the cell wall of Nannochloropsis gaditana, whose walls render it both growth-hardy and difficult to rupture for TAG recovery. A manuscript in preparation considers the autophagy response in C. reinhardtii and its entrance into stationary phase, both having an impact on TAG production.

  8. An efficient protocol for the Agrobacterium-mediated genetic transformation of microalga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Pratheesh, P T; Vineetha, M; Kurup, G Muraleedhara

    2014-06-01

    Algal-based recombinant protein production has gained immense interest in recent years. The development of algal expression system was earlier hindered due to the lack of efficient and cost-effective transformation techniques capable of heterologous gene integration and expression. The recent development of Agrobacterium-mediated genetic transformation method is expected to be the ideal solution for these problems. We have developed an efficient protocol for the Agrobacterium-mediated genetic transformation of microalga Chlamydomonas reinhardtii. Pre-treatment of Agrobacterium in TAP induction medium (pH 5.2) containing 100 μM acetosyringone and 1 mM glycine betaine and infection of Chlamydomonas with the induced Agrobacterium greatly improved transformation frequency. This protocol was found to double the number of transgenic events on selection media compared to that of previous reports. PCR was used successfully to amplify fragments of the hpt and GUS genes from transformed cells, while Southern blot confirmed the integration of GUS gene into the genome of C. reinhardtii. RT-PCR, Northern blot and GUS histochemical analyses confirm GUS gene expression in the transgenic cell lines of Chlamydomonas. This protocol provides a quick, efficient, economical and high-frequency transformation method for microalgae.

  9. Establishing Chlamydomonas reinhardtii as an industrial biotechnology host.

    Science.gov (United States)

    Scaife, Mark A; Nguyen, Ginnie T D T; Rico, Juan; Lambert, Devinn; Helliwell, Katherine E; Smith, Alison G

    2015-05-01

    Microalgae constitute a diverse group of eukaryotic unicellular organisms that are of interest for pure and applied research. Owing to their natural synthesis of value-added natural products microalgae are emerging as a source of sustainable chemical compounds, proteins and metabolites, including but not limited to those that could replace compounds currently made from fossil fuels. For the model microalga, Chlamydomonas reinhardtii, this has prompted a period of rapid development so that this organism is poised for exploitation as an industrial biotechnology platform. The question now is how best to achieve this? Highly advanced industrial biotechnology systems using bacteria and yeasts were established in a classical metabolic engineering manner over several decades. However, the advent of advanced molecular tools and the rise of synthetic biology provide an opportunity to expedite the development of C. reinhardtii as an industrial biotechnology platform, avoiding the process of incremental improvement. In this review we describe the current status of genetic manipulation of C. reinhardtii for metabolic engineering. We then introduce several concepts that underpin synthetic biology, and show how generic parts are identified and used in a standard manner to achieve predictable outputs. Based on this we suggest that the development of C. reinhardtii as an industrial biotechnology platform can be achieved more efficiently through adoption of a synthetic biology approach. © 2015 The Authors The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  10. Response of Chlamydomonas reinhardtii to naphthenic acid exposure

    Energy Technology Data Exchange (ETDEWEB)

    Goff, K.; Wilson, K. [Saskatchewan Univ., Saskatoon, SK (Canada); Headley, J. [Environment Canada, Ottawa, ON (Canada)

    2010-07-01

    This study examined the feasibility of using a model organism for the algal bioremediation of oil sands process water (OSPW), a highly toxic mixture of sediments, bitumen, ions, and organic and inorganic compounds. Naphthenic acids (NAs) are a contaminant class of particular concern. Bioremediation techniques may mitigate toxicity of OSPW in general, and NAs in particular. Although most studies on the biodegradation of NAs focus on the role of bacteria, fungi, and emergent macrophytes, studies have indicated that algae may also play a key role through direct degradation, biosequestration, or photosynthetic aeration of waters to promote other biological reactions. Chlamydomonas frigida is of particular interest, but no cultures are currently available. Therefore, this study used C. reinhardtii, a well-characterized model organism, to begin analysis of potential algal bioremediation of OSPW. Cultures of C. reinhardtii were grown heterotrophically in nutrient media spiked with a dilution series of NAs. Culture densities were measured to compile growth curves over time, changes in rate of growth, and survivability. Negative ion electrospray mass spectrometry was used to determine the concentration of NAs in solution in relation to growth rate and culture density. The study determined the tolerance of C. reinhardtii to NAs. A mechanism for this tolerance was then proposed.

  11. Metabolism of D-lactate and structurally related organic acids in Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Husic, D.W.

    1986-01-01

    During the initial minutes of anaerobiosis, 14 C-labeled D-lactate, derived from the photosynthetic sugar phosphate pool, accumulated in the unicellular green alga, Chlamydomonas reinhardtii. The production of the D-isomer of lactate by algae is in contrast to plant and mammalian cells in which L-lactate is formed. After initial lactate formation, Chlamydomonas exhibits a mixed-acid type fermentation, thereby avoiding lactate accumulation and enabling the cells to tolerate extended periods of anaerobiosis. A pyruvate reductase which catalyzes the formation of D-lactate in Chlamydomonas was partially purified and characterized. Lactate produced anaerobically was metabolized only when Chlamydomonas cells were returned to aerobic conditions, and reoxidation of the D-lactate was apparently catalyzed by a mitochondrial membrane-bound dehydrogenase, rather than by the soluble pyruvate reductase. Mutants of Chlamydomonas, deficient in mitochondrial respiration, were used to demonstrate that lactate metabolism was linked to the mitochondrial electron transport chain. In addition, the oxidation of glycolate, a structural analog of lactate, was also linked to mitochondrial electron transport in vivo

  12. Lipidomic Analysis of Chlamydomonas reinhardtii under Nitrogen and Sulfur Deprivation.

    Directory of Open Access Journals (Sweden)

    Dawei Yang

    Full Text Available Chlamydomonas reinhardtii accumulates lipids under complete nutrient starvation conditions while overall growth in biomass stops. In order to better understand biochemical changes under nutrient deprivation that maintain production of algal biomass, we used a lipidomic assay for analyzing the temporal regulation of the composition of complex lipids in C. reinhardtii in response to nitrogen and sulfur deprivation. Using a chip-based nanoelectrospray direct infusion into an ion trap mass spectrometer, we measured a diversity of lipid species reported for C. reinhardtii, including PG phosphatidylglycerols, PI Phosphatidylinositols, MGDG monogalactosyldiacylglycerols, DGDG digalactosyldiacylglycerols, SQDG sulfoquinovosyldiacylglycerols, DGTS homoserine ether lipids and TAG triacylglycerols. Individual lipid species were annotated by matching mass precursors and MS/MS fragmentations to the in-house LipidBlast mass spectral database and MS2Analyzer. Multivariate statistics showed a clear impact on overall lipidomic phenotypes on both the temporal and the nutrition stress level. Homoserine-lipids were found up-regulated at late growth time points and higher cell density, while triacyclglycerols showed opposite regulation of unsaturated and saturated fatty acyl chains under nutritional deprivation.

  13. Cellulose degradation and assimilation by the unicellular phototrophic eukaryote Chlamydomonas reinhardtii.

    Science.gov (United States)

    Blifernez-Klassen, Olga; Klassen, Viktor; Doebbe, Anja; Kersting, Klaudia; Grimm, Philipp; Wobbe, Lutz; Kruse, Olaf

    2012-01-01

    Plants convert sunlight to biomass, which is primarily composed of lignocellulose, the most abundant natural biopolymer and a potential feedstock for fuel and chemical production. Cellulose assimilation has so far only been described for heterotrophic organisms that rely on photosynthetically active primary producers of organic compounds. Among phototrophs, the unicellular green microalga Chlamydomonas reinhardtii is widely known as one of the best established model organisms. It occupies many habitats, including aquatic and soil ecosystems. This ubiquity underscores the versatile metabolic properties of this microorganism. Here we present yet another paradigm of adaptation for C. reinhardtii, highlighting its photoheterotrophic ability to utilize cellulose for growth in the absence of other carbon sources. When grown under CO(2)-limiting conditions in the light, secretion of endo-β-1,4-glucanases by the cell causes digestion of exogenous cellulose, followed by cellobiose uptake and assimilation. Phototrophic microbes like C. reinhardtii may thus serve as biocatalysts for cellulosic biofuel production.

  14. Characterization of Chlamydomonas reinhardtii Core Histones by Top-Down Mass Spectrometry Reveals Unique Algae-Specific Variants and Post-Translational Modifications.

    Science.gov (United States)

    Khan, Aliyya; Eikani, Carlo K; Khan, Hana; Iavarone, Anthony T; Pesavento, James J

    2018-01-05

    The unicellular microalga Chlamydomonas reinhardtii has played an instrumental role in the development of many new fields (bioproducts, biofuels, etc.) as well as the advancement of basic science (photosynthetic apparati, flagellar function, etc.). Chlamydomonas' versatility ultimately derives from the genes encoded in its genome and the way that the expression of these genes is regulated, which is largely influenced by a family of DNA binding proteins called histones. We characterize C. reinhardtii core histones, both variants and their post-translational modifications, by chromatographic separation, followed by top-down mass spectrometry (TDMS). Because TDMS has not been previously used to study Chlamydomonas proteins, we show rampant artifactual protein oxidation using established nuclei purification and histone extraction methods. After addressing oxidation, both histones H3 and H4 are found to each have a single polypeptide sequence that is minimally acetylated and methylated. Surprisingly, we uncover a novel monomethylation at lysine 79 on histone H4 present on all observed molecules. Histone H2B and H2A are found to have two and three variants, respectively, and both are minimally modified. This study provides an updated assessment of the core histone proteins in the green alga C. reinhardtii by top-down mass spectrometry and lays the foundation for further investigation of these essential proteins.

  15. Triclosan-induced transcriptional and biochemical alterations in the freshwater green algae Chlamydomonas reinhardtii

    NARCIS (Netherlands)

    Pan, Chang Gui; Peng, Feng-Jiao; Shi, Wen Jun; Hu, Li Xin; Wei, Xiao Dong; Ying, Guang Guo

    2018-01-01

    Triclosan (TCS) is an antibacterial and antifungal agent widely used in personal care products (PCPs). We investigated the effects of TCS (20 μg/L, 100 μg/L and 500 μg/L) on Chlamydomonas reinhardtii by measuring the algal growth, chlorophyll content, lipid peroxidation, and transcription of the

  16. UV-B Perception and Acclimation in Chlamydomonas reinhardtii[OPEN

    Science.gov (United States)

    Chappuis, Richard; Allorent, Guillaume

    2016-01-01

    Plants perceive UV-B, an intrinsic component of sunlight, via a signaling pathway that is mediated by the photoreceptor UV RESISTANCE LOCUS8 (UVR8) and induces UV-B acclimation. To test whether similar UV-B perception mechanisms exist in the evolutionarily distant green alga Chlamydomonas reinhardtii, we identified Chlamydomonas orthologs of UVR8 and the key signaling factor CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1). Cr-UVR8 shares sequence and structural similarity to Arabidopsis thaliana UVR8, has conserved tryptophan residues for UV-B photoreception, monomerizes upon UV-B exposure, and interacts with Cr-COP1 in a UV-B-dependent manner. Moreover, Cr-UVR8 can interact with At-COP1 and complement the Arabidopsis uvr8 mutant, demonstrating that it is a functional UV-B photoreceptor. Chlamydomonas shows apparent UV-B acclimation in colony survival and photosynthetic efficiency assays. UV-B exposure, at low levels that induce acclimation, led to broad changes in the Chlamydomonas transcriptome, including in genes related to photosynthesis. Impaired UV-B-induced activation in the Cr-COP1 mutant hit1 indicates that UVR8-COP1 signaling induces transcriptome changes in response to UV-B. Also, hit1 mutants are impaired in UV-B acclimation. Chlamydomonas UV-B acclimation preserved the photosystem II core proteins D1 and D2 under UV-B stress, which mitigated UV-B-induced photoinhibition. These findings highlight the early evolution of UVR8 photoreceptor signaling in the green lineage to induce UV-B acclimation and protection. PMID:27020958

  17. Chlamydomonas reinhardtii: the model of choice to study mitochondria from unicellular photosynthetic organisms.

    Science.gov (United States)

    Funes, Soledad; Franzén, Lars-Gunnar; González-Halphen, Diego

    2007-01-01

    Chlamydomonas reinhardtii is a model organism to study photosynthesis, cellular division, flagellar biogenesis, and, more recently, mitochondrial function. It has distinct advantages in comparison to higher plants because it is unicellular, haploid, and amenable to tetrad analysis, and its three genomes are subject to specific transformation. It also has the possibility to grow either photoautotrophically or heterotrophically on acetate, making the assembly of the photosynthetic machinery not essential for cell viability. Methods developed allow the isolation of C. reinhardtii mitochondria free of thylakoid contaminants. We review the general procedures used for the biochemical characterization of mitochondria from this green alga.

  18. Gene silencing of stearoyl-ACP desaturase enhances the stearic acid content in Chlamydomonas reinhardtii

    NARCIS (Netherlands)

    Jaeger, de L.; Springer, J.; Wolbert, E.J.H.; Martens, D.E.; Eggink, G.; Wijffels, R.H.

    2017-01-01

    In this study, stearoyl-ACP desaturase (SAD), the enzyme that converts stearic acid into oleic acid, is silenced by artificial microRNA in the green microalga Chlamydomonas reinhardtii. Two different constructs, which target different positions on the mRNA of stearoyl-ACP desaturase, were tested.

  19. Rapid induction of lipid droplets in Chlamydomonas reinhardtii and Chlorella vulgaris by Brefeldin A.

    Directory of Open Access Journals (Sweden)

    Sangwoo Kim

    Full Text Available Algal lipids are the focus of intensive research because they are potential sources of biodiesel. However, most algae produce neutral lipids only under stress conditions. Here, we report that treatment with Brefeldin A (BFA, a chemical inducer of ER stress, rapidly triggers lipid droplet (LD formation in two different microalgal species, Chlamydomonas reinhardtii and Chlorella vulgaris. LD staining using Nile red revealed that BFA-treated algal cells exhibited many more fluorescent bodies than control cells. Lipid analyses based on thin layer chromatography and gas chromatography revealed that the additional lipids formed upon BFA treatment were mainly triacylglycerols (TAGs. The increase in TAG accumulation was accompanied by a decrease in the betaine lipid diacylglyceryl N,N,N-trimethylhomoserine (DGTS, a major component of the extraplastidic membrane lipids in Chlamydomonas, suggesting that at least some of the TAGs were assembled from the degradation products of membrane lipids. Interestingly, BFA induced TAG accumulation in the Chlamydomonas cells regardless of the presence or absence of an acetate or nitrogen source in the medium. This effect of BFA in Chlamydomonas cells seems to be due to BFA-induced ER stress, as supported by the induction of three homologs of ER stress marker genes by the drug. Together, these results suggest that ER stress rapidly triggers TAG accumulation in two green microalgae, C. reinhardtii and C. vulgaris. A further investigation of the link between ER stress and TAG synthesis may yield an efficient means of producing biofuel from algae.

  20. Protocol: methodology for chromatin immunoprecipitation (ChIP in Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Strenkert Daniela

    2011-11-01

    Full Text Available Abstract We report on a detailed chromatin immunoprecipitation (ChIP protocol for the unicellular green alga Chlamydomonas reinhardtii. The protocol is suitable for the analysis of nucleosome occupancy, histone modifications and transcription factor binding sites at the level of mononucleosomes for targeted and genome-wide studies. We describe the optimization of conditions for crosslinking, chromatin fragmentation and antibody titer determination and provide recommendations and an example for the normalization of ChIP results as determined by real-time PCR.

  1. Characterization of Hydrocortisone Biometabolites and 18S rRNA Gene in Chlamydomonas reinhardtii Cultures

    Directory of Open Access Journals (Sweden)

    Seyed Bagher Mosavi-Azam

    2008-10-01

    Full Text Available A unicellular microalga, Chlamydomonas reinhardtii, was isolated from rice paddy-field soil and water samples and used in the biotransformation of hydrocortisone (1. This strain has not been previously tested for steroid bioconversion. Fermentation was carried out in BG-11 medium supplemented with 0.05% substrate at 25ºC for 14 days of incubation. The products obtained were chromatographically purified and characterized using spectroscopic methods. 11b,17b-Dihydroxyandrost-4-en-3-one (2, 11b-hydroxyandrost-4-en-3,17-dione (3, 11b,17a,20b,21-tetrahydroxypregn-4-en-3-one (4 and prednisolone (5 were the main products of the bioconversion. The observed bioreaction features were the side chain degradation of the substrate to give compounds 2 and 3 and the 20-ketone reduction and 1,2-dehydrogenation affording compounds 4 and 5, respectively. A time course study showed the accumulation of product 2 from the second day of the fermentation and of compounds 3, 4 and 5 from the third day. All the metabolites reached their maximum concentration in seven days. Microalgal 18S rRNA gene was also amplified by PCR. PCR products were sequenced to confirm their authenticity as 18S rRNA gene of microalgae. The result of PCR blasted with other sequenced microalgae in NCBI showed 100% homology to the 18S small subunit rRNA of two Chlamydomonas reinhardtii spp.

  2. Characterization of hydrocortisone biometabolites and 18S rRNA gene in Chlamydomonas reinhardtii cultures.

    Science.gov (United States)

    Ghasemi, Younes; Rasoul-Amini, Sara; Morowvat, Mohammad Hossein; Raee, Mohammad Javad; Ghoshoon, Mohammad Bagher; Nouri, Fatemeh; Negintaji, Narges; Parvizi, Rezvan; Mosavi-Azam, Seyed Bagher

    2008-10-31

    A unicellular microalga, Chlamydomonas reinhardtii, was isolated from rice paddy-field soil and water samples and used in the biotransformation of hydrocortisone (1). This strain has not been previously tested for steroid bioconversion. Fermentation was carried out in BG-11 medium supplemented with 0.05% substrate at 25 degrees C for 14 days of incubation. The products obtained were chromatographically purified and characterized using spectroscopic methods. 11b,17 beta-Dihydroxyandrost-4-en-3-one (2), 11 beta-hydroxyandrost-4-en-3,17-dione (3), 11 beta,17 alpha,20 beta,21-tetrahydroxypregn-4-en-3-one (4) and prednisolone (5) were the main products of the bioconversion. The observed bioreaction features were the side chain degradation of the substrate to give compounds 2 and 3 and the 20-ketone reduction and 1,2-dehydrogenation affording compounds 4 and 5, respectively. A time course study showed the accumulation of product 2 from the second day of the fermentation and of compounds 3, 4 and 5 from the third day. All the metabolites reached their maximum concentration in seven days. Microalgal 18S rRNA gene was also amplified by PCR. PCR products were sequenced to confirm their authenticity as 18S rRNA gene of microalgae. The result of PCR blasted with other sequenced microalgae in NCBI showed 100% homology to the 18S small subunit rRNA of two Chlamydomonas reinhardtii spp.

  3. Crystallization and preliminary X-ray characterization of full-length Chlamydomonas reinhardtii centrin

    International Nuclear Information System (INIS)

    Alfaro, Elisa; Valle Sosa, Liliana del; Sanoguet, Zuleika; Pastrana-Ríos, Belinda; Schreiter, Eric R.

    2008-01-01

    C. reinhardtii centrin, an EF-hand calcium-binding protein localized to the microtubule-organizing center of eukaryotic organisms, has been crystallized in the presence of the model peptide melittin. X-ray diffraction data were collected to 2.2 Å resolution. Chlamydomonas reinhardtii centrin is a member of the EF-hand calcium-binding superfamily. It is found in the basal body complex and is important for flagellar motility. Like other members of the EF-hand family, centrin interacts with and modulates the function of other proteins in a calcium-dependent manner. To understand how C. reinhardtii centrin interacts with its protein targets, it has been crystallized in the presence of the model peptide melittin and X-ray diffraction data have been collected to 2.2 Å resolution. The crystals are orthorhombic, with unit-cell parameters a = 52.1, b = 114.4, c = 34.8 Å, and are likely to belong to space group P2 1 2 1 2

  4. ChlamyCyc - a comprehensive database and web-portal centered on _Chlamydomonas reinhardtii_

    OpenAIRE

    Jan-Ole Christian; Patrick May; Stefan Kempa; Dirk Walther

    2009-01-01

    *Background* - The unicellular green alga _Chlamydomonas reinhardtii_ is an important eukaryotic model organism for the study of photosynthesis and growth, as well as flagella development and other cellular processes. In the era of high-throughput technologies there is an imperative need to integrate large-scale data sets from high-throughput experimental techniques using computational methods and database resources to provide comprehensive information about the whole cellular system of a sin...

  5. Toxicity of PAMAM dendrimers to Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Petit, Anne-Noelle; Eullaffroy, Philippe; Debenest, Timothee; Gagne, Francois

    2010-01-01

    In recent decades, a new class of polymeric materials, PAMAM dendrimers, has attracted marked interest owing to their unique nanoscopic architecture and their hopeful perspectives in nanomedicine and therapeutics. However, the potential release of dendrimers into the aquatic environment raises the issue about their toxicity on aquatic organisms. Our investigation sought to estimate the toxicity of cationic PAMAM dendrimers on the green alga, Chlamydomonas reinhardtii. Algal cultures were exposed to different concentrations (0.3-10 mg L -1 ) of low dendrimer generations (G2, G4 and G5) for 72 h. Potential adverse effects on Chlamydomonas were assessed using esterase activity (cell viability), photosynthetic O 2 evolution, pigments content and chlorophyll a fluorescence transient. According to the median inhibitory concentration (IC 50 ) appraised from esterase activity, toxicity on cell viability decreased with dendrimer generation number (2, 3 and 5 mg L -1 for G2, G4 and G5 dendrimers, respectively). Moreover, the three generations of dendrimers did not induce the same changes in the photosynthetic metabolism of the green alga. O 2 evolution was stimulated in cultures exposed to the lowest generations tested (i.e. G2 and G4) whereas no significant effects were observed with G5. In addition, total chlorophyll content was increased after G2 treatment at 2.5 mg L -1 . Finally, G2 and G4 had positive effects on photosystem II (PSII): the amount of active PSII reaction centers, the primary charge separation and the electron transport between Q A and Q B were all increased inducing activation of the photosynthetic electron transport chain. These changes resulted in stimulation of full photosynthetic performance.

  6. Analysis of motility in multicellular Chlamydomonas reinhardtii evolved under predation.

    Directory of Open Access Journals (Sweden)

    Margrethe Boyd

    Full Text Available The advent of multicellularity was a watershed event in the history of life, yet the transition from unicellularity to multicellularity is not well understood. Multicellularity opens up opportunities for innovations in intercellular communication, cooperation, and specialization, which can provide selective advantages under certain ecological conditions. The unicellular alga Chlamydomonas reinhardtii has never had a multicellular ancestor yet it is closely related to the volvocine algae, a clade containing taxa that range from simple unicells to large, specialized multicellular colonies. Simple multicellular structures have been observed to evolve in C. reinhardtii in response to predation or to settling rate-based selection. Structures formed in response to predation consist of individual cells confined within a shared transparent extracellular matrix. Evolved isolates form such structures obligately under culture conditions in which their wild type ancestors do not, indicating that newly-evolved multicellularity is heritable. C. reinhardtii is capable of photosynthesis, and possesses an eyespot and two flagella with which it moves towards or away from light in order to optimize input of radiant energy. Motility contributes to C. reinhardtii fitness because it allows cells or colonies to achieve this optimum. Utilizing phototaxis to assay motility, we determined that newly evolved multicellular strains do not exhibit significant directional movement, even though the flagellae of their constituent unicells are present and active. In C. reinhardtii the first steps towards multicellularity in response to predation appear to result in a trade-off between motility and differential survivorship, a trade-off that must be overcome by further genetic change to ensure long-term success of the new multicellular organism.

  7. Homogentisate phytyltransferase from the unicellular green alga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Gálvez-Valdivieso, Gregorio; Cardeñosa, Rosa; Pineda, Manuel; Aguilar, Miguel

    2015-09-01

    Homogentisate phytyltransferase (HPT) (EC 2.5.1.-) catalyzes the first committed step of tocopherol biosynthesis in all photosynthetic organisms. This paper presents the molecular characterization and expression analysis of HPT1 gene, and a study on the accumulation of tocopherols under different environmental conditions in the unicellular green alga Chlamydomonas reinhardtii. The Chlamydomonas HPT1 protein conserves all the prenylphosphate- and divalent cation-binding sites that are found in polyprenyltransferases and all the amino acids that are essential for its catalytic activity. Its hydrophobicity profile confirms that HPT is a membrane-bound protein. Chlamydomonas genomic DNA analysis suggests that HPT is encoded by a single gene, HPT1, whose promoter region contains multiple motifs related to regulation by jasmonate, abscisic acid, low temperature and light, and an ATCTA motif presents in genes involved in tocopherol biosynthesis and some photosynthesis-related genes. Expression analysis revealed that HPT1 is strongly regulated by dark and low-temperature. Under the same treatments, α-tocopherol increased in cultures exposed to darkness or heat, whereas γ-tocopherol did it in low temperature. The regulatory expression pattern of HPT1 and the changes of tocopherol abundance support the idea that different tocopherols play specific functions, and suggest a role for γ-tocopherol in the adaptation to growth under low-temperature. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. Relation between hydrogen production and photosynthesis in the green algae Chlamydomonas reinhardtii

    OpenAIRE

    Basu, Alex

    2015-01-01

    The modernized world is over-consuming low-cost energy sources that strongly contributes to pollution and environmental stress. As a consequence, the interest for environmentally friendly alternatives has increased immensely. One such alternative is the use of solar energy and water as a raw material to produce biohydrogen through the process of photosynthetic water splitting. In this work, the relation between H2-production and photosynthesis in the green algae Chlamydomonas reinhardtii was ...

  9. Refactoring the six-gene photosystem II core in the chloroplast of the green algae Chlamydomonas reinhardtii

    DEFF Research Database (Denmark)

    Gimpel, Javier A.; Nour-Eldin, Hussam Hassan; Scranton, Melissa A.

    2016-01-01

    production, particularly under specific environmental conditions. PSII is a complex multisubunit enzyme with strong interdependence among its components. In this work, we have deleted the six core genes of PSII in the eukaryotic alga Chlamydomonas reinhardtii and refactored them in a single DNA construct...

  10. The Deep Thioredoxome in Chlamydomonas reinhardtii: New Insights into Redox Regulation.

    Science.gov (United States)

    Pérez-Pérez, María Esther; Mauriès, Adeline; Maes, Alexandre; Tourasse, Nicolas J; Hamon, Marion; Lemaire, Stéphane D; Marchand, Christophe H

    2017-08-07

    Thiol-based redox post-translational modifications have emerged as important mechanisms of signaling and regulation in all organisms, and thioredoxin plays a key role by controlling the thiol-disulfide status of target proteins. Recent redox proteomic studies revealed hundreds of proteins regulated by glutathionylation and nitrosylation in the unicellular green alga Chlamydomonas reinhardtii, while much less is known about the thioredoxin interactome in this organism. By combining qualitative and quantitative proteomic analyses, we have comprehensively investigated the Chlamydomonas thioredoxome and 1188 targets have been identified. They participate in a wide range of metabolic pathways and cellular processes. This study broadens not only the redox regulation to new enzymes involved in well-known thioredoxin-regulated metabolic pathways but also sheds light on cellular processes for which data supporting redox regulation are scarce (aromatic amino acid biosynthesis, nuclear transport, etc). Moreover, we characterized 1052 thioredoxin-dependent regulatory sites and showed that these data constitute a valuable resource for future functional studies in Chlamydomonas. By comparing this thioredoxome with proteomic data for glutathionylation and nitrosylation at the protein and cysteine levels, this work confirms the existence of a complex redox regulation network in Chlamydomonas and provides evidence of a tremendous selectivity of redox post-translational modifications for specific cysteine residues. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  11. Toxicity of PAMAM dendrimers to Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Petit, Anne-Noelle, E-mail: anne-noelle.petit@ec.gc.ca [Environment Canada, 105 McGill Street, Montreal, Quebec H2Y 2E7 (Canada); Eullaffroy, Philippe [Laboratoire Plantes, Pesticides et Developpement Durable, EA 2069, URVVC, BP 1039, Universite de Reims Champagne-Ardenne, 51687 Reims Cedex 2 (France); Debenest, Timothee; Gagne, Francois [Environment Canada, 105 McGill Street, Montreal, Quebec H2Y 2E7 (Canada)

    2010-10-15

    In recent decades, a new class of polymeric materials, PAMAM dendrimers, has attracted marked interest owing to their unique nanoscopic architecture and their hopeful perspectives in nanomedicine and therapeutics. However, the potential release of dendrimers into the aquatic environment raises the issue about their toxicity on aquatic organisms. Our investigation sought to estimate the toxicity of cationic PAMAM dendrimers on the green alga, Chlamydomonas reinhardtii. Algal cultures were exposed to different concentrations (0.3-10 mg L{sup -1}) of low dendrimer generations (G2, G4 and G5) for 72 h. Potential adverse effects on Chlamydomonas were assessed using esterase activity (cell viability), photosynthetic O{sub 2} evolution, pigments content and chlorophyll a fluorescence transient. According to the median inhibitory concentration (IC{sub 50}) appraised from esterase activity, toxicity on cell viability decreased with dendrimer generation number (2, 3 and 5 mg L{sup -1} for G2, G4 and G5 dendrimers, respectively). Moreover, the three generations of dendrimers did not induce the same changes in the photosynthetic metabolism of the green alga. O{sub 2} evolution was stimulated in cultures exposed to the lowest generations tested (i.e. G2 and G4) whereas no significant effects were observed with G5. In addition, total chlorophyll content was increased after G2 treatment at 2.5 mg L{sup -1}. Finally, G2 and G4 had positive effects on photosystem II (PSII): the amount of active PSII reaction centers, the primary charge separation and the electron transport between Q{sub A} and Q{sub B} were all increased inducing activation of the photosynthetic electron transport chain. These changes resulted in stimulation of full photosynthetic performance.

  12. ChlamyCyc: an integrative systems biology database and web-portal for Chlamydomonas reinhardtii

    OpenAIRE

    May, P.; Christian, J.O.; Kempa, S.; Walther, D.

    2009-01-01

    Abstract Background The unicellular green alga Chlamydomonas reinhardtii is an important eukaryotic model organism for the study of photosynthesis and plant growth. In the era of modern high-throughput technologies there is an imperative need to integrate large-scale data sets from high-throughput experimental techniques using computational methods and database resources to provide comprehensive information about the molecular and cellular organization of a single organism. Results In the fra...

  13. Development of a forward genetic screen to isolate oil mutants in the green microalga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Cagnon, Caroline; Mirabella, Boris; Nguyen, Hoa Mai; Beyly-Adriano, Audrey; Bouvet, Séverine; Cuiné, Stéphan; Beisson, Fred; Peltier, Gilles; Li-Beisson, Yonghua

    2013-12-02

    Oils produced by microalgae are precursors to biodiesel. To achieve a profitable production of biodiesel from microalgae, identification of factors governing oil synthesis and turnover is desirable. The green microalga Chlamydomonas reinhardtii is amenable to genetic analyses and has recently emerged as a model to study oil metabolism. However, a detailed method to isolate various types of oil mutants that is adapted to Chlamydomonas has not been reported. We describe here a forward genetic approach to isolate mutants altered in oil synthesis and turnover from C. reinhardtii. It consists of a three-step screening procedure: a primary screen by flow cytometry of Nile red stained transformants grown in 96-deep-well plates under three sequential conditions (presence of nitrogen, then absence of nitrogen, followed by oil remobilization); a confirmation step using Nile red stained biological triplicates; and a validation step consisting of the quantification by thin layer chromatography of oil content of selected strains. Thirty-one mutants were isolated by screening 1,800 transformants generated by random insertional mutagenesis (1.7%). Five showed increased oil accumulation under the nitrogen-replete condition and 13 had altered oil content under nitrogen-depletion. All mutants were affected in oil remobilization. This study demonstrates that various types of oil mutants can be isolated in Chlamydomonas based on the method set-up here, including mutants accumulating oil under optimal biomass growth. The strategy conceived and the protocol set-up should be applicable to other microalgal species such as Nannochloropsis and Chlorella, thus serving as a useful tool in Chlamydomonas oil research and algal biotechnology.

  14. System-level network analysis of nitrogen starvation and recovery in Chlamydomonas reinhardtii reveals potential new targets for increased lipid accumulation

    Czech Academy of Sciences Publication Activity Database

    Valledor, Luis; Furuhashi, T.; Recuenco-Muňoz, L.; Wienkoop, S.; Weckwerth, W.

    2014-01-01

    Roč. 7, č. 171 (2014), s. 1-17 ISSN 1754-6834 Institutional support: RVO:67179843 Keywords : chlamydomonas reinhardtii * lipid accumulation * nitrogen Subject RIV: EI - Biotechnology ; Bionics Impact factor: 6.044, year: 2014

  15. Efficient expression of green fluorescent protein (GFP) mediated by a chimeric promoter in Chlamydomonas reinhardtii

    Science.gov (United States)

    Wu, Jinxia; Hu, Zhangli; Wang, Chaogang; Li, Shuangfei; Lei, Anping

    2008-08-01

    To improve the expression efficiency of exogenous genes in Chlamydomonas reinhardtii, a high efficient expression vector was constructed. Green fluorescent protein (GFP) was expressed in C. reinhardtii under the control of promoters: RBCS2 and HSP70A-RBCS2. Efficiency of transformation and expression were compared between two transgenic algae: RBCS2 mediated strain Tran-I and HSP70A-RBCS2 mediated strain Tran-II. Results show that HSP70A-RBCS2 could improve greatly the transformation efficiency by approximately eightfold of RBCS2, and the expression efficiency of GFP in Tran-II was at least double of that in Tran-I. In addition, a threefold increase of GFP in Tran-II was induced by heat shock at 40°C. All of the results demonstrated that HSP70A-RBCS2 was more efficient than RBCS2 in expressing exogenous gene in C. reinhardtii.

  16. Histones of Chlamydomonas reinhardtii. Synthesis, acetylation, and methylation

    International Nuclear Information System (INIS)

    Waterborg, J.H.; Robertson, A.J.; Tatar, D.L.; Borza, C.M.; Davie, J.R.

    1995-01-01

    Histones of the green alga Chlamydomonas reinhardtii were prepared by a new method and fractionated by reversed-phase high-performance liquid chromatography. Acid-urea-Triton gel analysis and tritiated acetate labeling demonstrated high levels of steady-state acetylation for the single histone H3 protein, in contrast to low levels on histones H4 and H2B. Twenty percent of histone H3 is subject to dynamic acetylation with, on average, three acetylated lysine residues per protein molecule. Histone synthesis in light-dark-synchronized cultures was biphasic with pattern differences between two histone H1 variants, between two H2A variants, and between H2B and ubiquitinated H2B. Automated protein sequence analysis of histone H3 demonstrated a site-specific pattern of steady-state acetylation between 7 and 17% at five of the six amino-terminal lysines and of monomethylation between 5 and 81% at five of the eight amino-terminal lysines in a pattern that may limit dynamic acetylation. An algal histone H3 sequence was confirmed by protein sequencing with a since threonine as residue 28 instead of the serine(28)-alanine(29) sequence, present in all other known plant and animal H3 histones

  17. Development of phytase-expressing chlamydomonas reinhardtii for monogastric animal nutrition.

    Science.gov (United States)

    Erpel, Fernanda; Restovic, Franko; Arce-Johnson, Patricio

    2016-03-12

    In plant-derived animal feedstuffs, nearly 80 % of the total phosphorus content is stored as phytate. However, phytate is poorly digested by monogastric animals such as poultry, swine and fish, as they lack the hydrolytic enzyme phytase; hence it is regarded as a nutritionally inactive compound from a phosphate bioavailability point of view. In addition, it also chelates important dietary minerals and essential amino acids. Therefore, dietary supplementation with bioavailable phosphate and exogenous phytases are required to achieve optimal animal growth. In order to simplify the obtaining and application processes, we developed a phytase expressing cell-wall deficient Chlamydomonas reinhardtii strain. In this work, we developed a transgenic microalgae expressing a fungal phytase to be used as a food supplement for monogastric animals. A codon optimized Aspergillus niger PhyA E228K phytase (mE228K) with improved performance at pH 3.5 was transformed into the plastid genome of Chlamydomonas reinhardtii in order to achieve optimal expression. We engineered a plastid-specific construction harboring the mE228K gene, which allowed us to obtain high expression level lines with measurable in vitro phytase activity. Both wild-type and cell-wall deficient strains were selected, as the latter is a suitable model for animal digestion. The enzymatic activity of the mE228K expressing lines were approximately 5 phytase units per gram of dry biomass at pH 3.5 and 37 °C, similar to physiological conditions and economically competitive for use in commercial activities. A reference basis for the future biotechnological application of microalgae is provided in this work. A cell-wall deficient transgenic microalgae with phytase activity at gastrointestinal pH and temperature and suitable for pellet formation was developed. Moreover, the associated microalgae biomass costs of this strain would be between US$5 and US$60 per ton of feedstuff, similar to the US$2 per ton of feedstuffs

  18. Outlook in the application of Chlamydomonas reinhardtii chloroplast as a platform for recombinant protein production.

    Science.gov (United States)

    Shamriz, Shabnam; Ofoghi, Hamideh

    Microalgae, also called microphytes, are a vast group of microscopic photosynthetic organisms living in aquatic ecosystems. Microalgae have attracted the attention of biotechnology industry as a platform for extracting natural products with high commercial value. During last decades, microalgae have been also used as cost-effective and easily scalable platform for the production of recombinant proteins with medical and industrial applications. Most progress in this field has been made with Chlamydomonas reinhardtii as a model organism mainly because of its simple life cycle, well-established genetics and ease of cultivation. However, due to the scarcity of existing infrastructure for commercial production and processing together with relatively low product yields, no recombinant products from C. reinhardtii have gained approval for commercial production and most of them are still in research and development. In this review, we focus on the chloroplast of C. reinhardtii as an algal recombinant expression platform and compare its advantages and disadvantages to other currently used expression systems. We then discuss the strategies for engineering the chloroplast of C. reinhardtii to produce recombinant cells and present a comprehensive overview of works that have used this platform for the expression of high-value products.

  19. ChlamyCyc: an integrative systems biology database and web-portal for Chlamydomonas reinhardtii.

    Science.gov (United States)

    May, Patrick; Christian, Jan-Ole; Kempa, Stefan; Walther, Dirk

    2009-05-04

    The unicellular green alga Chlamydomonas reinhardtii is an important eukaryotic model organism for the study of photosynthesis and plant growth. In the era of modern high-throughput technologies there is an imperative need to integrate large-scale data sets from high-throughput experimental techniques using computational methods and database resources to provide comprehensive information about the molecular and cellular organization of a single organism. In the framework of the German Systems Biology initiative GoFORSYS, a pathway database and web-portal for Chlamydomonas (ChlamyCyc) was established, which currently features about 250 metabolic pathways with associated genes, enzymes, and compound information. ChlamyCyc was assembled using an integrative approach combining the recently published genome sequence, bioinformatics methods, and experimental data from metabolomics and proteomics experiments. We analyzed and integrated a combination of primary and secondary database resources, such as existing genome annotations from JGI, EST collections, orthology information, and MapMan classification. ChlamyCyc provides a curated and integrated systems biology repository that will enable and assist in systematic studies of fundamental cellular processes in Chlamydomonas. The ChlamyCyc database and web-portal is freely available under http://chlamycyc.mpimp-golm.mpg.de.

  20. Toxicological effects of nanometer titanium dioxide (nano-TiO2) on Chlamydomonas reinhardtii.

    Science.gov (United States)

    Chen, Lanzhou; Zhou, Lina; Liu, Yongding; Deng, Songqiang; Wu, Hao; Wang, Gaohong

    2012-10-01

    The toxicological effects of nanometer titanium dioxide (nano-TiO2) on a unicellular green alga Chlamydomonas reinhardtii were assessed by investigating the changes of the physiology and cyto-ultrastructure of this species under treatment. We found that nano-TiO2 inhibited photosynthetic efficiency and cell growth, but the content of chlorophyll a content in algae did not change, while carotenoid and chlorophyll b contents increased. Malondialdehyde (MDA) content reached maximum values after 8h exposure and then decreased to a moderately low level at 72 h. Electron microscopy images indicated that as concentrations of nano-TiO2 increased, a large number of C. reinhardtii cells were noted to be damaged: the number of chloroplasts declined, various other organelles were degraded, plasmolysis occurred, and TiO2 nanoparticles were found to be located inside cell wall and membrane. It was also noted that cell surface was surrounded by TiO2 particles, which could present an obstacle to the exchange of substances between the cell and its surrounding environment. To sum up, the effect of nano-TiO2 on C. reinhardtii included cell surface aggregation, photosynthesis inhibition, lipid peroxidation and new protein synthesis, while the response of C. reinhardtii to nano-TiO2 was a rapid process which occurs during 24 h after exposing and may relate to physiological stress system to mitigate damage. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  1. Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks

    International Nuclear Information System (INIS)

    Hemschemeier, A; Happe, T.; Fouchard, S; Cournac, L; Peltier, G.

    2008-01-01

    The unicellular green alga Chlamydomonas reinhardtii possesses a [FeFe]-hydrogenase HydA1 (EC 1.12.7.2), which is coupled to the photosynthetic electron transport chain. Large amounts of H 2 are produced in a light-dependent reaction for several days when C. reinhardtii cells are deprived of sulfur. Under these conditions, the cells drastically change their physiology from aerobic photosynthetic growth to an anaerobic resting state. The understanding of the underlying physiological processes is not only important for getting further insights into the adaptability of photosynthesis, but will help to optimize the biotechnological application of algae as H 2 producers. Two of the still most disputed questions regarding H 2 generation by C. reinhardtii concern the electron source for H 2 evolution and the competition of the hydrogenase with alternative electron sinks. We analyzed the H 2 metabolism of S-depleted C. reinhardtii cultures utilizing a special mass spectrometer setup and investigated the influence of photosystem II (PSII)- or ribulose-bisphosphate-carboxylase/oxygenase (Rubisco)-deficiency. We show that electrons for H 2 -production are provided both by PSII activity and by a non-photochemical plastoquinone reduction pathway, which is dependent on previous PSII activity. In a Rubisco-deficient strain, which produces H 2 also in the presence of sulfur, H 2 generation seems to be the only significant electron sink for PSII activity and rescues this strain at least partially from a light-sensitive phenotype.The latter indicates that the down-regulation of assimilatory pathways in S-deprived C. reinhardtii cells is one of the important prerequisites for a sustained H 2 evolution. (authors)

  2. The biosynthesis of nitrous oxide in the green alga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Plouviez, Maxence; Wheeler, David; Shilton, Andy; Packer, Michael A; McLenachan, Patricia A; Sanz-Luque, Emanuel; Ocaña-Calahorro, Francisco; Fernández, Emilio; Guieysse, Benoit

    2017-07-01

    Over the last decades, several studies have reported emissions of nitrous oxide (N 2 O) from microalgal cultures and aquatic ecosystems characterized by a high level of algal activity (e.g. eutrophic lakes). As N 2 O is a potent greenhouse gas and an ozone-depleting pollutant, these findings suggest that large-scale cultivation of microalgae (and possibly, natural eutrophic ecosystems) could have a significant environmental impact. Using the model unicellular microalga Chlamydomonas reinhardtii, this study was conducted to investigate the molecular basis of microalgal N 2 O synthesis. We report that C. reinhardtii supplied with nitrite (NO 2 - ) under aerobic conditions can reduce NO 2 - into nitric oxide (NO) using either a mitochondrial cytochrome c oxidase (COX) or a dual enzymatic system of nitrate reductase (NR) and amidoxime-reducing component, and that NO is subsequently reduced into N 2 O by the enzyme NO reductase (NOR). Based on experimental evidence and published literature, we hypothesize that when nitrate (NO 3 - ) is the main Nitrogen source and the intracellular concentration of NO 2 - is low (i.e. under physiological conditions), microalgal N 2 O synthesis involves the reduction of NO 3 - to NO 2 - by NR followed by the reduction of NO 2 - to NO by the dual system involving NR. This microalgal N 2 O pathway has broad implications for environmental science and algal biology because the pathway of NO 3 - assimilation is conserved among microalgae, and because its regulation may involve NO. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  3. Shewanella oneidensis: a new and efficient System for Expression and Maturation of heterologous [Fe-Fe] Hydrogenase from Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Sybirna Kateryna

    2008-09-01

    Full Text Available Abstract Background The eukaryotic green alga, Chlamydomonas reinhardtii, produces H2 under anaerobic conditions, in a reaction catalysed by a [Fe-Fe] hydrogenase HydA1. For further biochemical and biophysical studies a suitable expression system of this enzyme should be found to overcome its weak expression in the host organism. Two heterologous expression systems used up to now have several advantages. However they are not free from some drawbacks. In this work we use bacterium Shewanella oneidensis as a new and efficient system for expression and maturation of HydA1 from Chlamydomonas reinhardtii. Results Based on codon usage bias and hydrogenase maturation ability, the bacterium S. oneidensis, which possesses putative [Fe-Fe] and [Ni-Fe] hydrogenase operons, was selected as the best potential host for C. reinhardtii [Fe-Fe] hydrogenase expression. Hydrogen formation by S. oneidensis strain AS52 (ΔhydAΔhyaB transformed with a plasmid bearing CrHydA1 and grown in the presence of six different substrates for anaerobic respiration was determined. A significant increase in hydrogen evolution was observed for cells grown in the presence of trimethylamine oxide, dimethylsulfoxide and disodium thiosulfate, showing that the system of S. oneidensis is efficient for heterologous expression of algal [Fe-Fe] hydrogenase. Conclusion In the present work a new efficient system for heterologous expression and maturation of C. reinhardtii hydrogenase has been developed. HydA1 of C. reinhardtii was purified and shown to contain 6 Fe atoms/molecule of protein, as expected. Using DMSO, TMAO or thiosulfate as substrates for anaerobic respiration during the cell growth, 0.4 – 0.5 mg l-1(OD600 = 1 of catalytically active HydA1 was obtained with hydrogen evolution rate of ~700 μmol H2 mg-1 min-1.

  4. ChlamyCyc: an integrative systems biology database and web-portal for Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Kempa Stefan

    2009-05-01

    Full Text Available Abstract Background The unicellular green alga Chlamydomonas reinhardtii is an important eukaryotic model organism for the study of photosynthesis and plant growth. In the era of modern high-throughput technologies there is an imperative need to integrate large-scale data sets from high-throughput experimental techniques using computational methods and database resources to provide comprehensive information about the molecular and cellular organization of a single organism. Results In the framework of the German Systems Biology initiative GoFORSYS, a pathway database and web-portal for Chlamydomonas (ChlamyCyc was established, which currently features about 250 metabolic pathways with associated genes, enzymes, and compound information. ChlamyCyc was assembled using an integrative approach combining the recently published genome sequence, bioinformatics methods, and experimental data from metabolomics and proteomics experiments. We analyzed and integrated a combination of primary and secondary database resources, such as existing genome annotations from JGI, EST collections, orthology information, and MapMan classification. Conclusion ChlamyCyc provides a curated and integrated systems biology repository that will enable and assist in systematic studies of fundamental cellular processes in Chlamydomonas. The ChlamyCyc database and web-portal is freely available under http://chlamycyc.mpimp-golm.mpg.de.

  5. Effect of mutagen combined action on Chlamydomonas Reinhardtii cells. I

    International Nuclear Information System (INIS)

    Vlcek, D.; Podstavkova, S.; Dubovsky, J.

    1978-01-01

    The effect was investigated of single and combined actions of alkylnitrosourea derivatives (N-methyl-N-nitrosourea and N-ethyl-N-nitrosourea) and UV-radiation on the survival of cells of Chlamydomonas reinhardtii algae in dependence on the sequence of application of mutagens and on the given conditions of cultivation following mutagen activity. In particular, the single phases were investigated of the total lethal effect, i.e., the death of cells before division and their death after division. The most pronounced changes in dependence on the sequence of application of mutagens and on the given conditions of cultivation were noted in cell death before division. In dependence on the sequence of application of mutagens, the effect of the combined action on the survival of cells changed from an additive (alkylnitrosourea + UV-radiation) to a protective effect (UV-radiation + alkylnitrosourea). (author)

  6. Antagonistic and synergistic effects of light irradiation on the effects of copper on Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Cheloni, Giulia; Cosio, Claudia; Slaveykova, Vera I., E-mail: vera.slaveykova@unige.ch

    2014-10-15

    Highlights: • Light intensity and spectral composition affect Cu uptake and effects to C. reinhardtii. • High light (HL) reduced Cu effect on growth inhibition, oxidative stress and damage. • HL in combination with Cu up-regulated genes involved in the antioxidant responses. • HL with increased UVB radiation exacerbated Cu uptake and Cu-induced toxic effects. - Abstract: The present study showed the important role of light intensity and spectral composition on Cu uptake and effects on green alga Chlamydomonas reinhardtii. High-intenisty light (HL) increased cellular Cu concentrations, but mitigated the Cu-induced decrease in chlorophyll fluorescence, oxidative stress and lipid peroxidation at high Cu concentrations, indicating that Cu and HL interact in an antagonistic manner. HL up-regulated the transcription of genes involved in the antioxidant response in C. reinhardtii and thus reduced the oxidative stress upon exposure to Cu and HL. Combined exposure to Cu and UVBR resulted in an increase of cellular Cu contents and caused severe oxidative damage to the cells. The observed effects were higher than the sum of the effects corresponding to exposure to UVBR or Cu alone suggesting a synergistic interaction.

  7. Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Ballottari, Matteo; Truong, Thuy B; De Re, Eleonora; Erickson, Erika; Stella, Giulio R; Fleming, Graham R; Bassi, Roberto; Niyogi, Krishna K

    2016-04-01

    Light harvesting complex stress-related 3 (LHCSR3) is the protein essential for photoprotective excess energy dissipation (non-photochemical quenching, NPQ) in the model green algaChlamydomonas reinhardtii Activation of NPQ requires low pH in the thylakoid lumen, which is induced in excess light conditions and sensed by lumen-exposed acidic residues. In this work we have used site-specific mutagenesisin vivoandin vitrofor identification of the residues in LHCSR3 that are responsible for sensing lumen pH. Lumen-exposed protonatable residues, aspartate and glutamate, were mutated to asparagine and glutamine, respectively. By expression in a mutant lacking all LHCSR isoforms, residues Asp(117), Glu(221), and Glu(224)were shown to be essential for LHCSR3-dependent NPQ induction inC. reinhardtii Analysis of recombinant proteins carrying the same mutations refoldedin vitrowith pigments showed that the capacity of responding to low pH by decreasing the fluorescence lifetime, present in the wild-type protein, was lost. Consistent with a role in pH sensing, the mutations led to a substantial reduction in binding the NPQ inhibitor dicyclohexylcarbodiimide. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Valorization of Spent Escherichia coli Media Using Green Microalgae Chlamydomonas reinhardtii and Feedstock Production

    Directory of Open Access Journals (Sweden)

    Jian-Guo Zhang

    2017-06-01

    Full Text Available The coupling of Chlamydomonas reinhardtii biomass production for nutrients removal of Escherichia coli anaerobic broth (EAB is thought to be an economically feasible option for the cultivation of microalgae. The feasibility of growing microalgae in using EAB high in nutrients for the production of more biomass was examined. EAB comprised of nutrient-abundant effluents, which can be used to produce microalgae biomass and remove environment pollutant simultaneously. In this study, C. reinhardtii 21gr (cc1690 was cultivated in different diluted E. coli anaerobic broth supplemented with trace elements under mixotrophic and heterotrophic conditions. The results showed that C. reinhardtii grown in 1×, 1/2×, 1/5× and 1/10×E. coli anaerobic broth under mixotrophic conditions exhibited specific growth rates of 2.71, 2.68, 1.45, and 1.13 day-1, and biomass production of 201.9, 184.2, 175.5, and 163.8 mg L-1, respectively. Under heterotrophic conditions, the specific growth rates were 1.80, 1.86, 1.75, and 1.02 day-1, and biomass production were 45.6, 29.4, 15.8, and 12.1 mg L-1, respectively. The removal efficiency of chemical oxygen demand, total-nitrogen and total-phosphorus from 1×E. coli anaerobic broth was 21.51, 22.41, and 15.53%. Moreover, the dry biomass had relatively high carbohydrate (44.3% and lipid content (18.7%. Therefore, this study provides an environmentally sustainable as well economical method for biomass production in promising model microalgae and subsequently paves the way for industrial use.

  9. Effect of mutagen combined action on Chlamydomonas reinhardtii cells. II

    International Nuclear Information System (INIS)

    Podstavkova, S.; Vlcek, D.; Dubovsky, J.

    1978-01-01

    The effect of UV radiation and UV radiation combined with alkylnitrosourea derivatives (N-methyl-N-nitrosourea and N-ethyl-N-nitrosourea) was observed on survival of cells of the algae Chlamydomonas reinhardtii. In particular, single parts were evaluated of the overall lethal effect - dying of cells before division and dying of cells after division. It was found that the combined action of low doses of UV radiation and alkylnitrosoureas result in a pronounced protective effect which manifests itself by a higher frequency of surviving cells than was that effected by the action of alkylnitrosoureas alone. As a result of combined action with higher doses of UV radiation this effect is lost, and the resultant values will come close to the theoretically anticipated values. This gradual transition from a protective to an additive effect mainly manifests itself by changes in the proportion of cells dying before division. (author)

  10. Cellular oxido-reductive proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Barwal Indu

    2011-12-01

    Full Text Available Abstract Background Elucidation of molecular mechanism of silver nanoparticles (SNPs biosynthesis is important to control its size, shape and monodispersity. The evaluation of molecular mechanism of biosynthesis of SNPs is of prime importance for the commercialization and methodology development for controlling the shape and size (uniform distribution of SNPs. The unicellular algae Chlamydomonas reinhardtii was exploited as a model system to elucidate the role of cellular proteins in SNPs biosynthesis. Results The C. reinhardtii cell free extract (in vitro and in vivo cells mediated synthesis of silver nanoparticles reveals SNPs of size range 5 ± 1 to 15 ± 2 nm and 5 ± 1 to 35 ± 5 nm respectively. In vivo biosynthesized SNPs were localized in the peripheral cytoplasm and at one side of flagella root, the site of pathway of ATP transport and its synthesis related enzymes. This provides an evidence for the involvement of oxidoreductive proteins in biosynthesis and stabilization of SNPs. Alteration in size distribution and decrease of synthesis rate of SNPs in protein-depleted fractions confirmed the involvement of cellular proteins in SNPs biosynthesis. Spectroscopic and SDS-PAGE analysis indicate the association of various proteins on C. reinhardtii mediated in vivo and in vitro biosynthesized SNPs. We have identified various cellular proteins associated with biosynthesized (in vivo and in vitro SNPs by using MALDI-MS-MS, like ATP synthase, superoxide dismutase, carbonic anhydrase, ferredoxin-NADP+ reductase, histone etc. However, these proteins were not associated on the incubation of pre-synthesized silver nanoparticles in vitro. Conclusion Present study provides the indication of involvement of molecular machinery and various cellular proteins in the biosynthesis of silver nanoparticles. In this report, the study is mainly focused towards understanding the role of diverse cellular protein in the synthesis and capping of silver

  11. Robust Transgene Expression from Bicistronic mRNA in the Green Alga Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Masayuki Onishi

    2016-12-01

    Full Text Available The unicellular green alga Chlamydomonas reinhardtii is a model organism that provides an opportunity to understand the evolution and functional biology of the lineage that includes the land plants, as well as aspects of the fundamental core biology conserved throughout the eukaryotic phylogeny. Although many tools are available to facilitate genetic, molecular biological, biochemical, and cell biological studies in Chlamydomonas, expression of unselected transgenes of interest (GOIs has been challenging. In most methods used previously, the GOI and a selectable marker are expressed from two separate mRNAs, so that their concomitant expression is not guaranteed. In this study, we developed constructs that allow expression of an upstream GOI and downstream selectable marker from a single bicistronic mRNA. Although this approach in other systems has typically required a translation-enhancing element such as an internal ribosome entry site for the downstream marker, we found that a short stretch of unstructured junction sequence was sufficient to obtain adequate expression of the downstream gene, presumably through post-termination reinitiation. With this system, we obtained robust expression of both endogenous and heterologous GOIs, including fluorescent proteins and tagged fusion proteins, in the vast majority of transformants, thus eliminating the need for tedious secondary screening for GOI-expressing transformants. This improved efficiency should greatly facilitate a variety of genetic and cell-biological studies in Chlamydomonas and also enable new applications such as expression-based screens and large-scale production of foreign proteins.

  12. Effect of temperature and light intensity on growth and photosynthetic activity of Chlamydomonas Reinhardtii

    International Nuclear Information System (INIS)

    Alfonsel, M.; Fernandez Gonzalez, J.

    1986-01-01

    The effect of five temperatures (15, 20, 25, 30 and 35 0 C) and two levels of illumination on growth and photosynthetic activity of Chlamydomonas reinhardtii has been studied. The growth of the cultures was evaluated by optical density. Photosynthetic activity has been carried out studying either the assimilation rate of CO 2 labelled with C 14 or the oxygen evolution by means of polarographic measurements. The maximum photosynthetic rate has been obtained at 25 0 C for the lower lavel of illumination (2400 lux) and at 35 0 C for the higher one (13200 lux). These results suggest an interacton of temperature and illumination on photosynthetic activity. (author)

  13. The Search for a Lipid Trigger: The Effect of Salt Stress on the Lipid Profile of the Model Microalgal Species Chlamydomonas reinhardtii for Biofuels Production.

    Science.gov (United States)

    Hounslow, Emily; Kapoore, Rahul Vijay; Vaidyanathan, Seetharaman; Gilmour, D James; Wright, Phillip C

    2016-11-01

    Algal cells produce neutral lipid when stressed and this can be used to generate biodiesel. Salt stressed cells of the model microalgal species Chlamydomonas reinhardtii were tested for their suitability to produce lipid for biodiesel. The starchless mutant of C. reinhardtii (CC-4325) was subjected to salt stress (0.1, 0.2 and 0.3 M NaCl) and transesterification and GC analysis were used to determine fatty acid methyl ester (FAME) content and profile. Fatty acid profile was found to vary under salt stress conditions, with a clear distinction between 0.1 M NaCl, which the algae could tolerate, and the higher levels of NaCl (0.2 and 0.3 M), which caused cell death. Lipid content was increased under salt conditions, either through long-term exposure to 0.1 M NaCl, or short-term exposure to 0.2 and 0.3 M NaCl. Palmitic acid (C16:0) and linolenic acid (C18:3n3) were found to increase significantly at the higher salinities. Salt increase can act as a lipid trigger for C. reinhardtii.

  14. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves

    Directory of Open Access Journals (Sweden)

    Carrier Patrick

    2011-01-01

    Full Text Available Abstract Background When cultivated under stress conditions, many microalgae species accumulate both starch and oil (triacylglycerols. The model green microalga Chlamydomonas reinhardtii has recently emerged as a model to test genetic engineering or cultivation strategies aiming at increasing lipid yields for biodiesel production. Blocking starch synthesis has been suggested as a way to boost oil accumulation. Here, we characterize the triacylglycerol (TAG accumulation process in Chlamydomonas and quantify TAGs in various wild-type and starchless strains. Results In response to nitrogen deficiency, Chlamydomonas reinhardtii produced TAGs enriched in palmitic, oleic and linoleic acids that accumulated in oil-bodies. Oil synthesis was maximal between 2 and 3 days following nitrogen depletion and reached a plateau around day 5. In the first 48 hours of oil deposition, a ~80% reduction in the major plastidial membrane lipids occurred. Upon nitrogen re-supply, mobilization of TAGs started after starch degradation but was completed within 24 hours. Comparison of oil content in five common laboratory strains (CC124, CC125, cw15, CC1690 and 11-32A revealed a high variability, from 2 μg TAG per million cell in CC124 to 11 μg in 11-32A. Quantification of TAGs on a cell basis in three mutants affected in starch synthesis (cw15sta1-2, cw15sta6 and cw15sta7-1 showed that blocking starch synthesis did not result in TAG over-accumulation compared to their direct progenitor, the arginine auxotroph strain 330. Moreover, no significant correlation was found between cellular oil and starch levels among the twenty wild-type, mutants and complemented strains tested. By contrast, cellular oil content was found to increase steeply with salt concentration in the growth medium. At 100 mM NaCl, oil level similar to nitrogen depletion conditions could be reached in CC124 strain. Conclusion A reference basis for future genetic studies of oil metabolism in Chlamydomonas

  15. Transcriptome Analysis of Manganese-deficient Chlamydomonas reinhardtii Provides Insight on the Chlorophyll Biosynthesis Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lockhart, Ainsley; Zvenigorodsky, Natasha; Pedraza, Mary Ann; Lindquist, Erika

    2011-08-11

    The biosynthesis of chlorophyll and other tetrapyrroles is a vital but poorly understood process. Recent genomic advances with the unicellular green algae Chlamydomonas reinhardtii have created opportunity to more closely examine the mechanisms of the chlorophyll biosynthesis pathway via transcriptome analysis. Manganese is a nutrient of interest for complex reactions because of its multiple stable oxidation states and role in molecular oxygen coordination. C. reinhardtii was cultured in Manganese-deplete Tris-acetate-phosphate (TAP) media for 24 hours and used to create cDNA libraries for sequencing using Illumina TruSeq technology. Transcriptome analysis provided intriguing insight on possible regulatory mechanisms in the pathway. Evidence supports similarities of GTR (Glutamyl-tRNA synthase) to its Chlorella vulgaris homolog in terms of Mn requirements. Data was also suggestive of Mn-related compensatory up-regulation for pathway proteins CHLH1 (Manganese Chelatase), GUN4 (Magnesium chelatase activating protein), and POR1 (Light-dependent protochlorophyllide reductase). Intriguingly, data suggests possible reciprocal expression of oxygen dependent CPX1 (coproporphyrinogen III oxidase) and oxygen independent CPX2. Further analysis using RT-PCR could provide compelling evidence for several novel regulatory mechanisms in the chlorophyll biosynthesis pathway.

  16. Robust Microplate-Based Methods for Culturing and in Vivo Phenotypic Screening of Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Timothy C. Haire

    2018-03-01

    Full Text Available Chlamydomonas reinhardtii (Cr, a unicellular alga, is routinely utilized to study photosynthetic biochemistry, ciliary motility, and cellular reproduction. Its minimal culture requirements, unicellular morphology, and ease of transformation have made it a popular model system. Despite its relatively slow doubling time, compared with many bacteria, it is an ideal eukaryotic system for microplate-based studies utilizing either, or both, absorbance as well as fluorescence assays. Such microplate assays are powerful tools for researchers in the areas of toxicology, pharmacology, chemical genetics, biotechnology, and more. However, while microplate-based assays are valuable tools for screening biological systems, these methodologies can significantly alter the conditions in which the organisms are cultured and their subsequent physiology or morphology. Herein we describe a novel method for the microplate culture and in vivo phenotypic analysis of growth, viability, and photosynthetic pigments of C. reinhardtii. We evaluated the utility of our assay by screening silver nanoparticles for their effects on growth and viability. These methods are amenable to a wide assortment of studies and present a significant advancement in the methodologies available for research involving this model organism.

  17. Alternative photosynthetic electron transport pathways during anaerobiosis in the green alga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Hemschemeier, Anja; Happe, Thomas

    2011-08-01

    Oxygenic photosynthesis uses light as energy source to generate an oxidant powerful enough to oxidize water into oxygen, electrons and protons. Upon linear electron transport, electrons extracted from water are used to reduce NADP(+) to NADPH. The oxygen molecule has been integrated into the cellular metabolism, both as the most efficient electron acceptor during respiratory electron transport and as oxidant and/or "substrate" in a number of biosynthetic pathways. Though photosynthesis of higher plants, algae and cyanobacteria produces oxygen, there are conditions under which this type of photosynthesis operates under hypoxic or anaerobic conditions. In the unicellular green alga Chlamydomonas reinhardtii, this condition is induced by sulfur deficiency, and it results in the production of molecular hydrogen. Research on this biotechnologically relevant phenomenon has contributed largely to new insights into additional pathways of photosynthetic electron transport, which extend the former concept of linear electron flow by far. This review summarizes the recent knowledge about various electron sources and sinks of oxygenic photosynthesis besides water and NADP(+) in the context of their contribution to hydrogen photoproduction by C. reinhardtii. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Hydrogen production by Chlamydomonas reinhardtii under light driven sulfur deprived condition

    Energy Technology Data Exchange (ETDEWEB)

    Vijayaraghavan, Krishnan; Karthik, Rajendran [Biotechnology Research Division, Department of Biotechnology, Prathyusha Institute of Technology and Management, Aranvoyalkuppam, Thiruvallur District 602025, Tamil Nadu (India); Kamala Nalini, S.P. [Department of Biotechnology, Vel Group of Educational Institutions, Avadi, Alamadhi Road, Chennai 600062, Tamil Nadu (India)

    2009-10-15

    This article explores the possibility of demonstrating sustainable photohydrogen production using Chlamydomonas reinhardtii when grown in sulfur deprived photoautotrophic condition. The hydrogen evolving capability of the algal species was monitored based on alternating light and dark period. Investigation was carried out during the day time in order to exploit the solar energy for meeting the demand of the light period. The results showed that when the reactor was operated at varying photoperiod namely 2, 3 and 4 h of alternating light and dark period, the gas generation was found to be 32 {+-} 4, 63 {+-} 7 and 52 {+-} 5 mL/h, while the corresponding hydrogen content was 47, 86 and 87% respectively. Functional components of hydrogen generation reaction centers were also analyzed, which showed that the PS(I) reaction centers were involved in hydrogen production pathway, as the light absorption by PS(I) was prerequisite for hydrogen generation under sulfur deprived photoautotrophic condition. The findings showed a higher gas yield and hydrogen content under dark period, whereas under light period the gas content was below detectable level for hydrogen due to the reversible hydrogenase reaction. (author)

  19. Chlamydomonas reinhardtii responding to high light: a role for 2-propenal (acrolein).

    Science.gov (United States)

    Roach, Thomas; Baur, Theresa; Stöggl, Wolfgang; Krieger-Liszkay, Anja

    2017-09-01

    High light causes photosystem II to generate singlet oxygen ( 1 O 2 ), a reactive oxygen species (ROS) that can react with membrane lipids, releasing reactive electrophile species (RES), such as acrolein. To investigate how RES may contribute to light stress responses, Chlamydomonas reinhardtii was high light-treated in photoautotrophic and mixotrophic conditions and also in an oxygen-enriched atmosphere to elevate ROS production. The responses were compared to exogenous acrolein. Non-photochemical quenching (NPQ) was higher in photoautotrophic cells, as a consequence of a more de-epoxidized state of the xanthophyll cycle pool and more LHCSR3 protein, showing that photosynthesis was under more pressure than in mixotrophic cells. Photoautotrophic cells had lowered α-tocopherol and β-carotene contents and a higher level of protein carbonylation, indicators of elevated 1 O 2 production. Levels of glutathione, glutathione peroxidase (GPX5) and glutathione-S-transferase (GST1), important antioxidants against RES, were also increased in photoautotrophic cells. In parallel to the wild-type, the LHCSR3-deficient npq4 mutant was high light-treated, which in photoautotrophic conditions exhibited particular sensitivity under elevated oxygen, the treatment that induced the highest RES levels, including acrolein. The npq4 mutant had more GPX5 and GST1 alongside higher levels of carbonylated protein and a more oxidized glutathione redox state. In wild-type cells glutathione contents doubled after 4 h treatment, either with high light under elevated oxygen or with a non-critical dose (600 ppm) of acrolein. Exogenous acrolein also increased GST1 levels, but not GPX5. Overall, RES-associated oxidative damage and glutathione metabolism are prominently associated with light stress and potentially in signaling responses of C. reinhardtii. © 2017 Scandinavian Plant Physiology Society.

  20. Growth of Chlamydomonas reinhardtii in acetate-free medium when co-cultured with alginate-encapsulated, acetate-producing strains of Synechococcus sp. PCC 7002.

    Science.gov (United States)

    Therien, Jesse B; Zadvornyy, Oleg A; Posewitz, Matthew C; Bryant, Donald A; Peters, John W

    2014-01-01

    The model alga Chlamydomonas reinhardtii requires acetate as a co-substrate for optimal production of lipids, and the addition of acetate to culture media has practical and economic implications for algal biofuel production. Here we demonstrate the growth of C. reinhardtii on acetate provided by mutant strains of the cyanobacterium Synechococcus sp. PCC 7002. Optimal growth conditions for co-cultivation of C. reinhardtii with wild-type and mutant strains of Synechococcus sp. 7002 were established. In co-culture, acetate produced by a glycogen synthase knockout mutant of Synechococcus sp. PCC 7002 was able to support the growth of a lipid-accumulating mutant strain of C. reinhardtii defective in starch production. Encapsulation of Synechococcus sp. PCC 7002 using an alginate matrix was successfully employed in co-cultures to limit growth and maintain the stability. The ability of immobilized strains of the cyanobacterium Synechococcus sp. PCC 7002 to produce acetate at a level adequate to support the growth of lipid-accumulating strains of C. reinhartdii offers a potentially practical, photosynthetic alternative to providing exogenous acetate into growth media.

  1. Rubisco activase is required for optimal photosynthesis in the green alga Chlamydomonas reinhardtii in a low-CO(2) atmosphere.

    Science.gov (United States)

    Pollock, Steve V; Colombo, Sergio L; Prout, Davey L; Godfrey, Ashley C; Moroney, James V

    2003-12-01

    This report describes a Chlamydomonas reinhardtii mutant that lacks Rubisco activase (Rca). Using the BleR (bleomycin resistance) gene as a positive selectable marker for nuclear transformation, an insertional mutagenesis screen was performed to select for cells that required a high-CO2 atmosphere for optimal growth. The DNA flanking the BleR insert of one of the high-CO2-requiring strains was cloned using thermal asymmetric interlaced-polymerase chain reaction and inverse polymerase chain reaction and sequenced. The flanking sequence matched the C. reinhardtii Rca cDNA sequence previously deposited in the National Center for Biotechnology Information database. The loss of a functional Rca in the strain was confirmed by the absence of Rca mRNA and protein. The open reading frame for Rca was cloned and expressed in pSL18, a C. reinhardtii expression vector conferring paromomycin resistance. This construct partially complemented the mutant phenotype, supporting the hypothesis that the loss of Rca was the reason the mutant grew poorly in a low-CO2 atmosphere. Sequencing of the C. reinhardtii Rca gene revealed that it contains 10 exons ranging in size from 18 to 470 bp. Low-CO2-grown rca1 cultures had a growth rate and maximum rate of photosynthesis 60% of wild-type cells. Results obtained from experiments on a cia5 rca1 double mutant also suggest that the CO2-concentrating mechanism partially compensates for the absence of an active Rca in the green alga C. reinhardtii.

  2. Adaptation prevents the extinction of Chlamydomonas reinhardtii under toxic beryllium

    Directory of Open Access Journals (Sweden)

    Beatriz Baselga-Cervera

    2016-03-01

    Full Text Available The current biodiversity crisis represents a historic challenge for natural communities: the environmental rate of change exceeds the population’s adaptation capability. Integrating both ecological and evolutionary responses is necessary to make reliable predictions regarding the loss of biodiversity. The race against extinction from an eco-evolutionary perspective is gaining importance in ecological risk assessment. Here, we performed a classical study of population dynamics—a fluctuation analysis—and evaluated the results from an adaption perspective. Fluctuation analysis, widely used with microorganisms, is an effective empirical procedure to study adaptation under strong selective pressure because it incorporates the factors that influence demographic, genetic and environmental changes. The adaptation of phytoplankton to beryllium (Be is of interest because human activities are increasing the concentration of Be in freshwater reserves; therefore, predicting the effects of human-induced pollutants is necessary for proper risk assessment. The fluctuation analysis was performed with phytoplankton, specifically, the freshwater microalgae Chlamydomonas reinhardtii, under acute Be exposure. High doses of Be led to massive microalgae death; however, by conducting a fluctuation analysis experiment, we found that C. reinhardtii was able to adapt to 33 mg/l of Be due to pre-existing genetic variability. The rescuing adapting genotype presented a mutation rate of 9.61 × 10−6 and a frequency of 10.42 resistant cells per million wild-type cells. The genetic adaptation pathway that was experimentally obtained agreed with the theoretical models of evolutionary rescue (ER. Furthermore, the rescuing genotype presented phenotypic and physiologic differences from the wild-type genotype, was 25% smaller than the Be-resistant genotype and presented a lower fitness and quantum yield performance. The abrupt distinctions between the wild-type and the Be

  3. Functional specificity of cardiolipin synthase revealed by the identification of a cardiolipin synthase CrCLS1 in Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Chun-Hsien eHung

    2016-01-01

    Full Text Available Phosphatidylglycerol (PG and cardiolipin (CL are two essential classes of phospholipid in plants and algae. Phosphatidylglycerophosphate synthase (PGPS and cardiolipin synthase (CLS involved in the biosynthesis of PG and CL belong to CDP-alcohol phosphotransferase and share overall amino acid sequence homology. However, it remains elusive whether PGPS and CLS are functionally distinct in vivo. Here, we report identification of a gene encoding CLS in Chlamydomonas reinhardtii, CrCLS1, and its functional compatibility. Whereas CrCLS1 did not complement the growth phenotype of a PGPS mutant of Synechocystis sp. PCC 6803, it rescued the temperature-sensitive growth phenotype, growth profile with different carbon sources, phospholipid composition and enzyme activity of ∆crd1, a CLS mutant of Saccharomyces cerevisiae. These results suggest that CrCLS1 encodes a functional CLS of C. reinhardtii as the first identified algal CLS, whose enzyme function is distinct from that of PGPSs from C. reinhardtii. Comparison of CDP-alcohol phosphotransferase motif between PGPS and CLS among different species revealed a possible additional motif that might define the substrate specificity of these closely related enzymes.

  4. A cost-effective approach to produce 15N-labelled amino acids employing Chlamydomonas reinhardtii CC503.

    Science.gov (United States)

    Nicolás Carcelén, Jesús; Marchante-Gayón, Juan Manuel; González, Pablo Rodríguez; Valledor, Luis; Cañal, María Jesús; Alonso, José Ignacio García

    2017-08-18

    The use of enriched stable isotopes is of outstanding importance in chemical metrology as it allows the application of isotope dilution mass spectrometry (IDMS). Primary methods based on IDMS ensure the quality of the analytical measurements and traceability of the results to the international system of units. However, the synthesis of isotopically labelled molecules from enriched stable isotopes is an expensive and a difficult task. Either chemical and biochemical methods to produce labelled molecules have been proposed, but so far, few cost-effective methods have been described. The aim of this study was to use the microalgae Chlamydomonas reinhardtii to produce, at laboratory scale, 15 N-labelled amino acids with a high isotopic enrichment. To do that, a culture media containing 15 NH 4 Cl was used. No kinetic isotope effect (KIE) was observed. The labelled proteins biosynthesized by the microorganism were extracted from the biomass and the 15 N-labelled amino acids were obtained after a protein hydrolysis with HCl. The use of the wall deficient strain CC503 cw92 mt+ is fit for purpose, as it only assimilates ammonia as nitrogen source, avoiding isotope contamination with nitrogen from the atmosphere or the reagents used in the culture medium, and enhancing the protein extraction efficiency compared to cell-walled wild type Chlamydomonas. The isotopic enrichment of the labelled amino acids was calculated from their isotopic composition measured by gas chromatography mass spectrometry (GC-MS). The average isotopic enrichment for the 16 amino acids characterized was 99.56 ± 0.05% and the concentration of the amino acids in the hydrolysate ranged from 18 to 90 µg/mL. Previously reported biochemical methods to produce isotopically labelled proteins have been applied in the fields of proteomics and fluxomics. For these approaches, low amounts of products are required and the isotopic enrichment of the molecules has never been properly determined. So far, only 13

  5. The small molecule fenpropimorph rapidly converts chloroplast membrane lipids to triacylglycerols in Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Hanul eKim

    2015-02-01

    Full Text Available Concern about global warming has prompted an intense interest in developing economical methods of producing biofuels. Microalgae provide a promising platform for biofuel production, because they accumulate high levels of lipids, and do not compete with food or feed sources. However, current methods of producing algal oil involve subjecting the microalgae to stress conditions, such as nitrogen deprivation, and are prohibitively expensive. Here, we report that the fungicide fenpropimorph rapidly causes high levels of neutral lipids to accumulate in Chlamydomonas reinhardtii cells. When treated with fenpropimorph (10 μg mL–1 for 1 h, Chlamydomonas cells accumulated at least four-fold the amount of triacylglycerols (TAGs present in the untreated control cells. Furthermore, the quantity of TAGs present after 1 h of fenpropimorph treatment was over two-fold higher than that formed after 9 days of nitrogen starvation in medium with no acetate supplement. Biochemical analysis of lipids revealed that the accumulated TAGs were derived mainly from chloroplast polar membrane lipids. Such a conversion of chloroplast polar lipids to TAGs is desirable for biodiesel production, because polar lipids are usually removed during the biodiesel production process. Thus, our data exemplified that a cost and time effective method of producing TAGs is possible using fenpropimorph or similar drugs.

  6. Metabolic acclimation to excess light intensity in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Davis, Maria C; Fiehn, Oliver; Durnford, Dion G

    2013-07-01

    There are several well-described acclimation responses to excess light in green algae but the effect on metabolism has not been thoroughly investigated. This study examines the metabolic changes during photoacclimation to high-light (HL) stress in Chlamydomonas reinhardtii using nuclear magnetic resonance and mass spectrometry. Using principal component analysis, a clear metabolic response to HL intensity was observed on global metabolite pools, with major changes in the levels of amino acids and related nitrogen metabolites. Amino acid pools increased during short-term photoacclimation, but were especially prominent in HL-acclimated cultures. Unexpectedly, we observed an increase in mitochondrial metabolism through downstream photorespiratory pathways. The expression of two genes encoding key enzymes in the photorespiratory pathway, glycolate dehydrogenase and malate synthase, were highly responsive to the HL stress. We propose that this pathway contributes to metabolite pools involved in nitrogen assimilation and may play a direct role in photoacclimation. Our results suggest that primary and secondary metabolism is highly pliable and plays a critical role in coping with the energetic imbalance during HL exposure and a necessary adjustment to support an increased growth rate that is an effective energy sink for the excess reducing power generated during HL stress. © 2013 John Wiley & Sons Ltd.

  7. Ultraviolet modification of Chlamydomonas reinhardtii for carbon capture

    Directory of Open Access Journals (Sweden)

    Gopal NS

    2016-04-01

    Full Text Available Nikhil S Gopal,1 K Sudhakar2 1The Lawrenceville School, Lawrenceville, NJ, USA; 2Bioenergy Laboratory, Malauna Azad National Institute of Technology, Bhopal, India Purpose: Carbon dioxide (CO2 levels have been rising rapidly. Algae are single-cell organisms with highly efficient CO2 uptake mechanisms. Algae yield two to ten times more biomass versus terrestrial plants and can grow nearly anywhere. Large scale CO2 sequestration is not yet sustainable due to high amounts of nitrogen (N and phosphate (P needed to grow algae in media. Methods: Mutant strains of Chlamydomonas reinhardtii were created using ultraviolet light (2.2–3 K J/m2 and natural selection using media with 20%–80% lower N and P compared to standard Sueoka's high salt medium. Strains were selected based upon growth in media concentrations varying from 20% to 80% less N/P compared to control. Biomass was compared to wild-type control (CC-125 using direct counts, optical density dry weight, and mean doubling time. Results: Mean doubling time was 20 and 25 hours in the low N and N/P strains, respectively (vs 66 hours in control. Using direct counts, growth rates of mutant strains of low N and N/P cultures were not statistically different from control (P=0.37 and 0.70, respectively. Conclusion: Two new strains of algae, as well as wild-type control, were able to grow while using 20%–40% less N and P. Ultraviolet light-based modification of algae is an inexpensive and alternative option to genetic engineering techniques. This technique might make larger scale biosequestration possible. Keywords: biosequestration, ultraviolet, carbon sequestration, carbon capture, algae

  8. Thioredoxin-dependent Redox Regulation of Chloroplastic Phosphoglycerate Kinase from Chlamydomonas reinhardtii*

    Science.gov (United States)

    Morisse, Samuel; Michelet, Laure; Bedhomme, Mariette; Marchand, Christophe H.; Calvaresi, Matteo; Trost, Paolo; Fermani, Simona; Zaffagnini, Mirko; Lemaire, Stéphane D.

    2014-01-01

    In photosynthetic organisms, thioredoxin-dependent redox regulation is a well established mechanism involved in the control of a large number of cellular processes, including the Calvin-Benson cycle. Indeed, 4 of 11 enzymes of this cycle are activated in the light through dithiol/disulfide interchanges controlled by chloroplastic thioredoxin. Recently, several proteomics-based approaches suggested that not only four but all enzymes of the Calvin-Benson cycle may withstand redox regulation. Here, we characterized the redox features of the Calvin-Benson enzyme phosphoglycerate kinase (PGK1) from the eukaryotic green alga Chlamydomonas reinhardtii, and we show that C. reinhardtii PGK1 (CrPGK1) activity is inhibited by the formation of a single regulatory disulfide bond with a low midpoint redox potential (−335 mV at pH 7.9). CrPGK1 oxidation was found to affect the turnover number without altering the affinity for substrates, whereas the enzyme activation appeared to be specifically controlled by f-type thioredoxin. Using a combination of site-directed mutagenesis, thiol titration, mass spectrometry analyses, and three-dimensional modeling, the regulatory disulfide bond was shown to involve the not strictly conserved Cys227 and Cys361. Based on molecular mechanics calculation, the formation of the disulfide is proposed to impose structural constraints in the C-terminal domain of the enzyme that may lower its catalytic efficiency. It is therefore concluded that CrPGK1 might constitute an additional light-modulated Calvin-Benson cycle enzyme with a low activity in the dark and a TRX-dependent activation in the light. These results are also discussed from an evolutionary point of view. PMID:25202015

  9. Separation Options for Phosphorylated Osteopontin from Transgenic Microalgae Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Ayswarya Ravi

    2018-02-01

    Full Text Available Correct folding and post-translational modifications are vital for therapeutic proteins to elicit their biological functions. Osteopontin (OPN, a bone regenerative protein present in a range of mammalian cells, is an acidic phosphoprotein with multiple potential phosphorylation sites. In this study, the ability of unicellular microalgae, Chlamydomonas reinhardtii, to produce phosphorylated recombinant OPN in its chloroplast is investigated. This study further explores the impact of phosphorylation and expression from a “plant-like” algae on separation of OPN. Chromatography resins ceramic hydroxyapatite (CHT and Gallium-immobilized metal affinity chromatography (Ga-IMAC were assessed for their binding specificity to phosphoproteins. Non-phosphorylated recombinant OPN expressed in E. coli was used to compare the specificity of interaction of the resins to phosphorylated OPN. We observed that CHT binds OPN by multimodal interactions and was better able to distinguish phosphorylated proteins in the presence of 250 mM NaCl. Ga-IMAC interaction with OPN was not selective to phosphorylation, irrespective of salt, as the resin bound OPN from both algal and bacterial sources. Anion exchange chromatography proved an efficient capture method to partially separate major phosphorylated host cell protein impurities such as Rubisco from OPN.

  10. Rubisco Activase Is Required for Optimal Photosynthesis in the Green Alga Chlamydomonas reinhardtii in a Low-CO2 Atmosphere1

    Science.gov (United States)

    Pollock, Steve V.; Colombo, Sergio L.; Prout, Davey L.; Godfrey, Ashley C.; Moroney, James V.

