WorldWideScience

Sample records for chlamydial outer membrane

  1. Identification and characterization of a novel porin family highlights a major difference in the outer membrane of chlamydial symbionts and pathogens.

    Directory of Open Access Journals (Sweden)

    Karin Aistleitner

    Full Text Available The Chlamydiae constitute an evolutionary well separated group of intracellular bacteria comprising important pathogens of humans as well as symbionts of protozoa. The amoeba symbiont Protochlamydia amoebophila lacks a homologue of the most abundant outer membrane protein of the Chlamydiaceae, the major outer membrane protein MOMP, highlighting a major difference between environmental chlamydiae and their pathogenic counterparts. We recently identified a novel family of putative porins encoded in the genome of P. amoebophila by in silico analysis. Two of these Protochlamydiaouter membrane proteins, PomS (pc1489 and PomT (pc1077, are highly abundant in outer membrane preparations of this organism. Here we show that all four members of this putative porin family are toxic when expressed in the heterologous host Escherichia coli. Immunofluorescence analysis using antibodies against heterologously expressed PomT and PomS purified directly from elementary bodies, respectively, demonstrated the location of both proteins in the outer membrane of P. amoebophila. The location of the most abundant protein PomS was further confirmed by immuno-transmission electron microscopy. We could show that pomS is transcribed, and the corresponding protein is present in the outer membrane throughout the complete developmental cycle, suggesting an essential role for P. amoebophila. Lipid bilayer measurements demonstrated that PomS functions as a porin with anion-selectivity and a pore size similar to the Chlamydiaceae MOMP. Taken together, our results suggest that PomS, possibly in concert with PomT and other members of this porin family, is the functional equivalent of MOMP in P. amoebophila. This work contributes to our understanding of the adaptations of symbiotic and pathogenic chlamydiae to their different eukaryotic hosts.

  2. Immunization with the Chlamydia trachomatis mouse pneumonitis major outer membrane protein by use of CpG oligodeoxynucleotides as an adjuvant induces a protective immune response against an intranasal chlamydial challenge.

    Science.gov (United States)

    Pal, Sukumar; Davis, Heather L; Peterson, Ellena M; de la Maza, Luis M

    2002-09-01

    Recently, we have shown that a vaccine consisting of a purified preparation of the Chlamydia trachomatis mouse pneumonitis (MoPn) major outer membrane protein (MOMP) and Freund's adjuvant can protect mice against a genital challenge. Here, we wanted to determine if CpG motifs could be used as an immune modulator to the MOMP to induce protection in mice against an intranasal (i.n.) challenge. One-week-old BALB/c mice were immunized intramuscularly and subcutaneously either once or three times at 2-week intervals with MOMP and CpG suspended in aluminum hydroxide (alum). Negative controls received ovalbumin, CpG, and alum. Positive controls were immunized i.n. with C. trachomatis MoPn elementary bodies (EB). Six weeks after the last immunization, mice were challenged i.n. with 10(4) inclusion-forming units (IFU) of the C. trachomatis MoPn serovar. Mice that received MOMP, CpG, and alum had a strong immune response, as shown by a high titer of serum antibodies to Chlamydia and significant lymphoproliferation of T-cells following stimulation with C. trachomatis EB. After the i.n. challenge mice immunized with MOMP, CpG, and alum showed significantly less body weight loss than the corresponding control mice immunized with ovalbumin, CpG, and alum. Ten days after the challenge the animals were euthanized, their lungs were weighed, and the numbers of IFU in the lungs were determined. The average weight of the lungs of the mice immunized with MOMP, CpG, and alum was significantly less than average weight of the lungs of the mice immunized with ovalbumin, CpG, and alum. Also, the average number of IFU recovered per mouse immunized with MOMP, CpG, and alum was significantly less than the average number of IFU per mouse detected in the mice inoculated with ovalbumin, CpG, and alum. In conclusion, our data show that CpG sequences can be used as an effective adjuvant with the C. trachomatis MoPn MOMP to elicit a protective immune response in mice against a chlamydial respiratory

  3. Role of disulfide bonding in outer membrane structure and permeability in Chlamydia trachomatis.

    OpenAIRE

    Bavoil, P; Ohlin, A.; Schachter, J

    1984-01-01

    The outer membrane of Chlamydia trachomatis can be efficiently solubilized by a variety of mild detergents in the presence of the reducing agent dithiothreitol. This allows purification of the chlamydial major outer membrane protein at high yield in very gentle conditions by using its differential solubility in Sarkosyl and octylglucoside in the presence of dithiothreitol. The major outer membrane protein of the L2 serovar is an acidic protein with a pI of ca. 5. It contains three cysteine re...

  4. Surface expression, single-channel analysis and membrane topology of recombinant Chlamydia trachomatis Major Outer Membrane Protein

    Directory of Open Access Journals (Sweden)

    McClafferty Heather

    2005-01-01

    Full Text Available Abstract Background Chlamydial bacteria are obligate intracellular pathogens containing a cysteine-rich porin (Major Outer Membrane Protein, MOMP with important structural and, in many species, immunity-related roles. MOMP forms extensive disulphide bonds with other chlamydial proteins, and is difficult to purify. Leaderless, recombinant MOMPs expressed in E. coli have yet to be refolded from inclusion bodies, and although leadered MOMP can be expressed in E. coli cells, it often misfolds and aggregates. We aimed to improve the surface expression of correctly folded MOMP to investigate the membrane topology of the protein, and provide a system to display native and modified MOMP epitopes. Results C. trachomatis MOMP was expressed on the surface of E. coli cells (including "porin knockout" cells after optimizing leader sequence, temperature and medium composition, and the protein was functionally reconstituted at the single-channel level to confirm it was folded correctly. Recombinant MOMP formed oligomers even in the absence of its 9 cysteine residues, and the unmodified protein also formed inter- and intra-subunit disulphide bonds. Its topology was modeled as a (16-stranded β-barrel, and specific structural predictions were tested by removing each of the four putative surface-exposed loops corresponding to highly immunogenic variable sequence (VS domains, and one or two of the putative transmembrane strands. The deletion of predicted external loops did not prevent folding and incorporation of MOMP into the E. coli outer membrane, in contrast to the removal of predicted transmembrane strands. Conclusions C. trachomatis MOMP was functionally expressed on the surface of E. coli cells under newly optimized conditions. Tests of its predicted membrane topology were consistent with β-barrel oligomers in which major immunogenic regions are displayed on surface-exposed loops. Functional surface expression, coupled with improved understanding of MOMP

  5. Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis

    International Nuclear Information System (INIS)

    Elementary bodies (EB) of Chlamydia trachomatis serotypes C, E, and L2 were extrinsically radioiodinated, and whole-cell lysates of these serotypes were compared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Autoradiography of the polypeptide profiles identified a major surface protein with an apparent subunit molecular weight of 39,500 that was common to each C. trachomatis serotype. The abilities of nonionic (Triton X-100), dipolar ionic (Zwittergent TM-314), mild (sodium deoxycholate and sodium N-lauroyl sarcosine), and strongly anionic (SDS) detergents to extract this protein from intact EB of the L2 serotype were investigated by SDS-PAGE analysis of the soluble and insoluble fractions obtained after each detergent treatment. Only SDS readily extracted this protein from intact EB. Sarkosyl treatment selectively solubilized the majority of other EB proteins, leaving the 39,500-dalton protein associated with the Sarkosyl-insoluble fraction. Ultrastructural studies of the Sarkosyl-insoluble EB pellet showed it to consist of empty EB particles possessing an apparently intact outer membrane. No structural evidence for a peptidoglycan-like cell wall was found. Morphologically these chlamydial outer membrane complexes (COMC) resembled intact chlamydial EB outer membranes. The 39,500-dalton outer membrane protein was quantitatively extracted from COMC by treating them with 2% SDS at 60 degrees C. This protein accounted for 61% of the total COMC-associated protein, and its extraction resulted in a concomitant loss of the COMC membrane structure and morphology. The 39,500-dalton major outer membrane protein is a serogroup antigen of C. trachomatis organisms

  6. Small RNAs controlling outer membrane porins

    DEFF Research Database (Denmark)

    Valentin-Hansen, Poul; Johansen, Jesper; Rasmussen, Anders A

    2007-01-01

    Gene regulation by small non-coding RNAs has been recognized as an important post-transcriptional regulatory mechanism for several years. In Gram-negative bacteria such as Escherichia coli and Salmonella, these RNAs control stress response and translation of outer membrane proteins and therefore...... are key regulators of environmental stress. Recent work has revealed an intimate interplay between small RNA regulation of outer membrane proteins and the stress-induced sigmaE-signalling system, which has an essential role in the maintenance of the integrity of the outer membrane....

  7. Separate fusion of outer and inner mitochondrial membranes

    OpenAIRE

    Malka, Florence; Guillery, Olwenn; Cifuentes-Diaz, Carmen; Guillou, Emmanuelle; Belenguer, Pascale; Lombès, Anne; Rojo, Manuel

    2005-01-01

    Mitochondria are enveloped by two closely apposed boundary membranes with different properties and functions. It is known that they undergo fusion and fission, but it has remained unclear whether outer and inner membranes fuse simultaneously, coordinately or separately. We set up assays for the study of inner and outer membrane fusion in living human cells. Inner membrane fusion was more sensitive than outer membrane fusion to inhibition of glycolysis. Fusion of the inner membrane, but not of...

  8. Bacterial Outer Membrane Vesicles and Vaccine Applications

    OpenAIRE

    Acevedo, Reinaldo; Fernández, Sonsire; Zayas, Caridad; Acosta, Armando; Sarmiento, Maria Elena; Valerie A. Ferro; Rosenqvist, Einar; Campa, Concepcion; Cardoso, Daniel; Garcia, Luis; Perez, Jose Luis

    2014-01-01

    Vaccines based on outer membrane vesicles (OMV) were developed more than 20 years ago against Neisseria meningitidis serogroup B. These nano-sized structures exhibit remarkable potential for immunomodulation of immune responses and delivery of meningococcal antigens or unrelated antigens incorporated into the vesicle structure. This paper reviews different applications in OMV Research and Development (R&D) and provides examples of OMV developed and evaluated at the Finlay Institute in Cuba. A...

  9. BACTERIAL OUTER MEMBRANE VESICLES AND VACCINE APPLICATIONS

    OpenAIRE

    Reinaldo eAcevedo; Sonsire eFernandez; Caridad eZayas; Armando eAcosta; Maria Elena Sarmiento; Valerie A. Ferro; Einar eRosenqvist; Concepcion eCampa; Daniel eCardoso; Luis eGarcia; Jose Luis Perez

    2014-01-01

    Vaccines based on outer membrane vesicles (OMV) were developed more than 20 years ago against Neisseria meningitidis serogroup B. These nano-sized structures exhibit remarkable potential for immunomodulation of immune responses and delivery of self meningococcal antigens or unrelated antigens incorporated into the vesicle structure. This paper reviews different applications in OMV Research and Development (R&D) and provides examples of OMV developed and evaluated at the Finlay Institute in Cu...

  10. Biogenesis of outer membranes in Gram-negative bacteria.

    Science.gov (United States)

    Tokuda, Hajime

    2009-03-23

    The outer membrane, an essential organelle of Gram-negative bacteria, is composed of four major components: lipopolysaccharide, phospholipids, beta-barrel proteins, and lipoproteins. The mechanisms underlying the transport of these components to outer membranes are currently under extensive examination. Among them, the sorting of lipoproteins to the outer membrane of Escherichia coli has been clarified in detail. The Lol system, composed of five proteins, catalyzes outer membrane sorting of lipoproteins. Various Lpt proteins have recently been identified as factors involved in the transport of lipopolysaccharide to the outer membrane, although the mechanism remains largely unknown. Proteins with alpha-helical membrane spanning segments are found in the inner membrane, whereas amphipathic beta-barrel proteins span the outer membrane. These beta-barrel proteins are inserted into the outer membranes through a central core protein BamA (YaeT) with the help of four outer membrane lipoproteins. In contrast, little is known about how phospholipids are transported to the outer membrane. PMID:19270402

  11. Bacterial outer membrane vesicles and vaccine applications.

    Science.gov (United States)

    Acevedo, Reinaldo; Fernández, Sonsire; Zayas, Caridad; Acosta, Armando; Sarmiento, Maria Elena; Ferro, Valerie A; Rosenqvist, Einar; Campa, Concepcion; Cardoso, Daniel; Garcia, Luis; Perez, Jose Luis

    2014-01-01

    Vaccines based on outer membrane vesicles (OMV) were developed more than 20 years ago against Neisseria meningitidis serogroup B. These nano-sized structures exhibit remarkable potential for immunomodulation of immune responses and delivery of meningococcal antigens or unrelated antigens incorporated into the vesicle structure. This paper reviews different applications in OMV Research and Development (R&D) and provides examples of OMV developed and evaluated at the Finlay Institute in Cuba. A Good Manufacturing Practice (GMP) process was developed at the Finlay Institute to produce OMV from N. meningitidis serogroup B (dOMVB) using detergent extraction. Subsequently, OMV from N. meningitidis, serogroup A (dOMVA), serogroup W (dOMVW), and serogroup X (dOMVX) were obtained using this process. More recently, the extraction process has also been applied effectively for obtaining OMV on a research scale from Vibrio cholerae (dOMVC), Bordetella pertussis (dOMVBP), Mycobacterium smegmatis (dOMVSM), and BCG (dOMVBCG). The immunogenicity of the OMV has been evaluated for specific antibody induction, and together with functional bactericidal and challenge assays in mice has shown their protective potential. dOMVB has been evaluated with non-neisserial antigens, including with a herpes virus type 2 glycoprotein, ovalbumin, and allergens. In conclusion, OMV are proving to be more versatile than first conceived and remain an important technology for development of vaccine candidates. PMID:24715891

  12. BACTERIAL OUTER MEMBRANE VESICLES AND VACCINE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Reinaldo eAcevedo

    2014-03-01

    Full Text Available Vaccines based on outer membrane vesicles (OMV were developed more than 20 years ago against Neisseria meningitidis serogroup B. These nano-sized structures exhibit remarkable potential for immunomodulation of immune responses and delivery of self meningococcal antigens or unrelated antigens incorporated into the vesicle structure. This paper reviews different applications in OMV Research and Development (R&D and provides examples of OMV developed and evaluated at the Finlay Institute in Cuba. A Good Manufacturing Practice (GMP process was developed at the Finlay Institute to produce OMV from N. meningitidis serogroup B (dOMVB using detergent extraction. Subsequently, OMV from N. meningitidis, serogroup A (dOMVA, serogroup W (dOMVW and serogroup X (dOMVX were obtained using this process. More recently, the extraction process has also been applied effectively for obtaining OMV on a research scale from Vibrio cholerae (dOMVC, Bordetella pertussis (dOMVBP, Mycobacterium smegmatis (dOMVSM and BCG (dOMVBCG. The immunogenicity of the OMV have been evaluated for specific antibody induction, and together with functional bactericidal and challenge assays in mice have shown their protective potential. dOMVB has been evaluated with non-self neisserial antigens, including with a herpes virus type 2 glycoprotein, ovalbumin and allergens. In conclusion, OMV are proving to be more versatile than first conceived and remain an important technology for development of vaccine candidates.

  13. Proteomics of Aggregatibacter actinomycetemcomitans Outer Membrane Vesicles

    Science.gov (United States)

    Kieselbach, Thomas; Zijnge, Vincent; Granström, Elisabeth; Oscarsson, Jan

    2015-01-01

    Aggregatibacter actinomycetemcomitans is an oral and systemic pathogen associated with aggressive forms of periodontitis and with endocarditis. Outer membrane vesicles (OMVs) released by this species have been demonstrated to deliver effector proteins such as cytolethal distending toxin (CDT) and leukotoxin (LtxA) into human host cells and to act as triggers of innate immunity upon carriage of NOD1- and NOD2-active pathogen-associated molecular patterns (PAMPs). To improve our understanding of the pathogenicity-associated functions that A. actinomycetemcomitans exports via OMVs, we studied the proteome of density gradient-purified OMVs from a rough-colony type clinical isolate, strain 173 (serotype e) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). This analysis yielded the identification of 151 proteins, which were found in at least three out of four independent experiments. Data are available via ProteomeXchange with identifier PXD002509. Through this study, we not only confirmed the vesicle-associated release of LtxA, and the presence of proteins, which are known to act as immunoreactive antigens in the human host, but we also identified numerous additional putative virulence-related proteins in the A. actinomycetemcomitans OMV proteome. The known and putative functions of these proteins include immune evasion, drug targeting, and iron/nutrient acquisition. In summary, our findings are consistent with an OMV-associated proteome that exhibits several offensive and defensive functions, and they provide a comprehensive basis to further disclose roles of A. actinomycetemcomitans OMVs in periodontal and systemic disease. PMID:26381655

  14. Structural Aspects of Bacterial Outer Membrane Protein Assembly.

    Science.gov (United States)

    Calmettes, Charles; Judd, Andrew; Moraes, Trevor F

    2015-01-01

    The outer membrane of Gram-negative bacteria is predominantly populated by β-Barrel proteins and lipid anchored proteins that serve a variety of biological functions. The proper folding and assembly of these proteins is essential for bacterial viability and often plays a critical role in virulence and pathogenesis. The β-barrel assembly machinery (Bam) complex is responsible for the proper assembly of β-barrels into the outer membrane of Gram-negative bacteria, whereas the localization of lipoproteins (Lol) system is required for proper targeting of lipoproteins to the outer membrane. PMID:26621472

  15. THE OUTER MEMBRANE OF PATHOGENIC REPRESENTATIVES OF THE LEPTOSPIRA GENIUS

    Directory of Open Access Journals (Sweden)

    A. N. Vaganova

    2011-01-01

    Full Text Available Abstract. Pathogenic leptospires can infect wide spectrum of hosts and they can survive in the environment long time. The outer membrane is the cellular component participated in interaction of microorganisms and environment. In present time several proteins located in the outer membrane of leptospires which are responsible for colonization of host organism, protection from influence of immune system of host, transport of substances in to the cell and other processes have been described. The outer membrane contains proteins and lipopolysaccharide molecules which have citotoxic effect. It was shown that regulation of protein composition of membranes depends on several factors of environment such as temperature, osmolarity, presence of certain substances in environment. Lipopolysaccharide and protein molecules of outer membranes have antigenic properties. These molecules can be used in practice as the components of vaccine against leptospiroses and diagnostic tools. Current review summarize information concerning structural organization of the outer membrane of leptospires, diversities of incoming parts of molecules and regulation of their synthesis. Moreover, perspectives of practical using of the outer membrane components in diagnostics and prevention of leptospiroses are presented.

  16. Substrate specificity within a family of outer membrane carboxylate channels.

    Directory of Open Access Journals (Sweden)

    Elif Eren

    2012-01-01

    Full Text Available Many Gram-negative bacteria, including human pathogens such as Pseudomonas aeruginosa, do not have large-channel porins. This results in an outer membrane (OM that is highly impermeable to small polar molecules, making the bacteria intrinsically resistant towards many antibiotics. In such microorganisms, the majority of small molecules are taken up by members of the OprD outer membrane protein family. Here we show that OprD channels require a carboxyl group in the substrate for efficient transport, and based on this we have renamed the family Occ, for outer membrane carboxylate channels. We further show that Occ channels can be divided into two subfamilies, based on their very different substrate specificities. Our results rationalize how certain bacteria can efficiently take up a variety of substrates under nutrient-poor conditions without compromising membrane permeability. In addition, they explain how channel inactivation in response to antibiotics can cause resistance but does not lead to decreased fitness.

  17. A Molecularly Complete Planar Bacterial Outer Membrane Platform.

    Science.gov (United States)

    Hsia, Chih-Yun; Chen, Linxiao; Singh, Rohit R; DeLisa, Matthew P; Daniel, Susan

    2016-01-01

    The bacterial outer membrane (OM) is a barrier containing membrane proteins and liposaccharides that fulfill crucial functions for Gram-negative bacteria. With the advent of drug-resistant bacteria, it is necessary to understand the functional role of this membrane and its constituents to enable novel drug designs. Here we report a simple method to form an OM-like supported bilayer (OM-SB), which incorporates native lipids and membrane proteins of gram-negative bacteria from outer membrane vesicles (OMVs). We characterize the formation of OM-SBs using quartz crystal microbalance with dissipation (QCM-D) and fluorescence microscopy. We show that the orientation of proteins in the OM-SB matches the native bacterial membrane, preserving the characteristic asymmetry of these membranes. As a demonstration of the utility of the OM-SB platform, we quantitatively measure antibiotic interactions between OM-SBs and polymyxin B, a cationic peptide used to treat Gram-negative infections. This data enriches understanding of the antibacterial mechanism of polymyxin B, including disruption kinetics and changes in membrane mechanical properties. Combining OM-SBs with microfluidics will enable higher throughput screening of antibiotics. With a broader view, we envision that a molecularly complete membrane-scaffold could be useful for cell-free applications employing engineered membrane proteins in bacterial membranes for myriad technological purposes. PMID:27600663

  18. Identification of outer membrane proteins of Bartonella bacilliformis.

    OpenAIRE

    Minnick, M F

    1994-01-01

    Purification of the outer membrane of Bartonella bacilliformis by sucrose step gradient centrifugation and analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) suggest that 14 proteins, ranging from 11.2 to 75.3 kDa, are located in the outer membrane of the pathogen. On the basis of M(r)s, eleven of these proteins have counterparts which are labeled by extrinsic radioiodination of intact bartonellae, and two of the proteins are visibly sensitive to extrinsic protei...

  19. FABRICATION AND BIOCOMPATIBILITY OF CELL OUTER MEMBRANE MIMETIC SURFACES

    Institute of Scientific and Technical Information of China (English)

    Ming-ming Zong; Yong-kuan Gong

    2011-01-01

    The surface design used for improving biocompatibility is one of the most important issues for the fabrication of medical devices. For mimicking the ideal surface structure of cell outer membrane, a large number of polymers bearing phosphorylcholine (PC) groups have been employed to modify the surfaces of biomaterials and medical devices. It has been demonstrated that the biocompatibility of the modified materials whose surface is required to interact with a living organism has been obviously improved by introducing PC groups. In this review, the fabrication strategies of cell outer membrane mimetic surfaces and their resulted biocompatibilities were summarized.

  20. Immunochemical Properties of the Major Outer Membrane Protein of Vibrio cholerae

    OpenAIRE

    Kabir, Shahjahan

    1983-01-01

    Antisera to the major outer membrane protein of Vibrio cholerae (molecular weight, 48,000) raised in rabbits (i) agglutinated several strains of V. cholerae and (ii) immunoprecipitated outer membrane proteins prepared from both the biotypes and serotypes of V. cholerae. Antibodies of all isotypes to the major outer membrane protein were detected in immune human sera by enzyme-linked immunosorbent assay. These results suggest that the major outer membrane protein was the common outer membrane ...

  1. A membrane bending model of outer hair cell electromotility.

    OpenAIRE

    Raphael, R. M.; Popel, A S; Brownell, W. E.

    2000-01-01

    We propose a new mechanism for outer hair cell electromotility based on electrically induced localized changes in the curvature of the plasma membrane (flexoelectricity). Electromechanical coupling in the cell's lateral wall is modeled in terms of linear constitutive equations for a flexoelectric membrane and then extended to nonlinear coupling based on the Langevin function. The Langevin function, which describes the fraction of dipoles aligned with an applied electric field, is shown to be ...

  2. Identification of outer membrane proteins of Mycobacterium tuberculosis.

    Science.gov (United States)

    Song, Houhui; Sandie, Reatha; Wang, Ying; Andrade-Navarro, Miguel A; Niederweis, Michael

    2008-11-01

    The cell wall of mycobacteria includes an unusual outer membrane of extremely low permeability. While Escherichia coli uses more than 60 proteins to functionalize its outer membrane, only two mycobacterial outer membrane proteins (OMPs) are known. The porin MspA of Mycobacterium smegmatis provided the proof of principle that integral mycobacterial OMPs share the beta-barrel structure, the absence of hydrophobic alpha-helices and the presence of a signal peptide with OMPs of gram-negative bacteria. These properties were exploited in a multi-step bioinformatic approach to predict OMPs of M. tuberculosis. A secondary structure analysis was performed for 587 proteins of M. tuberculosis predicted to be exported. Scores were calculated for the beta-strand content and the amphiphilicity of the beta-strands. Reference OMPs of gram-negative bacteria defined threshold values for these parameters that were met by 144 proteins of unknown function of M. tuberculosis. Two of them were verified as OMPs by a novel two-step experimental approach. Rv1698 and Rv1973 were detected only in the total membrane fraction of M. bovis BCG in Western blot experiments, while proteinase K digestion of whole cells showed the surface accessibility of these proteins. These findings established that Rv1698 and Rv1973 are indeed localized in the outer membrane and tripled the number of known OMPs of M. tuberculosis. Significantly, these results provide evidence for the usefulness of the bioinformatic approach to predict mycobacterial OMPs and indicate that M. tuberculosis likely has many OMPs with beta-barrel structure. Our findings pave the way to identify the set of proteins which functionalize the outer membrane of M. tuberculosis. PMID:18439872

  3. Topology of carnitine palmitoyltransferase I in the mitochondrial outer membrane.

    Science.gov (United States)

    Fraser, F; Corstorphine, C G; Zammit, V A

    1997-01-01

    The topology of carnitine palmitoyltransferase I (CPT I) in the outer membrane of rat liver mitochondria was studied using several approaches. 1. The accessibility of the active site and malonyl-CoA-binding site of the enzyme from the cytosolic aspect of the membrane was investigated using preparations of octanoyl-CoA and malonyl-CoA immobilized on to agarose beads to render them impermeant through the outer membrane. Both immobilized ligands were fully able to interact effectively with CPT I. 2. The effects of proteinase K and trypsin on the activity and malonyl-CoA sensitivity of CPT I were studied using preparations of mitochondria that were either intact or had their outer membranes ruptured by hypo-osmotic swelling (OMRM). Proteinase K had a marked but similar effect on CPT I activity irrespective of whether only the cytosolic or both sides of the membrane were exposed to it. However, it affected sensitivity more rapidly in OMRM. By contrast, trypsin only reduced CPT I activity when incubated with OMRM. The sensitivity of the residual CPT I activity was unaffected by trypsin. 3. The proteolytic fragments generated by these treatments were studied by Western blotting using three anti-peptide antibodies raised against linear epitopes of CPT I. These showed that a proteinase K-sensitive site close to the N-terminus was accessible from the cytosolic side of the membrane. No trypsin-sensitive sites were accessible in intact mitochondria. In OMRM, both proteinase K and trypsin acted from the inter-membrane space side of the membrane. 4. The ability of intact mitochondria and OMRM to bind to each of the three anti-peptide antibodies was used to study the accessibility of the respective epitopes on the cytosolic and inter-membrane space sides of the membrane. 5. The results of all these approaches indicate that CPT I adopts a bitopic topology within the mitochondrial outer membrane; it has two transmembrane domains, and both the N- and C-termini are exposed on the

  4. Structural Basis for Alginate Secretion Across the Bacterial Outer Membrane

    Energy Technology Data Exchange (ETDEWEB)

    J Whitney; I Hay; C Li; P Eckford; H Robinson; M Amaya; L Wood; D Ohman; C Bear; et al.

    2011-12-31

    Pseudomonas aeruginosa is the predominant pathogen associated with chronic lung infection among cystic fibrosis patients. During colonization of the lung, P. aeruginosa converts to a mucoid phenotype characterized by the overproduction of the exopolysaccharide alginate. Secretion of newly synthesized alginate across the outer membrane is believed to occur through the outer membrane protein AlgE. Here we report the 2.3 {angstrom} crystal structure of AlgE, which reveals a monomeric 18-stranded {beta}-barrel characterized by a highly electropositive pore constriction formed by an arginine-rich conduit that likely acts as a selectivity filter for the negatively charged alginate polymer. Interestingly, the pore constriction is occluded on either side by extracellular loop L2 and an unusually long periplasmic loop, T8. In halide efflux assays, deletion of loop T8 ({Delta}T8-AlgE) resulted in a threefold increase in anion flux compared to the wild-type or {Delta}L2-AlgE supporting the idea that AlgE forms a transport pathway through the membrane and suggesting that transport is regulated by T8. This model is further supported by in vivo experiments showing that complementation of an algE deletion mutant with {Delta}T8-AlgE impairs alginate production. Taken together, these studies support a mechanism for exopolysaccharide export across the outer membrane that is distinct from the Wza-mediated translocation observed in canonical capsular polysaccharide export systems.

  5. Structural basis for alginate secretion across the bacterial outer membrane

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, J.C.; Robinson, H.; Hay, I. D.; Li, C.; Eckford, P. D. W.; Amaya, M. F.; Wood, L. F.; Ohman, D. E.; Bear, C. E.; Rehm, B. H.; Howell, P. L.

    2011-08-09

    Pseudomonas aeruginosa is the predominant pathogen associated with chronic lung infection among cystic fibrosis patients. During colonization of the lung, P. aeruginosa converts to a mucoid phenotype characterized by the overproduction of the exopolysaccharide alginate. Secretion of newly synthesized alginate across the outer membrane is believed to occur through the outer membrane protein AlgE. Here we report the 2.3 {angstrom} crystal structure of AlgE, which reveals a monomeric 18-stranded {beta}-barrel characterized by a highly electropositive pore constriction formed by an arginine-rich conduit that likely acts as a selectivity filter for the negatively charged alginate polymer. Interestingly, the pore constriction is occluded on either side by extracellular loop L2 and an unusually long periplasmic loop, T8. In halide efflux assays, deletion of loop T8 ({Delta}T8-AlgE) resulted in a threefold increase in anion flux compared to the wild-type or {Delta}L2-AlgE supporting the idea that AlgE forms a transport pathway through the membrane and suggesting that transport is regulated by T8. This model is further supported by in vivo experiments showing that complementation of an algE deletion mutant with {Delta}T8-AlgE impairs alginate production. Taken together, these studies support a mechanism for exopolysaccharide export across the outer membrane that is distinct from the Wza-mediated translocation observed in canonical capsular polysaccharide export systems.

  6. Protective role of E. coli outer membrane vesicles against antibiotics.

    Science.gov (United States)

    Kulkarni, Heramb M; Nagaraj, R; Jagannadham, Medicharla V

    2015-12-01

    The outer membrane vesicles (OMVs) from bacteria are known to posses both defensive and protective functions and thus participate in community related functions. In the present study, outer membrane vesicles have been shown to protect the producer bacterium and two other bacterial species from the growth inhibitory effects of some antibiotics. The OMVs isolated from E. coli MG1655 protected the bacteria against membrane-active antibiotics colistin, melittin. The OMVs of E. coli MG1655 could also protect P. aeruginosa NCTC6751 and A. radiodioresistens MMC5 against these membrane-active antibiotics. However, OMVs could not protect any of these bacteria against the other antibiotics ciprofloxacin, streptomycin and trimethoprim. Hence, OMVs appears to protect the bacterial community against membrane-active antibiotics and not other antibiotics, which have different mechanism of actions. The OMVs of E. coli MG1655 sequester the antibiotic colistin, whereas their protein components degrade the antimicrobial peptide melittin. Proteomic analysis of OMVs revealed the presence of proteases and peptidases which appear to be involved in this process. Thus, the protection of bacteria by OMVs against antibiotics is situation dependent and the mechanism differs for different situations. These studies suggest that OMVs of bacteria form a common defense for the bacterial community against specific antibiotics. PMID:26640046

  7. Mitochondrial outer-membrane permeabilization and remodelling in apoptosis

    OpenAIRE

    Jourdain, Alexis; Martinou, Jean-Claude

    2009-01-01

    Many human pathologies are associated with defects in mitochondria such as diabetes, neurodegenerative diseases or cancer. This tiny organelle is involved in a plethora of processes in mammalian cells, including energy production, lipid metabolism and cell death. In the so-called intrinsic apoptotic pathway, the outer mitochondrial membrane (MOM) is premeabilized by the pro-apoptotic Bcl-2 members Bax and Bak, allowing the release of apoptogenic factors such as cytochrome c from the inter-mem...

  8. Loss of elongation factor P disrupts bacterial outer membrane integrity

    DEFF Research Database (Denmark)

    Zou, S Betty; Hersch, Steven J; Roy, Hervé;

    2012-01-01

    Elongation factor P (EF-P) is posttranslationally modified at a conserved lysyl residue by the coordinated action of two enzymes, PoxA and YjeK. We have previously established the importance of this modification in Salmonella stress resistance. Here we report that, like poxA and yjeK mutants......, Salmonella strains lacking EF-P display increased susceptibility to hypoosmotic conditions, antibiotics, and detergents and enhanced resistance to the compound S-nitrosoglutathione. The susceptibility phenotypes are largely explained by the enhanced membrane permeability of the efp mutant, which exhibits...... increased uptake of the hydrophobic dye 1-N-phenylnaphthylamine (NPN). Analysis of the membrane proteomes of wild-type and efp mutant Salmonella strains reveals few changes, including the prominent overexpression of a single porin, KdgM, in the efp mutant outer membrane. Removal of KdgM in the efp mutant...

  9. Bacterial Outer Membrane Vesicles Induce Plant Immune Responses.

    Science.gov (United States)

    Bahar, Ofir; Mordukhovich, Gideon; Luu, Dee Dee; Schwessinger, Benjamin; Daudi, Arsalan; Jehle, Anna Kristina; Felix, Georg; Ronald, Pamela C

    2016-05-01

    Gram-negative bacteria continuously pinch off portions of their outer membrane, releasing membrane vesicles. These outer membrane vesicles (OMVs) are involved in multiple processes including cell-to-cell communication, biofilm formation, stress tolerance, horizontal gene transfer, and virulence. OMVs are also known modulators of the mammalian immune response. Despite the well-documented role of OMVs in mammalian-bacterial communication, their interaction with plants is not well studied. To examine whether OMVs of plant pathogens modulate the plant immune response, we purified OMVs from four different plant pathogens and used them to treat Arabidopsis thaliana. OMVs rapidly induced a reactive oxygen species burst, medium alkalinization, and defense gene expression in A. thaliana leaf discs, cell cultures, and seedlings, respectively. Western blot analysis revealed that EF-Tu is present in OMVs and that it serves as an elicitor of the plant immune response in this form. Our results further show that the immune coreceptors BAK1 and SOBIR1 mediate OMV perception and response. Taken together, our results demonstrate that plants can detect and respond to OMV-associated molecules by activation of their immune system, revealing a new facet of plant-bacterial interactions. PMID:26926999

  10. Heat modifiability and detergent solubility of outer membrane proteins of Rhodopseudomonas sphaeroides.

    OpenAIRE

    Kent, N E; Wisnieski, B J

    1983-01-01

    The outer membrane fraction from Rhodopseudomonas sphaeroides was isolated by isopycnic density centrifugation. The purity of this fraction was assayed by several methods. When the outer membrane fraction obtained after French press lysis of cells was compared with the outer membrane fragments released during spheroplast formation, the polypeptide profiles were identical. Detergent solubilization of membrane fractions showed that Triton X-100 nonselectively solubilizes both the cytoplasmic me...

  11. The proton motive force drives the outer membrane transport of cobalamin in Escherichia coli.

    OpenAIRE

    Bradbeer, C

    1993-01-01

    Cells of Escherichia coli pump cobalamin (vitamin B12) across their outer membranes into the periplasmic space, and it was concluded previously that this process is potentiated by the proton motive force of the inner membrane. The novelty of such an energy coupling mechanism and its relevance to other outer membrane transport processes have required confirmation of this conclusion by studies with cells in which cobalamin transport is limited to the outer membrane. Accordingly, I have examined...

  12. Disulfide-mediated interactions of the chlamydial major outer membrane protein: role in the differentiation of chlamydiae?

    OpenAIRE

    Hackstadt, T; Todd, W J; Caldwell, H D

    1985-01-01

    The effects of exogenous reducing agents on a number of biological properties of purified Chlamydia trachomatis LGV-434 and Chlamydia psittaci meningopneumonitis elementary bodies (EBs) have been examined in an attempt to identify in vitro correlates of early events in the differentiation of the infectious EB to the replicative cell type, the reticulate body (RB). Treatment of EBs with dithiothreitol elicited a number of changes normally associated with differentiation to the RB. EBs in the p...

  13. Relationship between the iron regulated outer membrane proteins and the outer membrane proteins of in vivo grown Pasteurella multocida

    International Nuclear Information System (INIS)

    The SDS-PAGE patterns of the outer membrane protein (OMP) extracts of Pasteurella multocida strain P1059, grown under iron-restricted, iron-replete and in vivo conditions, were examined. The results showed that the iron-regulated outer membrane proteins (IROMPs) with molecular masses of 76 kDa, 84 kDa, and 94 kDa were expressed by bacteria grown in iron-restricted media. They were also expressed by in vivo grown P. multocida. Convalescent-phase sera, obtained from turkeys which had survived pasteurellosis, contained antibodies that reacted intensly with th three IROMPs. This indicated that these proteins were expressed in vivo. Bacteria expressing the IROMPs showed greater binding to Congo Red when compared to cells not expressing IROMPs. Cells expressing the IROMPs or its OMP extracts grown in iron-restricted media also showed greater binding to 59Fe-pasteurella siderophore (multocidin) when compared to bacteria or its extracts not expressing IROMPs. Convalescent-phase sera, which contained antibodies against the IROMPs, blocked this specific 59Fe-multocidin binding to IROMPs. Autoradiography was used to determine which of these IROMPs functioned as a receptor for the iron-multocidin complex. The results suggested that these three IROMPs have specific epitopes for binding to the iron multocidin complex

  14. Sorting of bacterial lipoproteins to the outer membrane by the Lol system.

    Science.gov (United States)

    Narita, Shin-ichiro; Tokuda, Hajime

    2010-01-01

    Bacterial lipoproteins comprise a subset of membrane proteins with a lipid-modified cysteine residue at their amino termini through which they are anchored to the membrane. In Gram-negative bacteria, lipoproteins are localized on either the inner or the outer membrane. The Lol system is responsible for the transport of lipoproteins to the outer membrane.The Lol system comprises an inner-membrane ABC transporter LolCDE complex, a periplasmic carrier protein, LolA, and an outer membrane receptor protein, LolB. Lipoproteins are synthesized as precursors in the cytosol and then translocated across the inner membrane by the Sec translocon to the outer leaflet of the inner membrane, where lipoprotein precursors are processed to mature lipoproteins. The LolCDE complex then mediates the release of outer membrane-specific lipoproteins from the inner membrane while the inner membrane-specific lipoproteins possessing Asp at position 2 are not released by LolCDE because it functions as a LolCDE avoidance signal, causing the retention of these lipoproteins in the inner membrane. A water-soluble lipoprotein-LolA complex is formed as a result of the release reaction mediated by LolCDE. This complex traverses the hydrophilic periplasm to reach the outer membrane, where LolB accepts a lipoprotein from LolA and then catalyzes its incorporation into the inner leaflet of the outer membrane. PMID:20419407

  15. Cross-reactivity of major outer membrane proteins of Enterobacteriaceae, studied by crossed immunoelectrophoresis.

    OpenAIRE

    Hofstra, H.; Van Tol, J D; Dankert, J

    1980-01-01

    Outer membrane fractions were prepared from 11 bacteria in the family Enterobacteriaceae: Escherichia coli serotypes O1K-, O4K2, O26K60, O75K-, and O111K58, Shigella flexneri, Salmonella typhimurium, Klebsiella pneumonia, Serratia marcescens, Proteus vulgaris, Proteus mirabilis, and Providencia stuartii. All strains studied were found to contain one non-peptidoglycan-bound, heat-modifiable outer membrane protein, and one or two peptidoglycan-associated major outer membrane proteins in the 27,...

  16. Tension Sensitivity of Prestin: Comparison with the Membrane Motor in Outer Hair Cells

    OpenAIRE

    Dong, X.-X.; Iwasa, K H

    2004-01-01

    The membrane motor in outer hair cells undergoes conformational transitions involving charge displacement of ∼0.8 e across the membrane and changes of ∼4 nm2 in its membrane area. Previous reports have established that the charge transfer in the membrane motor and that in prestin, a membrane protein in the plasma membrane of outer hair cells, are approximately equal. Here, we determine the membrane area changes based on its sensitivity to membrane tension. We found that prestin does undergo a...

  17. Structural Modelling of the Chlamydia Trachomatis Major Outer Membrane Protein Provides Insights into Immunogenic Properties of its External loops in Serotypes E and K

    Directory of Open Access Journals (Sweden)

    Olga A. Lytovchenko

    2013-01-01

    Full Text Available Chlamydia trachomatis is one of the most prevalent sexually transmitted pathogens, causing serious health risks worldwide. Based on serological properties of the chlamydial major outer membrane protein, up to 19 serovars of C.trachomatis can be distinguished, having different antigenic properties and clinical manifestations. In this study, the antibody response to the variable domains of the major outer membrane protein of C. trachomatis serotypes E and K was analyzed in connection with the structural models of its extracellular loops. We propose that the reduction of antibody formation to the antigens of some variable domains may be caused by their shielding by other external loops. It has been shown that the entire structure of the second and fifth loops of genotype E are more compact and have minimal chain exposure due shielding with the more unfolded third and seventh loops. This corresponds to the absence of significant antibody response to their variable domains VDI and VDII. In genotype K entire structure of the second and the fifth loops is more unfolded, their shielding with the third and seventh loops is not so complete. As a consequence their variable domains induce antibody production in infected organism

  18. Outer membrane lipoprotein biogenesis: Lol is not the end.

    Science.gov (United States)

    Konovalova, Anna; Silhavy, Thomas J

    2015-10-01

    Bacterial lipoproteins are lipid-anchored proteins that contain acyl groups covalently attached to the N-terminal cysteine residue of the mature protein. Lipoproteins are synthesized in precursor form with an N-terminal signal sequence (SS) that targets translocation across the cytoplasmic or inner membrane (IM). Lipid modification and SS processing take place at the periplasmic face of the IM. Outer membrane (OM) lipoproteins take the localization of lipoproteins (Lol) export pathway, which ends with the insertion of the N-terminal lipid moiety into the inner leaflet of the OM. For many lipoproteins, the biogenesis pathway ends here. We provide examples of lipoproteins that adopt complex topologies in the OM that include transmembrane and surface-exposed domains. Biogenesis of such lipoproteins requires additional steps beyond the Lol pathway. In at least one case, lipoprotein sequences reach the cell surface by being threaded through the lumen of a beta-barrel protein in an assembly reaction that requires the heteropentomeric Bam complex. The inability to predict surface exposure reinforces the importance of experimental verification of lipoprotein topology and we will discuss some of the methods used to study OM protein topology. PMID:26370942

  19. The Lethal Cargo of Myxococcus xanthus Outer Membrane Vesicles

    Directory of Open Access Journals (Sweden)

    JamesEBerleman

    2014-09-01

    Full Text Available Myxococcus xanthus is a bacterial micro-predator known for hunting other microbes in a wolf pack-like manner. Outer membrane vesicles (OMVs are produced in large quantities by M. xanthus and have a highly organized structure in the extracellular milieu, sometimes occurring in chains that link neighboring cells within a biofilm. OMVs may be a vehicle for mediating wolf pack activity by delivering hydrolytic enzymes and antibiotics aimed at killing prey microbes. Here, both the protein and small molecule cargo of the OMV and membrane fractions of M. xanthus were characterized and compared. Our analysis indicates a number of proteins that are OMV-specific or OMV-enriched, including several with putative hydrolytic function. Secondary metabolite profiling of OMVs identifies 16 molecules, many associated with antibiotic activities. Several hydrolytic enzyme homologs were identified, including MXAN_3564 (mepA, an M36 protease homolog. Genetic disruption of mepA leads to a significant reduction in extracellular protease activity suggesting MepA is the long-predicted (yet to date unknown primary extracellular protease in M. xanthus.