    2003-01-01

    This report describes a Chlamydomonas reinhardtii mutant that lacks Rubisco activase (Rca). Using the BleR (bleomycin resistance) gene as a positive selectable marker for nuclear transformation, an insertional mutagenesis screen was performed to select for cells that required a high-CO2 atmosphere for optimal growth. The DNA flanking the BleR insert of one of the high-CO2-requiring strains was cloned using thermal asymmetric interlaced-polymerase chain reaction and inverse polymerase chain reaction and sequenced. The flanking sequence matched the C. reinhardtii Rca cDNA sequence previously deposited in the National Center for Biotechnology Information database. The loss of a functional Rca in the strain was confirmed by the absence of Rca mRNA and protein. The open reading frame for Rca was cloned and expressed in pSL18, a C. reinhardtii expression vector conferring paromomycin resistance. This construct partially complemented the mutant phenotype, supporting the hypothesis that the loss of Rca was the reason the mutant grew poorly in a low-CO2 atmosphere. Sequencing of the C. reinhardtii Rca gene revealed that it contains 10 exons ranging in size from 18 to 470 bp. Low-CO2-grown rca1 cultures had a growth rate and maximum rate of photosynthesis 60% of wild-type cells. Results obtained from experiments on a cia5 rca1 double mutant also suggest that the CO2-concentrating mechanism partially compensates for the absence of an active Rca in the green alga C. reinhardtii. PMID:14605215

  11. The nucleobase cation symporter 1 of Chlamydomonas reinhardtii and that of the evolutionarily distant Arabidopsis thaliana display parallel function and establish a plant-specific solute transport profile.

    Science.gov (United States)

    Schein, Jessica R; Hunt, Kevin A; Minton, Janet A; Schultes, Neil P; Mourad, George S

    2013-09-01

    The single cell alga Chlamydomonas reinhardtii is capable of importing purines as nitrogen sources. An analysis of the annotated C. reinhardtii genome reveals at least three distinct gene families encoding for known nucleobase transporters. In this study the solute transport and binding properties for the lone C. reinhardtii nucleobase cation symporter 1 (CrNCS1) are determined through heterologous expression in Saccharomyces cerevisiae. CrNCS1 acts as a transporter of adenine, guanine, uracil and allantoin, sharing similar - but not identical - solute recognition specificity with the evolutionary distant NCS1 from Arabidopsis thaliana. The results suggest that the solute specificity for plant NCS1 occurred early in plant evolution and are distinct from solute transport specificities of single cell fungal NCS1 proteins. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  12. Optimization of the C11-BODIPY581/591 Dye for the Determination of Lipid Oxidation in Chlamydomonas reinhardtii by Flow Cytometry

    OpenAIRE

    CHELONI Giulia

    2013-01-01

    Lipid oxidation is a recognized end point for the study of oxidative stress and is an important parameter to describe the mode of micropollutant action on aquatic microorganisms. Therefore the development of quick and reliable methodologies probing the oxidative stress and damage in living cells is highly sought. In the present proof of concept work we examined the potential of the fluorescent dye C11 BODIPY591/581 to probe lipid oxidation in the green microalga Chlamydomonas reinhardtii. C11...

  13. High-yield secretion of recombinant proteins from the microalga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Ramos-Martinez, Erick Miguel; Fimognari, Lorenzo; Sakuragi, Yumiko

    2017-09-01

    Microalga-based biomanufacturing of recombinant proteins is attracting growing attention due to its advantages in safety, metabolic diversity, scalability and sustainability. Secretion of recombinant proteins can accelerate the use of microalgal platforms by allowing post-translational modifications and easy recovery of products from the culture media. However, currently, the yields of secreted recombinant proteins are low, which hampers the commercial application of this strategy. This study aimed at expanding the genetic tools for enhancing secretion of recombinant proteins in Chlamydomonas reinhardtii, a widely used green microalga as a model organism and a potential industrial biotechnology platform. We demonstrated that the putative signal sequence from C. reinhardtii gametolysin can assist the secretion of the yellow fluorescent protein Venus into the culture media. To increase the secretion yields, Venus was C-terminally fused with synthetic glycomodules comprised of tandem serine (Ser) and proline (Pro) repeats of 10 and 20 units [hereafter (SP) n , wherein n = 10 or 20]. The yields of the (SP) n -fused Venus were higher than Venus without the glycomodule by up to 12-fold, with the maximum yield of 15 mg/L. Moreover, the presence of the glycomodules conferred an enhanced proteolytic protein stability. The Venus-(SP) n proteins were shown to be glycosylated, and a treatment of the cells with brefeldin A led to a suggestion that glycosylation of the (SP) n glycomodules starts in the endoplasmic reticulum (ER). Taken together, the results demonstrate the utility of the gametolysin signal sequence and (SP) n glycomodule to promote a more efficient biomanufacturing of microalgae-based recombinant proteins. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Crystallization and preliminary X-ray diffraction analysis of l,l-diaminopimelate aminotransferase (DapL) from Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Hudson, André O.; Girón, Irma; Dobson, Renwick C. J.

    2010-01-01

    A variant of the diaminopimelate/lysine pathway has recently been defined following the discovery of the enzyme l,l-diaminopimelate aminotransferase (DapL). The cloning of the cDNA, recombinant expression, purification and preliminary diffraction analysis of DapL from the alga C. reinhardtii are presented. In the anabolic synthesis of diaminopimelate and lysine in plants and in some bacteria, the enzyme l,l-diaminopimelate aminotransferase (DapL; EC 2.6.1.83) catalyzes the conversion of tetrahydrodipicolinic acid (THDPA) to l,l-diaminopimelate, bypassing the DapD, DapC and DapE enzymatic steps in the bacterial acyl pathways. Here, the cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of DapL from the alga Chlamydomonas reinhardtii are presented. Protein crystals were grown in conditions containing 25%(w/v) PEG 3350 and 200 mM lithium sulfate and initially diffracted to ∼1.35 Å resolution. They belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 58.9, b = 91.8, c = 162.9 Å. The data were processed to 1.55 Å resolution with an R merge of 0.081, an R p.i.m. of 0.044, an R r.i.m of 0.093 and a V M of 2.28 Å 3 Da −1

  15. Comparison of secretory signal peptides for heterologous protein expression in microalgae: Expanding the secretion portfolio for Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    João Vitor Dutra Molino

    Full Text Available Efficient protein secretion is a desirable trait for any recombinant protein expression system, together with simple, low-cost, and defined media, such as the typical media used for photosynthetic cultures of microalgae. However, low titers of secreted heterologous proteins are usually obtained, even with the most extensively studied microalga Chlamydomonas reinhardtii, preventing their industrial application. In this study, we aimed to expand and evaluate secretory signal peptides (SP for heterologous protein secretion in C. reinhardtii by comparing previously described SP with untested sequences. We compared the SPs from arylsulfatase 1 and carbonic anhydrase 1, with those of untried SPs from binding protein 1, an ice-binding protein, and six sequences identified in silico. We identified over 2000 unique SPs using the SignalP 4.0 software. mCherry fluorescence was used to compare the protein secretion of up to 96 colonies for each construct, non-secretion construct, and parental wild-type cc1690 cells. Supernatant fluorescence varied according to the SP used, with a 10-fold difference observed between the highest and lowest secretors. Moreover, two SPs identified in silico secreted the highest amount of mCherry. Our results demonstrate that the SP should be carefully selected and that efficient sequences can be coded in the C. reinhardtii genome. The SPs described here expand the portfolio available for research on heterologous protein secretion and for biomanufacturing applications.

  16. A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Fan, J.; Xu, C.; Andre, C.

    2011-06-23

    Neutral lipid metabolism has been extensively studied in yeast, plants and mammals. In contrast, little information is available regarding the biochemical pathway, enzymes and regulatory factors involved in the biosynthesis of triacylglycerol (TAG) in microalgae. In the conventional TAG biosynthetic pathway widely accepted for yeast, plants and mammals, TAG is assembled in the endoplasmic reticulum (ER) from its immediate precursor diacylglycerol (DAG) made by ER-specific acyltransferases, and is deposited exclusively in lipid droplets in the cytosol. Here, we demonstrated that the unicellular microalga Chlamydomonas reinhardtii employs a distinct pathway that uses DAG derived almost exclusively from the chloroplast to produce TAG. This unique TAG biosynthesis pathway is largely dependent on de novo fatty acid synthesis, and the TAG formed in this pathway is stored in lipid droplets in both the chloroplast and the cytosol. These findings have wide implications for understanding TAG biosynthesis and storage and other areas of lipid metabolism in microalgae and other organisms.

  17. Experimental evolution of an alternating uni- and multicellular life cycle in Chlamydomonas reinhardtii

    Science.gov (United States)

    Ratcliff, William C.; Herron, Matthew D.; Howell, Kathryn; Pentz, Jennifer T.; Rosenzweig, Frank; Travisano, Michael

    2013-01-01

    The transition to multicellularity enabled the evolution of large, complex organisms, but early steps in this transition remain poorly understood. Here we show that multicellular complexity, including development from a single cell, can evolve rapidly in a unicellular organism that has never had a multicellular ancestor. We subject the alga Chlamydomonas reinhardtii to conditions that favour multicellularity, resulting in the evolution of a multicellular life cycle in which clusters reproduce via motile unicellular propagules. While a single-cell genetic bottleneck during ontogeny is widely regarded as an adaptation to limit among-cell conflict, its appearance very early in this transition suggests that it did not evolve for this purpose. Instead, we find that unicellular propagules are adaptive even in the absence of intercellular conflict, maximizing cluster-level fecundity. These results demonstrate that the unicellular bottleneck, a trait essential for evolving multicellular complexity, can arise rapidly via co-option of the ancestral unicellular form. PMID:24193369

  18. The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    María Esther Pérez-Pérez

    2017-07-01

    Full Text Available Cell growth is tightly coupled to nutrient availability. The target of rapamycin (TOR kinase transmits nutritional and environmental cues to the cellular growth machinery. TOR functions in two distinct multiprotein complexes, termed TOR complex 1 (TORC1 and TOR complex 2 (TORC2. While the structure and functions of TORC1 are highly conserved in all eukaryotes, including algae and plants, TORC2 core proteins seem to be missing in photosynthetic organisms. TORC1 controls cell growth by promoting anabolic processes, including protein synthesis and ribosome biogenesis, and inhibiting catabolic processes such as autophagy. Recent studies identified rapamycin-sensitive TORC1 signaling regulating cell growth, autophagy, lipid metabolism, and central metabolic pathways in the model unicellular green alga Chlamydomonas reinhardtii. The central role that microalgae play in global biomass production, together with the high biotechnological potential of these organisms in biofuel production, has drawn attention to the study of proteins that regulate cell growth such as the TOR kinase. In this review we discuss the recent progress on TOR signaling in algae.

  19. The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Pérez-Pérez, María Esther; Couso, Inmaculada; Crespo, José L

    2017-07-12

    Cell growth is tightly coupled to nutrient availability. The target of rapamycin (TOR) kinase transmits nutritional and environmental cues to the cellular growth machinery. TOR functions in two distinct multiprotein complexes, termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2). While the structure and functions of TORC1 are highly conserved in all eukaryotes, including algae and plants, TORC2 core proteins seem to be missing in photosynthetic organisms. TORC1 controls cell growth by promoting anabolic processes, including protein synthesis and ribosome biogenesis, and inhibiting catabolic processes such as autophagy. Recent studies identified rapamycin-sensitive TORC1 signaling regulating cell growth, autophagy, lipid metabolism, and central metabolic pathways in the model unicellular green alga Chlamydomonas reinhardtii . The central role that microalgae play in global biomass production, together with the high biotechnological potential of these organisms in biofuel production, has drawn attention to the study of proteins that regulate cell growth such as the TOR kinase. In this review we discuss the recent progress on TOR signaling in algae.

  20. A simple and non-invasive method for nuclear transformation of intact-walled Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Sora Kim

    Full Text Available Genetic engineering in microalgae is gaining attraction but nuclear transformation methods available so far are either inefficient or require special equipment. In this study, we employ positively charged nanoparticles, 3-aminopropyl-functionalized magnesium phyllosilicate (aminoclay, approximate unit cell composition of [H2N(CH23]8Si8Mg6O12(OH4, for nuclear transformation into eukaryotic microalgae. TEM and EDX analysis of the process of transformation reveals that aminoclay coats negatively-charged DNA biomolecules and forms a self-assembled hybrid nanostructure. Subsequently, when this nanostructure is mixed with microalgal cells and plated onto selective agar plates with high friction force, cell wall is disrupted facilitating delivery of plasmid DNA into the cell and ultimately to the nucleus. This method is not only simple, inexpensive, and non-toxic to cells but also provides efficient transformation (5.03×10(2 transformants/µg DNA, second only to electroporation which needs advanced instrumentation. We present optimized parameters for efficient transformation including pre-treatment, friction force, concentration of foreign DNA/aminoclay, and plasticity of agar plates. It is also confirmed the successful integration and stable expression of foreign gene in Chlamydomonas reinhardtii through molecular methods.

  1. Improving the optimum yield and growth of Chlamydomonas ...

    African Journals Online (AJOL)

    N.T

    2016-06-08

    Jun 8, 2016 ... genomes such as Chlamydomonas reinhardtii, Chlorella vulgaris, Volvox ..... The potential of micro algae as laboratory tool in cosmetic industries ..... lutein by Chlorella protothecoides at various glucose concentrations in.

  2. Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production.

    Science.gov (United States)

    Park, Won-Kun; Yoo, Gursong; Moon, Myounghoon; Kim, Chul Woong; Choi, Yoon-E; Yang, Ji-Won

    2013-11-01

    Cultivation is the most expensive step in the production of biodiesel from microalgae, and substantial research has been devoted to developing more cost-effective cultivation methods. Plant hormones (phytohormones) are chemical messengers that regulate various aspects of growth and development and are typically active at very low concentrations. In this study, we investigated the effect of different phytohormones on microalgal growth and biodiesel production in Chlamydomonas reinhardtii and their potential to lower the overall cost of commercial biofuel production. The results indicated that all five of the tested phytohormones (indole-3-acetic acid, gibberellic acid, kinetin, 1-triacontanol, and abscisic acid) promoted microalgal growth. In particular, hormone treatment increased biomass production by 54 to 69 % relative to the control growth medium (Tris-acetate-phosphate, TAP). Phytohormone treatments also affected microalgal cell morphology but had no effect on the yields of fatty acid methyl esters (FAMEs) as a percent of biomass. We also tested the effect of these phytohormones on microalgal growth in nitrogen-limited media by supplementation in the early stationary phase. Maximum cell densities after addition of phytohormones were higher than in TAP medium, even when the nitrogen source was reduced to 40 % of that in TAP medium. Taken together, our results indicate that phytohormones significantly increased microalgal growth, particularly in nitrogen-limited media, and have potential for use in the development of efficient microalgal cultivation for biofuel production.

  3. Screening of Chlamydomonas reinhardtii Populations with Single-Cell Resolution by Using a High-Throughput Microscale Sample Preparation for Matrix-Assisted Laser Desorption Ionization Mass Spectrometry.

    Science.gov (United States)

    Krismer, Jasmin; Sobek, Jens; Steinhoff, Robert F; Fagerer, Stephan R; Pabst, Martin; Zenobi, Renato

    2015-08-15

    The consequences of cellular heterogeneity, such as biocide persistence, can only be tackled by studying each individual in a cell population. Fluorescent tags provide tools for the high-throughput analysis of genomes, RNA transcripts, or proteins on the single-cell level. However, the analysis of lower-molecular-weight compounds that elude tagging is still a great challenge. Here, we describe a novel high-throughput microscale sample preparation technique for single cells that allows a mass spectrum to be obtained for each individual cell within a microbial population. The approach presented includes spotting Chlamydomonas reinhardtii cells, using a noncontact microarrayer, onto a specialized slide and controlled lysis of cells separated on the slide. Throughout the sample preparation, analytes were traced and individual steps optimized using autofluorescence detection of chlorophyll. The lysates of isolated cells are subjected to a direct, label-free analysis using matrix-assisted laser desorption ionization mass spectrometry. Thus, we were able to differentiate individual cells of two Chlamydomonas reinhardtii strains based on single-cell mass spectra. Furthermore, we showed that only population profiles with real single-cell resolution render a nondistorted picture of the phenotypes contained in a population. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Kinetic modeling of light limitation and sulfur deprivation effects in the induction of hydrogen production with Chlamydomonas reinhardtii: Part I. Model development and parameter identification.

    Science.gov (United States)

    Fouchard, Swanny; Pruvost, Jérémy; Degrenne, Benoit; Titica, Mariana; Legrand, Jack

    2009-01-01

    Chlamydomonas reinhardtii is a green microalga capable of turning its metabolism towards H2 production under specific conditions. However this H2 production, narrowly linked to the photosynthetic process, results from complex metabolic reactions highly dependent on the environmental conditions of the cells. A kinetic model has been developed to relate culture evolution from standard photosynthetic growth to H2 producing cells. It represents transition in sulfur-deprived conditions, known to lead to H2 production in Chlamydomonas reinhardtii, and the two main processes then induced which are an over-accumulation of intracellular starch and a progressive reduction of PSII activity for anoxia achievement. Because these phenomena are directly linked to the photosynthetic growth, two kinetic models were associated, the first (one) introducing light dependency (Haldane type model associated to a radiative light transfer model), the second (one) making growth a function of available sulfur amount under extracellular and intracellular forms (Droop formulation). The model parameters identification was realized from experimental data obtained with especially designed experiments and a sensitivity analysis of the model to its parameters was also conducted. Model behavior was finally studied showing interdependency between light transfer conditions, photosynthetic growth, sulfate uptake, photosynthetic activity and O2 release, during transition from oxygenic growth to anoxic H2 production conditions.

  5. An omics based assessment of cadmium toxicity in the green alga Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Jamers, An; Blust, Ronny; De Coen, Wim [Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Griffin, Julian L. [Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 2QA (United Kingdom); Jones, Oliver A.H., E-mail: oliver.jones@rmit.edu.au [School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne, VIC 3001 (Australia)

    2013-01-15

    The effects of cadmium were assessed in the freshwater alga Chlamydomonas reinhardtii. Algae were exposed to concentrations of 0, 8.1 or 114.8 {mu}M of cadmium and growth rates, gene transcription and metabolite profiles were examined after 48 and 72 h of exposure. In algae exposed to 8.1 {mu}M Cd, several genes were differentially transcribed after 48 h but no adverse growth related effects were detected. A transient effect on both gene transcription patterns and metabolite profiles could be discerned after 48 h of exposure but the majority of these changes disappeared after 72 h. In contrast, all effects were more pronounced at the 114.8 {mu}M cadmium exposure. Here growth was clearly reduced and transcription of a large number of genes involved in oxidative stress defense mechanisms was differentially increased. Metabolites involved in the glutathione synthesis pathway (an important antioxidant defense) were also affected but the effects of cadmium were found to be more pronounced at the transcript level than in the metabolome, suggesting that the former exhibits greater sensitivity toward cadmium exposure.

  6. The effect of caffeine on repair in chlamydomonas reinhardtii. Pt. 1

    International Nuclear Information System (INIS)

    Rosen, H.; Rehn, M.M.; Johnson, B.A.

    1980-01-01

    The effect of caffeine on repair was studied in the green alga Chlamydomonas reinhardtii. Treatment of UV-irradiated wild-type (UVS + ) cells with a sublethal level of caffeine caused a significant increase in survival compared to untreated UV-irradiated cells. Caffeine did not affect survival in the repair-deficient strain UVSE1, which is deficient in repair of UV-induced damage carried out by enzymes associated with recombination during meiosis. A significant increase in survival in the presence of caffeine was observed in the repair-deficient strain UVSE4 in which recombination during meiosis is not affected. Treatment of zygotes homozygous for UVS + , UVSE1, or UVSE4 with sublethal levels of caffeine caused marked increases in recombination frequency in UVS + and UVSE4 zygotes and no increase in recombination in UVSE1 zygotes. These results indicate that caffeine increases recombination in normal strains. Increased opportunity for recombination caused by caffeine would not result in increased recombination frequency in the UVSE1 strain, assuming limited-recombination enzyme activity in this strain. The observed increase in survival following UV-irradiation in the presence of caffeine in strains having normal recombination would therefore be associated with a caffeine-induced increase in opportunities for recombination repair. (orig.)

  7. Bioavailability of wastewater derived dissolved organic nitrogen to green microalgae Selenastrum capricornutum, Chlamydomonas reinhardtii, and Chlorella vulgaris with/without presence of bacteria.

    Science.gov (United States)

    Sun, Jingyi; Simsek, Halis

    2017-07-01

    Effluent dissolved organic nitrogen (DON) is problematic in nutrient sensitive surface waters and needs to be reduced to meet demanding total dissolved nitrogen discharge limits. Bioavailable DON (ABDON) is a portion of DON utilized by algae or algae+bacteria, while biodegradable DON (BDON) is a portion of DON decomposable by bacteria. ABDON and BDON in a two-stage trickling filter (TF) wastewater treatment plant was evaluated using three different microalgal species, Selenastrum capricornutum, Chlamydomonas reinhardtii and Chlorella vulgaris and mixed cultured bacteria. Results showed that up to 80% of DON was bioavailable to algae or algae+bacteria inoculum while up to 60% of DON was biodegradable in all the samples. Results showed that C. reinhardtii and C. vulgaris can be used as a test species the same as S. capricornutum since there were no significant differences among these three algae species based on their ability to remove nitrogen species. Copyright © 2017. Published by Elsevier B.V.

  8. Deletion of CGLD1 Impairs PSII and Increases Singlet Oxygen Tolerance of Green Alga Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Jiale Xing

    2017-12-01

    Full Text Available The green alga Chlamydomonas reinhardtii is a key model organism for studying photosynthesis and oxidative stress in unicellular eukaryotes. Using a forward genetics approach, we have identified and characterized a mutant x32, which lacks a predicted protein named CGLD1 (Conserved in Green Lineage and Diatom 1 in GreenCut2, under normal and stress conditions. We show that loss of CGLD1 resulted in minimal photoautotrophic growth and PSII activity in the organism. We observed reduced amount of PSII complex and core subunits in the x32 mutant based on blue-native (BN/PAGE and immunoblot analysis. Moreover, x32 exhibited increased sensitivity to high-light stress and altered tolerance to different reactive oxygenic species (ROS stress treatments, i.e., decreased resistance to H2O2/or tert-Butyl hydroperoxide (t-BOOH and increased tolerance to neutral red (NR and rose bengal (RB that induce the formation of singlet oxygen, respectively. Further analysis via quantitative real-time PCR (qRT-PCR indicated that the increased singlet-oxygen tolerance of x32 was largely correlated with up-regulated gene expression of glutathione-S-transferases (GST. The phenotypical and physiological implications revealed from our experiments highlight the important roles of CGLD1 in maintaining structure and function of PSII as well as in protection of Chlamydomonas under photo-oxidative stress conditions.

  9. Katanin localization requires triplet microtubules in Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Jessica M Esparza

    Full Text Available Centrioles and basal bodies are essential for a variety of cellular processes that include the recruitment of proteins to these structures for both centrosomal and ciliary function. This recruitment is compromised when centriole/basal body assembly is defective. Mutations that cause basal body assembly defects confer supersensitivity to Taxol. These include bld2, bld10, bld12, uni3, vfl1, vfl2, and vfl3. Flagellar motility mutants do not confer sensitivity with the exception of mutations in the p60 (pf19 and p80 (pf15 subunits of the microtubule severing protein katanin. We have identified additional pf15 and bld2 (ε-tubulin alleles in screens for Taxol sensitivity. Null pf15 and bld2 alleles are viable and are not essential genes in Chlamydomonas. Analysis of double mutant strains with the pf15-3 and bld2-6 null alleles suggests that basal bodies in Chlamydomonas may recruit additional proteins beyond katanin that affect spindle microtubule stability. The bld2-5 allele is a hypomorphic allele and its phenotype is modulated by nutritional cues. Basal bodies in bld2-5 cells are missing proximal ends. The basal body mutants show aberrant localization of an epitope-tagged p80 subunit of katanin. Unlike IFT proteins, katanin p80 does not localize to the transition fibers of the basal bodies based on an analysis of the uni1 mutant as well as the lack of colocalization of katanin p80 with IFT74. We suggest that the triplet microtubules are likely to play a key role in katanin p80 recruitment to the basal body of Chlamydomonas rather than the transition fibers that are needed for IFT localization.

  10. A revised mineral nutrient supplement increases biomass and growth rate in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Kropat, Janette; Hong-Hermesdorf, Anne; Casero, David; Ent, Petr; Castruita, Madeli; Pellegrini, Matteo; Merchant, Sabeeha S; Malasarn, Davin

    2011-06-01

    Interest in exploiting algae as a biofuel source and the role of inorganic nutrient deficiency in inducing triacylglyceride (TAG) accumulation in cells necessitates a strategy to efficiently formulate species-specific culture media that can easily be manipulated. Using the reference organism Chlamydomonas reinhardtii, we tested the hypothesis that modeling trace element supplements after the cellular ionome would result in optimized cell growth. We determined the trace metal content of several commonly used Chlamydomonas strains in various culture conditions and developed a revised trace element solution to parallel these measurements. Comparison of cells growing in the revised supplement versus a traditional trace element solution revealed faster growth rates and higher maximum cell densities with the revised recipe. RNA-seq analysis of cultures growing in the traditional versus revised medium suggest that the variation in transcriptomes was smaller than that found between different wild-type strains grown in traditional Hutner's supplement. Visual observation did not reveal defects in cell motility or mating efficiency in the new supplement. Ni²⁺-inducible expression from the CYC6 promoter remained a useful tool, albeit with an increased requirement for Ni²⁺ because of the introduction of an EDTA buffer system in the revised medium. Other advantages include more facile preparation of trace element stock solutions, a reduction in total chemical use, a more consistent batch-to-batch formulation and long-term stability (tested up to 5 years). Under the new growth regime, we analyzed cells growing under different macro- and micronutrient deficiencies. TAG accumulation in N deficiency is comparable in the new medium. Fe and Zn deficiency also induced TAG accumulation, as suggested by Nile Red staining. This approach can be used to efficiently optimize culture conditions for other algal species to improve growth and to assay cell physiology. © 2011 The Authors

  11. Crystallization and preliminary X-ray diffraction analysis of L,L-diaminopimelate aminotransferase (DapL) from Chlamydomonas reinhardtii.

    Science.gov (United States)

    Hudson, André O; Girón, Irma; Dobson, Renwick C J

    2011-01-01

    In the anabolic synthesis of diaminopimelate and lysine in plants and in some bacteria, the enzyme L,L-diaminopimelate aminotransferase (DapL; EC 2.6.1.83) catalyzes the conversion of tetrahydrodipicolinic acid (THDPA) to L,L-diaminopimelate, bypassing the DapD, DapC and DapE enzymatic steps in the bacterial acyl pathways. Here, the cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of DapL from the alga Chlamydomonas reinhardtii are presented. Protein crystals were grown in conditions containing 25% (w/v) PEG 3350 and 200 mM lithium sulfate and initially diffracted to ∼1.35 Å resolution. They belonged to space group P2(1)2(1)2(1), with unit-cell parameters a=58.9, b=91.8, c=162.9 Å. The data were processed to 1.55 Å resolution with an Rmerge of 0.081, an Rp.i.m. of 0.044, an Rr.i.m of 0.093 and a VM of 2.28 Å3 Da(-1).

  12. Using single cell cultivation system for on-chip monitoring of the interdivision timer in Chlamydomonas reinhardtii cell cycle

    Directory of Open Access Journals (Sweden)

    Soloviev Mikhail

    2010-09-01

    Full Text Available Abstract Regulation of cell cycle progression in changing environments is vital for cell survival and maintenance, and different regulation mechanisms based on cell size and cell cycle time have been proposed. To determine the mechanism of cell cycle regulation in the unicellular green algae Chlamydomonas reinhardtii, we developed an on-chip single-cell cultivation system that allows for the strict control of the extracellular environment. We divided the Chlamydomonas cell cycle into interdivision and division phases on the basis of changes in cell size and found that, regardless of the amount of photosynthetically active radiation (PAR and the extent of illumination, the length of the interdivision phase was inversely proportional to the rate of increase of cell volume. Their product remains constant indicating the existence of an 'interdivision timer'. The length of the division phase, in contrast, remained nearly constant. Cells cultivated under light-dark-light conditions did not divide unless they had grown to twice their initial volume during the first light period. This indicates the existence of a 'commitment sizer'. The ratio of the cell volume at the beginning of the division phase to the initial cell volume determined the number of daughter cells, indicating the existence of a 'mitotic sizer'.

  13. An inorganic carbon transport system responsible for acclimation specific to air levels of CO2 in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Wang, Yingjun; Spalding, Martin H

    2006-06-27

    Many photosynthetic microorganisms acclimate to CO(2) limited environments by induction and operation of CO(2)-concentrating mechanisms (CCMs). Despite their central role in CCM function, inorganic carbon (Ci) transport systems never have been identified in eukaryotic photosynthetic organisms. In the green alga Chlamydomonas reinhardtii, a mutant, pmp1, was described in 1983 with deficiencies in Ci transport, and a Pmp1 protein-associated Ci uptake system has been proposed to be responsible for Ci uptake in low CO(2) (air level)-acclimated cells. However, even though pmp1 represents the only clear genetic link to Ci transport in microalgae and is one of only a very few mutants directly affecting the CCM itself, the identity of Pmp1 has remained unknown. Physiological analyses indicate that C. reinhardtii possesses multiple Ci transport systems responsible for acclimation to different levels of limiting CO(2) and that the Pmp1-associated transport system is required specifically for low (air level) CO(2) acclimation. In the current study, we identified and characterized a pmp1 allelic mutant, air dier 1 (ad1) that, like pmp1, cannot grow in low CO(2) (350 ppm) but can grow either in high CO(2) (5% CO(2)) or in very low CO(2) (<200 ppm). Molecular analyses revealed that the Ad1/Pmp1 protein is encoded by LciB, a gene previously identified as a CO(2)-responsive gene. LciB and three related genes in C. reinhardtii compose a unique gene family that encode four closely related, apparently soluble plastid proteins with no clearly identifiable conserved motifs.

  14. Flocculation of Chlamydomonas reinhardtii with Different Phenotypic Traits by Metal Cations and High pH

    Directory of Open Access Journals (Sweden)

    Jianhua Fan

    2017-11-01

    Full Text Available Concentrating algal cells by flocculation as a prelude to centrifugation could significantly reduce the energy and cost of harvesting the algae. However, how variation in phenotypic traits such as cell surface features, cell size and motility alter the efficiency of metal cation and pH-induced flocculation is not well understood. Our results demonstrate that both wild-type and cell wall-deficient strains of the green unicellular alga Chlamydomonas reinhardtii efficiently flocculate (>90% at an elevated pH of the medium (pH 11 upon the addition of divalent cations such as calcium and magnesium (>5 mM. The trivalent ferric cation (at 10 mM proved to be essential for promoting flocculation under weak alkaline conditions (pH ∼8.5, with a maximum efficiency that exceeded 95 and 85% for wild-type CC1690 and the cell wall-deficient sta6 mutant, respectively. Near complete flocculation could be achieved using a combination of 5 mM calcium and a pH >11, while the medium recovered following cell removal could be re-cycled without affecting algal growth rates. Moreover, the absence of starch in the cell had little overall impact on flocculation efficiency. These findings contribute to our understanding of flocculation in different Chlamydomonas strains and have implications with respect to inexpensive methods for harvesting algae with different phenotypic traits. Additional research on the conditions (e.g., pH and metal ions used for efficient flocculation of diverse algal groups with diverse characteristics, at both small and large scale, will help establish inexpensive procedures for harvesting cell biomass.

  15. Study on heavy metal absorption capability of chlamidomonas reinhardtii in solution containing uranium and lead

    International Nuclear Information System (INIS)

    Nguyen Thuy Binh

    2003-01-01

    The mutant strain chlamydomonas reinhardtii No.4 obtained by C 5+ ion beam irradiation could be grown in simple mineral salt medium with initial pH range of 3.5-7.5 with continued illumination of 12,000 lux under aeration. The study demonstrated that the mutant strain C.reinhardtii had a good growth in mineral salt medium containing U 6+ (concentration about 0.015 mg/ml) and Pb 2+ (concentration about 65% and Pb 2+ about 60% from solution was estimated by analyzing dried cell. (NTB)

  16. Molecular toxicity of cerium oxide nanoparticles to the freshwater alga Chlamydomonas reinhardtii is associated with supra-environmental exposure concentrations

    Science.gov (United States)

    Taylor, Nadine S.; Merrifield, Ruth; Williams, Tim D.; Chipman, J. Kevin; Lead, Jamie R.; Viant, Mark R.

    2016-01-01

    Abstract Ceria nanoparticles (NPs) are widely used as fuel catalysts and consequently are likely to enter the environment. Their potential impacts on. biota at environmentally relevant concentrations, including uptake and toxicity, remain to be elucidated and quantitative data on which to assess risk are sparse. Therefore, a definitive assessment of the molecular and phenotypic effects of ceria NPs was undertaken, using well-characterised mono-dispersed NPs as their toxicity is likely to be higher, enabling a conservative hazard assessment. Unbiased transcriptomics and metabolomics approaches were used to investigate the potential toxicity of tightly constrained 4–5 nm ceria NPs to the unicellular green alga, Chlamydomonas reinhardtii, a sentinel freshwater species. A wide range of exposure concentrations were investigated from predicted environmental levels, to support hazard assessment, to supra-environmental levels to provide insight into molecular toxicity pathways. Ceria NPs were internalised into intracellular vesicles within C. reinhardtii, yet caused no significant effect on algal growth at any exposure concentration. Molecular perturbations were only detected at supra-environmental ceria NP-concentrations, primarily down-regulation of photosynthesis and carbon fixation with associated effects on energy metabolism. For acute exposures to small mono-dispersed particles, it can be concluded there should be little concern regarding their dispersal into the environment for this trophic level. PMID:25740379

  17. The involvement of carbohydrate reserves in hydrogen photoproduction by the green alga Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Chochois, V.

    2009-09-01

    The unicellular green alga Chlamydomonas reinhardtii is able to produce hydrogen, using water as an electron donor, and sunlight as an energy source. Although this property offers interesting biotechnological perspectives, a major limitation is related to the sensitivity of hydrogenase to oxygen which is produced by photosynthesis. It had been previously shown that in conditions of sulfur deprivation, C. reinhardtii is able to produce hydrogen during several days (Melis et an. 2000). During this process, two pathways, one direct depending on photosystem II (PSII) activity and the other involving only the PSI, are involved, starch reserves being supposed to play a role in both of these pathways. The purpose of this phD thesis was to elucidate the mechanisms linking starch catabolism to the hydrogen photoproduction process. Firstly, the analysis of mutants affected in starch biosynthesis (sta6 and sta7) showed that if starch reserves are essential to the functioning of the indirect pathway, they are not involved in the direct one. Secondly, in order to identify metabolic steps and regulatory processes involved in starch breakdown, we developed a genetic approach based on the search of mutants affected in starch reserves mobilization. Eight mutant (std1 to std8) diversely affected in their ability to degrade starch after an accumulation phase have been isolated from an insertional mutant library of 15,000 clones. One of these mutants, std1, is affected in a kinase related to the DYRK family (dual-specificity tyrosine regulated serine threonine kinase). Although the targets of this putative kinase remain to be identified, the analysis of the granule bound proteome displayed profound alterations in the expression profile of starch phosphorylases, potentially involved in starch breakdown. STD1 represents the first starch catabolism regulator identified to date in plants. (author)

  18. Effect of chromium oxide (III) nanoparticles on the production of reactive oxygen species and photosystem II activity in the green alga Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Costa, Cristina Henning da; Perreault, François; Oukarroum, Abdallah; Melegari, Sílvia Pedroso; Popovic, Radovan; Matias, William Gerson

    2016-01-01

    With the growth of nanotechnology and widespread use of nanomaterials, there is an increasing risk of environmental contamination by nanomaterials. However, the potential implications of such environmental contamination are hard to evaluate since the toxicity of nanomaterials if often not well characterized. The objective of this study was to evaluate the toxicity of a chromium-based nanoparticle, Cr_2O_3-NP, used in a wide diversity of industrial processes and commercial products, on the unicellular green alga Chlamydomonas reinhardtii. The deleterious impacts of Cr_2O_3-NP were characterized using cell density measurements, production of reactive oxygen species (ROS), esterase enzymes activity, and photosystem II electron transport as indicators of toxicity. Cr_2O_3-NP exposure inhibited culture growth and significantly lowered cellular Chlorophyll a content. From cell density measurements, EC50 values of 2.05 ± 0.20 and 1.35 ± 0.06 g L"−"1 Cr_2O_3-NP were obtained after 24 and 72 h of exposure, respectively. In addition, ROS levels were increased to 160.24 ± 2.47% and 59.91 ± 0.15% of the control value after 24 and 72 h of exposition to 10 g L"−"1 Cr_2O_3-NP. At 24 h of exposure, the esterase activity increased to 160.24% of control value, revealing a modification of the short-term metabolic response of algae to Cr_2O_3-NP exposure. In conclusion, the metabolism of C. reinhardtii was the most sensitive to Cr_2O_3-NP after 24 h of treatment. - Highlights: • Cr_2O_3 nanoparticles are unstable and form large aggregates in the medium. • EC50 for growth inhibition of C. reinhardtii is 1.35 g L"−"1 at 72 h. • Cr_2O_3 nanoparticles increase ROS levels at 10 g L"−"1. • Cr_2O_3 nanoparticles affect photosynthetic electron transport.

  19. Submicron and nano formulations of titanium dioxide and zinc oxide stimulate unique cellular toxicological responses in the green microalga Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Gunawan, Cindy, E-mail: c.gunawan@unsw.edu.au [ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering, The University of New South Wales, Sydney, NSW (Australia); Sirimanoonphan, Aunchisa [ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering, The University of New South Wales, Sydney, NSW (Australia); Teoh, Wey Yang [Clean Energy and Nanotechnology (CLEAN) Laboratory, School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Marquis, Christopher P., E-mail: c.marquis@unsw.edu.au [School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW (Australia); Amal, Rose [ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering, The University of New South Wales, Sydney, NSW (Australia)

    2013-09-15

    Highlights: • Uptake of TiO{sub 2} solids by C. reinhardtii generates ROS as an early stress response. • Submicron and nanoTiO{sub 2} exhibit benign effect on cell proliferation. • Uptake of ZnO solids and leached zinc by C. reinhardtii inhibit the alga growth. • No cellular oxidative stress is detected with submicron and nano ZnO exposure. • The toxicity of particles is not necessarily mediated by cellular oxidative stress. -- Abstract: The work investigates the eco-cytoxicity of submicron and nano TiO{sub 2} and ZnO, arising from the unique interactions of freshwater microalga Chlamydomonas reinhardtii to soluble and undissolved components of the metal oxides. In a freshwater medium, submicron and nano TiO{sub 2} exist as suspended aggregates with no-observable leaching. Submicron and nano ZnO undergo comparable concentration-dependent fractional leaching, and exist as dissolved zinc and aggregates of undissolved ZnO. Cellular internalisation of solid TiO{sub 2} stimulates cellular ROS generation as an early stress response. The cellular redox imbalance was observed for both submicron and nano TiO{sub 2} exposure, despite exhibiting benign effects on the alga proliferation (8-day EC50 > 100 mg TiO{sub 2}/L). Parallel exposure of C. reinhardtii to submicron and nano ZnO saw cellular uptake of both the leached zinc and solid ZnO and resulting in inhibition of the alga growth (8-day EC50 ≥ 0.01 mg ZnO/L). Despite the sensitivity, no zinc-induced cellular ROS generation was detected, even at 100 mg ZnO/L exposure. Taken together, the observations confront the generally accepted paradigm of cellular oxidative stress-mediated cytotoxicity of particles. The knowledge of speciation of particles and the corresponding stimulation of unique cellular responses and cytotoxicity is vital for assessment of the environmental implications of these materials.

  20. Submicron and nano formulations of titanium dioxide and zinc oxide stimulate unique cellular toxicological responses in the green microalga Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Gunawan, Cindy; Sirimanoonphan, Aunchisa; Teoh, Wey Yang; Marquis, Christopher P.; Amal, Rose

    2013-01-01

    Highlights: • Uptake of TiO 2 solids by C. reinhardtii generates ROS as an early stress response. • Submicron and nanoTiO 2 exhibit benign effect on cell proliferation. • Uptake of ZnO solids and leached zinc by C. reinhardtii inhibit the alga growth. • No cellular oxidative stress is detected with submicron and nano ZnO exposure. • The toxicity of particles is not necessarily mediated by cellular oxidative stress. -- Abstract: The work investigates the eco-cytoxicity of submicron and nano TiO 2 and ZnO, arising from the unique interactions of freshwater microalga Chlamydomonas reinhardtii to soluble and undissolved components of the metal oxides. In a freshwater medium, submicron and nano TiO 2 exist as suspended aggregates with no-observable leaching. Submicron and nano ZnO undergo comparable concentration-dependent fractional leaching, and exist as dissolved zinc and aggregates of undissolved ZnO. Cellular internalisation of solid TiO 2 stimulates cellular ROS generation as an early stress response. The cellular redox imbalance was observed for both submicron and nano TiO 2 exposure, despite exhibiting benign effects on the alga proliferation (8-day EC50 > 100 mg TiO 2 /L). Parallel exposure of C. reinhardtii to submicron and nano ZnO saw cellular uptake of both the leached zinc and solid ZnO and resulting in inhibition of the alga growth (8-day EC50 ≥ 0.01 mg ZnO/L). Despite the sensitivity, no zinc-induced cellular ROS generation was detected, even at 100 mg ZnO/L exposure. Taken together, the observations confront the generally accepted paradigm of cellular oxidative stress-mediated cytotoxicity of particles. The knowledge of speciation of particles and the corresponding stimulation of unique cellular responses and cytotoxicity is vital for assessment of the environmental implications of these materials

  1. Role of metal mixtures (Ca, Cu and Pb) on Cd bioaccumulation and phytochelatin production by Chlamydomonas reinhardtii.

    Science.gov (United States)

    Abboud, Pauline; Wilkinson, Kevin J

    2013-08-01

    The goal of the study was to determine whether metal uptake and biological effects could be predicted by free ion concentrations when organisms were exposed to Cd and a second metal. Bioaccumulation and algal phytochelatin (PC) concentrations were determined for Chlamydomonas reinhardtii following a 6-h exposure. Bioaccumulation results, after six hours of exposure, showed that Cd uptake decreased in the presence of relatively high concentrations of Ca, Cu and Pb, however, Cd bioaccumulation increased in the presence of ca. equimolar concentrations of Cu. A good correlation was observed between the production of PCs and the amount of metals bioaccumulated for the binary mixtures of Cd-Pb and Cd-Cu, but not the Cd-Ca mixture. Overall, the results suggested that, in the case of mixtures, bioaccumulated metal rather than free ion concentrations would be a better predictor of biological effect. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. The Effect of DNA and Sodium Cholate Dispersed Single-Walled Carbon Nano tubes on the Green Algae Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Williams, R.M.; Cox, Z.; Dolash, B.D.; Sooter, L.J.; Williams, R.M.; Taylor, H.K.; Thomas, J.

    2014-01-01

    Increasing use of single-walled carbon nano tubes (SWCNTs) will lead to their increased release into the environment. Previous work has shown negative effects of SWCNT on growth and survival of model organisms. The aim of the current study was to determine the effect of SWCNT well-dispersed by either DNA or sodium cholate (SC) on the unicellular green algae Chlamydomonas reinhardtii in stagnant water conditions. Growth measurements were taken up to ten days for algae treated with varied levels of DNA:SWCNT or SC:SWCNT or controls, and chlorophyll content after 10 days was determined. Results show no effect on either growth or chlorophyll content of algae at any concentration or duration. This is in contradiction to prior work showing toxicity of SWCNT to environmental model organisms.

  3. Heat shock induced change in protein ubiquitination in Chlamydomonas

    International Nuclear Information System (INIS)

    Shimogawara, K.; Muto, S.

    1989-01-01

    Ubiquitin was purified from pea (Pisum sativum L.) and its antibody was produced. Western blot analysis showed that the antibody cross-reacted with ubiquitins from a green alga Chlamydomonas reinhardtii, a brown alga Laminaria angustata and a red alga Porphyridium cruentum but not with ubiquitin from a blue-green alga Synechococcus sp. In Chlamydomonas, the antibody also reacted with some ubiquitinated proteins including 28- and 31-kDa polypeptides. The isoelectric points of Chlamydomonas ubiquitin and the 28- and 31-kDa ubiquitinated proteins were 8.0, 8.9 and 10.3, respectively. The ubiquitinated proteins, including the 28- and 31-kDa polypeptides were detected after in vitro ATP-dependent ubiquitination of Chlamydomonas cell extract with l25 I-labeled bovine ubiquitin. Heat treatment of Chlamydomonas cells (>40°C) caused drastic increase of ubiquitinated proteins with high mol wt (>60kDa), and coordinated redistribution or decrease of other ubiquitinated proteins and free ubiquitin. Quantitative analysis revealed that the 28- and 31-kDa ubiquitinated proteins showed different responses against heat stress, i.e. the former being more sensitive than the latter. (author)

  4. UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii

    Science.gov (United States)

    Allorent, Guillaume; Lefebvre-Legendre, Linnka; Chappuis, Richard; Kuntz, Marcel; Truong, Thuy B.; Niyogi, Krishna K.; Goldschmidt-Clermont, Michel

    2016-01-01

    Life on earth is dependent on the photosynthetic conversion of light energy into chemical energy. However, absorption of excess sunlight can damage the photosynthetic machinery and limit photosynthetic activity, thereby affecting growth and productivity. Photosynthetic light harvesting can be down-regulated by nonphotochemical quenching (NPQ). A major component of NPQ is qE (energy-dependent nonphotochemical quenching), which allows dissipation of light energy as heat. Photodamage peaks in the UV-B part of the spectrum, but whether and how UV-B induces qE are unknown. Plants are responsive to UV-B via the UVR8 photoreceptor. Here, we report in the green alga Chlamydomonas reinhardtii that UVR8 induces accumulation of specific members of the light-harvesting complex (LHC) superfamily that contribute to qE, in particular LHC Stress-Related 1 (LHCSR1) and Photosystem II Subunit S (PSBS). The capacity for qE is strongly induced by UV-B, although the patterns of qE-related proteins accumulating in response to UV-B or to high light are clearly different. The competence for qE induced by acclimation to UV-B markedly contributes to photoprotection upon subsequent exposure to high light. Our study reveals an anterograde link between photoreceptor-mediated signaling in the nucleocytosolic compartment and the photoprotective regulation of photosynthetic activity in the chloroplast. PMID:27930292

  5. UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Allorent, Guillaume; Lefebvre-Legendre, Linnka; Chappuis, Richard; Kuntz, Marcel; Truong, Thuy B; Niyogi, Krishna K; Ulm, Roman; Goldschmidt-Clermont, Michel

    2016-12-20

    Life on earth is dependent on the photosynthetic conversion of light energy into chemical energy. However, absorption of excess sunlight can damage the photosynthetic machinery and limit photosynthetic activity, thereby affecting growth and productivity. Photosynthetic light harvesting can be down-regulated by nonphotochemical quenching (NPQ). A major component of NPQ is qE (energy-dependent nonphotochemical quenching), which allows dissipation of light energy as heat. Photodamage peaks in the UV-B part of the spectrum, but whether and how UV-B induces qE are unknown. Plants are responsive to UV-B via the UVR8 photoreceptor. Here, we report in the green alga Chlamydomonas reinhardtii that UVR8 induces accumulation of specific members of the light-harvesting complex (LHC) superfamily that contribute to qE, in particular LHC Stress-Related 1 (LHCSR1) and Photosystem II Subunit S (PSBS). The capacity for qE is strongly induced by UV-B, although the patterns of qE-related proteins accumulating in response to UV-B or to high light are clearly different. The competence for qE induced by acclimation to UV-B markedly contributes to photoprotection upon subsequent exposure to high light. Our study reveals an anterograde link between photoreceptor-mediated signaling in the nucleocytosolic compartment and the photoprotective regulation of photosynthetic activity in the chloroplast.

  6. VU-B radiation inhibits the photosynthetic electron transport chain in chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Cai, W.; Li, X.; Chen, L.

    2016-01-01

    UV radiation of sunlight is one of harmful factors for earth organisms, especially for photoautotrophs because they require light for energy and biomass production. A number of works have already been done regarding the effects of UV-B radiation at biochemical and molecular level, which showed that UV-B radiation could inhibit photosynthesis activity and reduce photosynthetic electron transport. However quite limited information can accurately make out inhibition site of UV-B radiation on photosynthetic electron transport. In this study, this issue was investigated through measuring oxygen evolution activity, chlorophyll a fluorescence and gene expression in a model unicellular green alga Chlamydomonas reinhardtii. Our results indicated that UV-B radiation could evidently decrease photosynthesis activity and inhibit electron transport by blocking electron transfer process from the first plastoquinone electron acceptors QA to second plastoquinone electron acceptors QB, but not impair electron transfer from the water oxidizing complex to QA. The psbA gene expression was also altered by UV-B radiation, where up-regulation occurred at 2, 4 and 6h after exposure and down-regulation happened at 12 and 24 h after exposure. These results suggested that UV-B could affects D1 protein normal turnover, so there was not enough D1 for binding with QB, which may affect photosynthetic electron transport and photosynthesis activity. (author)

  7. Filling Knowledge Gaps in Biological Networks: integrating global approaches to understand H2 metabolism in Chlamydomonas reinhardtii - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Posewitz, Matthew C

    2011-06-30

    The green alga Chlamydomonas reinhardtii (Chlamydomonas) has numerous genes encoding enzymes that function in fermentative pathways. Among these genes, are the [FeFe]-hydrogenases, pyruvate formate lyase, pyruvate ferredoxin oxidoreductase, acetate kinase, and phosphotransacetylase. We have systematically undertaken a series of targeted mutagenesis approaches to disrupt each of these key genes and omics techniques to characterize alterations in metabolic flux. Funds from DE-FG02-07ER64423 were specifically leveraged to generate mutants with disruptions in the genes encoding the [FeFe]-hydrogenases HYDA1 and HYDA2, pyruvate formate lyase (PFL1), and in bifunctional alcohol/aldehyde alcohol dehydrogenase (ADH1). Additionally funds were used to conduct global transcript profiling experiments of wildtype Chlamydomonas cells, as well as of the hydEF-1 mutant, which is unable to make H2 due to a lesion in the [FeFe]-hydrogenase biosynthetic pathway. In the wildtype cells, formate, acetate and ethanol are the dominant fermentation products with traces of CO2 and H2 also being produced. In the hydEF-1 mutant, succinate production is increased to offset the loss of protons as a terminal electron acceptor. In the pfl-1 mutant, lactate offsets the loss of formate production, and in the adh1-1 mutant glycerol is made instead of ethanol. To further probe the system, we generated a double mutant (pfl1-1 adh1) that is unable to synthesize both formate and ethanol. This strain, like the pfl1 mutants, secreted lactate, but also exhibited a significant increase in the levels of extracellular glycerol, acetate, and intracellular reduced sugars, and a decline in dark, fermentative H2 production. Whereas wild-type Chlamydomonas fermentation primarily produces formate and ethanol, the double mutant performs a complete rerouting of the glycolytic carbon to lactate and glycerol. Lastly, transcriptome data have been analysed for both the wildtype and hydEF-1, that correlate with our

  8. Systems-Wide Analysis of Acclimation Responses to Long-Term Heat Stress and Recovery in the Photosynthetic Model Organism Chlamydomonas reinhardtii[W][OPEN

    Science.gov (United States)

    Hemme, Dorothea; Veyel, Daniel; Mühlhaus, Timo; Sommer, Frederik; Jüppner, Jessica; Unger, Ann-Katrin; Sandmann, Michael; Fehrle, Ines; Schönfelder, Stephanie; Steup, Martin; Geimer, Stefan; Kopka, Joachim; Giavalisco, Patrick; Schroda, Michael

    2014-01-01

    We applied a top-down systems biology approach to understand how Chlamydomonas reinhardtii acclimates to long-term heat stress (HS) and recovers from it. For this, we shifted cells from 25 to 42°C for 24 h and back to 25°C for ≥8 h and monitored abundances of 1856 proteins/protein groups, 99 polar and 185 lipophilic metabolites, and cytological and photosynthesis parameters. Our data indicate that acclimation of Chlamydomonas to long-term HS consists of a temporally ordered, orchestrated implementation of response elements at various system levels. These comprise (1) cell cycle arrest; (2) catabolism of larger molecules to generate compounds with roles in stress protection; (3) accumulation of molecular chaperones to restore protein homeostasis together with compatible solutes; (4) redirection of photosynthetic energy and reducing power from the Calvin cycle to the de novo synthesis of saturated fatty acids to replace polyunsaturated ones in membrane lipids, which are deposited in lipid bodies; and (5) when sinks for photosynthetic energy and reducing power are depleted, resumption of Calvin cycle activity associated with increased photorespiration, accumulation of reactive oxygen species scavengers, and throttling of linear electron flow by antenna uncoupling. During recovery from HS, cells appear to focus on processes allowing rapid resumption of growth rather than restoring pre-HS conditions. PMID:25415976

  9. Construction of Marker-Free Transgenic Strains of Chlamydomonas reinhardtii Using a Cre/loxP-Mediated Recombinase System.

    Science.gov (United States)

    Kasai, Yuki; Harayama, Shigeaki

    2016-01-01

    The Escherichia coli bacteriophage P1 encodes a site-specific recombinase called Cre and two 34-bp target sites of Cre recombinase called loxP. The Cre/loxP system has been used to achieve targeted insertion and precise deletion in many animal and plant genomes. The Cre/loxP system has particularly been used for the removal of selectable marker genes to create marker-free transgenic organisms. For the first time, we applied the Cre/loxP-mediated site-specific recombination system to Chlamydomonas reinhardtii to construct marker-free transgenic strains. Specifically, C. reinhardtii strains cc4350 and cc124 carrying an aphVIII expression cassette flanked by two direct repeats of loxP were constructed. Separately, a synthetic Cre recombinase gene (CrCRE), the codons of which were optimized for expression in C. reinhardtii, was synthesized, and a CrCRE expression cassette was introduced into strain cc4350 carrying a single copy of the loxP-flanked aphVIII expression cassette. Among 46 transformants carrying the CrCRE expression cassette stably, the excision of aphVIII by CrCre recombinase was observed only in one transformant. We then constructed an expression cassette of an in-frame fusion of ble to CrCRE via a short linker peptide. The product of ble (Ble) is a bleomycin-binding protein that confers resistance to bleomycin-related antibiotics such as Zeocin and localizes in the nucleus. Therefore, the ble-(linker)-CrCRE fusion protein is expected to localize in the nucleus. When the ble-(linker)-CrCRE expression cassette was integrated into the genome of strain cc4350 carrying a single copy of the loxP-flanked aphVIII expression cassette, CrCre recombinase-mediated excision of the aphVIII expression cassette was observed at a frequency higher than that in stable transformants of the CrCRE expression cassette. Similarly, from strain cc124 carrying a single loxP-flanked aphVIII expression cassette, the aphVIII expression cassette was successfully excised after

  10. Real-time monitoring of genetically modified Chlamydomonas reinhardtii during the Foton M3 space mission

    Science.gov (United States)

    Lambreva, M.; Rea, G.; Antonacci, A.; Serafini, A.; Damasso, M.; Pastorelli, S.; Margonelli, A.; Johanningmeier, U.; Bertalan, I.; Pezzotti, G.; Giardi, M. T.

    2008-09-01

    Long-term space exploration, colonization or habitation requires biological life support systems capable to cope with the deleterious space environment. The use of oxygenic photosynthetic microrganisms is an intriguing possibility mainly for food, O2 and nutraceutical compounds production. The critical points of utilizing plants- or algae-based life support systems are the microgravity and the ionizing radiation, which can influence the performance of these organisms. The aim of the present study was to assess the effects of space environment on the photosynthetic activity of various microrganisms and to select space stresstolerant strains. Photosystem II D1 protein sitedirected and random mutants of the unicellular green alga Chlamydomonas reinhardtii [1] were used as a model system to test and select the amino acid substitutions capable to account for space stress tolerance. We focussed our studies also on the accumulation of the Photosystem II photoprotective carotenoids (the xantophylls violaxanthin, anteraxanthin and zeaxanthin), powerful antioxidants that epidemiological studies demonstrated to be human vision protectors. For this purpose some mutants modified at the level of enzymes involved in the biosynthesis of xanthophylls were included in the study [2]. To identify the consequences of the space environment on the photosynthetic apparatus the changes in the Photosystem II efficiency were monitored in real time during the ESA-Russian Foton- M3 mission in September 2007. For the space flight a high-tech, multicell fluorescence detector, Photo-II, was designed and built by the Centre for Advanced Research in Space Optics in collaboration with Kayser-Italy, Biosensor and DAS. Photo-II is an automatic device developed to measure the chlorophyll fluorescence and to provide a living conditions for several different algae strains (Fig.1). Twelve different C. reinhardti strains were analytically selected and two replications for each strain were brought to space

  11. Sensitivity of the green algae Chlamydomonas reinhardtii to gamma radiation: Photosynthetic performance and ROS formation.

    Science.gov (United States)

    Gomes, Tânia; Xie, Li; Brede, Dag; Lind, Ole-Christian; Solhaug, Knut Asbjørn; Salbu, Brit; Tollefsen, Knut Erik

    2017-02-01

    The aquatic environment is continuously exposed to ionizing radiation from both natural and anthropogenic sources, making the characterization of ecological and health risks associated with radiation of large importance. Microalgae represent the main source of biomass production in the aquatic ecosystem, thus becoming a highly relevant biological model to assess the impacts of gamma radiation. However, little information is available on the effects of gamma radiation on microalgal species, making environmental radioprotection of this group of species challenging. In this context, the present study aimed to improve the understanding of the effects and toxic mechanisms of gamma radiation in the unicellular green algae Chlamydomonas reinhardtii focusing on the activity of the photosynthetic apparatus and ROS formation. Algal cells were exposed to gamma radiation (0.49-1677mGy/h) for 6h and chlorophyll fluorescence parameters obtained by PAM fluorometry, while two fluorescent probes carboxy-H 2 DFFDA and DHR 123 were used for the quantification of ROS. The alterations seen in functional parameters of C. reinhardtii PSII after 6h of exposure to gamma radiation showed modifications of PSII energy transfer associated with electron transport and energy dissipation pathways, especially at the higher dose rates used. Results also showed that gamma radiation induced ROS in a dose-dependent manner under both light and dark conditions. The observed decrease in photosynthetic efficiency seems to be connected to the formation of ROS and can potentially lead to oxidative stress and cellular damage in chloroplasts. To our knowledge, this is the first report on changes in several chlorophyll fluorescence parameters associated with photosynthetic performance and ROS formation in microalgae after exposure to gamma radiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. An improved ARS2-derived nuclear reporter enhances the efficiency and ease of genetic engineering in Chlamydomonas

    DEFF Research Database (Denmark)

    Specht, Elizabeth A; Nour-Eldin, Hussam Hassan; Hoang, Kevin T D

    2015-01-01

    The model alga Chlamydomonas reinhardtii has been used to pioneer genetic engineering techniques for high-value protein and biofuel production from algae. To date, most studies of transgenic Chlamydomonas have utilized the chloroplast genome due to its ease of engineering, with a sizeable suite o...

  13. The Chlamydomonas genome reveals the evolution of key animal and plant functions

    Czech Academy of Sciences Publication Activity Database

    Merchant, S.S.; Prochnik, S. E.; Bišová, Kateřina

    2007-01-01

    Roč. 318, - (2007), s. 245-251 ISSN 0036-8075 Institutional research plan: CEZ:AV0Z50200510 Keywords : chlamydomonas reinhardtii * alga * eukaryotic cell Subject RIV: EE - Microbiology, Virology Impact factor: 26.372, year: 2007

  14. Site Energies of Active and Inactive Pheophytins in the Reaction Center of Photosystem II from Chlamydomonas Reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, K.; Neupane, B.; Zazubovich, V.; Sayre, R. T.; Picorel, R.; Seibert, M.; Jankowiak, R.

    2012-03-29

    It is widely accepted that the primary electron acceptor in various Photosystem II (PSII) reaction center (RC) preparations is pheophytin {alpha} (Pheo {alpha}) within the D1 protein (Pheo{sub D1}), while Pheo{sub D2} (within the D2 protein) is photochemically inactive. The Pheo site energies, however, have remained elusive, due to inherent spectral congestion. While most researchers over the past two decades placed the Q{sub y}-states of Pheo{sub D1} and Pheo{sub D2} bands near 678-684 and 668-672 nm, respectively, recent modeling [Raszewski et al. Biophys. J. 2005, 88, 986-998; Cox et al. J. Phys. Chem. B 2009, 113, 12364-12374] of the electronic structure of the PSII RC reversed the assignment of the active and inactive Pheos, suggesting that the mean site energy of Pheo{sub D1} is near 672 nm, whereas Pheo{sub D2} ({approx}677.5 nm) and Chl{sub D1} ({approx}680 nm) have the lowest energies (i.e., the Pheo{sub D2}-dominated exciton is the lowest excited state). In contrast, chemical pigment exchange experiments on isolated RCs suggested that both pheophytins have their Q{sub y} absorption maxima at 676-680 nm [Germano et al. Biochemistry 2001, 40, 11472-11482; Germano et al. Biophys. J. 2004, 86, 1664-1672]. To provide more insight into the site energies of both Pheo{sub D1} and Pheo{sub D2} (including the corresponding Q{sub x} transitions, which are often claimed to be degenerate at 543 nm) and to attest that the above two assignments are most likely incorrect, we studied a large number of isolated RC preparations from spinach and wild-type Chlamydomonas reinhardtii (at different levels of intactness) as well as the Chlamydomonas reinhardtii mutant (D2-L209H), in which the active branch Pheo{sub D1} is genetically replaced with chlorophyll {alpha} (Chl {alpha}). We show that the Q{sub x}-/Q{sub y}-region site energies of Pheo{sub D1} and Pheo{sub D2} are {approx}545/680 nm and {approx}541.5/670 nm, respectively, in good agreement with our previous assignment

  15. The mechanism of photosystem-II inactivation during sulphur deprivation-induced H2 production in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Nagy, Valéria; Vidal-Meireles, André; Podmaniczki, Anna; Szentmihályi, Klára; Rákhely, Gábor; Zsigmond, Laura; Kovács, László; Tóth, Szilvia Z

    2018-05-01

    Sulphur limitation may restrain cell growth and viability. In the green alga Chlamydomonas reinhardtii, sulphur limitation may induce H 2 production lasting for several days, which can be exploited as a renewable energy source. Sulphur limitation causes a large number of physiological changes, including the inactivation of photosystem II (PSII), leading to the establishment of hypoxia, essential for the increase in hydrogenase expression and activity. The inactivation of PSII has long been assumed to be caused by the sulphur-limited turnover of its reaction center protein PsbA. Here we reinvestigated this issue in detail and show that: (i) upon transferring Chlamydomonas cells to sulphur-free media, the cellular sulphur content decreases only by about 25%; (ii) as demonstrated by lincomycin treatments, PsbA has a significant turnover, and other photosynthetic subunits, namely RbcL and CP43, are degraded more rapidly than PsbA. On the other hand, sulphur limitation imposes oxidative stress early on, most probably involving the formation of singlet oxygen in PSII, which leads to an increase in the expression of GDP-L-galactose phosphorylase, playing an essential role in ascorbate biosynthesis. When accumulated to the millimolar concentration range, ascorbate may inactivate the oxygen-evolving complex and provide electrons to PSII, albeit at a low rate. In the absence of a functional donor side and sufficient electron transport, PSII reaction centers are inactivated and degraded. We therefore demonstrate that the inactivation of PSII is a complex and multistep process, which may serve to mitigate the damaging effects of sulphur limitation. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  16. LHCSR1 induces a fast and reversible pH-dependent fluorescence quenching in LHCII in Chlamydomonas reinhardtii cells.

    Science.gov (United States)

    Dinc, Emine; Tian, Lijin; Roy, Laura M; Roth, Robyn; Goodenough, Ursula; Croce, Roberta

    2016-07-05

    To avoid photodamage, photosynthetic organisms are able to thermally dissipate the energy absorbed in excess in a process known as nonphotochemical quenching (NPQ). Although NPQ has been studied extensively, the major players and the mechanism of quenching remain debated. This is a result of the difficulty in extracting molecular information from in vivo experiments and the absence of a validation system for in vitro experiments. Here, we have created a minimal cell of the green alga Chlamydomonas reinhardtii that is able to undergo NPQ. We show that LHCII, the main light harvesting complex of algae, cannot switch to a quenched conformation in response to pH changes by itself. Instead, a small amount of the protein LHCSR1 (light-harvesting complex stress related 1) is able to induce a large, fast, and reversible pH-dependent quenching in an LHCII-containing membrane. These results strongly suggest that LHCSR1 acts as pH sensor and that it modulates the excited state lifetimes of a large array of LHCII, also explaining the NPQ observed in the LHCSR3-less mutant. The possible quenching mechanisms are discussed.

  17. Improving the optimum yield and growth of Chlamydomonas ...

    African Journals Online (AJOL)

    Chlamydomonas reinhardtii CC125 (wild type) and CW15 (cell wall mutants) were feed up on solid and liquid Tris phosphate (TP) media with various concentrations of acetate, glycerol(10-100 mM) or methanol (0.01-718 mM) and cultivated under phototrophic, mixotrophic and heterotrophic conditions. Use of 10 and 35 ...

  18. Effect of chromium oxide (III) nanoparticles on the production of reactive oxygen species and photosystem II activity in the green alga Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Cristina Henning da [Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Campus Universitário, CEP: 88040-970, Florianópolis, SC (Brazil); Perreault, François [School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005 (United States); Oukarroum, Abdallah [Department of Chemistry, University of Quebec in Montréal, 2101, Jeanne Mance Street, Station Centre-Ville, Montréal, QC H2X 2J6 (Canada); Melegari, Sílvia Pedroso [Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Campus Universitário, CEP: 88040-970, Florianópolis, SC (Brazil); Center of Marine Studies, Federal University of Parana, Beira-mar Avenue, 83255-976, Pontal do Parana, PR (Brazil); Popovic, Radovan [Department of Chemistry, University of Quebec in Montréal, 2101, Jeanne Mance Street, Station Centre-Ville, Montréal, QC H2X 2J6 (Canada); Matias, William Gerson, E-mail: william.g.matias@ufsc.br [Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Campus Universitário, CEP: 88040-970, Florianópolis, SC (Brazil)

    2016-09-15

    With the growth of nanotechnology and widespread use of nanomaterials, there is an increasing risk of environmental contamination by nanomaterials. However, the potential implications of such environmental contamination are hard to evaluate since the toxicity of nanomaterials if often not well characterized. The objective of this study was to evaluate the toxicity of a chromium-based nanoparticle, Cr{sub 2}O{sub 3}-NP, used in a wide diversity of industrial processes and commercial products, on the unicellular green alga Chlamydomonas reinhardtii. The deleterious impacts of Cr{sub 2}O{sub 3}-NP were characterized using cell density measurements, production of reactive oxygen species (ROS), esterase enzymes activity, and photosystem II electron transport as indicators of toxicity. Cr{sub 2}O{sub 3}-NP exposure inhibited culture growth and significantly lowered cellular Chlorophyll a content. From cell density measurements, EC50 values of 2.05 ± 0.20 and 1.35 ± 0.06 g L{sup −1} Cr{sub 2}O{sub 3}-NP were obtained after 24 and 72 h of exposure, respectively. In addition, ROS levels were increased to 160.24 ± 2.47% and 59.91 ± 0.15% of the control value after 24 and 72 h of exposition to 10 g L{sup −1} Cr{sub 2}O{sub 3}-NP. At 24 h of exposure, the esterase activity increased to 160.24% of control value, revealing a modification of the short-term metabolic response of algae to Cr{sub 2}O{sub 3}-NP exposure. In conclusion, the metabolism of C. reinhardtii was the most sensitive to Cr{sub 2}O{sub 3}-NP after 24 h of treatment. - Highlights: • Cr{sub 2}O{sub 3} nanoparticles are unstable and form large aggregates in the medium. • EC50 for growth inhibition of C. reinhardtii is 1.35 g L{sup −1} at 72 h. • Cr{sub 2}O{sub 3} nanoparticles increase ROS levels at 10 g L{sup −1}. • Cr{sub 2}O{sub 3} nanoparticles affect photosynthetic electron transport.

  19. The diurnal logic of the expression of the chloroplast genome in Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Adam D Idoine

    Full Text Available Chloroplasts are derived from cyanobacteria and have retained a bacterial-type genome and gene expression machinery. The chloroplast genome encodes many of the core components of the photosynthetic apparatus in the thylakoid membranes. To avoid photooxidative damage and production of harmful reactive oxygen species (ROS by incompletely assembled thylakoid protein complexes, chloroplast gene expression must be tightly regulated and co-ordinated with gene expression in the nucleus. Little is known about the control of chloroplast gene expression at the genome-wide level in response to internal rhythms and external cues. To obtain a comprehensive picture of organelle transcript levels in the unicellular model alga Chlamydomonas reinhardtii in diurnal conditions, a qRT-PCR platform was developed and used to quantify 68 chloroplast, 21 mitochondrial as well as 71 nuclear transcripts in cells grown in highly controlled 12 h light/12 h dark cycles. Interestingly, in anticipation of dusk, chloroplast transcripts from genes involved in transcription reached peak levels first, followed by transcripts from genes involved in translation, and finally photosynthesis gene transcripts. This pattern matches perfectly the theoretical demands of a cell "waking up" from the night. A similar trend was observed in the nuclear transcripts. These results suggest a striking internal logic in the expression of the chloroplast genome and a previously unappreciated complexity in the regulation of chloroplast genes.

  20. Live cell imaging compatible immobilization of Chlamydomonas reinhardtii in microfluidic platform for biodiesel research.

    Science.gov (United States)

    Park, Jae Woo; Na, Sang Cheol; Nguyen, Thanh Qua; Paik, Sang-Min; Kang, Myeongwoo; Hong, Daewha; Choi, Insung S; Lee, Jae-Hyeok; Jeon, Noo Li

    2015-03-01

    This paper describes a novel surface immobilization method for live-cell imaging of Chlamydomonas reinhardtii for continuous monitoring of lipid droplet accumulation. Microfluidics allows high-throughput manipulation and analysis of single cells in precisely controlled microenvironment. Fluorescence imaging based quantitative measurement of lipid droplet accumulation in microalgae had been difficult due to their intrinsic motile behavior. We present a simple surface immobilization method using gelatin coating as the "biological glue." We take advantage of hydroxyproline (Hyp)-based non-covalent interaction between gelatin and the outer cell wall of microalgae to anchor the cells inside the microfluidic device. We have continuously monitored single microalgal cells for up to 6 days. The immobilized microalgae remain viable (viability was comparable to bulk suspension cultured controls). When exposed to wall shear stress, most of the cells remain attached up to 0.1 dyne/cm(2) . Surface immobilization allowed high-resolution, live-cell imaging of mitotic process in real time-which followed previously reported stages in mitosis of suspension cultured cells. Use of gelatin coated microfluidics devices can result in better methods for microalgae strain screening and culture condition optimization that will help microalgal biodiesel become more economically viable. © 2014 Wiley Periodicals, Inc.

  1. Genome-wide identification of regulatory elements and reconstruction of gene regulatory networks of the green alga Chlamydomonas reinhardtii under carbon deprivation.

    Directory of Open Access Journals (Sweden)

    Flavia Vischi Winck

    Full Text Available The unicellular green alga Chlamydomonas reinhardtii is a long-established model organism for studies on photosynthesis and carbon metabolism-related physiology. Under conditions of air-level carbon dioxide concentration [CO2], a carbon concentrating mechanism (CCM is induced to facilitate cellular carbon uptake. CCM increases the availability of carbon dioxide at the site of cellular carbon fixation. To improve our understanding of the transcriptional control of the CCM, we employed FAIRE-seq (formaldehyde-assisted Isolation of Regulatory Elements, followed by deep sequencing to determine nucleosome-depleted chromatin regions of algal cells subjected to carbon deprivation. Our FAIRE data recapitulated the positions of known regulatory elements in the promoter of the periplasmic carbonic anhydrase (Cah1 gene, which is upregulated during CCM induction, and revealed new candidate regulatory elements at a genome-wide scale. In addition, time series expression patterns of 130 transcription factor (TF and transcription regulator (TR genes were obtained for cells cultured under photoautotrophic condition and subjected to a shift from high to low [CO2]. Groups of co-expressed genes were identified and a putative directed gene-regulatory network underlying the CCM was reconstructed from the gene expression data using the recently developed IOTA (inner composition alignment method. Among the candidate regulatory genes, two members of the MYB-related TF family, Lcr1 (Low-CO 2 response regulator 1 and Lcr2 (Low-CO2 response regulator 2, may play an important role in down-regulating the expression of a particular set of TF and TR genes in response to low [CO2]. The results obtained provide new insights into the transcriptional control of the CCM and revealed more than 60 new candidate regulatory genes. Deep sequencing of nucleosome-depleted genomic regions indicated the presence of new, previously unknown regulatory elements in the C. reinhardtii genome

  2. Metabolic flux analysis of heterotrophic growth in Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Nanette R Boyle

    Full Text Available Despite the wealth of knowledge available for C. reinhardtii, the central metabolic fluxes of growth on acetate have not yet been determined. In this study, 13C-metabolic flux analysis (13C-MFA was used to determine and quantify the metabolic pathways of primary metabolism in C. reinhardtii cells grown under heterotrophic conditions with acetate as the sole carbon source. Isotopic labeling patterns of compartment specific biomass derived metabolites were used to calculate the fluxes. It was found that acetate is ligated with coenzyme A in the three subcellular compartments (cytosol, mitochondria and plastid included in the model. Two citrate synthases were found to potentially be involved in acetyl-coA metabolism; one localized in the mitochondria and the other acting outside the mitochondria. Labeling patterns demonstrate that Acetyl-coA synthesized in the plastid is directly incorporated in synthesis of fatty acids. Despite having a complete TCA cycle in the mitochondria, it was also found that a majority of the malate flux is shuttled to the cytosol and plastid where it is converted to oxaloacetate providing reducing equivalents to these compartments. When compared to predictions by flux balance analysis, fluxes measured with 13C-MFA were found to be suboptimal with respect to biomass yield; C. reinhardtii sacrifices biomass yield to produce ATP and reducing equivalents.

  3. Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(III) on short term effects to the green algae Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Röhder, Lena A. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600 (Switzerland); ETH-Zurich, Institute of Biogeochemistry and Pollutant Dynamics, Zürich 8092 (Switzerland); Brandt, Tanja [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600 (Switzerland); Sigg, Laura [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600 (Switzerland); ETH-Zurich, Institute of Biogeochemistry and Pollutant Dynamics, Zürich 8092 (Switzerland); Behra, Renata, E-mail: Renata.behra@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600 (Switzerland)

    2014-07-01

    Highlights: • Phosphate-dispersed CeO₂ NP did not affect photosynthetic yield in C. reinhardtii. • Agglomerated CeO₂ NP slightly decreased photosynthetic yield. • Cerium(III) was shown to affect photosynthetic yield and intracellular ROS level. • Slight effects of CeO₂ NP were caused by dissolved Ce³⁺ ions present in suspensions. • Wild type and cell wall free mutant of C. reinhardtii showed the same sensitivity. - Abstract: Cerium oxide nanoparticles (CeO₂ NP) are increasingly used in industrial applications and may be released to the aquatic environment. The fate of CeO₂ NP and effects on algae are largely unknown. In this study, the short term effects of CeO₂ NP in two different agglomeration states on the green algae Chlamydomonas reinhardtii were examined. The role of dissolved cerium(III) on toxicity, its speciation and the dissolution of CeO₂ NP were considered. The role of cell wall of C. reinhardtii as a barrier and its influence on the sensitivity to CeO₂ NP and cerium(III) was evaluated by testing both, the wild type and the cell wall free mutant of C. reinhardtii. Characterization showed that CeO₂ NP had a surface charge of ~0 mV at physiological pH and agglomerated in exposure media. Phosphate stabilized CeO₂ NP at pH 7.5 over 24 h. This effect was exploited to test CeO₂ NP dispersed in phosphate with a mean size of 140 nm and agglomerated in absence of phosphate with a mean size of 2000 nm. The level of dissolved cerium(III) in CeO₂ NP suspensions was very low and between 0.1 and 27 nM in all tested media. Exposure of C. reinhardtii to Ce(NO₃)₃ decreased the photosynthetic yield in a concentration dependent manner with EC₅₀ of 7.5 ± 0.84 μM for wild type and EC₅₀ of 6.3 ± 0.53 μM for the cell wall free mutant. The intracellular level of reactive oxygen species (ROS) increased upon exposure to Ce(NO₃)₃ with effective concentrations similar to those inhibiting photosynthesis. The agglomerated Ce

  4. Acclimation of Chlamydomonas reinhardtii to ultraviolet radiation and its impact on chemical toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Korkaric, Muris; Xiao, Mao [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland); Behra, Renata [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Duebendorf (Switzerland); Eggen, Rik I.L., E-mail: rik.eggen@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland)

    2015-10-15

    Highlights: • Systematic study of UVR acclimation and its impact on chemical toxicity in C. reinhardtii. • UVR acclimation is mediated through fast and reversible physiological defense mechanisms. • Pigment analysis suggests a role of lutein in UVR acclimation. • Co-tolerance to rose bengal suggests a role of singlet oxygen defense in UVR acclimation. • Knowledge on the toxic mechanism of chemicals needed to predict co-tolerance. - Abstract: The toxicity of chemical pollutants can be modulated under stressful environmental conditions, such as increased temperature, salinity or ultraviolet radiation (UVR), due to the interaction of effects during simultaneous stressor exposure. However, organisms may acclimate to such conditions by activation of physiological and biochemical defence mechanisms. In sequential exposures, organisms acclimated to environmental stressors may display an increased sensitivity or co-tolerance towards chemical pollutants. It has been suggested that co-tolerance might be expected for similarly acting stressors due to common defence mechanisms. To test this for combinations of UVR and chemical stressors, we first acclimatized the model green alga Chlamydomonas reinhardtii to UVR and subsequently compared the sensitivity of UVR pre-exposed and control algae towards chemicals. Selected chemicals all act on photosynthesis and thus share a common physiological target, but display distinct toxicity mechanisms. Results showed that UVR pre-exposure for four days partially inhibited algal growth and photosynthesis, but also increased algal tolerance to higher UVR levels, confirming UVR acclimation. HPLC analysis of algal pigments indicated that UVR acclimation might in part be explained by the protective function of lutein while the contribution of UVR absorbing compounds was less clear. Challenge exposure to chemicals in the absence of UVR showed that acclimated algae were co-tolerant to the photosensitizer rose bengal, but not to the

  5. Acclimation of Chlamydomonas reinhardtii to ultraviolet radiation and its impact on chemical toxicity

    International Nuclear Information System (INIS)

    Korkaric, Muris; Xiao, Mao; Behra, Renata; Eggen, Rik I.L.

    2015-01-01

    Highlights: • Systematic study of UVR acclimation and its impact on chemical toxicity in C. reinhardtii. • UVR acclimation is mediated through fast and reversible physiological defense mechanisms. • Pigment analysis suggests a role of lutein in UVR acclimation. • Co-tolerance to rose bengal suggests a role of singlet oxygen defense in UVR acclimation. • Knowledge on the toxic mechanism of chemicals needed to predict co-tolerance. - Abstract: The toxicity of chemical pollutants can be modulated under stressful environmental conditions, such as increased temperature, salinity or ultraviolet radiation (UVR), due to the interaction of effects during simultaneous stressor exposure. However, organisms may acclimate to such conditions by activation of physiological and biochemical defence mechanisms. In sequential exposures, organisms acclimated to environmental stressors may display an increased sensitivity or co-tolerance towards chemical pollutants. It has been suggested that co-tolerance might be expected for similarly acting stressors due to common defence mechanisms. To test this for combinations of UVR and chemical stressors, we first acclimatized the model green alga Chlamydomonas reinhardtii to UVR and subsequently compared the sensitivity of UVR pre-exposed and control algae towards chemicals. Selected chemicals all act on photosynthesis and thus share a common physiological target, but display distinct toxicity mechanisms. Results showed that UVR pre-exposure for four days partially inhibited algal growth and photosynthesis, but also increased algal tolerance to higher UVR levels, confirming UVR acclimation. HPLC analysis of algal pigments indicated that UVR acclimation might in part be explained by the protective function of lutein while the contribution of UVR absorbing compounds was less clear. Challenge exposure to chemicals in the absence of UVR showed that acclimated algae were co-tolerant to the photosensitizer rose bengal, but not to the

  6. Toxicity and mode of action of tritium alone and mixed with copper on the green algae Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Rety, Celine

    2010-01-01

    Liquid releases by Nuclear Power Plants (NPP) are composed of a mixture of radioactive and non-radioactive substances. When organisms are exposed to mixtures of contaminants the resultant toxicity can be enhanced, or reduced, due to interactions. In order to identify potential interactions between substances released by NPP, two substances representative of such effluents (in term of toxicity and of quantity) were selected for studies: Tritiated water (HTO) and copper (Cu). Effects of this binary mixture were studied on the unicellular green algae Chlamydomonas reinhardtii. HTO, when examined along, was not very toxic to C. reinhardtii. The most sensitive and early effect of HTO was an increase in oxidative stress at concentrations of 40 kBq mL -1 (0.13 μGy h -1 ). Algae exposure to the binary mixture HTO/Cu induced interactive effects on oxidative stress. Reactive Oxygen Species production was higher from exposure to the mixture of contaminants than the addition of the effect from each substance individually. This interaction was explained by an enhanced copper uptake by the algae when in the presence of HTO. The observed supra-additive effect could also be due to direct toxic interactions, especially on the antioxidant system. To conclude, this study showed that the effects of a mixture of radioactive and nonradioactive substances can be greater than what would be predicted based on mere addition of individual effects. Even thought this binary mixture is just a small part of NPP effluents, the study showed that potential interactions should be considered when determining ecological risks to aquatic ecosystems from NPP effluents. (author)

  7. Real-time monitoring of genetically modified Chlamydomonas reinhardtii during the Foton M3 space mission and ground irradiation experiment

    Science.gov (United States)

    Lambreva, Maya; Rea, Giuseppina; Antonacci, Amina; Serafini, Agnese; Damasso, Mario; Margonelli, Andrea; Johanningmeier, Udo; Bertalan, Ivo; Pezzotti, Gianni; Giardi, Maria Teresa

    Long-term space exploration, colonization or habitation requires biological life support systems capable to cope with the deleterious space environment. The use of oxygenic photosynthetic microrganisms is an intriguing possibility mainly for food, O2 and nutraceutical compounds production. The critical points of utilizing plantsor algae-based life support systems are the microgravity and the ionizing radiation, which can influence the performance of these organisms. The aim of the present study was to assess the effects of space environment on the photosynthetic activity of various microrganisms and to select space stress-tolerant strains. Site-directed and random mutants of the unicellular green alga Chlamydomonas reinhardtii of Photosystem II D1 protein were used as a model system to test and select the amino acid substitutions capable to account for space stress tolerance. We focussed our studies also on the accumulation of the Photosystem II photoprotective carotenoids (the xantophylls violaxanthin, anteraxanthin and zeaxanthin), powerful antioxidants that epidemiological studies demonstrated to be human vision protectors. Metabolite profiling by quantitative HPLC methods revealed the organisms and the stress conditions capable to accumulate the highest pigment levels. In order to develop a project for a rationale metabolic engineering of algal secondary metabolites overproduction, we are performing expression analyses on the carotenoid biosynthetic pathway under physiological and mimicked space conditions. To identify the consequences of the space environment on the photosynthetic apparatus the changes in the Photosystem II efficiency were monitored in real time during the ESA-Russian Foton-M3 mission in September 2007. For the space flight a high-tech, multicell fluorescence biosensor, Photo-II, was designed and built by the Centre for Advanced Research in Space Optics in collaboration with Kayser-Italy, Biosensor and DAS. Photo-II is an automatic device

  8. L,L-diaminopimelate aminotransferase from Chlamydomonas reinhardtii: a target for algaecide development.

    Science.gov (United States)

    Dobson, Renwick C J; Girón, Irma; Hudson, André O

    2011-01-01

    In some bacterial species and photosynthetic cohorts, including algae, the enzyme L,L-diaminopimelate aminotransferase (DapL) (E.C. 2.6.1.83) is involved in the anabolism of the essential amino acid L-lysine. DapL catalyzes the conversion of tetrahydrodipicolinate (THDPA) to L,L-diaminopimelate (L,L-DAP), in one step bypassing the DapD, DapC and DapE enzymatic reactions present in the acyl DAP pathways. Here we present an in vivo and in vitro characterization of the DapL ortholog from the alga Chlamydomonas reinhardtii (Cr-DapL). The in vivo analysis illustrated that the enzyme is able to functionally complement the E. coli dap auxotrophs and was essential for plant development in Arabidopsis. In vitro, the enzyme was able to inter-convert THDPA and L,L-DAP, showing strong substrate specificity. Cr-DapL was dimeric in both solution and when crystallized. The structure of Cr-DapL was solved in its apo form, showing an overall architecture of a α/β protein with each monomer in the dimer adopting a pyridoxal phosphate-dependent transferase-like fold in a V-shaped conformation. The active site comprises residues from both monomers in the dimer and shows some rearrangement when compared to the apo-DapL structure from Arabidopsis. Since animals do not possess the enzymatic machinery necessary for the de novo synthesis of the amino acid L-lysine, enzymes involved in this pathway are attractive targets for the development of antibiotics, herbicides and algaecides.