  20. Energy-coupled outer membrane transport proteins and regulatory proteins.

    Science.gov (United States)

    Braun, Volkmar; Endriss, Franziska

    2007-06-01

    FhuA and FecA are two examples of energy-coupled outer membrane import proteins of gram-negative bacteria. FhuA transports iron complexed by the siderophore ferrichrome and serves as a receptor for phages, a toxic bacterial peptide, and a toxic protein. FecA transports diferric dicitrate and regulates transcription of an operon encoding five ferric citrate (Fec) transport genes. Properties of FhuA mutants selected according to the FhuA crystal structure are described. FhuA mutants in the TonB box, the hatch, and the beta-barrel are rather robust. TonB box mutants in FhuA FecA, FepA, Cir, and BtuB are compared; some mutations are suppressed by mutations in TonB. Mutant studies have not revealed a ferrichrome diffusion pathway, and tolerance to mutations in the region linking the TonB box to the hatch does not disclose a mechanism for how energy transfer from the cytoplasmic membrane to FhuA changes the conformation of FhuA such that bound substrates are released, the pore is opened, and substrates enter the periplasm, or how surface loops change their conformation such that TonB-dependent phages bind irreversibly and release their DNA into the cells. The FhuA and FecA crystal structures do not disclose the mechanism of these proteins, but they provide important information for specific functional studies. FecA is also a regulatory protein that transduces a signal from the cell surface into the cytoplasm. The interacting subdomains of the proteins in the FecA --> FecR --> FecI --> RNA polymerase signal transduction pathway resulting in fecABCDE transcription have been determined. Energy-coupled transporters transport not only iron and vitamin B12, but also other substrates of very low abundance such as sugars across the outer membrane; transcription regulation of the transport genes may occur similarly to that of the Fec transport genes. PMID:17370038

  1. Identification of porins in outer membrane of Proteus, Morganella, and Providencia spp. and their role in outer membrane permeation of beta-lactams.

    OpenAIRE

    Mitsuyama, J; Hiruma, R; Yamaguchi, A.; Sawai, T

    1987-01-01

    Proteus mirabilis, Proteus vulgaris, Morganella morganii, Providencia rettgeri, and Providencia alcalifaciens, which were once classified into the same genus, Proteus, were studied. Cefoxitin-resistant mutants from these species were isolated, and it was confirmed that the resistance was attributed to the lack of an outer membrane protein, resulting in a significant decrease in the penetration of hydrophilic cephalosporins through the outer membrane. Comparison of the mutant strains with thei...

  2. Membrane proteins PmpG and PmpH are major constituents of Chlamydia trachomatis L2 outer membrane complex

    DEFF Research Database (Denmark)

    Mygind, Per H; Christiansen, Gunna; Roepstorff, P;

    2000-01-01

    The outer membrane complex of Chlamydia is involved in the initial adherence and ingestion of Chlamydia by the host cell. In order to identify novel proteins in the outer membrane of Chlamydia trachomatis L2, proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. By...

  3. Mitochondrial Swelling and Incipient Outer Membrane Rupture in Preapoptotic and Apoptotic Cells

    OpenAIRE

    Sesso, A.; Belizário, JE; Marques, MM; Higuchi, ML; Schumacher, RI; Colquhoun, A; Ito, E.; Kawakami, J.

    2012-01-01

    Outer mitochondrial membrane (OMM) rupture was first noted in isolated mitochondria in which the inner mitochondrial membrane (IMM) had lost its selective permeability. This phenomenon referred to as mitochondrial permeability transition (MPT) refers to a permeabilized inner membrane that originates a large swelling in the mitochondrial matrix, which distends the outer membrane until it ruptures. Here, we have expanded previous electron microscopic observations that in apoptotic cells, OMM ru...

  4. Topological Analysis of Chlamydia trachomatis L2 Outer Membrane Protein 2

    OpenAIRE

    Mygind, Per; Christiansen, Gunna; Birkelund, Svend

    1998-01-01

    Using monospecific polyclonal antisera to different parts of Chlamydia trachomatis L2 outer membrane protein 2 (Omp2), we show that the protein is localized at the inner surface of the outer membrane. Omp2 becomes immunoaccessible when Chlamydia elementary bodies are treated with dithiothreitol, and protease digestions indicate that Omp2 has a possible two-domain structure.

  5. Topological analysis of Chlamydia trachomatis L2 outer membrane protein 2

    DEFF Research Database (Denmark)

    Mygind, P; Christiansen, Gunna; Birkelund, Svend

    1998-01-01

    Using monospecific polyclonal antisera to different parts of Chlamydia trachomatis L2 outer membrane protein 2 (Omp2), we show that the protein is localized at the inner surface of the outer membrane. Omp2 becomes immunoaccessible when Chlamydia elementary bodies are treated with dithiothreitol...

  6. Two distinct outer membrane serotype subcomplexes of Neisseria meningitidis serogroup A.

    OpenAIRE

    Bläsius, R; Strittmatter, W; Crowe, B.; Achtman, M.

    1990-01-01

    A 350-kilodalton serotype outer membrane complex containing the class 1, 3, and 4 outer membrane proteins was isolated from serogroup A Neisseria meningitidis. Partial denaturation yielded two serotype subcomplexes containing the class 3 and 1 proteins (85 kilodaltons) and the class 3 and 4 proteins (94 kilodaltons), respectively.

  7. Outer membrane alterations in multiresistant mutants of Pseudomonas aeruginosa selected by ciprofloxacin.

    OpenAIRE

    Legakis, N. J.; Tzouvelekis, L. S.; Makris, A; Kotsifaki, H

    1989-01-01

    Spontaneous mutants of Pseudomonas aeruginosa selected by ciprofloxacin were studied for outer membrane alterations. Acquisition of ciprofloxacin resistance was at least partially related to defects in lipopolysaccharide synthesis. When ciprofloxacin resistance was combined with resistance to beta-lactams and aminoglycosides, several alterations in outer membrane proteins were noted.

  8. Effect of stress on the membrane capacitance of the auditory outer hair cell.

    OpenAIRE

    Iwasa, K H

    1993-01-01

    The membrane capacitance of the outer hair cell, which has unique membrane potential-dependent motility, was monitored during application of membrane tension. It was found that the membrane capacitance of the cell decreased when stress was applied to the membrane. This result is the opposite of stretching the lipid bilayer in the plasma membrane. It thus indicates the importance of some other capacitance component that decreases on stretching. It has been known that charge movement across the...

  9. Outer membrane vesicles – offensive weapons or good Samaritans?

    Directory of Open Access Journals (Sweden)

    Ingar Olsen

    2015-04-01

    Full Text Available Outer membrane vesicles (OMVs from Gram-negative bacteria were first considered as artifacts and were followed with disbelief and bad reputation. Later, their existence was accepted and they became characterized as bacterial bombs, virulence bullets, and even decoys. Today, we know that OMVs also can be involved in cell–cell signaling/communication and be mediators of immune regulation and cause disease protection. Furthermore, OMVs represent a distinct bacterial secretion pathway selecting and protecting their cargo, and they can even be good Samaritans providing nutrients to the gut microbiota maintaining commensal homeostasis beneficial to the host. The versatility in functions of these nanostructures is remarkable and includes both defense and offense. The broad spectrum of usability does not stop with that, as it now seems that OMVs can be used as vaccines and adjuvants or vehicles engineered for drug treatment of emerging and new diseases not only caused by bacteria but also by virus. They may even represent new ways of selective drug treatment.

  10. Vibrio fischeri-derived outer membrane vesicles trigger host development.

    Science.gov (United States)

    Aschtgen, Marie-Stephanie; Wetzel, Keith; Goldman, William; McFall-Ngai, Margaret; Ruby, Edward

    2016-04-01

    Outer membrane vesicles (OMV) are critical elements in many host-cell/microbe interactions. Previous studies of the symbiotic association between Euprymna scolopes and Vibrio fischeri had shown that within 12 h of colonizing crypts deep within the squid's light organ, the symbionts trigger an irreversible programme of tissue development in the host. Here, we report that OMV produced by V. fischeri are powerful contributors to this process. The first detectable host response to the OMV is an increased trafficking of macrophage-like cells called haemocytes into surface epithelial tissues. We showed that exposing the squid to other Vibrio species fails to induce this trafficking; however, addition of a high concentration of their OMV, which can diffuse into the crypts, does. We also provide evidence that tracheal cytotoxin released by the symbionts, which can induce haemocyte trafficking, is not part of the OMV cargo, suggesting two distinct mechanisms to induce the same morphogenesis event. By manipulating the timing and localization of OMV signal delivery, we showed that haemocyte trafficking is fully induced only when V. fischeri, the sole species able to reach and grow in the crypts, succeeds in establishing a sustained colonization. Further, our data suggest that the host's detection of OMV serves as a symbiotic checkpoint prior to inducing irreversible morphogenesis. PMID:26399913

  11. Insertion of an outer membrane protein in Escherichia coli requires a chaperone-like protein.

    OpenAIRE

    Hardie, K R; Lory, S; Pugsley, A P

    1996-01-01

    Only one of the characterized components of the main terminal branch of the general secretory pathway (GSP) in Gram-negative bacteria, GspD, is an integral outer membrane protein that could conceivably form a channel to permit protein transport across this membrane. PulD, a member of the GspD protein family required for pullulanase secretion by Klebsiella oxytoca, is shown here to form outer membrane-associated complexes which are not readily dissociated by SDS treatment. The outer membrane a...

  12. Mitochondrial outer membrane forms bridge between two mitochondria in Arabidopsis thaliana.

    Science.gov (United States)

    Yamashita, Akihiro; Fujimoto, Masaru; Katayama, Kenta; Tsutsumi, Nobuhiro; Arimura, Shin-Ichi

    2016-05-01

    Mitochondria are double-membrane organelles that move around and change their shapes dynamically. In plants, the dynamics of the outer membrane is not well understood. We recently demonstrated that mitochondria had tubular protrusions of the outer membrane with little or no matrix, called MOPs (mitochondrial outer-membrane protrusions; MOPs). Here we show that a MOP can form a bridge between two mitochondria in Arabidopsis thaliana. The bridge does not appear to involve the inner membranes. Live imaging revealed stretching of the MOP bridge, demonstrating the flexibility of the outer membrane. Mitochondria frequently undergo fission and fusion. These observations raise the possibility that MOPs bridges have a role in these processes. PMID:27031262

  13. Chlamydial infections in Chinese livestock.

    Science.gov (United States)

    Yin, L; Kalmar, I D; Boden, J; Vanrompay, D

    2013-12-01

    The occurrence and impact of chlamydial infections in Western livestock is well documented in the international literature, but less is known aboutthese infections in livestock in the People's Republic of China. China's livestock production and its share in the global market have increased significantly in recent decades. In this review, the relevant English and Chinese literature on the epidemiology of chlamydial infections in Chinese livestock is considered, and biosecurity measures, prophylaxis and treatment of these infections in China's livestock are compared with Western practices. Chlamydial infections are highly prevalent in Chinese livestock and cause important economic losses, as they do in the rest of the world. Surveillance data and diagnostic results of abortion outbreaks in cattle, sheep and goats highlight the importance of virulent chlamydial infections in China's major ruminant species in many of China's provinces, autonomous regions and municipalities. Data from many of China's provincial divisions also indicate the widespread presence of chlamydial infections in industrially reared swine across the country. Less is known about chlamydial infections in yak, buffalo and horses, but available reports indicate a high prevalence in China's populations. In these reports, chlamydiosis was related to abortions in yak and pneumonia in horses. In Western countries, chlamydial infections are principally treated with antibiotics. In China, however, traditional medicine is often used in conjunction with antibiotics or used as an alternative treatment. PMID:24761733

  14. Model of mouth-to-mouth transfer of bacterial lipoproteins through inner membrane LolC, periplasmic LolA, and outer membrane LolB

    OpenAIRE

    Okuda, Suguru; Tokuda, Hajime

    2009-01-01

    Outer membrane-specific lipoproteins in Escherichia coli are released from the inner membrane by an ATP-binding cassette transporter, the LolCDE complex, which causes the formation of a soluble complex with a periplasmic molecular chaperone, LolA. LolA then transports lipoproteins to the outer membrane where an outer membrane receptor, LolB, incorporates lipoproteins into the outer membrane. The molecular mechanisms underlying the Lol-dependent lipoprotein sorting have been clarified in detai...

  15. Outer membrane ultrastructure explains the limited antigenicity of virulent Treponema pallidum.

    OpenAIRE

    Radolf, J D; Norgard, M V; Schulz, W W

    1989-01-01

    Freeze fracture and deep etching were used to investigate the ultrastructural basis for the observation that anti-treponemal antibodies bind poorly to the surface of virulent Treponema pallidum. Fractures of T. pallidum outer membranes contained scarce, uniformly sized intramembranous particles (IMPs). IMPs on the convex faces often appeared to form linear arrays that wound in spirals about the organism. In contrast to the outer membrane, IMPs of the cytoplasmic membrane were randomly distrib...

  16. Leptospirosis serodiagnosis by ELISA based on recombinant outer membrane protein.

    Science.gov (United States)

    Chalayon, Piyanart; Chanket, Phanita; Boonchawalit, Toungporn; Chattanadee, Siriporn; Srimanote, Potjanee; Kalambaheti, Thareerat

    2011-05-01

    The outer membrane protein LipL21, LipL32, LipL41 and Loa22 of Leptospira interrogans serovar Copenhageni were previously revealed by immunoproteomic analysis, using sera from acute phase infection in a guinea pig. The full-length DNA of each protein was then cloned from the same serovar and expressed in pRSET vector. The obtained molecular weight (MW) of recombinant proteins rLipL21, rLipL32 and rLoa22 were slightly higher than the MW predicted from nucleotide sequences of each inserted gene, while only the N-terminal half of rLipL41 was obtained. Mice antiserum raised against each purified recombinant protein could react with the whole cell lysate of leptospiral serovars, implying that leptospiral native proteins shared a common epitope with recombinant protein. Serodiagnosis using recombinant protein antigen based on indirect ELISA procedure was developed in this study. The optimization of the ELISA components lead to determination of optical density (OD) from a single serum-dilution of 1:1000 in the leptospirosis patients group and normal healthy control group. The cut off OD values for both IgG and IgM class were investigated, and based on this fixed dilution only the IgG class could be used for differential diagnosis of patients and normal individuals. Compared with the MAT assay, ELISA assay utilizing both rLipL32 and rLoa22 as antigen, gave high accuracy and could thus be useful as a confirmative serology test. PMID:21353274

  17. The Taz1p transacylase is imported and sorted into the outer mitochondrial membrane via a membrane anchor domain.

    Science.gov (United States)

    Herndon, Jenny D; Claypool, Steven M; Koehler, Carla M

    2013-12-01

    Mutations in the mitochondrial transacylase tafazzin, Taz1p, in Saccharomyces cerevisiae cause Barth syndrome, a disease of defective cardiolipin remodeling. Taz1p is an interfacial membrane protein that localizes to both the outer and inner membranes, lining the intermembrane space. Pathogenic point mutations in Taz1p that alter import and membrane insertion result in accumulation of monolysocardiolipin. In this study, we used yeast as a model to investigate the biogenesis of Taz1p. We show that to achieve this unique topology in mitochondria, Taz1p follows a novel import pathway in which it crosses the outer membrane via the translocase of the outer membrane and then uses the Tim9p-Tim10p complex of the intermembrane space to insert into the mitochondrial outer membrane. Taz1p is then transported to membranes of an intermediate density to reach a location in the inner membrane. Moreover, a pathogenic mutation within the membrane anchor (V224R) alters Taz1p import so that it bypasses the Tim9p-Tim10p complex and interacts with the translocase of the inner membrane, TIM23, to reach the matrix. Critical targeting information for Taz1p resides in the membrane anchor and flanking sequences, which are often mutated in Barth syndrome patients. These studies suggest that altering the mitochondrial import pathway of Taz1p may be important in understanding the molecular basis of Barth syndrome. PMID:24078306

  18. Outer membrane ultrastructure explains the limited antigenicity of virulent Treponema pallidum.

    Science.gov (United States)

    Radolf, J D; Norgard, M V; Schulz, W W

    1989-03-01

    Freeze fracture and deep etching were used to investigate the ultrastructural basis for the observation that anti-treponemal antibodies bind poorly to the surface of virulent Treponema pallidum. Fractures of T. pallidum outer membranes contained scarce, uniformly sized intramembranous particles (IMPs). IMPs on the convex faces often appeared to form linear arrays that wound in spirals about the organism. In contrast to the outer membrane, IMPs of the cytoplasmic membrane were randomly distributed, numerous, and heterogeneous in size. In Escherichia coli and T. pallidum cofractures, IMPs of the E. coli outer membranes were densely packed within the concave fracture faces, while the T. pallidum fractures were identical to the experiments lacking the E. coli internal controls. Outer membranes of two representative nonpathogenic treponemes, Treponema phagedenis biotype Reiter and Treponema denticola, contained numerous IMPs, which segregated preferentially with the concave halves. Examination of apposed replicas and deep-etched specimens indicated that at least some of the IMPs extend through the T. pallidum outer membrane and are exposed on the surface of the organism. The outer membrane of intact T. pallidum appears to contain a paucity of integral membrane proteins that can serve as targets for specific antibodies. These findings appear to represent an unusual parasitic strategy for evasion of host humoral defenses. PMID:2648388

  19. ABC transporters involved in the biogenesis of the outer membrane in gram-negative bacteria.

    Science.gov (United States)

    Narita, Shin-ichiro

    2011-01-01

    The outer membrane of gram-negative bacteria is an asymmetric lipid bilayer with phospholipids and lipopolysaccharides (LPSs). β-Barreled outer membrane proteins and lipoproteins are embedded in the outer membrane. All of these constituents are essential to the function of the outer membrane. The transport systems for lipoproteins have been characterized in detail. An ATP-binding cassette (ABC) transporter, LolCDE, initiates sorting by mediating the detachment of lipoproteins from the inner membrane to form a water-soluble lipoprotein-LolA complex in the periplasm. Lipoproteins are then transferred to LolB at the outer membrane and are incorporated into the lipid bilayer. A model analogous to the Lol system has been suggested for the transport of LPS, where an ABC transporter, LptBFG, mediates the detachment of LPS from the inner membrane. Recent developments in the functional characterization of ABC transporters involved in the biogenesis of the outer membrane in gram-negative bacteria are discussed. PMID:21670534

  20. Extra amino group-containing gramicidin S analogs possessing outer membrane-permeabilizing activity

    OpenAIRE

    Kawai, Masao; Tanaka, Ryoji; Yamamura, Hatsuo; Yasuda, Keiko; Narita, Shizuto; Umemoto, Hiroshi; Ando, Setsuko; Katsu, Takashi; ヤマムラ, ハツオ; 山村, 初雄

    2003-01-01

    Novel (2S,4R)- and (2S,4S)-4-aminoproline residue-containing analogs of the cyclic decapeptide antibiotic gramicidin S were synthesized, which exhibited marked permeabilizing activity on the outer membrane of gram-negative bacteria.

  1. Vibrio cholerae expresses iron-regulated outer membrane proteins in vivo.

    OpenAIRE

    Sciortino, C V; Finkelstein, R A

    1983-01-01

    A comparison was made, using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, of the outer membrane proteins of four strains of Vibrio cholerae grown in vivo in infant rabbits and in vitro in low-iron and iron-supplemented defined media. In vivo-grown V. cholerae expressed novel outer membrane-associated proteins which, in part, were similar to those observed on V. cholerae grown in vitro under conditions of iron deprivation.

  2. The Chloroplast Outer Envelope Membrane: The Edge of Light and Excitement

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The chloroplast is surrounded by a double-membrane envelope at which proteins, ions, and numerous metabolites Including nucleotides, amino acids, fatty acids, and carbohydrates are exchanged between the two aqueous phases, the cytoplasm and the chloroplast stroma. The chloroplast envelope is also the location where the biosynthesis and accumulation of various lipids take place. By contrast to the inner membrane, which contains a number of specific transporters and acts as the permeability barrier, the chloroplast outer membrane has often been considered a passive compartment derived from the phagosomal membrane. However, the presence of galactoglycerolipids and β-barrel membrane proteins support the common origin of the outer membranes of the chloroplast envelope and extant cyanobacteria. Furthermore, recent progress in the field underlines that the chloroplast outer envelope plays important roles not only for translocation of various molecules, but also for regulation of metabolic activities and signaling processes. The chloroplast outer envelope membrane offers various interesting and challenging questions that are relevant to the understanding of organelle biogenesis, plant growth and development, and also membrane biology in general.

  3. Rv1698 of Mycobacterium tuberculosis represents a new class of channel-forming outer membrane proteins.

    Science.gov (United States)

    Siroy, Axel; Mailaender, Claudia; Harder, Daniel; Koerber, Stephanie; Wolschendorf, Frank; Danilchanka, Olga; Wang, Ying; Heinz, Christian; Niederweis, Michael

    2008-06-27

    Mycobacteria contain an outer membrane composed of mycolic acids and a large variety of other lipids. Its protective function is an essential virulence factor of Mycobacterium tuberculosis. Only OmpA, which has numerous homologs in Gram-negative bacteria, is known to form channels in the outer membrane of M. tuberculosis so far. Rv1698 was predicted to be an outer membrane protein of unknown function. Expression of rv1698 restored the sensitivity to ampicillin and chloramphenicol of a Mycobacterium smegmatis mutant lacking the main porin MspA. Uptake experiments showed that Rv1698 partially complemented the permeability defect of the M. smegmatis porin mutant for glucose. These results indicated that Rv1698 provides an unspecific pore that can partially substitute for MspA. Lipid bilayer experiments demonstrated that purified Rv1698 is an integral membrane protein that indeed produces channels. The main single channel conductance is 4.5 +/- 0.3 nanosiemens in 1 M KCl. Zero current potential measurements revealed a weak preference for cations. Whole cell digestion of recombinant M. smegmatis with proteinase K showed that Rv1698 is surface-accessible. Taken together, these experiments demonstrated that Rv1698 is a channel protein that is likely involved in transport processes across the outer membrane of M. tuberculosis. Rv1698 has single homologs of unknown functions in Corynebacterineae and thus represents the first member of a new class of channel proteins specific for mycolic acid-containing outer membranes. PMID:18434314

  4. The Xylella fastidiosa PD1063 protein is secreted in association with outer membrane vesicles.

    Science.gov (United States)

    Pierce, Brittany K; Voegel, Tanja; Kirkpatrick, Bruce C

    2014-01-01

    Xylella fastidiosa is a gram-negative, xylem-limited plant pathogenic bacterium that causes disease in a variety of economically important agricultural crops including Pierce's disease of grapevines. Xylella fastidiosa biofilms formed in the xylem vessels of plants play a key role in early colonization and pathogenicity by providing a protected niche and enhanced cell survival. Here we investigate the role of Xylella fastidiosa PD1063, the predicted ortholog of Xanthomonas oryzae pv. oryzae PXO_03968, which encodes an outer membrane protein. To assess the function of the Xylella fastidiosa ortholog, we created Xylella fastidiosa mutants deleted for PD1063 and then assessed biofilm formation, cell-cell aggregation and cell growth in vitro. We also assessed disease severity and pathogen titers in grapevines mechanically inoculated with the Xylella fastidiosa PD1063 mutant. We found a significant decrease in cell-cell aggregation among PD1063 mutants but no differences in cell growth, biofilm formation, disease severity or titers in planta. Based on the demonstration that Xanthomonas oryzae pv. oryzae PXO_03968 encodes an outer membrane protein, secreted in association with outer membrane vesicles, we predicted that PD1063 would also be secreted in a similar manner. Using anti-PD1063 antibodies, we found PD1063 in the supernatant and secreted in association with outer membrane vesicles. PD1063 purified from the supernatant, outer membrane fractions and outer membrane vesicles was 19.2 kD, corresponding to the predicted size of the processed protein. Our findings suggest Xylella fastidiosa PD1063 is not essential for development of Pierce's disease in Vitis vinifera grapevines although further research is required to determine the function of the PD1063 outer membrane protein in Xylella fastidiosa. PMID:25426629

  5. Intermediate location in the assembly of the matrix protein or porin into the outer membrane of Escherichia coli.

    OpenAIRE

    Boyd, A; Holland, I B

    1980-01-01

    Evidence from pulse-chase experiments indicates that the outer membrane matrix protein or porin of Escherichia coli B/r passes through a Sarkosyl-soluble membrane pool on the way to its eventual Sarkosyl-insoluble state in the outer membrane.

  6. Rhodopsin Forms Nanodomains in Rod Outer Segment Disc Membranes of the Cold-Blooded Xenopus laevis.

    Directory of Open Access Journals (Sweden)

    Tatini Rakshit

    Full Text Available Rhodopsin forms nanoscale domains (i.e., nanodomains in rod outer segment disc membranes from mammalian species. It is unclear whether rhodopsin arranges in a similar manner in amphibian species, which are often used as a model system to investigate the function of rhodopsin and the structure of photoreceptor cells. Moreover, since samples are routinely prepared at low temperatures, it is unclear whether lipid phase separation effects in the membrane promote the observed nanodomain organization of rhodopsin from mammalian species. Rod outer segment disc membranes prepared from the cold-blooded frog Xenopus laevis were investigated by atomic force microscopy to visualize the organization of rhodopsin in the absence of lipid phase separation effects. Atomic force microscopy revealed that rhodopsin nanodomains form similarly as that observed previously in mammalian membranes. Formation of nanodomains in ROS disc membranes is independent of lipid phase separation and conserved among vertebrates.

  7. Membrane tether formation from voltage-clamped outer hair cells using optical tweezers

    Science.gov (United States)

    Qian, Feng; Ermilov, Sergey A.; Murdock, David R.; Brownell, William E.; Anvari, Bahman

    2004-06-01

    Outer hair cells contribute an active mechanical feedback to the vibrations of the cochlear structures resulting in the high sensitivity and frequency selectivity of normal hearing. We have designed and implemented a novel experimental setup that combines optical tweezers with patch-clamp apparatus to investigate the electromechanical properties of cellular plasma membranes. A micron-size bead trapped by the optical tweezers is brought in contact with the membrane of a voltage-clamped cell, and subsequently moved away to form a plasma membrane tether. Bead displacement during tether elongation is monitored by a quadrant photodetector to obtain time-resolved measurements of the tethering force. Salient information associated with the mechanical properties of the membrane tether can thus be obtained. Tethers can be pulled from the cell membrane at different holding potentials, and the tether force response can be measured while changing transmembrane potential. Experimental results from outer hair cells and human embryonic kidney cells are presented.

  8. Brucella ovis PA mutants for outer membrane proteins Omp10, Omp19, SP41, and BepC are not altered in their virulence and outer membrane properties.

    Science.gov (United States)

    Sidhu-Muñoz, Rebeca S; Sancho, Pilar; Vizcaíno, Nieves

    2016-04-15

    Mutants in several genes have been obtained on the genetic background of virulent rough (lacking O-polysaccharide) Brucella ovis PA. The target genes encode outer membrane proteins previously associated with the virulence of smooth (bearing O-polysaccharide chains in the lipopolysaccharide) Brucella strains. Multiple attempts to delete omp16, coding for a homologue to peptidoglycan-associated lipoproteins, were unsuccessful, which suggests that Omp16 is probably essential for in vitro survival of B. ovis PA. Single deletion of omp10 or omp19 - that encode two other outer membrane lipoproteins - was achieved, but the simultaneous removal of both genes failed, suggesting an essential complementary function between both proteins. Two other deletion mutants, defective in the Tol-C-homologue BepC or in the SP41 adhesin, were also obtained. Surprisingly when compared to previous results obtained with smooth Brucella, none of the B. ovis mutants showed attenuation in the virulence, either in the mouse model or in cellular models of professional and non-professional phagocytes. Additionally, and in contrast to the observations reported with smooth Brucella strains, several properties related to the outer membrane remained almost unaltered. These results evidence new distinctive traits between naturally rough B. ovis and smooth brucellae. PMID:27016758

  9. Lack of Outer Membrane Protein A Enhances the Release of Outer Membrane Vesicles and Survival of Vibrio cholerae and Suppresses Viability of Acanthamoeba castellanii

    Directory of Open Access Journals (Sweden)

    Soni Priya Valeru

    2014-01-01

    Full Text Available Vibrio cholerae, the causative agent of the diarrhoeal disease cholera, survives in aquatic environments. The bacterium has developed a survival strategy to grow and survive inside Acanthamoeba castellanii. It has been shown that V. cholerae expresses outer membrane proteins as virulence factors playing a role in the adherence to interacted host cells. This study examined the role of outer membrane protein A (OmpA and outer membrane vesicles (OMVs in survival of V. cholerae alone and during its interaction with A. castellanii. The results showed that an OmpA mutant of V. cholerae survived longer than wild-type V. cholerae when cultivated alone. Cocultivation with A. castellanii enhanced the survival of both bacterial strains and OmpA protein exhibited no effect on attachment, engulfment, and survival inside the amoebae. However, cocultivation of the OmpA mutant of V. cholerae decreased the viability of A. castellanii and this bacterial strain released more OMVs than wild-type V. cholerae. Surprisingly, treatment of amoeba cells with OMVs isolated from the OmpA mutant significantly decreased viable counts of the amoeba cells. In conclusion, the results might highlight a regulating rule for OmpA in survival of V. cholerae and OMVs as a potent virulence factor for this bacterium towards eukaryotes in the environment.

  10. Gene cloning and prokaryotic expression of recombinant outer membrane protein from Vibrio parahaemolyticus

    Institute of Scientific and Technical Information of China (English)

    YUAN Ye; WANG Xiuli; GUO Sheping; QIU xuemei

    2011-01-01

    Gram-negative vibrio parahaemolyticus is a common pathogen in humans and marine animals.The outer membrane protein of bacteria plays an important role in the infection and pathogenicity to the host.Thus,the outer membrane proteins are an ideal target for vaccines.We amplified a complete outer membrane protein gene (ompW) from V.parahaemolyticus ATCC 17802.We then cloned and expressed the gene into Escherichia coli BL21 (DE3) cells.The gene coded for a protein that was 42.78 kDa.We purified the protein using Ni-NTA affinity chromatography and Anti-His antibody Western blotting,respectively.Our results provide a basis for future application of the OmpW protein as a vaccine candidate against infection by V.parahaemolyticus.In addition,the purified OmpW protein can be used for further functional and structural studies.

  11. Gene cloning and prokaryotic expression of recombinant outer membrane protein from Vibrio parahaemolyticus

    Science.gov (United States)

    Yuan, Ye; Wang, Xiuli; Guo, Sheping; Qiu, Xuemei

    2011-06-01

    Gram-negative Vibrio parahaemolyticus is a common pathogen in humans and marine animals. The outer membrane protein of bacteria plays an important role in the infection and pathogenicity to the host. Thus, the outer membrane proteins are an ideal target for vaccines. We amplified a complete outer membrane protein gene (ompW) from V. parahaemolyticus ATCC 17802. We then cloned and expressed the gene into Escherichia coli BL21 (DE3) cells. The gene coded for a protein that was 42.78 kDa. We purified the protein using Ni-NTA affinity chromatography and Anti-His antibody Western blotting, respectively. Our results provide a basis for future application of the OmpW protein as a vaccine candidate against infection by V. parahaemolyticus. In addition, the purified OmpW protein can be used for further functional and structural studies.

  12. Chemical Analysis of Major Outer Membrane Proteins of Neisseria meningitidis: Comparison of Serotypes 2 and 11

    OpenAIRE

    Tsai, Chao-Ming; Frasch, Carl E.

    1980-01-01

    Most of the 15 protein serotypes found in group B Neisseria meningitidis have distinct major outer membrane protein patterns when examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) by the Weber-Osborn system. Both serotypes 2 and 11 contain major outer membrane proteins with apparent molecular weights of 41,000 and 28,000 (41K and 28K). The 41K and 28K proteins were purified from the prototype strains of these two serotypes (M986 type 2 and M136 type 11) by prepa...

  13. Green Modification of Outer Selective P84 Nanofiltration (NF) Hollow Fiber Membranes for Cadmium Removal

    KAUST Repository

    Gao, Jie

    2015-10-26

    Outer-selective thin-film composite (TFC) hollow fiber membranes are normally made from interfacial polymerization of m-phenylenediamine (MPD) and trimesoyl chloride (TMC). However, the removal of excess MPD solution and the large consumption of alkane solvents are their technical bottlenecks. In this study, green methods to prepare the outer selective TFC hollow fiber membranes were explored by firstly modifying the membrane substrate with polyethyleneimine (PEI) and then by water soluble small molecules such as glutaraldehyde (GA) and epichlorohydrin (ECH). Using P84 polyimide as the substrate, not only do these modifications decrease substrate\\'s pore size, but also vary surface charge by making the membranes less positively charged. As a result, the resultant membranes have higher rejections against salts such as Na2SO4, NaCl and MgSO4. The PEI and then GA modified membrane has the best separation performance with a NaCl rejection over 90% and a pure water permeability (PWP) of 1.74±0.01 Lm−2bar−1h−1. It also shows an impressive rejection to CdCl2 (94%) during long-term stability tests. The CdCl2 rejection remains higher than 90% at operating temperatures from 5 to 60 °C. This study may provide useful insights for green manufacturing of outer-selective nanofiltration (NF) hollow fiber membranes.

  14. Outer membrane biogenesis in Helicobacter pylori: A deviation from the paradigm

    Directory of Open Access Journals (Sweden)

    George W. Liechti

    2012-04-01

    Full Text Available The bacterial pathogen Helicobacter pylori is capable of colonizing the gastric mucosa of the human stomach using a variety of factors associated with or secreted from its outer membrane (OM. Lipopolysaccharide (LPS and numerous outer membrane proteins have been shown to be involved in adhesion and immune stimulation/evasion. Many of these factors are essential for colonization and/or pathogenesis in a variety of animal models. Despite this wide array of potential targets present on the bacterial surface, the ability of H. pylori to vary its outer membrane profile limits the effectiveness of vaccines that use any single one of these components. However, it has become evident that the proteins comprising the complexes that transport the majority of these molecules to the OM are highly conserved and often essential. The field of membrane biogenesis has progressed remarkably in the last few years, and the possibility now exists for targeting the mechanisms by which β-barrel proteins, lipoproteins, and LPS are transported to the OM, resulting in loss of bacterial fitness and significant altering of membrane permeability. In this review, the OM transport machinery for LPS, lipoproteins, and outer membrane proteins are discussed. While the principal investigations of these transport mechanisms have been conducted in Escherichia coli and Neisseria meningitidis, here these systems will be presented in the genetic context of ε- proteobacteria. Bioinformatic analysis reveals that minimalist genomes, such as that of Helicobacter pylori, offer insight into the smallest number of components required for these essential pathways to function. Interestingly, in the majority of ε-proteobacteria, while the inner and outer membrane associated apparatus of LPS, lipoprotein, and OM protein transport pathways appear to all be intact, most of the components associated with the periplasmic compartment are either missing or are almost unrecognizable when compared to

  15. Formation of Mitochondrial Outer Membrane Derived Protrusions and Vesicles in Arabidopsis thaliana

    Science.gov (United States)

    Yamashita, Akihiro; Fujimoto, Masaru; Katayama, Kenta; Yamaoka, Shohei; Tsutsumi, Nobuhiro; Arimura, Shin-ichi

    2016-01-01

    Mitochondria are dynamic organelles that have inner and outer membranes. In plants, the inner membrane has been well studied but relatively little is known about the outer membrane. Here we report that Arabidopsis cells have mitochondrial outer membrane-derived structures, some of which protrude from the main body of mitochondria (mitochondrial outer-membrane protrusions; MOPs), while others form vesicle-like structures without a matrix marker. The latter vesicle-like structures are similar to some mammalian MDVs (mitochondrial-derived vesicles). Live imaging demonstrated that a plant MDV budded off from the tip of a MOP. MDVs were also observed in the drp3a drp3b double mutant, indicating that they could be formed without the mitochondrial fission factors DRP3A and DRP3B. Double staining studies showed that the MDVs were not peroxisomes, endosomes, Golgi apparatus or trans-Golgi network (TGN). The numbers of MDVs and MOPs increased in senescent leaves and after dark treatment. Together, these results suggest that MDVs and MOPs are related to leaf senescence. PMID:26752045

  16. Formation of Mitochondrial Outer Membrane Derived Protrusions and Vesicles in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Akihiro Yamashita

    Full Text Available Mitochondria are dynamic organelles that have inner and outer membranes. In plants, the inner membrane has been well studied but relatively little is known about the outer membrane. Here we report that Arabidopsis cells have mitochondrial outer membrane-derived structures, some of which protrude from the main body of mitochondria (mitochondrial outer-membrane protrusions; MOPs, while others form vesicle-like structures without a matrix marker. The latter vesicle-like structures are similar to some mammalian MDVs (mitochondrial-derived vesicles. Live imaging demonstrated that a plant MDV budded off from the tip of a MOP. MDVs were also observed in the drp3a drp3b double mutant, indicating that they could be formed without the mitochondrial fission factors DRP3A and DRP3B. Double staining studies showed that the MDVs were not peroxisomes, endosomes, Golgi apparatus or trans-Golgi network (TGN. The numbers of MDVs and MOPs increased in senescent leaves and after dark treatment. Together, these results suggest that MDVs and MOPs are related to leaf senescence.

  17. Heat Modifiability of Outer Membrane Proteins from Gram-Negative Bacteria

    Science.gov (United States)

    Noinaj, Nicholas; Kuszak, Adam J.; Buchanan, Susan K.

    2016-01-01

    Summary β-barrel membrane proteins are somewhat unique in that their folding states can be monitored using semi-native SDS-PAGE methods to determine if they are folded properly or not. This property, which is commonly referred to as heat modifiability, has been used for many years on both purified protein and on whole cells to monitor folded states of proteins of interest. Additionally, heat modifiability assays have proven indispensable in studying the BAM complex and its role in folding and inserting β-barrel membrane proteins into the outer membrane. Here, we describe the protocol our lab uses for performing the heat modifiability assay in our studies on outer membrane proteins. PMID:26427675

  18. The Bilayer Enhances Rhodopsin Kinetic Stability in Bovine Rod Outer Segment Disk Membranes

    OpenAIRE

    Corley, Scott C.; Sprangers, Peter; Albert, Arlene D.

    2011-01-01

    Rhodopsin is a kinetically stable protein constituting >90% of rod outer segment disk membrane protein. To investigate the bilayer contribution to rhodopsin kinetic stability, disk membranes were systematically disrupted by octyl-β-D-glucopyranoside. Rhodopsin kinetic stability was examined under subsolubilizing (rhodopsin in a bilayer environment perturbed by octyl-β-D-glucopyranoside) and under fully solubilizing conditions (rhodopsin in a micelle with cosolubilized phospholipids). As deter...

  19. Rhodopsin Forms Nanodomains in Rod Outer Segment Disc Membranes of the Cold-Blooded Xenopus laevis

    OpenAIRE

    Tatini Rakshit; Subhadip Senapati; Satyabrata Sinha; Whited, A. M.; Paul S-H Park

    2015-01-01

    Rhodopsin forms nanoscale domains (i.e., nanodomains) in rod outer segment disc membranes from mammalian species. It is unclear whether rhodopsin arranges in a similar manner in amphibian species, which are often used as a model system to investigate the function of rhodopsin and the structure of photoreceptor cells. Moreover, since samples are routinely prepared at low temperatures, it is unclear whether lipid phase separation effects in the membrane promote the observed nanodomain organizat...

  20. Actuation of flexoelectric membranes in viscoelastic fluids with applications to outer hair cells

    OpenAIRE

    Herrera-Valencia, E. E.; Rey, Alejandro D.

    2014-01-01

    Liquid crystal flexoelectric actuation uses an imposed electric field to create membrane bending, and it is used by the outer hair cells (OHCs) located in the inner ear, whose role is to amplify sound through generation of mechanical power. Oscillations in the OHC membranes create periodic viscoelastic flows in the contacting fluid media. A key objective of this work on flexoelectric actuation relevant to OHCs is to find the relations and impact of the electromechanical properties of the memb...

  1. Clueless is a conserved ribonucleoprotein that binds the ribosome at the mitochondrial outer membrane

    Directory of Open Access Journals (Sweden)

    Aditya Sen

    2016-02-01

    Full Text Available Mitochondrial function is tied to the nucleus, in that hundreds of proteins encoded by nuclear genes must be imported into mitochondria. While post-translational import is fairly well understood, emerging evidence supports that mitochondrial site-specific import, or co-translational import, also occurs. However, the mechanism and the extent to which it is used are not fully understood. We have previously shown Clueless (Clu, a conserved multi-domain protein, associates with mitochondrial outer membrane proteins, including Translocase of outer membrane 20, and genetically and physically interacts with the PINK1–Parkin pathway. The human ortholog of Clu, Cluh, was shown to bind nuclear-encoded mitochondrially destined mRNAs. Here we identify the conserved tetratricopeptide domain of Clu as predominantly responsible for binding mRNA. In addition, we show Clu interacts with the ribosome at the mitochondrial outer membrane. Taken together, these data support a model whereby Clu binds to and mitochondrially targets mRNAs to facilitate mRNA localization to the outer mitochondrial membrane, potentially for site-specific or co-translational import. This role may link the presence of efficient mitochondrial protein import to mitochondrial quality control through the PINK1–Parkin pathway.

  2. Clueless is a conserved ribonucleoprotein that binds the ribosome at the mitochondrial outer membrane.

    Science.gov (United States)

    Sen, Aditya; Cox, Rachel T

    2016-01-01

    Mitochondrial function is tied to the nucleus, in that hundreds of proteins encoded by nuclear genes must be imported into mitochondria. While post-translational import is fairly well understood, emerging evidence supports that mitochondrial site-specific import, or co-translational import, also occurs. However, the mechanism and the extent to which it is used are not fully understood. We have previously shown Clueless (Clu), a conserved multi-domain protein, associates with mitochondrial outer membrane proteins, including Translocase of outer membrane 20, and genetically and physically interacts with the PINK1-Parkin pathway. The human ortholog of Clu, Cluh, was shown to bind nuclear-encoded mitochondrially destined mRNAs. Here we identify the conserved tetratricopeptide domain of Clu as predominantly responsible for binding mRNA. In addition, we show Clu interacts with the ribosome at the mitochondrial outer membrane. Taken together, these data support a model whereby Clu binds to and mitochondrially targets mRNAs to facilitate mRNA localization to the outer mitochondrial membrane, potentially for site-specific or co-translational import. This role may link the presence of efficient mitochondrial protein import to mitochondrial quality control through the PINK1-Parkin pathway. PMID:26834020

  3. TonB-Dependent outer-membrane proteins and siderophore utilization in Pseudomonas fluorescens Pf-5

    Science.gov (United States)

    The soil bacterium Pseudomonas fluorescens Pf-5 produces two siderophores, a pyoverdine and enantio-pyochelin, and its proteome includes 45 TonB-dependent outer-membrane proteins, which commonly function in uptake of siderophores and other substrates from the environment. The 45 proteins share the ...