  9. L,L-diaminopimelate aminotransferase from Chlamydomonas reinhardtii: a target for algaecide development.

    Directory of Open Access Journals (Sweden)

    Renwick C J Dobson

    Full Text Available In some bacterial species and photosynthetic cohorts, including algae, the enzyme L,L-diaminopimelate aminotransferase (DapL (E.C. 2.6.1.83 is involved in the anabolism of the essential amino acid L-lysine. DapL catalyzes the conversion of tetrahydrodipicolinate (THDPA to L,L-diaminopimelate (L,L-DAP, in one step bypassing the DapD, DapC and DapE enzymatic reactions present in the acyl DAP pathways. Here we present an in vivo and in vitro characterization of the DapL ortholog from the alga Chlamydomonas reinhardtii (Cr-DapL. The in vivo analysis illustrated that the enzyme is able to functionally complement the E. coli dap auxotrophs and was essential for plant development in Arabidopsis. In vitro, the enzyme was able to inter-convert THDPA and L,L-DAP, showing strong substrate specificity. Cr-DapL was dimeric in both solution and when crystallized. The structure of Cr-DapL was solved in its apo form, showing an overall architecture of a α/β protein with each monomer in the dimer adopting a pyridoxal phosphate-dependent transferase-like fold in a V-shaped conformation. The active site comprises residues from both monomers in the dimer and shows some rearrangement when compared to the apo-DapL structure from Arabidopsis. Since animals do not possess the enzymatic machinery necessary for the de novo synthesis of the amino acid L-lysine, enzymes involved in this pathway are attractive targets for the development of antibiotics, herbicides and algaecides.

  10. Genetic analysis of suppressors of the PF10 mutation in Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Dutcher, S.K.; Gibbons, W.; Inwood, W.B.

    1988-01-01

    A mutation at the PF10 locus of the unicellular green alga Chlamydomonas reinhardtii leads to abnormal cell motility. The asymmetric form of the ciliary beat stroke characteristic of wild-type flagella is modified by this mutation to a nearly symmetric beat. We report here that this abnormal motility is a conditional phenotype that depends on light intensity. In the absence of light or under low light intensities, the motility is more severely impaired than at higher light intensities. By UV mutagenesis we obtained 11 intragenic and 70 extragenic strains that show reversion of the pf10 motility phenotype observed in low light. The intragenic events reverted the motility phenotype of the pf10 mutation completely. The extragenic events define at least seven suppressor loci; these map to linkage groups IV, VII, IX, XI, XII and XVII. Suppressor mutations at two of the seven loci (LIS1 and LIS2) require light for their suppressor activity. Forty-eight of the 70 extragenic suppressors were examined in heterozygous diploid cells; 47 of these mutants were recessive to the wild-type allele and one mutant (bop5-1) was dominant to the wild-type allele. Complementation analysis of the 47 recessive mutants showed unusual patterns. Most mutants within a recombinationally defined group failed to complement one another, although there were pairs that showed intra-allelic complementation. Additionally, some of the mutants at each recombinationally defined locus failed to complement mutants at other loci. They define dominant enhancers of one another

  11. Light-harvesting complex gene expression is controlled by both transcriptional and post-transcriptional mechanisms during photoacclimation in Chlamydomonas reinhardtii

    CERN Document Server

    Durnford Dion, G; McKim, Sarah M; Sarchfield, Michelle L

    2003-01-01

    To compensate for increases in photon flux density (PFD), photosynthetic organisms possess mechanisms for reversibly modulating their photosynthetic apparatus to minimize photodamage. The photoacclimation response in Chlamydomonas reinhardtii was assessed following a 10-fold increase in PFD over 24h. In addition to a 50% reduction in the amount of chlorophyll and light-harvesting complexes (LHC) per cell, the expression of genes encoding polypeptides of the light-harvesting antenna were also affected. The abundance of Lhcb (a LHCH gene), Lhcb4 (a CP29-like gene), and Lhca (a LHCI gene) transcripts were reduced by 65 to 80%, within 1-2 h; however, the RNA levels of all three genes recovered to their low-light (LL) concentrations within 6-8 h. To determine the role of transcript turnover in this transient decline in abundance, the stability of all transcripts was measured. Although there was no change in the Lhcb or Lhca transcript turnover time, the Lhcb4 mRNA stability decreased 2.5-fold immediately following...

  12. Sensitivity of the green algae Chlamydomonas reinhardtii to gamma radiation: Photosynthetic performance and ROS formation

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Tânia, E-mail: tania.gomes@niva.no [Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349, Oslo (Norway); Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås (Norway); Xie, Li [Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349, Oslo (Norway); Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås (Norway); Brede, Dag; Lind, Ole-Christian [Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås (Norway); Department for Environmental Sciences, Faculty of Environmental Science & Technology, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432, Ås (Norway); Solhaug, Knut Asbjørn [Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås (Norway); Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Postbox 5003, N-1432, Ås (Norway); Salbu, Brit [Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås (Norway); Department for Environmental Sciences, Faculty of Environmental Science & Technology, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432, Ås (Norway); and others

    2017-02-15

    Highlights: • Chlorophyll fluorescence parameters affected at higher dose rates. • Changes in PSII associated with electron transport and energy dissipation pathways. • Dose-dependent ROS production in algae exposed to gamma radiation. • Decrease in photosynthetic efficiency connected to ROS formation. - Abstract: The aquatic environment is continuously exposed to ionizing radiation from both natural and anthropogenic sources, making the characterization of ecological and health risks associated with radiation of large importance. Microalgae represent the main source of biomass production in the aquatic ecosystem, thus becoming a highly relevant biological model to assess the impacts of gamma radiation. However, little information is available on the effects of gamma radiation on microalgal species, making environmental radioprotection of this group of species challenging. In this context, the present study aimed to improve the understanding of the effects and toxic mechanisms of gamma radiation in the unicellular green algae Chlamydomonas reinhardtii focusing on the activity of the photosynthetic apparatus and ROS formation. Algal cells were exposed to gamma radiation (0.49–1677 mGy/h) for 6 h and chlorophyll fluorescence parameters obtained by PAM fluorometry, while two fluorescent probes carboxy-H{sub 2}DFFDA and DHR 123 were used for the quantification of ROS. The alterations seen in functional parameters of C. reinhardtii PSII after 6 h of exposure to gamma radiation showed modifications of PSII energy transfer associated with electron transport and energy dissipation pathways, especially at the higher dose rates used. Results also showed that gamma radiation induced ROS in a dose-dependent manner under both light and dark conditions. The observed decrease in photosynthetic efficiency seems to be connected to the formation of ROS and can potentially lead to oxidative stress and cellular damage in chloroplasts. To our knowledge, this is the first

  13. Sensitivity of the green algae Chlamydomonas reinhardtii to gamma radiation: Photosynthetic performance and ROS formation

    International Nuclear Information System (INIS)

    Gomes, Tânia; Xie, Li; Brede, Dag; Lind, Ole-Christian; Solhaug, Knut Asbjørn; Salbu, Brit

    2017-01-01

    Highlights: • Chlorophyll fluorescence parameters affected at higher dose rates. • Changes in PSII associated with electron transport and energy dissipation pathways. • Dose-dependent ROS production in algae exposed to gamma radiation. • Decrease in photosynthetic efficiency connected to ROS formation. - Abstract: The aquatic environment is continuously exposed to ionizing radiation from both natural and anthropogenic sources, making the characterization of ecological and health risks associated with radiation of large importance. Microalgae represent the main source of biomass production in the aquatic ecosystem, thus becoming a highly relevant biological model to assess the impacts of gamma radiation. However, little information is available on the effects of gamma radiation on microalgal species, making environmental radioprotection of this group of species challenging. In this context, the present study aimed to improve the understanding of the effects and toxic mechanisms of gamma radiation in the unicellular green algae Chlamydomonas reinhardtii focusing on the activity of the photosynthetic apparatus and ROS formation. Algal cells were exposed to gamma radiation (0.49–1677 mGy/h) for 6 h and chlorophyll fluorescence parameters obtained by PAM fluorometry, while two fluorescent probes carboxy-H 2 DFFDA and DHR 123 were used for the quantification of ROS. The alterations seen in functional parameters of C. reinhardtii PSII after 6 h of exposure to gamma radiation showed modifications of PSII energy transfer associated with electron transport and energy dissipation pathways, especially at the higher dose rates used. Results also showed that gamma radiation induced ROS in a dose-dependent manner under both light and dark conditions. The observed decrease in photosynthetic efficiency seems to be connected to the formation of ROS and can potentially lead to oxidative stress and cellular damage in chloroplasts. To our knowledge, this is the first report

  14. RNAi knock-down of LHCBM1, 2 and 3 increases photosynthetic H2 production efficiency of the green alga Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Melanie Oey

    Full Text Available Single cell green algae (microalgae are rapidly emerging as a platform for the production of sustainable fuels. Solar-driven H2 production from H2O theoretically provides the highest-efficiency route to fuel production in microalgae. This is because the H2-producing hydrogenase (HYDA is directly coupled to the photosynthetic electron transport chain, thereby eliminating downstream energetic losses associated with the synthesis of carbohydrate and oils (feedstocks for methane, ethanol and oil-based fuels. Here we report the simultaneous knock-down of three light-harvesting complex proteins (LHCMB1, 2 and 3 in the high H2-producing Chlamydomonas reinhardtii mutant Stm6Glc4 using an RNAi triple knock-down strategy. The resultant Stm6Glc4L01 mutant exhibited a light green phenotype, reduced expression of LHCBM1 (20.6% ±0.27%, LHCBM2 (81.2% ±0.037% and LHCBM3 (41.4% ±0.05% compared to 100% control levels, and improved light to H2 (180% and biomass (165% conversion efficiencies. The improved H2 production efficiency was achieved at increased solar flux densities (450 instead of ∼100 µE m(-2 s(-1 and high cell densities which are best suited for microalgae production as light is ideally the limiting factor. Our data suggests that the overall improved photon-to-H2 conversion efficiency is due to: 1 reduced loss of absorbed energy by non-photochemical quenching (fluorescence and heat losses near the photobioreactor surface; 2 improved light distribution in the reactor; 3 reduced photoinhibition; 4 early onset of HYDA expression and 5 reduction of O2-induced inhibition of HYDA. The Stm6Glc4L01 phenotype therefore provides important insights for the development of high-efficiency photobiological H2 production systems.

  15. Phosphopantetheinylation in the green microalgae Chlamydomonas reinhardtii

    DEFF Research Database (Denmark)

    Sonnenschein, Eva; Pu, Yuan; Beld, Joris

    2016-01-01

    available microalgal genome data revealed that most green microalgae appear to carry two PPTases forming clusters with each C. reinhardtii PPTase, while microalgae of other divisions carry one or two PPTases and do not cluster in the pattern of the green algal data. This new understanding on the PPTases...... in microalgae shows that microalgae are already primed for biotechnological applications in contrast to other organisms. Thus, microalgae have great potential for metabolic engineering efforts in the realm of biofuel and high-value products including direct engineering of the fatty acid or secondary metabolism...

  16. Resistance to Phosphinothricin (Glufosinate) and Its Utilization as a Nitrogen Source by Chlamydomonas reinhardtii.

    Science.gov (United States)

    Franco, A R; Lopez-Siles, F J; Cardenas, J

    1996-10-01

    Wild-type strain 21gr of the green alga Chlamydomonas reinhardtii was resistant to the ammonium salt of l-phosphinothricin (PPT, also called glufosinate), an irreversible inhibitor of glutamine synthetase activity and the main active component of the herbicide BASTA (AgrEvo, Frankfurt am Main, Germany). Under the same conditions, however, this strain was highly sensitive to l-methionine-S-sulfoximine, a structural analog of PPT which has been reported to be 5 to 10 times less effective than PPT as an inhibitor in plants. Moreover, this alga was able to grow with PPT as the sole nitrogen source when this compound was provided at low concentrations. This utilization of PPT was dependent upon the addition of acetate and light and did not take place in the presence of ammonium. Resistance was due neither to the presence of N-acetyltransferase or transaminase activity nor to the presence of glutamine synthetase isoforms resistant to PPT. By using l-[methyl-(sup14)C]PPT, we demonstrated that resistance is due to lack of PPT transport into the cells. This strongly suggests that PPT and l-methionine-S-sulfoximine enter the cells through different systems. Growth with PPT is supported by its deamination by an l-amino acid oxidase activity which has been previously described to be located at the periplasm.

  17. Basis of genetic adaptation to heavy metal stress in the acidophilic green alga Chlamydomonas acidophila.

    Science.gov (United States)

    Puente-Sánchez, Fernando; Díaz, Silvia; Penacho, Vanessa; Aguilera, Angeles; Olsson, Sanna

    2018-07-01

    To better understand heavy metal tolerance in Chlamydomonas acidophila, an extremophilic green alga, we assembled its transcriptome and measured transcriptomic expression before and after Cd exposure in this and the neutrophilic model microalga Chlamydomonas reinhardtii. Genes possibly related to heavy metal tolerance and detoxification were identified and analyzed as potential key innovations that enable this species to live in an extremely acid habitat with high levels of heavy metals. In addition we provide a data set of single orthologous genes from eight green algal species as a valuable resource for comparative studies including eukaryotic extremophiles. Our results based on differential gene expression, detection of unique genes and analyses of codon usage all indicate that there are important genetic differences in C. acidophila compared to C. reinhardtii. Several efflux family proteins were identified as candidate key genes for adaptation to acid environments. This study suggests for the first time that exposure to cadmium strongly increases transposon expression in green algae, and that oil biosynthesis genes are induced in Chlamydomonas under heavy metal stress. Finally, the comparison of the transcriptomes of several acidophilic and non-acidophilic algae showed that the Chlamydomonas genus is polyphyletic and that acidophilic algae have distinctive aminoacid usage patterns. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Experimental Definition and Validation of Protein Coding Transcripts in Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Kourosh Salehi-Ashtiani; Jason A. Papin

    2012-01-13

    Algal fuel sources promise unsurpassed yields in a carbon neutral manner that minimizes resource competition between agriculture and fuel crops. Many challenges must be addressed before algal biofuels can be accepted as a component of the fossil fuel replacement strategy. One significant challenge is that the cost of algal fuel production must become competitive with existing fuel alternatives. Algal biofuel production presents the opportunity to fine-tune microbial metabolic machinery for an optimal blend of biomass constituents and desired fuel molecules. Genome-scale model-driven algal metabolic design promises to facilitate both goals by directing the utilization of metabolites in the complex, interconnected metabolic networks to optimize production of the compounds of interest. Using Chlamydomonas reinhardtii as a model, we developed a systems-level methodology bridging metabolic network reconstruction with annotation and experimental verification of enzyme encoding open reading frames. We reconstructed a genome-scale metabolic network for this alga and devised a novel light-modeling approach that enables quantitative growth prediction for a given light source, resolving wavelength and photon flux. We experimentally verified transcripts accounted for in the network and physiologically validated model function through simulation and generation of new experimental growth data, providing high confidence in network contents and predictive applications. The network offers insight into algal metabolism and potential for genetic engineering and efficient light source design, a pioneering resource for studying light-driven metabolism and quantitative systems biology. Our approach to generate a predictive metabolic model integrated with cloned open reading frames, provides a cost-effective platform to generate metabolic engineering resources. While the generated resources are specific to algal systems, the approach that we have developed is not specific to algae and

  19. Comparison of CO(2) and bicarbonate as inorganic carbon sources for triacylglycerol and starch accumulation in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Gardner, Robert D; Lohman, Egan; Gerlach, Robin; Cooksey, Keith E; Peyton, Brent M

    2013-01-01

    Microalgae are capable of accumulating high levels of lipids and starch as carbon storage compounds. Investigation into the metabolic activities involved in the synthesis of these compounds has escalated since these compounds can be used as precursors for food and fuel. Here, we detail the results of a comprehensive analysis of Chlamydomonas reinhardtii using high or low inorganic carbon concentrations and speciation between carbon dioxide and bicarbonate, and the effects these have on inducing lipid and starch accumulation during nitrogen depletion. High concentrations of CO(2) (5%; v/v) produced the highest amount of biofuel precursors, transesterified to fatty acid methyl esters, but exhibited rapid accumulation and degradation characteristics. Low CO(2) (0.04%; v/v) caused carbon limitation and minimized triacylglycerol (TAG) and starch accumulation. High bicarbonate caused a cessation of cell cycling and accumulation of both TAG and starch that was more stable than the other experimental conditions. Starch accumulated prior to TAG and then degraded as maximum TAG was reached. This suggests carbon reallocation from starch-based to TAG-based carbon storage. Copyright © 2012 Wiley Periodicals, Inc.

  20. Copper excess-induced large reversible and small irreversible adaptations in a population of Chlamydomonas reinhardtii CW15 (Chlorophyta

    Directory of Open Access Journals (Sweden)

    Bartosz Pluciński

    2018-03-01

    Full Text Available Two Chlamydomonas reinhardtii CW15 populations modified by an excess of copper in growth medium were obtained: a “Cu” population that was continuously grown under the selection pressure of 5 µM Cu2+ (for at least 48 weeks and the “Re” population, where a relatively short (9 week exposure to elevated copper, necessary for acquiring tolerance, was followed by a prolonged period (at least 39 weeks of cultivation at a normal (0.25 µM copper concentration. Cells of the Cu population were able to multiply at a Cu2+ concentration 16 times higher than that of the control population at a normal light intensity and at a Cu2+ concentration 64 times higher when cultivated in dim light. The potential quantum yield of photosystem II (FV/FM ratio under copper stress was also significantly higher for the Cu population than for Re and control populations. The Re population showed only residual tolerance towards the elevated concentration of copper, which is revealed by an FV/FM ratio slightly higher than in the control population under Cu2+ stress in dim light or in darkness. We postulate that in the Chlamydomonas populations studied in this paper, at least two mechanisms of copper tolerance operate. The first mechanism is maintained during cultivation at a standard copper concentration and seems to be connected with photosynthetic apparatus. This mechanism, however, has only low adaptive value under excess of copper. The other mechanism, with a much higher adaptive value, is probably connected with Cu2+ homeostasis at the cellular level, but is lost during cultivation at a normal copper concentration.

  1. [The impact of melafen on the expression of chloroplastic chaperone protein HSP70B and photosynthetic pigments in cells of Chlamydomonas reinhardtii].

    Science.gov (United States)

    Ermokhina, O V; Belkina, G G; Oleskina, Iu P; Fattakhov, S G; Iurina, N P

    2009-01-01

    The effects of growth regulator of the new generation-melamine salt of bis(oxymethyl)phosphine acid (melafen)--on culture growth, pigment and protein content, and the induction of protective chloroplastic chaperone HSP70B in Chlamydomonas reinhardtii CW15 cells were studied. Melafen exhibited 10-30% growth inhibition at 10(-9)-10(-2)% concentration. At 10(-9)-10(-4)% of melafen electrophoretic concentration, the pattern of cellular proteins was similar to the control. The alterations in protein content of algae cells were detected only at 10(-2)% concentration. The content of chlorophyll and carotenoids in melafen-treated cells was 17-40% lower than in the control. Melafen at 10(-9)-109-2)% concentration inhibited HSP70B induction by 39-43% compared to untreated cells. The potential mechanism of melafen effect might involve its influence on nuclear gene expression.

  2. A Chlamydomonas-derived Human Papillomavirus 16 E7 vaccine induces specific tumor protection.

    Directory of Open Access Journals (Sweden)

    Olivia C Demurtas

    Full Text Available The E7 protein of the Human Papillomavirus (HPV type 16, being involved in malignant cellular transformation, represents a key antigen for developing therapeutic vaccines against HPV-related lesions and cancers. Recombinant production of this vaccine antigen in an active form and in compliance with good manufacturing practices (GMP plays a crucial role for developing effective vaccines. E7-based therapeutic vaccines produced in plants have been shown to be active in tumor regression and protection in pre-clinical models. However, some drawbacks of in whole-plant vaccine production encouraged us to explore the production of the E7-based therapeutic vaccine in Chlamydomonas reinhardtii, an organism easy to grow and transform and fully amenable to GMP guidelines.An expression cassette encoding E7GGG, a mutated, attenuated form of the E7 oncoprotein, alone or as a fusion with affinity tags (His6 or FLAG, under the control of the C. reinhardtii chloroplast psbD 5' UTR and the psbA 3' UTR, was introduced into the C. reinhardtii chloroplast genome by homologous recombination. The protein was mostly soluble and reached 0.12% of total soluble proteins. Affinity purification was optimized and performed for both tagged forms. Induction of specific anti-E7 IgGs and E7-specific T-cell proliferation were detected in C57BL/6 mice vaccinated with total Chlamydomonas extract and with affinity-purified protein. High levels of tumor protection were achieved after challenge with a tumor cell line expressing the E7 protein.The C. reinhardtii chloroplast is a suitable expression system for the production of the E7GGG protein, in a soluble, immunogenic form. The production in contained and sterile conditions highlights the potential of microalgae as alternative platforms for the production of vaccines for human uses.

  3. The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Sabeeha S

    2007-04-09

    Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.

  4. Phytotoxicity of 15 common pharmaceuticals on the germination of Lactuca sativa and photosynthesis of Chlamydomonas reinhardtii.

    Science.gov (United States)

    Pino, Ma Rosa; Muñiz, Selene; Val, Jonatan; Navarro, Enrique

    2016-11-01

    Pharmaceuticals reach terrestrial environments through the application of treated wastewaters and biosolids to agricultural soils. We have investigated the toxicity of 15 common pharmaceuticals, classified as nonsteroidal anti-inflammatory drugs (NSAIDs), blood lipid-lowering agents, β-blockers and antibiotics, in two photosynthetic organisms. Twelve pharmaceuticals caused inhibitory effects on the radicle and hypocotyl elongation of Lactuca sativa seeds. The EC 50 values obtained were in the range of 170-5656 mg L -1 in the case of the radicle and 188-4558 mg L -1 for the hypocotyl. Propranolol was the most toxic drug for both root and hypocotyl elongation, followed by the NSAIDs, then gemfibrozil and tetracycline. Other effects, such as root necrosis, inhibition of root growth and curly hairs, were detected. However, even at the highest concentrations tested (3000 mg L -1 ), seed germination was not affected. NSAIDs decreased the photosynthetic yield of Chlamydomonas reinhardtii, but only salicylic acid showed EC 50 values below 1000 mg L -1 . The first effects detected at low concentrations, together with the concentrations found in environmental samples, indicate that the use of biosolids and wastewaters containing pharmaceuticals should be regulated and their compositions assessed in order to prevent medium- and long-term impacts on agricultural soils and crops.

  5. Knock-Down of the IFR1 Protein Perturbs the Homeostasis of Reactive Electrophile Species and Boosts Photosynthetic Hydrogen Production in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Venkanna, Deepak; Südfeld, Christian; Baier, Thomas; Homburg, Sarah V; Patel, Anant V; Wobbe, Lutz; Kruse, Olaf

    2017-01-01

    The protein superfamily of short-chain dehydrogenases/reductases (SDR), including members of the atypical type (aSDR), covers a huge range of catalyzed reactions and in vivo substrates. This superfamily also comprises isoflavone reductase-like (IRL) proteins, which are aSDRs highly homologous to isoflavone reductases from leguminous plants. The molecular function of IRLs in non-leguminous plants and green microalgae has not been identified as yet, but several lines of evidence point at their implication in reactive oxygen species homeostasis. The Chlamydomonas reinhardtii IRL protein IFR1 was identified in a previous study, analyzing the transcriptomic changes occurring during the acclimation to sulfur deprivation and anaerobiosis, a condition that triggers photobiological hydrogen production in this microalgae. Accumulation of the cytosolic IFR1 protein is induced by sulfur limitation as well as by the exposure of C. reinhardtii cells to reactive electrophile species (RES) such as reactive carbonyls. The latter has not been described for IRL proteins before. Over-accumulation of IFR1 in the singlet oxygen response 1 ( sor1 ) mutant together with the presence of an electrophile response element, known to be required for SOR1-dependent gene activation as a response to RES, in the promoter of IFR1 , indicate that IFR1 expression is controlled by the SOR1-dependent pathway. An implication of IFR1 into RES homeostasis, is further implied by a knock-down of IFR1 , which results in a diminished tolerance toward RES. Intriguingly, IFR1 knock-down has a positive effect on photosystem II (PSII) stability under sulfur-deprived conditions used to trigger photobiological hydrogen production, by reducing PSII-dependent oxygen evolution, in C. reinhardtii . Reduced PSII photoinhibition in IFR1 knock-down strains prolongs the hydrogen production phase resulting in an almost doubled final hydrogen yield compared to the parental strain. Finally, IFR1 knock-down could be

  6. Cd2+ Toxicity to a Green Alga Chlamydomonas reinhardtii as Influenced by Its Adsorption on TiO2 Engineered Nanoparticles

    Science.gov (United States)

    Yang, Wei-Wan; Miao, Ai-Jun; Yang, Liu-Yan

    2012-01-01

    In the present study, Cd2+ adsorption on polyacrylate-coated TiO2 engineered nanoparticles (TiO2-ENs) and its effect on the bioavailability as well as toxicity of Cd2+ to a green alga Chlamydomonas reinhardtii were investigated. TiO2-ENs could be well dispersed in the experimental medium and their pHpzc is approximately 2. There was a quick adsorption of Cd2+ on TiO2-ENs and a steady state was reached within 30 min. A pseudo-first order kinetics was found for the time-related changes in the amount of Cd2+ complexed with TiO2-ENs. At equilibrium, Cd2+ adsorption followed the Langmuir isotherm with the maximum binding capacity 31.9, 177.1, and 242.2 mg/g when the TiO2-EN concentration was 1, 10, and 100 mg/l, respectively. On the other hand, Cd2+ toxicity was alleviated in the presence of TiO2-ENs. Algal growth was less suppressed in treatments with comparable total Cd2+ concentration but more TiO2-ENs. However, such toxicity difference disappeared and all the data points could be fitted to a single Logistic dose-response curve when cell growth inhibition was plotted against the free Cd2+ concentration. No detectable amount of TiO2-ENs was found to be associated with the algal cells. Therefore, TiO2-ENs could reduce the free Cd2+ concentration in the toxicity media, which further lowered its bioavailability and toxicity to C. reinhardtii. PMID:22403644

  7. Application of proton exchange membrane fuel cells for the monitoring and direct usage of biohydrogen produced by Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Oncel, S.; Vardar-Sukan, F. [Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir (Turkey)

    2011-01-01

    Photo-biologically produced hydrogen by Chlamydomonas reinhardtii is integrated with a proton exchange (PEM) fuel cell for online electricity generation. To investigate the fuel cell efficiency, the effect of hydrogen production on the open circuit fuel cell voltage is monitored during 27 days of batch culture. Values of volumetric hydrogen production, monitored by the help of the calibrated water columns, are related with the open circuit voltage changes of the fuel cell. From the analysis of this relation a dead end configuration is selected to use the fuel cell in its best potential. After the open circuit experiments external loads are tested for their effects on the fuel cell voltage and current generation. According to the results two external loads are selected for the direct usage of the fuel cell incorporating with the photobioreactors (PBR). Experiments with the PEM fuel cell generate a current density of 1.81 mA cm{sup -2} for about 50 h with 10 {omega} load and 0.23 mA cm{sup -2} for about 80 h with 100 {omega} load. (author)

  8. Synthesizing and salvaging NAD: lessons learned from Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Huawen Lin

    2010-09-01

    Full Text Available The essential coenzyme nicotinamide adenine dinucleotide (NAD+ plays important roles in metabolic reactions and cell regulation in all organisms. Bacteria, fungi, plants, and animals use different pathways to synthesize NAD+. Our molecular and genetic data demonstrate that in the unicellular green alga Chlamydomonas NAD+ is synthesized from aspartate (de novo synthesis, as in plants, or nicotinamide, as in mammals (salvage synthesis. The de novo pathway requires five different enzymes: L-aspartate oxidase (ASO, quinolinate synthetase (QS, quinolate phosphoribosyltransferase (QPT, nicotinate/nicotinamide mononucleotide adenylyltransferase (NMNAT, and NAD+ synthetase (NS. Sequence similarity searches, gene isolation and sequencing of mutant loci indicate that mutations in each enzyme result in a nicotinamide-requiring mutant phenotype in the previously isolated nic mutants. We rescued the mutant phenotype by the introduction of BAC DNA (nic2-1 and nic13-1 or plasmids with cloned genes (nic1-1 and nic15-1 into the mutants. NMNAT, which is also in the de novo pathway, and nicotinamide phosphoribosyltransferase (NAMPT constitute the nicotinamide-dependent salvage pathway. A mutation in NAMPT (npt1-1 has no obvious growth defect and is not nicotinamide-dependent. However, double mutant strains with the npt1-1 mutation and any of the nic mutations are inviable. When the de novo pathway is inactive, the salvage pathway is essential to Chlamydomonas for the synthesis of NAD+. A homolog of the human SIRT6-like gene, SRT2, is upregulated in the NS mutant, which shows a longer vegetative life span than wild-type cells. Our results suggest that Chlamydomonas is an excellent model system to study NAD+ metabolism and cell longevity.

  9. Effect of mutagen combined action on Chlamydomonas reinhardtii cells. I. Lethal effect dependence on the sequence of mutagen application and on cultivation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Vlcek, D; Podstavkova, S; Dubovsky, J [Komenskeho Univ., Bratislava (Czechoslovakia). Prirodovedecka Fakulta

    1978-01-01

    The effect was investigated of single and combined actions of alkylnitrosourea derivatives (N-methyl-N-nitrosourea and N-ethyl-N-nitrosourea) and UV-radiation on the survival of cells of Chlamydomonas reinhardtii algae in dependence on the sequence of application of mutagens and on the given conditions of cultivation following mutagen activity. In particular, the single phases were investigated of the total lethal effect, i.e., the death of cells before division and their death after division. The most pronounced changes in dependence on the sequence of application of mutagens and on the given conditions of cultivation were noted in cell death before division. In dependence on the sequence of application of mutagens, the effect of the combined action on the survival of cells changed from an additive (alkylnitrosourea + UV-radiation) to a protective effect (UV-radiation + alkylnitrosourea).

  10. Deletion of Proton Gradient Regulation 5 (PGR5) and PGR5-Like 1 (PGRL1) proteins promote sustainable light-driven hydrogen production in Chlamydomonas reinhardtii due to increased PSII activity under sulfur deprivation.

    Science.gov (United States)

    Steinbeck, Janina; Nikolova, Denitsa; Weingarten, Robert; Johnson, Xenie; Richaud, Pierre; Peltier, Gilles; Hermann, Marita; Magneschi, Leonardo; Hippler, Michael

    2015-01-01

    Continuous hydrogen photo-production under sulfur deprivation was studied in the Chlamydomonas reinhardtii pgr5 pgrl1 double mutant and respective single mutants. Under medium light conditions, the pgr5 exhibited the highest performance and produced about eight times more hydrogen than the wild type, making pgr5 one of the most efficient hydrogen producer reported so far. The pgr5 pgrl1 double mutant showed an increased hydrogen burst at the beginning of sulfur deprivation under high light conditions, but in this case the overall amount of hydrogen produced by pgr5 pgrl1 as well as pgr5 was diminished due to photo-inhibition and increased degradation of PSI. In contrast, the pgrl1 was effective in hydrogen production in both high and low light. Blocking photosynthetic electron transfer by DCMU stopped hydrogen production almost completely in the mutant strains, indicating that the main pathway of electrons toward enhanced hydrogen production is via linear electron transport. Indeed, PSII remained more active and stable in the pgr mutant strains as compared to the wild type. Since transition to anaerobiosis was faster and could be maintained due to an increased oxygen consumption capacity, this likely preserves PSII from photo-oxidative damage in the pgr mutants. Hence, we conclude that increased hydrogen production under sulfur deprivation in the pgr5 and pgrl1 mutants is caused by an increased stability of PSII permitting sustainable light-driven hydrogen production in Chlamydomonas reinhardtii.

  11. Chlamydomonas IFT25 is dispensable for flagellar assembly but required to export the BBSome from flagella

    Directory of Open Access Journals (Sweden)

    Bin Dong

    2017-11-01

    Full Text Available Intraflagellar transport (IFT particles are composed of polyprotein complexes IFT-A and IFT-B as well as cargo adaptors such as the BBSome. Two IFT-B subunits, IFT25 and IFT27 were found to form a heterodimer, which is essential in exporting the BBSome out of the cilium but not involved in flagellar assembly and cytokinesis in vertebrates. Controversial results were, however, recorded to show that defects in IFT, flagellar assembly and even cytokinesis were caused by IFT27 knockdown in Chlamydomonas reinhardtii. Using C. reinhardtii as a model organism, we report that depletion of IFT25 has no effect on flagellar assembly and does not affect the entry of the BBSome into the flagellum, but IFT25 depletion did impair BBSome movement out of the flagellum, clarifying the evolutionally conserved role of IFT25 in regulating the exit of the BBSome from the flagellum cross species. Interestingly, depletion of IFT25 causes dramatic reduction of IFT27 as expected, which does not cause defects in flagellar assembly and cytokinesis in C. reinhardtii. Our data thus support that Chlamydomonas IFT27, like its vertebrate homologues, is not involved in flagellar assembly and cytokinesis.

  12. A mutation in the centriole-associated protein centrin causes genomic instability via increased chromosome loss in Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Marshall Wallace F

    2005-05-01

    Full Text Available Abstract Background The role of centrioles in mitotic spindle function remains unclear. One approach to investigate mitotic centriole function is to ask whether mutation of centriole-associated proteins can cause genomic instability. Results We addressed the role of the centriole-associated EF-hand protein centrin in genomic stability using a Chlamydomonas reinhardtii centrin mutant that forms acentriolar bipolar spindles and lacks the centrin-based rhizoplast structures that join centrioles to the nucleus. Using a genetic assay for loss of heterozygosity, we found that this centrin mutant showed increased genomic instability compared to wild-type cells, and we determined that the increase in genomic instability was due to a 100-fold increase in chromosome loss rates compared to wild type. Live cell imaging reveals an increased rate in cell death during G1 in haploid cells that is consistent with an elevated rate of chromosome loss, and analysis of cell death versus centriole copy number argues against a role for multipolar spindles in this process. Conclusion The increased chromosome loss rates observed in a centrin mutant that forms acentriolar spindles suggests a role for centrin protein, and possibly centrioles, in mitotic fidelity.

  13. OK, thanks! A new mutualism between Chlamydomonas and methylobacteria facilitates growth on amino acids and peptides.

    Science.gov (United States)

    Calatrava, Victoria; Hom, Erik F Y; Llamas, Ángel; Fernández, Emilio; Galván, Aurora

    2018-04-01

    Nitrogen is a key nutrient for land plants and phytoplankton in terrestrial and aquatic ecosystems. The model alga Chlamydomonas reinhardtii can grow efficiently on several inorganic nitrogen sources (e.g. ammonium, nitrate, nitrite) as well as many amino acids. In this study, we show that Chlamydomonas is unable to use proline, hydroxyproline and peptides that contain these amino acids. However, we discovered that algal growth on these substrates is supported in association with Methylobacterium spp., and that a mutualistic carbon-nitrogen metabolic exchange between Chlamydomonas and Methylobacterium spp. is established. Specifically, the mineralization of these amino acids and peptides by Methylobacterium spp. produces ammonium that can be assimilated by Chlamydomonas, and CO2 photosynthetically fixed by Chlamydomonas yields glycerol that can be assimilated by Methylobacterium. As Chlamydomonas is an algal ancestor to land plants and Methylobacterium is a plant growth-promoting bacterium, this new model of mutualism may facilitate insights into the ecology and evolution of plant-bacterial interactions and design principles of synthetic ecology.

  14. The Chlamydomonas genome project: a decade on

    Science.gov (United States)

    Blaby, Ian K.; Blaby-Haas, Crysten; Tourasse, Nicolas; Hom, Erik F. Y.; Lopez, David; Aksoy, Munevver; Grossman, Arthur; Umen, James; Dutcher, Susan; Porter, Mary; King, Stephen; Witman, George; Stanke, Mario; Harris, Elizabeth H.; Goodstein, David; Grimwood, Jane; Schmutz, Jeremy; Vallon, Olivier; Merchant, Sabeeha S.; Prochnik, Simon

    2014-01-01

    The green alga Chlamydomonas reinhardtii is a popular unicellular organism for studying photosynthesis, cilia biogenesis and micronutrient homeostasis. Ten years since its genome project was initiated, an iterative process of improvements to the genome and gene predictions has propelled this organism to the forefront of the “omics” era. Housed at Phytozome, the Joint Genome Institute’s (JGI) plant genomics portal, the most up-to-date genomic data include a genome arranged on chromosomes and high-quality gene models with alternative splice forms supported by an abundance of RNA-Seq data. Here, we present the past, present and future of Chlamydomonas genomics. Specifically, we detail progress on genome assembly and gene model refinement, discuss resources for gene annotations, functional predictions and locus ID mapping between versions and, importantly, outline a standardized framework for naming genes. PMID:24950814

  15. Not changes in membrane fluidity but proteotoxic stress triggers heat shock protein expression in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Rütgers, Mark; Muranaka, Ligia Segatto; Schulz-Raffelt, Miriam; Thoms, Sylvia; Schurig, Juliane; Willmund, Felix; Schroda, Michael

    2017-12-01

    A conserved reaction of all organisms exposed to heat stress is an increased expression of heat shock proteins (HSPs). Several studies have proposed that HSP expression in heat-stressed plant cells is triggered by an increased fluidity of the plasma membrane. Among the main lines of evidence in support of this model are as follows: (a) the degree of membrane lipid saturation was higher in cells grown at elevated temperatures and correlated with a lower amplitude of HSP expression upon a temperature upshift, (b) membrane fluidizers induce HSP expression at physiological temperatures, and (c) membrane rigidifier dimethylsulfoxide dampens heat-induced HSP expression. Here, we tested whether this holds also for Chlamydomonas reinhardtii. We show that heat-induced HSP expression in cells grown at elevated temperatures was reduced because they already contained elevated levels of cytosolic HSP70A/90A that apparently act as negative regulators of heat shock factor 1. We find that membrane rigidifier dimethylsulfoxide impaired translation under heat stress conditions and that membrane fluidizer benzyl alcohol not only induced HSP expression but also caused protein aggregation. These findings support the classical model for the cytosolic unfolded protein response, according to which HSP expression is induced by the accumulation of unfolded proteins. Hence, the membrane fluidity model should be reconsidered. © 2017 John Wiley & Sons Ltd.

  16. Production and characterization of algae extract from Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Weston Kightlinger

    2014-01-01

    Conclusions: This study showed that algae extract derived from C. reinhardtii is similar, if not superior, to commercially available yeast extract in nutrient content and effects on the growth and metabolism of E. coli and S. cerevisiae. Bacto™ yeast extract is valued at USD $0.15–0.35 per gram, if algae extract was sold at similar prices, it would serve as a high-value co-product in algae-based fuel processes.

  17. Acute effects of a prooxidant herbicide on the microalga Chlamydomonas reinhardtii: Screening cytotoxicity and genotoxicity endpoints

    International Nuclear Information System (INIS)

    Esperanza, Marta; Cid, Ángeles; Herrero, Concepción; Rioboo, Carmen

    2015-01-01

    Highlights: • Mitochondrial membrane potential constituted the most sensitive parameter assayed. • Several genotoxicity methods were applied for first time in ecotoxicological studies. • Oxidative DNA base damage (8-OHdG) was induced by paraquat exposure. • Cells with DNA strand breakage and subG1-nuclei increased in treated cultures. • Typical apoptosis hallmarks were observed in microalgal cells exposed to paraquat. - Abstract: Since recent evidence has demonstrated that many types of chemicals exhibit oxidative and/or genotoxic potential on living organisms, reactive oxygen species (ROS) formation and DNA damage are currently the best accepted paradigms to assess the potential hazardous biological effects of a wide range of contaminants. The goal of this study was to evaluate the sensitivity of different cytotoxicity and genotoxicity responses on the model microalga Chlamydomonas reinhardtii exposed to the prooxidant herbicide paraquat. In addition to the growth endpoint, cell viability, mitochondrial membrane potential and presence of reactive oxygen species (ROS) were assayed as potential markers of cytotoxicity using flow cytometry (FCM). To study the effects of paraquat on C. reinhardtii DNA, several genotoxicity approaches were implemented for the first time in an ecotoxicological study on microalgae. Oxidative DNA base damage was analysed by measuring the oxidative DNA lesion 8-OHdG by FCM. DNA fragmentation was analysed by different methods: comet assay, and cell cycle analysis by FCM, with a particular focus on the presence of subG1-nuclei. Finally, effects on morphology of nuclei were monitored through DAPI staining. The evaluation of these endpoints showed that several physiological and biochemical parameters reacted to oxidative stress disturbances with greater sensitivity than integrative parameters such as growth rates or cell viability. The experiments revealed concentration-dependent cytotoxicity (ROS formation, depolarization of

  18. Acute effects of a prooxidant herbicide on the microalga Chlamydomonas reinhardtii: Screening cytotoxicity and genotoxicity endpoints

    Energy Technology Data Exchange (ETDEWEB)

    Esperanza, Marta; Cid, Ángeles; Herrero, Concepción; Rioboo, Carmen, E-mail: carmen.rioboo@udc.es

    2015-08-15

    Highlights: • Mitochondrial membrane potential constituted the most sensitive parameter assayed. • Several genotoxicity methods were applied for first time in ecotoxicological studies. • Oxidative DNA base damage (8-OHdG) was induced by paraquat exposure. • Cells with DNA strand breakage and subG1-nuclei increased in treated cultures. • Typical apoptosis hallmarks were observed in microalgal cells exposed to paraquat. - Abstract: Since recent evidence has demonstrated that many types of chemicals exhibit oxidative and/or genotoxic potential on living organisms, reactive oxygen species (ROS) formation and DNA damage are currently the best accepted paradigms to assess the potential hazardous biological effects of a wide range of contaminants. The goal of this study was to evaluate the sensitivity of different cytotoxicity and genotoxicity responses on the model microalga Chlamydomonas reinhardtii exposed to the prooxidant herbicide paraquat. In addition to the growth endpoint, cell viability, mitochondrial membrane potential and presence of reactive oxygen species (ROS) were assayed as potential markers of cytotoxicity using flow cytometry (FCM). To study the effects of paraquat on C. reinhardtii DNA, several genotoxicity approaches were implemented for the first time in an ecotoxicological study on microalgae. Oxidative DNA base damage was analysed by measuring the oxidative DNA lesion 8-OHdG by FCM. DNA fragmentation was analysed by different methods: comet assay, and cell cycle analysis by FCM, with a particular focus on the presence of subG1-nuclei. Finally, effects on morphology of nuclei were monitored through DAPI staining. The evaluation of these endpoints showed that several physiological and biochemical parameters reacted to oxidative stress disturbances with greater sensitivity than integrative parameters such as growth rates or cell viability. The experiments revealed concentration-dependent cytotoxicity (ROS formation, depolarization of

  19. Respiratory-deficient mutants of the unicellular green alga Chlamydomonas: a review.

    Science.gov (United States)

    Salinas, Thalia; Larosa, Véronique; Cardol, Pierre; Maréchal-Drouard, Laurence; Remacle, Claire

    2014-05-01

    Genetic manipulation of the unicellular green alga Chlamydomonas reinhardtii is straightforward. Nuclear genes can be interrupted by insertional mutagenesis or targeted by RNA interference whereas random or site-directed mutagenesis allows the introduction of mutations in the mitochondrial genome. This, combined with a screen that easily allows discriminating respiratory-deficient mutants, makes Chlamydomonas a model system of choice to study mitochondria biology in photosynthetic organisms. Since the first description of Chlamydomonas respiratory-deficient mutants in 1977 by random mutagenesis, many other mutants affected in mitochondrial components have been characterized. These respiratory-deficient mutants increased our knowledge on function and assembly of the respiratory enzyme complexes. More recently some of these mutants allowed the study of mitochondrial gene expression processes poorly understood in Chlamydomonas. In this review, we update the data concerning the respiratory components with a special focus on the assembly factors identified on other organisms. In addition, we make an inventory of different mitochondrial respiratory mutants that are inactivated either on mitochondrial or nuclear genes. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  20. Lysis of Chlamydomonas reinhardtii by high-intensity focused ultrasound as a function of exposure time.

    Science.gov (United States)

    Bigelow, Timothy A; Xu, Jin; Stessman, Dan J; Yao, Linxing; Spalding, Martin H; Wang, Tong

    2014-05-01

    Efficient lysis of microalgae for lipid extraction is an important concern when processing biofuels. Historically, ultrasound frequencies in the range of 10-40 kHz have been utilized for this task. However, greater efficiencies might be achievable if higher frequencies could be used. In our study, we evaluated the potential of using 1.1 MHz ultrasound to lyse microalgae for biofuel production while using Chlamydomonas reinhardtii as a model organism. The ultrasound was generated using a spherically focused transducer with a focal length of 6.34 cm and an active diameter of 6.36 cm driven by 20 cycle sine-wave tone bursts at a pulse repetition frequency of 2 kHz (3.6% duty cycle). The time-average acoustic power output was 26.2 W while the spatial-peak-pulse-average intensity (ISPPA) for each tone burst was 41 kW/cm(2). The peak compressional and rarefactional pressures at the focus were 102 and 17 MPa, respectively. The exposure time was varied for the different cases in the experiments from 5s to 9 min and cell lysis was assessed by quantifying the percentage of protein and chlorophyll release into the supernate as well as the lipid extractability. Free radical generation and lipid oxidation for the different ultrasound exposures were also determined. We found that there was a statistically significant increase in lipid extractability for all of the exposures compared to the control. The longer exposures also completely fragmented the cells releasing almost all of the protein and chlorophyll into the supernate. The cavitation activity did not significantly increase lipid oxidation while there was a minor trend of increased free radical production with increased ultrasound exposure. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Multiple stressor effects in Chlamydomonas reinhardtii – Toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Korkaric, Muris [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland); Behra, Renata; Fischer, Beat B. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); Junghans, Marion [Swiss Center for Applied Ecotoxicology Eawag-EPFL, 8600, Duebendorf (Switzerland); Eggen, Rik I.L., E-mail: rik.eggen@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland)

    2015-05-15

    Highlights: • Systematic study of multiple stressor effects of UVR and chemicals in C. reinhardtii. • UVR and chemicals did not act independently on algal photosynthesis and reproduction. • Multiple stressor effects of UVR and chemicals depended on chemical MOA. • Synergistic effect interactions not limited to oxidative stress inducing chemicals. • Multiple MOAs of UVR may limit applicability of current prediction models. - Abstract: The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are

  2. Multiple stressor effects in Chlamydomonas reinhardtii – Toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants

    International Nuclear Information System (INIS)

    Korkaric, Muris; Behra, Renata; Fischer, Beat B.; Junghans, Marion; Eggen, Rik I.L.

    2015-01-01

    Highlights: • Systematic study of multiple stressor effects of UVR and chemicals in C. reinhardtii. • UVR and chemicals did not act independently on algal photosynthesis and reproduction. • Multiple stressor effects of UVR and chemicals depended on chemical MOA. • Synergistic effect interactions not limited to oxidative stress inducing chemicals. • Multiple MOAs of UVR may limit applicability of current prediction models. - Abstract: The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are

  3. The mechanism of anthracene interaction with photosynthetic apparatus: A study using intact cells, thylakoid membranes and PS II complexes isolated from Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Aksmann, Anna; Shutova, Tatiana; Samuelsson, Goeran; Tukaj, Zbigniew

    2011-01-01

    Intact cells of Chlamydomonas reinhardtii as well as isolated thylakoid membranes and photosystem II complexes were used to examine a possible mechanism of anthracene (ANT) interaction with the photosynthetic apparatus. Since ANT concentrations above 1 mM were required to significantly inhibit the rate of oxygen evolution in PS II membrane fragments it may indicate that the toxicant did not directly interact with this photosystem. On the other hand, stimulation of oxygen uptake by ANT-treated thylakoids suggested that ANT could either act as an artificial electron acceptor in the photosynthetic electron transport chain or function as an uncoupler. Electron transfer from excited chlorophyll to ANT is impossible due to the very low reduction potential of ANT and therefore we propose that toxic concentrations of ANT increase the thylakoid membrane permeability and thereby function as an uncoupler, enhancing electron transport in vitro. Hence, its unspecific interference with photosynthetic membranes in vitro suggests that the inhibitory effect observed on intact cell photosynthesis is caused by uncoupling of phosphorylation.

  4. MEETING: Chlamydomonas Annotation Jamboree - October 2003

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, Arthur R

    2007-04-13

    Shotgun sequencing of the nuclear genome of Chlamydomonas reinhardtii (Chlamydomonas throughout) was performed at an approximate 10X coverage by JGI. Roughly half of the genome is now contained on 26 scaffolds, all of which are at least 1.6 Mb, and the coverage of the genome is ~95%. There are now over 200,000 cDNA sequence reads that we have generated as part of the Chlamydomonas genome project (Grossman, 2003; Shrager et al., 2003; Grossman et al. 2007; Merchant et al., 2007); other sequences have also been generated by the Kasuza sequence group (Asamizu et al., 1999; Asamizu et al., 2000) or individual laboratories that have focused on specific genes. Shrager et al. (2003) placed the reads into distinct contigs (an assemblage of reads with overlapping nucleotide sequences), and contigs that group together as part of the same genes have been designated ACEs (assembly of contigs generated from EST information). All of the reads have also been mapped to the Chlamydomonas nuclear genome and the cDNAs and their corresponding genomic sequences have been reassembled, and the resulting assemblage is called an ACEG (an Assembly of contiguous EST sequences supported by genomic sequence) (Jain et al., 2007). Most of the unique genes or ACEGs are also represented by gene models that have been generated by the Joint Genome Institute (JGI, Walnut Creek, CA). These gene models have been placed onto the DNA scaffolds and are presented as a track on the Chlamydomonas genome browser associated with the genome portal (http://genome.jgi-psf.org/Chlre3/Chlre3.home.html). Ultimately, the meeting grant awarded by DOE has helped enormously in the development of an annotation pipeline (a set of guidelines used in the annotation of genes) and resulted in high quality annotation of over 4,000 genes; the annotators were from both Europe and the USA. Some of the people who led the annotation initiative were Arthur Grossman, Olivier Vallon, and Sabeeha Merchant (with many individual

  5. Role of metal mixtures (Ca, Cu and Pb) on Cd bioaccumulation and phytochelatin production by Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Abboud, Pauline; Wilkinson, Kevin J.

    2013-01-01

    The goal of the study was to determine whether metal uptake and biological effects could be predicted by free ion concentrations when organisms were exposed to Cd and a second metal. Bioaccumulation and algal phytochelatin (PC) concentrations were determined for Chlamydomonas reinhardtii following a 6-h exposure. Bioaccumulation results, after six hours of exposure, showed that Cd uptake decreased in the presence of relatively high concentrations of Ca, Cu and Pb, however, Cd bioaccumulation increased in the presence of ca. equimolar concentrations of Cu. A good correlation was observed between the production of PCs and the amount of metals bioaccumulated for the binary mixtures of Cd–Pb and Cd–Cu, but not the Cd–Ca mixture. Overall, the results suggested that, in the case of mixtures, bioaccumulated metal rather than free ion concentrations would be a better predictor of biological effect. -- Highlights: •Cd bioaccumulation and phytochelatin production were evaluated for metal mixtures. •Bioaccumulated metal rather than free ion was a better predictor of biological effect. •Calcium additions decreased Cd bioaccumulation but increased phytochelatin production. •Copper additions increased Cd bioaccumulation and phytochelatin production. •Lead additions had little effect on either Cd bioaccumulation or phytochelatin production. -- In metal mixtures containing Cd and Ca, Pb or Cu, bioaccumulated metal rather than free ion was a better predictor of biological effect

  6. Transcriptional and cellular effects of benzotriazole UV stabilizers UV-234 and UV-328 in the freshwater invertebrates Chlamydomonas reinhardtii and Daphnia magna.

    Science.gov (United States)

    Giraudo, Maeva; Cottin, Guillaume; Esperanza, Marta; Gagnon, Pierre; Silva, Amila O De; Houde, Magali

    2017-12-01

    Benzotriazole ultra violet stabilizers (BZT-UVs) are compounds used in many applications and products to prevent photochemical degradation. Despite their widespread presence in aquatic ecosystems and persistence in the environment, there are very limited data on their effects and toxicity, and their modes of action remain largely unknown. The objectives of the present study were to evaluate the chronic effects of 2 BZT-UVs, 2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol (UV-234) and 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV-328), on the freshwater green algae Chlamydomonas reinhardtii and the freshwater crustacean Daphnia magna. Organisms were exposed to 0.01 and 10 μg/L of UV-234, UV-328, as well as a mixture of the 2 compounds. Life-history endpoints (viability, reproduction, and growth) and oxidative stress-related biomarkers (gene transcription, reactive oxygen species [ROS] production, and lipid peroxidation) were measured. Daphnia magna growth, reproduction, and gene transcription were not impacted by 21-d individual or mixed exposure. After 96-h of exposure, no differences were observed on the cellular viability of C. reinhardtii for either of the 2 BZT-UVs. In the algae, results showed increased ROS production in response to UV-328 and lipid peroxidation following exposure to UV-234. Synergistic effects of the 2 BZT-UVs were evident at the transcriptional level with 2 to 6 times up-regulation of glutathione peroxidase (gp x ) in response to the mixture for all treatment conditions. The transcription of superoxide dismutase (sod), catalase (cat), and ascorbic peroxidase (apx) was also regulated by UV-234 and UV-328 in the green algae, most likely as a result of ROS production and lipid peroxidation. Results from the present study suggest potential impacts of UV-234 and UV-328 exposure on the antioxidant defense system in C. reinhardtii. Environ Toxicol Chem 2017;36:3333-3342. © 2017 Crown in the Right of Canada. Published by

  7. Study of metabolic pathways for hydrogen production in chlamydomonas reinhardtii and transposition on a torus photo bioreactor; Etude des voies metaboliques de production d'hydrogene chez la microalgue Chlamydomonas reinhardtii et transposition en photobioreacteur

    Energy Technology Data Exchange (ETDEWEB)

    Fouchard, S

    2006-04-15

    Considering the recent increase in energy consumption. aide associated environmental risks, new trails are followed today to develop the use of clean and renewable alternative energies. In this context hydrogen seems to be a serious solution and this study, based on micro-algae photosynthetic capacities exploitation, will allow to devise a process for hydrogen production from only water and solar energy without greenhouse gas release. The sulphur deprivation protocol on TAP medium, known to lead to hydrogen production in Chlamydomonas reinhardtii species was particularly studied. At the metabolic level, two important phenomena are induced under these conditions: an over-accumulation of the intracellular starch reserves and a simultaneous alteration of the PsII activity which leads to anoxia and Fe-hydrogenase induction, an enzyme with a strong specific activity responsible for the hydrogen production. The contribution of the two electron transfer pathways implied in the hydrogen production process (PsII-dependent and PSII-independent) as well as the importance of the previously accumulated starch were highlighted here. We also investigated the potential for designing autotrophic protocols for hydrogen photoproduction. Various protocols, considered to be relevant, were then transposed on a torus photo-bioreactor, specifically developed in this study and which allows the control of culture parameters as well as the precise measurement of gas release kinetics, in order to obtain first estimates of productivity of the system. Integration of the physical; aspects of the pilot and biological aspects of the process in a model, finally opens new prospects for subject development, in particular for a reasoned optimization of hydrogen production via this double physiology/process approach. (author)

  8. Mechanistic modeling of sulfur-deprived photosynthesis and hydrogen production in suspensions of Chlamydomonas reinhardtii.

    Science.gov (United States)

    Williams, C R; Bees, M A

    2014-02-01

    The ability of unicellular green algal species such as Chlamydomonas reinhardtii to produce hydrogen gas via iron-hydrogenase is well known. However, the oxygen-sensitive hydrogenase is closely linked to the photosynthetic chain in such a way that hydrogen and oxygen production need to be separated temporally for sustained photo-production. Under illumination, sulfur-deprivation has been shown to accommodate the production of hydrogen gas by partially-deactivating O2 evolution activity, leading to anaerobiosis in a sealed culture. As these facets are coupled, and the system complex, mathematical approaches potentially are of significant value since they may reveal improved or even optimal schemes for maximizing hydrogen production. Here, a mechanistic model of the system is constructed from consideration of the essential pathways and processes. The role of sulfur in photosynthesis (via PSII) and the storage and catabolism of endogenous substrate, and thus growth and decay of culture density, are explicitly modeled in order to describe and explore the complex interactions that lead to H2 production during sulfur-deprivation. As far as possible, functional forms and parameter values are determined or estimated from experimental data. The model is compared with published experimental studies and, encouragingly, qualitative agreement for trends in hydrogen yield and initiation time are found. It is then employed to probe optimal external sulfur and illumination conditions for hydrogen production, which are found to differ depending on whether a maximum yield of gas or initial production rate is required. The model constitutes a powerful theoretical tool for investigating novel sulfur cycling regimes that may ultimately be used to improve the commercial viability of hydrogen gas production from microorganisms. © 2013 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

  9. Inorganic polyphosphate occurs in the cell wall of Chlamydomonas reinhardtii and accumulates during cytokinesis

    Directory of Open Access Journals (Sweden)

    Freimoser Florian M

    2007-09-01

    Full Text Available Abstract Background Inorganic polyphosphate (poly P, linear chains of phosphate residues linked by energy rich phosphoanhydride bonds, is found in every cell and organelle and is abundant in algae. Depending on its localization and concentration, poly P is involved in various biological functions. It serves, for example, as a phosphate store and buffer against alkali, is involved in energy metabolism and regulates the activity of enzymes. Bacteria defective in poly P synthesis are impaired in biofilm development, motility and pathogenicity. PolyP has also been found in fungal cell walls and bacterial envelopes, but has so far not been measured directly or stained specifically in the cell wall of any plant or alga. Results Here, we demonstrate the presence of poly P in the cell wall of Chlamydomonas reinhardtii by staining with specific poly P binding proteins. The specificity of the poly P signal was verified by various competition experiments, by staining with different poly P binding proteins and by correlation with biochemical quantification. Microscopical investigation at different time-points during growth revealed fluctuations of the poly P signal synchronous with the cell cycle: The poly P staining peaked during late cytokinesis and was independent of the high intracellular poly P content, which fluctuated only slightly during the cell cycle. Conclusion The presented staining method provides a specific and sensitive tool for the study of poly P in the extracellular matrices of algae and could be used to describe the dynamic behaviour of cell wall poly P during the cell cycle. We assume that cell wall poly P and intracellular poly P are regulated by distinct mechanisms and it is suggested that cell wall bound poly P might have important protective functions against toxic compounds or pathogens during cytokinesis, when cells are more vulnerable.

  10. Determination of the speciation and bioavailability of samarium to Chlamydomonas reinhardtii in the presence of natural organic matter.

    Science.gov (United States)

    Rowell, Justine-Anne; Fillion, Marc-Alexandre; Smith, Scott; Wilkinson, Kevin J

    2018-06-01

    As technological interest and environmental emissions of the rare earth elements increase, it is becoming more important to assess their potential environmental impact. Samarium (Sm) is a lanthanide of intermediate molar mass that is used in numerous high-technology applications including wind turbines, solar panels, and electric vehicles. The present study relates the speciation of Sm determined in the presence of natural organic matter (NOM) to its bioavailability to the unicellular green alga Chlamydomonas reinhardtii. The free ion concentration was determined using a cation exchange resin (ion exchange technique) in dynamic mode and compared with thermodynamic modeling. Short-term biouptake experiments were performed in the presence of 4 types of NOM: Suwannee River fulvic acids, Pahokee Peat fulvic acids, Suwannee River humic acids, and a Luther Marsh dissolved organic matter isolate (90-95% humic acids). It was clearly shown that even a small amount of NOM (0.5 mg C L -1 ) resulted in a significant decrease (10 times) in the Sm internalization fluxes. Furthermore, complexation with humic acids (and the corresponding reduction in Sm bioavailability) was stronger than that with fulvic acids. The results showed that the experimentally measured (free) Sm was a better predictor of Sm internalization than either the total concentrations or the free ion concentrations obtained using thermodynamic modeling. Environ Toxicol Chem 2018;37:1623-1631. © 2018 SETAC. © 2018 SETAC.

  11. Photobiological hydrogen production with the unicellular green alga Chlamydomonas reinhardtii under process engineering aspects; Photobiologische Wasserstoffproduktion mit der einzelligen Gruenalge Chlamydomonas reinhardtii unter verfahrenstechnischen Aspekten

    Energy Technology Data Exchange (ETDEWEB)

    Geier, Stephanie

    2011-07-01

    Hydrogen is of high interest as a clean and environmentally friendly energy source as its combustion only emits water and energy. However, currently hydrogen is produced in energy demanding processes by the consumption of fossil fuels. An alternative way of sustainable and non-polluting hydrogen production could be provided by use of photosynthetic active microalgae. Within this work, the photobiological hydrogen production with the unicellular green algae Chlamydomonas reinhardtii is investigated under the aspects of bioprocess-engineering and economics. Objectives are, besides the increase of the photochemical efficiency, the cultivation of the algae and subsequent hydrogen production under cost-free sunlight. It could be demonstrated that outdoor cultivation of C. reinhardtii is possible in Central Europe throughout the year by using e.g. waste heat. Similar cell numbers in the range from 1,2.10{sup 7} cells ml{sup -1} to 1,7.10{sup 7} cells ml{sup -1} could be achieved in closed photobioreactors of the type Photobioreactor Screening Module under controlled laboratory conditions and both continuous illumination (200 {mu}mol.m{sup -2}.s{sup -1}) and simulated outdoor conditions according to the light intensity of idealized summer day as well as in outdoor experiments (up to 2000 {mu}mol.m{sup -2}.s{sup -1}).The use of 10 % CO{sub 2} corresponding to the CO{sub 2} content in flue gas led to a doubling of cell numbers under continuous illumination to 4,2.10{sup 7} cells ml{sup -1}, compared to the reference culture bubbled with 3 % CO{sub 2}. A significant increase of cell numbers under the light profiles of an idealized summer day could not be achieved. The cultivation under the light profile of a winter day at 25 C reduced cell growth to 54 %, compared to the summer simulation. In open 30 L outdoor ponds, only 0,26.10{sup 7} cells ml{sup -1} could be achieved under photoheterotrophic conditions during the summer months, which corresponds to 20 % of the cell

  12. Study of metabolic pathways for hydrogen production in chlamydomonas reinhardtii and transposition on a torus photo bioreactor; Etude des voies metaboliques de production d'hydrogene chez la microalgue Chlamydomonas reinhardtii et transposition en photobioreacteur

    Energy Technology Data Exchange (ETDEWEB)

    Fouchard, S

    2006-04-15

    Considering the recent increase in energy consumption. aide associated environmental risks, new trails are followed today to develop the use of clean and renewable alternative energies. In this context hydrogen seems to be a serious solution and this study, based on micro-algae photosynthetic capacities exploitation, will allow to devise a process for hydrogen production from only water and solar energy without greenhouse gas release. The sulphur deprivation protocol on TAP medium, known to lead to hydrogen production in Chlamydomonas reinhardtii species was particularly studied. At the metabolic level, two important phenomena are induced under these conditions: an over-accumulation of the intracellular starch reserves and a simultaneous alteration of the PsII activity which leads to anoxia and Fe-hydrogenase induction, an enzyme with a strong specific activity responsible for the hydrogen production. The contribution of the two electron transfer pathways implied in the hydrogen production process (PsII-dependent and PSII-independent) as well as the importance of the previously accumulated starch were highlighted here. We also investigated the potential for designing autotrophic protocols for hydrogen photoproduction. Various protocols, considered to be relevant, were then transposed on a torus photo-bioreactor, specifically developed in this study and which allows the control of culture parameters as well as the precise measurement of gas release kinetics, in order to obtain first estimates of productivity of the system. Integration of the physical; aspects of the pilot and biological aspects of the process in a model, finally opens new prospects for subject development, in particular for a reasoned optimization of hydrogen production via this double physiology/process approach. (author)

  13. Uptake of selenium by the unicellular green alga Chlamydomonas reinhardtii - effects induced by chronic exposure

    International Nuclear Information System (INIS)

    Morlon, H.; Fortin, C.; Pradines, C.; Floriani, M.; Grasset, G.; Adam, C.; Garnier-Laplace, J.

    2004-01-01

    79 Se is a long-lived radionuclide present in radioactive waste storages. The stable isotope selenium is an essential micro-nutrient that can act against oxidative damage. It is however well known for its bio-magnification potential and chemical toxicity to aquatic life. One of its particularity is to form oxyanions in freshwater ecosystems, which leads to specific behaviours towards biological membranes. Our study deals with the interactions between selenite -Se(IV)- and Chlamydomonas reinhardtii, a unicellular green alga representative of the freshwater phytoplankton community. Cells were exposed to selenite marked with Se 75 in well-known simple inorganic media. Short-term experiments (about one hour of exposure) were performed to better understand selenite transport (uptake kinetics and levels) and identify main factors influencing absorption (nutrients concentrations, pH). Long-term experiments (4 days of exposure) were performed (1) to evaluate the bioaccumulation considering environmentally relevant time scales, (2) to localize the intracellular selenium using EDAX-TEM and (3) to assess the toxicity of selenium as measured by growth impairment, ultrastructural changes, starch accumulation, and loss of pigment. Short-term experiments revealed a time-dependent linear absorption with an estimated absorbed flux of about 0.25 nmol.m -2 .nM -1 .h -1 . The absorption was proportional to ambient levels, except at very low concentrations (ca. 0.5 nM), were it was proportionally higher, suggesting that a specific but rapidly saturated transport could be used at those low concentrations. Selenite uptake was not dependent on phosphate nor carbonate concentrations. It was nevertheless inhibited by sulphate and nitrate, indicating that selenite could share common transporters with those nutrients. The accumulation was found to be maximum for intermediate pH around 7. EDAX-TEM analysis after long-term experiments revealed the presence of selenium in electron-dense granules

  14. Selenite -Se(4)- uptake mechanisms in the unicellular green alga Chlamydomonas reinhardtii: bioaccumulation and effects induced on growth and ultrastructure

    International Nuclear Information System (INIS)

    Morlon, H.

    2005-03-01

    Selenium is an essential element, but becomes very toxic at higher concentrations. It occurs in the environment at concentrations ranging from nM to μM and selenium pollution is a worldwide phenomenon. This works aims at improving the knowledge on the interactions between selenite - Se(IV) - and a freshwater phyto-planktonic organism: the unicellular green algae Chlamydomonas reinhardtii. The aim of the performed experiments were: i) to investigate selenite -Se(IV)- uptake mechanisms in C. reinhardtii, using Se 75 as a tracer in short term exposures ( -2 .nM -1 .h -1 . The uptake was proportional to ambient levels in a broad range of intermediate concentrations (from nM to μM). However, fluxes were higher at very low concentrations ( μM), suggesting that a high affinity but rapidly saturated transport mechanism could be used at low concentrations, in parallel with a low affinity mechanism that would only saturate at high concentrations (∼mM). The latter could involve transporters used by sulphate and nitrates, as suggested by the inhibition of selenite uptake by those element. Se(IV) speciation changes with pH did not induce significant effect on bioavailability. On the basis of the relationship between Se concentration and maximal cell density achieved, an EC50 of 80 μM ([64; 98]) was derived. No adaptation mechanism were observed as the same the same toxicity was quantified for Se-pre-exposed algae. Observations by TEM suggested chloroplasts as the first target of selenite cytotoxicity, with effects on the stroma, thylakoids and pyrenoids. At higher concentrations, we could observe an increase in the number and volume of starch grains. For the cell collected at 96 h, electron-dense granules were observed. Energy-dispersive X-ray microanalysis revealed that they contained selenium and were also rich in calcium and phosphorus. Finally, growth inhibition was highly correlated to the bioaccumulation of selenite. The latter was inhibited by increasing

  15. Combined Increases in Mitochondrial Cooperation and Oxygen Photoreduction Compensate for Deficiency in Cyclic Electron Flow in Chlamydomonas reinhardtii[W][OPEN

    Science.gov (United States)

    Dang, Kieu-Van; Plet, Julie; Tolleter, Dimitri; Jokel, Martina; Cuiné, Stéphan; Carrier, Patrick; Auroy, Pascaline; Richaud, Pierre; Johnson, Xenie; Alric, Jean; Allahverdiyeva, Yagut; Peltier, Gilles

    2014-01-01

    During oxygenic photosynthesis, metabolic reactions of CO2 fixation require more ATP than is supplied by the linear electron flow operating from photosystem II to photosystem I (PSI). Different mechanisms, such as cyclic electron flow (CEF) around PSI, have been proposed to participate in reequilibrating the ATP/NADPH balance. To determine the contribution of CEF to microalgal biomass productivity, here, we studied photosynthesis and growth performances of a knockout Chlamydomonas reinhardtii mutant (pgrl1) deficient in PROTON GRADIENT REGULATION LIKE1 (PGRL1)–mediated CEF. Steady state biomass productivity of the pgrl1 mutant, measured in photobioreactors operated as turbidostats, was similar to its wild-type progenitor under a wide range of illumination and CO2 concentrations. Several changes were observed in pgrl1, including higher sensitivity of photosynthesis to mitochondrial inhibitors, increased light-dependent O2 uptake, and increased amounts of flavodiiron (FLV) proteins. We conclude that a combination of mitochondrial cooperation and oxygen photoreduction downstream of PSI (Mehler reactions) supplies extra ATP for photosynthesis in the pgrl1 mutant, resulting in normal biomass productivity under steady state conditions. The lower biomass productivity observed in the pgrl1 mutant in fluctuating light is attributed to an inability of compensation mechanisms to respond to a rapid increase in ATP demand. PMID:24989042

  16. Proteomic analysis of a model unicellular green alga, Chlamydomonas reinhardtii, during short-term exposure to irradiance stress reveals significant down regulation of several heat-shock proteins.

    Science.gov (United States)

    Mahong, Bancha; Roytrakul, Suttiruk; Phaonaklop, Narumon; Wongratana, Janewit; Yokthongwattana, Kittisak

    2012-03-01

    Oxygenic photosynthetic organisms often suffer from excessive irradiance, which cause harmful effects to the chloroplast proteins and lipids. Photoprotection and the photosystem II repair processes are the mechanisms that plants deploy to counteract the drastic effects from irradiance stress. Although the protective and repair mechanisms seemed to be similar in most plants, many species do confer different level of tolerance toward high light. Such diversity may originate from differences at the molecular level, i.e., perception of the light stress, signal transduction and expression of stress responsive genes. Comprehensive analysis of overall changes in the total pool of proteins in an organism can be performed using a proteomic approach. In this study, we employed 2-DE/LC-MS/MS-based comparative proteomic approach to analyze total proteins of the light sensitive model unicellular green alga Chlamydomonas reinhardtii in response to excessive irradiance. Results showed that among all the differentially expressed proteins, several heat-shock proteins and molecular chaperones were surprisingly down-regulated after 3-6 h of high light exposure. Discussions were made on the possible involvement of such down regulation and the light sensitive nature of this model alga.

  17. Effect of mutagen combined action on Chlamydomonas reinhardtii cells. II. Dependence of lethal effect on mutagen dose and on conditions of cultivation following mutagen action. [In Slovak

    Energy Technology Data Exchange (ETDEWEB)

    Podstavkova, S; Vlcek, D; Dubovsky, J [Komenskeho Univ., Bratislava (Czechoslovakia). Prirodovedecka Fakulta

    1978-01-01

    The effect of UV radiation and UV radiation combined with alkylnitrosourea derivatives (N-methyl-N-nitrosourea and N-ethyl-N-nitrosourea) was observed on survival of cells of the algae Chlamydomonas reinhardtii. In particular, single parts were evaluated of the overall lethal effect - dying of cells before division and dying of cells after division. It was found that the combined action of low doses of UV radiation and alkylnitrosoureas result in a pronounced protective effect which manifests itself by a higher frequency of surviving cells than was that effected by the action of alkylnitrosoureas alone. As a result of combined action with higher doses of UV radiation this effect is lost, and the resultant values will come close to the theoretically anticipated values. This gradual transition from a protective to an additive effect mainly manifests itself by changes in the proportion of cells dying before division.

  18. Engineering the chloroplast targeted malarial vaccine antigens in Chlamydomonas starch granules.

    Directory of Open Access Journals (Sweden)

    David Dauvillée

    2010-12-01

    Full Text Available Malaria, an Anopheles-borne parasitic disease, remains a major global health problem causing illness and death that disproportionately affects developing countries. Despite the incidence of malaria, which remains one of the most severe infections of human populations, there is no licensed vaccine against this life-threatening disease. In this context, we decided to explore the expression of Plasmodium vaccine antigens fused to the granule bound starch synthase (GBSS, the major protein associated to the starch matrix in all starch-accumulating plants and algae such as Chlamydomonas reinhardtii.We describe the development of genetically engineered starch granules containing plasmodial vaccine candidate antigens produced in the unicellular green algae Chlamydomonas reinhardtii. We show that the C-terminal domains of proteins from the rodent Plasmodium species, Plasmodium berghei Apical Major Antigen AMA1, or Major Surface Protein MSP1 fused to the algal granule bound starch synthase (GBSS are efficiently expressed and bound to the polysaccharide matrix. Mice were either immunized intraperitoneally with the engineered starch particles and Freund adjuvant, or fed with the engineered particles co-delivered with the mucosal adjuvant, and challenged intraperitoneally with a lethal inoculum of P. Berghei. Both experimental strategies led to a significantly reduced parasitemia with an extension of life span including complete cure for intraperitoneal delivery as assessed by negative blood thin smears. In the case of the starch bound P. falciparum GBSS-MSP1 fusion protein, the immune sera or purified immunoglobulin G of mice immunized with the corresponding starch strongly inhibited in vitro the intra-erythrocytic asexual development of the most human deadly plasmodial species.This novel system paves the way for the production of clinically relevant plasmodial antigens as algal starch-based particles designated herein as amylosomes, demonstrating that

  19. Engineering the chloroplast targeted malarial vaccine antigens in Chlamydomonas starch granules.

    Science.gov (United States)

    Dauvillée, David; Delhaye, Stéphane; Gruyer, Sébastien; Slomianny, Christian; Moretz, Samuel E; d'Hulst, Christophe; Long, Carole A; Ball, Steven G; Tomavo, Stanislas

    2010-12-15

    Malaria, an Anopheles-borne parasitic disease, remains a major global health problem causing illness and death that disproportionately affects developing countries. Despite the incidence of malaria, which remains one of the most severe infections of human populations, there is no licensed vaccine against this life-threatening disease. In this context, we decided to explore the expression of Plasmodium vaccine antigens fused to the granule bound starch synthase (GBSS), the major protein associated to the starch matrix in all starch-accumulating plants and algae such as Chlamydomonas reinhardtii. We describe the development of genetically engineered starch granules containing plasmodial vaccine candidate antigens produced in the unicellular green algae Chlamydomonas reinhardtii. We show that the C-terminal domains of proteins from the rodent Plasmodium species, Plasmodium berghei Apical Major Antigen AMA1, or Major Surface Protein MSP1 fused to the algal granule bound starch synthase (GBSS) are efficiently expressed and bound to the polysaccharide matrix. Mice were either immunized intraperitoneally with the engineered starch particles and Freund adjuvant, or fed with the engineered particles co-delivered with the mucosal adjuvant, and challenged intraperitoneally with a lethal inoculum of P. Berghei. Both experimental strategies led to a significantly reduced parasitemia with an extension of life span including complete cure for intraperitoneal delivery as assessed by negative blood thin smears. In the case of the starch bound P. falciparum GBSS-MSP1 fusion protein, the immune sera or purified immunoglobulin G of mice immunized with the corresponding starch strongly inhibited in vitro the intra-erythrocytic asexual development of the most human deadly plasmodial species. This novel system paves the way for the production of clinically relevant plasmodial antigens as algal starch-based particles designated herein as amylosomes, demonstrating that efficient production

  20. Acetate and bicarbonate assimilation and metabolite formation in Chlamydomonas reinhardtii: a 13C-NMR study.

    Directory of Open Access Journals (Sweden)

    Himanshu Singh

    Full Text Available Cellular metabolite analyses by (13C-NMR showed that C. reinhardtii cells assimilate acetate at a faster rate in heterotrophy than in mixotrophy. While heterotrophic cells produced bicarbonate and CO2aq, mixotrophy cells produced bicarbonate alone as predominant metabolite. Experiments with singly (13C-labelled acetate ((13CH(3-COOH or CH(3-(13COOH supported that both the (13C nuclei give rise to bicarbonate and CO2(aq. The observed metabolite(s upon further incubation led to the production of starch and triacylglycerol (TAG in mixotrophy, whereas in heterotrophy the TAG production was minimal with substantial accumulation of glycerol and starch. Prolonged incubation up to eight days, without the addition of fresh acetate, led to an increased TAG production at the expense of bicarbonate, akin to that of nitrogen-starvation. However, such TAG production was substantially high in mixotrophy as compared to that in heterotrophy. Addition of mitochondrial un-coupler blocked the formation of bicarbonate and CO2(aq in heterotrophic cells, even though acetate uptake ensued. Addition of PSII-inhibitor to mixotrophic cells resulted in partial conversion of bicarbonate into CO2(aq, which were found to be in equilibrium. In an independent experiment, we have monitored assimilation of bicarbonate via photoautotrophy and found that the cells indeed produce starch and TAG at a much faster rate as compared to that in mixotrophy and heterotrophy. Further, we noticed that the accumulation of starch is relatively more as compared to TAG. Based on these observations, we suggest that acetate assimilation in C. reinhardtii does not directly lead to TAG formation but via bicarbonate/CO2(aq pathways. Photoautotrophic mode is found to be the best growth condition for the production of starch and TAG and starch in C. reinhardtii.

  1. The microalga Chlamydomonas reinhardtii CW-15 as a solar cell for hydrogen peroxide photoproduction. Comparison between free and immobilized cells and thylakoids for energy conversion efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, W.; Galvan, F.; Rosa, F.F. de la [Instituto de Bioquimica Vegetal y Fotosintesis, Universidad de Sevilla y CSIC, Sevilla (Spain)

    1995-11-28

    Immobilized cells and thylakoid vesicles of the microalga Chlamydomonas reinhardtii CW-15 have been developed as a solar cell because of their capabilities of producing hydrogen peroxide. This compound is an efficient and clean fuel used for rocket propulsion, motors and for heating. Hydrogen peroxide is produced by the photosystem in a catalyst cycle in which a redox mediator (methyl viologen) is reduced by electrons obtained from water by the photosynthetic apparatus of the microalga and it is re-oxidized by the oxygen dissolved in the solution. The photoproduction has been investigated using a discontinuous system with whole cells, or thylakoid vesicles, free or immobilized on alginate. The stimulation by azide as an inhibitor of catalase has also been analyzed. Under determined optimum conditions, the photoproduction by Ca-alginate entrapped cells, with a rate of 33 {mu}mol H{sub 2}O{sub 2}/mg Chl.h, was maintained for several hours with an energy conversion efficiency of 0.25%

  2. Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii.

    Science.gov (United States)

    La Russa, M; Bogen, C; Uhmeyer, A; Doebbe, A; Filippone, E; Kruse, O; Mussgnug, J H

    2012-11-30

    Photosynthetic organisms like plants and algae can use sunlight to produce lipids as important metabolic compounds. Plant-derived triacylglycerols (TAGs) are valuable for human and animal nutrition because of their high energy content and are becoming increasingly important for the production of renewable biofuels. Acyl-CoA:diacylglycerol acyltransferases (DGATs) have been demonstrated to play an important role in the accumulation of TAG compounds in higher plants. DGAT homologue genes have been identified in the genome of the green alga Chlamydomonas reinhardtii, however their function in vivo is still unknown. In this work, the three most promising type-2 DGAT candidate genes potentially involved in TAG lipid accumulation (CrDGAT2a, b and c) were investigated by constructing overexpression strains. For each of the genes, three strains were identified which showed enhanced mRNA levels of between 1.7 and 29.1 times that of the wild type (wt). Total lipid contents, neutral lipids and fatty acid profiles were determined and showed that an enhanced mRNA expression level of the investigated DGAT genes did not boost the intracellular TAG accumulation or resulted in alterations of the fatty acid profiles compared to wild type during standard growth condition or during nitrogen or sulfur stress conditions. We conclude that biotechnological efforts to enhance cellular TAG amount in microalgae need further insights into the complex network of lipid biosynthesis to identify potential bottlenecks of neutral lipid production. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Absorption and emission spectroscopic characterisation of combined wildtype LOV1-LOV2 domain of phot from Chlamydomonas reinhardtii.

    Science.gov (United States)

    Song, S-H; Dick, B; Zirak, P; Penzkofer, A; Schiereis, T; Hegemann, P

    2005-10-03

    An absorption and emission spectroscopic characterisation of the combined wild-type LOV1-LOV2 domain string (abbreviated LOV1/2) of phot from the green alga Chlamydomonas reinhardtii is carried out at pH 8. A LOV1/2-MBP fusion protein (MBP=maltose binding protein) and LOV1/2 with a His-tag at the C-terminus (LOV1/2-His) expressed in an Escherichia coli strain are investigated. Blue-light photo-excitation generates a non-fluorescent intermediate photoproduct (flavin-C(4a)-cysteinyl adduct with absorption peak at 390 nm). The photo-cycle dynamics is studied by dark-state absorption and fluorescence measurement, by following the temporal absorption and emission changes under blue and violet light exposure, and by measuring the temporal absorption and fluorescence recovery after light exposure. The fluorescence quantum yield, phi(F), of the dark adapted samples is phi(F)(LOV1/2-His) approximately 0.15 and phi(F)(LOV1/2-MBP) approximately 0.17. A bi-exponential absorption recovery after light exposure with a fast (in the several 10-s range) and a slow component (in the near 10-min range) are resolved. The quantum yield of photo-adduct formation, phi(Ad), is extracted from excitation intensity dependent absorption measurements. It decreases somewhat with rising excitation intensity. The behaviour of the combined wildtype LOV1-LOV2 double domains is compared with the behaviour of the separate LOV1 and LOV2 domains.

  4. Sensitivity evaluation of the green alga Chlamydomonas reinhardtii to uranium by pulse amplitude modulated (PAM) fluorometry.

    Science.gov (United States)

    Herlory, Olivier; Bonzom, Jean-Marc; Gilbin, Rodolphe

    2013-09-15

    Although ecotoxicological studies tend to address the toxicity thresholds of uranium in freshwaters, there is a lack of information on the effects of the metal on physiological processes, particularly in aquatic plants. Knowing that uranium alters photosynthesis via impairment of the water photo-oxidation process, we determined whether pulse amplitude modulated (PAM) fluorometry was a relevant tool for assessing the impact of uranium on the green alga Chlamydomonas reinhardtii and investigated how and to what extent uranium hampered photosynthetic performance. Photosynthetic activity and quenching were assessed from fluorescence induction curves generated by PAM fluorometry, after 1 and 5h of uranium exposure in controlled conditions. The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium, through alteration of the water photo-oxidation process as revealed by F0/Fv. Limiting re-oxidation of the plastoquinone pool, uranium impaired the electron flux between the photosystems until almost complete inhibition of the PSII quantum efficiency ( [Formula: see text] , EC50=303 ± 64 μg UL(-1) after 5h of exposure) was observed. Non-photochemical quenching (qN) was identified as the most sensitive fluorescence parameter (EC50=142 ± 98 μg UL(-1) after 5h of exposure), indicating that light energy not used in photochemistry was dissipated in non-radiative processes. It was shown that parameters which stemmed from fluorescence induction kinetics are valuable indicators for evaluating the impact of uranium on PSII in green algae. PAM fluorometry provided a rapid and reasonably sensitive method for assessing stress response to uranium in microalgae. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Multiple-endpoint assay provides a detailed mechanistic view of responses to herbicide exposure in Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Nestler, Holger; Groh, Ksenia J.; Schönenberger, René; Behra, Renata; Schirmer, Kristin; Eggen, Rik I.L.; Suter, Marc J.-F.