  4. Analysis of proteins in Chlamydia trachomatis L2 outer membrane complex, COMC

    DEFF Research Database (Denmark)

    Birkelund, Svend; Morgan-Fisher, Marie; Timmerman, Evy; Gevaert, Kris; Shaw, Allan C; Christiansen, Gunna

    2009-01-01

    The protein composition and N-terminal sequences of proteins in the outer membrane of Chlamydia trachomatis L2 were analysed following isolation of N-terminal peptides using combined fractional diagonal chromatography and identification by liquid chromatography tandem MS. Acetylation of primary a...

  5. Distinct Pathways Mediate the Sorting of Tail-anchored Mitochondrial Outer Membrane Proteins

    Science.gov (United States)

    Little is known about the biogenesis of tail-anchored (TA) proteins localized to the mitochondrial outer membrane in plant cells. To address this issue, we screened all of the (>600) known and predicted TA proteins in Arabidopsis thaliana for those annotated, based on Gene Ontology, to possess mitoc...

  6. Subdominant outer membrane antigens in anaplasma marginale: conservation, antigenicity, and protective capacity using recombinant protein

    Science.gov (United States)

    Anaplasma marginale is a tick-borne rickettsial pathogen of cattle with a worldwide distribution. Currently a safe and efficacious vaccine is unavailable. Outer membrane protein (OMP) extracts or a well- defined surface protein complex reproducibly induce protective immunity. However, there are seve...

  7. The properties of the outer membrane localized Lipid A transporter LptD

    International Nuclear Information System (INIS)

    Gram-negative bacteria are surrounded by a cell wall including the outer membrane. The outer membrane is composed of two distinct monolayers where the outer layer contains lipopolysaccharides (LPS) with the non-phospholipid Lipid A as the core. The synthesis of Lipid A is initiated in the cytosol and thereby the molecule has to be transported across the inner and outer membranes. The β-barrel lipopolysaccharide-assembly protein D (LptD) was discovered to be involved in the transfer of Lipid A into the outer membrane of Gram-negative bacteria. At present the molecular procedure of lipid transfer across the outer membrane remains unknown. Here we approached the functionality of the transfer system by an electrophysiological analysis of the outer membrane protein from Escherichia coli named ecLptD. In vitro the protein shows cation selectivity and has an estimated pore diameter of about 1.8 nm. Addition of Lipid A induces a transition of the open state to a sub-conductance state with two independent off-rates, which might suggest that LptD is able to bind and transport the molecule in vitro. To generalize our findings with respect to the Lipid A transport system of other Gram-negative bacteria we have explored the existence of the proteins involved in this pathway by bioinformatic means. We were able to identify the membrane-inserted components of the Lipid A transport system in all Gram-negative bacteria, whereas the periplasmic components appear to be species-specific. The LptD proteins of different bacteria are characterized by their periplasmic N-terminal domain and a C-terminal barrel region. The latter shows distinct sequence properties, particularly in LptD proteins of cyanobacteria, and this specific domain can be found in plant proteins as well. By electrophysiological experiments on LptD from Anabaena sp. PCC 7120 we are able to confirm the functional relation of anaLptD to Lipid A transport.

  8. Outer Membrane Proteins of Brucella abortus Vaccinal and Field Strains and their Immune Response in Buffaloes

    OpenAIRE

    Rukhshanda Munir*, M. Afzal1, M. Hussain2, S. M. S. Naqvi3 and A. Khanum3

    2010-01-01

    Outer membrane proteins (OMPs) of three strains of B. abortus i.e. S19, RB51 and a local field isolate of biotype 1 were isolated through disrupting cells to generate membranes by centrifugation and sodium lauryl sarcosinate solubilisation of inner membrane proteins. Distinct OMP profiles of each strain were seen on SDS-PAGE. SDS-PAGE analysis of S19 and field isolate revealed eight protein bands in each strain. The OMPs of S19 had molecular masses 89.0, 73.0, 53.7, 49.0, 38.0, 27.0, 22.3, a...

  9. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β.

    Science.gov (United States)

    Roundhill, Elizabeth; Turnbull, Doug; Burchill, Susan

    2016-05-01

    Overexpression of plasma membrane multidrug resistance-associated protein 1 (MRP-1) in Ewing's sarcoma (ES) predicts poor outcome. MRP-1 is also expressed in mitochondria, and we have examined the submitochondrial localization of MRP-1 and investigated the mechanism of MRP-1 transport and role of this organelle in the response to doxorubicin. The mitochondrial localization of MRP-1 was examined in ES cell lines by differential centrifugation and membrane solubilization by digitonin. Whether MRP-1 is chaperoned by heat shock proteins (HSPs) was investigated by immunoprecipitation, immunofluorescence microscopy, and HSP knockout using small hairpin RNA and inhibitors (apoptozole, 17-AAG, and NVPAUY). The effect of disrupting mitochondrial MRP-1-dependent efflux activity on the cytotoxic effect of doxorubicin was investigated by counting viable cell number. Mitochondrial MRP-1 is glycosylated and localized to the outer mitochondrial membrane, where it is coexpressed with HSP90. MRP-1 binds to both HSP90 and HSP70, although only inhibition of HSP90β decreases expression of MRP-1 in the mitochondria. Disruption of mitochondrial MRP-1-dependent efflux significantly increases the cytotoxic effect of doxorubicin (combination index, MRP-1 is expressed in the outer mitochondrial membrane and is a client protein of HSP90β, where it may play a role in the doxorubicin-induced resistance of ES.-Roundhill, E., Turnbull, D., Burchill, S. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β. PMID:26722004

  10. A novel outer membrane lipoprotein, LolB (HemM), involved in the LolA (p20)-dependent localization of lipoproteins to the outer membrane of Escherichia coli.

    OpenAIRE

    Matsuyama, S i; Yokota, N.; Tokuda, H

    1997-01-01

    The Escherichia coli major outer membrane lipoprotein (Lpp) is released from the inner membrane into the periplasm as a complex with a carrier protein, LolA (p20), and is then specifically incorporated into the outer membrane. An outer membrane protein playing a critical role in Lpp incorporation was identified, and partial amino acid sequences of the protein, named LolB, were identical to those of HemM, which has been suggested to play a role in 5-aminolevulinic acid synthesis in the cytosol...

  11. Pathogenicity of Vibrio anguillarum serogroup O1 strains compared to plasmids, outer membrane protein profiles and siderophore production

    DEFF Research Database (Denmark)

    Pedersen, K.; Gram, Lone; Austin, D.A.;

    1997-01-01

    The virulence of 18 strains of Vibrio anguillarum serogroup 01 was compared to plasmid content, expression of siderophores and outer membrane proteins. All strains, irrespective of plasmid content, produced siderophores and inducible outer membrane proteins under iron-limited conditions. Only str...

  12. Solid-state NMR Study of the YadA Membrane-Anchor Domain in the Bacterial Outer Membrane.

    Science.gov (United States)

    Shahid, Shakeel A; Nagaraj, Madhu; Chauhan, Nandini; Franks, Trent W; Bardiaux, Benjamin; Habeck, Michael; Orwick-Rydmark, Marcella; Linke, Dirk; van Rossum, Barth-J

    2015-10-19

    MAS-NMR was used to study the structure and dynamics at ambient temperatures of the membrane-anchor domain of YadA (YadA-M) in a pellet of the outer membrane of E. coli in which it was expressed. YadA is an adhesin from the pathogen Yersinia enterocolitica that is involved in interactions with the host cell, and it is a model protein for studying the autotransport process. Existing assignments were sucessfully transferred to a large part of the YadA-M protein in the E. coli lipid environment by using (13) C-(13) C DARR and PDSD spectra at different mixing times. The chemical shifts in most regions of YadA-M are unchanged relative to those in microcrystalline YadA-M preparations from which a structure has previously been solved, including the ASSA region that is proposed to be involved in transition-state hairpin formation for transport of the soluble domain. Comparisons of the dynamics between the microcrystalline and membrane-embedded samples indicate greater flexibility of the ASSA region in the outer-membrane preparation at physiological temperatures. This study will pave the way towards MAS-NMR structure determination of membrane proteins, and a better understanding of functionally important dynamic residues in native membrane environments. PMID:26332158

  13. Deletion of lolB, Encoding an Outer Membrane Lipoprotein, Is Lethal for Escherichia coli and Causes Accumulation of Lipoprotein Localization Intermediates in the Periplasm

    OpenAIRE

    Tanaka, Kimie; Matsuyama, Shin-ichi; Tokuda, Hajime

    2001-01-01

    Outer membrane lipoproteins of Escherichia coli are released from the inner membrane upon the formation of a complex with a periplasmic chaperone, LolA, followed by localization to the outer membrane. In vitro biochemical analyses revealed that the localization of lipoproteins to the outer membrane generally requires an outer membrane lipoprotein, LolB, and occurs via transient formation of a LolB-lipoprotein complex. On the other hand, a mutant carrying the chromosomal lolB gene under the co...

  14. Conformation of protein secreted across bacterial outer membranes: a study of enterotoxin translocation from Vibrio cholerae

    International Nuclear Information System (INIS)

    The secretion of enterotoxin by Vibrio cholerae is punctuated by the transient entry of the toxin subunits into the periplasm. In this paper, the authors show that the subunits oligomerize into an assembled holotoxin within the periplasm prior to their secretion across the outer membrane. The rate of toxin assembly was studied by pulse-labeling cells with [35S]-methionine and then monitoring the turnover of radiolabeled subunits as they assembled within the periplasm. The subunits entered the periplasm as monomers and assembled into oligomers with a half-time of ≅ 1 min. Since assembly was a rapid event compared to the rate of toxin efflux from the periplasm, which had a half-time of ≅ 13 min, they conclude that all of the subunits that pass through the periplasm assemble before they traverse the outer membrane. The average concentration of subunit monomers and assembled holotoxin within the periplasm was calculated to be ≅ 20 and ≅ 260 μg/ml, respectively. This indicates that the periplasm is a suitably concentrated milieu where spontaneous toxin assembly can occur. These findings suggest that protein movement across bacterial outer membranes, in apparent contrast to export across other biological membranes, involves translocation of polypeptides that have already folded into tertiary and even quaternary conformations

  15. Functional properties of the major outer membrane protein in Stenotrophomonas maltophilia.

    Science.gov (United States)

    Chen, Yih-Yuan; Wu, Han-Chiang; Lin, Juey-Wen; Weng, Shu-Fen

    2015-08-01

    Stenotrophomonas maltophilia is an opportunistic pathogen that is closely associated with high morbidity and mortality in debilitated and immunocompromised individuals. Therefore, to investigate the pathogenesis mechanism is urgently required. However, there are very few studies to evaluate the functional properties of outer membrane protein, which may contribute to the pathogenesis in S. maltophilia. In this study, three abundant proteins in the outer membrane fraction of S. maltophilia were identified by liquid chromatography-tandem mass spectrometry as OmpW1, MopB, and a hypothetical protein. MopB, a member of the OmpA family, was firstly chosen for functional investigation in this study because many OmpA-family proteins are known to be involved in pathogenesis and offer potential as vaccines. Membrane fractionation analyses demonstrated that MopB was indeed the most abundant outer membrane protein (OMP) in S. maltophilia. For functional studies, the mopB mutant of S. maltophilia (SmMopB) was constructed by insertional mutation. MopB deficiency resulted in a change in the protein composition of OMPs and altered the architecture of the outer membrane. The SmMopB strain exhibited reduced cytotoxicity toward L929 fibroblasts and was more sensitive to numerous stresses, including human serum, sodium dodecyl sulfate, and hydrogen peroxide compared with wildtype S. maltophilia. These results suggest that MopB may be a good candidate for the design of vaccines or anti-MopB drugs for controlling serious nosocomial infections of multidrug-resistant S. maltophilia, especially in immunosuppressed patients. PMID:26224456

  16. Modulation of cytokines and transcription factors (T-Bet and GATA3 in CD4 enriched cervical cells of Chlamydia trachomatis infected fertile and infertile women upon stimulation with chlamydial inclusion membrane proteins B and C

    Directory of Open Access Journals (Sweden)

    Salhan Sudha

    2009-08-01

    Full Text Available Abstract Background Chlamydial Inclusion membrane proteins (Incs, are involved in biochemical interactions with host cells and infecting Chlamydiae. We have previously reported the role of two Chlamydia trachomatis (CT Incs, namely IncB and IncC in generating host immunity in CT infected women. Emerging data shows involvement of Inc stimulated CD4 positive T cells in aiding host immunity in infected fertile and infertile women through the secretion of interferon gamma. However the lack of data on the intra-cytokine interplay to these Incs in infected cell milieu prompted us to investigate further. Methods A total of 14 CT-positive fertile, 18 CT-positive infertile women and 25 uninfected controls were enrolled in this study. CD8 depleted, CD4 enriched cervical cells were isolated and upon stimulation with IncB and IncC, modulation of cytokines (Interleukin (IL-1 Beta, IL-4, IL-5, IL-6, IL-10, Interferon-gamma, IL-12, IL-23, Tumor Necrosis Factor-alpha and Granulocyte macrophage colony-stimulating factor (GM-CSF and T cell lineage regulating transcription factors T-Bet and GATA3 was determined by real-time reverse-transcriptase (RT-PCR and ELISA. Results Significant higher expression (P Conclusion Overall our data shows that CT IncB and IncC are able to upregulate expression of cytokines, namely interferon-gamma, IL-12, IL-23 and GM-CSF in CT-positive fertile women while expression of IL-1 Beta, IL-4, IL-5, IL-6 and IL-10 were upregulated in CT-positive infertile women. Our study also suggests that Incs are able to modulate expression of T cell lineage determinants indicating their involvement in regulation of immune cells.

  17. Membrane recycling at the infranuclear pole of the outer hair cell

    Science.gov (United States)

    Harasztosi, Csaba; Harasztosi, Emese; Gummer, Anthony W.

    2015-12-01

    Rapid endocytic activity of outer hair cells (OHCs) in the guinea-pig cochlea has been already studied using the fluorescent membrane marker FM1-43. It was demonstrated that vesicles were endocytosed at the apical pole of OHCs and transcytosed to the basolateral membrane and through a central strand towards the nucleus. The significance of endocytic activity in the infranuclear region is still not clear. Therefore, in this study endocytic activity at the synaptic pole of OHCs was investigated. Confocal laser scanning microscopy was used to visualize dye uptake of OHCs isolated from the guinea-pig cochlea. Signal intensity changes were quantified in the apical and basal poles relative to the signal at the membrane. Data showed no significant difference in fluorescent signal intensity changes between the opposite poles of the OHC. These results suggest that endocytic activities in both the basal and the apical poles contribute equally to the membrane recycling of OHCs.

  18. The molecular mechanism of Zinc acquisition by the neisserial outer-membrane transporter ZnuD

    Science.gov (United States)

    Calmettes, Charles; Ing, Christopher; Buckwalter, Carolyn M.; El Bakkouri, Majida; Chieh-Lin Lai, Christine; Pogoutse, Anastassia; Gray-Owen, Scott D.; Pomès, Régis; Moraes, Trevor F.

    2015-08-01

    Invading bacteria from the Neisseriaceae, Acinetobacteriaceae, Bordetellaceae and Moraxellaceae families express the conserved outer-membrane zinc transporter zinc-uptake component D (ZnuD) to overcome nutritional restriction imposed by the host organism during infection. Here we demonstrate that ZnuD is required for efficient systemic infections by the causative agent of bacterial meningitis, Neisseria meningitidis, in a mouse model. We also combine X-ray crystallography and molecular dynamics simulations to gain insight into the mechanism of zinc recognition and transport across the bacterial outer-membrane by ZnuD. Because ZnuD is also considered a promising vaccine candidate against N. meningitidis, we use several ZnuD structural intermediates to map potential antigenic epitopes, and propose a mechanism by which ZnuD can maintain high sequence conservation yet avoid immune recognition by altering the conformation of surface-exposed loops.

  19. Proteomic and genomic analysis reveals novel Campylobacter jejuni outer membrane proteins and potential heterogeneity

    Directory of Open Access Journals (Sweden)

    Eleanor Watson

    2014-09-01

    Full Text Available Gram-negative bacterial outer membrane proteins play important roles in the interaction of bacteria with their environment including nutrient acquisition, adhesion and invasion, and antibiotic resistance. In this study we identified 47 proteins within the Sarkosyl-insoluble fraction of Campylobacter jejuni 81-176, using LC–ESI-MS/MS. Comparative analysis of outer membrane protein sequences was visualised to reveal protein distribution within a panel of Campylobacter spp., identifying several C. jejuni-specific proteins. Smith–Waterman analyses of C. jejuni homologues revealed high sequence conservation amongst a number of hypothetical proteins, sequence heterogeneity of other proteins and several proteins which are absent in a proportion of strains.

  20. Differential proteomic analysis of outer membrane enriched extracts of Bacteroides fragilis grown under bile salts stress.

    Science.gov (United States)

    Boente, Renata F; Pauer, Heidi; Silva, Deborah N S; Filho, Joaquim Santos; Sandim, Vanessa; Antunes, Luis Caetano M; Ferreira, Rosana Barreto Rocha; Zingali, Russolina B; Domingues, Regina M C P; Lobo, Leandro A

    2016-06-01

    Bacteroides fragilis is the most commonly isolated anaerobic bacteria from infectious processes. Several virulence traits contribute to the pathogenic nature of this bacterium, including the ability to tolerate the high concentrations of bile found in the gastrointestinal tract (GIT). The activity of bile salts is similar to detergents and may lead to membrane permeabilization and cell death. Modulation of outer membrane proteins (OMPs) is considered a crucial event to bile salts resistance. The primary objective of the current work was to identify B. fragilis proteins associated with the stress induced by high concentration of bile salts. The outer membrane of B. fragilis strain 638R was isolated after growth either in the presence of 2% conjugated bile salts or without bile salts. The membrane fractions were separated on SDS-PAGE and analyzed by ESI-Q/TOF tandem mass spectrometry. A total of 37 proteins were identified; among them nine were found to be expressed exclusively in the absence of bile salts whereas eight proteins were expressed only in the presence of bile salts. These proteins are related to cellular functions such as transport through membrane, nutrient uptake, and protein-protein interactions. This study demonstrates the alteration of OMPs composition in B. fragilis during bile salts stress resistance and adaptation to environmental changes. Proteomics of OMPs was also shown to be a useful approach in the identification of new targets for functional analyses. PMID:26948242

  1. Distinct constrictive processes, separated in time and space,divide Caulobacter inner and outer membranes

    Energy Technology Data Exchange (ETDEWEB)

    Judd, Ellen M.; Comolli, Luis R.; Chen, Joseph C.; Downing,Kenneth H.; Moerner, W.E.; McAdams, Harley H.

    2005-05-01

    Cryo-electron microscope tomography (cryoEM) and a fluorescence loss in photobleaching (FLIP) assay were used to characterize progression of the terminal stages of Caulobacter crescentus cell division. Tomographic cryoEM images of the cell division site show separate constrictive processes closing first the inner, and then the outer, membrane in a manner distinctly different from septum-forming bacteria. The smallest observed pre-fission constrictions were 60 nm for both the inner and outer membrane. FLIP experiments had previously shown cytoplasmic compartmentalization, when cytoplasmic proteins can no longer diffuse between the two nascent progeny cell compartments, occurring 18 min before daughter cell separation in a 135 min cell cycle. Here, we used FLIP experiments with membrane-bound and periplasmic fluorescent proteins to show that (1) periplasmic compartmentalization occurs after cytoplasmic compartmentalization, consistent with the cryoEM observations, and (2) inner membrane and periplasmic proteins can diffuse past the FtsZ constriction site, indicating that the cell division machinery does not block membrane diffusion.

  2. Evidence that the major outer membrane protein of Chlamydia trachomatis is glycosylated.

    OpenAIRE

    Swanson, A F; Kuo, C. C.

    1991-01-01

    The major outer membrane protein (MOMP) of Chlamydia trachomatis was determined to be a glycoprotein on the basis of susceptibility to glycosidase digestion and the presence of carbohydrate by staining and radiolabeling. The MOMP of the serovar L2 organisms was isolated by electroelution from the protein band excised from the gel after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The incubation of MOMP with N-glycosidase F, an endoglycosidase that cleaves the N-glycan...

  3. Aminoglycoside Efflux in Pseudomonas aeruginosa: Involvement of Novel Outer Membrane Proteins

    OpenAIRE

    Jo, James T. H.; Brinkman, Fiona S.L.; Hancock, Robert E W

    2003-01-01

    The expression of tripartite multidrug efflux pumps such as MexA-MexB-OprM in Pseudomonas aeruginosa contributes to intrinsic resistance to a wide variety of antimicrobials, including β-lactams, chloramphenicol, macrolides, quinolones, and tetracycline. The MexX-MexY linker-pump combination has been shown to be involved in intrinsic resistance to aminoglycosides, but the identity of the cognate outer membrane channel component remains under debate. Fourteen uncharacterized OprM homologs ident...

  4. Monoclonal Antibodies Directed Against the Outer Membrane Protein of Bordetella avium

    OpenAIRE

    Liu, Guanhua; Liang, Manfei; Zuo, Xuemei; Zhao, Xue; Guo, Fanxia; Yang, Shifa; Zhu, Ruiliang

    2013-01-01

    Bordetella avium is the etiologic agent of coryza and rhinotracheitis in poultry. This respiratory disease is responsible for substantial economic losses in the poultry industry. Monoclonal antibodies (MAbs) were produced against the outer membrane proteins (OMPs) of B. avium isolated from diseased chickens. BALB/c mice were immunized with the extracted B. avium OMPs. Then the splenocytes from immunized mice and SP2/0 myeloma cells were fused using PEG 4000. Three stable hybridoma clones (des...

  5. Outer membrane protein binding sites of complement component 3 during opsonization of Haemophilus influenzae.

    OpenAIRE

    Hetherington, S V; Patrick, C C; Hansen, E J

    1993-01-01

    Complement component 3 (C3) binding to Haemophilus influenzae type b (Hib) is an important step in host defense against invasive disease, but the details of this process remain poorly understood. We have shown that the P1 and P2 outer membrane proteins (OMPs) serve as binding sites for C3 on serum-opsonized Hib. Whole-cell lysates of opsonized Hib were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the resolved proteins were transferred to nitrocellulose. Immunobl...

  6. Role of outer membrane barrier in efflux-mediated tetracycline resistance of Escherichia coli.

    OpenAIRE

    Thanassi, D. G.; Suh, G S; Nikaido, H

    1995-01-01

    Accumulation of tetracycline in Escherichia coli was studied to determine its permeation pathway and to provide a basis for understanding efflux-mediated resistance. Passage of tetracycline across the outer membrane appeared to occur preferentially via the porin OmpF, with tetracycline in its magnesium-bound form. Rapid efflux of magnesium-chelated tetracycline from the periplasm was observed. In E. coli cells that do not contain exogenous tetracycline resistance genes, the steady-state level...

  7. Adaptation of Salmonella enterica Hadar under static magnetic field: effects on outer membrane protein pattern

    Directory of Open Access Journals (Sweden)

    Snoussi Sarra

    2012-02-01

    Full Text Available Abstract Background Salmonella enterica serovar Hadar (S. Hadar is a highly prevalent foodborne pathogen and therefore a major cause of human gastroenteritis worldwide. Outer membrane proteins whose production is often regulated by environmental conditions also play important roles in the adaptability of bacterial pathogens to various environments. Results The present study investigated the adaptation of S. Hadar under the effect of acute static magnetic field exposure (200 mT, 9 h and the impact on the outer membrane protein pattern. Via two-dimensional electrophoresis (2-DE and LC-MS/MS spectrometry, we compared the proteome of enriched-outer membrane fraction before and after exposure to a magnetic field. A total of 11 proteins, displaying more than a two-fold change, were differentially expressed in exposed cells, among which 7 were up-regulated and 4 down-regulated. These proteins were involved in the integrity of cell envelope (TolB, Pal, in the response to oxidative stress (OmpW, dihydrolipoamide dehydrogenase, UspF, in the oxidative stress status (bacterioferritin, in virulence (OmpX, Yfgl or in motility (FlgE and UspF. Complementary experiments associated the down-regulation of FlgE and UspF with an alteration of swarming, a flagella-driven motility, under SMF. Furthermore, the antibiotic disc diffusion method confirmed a decrease of gentamicin susceptibility in exposed cells. This decrease could be partly associated with the up-regulation of TolC, outer membrane component of an efflux pump. OmpA, a multifunctional protein, was up-regulated. Conclusions SMF (200 mT seems to maintain the cell envelope integrity and to submit the exposed cells to an oxidative stress. Some alterations suggest an increase of the ability of exposed cells to form biofilms.

  8. Impact of reducing complement inhibitor binding on the immunogenicity of native neisseria meningitidis outer membrane vesicles

    OpenAIRE

    Daniels-Treffandier, H; Nie, K.; Marsay, L.; Dold, C.; Sadarangani, M.; Reyes-Sandoval, A.; Langford, PR; Wyllie, D; Hill, F; Pollard, AJ; Rollier, CS

    2016-01-01

    Neisseria meningitidis recruits host human complement inhibitors to its surface to down-regulate complement activation and enhance survival in blood. We have investigated whether such complement inhibitor binding occurs after vaccination with native outer membrane vesicles (nOMVs), and limits immunogenicity of such vaccines. To this end, nOMVs reactogenic lipopolysaccharide was detoxified by deletion of the lpxl1 gene (nOMVlpxl1). nOMVs unable to bind human complement factor H (hfH) were gene...

  9. Protection against keratoconjunctivitis shigellosa induced by immunization with outer membrane proteins of Shigella spp.

    OpenAIRE

    Adamus, G.; Mulczyk, M; Witkowska, D; Romanowska, E

    1980-01-01

    Active immunization of guinea pigs and rabbits with outer membrane proteins (OMP) isolated from Shigella flexneri 3a and Shigella sonnei phase I protected the animals against keratoconjunctivitis shigellosa induced with the homologous or heterologous strain. Protection was also achieved in rabbits after passive immunization with anti-OMP immune serum. Active immunization with lipopolysaccharide of S. flexneri 3a did not protect rabbits against keratoconjunctivitis shigellosa.

  10. Expression, refolding, and initial structural characterization of the Y. pestis Ail outer membrane protein in lipids

    OpenAIRE

    Plesniak, Leigh A.; Mahalakshmi, Radhakrishnan; Rypien, Candace; Yang, Yuan; Racic, Jasmina; Marassi, Francesca M.

    2010-01-01

    Ail is an outer membrane protein and virulence factor of Yersinia pestis, an extremely pathogenic, category A biothreat agent, responsible for precipitating massive human plague pandemics throughout history. Due to its key role in bacterial adhesion to host cells and bacterial resistance to host defense, Ail is a key target for anti-plague therapy. However, little information is available about the molecular aspects of its function and interactions with the human host, and the structure of Ai...

  11. Monoclonal antibodies against the iron regulated outer membrane Proteins of Acinetobacter baumannii are bactericidal

    OpenAIRE

    Goel, Vikas Kumar; Kapil, Arti

    2001-01-01

    Background Iron is an important nutrient required by all forms of life.In the case of human hosts,the free iron availability is 10-18M,which is far less than what is needed for the survival of the invading bacterial pathogen.To survive in such conditions, bacteria express new proteins in their outer membrane and also secrete iron chelators called siderophores. Results/ Discussion Acinetobacter baumannii ATCC 19606, a nosocomial pathogen which grows under iron restricted conditions, expresses ...

  12. Ultrastructural characteristics of ostrich eggshell: outer shell membrane and the calcified layers

    OpenAIRE

    P.D.G. Richards; P.A. Richards; Lee, M.E.

    2000-01-01

    The ultrastructure of the eggshell of the domestic hen has been well researched and structural studies of other avian species, such as the ostrich, often base their interpretation of egg shell structure on that of the chicken. In the ostrich, lowered hatchability and hatching trauma may be due to shell ultrastructural abnormalities. In the present study the ultrastructure of the calcified portion, and the outer shell membrane (OSM), of domesticated ostrich eggshells was investigated using sta...

  13. Biosynthetic capacity of Pseudomonas aeruginosa for outer membrane receptor FpvA

    Czech Academy of Sciences Publication Activity Database

    Palyzová, Andrea; Valešová, Renata; Marešová, Helena; Kyslík, Pavel

    Zagreb: Croatioan Microbiological Society, Pressum d.o.o, 2009. s. 63-63. [Central European Symposium on Antimicrobial Resistance CESAR 2009. 23.09.2009-26.09.2009, Zadar] R&D Projects: GA AV ČR KJB500200703 Institutional research plan: CEZ:AV0Z50200510 Keywords : P.aeruginosa * outer membrane receptor * FpvA Subject RIV: EE - Microbiology, Virology

  14. Intra- and Interspecies Effects of Outer Membrane Vesicles from Stenotrophomonas maltophilia on β-Lactam Resistance.

    Science.gov (United States)

    Devos, Simon; Stremersch, Stephan; Raemdonck, Koen; Braeckmans, Kevin; Devreese, Bart

    2016-04-01

    The treatment ofStenotrophomonas maltophiliainfection with β-lactam antibiotics leads to increased release of outer membrane vesicles (OMVs), which are packed with two chromosomally encoded β-lactamases. Here, we show that these β-lactamase-packed OMVs are capable of establishing extracellular β-lactam degradation. We also show that they dramatically increase the apparent MICs of imipenem and ticarcillin for the cohabituating speciesPseudomonas aeruginosaandBurkholderia cenocepacia. PMID:26787686

  15. Monoclonal antibodies against the iron regulated outer membrane Proteins of Acinetobacter baumannii are bactericidal

    Directory of Open Access Journals (Sweden)

    Goel Vikas

    2001-08-01

    Full Text Available Abstract Background Iron is an important nutrient required by all forms of life.In the case of human hosts,the free iron availability is 10-18M,which is far less than what is needed for the survival of the invading bacterial pathogen.To survive in such conditions, bacteria express new proteins in their outer membrane and also secrete iron chelators called siderophores. Results/ Discussion Acinetobacter baumannii ATCC 19606, a nosocomial pathogen which grows under iron restricted conditions, expresses four new outer membrane proteins,with molecular weight ranging from 77 kDa to 88 kDa, that are called Iron Regulated Outer Membrane Proteins (IROMPs. We studied the functional and immunological properties of IROMPs expressed by A.baumanii ATCC 19606.The bands corresponding to IROMPs were eluted from SDS-PAGE and were used to immunize BALB/c mice for the production of monoclonal antibodies. Hybridomas secreting specific antibodies against these IROMPs were selected after screening by ELISA and their reactivity was confirmed by Western Blot. The antibodies then generated belonged to IgM isotype and showed bactericidical and opsonising activities against A.baumanii in vitro.These antibodies also blocked siderophore mediated iron uptake via IROMPs in bacteria. Conclusion This proves that iron uptake via IROMPs,which is mediated through siderophores,may have an important role in the survival of A.baumanii inside the host,and helps establishing the infection.

  16. The mitochondrial outer membrane protein MDI promotes local protein synthesis and mtDNA replication.

    Science.gov (United States)

    Zhang, Yi; Chen, Yong; Gucek, Marjan; Xu, Hong

    2016-05-17

    Early embryonic development features rapid nuclear DNA replication cycles, but lacks mtDNA replication. To meet the high-energy demands of embryogenesis, mature oocytes are furnished with vast amounts of mitochondria and mtDNA However, the cellular machinery driving massive mtDNA replication in ovaries remains unknown. Here, we describe a Drosophila AKAP protein, MDI that recruits a translation stimulator, La-related protein (Larp), to the mitochondrial outer membrane in ovaries. The MDI-Larp complex promotes the synthesis of a subset of nuclear-encoded mitochondrial proteins by cytosolic ribosomes on the mitochondrial surface. MDI-Larp's targets include mtDNA replication factors, mitochondrial ribosomal proteins, and electron-transport chain subunits. Lack of MDI abolishes mtDNA replication in ovaries, which leads to mtDNA deficiency in mature eggs. Targeting Larp to the mitochondrial outer membrane independently of MDI restores local protein synthesis and rescues the phenotypes of mdi mutant flies. Our work suggests that a selective translational boost by the MDI-Larp complex on the outer mitochondrial membrane might be essential for mtDNA replication and mitochondrial biogenesis during oogenesis. PMID:27053724

  17. Detection of apoptosis through the lipid order of the outer plasma membrane leaflet.

    Science.gov (United States)

    Darwich, Zeinab; Klymchenko, Andrey S; Kucherak, Oleksandr A; Richert, Ludovic; Mély, Yves

    2012-12-01

    Cell plasma membranes of living cells maintain their asymmetry, so that the outer leaflet presents a large quantity of sphingomyelin, which is critical for formation of ordered lipid domains. Here, a recently developed probe based on Nile Red (NR12S) was applied to monitor changes in the lipid order specifically at the outer leaflet of cell membranes. Important key features of NR12S are its ratiometric response exclusively to lipid order (liquid ordered vs. liquid disordered phase) and not to surface charge, the possibility of using it at very low concentrations (10-20nM) and the very simple staining protocol. Cholesterol extraction, oxidation and sphingomyelin hydrolysis were found to red shift the emission spectrum of NR12S, indicating a decrease in the lipid order at the outer plasma membrane leaflet. Remarkably, apoptosis induced by three different agents (actinomycin D, camptothecin, staurosporine) produced very similar spectroscopic effects, suggesting that apoptosis also significantly decreases the lipid order at this leaflet. The applicability of NR12S to detect apoptosis was further validated by fluorescence microscopy and flow cytometry, using the ratio between the blue and red parts of its emission band. Thus, for the first time, an environment-sensitive probe, sensitive to lipid order, is shown to detect apoptosis, suggesting a new concept in apoptosis sensing. PMID:22846507

  18. Liposome delivery of Chlamydia muridarum major outer membrane protein primes a Th1 response that protects against genital chlamydial infection in a mouse model

    DEFF Research Database (Denmark)

    Hansen, Jon; Jensen, Klaus Thorleif; Follmann, Frank;

    2008-01-01

    BACKGROUND: Immunity to chlamydia is thought to rely on interferon (IFN)-gamma-secreting T helper cells type 1 (Th1) with an additional effect of secreted antibodies. A need for Th1-polarizing adjuvants in experimental chlamydia vaccines has been demonstrated, and antigen conformation has also been...

  19. Outer mitochondrial membrane localization of apoptosis-inducing factor: mechanistic implications for release

    Directory of Open Access Journals (Sweden)

    Seong‑Woon Yu

    2009-11-01

    Full Text Available Poly(ADP-ribose polymerase-1-dependent cell death (known as parthanatos plays a pivotal role in many clinically important events including ischaemia/reperfusion injury and glutamate excitotoxicity. A recent study by us has shown that uncleaved AIF (apoptosis-inducing factor, but not calpain-hydrolysed truncated-AIF, was rapidly released from the mitochondria during parthanatos, implicating a second pool of AIF that might be present in brain mitochondria contributing to the rapid release. In the present study, a novel AIF pool is revealed in brain mitochondria by multiple biochemical analyses. Approx. 30% of AIF loosely associates with the outer mitochondrial membrane on the cytosolic side, in addition to its main localization in the mitochondrial intermembrane space attached to the inner membrane. Immunogold electron microscopic analysis of mouse brain further supports AIF association with the outer, as well as the inner, mitochondrial membrane in vivo. In line with these observations, approx. 20% of uncleaved AIF rapidly translocates to the nucleus and functionally causes neuronal death upon NMDA (N-methyl-d-aspartate treatment. In the present study we show for the first time a second pool of AIF in brain mitochondria and demonstrate that this pool does not require cleavage and that it contributes to the rapid release of AIF. Moreover, these results suggest that this outer mitochondrial pool of AIF is sufficient to cause cell death during parthanatos. Interfering with the release of this outer mitochondrial pool of AIF during cell injury paradigms that use parthanatos hold particular promise for novel therapies to treat neurological disorders.

  20. Identification of immunogenic outer membrane proteins of Haemophilus influenzae type b in the infant rat model system

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E.J.; Frisch, C.F.; McDade, R.L. Jr.; Johnston, K.H.

    1981-06-01

    Outer membrane proteins of Haemophilus influenzae type b which are immunogenic in infant rats were identified by a radioimmunoprecipitation method. Intact cells of H. influenzae type b were radioiodinated by a lactoperoxidase-catalyzed procedure, and an outer membrane-containing fraction was prepared from these cells. These radioiodinated outer membranes were mixed with sera obtained from rats convalescing from systemic H. influenzae type b disease induced at 6 days of age, and the resultant (antibody-outer membrane protein antigen) complexes were extracted from these membranes by treatment with nonionic detergent and ethylenediaminetetraacetic acid. These soluble antibody-antigen complexes were isolated by means of adsorption to protein A-bearing staphylococci, and the radioiodinated protein antigens were identified by gel electrophoresis followed by autoradiography. Infant rats were shown to mount a readily detectable antibody response to several different proteins present in the outer membrane of H. influenzae type b. Individual infant rats were found to vary both qualitatively and quantitatively in their immune response to these immunogenic outer membrane proteins.

  1. Components of SurA required for outer membrane biogenesis in uropathogenic Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Kristin M Watts

    Full Text Available BACKGROUND: SurA is a periplasmic peptidyl-prolyl isomerase (PPIase and chaperone of Escherichia coli and other Gram-negative bacteria. In contrast to other PPIases, SurA appears to have a distinct role in chaperoning newly synthesized porins destined for insertion into the outer membrane. Previous studies have indicated that the chaperone activity of SurA rests in its "core module" (the N- plus C-terminal domains, based on in vivo envelope phenotypes and in vitro binding and protection of non-native substrates. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we determined the components of SurA required for chaperone activity using in vivo phenotypes relevant to disease causation by uropathogenic E. coli (UPEC, namely membrane resistance to permeation by antimicrobials and maturation of the type 1 pilus usher FimD. FimD is a SurA-dependent, integral outer membrane protein through which heteropolymeric type 1 pili, which confer bladder epithelial binding and invasion capacity upon uropathogenic E. coli, are assembled and extruded. Consistent with prior results, the in vivo chaperone activity of SurA in UPEC rested primarily in the core module. However, the PPIase domains I and II were not expendable for wild-type resistance to novobiocin in broth culture. Steady-state levels of FimD were substantially restored in the UPEC surA mutant complemented with the SurA N- plus C-terminal domains. The addition of PPIase domain I augmented FimD maturation into the outer membrane, consistent with a model in which domain I enhances stability of and/or substrate binding by the core module. CONCLUSIONS/SIGNIFICANCE: Our results confirm the core module of E. coli SurA as a potential target for novel anti-infective development.

  2. Actuation of flexoelectric membranes in viscoelastic fluids with applications to outer hair cells.

    Science.gov (United States)

    Herrera-Valencia, E E; Rey, Alejandro D

    2014-11-28

    Liquid crystal flexoelectric actuation uses an imposed electric field to create membrane bending, and it is used by the outer hair cells (OHCs) located in the inner ear, whose role is to amplify sound through generation of mechanical power. Oscillations in the OHC membranes create periodic viscoelastic flows in the contacting fluid media. A key objective of this work on flexoelectric actuation relevant to OHCs is to find the relations and impact of the electromechanical properties of the membrane, the rheological properties of the viscoelastic media, and the frequency response of the generated mechanical power output. The model developed and used in this work is based on the integration of: (i) the flexoelectric membrane shape equation applied to a circular membrane attached to the inner surface of a circular capillary and (ii) the coupled capillary flow of contacting viscoelastic phases, such that the membrane flexoelectric oscillations drive periodic viscoelastic capillary flows, as in OHCs. By applying the Fourier transform formalism to the governing equation, analytical expressions for the transfer function associated with the curvature and electrical field and for the power dissipation of elastic storage energy were found. PMID:25332388

  3. The role of the outer membrane of Gram-negative bacteria in antibiotic resistance: Ajax' shield or Achilles' heel?

    Science.gov (United States)

    Page, Malcolm G P

    2012-01-01

    There has been an enormous increase in our knowledge of the fundamental steps in the biosynthesis and assembly of the outer membrane of Gram-negative bacteria. Lipopolysaccharide is a major component of the outer membrane of Gram-negative bacteria as is peptidoglycan. Porins, efflux pumps and other transport proteins of the outer membrane are also present. It is clear that there are numerous essential proteins that have the potential to be targets for novel antimicrobial agents. Progress, however, has been slow. Much of the emphasis has been on cytoplasmic processes that were better understood earlier on, but have the drawback that two penetration barriers, with different permeability properties, have to be crossed. With the increased understanding of the late-stage events occurring in the periplasm, it may be possible to shift focus to these more accessible targets. Nevertheless, getting drugs across the outer membrane will remain a challenge to the ingenuity of the medicinal chemist. PMID:23090596

  4. Electrophoretic analysis of the major outer membrane protein of Chlamydia psittaci reveals multimers which are recognized by protective monoclonal antibodies.

    OpenAIRE

    McCafferty, M C; Herring, A J; Andersen, A A; Jones, G. E.

    1995-01-01

    Purified major outer membrane protein, detergent solubilized and reduced with dithiothreitol but not heated, gave an apparent molecular weight in sodium dodecyl sulfate (SDS)-polyacrylamide gels almost three times that observed for the heat-denatured SDS-treated peptide. This is similar to the behavior of porin trimers from gram-negative bacteria. Two protective monoclonal antibodies showed strong binding to the proposed trimer but not to denatured, monomeric major outer membrane protein.

  5. Cleavage of colicin Ia by the Escherichia coli K-12 outer membrane is not mediated by the colicin Ia receptor.

    OpenAIRE

    Bowles, L K; Konisky, J

    1981-01-01

    Colicin Ia can be cleaved by isolated outer membranes prepared from sensitive and resistant (lacking the colicin Ia receptor) strains of Escherichia coli. Both active and heat-denatured colicin Ia are extensively fragmented. Such proteolysis does not occur when colicin Ia is added to whole sensitive or resistant cells. These results demonstrate that cleavage of colicin Ia is not mediated by its outer membrane receptor.

  6. The Motion of a Single Molecule, the Lambda-Receptor, in the Bacterial Outer Membrane

    DEFF Research Database (Denmark)

    Oddershede, Lene; Dreyer, Jakob Kisbye; Grego, Sonia;

    2002-01-01

    constant of (1.5 +/- 1.0) x 10(-9) cm(2)/s and sits in a harmonic potential as if it were tethered by an elastic spring of spring constant of ~1.0 x 10(-2) pN/nm to the bacterial membrane. The purpose of the protein motion might be to facilitate transport of maltodextrins through the outer bacterial......Using optical tweezers and single particle tracking, we have revealed the motion of a single protein, the lambda-receptor, in the outer membrane of living Escherichia coli bacteria. We genetically modified the lambda-receptor placing a biotin on an extracellular site of the receptor in vivo. The...... that allows extraction of the motion of the protein from measurements of the mobility of the bead-molecule complex; these results are equally applicable to analyze bead-protein complexes in other membrane systems. Within a domain of radius approximately 25 nm, the receptor diffuses with a diffusion...