    2012-01-01

    The release of herbicides into the aquatic environment raises concerns about potential detrimental effects on ecologically important non-target species, such as unicellular algae, necessitating ecotoxicological risk assessment. Algal toxicity tests based on growth, a commonly assessed endpoint, are integrative, and hence do not provide information about underlying toxic mechanisms and effects. This limitation may be overcome by measuring more specific biochemical and physiological endpoints. In the present work, we developed and applied a novel multiple-endpoint assay, and analyzed the effects of the herbicides paraquat, diuron and norflurazon, each representing a specific mechanism of toxic action, on the single celled green alga Chlamydomonas reinhardtii. The endpoints added to assessment of growth were pigment content, maximum and effective photosystem II quantum yield, ATP content, esterase and oxidative activity. All parameters were measured at 2, 6 and 24 h of exposure, except for growth and pigment content, which were determined after 6 and 24 h only. Effective concentrations causing 50% of response (EC50s) and lowest observable effect concentrations (LOECs) were determined for all endpoints and exposure durations where possible. The assay provided a detailed picture of the concentration- and time-dependent development of effects elicited by the analyzed herbicides, thus improving the understanding of the underlying toxic mechanisms. Furthermore, the response patterns were unique to the respective herbicide and reflected the different mechanisms of toxicity. The comparison of the endpoint responses and sensitivities revealed that several physiological and biochemical parameters reacted earlier or stronger to disturbances than growth. Overall, the presented multiple-endpoint assay constitutes a promising basis for investigating stressor and toxicant effects in green algae.

  6. Multiple-endpoint assay provides a detailed mechanistic view of responses to herbicide exposure in Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Nestler, Holger [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf (Switzerland); ETH Zurich, Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics, Universitaetstrasse 16, 8092 Zurich (Switzerland); Groh, Ksenia J.; Schoenenberger, Rene; Behra, Renata [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf (Switzerland); Schirmer, Kristin [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf (Switzerland); ETH Zurich, Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics, Universitaetstrasse 16, 8092 Zurich (Switzerland); EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne (Switzerland); Eggen, Rik I.L. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf (Switzerland); ETH Zurich, Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics, Universitaetstrasse 16, 8092 Zurich (Switzerland); Suter, Marc J.-F., E-mail: suter@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf (Switzerland); ETH Zurich, Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics, Universitaetstrasse 16, 8092 Zurich (Switzerland)

    2012-04-15

    The release of herbicides into the aquatic environment raises concerns about potential detrimental effects on ecologically important non-target species, such as unicellular algae, necessitating ecotoxicological risk assessment. Algal toxicity tests based on growth, a commonly assessed endpoint, are integrative, and hence do not provide information about underlying toxic mechanisms and effects. This limitation may be overcome by measuring more specific biochemical and physiological endpoints. In the present work, we developed and applied a novel multiple-endpoint assay, and analyzed the effects of the herbicides paraquat, diuron and norflurazon, each representing a specific mechanism of toxic action, on the single celled green alga Chlamydomonas reinhardtii. The endpoints added to assessment of growth were pigment content, maximum and effective photosystem II quantum yield, ATP content, esterase and oxidative activity. All parameters were measured at 2, 6 and 24 h of exposure, except for growth and pigment content, which were determined after 6 and 24 h only. Effective concentrations causing 50% of response (EC50s) and lowest observable effect concentrations (LOECs) were determined for all endpoints and exposure durations where possible. The assay provided a detailed picture of the concentration- and time-dependent development of effects elicited by the analyzed herbicides, thus improving the understanding of the underlying toxic mechanisms. Furthermore, the response patterns were unique to the respective herbicide and reflected the different mechanisms of toxicity. The comparison of the endpoint responses and sensitivities revealed that several physiological and biochemical parameters reacted earlier or stronger to disturbances than growth. Overall, the presented multiple-endpoint assay constitutes a promising basis for investigating stressor and toxicant effects in green algae.

  7. Expression of a Synthetic Gene for the Major Cytotoxin (Cyt1Aa of Bacillus thuringiensis subsp. israelensis in the Chloroplast of Wild-Type Chlamydomonas

    Directory of Open Access Journals (Sweden)

    Seongjoon Kang

    2018-05-01

    Full Text Available Chlamydomonas reinhardtii (Chlamydomonas strains that are toxic to mosquito larvae because they express chloroplast transgenes that are based on the mosquitocidal proteins of Bacillus thuringiensis subsp. israelensis (Bti could be very useful in mosquito control. Chlamydomonas has several advantages for this approach, including genetic controls not generally available with industrial algae. The Bti toxin is produced by sporulating bacteria and has been used for mosquito control for >30 years without creating highly resistant mosquito populations. The suite of toxins is four main proteins: three Cry proteins and the cytotoxic Cyt1Aa (27 kDa. Cyt1Aa is not very toxic to mosquitoes by itself, but it prevents the development of resistance. The production of Cyt1Aa in other microbes, however, has been challenging due to its affinity for certain membrane phospholipids. Here we report on the production of recombinant Cyt1Aa (rCyt1A in the chloroplast of photosynthetic Chlamydomonas at levels of at least 0.3% total protein. Live cell bioassays demonstrated toxicity of the rCyt1Aa Chlamydomonas to larvae of Aedes aegypti. We also expressed the chloroplast cyt1Aa gene in a wild-type Chlamydomonas strain (21 gr that can grow on nitrate. These results have implications for developing a Chlamydomonas strain that will be toxic to mosquito larvae but will not induce strongly resistant populations.

  8. Light-Harvesting Complex Protein LHCBM9 Is Critical for Photosystem II Activity and Hydrogen Production in Chlamydomonas reinhardtii[C][W

    Science.gov (United States)

    Grewe, Sabrina; Ballottari, Matteo; Alcocer, Marcelo; D’Andrea, Cosimo; Blifernez-Klassen, Olga; Hankamer, Ben; Mussgnug, Jan H.; Bassi, Roberto; Kruse, Olaf

    2014-01-01

    Photosynthetic organisms developed multiple strategies for balancing light-harvesting versus intracellular energy utilization to survive ever-changing environmental conditions. The light-harvesting complex (LHC) protein family is of paramount importance for this function and can form light-harvesting pigment protein complexes. In this work, we describe detailed analyses of the photosystem II (PSII) LHC protein LHCBM9 of the microalga Chlamydomonas reinhardtii in terms of expression kinetics, localization, and function. In contrast to most LHC members described before, LHCBM9 expression was determined to be very low during standard cell cultivation but strongly increased as a response to specific stress conditions, e.g., when nutrient availability was limited. LHCBM9 was localized as part of PSII supercomplexes but was not found in association with photosystem I complexes. Knockdown cell lines with 50 to 70% reduced amounts of LHCBM9 showed reduced photosynthetic activity upon illumination and severe perturbation of hydrogen production activity. Functional analysis, performed on isolated PSII supercomplexes and recombinant LHCBM9 proteins, demonstrated that presence of LHCBM9 resulted in faster chlorophyll fluorescence decay and reduced production of singlet oxygen, indicating upgraded photoprotection. We conclude that LHCBM9 has a special role within the family of LHCII proteins and serves an important protective function during stress conditions by promoting efficient light energy dissipation and stabilizing PSII supercomplexes. PMID:24706511

  9. Multiple stressor effects in Chlamydomonas reinhardtii--toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants.

    Science.gov (United States)

    Korkaric, Muris; Behra, Renata; Fischer, Beat B; Junghans, Marion; Eggen, Rik I L

    2015-05-01

    The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Expression of type 2 diacylglycerol acyltransferse gene DGTT1 from Chlamydomonas reinhardtii enhances lipid production in Scenedesmus obliquus.

    Science.gov (United States)

    Chen, Chun-Yen; Kao, Ai-Ling; Tsai, Zheng-Chia; Chow, Te-Jin; Chang, Hsin-Yueh; Zhao, Xin-Qing; Chen, Po-Ting; Su, Hsiang-Yen; Chang, Jo-Shu

    2016-03-01

    Microalgal strains of Scenedesmus obliquus have the great potential for the production of biofuels, CO2 fixation, and bioremediation. However, metabolic engineering of S. obliquus to improve their useful phenotypes are still not fully developed. In this study, S. obliquus strain CPC2 was genetically engineered to promote the autotrophic growth and lipid productivity. The overexpression plasmid containing the type 2 diacylglycerol acyltransferse (DGAT) gene DGTT1 from Chlamydomonas reinhardtii was constructed and transformed into S. obliquus CPC2, and the positive transformants were obtained. The expression of DGTT1 gene was confirmed by reverse transcription PCR analysis. Enhanced lipid content of the transformant S. obliquus CPC2-G1 by nearly two-fold was observed. The biomass concentration of the recombinant strains was also 29% higher than that of the wild-type strain. Furthermore, the recombinant strain CPC2-G1 was successfully grown in 40 L tubular type photobioreactor and open pond system in an outdoor environment. The lipid content, biomass concentration, and biomass productivity obtained from 40 L tubular PBR were 127.8% 20.0%, and 232.6% higher than those obtained from the wild-type strain. The major aim of this work is to develop a tool to genetically engineer an isolated S. obliquus strain for the desired purpose. This is the first report that genetic engineering of S. obliquus has been successful employed to improve both the microalgal cell growth and the lipid production. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Study of metabolic pathways for hydrogen production in chlamydomonas reinhardtii and transposition on a torus photo bioreactor

    International Nuclear Information System (INIS)

    Fouchard, S.

    2006-04-01

    Considering the recent increase in energy consumption. aide associated environmental risks, new trails are followed today to develop the use of clean and renewable alternative energies. In this context hydrogen seems to be a serious solution and this study, based on micro-algae photosynthetic capacities exploitation, will allow to devise a process for hydrogen production from only water and solar energy without greenhouse gas release. The sulphur deprivation protocol on TAP medium, known to lead to hydrogen production in Chlamydomonas reinhardtii species was particularly studied. At the metabolic level, two important phenomena are induced under these conditions: an over-accumulation of the intracellular starch reserves and a simultaneous alteration of the PsII activity which leads to anoxia and Fe-hydrogenase induction, an enzyme with a strong specific activity responsible for the hydrogen production. The contribution of the two electron transfer pathways implied in the hydrogen production process (PsII-dependent and PSII-independent) as well as the importance of the previously accumulated starch were highlighted here. We also investigated the potential for designing autotrophic protocols for hydrogen photoproduction. Various protocols, considered to be relevant, were then transposed on a torus photo-bioreactor, specifically developed in this study and which allows the control of culture parameters as well as the precise measurement of gas release kinetics, in order to obtain first estimates of productivity of the system. Integration of the physical; aspects of the pilot and biological aspects of the process in a model, finally opens new prospects for subject development, in particular for a reasoned optimization of hydrogen production via this double physiology/process approach. (author)

  12. Uphill energy transfer in photosystem I from Chlamydomonas reinhardtii. Time-resolved fluorescence measurements at 77 K.

    Science.gov (United States)

    Giera, Wojciech; Szewczyk, Sebastian; McConnell, Michael D; Redding, Kevin E; van Grondelle, Rienk; Gibasiewicz, Krzysztof

    2018-04-04

    Energetic properties of chlorophylls in photosynthetic complexes are strongly modulated by their interaction with the protein matrix and by inter-pigment coupling. This spectral tuning is especially striking in photosystem I (PSI) complexes that contain low-energy chlorophylls emitting above 700 nm. Such low-energy chlorophylls have been observed in cyanobacterial PSI, algal and plant PSI-LHCI complexes, and individual light-harvesting complex I (LHCI) proteins. However, there has been no direct evidence of their presence in algal PSI core complexes lacking LHCI. In order to determine the lowest-energy states of chlorophylls and their dynamics in algal PSI antenna systems, we performed time-resolved fluorescence measurements at 77 K for PSI core and PSI-LHCI complexes isolated from the green alga Chlamydomonas reinhardtii. The pool of low-energy chlorophylls observed in PSI cores is generally smaller and less red-shifted than that observed in PSI-LHCI complexes. Excitation energy equilibration between bulk and low-energy chlorophylls in the PSI-LHCI complexes at 77 K leads to population of excited states that are less red-shifted (by ~ 12 nm) than at room temperature. On the other hand, analysis of the detection wavelength dependence of the effective trapping time of bulk excitations in the PSI core at 77 K provided evidence for an energy threshold at ~ 675 nm, above which trapping slows down. Based on these observations, we postulate that excitation energy transfer from bulk to low-energy chlorophylls and from bulk to reaction center chlorophylls are thermally activated uphill processes that likely occur via higher excitonic states of energy accepting chlorophylls.

  13. Reverse genetics in Chlamydomonas: a platform for isolating insertional mutants

    Directory of Open Access Journals (Sweden)

    de Montaigu Amaury

    2011-07-01

    Full Text Available Abstract A method was developed to identify insertional mutants of Chlamydomonas reinhardtii disrupted for selected target genes. The approach relies on the generation of thousands of transformants followed by PCR-based screenings that allow for identification of strains harboring the introduced marker gene within specific genes of interest. Our results highlight the strengths and limitations of two independent screens that differed in the nature of the marker DNA used (PCR-amplified fragment containing the plasmid-free marker versus entire linearized plasmid with the marker and in the strategies used to maintain and store transformants.

  14. Tracking the elusive 5' exonuclease activity of Chlamydomonas reinhardtii RNase J.

    Science.gov (United States)

    Liponska, Anna; Jamalli, Ailar; Kuras, Richard; Suay, Loreto; Garbe, Enrico; Wollman, Francis-André; Laalami, Soumaya; Putzer, Harald

    2018-04-01

    Chlamydomonas RNase J is the first member of this enzyme family that has endo- but no intrinsic 5' exoribonucleolytic activity. This questions its proposed role in chloroplast mRNA maturation. RNA maturation and stability in the chloroplast are controlled by nuclear-encoded ribonucleases and RNA binding proteins. Notably, mRNA 5' end maturation is thought to be achieved by the combined action of a 5' exoribonuclease and specific pentatricopeptide repeat proteins (PPR) that block the progression of the nuclease. In Arabidopsis the 5' exo- and endoribonuclease RNase J has been implicated in this process. Here, we verified the chloroplast localization of the orthologous Chlamydomonas (Cr) RNase J and studied its activity, both in vitro and in vivo in a heterologous B. subtilis system. Our data show that Cr RNase J has endo- but no significant intrinsic 5' exonuclease activity that would be compatible with its proposed role in mRNA maturation. This is the first example of an RNase J ortholog that does not possess a 5' exonuclease activity. A yeast two-hybrid screen revealed a number of potential interaction partners but three of the most promising candidates tested, failed to induce the latent exonuclease activity of Cr RNase J. We still favor the hypothesis that Cr RNase J plays an important role in RNA metabolism, but our findings suggest that it rather acts as an endoribonuclease in the chloroplast.

  15. X-ray dense cellular inclusions in the cells of the green alga Chlamydomonas reinhardtii as seen by soft-x-ray microscopy

    International Nuclear Information System (INIS)

    Stead, A.D.; Ford, T.W.; Page, A.M.; Brown, J.T.; Meyer-Ilse, W.

    1997-01-01

    Soft x-rays, having a greater ability to penetrate biological material than electrons, have the potential for producing images of intact, living cells. In addition, by using the so-called open-quotes water windowclose quotes area of the soft x-ray spectrum, a degree of natural contrast is introduced into the image due to differential absorption of the wavelengths by compounds with a high carbon content compared to those with a greater oxygen content. The variation in carbon concentration throughout a cell therefore generates an image which is dependent upon the carbon density within the specimen. Using soft x-ray contact microscopy the authors have previously examined the green alga Chlamydomonas reinhardtii, and the most prominent feature of the cells are the numerous x-ray absorbing spheres, But they were not seen by conventional transmission electron microscopy. Similar structures have also been reported by the Goettingen group using their cryo transmission x-ray microscope at BESSY. Despite the fact that these spheres appear to occupy up to 20% or more of the cell volume when seen by x-ray microscopy, they are not visible by transmission electron microscopy. Given the difficulties and criticisms associated with soft x-ray contact microscopy, the present study was aimed at confirming the existence of these cellular inclusions and learning more of their possible chemical composition

  16. X-ray dense cellular inclusions in the cells of the green alga Chlamydomonas reinhardtii as seen by soft-x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stead, A.D.; Ford, T.W.; Page, A.M. [Univ. of London (United Kingdom); Brown, J.T.; Meyer-Ilse, W. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Soft x-rays, having a greater ability to penetrate biological material than electrons, have the potential for producing images of intact, living cells. In addition, by using the so-called {open_quotes}water window{close_quotes} area of the soft x-ray spectrum, a degree of natural contrast is introduced into the image due to differential absorption of the wavelengths by compounds with a high carbon content compared to those with a greater oxygen content. The variation in carbon concentration throughout a cell therefore generates an image which is dependent upon the carbon density within the specimen. Using soft x-ray contact microscopy the authors have previously examined the green alga Chlamydomonas reinhardtii, and the most prominent feature of the cells are the numerous x-ray absorbing spheres, But they were not seen by conventional transmission electron microscopy. Similar structures have also been reported by the Goettingen group using their cryo transmission x-ray microscope at BESSY. Despite the fact that these spheres appear to occupy up to 20% or more of the cell volume when seen by x-ray microscopy, they are not visible by transmission electron microscopy. Given the difficulties and criticisms associated with soft x-ray contact microscopy, the present study was aimed at confirming the existence of these cellular inclusions and learning more of their possible chemical composition.

  17. Chlamydomonas reinhardtii: duration of its cell cycle and phases at growth rates affected by light intensity

    Czech Academy of Sciences Publication Activity Database

    Vítová, Milada; Bišová, Kateřina; Umysová, Dáša; Hlavová, Monika; Kawano, S.; Zachleder, Vilém; Čížková, Mária

    2011-01-01

    Roč. 233, č. 1 (2011), s. 75-86 ISSN 0032-0935 R&D Projects: GA AV ČR IAA500200614; GA ČR GA525/09/0102; GA ČR GA204/09/0111 Institutional research plan: CEZ:AV0Z50200510 Keywords : Cell division timing * Cell cycle phases * Chlamydomonas Subject RIV: EE - Microbiology, Virology Impact factor: 3.000, year: 2011

  18. New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Wannathong, Thanyanan; Waterhouse, Janet C; Young, Rosanna E B; Economou, Chloe K; Purton, Saul

    2016-06-01

    In recent years, there has been an increasing interest in the exploitation of microalgae in industrial biotechnology. Potentially, these phototrophic eukaryotes could be used for the low-cost synthesis of valuable recombinant products such as bioactive metabolites and therapeutic proteins. The algal chloroplast in particular represents an attractive target for such genetic engineering, both because it houses major metabolic pathways and because foreign genes can be targeted to specific loci within the chloroplast genome, resulting in high-level, stable expression. However, routine methods for chloroplast genetic engineering are currently available only for one species-Chlamydomonas reinhardtii-and even here, there are limitations to the existing technology, including the need for an expensive biolistic device for DNA delivery, the lack of robust expression vectors, and the undesirable use of antibiotic resistance markers. Here, we describe a new strain and vectors for targeted insertion of transgenes into a neutral chloroplast locus that (i) allow scar-less fusion of a transgenic coding sequence to the promoter/5'UTR element of the highly expressed endogenous genes psaA or atpA, (ii) employ the endogenous gene psbH as an effective but benign selectable marker, and (iii) ensure the successful integration of the transgene construct in all transformant lines. Transformation is achieved by a simple and cheap method of agitation of a DNA/cell suspension with glass beads, with selection based on the phototrophic rescue of a cell wall-deficient ΔpsbH strain. We demonstrate the utility of these tools in the creation of a transgenic line that produces high levels of functional human growth hormone.

  19. Interactive effects of copper oxide nanoparticles and light to green alga Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Cheloni, Giulia; Marti, Elodie; Slaveykova, Vera I., E-mail: vera.slaveykova@unige.ch

    2016-01-15

    Highlights: • Comparable stability of CuO-NP suspensions under different light conditions. • UVR* inhibits growth, bleaches chlorophyll fluorescence and damages membrane. • Below 1 mg L{sup −1} CuO-NPs do not attenuate light in algal suspension. • SNL enhances significantly the effect of 0.8 mg L{sup −1} CuO-NPs on microalgae. • Synergistic interactions between UVR* and CuO-NPs. - Abstract: The present study explores the effect of light with different spectral composition on the stability of CuO-nanoparticle (CuO-NP) dispersions and their effects to green alga Chlamydomonas reinhardtii. The results showed that simulated natural light (SNL) and light with enhanced UVB radiation (UVR*) do not affect the dissolution of CuO-NPs as compared to light irradiation conditions typically used in laboratory incubator (INC). Comparable values of ζ-potential and hydrodynamic size during 24 h were found under all studied conditions. Concentrations of CuO-NPs below 1 mg L{sup −1} do not attenuate the light penetration in the algal suspensions in comparison with NP-free system. Exposure to a combination of 8 μg L{sup −1} or 0.8 mg L{sup −1} CuO-NPs and INC or SNL has no significant effect on the algal growth inhibition, algal fluorescence and membrane integrity under short-term exposure. However, an enhancement of the percentage of cells experiencing oxidative stress was observed upon exposure to 0.8 mg L{sup −1} CuO-NPs and SNL for 4 and 8 h. Combination of UVR* and 0.8 mg L{sup −1} CuO-NPs resulted in synergistic effects for all biological endpoints. Despite the photocatalytic properties of CuO-NPs no significant increase in abiotic reactive oxygen species (ROS) production under simulated solar radiation was observed suggesting that the synergistic effect observed might be correlated to other factors than CuO-NP-mediated ROS photoproduction. Tests performed with CuSO{sub 4} confirmed the important role of dissolution as toxicity driving force for lower

  20. Optimization of the C11-BODIPY(581/591) dye for the determination of lipid oxidation in Chlamydomonas reinhardtii by flow cytometry.

    Science.gov (United States)

    Cheloni, Giulia; Slaveykova, Vera I

    2013-10-01

    Lipid oxidation is a recognized end point for the study of oxidative stress and is an important parameter to describe the mode of micropollutant action on aquatic microorganisms. Therefore, the development of quick and reliable methodologies probing the oxidative stress and damage in living cells is highly sought. In the present proof-of-concept work, we examined the potential of the fluorescent dye C11-BODIPY(591/581) to probe lipid oxidation in the green microalga Chlamydomonas reinhardtii. C11-BODIPY(591/581) staining was combined with flow cytometry measurements to obtain multiparameter information on cellular features and oxidative stress damage within single cells. First, staining conditions were optimized by exploring the capability of the dye to stain algal cells under increasing cell and dye concentrations and different staining procedures. Then lipid oxidation in algae induced by short- and long-term exposures to the three metallic micropollutants, copper, mercury, and nanoparticulate copper oxide, and the two organic contaminants, diethyldithiocarbamate (DDC) and diuron was determined. In this work we pointed out C11-BODIPY(591/581) applicability in a wide range of exposure conditions, including studies of oxidation as a function of time and that it is suitable for in vivo measurements of lipid oxidation due to its high permeation and stability in cells and its low interference with algal autofluorescence. © 2013 International Society for Advancement of Cytometry. Copyright © 2013 International Society for Advancement of Cytometry.

  1. Sensitivity evaluation of the green alga Chlamydomonas reinhardtii to uranium by pulse amplitude modulated (PAM) fluorometry

    International Nuclear Information System (INIS)

    Herlory, Olivier; Bonzom, Jean-Marc; Gilbin, Rodolphe

    2013-01-01

    Highlights: •Our study addressed the toxicity thresholds of uranium on microalgae using PAM fluorometry. •The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium. •Uranium impaired the electron flux between the photosystems until almost complete inhibition. •Non-photochemical quenching was identified as the most sensitive fluorescence parameter. •PAM fluorometry provided a rapid and reasonably sensitive method for assessing stress response. -- Abstract: Although ecotoxicological studies tend to address the toxicity thresholds of uranium in freshwaters, there is a lack of information on the effects of the metal on physiological processes, particularly in aquatic plants. Knowing that uranium alters photosynthesis via impairment of the water photo-oxidation process, we determined whether pulse amplitude modulated (PAM) fluorometry was a relevant tool for assessing the impact of uranium on the green alga Chlamydomonas reinhardtii and investigated how and to what extent uranium hampered photosynthetic performance. Photosynthetic activity and quenching were assessed from fluorescence induction curves generated by PAM fluorometry, after 1 and 5 h of uranium exposure in controlled conditions. The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium, through alteration of the water photo-oxidation process as revealed by F 0 /F v . Limiting re-oxidation of the plastoquinone pool, uranium impaired the electron flux between the photosystems until almost complete inhibition of the PSII quantum efficiency (F ′ q /F ′ m , EC 50 = 303 ± 64 μg U L −1 after 5 h of exposure) was observed. Non-photochemical quenching (qN) was identified as the most sensitive fluorescence parameter (EC 50 = 142 ± 98 μg U L −1 after 5 h of exposure), indicating that light energy not used in photochemistry was dissipated in non-radiative processes. It was shown that parameters which stemmed from

  2. Bioaccumulation and subcellular partitioning of Cr(III) and Cr(VI) in the freshwater green alga Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Aharchaou, Imad [Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360, Université de Lorraine and CNRS, 8 rue du Général Delestraint, 57070 Metz (France); Rosabal, Maikel; Liu, Fengjie [Institut National de la Recherche Scientifique, Centre Eau Terre Environnement (INRS-ETE), 490 rue de la Couronne, Québec (Québec) G1K 9A9 (Canada); Battaglia, Eric; Vignati, Davide A.L. [Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360, Université de Lorraine and CNRS, 8 rue du Général Delestraint, 57070 Metz (France); Fortin, Claude, E-mail: claude.fortin@ete.inrs.ca [Institut National de la Recherche Scientifique, Centre Eau Terre Environnement (INRS-ETE), 490 rue de la Couronne, Québec (Québec) G1K 9A9 (Canada)

    2017-01-15

    Highlights: • C. reinhardtii accumulated similar levels of Cr(III) and Cr(VI). • The subcellular partitioning of Cr(III) and Cr(VI) was similar. • Cr(III) and Cr(VI) associated mainly with organelles and heat-stable proteins. • Metallomic analysis showed two main Cr-binding biomolecules after 72 h of exposure. - Abstract: Chromium occurs in aquatic environments under two main redox forms, namely Cr(III) and Cr(VI), with different geochemical and biochemical properties. Cr(VI) readily crosses biological membranes of living organisms and once inside the cells it undergoes a rapid reduction to Cr(III). The route of entry for the latter form is, however, poorly known. Using the radioactive tracer {sup 51}Cr we compared the accumulation (absorption and adsorption) of the two Cr forms by the green unicellular alga Chlamydomonas reinhardii after 1 h and 72 h of exposure to 100 nM of either Cr(III) or Cr(VI) at pH 7. Both Cr forms had similar accumulation, with a major part in the extracellular (adsorbed) fraction after 1 h and a major part of total accumulated Cr in the intracellular (absorbed) fraction after 72 h. We also investigated the intracellular partitioning of Cr using an operational fractionation scheme and found that both Cr forms had similar distributions among fractions: Cr was mostly associated with organelles (23 ± 12% after 1 h and 37 ± 7% after 72 h) and cytosolic heat-stable proteins and peptides (39 ± 18% after 1 h and 35 ± 3% after 72 h) fractions. Further investigations using a metallomic approach (SEC-ICP-MS) were performed with the heat-stable proteins and peptides fraction to compare the distribution of the two Cr forms among various biomolecules of this fraction. One Cr-binding biomolecule (∼28 kDa) appeared after 1 h of exposure for both Cr species. After 72 h another biomolecule of lower molecular weight (∼0.7 kDa) was involved in binding Cr and higher signal intensities were observed for Cr(VI) than for Cr(III). We show, for the

  3. Bioaccumulation and subcellular partitioning of Cr(III) and Cr(VI) in the freshwater green alga Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Aharchaou, Imad; Rosabal, Maikel; Liu, Fengjie; Battaglia, Eric; Vignati, Davide A.L.; Fortin, Claude

    2017-01-01

    Highlights: • C. reinhardtii accumulated similar levels of Cr(III) and Cr(VI). • The subcellular partitioning of Cr(III) and Cr(VI) was similar. • Cr(III) and Cr(VI) associated mainly with organelles and heat-stable proteins. • Metallomic analysis showed two main Cr-binding biomolecules after 72 h of exposure. - Abstract: Chromium occurs in aquatic environments under two main redox forms, namely Cr(III) and Cr(VI), with different geochemical and biochemical properties. Cr(VI) readily crosses biological membranes of living organisms and once inside the cells it undergoes a rapid reduction to Cr(III). The route of entry for the latter form is, however, poorly known. Using the radioactive tracer "5"1Cr we compared the accumulation (absorption and adsorption) of the two Cr forms by the green unicellular alga Chlamydomonas reinhardii after 1 h and 72 h of exposure to 100 nM of either Cr(III) or Cr(VI) at pH 7. Both Cr forms had similar accumulation, with a major part in the extracellular (adsorbed) fraction after 1 h and a major part of total accumulated Cr in the intracellular (absorbed) fraction after 72 h. We also investigated the intracellular partitioning of Cr using an operational fractionation scheme and found that both Cr forms had similar distributions among fractions: Cr was mostly associated with organelles (23 ± 12% after 1 h and 37 ± 7% after 72 h) and cytosolic heat-stable proteins and peptides (39 ± 18% after 1 h and 35 ± 3% after 72 h) fractions. Further investigations using a metallomic approach (SEC-ICP-MS) were performed with the heat-stable proteins and peptides fraction to compare the distribution of the two Cr forms among various biomolecules of this fraction. One Cr-binding biomolecule (∼28 kDa) appeared after 1 h of exposure for both Cr species. After 72 h another biomolecule of lower molecular weight (∼0.7 kDa) was involved in binding Cr and higher signal intensities were observed for Cr(VI) than for Cr(III). We show, for the

  4. Chlamydomonas as a model for biofuels and bio-products production.

    Science.gov (United States)

    Scranton, Melissa A; Ostrand, Joseph T; Fields, Francis J; Mayfield, Stephen P

    2015-05-01

    Developing renewable energy sources is critical to maintaining the economic growth of the planet while protecting the environment. First generation biofuels focused on food crops like corn and sugarcane for ethanol production, and soybean and palm for biodiesel production. Second generation biofuels based on cellulosic ethanol produced from terrestrial plants, has received extensive funding and recently pilot facilities have been commissioned, but to date output of fuels from these sources has fallen well short of what is needed. Recent research and pilot demonstrations have highlighted the potential of algae as one of the most promising sources of sustainable liquid transportation fuels. Algae have also been established as unique biofactories for industrial, therapeutic, and nutraceutical co-products. Chlamydomonas reinhardtii's long established role in the field of basic research in green algae has paved the way for understanding algal metabolism and developing genetic engineering protocols. These tools are now being utilized in C. reinhardtii and in other algal species for the development of strains to maximize biofuels and bio-products yields from the lab to the field. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  5. NCBI nr-aa BLAST: CBRC-PHAM-01-1025 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PHAM-01-1025 ref|XP_001697359.1| magnesium chelatase subunit H [Chlamydomonas ...reinhardtii] gb|EDP00299.1| magnesium chelatase subunit H [Chlamydomonas reinhardtii] XP_001697359.1 7e-05 47% ...

  6. High-yield secretion of recombinant proteins from the microalga Chlamydomonas reinhardtii

    DEFF Research Database (Denmark)

    Ramos Martinez, Erick Miguel; Fimognari, Lorenzo; Sakuragi, Yumiko

    2017-01-01

    Microalga-based biomanufacturing of recombinant proteins is attracting growing attention due to its advantages in safety, metabolic diversity, scalability and sustainability. Secretion of recombinant proteins can accelerate the use of microalgal platforms by allowing post......-translational modifications and easy recovery of products from the culture media. However, currently, the yields of secreted recombinant proteins are low, which hampers the commercial application of this strategy. This study aimed at expanding the genetic tools for enhancing secretion of recombinant proteins in Chlamydomonas...... in the endoplasmic reticulum (ER). Taken together, the results demonstrate the utility of the gametolysin signal sequence and (SP)n glycomodule to promote a more efficient biomanufacturing of microalgae-based recombinant proteins....

  7. Alteration of proteins and pigments influence the function of photosystem I under iron deficiency from Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Venkateswarlu Yadavalli

    Full Text Available BACKGROUND: Iron is an essential micronutrient for all organisms because it is a component of enzyme cofactors that catalyze redox reactions in fundamental metabolic processes. Even though iron is abundant on earth, it is often present in the insoluble ferric [Fe (III] state, leaving many surface environments Fe-limited. The haploid green alga Chlamydomonas reinhardtii is used as a model organism for studying eukaryotic photosynthesis. This study explores structural and functional changes in PSI-LHCI supercomplexes under Fe deficiency as the eukaryotic photosynthetic apparatus adapts to Fe deficiency. RESULTS: 77K emission spectra and sucrose density gradient data show that PSI and LHCI subunits are affected under iron deficiency conditions. The visible circular dichroism (CD spectra associated with strongly-coupled chlorophyll dimers increases in intensity. The change in CD signals of pigments originates from the modification of interactions between pigment molecules. Evidence from sucrose gradients and non-denaturing (green gels indicates that PSI-LHCI levels were reduced after cells were grown for 72 h in Fe-deficient medium. Ultrafast fluorescence spectroscopy suggests that red-shifted pigments in the PSI-LHCI antenna were lost during Fe stress. Further, denaturing gel electrophoresis and immunoblot analysis reveals that levels of the PSI subunits PsaC and PsaD decreased, while PsaE was completely absent after Fe stress. The light harvesting complexes were also susceptible to iron deficiency, with Lhca1 and Lhca9 showing the most dramatic decreases. These changes in the number and composition of PSI-LHCI supercomplexes may be caused by reactive oxygen species, which increase under Fe deficiency conditions. CONCLUSIONS: Fe deficiency induces rapid reduction of the levels of photosynthetic pigments due to a decrease in chlorophyll synthesis. Chlorophyll is important not only as a light-harvesting pigment, but also has a structural role

  8. Sensitivity evaluation of the green alga Chlamydomonas reinhardtii to uranium by pulse amplitude modulated (PAM) fluorometry

    Energy Technology Data Exchange (ETDEWEB)

    Herlory, Olivier, E-mail: olivier.herlory@gmail.com [IRSN-Laboratoire d’Ecotoxicologie des Radionucléides, Centre de Cadarache, BP3, 13115 Saint Paul lez Durance (France); Bonzom, Jean-Marc, E-mail: jean-marc.bonzom@irsn.fr [IRSN-Laboratoire d’Ecotoxicologie des Radionucléides, Centre de Cadarache, BP3, 13115 Saint Paul lez Durance (France); Gilbin, Rodolphe, E-mail: rodolphe.gilbin@irsn.fr [IRSN-Laboratoire de Biogéochimie, Biodisponibilité et Transferts des Radionucléides, Centre de Cadarache, BP3, 13115 Saint Paul lez Durance (France)

    2013-09-15

    Highlights: •Our study addressed the toxicity thresholds of uranium on microalgae using PAM fluorometry. •The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium. •Uranium impaired the electron flux between the photosystems until almost complete inhibition. •Non-photochemical quenching was identified as the most sensitive fluorescence parameter. •PAM fluorometry provided a rapid and reasonably sensitive method for assessing stress response. -- Abstract: Although ecotoxicological studies tend to address the toxicity thresholds of uranium in freshwaters, there is a lack of information on the effects of the metal on physiological processes, particularly in aquatic plants. Knowing that uranium alters photosynthesis via impairment of the water photo-oxidation process, we determined whether pulse amplitude modulated (PAM) fluorometry was a relevant tool for assessing the impact of uranium on the green alga Chlamydomonas reinhardtii and investigated how and to what extent uranium hampered photosynthetic performance. Photosynthetic activity and quenching were assessed from fluorescence induction curves generated by PAM fluorometry, after 1 and 5 h of uranium exposure in controlled conditions. The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium, through alteration of the water photo-oxidation process as revealed by F{sub 0}/F{sub v}. Limiting re-oxidation of the plastoquinone pool, uranium impaired the electron flux between the photosystems until almost complete inhibition of the PSII quantum efficiency (F{sup ′}{sub q}/F{sup ′}{sub m}, EC{sub 50} = 303 ± 64 μg U L{sup −1} after 5 h of exposure) was observed. Non-photochemical quenching (qN) was identified as the most sensitive fluorescence parameter (EC{sub 50} = 142 ± 98 μg U L{sup −1} after 5 h of exposure), indicating that light energy not used in photochemistry was dissipated in non-radiative processes. It was shown

  9. Gradual plasticity alters population dynamics in variable environments: thermal acclimation in the green alga Chlamydomonas reinhartdii.

    Science.gov (United States)

    Kremer, Colin T; Fey, Samuel B; Arellano, Aldo A; Vasseur, David A

    2018-01-10

    Environmental variability is ubiquitous, but its effects on populations are not fully understood or predictable. Recent attention has focused on how rapid evolution can impact ecological dynamics via adaptive trait change. However, the impact of trait change arising from plastic responses has received less attention, and is often assumed to optimize performance and unfold on a separate, faster timescale than ecological dynamics. Challenging these assumptions, we propose that gradual plasticity is important for ecological dynamics, and present a study of the plastic responses of the freshwater green algae Chlamydomonas reinhardtii as it acclimates to temperature changes. First, we show that C. reinhardtii 's gradual acclimation responses can both enhance and suppress its performance after a perturbation, depending on its prior thermal history. Second, we demonstrate that where conventional approaches fail to predict the population dynamics of C. reinhardtii exposed to temperature fluctuations, a new model of gradual acclimation succeeds. Finally, using high-resolution data, we show that phytoplankton in lake ecosystems can experience thermal variation sufficient to make acclimation relevant. These results challenge prevailing assumptions about plasticity's interactions with ecological dynamics. Amidst the current emphasis on rapid evolution, it is critical that we also develop predictive methods accounting for plasticity. © 2018 The Author(s).

  10. Impact of Oxidative Stress on Ascorbate Biosynthesis in Chlamydomonas via Regulation of the VTC2 Gene Encoding a GDP-l-galactose Phosphorylase*

    Science.gov (United States)

    Urzica, Eugen I.; Adler, Lital N.; Page, M. Dudley; Linster, Carole L.; Arbing, Mark A.; Casero, David; Pellegrini, Matteo; Merchant, Sabeeha S.; Clarke, Steven G.

    2012-01-01

    The l-galactose (Smirnoff-Wheeler) pathway represents the major route to l-ascorbic acid (vitamin C) biosynthesis in higher plants. Arabidopsis thaliana VTC2 and its paralogue VTC5 function as GDP-l-galactose phosphorylases converting GDP-l-galactose to l-galactose-1-P, thus catalyzing the first committed step in the biosynthesis of l-ascorbate. Here we report that the l-galactose pathway of ascorbate biosynthesis described in higher plants is conserved in green algae. The Chlamydomonas reinhardtii genome encodes all the enzymes required for vitamin C biosynthesis via the l-galactose pathway. We have characterized recombinant C. reinhardtii VTC2 as an active GDP-l-galactose phosphorylase. C. reinhardtii cells exposed to oxidative stress show increased VTC2 mRNA and l-ascorbate levels. Genes encoding enzymatic components of the ascorbate-glutathione system (e.g. ascorbate peroxidase, manganese superoxide dismutase, and dehydroascorbate reductase) are also up-regulated in response to increased oxidative stress. These results indicate that C. reinhardtii VTC2, like its plant homologs, is a highly regulated enzyme in ascorbate biosynthesis in green algae and that, together with the ascorbate recycling system, the l-galactose pathway represents the major route for providing protective levels of ascorbate in oxidatively stressed algal cells. PMID:22393048

  11. Deletion of the Candida glabrata ERG3 and ERG11 genes: effect on cell viability, cell growth, sterol composition, and antifungal susceptibility.

    Science.gov (United States)

    Geber, A; Hitchcock, C A; Swartz, J E; Pullen, F S; Marsden, K E; Kwon-Chung, K J; Bennett, J E

    1995-01-01

    We have cloned and sequenced the structural genes encoding the delta 5,6 sterol desaturase (ERG3 gene) and the 14 alpha-methyl sterol demethylase (ERG11 gene) from Candida glabrata L5 (leu2). Single and double mutants of these genes were created by gene deletion. The phenotypes of these mutants, including sterol profiles, aerobic viabilities, antifungal susceptibilities, and generation times, were studied. Strain L5D (erg3 delta::LEU2) accumulated mainly ergosta-7,22-dien-3 beta-ol, was aerobically viable, and remained susceptible to antifungal agents but had a slower generation time than its parent strain. L5LUD (LEU2 erg11 delta::URA3) strains required medium supplemented with ergosterol and an anaerobic environment for growth. A spontaneous aerobically viable mutant, L5LUD40R (LEU erg11 delta::URA3), obtained from L5LUD (LEU2 erg11 delta::URA3), was found to accumulate lanosterol and obtusifoliol, was resistant to azole antifungal agents, demonstrated some increase in resistance to amphotericin B, and exhibited a 1.86-fold increase in generation time in comparison with L5 (leu2). The double-deletion mutant L5DUD61 (erg3 delta::LEU2 erg11 delta::URA3) was aerobically viable, produced mainly 14 alpha-methyl fecosterol, and had the same antifungal susceptibility pattern as L5LUD40R (LEU2 erg11 delta::URA3), and its generation time was threefold greater than that of L5 (leu2). Northern (RNA) analysis revealed that the single-deletion mutants had a marked increase in message for the undeleted ERG3 and ERG11 genes. These results indicate that differences in antifungal susceptibilities and the restoration of aerobic viability exist between the C. glabrata ergosterol mutants created in this study and those sterol mutants with similar genetic lesions previously reported for Saccharomyces cerevisiae. PMID:8593007

  12. Assessing bio-available silver released from silver nanoparticles embedded in silica layers using the green algae Chlamydomonas reinhardtii as bio-sensors

    Energy Technology Data Exchange (ETDEWEB)

    Pugliara, Alessandro [nMat group-CEMES (Centre d' Elaboration de Matériaux et d' Etudes Structurales)-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055 Toulouse Cedex 4 (France); LAPLACE (LAboratoire PLAsma et Conversion d' Energie), Université de Toulouse, CNRS, UPS, INPT, 118 route de Narbonne, F-31062 Toulouse (France); Makasheva, Kremena; Despax, Bernard [LAPLACE (LAboratoire PLAsma et Conversion d' Energie), Université de Toulouse, CNRS, UPS, INPT, 118 route de Narbonne, F-31062 Toulouse (France); Bayle, Maxime; Carles, Robert; Benzo, Patrizio; BenAssayag, Gérard; Pécassou, Béatrice [nMat group-CEMES (Centre d' Elaboration de Matériaux et d' Etudes Structurales)-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055 Toulouse Cedex 4 (France); Sancho, Maria Carmen; Navarro, Enrique [IPE (Instituto Pirenaico de Ecología)-CSIC, Avda. Montañana 1005, Zaragoza 50059 (Spain); Echegoyen, Yolanda [I3A, Department of Analytical Chemistry, University of Zaragoza, C/ María de Luna 3, 50018, Zaragoza (Spain); Bonafos, Caroline, E-mail: bonafos@cemes.fr [nMat group-CEMES (Centre d' Elaboration de Matériaux et d' Etudes Structurales)-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055 Toulouse Cedex 4 (France)

    2016-09-15

    Silver nanoparticles (AgNPs) because of their strong antibacterial activity are widely used in health-care sector and industrial applications. Their huge surface-volume ratio enhances the silver release compared to the bulk material, leading to an increased toxicity for microorganisms sensitive to this element. This work presents an assessment of the toxic effect on algal photosynthesis due to small (size < 20 nm) AgNPs embedded in silica layers. Two physical approaches were originally used to elaborate the nanocomposite structures: (i) low energy ion beam synthesis and (ii) combined silver sputtering and plasma polymerization. These techniques allow elaboration of a single layer of AgNPs embedded in silica films at defined nanometer distances (from 0 to 7 nm) beneath the free surface. The structural and optical properties of the nanostructures were studied by transmission electron microscopy and optical reflectance. The silver release from the nanostructures after 20 h of immersion in buffered water was measured by inductively coupled plasma mass spectrometry and ranges between 0.02 and 0.49 μM. The short-term toxicity of Ag to photosynthesis of Chlamydomonas reinhardtii was assessed by fluorometry. The obtained results show that embedding AgNPs reduces the interactions with the buffered water free media, protecting the AgNPs from fast oxidation. The release of bio-available silver (impacting on the algal photosynthesis) is controlled by the depth at which AgNPs are located for a given host matrix. This provides a procedure to tailor the toxicity of nanocomposites containing AgNPs. - Highlights: • Controlled synthesis of 2D arrays of silver nanoparticles embedded in silica. • Assessing bio-available silver release using the green algae as bio-sensors. • The Ag release can be controlled by the distance nanoparticles/dielectric surface. • All the Ag released in solution is in the form of Ag{sup +} ions. • Toxicity comparable to similar concentrations of

  13. Robust expression and secretion of Xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide.

    Directory of Open Access Journals (Sweden)

    Beth A Rasala

    Full Text Available Microalgae have recently received attention as a potential low-cost host for the production of recombinant proteins and novel metabolites. However, a major obstacle to the development of algae as an industrial platform has been the poor expression of heterologous genes from the nuclear genome. Here we describe a nuclear expression strategy using the foot-and-mouth-disease-virus 2A self-cleavage peptide to transcriptionally fuse heterologous gene expression to antibiotic resistance in Chlamydomonas reinhardtii. We demonstrate that strains transformed with ble-2A-GFP are zeocin-resistant and accumulate high levels of GFP that is properly 'cleaved' at the FMDV 2A peptide resulting in monomeric, cytosolic GFP that is easily detectable by in-gel fluorescence analysis or fluorescent microscopy. Furthermore, we used our ble2A nuclear expression vector to engineer the heterologous expression of the industrial enzyme, xylanase. We demonstrate that linking xyn1 expression to ble2A expression on the same open reading frame led to a dramatic (~100-fold increase in xylanase activity in cells lysates compared to the unlinked construct. Finally, by inserting an endogenous secretion signal between the ble2A and xyn1 coding regions, we were able to target monomeric xylanase for secretion. The novel microalgae nuclear expression strategy described here enables the selection of transgenic lines that are efficiently expressing the heterologous gene-of-interest and should prove valuable for basic research as well as algal biotechnology.

  14. Selenite -Se(4)- uptake mechanisms in the unicellular green alga Chlamydomonas reinhardtii: bioaccumulation and effects induced on growth and ultrastructure; Mecanismes de prise en charge du selenite - Se(4)-chez l'algue verte unicellulaire Chlamydomonas reinhardtii. Bioaccumulation et effets induits sur la croissance et l'ultrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Morlon, H

    2005-03-15

    Selenium is an essential element, but becomes very toxic at higher concentrations. It occurs in the environment at concentrations ranging from nM to {mu}M and selenium pollution is a worldwide phenomenon. This works aims at improving the knowledge on the interactions between selenite - Se(IV) - and a freshwater phyto-planktonic organism: the unicellular green algae Chlamydomonas reinhardtii. The aim of the performed experiments were: i) to investigate selenite -Se(IV)- uptake mechanisms in C. reinhardtii, using Se{sup 75} as a tracer in short term exposures (<1 h); ii) to assess selenite toxicity as measured with growth impairment and ultrastructural damage (with EDAX-TEM analysis), using long term exposures (96 h) to stable selenite; iii) to evaluate the bioaccumulation capacity of selenite and its potential links with toxicity. Short-term experiments revealed a negligible adsorption and a time-dependent linear absorption with an estimated absorbed flux of about 0.2 nmol.m{sup -2}.nM{sup -1}.h{sup -1}. The uptake was proportional to ambient levels in a broad range of intermediate concentrations (from nM to {mu}M). However, fluxes were higher at very low concentrations (< nM), and decrease with increasing high concentrations ( > {mu}M), suggesting that a high affinity but rapidly saturated transport mechanism could be used at low concentrations, in parallel with a low affinity mechanism that would only saturate at high concentrations ({approx}mM). The latter could involve transporters used by sulphate and nitrates, as suggested by the inhibition of selenite uptake by those element. Se(IV) speciation changes with pH did not induce significant effect on bioavailability. On the basis of the relationship between Se concentration and maximal cell density achieved, an EC50 of 80 {mu}M ([64; 98]) was derived. No adaptation mechanism were observed as the same the same toxicity was quantified for Se-pre-exposed algae. Observations by TEM suggested chloroplasts as the first

  15. pH modulates transport rates of manganese and cadmium in the green alga Chlamydomonas reinhardtii through non-competitive interactions: Implications for an algal BLM

    International Nuclear Information System (INIS)

    Francois, Laura; Fortin, Claude; Campbell, Peter G.C.

    2007-01-01

    The influence of pH on short-term uptake of manganese and cadmium by the green alga Chlamydomonas reinhardtii was studied to better understand the nature of proton interactions with metal membrane transporters. Manganese and cadmium internalization fluxes (J int ) were measured over a wide range of free metal ion concentrations from 1 x 10 -10 to 4 x 10 -4 M at several pH values (Mn: 5.0, 6.5 and 8.0; Cd: 5.0 and 6.5). For both metals, first-order biological internalization kinetics were observed but the maximum transport flux (J max ) decreased when pH decreased, in contradiction with the Biotic Ligand Model (BLM). This result suggested a non-competitive inhibition of metal uptake by the H + -ion. A Michaelis-Menten type inhibition model considering proton and calcium competition was tested. The metal biotic ligand stability constants and the stability constants for competitive binding of Ca 2+ and H + with the metal transporters were calculated: for manganese, K Mn = 10 4.20 and K Ca = 10 3.71 ; for cadmium, K Cd = 10 4.19 and K Ca = 10 4.76 ; for both metal transport systems, K H was not a significant parameter. Furthermore, metal uptake was not significantly influenced by the pH of the antecedent growth medium, suggesting that increases in metal fluxes as the pH is raised are caused by conformational changes of the surface transport proteins rather than by the synthesis of additional transport sites. Our results demonstrate that the BLM in its present state does not properly describe the true influence of pH on manganese and cadmium uptake by algae and that a non-competitive inhibition component must be integrated

  16. Rubisco mutants of Chlamydomonas reinhardtii enhance photosynthetic hydrogen production.

    Science.gov (United States)

    Pinto, T S; Malcata, F X; Arrabaça, J D; Silva, J M; Spreitzer, R J; Esquível, M G

    2013-06-01

    Molecular hydrogen (H2) is an ideal fuel characterized by high enthalpy change and lack of greenhouse effects. This biofuel can be released by microalgae via reduction of protons to molecular hydrogen catalyzed by hydrogenases. The main competitor for the reducing power required by the hydrogenases is the Calvin cycle, and rubisco plays a key role therein. Engineered Chlamydomonas with reduced rubisco levels, activity and stability was used as the basis of this research effort aimed at increasing hydrogen production. Biochemical monitoring in such metabolically engineered mutant cells proceeded in Tris/acetate/phosphate culture medium with S-depletion or repletion, both under hypoxia. Photosynthetic activity, maximum photochemical efficiency, chlorophyll and protein levels were all measured. In addition, expression of rubisco, hydrogenase, D1 and Lhcb were investigated, and H2 was quantified. At the beginning of the experiments, rubisco increased followed by intense degradation. Lhcb proteins exhibited monomeric isoforms during the first 24 to 48 h, and D1 displayed sensitivity under S-depletion. Rubisco mutants exhibited a significant decrease in O2 evolution compared with the control. Although the S-depleted medium was much more suitable than its complete counterpart for H2 production, hydrogen release was observed also in sealed S-repleted cultures of rubisco mutated cells under low-moderate light conditions. In particular, the rubisco mutant Y67A accounted for 10-15-fold higher hydrogen production than the wild type under the same conditions and also displayed divergent metabolic parameters. These results indicate that rubisco is a promising target for improving hydrogen production rates in engineered microalgae.

  17. Linoleic Acid-Induced Ultra-Weak Photon Emission from Chlamydomonas reinhardtii as a Tool for Monitoring of Lipid Peroxidation in the Cell Membranes

    Science.gov (United States)

    Prasad, Ankush; Pospíšil, Pavel

    2011-01-01

    Reactive oxygen species formed as a response to various abiotic and biotic stresses cause an oxidative damage of cellular component such are lipids, proteins and nucleic acids. Lipid peroxidation is considered as one of the major processes responsible for the oxidative damage of the polyunsaturated fatty acid in the cell membranes. Various methods such as a loss of polyunsaturated fatty acids, amount of the primary and the secondary products are used to monitor the level of lipid peroxidation. To investigate the use of ultra-weak photon emission as a non-invasive tool for monitoring of lipid peroxidation, the involvement of lipid peroxidation in ultra-weak photon emission was studied in the unicellular green alga Chlamydomonas reinhardtii. Lipid peroxidation initiated by addition of exogenous linoleic acid to the cells was monitored by ultra-weak photon emission measured with the employment of highly sensitive charged couple device camera and photomultiplier tube. It was found that the addition of linoleic acid to the cells significantly increased the ultra-weak photon emission that correlates with the accumulation of lipid peroxidation product as measured using thiobarbituric acid assay. Scavenging of hydroxyl radical by mannitol, inhibition of intrinsic lipoxygenase by catechol and removal of molecular oxygen considerably suppressed ultra-weak photon emission measured after the addition of linoleic acid. The photon emission dominated at the red region of the spectrum with emission maximum at 680 nm. These observations reveal that the oxidation of linoleic acid by hydroxyl radical and intrinsic lipoxygenase results in the ultra-weak photon emission. Electronically excited species such as excited triplet carbonyls are the likely candidates for the primary excited species formed during the lipid peroxidation, whereas chlorophylls are the final emitters of photons. We propose here that the ultra-weak photon emission can be used as a non-invasive tool for the

  18. Flow Cytometry Pulse Width Data Enables Rapid and Sensitive Estimation of Biomass Dry Weight in the Microalgae Chlamydomonas reinhardtii and Chlorella vulgaris

    Science.gov (United States)

    Chioccioli, Maurizio; Hankamer, Ben; Ross, Ian L.

    2014-01-01

    Dry weight biomass is an important parameter in algaculture. Direct measurement requires weighing milligram quantities of dried biomass, which is problematic for small volume systems containing few cells, such as laboratory studies and high throughput assays in microwell plates. In these cases indirect methods must be used, inducing measurement artefacts which vary in severity with the cell type and conditions employed. Here, we utilise flow cytometry pulse width data for the estimation of cell density and biomass, using Chlorella vulgaris and Chlamydomonas reinhardtii as model algae and compare it to optical density methods. Measurement of cell concentration by flow cytometry was shown to be more sensitive than optical density at 750 nm (OD750) for monitoring culture growth. However, neither cell concentration nor optical density correlates well to biomass when growth conditions vary. Compared to the growth of C. vulgaris in TAP (tris-acetate-phosphate) medium, cells grown in TAP + glucose displayed a slowed cell division rate and a 2-fold increased dry biomass accumulation compared to growth without glucose. This was accompanied by increased cellular volume. Laser scattering characteristics during flow cytometry were used to estimate cell diameters and it was shown that an empirical but nonlinear relationship could be shown between flow cytometric pulse width and dry weight biomass per cell. This relationship could be linearised by the use of hypertonic conditions (1 M NaCl) to dehydrate the cells, as shown by density gradient centrifugation. Flow cytometry for biomass estimation is easy to perform, sensitive and offers more comprehensive information than optical density measurements. In addition, periodic flow cytometry measurements can be used to calibrate OD750 measurements for both convenience and accuracy. This approach is particularly useful for small samples and where cellular characteristics, especially cell size, are expected to vary during growth. PMID

  19. Toxicity of selenite in the unicellular green alga Chlamydomonas reinhardtii: Comparison between effects at the population and sub-cellular level

    International Nuclear Information System (INIS)

    Morlon, Helene; Fortin, Claude; Floriani, Magali; Adam, Christelle; Garnier-Laplace, Jacqueline; Boudou, Alain

    2005-01-01

    The toxicity of selenium in aquatic ecosystems is mainly linked to its uptake and biotransformation by micro-organisms, and its subsequent transfer upwards into the food chain. Thus, organisms at low trophic level, such as algae, play a crucial role. The aim of our study was to investigate the biological effects of selenite on Chlamydomonas reinhardtii, both at the sub-cellular level (effect on ultrastructure) and at the population level (effect on growth). The cells were grown under batch culture conditions in well-defined media and exposed to waterborne selenite at concentrations up to 500 μM; i.e. up to lethal conditions. Based on the relationship between Se concentration and cell density achieved after a 96 h exposure period, an EC 50 of 80 μM with a 95% confidence interval ranging between 64 and 98 μM was derived. No adaptation mechanisms were observed: the same toxicity was quantified for algae pre-contaminated with Se. The inhibition of growth was linked to impairments observed at the sub-cellular level. The intensity of the ultrastructural damages caused by selenite exposure depended on the level and duration of exposure. Observations by TEM suggested chloroplasts as the first target of selenite cytotoxicity, with effects on the stroma, thylakoids and pyrenoids. At higher concentrations, we could observe an increase in the number and volume of starch grains. For cells collected at 96 h, electron-dense granules were observed. Energy-dispersive X-ray microanalysis revealed that these granules contained selenium and were also rich in calcium and phosphorus. This study confirms that the direct toxicity of selenite on the phytoplankton biomass is not likely to take place at concentrations found in the environment. At higher concentrations, the link between effects at the sub-cellular and population levels, the over-accumulation of starch, and the formation of dense granules containing selenium are reported for the first time in the literature for a

  20. Evidence that an internal carbonic anhydrase is present in 5% CO2-grown and air-grown Chlamydomonas

    International Nuclear Information System (INIS)

    Moroney, J.V.; Togasaki, R.K.; Husic, H.D.; Tolbert, N.E.

    1987-01-01

    Inorganic carbon (C/sub i/) uptake was measured in wild-type cells of Chlamydomonas reinhardtii, and in cia-3, a mutant strain of C. reinhardtii that cannot grow with air levels of CO 2 . Both air-grown cells, that have a CO 2 concentrating system, and 5% CO 2 -grown cells that do not have this system, were used. When the external pH was 5.1 or 7.3, air-grown, wild-type cells accumulated inorganic carbon (C/sub i/) and this accumulation was enhanced when the permeant carbonic anhydrase inhibitor, ethoxyzolamide, was added. When the external pH was 5.1, 5% CO 2 -grown cells also accumulated some C/sub i/, although not as much as air-grown cells and this accumulation was stimulated by the addition of ethoxyzolamide. At the same time, ethoxyzolamide inhibited CO 2 fixation by high CO 2 -grown, wild-type cells at both pH 5.1 and 7.3. These observations imply that 5% CO 2 -grown, wild-type cells, have a physiologically important internal carbonic anhydrase, although the major carbonic anhydrase located in the periplasmic space is only present in air-grown cells. Inorganic carbon uptake by cia-3 cells supported this conclusion. This mutant strain, which is thought to lack an internal carbonic anhydrase, was unaffected by ethoxyzolamide at pH 5.1. Other physiological characteristics of cia-3 resemble those of wild-type cells that have been treated with ethoxyzolamide. It is concluded that an internal carbonic anhydrase is under different regulatory control than the periplasmic carbonic anhydrase

  1. A millifluidic study of cell-to-cell heterogeneity in growth-rate and cell-division capability in populations of isogenic cells of Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Shima P Damodaran

    Full Text Available To address possible cell-to-cell heterogeneity in growth dynamics of isogenic cell populations of Chlamydomonas reinhardtii, we developed a millifluidic drop-based device that not only allows the analysis of populations grown from single cells over periods of a week, but is also able to sort and collect drops of interest, containing viable and healthy cells, which can be used for further experimentation. In this study, we used isogenic algal cells that were first synchronized in mixotrophic growth conditions. We show that these synchronized cells, when placed in droplets and kept in mixotrophic growth conditions, exhibit mostly homogeneous growth statistics, but with two distinct subpopulations: a major population with a short doubling-time (fast-growers and a significant subpopulation of slowly dividing cells (slow-growers. These observations suggest that algal cells from an isogenic population may be present in either of two states, a state of restricted division and a state of active division. When isogenic cells were allowed to propagate for about 1000 generations on solid agar plates, they displayed an increased heterogeneity in their growth dynamics. Although we could still identify the original populations of slow- and fast-growers, drops inoculated with a single progenitor cell now displayed a wider diversity of doubling-times. Moreover, populations dividing with the same growth-rate often reached different cell numbers in stationary phase, suggesting that the progenitor cells differed in the number of cell divisions they could undertake. We discuss possible explanations for these cell-to-cell heterogeneities in growth dynamics, such as mutations, differential aging or stochastic variations in metabolites and macromolecules yielding molecular switches, in the light of single-cell heterogeneities that have been reported among isogenic populations of other eu- and prokaryotes.

  2. The energy balance of the biomass generation of Chlamydomonas acidophila under acidic and neutral conditions and Chlamydomonas reinhardtii; Die Energiebilanz der Biomasseneubildung von Chlamydomonas acidophila unter sauren und neutralen Bedingungen und von Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Langner, Uwe

    2009-01-16

    In this study the influence of pH < 3 as an extreme environment has been investigated for the eukaryotic green alga Chlamydomonas (C.) acidophila. The limited number of trophic levels, consisting of bacteria, phytoplankton, zooplankton and macrophytes, is a special characteristic of extreme acidic water bodies. C. acidophila was isolated from an extreme acidic mining lake (RL 111) (Bissinger et al. 2000). A special feature of the examined algal species is its wide tolerance range of external pH values from 2 to 7 (Cassin 1874, Gerloff-Elias et al. 2005a). C. acidophila is a dominant species in the acidic mining lakes, it can grow up to chlorophyll maxima of 500 {mu}g L{sup -1} during the summer time (Nixdorf et al. 1998, 2003). The alga can be found elsewhere in extreme acidic water bodies around the world. The hydrochemistry of the acidic mining lakes in the central regions of Germany and Lusatia show clear differences compared to neutral water bodies. Some of the characteristics of acidic mining lakes are high metal and heavy metal (aluminum) concentrations, high ion concentrations, which lead to high conductivity, as well as low phosphate concentrations, ammonium as the only nitrogen source and CO{sub 2} as the only inorganic carbon source. Many eukaryotic microalgae in acidic water bodies including C. acidophila show a neutral cytosolic pH. This is provided by special adaptations of the organisms. Thus, organisms in extreme acidic environments have a positive cell surface charge, a very efficient H{sup +}-ATPase and high internal buffer capacities. These mechanisms work contrary to the proton influx and the acidification of the cytosol and are therefore proof for the physiological impact of osmoregulation by microalgae in extreme acidic environments (Sekler et al.1991, Weiss et al. 1999). Hence, these mechanisms also complicate the access to nutrients for the algal cell. The passive influx of positively charged ions such as potassium or ammonium is reduced by

  3. Linoleic acid-induced ultra-weak photon emission from Chlamydomonas reinhardtii as a tool for monitoring of lipid peroxidation in the cell membranes.

    Directory of Open Access Journals (Sweden)

    Ankush Prasad

    Full Text Available Reactive oxygen species formed as a response to various abiotic and biotic stresses cause an oxidative damage of cellular component such are lipids, proteins and nucleic acids. Lipid peroxidation is considered as one of the major processes responsible for the oxidative damage of the polyunsaturated fatty acid in the cell membranes. Various methods such as a loss of polyunsaturated fatty acids, amount of the primary and the secondary products are used to monitor the level of lipid peroxidation. To investigate the use of ultra-weak photon emission as a non-invasive tool for monitoring of lipid peroxidation, the involvement of lipid peroxidation in ultra-weak photon emission was studied in the unicellular green alga Chlamydomonas reinhardtii. Lipid peroxidation initiated by addition of exogenous linoleic acid to the cells was monitored by ultra-weak photon emission measured with the employment of highly sensitive charged couple device camera and photomultiplier tube. It was found that the addition of linoleic acid to the cells significantly increased the ultra-weak photon emission that correlates with the accumulation of lipid peroxidation product as measured using thiobarbituric acid assay. Scavenging of hydroxyl radical by mannitol, inhibition of intrinsic lipoxygenase by catechol and removal of molecular oxygen considerably suppressed ultra-weak photon emission measured after the addition of linoleic acid. The photon emission dominated at the red region of the spectrum with emission maximum at 680 nm. These observations reveal that the oxidation of linoleic acid by hydroxyl radical and intrinsic lipoxygenase results in the ultra-weak photon emission. Electronically excited species such as excited triplet carbonyls are the likely candidates for the primary excited species formed during the lipid peroxidation, whereas chlorophylls are the final emitters of photons. We propose here that the ultra-weak photon emission can be used as a non

  4. Protein (Viridiplantae): 159470305 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available predicted protein Chlamydomonas reinhardtii MSSRPKRAASANMANVIAAEKANKAAALHAWPKMWATKLEAQLQLMFMPTRLHRRPLHQGTCRNYSTAPGITGVIELTSAFYRMYPNATFVFNKETAAKGTYRGEEETAASWWLKHVGSKLEIYLSPLRCRPEVSR ...

  5. New features on the environmental regulation of metabolism revealed by modeling the cellular proteomic adaptations induced by light, carbon and inorganic nitrogen in Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Stéphanie Gérin

    2016-08-01

    Full Text Available Microalgae are currently emerging to be very promising organisms for the production of biofuels and high-added value compounds. Understanding the influence of environmental alterations on their metabolism is a crucial issue. Light, carbon and nitrogen availability have been reported to induce important metabolic adaptations. So far, the influence of these variables has essentially been studied while varying only one or two environmental factors at the same time. The goal of the present work was to model the cellular proteomic adaptations of the green microalga Chlamydomonas reinhardtii upon the simultaneous changes of light intensity, carbon concentrations (CO2 and acetate and inorganic nitrogen concentrations (nitrate and ammonium in the culture medium. Statistical design of experiments (DOE enabled to define 32 culture conditions to be tested experimentally. Relative protein abundance was quantified by two dimensional differential in-gel electrophoresis (2D-DIGE. Additional assays for respiration, photosynthesis, and lipid and pigment concentrations were also carried out. A hierarchical clustering survey enabled to partition biological variables (proteins + assays into eight co-regulated clusters. In most cases, the biological variables partitioned in the same cluster had already been reported to participate to common biological functions (acetate assimilation, bioenergetic processes, light harvesting, Calvin cycle and protein metabolism. The environmental regulation within each cluster was further characterized by a series of multivariate methods including principal component analysis and multiple linear regressions. This metadata analysis enabled to highlight the existence of a clear regulatory pattern for every cluster and to mathematically simulate the effects of light, carbon and nitrogen. The influence of these environmental variables on cellular metabolism is described in details and thoroughly discussed. This work provides an overview

  6. Nickel and low CO2-controlled motility in Chlamydomonas through complementation of a paralyzed flagella mutant with chemically regulated promoters

    Directory of Open Access Journals (Sweden)

    Rosenbaum Joel L

    2011-01-01

    Full Text Available Abstract Background Chlamydomonas reinhardtii is a model system for the biology of unicellular green algae. Chemically regulated promoters, such as the nickel-inducible CYC6 or the low CO2-inducible CAH1 promoter, may prove useful for expressing, at precise times during its cell cycle, proteins with relevant biological functions, or complementing mutants in genes encoding such proteins. To this date, this has not been reported for the above promoters. Results We fused the CYC6 and CAH1 promoters to an HA-tagged RSP3 gene, encoding a protein of the flagellar radial spoke complex. The constructs were used for chemically regulated complementation of the pf14 mutant, carrying an ochre mutation in the RSP3 gene. 7 to 8% of the transformants showed cells with restored motility after induction with nickel or transfer to low CO2 conditions, but not in non-inducing conditions. Maximum complementation (5% motile cells was reached with very different kinetics (5-6 hours for CAH1, 48 hours for CYC6. The two inducible promoters drive much lower levels of RSP3 protein expression than the constitutive PSAD promoter, which shows almost complete rescue of motility. Conclusions To our knowledge, this is the first example of the use of the CYC6 or CAH1 promoters to perform a chemically regulated complementation of a Chlamydomonas mutant. Based on our data, the CYC6 and CAH1 promoters should be capable of fully complementing mutants in genes whose products exert their biological activity at low concentrations.

  7. Protein (Viridiplantae): 159468384 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 3436 hypothetical protein CHLREDRAFT_180911 Chlamydomonas reinhardtii MTTEEPLSCSKIRSWNITVYSFTLKGLPGCLEPSHSFWVKEREGEWGLKCLSETFSHELVENVPGREEVSNLLKKGGSSNKSQKGGWICCERNCFLCQHKKCQVLI ...

  8. The organization structure and regulatory elements of Chlamydomonas histone genes reveal features linking plant and animal genes.

    Science.gov (United States)

    Fabry, S; Müller, K; Lindauer, A; Park, P B; Cornelius, T; Schmitt, R

    1995-09-01

    The genome of the green alga Chlamydomonas reinhardtii contains approximately 15 gene clusters of the nucleosomal (or core) histone H2A, H2B, H3 and H4 genes and at least one histone H1 gene. Seven non-allelic histone gene loci were isolated from a genomic library, physically mapped, and the nucleotide sequences of three isotypes of each core histone gene species and one linked H1 gene determined. The core histone genes are organized in clusters of H2A-H2B and H3-H4 pairs, in which each gene pair shows outwardly divergent transcription from a short (< 300 bp) intercistronic region. These intercistronic regions contain typically conserved promoter elements, namely a TATA-box and the three motifs TGGCCAG-G(G/C)-CGAG, CGTTGACC and CGGTTG. Different from the genes of higher plants, but like those of animals and the related alga Volvox, the 3' untranslated regions contain no poly A signal, but a palindromic sequence (3' palindrome) essential for mRNA processing is present. One single H1 gene was found in close linkage to a H2A-H2B pair. The H1 upstream region contains the octameric promoter element GGTTGACC (also found upstream of the core histone genes) and two specific sequence motifs that are shared only with the Volvox H1 promoters. This suggests differential transcription of the H1 and the core histone genes. The H1 gene is interrupted by two introns. Unlike Volvox H3 genes, the three sequenced H3 isoforms are intron-free. Primer-directed PCR of genomic DNA demonstrated, however, that at least 8 of the about 15 H3 genes do contain one intron at a conserved position. In synchronized C. reinhardtii cells, H4 mRNA levels (representative of all core histone mRNAs) peak during cell division, suggesting strict replication-dependent gene control. The derived peptide sequences place C. reinhardtii core histones closer to plants than to animals, except that the H2A histones are more animal-like. The peptide sequence of histone H1 is closely related to the V. carteri VH1-II

  9. Proteomic analysis of isolated chlamydomonas centrioles reveals orthologs of ciliary-disease genes.

    Science.gov (United States)

    Keller, Lani C; Romijn, Edwin P; Zamora, Ivan; Yates, John R; Marshall, Wallace F

    2005-06-21

    The centriole is one of the most enigmatic organelles in the cell. Centrioles are cylindrical, microtubule-based barrels found in the core of the centrosome. Centrioles also act as basal bodies during interphase to nucleate the assembly of cilia and flagella. There are currently only a handful of known centriole proteins. We used mass-spectrometry-based MudPIT (multidimensional protein identification technology) to identify the protein composition of basal bodies (centrioles) isolated from the green alga Chlamydomonas reinhardtii. This analysis detected the majority of known centriole proteins, including centrin, epsilon tubulin, and the cartwheel protein BLD10p. By combining proteomic data with information about gene expression and comparative genomics, we identified 45 cross-validated centriole candidate proteins in two classes. Members of the first class of proteins (BUG1-BUG27) are encoded by genes whose expression correlates with flagellar assembly and which therefore may play a role in ciliogenesis-related functions of basal bodies. Members of the second class (POC1-POC18) are implicated by comparative-genomics and -proteomics studies to be conserved components of the centriole. We confirmed centriolar localization for the human homologs of four candidate proteins. Three of the cross-validated centriole candidate proteins are encoded by orthologs of genes (OFD1, NPHP-4, and PACRG) implicated in mammalian ciliary function and disease, suggesting that oral-facial-digital syndrome and nephronophthisis may involve a dysfunction of centrioles and/or basal bodies. By analyzing isolated Chlamydomonas basal bodies, we have been able to obtain the first reported proteomic analysis of the centriole.

  10. Protein (Viridiplantae): 159466610 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 2419 hypothetical protein CHLREDRAFT_123820, partial Chlamydomonas reinhardtii RVQCRLVDMPAPCLPPFLPTCPHKPRRIPMPCTDAH...ELVDMPAPCLPPFLPDNLPARAPQAPHAVTDAHECMQCRLVDMPAPCLPPFLPKCPHKPRRLPMPCTDAHECNMPAPCLPPFLPKCPHKPRRLPMPCTDAHECMQCRLVDMPAPCLPAFLPNCPHKPRRLPMPCTDAHECSAGW ...

  11. Flavodiiron Proteins Promote Fast and Transient O2 Photoreduction in Chlamydomonas.

    Science.gov (United States)

    Chaux, Frédéric; Burlacot, Adrien; Mekhalfi, Malika; Auroy, Pascaline; Blangy, Stéphanie; Richaud, Pierre; Peltier, Gilles

    2017-07-01

    During oxygenic photosynthesis, the reducing power generated by light energy conversion is mainly used to reduce carbon dioxide. In bacteria and archae, flavodiiron (Flv) proteins catalyze O 2 or NO reduction, thus protecting cells against oxidative or nitrosative stress. These proteins are found in cyanobacteria, mosses, and microalgae, but have been lost in angiosperms. Here, we used chlorophyll fluorescence and oxygen exchange measurement using [ 18 O]-labeled O 2 and a membrane inlet mass spectrometer to characterize Chlamydomonas reinhardtii flvB insertion mutants devoid of both FlvB and FlvA proteins. We show that Flv proteins are involved in a photo-dependent electron flow to oxygen, which drives most of the photosynthetic electron flow during the induction of photosynthesis. As a consequence, the chlorophyll fluorescence patterns are strongly affected in flvB mutants during a light transient, showing a lower PSII operating yield and a slower nonphotochemical quenching induction. Photoautotrophic growth of flvB mutants was indistinguishable from the wild type under constant light, but severely impaired under fluctuating light due to PSI photo damage. Remarkably, net photosynthesis of flv mutants was higher than in the wild type during the initial hour of a fluctuating light regime, but this advantage vanished under long-term exposure, and turned into PSI photo damage, thus explaining the marked growth retardation observed in these conditions. We conclude that the C. reinhardtii Flv participates in a Mehler-like reduction of O 2 , which drives a large part of the photosynthetic electron flow during a light transient and is thus critical for growth under fluctuating light regimes. © 2017 American Society of Plant Biologists. All Rights Reserved.

  12. Protein (Viridiplantae): 714399 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 3051:329 ... 3052:329 ... 3055:329 ... predicted protein Chlamydomonas reinhardtii MAPAALPGRSVKSKQAHLLRTDAHRVKSKQAHLLRTDAHRVKSKQAHLLRTDA...HRVKSKQAHLLRTDAHRVKSKQAHLLRTDAHRVALTTLTGALSLFGGACTATSFVLQVSASAASYAASLRLSCPAVPSLTDVA

  13. Protein (Viridiplantae): 569482 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 3051:1120 ... 3052:1120 ... 3055:1120 ... SR protein factor Chlamydomonas reinhardtii MSYRDRDRDRGDRGYSDRDRDRGRDDRRGGDRGGDRGGGGGGDRG...PRDMMRIESKTKGDERRDDRRRSRSRSPRRSSRRSSRSPRRSRSRSPRRSRSPRADRGRDRSPRDRSPRDRSPRDRSPRDRSPRERSPVRVERERSPERERSPERERVREDSRSPPPRERSPPPRDRSPPPRERSPSPRRDSPPRDDYAGDDF

  14. Gene : CBRC-PHAM-01-1650 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available tinin [Chlamydomonas reinhardtii] 1e-68 36% MFFFPTLSPPPSSPLTLIPSPSQSLLPSPSVPTPSSLHPHLHPSPLTPSSSRLSPPHLICPHPIFIPSILTPSSSHLSPAHPHP...MCPHSHHPHPHPSPLTPSSPHPSPAHPHPMCPHSPHPHPHPSPLTPPSPHPSPAHPHPMCPHSPHPHPMCPHSPHPHPHLSPLTPSSP...PSIPTPSSPPSVLTHPILTPIHPHSPHPHPHPSPLTPSSPHPSPLTPSSPPSVPTHPILTPSVPTHPILTPSVPTPSSPHV...SPLTPSSSPSVPTHPTLTPIHPHSILTPICPHSPHPHPHPSPLTPSSSPSVSTHPILTPIHPHSIFTPICPHSPHPHPHPSPLTPSSPPSVPTHPILTPSIPTHPILTPIRPHSPHPHPIRPHSPHPHP...IRPHPILTPCVPTHPILIPICLHSPHPHPHPSPLHLHPHLSSLTPSSPPSIPTHPILPSSSPPHPCHSSWEAGCTCVEPEPPHPCPSLPSPLAEREGTAWDWLPPVAMTVARIRAVSSPCRKHVMNYGCPIFSERPDL ...

  15. Protein (Viridiplantae): 232868 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 3051:4703 ... 3052:4703 ... 3055:4703 ... hypothetical protein CHLREDRAFT_120274, partial Chlamydomonas reinhardtii PPGCRCSSAPPGCRC...SSAPPGCRCSSAPPGCRCSSAPPGCRCSSAPPGCRCSSAPPGCRCSSAPPGCRCSSAPPGCRCSSAPPGCRCSSAPPGCRCSSAPPGCRCSSAPPGCRCS

  16. The two parallel photocycles of the Chlamydomonas sensory photoreceptor histidine kinase rhodopsin 1.

    Science.gov (United States)

    Luck, Meike; Hegemann, Peter

    2017-10-01

    Histidine kinase rhodopsins (HKRs) belong to a class of unexplored sensory photoreceptors that share a similar modular architecture. The light sensing rhodopsin domain is covalently linked to signal-transducing modules and in some cases to a C-terminal guanylyl-cyclase effector. In spite of their wide distribution in unicellular organisms, very little is known about their physiological role and mechanistic functioning. We investigated the photochemical properties of the recombinant rhodopsin-fragment of Cr-HKR1 originating from Chlamydomonas reinhardtii. Our spectroscopic studies revealed an unusual thermal stability of the photoproducts with the deprotonated retinal Schiff base (RSB). Upon UV-irradiation these Rh-UV states with maximal absorbance in the UVA-region (Rh-UV) photochemically convert to stable blue light absorbing rhodopsin (Rh-Bl) with protonated chromophore. The heterogeneity of the sample is based on two parallel photocycles with the chromophore in C 15 =N-syn- or -anti-configuration. This report represents an attempt to decipher the underlying reaction schemes and interconversions of the two coexisting photocycles. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. PCA3 Reference Set Application: T2-Erg-Martin Sanda-Emory (2014) — EDRN Public Portal

    Science.gov (United States)

    We hypothesize that combining T2:erg (T2:erg) fusion and PCA3 detection in urine collected after digital rectal exam can improve the specificity of identifying clinically significant prostate cancer presence over the standard PSA and DRE. To address this hypothesis we propose to validate the performance of the urinary T2:erg in a multiplex model predicting the diagnosis of clinically significant prostate cancer on subsequent prostate biopsy using post-DRE pre biopsy urine specimens from a cohort of 900 men on the EDRN’s PCA3 trial.

  18. Multi-Pixel Photon Counters for Optofluidic Characterization of Particles and Microalgae

    Directory of Open Access Journals (Sweden)

    Pouya Asrar

    2015-06-01

    Full Text Available We have developed an optofluidic biosensor to study microscale particles and different species of microalgae. The system is comprised of a microchannel with a set of chevron-shaped grooves. The chevrons allows for hydrodynamic focusing of the core stream in the center using a sheath fluid. The device is equipped with a new generation of highly sensitive photodetectors, multi-pixel photon counter (MPPC, with high gain values and an extremely small footprint. Two different sizes of high intensity fluorescent microspheres and three different species of algae (Chlamydomonas reinhardtii strain 21 gr, Chlamydomonas suppressor, and Chlorella sorokiniana were studied. The forward scattering emissions generated by samples passing through the interrogation region were carried through a multimode fiber, located in 135 degree with respect to the excitation fiber, and detected by a MPPC. The signal outputs obtained from each sample were collected using a data acquisition system and utilized for further statistical analysis. Larger particles or cells demonstrated larger peak height and width, and consequently larger peak area. The average signal output (integral of the peak for Chlamydomonas reinhardtii strain 21 gr, Chlamydomonas suppressor, and Chlorella sorokiniana falls between the values found for the 3.2 and 10.2 μm beads. Different types of algae were also successfully characterized.

  19. Effect of red and blue light on the timing of cyclin-dependent kinase activity and the timing of cell division in Chlamydomonas reinhardtii

    Czech Academy of Sciences Publication Activity Database

    Oldenhof, H.; Bišová, Kateřina; Ende, H.; Zachleder, Vilém

    2004-01-01

    Roč. 42, - (2004), s. 341-348 ISSN 0981-9428 R&D Projects: GA ČR GA204/02/1438 Institutional research plan: CEZ:AV0Z5020903 Keywords : blue light * chlamydomonas reingardtii * cell cycle Subject RIV: EA - Cell Biology Impact factor: 1.414, year: 2004

  20. Indexing molecules for their hERG liability.

    Science.gov (United States)

    Rayan, Anwar; Falah, Mizied; Raiyn, Jamal; Da'adoosh, Beny; Kadan, Sleman; Zaid, Hilal; Goldblum, Amiram

    2013-07-01

    The human Ether-a-go-go-Related-Gene (hERG) potassium (K(+)) channel is liable to drug-inducing blockage that prolongs the QT interval of the cardiac action potential, triggers arrhythmia and possibly causes sudden cardiac death. Early prediction of drug liability to hERG K(+) channel is therefore highly important and preferably obligatory at earlier stages of any drug discovery process. In vitro assessment of drug binding affinity to hERG K(+) channel involves substantial expenses, time, and labor; and therefore computational models for predicting liabilities of drug candidates for hERG toxicity is of much importance. In the present study, we apply the Iterative Stochastic Elimination (ISE) algorithm to construct a large number of rule-based models (filters) and exploit their combination for developing the concept of hERG Toxicity Index (ETI). ETI estimates the molecular risk to be a blocker of hERG potassium channel. The area under the curve (AUC) of the attained model is 0.94. The averaged ETI of hERG binders, drugs from CMC, clinical-MDDR, endogenous molecules, ACD and ZINC, were found to be 9.17, 2.53, 3.3, -1.98, -2.49 and -3.86 respectively. Applying the proposed hERG Toxicity Index Model on external test set composed of more than 1300 hERG blockers picked from chEMBL shows excellent performance (Matthews Correlation Coefficient of 0.89). The proposed strategy could be implemented for the evaluation of chemicals in the hit/lead optimization stages of the drug discovery process, improve the selection of drug candidates as well as the development of safe pharmaceutical products. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  1. Loss of the NKX3.1 tumorsuppressor promotes the TMPRSS2-ERG fusion gene expression in prostate cancer

    International Nuclear Information System (INIS)

    Thangapazham, Rajesh; Saenz, Francisco; Katta, Shilpa; Mohamed, Ahmed A; Tan, Shyh-Han; Petrovics, Gyorgy; Srivastava, Shiv; Dobi, Albert

    2014-01-01

    In normal prostate epithelium the TMPRSS2 gene encoding a type II serine protease is directly regulated by male hormones through the androgen receptor. In prostate cancer ERG protooncogene frequently gains hormonal control by seizing gene regulatory elements of TMPRSS2 through genomic fusion events. Although, the androgenic activation of TMPRSS2 gene has been established, little is known about other elements that may interact with TMPRSS2 promoter sequences to modulate ERG expression in TMPRSS2-ERG gene fusion context. Comparative genomic analyses of the TMPRSS2 promoter upstream sequences and pathway analyses were performed by the Genomatix Software. NKX3.1 and ERG genes expressions were evaluated by immunoblot or by quantitative Real-Time PCR (qRT-PCR) assays in response to siRNA knockdown or heterologous expression. QRT-PCR assay was used for monitoring the gene expression levels of NKX3.1-regulated genes. Transcriptional regulatory function of NKX3.1 was assessed by luciferase assay. Recruitment of NKX3.1 to its cognate elements was monitored by Chromatin Immunoprecipitation assay. Comparative analysis of the TMPRSS2 promoter upstream sequences among different species revealed the conservation of binding sites for the androgen inducible NKX3.1 tumor suppressor. Defects of NKX3.1, such as, allelic loss, haploinsufficiency, attenuated expression or decreased protein stability represent established pathways in prostate tumorigenesis. We found that NKX3.1 directly binds to TMPRSS2 upstream sequences and negatively regulates the expression of the ERG protooncogene through the TMPRSS2-ERG gene fusion. These observations imply that the frequently noted loss-of-function of NKX3.1 cooperates with the activation of TMPRSS2-ERG fusions in prostate tumorigenesis

  2. Sedimentary record of erg migration

    Science.gov (United States)

    Porter, M. L.