  7. VDAC electronics: 1. VDAC-hexo(gluco)kinase generator of the mitochondrial outer membrane potential.

    Science.gov (United States)

    Lemeshko, Victor V

    2014-05-01

    The simplest mechanism of the generation of the mitochondrial outer membrane potential (OMP) by the VDAC (voltage-dependent anion channel)-hexokinase complex (VHC), suggested earlier, and by the VDAC-glucokinase complex (VGC), was computationally analyzed. Even at less than 4% of VDACs bound to hexokinase, the calculated OMP is high enough to trigger the electrical closure of VDACs beyond the complexes at threshold concentrations of glucose. These results confirmed our previous hypothesis that the Warburg effect is caused by the electrical closure of VDACs, leading to global restriction of the outer membrane permeability coupled to aerobic glycolysis. The model showed that the inhibition of the conductance and/or an increase in the voltage sensitivity of a relatively small fraction of VDACs by factors like tubulin potentiate the electrical closure of the remaining free VDACs. The extrusion of calcium ions from the mitochondrial intermembrane space by the generated OMP, positive inside, might increase cancer cell resistance to death. Within the VGC model, the known effect of induction of ATP release from mitochondria by accumulated glucose-6-phosphate in pancreatic beta cells might result not only of the known effect of GK dissociation from the VDAC-GK complex, but also of a decrease in the free energy of glucokinase reaction, leading to the OMP decrease and VDAC opening. We suggest that the VDAC-mediated electrical control of the mitochondrial outer membrane permeability, dependent on metabolic conditions, is a fundamental physiological mechanism of global regulation of mitochondrial functions and of cell death. PMID:24412217

  8. Vesicle-independent extracellular release of a proinflammatory outer membrane lipoprotein in free-soluble form

    Directory of Open Access Journals (Sweden)

    Oscarsson Jan

    2008-01-01

    Full Text Available Abstract Background Aggregatibacter actinomycetemcomitans is an oral bacterium associated with aggressively progressing periodontitis. Extracellular release of bacterial outer membrane proteins has been suggested to mainly occur via outer membrane vesicles. This study investigated the presence and conservation of peptidoglycan-associated lipoprotein (AaPAL among A. actinomycetemcomitans strains, the immunostimulatory effect of AaPAL, and whether live cells release this structural outer membrane lipoprotein in free-soluble form independent of vesicles. Results The pal locus and its gene product were confirmed in clinical A. actinomycetemcomitans strains by PCR-restriction fragment length polymorphism and immunoblotting. Culturing under different growth conditions revealed no apparent requirement for the AaPAL expression. Inactivation of pal in a wild-type strain (D7S and in its spontaneous laboratory variant (D7SS resulted in pleiotropic cellular effects. In a cell culture insert model (filter pore size 0.02 μm, AaPAL was detected from filtrates when strains D7S and D7SS were incubated in serum or broth in the inserts. Electron microscopy showed that A. actinomycetemcomitans vesicles (0.05–0.2 μm were larger than the filter pores and that there were no vesicles in the filtrates. The filtrates were immunoblot negative for a cytoplasmic marker, cyclic AMP (cAMP receptor protein. An ex vivo model indicated cytokine production from human whole blood stimulated by AaPAL. Conclusion Free-soluble AaPAL can be extracellularly released in a process independent of vesicles.

  9. Structural Basis for Translocation of a Biofilm-supporting Exopolysaccharide across the Bacterial Outer Membrane.

    Science.gov (United States)

    Wang, Yan; Andole Pannuri, Archana; Ni, Dongchun; Zhou, Haizhen; Cao, Xiou; Lu, Xiaomei; Romeo, Tony; Huang, Yihua

    2016-05-01

    The partially de-N-acetylated poly-β-1,6-N-acetyl-d-glucosamine (dPNAG) polymer serves as an intercellular biofilm adhesin that plays an essential role for the development and maintenance of integrity of biofilms of diverse bacterial species. Translocation of dPNAG across the bacterial outer membrane is mediated by a tetratricopeptide repeat-containing outer membrane protein, PgaA. To understand the molecular basis of dPNAG translocation, we determined the crystal structure of the C-terminal transmembrane domain of PgaA (residues 513-807). The structure reveals that PgaA forms a 16-strand transmembrane β-barrel, closed by four loops on the extracellular surface. Half of the interior surface of the barrel that lies parallel to the translocation pathway is electronegative, suggesting that the corresponding negatively charged residues may assist the secretion of the positively charged dPNAG polymer. In vivo complementation assays in a pgaA deletion bacterial strain showed that a cluster of negatively charged residues proximal to the periplasm is necessary for biofilm formation. Biochemical analyses further revealed that the tetratricopeptide repeat domain of PgaA binds directly to the N-deacetylase PgaB and is critical for biofilm formation. Our studies support a model in which the positively charged PgaB-bound dPNAG polymer is delivered to PgaA through the PgaA-PgaB interaction and is further targeted to the β-barrel lumen of PgaA potentially via a charge complementarity mechanism, thus priming the translocation of dPNAG across the bacterial outer membrane. PMID:26957546

  10. Outer membrane protein and biotype analysis of non-serotypable strains of Haemophilus influenzae.

    OpenAIRE

    Coverdale, C H; Temple, G S

    1989-01-01

    Strains of Haemophilus influenzae (n = 161) were isolated from inpatients with symptoms of pulmonary infection. Conventional tests showed that 144 strains were non-serotypable and all belonged to one of eight biotypes. The common biotypes were 2 (41%), 3 (27.1%), 1 (13.2%) and 5 (10.4%). The outer membrane protein (OMP) profiles of 59 non-serotypable strains were examined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). A comparison of OMP profiles suggested a possibl...

  11. Proteolytic cleavage of the Chlamydia pneumoniae major outer membrane protein in the absence of Pmp10

    DEFF Research Database (Denmark)

    Juul, Nicolai Stefan; Timmerman, E; Gevaert, K;

    2007-01-01

    compared the proteome of the CWL029 isolate with the proteome of the subcloned strain and identified a specific cleavage of the C-terminal part of the major outer membrane protein (MOMP), which occurred only in the absence of Pmp10. In contrast, when Pmp10 was expressed we predominantly observed full......-length MOMP. No other proteins appeared to be regulated according to the presence or absence of Pmp10. These results suggest a close association between MOMP and Pmp10, where Pmp10 may protect the C-terminal part of MOMP from proteolytic cleavage....

  12. Cloning of Vibrio cholerae outer membrane protein W in Pichia pastoris

    OpenAIRE

    Javad Alizadeh; Reza Ranjbar; Mehdi Kamali; Nima Farhadi; Amin Davari; Nourkhoda Sadeghifard

    2013-01-01

    Background and Objective The outer membrane protein W (ompW) of Vibrio cholerae is involved in stimulating the immune response via induction of protective immunity. It also plays an important role in bacterial pathogenesis by increasing the adaptability of pathogenic strains. In this study we aimed to clone V. cholerae ompW gene in the strain X-33 of Pichia pastoris. Materials and Methods A gene encoding ompW was cloned into the Ppicza vector downstream of alcohol oxidase promoter. Then recom...

  13. Dissociation of outer membrane for Escherichia coli cell caused by cerium nitrate

    Institute of Scientific and Technical Information of China (English)

    陈爱美; 施庆珊; 冯劲; 欧阳友生; 陈仪本; 谭绍早

    2010-01-01

    The biological effect of cerium nitrate on the outer membrane(OM) of Escherichia coli(E.coli) cell was studied,and the antim-icrobial mechanism of rare earth elements was explored.The antimicrobial effect of cerium nitrate on E.coli cell was valued by plate count method,and the morphology change of E.coli cell was observed with scanning electron microscopy(SEM) and transmission electron microscopy(TEM).The results showed that the E.coli cell suspension was flocculated when the concentration of Ce(NO3)3?6H2O...

  14. Outer-membrane PapC molecular usher discriminately recognizes periplasmic chaperone-pilus subunit complexes.

    OpenAIRE

    Dodson, K W; Jacob-Dubuisson, F; Striker, R T; Hultgren, S. J.

    1993-01-01

    P pili are highly ordered composite structures consisting of thin fibrillar tips joined end-to-end to rigid helical rods. The production of these virulence-associated structures requires a periplasmic chaperone (PapD) and an outer membrane protein (PapC) that is the prototype member of a newly recognized class of proteins that we have named "molecular ushers." Two in vitro assays showed that the preassembly complexes that PapD forms with the three most distal tip fibrillar proteins (PapG, Pap...

  15. Characterization of new outer membrane proteins of Pseudomonas aeruginosa using a combinatorial peptide ligand library.

    Science.gov (United States)

    Ben Mlouka, Mohamed Amine; Khemiri, Arbia; Seyer, Damien; Hardouin, Julie; Chan Tchi Song, Philippe; Dé, Emmanuelle; Jouenne, Thierry; Cosette, Pascal

    2015-02-01

    Most often, the use of ProteoMiner beads has been restricted to human serum proteins for the normalization of major proteins, such as albumin. However, there are other situations of interest in which the presence of major proteins would quench the signals of low abundance polypeptides. We propose the use of these beads for investigating the envelope of the gram-negative bacterium Pseudomonas aeruginosa. Initially, we performed comparative 2D electrophoresis to qualitatively evaluate the incidence of the normalization stage. This demonstrated a significant reduction of the major membrane proteins. Thereafter, using shotgun analysis, the same protein extract was targeted by using combinatorial peptide ligand library capture. This treatment yielded 154 additional outer membrane proteins (OMPs) uncovered by the study of the crude sample. PMID:25471289

  16. Electron crystallography of PhoE porin, an outer membrane, channel- forming protein from E. coli

    Energy Technology Data Exchange (ETDEWEB)

    Walian, P.J.

    1989-11-01

    One approach to studying the structure of membrane proteins is the use of electron crystallography. Dr. Bing Jap has crystallized PhoE pore-forming protein (porin) from the outer membrane of escherichia coli (E. coli) into monolayer crystals. The findings of this research and those of Jap (1988, 1989) have determined these crystals to be highly ordered, yielding structural information to a resolution of better than 2.8 angstroms. The task of this thesis has been to collect and process the electron diffraction patterns necessary to generate a complete three-dimensional set of high resolution structure factor amplitudes of PhoE porin. Fourier processing of these amplitudes when combined with the corresponding phase data is expected to yield the three-dimensional structure of PhoE porin at better than 3.5 angstroms resolution. 92 refs., 33 figs., 3 tabs. (CBS)

  17. Structural investigations of calcium binding and its role in activity and activation of outer membrane phospholipase A from Escherichia coli

    NARCIS (Netherlands)

    Snijder, H.J.; Kingma, R.L.; Kalk, K.H.; Egmond, M.R.; Dijkstra, B.W.

    2001-01-01

    Outer membrane phospholipase A (OMPLA) is an integral membrane enzyme that catalyses the hydrolysis of phospholipids. Enzymatic activity is regulated by reversible dimerisation and calcium-binding. We have investigated the role of calcium by X-ray crystallography. In monomeric OMPLA, one calcium ion

  18. Getting to the Outer Leaflet: Physiology of Phosphatidylserine Exposure at the Plasma Membrane.

    Science.gov (United States)

    Bevers, Edouard M; Williamson, Patrick L

    2016-04-01

    Phosphatidylserine (PS) is a major component of membrane bilayers whose change in distribution between inner and outer leaflets is an important physiological signal. Normally, members of the type IV P-type ATPases spend metabolic energy to create an asymmetric distribution of phospholipids between the two leaflets, with PS confined to the cytoplasmic membrane leaflet. On occasion, membrane enzymes, known as scramblases, are activated to facilitate transbilayer migration of lipids, including PS. Recently, two proteins required for such randomization have been identified: TMEM16F, a scramblase regulated by elevated intracellular Ca(2+), and XKR8, a caspase-sensitive protein required for PS exposure in apoptotic cells. Once exposed at the cell surface, PS regulates biochemical reactions involved in blood coagulation, and bone mineralization, and also regulates a variety of cell-cell interactions. Exposed on the surface of apoptotic cells, PS controls their recognition and engulfment by other cells. This process is exploited by parasites to invade their host, and in specialized form is used to maintain photoreceptors in the eye and modify synaptic connections in the brain. This review discusses what is known about the mechanism of PS exposure at the surface of the plasma membrane of cells, how actors in the extracellular milieu sense surface exposed PS, and how this recognition is translated to downstream consequences of PS exposure. PMID:26936867

  19. Outer Membrane Vesicle Biosynthesis in Salmonella: Is There More to Gram-Negative Bacteria?

    Science.gov (United States)

    Reidl, Joachim

    2016-01-01

    Recent research has focused on the biological role of outer membrane vesicles (OMVs), which are derived from the outer membranes (OMs) of Gram-negative bacteria, and their potential exploitation as therapeutics. OMVs have been characterized in many ways and functions. Until recently, research focused on hypothetical and empirical models that addressed the molecular mechanisms of OMV biogenesis, such as vesicles bulging from the OM in various ways. The recently reported study by Elhenawy et al. (mBio 7:e00940-16, 2016, http://dx.doi.org/10.1128/mBio.00940-16) provided further insights into OMV biogenesis of Salmonella enterica serovar Typhimurium. That study showed that deacylation of lipopolysaccharides (LPS) influences the level of OMV production and, furthermore, determines a sorting of high versus low acylated LPS in OMs and OMVs, respectively. Interestingly, deacylation may inversely correlate with other LPS modifications, suggesting some synergy toward optimized host resistance via best OM compositions for S Typhimurium. PMID:27531914

  20. Structure of BamA, an essential factor in outer membrane protein biogenesis.

    Science.gov (United States)

    Albrecht, Reinhard; Schütz, Monika; Oberhettinger, Philipp; Faulstich, Michaela; Bermejo, Ivan; Rudel, Thomas; Diederichs, Kay; Zeth, Kornelius

    2014-06-01

    Outer membrane protein (OMP) biogenesis is an essential process for maintaining the bacterial cell envelope and involves the β-barrel assembly machinery (BAM) for OMP recognition, folding and assembly. In Escherichia coli this function is orchestrated by five proteins: the integral outer membrane protein BamA of the Omp85 superfamily and four associated lipoproteins. To unravel the mechanism underlying OMP folding and insertion, the structure of the E. coli BamA β-barrel and P5 domain was determined at 3 Å resolution. These data add information beyond that provided in the recently published crystal structures of BamA from Haemophilus ducreyi and Neisseria gonorrhoeae and are a valuable basis for the interpretation of pertinent functional studies. In an `open' conformation, E. coli BamA displays a significant degree of flexibility between P5 and the barrel domain, which is indicative of a multi-state function in substrate transfer. E. coli BamA is characterized by a discontinuous β-barrel with impaired β1-β16 strand interactions denoted by only two connecting hydrogen bonds and a disordered C-terminus. The 16-stranded barrel surrounds a large cavity which implies a function in OMP substrate binding and partial folding. These findings strongly support a mechanism of OMP biogenesis in which substrates are partially folded inside the barrel cavity and are subsequently released laterally into the lipid bilayer. PMID:24914988

  1. Leptospiral outer membrane protein LipL32 induces inflammation and kidney injury in zebrafish larvae.

    Science.gov (United States)

    Chang, Ming-Yang; Cheng, Yi-Chuan; Hsu, Shen-Hsing; Ma, Tsu-Lin; Chou, Li-Fang; Hsu, Hsiang-Hao; Tian, Ya-Chung; Chen, Yung-Chang; Sun, Yuh-Ju; Hung, Cheng-Chieh; Pan, Rong-Long; Yang, Chih-Wei

    2016-01-01

    Leptospirosis is an often overlooked cause of acute kidney injury that can lead to multiple organ failure and even death. The principle protein that conserved in many pathogenic leptospires is the outer membrane protein LipL32. However, the role of LipL32 in the pathogenesis of renal injury in leptospirosis is not entirely clear. Here we studied the effects of LipL32 on the developing kidney in zebrafish larvae. Incubation of zebrafish larvae with Leptospira santarosai serovar Shermani induced acute tubular injury predominantly in the proximal pronephric ducts. Furthermore, microinjection of lipl32 mRNA or recombinant LipL32 protein into zebrafish larvae increased macrophage accumulation and disrupted the basolateral location of NA-K-ATPase in pronephric ducts. These changes led to substantial impairment of the pronephric kidney structure. We further demonstrated that morpholino knockdown of tlr2, but not tlr4, reduced the LipL32-induced leukocyte infiltration and kidney injury. These data demonstrate that LipL32 contributes to the renal pathology in leptospirosis and gives some clues to the potential virulence of LipL32. Our results support the use of zebrafish as a model organism for studying the disease mechanism of leptospiral infection. This model might permit the future exploration of the virulence and molecular pathways of different leptospiral outer membrane proteins. PMID:27278903

  2. Outer membrane vesicle-mediated release of cytolethal distending toxin (CDT from Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Uhlin Bernt

    2009-10-01

    Full Text Available Abstract Background Background: Cytolethal distending toxin (CDT is one of the well-characterized virulence factors of Campylobacter jejuni, but it is unknown how CDT becomes surface-exposed or is released from the bacterium to the surrounding environment. Results Our data suggest that CDT is secreted to the bacterial culture supernatant via outer membrane vesicles (OMVs released from the bacteria. All three subunits (the CdtA, CdtB, and CdtC proteins were detected by immunogold labeling and electron microscopy of OMVs. Subcellular fractionation of the bacteria indicated that, apart from the majority of CDT detected in the cytoplasmic compartment, appreciable amounts (20-50% of the cellular pool of CDT proteins were present in the periplasmic compartment. In the bacterial culture supernatant, we found that a majority of the extracellular CDT was tightly associated with the OMVs. Isolated OMVs could exert the cell distending effects typical of CDT on a human intestinal cell line, indicating that CDT is present there in a biologically active form. Conclusion Our results strongly suggest that the release of outer membrane vesicles is functioning as a route of C. jejuni to deliver all the subunits of CDT toxin (CdtA, CdtB, and CdtC to the surrounding environment, including infected host tissue.

  3. Immunoproteomic Analysis ofBordetella bronchisepticaOuter Membrane Proteins and Identiifcation of New Immunogenic Proteins

    Institute of Scientific and Technical Information of China (English)

    JI Quan-an

    2014-01-01

    Bordetella bronchiseptica is a Gram-negative pathogen that causes acute and chronic respiratory infection in a variety of animals. To identify useful antigen candidates for diagnosis and subunit vaccine ofB. bronchiseptica, immunoproteomic analysis was adopted to analyse outer membrane proteins of it. The outer membrane proteins extracted fromB. bronchiseptica were separated by two-dimensional gel electrophoresis and analyzed by Western blotting for their reactivity with the convalescent serum against two strains. Immunogenic proteins were identiifed by matrix-assisted laser desorption/ionization time of lfight-mass spectrometry (MALDI-TOF-MS), a total of 14 proteins are common immunoreactive proteins, of which 1 was known antigen and 13 were novel immunogenic proteins forB. bronchiseptica. Putative lipoprotein gene was cloned and recombinantly expressed. The recombinant protein induced high titer antibody, but showed low protective indices against challenges with HB (B. bronchiseptica strain isolated from a infected rabbit). The mortality of mice was 80% compared to 100% of positive controls. The identiifcation of these novel antigenic proteins is an important resource for further development of a new diagnostic test and vaccine for B. bronchiseptica.

  4. A conserved small RNA promotes silencing of the outer membrane protein YbfM

    DEFF Research Database (Denmark)

    Rasmussen, Anders Aamann; Johansen, Jesper; Nielsen, Jesper S; Overgaard, Martin; Kallipolitis, Birgitte; Valentin-Hansen, Poul; Graakjær, Jesper

    2009-01-01

    important physiological role of regulatory RNA molecules in Gram-negative bacteria is to modulate the cell surface and/or to prevent accumulation of OMPs in the envelope. Here, we extend the OMP-sRNA network by showing that the expression of the outer membrane protein YbfM is silenced by a conserved sRNA......In the past few years an increasing number of small non-coding RNAs (sRNAs) in enterobacteria have been found to negatively regulate the expression of outer membrane proteins (OMPs) at the post-transcriptional level. These RNAs act under various growth and stress conditions, suggesting that one......, designated MicM (also known as RybC/SroB). The regulation is strictly dependent on the RNA chaperone Hfq, and mutational analysis indicates that MicM sequesters the ribosome binding site of ybfM mRNA by an antisense mechanism. Furthermore, we provide evidence that Hfq strongly enhances the on-rate of duplex...

  5. Outer-selective thin film composite (TFC) hollow fiber membranes for osmotic power generation

    KAUST Repository

    Le, Ngoc Lieu

    2016-01-14

    The pressure-retarded osmosis (PRO) process is a green technique for power generation to respond the world\\'s need of energy sustainability. In this study, we have developed the vital component of the process, i.e. membrane, in the configuration of the outer-selective thin-film composite (TFC) hollow fiber, which is more practical than other configurations in the real applications. The support layer morphology and the formation of the selective polyamide layer have been optimized for a good PRO performance. The results show that the bore fluid with higher amount of the solvent N-methyl-2-pyrrolidone leads to full finger-like hollow fibers, which provide higher flux but lower pressure tolerance. The addition of higher amount of diethylene glycol into the dope solution, improves the pore formation and suppresses the macrovoid formation, while properly lowering the take-up speed increases their wall thickness and pressure tolerance. A simple alcohol-pre-wetting approach on the fiber support leads to a smooth and thin polyamide layer, which is favorable for a high water flux and power density. Its efficiency follows this order: n-propanol>ethanol>methanol>water. The n-propanol pre-wetted TFC membrane can tolerate 17 bar with a peak power density of 9.59 W/m2 at room temperature, using 1 M NaCl solution as the draw solution and DI water as feed. This work demonstrates the potential of outer-selective TFC hollow fiber membranes for energy conversion via PRO process, provides useful database to fabricate suitable support morphology and raise a simple technique to practically form a thin and smooth polyamide layer.