    1986-06-01

    The sedimentary record of erg (eolian sand sea) migration consists of an idealized threefold division of sand-sea facies sequences. The basal division, here termed the fore-erg, is composed of a hierarchy of eolian sand bodies contained within sediments of the flanking depositional environment. These sand bodies consist of eolian strata deposited by small dune complexes, zibars, and sand sheets. The fore-erg represents the downwind, leading edge of the erg and records the onset of eolian sedimentation. Basin subsidence coupled with erg migration places the medial division, termed the central erg, over the fore-erg strata. The central erg, represented by a thick accumulation of large-scale, cross-stratified sandstone, is the product of large draa complexes. Eolian influence on regional sedimentation patterns is greatest in the central erg, and most of the sand transported and deposited in the erg is contained within this region. Reduction in sand supply and continued erg migration will cover the central-erg deposits with a veneer of back-erg deposits. This upper division of the erg facies sequence resembles closely the fore-erg region. Similar types of eolian strata are present and organized in sand bodies encased in sediments of the upwind flanking depositional environment(s). Back-erg deposits may be thin due to limited eolian influence on sedimentation or incomplete erg migration, or they may be completely absent because of great susceptibility to postdepositional erosion. Tectonic, climatic, and eustatic influences on sand-sea deposition will produce distinctive variations or modifications of the idealized erg facies sequence. The resulting variants in the sedimentary record of erg migration are illustrated with ancient examples from western North America, Europe, southern Africa, and South America.

  3. ERG protein expression over time

    DEFF Research Database (Denmark)

    Berg, Kasper Drimer; Brasso, Klaus; Thomsen, Frederik Birkebæk

    2015-01-01

    AIMS: We evaluated the consistency in ERG protein expression from diagnostic specimens through rebiopsies to radical prostatectomies in patients with clinically localised prostate cancer to investigate the validity of ERG status in biopsies. METHODS: ERG expression was assessed by immunohistochem......AIMS: We evaluated the consistency in ERG protein expression from diagnostic specimens through rebiopsies to radical prostatectomies in patients with clinically localised prostate cancer to investigate the validity of ERG status in biopsies. METHODS: ERG expression was assessed...

  4. Characterization of hERG1a and hERG1b potassium channels-a possible role for hERG1b in the I (Kr) current

    DEFF Research Database (Denmark)

    Larsen, Anders Peter; Olesen, Søren-Peter; Grunnet, Morten

    2008-01-01

    I (Kr) is the fast component of the delayed rectifier potassium currents responsible for the repolarization of the cardiac muscle. The molecular correlate underlying the I (Kr) current has been identified as the hERG1 channel. Recently, two splice variants of the hERG1 alpha-subunit, hERG1a and hERG......1b, have been shown to be co-expressed in human cardiomyocytes. In this paper, we present the electrophysiological characterization of hERG1a, hERG1b, and co-expressed hERG1a/b channels in a mammalian expression system using the whole-cell patch clamp technique. We also quantified the messenger RNA...... (mRNA) levels of hERG1a and hERG1b in human cardiac tissue, and based on the expressed ratios, we evaluated the resulting currents in Xenopus laevis oocytes. Compared to hERG1a channels, activation was faster for both hERG1b and hERG1a/b channels. The deactivation kinetics was greatly accelerated...

  5. Activation of ERG2 potassium channels by the diphenylurea NS1643

    DEFF Research Database (Denmark)

    Elmedyb, Pernille; Olesen, Søren-Peter; Grunnet, Morten

    2007-01-01

    Three members of the ERG potassium channel family have been described (ERG1-3 or Kv 11.1-3). ERG1 is by far the best characterized subtype and it constitutes the molecular component of the cardiac I(Kr) current. All three channel subtypes are expressed in neurons but their function remains unclear....... The lack of functional information is at least partly due to the lack of specific pharmacological tools. The compound NS1643 has earlier been reported as an ERG1 channel activator. We found that NS1643 also activates the ERG2 channel; however, the molecular mechanism of the activation differs between...... the ERG1 and ERG2 channels. This is surprising since ERG1 and ERG2 channels have very similar biophysical and structural characteristics. For ERG2, NS1643 causes a left-ward shift of the activation curve, a faster time-constant of activation and a slower time-constant of inactivation as well...

  6. Identification and molecular characterization of the second Chlamydomonas gun4 mutant, gun4-II [v2; ref status: indexed, http://f1000r.es/1id

    Directory of Open Access Journals (Sweden)

    Phillip B Grovenstein

    2013-07-01

    Full Text Available The green micro-alga Chlamydomonas reinhardtii is an elegant model organism to study oxygenic photosynthesis. Chlorophyll (Chl and heme are major tetrapyrroles that play an essential role in photosynthesis and respiration. These tetrapyrroles are synthesized via a common branched pathway that involves mainly enzymes, encoded by nuclear genes. One of the enzymes in the pathway is Mg chelatase (MgChel. MgChel catalyzes insertion of Mg2+ into protoporphyrin IX (PPIX, proto to form Magnesium-protoporphyrin IX (MgPPIX, Mgproto, the first biosynthetic intermediate in the Chl branch. The GUN4 (genomes uncoupled 4 protein is not essential for the MgChel activity but has been shown to significantly stimulate its activity. We have isolated a light sensitive mutant, 6F14, by random DNA insertional mutagenesis. 6F14 cannot tolerate light intensities higher than 90-100 μmol photons m-2 s-1. It shows a light intensity dependent progressive photo-bleaching. 6F14 is incapable of photo-autotrophic growth under light intensity higher than 100 μmol photons m-2 s-1. PCR based analyses show that in 6F14 the insertion of the plasmid outside the GUN4 locus has resulted in a genetic rearrangement of the GUN4 gene and possible deletions in the genomic region flanking the GUN4 gene. Our gun4 mutant has a Chl content very similar to that in the wild type in the dark and is very sensitive to fluctuations in the light intensity in the environment unlike the earlier identified Chlamydomonas gun4 mutant. Complementation with a functional copy of the GUN4 gene restored light tolerance, Chl biosynthesis and photo-autotrophic growth under high light intensities in 6F14. 6F14 is the second gun4 mutant to be identified in C. reinhardtii. Additionally, we show that our two gun4 complements over-express the GUN4 protein and show a higher Chl content per cell compared to that in the wild type strain.

  7. Analysis list: ERG [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ERG Blood,Breast,Prostate + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/ta...rget/ERG.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/ERG.5.tsv http://dbarchive.bioscienced...bc.jp/kyushu-u/hg19/target/ERG.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/ERG.Blood.tsv,http://dbarchive.bioscience...dbc.jp/kyushu-u/hg19/colo/ERG.Breast.tsv,http://dbarchive.bioscience...dbc.jp/kyushu-u/hg19/colo/ERG.Prostate.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/B

  8. Development of a Biosensor for Environmental Monitoring Based on Microalgae Immobilized in Silica Hydrogels

    Directory of Open Access Journals (Sweden)

    Claude Durrieu

    2012-12-01

    Full Text Available A new biosensor was designed for the assessment of aquatic environment quality. Three microalgae were used as toxicity bioindicators: Chlorella vulgaris, Pseudokirchneriella subcapitata and Chlamydomonas reinhardtii. These microalgae were immobilized in alginate and silica hydrogels in a two step procedure. After studying the growth rate of entrapped cells, chlorophyll fluorescence was measured after exposure to (3-(3,4-dichlorophenyl-1,1-dimethylurea (DCMU and various concentrations of the common herbicide atrazine. Microalgae are very sensitive to herbicides and detection of fluorescence enhancement with very good efficiency was realized. The best detection limit was 0.1 µM, obtained with the strain C. reinhardtii after 40 minutes of exposure.

  9. Alga-based HPV16 E7 vaccine elicits specific immune response in mice

    Czech Academy of Sciences Publication Activity Database

    Vlasák, Josef; Bříza, Jindřich; Ryba, Š.; Ludvíková, V.

    2013-01-01

    Roč. 34, č. 1 (2013), s. 141-148 ISSN 2249-7412 R&D Projects: GA AV ČR IAA500960903 Institutional support: RVO:60077344 Keywords : Chlamydomonas reinhardtii * chloroplast transformation * human papillomaviruses * E7 oncogene Subject RIV: EB - Genetics ; Molecular Biology http://pelagiaresearchlibrary.com/asian-journal-of-plant-science/vol3-iss1/AJPSR-2013-3-1-141-148.pdf

  10. Dynamics of hERG closure allow novel insights into hERG blocking by small molecules.

    Science.gov (United States)

    Schmidtke, Peter; Ciantar, Marine; Theret, Isabelle; Ducrot, Pierre

    2014-08-25

    Today, drug discovery routinely uses experimental assays to determine very early if a lead compound can yield certain types of off-target activity. Among such off targets is hERG. The ion channel plays a primordial role in membrane repolarization and altering its activity can cause severe heart arrhythmia and sudden death. Despite routine tests for hERG activity, rather little information is available for helping medicinal chemists and molecular modelers to rationally circumvent hERG activity. In this article novel insights into the dynamics of hERG channel closure are described. Notably, helical pairwise closure movements have been observed. Implications and relations to hERG inactivation are presented. Based on these dynamics novel insights on hERG blocker placement are presented, compared to literature, and discussed. Last, new evidence for horizontal ligand positioning is shown in light of former studies on hERG blockers.

  11. Escitalopram block of hERG potassium channels.

    Science.gov (United States)

    Chae, Yun Ju; Jeon, Ji Hyun; Lee, Hong Joon; Kim, In-Beom; Choi, Jin-Sung; Sung, Ki-Wug; Hahn, Sang June

    2014-01-01

    Escitalopram, a selective serotonin reuptake inhibitor, is the pharmacologically active S-enantiomer of the racemic mixture of RS-citalopram and is widely used in the treatment of depression. The effects of escitalopram and citalopram on the human ether-a-go-go-related gene (hERG) channels expressed in human embryonic kidney cells were investigated using voltage-clamp and Western blot analyses. Both drugs blocked hERG currents in a concentration-dependent manner with an IC50 value of 2.6 μM for escitalopram and an IC50 value of 3.2 μM for citalopram. The blocking of hERG by escitalopram was voltage-dependent, with a steep increase across the voltage range of channel activation. However, voltage independence was observed over the full range of activation. The blocking by escitalopram was frequency dependent. A rapid application of escitalopram induced a rapid and reversible blocking of the tail current of hERG. The extent of the blocking by escitalopram during the depolarizing pulse was less than that during the repolarizing pulse, suggesting that escitalopram has a high affinity for the open state of the hERG channel, with a relatively lower affinity for the inactivated state. Both escitalopram and citalopram produced a reduction of hERG channel protein trafficking to the plasma membrane but did not affect the short-term internalization of the hERG channel. These results suggest that escitalopram blocked hERG currents at a supratherapeutic concentration and that it did so by preferentially binding to both the open and the inactivated states of the channels and by inhibiting the trafficking of hERG channel protein to the plasma membrane.

  12. Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda

    Czech Academy of Sciences Publication Activity Database

    Umysová, Dáša; Vítová, Milada; Doušková, Irena; Bišová, Kateřina; Hlavová, Monika; Čížková, Mária; Machat, J.; Doucha, Jiří; Zachleder, Vilém

    2009-01-01

    Roč. 9, č. 58 (2009), s. 1-16 ISSN 1471-2229 R&D Projects: GA AV ČR IAA600200701; GA MŠk OE 221; GA MŠk OE09025 Institutional research plan: CEZ:AV0Z50200510 Keywords : CHLAMYDOMONAS-REINHARDTII * THIOREDOXIN REDUCTASE * EMILIANIA-HUXLEYI Subject RIV: EE - Microbiology, Virology Impact factor: 3.774, year: 2009

  13. A universal protocol for the combined isolation of metabolites, DNA, long RNAs, small RNAs, and proteins from plants and microorganisms

    Czech Academy of Sciences Publication Activity Database

    Valledor, Luis; Escandón, M.; Meijón, M.; Nukarinen, E.; Jesús Cañal, M.; Weckwerth, W.

    2014-01-01

    Roč. 79, č. 1 (2014), s. 173-180 ISSN 0960-7412 R&D Projects: GA MŠk(CZ) EE2.3.20.0256 Institutional support: RVO:67179843 Keywords : systems biology * combined isolation * RNA * small RNA * proteins * metabolites * Chlamydomonas reinhardtii * Arabidopsis thaliana * Populus sp. * Pinus sp. * technical advance Subject RIV: EI - Biotechnology ; Bionics Impact factor: 5.972, year: 2014

  14. Analysis list: Erg [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Erg Blood,Prostate + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Erg.1.tsv http:...//dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Erg.5.tsv http://dbarchive.biosciencedbc.jp/kyus...hu-u/mm9/target/Erg.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Erg.Blood.tsv,http://dbarchiv...e.biosciencedbc.jp/kyushu-u/mm9/colo/Erg.Prostate.tsv http://dbarchive.bioscience...dbc.jp/kyushu-u/mm9/colo/Blood.gml,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Prostate.gml ...

  15. Bending patterns of chlamydomonas flagella: III. A radial spoke head deficient mutant and a central pair deficient mutant.

    Science.gov (United States)

    Brokaw, C J; Luck, D J

    1985-01-01

    Flash photomicrography at frequencies up to 300 Hz and computer-assisted image analysis have been used to obtain parameters describing the flagellar bending patterns of mutants of Chlamydomonas reinhardtii. All strains contained the uni1 mutation, to facilitate photography. The radial spoke head deficient mutant pf17, and the central pair deficient mutant, pf15, in combination with suppressor mutations that restore motility without restoring the ultrastructural or biochemical deficiencies, both generate forward mode bending patterns with increased shear amplitude and decreased asymmetry relative to the "wild-type" uni1 flagella described previously. In the reverse beating mode, the suppressed pf17 mutants generate reverse bending patterns with large shear amplitudes. Reverse beating of the suppressed pf15 mutants is rare. There is a reciprocal relationship between increased shear amplitude and decreased beat frequency, so that the velocity of sliding between flagellar microtubules is not increased by an increase in shear amplitude. The suppressor mutations alone cause decreased frequency and sliding velocity in both forward and reverse mode beating, with little change in shear amplitude or symmetry.

  16. Mechanisms underlying probucol-induced hERG-channel deficiency

    Directory of Open Access Journals (Sweden)

    Shi YQ

    2015-07-01

    Full Text Available Yuan-Qi Shi,1,* Cai-Chuan Yan,1,* Xiao Zhang,1 Meng Yan,1 Li-Rong Liu,1 Huai-Ze Geng,1 Lin Lv,1 Bao-Xin Li1,21Department of Pharmacology, Harbin Medical University, 2State-Province Key Laboratory of Biopharmaceutical Engineering, Harbin, Heilongjiang, People’s Republic of China*These authors contributed equally to this workAbstract: The hERG gene encodes the pore-forming α-subunit of the rapidly activating delayed rectifier potassium channel (IKr, which is important for cardiac repolarization. Reduction of IhERG due to genetic mutations or drug interferences causes long QT syndrome, leading to life-threatening cardiac arrhythmias (torsades de pointes or sudden death. Probucol is a cholesterol-lowering drug that could reduce hERG current by decreasing plasma membrane hERG protein expression and eventually cause long QT syndrome. Here, we investigated the mechanisms of probucol effects on IhERG and hERG-channel expression. Our data demonstrated that probucol reduces SGK1 expression, known as SGK isoform, in a concentration-dependent manner, resulting in downregulation of phosphorylated E3 ubiquitin ligase Nedd4-2 expression, but not the total level of Nedd4-2. As a result, the hERG protein reduces, due to the enhanced ubiquitination level. On the contrary, carbachol could enhance the phosphorylation level of Nedd4-2 as an alternative to SGK1, and thus rescue the ubiquitin-mediated degradation of hERG channels caused by probucol. These discoveries provide a novel mechanism of probucol-induced hERG-channel deficiency, and imply that carbachol or its analog may serve as potential therapeutic compounds for the handling of probucol cardiotoxicity.Keywords: long QT, hERG potassium channels, probucol, SGK1, Nedd4-2

  17. The transcription factor ERG increases expression of neurotransmitter receptors on prostate cancer cells

    International Nuclear Information System (INIS)

    Kissick, Haydn T.; On, Seung T.; Dunn, Laura K.; Sanda, Martin G.; Asara, John M.; Pellegrini, Kathryn L.; Noel, Jonathan K.; Arredouani, Mohamed S.

    2015-01-01

    The TMPRSS2-ERG gene fusion occurs in about half of prostate cancer (PCa) cases and results in overexpression of the transcription factor ERG. Overexpression of ERG has many effects on cellular function. However, how these changes enhance cell growth and promote tumor development is unclear. To investigate the role of ERG, LNCaP and PC3 cells were transfected with ERG and gene expression and metabolic profile were analyzed. Our data show that expression of ERG induces overexpression of many nicotinicacetylcholine receptors (nAChRs). In addition, metabolic profiling by LC-MS/MS revealed elevated production of several neurotransmitters in cells expressing ERG. Consistently, treatment of ERG-expressing cells with nicotine induced elevated calcium influx, GSK3β (Ser9) phosphorylation and cell proliferation. Finally, we show that PCa patientswho are smokers have larger tumors if their tumors are TMPRSS2-ERG gene fusion positive. Collectively, our data suggest that ERG sensitizes prostate tumor cells to neurotransmitter receptor agonists like nicotine. The online version of this article (doi:10.1186/s12885-015-1612-3) contains supplementary material, which is available to authorized users

  18. ERG induces epigenetic activation of Tudor domain-containing protein 1 (TDRD1) in ERG rearrangement-positive prostate cancer.

    Science.gov (United States)

    Kacprzyk, Lukasz A; Laible, Mark; Andrasiuk, Tatjana; Brase, Jan C; Börno, Stefan T; Fälth, Maria; Kuner, Ruprecht; Lehrach, Hans; Schweiger, Michal R; Sültmann, Holger

    2013-01-01

    Overexpression of ERG transcription factor due to genomic ERG-rearrangements defines a separate molecular subtype of prostate tumors. One of the consequences of ERG accumulation is modulation of the cell's gene expression profile. Tudor domain-containing protein 1 gene (TDRD1) was reported to be differentially expressed between TMPRSS2:ERG-negative and TMPRSS2:ERG-positive prostate cancer. The aim of our study was to provide a mechanistic explanation for the transcriptional activation of TDRD1 in ERG rearrangement-positive prostate tumors. Gene expression measurements by real-time quantitative PCR revealed a remarkable co-expression of TDRD1 and ERG (r(2) = 0.77) but not ETV1 (r(2)prostate cancer in vivo. DNA methylation analysis by MeDIP-Seq and bisulfite sequencing showed that TDRD1 expression is inversely correlated with DNA methylation at the TDRD1 promoter in vitro and in vivo (ρ = -0.57). Accordingly, demethylation of the TDRD1 promoter in TMPRSS2:ERG-negative prostate cancer cells by DNA methyltransferase inhibitors resulted in TDRD1 induction. By manipulation of ERG dosage through gene silencing and forced expression we show that ERG governs loss of DNA methylation at the TDRD1 promoter-associated CpG island, leading to TDRD1 overexpression. We demonstrate that ERG is capable of disrupting a tissue-specific DNA methylation pattern at the TDRD1 promoter. As a result, TDRD1 becomes transcriptionally activated in TMPRSS2:ERG-positive prostate cancer. Given the prevalence of ERG fusions, TDRD1 overexpression is a common alteration in human prostate cancer which may be exploited for diagnostic or therapeutic procedures.

  19. Generation and characterization of pigment mutants of ...

    African Journals Online (AJOL)

    acer

    One of the most serious ecological problems is muta- ... UV irradiation mutagenesis of Chlamydomonas reinhardtii CC-. 124 .... certain balance between the pigment content in the algal ... is bombarded with the full brunt of solar UV (ultraviolet).

  20. Bag1 Co-chaperone Promotes TRC8 E3 Ligase-dependent Degradation of Misfolded Human Ether a Go-Go-related Gene (hERG) Potassium Channels.

    Science.gov (United States)

    Hantouche, Christine; Williamson, Brittany; Valinsky, William C; Solomon, Joshua; Shrier, Alvin; Young, Jason C

    2017-02-10

    Cardiac long QT syndrome type 2 is caused by mutations in the human ether a go-go-related gene (hERG) potassium channel, many of which cause misfolding and degradation at the endoplasmic reticulum instead of normal trafficking to the cell surface. The Hsc70/Hsp70 chaperones assist the folding of the hERG cytosolic domains. Here, we demonstrate that the Hsp70 nucleotide exchange factor Bag1 promotes hERG degradation by the ubiquitin-proteasome system at the endoplasmic reticulum to regulate hERG levels and channel activity. Dissociation of hERG complexes containing Hsp70 and the E3 ubiquitin ligase CHIP requires the interaction of Bag1 with Hsp70, but this does not involve the Bag1 ubiquitin-like domain. The interaction with Bag1 then shifts hERG degradation to the membrane-anchored E3 ligase TRC8 and its E2-conjugating enzyme Ube2g2, as determined by siRNA screening. TRC8 interacts through the transmembrane region with hERG and decreases hERG functional expression. TRC8 also mediates degradation of the misfolded hERG-G601S disease mutant, but pharmacological stabilization of the mutant structure prevents degradation. Our results identify TRC8 as a previously unknown Hsp70-independent quality control E3 ligase for hERG. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Dynamic regulation of canonical TGFβ signalling by endothelial transcription factor ERG protects from liver fibrogenesis.

    Science.gov (United States)

    Dufton, Neil P; Peghaire, Claire R; Osuna-Almagro, Lourdes; Raimondi, Claudio; Kalna, Viktoria; Chuahan, Abhishek; Webb, Gwilym; Yang, Youwen; Birdsey, Graeme M; Lalor, Patricia; Mason, Justin C; Adams, David H; Randi, Anna M

    2017-10-12

    The role of the endothelium in protecting from chronic liver disease and TGFβ-mediated fibrosis remains unclear. Here we describe how the endothelial transcription factor ETS-related gene (ERG) promotes liver homoeostasis by controlling canonical TGFβ-SMAD signalling, driving the SMAD1 pathway while repressing SMAD3 activity. Molecular analysis shows that ERG binds to SMAD3, restricting its access to DNA. Ablation of ERG expression results in endothelial-to-mesenchymal transition (EndMT) and spontaneous liver fibrogenesis in EC-specific constitutive hemi-deficient (Erg cEC-Het ) and inducible homozygous deficient mice (Erg iEC-KO ), in a SMAD3-dependent manner. Acute administration of the TNF-α inhibitor etanercept inhibits carbon tetrachloride (CCL 4 )-induced fibrogenesis in an ERG-dependent manner in mice. Decreased ERG expression also correlates with EndMT in tissues from patients with end-stage liver fibrosis. These studies identify a pathogenic mechanism where loss of ERG causes endothelial-dependent liver fibrogenesis via regulation of SMAD2/3. Moreover, ERG represents a promising candidate biomarker for assessing EndMT in liver disease.The transcription factor ERG is key to endothelial lineage specification and vascular homeostasis. Here the authors show that ERG balances TGFβ signalling through the SMAD1 and SMAD3 pathways, protecting the endothelium from endothelial-to-mesenchymal transition and consequent liver fibrosis in mice via a SMAD3-dependent mechanism.

  2. Negative effects of UVB-irradiated phytoplankton on life history traits and fitness of Daphnia magna

    NARCIS (Netherlands)

    Lange, de H.J.; Reeuwijk, van P.L.

    2003-01-01

    1. We tested the effect of ultraviolet-B (UVB)-irradiated phytoplankton on life history characteristics of Daphnia magna . Two phytoplankton species were used, Chlamydomonas reinhardtii and Cryptomonas pyrenoidifera . The phytoplankton species were cultured under photosynthetically active radiation

  3. NRT2.4 and NRT2.5 Are Two Half-Size Transporters from the Chlamydomonas NRT2 Family

    Directory of Open Access Journals (Sweden)

    Jose Javier Higuera

    2016-03-01

    Full Text Available The NRT2 transporters mediate High Affinity Nitrate/NitriteTransport (HAN/NiT, which are essential for nitrogen acquisition from these inorganic forms. The NRT2 proteins are encoded by a multigene family in plants, and contain 12 transmembrane-spanning domains. Chlamydomonas reinhardtii has six NRT2, two of which (NRT2.5 and NRT2.4 are located in Chromosome III, in tandem head to tail. cDNAs for these genes were isolated and their sequence revealed that they correspond to half-size NRT2 transporters each containing six transmembrane domains. NRT2.5 has long N- and C- termini sequences without known homology. NRT2.4 also contains long termini sequences but smaller than NRT2.5. Expression of both studied genes occurred at a very low level, slightly in darkness, and was not modified by the N or C source. Silencing of NRT2.4 by specific artificial miRNA resulted in the inhibition of nitrite transport in the absence of other HANNiT (NRT2.1/NAR2 in the cell genetic background. Nitrite transport activity in the Hansenula polymorpha Δynt::URA3 Leu2 mutant was restored by expressing CrNRT2.4. These results indicate that half-size NRT2 transporters are present in photosynthetic organisms and that NRT2.4 is a HANiT.

  4. Antibody-Based Detection of ERG Rearrangement-Positive Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Kyung Park

    2010-07-01

    Full Text Available TMPRSS2-ERG gene fusions occur in 50% of prostate cancers and result in the overexpression of a chimeric fusion transcript that encodes a truncated ERG product. Previous attempts to detect truncated ERG products have been hindered by a lack of specific antibodies. Here, we characterize a rabbit anti-ERG monoclonal antibody (clone EPR 3864; Epitomics, Burlingame, CA using immunoblot analysis on prostate cancer cell lines, synthetic TMPRSS2-ERG constructs, chromatin immunoprecipitation, and immunofluorescence. We correlated ERG protein expression with the presence of ERG gene rearrangements in prostate cancertissues using a combined immunohistochemistry(IHC and fluorescence in situ hybridization (FISH analysis. We independently evaluated two patient cohorts and observed ERG expression confined to prostate cancer cells and high-grade prostatic intraepithelial reoplasia associated with ERG-positive cancer, as well as vessels and lymphocytes (where ERG has a known biologic role. Image analysis of 131 cases demonstrated nearly 100% sensitivity for detecting ERG rearrangement prostate cancer, with only 2 (1.5% of 131 cases demonstrating strong ERG protein expression without any known ERG gene fusion. The combired pathology evaluation of 207 patient tumors for ERG protein expression had 95.7% sensitivity and 96.5% specificity for determining ERG rearrangement prostate cancer. Ir conclusion, this study qualifies a specific anti-ERG antibody and demonstrates exquisite association between ERG gene rearrangement and truncated ERG protein product expression. Giver the ease of performing IHC versus FISH, ERG protein expression may be useful for molecularly subtypirg prostate cancer based or ERG rearrangement status and suggests clinical utility it prostate needle biopsy evaluation.

  5. An experimental study of the growth and hydrogen production of C. reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Tamburic, B.; Burgess, S.; Nixon, P.J.; Hellgardt, K. [Imperial College London (United Kingdom)

    2010-07-01

    Some unicellular green algae, such as C. reinhardtii, have the ability to photosynthetically produce molecular hydrogen under anaerobic conditions. They offer a biological route to renewable, carbon-neutral hydrogen production from two of nature's most plentiful resources - sunlight and water. This process provides the additional benefit of carbon dioxide sequestration and the option of deriving valuable products from algal biomass. The growth of dense and healthy algal biomass is a prerequisite for efficient hydrogen production. This study investigates the growth of C. reinhardtii under different cyclic light regimes and at various continuous light intensities. Algal growth is characterised in terms of the cell count, chlorophyll content and optical density of the culture. The consumption of critical nutrients such as acetate and sulphate is measured by chromatography techniques. C. reinhardtii wild-type CC-124 strain is analysed in a 3 litre tubular flow photobioreactor featuring a large surface-to-volume ratio and excellent light penetration through the culture. Key parameters of the hydrogen production process are continuously monitored and controlled; these include pH, pO{sub 2}, optical density, temperature, agitation and light intensity. Gas phase hydrogen production is determined by mass spectrometry. (orig.)

  6. Effects of UV-B irradiated algae on life history traits of Daphnia pulex

    NARCIS (Netherlands)

    De Lange, H.J.; Van Donk, E.

    1997-01-01

    1. The impact of ultraviolet-B (UVB)-irradiated phytoplankton on the life history parameters of Daphnia was studied. Three species of Chlorophyceae (Chlamydomonas reinhardtii, Scenedesmus acutus and S. subspicatus) and one species of Cryptophyceae (Cryptamonas pyrenoidifera) were cultured with and

  7. Effects of UV-B irradiated algae on zooplankton grazing

    NARCIS (Netherlands)

    Lange, de H.J.; Lürling, M.F.L.L.W.

    2003-01-01

    We tested the effects of UV-B stressed algae on grazing rates of zooplankton. Four algal species ( Chlamydomonas reinhardtii, Cryptomonas sp., Scenedesmus obliquus and Microcystis aeruginosa) were used as food and fed to three zooplankton species ( Daphnia galeata, Bosmina longirostris and

  8. Degradation and de novo synthesis of D1 protein and psbA ...

    Indian Academy of Sciences (India)

    This shows that synthesis of D1 protein is not the only component involved in the recovery process. Our events, which ... transcript levels in the green alga Chlamydomonas reinhardtii in ..... and Gaba V 1996 Accelerated degradation of the D2 ...

  9. ERG review of waste package corrosion mechanisms

    International Nuclear Information System (INIS)

    Geisert, R.E.

    1988-01-01

    The Engineering Review Group (ERG) was established by the Office of Nuclear Waste Isolation (ONWI) to help evaluate engineering-related issues in the US Department of Energy's nuclear waste repository program. The ERG reviewed the waste package corrosion mechanisms. This report documents the ERG's comments and recommendations on these subjects and the ONWI response to the specific points raised by the ERG. 1 ref

  10. Local repeat sequence organization of an intergenic spacer in the ...

    Indian Academy of Sciences (India)

    Unknown

    chloroplast genome of Chlamydomonas reinhardtii leads to DNA expansion and sequence ... The discovery of uniparentally inherited streptomycin resistant mutants ... resembles yeast, mitochondrial and phage recombination in that it is typically ...... Sager R and Lane D 1972 Molecular basis of maternal inheritance; Proc.

  11. Chlorophyll a is a favorable substrate for Chlamydomonas Mg-dechelatase encoded by STAY-GREEN.

    Science.gov (United States)

    Matsuda, Kaori; Shimoda, Yousuke; Tanaka, Ayumi; Ito, Hisashi

    2016-12-01

    Mg removal from chlorophyll by Mg-dechelatase is the first step of chlorophyll degradation. Recent studies showed that in Arabidopsis, Stay Green (SGR) encodes Mg-dechelatase. Though the Escherichia coli expression system is advantageous for investigating the properties of Mg-dechelatase, Arabidopsis Mg-dechelatase is not successfully expressed in E. coli. Chlamydomonas reinhardtii SGR (CrSGR) has a long, hydrophilic tail, suggesting that active CrSGR can be expressed in E. coli. After the incubation of chlorophyll a with CrSGR expressed in E. coli, pheophytin a accumulated, indicating that active CrSGR was expressed in E. coli. Substrate specificity of CrSGR against chlorophyll b and an intermediate molecule of the chlorophyll b degradation pathway was examined. CrSGR exhibited no activity against chlorophyll b and low activity against 7-hydroxymethyl chlorophyll a, consistent with the fact that chlorophyll b is degraded only after conversion to chlorophyll a. CrSGR exhibited low activity against divinyl chlorophyll a and chlorophyll a', and no activity against chlorophyllide a, protochlorophyll a, chlorophyll c 2 , and Zn-chlorophyll a. These observations indicate that chlorophyll a is the most favorable substrate for CrSGR. When CrSGR was expressed in Arabidopsis cells, the chlorophyll content decreased, further confirming that SGR has Mg-dechelating activity in chloroplasts. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Expression of ERG Protein and TMRPSS2-ERG Fusion in Prostatic Carcinoma in Egyptian Patients

    Directory of Open Access Journals (Sweden)

    Ahmed Abdel-Hady

    2017-03-01

    CONCLUSION: Our findings emphasise that only malignant and pre-malignant cells and not benign cells from the prostate stain positive. ERG expression may offer a simpler, accurate and less costly alternative for evaluation of ERG fusion status in PCa.

  13. Genomics of Volvocine Algae

    Science.gov (United States)

    Umen, James G.; Olson, Bradley J.S.C.

    2015-01-01

    Volvocine algae are a group of chlorophytes that together comprise a unique model for evolutionary and developmental biology. The species Chlamydomonas reinhardtii and Volvox carteri represent extremes in morphological diversity within the Volvocine clade. Chlamydomonas is unicellular and reflects the ancestral state of the group, while Volvox is multicellular and has evolved numerous innovations including germ-soma differentiation, sexual dimorphism, and complex morphogenetic patterning. The Chlamydomonas genome sequence has shed light on several areas of eukaryotic cell biology, metabolism and evolution, while the Volvox genome sequence has enabled a comparison with Chlamydomonas that reveals some of the underlying changes that enabled its transition to multicellularity, but also underscores the subtlety of this transition. Many of the tools and resources are in place to further develop Volvocine algae as a model for evolutionary genomics. PMID:25883411

  14. Channel sialic acids limit hERG channel activity during the ventricular action potential.

    Science.gov (United States)

    Norring, Sarah A; Ednie, Andrew R; Schwetz, Tara A; Du, Dongping; Yang, Hui; Bennett, Eric S

    2013-02-01

    Activity of human ether-a-go-go-related gene (hERG) 1 voltage-gated K(+) channels is responsible for portions of phase 2 and phase 3 repolarization of the human ventricular action potential. Here, we questioned whether and how physiologically and pathophysiologically relevant changes in surface N-glycosylation modified hERG channel function. Voltage-dependent hERG channel gating and activity were evaluated as expressed in a set of Chinese hamster ovary (CHO) cell lines under conditions of full glycosylation, no sialylation, no complex N-glycans, and following enzymatic deglycosylation of surface N-glycans. For each condition of reduced glycosylation, hERG channel steady-state activation and inactivation relationships were shifted linearly by significant depolarizing ∼9 and ∼18 mV, respectively. The hERG window current increased significantly by 50-150%, and the peak shifted by a depolarizing ∼10 mV. There was no significant change in maximum hERG current density. Deglycosylated channels were significantly more active (20-80%) than glycosylated controls during phases 2 and 3 of action potential clamp protocols. Simulations of hERG current and ventricular action potentials corroborated experimental data and predicted reduced sialylation leads to a 50-70-ms decrease in action potential duration. The data describe a novel mechanism by which hERG channel gating is modulated through physiologically and pathophysiologically relevant changes in N-glycosylation; reduced channel sialylation increases hERG channel activity during the action potential, thereby increasing the rate of action potential repolarization.

  15. Biogenesis and fate of the cell-cell adhesion molecule, agglutinin, during gametogenesis and fertilization of Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Hunnicutt, G.R.

    1989-01-01

    Fertilization in Chlamydomonas begins with the species-specific recognition and adhesion between gametes of opposite mating types via agglutinin molecules on the flagellar surface. This adhesion generates a cAMP-mediated sexual signal that initiates the subsequent events of call wall release, mating structure activation, and cell fusion. Although flagella of paired gametes remain attached to each other until the zygote forms, the process is dynamic. Engaged agglutinins rapidly become inactivated and turnover, requiring the constant supply of new agglutinins to replace the lost molecules. A population of cell body associated agglutinins has been postulated to the pool of agglutinins recruited during this turnover. Cell body agglutinins, therefore were identified, purified, localized within the cells and compared to flagellar agglutinins. The relationship between these two agglutinin populations was also examined. Cell body agglutinins were biochemically indistinguishable from the flagellar form with respect to their M r , sedimentation coefficient, and hydrophobicity elution properties. Functionally, however, these molecules were inactive in situ. The calculated surface density of agglutinins in the cell body and flagellar domains was similar and thus could not explain their functional difference, but two domains contiguous and yet distinctive suggested they may be separated by a functional barrier. To test this, a method was developed, using a monoclonal antibody and cycloheximide, that removed the flagellar agglutinins so movement between the domains could be monitored. Mobilization of agglutinins onto the flagella did not occur unless sexual signaling was induced with cAMP and papaverine

  16. Intrafocal heterogeneity of ERG protein expression and gene fusion pattern in prostate cancer.

    Science.gov (United States)

    Suh, Ja Hee; Park, Jeong Hwan; Lee, Cheol; Moon, Kyung Chul

    2017-10-01

    Prostate cancer is considered to be highly heterogeneous, with various morphologic features and biologic behaviors. The TMPRSS2-ERG gene fusion is the most frequently observed genetic aberration in prostate cancer. The aim of this study was to elucidate the intrafocal heterogeneity of ERG gene fusion status. ERG immunohistochemistry (IHC) was performed in samples from 168 prostate cancer patients who had undergone radical prostatectomy, and 40 cases showing ERG-positive IHC staining were selected for tissue microarray (TMA) construction. Two to six representative cores were selected from each tumor focus. In the cases with heterogeneous ERG IHC staining intensity, the areas showing different intensities were separately selected. Using the TMA blocks, IHC and fluorescence in situ hybridization (FISH) were conducted to evaluate the heterogeneity of ERG protein expression and ERG fusion gene patterns, respectively, in a single tumor focus. Heterogeneity of ERG IHC staining was defined as the simultaneous presence of negative and positive cores in the same tumor focus. Heterogeneity of ERG FISH was defined by the presence of cores with positive and negative FISH signals or cores with break-apart and interstitial deletion FISH signals in the same tumor focus. A total of 202 TMA cores were isolated from 40 ERG-positive cases. Of the 202 total cores, 19 were negative for ERG IHC staining, and 46 showed 1+, 52 showed 2+, and 85 showed 3+ ERG staining intensity. Eleven cores were negative for ERG FISH signal, 119 cores showed ERG break-apart FISH signals, and the remaining 72 cores revealed interstitial deletion. Intrafocal heterogeneity of ERG IHC staining was found in 20% (8/40) of cases, and intrafocal heterogeneity of ERG gene fusion pattern was found in 32.5% (13/40) of cases. In summary, this study showed significantly frequent intrafocal heterogeneity of ERG protein expression, gene fusion status and fusion pattern. This heterogeneity can be caused by the development

  17. ERG oncoprotein expression in prostate carcinoma patients of different ethnicities.

    Science.gov (United States)

    Kelly, Gregory M; Kong, Yink Heay; Dobi, Albert; Srivastava, Shiv; Sesterhenn, Isabell A; Pathmanathan, Rajadurai; Tan, Hui Meng; Tan, Shyh-Han; Cheong, Sok Ching

    2015-01-01

    Overexpression of the erythroblast transformation-specific-related gene (ERG) oncoprotein due to transmembrane protease, serine 2 ( TMPRSS2 ) -ERG fusion, the most prevalent genomic alteration in prostate cancer (CaP), is more frequently observed among Caucasian patients compared to patients of African or Asian descent. To the best of our knowledge, this is the first study to investigate the prevalence of ERG alterations in a multiethnic cohort of CaP patients. A total of 191 formalin-fixed paraffin-embedded sections of transrectal ultrasound-guided prostate biopsy specimens, collected from 120 patients treated at the Sime Darby Medical Centre, Subang Jaya, Malaysia, were analyzed for ERG protein expression by immunohistochemistry using the anti-ERG monoclonal antibody 9FY as a surrogate for the detection of ERG fusion events. The overall frequency of ERG protein expression in the population evaluated in this study was 39.2%. Although seemingly similar to rates reported in other Asian communities, the expression of ERG was distinct amongst different ethnic groups (P=0.004). Malaysian Indian (MI) patients exhibited exceedingly high expression of ERG in their tumors, almost doubling that of Malaysian Chinese (MC) patients, whereas ERG expression was very low amongst Malay patients (12.5%). When collectively analyzing data, we observed a significant correlation between younger patients and higher ERG expression (P=0.04). The prevalence of ERG expression was significantly different amongst CaP patients of different ethnicities. The higher number of ERG-expressing tumors among MI patients suggested that the TMPRSS2-ERG fusion may be particularly important in the pathogenesis of CaP amongst this group of patients. Furthermore, the more frequent expression of ERG among the younger patients analyzed suggested an involvement of ERG in the early onset of CaP. The results of this study underline the value of using ERG status to better understand the differences in the

  18. Origin of the polycomb repressive complex 2 and gene silencing by an E(z) homolog in the unicellular alga Chlamydomonas.

    Science.gov (United States)

    Shaver, Scott; Casas-Mollano, J Armando; Cerny, Ronald L; Cerutti, Heriberto

    2010-05-16

    Polycomb group proteins play an essential role in the maintenance of cell identity and the regulation of development in both animals and plants. The Polycomb Repressive Complex 2 (PRC2) is involved in the establishment of transcriptionally silent chromatin states, in part through its ability to methylate lysine 27 of histone H3 by the Enhancer of zeste [E(z)] subunit. The absence of PRC2 in unicellular model fungi and its function in the repression of genes vital for the development of higher eukaryotes led to the proposal that this complex may have evolved together with the emergence of multicellularity. However, we report here on the widespread presence of PRC2 core subunits in unicellular eukaryotes from the Opisthokonta, Chromalveolata and Archaeplastida supergroups. To gain insight on the role of PRC2 in single celled organisms, we characterized an E(z) homolog, EZH, in the green alga Chlamydomonas reinhardtii. RNAi-mediated suppression of EZH led to defects in the silencing of transgenes and retrotransposons as well as to a global increase in histone post-translational modifications associated with transcriptional activity, such as trimethylation of histone H3 lysine 4 and acetylation of histone H4. On the basis of the parsimony principle, our findings suggest that PRC2 appeared early in eukaryotic evolution, even perhaps in the last unicellular common ancestor of eukaryotes. One of the ancestral roles of PCR2 may have been in defense responses against intragenomic parasites such as transposable elements, prior to being co-opted for lineage specific functions like developmental regulation in multicellular eukaryotes.

  19. An ERG channel inhibitor from the scorpion Buthus eupeus

    DEFF Research Database (Denmark)

    Korolkova, Y.V.; Kozlov, S.A.; Lipkin, A.V.

    2001-01-01

    and the three mutants partly inhibited the native M-like current in NG108-15 at 100 nm. The effect of the recombinant BeKm-1 on different K(+) channels was also studied. BeKm-1 inhibited hERG1 channels with an IC(50) of 3.3 nm, but had no effect at 100 nm on hEAG, hSK1, rSK2, hIK, hBK, KCNQ1/KCNE1, KCNQ2/KCNQ3......, KCNQ4 channels, and minimal effect on rELK1. Thus, BeKm-1 was shown to be a novel specific blocker of hERG1 potassium channels....

  20. Modulation of ERG channels by XE991

    DEFF Research Database (Denmark)

    Elmedyb, Pernille; Calloe, Kirstine; Schmitt, Nicole

    2007-01-01

    In neuronal tissue, KCNQ2-5 channels conduct the physiologically important M-current. In some neurones, the M-current may in addition be conducted partly by ERG potassium channels, which have widely overlapping expression with the KCNQ channel subunits. XE991 and linopiridine are known to be stan......In neuronal tissue, KCNQ2-5 channels conduct the physiologically important M-current. In some neurones, the M-current may in addition be conducted partly by ERG potassium channels, which have widely overlapping expression with the KCNQ channel subunits. XE991 and linopiridine are known...... to be standard KCNQ potassium channel blockers. These compounds have been used in many different tissues as specific pharmacological tools to discern native currents conducted by KCNQ channels from other potassium currents. In this article, we demonstrate that ERG1-2 channels are also reversibly inhibited by XE......991 in the micromolar range (EC(50) 107 microM for ERG1). The effect has been characterized in Xenopus laevis oocytes expressing ERG1-2 and in the mammalian HEK293 cell line stably expressing ERG1 channels. The IC(50) values for block of KCNQ channels by XE991 range 1-65 microM. In conclusion, great...

  1. Current State of ERG as Biomarker in Prostatic Adenocarcinoma.

    Science.gov (United States)

    Acs, Balazs; Szarvas, Tibor; Szekely, Nora; Nyirady, Peter; Szasz, A Marcell

    2015-01-01

    In this review we briefly discuss the possible biomarkers of prostate cancer among them we focus and analyze the relevance of TMPRSS2-ERG fusion gene in line with ERG expression in the diagnosis of prostate cancer. Starting at diagnosis and genetic alterations in prostate carcinomas, we examine the incidence and detection of the most common genetic aberration in this tumor and its protein product as well. We also examined the correlation of clinicopathological factors and prognosis with ERG and the TMPRSS2-ERG fusion oncogene and ERG expression as predictive markers.

  2. YK-4-279 inhibits ERG and ETV1 mediated prostate cancer cell invasion.

    Directory of Open Access Journals (Sweden)

    Said Rahim

    2011-04-01

    Full Text Available Genomic rearrangements involving the ETS family of transcription factors occur in 40-70% of prostate cancer cases. ERG and ETV1 are the most common ETS members observed in these genetic alterations. The high prevalence of these rearrangements and their biological significance represents a novel therapeutic target for the treatment of prostate cancer.We recently reported the development of YK-4-279, a small molecule inhibitor of EWS-FLI1 oncoprotein in Ewing's Sarcoma. Since ERG and ETV1 belong to the same class of ETS factors as FLI1, we tested the ability of YK-4-279 to inhibit biological functions of ERG and ETV1 proteins in prostate cancer. YK-4-279 inhibited ERG and ETV1 mediated transcriptional activity in a luciferase assay. YK-4-279 also decreased ERG and ETV1 downstream target mRNA and protein expression in ETV1-fusion positive LNCaP and ERG fusion positive VCaP cells. YK-4-279 reduced the motility of LNCaP cells in a scratch assay and the invasive phenotype of both LNCaP and VCaP cells in a HUVEC invasion assay. Fusion-negative PC3 cells were unresponsive to YK-4-279. SiRNA mediated ERG knockdown in VCaP cells resulted in a loss of drug responsiveness. Concurrently, transient ERG expression in PC-3 cells resulted in increased invasive potential, which was reduced by YK-4-279.These data demonstrate that YK-4-279 inhibits ERG and ETV1 biological activity in fusion-positive prostate cancer cells leading to decreased motility and invasion. Therefore, YK-4-279 may have an impact on metastasis in prostate cancer and it may be further evaluated for its clinical applications in prostate cancer in addition to Ewing's sarcoma.

  3. Interactions between marine facultative epiphyte Chlamydomonas sp. (Chlamydomonadales, Chlorophyta) and ceramiaceaen algae (Rhodophyta).

    Science.gov (United States)

    Klochkova, Tatyana A; Cho, Ga Youn; Boo, Sung Min; Chung, Ki Wha; Kim, Song Ja; Kim, Gwang Hoon

    2008-07-01

    Previously unrecorded marine Chlamydomonas that grew epiphytic on ceramiaceaen algae was collected from the western coast of Korea and isolated into a unialgal culture. The isolate was subjected to 18S rDNA phylogenetic analysis as well as ultrastructure and life cycle studies. It had an affinity with the marine Chlamydomonas species and was less related to freshwater/terrestrial representatives of this genus. It had flagella shorter than the cell body two-layered cell wall with striated outer surface and abundant mucilaginous material beneath the innermost layer and no contractile vacuoles. This alga grew faster in mixed cultures with ceramiaceaen algae rather than in any tested unialgal culture condition; the cells looked healthier and zoosporangia and motile flagellated vegetative cells appeared more often. These results suggested that this Chlamydomonas might be a facultative epiphyte benefiting from its hosts. Several ceramiaceaen algae were tested as host plants. Meanwhile, cell deformation or collapse of the whole thallus was caused to Aglaothamnion byssoides, and preliminary study suggested that a substance released from Chlamydomonas caused the response. This is first report on harmful epiphytic interactions between Chlamydomonas species and red ceramiaceaen algae.

  4. Environmental, genetic and cellular toxicity of tenuazonic acid ...

    African Journals Online (AJOL)

    Alternaria alternata, an important pathogen of many plants, produces tenuazonic acid (TeA) with bioactivity to microbes, plants and animals. TeA is one of the main mycotoxin to humans and other organisms. Using Chlamydomonas reinhardtii, Vicia faba root tip and three mammalian normal cell lines as target materials, ...

  5. Antineoplastic Effects of siRNA against TMPRSS2-ERG Junction Oncogene in Prostate Cancer.

    Directory of Open Access Journals (Sweden)

    Giorgia Urbinati

    Full Text Available TMPRSS2-ERG junction oncogene is present in more than 50% of patients with prostate cancer and its expression is frequently associated with poor prognosis. Our aim is to achieve gene knockdown by siRNA TMPRSS2-ERG and then to assess the biological consequences of this inhibition. First, we designed siRNAs against the two TMPRSS2-ERG fusion variants (III and IV, most frequently identified in patients' biopsies. Two of the five siRNAs tested were found to efficiently inhibit mRNA of both TMPRSS2-ERG variants and to decrease ERG protein expression. Microarray analysis further confirmed ERG inhibition by both siRNAs TMPRSS2-ERG and revealed one common down-regulated gene, ADRA2A, involved in cell proliferation and migration. The siRNA against TMPRSS2-ERG fusion variant IV showed the highest anti-proliferative effects: Significantly decreased cell viability, increased cleaved caspase-3 and inhibited a cluster of anti-apoptotic proteins. To propose a concrete therapeutic approach, siRNA TMPRSS2-ERG IV was conjugated to squalene, which can self-organize as nanoparticles in water. The nanoparticles of siRNA TMPRSS2-ERG-squalene injected intravenously in SCID mice reduced growth of VCaP xenografted tumours, inhibited oncoprotein expression and partially restored differentiation (decrease in Ki67. In conclusion, this study offers a new prospect of treatment for prostate cancer based on siRNA-squalene nanoparticles targeting TMPRSS2-ERG junction oncogene.

  6. Reduced Erg Dosage Impairs Survival of Hematopoietic Stem and Progenitor Cells.

    Science.gov (United States)

    Xie, Ying; Koch, Mia Lee; Zhang, Xin; Hamblen, Melanie J; Godinho, Frank J; Fujiwara, Yuko; Xie, Huafeng; Klusmann, Jan-Henning; Orkin, Stuart H; Li, Zhe

    2017-07-01

    ERG, an ETS family transcription factor frequently overexpressed in human leukemia, has been implicated as a key regulator of hematopoietic stem cells. However, how ERG controls normal hematopoiesis, particularly at the stem and progenitor cell level, and how it contributes to leukemogenesis remain incompletely understood. Using homologous recombination, we generated an Erg knockdown allele (Erg kd ) in which Erg expression can be conditionally restored by Cre recombinase. Erg kd/kd animals die at E10.5-E11.5 due to defects in endothelial and hematopoietic cells, but can be completely rescued by Tie2-Cre-mediated restoration of Erg in these cells. In Erg kd/+ mice, ∼40% reduction in Erg dosage perturbs both fetal liver and bone marrow hematopoiesis by reducing the numbers of Lin - Sca-1 + c-Kit + (LSK) hematopoietic stem and progenitor cells (HSPCs) and megakaryocytic progenitors. By genetic mosaic analysis, we find that Erg-restored HSPCs outcompete Erg kd/+ HSPCs for contribution to adult hematopoiesis in vivo. This defect is in part due to increased apoptosis of HSPCs with reduced Erg dosage, a phenotype that becomes more drastic during 5-FU-induced stress hematopoiesis. Expression analysis reveals that reduced Erg expression leads to changes in expression of a subset of ERG target genes involved in regulating survival of HSPCs, including increased expression of a pro-apoptotic regulator Bcl2l11 (Bim) and reduced expression of Jun. Collectively, our data demonstrate that ERG controls survival of HSPCs, a property that may be used by leukemic cells. Stem Cells 2017;35:1773-1785. © 2017 AlphaMed Press.

  7. Azolla filiculoides Nitrogenase Activity Decrease Induced by Inoculation with Chlamydomonas sp. †

    Science.gov (United States)

    Habte, Mitiku

    1986-01-01

    Experiments were conducted to determine the influence of Chlamydomonas sp. on nitrogen fixation (C2H2 → C2H4) in Azolla filiculoides and on the nitrogen fixation and growth of free-living Anabaena azollae 2B organisms. Inoculation of azolla medium with Chlamydomonas sp. was associated with decreased nitrogenase activity in A. filiculoides and with increases in the density of a fungal population identified as Acremonium sp. Subsequent inoculation of azolla medium with this fungus was also accompanied by a significant decrease in nitrogenase activity of A. filiculoides. However, the extent of depression of nitrogenase activity was significantly higher when azolla medium was inoculated with Chlamydomonas sp. than when it was inoculated with Acremonium sp. Inoculation of nitrogen-free Stanier medium with either Acremonium sp. or Chlamydomonas sp. did not adversely affect the growth or nitrogenase activity of free-living A. azollae. Decreased nitrogenase activity in A. filiculoides is apparently related to the adverse influence of the green alga and the fungus on the macrosymbiont. The mechanisms that might be involved are discussed. PMID:16347211

  8. High Glucose Represses hERG K+ Channel Expression through Trafficking Inhibition

    Directory of Open Access Journals (Sweden)

    Yuan-Qi Shi

    2015-08-01

    Full Text Available Background/Aims: Abnormal QT prolongation is the most prominent cardiac electrical disturbance in patients with diabetes mellitus (DM. It is well known that the human ether-ago-go-related gene (hERG controls the rapid delayed rectifier K+ current (IKr in cardiac cells. The expression of the hERG channel is severely down-regulated in diabetic hearts, and this down-regulation is a critical contributor to the slowing of repolarization and QT prolongation. However, the intracellular mechanisms underlying the diabetes-induced hERG deficiency remain unknown. Methods: The expression of the hERG channel was assessed via western blot analysis, and the hERG current was detected with a patch-clamp technique. Results: The results of our study revealed that the expression of the hERG protein and the hERG current were substantially decreased in high-glucose-treated hERG-HEK cells. Moreover, we demonstrated that the high-glucose-mediated damage to the hERG channel depended on the down-regulation of protein levels but not the alteration of channel kinetics. These discoveries indicated that high glucose likely disrupted hERG channel trafficking. From the western blot and immunoprecipitation analyses, we found that high glucose induced trafficking inhibition through an effect on the expression of Hsp90 and its interaction with hERG. Furthermore, the high-glucose-induced inhibition of hERG channel trafficking could activate the unfolded protein response (UPR by up-regulating the expression levels of activating transcription factor-6 (ATF-6 and the ER chaperone protein calnexin. In addition, we demonstrated that 100 nM insulin up-regulated the expression of the hERG channel and rescued the hERG channel repression caused by high glucose. Conclusion: The results of our study provide the first evidence of a high-glucose-induced hERG channel deficiency resulting from the inhibition of channel trafficking. Furthermore, insulin promotes the expression of the hERG channel

  9. The multifocal electroretinogram (mfERG) in the pig

    DEFF Research Database (Denmark)

    Voss Kyhn, Maria; Kiilgaard, Jens Folke; Lopez, Ana Garcia

    2007-01-01

    To establish a method allowing multifocal electroretinography (mfERG) recording with simultaneous fundus monitoring on anaesthetized pigs. In addition we characterize the peaks of the porcine mfERG trace, and compare the visual streak area with the optic nerve head, a known non-response area....... Finally we illustrate the feasibility of the method by performing mfERG after an induced laser burn in the visual streak....

  10. A comparison of two patient friendly ERG electrodes

    International Nuclear Information System (INIS)

    Hidajat, R.; McLay, J.; Elder, M.; Burley, C.; Goode, D.; Morton, J.

    2000-01-01

    Full text: The ideal electroretinography (ERG) electrode should provide reproducible waveforms, maximal amplitudes and minimal irritation of the patient's eyes. Contact lens electrodes (e.g. Burian-Allen, ERG jet) generate large amplitudes but are very uncomfortable and quite intimidating for the patient. Two other types, the gold foil and the H-K loop, provide a much more patient friendly alternative at the cost of somewhat reduced amplitudes. With the purchase of a new Nicolet Bravo electrodiagnostic system we had to select a suitable type of ERG electrode and establish the normal range for each ERG test with that electrode. It was decided to trial two electrodes, the gold foil (CH Electronics, UK) and the H-K loop (Avanta, Slovenia) before making the final choice. Seventeen normal volunteers, ranging in age from 14 to 56 years, were subjected to three standard measurements namely the flash photopic, white flash scotopic and transient pattern (PERG) ERG. Each test followed the guidelines set by the International Society for Clinical Electrophysiology of Vision (ISCEV). Before starting the measurements both eyes were anaesthetised with Ophthetic and for the flash ERG's the pupils were dilated with 1% Tropicamide. Immediately after the measurements each subject was asked which electrode was most comfortable. As specified by ISCEV the amplitudes were measured between adjacent troughs and peaks. The mean and standard deviation of the flash ERG b wave and the PERG P 50 amplitudes for each electrode are shown m the accompanying table together with the mean and standard deviation of the ratios of the amplitudes (gold foil/H-K loop) from each subject. It can be seen that the amplitudes measured with the gold foil electrodes are approximately twice those from the H-K loop and that the fractional variation (standard deviation/mean) of the gold foil amplitudes is also lower. In addition nearly all the subjects (13/17) felt less discomfort with the gold foil electrodes, only

  11. TMPRSS2-ERG gene fusion status in minute (minimal) prostatic adenocarcinoma.

    Science.gov (United States)

    Albadine, Roula; Latour, Mathieu; Toubaji, Antoun; Haffner, Michael; Isaacs, William B; A Platz, Elizabeth; Meeker, Alan K; Demarzo, Angelo M; Epstein, Jonathan I; Netto, George J

    2009-11-01

    Minute prostatic adenocarcinomas are considered to be of insufficient virulence. Given recent suggestions of TMPRSS2-ERG gene fusion association with aggressive prostatic adenocarcinoma, we evaluated the incidence of TMPRSS2-ERG fusion in minute prostatic adenocarcinomas. A total of 45 consecutive prostatectomies with minute adenocarcinoma were used for tissue microarray construction. A total of 63 consecutive non-minimal, Gleason Score 6 tumors, from a separate PSA Era prostatectomy tissue microarray, were used for comparison. FISH was carried out using ERG break-apart probes. Tumors were assessed for fusion by deletion (Edel) or split (Esplit), duplicated fusions and low-level copy number gain in normal ERG gene locus. Minute adenocarcinomas: Fusion was evaluable in 32/45 tumors (71%). Fifteen out of 32 (47%) tumors were positive for fusion. Six (19%) were of the Edel class and 7 (22%) were classified as combined Edel+Esplit. Non-minute adenocarcinomas (pT2): Fusion was identified in 20/30 tumors (67%). Four (13%) were of Edel class and 5 (17%) were combined Edel+Esplit. Duplicated fusions were encountered in 5 (16%) tumors. Non-minute adenocarcinomas (pT3): Fusion was identified in 19/33 (58%). Fusion was due to a deletion in 6 (18%) tumors. Seven tumors (21%) were classified as combined Edel+Esplit. One tumor showed Esplit alone. Duplicated fusions were encountered in 3 (9%) cases. The incidence of duplicated fusions was higher in non-minute adenocarcinomas (13 vs 0%; P=0.03). A trend for higher incidence of low-level copy number gain in normal ERG gene locus without fusion was noted in non-minute adenocarcinomas (10 vs 0%; P=0.07). We found a TMPRSS2-ERG fusion rate of 47% in minute adenocarcinomas. The latter is not significantly different from that of grade matched non-minute adenocarcinomas. The incidence of duplicated fusion was higher in non-minute adenocarcinomas. Our finding of comparable rate of TMPRSS2-ERG fusion in minute adenocarcinomas may argue

  12. Light-induced conformational changes of LOV1 (light oxygen voltage-sensing domain 1) and LOV2 relative to the kinase domain and regulation of kinase activity in Chlamydomonas phototropin.

    Science.gov (United States)

    Okajima, Koji; Aihara, Yusuke; Takayama, Yuki; Nakajima, Mihoko; Kashojiya, Sachiko; Hikima, Takaaki; Oroguchi, Tomotaka; Kobayashi, Amane; Sekiguchi, Yuki; Yamamoto, Masaki; Suzuki, Tomomi; Nagatani, Akira; Nakasako, Masayoshi; Tokutomi, Satoru

    2014-01-03

    Phototropin (phot), a blue light (BL) receptor in plants, has two photoreceptive domains named LOV1 and LOV2 as well as a Ser/Thr kinase domain (KD) and acts as a BL-regulated protein kinase. A LOV domain harbors a flavin mononucleotide that undergoes a cyclic photoreaction upon BL excitation via a signaling state in which the inhibition of the kinase activity by LOV2 is negated. To understand the molecular mechanism underlying the BL-dependent activation of the kinase, the photochemistry, kinase activity, and molecular structure were studied with the phot of Chlamydomonas reinhardtii. Full-length and LOV2-KD samples of C. reinhardtii phot showed cyclic photoreaction characteristics with the activation of LOV- and BL-dependent kinase. Truncation of LOV1 decreased the photosensitivity of the kinase activation, which was well explained by the fact that the signaling state lasted for a shorter period of time compared with that of the phot. Small angle x-ray scattering revealed monomeric forms of the proteins in solution and detected BL-dependent conformational changes, suggesting an extension of the global molecular shapes of both samples. Constructed molecular model of full-length phot based on the small angle x-ray scattering data proved the arrangement of LOV1, LOV2, and KD for the first time that showed a tandem arrangement both in the dark and under BL irradiation. The models suggest that LOV1 alters its position relative to LOV2-KD under BL irradiation. This finding demonstrates that LOV1 may interact with LOV2 and modify the photosensitivity of the kinase activation through alteration of the duration of the signaling state in LOV2.

  13. The rhinoceros among Serpents: Comparative anatomy and experimental biophysics of Calabar burrowing python (Calabaria reinhardtii) skin.

    Science.gov (United States)

    Han, Dawei; Young, Bruce A

    2018-01-01

    The Calabar burrowing python (Calabaria reinhardtii) has a unique combination of marked thickness of the integumentary layers, a highly organized lamellate arrangement of the dermal collagen bundles, and a reduction in the size of the interscale hinge region of the integument. Biomechanical testing demonstrates that the skin of C. reinhardtii is more resistant to penetration than the skin of other snakes. The laminar arrangement of the collagen bundles provides for penetrative resistance, even while maintaining the flexibility characteristic of snake skin. Considering the life history of this species, it is hypothesized that the specialized integument of C. reinhardtii is a passive defensive mechanism against penetrative bites from maternal rodents and predators. © 2017 Wiley Periodicals, Inc.

  14. ERG review of waste package container materials selection and corrosion

    International Nuclear Information System (INIS)

    Moak, D.P.; Perrin, J.S.

    1986-07-01

    The Engineering Review Group (ERG) was established by the Office of Nuclear Waste Isolation (ONWI) to help evaluate engineering-related issues in the US Department of Energy's nuclear waste repository program. The October 1984 meeting of the ERG reviewed the waste package container materials selection and corrosion. This report documents the ERG's comments and recommendations on these subjects and the ONWI response to the specific points raised by the ERG

  15. hERG trafficking inhibition in drug-induced lethal cardiac arrhythmia.

    Science.gov (United States)

    Nogawa, Hisashi; Kawai, Tomoyuki

    2014-10-15

    Acquired long QT syndrome induced by non-cardiovascular drugs can cause lethal cardiac arrhythmia called torsades de points and is a significant problem in drug development. The prolongation of QT interval and cardiac action potential duration are mainly due to reduced physiological function of the rapidly activating voltage-dependent potassium channels encoded by human ether-a-go-go-related gene (hERG). Structurally diverse groups of drugs are known to directly inhibit hERG channel conductance. Therefore, the ability of acute hERG inhibition is routinely assessed at the preclinical stages in pharmaceutical testing. Recent findings indicated that chronic treatment with various drugs not only inhibits hERG channels but also decreases hERG channel expression in the plasma membrane of cardiomyocytes, which has become another concern in safety pharmacology. The mechanisms involve the disruption of hERG trafficking to the surface membrane or the acceleration of hERG protein degradation. From this perspective, we present a brief overview of mechanisms of drug-induced trafficking inhibition and pathological regulation. Understanding of drug-induced hERG trafficking inhibition may provide new strategies for predicting drug-induced QT prolongation and lethal cardiac arrhythmia in pharmaceutical drug development. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. A novel assessment of nefazodone-induced hERG inhibition by electrophysiological and stereochemical method

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dae-Seop; Park, Myoung Joo [Drug Discovery Platform Technology Research Group, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Lee, Hyang-Ae [Korea Institute of Toxicology, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Lee, Joo Yun; Chung, Hee-Chung; Yoo, Dae Seok; Chae, Chong Hak [Drug Discovery Platform Technology Research Group, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Park, Sang-Joon [College of Veterinary Medicine, Kyungpook National University, Daegu (Korea, Republic of); Kim, Ki-Suk [Korea Institute of Toxicology, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Bae, Myung Ae, E-mail: mbae@krict.re.kr [Drug Discovery Platform Technology Research Group, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of)

    2014-02-01

    Nefazodone was used widely as an antidepressant until it was withdrawn from the U.S. market in 2004 due to hepatotoxicity. We have investigated methods to predict various toxic effects of drug candidates to reduce the failure rate of drug discovery. An electrophysiological method was used to assess the cardiotoxicity of drug candidates. Small molecules, including withdrawn drugs, were evaluated using a patch-clamp method to establish a database of hERG inhibition. Nefazodone inhibited hERG channel activity in our system. However, nefazodone-induced hERG inhibition indicated only a theoretical risk of cardiotoxicity. Nefazodone inhibited the hERG channel in a concentration-dependent manner with an IC{sub 50} of 45.3 nM in HEK-293 cells. Nefazodone accelerated both the recovery from inactivation and its onset. Nefazodone also accelerated steady-state inactivation, although it did not modify the voltage-dependent character. Alanine mutants of hERG S6 and pore region residues were used to identify the nefazodone-binding site on hERG. The hERG S6 point mutants Y652A and F656A largely abolished the inhibition by nefazodone. The pore region mutant S624A mildly reduced the inhibition by nefazodone but T623A had little effect. A docking study showed that the aromatic rings of nefazodone interact with Y652 and F656 via π–π interactions, while an amine interacted with the S624 residue in the pore region. In conclusion, Y652 and F656 in the S6 domain play critical roles in nefazodone binding. - Highlights: • Nefazodone inhibits hERG channels with an IC{sub 50} of 45.3 nM in HEK-293 cells. • Nefazodone blocks hERG channels by binding to the open channels. • Y652 and F656 are important for binding of nefazodone. • The aromatic rings of nefazodone interact with Y652 and F656 via π–π interactions.

  17. Enhanced FIB-SEM systems for large-volume 3D imaging

    Science.gov (United States)

    Xu, C Shan; Hayworth, Kenneth J; Lu, Zhiyuan; Grob, Patricia; Hassan, Ahmed M; García-Cerdán, José G; Niyogi, Krishna K; Nogales, Eva; Weinberg, Richard J; Hess, Harald F

    2017-01-01

    Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) can automatically generate 3D images with superior z-axis resolution, yielding data that needs minimal image registration and related post-processing. Obstacles blocking wider adoption of FIB-SEM include slow imaging speed and lack of long-term system stability, which caps the maximum possible acquisition volume. Here, we present techniques that accelerate image acquisition while greatly improving FIB-SEM reliability, allowing the system to operate for months and generating continuously imaged volumes > 106 µm3. These volumes are large enough for connectomics, where the excellent z resolution can help in tracing of small neuronal processes and accelerate the tedious and time-consuming human proofreading effort. Even higher resolution can be achieved on smaller volumes. We present example data sets from mammalian neural tissue, Drosophila brain, and Chlamydomonas reinhardtii to illustrate the power of this novel high-resolution technique to address questions in both connectomics and cell biology. DOI: http://dx.doi.org/10.7554/eLife.25916.001 PMID:28500755

  18. Mechanism and pharmacological rescue of berberine-induced hERG channel deficiency

    Science.gov (United States)

    Yan, Meng; Zhang, Kaiping; Shi, Yanhui; Feng, Lifang; Lv, Lin; Li, Baoxin

    2015-01-01

    Berberine (BBR), an isoquinoline alkaloid mainly isolated from plants of Berberidaceae family, is extensively used to treat gastrointestinal infections in clinics. It has been reported that BBR can block human ether-a-go-go-related gene (hERG) potassium channel and inhibit its membrane expression. The hERG channel plays crucial role in cardiac repolarization and is the target of diverse proarrhythmic drugs. Dysfunction of hERG channel can cause long QT syndrome. However, the regulatory mechanisms of BBR effects on hERG at cell membrane level remain unknown. This study was designed to investigate in detail how BBR decreased hERG expression on cell surface and further explore its pharmacological rescue strategies. In this study, BBR decreases caveolin-1 expression in a concentration-dependent manner in human embryonic kidney 293 (HEK293) cells stably expressing hERG channel. Knocking down the basal expression of caveolin-1 alleviates BBR-induced hERG reduction. In addition, we found that aromatic tyrosine (Tyr652) and phenylalanine (Phe656) in S6 domain mediate the long-term effect of BBR on hERG by using mutation techniques. Considering both our previous and present work, we propose that BBR reduces hERG membrane stability with multiple mechanisms. Furthermore, we found that fexofenadine and resveratrol shorten action potential duration prolongated by BBR, thus having the potential effects of alleviating the cardiotoxicity of BBR. PMID:26543354

  19. Comparative evaluation of urinary PCA3 and TMPRSS2: ERG scores and serum PHI in predicting prostate cancer aggressiveness.

    Science.gov (United States)

    Tallon, Lucile; Luangphakdy, Devillier; Ruffion, Alain; Colombel, Marc; Devonec, Marian; Champetier, Denis; Paparel, Philippe; Decaussin-Petrucci, Myriam; Perrin, Paul; Vlaeminck-Guillem, Virginie

    2014-07-30

    It has been suggested that urinary PCA3 and TMPRSS2:ERG fusion tests and serum PHI correlate to cancer aggressiveness-related pathological criteria at prostatectomy. To evaluate and compare their ability in predicting prostate cancer aggressiveness, PHI and urinary PCA3 and TMPRSS2:ERG (T2) scores were assessed in 154 patients who underwent radical prostatectomy for biopsy-proven prostate cancer. Univariate and multivariate analyses using logistic regression and decision curve analyses were performed. All three markers were predictors of a tumor volume≥0.5 mL. Only PHI predicted Gleason score≥7. T2 score and PHI were both independent predictors of extracapsular extension(≥pT3), while multifocality was only predicted by PCA3 score. Moreover, when compared to a base model (age, digital rectal examination, serum PSA, and Gleason sum at biopsy), the addition of both PCA3 score and PHI to the base model induced a significant increase (+12%) when predicting tumor volume>0.5 mL. PHI and urinary PCA3 and T2 scores can be considered as complementary predictors of cancer aggressiveness at prostatectomy.

  20. Comparative Evaluation of Urinary PCA3 and TMPRSS2: ERG Scores and Serum PHI in Predicting Prostate Cancer Aggressiveness

    Directory of Open Access Journals (Sweden)

    Lucile Tallon

    2014-07-01

    Full Text Available It has been suggested that urinary PCA3 and TMPRSS2:ERG fusion tests and serum PHI correlate to cancer aggressiveness-related pathological criteria at prostatectomy. To evaluate and compare their ability in predicting prostate cancer aggressiveness, PHI and urinary PCA3 and TMPRSS2:ERG (T2 scores were assessed in 154 patients who underwent radical prostatectomy for biopsy-proven prostate cancer. Univariate and multivariate analyses using logistic regression and decision curve analyses were performed. All three markers were predictors of a tumor volume ≥0.5 mL. Only PHI predicted Gleason score ≥7. T2 score and PHI were both independent predictors of extracapsular extension (≥pT3, while multifocality was only predicted by PCA3 score. Moreover, when compared to a base model (age, digital rectal examination, serum PSA, and Gleason sum at biopsy, the addition of both PCA3 score and PHI to the base model induced a significant increase (+12% when predicting tumor volume >0.5 mL. PHI and urinary PCA3 and T2 scores can be considered as complementary predictors of cancer aggressiveness at prostatectomy.

  1. ERG voltage-gated K+ channels regulate excitability and discharge dynamics of the medial vestibular nucleus neurones.

    Science.gov (United States)

    Pessia, Mauro; Servettini, Ilenio; Panichi, Roberto; Guasti, Leonardo; Grassi, Silvarosa; Arcangeli, Annarosa; Wanke, Enzo; Pettorossi, Vito Enrico

    2008-10-15

    The discharge properties of the medial vestibular nucleus neurones (MVNn) critically depend on the activity of several ion channel types. In this study we show, immunohistochemically, that the voltage-gated K(+) channels ERG1A, ERG1B, ERG2 and ERG3 are highly expressed within the vestibular nuclei of P10 and P60 mice. The role played by these channels in the spike-generating mechanisms of the MVNn and in temporal information processing was investigated electrophysiologically from mouse brain slices, in vitro, by analysing the spontaneous discharge and the response to square-, ramp- and sinusoid-like intracellular DC current injections in extracellular and whole-cell patch-clamp studies. We show that more than half of the recorded MVNn were responsive to ERG channel block (WAY-123,398, E4031), displaying an increase in spontaneous activity and discharge irregularity. The response to step and ramp current injection was also modified by ERG block showing a reduction of first spike latency, enhancement of discharge rate and reduction of the slow spike-frequency adaptation process. ERG channels influence the interspike slope without affecting the spike shape. Moreover, in response to sinusoid-like current, ERG channel block caused frequency-dependent gain enhancement and phase-lead shift. Taken together, the data demonstrate that ERG channels control the excitability of MVNn, their discharge regularity and probably their resonance properties.

  2. ERG2 and ERG24 Are Required for Normal Vacuolar Physiology as Well as Candida albicans Pathogenicity in a Murine Model of Disseminated but Not Vaginal Candidiasis.

    Science.gov (United States)

    Luna-Tapia, Arturo; Peters, Brian M; Eberle, Karen E; Kerns, Morgan E; Foster, Timothy P; Marrero, Luis; Noverr, Mairi C; Fidel, Paul L; Palmer, Glen E

    2015-10-01

    Several important classes of antifungal agents, including the azoles, act by blocking ergosterol biosynthesis. It was recently reported that the azoles cause massive disruption of the fungal vacuole in the prevalent human pathogen Candida albicans. This is significant because normal vacuolar function is required to support C. albicans pathogenicity. This study examined the impact of the morpholine antifungals, which inhibit later steps of ergosterol biosynthesis, on C. albicans vacuolar integrity. It was found that overexpression of either the ERG2 or ERG24 gene, encoding C-8 sterol isomerase or C-14 sterol reductase, respectively, suppressed C. albicans sensitivity to the morpholines. In addition, both erg2Δ/Δ and erg24Δ/Δ mutants were hypersensitive to the morpholines. These data are consistent with the antifungal activity of the morpholines depending upon the simultaneous inhibition of both Erg2p and Erg24p. The vacuoles within both erg2Δ/Δ and erg24Δ/Δ C. albicans strains exhibited an aberrant morphology and accumulated large quantities of the weak base quinacrine, indicating enhanced vacuolar acidification compared with that of control strains. Both erg mutants exhibited significant defects in polarized hyphal growth and were avirulent in a mouse model of disseminated candidiasis. Surprisingly, in a mouse model of vaginal candidiasis, both mutants colonized mice at high levels and induced a pathogenic response similar to that with the controls. Thus, while targeting Erg2p or Erg24p alone could provide a potentially efficacious therapy for disseminated candidiasis, it may not be an effective strategy to treat vaginal infections. The potential value of drugs targeting these enzymes as adjunctive therapies is discussed. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. [ERG diagnosis and differential diagnosis: results of examination over 6 years].

    Science.gov (United States)

    Stemeyer, G; Stähli, P

    1996-05-01

    This study reviews the patient material first from the point of view of referral diagnosis. Secondly, we focus on difficulties in selective differential diagnoses. 1501 patients underwent electroretinographic (ERG) testing from 1989 to 1994, amounting to 1815 ERG recordings, including follow-up examinations. The technique applied is full-field, single flash ERG with selective stimulation of the rod- and of the cone-systems. In 3.8% (57 cases) the ERG was performed under general anesthesia in outpatients. Tapetoretinal degenerations, toxic retinal side effects, inflammatory disease and ocular trauma represented, in this order, the major groups of referral diagnoses aside from unclear visual loss. The documentation or the exclusion of tapetoretinal degeneration represented the largest share (57%) of the application of the diagnostic procedure. 171 cases of isolated retinitis pigmentosa (RP) and 33 cases of syndromic RP were identified. Frequent and rare diagnostic entities and their differential diagnoses within this group are discussed. Inevitably, a number of diagnostic decisions remain problematic, in particular at the first examination. These diagnostic difficulties are addressed also and include the differentiation between RP sine pigmento and congenital amaurosis Leber in infants, RP with macular involvement vs. cone-rod degeneration, unilateral RP vs. postinflammatory conditions, and progressive cone dystrophy vs. achromatopsia, cone-rod degeneration or Stargardt's disease. Frequent and meaningful indications for ERG recording and difficult diagnostic decisions arise from this review of a relatively large group of patients. A number of diagnoses can hardly, if not at all be established without ERG testing. These include retinal cause of visual loss in infants, congenital amaurosis Leber, RP sine pigmento, early stages of RP, carrier status in XL RP and in choroideremia, progressive cone dystrophy, toxic retinopathy without fundus changes, retinal involvement

  4. IL-6 Overexpression in ERG-Positive Prostate Cancer Is Mediated by Prostaglandin Receptor EP2.

    Science.gov (United States)

    Merz, Constanze; von Mässenhausen, Anne; Queisser, Angela; Vogel, Wenzel; Andrén, Ove; Kirfel, Jutta; Duensing, Stefan; Perner, Sven; Nowak, Michael

    2016-04-01

    Prostate cancer is the most diagnosed cancer in men and multiple risk factors and genetic alterations have been described. The TMPRSS2-ERG fusion event and the overexpression of the transcription factor ERG are present in approximately 50% of all prostate cancer patients, however, the clinical outcome is still controversial. Prostate tumors produce various soluble factors, including the pleiotropic cytokine IL-6, regulating cellular processes such as proliferation and metastatic segregation. Here, we used prostatectomy samples in a tissue microarray format and analyzed the co-expression and the clinicopathologic data of ERG and IL-6 using immunohistochemical double staining and correlated the read-out with clinicopathologic data. Expression of ERG and IL-6 correlated strongly in prostate tissue samples. Forced expression of ERG in prostate tumor cell lines resulted in significantly increased secretion of IL-6, whereas the down-regulation of ERG decreased IL-6 secretion. By dissecting the underlying mechanism in prostate tumor cell lines we show the ERG-mediated up-regulation of the prostanoid receptors EP2 and EP3. The prostanoid receptor EP2 was overexpressed in human prostate cancer tissue. Furthermore, the proliferation rate and IL-6 secretion in DU145 cells was reduced after treatment with EP2-receptor antagonist. Collectively, our study shows that the expression of ERG in prostate cancer is linked to the expression of IL-6 mediated by the prostanoid receptor EP2. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  5. Mechanism and pharmacological rescue of berberine-induced hERG channel deficiency

    Directory of Open Access Journals (Sweden)

    Yan M

    2015-10-01

    Full Text Available Meng Yan,1 Kaiping Zhang,1 Yanhui Shi,1 Lifang Feng,1 Lin Lv,1 Baoxin Li1,2 1Department of Pharmacology, Harbin Medical University, 2State-Province Key Laboratory of Biopharmaceutical Engineering, Harbin, Heilongjiang, People’s Republic of China Abstract: Berberine (BBR, an isoquinoline alkaloid mainly isolated from plants of Berberidaceae family, is extensively used to treat gastrointestinal infections in clinics. It has been reported that BBR can block human ether-a-go-go-related gene (hERG potassium channel and inhibit its membrane expression. The hERG channel plays crucial role in cardiac repolarization and is the target of diverse proarrhythmic drugs. Dysfunction of hERG channel can cause long QT syndrome. However, the regulatory mechanisms of BBR effects on hERG at cell membrane level remain unknown. This study was designed to investigate in detail how BBR decreased hERG expression on cell surface and further explore its pharmacological rescue strategies. In this study, BBR decreases caveolin-1 expression in a concentration-dependent manner in human embryonic kidney 293 (HEK293 cells stably expressing hERG channel. Knocking down the basal expression of caveolin-1 alleviates BBR-induced hERG reduction. In addition, we found that aromatic tyrosine (Tyr652 and phenylalanine (Phe656 in S6 domain mediate the long-term effect of BBR on hERG by using mutation techniques. Considering both our previous and present work, we propose that BBR reduces hERG membrane stability with multiple mechanisms. Furthermore, we found that fexofenadine and resveratrol shorten action potential duration prolongated by BBR, thus having the potential effects of alleviating the cardiotoxicity of BBR. Keywords: berberine, hERG, cavoline-1, cardiotoxicity, LQTS, pharmacological rescue

  6. RhoJ is an endothelial cell-restricted Rho GTPase that mediates vascular morphogenesis and is regulated by the transcription factor ERG

    NARCIS (Netherlands)

    Yuan, Lei; Sacharidou, Anastasia; Stratman, Amber N.; Le Bras, Alexandra; Zwiers, Peter J.; Spokes, Katherine; Bhasin, Manoj; Shih, Shou-ching; Nagy, Janice A.; Molema, Grietje; Aird, William C.; Davis, George E.; Oettgen, Peter

    2011-01-01

    ERG is a member of the ETS transcription factor family that is highly enriched in endothelial cells (ECs). To further define the role of ERG in regulating EC function, we evaluated the effect of ERG knockdown on EC lumen formation in 3D collagen matrices. Blockade of ERG using siRNA completely

  7. ERG review of containment failure probability and repository functional design criteria

    International Nuclear Information System (INIS)

    Gopal, S.

    1986-06-01

    The Engineering Review Group (ERG) was established by the Office of Nuclear Waste Isolation (ONWI) to help evaluate engineering-related issues in the US Department of Energy's nuclear waste repository program. The June 1984 meeting of the ERG considered two topics: (1) statistical probability for containment of nuclides within the waste package and (2) repository design criteria. This report documents the ERG's comments and recommendations on these two subjects and the ONWI response to the specific points raised by ERG

  8. Investigation of the chemical identity of soluble organophosphorus compounds found in natural waters. Research report

    International Nuclear Information System (INIS)

    Minear, R.A.

    1978-04-01

    Four algal species (Chlamydomonas reinhardtii, Chlorella pyrenoidosa, Anacystis nidulans, and Anabaena flos-aquae) were grown in batch culture on 32 P labelled media to yield dissolved organic phosphorus (DOP) compounds containing a radioactive tag. The DOP compounds of filtered culture solutions were characterized by Sephadex gel filtration and thin layer chromatography (TLC) as a function of culture age. Additional TLC of individual Sephadex fractions was conducted. Time, culture and known compounds (inositol mono- and hexaphosphate) comparisons were made. High performance liquid chromatography was used to separate inositol mono- and hexaphosphates and to compare the DOP components of one algal species (C. reinhardtii) with inositol phosphates. Combinations of alkaline bromination and Sephadex pretreatment were examined

  9. Voltage-Dependent Gating of hERG Potassium Channels

    Science.gov (United States)

    Cheng, Yen May; Claydon, Tom W.

    2012-01-01

    The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv) channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4–S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-à-go-go related gene, hERG), which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure–function relationships underlying activation and deactivation gating in Shaker and hERG channels, with a focus on the roles of the voltage-sensing domain and the S4–S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter-charge interactions. More recent data suggest that key amino acid differences in the hERG voltage-sensing unit and S4–S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor. PMID:22586397

  10. Voltage-dependent gating of hERG potassium channels

    Directory of Open Access Journals (Sweden)

    Yen May eCheng

    2012-05-01

    Full Text Available The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4-S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-a-go-go related gene, hERG, which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure-function relationships underlying voltage-dependent gating in Shaker and hERG channels, with a focus on the roles of the voltage sensing domain and the S4-S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter charge interactions. More recent data suggest that key amino acid differences in the hERG voltage sensing unit and S4-S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor.

  11. [Effects of pressure induced retinal ischemia on ERG in rabbit].

    Science.gov (United States)

    Song, G; Yang, X; Zhang, Z; Zhang, D

    2001-12-01

    To observe the effects of pressure induced retinal ischemia on electroretinogram(ERG) in rabbit. Retinal ischemia was induced in rabbits by increasing intraocular pressure at 30 mmHg, 60 mmHg, 90 mmHg, 120 mmHg for 45 minutes, and retinal function was monitored by eletroretinography. There was no difference on ERG before or after the experiment both in 30 mmHg group and control one. In 60 mmHg pressure induced ischemia eyes, the amplitudes of the b-wave and OPs wave reduced significantly. Four hours after reperfusion, they were totally recovered. After an ischemic insult of 90 mmHg or 120 mmHg for 45 minutes, there was no response of ERG. Four hours later, the amplitudes of the b-wave and OPs wave were 66.912 +/- 20.157 and 16.423 +/- 3.965 the former, 38.852 +/- 23.438 and 8.610 +/- 12.090 the latter, respectively. These results suggest that higher intraocular pressure causes more severe retina ischemic damage, and less recovery ability.

  12. Targeting TMPRSS2 ERG in Prostate Cancer

    Science.gov (United States)

    2016-09-01

    kinome library, using physiologic cell based assays of ERG activity. We made lentivirus expressing multiple shRNAs targeting each candidate 9...MDV3100 reverses the effect of R1881 (compare columns 2 and 3). Interestingly, PKCi inhibited a subset of androgen induced genes ( column 4...expenditures Nothing to report. Significant changes in use or care of human subjects, vertebrate animals, biohazards, and/or select agents Nothing to

  13. Biofixation of Carbon dioxide by Chlamydomonas sp. in a Tubular Photobioreactor

    Directory of Open Access Journals (Sweden)

    H Hadiyanto

    2012-02-01

    Full Text Available The biogas production from anaerobic digestion is a potential fuel for power generators application, if biogas can be upgraded to the same standards as fossil natural gas by CO2, H2S, and other non-combustible component removal. Microalgae Chlamydomonas sp. has potency to biofix the carbon dioxide and can be used as an additional food ingredient. The variations of flow rate and carbon dioxide concentration in the process resulting different value of biomass production and carbon dioxide biofixation. Biomass production at 40% carbon dioxide concentration obtained 5.685 gr/dm3 at 10% carbon dioxide concentration obtained 4.892 gr/dm3. The greatest value of carbon dioxide absorption occurs at a 40% concentration amounting to 12.09%. The rate of growth and productivity of microalgae tend to rise in 10% and 20% (%v carbon dioxide concentration, but began started a constant at 30% and 40% (%v carbon dioxide concentration. Biomass production tends to increase in light conditions while a constant in dark conditions. This study used Chlamydomonas sp. as media culture and performed on bubble column and tubular reactor with 6 litres of culture medium at a temperature of 28oC and atmospheric pressure.

  14. Carbon allocation and element composition in four Chlamydomonas mutants defective in genes related to the CO2 concentrating mechanism

    Czech Academy of Sciences Publication Activity Database

    Memmola, F.; Mukherjee, B.; Moroney, James V.; Giordano, Mario

    2014-01-01

    Roč. 121, 2-3 (2014), s. 201-211 ISSN 0166-8595 Institutional support: RVO:61388971 Keywords : Chlamydomonas mutants * carbon * carbon dioxide * elemental stoichiometry Subject RIV: EE - Microbiology, Virology Impact factor: 3.502, year: 2014

  15. In vitro chronic effects on hERG channel caused by the marine biotoxin Yessotoxin.

    Directory of Open Access Journals (Sweden)

    Sara Fernández Ferreiro

    2014-06-01

    Currently, published evidence indicates that hERG channel dysfunction can be due to more than one mechanism for many drugs (Guth, 2007. Alterations of hERG channel trafficking are considered an important factor in hERG-related cardiotoxicity. Actually, a screening study revealed that almost 40% of the drugs that block Ikr have also trafficking effects (Wible et al., 2005. Although YTX does not block hERG channels, it has been historically described as cardiotoxic due to in vivo damage to cardiomyocytes. Our results show that YTX induces a significant increase of hERG channel levels on the extracellular side of the plasma membrane in vitro. YTX causes cell death in many cell lines (Korsnes and Espenes, 2011 and the alterations of surface hERG levels might be related to the apoptotic process. However, annexin-V, a relatively early marker of apoptosis (Vermes et al., 1995, occurs later than the increase of surface hERG. Additionally, staurosporine triggered apoptosis without a simultaneous increase of surface hERG, so events are not necessarily related. Therefore YTX-induced elevated hERG in the plasma membrane seem to be independent of apoptosis. Functional implications of hERG currents have been described after alterations of cell surface hERG density (Guth, 2007. YTX did not cause significant alterations of hERG currents. Furthermore the hERG levels after YTX treatment were duplicated, so the effect on currents should be clearly evidenced if these channels were functional. The hERG channels on the cell surface are regulated by its production, translocation to the plasma membrane and degradation. The increase of extracellular channel could be a consequence of a higher production and externalization or a slower degradation. Higher synthesis in our cell model would not be physiologically relevant but our results demonstrated that the amount of immature hERG is reduced instead of increased. Fully glycosylated hERG seems slightly increased in these conditions but it is

  16. Transcription factor ERG and joint and articular cartilage formation during mouse limb and spine skeletogenesis.

    Science.gov (United States)

    Iwamoto, Masahiro; Tamamura, Yoshihiro; Koyama, Eiki; Komori, Toshihisa; Takeshita, Nobuo; Williams, Julie A; Nakamura, Takashi; Enomoto-Iwamoto, Motomi; Pacifici, Maurizio

    2007-05-01

    Articular cartilage and synovial joints are critical for skeletal function, but the mechanisms regulating their development are largely unknown. In previous studies we found that the ets transcription factor ERG and its alternatively-spliced variant C-1-1 have roles in joint formation in chick. Here, we extended our studies to mouse. We found that ERG is also expressed in developing mouse limb joints. To test regulation of ERG expression, beads coated with the joint master regulator protein GDF-5 were implanted close to incipient joints in mouse limb explants; this led to rapid and strong ectopic ERG expression. We cloned and characterized several mammalian ERG variants and expressed a human C-1-1 counterpart (hERG3Delta81) throughout the cartilaginous skeleton of transgenic mice, using Col2a1 gene promoter/enhancer sequences. The skeletal phenotype was severe and neonatal lethal, and the transgenic mice were smaller than wild type littermates and their skeletons were largely cartilaginous. Limb long bone anlagen were entirely composed of chondrocytes actively expressing collagen IX and aggrecan as well as articular markers such as tenascin-C. Typical growth plates were absent and there was very low expression of maturation and hypertrophy markers, including Indian hedgehog, collagen X and MMP-13. The results suggest that ERG is part of molecular mechanisms leading chondrocytes into a permanent developmental path and become joint forming cells, and may do so by acting downstream of GDF-5.

  17. ERG oncoprotein expression in prostate carcinoma patients of different ethnicities

    OpenAIRE

    KELLY, GREGORY M.; KONG, YINK HEAY; DOBI, ALBERT; SRIVASTAVA, SHIV; SESTERHENN, ISABELL A.; PATHMANATHAN, RAJADURAI; TAN, HUI MENG; TAN, SHYH-HAN; CHEONG, SOK CHING

    2014-01-01

    Overexpression of the erythroblast transformation-specific-related gene (ERG) oncoprotein due to transmembrane protease, serine 2 (TMPRSS2)-ERG fusion, the most prevalent genomic alteration in prostate cancer (CaP), is more frequently observed among Caucasian patients compared to patients of African or Asian descent. To the best of our knowledge, this is the first study to investigate the prevalence of ERG alterations in a multiethnic cohort of CaP patients. A total of 191 formalin-fixed para...

  18. Dissecting the sequential assembly and localization of intraflagellar transport particle complex B in Chlamydomonas.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Richey

    Full Text Available Intraflagellar transport (IFT, the key mechanism for ciliogenesis, involves large protein particles moving bi-directionally along the entire ciliary length. IFT particles contain two large protein complexes, A and B, which are constructed with proteins in a core and several peripheral proteins. Prior studies have shown that in Chlamydomonas reinhardtii, IFT46, IFT52, and IFT88 directly interact with each other and are in a subcomplex of the IFT B core. However, ift46, bld1, and ift88 mutants differ in phenotype as ift46 mutants are able to form short flagella, while the other two lack flagella completely. In this study, we investigated the functional differences of these individual IFT proteins contributing to complex B assembly, stability, and basal body localization. We found that complex B is completely disrupted in bld1 mutant, indicating an essential role of IFT52 for complex B core assembly. Ift46 mutant cells are capable of assembling a relatively intact complex B, but such complex is highly unstable and prone to degradation. In contrast, in ift88 mutant cells the complex B core still assembles and remains stable, but the peripheral proteins no longer attach to the B core. Moreover, in ift88 mutant cells, while complex A and the anterograde IFT motor FLA10 are localized normally to the transition fibers, complex B proteins instead are accumulated at the proximal ends of the basal bodies. In addition, in bld2 mutant, the IFT complex B proteins still localize to the proximal ends of defective centrioles which completely lack transition fibers. Taken together, these results revealed a step-wise assembly process for complex B, and showed that the complex first localizes to the proximal end of the centrioles and then translocates onto the transition fibers via an IFT88-dependent mechanism.

  19. Inhibitory effects and mechanism of dihydroberberine on hERG channels expressed in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Dahai Yu

    Full Text Available The human ether-a-go-go-related gene (hERG potassium channel conducts rapid delayed rectifier potassium currents (IKr and contributes to phase III cardiac action potential repolarization. Drugs inhibit hERG channels by binding to aromatic residues in hERG helixes. Berberine (BBR has multiple actions, and its hydrogenated derivative dihydroberberine (DHB is a potential candidate for developing new drugs. Previous studies have demonstrated that BBR blocks hERG channels and prolongs action potential duration (APD. Our present study aimed to investigate the effects and mechanism of DHB on hERG channels. Protein expression and the hERG current were analyzed using western blotting and patch-clamp, respectively. DHB inhibited the hERG current concentration-dependently after instantaneous perfusion, accelerated channel inactivation by directly binding tyrosine (Tyr652 and phenylalanine (Phe656, and decreased mature (155-kDa and simultaneously increased immature (135-kDa hERG expression, respectively. This suggests disruption of forward trafficking of hERG channels. Besides, DHB remarkably reduced heat shock protein 90 (Hsp90 expression and its interaction with hERG, indicating that DHB disrupted hERG trafficking by impairing channel folding. Meanwhie, DHB enhanced the expression of cleaved activating transcription factor-6 (ATF-6, a biomarker of unfolded protein response (UPR. Expression of calnexin and calreticulin, chaperones activated by ATF-6 to facilitate channel folding, were also increased, which indicating UPR activation. Additionally, the degradation rate of mature 155-kDa hERG increased following DHB exposure. In conclusion, we demonstrated that DHB acutely blocked hERG channels by binding the aromatic Tyr652 and Phe656. DHB may decrease hERG plasma membrane expression through two pathways involving disruption of forward trafficking of immature hERG channels and enhanced degradation of mature hERG channels. Furthermore, forward trafficking was

  20. Evolution of the Phosphatidylcholine Biosynthesis Pathways in Green Algae: Combinatorial Diversity of Methyltransferases.

    Science.gov (United States)

    Hirashima, Takashi; Toyoshima, Masakazu; Moriyama, Takashi; Sato, Naoki

    2018-01-01

    Phosphatidylcholine (PC) is one of the most common phospholipids in eukaryotes, although some green algae such as Chlamydomonas reinhardtii are known to lack PC. Recently, we detected PC in four species in the genus Chlamydomonas: C. applanata NIES-2202, C. asymmetrica NIES-2207, C. debaryana NIES-2212, and C. sphaeroides NIES-2242. To reveal the PC biosynthesis pathways in green algae and the evolutionary scenario involved in their diversity, we analyzed the PC biosynthesis genes in these four algae using draft genome sequences. Homology searches suggested that PC in these species is synthesized by phosphoethanolamine-N-methyltransferase (PEAMT) and/or phosphatidylethanolamine-N-methyltransferase (PEMT), both of which are absent in C. reinhardtii. Recombinant PEAMTs from these algae showed methyltransferase activity for phosphoethanolamine but not for monomethyl phosphoethanolamine in vitro, in contrast to land plant PEAMT, which catalyzes the three methylations from phosphoethanolamine to phosphocholine. This suggested an involvement of other methyltransferases in PC biosynthesis. Here, we characterized the putative phospholipid-N-methyltransferase (PLMT) genes of these species by genetic and phylogenetic analysis. Complementation assays using a PC biosynthesis-deficient yeast suggested that the PLMTs of these algae can synthesize PC from phosphatidylethanolamine. These results indicated that the PC biosynthesis pathways in green algae differ from those of land plants, although the enzymes involved are homologous. Phylogenetic analysis suggested that the PEAMTs and PLMTs in these algae were inherited from the common ancestor of green algae. The absence of PC biosynthesis in many Chlamydomonas species is likely a result of parallel losses of PEAMT and PLMT in this genus.

  1. [Follow-up on MEWDS by fundus perimetry and multifocal ERG with the SLO].

    Science.gov (United States)

    Bültmann, S; Martin, M; Rohrschneider, K

    2002-09-01

    Most conventional techniques for examination such as perimetry or ERG may not be sensitive enough to detect functional alterations due to MEWDS precisely. We report on a follow-up performed by fundus perimetry and the new technique of multifocal ERG using the scanning laser ophthalmoscope. A 24-year-old female patient (VA 0.2/0.8) was followed up for 7 weeks with these techniques as well as Octopus perimetry, fluorescence angiography, Ganzfeld ERG and biomicroscopy. Multifocal ERG stimulation (mfERG, Retiscan) was performed with the SLO. Visual acuity improved from 0.2 to 0.8 and the central relative scotoma disappeared while a relevant increase of P1-wave amplitudes in mfERG could be observed. Combining objective measurements from the fundus controlled SLO-mfERG and results from fundus perimetry enable good correlation of morphology and results, even for minor alterations of the macula only accessible by few established clinical examinations.

  2. Contribution of Interstitial Deletion of 21q22.2-3 per se to Prostate Cancer Progression in Tumors Harboring TMPRSS2-ERG Translocations

    Science.gov (United States)

    2015-12-01

    harboring TMPRSS2- ERG translocations PRINCIPAL INVESTIGATOR: Yan Dong CONTRACTING ORGANIZATION: Tulane University New Orleans, LA 70112...0485 to prostate cancer progression in tumors harboring TMPRSS2- ERG translocations 5b. GRANT NUMBER W81XWH-14-1-0485 5c. PROGRAM ELEMENT NUMBER...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT TMPRSS2- ERG gene fusions are present in close to 50% of human prostate cancers. Approximately half of the

  3. In the presence of fluoride, free Sc³⁺ is not a good predictor of Sc bioaccumulation by two unicellular algae: possible role of fluoro-complexes.

    Science.gov (United States)

    Crémazy, Anne; Campbell, Peter G C; Fortin, Claude

    2014-08-19

    We investigated the effect of fluoride complexation on scandium accumulation by two unicellular algae, Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata. This trivalent metal was selected for its chemical similarities with aluminum and for its convenient radioisotope (Sc-46), which can be used as a tracer in short-term bioaccumulation studies. Scandium surface-bound concentrations (Sc(ads)) and uptake fluxes (J(int)) were estimated in the two algae over short-term (organisms.

  4. Development of Peptidomimetic Inhibitors of the ERG Gene Fusion Product in Prostate Cancer.

    Science.gov (United States)

    Wang, Xiaoju; Qiao, Yuanyuan; Asangani, Irfan A; Ateeq, Bushra; Poliakov, Anton; Cieślik, Marcin; Pitchiaya, Sethuramasundaram; Chakravarthi, Balabhadrapatruni V S K; Cao, Xuhong; Jing, Xiaojun; Wang, Cynthia X; Apel, Ingrid J; Wang, Rui; Tien, Jean Ching-Yi; Juckette, Kristin M; Yan, Wei; Jiang, Hui; Wang, Shaomeng; Varambally, Sooryanarayana; Chinnaiyan, Arul M

    2017-04-10

    Transcription factors play a key role in the development of diverse cancers, and therapeutically targeting them has remained a challenge. In prostate cancer, the gene encoding the transcription factor ERG is recurrently rearranged and plays a critical role in prostate oncogenesis. Here, we identified a series of peptides that interact specifically with the DNA binding domain of ERG. ERG inhibitory peptides (EIPs) and derived peptidomimetics bound ERG with high affinity and specificity, leading to proteolytic degradation of the ERG protein. The EIPs attenuated ERG-mediated transcription, chromatin recruitment, protein-protein interactions, cell invasion and proliferation, and tumor growth. Thus, peptidomimetic targeting of transcription factor fusion products may provide a promising therapeutic strategy for prostate cancer as well as other malignancies. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. ERG and other discriminators between advanced hydroxychloroquine retinopathy and retinitis pigmentosa.

    Science.gov (United States)

    Nair, Archana A; Marmor, Michael F

    2017-06-01

    To study whether the ERG and other clinical findings help to distinguish between advanced hydroxychloroquine (HCQ) retinopathy and pericentral or diffuse retinitis pigmentosa (RP) with similar fundus appearance. We conducted a retrospective analysis of patients with advanced HCQ retinopathy (n = 11), pericentral RP (n = 8) and diffuse RP (n = 8). Pericentral RP was defined as having limited fundus damage and relatively normal flicker ERG time-to-peak. Diffuse RP had typical loss of the rod ERG and flicker timing delay. All patients showed reduced amplitude of the ISCEV responses in the full-field electroretinogram (ERG). Aspects of history, visual field results, fundus appearance, fundus autofluorescence and ocular coherence tomography were also compared. Relative to pericentral RP, patients with HCQ toxicity showed delayed flicker ERG time-to-peak and lower ERG amplitudes, particularly combined rod-cone responses. Relative to diffuse RP, most HCQ toxicity patients had some preserved rod ERG response, and there was no obvious predilection for rod over cone damage. In addition, patients with HCQ toxicity usually lacked markers of long-standing degeneration such as bone spicule figures or severe loss of peripheral field. History of familial disease and long-standing night blindness were specific to RP. While the early signs of HCQ damage are typically regional in the posterior pole, advanced disease is characteristically diffuse (unlike pericentral RP). This is appropriate for a systemic toxin, as is the finding that rods and cones were both affected in the ERG to a similar degree (unlike genetic rod-cone dystrophies). For patients with severe HCQ exposure and some of our discriminatory findings, and no family history or prior night blindness, HCQ toxicity is a sufficient diagnosis without invoking a second rare disease (Occam's razor).

  6. Dephosphorylation Pathway of D-myo-Inositol 1,4,5-trisphosphate in the Unicellular Green Alga Chlamydomonas eugametos

    NARCIS (Netherlands)

    Klerk, Hans; Himbergen, John A.J. van; Musgrave, Alan; Haastert, Peter J.M. van; Ende, Herman van den

    In vitro dephosphorylation of D-myo-inositol 1,4,5-trisphosphate [Ins(l,4,5)P-3] by vegetative cells, gametes and zygotes of the green alga Chlamydomonas eugametos was studied using a soluble cell fraction as enzyme source and labelled Ins(1,4,5)P-3 as substrate. This compound was dephosphorylated

  7. Multifocal ERG wavelet packet decomposition applied to glaucoma diagnosis

    Directory of Open Access Journals (Sweden)

    Rodríguez-Ascariz José M

    2011-05-01

    Full Text Available Abstract Background Glaucoma is the second-leading cause of blindness worldwide and early diagnosis is essential to its treatment. Current clinical methods based on multifocal electroretinography (mfERG essentially involve measurement of amplitudes and latencies and assume standard signal morphology. This paper presents a new method based on wavelet packet analysis of global-flash multifocal electroretinogram signals. Methods This study comprised twenty-five patients diagnosed with OAG and twenty-five control subjects. Their mfERG recordings data were used to develop the algorithm method based on wavelet packet analysis. By reconstructing the third wavelet packet contained in the fourth decomposition level (ADAA4 of the mfERG recording, it is possible to obtain a signal from which to extract a marker in the 60-80 ms time interval. Results The marker found comprises oscillatory potentials with a negative-slope basal line in the case of glaucomatous recordings and a positive-slope basal line in the case of normal signals. Application of the optimal threshold calculated in the validation cases showed that the technique proposed achieved a sensitivity of 0.81 and validation specificity of 0.73. Conclusions This new method based on mfERG analysis may be reliable enough to detect functional deficits that are not apparent using current automated perimetry tests. As new stimulation and analysis protocols develop, mfERG has the potential to become a useful tool in early detection of glaucoma-related functional deficits.

  8. Carbon allocation and element composition in four Chlamydomonas mutants defective in genes related to the CO2 concentrating mechanism.

    Science.gov (United States)

    Memmola, Francesco; Mukherjee, Bratati; Moroney, James V; Giordano, Mario

    2014-09-01

    Four mutants of Chlamydomonas reinhardtii with defects in different components of the CO2 concentrating mechanism (CCM) or in Rubisco activase were grown autotrophically at high pCO2 and then transferred to low pCO2, in order to study the role of different components of the CCM on carbon allocation and elemental composition. To study carbon allocation, we measured the relative size of the main organic pools by Fourier Transform Infrared spectroscopy. Total reflection X-ray fluorescence was used to analyze the elemental composition of algal cells. Our data show that although the organic pools increased their size at high CO2 in all strains, their stoichiometry was highly homeostatic, i.e., the ratios between carbohydrates and proteins, lipid and proteins, and carbohydrates and lipids, did not change significantly. The only exception was the wild-type 137c, in which proteins decreased relative to carbohydrates and lipids, when the cells were transferred to low CO2. It is noticeable that the two wild types used in this study responded differently to the transition from high to low CO2. Malfunctions of the CCM influenced the concentration of several elements, somewhat altering cell elemental stoichiometry: especially the C/P and N/P ratios changed appreciably in almost all strains as a function of the growth CO2 concentration, except in 137c and the Rubisco activase mutant rca1. In strain cia3, defective in the lumenal carbonic anhydrase (CA), the cell quotas of P, S, Ca, Mn, Fe, and Zn were about 5-fold higher at low CO2 than at high CO2. A Principle Components Analysis showed that, mostly because of its elemental composition, cia3 behaved in a substantially different way from all other strains, at low CO2. The lumenal CA thus plays a crucial role, not only for the correct functioning of the CCM, but also for element utilization. Not surprisingly, growth at high CO2 attenuated differences among strains.

  9. A two dimensional clinostat experiment for microalgae cultures - basic work for bio- regenerativ life support systems

    Science.gov (United States)

    Harting, Benjamin; Slenzka, Klaus

    2012-07-01

    To investigate the influence of microgravity environments on photosynthetic organisms we designed a 2 dimensional clinostatexperiment for a suspended cell culture of Chlamydomonas reinhardtii. A novel approach of online measurments concerning relevant parameters important for the clasification of photosynthesis was obtained. To adress the photosynthesis rate we installed and validated an optical mesurement system to monitor the evolution and consumption of dissolved oxygen. Simultaneously a PAM sensor to analyse the flourescence quantum yield of the photochemical reaction was integarted. Thus it was possible to directly classify important parameters of the phototrophic metabolism during clinorotation. The experiment design including well suited light conditions and further biochemical analysis were directly performed for microalgal cell cultures. Changes in the photosynthetic efficiancy of phototrophic cyanobacteria has been observed during parabolic flight campaign but the cause is already not understood. Explenations could be the dependency of gravitaxis by intracellular ionconcentartion or the existance of mechanosensitive ionchannels for example associated in chloroplasts of Chlamydomonas reinhardtii. The purpuse of the microalgal clinostat are studies in a qasi microgravity environment for the process design of future bioregenerative life suport systems in spaceflight missions. First results has indicated the need for special nourishment of the cell culture during microgravity experiments. Further data will be presented during the assembly.

  10. Uptake of uranium from sea water by microalgae

    International Nuclear Information System (INIS)

    Sakaguchi, Takashi; Horikoshi, Takao; Nakajima, Akira

    1978-01-01

    The uptake of uranium from aqueous systems especially from sea water by various microalgae was investigated. The freshwater microalgae, Chlorella regularis, Scenedesmus bijuga, Scenedesmus chloreloides, Scenedesmus obliquus, Chlamydomonas angulosa, Chlamydomonas reinhardtii, accumulated relatively large amounts of uranium from the solution containing uranium only. The concentration factors of the above mentioned algae were: Chlorella regularis 3930, Chlamydomonas 2330 - 3400, Scenedesmus 803 - 1920. The uptake of uranium from sea water by Chlorella regularis was inhibited markedly by the co-existence of carbonate ions. Chlorella cells could take up a great quantity of uranium from decarbonated sea water. The uptake of uranium was affected by the pH of sea water, and the amount of uranium absorbed was maximum at pH 5. The experiment was carried out to screen marine microalgae which have the ability to accumulate a large amount of uranium from sea water. The uptake of uranium from sea water by marine microalgae of different species turned out to be in the following decreasing order: Synechococcus > Chlamydomonas >> Chlorella > Dunaliella > Platymonas > Calothrix > Porphyridium. The amount of uranium absorbed differed markedly with different species of marine microalgae. (author)

  11. Photosynthetic efficiency of Chlamydomonas reinhardtii in flashing light

    NARCIS (Netherlands)

    Vejrazka, C.; Janssen, M.G.J.; Streefland, M.; Wijffels, R.H.

    2011-01-01

    Efficient light to biomass conversion in photobioreactors is crucial for economically feasible microalgae production processes. It has been suggested that photosynthesis is enhanced in short light path photobioreactors by mixing-induced flashing light regimes. In this study, photosynthetic

  12. The Influence of Brightness on Functional Assessment by mfERG

    DEFF Research Database (Denmark)

    Christiansen, A T; Kiilgaard, J F; Smith, M

    2012-01-01

    To determine the effect of membrane brightness on multifocal electroretinograms (mfERGs), we implanted poly lactic-co-glycolic acid (PLGA) membranes in the subretinal space of 11 porcine eyes. We compared membranes with their native shiny white color with membranes that were stained with a blue dye...... (Brilliant Blue). Histological and electrophysiological evaluation of the overlying retina was carried out 6 weeks after implantation. Histologically, both white and blue membranes degraded in a spongiform manner leaving a disrupted outer retina with no preserved photoreceptor segments. Multifocal ERG...... when the adjacent photoreceptors are missing. Functional assessment with mfERG in scaffold implant studies should therefore be evaluated with care....

  13. Theory, modeling, and integrated studies in the Arase (ERG) project

    Science.gov (United States)

    Seki, Kanako; Miyoshi, Yoshizumi; Ebihara, Yusuke; Katoh, Yuto; Amano, Takanobu; Saito, Shinji; Shoji, Masafumi; Nakamizo, Aoi; Keika, Kunihiro; Hori, Tomoaki; Nakano, Shin'ya; Watanabe, Shigeto; Kamiya, Kei; Takahashi, Naoko; Omura, Yoshiharu; Nose, Masahito; Fok, Mei-Ching; Tanaka, Takashi; Ieda, Akimasa; Yoshikawa, Akimasa

    2018-02-01

    Understanding of underlying mechanisms of drastic variations of the near-Earth space (geospace) is one of the current focuses of the magnetospheric physics. The science target of the geospace research project Exploration of energization and Radiation in Geospace (ERG) is to understand the geospace variations with a focus on the relativistic electron acceleration and loss processes. In order to achieve the goal, the ERG project consists of the three parts: the Arase (ERG) satellite, ground-based observations, and theory/modeling/integrated studies. The role of theory/modeling/integrated studies part is to promote relevant theoretical and simulation studies as well as integrated data analysis to combine different kinds of observations and modeling. Here we provide technical reports on simulation and empirical models related to the ERG project together with their roles in the integrated studies of dynamic geospace variations. The simulation and empirical models covered include the radial diffusion model of the radiation belt electrons, GEMSIS-RB and RBW models, CIMI model with global MHD simulation REPPU, GEMSIS-RC model, plasmasphere thermosphere model, self-consistent wave-particle interaction simulations (electron hybrid code and ion hybrid code), the ionospheric electric potential (GEMSIS-POT) model, and SuperDARN electric field models with data assimilation. ERG (Arase) science center tools to support integrated studies with various kinds of data are also briefly introduced.[Figure not available: see fulltext.

  14. EST analysis of the scaly green flagellate Mesostigma viride (Streptophyta: Implications for the evolution of green plants (Viridiplantae

    Directory of Open Access Journals (Sweden)

    Melkonian Michael

    2006-02-01

    Full Text Available Abstract Background The Viridiplantae (land plants and green algae consist of two monophyletic lineages, the Chlorophyta and the Streptophyta. The Streptophyta include all embryophytes and a small but diverse group of freshwater algae traditionally known as the Charophyceae (e.g. Charales, Coleochaete and the Zygnematales. The only flagellate currently included in the Streptophyta is Mesostigma viride Lauterborn. To gain insight into the genome evolution in streptophytes, we have sequenced 10,395 ESTs from Mesostigma representing 3,300 independent contigs and compared the ESTs of Mesostigma with available plant genomes (Arabidopsis, Oryza, Chlamydomonas, with ESTs from the bryophyte Physcomitrella, the genome of the rhodophyte Cyanidioschyzon, the ESTs from the rhodophyte Porphyra, and the genome of the diatom Thalassiosira. Results The number of expressed genes shared by Mesostigma with the embryophytes (90.3 % of the expressed genes showing similarity to known proteins is higher than with Chlamydomonas (76.1 %. In general, cytosolic metabolic pathways, and proteins involved in vesicular transport, transcription, regulation, DNA-structure and replication, cell cycle control, and RNA-metabolism are more conserved between Mesostigma and the embryophytes than between Mesostigma and Chlamydomonas. However, plastidic and mitochondrial metabolic pathways, cytoskeletal proteins and proteins involved in protein folding are more conserved between Mesostigma and Chlamydomonas than between Mesostigma and the embryophytes. Conclusion Our EST-analysis of Mesostigma supports the notion that this organism should be a suitable unicellular model for the last flagellate common ancestor of the streptophytes. Mesostigma shares more genes with the embryophytes than with the chlorophyte Chlamydomonas reinhardtii, although both organisms are flagellate unicells. Thus, it seems likely that several major physiological changes (e.g. in the regulation of photosynthesis

  15. Assessing the Contribution of the Oscillatory Potentials to the Genesis of the Photopic ERG with the Discrete Wavelet Transform.

    Science.gov (United States)

    Gauvin, Mathieu; Dorfman, Allison L; Trang, Nataly; Gauthier, Mercedes; Little, John M; Lina, Jean-Marc; Lachapelle, Pierre

    2016-01-01

    The electroretinogram (ERG) is composed of slow (i.e., a-, b-waves) and fast (i.e., oscillatory potentials: OPs) components. OPs have been shown to be preferably affected in some diseases (such as diabetic retinopathy), while the a- and b-waves remain relatively intact. The purpose of this study was to determine the contribution of OPs to the building of the ERG and to examine whether a signal mostly composed of OPs could also exist. DWT analyses were performed on photopic ERGs (flash intensities: -2.23 to 2.64 log cd·s·m -2 in 21 steps) obtained from normal subjects ( n = 40) and patients ( n = 21) affected with a retinopathy. In controls, the %OP value (i.e., OPs energy/ERG energy) is stimulus- and amplitude-independent (range: 56.6-61.6%; CV = 6.3%). In contrast, the %OPs measured from the ERGs of our patients varied significantly more (range: 35.4%-89.2%; p pathology, some presenting with ERGs that are almost solely composed of OPs. In conclusion, patients may present with a wide range of %OP values. Findings herein also support the hypothesis that, in certain conditions, the photopic ERG can be mostly composed of high-frequency components.

  16. Assessing the Contribution of the Oscillatory Potentials to the Genesis of the Photopic ERG with the Discrete Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Mathieu Gauvin

    2016-01-01

    Full Text Available The electroretinogram (ERG is composed of slow (i.e., a-, b-waves and fast (i.e., oscillatory potentials: OPs components. OPs have been shown to be preferably affected in some diseases (such as diabetic retinopathy, while the a- and b-waves remain relatively intact. The purpose of this study was to determine the contribution of OPs to the building of the ERG and to examine whether a signal mostly composed of OPs could also exist. DWT analyses were performed on photopic ERGs (flash intensities: −2.23 to 2.64 log cd·s·m−2 in 21 steps obtained from normal subjects (n=40 and patients (n=21 affected with a retinopathy. In controls, the %OP value (i.e., OPs energy/ERG energy is stimulus- and amplitude-independent (range: 56.6–61.6%; CV = 6.3%. In contrast, the %OPs measured from the ERGs of our patients varied significantly more (range: 35.4%–89.2%; p<0.05 depending on the pathology, some presenting with ERGs that are almost solely composed of OPs. In conclusion, patients may present with a wide range of %OP values. Findings herein also support the hypothesis that, in certain conditions, the photopic ERG can be mostly composed of high-frequency components.

  17. Chlamydomonas Outer Arm Dynein Alters Conformation in Response to Ca2+

    OpenAIRE

    Sakato, Miho; Sakakibara, Hitoshi; King, Stephen M.

    2007-01-01

    We have previously shown that Ca2+ directly activates ATP-sensitive microtubule binding by a Chlamydomonas outer arm dynein subparticle containing the β and γ heavy chains (HCs). The γ HC–associated LC4 light chain is a member of the calmodulin family and binds 1-2 Ca2+ with KCa = 3 × 10−5 M in vitro, suggesting it may act as a Ca2+ sensor for outer arm dynein. Here we investigate interactions between the LC4 light chain and γ HC. Two IQ consensus motifs for binding calmodulin-like proteins a...

  18. Metabolic studies of Hg-203 on chlamydomonas reinhardi

    International Nuclear Information System (INIS)

    Macka, W.; Stehlik, G.; Wihlidal, H.; Washuettl, J.; Bancher, E.

    1977-09-01

    Vegetative cultures of the green algae Chlamydomonas reinhardi WT + in the log-phase reduce mercury(II)-nitrate to elemental mercury which is removed from the cell suspension by the stream of gas bubbling through it. Monomethyl and dimethyl mercury as intermediate metabolic compounds are to be excluded, because none of them could be found in the algae, the nutrient medium or the gas phase. (author)

  19. Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses.

    Science.gov (United States)

    Rasala, Beth A; Mayfield, Stephen P

    2015-03-01

    Recombinant proteins are widely used for industrial, nutritional, and medical applications. Green microalgae have attracted considerable attention recently as a biomanufacturing platform for the production of recombinant proteins for a number of reasons. These photosynthetic eukaryotic microorganisms are safe, scalable, easy to genetically modify through transformation, mutagenesis, or breeding, and inexpensive to grow. Many microalgae species are genetically transformable, but the green alga Chlamydomonas reinhardtii is the most widely used host for recombinant protein expression. An extensive suite of molecular genetic tools has been developed for C. reinhardtii over the last 25 years, including a fully sequenced genome, well-established methods for transformation, mutagenesis and breeding, and transformation vectors for high levels of recombinant protein accumulation and secretion. Here, we review recent successes in the development of C. reinhardtii as a biomanufacturing host for recombinant proteins, including antibodies and immunotoxins, hormones, industrial enzymes, an orally-active colostral protein for gastrointestinal health, and subunit vaccines. In addition, we review the biomanufacturing potential of other green algae from the genera Dunaliella and Chlorella.

  20. Rab11-dependent Recycling of the Human Ether-a-go-go-related Gene (hERG) Channel*

    Science.gov (United States)

    Chen, Jeffery; Guo, Jun; Yang, Tonghua; Li, Wentao; Lamothe, Shawn M.; Kang, Yudi; Szendrey, John A.; Zhang, Shetuan

    2015-01-01

    The human ether-a-go-go-related gene (hERG) encodes the pore-forming subunit of the rapidly activating delayed rectifier potassium channel (IKr). A reduction in the hERG current causes long QT syndrome, which predisposes affected individuals to ventricular arrhythmias and sudden death. We reported previously that hERG channels in the plasma membrane undergo vigorous internalization under low K+ conditions. In the present study, we addressed whether hERG internalization occurs under normal K+ conditions and whether/how internalized channels are recycled back to the plasma membrane. Using patch clamp, Western blot, and confocal imaging analyses, we demonstrated that internalized hERG channels can effectively recycle back to the plasma membrane. Low K+-enhanced hERG internalization is accompanied by an increased rate of hERG recovery in the plasma membrane upon reculture following proteinase K-mediated clearance of cell-surface proteins. The increased recovery rate is not due to enhanced protein synthesis, as hERG mRNA expression was not altered by low K+ exposure, and the increased recovery was observed in the presence of the protein biosynthesis inhibitor cycloheximide. GTPase Rab11, but not Rab4, is involved in the recycling of hERG channels. Interfering with Rab11 function not only delayed hERG recovery in cells after exposure to low K+ medium but also decreased hERG expression and function in cells under normal culture conditions. We concluded that the recycling pathway plays an important role in the homeostasis of plasma membrane-bound hERG channels. PMID:26152716

  1. A novel expression platform for the production of diabetes-associated autoantigen human glutamic acid decarboxylase (hGAD65

    Directory of Open Access Journals (Sweden)

    Maxwell Denis

    2008-11-01

    Full Text Available Abstract Background Human glutamic acid decarboxylase 65 (hGAD65 is a key autoantigen in type 1 diabetes, having much potential as an important marker for the prediction and diagnosis of type 1 diabetes, and for the development of novel antigen-specific therapies for the treatment of type 1 diabetes. However, recombinant production of hGAD65 using conventional bacterial or mammalian cell culture-based expression systems or nuclear transformed plants is limited by low yield and low efficiency. Chloroplast transformation of the unicellular eukaryotic alga Chlamydomonas reinhardtii may offer a potential solution. Results A DNA cassette encoding full-length hGAD65, under the control of the C. reinhardtii chloroplast rbcL promoter and 5'- and 3'-UTRs, was constructed and introduced into the chloroplast genome of C. reinhardtii by particle bombardment. Integration of hGAD65 DNA into the algal chloroplast genome was confirmed by PCR. Transcriptional expression of hGAD65 was demonstrated by RT-PCR. Immunoblotting verified the expression and accumulation of the recombinant protein. The antigenicity of algal-derived hGAD65 was demonstrated with its immunoreactivity to diabetic sera by ELISA and by its ability to induce proliferation of spleen cells from NOD mice. Recombinant hGAD65 accumulated in transgenic algae, accounts for approximately 0.25–0.3% of its total soluble protein. Conclusion Our results demonstrate the potential value of C. reinhardtii chloroplasts as a novel platform for rapid mass production of immunologically active hGAD65. This demonstration opens the future possibility for using algal chloroplasts as novel bioreactors for the production of many other biologically active mammalian therapeutic proteins.

  2. Flagellar Synchronization Is a Simple Alternative to Cell Cycle Synchronization for Ciliary and Flagellar Studies.

    Science.gov (United States)

    Dutta, Soumita; Avasthi, Prachee

    2017-01-01

    The unicellular green alga Chlamydomonas reinhardtii is an ideal model organism for studies of ciliary function and assembly. In assays for biological and biochemical effects of various factors on flagellar structure and function, synchronous culture is advantageous for minimizing variability. Here, we have characterized a method in which 100% synchronization is achieved with respect to flagellar length but not with respect to the cell cycle. The method requires inducing flagellar regeneration by amputation of the entire cell population and limiting regeneration time. This results in a maximally homogeneous distribution of flagellar lengths at 3 h postamputation. We found that time-limiting new protein synthesis during flagellar synchronization limits variability in the unassembled pool of limiting flagellar protein and variability in flagellar length without affecting the range of cell volumes. We also found that long- and short-flagella mutants that regenerate normally require longer and shorter synchronization times, respectively. By minimizing flagellar length variability using a simple method requiring only hours and no changes in media, flagellar synchronization facilitates the detection of small changes in flagellar length resulting from both chemical and genetic perturbations in Chlamydomonas . This method increases our ability to probe the basic biology of ciliary size regulation and related disease etiologies. IMPORTANCE Cilia and flagella are highly conserved antenna-like organelles that found in nearly all mammalian cell types. They perform sensory and motile functions contributing to numerous physiological and developmental processes. Defects in their assembly and function are implicated in a wide range of human diseases ranging from retinal degeneration to cancer. Chlamydomonas reinhardtii is an algal model system for studying mammalian cilium formation and function. Here, we report a simple synchronization method that allows detection of small

  3. Vacancy-ordering effects in AlB2-type ErGe2 - x(0.4 < x < or = 0.5).

    Science.gov (United States)

    Christensen, Jeppe; Lidin, Sven; Malaman, Bernard; Venturini, Gerard

    2008-06-01

    In the Er-Ge system, the compostion range ErGe(2) to Er(2)Ge(3) has been investigated. Eight samples were produced by arc melting of the elements, and analyzed using X-ray powder diffraction. Nine crystal structures were found to be present in the samples. The structures are described as a homologous series and presented within the superspace formalism using the superspace group X2/m(alpha0gamma)0s, X representing the centring vector ((1/2), (1/2), 0, (1/2)). In this description the modulation vector q = (alphaa* + gammac*) is shown to be a direct measure of the Ge content as ErGe(2 - alpha) (alpha falls in the range 1\\over 3 to (1/2)). The large composition range is achieved by extended vacancy ordering in the planar 6(3) net of Ge with subsequent relaxation.

  4. Effects of Tannic Acid, Green Tea and Red Wine on hERG Channels Expressed in HEK293 Cells.

    Directory of Open Access Journals (Sweden)

    Xi Chu

    Full Text Available Tannic acid presents in varying concentrations in plant foods, and in relatively high concentrations in green teas and red wines. Human ether-à-go-go-related gene (hERG channels expressed in multiple tissues (e.g. heart, neurons, smooth muscle and cancer cells, and play important roles in modulating cardiac action potential repolarization and tumor cell biology. The present study investigated the effects of tannic acid, green teas and red wines on hERG currents. The effects of tannic acid, teas and red wines on hERG currents stably transfected in HEK293 cells were studied with a perforated patch clamp technique. In this study, we demonstrated that tannic acid inhibited hERG currents with an IC50 of 3.4 μM and ~100% inhibition at higher concentrations, and significantly shifted the voltage dependent activation to more positive potentials (Δ23.2 mV. Remarkably, a 100-fold dilution of multiple types of tea (green tea, oolong tea and black tea or red wine inhibited hERG currents by ~90%, and significantly shifted the voltage dependent activation to more positive potentials (Δ30.8 mV and Δ26.0 mV, respectively. Green tea Lung Ching and red wine inhibited hERG currents, with IC50 of 0.04% and 0.19%, respectively. The effects of tannic acid, teas and red wine on hERG currents were irreversible. These results suggest tannic acid is a novel hERG channel blocker and consequently provide a new mechanistic evidence for understanding the effects of tannic acid. They also revealed the potential pharmacological basis of tea- and red wine-induced biology activities.

  5. Effects of Tannic Acid, Green Tea and Red Wine on hERG Channels Expressed in HEK293 Cells

    Science.gov (United States)

    Xu, Bingyuan; Li, Wenya; Lin, Yue; Sun, Xiaorun; Ding, Chunhua; Zhang, Xuan

    2015-01-01

    Tannic acid presents in varying concentrations in plant foods, and in relatively high concentrations in green teas and red wines. Human ether-à-go-go-related gene (hERG) channels expressed in multiple tissues (e.g. heart, neurons, smooth muscle and cancer cells), and play important roles in modulating cardiac action potential repolarization and tumor cell biology. The present study investigated the effects of tannic acid, green teas and red wines on hERG currents. The effects of tannic acid, teas and red wines on hERG currents stably transfected in HEK293 cells were studied with a perforated patch clamp technique. In this study, we demonstrated that tannic acid inhibited hERG currents with an IC50 of 3.4 μM and ~100% inhibition at higher concentrations, and significantly shifted the voltage dependent activation to more positive potentials (Δ23.2 mV). Remarkably, a 100-fold dilution of multiple types of tea (green tea, oolong tea and black tea) or red wine inhibited hERG currents by ~90%, and significantly shifted the voltage dependent activation to more positive potentials (Δ30.8 mV and Δ26.0 mV, respectively). Green tea Lung Ching and red wine inhibited hERG currents, with IC50 of 0.04% and 0.19%, respectively. The effects of tannic acid, teas and red wine on hERG currents were irreversible. These results suggest tannic acid is a novel hERG channel blocker and consequently provide a new mechanistic evidence for understanding the effects of tannic acid. They also revealed the potential pharmacological basis of tea- and red wine-induced biology activities. PMID:26625122

  6. The microorganisms as a renewable source of ecological clean fuel

    International Nuclear Information System (INIS)

    Shalygo, N.V.; Mel'nikov, S.S.; Manankina, E.E.; Budakova, E.A.; Kolyago, V.M.

    2006-01-01

    Five families of microorganisms (Bacillaceae, Rhodospirillaceae, Cyanophyceae, Chlorophyceae and Euglenophyceae) as hydrogen producers were tested and the conditions that are necessary for hydrogen photoproduction were investigated. It was shown, that the most effective producers of hydrogen were Rhodobacter spheroides, Clostridium sp.; Euglena gracilis var. bacillaris and Chlamydomonas reinhardtii. Addition of glucose, iron and vanadium salts resulted in the increase of hydrogen production. Polycultures consisted of two or three microorganisms were more effective hydrogen producers compared to separate monocultures. (authors)

  7. Quantification of silver nanoparticle toxicity to algae in soil via photosynthetic and flow-cytometric analyses

    OpenAIRE

    Nam, Sun-Hwa; Il Kwak, Jin; An, Youn-Joo

    2018-01-01

    Soil algae, which have received attention for their use in a novel bioassay to evaluate soil toxicity, expand the range of terrestrial test species. However, there is no information regarding the toxicity of nanomaterials to soil algae. Thus, we evaluated the effects of silver nanoparticles (0–50 mg AgNPs/kg dry weight soil) on the soil alga Chlamydomonas reinhardtii after six days, and assessed changes in biomass, photosynthetic activity, cellular morphology, membrane permeability, esterase ...

  8. Evaluation of ERG and SPINK1 by Immunohistochemical Staining and Clinicopathological Outcomes in a Multi-Institutional Radical Prostatectomy Cohort of 1067 Patients.

    Directory of Open Access Journals (Sweden)

    James D Brooks

    Full Text Available Distinguishing between patients with early stage, screen detected prostate cancer who must be treated from those that can be safely watched has become a major issue in prostate cancer care. Identification of molecular subtypes of prostate cancer has opened the opportunity for testing whether biomarkers that characterize these subtypes can be used as biomarkers of prognosis. Two established molecular subtypes are identified by high expression of the ERG oncoprotein, due to structural DNA alterations that encode for fusion transcripts in approximately ½ of prostate cancers, and over-expression of SPINK1, which is purportedly found only in ERG-negative tumors. We used a multi-institutional prostate cancer tissue microarray constructed from radical prostatectomy samples with associated detailed clinical data and with rigorous selection of recurrent and non-recurrent cases to test the prognostic value of immunohistochemistry staining results for the ERG and SPINK1 proteins. In univariate analysis, ERG positive cases (419/1067; 39% were associated with lower patient age, pre-operative serum PSA levels, lower Gleason scores (≤ 3+4=7 and improved recurrence free survival (RFS. On multivariate analysis, ERG status was not correlated with RFS, disease specific survival (DSS or overall survival (OS. High-level SPINK1 protein expression (33/1067 cases; 3% was associated with improved RFS on univariate and multivariate Cox regression analysis. Over-expression of either protein was not associated with clinical outcome. While expression of ERG and SPINK1 proteins was inversely correlated, it was not mutually exclusive since 3 (0.28% cases showed high expression of both. While ERG and SPINK1 appear to identify discrete molecular subtypes of prostate cancer, only high expression of SPINK1 was associated with improved clinical outcome. However, by themselves, neither ERG nor SPINK1 appear to be useful biomarkers for prognostication of early stage prostate

  9. Evaluation of ERG and SPINK1 by Immunohistochemical Staining and Clinicopathological Outcomes in a Multi-Institutional Radical Prostatectomy Cohort of 1067 Patients.

    Science.gov (United States)

    Brooks, James D; Wei, Wei; Hawley, Sarah; Auman, Heidi; Newcomb, Lisa; Boyer, Hilary; Fazli, Ladan; Simko, Jeff; Hurtado-Coll, Antonio; Troyer, Dean A; Carroll, Peter R; Gleave, Martin; Lance, Raymond; Lin, Daniel W; Nelson, Peter S; Thompson, Ian M; True, Lawrence D; Feng, Ziding; McKenney, Jesse K

    2015-01-01

    Distinguishing between patients with early stage, screen detected prostate cancer who must be treated from those that can be safely watched has become a major issue in prostate cancer care. Identification of molecular subtypes of prostate cancer has opened the opportunity for testing whether biomarkers that characterize these subtypes can be used as biomarkers of prognosis. Two established molecular subtypes are identified by high expression of the ERG oncoprotein, due to structural DNA alterations that encode for fusion transcripts in approximately ½ of prostate cancers, and over-expression of SPINK1, which is purportedly found only in ERG-negative tumors. We used a multi-institutional prostate cancer tissue microarray constructed from radical prostatectomy samples with associated detailed clinical data and with rigorous selection of recurrent and non-recurrent cases to test the prognostic value of immunohistochemistry staining results for the ERG and SPINK1 proteins. In univariate analysis, ERG positive cases (419/1067; 39%) were associated with lower patient age, pre-operative serum PSA levels, lower Gleason scores (≤ 3+4=7) and improved recurrence free survival (RFS). On multivariate analysis, ERG status was not correlated with RFS, disease specific survival (DSS) or overall survival (OS). High-level SPINK1 protein expression (33/1067 cases; 3%) was associated with improved RFS on univariate and multivariate Cox regression analysis. Over-expression of either protein was not associated with clinical outcome. While expression of ERG and SPINK1 proteins was inversely correlated, it was not mutually exclusive since 3 (0.28%) cases showed high expression of both. While ERG and SPINK1 appear to identify discrete molecular subtypes of prostate cancer, only high expression of SPINK1 was associated with improved clinical outcome. However, by themselves, neither ERG nor SPINK1 appear to be useful biomarkers for prognostication of early stage prostate cancer.

  10. Evaluation of urinary prostate cancer antigen-3 (PCA3) and TMPRSS2-ERG score changes when starting androgen-deprivation therapy with triptorelin 6-month formulation in patients with locally advanced and metastatic prostate cancer

    DEFF Research Database (Denmark)

    Martínez-Piñeiro, Luis; Schalken, Jack A; Cabri, Patrick

    2014-01-01

    change at 6 months, according to baseline variables. Other outcome measures included urinary PCA3 and TMPRSS2-ERG scores and statuses, and serum testosterone and prostate-specific antigen (PSA) levels at baseline and at 1, 3 and 6 months after initiation of ADT. Safety was assessed by recording adverse......OBJECTIVE: To assess prostate cancer antigen-3 (PCA3) and TMPRSS2-ERG scores in patients with advanced and metastatic prostate cancer at baseline and after 6 months of treatment with triptorelin 22.5 mg, and analyse these scores in patient-groups defined by different disease characteristics....... PATIENTS AND METHODS: The Triptocare study was a prospective, open-label, multicentre, single-arm, Phase III study of triptorelin 22.5 mg in men with locally advanced or metastatic prostate cancer, who were naïve to androgen-deprivation therapy (ADT). The primary objective was to model the urinary PCA3...

  11. Molecular mechanisms underlying the pilsicainide-induced stabilization of hERG proteins in transfected mammalian cells

    Directory of Open Access Journals (Sweden)

    Takeshi Onohara, MD

    2017-06-01

    Conclusions: Pilsicainide penetrates the plasma membrane, stabilizes WT-hERG proteins by acting as a chemical chaperone, and enhances WT-hERG channel currents. This mechanism could also be applicable to modulations of certain mutant-hERG proteins.

  12. Functional recovery after experimental RPE debridement, mfERG studies in a porcine model

    DEFF Research Database (Denmark)

    Sørensen, Nina Buus; Lassota, Nathan; Kyhn, Maria Voss

    2013-01-01

    BACKGROUND: The correlation between histologically identified regeneration of retinal pigment epithelium (RPE) and functional outcome measured by multifocal electroretinography (mfERG) following surgical debridement is examined in a porcine model. In humans, visual acuity is reduced in diseases......, and by brushing the Bruch's membrane with a silicone catheter. Immediately following surgery (baseline) and after 2 and 6 weeks respectively, the animals were examined by mfERG, fundus photographs (FPs), fluorescein angiograms (FAs), and histopathology. RESULTS: The mfERG P1 amplitude was decreased 2 weeks (T2....... CONCLUSION: This is the first study to show that the histological regeneration of hypopigmented RPE correlates to a return of the retinal function, measured by mfERG....

  13. Application of electroretinography (ERG) in early drug development for assessing retinal toxicity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wenhu, E-mail: wenhu.huang@pfizer.com; Collette, Walter; Twamley, Michelle; Aguirre, Shirley A.; Sacaan, Aida

    2015-12-15

    Retinal ocular toxicity is among the leading causes of drug development attrition in the pharmaceutical industry. Electroretinography (ERG) is a non-invasive functional assay used to assess neuro-retinal physiological integrity by measuring the electrical responses. To directly assess the utility of ERG, a series of studies was conducted following intravitreal and/or iv administration of pan-cyclin-dependent kinase inhibitors: AG-012,986 and AG-024,322 in rats. Both compounds have previously shown to induce retinal toxicity. Retinal injury was evaluated by ERG, histopathology and TUNEL staining. Intravitreal injection of AG-012,986 at ≥ 10 μg/eye resulted in decreases (60%) in ERG b-wave and microscopic changes of mild to moderate retinal degeneration, and at 30 μg/eye led to additional ophthalmic findings. Intravenous administration of AG-012,986 daily at ≥ 5 mg/kg resulted in dose-related decreases (25 to 40%) in b-wave and sporadic to intense positive TUNEL staining. Intravitreal injection of AG-024,322 at 30 μg/eye also resulted in decreases (50 to 60%) in b-wave, mild to marked retinal degeneration and mild vitreous debris. These experiments demonstrate that ERG can be used as a sensitive and reliable functional tool to evaluate retinal toxicity induced by test compounds in rats complementing other classical ocular safety measurements. - Highlights: • There were strong correlations of ERG readouts to in vivo ophthalmic exams, TUNEL assay, and histopathology. • ERG appears to be more sensitive and can detect retinal functional changes at a very early stage of pathogenesis. • ERG can be incorporated into routine exploratory toxicity study to identify compound ocular safety issues. • In drug discovery, ERG is a quick, non-invasive, sensitive and reliable tool in retinal toxicity de-risking.

  14. Application of electroretinography (ERG) in early drug development for assessing retinal toxicity in rats

    International Nuclear Information System (INIS)

    Huang, Wenhu; Collette, Walter; Twamley, Michelle; Aguirre, Shirley A.; Sacaan, Aida

    2015-01-01

    Retinal ocular toxicity is among the leading causes of drug development attrition in the pharmaceutical industry. Electroretinography (ERG) is a non-invasive functional assay used to assess neuro-retinal physiological integrity by measuring the electrical responses. To directly assess the utility of ERG, a series of studies was conducted following intravitreal and/or iv administration of pan-cyclin-dependent kinase inhibitors: AG-012,986 and AG-024,322 in rats. Both compounds have previously shown to induce retinal toxicity. Retinal injury was evaluated by ERG, histopathology and TUNEL staining. Intravitreal injection of AG-012,986 at ≥ 10 μg/eye resulted in decreases (60%) in ERG b-wave and microscopic changes of mild to moderate retinal degeneration, and at 30 μg/eye led to additional ophthalmic findings. Intravenous administration of AG-012,986 daily at ≥ 5 mg/kg resulted in dose-related decreases (25 to 40%) in b-wave and sporadic to intense positive TUNEL staining. Intravitreal injection of AG-024,322 at 30 μg/eye also resulted in decreases (50 to 60%) in b-wave, mild to marked retinal degeneration and mild vitreous debris. These experiments demonstrate that ERG can be used as a sensitive and reliable functional tool to evaluate retinal toxicity induced by test compounds in rats complementing other classical ocular safety measurements. - Highlights: • There were strong correlations of ERG readouts to in vivo ophthalmic exams, TUNEL assay, and histopathology. • ERG appears to be more sensitive and can detect retinal functional changes at a very early stage of pathogenesis. • ERG can be incorporated into routine exploratory toxicity study to identify compound ocular safety issues. • In drug discovery, ERG is a quick, non-invasive, sensitive and reliable tool in retinal toxicity de-risking.

  15. Endocytosis of hERG Is Clathrin-Independent and Involves Arf6

    Science.gov (United States)

    Abuarab, Nada; Smith, Andrew J.; Hardy, Matthew E. L.; Elliott, David J. S.; Sivaprasadarao, Asipu

    2013-01-01

    The hERG potassium channel is critical for repolarisation of the cardiac action potential. Reduced expression of hERG at the plasma membrane, whether caused by hereditary mutations or drugs, results in long QT syndrome and increases the risk of ventricular arrhythmias. Thus, it is of fundamental importance to understand how the density of this channel at the plasma membrane is regulated. We used antibodies to an extracellular native or engineered epitope, in conjunction with immunofluorescence and ELISA, to investigate the mechanism of hERG endocytosis in recombinant cells and validated the findings in rat neonatal cardiac myocytes. The data reveal that this channel undergoes rapid internalisation, which is inhibited by neither dynasore, an inhibitor of dynamin, nor a dominant negative construct of Rab5a, into endosomes that are largely devoid of the transferrin receptor. These results support a clathrin-independent mechanism of endocytosis and exclude involvement of dynamin-dependent caveolin and RhoA mechanisms. In agreement, internalised hERG displayed marked overlap with glycosylphosphatidylinositol-anchored GFP, a clathrin-independent cargo. Endocytosis was significantly affected by cholesterol extraction with methyl-β-cyclodextrin and inhibition of Arf6 function with dominant negative Arf6-T27N-eGFP. Taken together, we conclude that hERG undergoes clathrin-independent endocytosis via a mechanism involving Arf6. PMID:24392021

  16. Towards a Structural View of Drug Binding to hERG K+ Channels.

    Science.gov (United States)

    Vandenberg, Jamie I; Perozo, Eduardo; Allen, Toby W

    2017-10-01

    The human ether-a-go-go-related gene (hERG) K + channel is of great medical and pharmaceutical relevance. Inherited mutations in hERG result in congenital long-QT syndrome which is associated with a markedly increased risk of cardiac arrhythmia and sudden death. hERG K + channels are also remarkably susceptible to block by a wide range of drugs, which in turn can cause drug-induced long-QT syndrome and an increased risk of sudden death. The recent determination of the near-atomic resolution structure of the hERG K + channel, using single-particle cryo-electron microscopy (cryo-EM), provides tremendous insights into how these channels work. It also suggests a way forward in our quest to understand why these channels are so promiscuous with respect to drug binding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. TMPRSS2-ERG -specific transcriptional modulation is associated with prostate cancer biomarkers and TGF-β signaling

    International Nuclear Information System (INIS)

    Brase, Jan C; Sirma, Hüseyin; Sauter, Guido; Simon, Ronald; Schlomm, Thorsten; Beißbarth, Tim; Korf, Ulrike; Kuner, Ruprecht; Sültmann, Holger; Johannes, Marc; Mannsperger, Heiko; Fälth, Maria; Metzger, Jennifer; Kacprzyk, Lukasz A; Andrasiuk, Tatjana; Gade, Stephan; Meister, Michael

    2011-01-01

    TMPRSS2-ERG gene fusions occur in about 50% of all prostate cancer cases and represent promising markers for molecular subtyping. Although TMPRSS2-ERG fusion seems to be a critical event in prostate cancer, the precise functional role in cancer development and progression is still unclear. We studied large-scale gene expression profiles in 47 prostate tumor tissue samples and in 48 normal prostate tissue samples taken from the non-suspect area of clinical low-risk tumors using Affymetrix GeneChip Exon 1.0 ST microarrays. Comparison of gene expression levels among TMPRSS2-ERG fusion-positive and negative tumors as well as benign samples demonstrated a distinct transcriptional program induced by the gene fusion event. Well-known biomarkers for prostate cancer detection like CRISP3 were found to be associated with the gene fusion status. WNT and TGF-β/BMP signaling pathways were significantly associated with genes upregulated in TMPRSS2-ERG fusion-positive tumors. The TMPRSS2-ERG gene fusion results in the modulation of transcriptional patterns and cellular pathways with potential consequences for prostate cancer progression. Well-known biomarkers for prostate cancer detection were found to be associated with the gene fusion. Our results suggest that the fusion status should be considered in retrospective and future studies to assess biomarkers for prostate cancer detection, progression and targeted therapy

  18. Cloning and analysis of calmodulin gene from Porphyra yezoensis Ueda (Bangiales, Rhodophyta)

    Science.gov (United States)

    Wang, Mengqiang; Mao, Yunxiang; Zhuang, Yunyun; Kong, Fanna; Sui, Zhenghong

    2009-09-01

    In order to understand the mechanisms of signal transduction and anti-desiccation mechanisms of Porphyra yezoensis, cDNA and its genomic sequence of Calmodulin gene (CaM) was cloned by the technique of polymerase chain reaction (PCR) based on the analysis of P. yezoensis ESTs from dbEST database. The result shows that the full-length cDNA of CaM consists of 603 bps including an ORF encoding for 151 amino acids and a terminate codon UGA, while the length of genomic sequence is 1231 bps including 2 exons and 1 intron. The average GC content of the coding region is 58.77%, while the GC content of the third position of this gene is as high as 82.23%. Four Ca2+ binding sites (EF-hand) are found in this gene. The predicted molecular mass of the deduced peptide is 16688.72 Da and the pI is 4.222. By aligning with known CaM genes, the similarity of CaM gene sequence with homologous genes in Chlamydomonas incerta and Chlamydomonas reinhardtii is 72.7% and 72.2% respectively, and the similarity of the deduced amino acid sequence of CaM gene with homologous genes in C. incerta and C. reinhardtii are both 71.5%. This is the first report on CaM from a species of Rhodophyta.

  19. High yield purification of full-length functional hERG K+ channels produced in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Molbaek, Karen; Scharff-Poulsen, Peter; Hélix-Nielsen, Claus

    2015-01-01

    knowledge this is the first reported high-yield production and purification of full length, tetrameric and functional hERG. This significant breakthrough will be paramount in obtaining hERG crystal structures, and in establishment of new high-throughput hERG drug safety screening assays....

  20. Comparison of nutrient removal capacity and biomass settleability of four high-potential microalgal species.

    Science.gov (United States)

    Su, Yanyan; Mennerich, Artur; Urban, Brigitte

    2012-11-01

    Four common used microalgae species were compared in terms of settleability, nutrient removal capacity and biomass productivity. After 1 month training, except cyanobacteria Phormidium sp., three green microalgae species, Chlamydomonas reinhardtii, Chlorella vulgaris and Scenedesmus rubescens, showed good settleability. The N and P removal efficiency was all above 99% within 7, 4, 6 and 6 days for N and 4, 2, 3 and 4 days for P, resulting in the N removal rates of 3.66±0.17, 6.39±0.20, 4.39±0.06 and 4.31±0.18 mg N/l/d and P removal rates of 0.56±0.07, 0.89±0.05, 0.76±0.09 and 0.60±0.05 mg P/l/d for Phormidium sp., C. reinhardtii, C. vulgaris and S. rubescens, respectively. Phormidium sp. had the lowest algal biomass productivity (2.71±0.7 g/m(2)/d) and the other three green microalgae showed higher algal biomass productivity (around 6 g/m(2)/d). Assimilation into biomass was the main removal mechanism for N and P. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Determinants of Isoform-Specific Gating Kinetics of hERG1 Channel: Combined Experimental and Simulation Study

    Directory of Open Access Journals (Sweden)

    Laura L. Perissinotti

    2018-04-01

    Full Text Available IKr is the rapidly activating component of the delayed rectifier potassium current, the ion current largely responsible for the repolarization of the cardiac action potential. Inherited forms of long QT syndrome (LQTS (Lees-Miller et al., 1997 in humans are linked to functional modifications in the Kv11.1 (hERG ion channel and potentially life threatening arrhythmias. There is little doubt now that hERG-related component of IKr in the heart depends on the tetrameric (homo- or hetero- channels formed by two alternatively processed isoforms of hERG, termed hERG1a and hERG1b. Isoform composition (hERG1a- vs. the b-isoform has recently been reported to alter pharmacologic responses to some hERG blockers and was proposed to be an essential factor pre-disposing patients for drug-induced QT prolongation. Very little is known about the gating and pharmacological properties of two isoforms in heart membranes. For example, how gating mechanisms of the hERG1a channels differ from that of hERG1b is still unknown. The mechanisms by which hERG 1a/1b hetero-tetramers contribute to function in the heart, or what role hERG1b might play in disease are all questions to be answered. Structurally, the two isoforms differ only in the N-terminal region located in the cytoplasm: hERG1b is 340 residues shorter than hERG1a and the initial 36 residues of hERG1b are unique to this isoform. In this study, we combined electrophysiological measurements for HEK cells, kinetics and structural modeling to tease out the individual contributions of each isoform to Action Potential formation and then make predictions about the effects of having various mixture ratios of the two isoforms. By coupling electrophysiological data with computational kinetic modeling, two proposed mechanisms of hERG gating in two homo-tetramers were examined. Sets of data from various experimental stimulation protocols (HEK cells were analyzed simultaneously and fitted to Markov-chain models (M

  2. Seasonal and diel changes in photosynthetic activity of the snow algae Chlamydomonas nivalis (Chlorophyceae) from Svalbard determined by PAM fluorometry

    Czech Academy of Sciences Publication Activity Database

    Stibal, Marek; Elster, Josef; Šabacká, Marie; Kaštovská, Klára

    2007-01-01

    Roč. 59, - (2007), s. 265-273 ISSN 0168-6496 R&D Projects: GA AV ČR KJB6005409 Institutional research plan: CEZ:AV0Z60050516 Keywords : Chlamydomonas nivalis * photosynthetic activity * PAM fluorometry Subject RIV: EF - Botanics Impact factor: 3.039, year: 2007

  3. Data on the construction of a recombinant HEK293 cell line overexpressing hERG potassium channel and examining the presence of hERG mRNA and protein expression

    Directory of Open Access Journals (Sweden)

    Yi Fan Teah

    2017-10-01

    Full Text Available The data presented in this article are related to the research article entitled “The effects of deoxyelephantopin on the cardiac delayed rectifier potassium channel current (IKr and human ether-a-go-go-related gene (hERG expression” (Y.F. Teah, M.A. Abduraman, A. Amanah, M.I. Adenan, S.F. Sulaiman, M.L. Tan [1], which the possible hERG blocking properties of deoxyelephantopin were investigated. This article describes the construction of human embryonic kidney 293 (HEK293 cells overexpressing HERG potassium channel and verification of the presence of hERG mRNA and protein expression in this recombinant cell line.

  4. Differential expression of hERG1 channel isoforms reproduces properties of native I(Kr and modulates cardiac action potential characteristics.

    Directory of Open Access Journals (Sweden)

    Anders Peter Larsen

    Full Text Available BACKGROUND: The repolarizing cardiac rapid delayed rectifier current, I(Kr, is composed of ERG1 channels. It has been suggested that two isoforms of the ERG1 protein, ERG1a and ERG1b, both contribute to I(Kr. Marked heterogeneity in the kinetic properties of native I(Kr has been described. We hypothesized that the heterogeneity of native I(Kr can be reproduced by differential expression of ERG1a and ERG1b isoforms. Furthermore, the functional consequences of differential expression of ERG1 isoforms were explored as a potential mechanism underlying native heterogeneity of action potential duration (APD and restitution. METHODOLOGY/PRINCIPAL FINDINGS: The results show that the heterogeneity of native I(Kr can be reproduced in heterologous expression systems by differential expression of ERG1a and ERG1b isoforms. Characterization of the macroscopic kinetics of ERG1 currents demonstrated that these were dependent on the relative abundance of ERG1a and ERG1b. Furthermore, we used a computational model of the ventricular cardiomyocyte to show that both APD and the slope of the restitution curve may be modulated by varying the relative abundance of ERG1a and ERG1b. As the relative abundance of ERG1b was increased, APD was gradually shortened and the slope of the restitution curve was decreased. CONCLUSIONS/SIGNIFICANCE: Our results show that differential expression of ERG1 isoforms may explain regional heterogeneity of I(Kr kinetics. The data demonstrate that subunit dependent changes in channel kinetics are important for the functional properties of ERG1 currents and hence I(Kr. Importantly, our results suggest that regional differences in the relative abundance of ERG1 isoforms may represent a potential mechanism underlying the heterogeneity of both APD and APD restitution observed in mammalian hearts.

  5. Stereoselective inhibition of the hERG1 potassium channel

    Directory of Open Access Journals (Sweden)

    Liliana eSintra Grilo

    2010-11-01

    Full Text Available A growing number of drugs have been shown to prolong cardiac repolarization, predisposing individuals to life-threatening ventricular arrhythmias known as Torsades de Pointes. Most of these drugs are known to interfere with the human ether à-gogo related gene 1 (hERG1 channel, whose current is one of the main determinants of action potential duration. Prolonged repolarization is reflected by lengthening of the QT interval of the electrocardiogram, as seen in the suitably named drug-induced long QT syndrome. Chirality (presence of an asymmetric atom is a common feature of marketed drugs, which can therefore exist in at least two enantiomers with distinct three-dimensional structures and possibly distinct biological fates. Both the pharmacokinetic and pharmacodynamic properties can differ between enantiomers, as well as also between individuals who take the drug due to metabolic polymorphisms. Despite the large number of reports about drugs reducing the hERG1 current, potential stereoselective contributions have only been scarcely investigated. In this review, we present a non-exhaustive list of clinically important molecules which display chiral toxicity that may be related to hERG1-blocking properties. We particularly focus on methadone cardiotoxicity, which illustrates the importance of the stereoselective effect of drug chirality as well as individual variations resulting from pharmacogenetics. Furthermore, it seems likely that, during drug development, consideration of chirality in lead optimization and systematic assessment of the hERG1 current block with all enantiomers could contribute to the reduction of the risk of drug-induced LQTS.

  6. A magnetic trap for living cells suspended in a paramagnetic buffer

    Science.gov (United States)

    Winkleman, Adam; Gudiksen, Katherine L.; Ryan, Declan; Whitesides, George M.; Greenfield, Derek; Prentiss, Mara

    2004-09-01

    This manuscript describes the fabrication and use of a three-dimensional magnetic trap for diamagnetic objects in an aqueous solution of paramagnetic ions; this trap uses permanent magnets. It demonstrates trapping of polystyrene spheres, and of various types of living cells: mouse fibroblast (NIH-3T3), yeast (Saccharomyces cerevisiae), and algae (Chlamydomonas reinhardtii). For a 40mM solution of gadolinium (III) diethylenetriaminepentaacetic acid (Gd .DTPA) in aqueous buffer, the smallest cell (particle) that could be trapped had a radius of ˜2.5μm. The trapped particle and location of the magnetic trap can be translated in three dimensions by independent manipulation of the permanent magnets. This letter a1so characterizes the biocompatibility of the trapping solution.

  7. Advance in ERG Analysis: From Peak Time and Amplitude to Frequency, Power, and Energy

    Directory of Open Access Journals (Sweden)

    Mathieu Gauvin

    2014-01-01

    Full Text Available Purpose. To compare time domain (TD: peak time and amplitude analysis of the human photopic electroretinogram (ERG with measures obtained in the frequency domain (Fourier analysis: FA and in the time-frequency domain (continuous (CWT and discrete (DWT wavelet transforms. Methods. Normal ERGs n=40 were analyzed using traditional peak time and amplitude measurements of the a- and b-waves in the TD and descriptors extracted from FA, CWT, and DWT. Selected descriptors were also compared in their ability to monitor the long-term consequences of disease process. Results. Each method extracted relevant information but had distinct limitations (i.e., temporal and frequency resolutions. The DWT offered the best compromise by allowing us to extract more relevant descriptors of the ERG signal at the cost of lesser temporal and frequency resolutions. Follow-ups of disease progression were more prolonged with the DWT (max 29 years compared to 13 with TD. Conclusions. Standardized time domain analysis of retinal function should be complemented with advanced DWT descriptors of the ERG. This method should allow more sensitive/specific quantifications of ERG responses, facilitate follow-up of disease progression, and identify diagnostically significant changes of ERG waveforms that are not resolved when the analysis is only limited to time domain measurements.

  8. TMPRSS2-ERG gene fusion is not associated with outcome in patients treated by prostatectomy

    Science.gov (United States)

    Gopalan, Anuradha; Leversha, Margaret A.; Satagopan, Jaya M.; Zhou, Qin; Al-Ahmadie, Hikmat A.; Fine, Samson W.; Eastham, James A.; Scardino, Peter T.; Scher, Howard I.; Tickoo, Satish K.; Reuter, Victor E.; Gerald, William L.

    2009-01-01

    A significant number of prostate cancers have been shown to have recurrent chromosomal rearrangements resulting in the fusion of the androgen regulated TMPRSS2 promoter to a member of the ETS transcription factor family, most commonly ERG. This results in ERG overexpression which may have a direct causal role in prostate tumorigenesis or progression. However, the clinical significance of the rearrangement is unclear and, in particular, relationship to outcome has been inconsistent in recent reports. We analyzed TMPRSS2-ERG gene rearrangement status by fluorescence in situ hybridization (FISH) in 521 cases of clinically localized surgically treated prostate cancer with 95 months median follow-up and also in 40 unmatched metastases. 42% of primary tumors and 40% of metastases had rearrangements. 11% had copy number increase (CNI) of the TMPRRS2-ERG region. Rearrangement alone was associated with lower grade, but not with stage, biochemical recurrence, metastases or death. CNI with and without rearrangement was associated with high grade and advanced stage. Further, a subgroup of cancers with CNI and rearrangement by deletion, with two or more copies of the deleted locus, tended to be more clinically aggressive. DNA index assessment revealed that the majority of tumors with CNI of TMPRSS2-ERG had generalized aneuploidy/ tetraploidy in contrast to tumors without TMPRSS2-ERG CNI, which were predominantly diploid. We therefore conclude that translocation of TMPRSS2-ERG is not associated with outcome and the aggressive clinical features associated with CNI of chromosome 21 reflect generalized aneuploidy and are not due to CNI specifically of rearranged TMPRSS2-ERG. PMID:19190343

  9. ERG review of salt constitutive law, salt stress determinations, and salt corrosion and modeling studies

    International Nuclear Information System (INIS)

    Balon, J.E.

    1986-03-01

    The Engineering Review Group (ERG) was established by the Office of Nuclear Waste Isolation (ONWI) to help evaluate engineering-related issues in the US Department of Energy's nuclear waste repository program. The August 1983 meeting of the ERG reviewed a RE/SPEC technical report containing a review of eight constitutive laws that have been proposed to model the creep of salt over the ranges of stress and temperature anticipated in a nuclear repository. This report documents the ERG's comments and recommendations on this subject and the ONWI responses to the specific points raised by the ERG

  10. High potency inhibition of hERG potassium channels by the sodium–calcium exchange inhibitor KB-R7943

    Science.gov (United States)

    Cheng, Hongwei; Zhang, Yihong; Du, Chunyun; Dempsey, Christopher E; Hancox, Jules C

    2012-01-01

    BACKGROUND AND PURPOSE KB-R7943 is an isothiourea derivative that is used widely as a pharmacological inhibitor of sodium–calcium exchange (NCX) in experiments on cardiac and other tissue types. This study investigated KB-R7943 inhibition of hERG (human ether-à-go-go-related gene) K+ channels that underpin the cardiac rapid delayed rectifier potassium current, IKr. EXPERIMENTAL APPROACH Whole-cell patch-clamp measurements were made of hERG current (IhERG) carried by wild-type or mutant hERG channels and of native rabbit ventricular IKr. Docking simulations utilized a hERG homology model built on a MthK-based template. KEY RESULTS KB-R7943 inhibited both IhERG and native IKr rapidly on membrane depolarization with IC50 values of ∼89 and ∼120 nM, respectively, for current tails at −40 mV following depolarizing voltage commands to +20 mV. Marked IhERG inhibition also occurred under ventricular action potential voltage clamp. IhERG inhibition by KB-R7943 exhibited both time- and voltage-dependence but showed no preference for inactivated over activated channels. Results of alanine mutagenesis and docking simulations indicate that KB-R7943 can bind to a pocket formed of the side chains of aromatic residues Y652 and F656, with the compound's nitrobenzyl group orientated towards the cytoplasmic side of the channel pore. The structurally related NCX inhibitor SN-6 also inhibited IhERG, but with a markedly reduced potency. CONCLUSIONS AND IMPLICATIONS KB-R7943 inhibits IhERG/IKr with a potency that exceeds that reported previously for acute cardiac NCX inhibition. Our results also support the feasibility of benzyloxyphenyl-containing NCX inhibitors with reduced potential, in comparison with KB-R7943, to inhibit hERG. PMID:21950687

  11. Association of TMPRSS2-ERG gene fusion with clinical characteristics and outcomes: results from a population-based study of prostate cancer

    International Nuclear Information System (INIS)

    FitzGerald, Liesel M; Cox, Michael E; Ostrander, Elaine A; Stanford, Janet L; Huntsman, David G; Agalliu, Ilir; Johnson, Karynn; Miller, Melinda A; Kwon, Erika M; Hurtado-Coll, Antonio; Fazli, Ladan; Rajput, Ashish B; Gleave, Martin E

    2008-01-01

    The presence of the TMPRSS2-ERG fusion gene in prostate tumors has recently been associated with an aggressive phenotype, as well as recurrence and death from prostate cancer. These associations suggest the hypothesis that the gene fusion may be used as a prognostic indicator for prostate cancer. In this study, fluorescent in situ hybridization (FISH) assays were used to assess TMPRSS2-ERG fusion status in a group of 214 prostate cancer cases from two population-based studies. The FISH assays were designed to detect both fusion type (deletion vs. translocation) and the number of fusion copies (single vs. multiple). Genotyping of four ERG and one TMPRSS2 SNPs using germline DNA was also performed in a sample of the cases (n = 127). Of the 214 tumors scored for the TMPRSS2-ERG fusion, 64.5% were negative and 35.5% were positive for the fusion. Cases with the TMPRSS2-ERG fusion did not exhibit reduced prostate cancer survival (HR = 0.92, 95% CI = 0.22–3.93), nor was there a significant difference in cause-specific survival when stratifying by translocation or deletion (HR = 0.84, 95% CI = 0.23–3.12) or by the number of retained fusion copies (HR = 1.22, 95% CI = 0.45–3.34). However, evidence for reduced prostate cancer-specific survival was apparent in those cases whose tumor had multiple copies of the fusion. The variant T allele of the TMPRSS2 SNP, rs12329760, was positively associated with TMPRSS2-ERG fusion by translocation (p = 0.05) and with multiple copies of the gene fusion (p = 0.03). If replicated, the results presented here may provide insight into the mechanism by which the TMPRSS2-ERG gene fusion arises and also contribute to diagnostic evaluations for determining the subset of men who will go on to develop metastatic prostate cancer

  12. Photosynthetic efficiency of Chlamydomonas reinhardtii in attenuated, flashing light

    NARCIS (Netherlands)

    Vejrazka, C.; Janssen, M.G.J.; Streefland, M.; Wijffels, R.H.

    2012-01-01

    As a result of mixing and light attenuation, algae in a photobioreactor (PBR) alternate between light and dark zones and, therefore, experience variations in photon flux density (PFD). These variations in PFD are called light/dark (L/D) cycles. The objective of this study was to determine how these

  13. ATP Production in Chlamydomonas reinhardtii Flagella by Glycolytic Enzymes

    DEFF Research Database (Denmark)

    Mitchell, Beth F; Pedersen, Lotte B; Feely, Michael

    2005-01-01

    reside in the detergent-soluble (membrane + matrix) compartments. We further show that axonemal enolase is a subunit of the CPC1 central pair complex and that reduced flagellar enolase levels in the cpc1 mutant correlate with the reduced flagellar ATP concentrations and reduced in vivo beat frequencies...

  14. ERG promotes the maintenance of hematopoietic stem cells by restricting their differentiation

    DEFF Research Database (Denmark)

    Knudsen, Kasper Jermiin; Rehn, Matilda Carolina; Hasemann, Marie Sigurd

    2015-01-01

    The balance between self-renewal and differentiation is crucial for the maintenance of hematopoietic stem cells (HSCs). Whereas numerous gene regulatory factors have been shown to control HSC self-renewal or drive their differentiation, we have relatively few insights into transcription factors...... and functional HSCs. Molecularly, we could demonstrate that ERG, in addition to promoting the expression of HSC self-renewal genes, also represses a group of MYC targets, thereby explaining why Erg loss closely mimics Myc overexpression. Consistently, the BET domain inhibitor CPI-203, known to repress Myc...... expression, confers a partial phenotypic rescue. In summary, ERG plays a critical role in coordinating the balance between self-renewal and differentiation of HSCs....

  15. ERG [Engineering Review Group] review of the SRP [Salt Repository Project] salt irradiation effects program: Technical report

    International Nuclear Information System (INIS)

    Clark, D.E.

    1986-11-01

    The Engineering Review Group (ERG) was established by the Office of Nuclear Waste Isolation (ONWI) to help evaluate engineering-related issues in the US Department of Energy's nuclear waste repository program. The August 1985 meeting of the ERG reviewed the Salt Repository Project (SRP) salt irradiation effects program. This report documents the ERG's comments and recommendations on these subjects and the ONWI response to the specific points raised by the ERG

  16. Improved functional expression of recombinant human ether-a-go-go (hERG K+ channels by cultivation at reduced temperature

    Directory of Open Access Journals (Sweden)

    Hamilton Bruce

    2007-12-01

    Full Text Available Abstract Background HERG potassium channel blockade is the major cause for drug-induced long QT syndrome, which sometimes cause cardiac disrhythmias and sudden death. There is a strong interest in the pharmaceutical industry to develop high quality medium to high-throughput assays for detecting compounds with potential cardiac liability at the earliest stages of drug development. Cultivation of cells at lower temperature has been used to improve the folding and membrane localization of trafficking defective hERG mutant proteins. The objective of this study was to investigate the effect of lower temperature maintenance on wild type hERG expression and assay performance. Results Wild type hERG was stably expressed in CHO-K1 cells, with the majority of channel protein being located in the cytoplasm, but relatively little on the cell surface. Expression at both locations was increased several-fold by cultivation at lower growth temperatures. Intracellular hERG protein levels were highest at 27°C and this correlated with maximal 3H-dofetilide binding activity. In contrast, the expression of functionally active cell surface-associated hERG measured by patch clamp electrophysiology was optimal at 30°C. The majority of the cytoplasmic hERG protein was associated with the membranes of cytoplasmic vesicles, which markedly increased in quantity and size at lower temperatures or in the presence of the Ca2+-ATPase inhibitor, thapsigargin. Incubation with the endocytic trafficking blocker, nocodazole, led to an increase in hERG activity at 37°C, but not at 30°C. Conclusion Our results are consistent with the concept that maintenance of cells at reduced temperature can be used to boost the functional expression of difficult-to-express membrane proteins and improve the quality of assays for medium to high-throughput compound screening. In addition, these results shed some light on the trafficking of hERG protein under these growth conditions.

  17. Structural implications of hERG K+ channel block by a high-affinity minimally structured blocker

    Science.gov (United States)

    Helliwell, Matthew V.; Zhang, Yihong; El Harchi, Aziza; Du, Chunyun; Hancox, Jules C.; Dempsey, Christopher E.

    2018-01-01

    Cardiac potassium channels encoded by human ether-à-go-go–related gene (hERG) are major targets for structurally diverse drugs associated with acquired long QT syndrome. This study characterized hERG channel inhibition by a minimally structured high-affinity hERG inhibitor, Cavalli-2, composed of three phenyl groups linked by polymethylene spacers around a central amino group, chosen to probe the spatial arrangement of side chain groups in the high-affinity drug-binding site of the hERG pore. hERG current (IhERG) recorded at physiological temperature from HEK293 cells was inhibited with an IC50 of 35.6 nm with time and voltage dependence characteristic of blockade contingent upon channel gating. Potency of Cavalli-2 action was markedly reduced for attenuated inactivation mutants located near (S620T; 54-fold) and remote from (N588K; 15-fold) the channel pore. The S6 Y652A and F656A mutations decreased inhibitory potency 17- and 75-fold, respectively, whereas T623A and S624A at the base of the selectivity filter also decreased potency (16- and 7-fold, respectively). The S5 helix F557L mutation decreased potency 10-fold, and both F557L and Y652A mutations eliminated voltage dependence of inhibition. Computational docking using the recent cryo-EM structure of an open channel hERG construct could only partially recapitulate experimental data, and the high dependence of Cavalli-2 block on Phe-656 is not readily explainable in that structure. A small clockwise rotation of the inner (S6) helix of the hERG pore from its configuration in the cryo-EM structure may be required to optimize Phe-656 side chain orientations compatible with high-affinity block. PMID:29545312

  18. Transgene expression in microalgae – from tools to applications

    Directory of Open Access Journals (Sweden)

    Lior eDoron

    2016-04-01

    Full Text Available Microalgae comprise a biodiverse group of photosynthetic organisms that reside in water sources and sediments. The green microalgae Chlamydomonas reinhardtii was adopted as a useful model organism for studying various physiological systems. Its ability to grow under both photosynthetic and heterotrophic conditions allows efficient growth of non-photosynthetic mutants, making Chlamydomonas a useful genetic tool to study photosynthesis. In addition, this green alga can grow as haploid or diploid cells, similar to yeast, providing a powerful genetic system. As a result, easy and efficient transformation systems have been developed for Chlamydomonas, targeting both the chloroplast and nuclear genomes. Since microalgae comprise a rich repertoire of species that offer variable advantages for biotech and biomed industries, gene transfer technologies were further developed for many microalgae to allow for the expression of foreign proteins of interest. Expressing foreign genes in the chloroplast enables the targeting of foreign DNA to specific sites by homologous recombination. Chloroplast transformation also allows for the introduction of genes encoding several enzymes from a complex pathway, possibly as an operon. Expressing foreign proteins in the chloroplast can also be achieved by introducing the target gene into the nuclear genome, with the protein product bearing a targeting signal that directs import of the transgene-product into the chloroplast, like other endogenous chloroplast proteins. Integration of foreign genes into the nuclear genome is mostly random, resulting in large variability between different clones, such that extensive screening is required. The use of different selection modalities is also described, with special emphasis on the use of herbicides and metabolic markers which are considered to be friendly to the environment, as compared to drug-resistance genes that are commonly used. Finally, despite the development of a wide

  19. Adaptation of light-harvesting functions of unicellular green algae to different light qualities.

    Science.gov (United States)

    Ueno, Yoshifumi; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2018-05-28

    Oxygenic photosynthetic organisms perform photosynthesis efficiently by distributing captured light energy to photosystems (PSs) at an appropriate balance. Maintaining photosynthetic efficiency under changing light conditions requires modification of light-harvesting and energy-transfer processes. In the current study, we examined how green algae regulate their light-harvesting functions in response to different light qualities. We measured low-temperature time-resolved fluorescence spectra of unicellular green algae Chlamydomonas reinhardtii and Chlorella variabilis cells grown under different light qualities. By observing the delayed fluorescence spectra, we demonstrated that both types of green algae primarily modified the associations between light-harvesting chlorophyll protein complexes (LHCs) and PSs (PSII and PSI). Under blue light, Chlamydomonas transferred more energy from LHC to chlorophyll (Chl) located far from the PSII reaction center, while energy was transferred from LHC to PSI via different energy-transfer pathways in Chlorella. Under green light, both green algae exhibited enhanced energy transfer from LHCs to both PSs. Red light induced fluorescence quenching within PSs in Chlamydomonas and LHCs in Chlorella. In Chlorella, energy transfer from PSII to PSI appears to play an important role in balancing excitation between PSII and PSI.

  20. Increased adipogenesis in cultured embryonic chondrocytes and in adult bone marrow of dominant negative Erg transgenic mice.

    Directory of Open Access Journals (Sweden)

    Sébastien Flajollet

    Full Text Available In monolayer culture, primary articular chondrocytes have an intrinsic tendency to lose their phenotype during expansion. The molecular events underlying this chondrocyte dedifferentiation are still largely unknown. Several transcription factors are important for chondrocyte differentiation. The Ets transcription factor family may be involved in skeletal development. One family member, the Erg gene, is mainly expressed during cartilage formation. To further investigate the potential role of Erg in the maintenance of the chondrocyte phenotype, we isolated and cultured chondrocytes from the rib cartilage of embryos of transgenic mice that express a dominant negative form of Erg (DN-Erg during cartilage formation. DN-Erg expression in chondrocytes cultured for up to 20 days did not affect the early dedifferentiation usually observed in cultured chondrocytes. However, lipid droplets accumulated in DN-Erg chondrocytes, suggesting adipocyte emergence. Transcriptomic analysis using a DNA microarray, validated by quantitative RT-PCR, revealed strong differential gene expression, with a decrease in chondrogenesis-related markers and an increase in adipogenesis-related gene expression in cultured DN-Erg chondrocytes. These results indicate that Erg is involved in either maintaining the chondrogenic phenotype in vitro or in cell fate orientation. Along with the in vitro studies, we compared adipocyte presence in wild-type and transgenic mice skeletons. Histological investigations revealed an increase in the number of adipocytes in the bone marrow of adult DN-Erg mice even though no adipocytes were detected in embryonic cartilage or bone. These findings suggest that the Ets transcription factor family may contribute to the homeostatic balance in skeleton cell plasticity.

  1. Early identification of hERG liability in drug discovery programs by automated patch clamp

    Directory of Open Access Journals (Sweden)

    Timm eDanker

    2014-09-01

    Full Text Available Blockade of the cardiac ion channel coded by hERG can lead to cardiac arrhythmia, which has become a major concern in drug discovery and development. Automated electrophysiological patch clamp allows assessment of hERG channel effects early in drug development to aid medicinal chemistry programs and has become routine in pharmaceutical companies. However, a number of potential sources of errors in setting up hERG channel assays by automated patch clamp can lead to misinterpretation of data or false effects being reported. This article describes protocols for automated electrophysiology screening of compound effects on the hERG channel current. Protocol details and the translation of criteria known from manual patch clamp experiments to automated patch clamp experiments to achieve good quality data are emphasized. Typical pitfalls and artifacts that may lead to misinterpretation of data are discussed. While this article focuses on hERG channel recordings using the QPatch (Sophion A/S, Copenhagen, Denmark technology, many of the assay and protocol details given in this article can be transferred for setting up different ion channel assays by automated patch clamp and are similar on other planar patch clamp platforms.

  2. TMPRSS2- driven ERG expression in vivo increases self-renewal and maintains expression in a castration resistant subpopulation.

    Directory of Open Access Journals (Sweden)

    Orla M Casey

    Full Text Available Genomic rearrangements commonly occur in many types of cancers and often initiate or alter the progression of disease. Here we describe an in vivo mouse model that recapitulates the most frequent rearrangement in prostate cancer, the fusion of the promoter region of TMPRSS2 with the coding region of the transcription factor, ERG. A recombinant bacterial artificial chromosome including an extended TMPRSS2 promoter driving genomic ERG was constructed and used for transgenesis in mice. TMPRSS2-ERG expression was evaluated in tissue sections and FACS-fractionated prostate cell populations. In addition to the anticipated expression in luminal cells, TMPRSS2-ERG was similarly expressed in the Sca-1(hi/EpCAM(+ basal/progenitor fraction, where expanded numbers of clonogenic self-renewing progenitors were found, as assayed by in vitro sphere formation. These clonogenic cells increased intrinsic self renewal in subsequent generations. In addition, ERG dependent self-renewal and invasion in vitro was demonstrated in prostate cell lines derived from the model. Clinical studies have suggested that the TMPRSS2-ERG translocation occurs early in prostate cancer development. In the model described here, the presence of the TMPRSS2-ERG fusion alone was not transforming but synergized with heterozygous Pten deletion to promote PIN. Taken together, these data suggest that one function of TMPRSS2-ERG is the expansion of self-renewing cells, which may serve as targets for subsequent mutations. Primary prostate epithelial cells demonstrated increased post transcriptional turnover of ERG compared to the TMPRSS2-ERG positive VCaP cell line, originally isolated from a prostate cancer metastasis. Finally, we determined that TMPRSS2-ERG expression occurred in both castration-sensitive and resistant prostate epithelial subpopulations, suggesting the existence of androgen-independent mechanisms of TMPRSS2 expression in prostate epithelium.

  3. Comparison of the resistance of two Chlamydomonas reinhardii strains with different β- and carotene content

    International Nuclear Information System (INIS)

    Gikoshvili, T.I.; Vilenchik, M.M.; Ladygin, V.G.; Kuzin, A.M.

    1989-01-01

    Radiosensitivity of Chlamydomonas reinhardii strain containing considerable amount of ξ-carotene is lower than that of the wild strain. This indicates that ξ-caotene is oneof the natural radioresistance factors

  4. Children with complete or incomplete congenital stationary night blindness: ophthalmological findings, standard ERGs and ON-OFF ERGs for differentiation between types

    Directory of Open Access Journals (Sweden)

    Maja Šuštar

    2012-06-01

    Conclusion: Distinct electrophysiological characteristics can be used to differentiate between complete and incomplete CSNB. Moreover, ONOFF ERGs are important for precise localization of the retinal bipolar cell dysfunction, and these can also be reliably recorded in children.

  5. Pharmacologic Approach to Defective Protein Trafficking in the E637K-hERG Mutant with PD-118057 and Thapsigargin.

    Directory of Open Access Journals (Sweden)

    Haiyan Mao

    Full Text Available Treatment of LQT2 is inadequate. Many drugs which can pharmacologically rescue defective protein trafficking in LQT2 also result in potent blockade of HERG current, negating their therapeutic benefit. It is reported that PD-118057 and thapsigargin can rescue LQT2 without hERG channel blockade, but the precise mechanism of action is unknown. Furthermore, the effect of PD-118057 and thapsigargin on the dominant negative E637K-hERG mutant has not been previously investigated.IN THIS STUDY, WE INVESTIGATED: (a the effect of PD-118057 and thapsigargin on the current amplitudes of WT-hERG and WT/E637K-hERG channels; (b the effect of PD-118057 and thapsigargin on the biophysical properties of WT-hERG and WT/E637K-hERG channels; (c whether drug treatment can rescue channel processing and trafficking defects of the WT/E637K-hERG mutant.The whole-cell Patch-clamp technique was used to assess the effect of PD-118057 and thapsigargin on the electrophysiological characteristics of the rapidly activating delayed rectifier K(+ current (Ikr of the hERG protein channel. Western blot was done to investigate pharmacological rescue on hERG protein channel function.In our study, PD-118057 was shown to significantly enhance both the maximum current amplitude and tail current amplitude, but did not alter the gating and kinetic properties of the WT-hERG channel, with the exception of accelerating steady-state inactivation. Additionally, thapsigargin shows a similar result as PD-118057 for the WT-hERG channel, but with the exception of attenuating steady-state inactivation. However, for the WT/E637K-hERG channel, PD-118057 had no effect on either the current or on the gating and kinetic properties. Furthermore, thapsigargin treatment did not alter the current or the gating and kinetic properties of the WT/E637K-hERG channel, with the exception of opening at more positive voltages.Our findings illustrate that neither PD-118057 nor thapsigargin play a role in correcting

  6. Structure and Function of the Splice Variants of TMPRSS2-ERG, a Prevalent Genomic Alteration in Prostate Cancer

    Science.gov (United States)

    2012-09-01

    expression in prostate cancer (4). Lower or no ERG expression in a subset of aggressive tumors with TMPRSS2-ERG fusion may reflect attenuation of androgen...Services University of the Health Sciences, Bethesda MD 20814, USA 2. Cancer Vaccine Development Laboratory, Department of Surgery, United...negative for ERG. The ERG MAb did not show cross reactivity to FLI-1 in LNCaP cells infected with a FLI-1 adenovirus expression vector (Fig 1A

  7. Cadmium detoxification strategies in two phytoplankton species: Metal binding by newly synthesized thiolated peptides and metal sequestration in granules

    International Nuclear Information System (INIS)

    Lavoie, Michel; Le Faucheur, Severine; Fortin, Claude; Campbell, Peter G.C.

    2009-01-01

    The aim of this study was to evaluate whether intracellular detoxification mechanisms could explain, at least partially, the different sensitivity to Cd of two freshwater green algae, Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata. Subcellular Cd distribution and the synthesis of metal-binding thiolated peptides were thus examined in both algae exposed to a range of free [Cd 2+ ] from 0.7 to 253 nM. Cadmium partitioning among five subcellular fractions (cellular debris, granules, organelles, heat-denaturable proteins - HDP, and heat-stable proteins - HSP) was determined after differential centrifugation of algal homogenates. Thiolated-peptides, phytochelatins (PC n ) and precursors, were analyzed by HPLC with pre-column monobromobimane derivatization. Cadmium accumulation per cell was 2-4 times greater for C. reinhardtii than for P. subcapitata, yet C. reinhardtii was more resistant to Cd with an EC 50 of 273 nM Cd 2+ [244-333 nM Cd 2+ CI 95% ]) compared to 127 nM Cd 2+ [111-143 nM Cd 2+ CI 95% ] for P. subcapitata. Although [Cd] generally increased in the organelle fractions when free [Cd 2+ ] increased in the experimental media, their relative contributions to the total Cd cellular content decreased, suggesting that partial protection of some metal sensitive sites was achieved by the initiation of cellular detoxification mechanisms. An increase in the proportion of Cd in the granules fraction was observed for C. reinhardtii between 6 and 15 nM Cd 2+ (i.e., at [Cd 2+ ] n , but with longer oligomers for C. reinhardtii. Unknown thiolated compounds (X n ), which were not canonical or hydroxymethyl PC n , were also found in both algae but at much higher concentrations for C. reinhardtii than for P. subcapitata. This difference in thiol synthesis could also be involved in the higher Cd resistance of C. reinhardtii with respect to P. subcapitata. This study demonstrates the importance of metal detoxification strategies in explaining the Cd sensitivity of

  8. LHCSR Expression under HSP70/RBCS2 Promoter as a Strategy to Increase Productivity in Microalgae

    Directory of Open Access Journals (Sweden)

    Federico Perozeni

    2018-01-01

    Full Text Available Microalgae are unicellular photosynthetic organisms considered as potential alternative sources for biomass, biofuels or high value products. However, limited biomass productivity is commonly experienced in their cultivating system despite their high potential. One of the reasons for this limitation is the high thermal dissipation of the light absorbed by the outer layers of the cultures exposed to high light caused by the activation of a photoprotective mechanism called non-photochemical quenching (NPQ. In the model organism for green algae Chlamydomonas reinhardtii, NPQ is triggered by pigment binding proteins called light-harvesting-complexes-stress-related (LHCSRs, which are over-accumulated in high light. It was recently reported that biomass productivity can be increased both in microalgae and higher plants by properly tuning NPQ induction. In this work increased light use efficiency is reported by introducing in C. reinhardtii a LHCSR3 gene under the control of Heat Shock Protein 70/RUBISCO small chain 2 promoter in a npq4 lhcsr1 background, a mutant strain knockout for all LHCSR genes. This complementation strategy leads to a low expression of LHCSR3, causing a strong reduction of NPQ induction but is still capable of protecting from photodamage at high irradiance, resulting in an improved photosynthetic efficiency and higher biomass accumulation.

  9. LHCSR Expression under HSP70/RBCS2 Promoter as a Strategy to Increase Productivity in Microalgae.

    Science.gov (United States)

    Perozeni, Federico; Stella, Giulio Rocco; Ballottari, Matteo

    2018-01-05

    Microalgae are unicellular photosynthetic organisms considered as potential alternative sources for biomass, biofuels or high value products. However, limited biomass productivity is commonly experienced in their cultivating system despite their high potential. One of the reasons for this limitation is the high thermal dissipation of the light absorbed by the outer layers of the cultures exposed to high light caused by the activation of a photoprotective mechanism called non-photochemical quenching (NPQ). In the model organism for green algae Chlamydomonas reinhardtii , NPQ is triggered by pigment binding proteins called light-harvesting-complexes-stress-related (LHCSRs), which are over-accumulated in high light. It was recently reported that biomass productivity can be increased both in microalgae and higher plants by properly tuning NPQ induction. In this work increased light use efficiency is reported by introducing in C. reinhardtii a LHCSR3 gene under the control of Heat Shock Protein 70 / RUBISCO small chain 2 promoter in a npq4 lhcsr1 background, a mutant strain knockout for all LHCSR genes. This complementation strategy leads to a low expression of LHCSR3 , causing a strong reduction of NPQ induction but is still capable of protecting from photodamage at high irradiance, resulting in an improved photosynthetic efficiency and higher biomass accumulation.

  10. Mechanisms of IhERG/IKr Modulation by α1-Adrenoceptors in HEK293 Cells and Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Janire Urrutia

    2016-12-01

    Full Text Available Background: The rapid delayed rectifier K+ current (IKr, carried by the hERG protein, is one of the main repolarising currents in the human heart and a reduction of this current increases the risk of ventricular fibrillation. α1-adrenoceptors (α1-AR activation reduces IKr but, despite the clear relationship between an increase in the sympathetic tone and arrhythmias, the mechanisms underlying the α1-AR regulation of the hERG channel are controversial. Thus, we aimed to investigate the mechanisms by which α1-AR stimulation regulates IKr. Methods: α1-adrenoceptors, hERG channels, auxiliary subunits minK and MIRP1, the non PIP2-interacting mutant D-hERG (with a deletion of the 883-894 amino acids in the C-terminal and the non PKC-phosphorylable mutant N-terminal truncated-hERG (NTK-hERG were transfected in HEK293 cells. Cell membranes were extracted by centrifugation and the different proteins were visualized by Western blot. Potassium currents were recorded by the patch-clamp technique. IKr was recorded in isolated feline cardiac myocytes. Results: Activation of the α1-AR reduces the amplitude of IhERG and IKr through a positive shift in the activation half voltage, which reduces the channel availability at physiological membrane potentials. The intracellular pathway connecting the α1-AR to the hERG channel in HEK293 cells includes activation of the Gαq protein, PLC activation and PIP2 hydrolysis, activation of PKC and direct phosphorylation of the hERG channel N-terminal. The PKC-mediated IKr channel phosphorylation and subsequent IKr reduction after α1-AR stimulation was corroborated in feline cardiac myocytes. Conclusions: These findings clarify the link between sympathetic nervous system hyperactivity and IKr reduction, one of the best characterized causes of torsades de pointes and ventricular fibrillation.

  11. Role of the Rubisco small subunit. Final report for period May 1, 1997--April 30,2000

    Energy Technology Data Exchange (ETDEWEB)

    Spreitzer, Robert J.

    2000-10-04

    CO{sub 2} and O{sub 2} are mutually competitive at the active site of ribulose-1,5-biphosphate (RuBP) carboxylase/oxygenase (Rubisco). Rubisco contains two subunits, each present in eight copies. The 15-kD small subunit is coded by a family of nuclear RbcS genes. Until now, the role of the small subunit in Rubisco structure or catalytic efficiency is not known. Because of other work in eliminating the two RbcS genes in the green algo Chlamydomonas reinhardtii, it is now possible to address questions about the structure-function relationships of the eukaryotic small subunit. There are three specific aims in this project: (1) Alanine scanning mutagenesis is being used to dissect the importance of the {beta}A/{beta}B loop, a feature unique to the eukaryotic small subunit. (2) Random mutagenesis is being used to identify additional residues or regions of the small subunit that are important for holoenzyme assembly and function. (3) Attempts are being made to express foreign small subunits in Chlamydomonas to examine the contribution of small subunits to holoenzyme assembly, catalytic efficiency, and CO{sub 2}/O{sub 2} specificity.

  12. Evolution of an atypical de-epoxidase for photoprotection in the green lineage.

    Science.gov (United States)

    Li, Zhirong; Peers, Graham; Dent, Rachel M; Bai, Yong; Yang, Scarlett Y; Apel, Wiebke; Leonelli, Lauriebeth; Niyogi, Krishna K

    2016-09-12

    Plants, algae and cyanobacteria need to regulate photosynthetic light harvesting in response to the constantly changing light environment. Rapid adjustments are required to maintain fitness because of a trade-off between efficient solar energy conversion and photoprotection. The xanthophyll cycle, in which the carotenoid pigment violaxanthin is reversibly converted into zeaxanthin, is ubiquitous among green algae and plants and is necessary for the regulation of light harvesting, protection from oxidative stress and adaptation to different light conditions(1,2). Violaxanthin de-epoxidase (VDE) is the key enzyme responsible for zeaxanthin synthesis from violaxanthin under excess light. Here we show that the Chlorophycean VDE (CVDE) gene from the model green alga Chlamydomonas reinhardtii encodes an atypical VDE. This protein is not homologous to the VDE found in plants and is instead related to a lycopene cyclase from photosynthetic bacteria(3). Unlike the plant-type VDE that is located in the thylakoid lumen, the Chlamydomonas CVDE protein is located on the stromal side of the thylakoid membrane. Phylogenetic analysis suggests that CVDE evolved from an ancient de-epoxidase that was present in the common ancestor of green algae and plants, providing evidence of unexpected diversity in photoprotection in the green lineage.

  13. Rapid detection of ERG11 gene mutations in clinical Candida albicans isolates with reduced susceptibility to fluconazole by rolling circle amplification and DNA sequencing

    Directory of Open Access Journals (Sweden)

    Ellis David

    2009-08-01

    Full Text Available Abstract Background Amino acid substitutions in the target enzyme Erg11p of azole antifungals contribute to clinically-relevant azole resistance in Candida albicans. A simple molecular method for rapid detection of ERG11 gene mutations would be an advantage as a screening tool to identify potentially-resistant strains and to track their movement. To complement DNA sequencing, we developed a padlock probe and rolling circle amplification (RCA-based method to detect a series of mutations in the C. albicans ERG11 gene using "reference" azole-resistant isolates with known mutations. The method was then used to estimate the frequency of ERG11 mutations and their type in 25 Australian clinical C. albicans isolates with reduced susceptibility to fluconazole and in 23 fluconazole-susceptible isolates. RCA results were compared DNA sequencing. Results The RCA assay correctly identified all ERG11 mutations in eight "reference" C. albicans isolates. When applied to 48 test strains, the RCA method showed 100% agreement with DNA sequencing where an ERG11 mutation-specific probe was used. Of 20 different missense mutations detected by sequencing in 24 of 25 (96% isolates with reduced fluconazole susceptibility, 16 were detected by RCA. Five missense mutations were detected by both methods in 18 of 23 (78% fluconazole-susceptible strains. DNA sequencing revealed that mutations in non-susceptible isolates were all due to homozygous nucleotide changes. With the exception of the mutations leading to amino acid substitution E266D, those in fluconazole-susceptible strains were heterozygous. Amino acid substitutions common to both sets of isolates were D116E, E266D, K128T, V437I and V488I. Substitutions unique to isolates with reduced fluconazole susceptibility were G464 S (n = 4 isolates, G448E (n = 3, G307S (n = 3, K143R (n = 3 and Y123H, S405F and R467K (each n = 1. DNA sequencing revealed a novel substitution, G450V, in one isolate. Conclusion The sensitive RCA

  14. A DNA methylation microarray-based study identifies ERG as a gene commonly methylated in prostate cancer.

    Science.gov (United States)

    Schwartzman, Jacob; Mongoue-Tchokote, Solange; Gibbs, Angela; Gao, Lina; Corless, Christopher L; Jin, Jennifer; Zarour, Luai; Higano, Celestia; True, Lawrence D; Vessella, Robert L; Wilmot, Beth; Bottomly, Daniel; McWeeney, Shannon K; Bova, G Steven; Partin, Alan W; Mori, Motomi; Alumkal, Joshi

    2011-10-01

    DNA methylation of promoter regions is a common event in prostate cancer, one of the most common cancers in men worldwide. Because prior reports demonstrating that DNA methylation is important in prostate cancer studied a limited number of genes, we systematically quantified the DNA methylation status of 1505 CpG dinucleotides for 807 genes in 78 paraffin-embedded prostate cancer samples and three normal prostate samples. The ERG gene, commonly repressed in prostate cells in the absence of an oncogenic fusion to the TMPRSS2 gene, was one of the most commonly methylated genes, occurring in 74% of prostate cancer specimens. In an independent group of patient samples, we confirmed that ERG DNA methylation was common, occurring in 57% of specimens, and cancer-specific. The ERG promoter is marked by repressive chromatin marks mediated by polycomb proteins in both normal prostate cells and prostate cancer cells, which may explain ERG's predisposition to DNA methylation and the fact that tumors with ERG DNA methylation were more methylated, in general. These results demonstrate that bead arrays offer a high-throughput method to discover novel genes with promoter DNA methylation such as ERG, whose measurement may improve our ability to more accurately detect prostate cancer.

  15. [Fe]-hydrogenases in green algae: photo-fermentation and hydrogen evolution under sulfur deprivation

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, M.; Hemschemeier, A.; Happe, T. [Botanisches Institut der Universitat Bonn (Germany); Gotor, C. [CSIC y Universidad de Sevilla (Spain). Instituto de Bioquimica Vegetal y Fotosintesis; Melis, A. [University of California, Berkeley, CA (United States). Department of Plant and Microbial Biology

    2002-12-01

    Recent studies indicate that [Fe]-hydrogenases and H{sub 2} metabolism are widely distributed among green algae. The enzymes are simple structured and catalyze H{sub 2} evolution with similar rates than the more complex [Fe]-hydrogenases from bacteria. Different green algal species developed diverse strategies to survive under sulfur deprivation. Chlamydomonas reinhardtii evolves large quantities of hydrogen gas in the absence of sulfur. In a sealed culture of C. reinhardtii, the photosynthetic O{sub 2} evolution rate drops below the rate of respiratory O{sub 2} consumption due to a reversible inhibition of photosystem II, thus leading to an intracellular anaerobiosis. The algal cells survive under these anaerobic conditions by switching their metabolism to a kind of photo-fermentation. Although possessing a functional [Fe]-hydrogenase gene, the cells of Scenedesmus obliquus produce no significant amounts of H{sub 2} under S-depleted conditions. Biochemical analyses indicate that S. obliquus decreases almost the complete metabolic activities while maintaining a low level of respiratory activity. (author)

  16. Geospace exploration project: Arase (ERG)

    Science.gov (United States)

    Miyoshi, Y.; Kasaba, Y.; Shinohara, I.; Takashima, T.; Asamura, K.; Matsumoto, H.; Higashio, N.; Mitani, T.; Kasahara, S.; Yokota, S.; Wang, S.; Kazama, Y.; Kasahara, Y.; Yagitani, S.; Matsuoka, A.; Kojima, H.; Katoh, Y.; Shiokawa, K.; Seki, K.; Fujimoto, M.; Ono, T.; ERG project Group

    2017-06-01

    The ERG (Exploration of energization and Radiation in Geospace) is Japanese geospace exploration project. The project focuses on relativistic electron acceleration mechanism of the outer belt and dynamics of space storms in the context of the cross-energy coupling via wave-particle interactions. The project consists of the satellite observation team, the ground-based network observation team, and integrated-data analysis/simulation team. The satellite was launched on December 20 2016 and has been nicknamed, “Arase”. This paper describes overview of the project and future plan for observations.

  17. Concurrent nuclear ERG and MYC protein overexpression defines a subset of locally advanced prostate cancer: Potential opportunities for synergistic targeted therapeutics.

    Science.gov (United States)

    Udager, Aaron M; DeMarzo, Angelo M; Shi, Yang; Hicks, Jessica L; Cao, Xuhong; Siddiqui, Javed; Jiang, Hui; Chinnaiyan, Arul M; Mehra, Rohit

    2016-06-01

    Recurrent ERG gene fusions, the most common genetic alterations in prostate cancer, drive overexpression of the nuclear transcription factor ERG, and are early clonal events in prostate cancer progression. The nuclear transcription factor MYC is also frequently overexpressed in prostate cancer and may play a role in tumor initiation and/or progression. The relationship between nuclear ERG and MYC protein overexpression in prostate cancer, as well as the clinicopathologic characteristics and prognosis of ERG-positive/MYC high tumors, is not well understood. Immunohistochemistry (IHC) for ERG and MYC was performed on formalin-fixed, paraffin-embedded tissue from prostate cancer tissue microarrays (TMAs), and nuclear staining was scored semi-quantitatively (IHC product score range = 0-300). Correlation between nuclear ERG and MYC protein expression and association with clinicopathologic parameters and biochemical recurrence after radical prostatectomy was assessed. 29.1% of all tumor nodules showed concurrent nuclear ERG and MYC protein overexpression (i.e., ERG-positive/MYC high), including 35.0% of secondary nodules. Overall, there was weak positive correlation between ERG and MYC expression across all tumor nodules (rpb  = 0.149, P = 0.045), although this correlation was strongest in secondary nodules (rpb  = 0.520, P = 0.019). In radical prostatectomy specimens, ERG-positive/MYC high tumors were positively associated with the presence of extraprostatic extension (EPE), relative to all other ERG/MYC expression subgroups, however, there was no significant association between concurrent nuclear ERG and MYC protein overexpression and time to biochemical recurrence. Concurrent nuclear ERG and MYC protein overexpression is common in prostate cancer and defines a subset of locally advanced tumors. Recent data indicates that BET bromodomain proteins regulate ERG gene fusion and MYC gene expression in prostate cancer, suggesting possible synergistic

  18. Developing a PTEN-ERG Signature to Improve Molecular Risk Stratification in Prostate Cancer

    Science.gov (United States)

    2017-10-01

    performed exploratory data analysis on all clinically annotated prostate cancer datasets available from the public domain and through the collaboration...with GenomeDX. We used statistical summaries and data visualizations techniques (e.g., principal component analysis , hierarchical clustering) to...associated with PTEN loss on genetically homogeneous ERG-positive and ERG- negative backgrounds. Timeline (Months) Major Task 2: Perform CAGE analysis

  19. Overcoming hERG affinity in the discovery of maraviroc; a CCR5 antagonist for the treatment of HIV.

    Science.gov (United States)

    Price, David A; Armour, Duncan; de Groot, Marcel; Leishman, Derek; Napier, Carolyn; Perros, Manos; Stammen, Blanda L; Wood, Anthony

    2008-01-01

    Avoiding cardiac liability associated with blockade of hERG (human ether a go-go) is key for successful drug discovery and development. This paper describes the work undertaken in the discovery of a potent CCR5 antagonist, maraviroc 34, for the treatment of HIV. In particular the use of a pharmacophore model of the hERG channel and a high throughput binding assay for the hERG channel are described that were critical to elucidate SAR to overcome hERG liabilities. The key SAR involves the introduction of polar substituents into regions of the molecule where it is postulated to undergo hydrophobic interactions with the ion channel. Within the CCR5 project there appeared to be no strong correlation between hERG affinity and physiochemical parameters such as pKa or lipophilicity. It is believed that chemists could apply these same strategies early in drug discovery to remove hERG interactions associated with lead compounds while retaining potency at the primary target.

  20. Differential expression of hERG1 channel isoforms reproduces properties of native I(Kr) and modulates cardiac action potential characteristics

    DEFF Research Database (Denmark)

    Larsen, Anders Peter; Olesen, Søren-Peter

    2010-01-01

    The repolarizing cardiac rapid delayed rectifier current, I(Kr), is composed of ERG1 channels. It has been suggested that two isoforms of the ERG1 protein, ERG1a and ERG1b, both contribute to I(Kr). Marked heterogeneity in the kinetic properties of native I(Kr) has been described. We hypothesized...

  1. TMPRSS2-ERG gene fusions are infrequent in prostatic ductal adenocarcinomas.

    Science.gov (United States)

    Lotan, Tamara L; Toubaji, Antoun; Albadine, Roula; Latour, Mathieu; Herawi, Mehsati; Meeker, Alan K; DeMarzo, Angelo M; Platz, Elizabeth A; Epstein, Jonathan I; Netto, George J

    2009-03-01

    Ductal adenocarcinoma of the prostate is an unusual subtype that may be associated with a more aggressive clinical course, and is less responsive to conventional therapies than the more common prostatic acinar adenocarcinoma. However, given its frequent association with an acinar component at prostatectomy, some have challenged the concept of prostatic ductal adenocarcinoma as a distinct clinicopathologic entity. We studied the occurrence of the TMPRSS2-ERG gene fusion, in 40 surgically resected ductal adenocarcinoma cases, and in their associated acinar component using fluorescence in situ hybridization. A group of 38 'pure' acinar adenocarcinoma cases matched with the ductal adenocarcinoma group for pathological grade and stage was studied as a control. Compared with the matched acinar adenocarcinoma cases, the TMPRSS2-ERG gene fusion was significantly less frequently observed in ductal adenocarcinoma (45 vs 11% of cases, P=0.002, Fisher's exact test). Here, of the ductal adenocarcinoma cases with the gene fusion, 75% were fused through deletion, and the remaining case was fused through translocation. The TMPRSS2-ERG gene fusion was also rare in the acinar component of mixed ductal-acinar tumors when compared with the pure acinar adenocarcinoma controls (5 vs 45%, P=0.001, Fisher's exact test). In 95% of the ductal adenocarcinoma cases in which a concurrent acinar component was analyzed, there was concordance for presence/absence of the TMPRSS2-ERG gene fusion between the different histologic subtypes. In the control group of pure acinar adenocarcinoma cases, 59% were fused through deletion and 41% were fused through translocation. The presence of the TMPRSS2-ERG gene fusion in some cases of prostatic ductal adenocarcinoma supports the concept that ductal adenocarcinoma and acinar adenocarcinoma may be related genetically. However, the significantly lower rate of the gene fusion in pure ductal adenocarcinoma cases underscores the fact that genetic and biologic

  2. Role of the pH in state-dependent blockade of hERG currents

    Science.gov (United States)

    Wang, Yibo; Guo, Jiqing; Perissinotti, Laura L.; Lees-Miller, James; Teng, Guoqi; Durdagi, Serdar; Duff, Henry J.; Noskov, Sergei Yu.

    2016-10-01

    Mutations that reduce inactivation of the voltage-gated Kv11.1 potassium channel (hERG) reduce binding for a number of blockers. State specific block of the inactivated state of hERG block may increase risks of drug-induced Torsade de pointes. In this study, molecular simulations of dofetilide binding to the previously developed and experimentally validated models of the hERG channel in open and open-inactivated states were combined with voltage-clamp experiments to unravel the mechanism(s) of state-dependent blockade. The computations of the free energy profiles associated with the drug block to its binding pocket in the intra-cavitary site display startling differences in the open and open-inactivated states of the channel. It was also found that drug ionization may play a crucial role in preferential targeting to the open-inactivated state of the pore domain. pH-dependent hERG blockade by dofetilie was studied with patch-clamp recordings. The results show that low pH increases the extent and speed of drug-induced block. Both experimental and computational findings indicate that binding to the open-inactivated state is of key importance to our understanding of the dofetilide’s mode of action.

  3. Biofiksasi CO2 Oleh Mikroalga Chlamydomonas sp dalam Photobioreaktor Tubular

    Directory of Open Access Journals (Sweden)

    Hadiyanto Hadiyanto

    2014-05-01

    Full Text Available Mikroalga memiliki potensi dalam membiofiksasi CO2 dan dapat dimanfaatkan untuk mengurangi kadar CO2 dalam gas pencemar. Pertumbuhan mikroalga sangat dipengaruhi oleh konsentrasi gas CO2 di dalam gas pencemar. Tujuan penelitian ini adalah untuk mengeetahui kemampuan mikroalga Chlamydomonas sp yang dikultivasi dalam photobioreaktor tubular dalam penyerapan gas CO2 serta untuk mengetahui konsentrasi maksimum gas CO2 dalam umpan untuk memproduksi biomasa mikroalga yang optimal. Percobaan dilakukan dnegan memvariasi laju alir dari 0.03 -0.071 L/menit dan konsentrasi CO2 dalam umpan 10-30%. Hasil penelitian menunjukkan bahwa biomasa mikroalga dapat diproduksi dengan maksimal dengan konsentrasi gas CO2 20% dengan laju alir 0.07 L/min. Semakin tinggi laju alir maka produksi biomasa alga semakin besar. Kecepatan pertumbuhan alga maksimum terjadi pada 0.31 /hari. Pada konsentrasi gas CO2 30%, terjadi substrate inhibition yang disebabkan carbon dalam bentuk ion bicarbonate tidak dapat dikonsumsi lagi di dalam kultur alga. Kata kunci : Mikroalga, chlamydomonas sp, biofiksasi CO2, biogas Abstract Microalgae have a potential for CO2 biofixation and therefore can be used to reduce the CO2 concentration in the gas pollutants. Moreover, microalgae growth is strongly affected by the concentration of CO2 in the exhaust gas pollutants. The objective of this research was to investigate the ability of microalgae Chlamydomonas sp which was cultivated in a tubular photobioreactor for CO2 absorption as well as to determine the maximum concentration of CO2 in the feed gas to obtain optimum microalgae biomass. The experiments were performed by varying the gas flow rate of 0.03 -0.071 L / min and the concentration of CO2 in the feed of 10-30%. The results showed that the maximum biomass of microalgae can be produced with CO2 concentration of 20% vol with a flow rate of 0.07 L / min. The result also showed that increasing the gas flow rate, the greater of the production of

  4. A radiolabeled peptide ligand of the hERG channel, [125I]-BeKm-1

    DEFF Research Database (Denmark)

    Angelo, Kamilla; Korolkova, Yuliya V; Grunnet, Morten

    2003-01-01

    The wild-type scorpion toxin BeKm-1, which selectively blocks human ether-a-go-go related (hERG) channels, was radiolabeled with iodine at tyrosine 11. Both the mono- and di-iodinated derivatives were found to be biologically active. In electrophysiological patch-clamp recordings mono-[127I]-BeKm-1...... had a concentration of half-maximal inhibition (IC50 value) of 27 nM, while wild-type BeKm-1 inhibited hERG channels with an IC50 value of 7 nM. Mono-[125I]-BeKm-1 was found to bind in a concentration-dependent manner and with picomolar affinity to hERG channel protein in purified membrane vesicles...... of [125I]-BeKm-1 to the hERG channel to an IC50 of 7 nM. In autoradiographic studies on rat hearts, binding of [125I]-BeKm-1 was dose-dependent and could partially be displaced by the addition of excess amounts of non-radioactive BeKm-1. The density of the radioactive signal was equally distributed...

  5. Conservation of AtTZF1, AtTZF2 and AtTZF3 homolog gene regulation by salt stress in evolutionarily distant plant species

    Directory of Open Access Journals (Sweden)

    Fabio eD'Orso

    2015-06-01

    Full Text Available Arginine-rich tandem zinc-finger proteins (RR-TZF participate in a wide range of plant developmental processes and adaptive responses to abiotic stress, such as cold, salt and drought. This study investigates the conservation of the genes AtTZF1-5 at the level of their sequences and expression across plant species. The genomic sequences of the two RR-TZF genes TdTZF1-A and TdTZF1-B were isolated in durum wheat and assigned to chromosomes 3A and 3B, respectively. Sequence comparisons revealed that they encode proteins that are highly homologous to AtTZF1, AtTZF2 and AtTZF3. The expression profiles of these RR-TZF durum wheat and Arabidopsis proteins support a common function in the regulation of seed germination and responses to abiotic stress. In particular, analysis of plants with attenuated and overexpressed AtTZF3 indicate that AtTZF3 is a negative regulator of seed germination under conditions of salt stress. Finally, comparative sequence analyses establish that the RR-TZF genes are encoded by lower plants, including the bryophyte Physcomitrella patens and the alga Chlamydomonas reinhardtii. The regulation of the Physcomitrella AtTZF1-2-3-like genes by salt stress strongly suggests that a subgroup of the RR-TZF proteins has a function that has been conserved throughout evolution.

  6. ERG review of ''draft test plan for in situ testing in an exploratory shaft in salt - March 1985''

    International Nuclear Information System (INIS)

    Byrne, R.J.

    1986-08-01

    The Engineering Review Group (ERG) was established by the Office of Nuclear Waste Isolation (ONWI) to help evaluate engineering-related issues in the US Department of Energy's nuclear waste repository program. The May 1985 meeting of the ERG reviewed the proposed program which constitutes part of the overall effort to determine site suitability, provide data for repository design and performance assessment, and prepare licensing documentation for radioactive waste disposal in salt. This report documents the ERG's comments and recommendations on these subjects and the ONWI response, prepared by Golder Associates, Inc., to the specific points raised by the ERG

  7. Comparative genomics in Chlamydomonas and Plasmodium identifies an ancient nuclear envelope protein family essential for sexual reproduction in protists, fungi, plants, and vertebrates.

    Science.gov (United States)

    Ning, Jue; Otto, Thomas D; Pfander, Claudia; Schwach, Frank; Brochet, Mathieu; Bushell, Ellen; Goulding, David; Sanders, Mandy; Lefebvre, Paul A; Pei, Jimin; Grishin, Nick V; Vanderlaan, Gary; Billker, Oliver; Snell, William J

    2013-05-15

    Fertilization is a crucial yet poorly characterized event in eukaryotes. Our previous discovery that the broadly conserved protein HAP2 (GCS1) functioned in gamete membrane fusion in the unicellular green alga Chlamydomonas and the malaria pathogen Plasmodium led us to exploit the rare biological phenomenon of isogamy in Chlamydomonas in a comparative transcriptomics strategy to uncover additional conserved sexual reproduction genes. All previously identified Chlamydomonas fertilization-essential genes fell into related clusters based on their expression patterns. Out of several conserved genes in a minus gamete cluster, we focused on Cre06.g280600, an ortholog of the fertilization-related Arabidopsis GEX1. Gene disruption, cell biological, and immunolocalization studies show that CrGEX1 functions in nuclear fusion in Chlamydomonas. Moreover, CrGEX1 and its Plasmodium ortholog, PBANKA_113980, are essential for production of viable meiotic progeny in both organisms and thus for mosquito transmission of malaria. Remarkably, we discovered that the genes are members of a large, previously unrecognized family whose first-characterized member, KAR5, is essential for nuclear fusion during yeast sexual reproduction. Our comparative transcriptomics approach provides a new resource for studying sexual development and demonstrates that exploiting the data can lead to the discovery of novel biology that is conserved across distant taxa.

  8. Process and reactor design for biophotolytic hydrogen production.

    Science.gov (United States)

    Tamburic, Bojan; Dechatiwongse, Pongsathorn; Zemichael, Fessehaye W; Maitland, Geoffrey C; Hellgardt, Klaus

    2013-07-14

    The green alga Chlamydomonas reinhardtii has the ability to produce molecular hydrogen (H2), a clean and renewable fuel, through the biophotolysis of water under sulphur-deprived anaerobic conditions. The aim of this study was to advance the development of a practical and scalable biophotolytic H2 production process. Experiments were carried out using a purpose-built flat-plate photobioreactor, designed to facilitate green algal H2 production at the laboratory scale and equipped with a membrane-inlet mass spectrometry system to accurately measure H2 production rates in real time. The nutrient control method of sulphur deprivation was used to achieve spontaneous H2 production following algal growth. Sulphur dilution and sulphur feed techniques were used to extend algal lifetime in order to increase the duration of H2 production. The sulphur dilution technique proved effective at encouraging cyclic H2 production, resulting in alternating Chlamydomonas reinhardtii recovery and H2 production stages. The sulphur feed technique enabled photobioreactor operation in chemostat mode, resulting in a small improvement in H2 production duration. A conceptual design for a large-scale photobioreactor was proposed based on these experimental results. This photobioreactor has the capacity to enable continuous and economical H2 and biomass production using green algae. The success of these complementary approaches demonstrate that engineering advances can lead to improvements in the scalability and affordability of biophotolytic H2 production, giving increased confidence that H2 can fulfil its potential as a sustainable fuel of the future.

  9. Modeling of the hERG K+ Channel Blockage Using Online Chemical Database and Modeling Environment (OCHEM).

    Science.gov (United States)

    Li, Xiao; Zhang, Yuan; Li, Huanhuan; Zhao, Yong

    2017-12-01

    Human ether-a-go-go related gene (hERG) K+ channel plays an important role in cardiac action potential. Blockage of hERG channel may result in long QT syndrome (LQTS), even cause sudden cardiac death. Many drugs have been withdrawn from the market because of the serious hERG-related cardiotoxicity. Therefore, it is quite essential to estimate the chemical blockage of hERG in the early stage of drug discovery. In this study, a diverse set of 3721 compounds with hERG inhibition data was assembled from literature. Then, we make full use of the Online Chemical Modeling Environment (OCHEM), which supplies rich machine learning methods and descriptor sets, to build a series of classification models for hERG blockage. We also generated two consensus models based on the top-performing individual models. The consensus models performed much better than the individual models both on 5-fold cross validation and external validation. Especially, consensus model II yielded the prediction accuracy of 89.5 % and MCC of 0.670 on external validation. This result indicated that the predictive power of consensus model II should be stronger than most of the previously reported models. The 17 top-performing individual models and the consensus models and the data sets used for model development are available at https://ochem.eu/article/103592. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Developing a PTEN-ERG Signature to Improve Molecular Risk Stratification in Prostate Cancer

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0737 TITLE: Developing a PTEN-ERG Signature to Improve Molecular Risk Stratification in Prostate Cancer PRINCIPAL...AND SUBTITLE 5a. CONTRACT NUMBER Developing a PTEN-ERG Signature to Improve Molecular Risk Stratification in Prostate Cancer 5b. GRANT NUMBER W81XWH...that there exist distinctive molecular correlates of PTEN loss in the context of ETS-negative versus ETS-positive human prostate cancers and that

  11. ERG Protein Expression in Diagnostic Specimens Is Associated with Increased Risk of Progression During Active Surveillance for Prostate Cancer

    DEFF Research Database (Denmark)

    Berg, Kasper Drimer; Vainer, Ben; Thomsen, Frederik Birkebæk

    2014-01-01

    with a ready-to-use kit (anti-ERG, EPR3864). Men were characterised as ERG positive if a minimum of one tumour focus demonstrated ERG expression. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Overall AS progression was defined as clinical progression: increased clinical tumour category ≥cT2b by digital rectal...

  12. A Method for Microalgae Proteomics Analysis Based on Modified Filter-Aided Sample Preparation.

    Science.gov (United States)

    Li, Song; Cao, Xupeng; Wang, Yan; Zhu, Zhen; Zhang, Haowei; Xue, Song; Tian, Jing

    2017-11-01

    With the fast development of microalgal biofuel researches, the proteomics studies of microalgae increased quickly. A filter-aided sample preparation (FASP) method is widely used proteomics sample preparation method since 2009. Here, a method of microalgae proteomics analysis based on modified filter-aided sample preparation (mFASP) was described to meet the characteristics of microalgae cells and eliminate the error caused by over-alkylation. Using Chlamydomonas reinhardtii as the model, the prepared sample was tested by standard LC-MS/MS and compared with the previous reports. The results showed mFASP is suitable for most of occasions of microalgae proteomics studies.

  13. Changes in cortical cytoskeletal and extracellular matrix gene expression in prostate cancer are related to oncogenic ERG deregulation

    International Nuclear Information System (INIS)

    Schulz, Wolfgang A; Ingenwerth, Marc; Djuidje, Carolle E; Hader, Christiane; Rahnenführer, Jörg; Engers, Rainer

    2010-01-01

    The cortical cytoskeleton network connects the actin cytoskeleton to various membrane proteins, influencing cell adhesion, polarity, migration and response to extracellular signals. Previous studies have suggested changes in the expression of specific components in prostate cancer, especially of 4.1 proteins (encoded by EPB41 genes) which form nodes in this network. Expression of EPB41L1, EPB41L2, EPB41L3 (protein: 4.1B), EPB41L4B (EHM2), EPB41L5, EPB49 (dematin), VIL2 (ezrin), and DLG1 (summarized as „cortical cytoskeleton' genes) as well as ERG was measured by quantitative RT-PCR in a well-characterized set of 45 M0 prostate adenocarcinoma and 13 benign tissues. Hypermethylation of EPB41L3 and GSTP1 was compared in 93 cancer tissues by methylation-specific PCR. Expression of 4.1B was further studied by immunohistochemistry. EPB41L1 and EPB41L3 were significantly downregulated and EPB41L4B was upregulated in cancer tissues. Low EPB41L1 or high EPB41L4B expression were associated with earlier biochemical recurrence. None of the other cortical cytoskeleton genes displayed expression changes, in particular EPB49 and VIL2, despite hints from previous studies. EPB41L3 downregulation was significantly associated with hypermethylation of its promoter and strongly correlated with GSTP1 hypermethylation. Protein 4.1B was detected most strongly in the basal cells of normal prostate epithelia. Its expression in carcinoma cells was similar to the weaker one in normal luminal cells. EPB41L3 downregulation and EPB41L4B upregulation were essentially restricted to the 22 cases with ERG overexpression. Expression changes in EPB41L3 and EPB41L4B closely paralleled those previously observed for the extracellular matrix genes FBLN1 and SPOCK1, respectively. Specific changes in the cortical cytoskeleton were observed during prostate cancer progression. They parallel changes in the expression of extracellular matrix components and all together appear to be associated with

  14. Clonal Evaluation of Prostate Cancer by ERG/SPINK1 Status to Improve Prognosis Prediction

    Science.gov (United States)

    2017-12-01

    19 NIH Exploiting drivers of androgen receptor signaling negative prostate cancer for precision medicine Goal(s): Identify novel potential drivers...AWARD NUMBER: W81XWH-14-1-0466 TITLE: Clonal evaluation of prostate cancer by ERG/SPINK1 status to improve prognosis prediction PRINCIPAL...Sept 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Clonal Evaluation of Prostate Cancer by ERG/SPINK1 Status to Improve Prognosis Prediction 5b

  15. Interaction between the cardiac rapidly (IKr) and slowly (IKs) activating delayed rectifier potassium channels revealed by low K+-induced hERG endocytic degradation.

    Science.gov (United States)

    Guo, Jun; Wang, Tingzhong; Yang, Tonghua; Xu, Jianmin; Li, Wentao; Fridman, Michael D; Fisher, John T; Zhang, Shetuan

    2011-10-07

    Cardiac repolarization is controlled by the rapidly (I(Kr)) and slowly (I(Ks)) activating delayed rectifier potassium channels. The human ether-a-go-go-related gene (hERG) encodes I(Kr), whereas KCNQ1 and KCNE1 together encode I(Ks). Decreases in I(Kr) or I(Ks) cause long QT syndrome (LQTS), a cardiac disorder with a high risk of sudden death. A reduction in extracellular K(+) concentration ([K(+)](o)) induces LQTS and selectively causes endocytic degradation of mature hERG channels from the plasma membrane. In the present study, we investigated whether I(Ks) compensates for the reduced I(Kr) under low K(+) conditions. Our data show that when hERG and KCNQ1 were expressed separately in human embryonic kidney (HEK) cells, exposure to 0 mM K(+) for 6 h completely eliminated the mature hERG channel expression but had no effect on KCNQ1. When hERG and KCNQ1 were co-expressed, KCNQ1 significantly delayed 0 mM K(+)-induced hERG reduction. Also, hERG degradation led to a significant reduction in KCNQ1 in 0 mM K(+) conditions. An interaction between hERG and KCNQ1 was identified in hERG+KCNQ1-expressing HEK cells. Furthermore, KCNQ1 preferentially co-immunoprecipitated with mature hERG channels that are localized in the plasma membrane. Biophysical and pharmacological analyses indicate that although hERG and KCNQ1 closely interact with each other, they form distinct hERG and KCNQ1 channels. These data extend our understanding of delayed rectifier potassium channel trafficking and regulation, as well as the pathology of LQTS.

  16. Targeting TMPRSS2-ERG in Prostate Cancer

    Science.gov (United States)

    2017-11-01

    AWARD NUMBER: W81XWH-13-1-0212 TITLE: Targeting TMPRSS2-ERG in Prostate Cancer PRINCIPAL INVESTIGATOR: David Takeda CONTRACTING...ORGANIZATION: Dana-Farber Cancer Institute Boston, MA 02215 REPORT DATE: November 2017 TYPE OF REPORT: Final PREPARED FOR: U.S. Army Medical Research...Prostate Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-13-1-0212 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) David Takeda 5d. PROJECT NUMBER 5e

  17. Exclusion of aldose reductase as a mediator of ERG deficits in a mouse model of diabetic eye disease.

    Science.gov (United States)

    Samuels, Ivy S; Lee, Chieh-Allen; Petrash, J Mark; Peachey, Neal S; Kern, Timothy S

    2012-11-01

    Streptozotocin (STZ)-induced diabetes is associated with reductions in the electrical response of the outer retina and retinal pigment epithelium (RPE) to light. Aldose reductase (AR) is the first enzyme required in the polyol-mediated metabolism of glucose, and AR inhibitors have been shown to improve diabetes-induced electroretinogram (ERG) defects. Here, we used control and AR -/- mice to determine if genetic inactivation of this enzyme likewise inhibits retinal electrophysiological defects observed in a mouse model of type 1 diabetes. STZ was used to induce hyperglycemia and type 1 diabetes. Diabetic and age-matched nondiabetic controls of each genotype were maintained for 22 weeks, after which ERGs were used to measure the light-evoked components of the RPE (dc-ERG) and the neural retina (a-wave, b-wave). In comparison to their nondiabetic controls, wildtype (WT) and AR -/- diabetic mice displayed significant decreases in the c-wave, fast oscillation, and off response components of the dc-ERG but not in the light peak response. Nondiabetic AR -/- mice displayed larger ERG component amplitudes than did nondiabetic WT mice; however, the amplitude of dc-ERG components in diabetic AR -/- animals were similar to WT diabetics. ERG a-wave amplitudes were not reduced in either diabetic group, but b-wave amplitudes were lower in WT and AR -/-diabetic mice. These findings demonstrate that the light-induced responses of the RPE and outer retina are disrupted in diabetic mice, but these defects are not due to photoreceptor dysfunction, nor are they ameliorated by deletion of AR. This latter finding suggests that benefits observed in other studies utilizing pharmacological inhibitors of AR might have been secondary to off-target effects of the drugs.

  18. Evaluation of three herbicide resistance genes for use in genetic transformations and for potential crop protection in algae production.

    Science.gov (United States)

    Brueggeman, Andrew J; Kuehler, Daniel; Weeks, Donald P

    2014-09-01

    Genes conferring resistance to the herbicides glyphosate, oxyfluorfen and norflurazon were developed and tested for use as dominant selectable markers in genetic transformation of Chlamydomonas reinhardtii and as potential tools for the protection of commercial-scale algal production facilities against contamination by organisms sensitive to these broad-spectrum herbicides. A synthetic glyphosate acetyltransferase (GAT) gene, when fitted with a strong Chlamydomonas promoter, conferred a 2.7×-fold increase in tolerance to the EPSPS inhibitor, glyphosate, in transgenic cells compared with progenitor WT cells. A mutant Chlamydomonas protoporphyrinogen oxidase (protox, PPO) gene previously shown to produce an enzyme insensitive to PPO-inhibiting herbicides, when genetically engineered, generated transgenic cells able to tolerate up to 136× higher levels of the PPO inhibitor, oxyfluorfen, than nontransformed cells. Genetic modification of the Chlamydomonas phytoene desaturase (PDS) gene-based gene sequences found in various norflurazon-resistant organisms allowed production of transgenic cells tolerant to 40× higher levels of norflurazon than nontransgenic cells. The high efficiency of all three herbicide resistance genes in producing transgenic cells demonstrated their suitability as dominant selectable markers for genetic transformation of Chlamydomonas and, potentially, other eukaryotic algae. However, the requirement for high concentrations of glyphosate and its associated negative effects on cell growth rates preclude its consideration for use in large-scale production facilities. In contrast, only low doses of norflurazon and oxyfluorfen (~1.5 μm and ~0.1 μm, respectively) are required for inhibition of cell growth, suggesting that these two herbicides may prove effective in large-scale algal production facilities in suppressing growth of organisms sensitive to these herbicides. © 2014 Society for Experimental Biology, Association of Applied Biologists and

  19. PCR-identification of a Nicotiana plumbaginifolia cDNA homologous to the high-affinity nitrate transporters of the crnA family.

    Science.gov (United States)

    Quesada, A; Krapp, A; Trueman, L J; Daniel-Vedele, F; Fernández, E; Forde, B G; Caboche, M

    1997-05-01

    A family of high-affinity nitrate transporters has been identified in Aspergillus nidulans and Chlamydomonas reinhardtii, and recently homologues of this family have been cloned from a higher plant (barley). Based on six of the peptide sequences most strongly conserved between the barley and C. reinhardtii polypeptides, a set of degenerate primers was designed to permit amplification of the corresponding genes from other plant species. The utility of these primers was demonstrated by RT-PCR with cDNA made from poly(A)+ RNA from barley, C. reinhardtii and Nicotiana plumbaginifolia. A PCR fragment amplified from N. plumbaginifolia was used as probe to isolate a full-length cDNA clone which encodes a protein, NRT2;1Np, that is closely related to the previously isolated crnA homologue from barley. Genomic Southern blots indicated that there are only 1 or 2 members of the Nrt2 gene family in N. plumbaginifolia. Northern blotting showed that the Nrt2 transcripts are most strongly expressed in roots. The effects of external treatments with different N sources showed that the regulation of the Nrt2 gene(s) is very similar to that reported for nitrate reductase and nitrite reductase genes: their expression was strongly induced by nitrate but was repressed when reduced forms of N were supplied to the roots.

  20. Cyclobutane pyrimidine dimers photolyase from extremophilic microalga: Remarkable UVB resistance and efficient DNA damage repair

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chongjie [Key Laboratory of Marine Bioactive Substance, The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061 (China); Ma, Li [Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Mou, Shanli [Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao (China); Wang, Yibin, E-mail: wangyibin@fio.org.cn [Key Laboratory of Marine Bioactive Substance, The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061 (China); Zheng, Zhou; Liu, Fangming; Qi, Xiaoqing; An, Meiling; Chen, Hao [Key Laboratory of Marine Bioactive Substance, The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061 (China); Miao, Jinlai, E-mail: miaojinlai@163.com [Key Laboratory of Marine Bioactive Substance, The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061 (China); State Key Laboratory of Biological Fermentation Engineering of Beer (In Preparation), Qingdao (China)

    2015-03-15

    Highlights: • Chlamydomonas sp. ICE-L photolyase gene PHR2 is first cloned and expressed in E. coli. • PHR2 complemented E. coli could efficiently survival from UV radiation. • Expressed PHR2 photolyase has distinct photo-reactivation activity in vitro. - Abstract: Bacteria living in the Antarctic region have developed several adaptive features for growth and survival under extreme conditions. Chlamydomonas sp. ICE-Lis well adapted to high levels of solar UV radiation. A putative photolyase was identified in the Chlamydomonas sp. ICE-L transcriptome. The complete cDNA sequence was obtained by RACE-PCR. This PHR encoding includes a polypeptide of 579 amino acids with clear photolyase signatures belonging to class II CPD-photolyases, sharing a high degree of homology with Chlamydomonas reinhardtii (68%). Real-time PCR was performed to investigate the potential DNA damage and responses following UVB exposure. CPD photolyase mRNA expression level increased over 50-fold in response to UVB radiation for 6 h. Using photolyase complementation assay, we demonstrated that DNA photolyase increased photo-repair more than 116-fold in Escherichia coli strain SY2 under 100 μw/cm{sup 2} UVB radiation. To determine whether photolyase is active in vitro, CPD photolyase was over-expressed. It was shown that pyrimidine dimers were split by the action of PHR2. This study reports the unique structure and high activity of the enzyme. These findings are relevant for further understanding of molecular mechanisms of photo-reactivation, and will accelerate the utilization of photolyase in the medical field.

  1. Cyclobutane pyrimidine dimers photolyase from extremophilic microalga: Remarkable UVB resistance and efficient DNA damage repair

    International Nuclear Information System (INIS)

    Li, Chongjie; Ma, Li; Mou, Shanli; Wang, Yibin; Zheng, Zhou; Liu, Fangming; Qi, Xiaoqing; An, Meiling; Chen, Hao; Miao, Jinlai

    2015-01-01

    Highlights: • Chlamydomonas sp. ICE-L photolyase gene PHR2 is first cloned and expressed in E. coli. • PHR2 complemented E. coli could efficiently survival from UV radiation. • Expressed PHR2 photolyase has distinct photo-reactivation activity in vitro. - Abstract: Bacteria living in the Antarctic region have developed several adaptive features for growth and survival under extreme conditions. Chlamydomonas sp. ICE-Lis well adapted to high levels of solar UV radiation. A putative photolyase was identified in the Chlamydomonas sp. ICE-L transcriptome. The complete cDNA sequence was obtained by RACE-PCR. This PHR encoding includes a polypeptide of 579 amino acids with clear photolyase signatures belonging to class II CPD-photolyases, sharing a high degree of homology with Chlamydomonas reinhardtii (68%). Real-time PCR was performed to investigate the potential DNA damage and responses following UVB exposure. CPD photolyase mRNA expression level increased over 50-fold in response to UVB radiation for 6 h. Using photolyase complementation assay, we demonstrated that DNA photolyase increased photo-repair more than 116-fold in Escherichia coli strain SY2 under 100 μw/cm 2 UVB radiation. To determine whether photolyase is active in vitro, CPD photolyase was over-expressed. It was shown that pyrimidine dimers were split by the action of PHR2. This study reports the unique structure and high activity of the enzyme. These findings are relevant for further understanding of molecular mechanisms of photo-reactivation, and will accelerate the utilization of photolyase in the medical field

  2. Is chloroplastic class IIA aldolase a marine enzyme?

    Science.gov (United States)

    Miyasaka, Hitoshi; Ogata, Takeru; Tanaka, Satoshi; Ohama, Takeshi; Kano, Sanae; Kazuhiro, Fujiwara; Hayashi, Shuhei; Yamamoto, Shinjiro; Takahashi, Hiro; Matsuura, Hideyuki; Hirata, Kazumasa

    2016-01-01

    Expressed sequence tag analyses revealed that two marine Chlorophyceae green algae, Chlamydomonas sp. W80 and Chlamydomonas sp. HS5, contain genes coding for chloroplastic class IIA aldolase (fructose-1, 6-bisphosphate aldolase: FBA). These genes show robust monophyly with those of the marine Prasinophyceae algae genera Micromonas, Ostreococcus and Bathycoccus, indicating that the acquisition of this gene through horizontal gene transfer by an ancestor of the green algal lineage occurred prior to the divergence of the core chlorophytes (Chlorophyceae and Trebouxiophyceae) and the prasinophytes. The absence of this gene in some freshwater chlorophytes, such as Chlamydomonas reinhardtii, Volvox carteri, Chlorella vulgaris, Chlorella variabilis and Coccomyxa subellipsoidea, can therefore be explained by the loss of this gene somewhere in the evolutionary process. Our survey on the distribution of this gene in genomic and transcriptome databases suggests that this gene occurs almost exclusively in marine algae, with a few exceptions, and as such, we propose that chloroplastic class IIA FBA is a marine environment-adapted enzyme. This hypothesis was also experimentally tested using Chlamydomonas W80, for which we found that the transcript levels of this gene to be significantly lower under low-salt (that is, simulated terrestrial) conditions. Expression analyses of transcriptome data for two algae, Prymnesium parvum and Emiliania huxleyi, taken from the Sequence Read Archive database also indicated that the expression of this gene under terrestrial conditions (low NaCl and low sulfate) is significantly downregulated. Thus, these experimental and transcriptome data provide support for our hypothesis. PMID:27058504

  3. Web 2.0 Dienste als Ergänzung zu algorithmischen Suchmaschinen

    CERN Document Server

    Deutschland. Bundesministerium für Wirtschaft und Technologie; Maas, Christian

    2008-01-01

    Dokumentiert die Ergebnisse des Fachprojekts "Einbingung von Frage-Antwort-Diensten in die Web-Suche", Wintersemester 2007/2008, Dept. Information, Hochschule für angewandte Wissenschaften Hamburg. Mit sozialen Suchdiensten - wie z.B. Yahoo Clever, Lycos iQ oder Mister Wong - ist eine Ergänzung zu den bisherigen Ansätzen in der Web-Suche entstanden. Während Google und Co. automatisch generierte Trefferlisten bieten, binden soziale Suchdienste die Anwender zur Generierung der Suchergebnisse in den Suchprozess ein. Vor diesem Hintergrund wird in diesem Buch der Frage nachgegangen, inwieweit soziale Suchdienste mit traditionellen Suchmaschinen konkurrieren oder diese qualitativ ergänzen können. Der vorliegende Band beleuchtet die hier aufgeworfene Fragestellung aus verschiedenen Perspektiven, um auf die Bedeutung von sozialen Suchdiensten zu schließen.

  4. PASS Reference Set Application: Lin UW (2010) TMPRSS2-ERG-PCA-PASS — EDRN Public Portal

    Science.gov (United States)

    Active surveillance is used to manage low-risk prostate cancer. Both PCA3 and TMPRSS2:ERG are promising biomarkers that may be associated with aggressive disease. This study examines the correlation of these biomarkers with higher cancer volume and grade determined at the time of biopsy in an active surveillance cohort.

  5. Thermal behavior and ice-table depth within the north polar erg of Mars

    Science.gov (United States)

    Putzig, Nathaniel E.; Mellon, Michael T.; Herkenhoff, Kenneth E.; Phillips, Roger J.; Davis, Brian J.; Ewer, Kenneth J.; Bowers, Lauren M.

    2014-02-01

    We fully resolve a long-standing thermal discrepancy concerning the north polar erg of Mars. Several recent studies have shown that the erg's thermal properties are consistent with normal basaltic sand overlying shallow ground ice or ice-cemented sand. Our findings bolster that conclusion by thoroughly characterizing the thermal behavior of the erg, demonstrating that other likely forms of physical heterogeneity play only a minor role, and obviating the need to invoke exotic materials. Thermal inertia as calculated from orbital temperature observations of the dunes has previously been found to be more consistent with dust-sized materials than with sand. Since theory and laboratory data show that dunes will only form out of sand-sized particles, exotic sand-sized agglomerations of dust have been invoked to explain the low values of thermal inertia. However, the polar dunes exhibit the same darker appearance and color as that of dunes found elsewhere on the planet that have thermal inertia consistent with normal sand-sized basaltic grains, whereas Martian dust deposits are generally lighter and redder. The alternative explanation for the discrepancy as a thermal effect of a shallow ice table is supported by our analysis of observations from the Mars Global Surveyor Thermal Emission Spectrometer and the Mars Odyssey Thermal Emission Imaging System and by forward modeling of physical heterogeneity. In addition, our results exclude a uniform composition of dark dust-sized materials, and they show that the thermal effects of the dune slopes and bright interdune materials evident in high-resolution images cannot account for the erg's thermal behavior.

  6. Prognostic Significance of TMPRSS2-ERG Fusion Gene in Prostate Cancer

    Czech Academy of Sciences Publication Activity Database

    Kulda, V.; Topolčan, O.; Kučera, R.; Kripnerová, M.; Srbecká, K.; Hora, M.; Hes, O.; Klečka, J.; Babuška, V.; Rousárová, M.; Benson, Veronika; Pesta, M.

    2016-01-01

    Roč. 36, č. 7 (2016), s. 4787-4793 ISSN 0250-7005 Institutional support: RVO:61388971 Keywords : Prostate cancer * TMPRSS2-ERG * PSA Subject RIV: FD - Oncology ; Hematology Impact factor: 1.937, year: 2016

  7. Radiocesium bioaccumulation in freshwater plankton: Influences of cation concentrations (K+ and Na+) on direct uptake of 137Cs in Chlamydomonas, Scenedesmus and Daphnia. Food-chain transfer of 137Cs from Chlamydomonas to Daphnia at different K+ concentrations

    International Nuclear Information System (INIS)

    Hagstroem, J.

    2002-01-01

    The influences of cation concentrations (K + and Na + ) on radiocesium ( 137 Cs) bioaccumulation in two freshwater phytoplankton species (Scenedesmus quadricauda and Chlamydomonas noctigama) were systematically investigated in batch-cultures monitored during two weeks. Both species were cultured at 9 μE M -2 s -1 constant illumination at 20 deg. C. The exponential growth phase lasted for more than 100 hours (μ ≅ 0.02 h -1 for C. noctigama and 0.03 h -1 for S, quadricauda). Over cation concentration ranges encountered in natural fresh waters ([K + ] from 0.1 μM to 3 mM, [Na + ] from 20 μM to 3 mM), a more than three order of magnitude variation was found for both intake rate and observed bioconcentration factors (BCF) at apparent steady-state (from less than 10 3 to 10 6 L (kg C) -1 ). For both species, the major effector on BCF and uptake rate was external [K + ], which was inversely proportional to these parameters over wide ranges (1-1000 μM for S. quadricauda and 0.1 to 300 μM for C. noctigama). At concentrations above these ranges K + still reduced 137 Cs bio-uptake, but less effectively. A minor influence of external [Na + ] on 137 Cs bioaccumulation was indicated for S. quadricauda, whereas no such influence was significant for C. noctigama. A biphasic pattern for 137 Cs bioaccumulation was discovered in C. noctigama. A rapid 'quasi-steady state' with an effective equilibration time of less than 100 hours was approached during the exponential growth phase. A surge in the uptake occurred when exponential growth ceased, and this pattern was consistent over the range 30 μM to 1.4 mM external [K + ]. Since depletion of external [K + ] was not detected for these treatments, this pattern can only be explained if there are at least two different cellular compartments involved. Although less certain, a second steady-state BCF appeared within two weeks, which seems to be up to one order of magnitude higher than the first. Microcosm experiments with the

  8. Modifying effect of caffeine on lethality and mutability of Chlamydomonas reinhardii cells following UV irradiation

    International Nuclear Information System (INIS)

    Podstavkova, S.; Vlcek, D.; Miadokova, E.

    1983-01-01

    The modifying effect of caffeine was studied using two standard and two UV-sensitive strains of Chlamydomonas reinhardii Dang. Cell survival and mutation frequency was microscopically evaluated on media without caffeine and on media with 1.5 mM of caffeine. The obtained results were indicative of the stimulating effect of caffeine upon survival in all strains. (author)

  9. The AtCAO gene, encoding chlorophyll a oxygenase, is required for chlorophyll b synthesis in Arabidopsis thaliana

    Science.gov (United States)

    Espineda, Cromwell E.; Linford, Alicia S.; Devine, Domenica; Brusslan, Judy A.

    1999-01-01

    Chlorophyll b is synthesized from chlorophyll a and is found in the light-harvesting complexes of prochlorophytes, green algae, and both nonvascular and vascular plants. We have used conserved motifs from the chlorophyll a oxygenase (CAO) gene from Chlamydomonas reinhardtii to isolate a homologue from Arabidopsis thaliana. This gene, AtCAO, is mutated in both leaky and null chlorina1 alleles, and DNA sequence changes cosegregate with the mutant phenotype. AtCAO mRNA levels are higher in three different mutants that have reduced levels of chlorophyll b, suggesting that plants that do not have sufficient chlorophyll b up-regulate AtCAO gene expression. Additionally, AtCAO mRNA levels decrease in plants that are grown under dim-light conditions. We have also found that the six major Lhcb proteins do not accumulate in the null ch1-3 allele. PMID:10468639

  10. On- and off-response ERGs elicited by sawtooth stimuli in normal subjects and glaucoma patients.

    Science.gov (United States)

    Pangeni, Gobinda; Lämmer, Robert; Tornow, Ralf P; Horn, Folkert K; Kremers, Jan

    2012-06-01

    The aim of this study is to measure the on- and off-responses and their response asymmetries elicited by sawtooth stimuli in normal subjects and glaucoma patients. Furthermore, the correlation between the ERGs and other functional and structural parameters are investigated. Full-field stimuli were produced using a Ganzfeld bowl with Light Emitting Diodes (LEDs) as light sources. On- and off-response ERGs were recorded from 17 healthy subjects, 12 pre-perimetric and 15 perimetric glaucoma patients using 4-Hz luminance rapid-on and rapid-off sawtooth stimuli (white light; mean luminance 55 cd/m(2)) at 100% contrast. The on- and off-responses were added to study response asymmetries. In addition, flash ERGs were elicited by red stimuli (200 cd/m(2)) on a blue background (10 cd/m(2)). The mean deviations (MD) of the visual field defects were obtained by standard automated perimetry. The retinal nerve fibre layer thickness (RNFLT) was measured with Spectral Domain Optical Coherence Tomography (SOCT). We studied the correlation between ERG response amplitudes, visual field mean deviation (MDs) and RNFLT values. The on-responses showed an initial negative (N-on) followed by a positive (P-on), a late positive (LP-on) and a late negative responses (LN-on). The off-responses showed an initial positive (P-off) a late positive (LP-off) and a late negative response (LN-off). The addition of on- and off-responses revealed an initial positive (P-add) and a late negative response (LN-add). The on-response components (N-on, P-on and LN-on) in the glaucoma patients were relatively similar to those of the control subjects. However, the LP-on was significantly elevated (p = 0.03) in perimetric patients. The LP-off was significantly elevated (p < 0.001), and the amplitude of LN-off was significantly reduced in perimetric patients (p = 0.02). The LN-add amplitude was significantly reduced (p < 0.001) and delayed (p = 0.03) in perimetric patients. The amplitudes of the LN-off and LN

  11. Heterogeneity of PTEN and ERG expression in prostate cancer on core needle biopsies: implications for cancer risk stratification and biomarker sampling.

    Science.gov (United States)

    Shah, Rajal B; Bentley, James; Jeffery, Zach; DeMarzo, Angelo M

    2015-05-01

    ERG and PTEN biomarkers are increasingly being analyzed on prostate core biopsies (NBXs); ERG as a marker of clonality and number of separately arising tumor foci and PTEN for prognostic information. Yet, in patients with multiple biopsy cores positive for cancer (PCa), there is no standardized approach for interrogation of these biomarkers in terms of the number of positive cores to evaluate. A total of 194 NBX cases containing more than one positive core with cancer were evaluated for ERG overexpression and PTEN loss by immunostaining (immunohistochemistry) of all positive cores. ERG overexpression or PTEN loss in at least one cancer core was present in 111 (57%) and 69 (36%) cases respectively. ERG overexpression was significantly associated with PTEN loss (P < .0001), and PTEN loss was associated with a high Gleason score (P < .0001). Inter- and intra-tumor core staining heterogeneity for ERG overexpression occurred in 42% and 5% cases and for PTEN loss both intra- and inter-tumor core heterogeneity was 68%. PTEN staining was highly discordant between PCa sites regardless of laterality. When the Gleason score was non-uniform across PCa sites, the combination of cores showing the highest Gleason score and largest tumor volume provided the best representation of ERG overexpression (92%) and PTEN loss (98%). When grades were uniform across cancer sites, the highest tumor volume core was generally representative of ERG overexpression (90%) but was less representative for PTEN loss (76%). Our results suggest that knowledge of this heterogeneity is critical for developing optimal yet cost-effective strategies to identify these underlying molecular abnormalities. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. On the construction of QED using ERG

    International Nuclear Information System (INIS)

    Sonoda, H

    2007-01-01

    It has been known for some time that a smooth momentum cutoff is compatible with local gauge symmetries. In this paper, we show concretely how to construct QED using the exact renormalization group (ERG). First, we give a new derivation of the Ward identity for the Wilson action using the technique of composite operators. Second, parametrizing the theory by its asymptotic behaviour for a large cutoff, we show how to fine tune the parameters to satisfy the identity. Third, we recast the identity as an invariance of the Wilson action under a nonlinear BRST transformation

  13. Rehabilitating drug-induced long-QT promoters: in-silico design of hERG-neutral cisapride analogues with retained pharmacological activity.

    Science.gov (United States)

    Durdagi, Serdar; Randall, Trevor; Duff, Henry J; Chamberlin, Adam; Noskov, Sergei Y

    2014-03-08

    The human ether-a-go-go related gene 1 (hERG1), which codes for a potassium ion channel, is a key element in the cardiac delayed rectified potassium current, IKr, and plays an important role in the normal repolarization of the heart's action potential. Many approved drugs have been withdrawn from the market due to their prolongation of the QT interval. Most of these drugs have high potencies for their principal targets and are often irreplaceable, thus "rehabilitation" studies for decreasing their high hERG1 blocking affinities, while keeping them active at the binding sites of their targets, have been proposed to enable these drugs to re-enter the market. In this proof-of-principle study, we focus on cisapride, a gastroprokinetic agent withdrawn from the market due to its high hERG1 blocking affinity. Here we tested an a priori strategy to predict a compound's cardiotoxicity using de novo drug design with molecular docking and Molecular Dynamics (MD) simulations to generate a strategy for the rehabilitation of cisapride. We focused on two key receptors, a target interaction with the (adenosine) receptor and an off-target interaction with hERG1 channels. An analysis of the fragment interactions of cisapride at human A2A adenosine receptors and hERG1 central cavities helped us to identify the key chemical groups responsible for the drug activity and hERG1 blockade. A set of cisapride derivatives with reduced cardiotoxicity was then proposed using an in-silico two-tier approach. This set was compared against a large dataset of commercially available cisapride analogs and derivatives. An interaction decomposition of cisapride and cisapride derivatives allowed for the identification of key active scaffolds and functional groups that may be responsible for the unwanted blockade of hERG1.

  14. Transgene Expression in Microalgae-From Tools to Applications.

    Science.gov (United States)

    Doron, Lior; Segal, Na'ama; Shapira, Michal

    2016-01-01

    Microalgae comprise a biodiverse group of photosynthetic organisms that reside in water sources and sediments. The green microalgae Chlamydomonas reinhardtii was adopted as a useful model organism for studying various physiological systems. Its ability to grow under both photosynthetic and heterotrophic conditions allows efficient growth of non-photosynthetic mutants, making Chlamydomonas a useful genetic tool to study photosynthesis. In addition, this green alga can grow as haploid or diploid cells, similar to yeast, providing a powerful genetic system. As a result, easy and efficient transformation systems have been developed for Chlamydomonas, targeting both the chloroplast and nuclear genomes. Since microalgae comprise a rich repertoire of species that offer variable advantages for biotech and biomed industries, gene transfer technologies were further developed for many microalgae to allow for the expression of foreign proteins of interest. Expressing foreign genes in the chloroplast enables the targeting of foreign DNA to specific sites by homologous recombination. Chloroplast transformation also allows for the introduction of genes encoding several enzymes from a complex pathway, possibly as an operon. Expressing foreign proteins in the chloroplast can also be achieved by introducing the target gene into the nuclear genome, with the protein product bearing a targeting signal that directs import of the transgene-product into the chloroplast, like other endogenous chloroplast proteins. Integration of foreign genes into the nuclear genome is mostly random, resulting in large variability between different clones, such that extensive screening is required. The use of different selection modalities is also described, with special emphasis on the use of herbicides and metabolic markers which are considered to be friendly to the environment, as compared to drug-resistance genes that are commonly used. Finally, despite the development of a wide range of transformation

  15. ``High energy Electron exPeriment (HEP)'' onboard the ERG satellite

    Science.gov (United States)

    Mitani, T.; Takashima, T.; Kasahara, S.; Miyake, W.; Hirahara, M.

    2017-12-01

    The Exploration of energization and Radiation in Geospace (ERG) satellite was successfully launched on December 20, 2016, and now explores how relativistic electrons in the radiation belts are generated during space storms. "High energy Electron exPeriment (HEP)" onboard the ERG satellite observes 70 keV - 2 MeV electrons and provides three-dimensional velocity distribution of electrons every spacecraft spin period. Electrons are observed by two types of camera designs, HEP-L and HEP-H, with regard to geometrical factor and energy range. HEP-L observes 0.1 - 1 MeV electrons and its geometrical factor (G-factor) is 10-3 cm2 str, and HEP-H observes 0.7 - 2 MeV and G-factor is 10-2 cm2 str. HEP-L and HEP-H each consist of three pin-hole type cameras, and each camera consist of mechanical collimator, stacked silicon semiconductor detectors and readout ASICs. HEP-H has larger opening angle of the collimator and more silicon detectors to observe higher energy electrons than HEP-L. The initial checkout in orbit was carried out in February 2017 and it was confirmed that there was no performance degradation by comparing the results of the initial checkout in orbit and the prelaunch function tests. Since late March, HEP has carried out normal observation. HEP observed losses and recovery of the outer radiation belt electrons several times up to now. In this presentation we introduce the HEP instrument design, prelaunch tests results and report the initial results in orbit.

  16. Taxonomic identity and physiological ecology of Chlamydomonas hedleyi sp. nov. , algal flagellate symbiont from the foraminifer Archaias angulatus

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J J; Crockett, L J; Hagen, J; Stone, R J

    1975-12-31

    The fine structure of the symbiotic alga isolated from the foraminiferan Archaias angulatus (Fichtel et Moll) DeMontfort is typical of the Chlorophyceae of the volvocalean and chlorococcalean lines. Spherical non-motile cells, 10--14 ..mu..m in diameter, characterize the dominant life cycle phase. Long oval motile forms with truncated apices are present 3--5 days after transfer to fresh medium. The pyrenoids are embedded anteriorly in the singly bilobed chloroplast and are surrounded by a sheath of starch platelets. In spite of the non-motile state of cells in older cultures (which is perhaps a reflection of its normally symbiotic condition), the alga is identified as a species of the volvocalean genus Chlamydomonas and is named C. hedleyi sp. nov. The symbiont has no vitamin or organic requirements but growth is increased threefold in the presence of thiamine, and twofold in the presence of 1 ..mu..m glutamic acid, histidine and methionine. Urea was the best nitrogen source tested. Purines and pyrimidines did not serve as nitrogen sources. Chlamydomonas hedleyi grows well in a salinity range of 6- greater than 52 per thousand and a pH range of 6--8.5. 7.04 x 10/sup -7/ M carbon h/sup -1/ g/sup -1/ was fixed by the symbiont, 57 percent being released into the medium as a chromatographically homogeneous organic molecule provisionally identified as mannitol.

  17. Sulphate, more than a nutrient, protects the microalga Chlamydomonas moewusii from cadmium toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Mera, Roi; Torres, Enrique, E-mail: torres@udc.es; Abalde, Julio

    2014-03-01

    Highlights: • Sulphate effect on cadmium toxicity in the microalga Chlamydomonas moewusii Gerloff. • Cadmium increases the sulphur requirements in Chlamydomonas moewusii. • Kinetic coefficients for sulphate utilization and cadmium effect on them. • Sulphate and cadmium influence on the biosynthesis of low-molecular mass thiols. • Cadmium toxicity reduction by sulphate due to higher biosynthesis of thiols. - Abstract: Sulphur is an essential macroelement that plays important roles in living organisms. The thiol rich sulphur compounds, such as cysteine, γ-Glu–Cys, glutathione and phytochelatins participate in the tolerance mechanisms against cadmium toxicity. Plants, algae, yeasts and most prokaryotes cover their demand for reduced sulphur by reduction of inorganic sulphate. The aim of this study was to investigate, using a bifactorial experimental design, the effect of different sulphate concentrations in the nutrient solution on cadmium toxicity in the freshwater microalga Chlamydomonas moewusii. Cell growth, kinetic parameters of sulphate utilization and intracellular concentrations of low-molecular mass thiol compounds were determined. A mathematical model to describe the growth of this microalga based on the effects of sulphate and cadmium was obtained. An ANOVA revealed an interaction between them, 16% of the effect sizes was explained by this interaction. A higher amount of sulphate in the culture medium allowed a higher cadmium tolerance due to an increase in the thiol compound biosynthesis. The amount of low-molecular mass thiol compounds, mainly phytochelatins, synthesized by this microalga was significantly dependent on the sulphate and cadmium concentrations; the higher phytochelatin content was obtained in cultures with 4 mg Cd/L and 1 mM sulphate. The maximum EC{sub 50} value (based on nominal cadmium concentration) reached for this microalga was 4.46 ± 0.42 mg Cd/L when the sulphate concentration added to the culture medium was also 1 m

  18. The Role of mf-ERG in the Diagnosis and Treatment of Age-Related Macular Degeneration: Electrophysiological Features of AMD.

    Science.gov (United States)

    Moschos, Marilita M; Nitoda, Eirini

    2018-01-01

    Age-related macular cegeneration (AMD) is the leading cause of visual dysfunction worldwide, affecting 9-25% of individuals between 65 and 75 years old. We have reviewed the published articles investigating the role of multifocal electroretinogram (mf-ERG) in the diagnosis and treatment of AMD. Visual evoked potentials have revealed decreased amplitudes and higher latencies in patients with AMD, while the degeneration of photoreceptors and abnormalities of retinal pigment epithelium can be identified by electro-oculogram recordings. Moreover, ERG can detect the functional abnormalities observed in AMD and evaluate each therapeutic approach. The record of local electrophysiological responses coming from different retinal areas can be accurately performed by mfERG. The accuracy of mfERG in detecting the degeneration of photoreceptors, as well the disturbances of macular function, could be useful both in the early diagnosis of AMD and the assessment of treatment efficacy.

  19. Application of Wave Distribution Function Method to the ERG/PWE Data

    Science.gov (United States)

    Ota, M.; Kasahara, Y.; Matsuda, S.; Kojima, H.; Matsuoka, A.; Hikishima, M.; Kasaba, Y.; Ozaki, M.; Yagitani, S.; Tsuchiya, F.; Kumamoto, A.

    2017-12-01

    The ERG (Arase) satellite was launched on 20 December 2016 to study acceleration and loss mechanisms of relativistic electrons in the Earth's magnetosphere. The Plasma Wave Experiment (PWE), which is one of the science instruments on board the ERG satellite, measures electric field and magnetic field. The PWE consists of three sub-systems; EFD (Electric Field Detector), OFA/WFC (Onboard Frequency Analyzer and Waveform Capture), and HFA (High Frequency Analyzer).The OFA/WFC measures electromagnetic field spectra and raw waveforms in the frequency range from few Hz to 20 kHz. The OFA produces three kind of data; OFA-SPEC (power spectrum), OFA-MATRIX (spectral matrix), and OFA-COMPLEX (complex spectrum). The OFA-MATRIX measures ensemble averaged complex cross-spectra of two electric field components, and of three magnetic field components. The OFA-COMPLEX measures instantaneous complex spectra of electric and magnetic fields. These data are produced every 8 seconds in the nominal mode, and it can be used for polarization analysis and wave propagation direction finding.In general, spectral matrix composed by cross-spectra of observed signals is used for direction finding, and many algorithms have been proposed. For example, Means method and SVD method can be applied on the assumption that the spectral matrix is consists of a single plane wave, while wave distribution function (WDF) method is applicable even to the data in which multiple numbers of plane waves are simultaneously included. In this presentation, we introduce the results when the WDF method is applied to the ERG/PWE data.

  20. The effects of deoxyelephantopin on the cardiac delayed rectifier potassium channel current (IKr) and human ether-a-go-go-related gene (hERG) expression.

    Science.gov (United States)

    Teah, Yi Fan; Abduraman, Muhammad Asyraf; Amanah, Azimah; Adenan, Mohd Ilham; Sulaiman, Shaida Fariza; Tan, Mei Lan

    2017-09-01

    Elephantopus scaber Linn and its major bioactive component, deoxyelephantopin are known for their medicinal properties and are often reported to have various cytotoxic and antitumor activities. This plant is widely used as folk medicine for a plethora of indications although its safety profile remains unknown. Human ether-a-go-go-related gene (hERG) encodes the cardiac I Kr current which is a determinant of the duration of ventricular action potentials and QT interval. The hERG potassium channel is an important antitarget in cardiotoxicity evaluation. This study investigated the effects of deoxyelephantopin on the current, mRNA and protein expression of hERG channel in hERG-transfected HEK293 cells. The hERG tail currents following depolarization pulses were insignificantly affected by deoxyelephantopin in the transfected cell line. Current reduction was less than 40% as compared with baseline at the highest concentration of 50 μM. The results were consistent with the molecular docking simulation and hERG surface protein expression. Interestingly, it does not affect the hERG expression at both transcriptional and translational level at most concentrations, although higher concentration at 10 μM caused protein accumulation. In conclusion, deoxyelephantopin is unlikely a clinically significant hERG channel and I kr blocker. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Alternating Current-Dielectrophoresis Collection and Chaining of Phytoplankton on Chip: Comparison of Individual Species and Artificial Communities

    Directory of Open Access Journals (Sweden)

    Coralie Siebman

    2017-01-01

    Full Text Available The capability of alternating current (AC dielectrophoresis (DEP for on-chip capture and chaining of the three species representative of freshwater phytoplankton was evaluated. The effects of the AC field intensity, frequency and duration on the chaining efficiency and chain lengths of green alga Chlamydomonas reinhardtii, cyanobacterium Synechocystis sp. and diatom Cyclotella meneghiniana were characterized systematically. C. reinhardtii showed an increase of the chaining efficiency from 100 Hz to 500 kHz at all field intensities; C. meneghiniana presented a decrease of chaining efficiency from 100 Hz to 1 kHz followed by a significant increase from 1 kHz to 500 kHz, while Synechocystis sp. exhibited low chaining tendency at all frequencies and all field intensities. The experimentally-determined DEP response and cell alignment of each microorganism were in agreement with their effective polarizability. Mixtures of cells in equal proportion or 10-times excess of Synechocystis sp. showed important differences in terms of chaining efficiency and length of the chains compared with the results obtained when the cells were alone in suspension. While a constant degree of chaining was observed with the mixture of C. reinhardtii and C. meneghiniana, the presence of Synechocystis sp. in each mixture suppressed the formation of chains for the two other phytoplankton species. All of these results prove the potential of DEP to discriminate different phytoplankton species depending on their effective polarizability and to enable their manipulation, such as specific collection or separation in freshwater.

  2. hERG1 channels are overexpressed in glioblastoma multiforme and modulate VEGF secretion in glioblastoma cell lines

    Science.gov (United States)

    Masi, A; Becchetti, A; Restano-Cassulini, R; Polvani, S; Hofmann, G; Buccoliero, A M; Paglierani, M; Pollo, B; Taddei, G L; Gallina, P; Di Lorenzo, N; Franceschetti, S; Wanke, E; Arcangeli, A

    2005-01-01

    Recent studies have led to considerable advancement in our understanding of the molecular mechanisms that underlie the relentless cell growth and invasiveness of human gliomas. Partial understanding of these mechanisms has (1) improved the classification for gliomas, by identifying prognostic subgroups, and (2) pointed to novel potential therapeutic targets. Some classes of ion channels have turned out to be involved in the pathogenesis and malignancy of gliomas. We studied the expression and properties of K+ channels in primary cultures obtained from surgical specimens: human ether a gò-gò related (hERG)1 voltage-dependent K+ channels, which have been found to be overexpressed in various human cancers, and human ether a gò-gò-like 2 channels, that share many of hERG1's biophysical features. The expression pattern of these two channels was compared to that of the classical inward rectifying K+ channels, IRK, that are widely expressed in astrocytic cells and classically considered a marker of astrocytic differentiation. In our study, hERG1 was found to be specifically overexpressed in high-grade astrocytomas, that is, glioblastoma multiforme (GBM). In addition, we present evidence that, in GBM cell lines, hERG1 channel activity actively contributes to malignancy by promoting vascular endothelial growth factor secretion, thus stimulating the neoangiogenesis typical of high-grade gliomas. Our data provide important confirmation for studies proposing the hERG1 channel as a molecular marker of tumour progression and a possible target for novel anticancer therapies. PMID:16175187

  3. Chronic uranium exposure and growth toxicity for phytoplankton. Dose-effect relationship: first comparison of chemical and radiological toxicity

    International Nuclear Information System (INIS)

    Gilbin, R.; Pradines, C.; Garnier-Laplace, J.

    2004-01-01

    The bioavailability of uranium for freshwater organisms, as for other dissolved metals, is closely linked to chemical speciation in solution (U aqueous speciation undergoes tremendous changes in the presence of ligands commonly found in natural waters e.g. carbonate, phosphate, hydroxide and natural organic matter). For the studied chemical domain, short-term uranium uptake experiments have already shown that the free uranyl ion concentration [UO 2 2+ ] is a good predictor of uranium uptake by the green algae Chlamydomonas reinhardtii, as predicted by the Free Ion Activity Model. In agreement with these results, acidic pH and low ligands concentrations in water enhance uranium bioavailability and consequently its potential chronic effects on phytoplankton. Moreover, uranium is known to be both radio-toxic and chemo-toxic. The use of different isotopes of uranium allows to expose organisms to different radiological doses for the same molar concentration: e.g. for a given element concentration (chemical dose), replacing depleted U by U-233 obviously leads to an enhanced radiological delivered dose to organisms (x10 4 ). In this work we established relationships between uranium doses (depleted uranium and 233-U ) and effect on the growth rate of the green algae Chlamydomonas reinhardtii. Uranium bioaccumulation was also monitored. Growth rate was measured both in classical batch (0-72 hrs) and continuous (turbidostat) cultures, the latter protocol allowing medium renewal to diminish exudates accumulation and speciation changes in the medium. The differences in effects will be, if possible, related to the development of defence mechanisms against the formation of reactive oxygen species (forms of glutathione) and the production of phyto-chelatins (small peptides rich in cystein that play an important role in the homeostasis and the detoxication of metals in cells). (author)

  4. ERG and GRG review of the draft of ''preliminary test plan for in situ testing from an exploratory shaft in salt - October 1983''

    International Nuclear Information System (INIS)

    Kalia, H.N.

    1986-03-01

    The Engineering Review Group (ERG) and Geologic Review Group (GRG) were established by the Office of Nuclear Waste Isolation (ONWI) to help evaluate engineering- and geologic-related issues in the US Department of Energy's nuclear waste repository program. The January 1984 meeting of the ERG and GRG reviewed the In Situ Test Plan (ISTP) titled ''Preliminary Test Plan for In Situ Testing From an Exploratory Shaft in Salt - October 1983.'' This report documents the ERG's and GRG's comments and recommendations on this subject and the ONWI responses to the specific points raised by the ERG and GRG. 6 refs., 2 figs., 1 tab

  5. In Silico Predictions of hERG Channel Blockers in Drug Discovery

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Sørensen, Flemming Steen

    2011-01-01

    The risk for cardiotoxic side effects represents a major problem in clinical studies of drug candidates and regulatory agencies have explicitly recommended that all new drug candidates should be tested for blockage of the human Ether-a-go-go Related-Gene (hERG) potassium channel. Indeed, several ...

  6. Probing fatty acid metabolism in bacteria, cyanobacteria, green microalgae and diatoms with natural and unnatural fatty acids.

    Science.gov (United States)

    Beld, Joris; Abbriano, Raffaela; Finzel, Kara; Hildebrand, Mark; Burkart, Michael D

    2016-04-01

    In both eukaryotes and prokaryotes, fatty acid synthases are responsible for the biosynthesis of fatty acids in an iterative process, extending the fatty acid by two carbon units every cycle. Thus, odd numbered fatty acids are rarely found in nature. We tested whether representatives of diverse microbial phyla have the ability to incorporate odd-chain fatty acids as substrates for their fatty acid synthases and their downstream enzymes. We fed various odd and short chain fatty acids to the bacterium Escherichia coli, cyanobacterium Synechocystis sp. PCC 6803, green microalga Chlamydomonas reinhardtii and diatom Thalassiosira pseudonana. Major differences were observed, specifically in the ability among species to incorporate and elongate short chain fatty acids. We demonstrate that E. coli, C. reinhardtii, and T. pseudonana can produce longer fatty acid products from short chain precursors (C3 and C5), while Synechocystis sp. PCC 6803 lacks this ability. However, Synechocystis can incorporate and elongate longer chain fatty acids due to acyl-acyl carrier protein synthetase (AasS) activity, and knockout of this protein eliminates the ability to incorporate these fatty acids. In addition, expression of a characterized AasS from Vibrio harveyii confers a similar capability to E. coli. The ability to desaturate exogenously added fatty acids was only observed in Synechocystis and C. reinhardtii. We further probed fatty acid metabolism of these organisms by feeding desaturase inhibitors to test the specificity of long-chain fatty acid desaturases. In particular, supplementation with thia fatty acids can alter fatty acid profiles based on the location of the sulfur in the chain. We show that coupling sensitive gas chromatography mass spectrometry to supplementation of unnatural fatty acids can reveal major differences between fatty acid metabolism in various organisms. Often unnatural fatty acids have antibacterial or even therapeutic properties. Feeding of short

  7. MiR-17-5p impairs trafficking of H-ERG K+ channel protein by targeting multiple er stress-related chaperones during chronic oxidative stress.

    Directory of Open Access Journals (Sweden)

    Qi Wang

    Full Text Available BACKGROUND: To investigate if microRNAs (miRNAs play a role in regulating h-ERG trafficking in the setting of chronic oxidative stress as a common deleterious factor for many cardiac disorders. METHODS: We treated neonatal rat ventricular myocytes and HEK293 cells with stable expression of h-ERG with H2O2 for 12 h and 48 h. Expression of miR-17-5p seed miRNAs was quantified by real-time RT-PCR. Protein levels of chaperones and h-ERG trafficking were measured by Western blot analysis. Luciferase reporter gene assay was used to study miRNA and target interactions. Whole-cell patch-clamp techniques were employed to record h-ERG K(+ current. RESULTS: H-ERG trafficking was impaired by H2O2 after 48 h treatment, accompanied by reciprocal changes of expression between miR-17-5p seed miRNAs and several chaperones (Hsp70, Hsc70, CANX, and Golga2, with the former upregulated and the latter downregulated. We established these chaperones as targets for miR-17-5p. Application miR-17-5p inhibitor rescued H2O2-induced impairment of h-ERG trafficking. Upregulation of endogenous by H2O2 or forced miR-17-5p expression either reduced h-ERG current. Sequestration of AP1 by its decoy molecule eliminated the upregulation of miR-17-5p, and ameliorated impairment of h-ERG trafficking. CONCLUSIONS: Collectively, deregulation of the miR-17-5p seed family miRNAs can cause severe impairment of h-ERG trafficking through targeting multiple ER stress-related chaperones, and activation of AP1 likely accounts for the deleterious upregulation of these miRNAs, in the setting of prolonged duration of oxidative stress. These findings revealed the role of miRNAs in h-ERG trafficking, which may contribute to the cardiac electrical disturbances associated with oxidative stress.

  8. MiR-17-5p impairs trafficking of H-ERG K+ channel protein by targeting multiple er stress-related chaperones during chronic oxidative stress.

    Science.gov (United States)

    Wang, Qi; Hu, Weina; Lei, Mingming; Wang, Yong; Yan, Bing; Liu, Jun; Zhang, Ren; Jin, Yuanzhe

    2013-01-01

    To investigate if microRNAs (miRNAs) play a role in regulating h-ERG trafficking in the setting of chronic oxidative stress as a common deleterious factor for many cardiac disorders. We treated neonatal rat ventricular myocytes and HEK293 cells with stable expression of h-ERG with H2O2 for 12 h and 48 h. Expression of miR-17-5p seed miRNAs was quantified by real-time RT-PCR. Protein levels of chaperones and h-ERG trafficking were measured by Western blot analysis. Luciferase reporter gene assay was used to study miRNA and target interactions. Whole-cell patch-clamp techniques were employed to record h-ERG K(+) current. H-ERG trafficking was impaired by H2O2 after 48 h treatment, accompanied by reciprocal changes of expression between miR-17-5p seed miRNAs and several chaperones (Hsp70, Hsc70, CANX, and Golga2), with the former upregulated and the latter downregulated. We established these chaperones as targets for miR-17-5p. Application miR-17-5p inhibitor rescued H2O2-induced impairment of h-ERG trafficking. Upregulation of endogenous by H2O2 or forced miR-17-5p expression either reduced h-ERG current. Sequestration of AP1 by its decoy molecule eliminated the upregulation of miR-17-5p, and ameliorated impairment of h-ERG trafficking. Collectively, deregulation of the miR-17-5p seed family miRNAs can cause severe impairment of h-ERG trafficking through targeting multiple ER stress-related chaperones, and activation of AP1 likely accounts for the deleterious upregulation of these miRNAs, in the setting of prolonged duration of oxidative stress. These findings revealed the role of miRNAs in h-ERG trafficking, which may contribute to the cardiac electrical disturbances associated with oxidative stress.

  9. Heterologous expression of an algal hydrogenase in a heterocystous cyanobacterium

    Energy Technology Data Exchange (ETDEWEB)

    Thorsten Heidorn; Peter Lindblad [Dept. of Physiological Botany, Uppsala University, Villavogen 6, SE-752 36 Uppsala, (Sweden)

    2006-07-01

    For the expression of an active algal [FeFe] hydrogenase in the heterocystous cyanobacterium Nostoc punctiforme A TCC 29133 the Chlamydomonas reinhardtii hydrogenase gene hydA1 and the accessory genes hydEF and hydG are to be introduced into the cyanobacteria cells. The genes were amplified by PCR from EST clones, cloned into the cloning vector pBluescript SK+ and sequenced. An expression vector for multi-cistronic cloning, based on pSCR202, was constructed and for a functional test GFP was inserted as a reporter gene. The GFP construct was transformed into Nostoc punctiforme A TCC 29133 by electroporation and expression of GFP was visualized by fluorescence microscopy. (authors)

  10. Heterologous expression of an algal hydrogenase in a hetero-cystous cyanobacterium

    Energy Technology Data Exchange (ETDEWEB)

    Thorsten Heidorn; Peter Lindblad [Dept. of Physiological Botany, Uppsala University, V illavagen 6, SE-752 36 Uppsala, (Sweden)

    2006-07-01

    For the expression of an active algal [FeFe] hydrogenase in the hetero-cystous cyanobacterium Nostoc punctiforme A TCC 29133 the Chlamydomonas reinhardtii hydrogenase gene hydA1 and the accessory genes hydEF and hydG are to be introduced into the cyano-bacterial cells. The genes were amplified by PCR from EST clones, cloned into the cloning vector pBluescript SK+ and sequenced. An expression vector for multi-cistronic cloning, based on pSCR202, was constructed and for a functional test GFP was inserted as a reporter gene. The GFP construct was transformed into Nostoc punctiforme A TCC 29133 by electroporation and expression of GFP was visualized by fluorescence microscopy. (authors)

  11. Heterologous expression of an algal hydrogenase in a heterocystous cyanobacterium

    International Nuclear Information System (INIS)

    Thorsten Heidorn; Peter Lindblad

    2006-01-01

    For the expression of an active algal [FeFe] hydrogenase in the heterocystous cyanobacterium Nostoc punctiforme A TCC 29133 the Chlamydomonas reinhardtii hydrogenase gene hydA1 and the accessory genes hydEF and hydG are to be introduced into the cyanobacteria cells. The genes were amplified by PCR from EST clones, cloned into the cloning vector pBluescript SK+ and sequenced. An expression vector for multi-cistronic cloning, based on pSCR202, was constructed and for a functional test GFP was inserted as a reporter gene. The GFP construct was transformed into Nostoc punctiforme A TCC 29133 by electroporation and expression of GFP was visualized by fluorescence microscopy. (authors)

  12. Heterologous expression of an algal hydrogenase in a hetero-cystous cyanobacterium

    International Nuclear Information System (INIS)

    Thorsten Heidorn; Peter Lindblad

    2006-01-01

    For the expression of an active algal [FeFe] hydrogenase in the hetero-cystous cyanobacterium Nostoc punctiforme A TCC 29133 the Chlamydomonas reinhardtii hydrogenase gene hydA1 and the accessory genes hydEF and hydG are to be introduced into the cyano-bacterial cells. The genes were amplified by PCR from EST clones, cloned into the cloning vector pBluescript SK+ and sequenced. An expression vector for multi-cistronic cloning, based on pSCR202, was constructed and for a functional test GFP was inserted as a reporter gene. The GFP construct was transformed into Nostoc punctiforme A TCC 29133 by electroporation and expression of GFP was visualized by fluorescence microscopy. (authors)

  13. Two-Dimensional Algal Collection and Assembly by Combining AC-Dielectrophoresis with Fluorescence Detection for Contaminant-Induced Oxidative Stress Sensing

    Directory of Open Access Journals (Sweden)

    Coralie Siebman

    2015-06-01

    Full Text Available An alternative current (AC dielectrophoretic lab-on-chip setup was evaluated as a rapid tool of capture and assembly of microalga Chlamydomonas reinhardtii in two-dimensional (2D close-packed arrays. An electric field of 100 V·cm−1, 100 Hz applied for 30 min was found optimal to collect and assemble the algae into single-layer structures of closely packed cells without inducing cellular oxidative stress. Combined with oxidative stress specific staining and fluorescence microscopy detection, the capability of using the 2D whole-cell assembly on-chip to follow the reactive oxygen species (ROS production and oxidative stress during short-term exposure to several environmental contaminants, including mercury, methylmercury, copper, copper oxide nanoparticles (CuO-NPs, and diuron was explored. The results showed significant increase of the cellular ROS when C. reinhardtii was exposed to high concentrations of methylmercury, CuO-NPs, and 10−5 M Cu. Overall, this study demonstrates the potential of combining AC-dielectrophoretically assembled two-dimensional algal structures with cell metabolic analysis using fluorescence staining, as a rapid analytical tool for probing the effect of contaminants in highly impacted environment.

  14. The chloroplasts membrane phospholipids of Chlamydomonas reinhardii mutant not forming the Photosystem 2

    International Nuclear Information System (INIS)

    Trusova, V.M.; Ladygin, V.G.; Mezentsev, V.V.; Molchanov, M.I.

    1987-01-01

    Study on a component composition and physical state of photosynthetic membranes of Chlamydomonas chloroplasts of the wild type and mutant A-110 with disturbance of electron transfer chain in the photosystem 2 region permitted to conclude that 170 A diameter particles localized on the internal hydrophobic surface of membrane chips are deleted with respect to phosphatidylglycerin. The results obtained permit to suggest that the formation of protein-lipid complexes containing phosphatidylglycerins is suppressed in mutant A-110 which is not capable of the lamellar system differentation in

  15. The prognostic value of SUMO1/Sentrin specific peptidase 1 (SENP1) in prostate cancer is limited to ERG-fusion positive tumors lacking PTEN deletion

    International Nuclear Information System (INIS)

    Burdelski, Christoph; Menan, Devi; Tsourlakis, Maria Christina; Kluth, Martina; Hube-Magg, Claudia; Melling, Nathaniel; Minner, Sarah; Koop, Christina; Graefen, Markus; Heinzer, Hans; Wittmer, Corinna; Sauter, Guido; Simon, Ronald; Schlomm, Thorsten; Steurer, Stefan; Krech, Till

    2015-01-01

    Posttranscriptional protein modification by SUMOylation plays an important role in tumor development and progression. In the current study we analyzed prevalence and prognostic impact of the de-SUMOylation enzyme SENP1 in prostate cancer. SENP1 expression was analyzed by immunohistochemistry on a tissue microarray containing more than 12,400 prostate cancer specimens. Results were compared to tumor phenotype, ERG status, genomic deletions of 3p, 5q, 6q and PTEN, and biochemical recurrence. SENP1 immunostaining was detectable in 34.5 % of 9,516 interpretable cancers and considered strong in 7.3 %, moderate in 14.9 % and weak in 12.3 % of cases. Strong SENP1 expression was linked to advanced pT stage (p < 0.0001), high Gleason grade (p < 0.0001), positive lymph node status (p = 0.0019), high pre-operative PSA levels (p = 0.0037), and PSA recurrence (p < 0.0001). SENP1 expression was strongly associated with positive ERG fusion status as determined by both in situ hybridization (FISH) and immunohistochemistry as well as with PTEN deletions. Detectable SENP1 immunostaining was found in 41 % of ERG positive and in 47 % of PTEN deleted cancers but in only 30 % of ERG negative and 30 % of PTEN non-deleted cancers (p < 0.0001 each). Deletions of 3p, 5q, and 6q were unrelated to SENP1 expression. Subset analyses revealed that the prognostic impact of SENP1 expression was solely driven by the subgroup of ERG positive, PTEN undeleted cancers. In this subgroup, the prognostic role of SENP1 expression was independent of the preoperative PSA level, tumor stage, Gleason grade, and the status of the resection margin. SENP1 expression has strong prognostic impact in a molecularly defined subset of cancers. This is per se not surprising as the biologic impact of each individual molecular event is likely to be dependent on its cellular environment. However, such findings challenge the concept of finding clinically relevant molecular signatures that are equally applicable to all

  16. Structural refinement of the hERG1 pore and voltage-sensing domains with ROSETTA-membrane and molecular dynamics simulations.

    Science.gov (United States)

    Subbotina, Julia; Yarov-Yarovoy, Vladimir; Lees-Miller, James; Durdagi, Serdar; Guo, Jiqing; Duff, Henry J; Noskov, Sergei Yu

    2010-11-01

    The hERG1 gene (Kv11.1) encodes a voltage-gated potassium channel. Mutations in this gene lead to one form of the Long QT Syndrome (LQTS) in humans. Promiscuous binding of drugs to hERG1 is known to alter the structure/function of the channel leading to an acquired form of the LQTS. Expectably, creation and validation of reliable 3D model of the channel have been a key target in molecular cardiology and pharmacology for the last decade. Although many models were built, they all were limited to pore domain. In this work, a full model of the hERG1 channel is developed which includes all transmembrane segments. We tested a template-driven de-novo design with ROSETTA-membrane modeling using side-chain placements optimized by subsequent molecular dynamics (MD) simulations. Although backbone templates for the homology modeled parts of the pore and voltage sensors were based on the available structures of KvAP, Kv1.2 and Kv1.2-Kv2.1 chimera channels, the missing parts are modeled de-novo. The impact of several alignments on the structure of the S4 helix in the voltage-sensing domain was also tested. Herein, final models are evaluated for consistency to the reported structural elements discovered mainly on the basis of mutagenesis and electrophysiology. These structural elements include salt bridges and close contacts in the voltage-sensor domain; and the topology of the extracellular S5-pore linker compared with that established by toxin foot-printing and nuclear magnetic resonance studies. Implications of the refined hERG1 model to binding of blockers and channels activators (potent new ligands for channel activations) are discussed. © 2010 Wiley-Liss, Inc.

  17. Isolation and proteomic analysis of Chlamydomonas centrioles.

    Science.gov (United States)

    Keller, Lani C; Marshall, Wallace F

    2008-01-01

    Centrioles are barrel-shaped cytoskeletal organelles composed of nine triplet microtubules blades arranged in a pinwheel-shaped array. Centrioles are required for recruitment of pericentriolar material (PCM) during centrosome formation, and they act as basal bodies, which are necessary for the outgrowth of cilia and flagella. Despite being described over a hundred years ago, centrioles are still among the most enigmatic organelles in all of cell biology. To gain molecular insights into the function and assembly of centrioles, we sought to determine the composition of the centriole proteome. Here, we describe a method that allows for the isolation of virtually "naked" centrioles, with little to no obscuring PCM, from the green alga, Chlamydomonas. Proteomic analysis of this material provided evidence that multiple human disease gene products encode protein components of the centriole, including genes involved in Meckel syndrome and Oral-Facial-Digital syndrome. Isolated centrioles can be used in combination with a wide variety of biochemical assays in addition to being utilized as a source for proteomic analysis.

  18. MicroRNA-224 targets ERG2 and contributes to malignant progressions of meningioma

    International Nuclear Information System (INIS)

    Wang, Maomao; Deng, Xiaodong; Ying, Qi; Jin, Tingyan; Li, Ming; Liang, Chong

    2015-01-01

    MicroRNA-224 is overexpressed in various malignant tumors with poor prognosis, which plays a critical role in biological processes including cell proliferation, apoptosis and several developmental and physiological progressions. However, the potential association between miR-224 and clinical outcome in patients with meningiomas remains unknown. Here, we investigate miR-224 expression and biological functions in meningiomas. MiR-224 expression was measured by Northern blot analysis and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) in meningioma and normal brain tissues. Kaplan–Meier analysis and Cox regression analysis were used to exam its correlation with clinicopathological features and prognostic value. The biological effects of miR-224 on the cell proliferation and apoptosis in meningioma cells were examined by MTT assay and apoptosis assay. We found the expression levels of miR-224 were significantly higher in meningioma tissues than that in normal brain, positively correlated with advanced pathological grade. Kaplan–Meier analysis indicated that meningioma patients with low miR-224 expression exhibited significantly prolonged overall and recurrence-free survival. Furthermore, we demonstrated that ERG2 was an identical candidate target gene of MiR-224 in vitro. Our results indicated that downregulation of miR-224 suppressed cell growth and resulted in the enhancement of cell apoptosis through activation of the ERG2-BAK-induced apoptosis pathway. Our findings imply the miR-224 expression could predict the overall survival and recurrence-free survival of patients with meningioma and it might be a promising therapeutic target for treating malignant meningiomas. - Highlights: • MiR-224 expression is correlates with prognosis in meningioma patients. • ERG2 is a novel downstream target of miR-224. • MiR-224 suppressed cell growth and enhanced apoptosis in IOMM-Lee and CH157 cells. • MiR-224 is an upstream regulator of the ERG2

  19. Fluorescence-tracking of activation gating in human ERG channels reveals rapid S4 movement and slow pore opening.

    Directory of Open Access Journals (Sweden)

    Zeineb Es-Salah-Lamoureux

    2010-05-01

    Full Text Available hERG channels are physiologically important ion channels which mediate cardiac repolarization as a result of their unusual gating properties. These are very slow activation compared with other mammalian voltage-gated potassium channels, and extremely rapid inactivation. The mechanism of slow activation is not well understood and is investigated here using fluorescence as a direct measure of S4 movement and pore opening.Tetramethylrhodamine-5-maleimide (TMRM fluorescence at E519 has been used to track S4 voltage sensor movement, and channel opening and closing in hERG channels. Endogenous cysteines (C445 and C449 in the S1-S2 linker bound TMRM, which caused a 10 mV hyperpolarization of the V((1/2 of activation to -27.5+/-2.0 mV, and showed voltage-dependent fluorescence signals. Substitution of S1-S2 linker cysteines with valines allowed unobstructed recording of S3-S4 linker E519C and L520C emission signals. Depolarization of E519C channels caused rapid initial fluorescence quenching, fit with a double Boltzmann relationship, F-V(ON, with V((1/2 (,1 = -37.8+/-1.7 mV, and V((1/2 (,2 = 43.5+/-7.9 mV. The first phase, V((1/2 (,1, was approximately 20 mV negative to the conductance-voltage relationship measured from ionic tail currents (G-V((1/2 = -18.3+/-1.2 mV, and relatively unchanged in a non-inactivating E519C:S620T mutant (V((1/2 = -34.4+/-1.5 mV, suggesting the fast initial fluorescence quenching tracked S4 voltage sensor movement. The second phase of rapid quenching was absent in the S620T mutant. The E519C fluorescence upon repolarization (V((1/2 = -20.6+/-1.2, k = 11.4 mV and L520C quenching during depolarization (V((1/2 = -26.8+/-1.0, k = 13.3 mV matched the respective voltage dependencies of hERG ionic tails, and deactivation time constants from -40 to -110 mV, suggesting they detected pore-S4 rearrangements related to ionic current flow during pore opening and closing.THE DATA INDICATE: 1 that rapid environmental changes occur at the

  20. Cryptochrome photoreceptors in green algae: Unexpected versatility of mechanisms and functions.

    Science.gov (United States)

    Kottke, Tilman; Oldemeyer, Sabine; Wenzel, Sandra; Zou, Yong; Mittag, Maria

    2017-10-01

    Green algae have a highly complex and diverse set of cryptochrome photoreceptor candidates including members of the following subfamilies: plant, plant-like, animal-like, DASH and cryptochrome photolyase family 1 (CPF1). While some green algae encode most or all of them, others lack certain members. Here we present an overview about functional analyses of so far investigated cryptochrome photoreceptors from the green algae Chlamydomonas reinhardtii (plant and animal-like cryptochromes) and Ostreococcus tauri (CPF1) with regard to their biological significance and spectroscopic properties. Cryptochromes of both algae have been demonstrated recently to be involved to various extents in circadian clock regulation and in Chlamydomonas additionally in life cycle control. Moreover, CPF1 even performs light-driven DNA repair. The plant cryptochrome and CPF1 are UVA/blue light receptors, whereas the animal-like cryptochrome responds to almost the whole visible spectrum including red light. Accordingly, plant cryptochrome, animal-like cryptochrome and CPF1 differ fundamentally in their structural response to light as revealed by their visible and infrared spectroscopic signatures, and in the role of the flavin neutral radical acting as dark form or signaling state. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. EFFECT OF TREATED DOMESTIC WASTEWATER USED AS CULTURE MEDIUM ON THE GROWTH AND PRODUCTIVITY OF Chlamydomonas sp. STRAIN ISOLATED FROM LANDFILL LEACHATE

    Directory of Open Access Journals (Sweden)

    Fábio de Farias Neves

    2013-07-01

    Full Text Available Microalgae have been culturing to fix carbon and produce biofuels from the biomass. However, it is important to develop low cost strategies for microalgae production in orther to make it a viable alternative of renewable energy. The present research studied the effect of treated wastewater used as an alternative culture medium for growth and productivity of a Chlamydomonas sp. strain isolated from landfills leachate of a treatment pond located in Southern Brazil. Three culture media were evaluated, the control consisted of synthetic TAP medium, other, consisting of 50% TAP medium and 50% wastewater, and another consisting of 100% wastewater. The growth parameters do not have significant difference among the three culture media. Also, productivity do not have significant difference among the cultures with TAP medium and with 100% wastewater, resulting in dry weight values of 1,4±0,14g/L and 1,3±0,19g/L respectively. The culture with 50% TAP medium and 50% wastewater showed the highest productivity, showing an average dry weight value of 1,7±0,07g/L. The results indicate that treated wastewater can be used as an alternative culture medium for Chlamydomonas sp. strain without negative effects on growth and productivity, and possible leading to a decrease in production costs.

  2. ERG and FLI1 binding sites demarcate targets for aberrant epigenetic regulation by AML1-ETO in acute myeloid leukemia

    NARCIS (Netherlands)

    Martens, Joost H. A.; Mandoli, Amit; Simmer, Femke; Wierenga, Bart-Jan; Saeed, Sadia; Singh, Abhishek A.; Altucci, Lucia; Vellenga, Edo; Stunnenberg, Hendrik G.

    2012-01-01

    ERG and FLI1 are closely related members of the ETS family of transcription factors and have been identified as essential factors for the function and maintenance of normal hematopoietic stem cells. Here genome-wide analysis revealed that both ERG and FLI1 occupy similar genomic regions as AML1-ETO

  3. Study physico-chemical of the sand of the western ERG (Western South Algeria)

    Energy Technology Data Exchange (ETDEWEB)

    Allam, M.; Tafraoui, A. [Faculty of sciences and technology, University of Bechar (Algeria)], email: allammessaouda@yahoo.fr

    2011-07-01

    Silica is gaining increasing importance as it is the base for the production of pure silicon, for which several applications are under development in the electronic and solar energy sectors. The aim of this study is to characterize the sand taken from the Western Erg of Algeria to determine the percentage of silicon it contains. Characterization was done through physical analysis to determine the granulometry of the sand. A chemical analysis was next performed, using diffraction of X-rays and a scanning electron microscope to determine the chemical composition of the sand. Results showed that the sand is mainly made of quartz in the form of rounded and subbarrondis grains and that silicon is prevalent, accounting for 98% of the composition. This study demonstrated that sand from the Western Erg of Algeria is rich in silicon and could be used for silicon production.

  4. Functional and Morphological Evaluation of Traumatized Eyes With Berlin's Edema Affecting the Macula Using mfERG, Microperimetry, and SD-OCT.

    Science.gov (United States)

    Boss, Joseph Daniel; Tosi, Joaquin; Glybina, Inna; Tewari, Asheesh; Abrams, Gary W

    2017-02-01

    To describe the structural and functional changes that occur in traumatic Berlin's edema involving the macula through assessment with multifocal electroretinogram (mfERG), microperimetry, fundus photography, and spectral-domain optical coherence tomography (SD-OCT). Retrospective case series of five eyes from four patients with macular traumatic Berlin's edema. Patients underwent baseline mfERG (three eyes), MP1 microperimetry (three eyes), fundus photography (five eyes), and SD-OCT (five eyes). All eyes with Berlin's edema showed abnormal findings on baseline SD-OCT, including disruption and fragmentation of the inner segment/ outer segment layer. In two patients with unilateral blunt ocular trauma who underwent mfERG, there was complete loss of the foveal peak in affected eyes. All three eyes that underwent microperimetry showed depressed retinal sensitivity in the area of Berlin's edema. SD-OCT, microperimetry, and mfERG can be used to help diagnose, stratify traumatic severity, and follow structural and functional progression over time in patients with Berlin's edema. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:114-121.]. Copyright 2017, SLACK Incorporated.

  5. The Influence of Brightness on Functional Assessment by mfERG: A Study on Scaffolds Used in Retinal Cell Transplantation in Pigs

    Directory of Open Access Journals (Sweden)

    A. T. Christiansen

    2012-01-01

    Full Text Available To determine the effect of membrane brightness on multifocal electroretinograms (mfERGs, we implanted poly lactic-co-glycolic acid (PLGA membranes in the subretinal space of 11 porcine eyes. We compared membranes with their native shiny white color with membranes that were stained with a blue dye (Brilliant Blue. Histological and electrophysiological evaluation of the overlying retina was carried out 6 weeks after implantation. Histologically, both white and blue membranes degraded in a spongiform manner leaving a disrupted outer retina with no preserved photoreceptor segments. Multifocal ERG revealed the white membranes to have a significantly higher P1-amplitude ratio than the blue (P=0.027, and a correlation between brightness ratio and P1-amplitude ratio was found (r=0.762. Based on our findings, we conclude that bright subretinal objects can produce normal mfERG amplitude ratios even when the adjacent photoreceptors are missing. Functional assessment with mfERG in scaffold implant studies should therefore be evaluated with care.

  6. ZO-1 expression is suppressed by GM-CSF via miR-96/ERG in brain microvascular endothelial cells.

    Science.gov (United States)

    Zhang, Hu; Zhang, Shuhong; Zhang, Jilin; Liu, Dongxin; Wei, Jiayi; Fang, Wengang; Zhao, Weidong; Chen, Yuhua; Shang, Deshu

    2018-05-01

    The level of granulocyte-macrophage colony-stimulating factor (GM-CSF) increases in some disorders such as vascular dementia, Alzheimer's disease, and multiple sclerosis. We previously reported that in Alzheimer's disease patients, a high level of GM-CSF in the brain parenchyma downregulated expression of ZO-1, a blood-brain barrier tight junction protein, and facilitated the infiltration of peripheral monocytes across the blood-brain barrier. However, the molecular mechanism underlying regulation of ZO-1 expression by GM-CSF is unclear. Herein, we found that the erythroblast transformation-specific (ETS) transcription factor ERG cooperated with the proto-oncogene protein c-MYC in regulation of ZO-1 transcription in brain microvascular endothelial cells (BMECs). The ERG expression was suppressed by miR-96 which was increased by GM-CSF through the phosphoinositide-3 kinase (PI3K)/Akt pathway. Inhibition of miR-96 prevented ZO-1 down-regulation induced by GM-CSF both in vitro and in vivo. Our results revealed the mechanism of ZO-1 expression reduced by GM-CSF, and provided a potential target, miR-96, which could block ZO-1 down-regulation caused by GM-CSF in BMECs.

  7. Cell size checkpoint control by the retinoblastoma tumor suppressor pathway.

    Science.gov (United States)

    Fang, Su-Chiung; de los Reyes, Chris; Umen, James G

    2006-10-13

    Size control is essential for all proliferating cells, and is thought to be regulated by checkpoints that couple cell size to cell cycle progression. The aberrant cell-size phenotypes caused by mutations in the retinoblastoma (RB) tumor suppressor pathway are consistent with a role in size checkpoint control, but indirect effects on size caused by altered cell cycle kinetics are difficult to rule out. The multiple fission cell cycle of the unicellular alga Chlamydomonas reinhardtii uncouples growth from division, allowing direct assessment of the relationship between size phenotypes and checkpoint function. Mutations in the C. reinhardtii RB homolog encoded by MAT3 cause supernumerous cell divisions and small cells, suggesting a role for MAT3 in size control. We identified suppressors of an mat3 null allele that had recessive mutations in DP1 or dominant mutations in E2F1, loci encoding homologs of a heterodimeric transcription factor that is targeted by RB-related proteins. Significantly, we determined that the dp1 and e2f1 phenotypes were caused by defects in size checkpoint control and were not due to a lengthened cell cycle. Despite their cell division defects, mat3, dp1, and e2f1 mutants showed almost no changes in periodic transcription of genes induced during S phase and mitosis, many of which are conserved targets of the RB pathway. Conversely, we found that regulation of cell size was unaffected when S phase and mitotic transcription were inhibited. Our data provide direct evidence that the RB pathway mediates cell size checkpoint control and suggest that such control is not directly coupled to the magnitude of periodic cell cycle transcription.

  8. Productivity and selective accumulation of carotenoids of the novel extremophile microalga Chlamydomonas acidophila grown with different carbon sources in batch systems

    NARCIS (Netherlands)

    Cuaresma, M.; Casal, C.; Forján, E.; Vílchez, C.

    2011-01-01

    Cultivation of extremophile microorganisms has attracted interest due to their ability to accumulate highvalue compounds. Chlamydomonas acidophila is an acidophile green microalga isolated by our group from Tinto River, an acidic river that flows down from the mining area in Huelva, Spain. This

  9. Voltage-sensing domain mode shift is coupled to the activation gate by the N-terminal tail of hERG channels.

    Science.gov (United States)

    Tan, Peter S; Perry, Matthew D; Ng, Chai Ann; Vandenberg, Jamie I; Hill, Adam P

    2012-09-01

    Human ether-a-go-go-related gene (hERG) potassium channels exhibit unique gating kinetics characterized by unusually slow activation and deactivation. The N terminus of the channel, which contains an amphipathic helix and an unstructured tail, has been shown to be involved in regulation of this slow deactivation. However, the mechanism of how this occurs and the connection between voltage-sensing domain (VSD) return and closing of the gate are unclear. To examine this relationship, we have used voltage-clamp fluorometry to simultaneously measure VSD motion and gate closure in N-terminally truncated constructs. We report that mode shifting of the hERG VSD results in a corresponding shift in the voltage-dependent equilibrium of channel closing and that at negative potentials, coupling of the mode-shifted VSD to the gate defines the rate of channel closure. Deletion of the first 25 aa from the N terminus of hERG does not alter mode shifting of the VSD but uncouples the shift from closure of the cytoplasmic gate. Based on these observations, we propose the N-terminal tail as an adaptor that couples voltage sensor return to gate closure to define slow deactivation gating in hERG channels. Furthermore, because the mode shift occurs on a time scale relevant to the cardiac action potential, we suggest a physiological role for this phenomenon in maximizing current flow through hERG channels during repolarization.

  10. Phytotoxicity, bioaccumulation and degradation of isoproturon in green algae.

    Science.gov (United States)

    Bi, Yan Fang; Miao, Shan Shan; Lu, Yi Chen; Qiu, Chong Bin; Zhou, You; Yang, Hong

    2012-12-01

    Isoproturon (IPU) is a pesticide used for protection of land crops from weed or pathogen attack. Recent survey shows that IPU has been detected as a contaminant in aquatic systems and may have negative impact on aquatic organisms. To understand the phytotoxicity and potential accumulation and degradation of IPU in algae, a comprehensive study was performed with the green alga Chlamydomonas reinhardtii. Algae exposed to 5-50 μg L(-1) IPU for 3d displayed progressive inhibition of cell growth and reduced chlorophyll fluorescence. Time-course experiments with 25 μg L(-1) IPU for 6d showed similar growth responses. The 72 h EC50 value for IPU was 43.25 μg L(-1), NOEC was 5 μg L(-1) and LOEC was 15 μg L(-1). Treatment with IPU induced oxidative stress. This was validated by a group of antioxidant enzymes, whose activities were promoted by IPU exposure. The up-regulation of several genes coding for the enzymes confirmed the observation. IPU was shown to be readily accumulated by C. reinhardtii. However, the alga showed a weak ability to degrade IPU accumulated in its cells, which was best presented at the lower concentration (5 μg L(-1)) of IPU in the medium. The imbalance of accumulation and degradation of IPU may be the cause that resulted in the detrimental growth and cellular damage. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Dissecting the molecular mechanisms of intraflagellar transport in Chlamydomonas

    DEFF Research Database (Denmark)

    Pedersen, L. B.; Geimer, S.; Rosenbaum, J. L.

    2006-01-01

    Background The assembly and maintenance of eukaryotic cilia and flagella are mediated by intraflagellar transport (IFT), a bidirectional microtubule (MT)-based transport system. The IFT system consists of anterograde (kinesin-2) and retrograde (cDynein1b) motor complexes and IFT particles...... comprising two complexes, A and B. In the current model for IFT, kinesin-2 carries cDynein1b, IFT particles, and axonemal precursors from the flagellar base to the tip, and cDynein1b transports kinesin-2, IFT particles, and axonemal turnover products from the tip back to the base. Most of the components...... of the IFT system have been identified and characterized, but the mechanisms by which these different components are coordinated and regulated at the flagellar base and tip are unclear. Results Using a variety of Chlamydomonas mutants, we confirm that cDynein1b requires kinesin-2 for transport toward the tip...

  12. Salicylhydroxamic acid (SHAM) inhibition of the DIC-pump in unicellular algae

    International Nuclear Information System (INIS)

    Goyal, A.; Tolbert, N.E.

    1989-01-01

    SHAM at 1 or 2 mM inhibits dissolved inorganic carbon (DIC) concentrating mechanisms in unicellular green algae as measured by photosynthetic oxygen evolution or by 14 C-inorganic carbon uptake (using silicone oil centrifugation techniques). This inhibition was reversed by high levels of DIC whereby the cells do not require the concentrating mechanism. SHAM inhibited the DIC-pump, which uses external CO 2 , in three species of algae, Dunaliella tertiolecta, Chlamydomonas reinhardtii, and Scenedesmus obliquus when adapted to low CO 2 and assayed around neutral pH. Scenedesmus adapted to air at pH 9.0 to use external HCO 3 - were not affected by SHAM. It is important to establish low optimum concentrations of SHAM, which varied with the algal species. The mechanism of SHAM inhibition of the CO 2 concentrating process is unknown. SHAM inhibits alternative respiration in these algae, but SHAM may also inhibit other reactions involving H + gradients or transporters associated with the DIC-pump

  13. Stationary Size Distributions of Growing Cells with Binary and Multiple Cell Division

    Science.gov (United States)

    Rading, M. M.; Engel, T. A.; Lipowsky, R.; Valleriani, A.

    2011-10-01

    Populations of unicellular organisms that grow under constant environmental conditions are considered theoretically. The size distribution of these cells is calculated analytically, both for the usual process of binary division, in which one mother cell produces always two daughter cells, and for the more complex process of multiple division, in which one mother cell can produce 2 n daughter cells with n=1,2,3,… . The latter mode of division is inspired by the unicellular algae Chlamydomonas reinhardtii. The uniform response of the whole population to different environmental conditions is encoded in the individual rates of growth and division of the cells. The analytical treatment of the problem is based on size-dependent rules for cell growth and stochastic transition processes for cell division. The comparison between binary and multiple division shows that these different division processes lead to qualitatively different results for the size distribution and the population growth rates.

  14. A Rapid and Simple Bioassay Method for Herbicide Detection

    Directory of Open Access Journals (Sweden)

    Xiu-Qing Li

    2008-01-01

    Full Text Available Chlamydomonas reinhardtii, a unicellular green alga, has been used in bioassay detection of a variety of toxic compounds such as pesticides and toxic metals, but mainly using liquid culture systems. In this study, an algal lawn--agar system for semi-quantitative bioassay of herbicidal activities has been developed. Sixteen different herbicides belonging to 11 different categories were applied to paper disks and placed on green alga lawns in Petri dishes. Presence of herbicide activities was indicated by clearing zones around the paper disks on the lawn 2-3 days after application. The different groups of herbicides induced clearing zones of variable size that depended on the amount, mode of action, and chemical properties of the herbicides applied to the paper disks. This simple, paper-disk-algal system may be used to detect the presence of herbicides in water samples and act as a quick and inexpensive semi-quantitative screening for assessing herbicide contamination.

  15. Radiocesium bioaccumulation in freshwater plankton: Influences of cation concentrations (K{sup +} and Na{sup +}) on direct uptake of {sup 137}Cs in Chlamydomonas, Scenedesmus and Daphnia. Food-chain transfer of {sup 137}Cs from Chlamydomonas to Daphnia at different K{sup +} concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Hagstroem, J. [Uppsala Univ., Dept. of Limnology, Uppsala (Sweden)

    2002-04-01

    The influences of cation concentrations (K{sup +} and Na{sup +}) on radiocesium ({sup 137}Cs) bioaccumulation in two freshwater phytoplankton species (Scenedesmus quadricauda and Chlamydomonas noctigama) were systematically investigated in batch-cultures monitored during two weeks. Both species were cultured at 9 {mu}E M{sup -2} s{sup -1} constant illumination at 20 deg. C. The exponential growth phase lasted for more than 100 hours ({mu} {approx_equal} 0.02 h{sup -1} for C. noctigama and 0.03 h{sup -1} for S, quadricauda). Over cation concentration ranges encountered in natural fresh waters ([K{sup +}] from 0.1 {mu}M to 3 mM, [Na{sup +}] from 20 {mu}M to 3 mM), a more than three order of magnitude variation was found for both intake rate and observed bioconcentration factors (BCF) at apparent steady-state (from less than 10{sup 3} to 10{sup 6} L (kg C){sup -1}). For both species, the major effector on BCF and uptake rate was external [K{sup +}], which was inversely proportional to these parameters over wide ranges (1-1000 {mu}M for S. quadricauda and 0.1 to 300 {mu}M for C. noctigama). At concentrations above these ranges K{sup +} still reduced {sup 137} Cs bio-uptake, but less effectively. A minor influence of external [Na{sup +}] on {sup 137}Cs bioaccumulation was indicated for S. quadricauda, whereas no such influence was significant for C. noctigama. A biphasic pattern for {sup 137}Cs bioaccumulation was discovered in C. noctigama. A rapid 'quasi-steady state' with an effective equilibration time of less than 100 hours was approached during the exponential growth phase. A surge in the uptake occurred when exponential growth ceased, and this pattern was consistent over the range 30 {mu}M to 1.4 mM external [K{sup +}]. Since depletion of external [K{sup +}] was not detected for these treatments, this pattern can only be explained if there are at least two different cellular compartments involved. Although less certain, a second steady-state BCF

  16. Ultrastructural and ERG findings in progressive rod-cone dystrophy in a litter of Labrador retrievers.

    Science.gov (United States)

    Raitta, C; Kommonen, B; Ulshafer, R; Karhunen, U

    1991-02-01

    Early ultrastructural findings of a progressive photoreceptor dystrophy and corresponding ERG findings are reported in 3 Labrador Retrievers from a litter of 7 pups bred from 2 dogs clinically and electroretinographically affected with generalized progressive retinal dystrophy. The pups were euthanized at 5, 11 and 15 months post partum. The most prominent ultrastructural finding was photoreceptor dystrophy. At 5 months the outer nuclear layer (ONL) consisted of 8-10 layers and seemed reduced in thickness, pyknotic nuclei were seen in this layer. The receptor outer segments (OS) were short and swollen. Some disorientation of OS discs occurred. In the 11-months specimen 7-8 ONL layers were identified. Overall thinning of the neuro-retina had occurred and fewer receptors compared to the 5-months specimen were present. By 15 months the ONL was further reduced to about 4 layers. Enlarged internuclear spaces were present in the ONL as well as around inner segments (IS). Phagocytic cells were frequent among remains of OS. The pigment epithelium appeared normal. The dark adapted ERG b-wave amplitudes and photopic 30 Hz flicker responses were low in comparison to controls of the same breed, and decreased with age. The condition represents a progressive rod-cone dystrophy which shares similarities with primary receptor dystrophy in man such as retinitis pigmentosa.

  17. TOR (target of rapamycin) is a key regulator of triacylglycerol accumulation in microalgae.

    Science.gov (United States)

    Imamura, Sousuke; Kawase, Yasuko; Kobayashi, Ikki; Shimojima, Mie; Ohta, Hiroyuki; Tanaka, Kan

    2016-01-01

    Most microalgae abundantly accumulate lipid droplets (LDs) containing triacylglycerols (TAGs) under several stress conditions, but the underlying molecular mechanism of this accumulation remains unclear. In a recent study, we found that inhibition of TOR (target of rapamycin), a highly conserved protein kinase of eukaryotes, by rapamycin resulted in TAG accumulation in microalgae, indicating that TOR negatively regulates TAG accumulation. Here, we show that formation of intracellular LDs and TAG accumulation were also induced in the unicellular green alga Chlamydomonas reinhardtii after exposure to Torin1 or AZD8055, which are novel TOR inhibitors that inhibit TOR activity in a manner different from rapamycin. These results supported quite well our previous conclusion that TOR is a central regulator of TAG accumulation in microalgae.

  18. Diagnostic Value of ERG in Prostate Needle Biopsies Containing Minute Cancer Foci

    Directory of Open Access Journals (Sweden)

    Bachurska Svitlana Y.

    2017-03-01

    Full Text Available Background: Prostate carcinoma (PC is the second most diagnosed cancer in men population worldwide. The small amount of the tissue in prostate needle biopsy is often sufficient for the correct interpretation. Novel antibodies, as ERG, could add to the diagnostic value of IHC study in analysing difficult core biopsies.

  19. SPINK1 Overexpression in Localized Prostate Cancer: a Rare Event Inversely Associated with ERG Expression and Exclusive of Homozygous PTEN Deletion.

    Science.gov (United States)

    Huang, Kuo-Cheng; Evans, Andrew; Donnelly, Bryan; Bismar, Tarek A

    2017-04-01

    SPINK1 is proposed as potential prognostic marker in prostate cancer (PCA). However, its relation to PTEN and ERG in localized PCA remains unclear. The study population consisted of two independent cohorts of men treated by radical prostatectomy for localized PCA (discovery n = 218 and validation n = 129). Patterns of association between SPINK1 and each of ERG and PTEN were evaluated by immunohistochemistry and fluorescence in situ hybridization. Associations between SPINK1 expression and various pathologic parameters and clinical outcome were also investigated. SPINK1 was expressed in 15.3 % and 10.9 % of cases in the discovery and validation cohort, respectively. SPINK expression was observed in 5.56 % of high-grade prostatic intraepithelial neoplasia and 1.1 % of adjacent morphologically benign prostatic glands. SPINK1 and ERG expression were almost exclusive, with only 1.0 % of the cases co-expressing both in the same core sample. SPINK1 interfocal and within-core heterogeneity was noted in 29.2 % and 64.6 % of cases, respectively. SPINK1 expression was not significantly associated with PTEN deletion in the two cohorts (p = 0.871 for discovery cohort and p = 0.293 for validation cohort). While SPINK1 expression did occur with hemizygous PTEN deletion, there was a complete absence of SPINK1 expression in PCA showing homozygous PTEN deletion, which was confirmed in the validation cohort (p = 0.02). Despite SPINK1's association with higher Gleason score (>7) (p = 0.02), it was not associated with other pathological parameters or biochemical recurrence post-radical prostatectomy. We documented absolute exclusivity between SPINK1 overexpression and homozygous PTEN deletion in localized PCA. SPINK1 and ERG expressions are exclusive events in PCA. SPINK1 is not of added prognostic value in localized PCA.

  20. Synthesis of chlorophyll b: Localization of chlorophyllide a oxygenase and discovery of a stable radical in the catalytic subunit

    Science.gov (United States)

    Eggink, Laura L; LoBrutto, Russell; Brune, Daniel C; Brusslan, Judy; Yamasato, Akihiro; Tanaka, Ayumi; Hoober, J Kenneth

    2004-01-01

    Background Assembly of stable light-harvesting complexes (LHCs) in the chloroplast of green algae and plants requires synthesis of chlorophyll (Chl) b, a reaction that involves oxygenation of the 7-methyl group of Chl a to a formyl group. This reaction uses molecular oxygen and is catalyzed by chlorophyllide a oxygenase (CAO). The amino acid sequence of CAO predicts mononuclear iron and Rieske iron-sulfur centers in the protein. The mechanism of synthesis of Chl b and localization of this reaction in the chloroplast are essential steps toward understanding LHC assembly. Results Fluorescence of a CAO-GFP fusion protein, transiently expressed in young pea leaves, was found at the periphery of mature chloroplasts and on thylakoid membranes by confocal fluorescence microscopy. However, when membranes from partially degreened cells of Chlamydomonas reinhardtii cw15 were resolved on sucrose gradients, full-length CAO was detected by immunoblot analysis only on the chloroplast envelope inner membrane. The electron paramagnetic resonance spectrum of CAO included a resonance at g = 4.3, assigned to the predicted mononuclear iron center. Instead of a spectrum of the predicted Rieske iron-sulfur center, a nearly symmetrical, approximately 100 Gauss peak-to-trough signal was observed at g = 2.057, with a sensitivity to temperature characteristic of an iron-sulfur center. A remarkably stable radical in the protein was revealed by an isotropic, 9 Gauss peak-to-trough signal at g = 2.0042. Fragmentation of the protein after incorporation of 125I- identified a conserved tyrosine residue (Tyr-422 in Chlamydomonas and Tyr-518 in Arabidopsis) as the radical species. The radical was quenched by chlorophyll a, an indication that it may be involved in the enzymatic reaction. Conclusion CAO was found on the chloroplast envelope and thylakoid membranes in mature chloroplasts but only on the envelope inner membrane in dark-grown C. reinhardtii cells. Such localization provides further

  1. Common variants in the hERG (KCNH2) voltage-gated potassium channel are associated with altered fasting and glucose-stimulated plasma incretin and glucagon responses

    DEFF Research Database (Denmark)

    Engelbrechtsen, Line; Mahendran, Yuvaraj; Jonsson, Anna

    2018-01-01

    BACKGROUND: Patients with long QT syndrome due to rare loss-of-function mutations in the human ether-á-go-go-related gene (hERG) have prolonged QT interval, risk of arrhythmias, increased secretion of insulin and incretins and impaired glucagon response to hypoglycemia. This is caused by a dysfun......BACKGROUND: Patients with long QT syndrome due to rare loss-of-function mutations in the human ether-á-go-go-related gene (hERG) have prolonged QT interval, risk of arrhythmias, increased secretion of insulin and incretins and impaired glucagon response to hypoglycemia. This is caused...... by a dysfunctional Kv11.1 voltage-gated potassium channel. Based on these findings in patients with rare variants in hERG, we hypothesized that common variants in hERG may also lead to alterations in glucose homeostasis. Subsequently, we aimed to evaluate the effect of two common gain-of-function variants in hERG...... in hERG on QT-interval and circulation levels of incretins, insulin and glucagon. The Danish population-based Inter99 cohort (n = 5895) was used to assess the effect of common variants on QT-interval. The Danish ADDITION-PRO cohort was used (n = 1329) to study genetic associations with levels of GLP-1...

  2. The predictive value of ERG protein expression for development of castration-resistant prostate cancer in hormone-naïve advanced prostate cancer treated with primary androgen deprivation therapy

    DEFF Research Database (Denmark)

    Berg, Kasper Drimer; Røder, Martin A; Thomsen, Frederik B

    2015-01-01

    BACKGROUND: Biomarkers predicting response to primary androgen deprivation therapy (ADT) and risk of castration-resistant prostate cancer (CRPC) is lacking. We aimed to analyse the predictive value of ERG expression for development of CRPC. METHODS: In total, 194 patients with advanced and....../or metastatic prostate cancer (PCa) treated with first-line castration-based ADT were included. ERG protein expression was analysed in diagnostic specimens using immunohistochemistry (anti-ERG, EPR3864). Time to CRPC was compared between ERG subgroups using multiple cause-specific Cox regression stratified......-negative group, respectively. Compared to a model omitting ERG-status, the ERG-stratified model showed comparable AUC values 1 year (77.6% vs. 78.0%, P = 0.82), 2 years (71.7% vs. 71.8%, P = 0.85), 5 years (68.5% vs. 69.9%, P = 0.32), and 8 years (67.9% vs. 71.4%, P = 0.21) from ADT initiation. No differences...

  3. Draft Genome Sequence of MCPA-Degrading Sphingomonas sp. Strain ERG5, Isolated from a Groundwater Aquifer in Denmark

    DEFF Research Database (Denmark)

    Nielsen, Tue Kjærgaard; Kot, Witold; Sørensen, Sebastian R

    2015-01-01

    Sphingomonas sp. strain ERG5 was isolated from a bacterial community, originating from a groundwater aquifer polluted with low pesticide concentrations. This bacterium degrades 2-methyl-4-chlorophenoxyacetic acid (MCPA) in a wide spectrum of concentrations and has been shown to function in bioaug......Sphingomonas sp. strain ERG5 was isolated from a bacterial community, originating from a groundwater aquifer polluted with low pesticide concentrations. This bacterium degrades 2-methyl-4-chlorophenoxyacetic acid (MCPA) in a wide spectrum of concentrations and has been shown to function...

  4. The Chlamydomonas cell wall and its constituent glycoproteins analyzed by the quick-freeze, deep-etch technique

    OpenAIRE

    1985-01-01

    Using the quick-freeze, deep-etch technique, we have analyzed the structure of the intact cell wall of Chlamydomonas reinhardi, and have visualized its component glycoproteins after mechanical shearing and after depolymerization induced by perchlorate or by the wall-disrupting agent, autolysin. The intact wall has previously been shown in a thin- section study (Roberts, K., M. Gurney-Smith, and G. J. Hills, 1972, J. Ultrastruct. Res. 40:599-613) to consist of a discrete central triplet bisect...

  5. Origin of the Sinai-Negev erg, Egypt and Israel: mineralogical and geochemical evidence for the importance of the Nile and sea level history

    Science.gov (United States)

    Muhs, Daniel R.; Roskin, Joel; Tsoar, Haim; Skipp, Gary; Budahn, James R.; Sneh, Amihai; Porat, Naomi; Stanley, Jean-Daniel; Katra, Itzhak; Blumberg, Dan G.

    2013-01-01

    The Sinai–Negev erg occupies an area of 13,000 km2 in the deserts of Egypt and Israel. Aeolian sand of this erg has been proposed to be derived from the Nile Delta, but empirical data supporting this view are lacking. An alternative source sediment is sand from the large Wadi El Arish drainage system in central and northern Sinai. Mineralogy of the Negev and Sinai dunes shows that they are high in quartz, with much smaller amounts of K-feldspar and plagioclase. Both Nile Delta sands and Sinai wadi sands, upstream of the dunes, also have high amounts of quartz relative to K-feldspar and plagioclase. However, Sinai wadi sands have abundant calcite, whereas Nile Delta sands have little or no calcite. Overall, the mineralogical data suggest that the dunes are derived dominantly from the Nile Delta, with Sinai wadi sands being a minor contributor. Geochemical data that proxy for both the light mineral fraction (SiO2/10–Al2O3 + Na2O + K2O–CaO) and heavy mineral fraction (Fe2O3–MgO–TiO2) also indicate a dominant Nile Delta source for the dunes. Thus, we report here the first empirical evidence that the Sinai–Negev dunes are derived dominantly from the Nile Delta. Linkage of the Sinai–Negev erg to the Nile Delta as a source is consistent with the distribution of OSL ages of Negev dunes in recent studies. Stratigraphic studies show that during the Last Glacial period, when dune incursions in the Sinai–Negev erg began, what is now the Nile Delta area was characterized by a broad, sandy, minimally vegetated plain, with seasonally dry anastomosing channels. Such conditions were ideal for providing a ready source of sand for aeolian transport under what were probably much stronger glacial-age winds. With the post-glacial rise in sea level, the Nile River began to aggrade. Post-glacial sedimentation has been dominated by fine-grained silts and clays. Thus, sea level, along with favorable climatic conditions, emerges as a major influence on the timing of dune

  6. Nain's Hierarchy of Needs: An Alternative to Maslow's & ERG's Hierarchy of Needs

    OpenAIRE

    nain, bhavya

    2013-01-01

    This article gives reasons as to why Maslow's & ERG Theory of Needs is inaccurate. It also gives reasons why the same is inaccurate in an organizational perspective. The author also gives a alternative model of needs, namely the Nain Model, which is particularly applicable in an organizational perspective. This article has been written for those interested in Organizational Behaviour.

  7. Multifocal ERG reveals long distance effects of a local bleach in the retina.

    Science.gov (United States)

    Kretschmann, U; Tornow, R P; Zrenner, E

    1998-06-01

    To examine the distribution of ERG-activity in the central visual field after local bleaching of the fovea, multifocal electroretinograms were recorded in eight normal volunteers before, during and after recurrent light exposure. During bleaching (90% bleached pigment), the response density (scalar product) of the foveal area (0-2 degrees eccentricity) decreased from 10.7 +/- 3.5 to 4.1 +/- 1.9 nV/degree2 (P < 0.001). The average activity in the extrafoveal macular area was unchanged, while the amplitudes were frequently (in 53 of 54 areas) enhanced at 5-30.5 degrees eccentricity. Here the average response density changed from 3.1 +/- 0.9 to 3.5 +/- 1.0 nV/degree2 (P < 0.001). A fast recovery of foveal responses after cessation of bleaching occurred. Besides a strong decrease of response in the directly bleached area, local bleaching led to enhanced activity mainly 3-27 degrees distant from the bleached area.

  8. Hydrocarbon phenotyping of algal species using pyrolysis-gas chromatography mass spectrometry

    Directory of Open Access Journals (Sweden)

    Kothari Shankar L

    2010-05-01

    Full Text Available Abstract Background Biofuels derived from algae biomass and algae lipids might reduce dependence on fossil fuels. Existing analytical techniques need to facilitate rapid characterization of algal species by phenotyping hydrocarbon-related constituents. Results In this study, we compared the hydrocarbon rich algae Botryococcus braunii against the photoautotrophic model algae Chlamydomonas reinhardtii using pyrolysis-gas chromatography quadrupole mass spectrometry (pyGC-MS. Sequences of up to 48 dried samples can be analyzed using pyGC-MS in an automated manner without any sample preparation. Chromatograms of 30-min run times are sufficient to profile pyrolysis products from C8 to C40 carbon chain length. The freely available software tools AMDIS and SpectConnect enables straightforward data processing. In Botryococcus samples, we identified fatty acids, vitamins, sterols and fatty acid esters and several long chain hydrocarbons. The algae species C. reinhardtii, B. braunii race A and B. braunii race B were readily discriminated using their hydrocarbon phenotypes. Substructure annotation and spectral clustering yielded network graphs of similar components for visual overviews of abundant and minor constituents. Conclusion Pyrolysis-GC-MS facilitates large scale screening of hydrocarbon phenotypes for comparisons of strain differences in algae or impact of altered growth and nutrient conditions.

  9. Manipulating fatty acid biosynthesis in microalgae for biofuel through protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Jillian L Blatti

    Full Text Available Microalgae are a promising feedstock for renewable fuels, and algal metabolic engineering can lead to crop improvement, thus accelerating the development of commercially viable biodiesel production from algae biomass. We demonstrate that protein-protein interactions between the fatty acid acyl carrier protein (ACP and thioesterase (TE govern fatty acid hydrolysis within the algal chloroplast. Using green microalga Chlamydomonas reinhardtii (Cr as a model, a structural simulation of docking CrACP to CrTE identifies a protein-protein recognition surface between the two domains. A virtual screen reveals plant TEs with similar in silico binding to CrACP. Employing an activity-based crosslinking probe designed to selectively trap transient protein-protein interactions between the TE and ACP, we demonstrate in vitro that CrTE must functionally interact with CrACP to release fatty acids, while TEs of vascular plants show no mechanistic crosslinking to CrACP. This is recapitulated in vivo, where overproduction of the endogenous CrTE increased levels of short-chain fatty acids and engineering plant TEs into the C. reinhardtii chloroplast did not alter the fatty acid profile. These findings highlight the critical role of protein-protein interactions in manipulating fatty acid biosynthesis for algae biofuel engineering as illuminated by activity-based probes.

  10. Overexpression of erg1 gene in Trichoderma harzianum CECT 2413: effect on the induction of tomato defence-related genes.

    Science.gov (United States)

    Cardoza, R E; Malmierca, M G; Gutiérrez, S

    2014-09-01

    To investigate the effect of the overexpression of erg1 gene of Trichoderma harzianum CECT 2413 (T34) on the Trichoderma-plant interactions and in the biocontrol ability of this fungus. Transformants of T34 strain overexpressing erg1 gene did not show effect on the ergosterol level, although a drastic decrease in the squalene level was observed in the transformants at 96 h of growth. During interaction with plants, the erg1 overexpression resulted in a reduction of the priming ability of several tomato defence-related genes belonging to the salicylate pathway, and also of the TomLoxA gene, which is related to the jasmonate pathway. Interestingly, other jasmonate-related genes, such as PINI and PINII, were slightly induced. The erg1 overexpressed transformants also showed a reduced ability to colonize tomato roots. The ergosterol biosynthetic pathway might play an important role in regulating Trichoderma-plant interactions, although this role does not seem to be restricted to the final product; instead, other intermediates such as squalene, whose role in the Trichoderma-plant interaction has not been characterized, would also play an important role. The functional analysis of genes involved in the synthesis of ergosterol could provide additional strategies to improve the ability of biocontrol of the Trichoderma strains and their interaction with plants. © 2014 The Society for Applied Microbiology.

  11. MiR-17-5p Impairs Trafficking of H-ERG K+ Channel Protein by Targeting Multiple ER Stress-Related Chaperones during Chronic Oxidative Stress

    OpenAIRE

    Wang, Qi; Hu, Weina; Lei, Mingming; Wang, Yong; Yan, Bing; Liu, Jun; Zhang, Ren; Jin, Yuanzhe

    2013-01-01

    BACKGROUND: To investigate if microRNAs (miRNAs) play a role in regulating h-ERG trafficking in the setting of chronic oxidative stress as a common deleterious factor for many cardiac disorders. METHODS: We treated neonatal rat ventricular myocytes and HEK293 cells with stable expression of h-ERG with H2O2 for 12 h and 48 h. Expression of miR-17-5p seed miRNAs was quantified by real-time RT-PCR. Protein levels of chaperones and h-ERG trafficking were measured by Western blot analysis. Lucifer...

  12. The role of hERG1 ion channels in epithelial-mesenchymal transition and the capacity of riluzole to reduce cisplatin resistance in colorectal cancer cells.

    Science.gov (United States)

    Fortunato, Angelo

    2017-08-01

    The transition of cells from the epithelial to the mesenchymal state (EMT) plays an important role in tumor progression. EMT allows cells to acquire mobility, stem-like behavior and resistance to apoptosis and drug treatment. These features turn EMT into a central process in tumor biology. Ion channels are attractive targets for the treatment of cancer since they play critical roles in controlling a wide range of physiological processes that are frequently deregulated in cancer. Here, we investigated the role of ether-a-go-go-related 1 (hERG1) ion channels in the EMT of colorectal cancer cells. We studied the epithelial-mesenchymal profile of different colorectal cancer-derived cell lines and the expression of hERG1 potassium channels in these cell lines using real-time PCR. Next, we knocked down hERG1 expression in HCT116 cells using lentivirus mediated RNA interference and characterized the hERG1 silenced cells in vitro and in vivo. Finally, we investigated the capacity of riluzole, an ion channel-modulating drug used in humans to treat amyotrophic lateral sclerosis, to reduce the resistance of the respective colorectal cancer cells to the chemotherapeutic drug cisplatin. We found that of the colorectal cancer-derived cell lines tested, HCT116 showed the highest mesenchymal profile and a high hERG1 expression. Subsequent hERG1 expression knockdown induced a change in cell morphology, which was accompanied by a reduction in the proliferative and tumorigenic capacities of the cells. Notably, we found that hERG1expression knockdown elicited a reversion of the EMT profile in HCT116 cells with a reacquisition of the epithelial-like profile. We also found that riluzole increased the sensitivity of HCT116 cisplatin-resistant cells to cisplatin. Our data indicate that hERG1 plays a role in the EMT of colorectal cancer cells and that its knockdown reduces the proliferative and tumorigenic capacities of these cells. In addition, we conclude that riluzole may be used in

  13. ELECTROOCULOGRAPHY AND PATTERN ERG IN THE DIAGNOSTICS OF BEST’S VITELLIFORM DISTROPHY

    Directory of Open Access Journals (Sweden)

    Martina Jarc-Vidmar

    2002-12-01

    Full Text Available Background. The aim of the study was to develop electrooculography in accordance with ISCEV standards and to test its accuracy in the diagnosis of Best’s disease, where the EOG results should be invariably abnormal in all affected members. The pathophysiology of Best’s disease is not yet completely understood, so pattern and full field flash ERG responses compared to visual acuity and stage of the disease were used to asses the neurosensory retinal function in different stages of Best’s disease.Patients and methods. The EOG was recorded in accordance with ISCEV standards on 30 healthy individuals to determine normal values of our laboratory. Pattern as well as photopic and scotopic ERG were recorded on 24 eyes of 12 patients with typical Best’s disease with abnormal EOG responses. The results were compared to visual acuity and stage of the disease.Results. Our EOG normative data are comparable with results from other laboratories: the mean value of Arden ratio is 2.32, the range of 2 standard deviations from the mean value is from 1.6 to 3.04. The patients with Best’s disease have statisticaly significant lower values of Arden ratio (the mean value beeing 1.19. 12 patients (24 eyes with Best’s disease with abnormal EOG values were divided in two groups according to visual acuity. In the first group of 12 eyes with visual acuity > 0.5 PERG P50 and N95 responses were all in the normal range. In the second group of 12 eyes with visual acuity 0.5 or less PERG showed reduced both P50 and N95 responses in 5 eyes, and N95 solely, in two eyes.The photopic and scotopic electroretinographic responses were normal in all patients. Progression of the disease, seen in the deterioration of visual acuity, corresponded well with reduction of both PERG P50 and N95 responses. There was no correlation found between visual acuity and EOG responses.Conclusions. In the study on patients with Best’s disease, it was confirmed that EOG is a very sensitive

  14. Extract of Lillium candidum L. Can Modulate the Genotoxicity of the Antibiotic Zeocin

    Directory of Open Access Journals (Sweden)

    Peter Bryant

    2011-12-01

    Full Text Available Lilium candidum L. extract (LE is well known in folk medicine for the treatment of burns, ulcers, inflammations and for healing wounds. This work aims to clarify whether the genotoxic potential of the radiomimetic antibiotic zeocin (Zeo could be modulated by LE. Our results indicate that LE exerts no cytotoxic, DNA-damaging and clastogenic activity in in Chlamydomonas reinhardtii, Pisum sativum L. and Hordeum vulgare L. test systems over a broad concentration range. Weak but statistically significant clastogenic effects due to the induction of micronuclei and chromosome aberrations have been observed in H. vulgare L. after treatment with 200 and 300 μg/mL LE. To discriminate protective from adverse action of LE different experimental designs have been used. Our results demonstrate that the treatment with mixtures of LE and Zeo causes an increase in the level of DNA damage, micronuclei and “metaphases with chromatid aberrations” (MwA. Clear evidence has been also obtained indicating that pretreatment with LE given 4 h before the treatment with Zeo accelerates the rejoining kinetics of Zeo-induced DNA damage in P. sativum L. and C. reinhardtii, and can decrease clastogenic effect of Zeo measured as frequencies of micronuclei and MwA in H. vulgare L. Here, we show for the first time that LE can modulate the genotoxic effects of zeocin. The molecular mode of action strongly depends on the experimental design and varies from synergistic to protective effect (adaptive response–AR. Our results also revealed that LE-induced AR to zeocin involves up-regulation of DSB rejoining in C. reinhardtii and P. sativum L. cells.

  15. Tubin: Sinfonie nr. 11 (ergänzt von Kaljo Raid) / Christoph Schlüren

    Index Scriptorium Estoniae

    Schlüren, Christoph

    1997-01-01

    Uuest heliplaadist "Tubin: Sinfonie nr. 11 (ergänzt von Kaljo Raid); Pärt: Nekrolog op. 5, Sinfonie nr. 1; Tüür: Searching for Roots, Insula deserta, Zeitraum. Königliches Philharmonisches Orchester Stockholm, Paavo Järvi". Virgin/EMI CD 5 45212 2 (WD:71'34") DDD

  16. Rapid synthesis of gold and silver nanoparticles using tryptone as a reducing and capping agent

    Science.gov (United States)

    Mehta, Sourabh M.; Sequeira, Marilyn P.; Muthurajana, Harries; D'Souza, Jacinta S.

    2018-02-01

    Due to its eco-friendliness, recent times have seen an immense interest in the green synthesis of metallic nanoparticles. We present here, a protocol for the rapid and cheap synthesis of Au and Ag nanoparticles (NPs) using 1 mg/ml tryptone (trypsinized casein) as a reducing and capping agent. These nanoparticles are spherical, 10 nm in diameter and relatively monodispersed. The atoms of these NPs are arranged in face-centered cubic fashion. Further, when tested for their cytotoxic property against HeLa and VERO cell lines, gold nanoparticles were more lethal than silver nanoparticles, with a more or less similar trend observed against both Gram-positive and Gram-negative bacteria. On the other hand, the NPs were least cytotoxic against a unicellular alga, Chlamydomonas reinhardtii implying their eco-friendly property.

  17. Phycoremediation as a potential water decontamination method

    International Nuclear Information System (INIS)

    Tatarova, D.; Galanda, D.; Kuruc, J.

    2017-01-01

    In experiments, we focused on the determination of the phycoremediation potential of Chlamydomonas reinhardtii and Scenedesmus obliquus in targeted contaminated aqueous solutions containing radioisotopes 137 Cs and 6 0Co. Microalgae were selected based on their high bioremediation capability. Phycoremediation potential was determined by monitoring the effect of different pH values between pH 2 to pH 9 as well as by monitoring the decrease in activity of the solution over time. Cultivation of microalgae took place in 12 h/12 h light/dark light mode in blue and red light, which promotes plant growth at room temperature. In order to determine the micro-sorption capacity, a method was used to determine the concentration of microns using a Buerker cell in parallel with the spectrophotometric method. (authors)

  18. Validation and Clinical Utility of the hERG IC50:Cmax Ratio to Determine the Risk of Drug-Induced Torsades de Pointes: A Meta-Analysis.

    Science.gov (United States)

    Lehmann, David F; Eggleston, William D; Wang, Dongliang

    2018-03-01

    Use of the QT interval corrected for heart rate (QTc) on the electrocardiogram (ECG) to predict torsades de pointes (TdP) risk from culprit drugs is neither sensitive nor specific. The ratio of the half-maximum inhibitory concentration of the hERG channel (hERG IC50) to the peak serum concentration of unbound drug (C max ) is used during drug development to screen out chemical entities likely to cause TdP. To validate the use of the hERG IC50:C max ratio to predict TdP risk from a culprit drug by its correlation with TdP incidence. Medline (between 1966 and March 2017) was accessed for hERG IC50 and C max values from the antihistamine, fluoroquinolone, and antipsychotic classes to identify cases of drug-induced TdP. Exposure to a culprit drug was estimated from annual revenues reported by the manufacturer. Inclusion criteria for TdP cases were provision of an ECG tracing that demonstrated QTc prolongation with TdP and normal serum values of potassium, calcium, and magnesium. Cases reported in patients with a prior rhythm disturbance and those involving a drug interaction were excluded. The Meta-Analysis of Observational Studies in Epidemiology checklist was used for epidemiological data extraction by two authors. Negligible risk drugs were defined by an hERG IC50:C max ratio that correlated with less than a 5% chance of one TdP event for every 100 million exposures (relative risk [RR] 1.0). The hERG IC50:C max ratio correlated with TdP risk (0.312; 95% confidence interval 0.205-0.476, pratio of 80 (RR 1.0). The RR from olanzapine is on par with loratadine; ziprasidone is comparable with ciprofloxacin. Drugs with an RR greater than 50 include astemizole, risperidone, haloperidol, and thioridazine. The hERG IC50:C max ratio was correlated with TdP incidence for culprit drugs. This validation provides support for the potential use of the hERG IC50:C max ratio for clinical decision making in instances of drug selection where TdP risk is a concern. © 2018

  19. Oxycodone is associated with dose-dependent QTc prolongation in patients and low-affinity inhibiting of hERG activity in vitro

    DEFF Research Database (Denmark)

    Fanoe, Søren; Jensen, Gorm Boje; Sjøgren, Per

    2008-01-01

    with the use of these drugs. WHAT THIS PAPER ADDS: This study is the first to show that oxycodone dose is associated with QT prolongation and in vitro blockade of hERG channels expressed in HEK293. Neither morphine nor tramadol doses are associated with the QT interval length. AIMS: During recent years some...... and TdP could be a more general problem associated with the use of these drugs. The aims of this study were to evaluate the association between different opioids and the QTc among patients and measure hERG activity under influence by opioids in vitro. METHODS: One hundred chronic nonmalignant pain...... patients treated with methadone, oxycodone, morphine or tramadol were recruited in a cross-sectional study. The QTc was estimated from a 12-lead ECG. To examine hERG activity in the presence of oxycodone, electrophysiological testing was conducted using Xenopus laevis oocytes and HEK293 cells expressing h...

  20. Performance of Machine Learning Algorithms for Qualitative and Quantitative Prediction Drug Blockade of hERG1 channel.

    Science.gov (United States)

    Wacker, Soren; Noskov, Sergei Yu

    2018-05-01

    Drug-induced abnormal heart rhythm known as Torsades de Pointes (TdP) is a potential lethal ventricular tachycardia found in many patients. Even newly released anti-arrhythmic drugs, like ivabradine with HCN channel as a primary target, block the hERG potassium current in overlapping concentration interval. Promiscuous drug block to hERG channel may potentially lead to perturbation of the action potential duration (APD) and TdP, especially when with combined with polypharmacy and/or electrolyte disturbances. The example of novel anti-arrhythmic ivabradine illustrates clinically important and ongoing deficit in drug design and warrants for better screening methods. There is an urgent need to develop new approaches for rapid and accurate assessment of how drugs with complex interactions and multiple subcellular targets can predispose or protect from drug-induced TdP. One of the unexpected outcomes of compulsory hERG screening implemented in USA and European Union resulted in large datasets of IC 50 values for various molecules entering the market. The abundant data allows now to construct predictive machine-learning (ML) models. Novel ML algorithms and techniques promise better accuracy in determining IC 50 values of hERG blockade that is comparable or surpassing that of the earlier QSAR or molecular modeling technique. To test the performance of modern ML techniques, we have developed a computational platform integrating various workflows for quantitative structure activity relationship (QSAR) models using data from the ChEMBL database. To establish predictive powers of ML-based algorithms we computed IC 50 values for large dataset of molecules and compared it to automated patch clamp system for a large dataset of hERG blocking and non-blocking drugs, an industry gold standard in studies of cardiotoxicity. The optimal protocol with high sensitivity and predictive power is based on the novel eXtreme gradient boosting (XGBoost) algorithm. The ML-platform with XGBoost