  6. Phylogenomic analysis supports the ancestral presence of LPS-outer membranes in the Firmicutes

    Science.gov (United States)

    Antunes, Luisa CS; Poppleton, Daniel; Klingl, Andreas; Criscuolo, Alexis; Dupuy, Bruno; Brochier-Armanet, Céline; Beloin, Christophe; Gribaldo, Simonetta

    2016-01-01

    One of the major unanswered questions in evolutionary biology is when and how the transition between diderm (two membranes) and monoderm (one membrane) cell envelopes occurred in Bacteria. The Negativicutes and the Halanaerobiales belong to the classically monoderm Firmicutes, but possess outer membranes with lipopolysaccharide (LPS-OM). Here, we show that they form two phylogenetically distinct lineages, each close to different monoderm relatives. In contrast, their core LPS biosynthesis enzymes were inherited vertically, as in the majority of bacterial phyla. Finally, annotation of key OM systems in the Halanaerobiales and the Negativicutes shows a puzzling combination of monoderm and diderm features. Together, these results support the hypothesis that the LPS-OMs of Negativicutes and Halanaerobiales are remnants of an ancient diderm cell envelope that was present in the ancestor of the Firmicutes, and that the monoderm phenotype in this phylum is a derived character that arose multiple times independently through OM loss. DOI: http://dx.doi.org/10.7554/eLife.14589.001 PMID:27580370

  7. BB0172, a Borrelia burgdorferi outer membrane protein that binds integrin α3β1.

    Science.gov (United States)

    Wood, Elaine; Tamborero, Silvia; Mingarro, Ismael; Esteve-Gassent, Maria D

    2013-08-01

    Lyme disease is a multisystemic disorder caused by Borrelia burgdorferi infection. Upon infection, some B. burgdorferi genes are upregulated, including members of the microbial surface components recognizing adhesive matrix molecule (MSCRAMM) protein family, which facilitate B. burgdorferi adherence to extracellular matrix components of the host. Comparative genome analysis has revealed a new family of B. burgdorferi proteins containing the von Willebrand factor A (vWFA) domain. In the present study, we characterized the expression and membrane association of the vWFA domain-containing protein BB0172 by using in vitro transcription/translation systems in the presence of microsomal membranes and with detergent phase separation assays. Our results showed evidence of BB0172 localization in the outer membrane, the orientation of the vWFA domain to the extracellular environment, and its function as a metal ion-dependent integrin-binding protein. This is the first report of a borrelial adhesin with a metal ion-dependent adhesion site (MIDAS) motif that is similar to those observed in eukaryotic integrins and has a similar function. PMID:23687274

  8. Analysis of outer membrane vesicle associated proteins isolated from the plant pathogenic bacterium Xanthomonas campestris pv. campestris

    Directory of Open Access Journals (Sweden)

    Niehaus Karsten

    2008-06-01

    Full Text Available Abstract Background Outer membrane vesicles (OMVs are released from the outer membrane of many Gram-negative bacteria. These extracellular compartments are known to transport compounds involved in cell-cell signalling as well as virulence associated proteins, e.g. the cytolysine from enterotoxic E. coli. Results We have demonstrated that Xanthomonas campestris pv. campestris (Xcc releases OMVs into the culture supernatant during growth. A proteome study identified 31 different proteins that associate with the OMV fraction of which half are virulence-associated. A comparison with the most abundant outer membrane (OM proteins revealed that some proteins are enriched in the OMV fraction. This may be connected to differences in the LPS composition between the OMVs and the OM. Furthermore, a comparison of the OMV proteomes from two different culture media indicated that the culture conditions have an impact on the protein composition. Interestingly, the proteins that are common to both culture conditions are mainly involved in virulence. Conclusion Outer membrane vesicles released from the OM of Xcc contain membrane- and virulence-associated proteins. Future experiments will prove whether these structures can serve as "vehicles" for the transport of virulence factors into the host membrane.

  9. Sorting of an integral outer membrane protein via the lipoprotein-specific Lol pathway and a dedicated lipoprotein pilotin.

    Science.gov (United States)

    Collin, Séverine; Guilvout, Ingrid; Nickerson, Nicholas N; Pugsley, Anthony P

    2011-05-01

    The lipoprotein PulS is a dedicated chaperone that is required to target the secretin PulD to the outer membrane in Klebsiella or Escherichia coli, and to protect it from proteolysis. Here, we present indirect evidence that PulD protomers do not assemble into the secretin dodecamer before they reach the outer membrane, and that PulS reaches the outer membrane in a soluble heterodimer with the general lipoprotein chaperone LolA. However, we could not find any direct evidence for PulD protomer association with the PulS-LolA heterodimer. Instead, in cells producing PulD and a permanently locked PulS-LolA dimer (in which LolA carries an R43L substitution that prevents lipoprotein transfer to LolB in the outer membrane), LolAR43L was found in the inner membrane, probably still associated with PulS bound to PulD that had been incorrectly targeted because of the LolAR43L substitution. It is speculated that PulD protomers normally cross the periplasm together with PulS bound to LolA but when the latter cannot be separated (due to the mutation in lolA), the PulD protomers form dodecamers that insert into the inner membrane. PMID:21338419

  10. Fractionation of human liver mitochondria: enzymic and morphological characterization of the inner and outer membranes as compared to rat liver mitochondria.

    Science.gov (United States)

    Benga, G; Hodarnau, A; Tilinca, R; Porutiu, D; Dancea, S; Pop, V; Wrigglesworth, J

    1979-02-01

    The fractionation of human liver mitochondria into inner membrane, outer membrane and matrix material is reported. Compared with rat, human liver mitochondria are more fragile. Fractionation can be achieved in only 2 steps, a digitonin treatment for removal of the outer membrane and centrifugation of the inner membrane plus matrix particles through a linear sucrose gradient resulting in purified inner membranes and matrix. PMID:422680

  11. In vivo evidence of TonB shuttling between the cytoplasmic and outer membrane in Escherichia coli.

    Science.gov (United States)

    Larsen, Ray A; Letain, Tracy E; Postle, Kathleen

    2003-07-01

    Gram-negative bacteria are able to convert potential energy inherent in the proton gradient of the cytoplasmic membrane into active nutrient transport across the outer membrane. The transduction of energy is mediated by TonB protein. Previous studies suggest a model in which TonB makes sequential and cyclic contact with proteins in each membrane, a process called shuttling. A key feature of shuttling is that the amino-terminal signal anchor must quit its association with the cytoplasmic membrane, and TonB becomes associated solely with the outer membrane. However, the initial studies did not exclude the possibility that TonB was artifactually pulled from the cytoplasmic membrane by the fractionation process. To resolve this ambiguity, we devised a method to test whether the extreme TonB amino-terminus, located in the cytoplasm, ever became accessible to the cys-specific, cytoplasmic membrane-impermeant molecule, Oregon Green(R) 488 maleimide (OGM) in vivo. A full-length TonB and a truncated TonB were modified to carry a sole cysteine at position 3. Both full-length TonB and truncated TonB (consisting of the amino-terminal two-thirds) achieved identical conformations in the cytoplasmic membrane, as determined by their abilities to cross-link to the cytoplasmic membrane protein ExbB and their abilities to respond conformationally to the presence or absence of proton motive force. Full-length TonB could be amino-terminally labelled in vivo, suggesting that it was periplasmically exposed. In contrast, truncated TonB, which did not associate with the outer membrane, was not specifically labelled in vivo. The truncated TonB also acted as a control for leakage of OGM across the cytoplasmic membrane. Further, the extent of labelling for full-length TonB correlated roughly with the proportion of TonB found at the outer membrane. These findings suggest that TonB does indeed disengage from the cytoplasmic membrane during energy transduction and shuttle to the outer membrane

  12. Prokaryotic Expression and Identification of Outer Membrane Protein 2 of Chlamydia trachomatis

    Institute of Scientific and Technical Information of China (English)

    陈超群; 吴移谋; 李忠玉; 朱翠明; 尹卫国

    2004-01-01

    Objective: To construct a recombinant plasmid containing the outer membrane protein 2 (Omp2) gene of Chlamydia trachomatis and express Omp2 in E.coli. Methods: The omp2 gene of C. trachomatis serovar D was cloned into pQE30 vector following PCR amplification from genomic DNA. E. coli M15 transformants were induced to express the fusion protein by IPTG and the product was identified by SDS-PAGE and Western blot. Results: Confirmed by enzyme cleavage analysis and DNA sequencing, a correct recombinant plasmid pQE30/omp2 was constructed. The fusion protein from the transformants was approximately 60 kDa in size in SDS-PAGE analysis, which could specially react with anti-6 × His mouse monoclonal IgG antibodies. Conclusion: We successfully expressed Omp2 in E. coil M15, providing an efficient and simple system for assaying the immunological properties of Omp2.

  13. Expression, refolding, and initial structural characterization of the Y. pestis Ail outer membrane protein in lipids.

    Science.gov (United States)

    Plesniak, Leigh A; Mahalakshmi, Radhakrishnan; Rypien, Candace; Yang, Yuan; Racic, Jasmina; Marassi, Francesca M

    2011-01-01

    Ail is an outer membrane protein and virulence factor of Yersinia pestis, an extremely pathogenic, category A biothreat agent, responsible for precipitating massive human plague pandemics throughout history. Due to its key role in bacterial adhesion to host cells and bacterial resistance to host defense, Ail is a key target for anti-plague therapy. However, little information is available about the molecular aspects of its function and interactions with the human host, and the structure of Ail is not known. Here we describe the recombinant expression, purification, refolding, and sample preparation of Ail for solution and solid-state NMR structural studies in lipid micelles and lipid bilayers. The initial NMR and CD spectra show that Ail adopts a well-defined transmembrane β-sheet conformation in lipids. PMID:20883662

  14. Outer membrane VDAC1 controls permeability transition of the inner mitochondrial membrane in cellulo during stress-induced apoptosis

    Institute of Scientific and Technical Information of China (English)

    Flora Tomasello; Angela Messina; Lydia Lartigue; Laura Schembri; Chantal Medina; Simona Reina; Didier Thorava; Marc Crouzet; Francois Ichas; Vito De Pinto; Francesca De Giorgi

    2009-01-01

    Voltage-dependent anion channel (VDAC)l is the main channel of the mitochondrial outer membrane (MOM) and it has been proposed to be part of the permeability transition pore (PTP), a putative multiprotein complex candidate agent of the mitochondrial permeability transition (MPT). Working at the single live cell level, we found that over-expression of VDAC1 triggers MPT at the mitochondrial inner membrane (MIM). Conversely, silencing VDAC1 ex-pression results in the inhibition of MPT caused by selenite-induced oxidative stress. This MOM-M1M crosstalk was modulated by Cyclosporin A and mitochondrial Cyclophilin D, but not by Bcl-2 and Bcl-XL, indicative of PTP opera-tion. VDAC1-dependent MPT engages a positive feedback loop involving reactive oxygen species and p38-MAPK, and secondarily triggers a canonical apoptotic response including Bax activation, cytochrome c release and caspase 3 activation. Our data thus support a model of the PTP complex involving VDAC1 at the MOM, and indicate that VDAC1-dependent MPT is an upstream mechanism playing a causal role in oxidative stress-induced apoptosis.

  15. Detection of β-Lactamases and Outer Membrane Porins among Klebsiella pneumoniae Strains Isolated in Iran

    Directory of Open Access Journals (Sweden)

    Ali Hashemi

    2014-01-01

    Full Text Available This descriptive study was accomplished on 83 K. pneumoniae strains isolated from two hospitals in Tehran, Iran. Antibiotic susceptibility tests were performed by disc diffusion and broth microdilution methods. ESBLs, MBL, Amp-C, and KPC producing strains were detected by phenotypic confirmatory test, combination disk diffusion test (CDDT, Amp-C detection kit, and modified Hodge test, respectively. OXA-48, NDM-1, and CTX-M-15 genes were detected by PCR and sequencing methods. The outer membrane porins such as OmpK35 and OmpK36 were analysed by SDS-PAGE, PCR, and sequencing methods. From 83 K. pneumoniae isolates, 48 (57.5%, 3 (3.5%, 23 (28%, and 5 (6% were ESBL, MBL, Amp-C, and KPC positive, respectively. The CTX-M-15 gene was detected in 30 (62.5% and OXA-48 gene was found in 2 (4.1% of the 48 ESBL-producing isolates. Two isolates harboured both OXA-48 and CTX-M-15; NDM-1 gene was not detected in this study. Outer membrane porin, OmpK35, was detected in 30 (62.5% of 48 ESBL-producing isolates while OmpK36 was found in 35 (72.91% of 48 ESBL-producing isolates. In this study, fosfomycin and tigecycline were more effective than other antibiotics. The high prevalence of β-lactamase-producing K. pneumoniae detected in this study is of great concern, which requires infection control measures including antibacterial management and identification of β-lactamases-producing isolates.

  16. Recombinant outer membrane protein C of Aeromonas hydrophila elicits mixed immune response and generates agglutinating antibodies.

    Science.gov (United States)

    Yadav, Sunita Kumari; Meena, Jitendra Kumar; Sharma, Mahima; Dixit, Aparna

    2016-08-01

    Aeromonas hydrophila is a gram-negative fish pathogenic bacterium, also responsible for causing opportunistic pathological conditions in humans. It causes a number of diseases in fish due to which the fish industry incurs huge economic losses annually. Due to problems of antibiotic resistance, and the rapidity with which the infection spreads among fishes, vaccination remains the most effective strategy to combat this infection in fish populations. Among various virulence factors associated with bacterial virulence, outer membrane proteins have been widely evaluated for their vaccine potential owing to their surface exposure and related role in pathogenicity. In the present study, we have investigated the immunogenic potential of a non-specific porin, outer membrane protein C (OmpC) whose expression is regulated by the two-component regulatory system and plays a major role in the survival of A. hydrophila under different osmolaric conditions. The full-length gene (~1 kb) encoding OmpC of A. hydrophila was cloned, characterized and expressed in E. coli. High yield (~112 mg/L at shake flask level) of the recombinant OmpC (rOmpC) (~40 kDa) of A. hydrophila was obtained upon purification from inclusion bodies using Ni(2+)-NTA affinity chromatography. Immunization with purified rOmpC in murine model generated high endpoint (>1:40,000) titers. IgG isotyping, ELISA and ELISPOT assay indicated mixed immune response with a TH2 bias. Also, the anti-rOmpC antibodies were able to agglutinate A. hydrophila in vitro and exhibited specific cross-reactivity with different Aeromonas strains, which will facilitate easy detection of different Aeromonas isolates in infected samples. Taken together, these data clearly indicate that rOmpC could serve as an effective vaccine against different strains of Aeromonas, a highly heterogenous group of bacteria. PMID:27328672

  17. Detection of β -Lactamases and Outer Membrane Porins among Klebsiella pneumoniae Strains Isolated in Iran.

    Science.gov (United States)

    Hashemi, Ali; Fallah, Fatemeh; Erfanimanesh, Soroor; Hamedani, Parastu; Alimehr, Shadi; Goudarzi, Hossein

    2014-01-01

    This descriptive study was accomplished on 83 K. pneumoniae strains isolated from two hospitals in Tehran, Iran. Antibiotic susceptibility tests were performed by disc diffusion and broth microdilution methods. ESBLs, MBL, Amp-C, and KPC producing strains were detected by phenotypic confirmatory test, combination disk diffusion test (CDDT), Amp-C detection kit, and modified Hodge test, respectively. OXA-48, NDM-1, and CTX-M-15 genes were detected by PCR and sequencing methods. The outer membrane porins such as OmpK35 and OmpK36 were analysed by SDS-PAGE, PCR, and sequencing methods. From 83 K. pneumoniae isolates, 48 (57.5%), 3 (3.5%), 23 (28%), and 5 (6%) were ESBL, MBL, Amp-C, and KPC positive, respectively. The CTX-M-15 gene was detected in 30 (62.5%) and OXA-48 gene was found in 2 (4.1%) of the 48 ESBL-producing isolates. Two isolates harboured both OXA-48 and CTX-M-15; NDM-1 gene was not detected in this study. Outer membrane porin, OmpK35, was detected in 30 (62.5%) of 48 ESBL-producing isolates while OmpK36 was found in 35 (72.91%) of 48 ESBL-producing isolates. In this study, fosfomycin and tigecycline were more effective than other antibiotics. The high prevalence of β-lactamase-producing K. pneumoniae detected in this study is of great concern, which requires infection control measures including antibacterial management and identification of β-lactamases-producing isolates. PMID:25548718

  18. Biological and Immunological Evaluation of Neisseria meningitidis Serogroup A Outer Membrane Vesicle as Vaccine Candidates

    Directory of Open Access Journals (Sweden)

    Seyed Ali Delbaz

    2013-05-01

    Full Text Available Background: Neisseria meningitidis Serogroup A, is a major cause of bacterial meningitidis outbreaks in Africa and the Middle East. While polysaccharide vaccines have been available for many years, these vaccines have many disadvantages including the induction of T-cell independent responses which do not induce memory responses.Objectives: Thus to overcome this problem, in this research outer membrane vesicle (OMV containing PorA was extracted and evaluated by biological and immunological methods.Materials and Methods: OMVs were extracted with deoxycholate and EDTA, and purification was performed by sequential ultracentrifugation. Physicochemical properties of extracted OMVs were analyzed by electron microscopy and SDS-PAGE. The toxicity of LPS content in its was assayed by LAL test. The Presence of PorA as a major component of OMV was confirmed by western blot. To study antibodies synthesis after immunization with OMV, ELISA method was used. Also serum bactericidal assay (SBA was performed to determine the serum bactericidal activity against N.meningitidis serogroup A.Results: The results revealed that the content of protein extracted was 0.1mg/ml. The electron microscopy showed that intactness of the vesicle in these preparation ranged more than 70%. The SDS-PAGE showed that PorA as a major immunological part of outer membrane vesicle was located in 35-40kDa. LAL test showed that the endotoxin activity was around 126EU/ml which is safe for using. The ELISA test revealed that the IgG total titer was elevated after the first injection. SBA indicates that bactericidal antibodies rise after the second dose of booster.Conclusions: The results showed that the extracted OMVs were conformationally stable, and there were no pyrogenic determinants in OMV. Also the results showed that the OMV elicited high level of specific antibodies against N. meningitidis serogroup A. These results indicate that the OMV obtained here, can be used as a meningococcal

  19. Verification of a topology model of PorT as an integral outer membrane protein in Porphyromonas gingivalis

    OpenAIRE

    Nguyen, Ky-Anh; Żylicz, Jasiek; Szczesny, Pawel; Sroka, Aneta; Hunter, Neil; Potempa, Jan

    2009-01-01

    PorT is a membrane-associated protein shown to be essential for the maturation and secretion of a class of cysteine proteinases, the gingipains, from the periodontal pathogen Porphyromonas gingivalis. It was previously reported that PorT is located on the periplasmic surface of the inner membrane to function as a chaperone for the maturing proteinases. Our modeling suggested it to be an integral outer membrane protein with eight anti-parallel, membrane-traversing β-strands. In this report, th...

  20. An ABC transporter and an outer membrane lipoprotein participate in posttranslational activation of type VI secretion in Pseudomonas aeruginosa.

    Science.gov (United States)

    Casabona, Maria G; Silverman, Julie M; Sall, Khady M; Boyer, Frédéric; Couté, Yohann; Poirel, Jessica; Grunwald, Didier; Mougous, Joseph D; Elsen, Sylvie; Attree, Ina

    2013-02-01

    Pseudomonas aeruginosa is capable of injecting protein toxins into other bacterial cells through one of its three type VI secretion systems (T6SSs). The activity of this T6SS is tightly regulated on the posttranslational level by phosphorylation-dependent and -independent pathways. The phosphorylation-dependent pathway consists of a Threonine kinase/phosphatase pair (PpkA/PppA) that acts on a forkhead domain-containing protein, Fha1, and a periplasmic protein, TagR, that positively regulates PpkA. In the present work, we biochemically and functionally characterize three additional proteins of the phosphorylation-dependent regulatory cascade that controls T6S activation: TagT, TagS and TagQ. We show that similar to TagR, these proteins act upstream of the PpkA/PppA checkpoint and influence phosphorylation of Fha1 and, apparatus assembly and effector export. Localization studies demonstrate that TagQ is an outer membrane lipoprotein and TagR is associated with the outer membrane. Consistent with their homology to lipoprotein outer membrane localization (Lol) components, TagT and TagS form a stable inner membrane complex with ATPase activity. However, we find that outer membrane association of T6SS lipoproteins TagQ and TssJ1, and TagR, is unaltered in a ΔtagTS background. Notably, we found that TagQ is indispensible for anchoring of TagR to the outer membrane fraction. As T6S-dependent fitness of P. aeruginosa requires TagT, S, R and Q, we conclude that these proteins likely participate in a trans-membrane signalling pathway that promotes H1-T6SS activity under optimal environmental conditions. PMID:22765374

  1. Action of Polymyxin B on Bacterial Membranes: Morphological Changes in the Cytoplasm and in the Outer Membrane of Salmonella typhimurium and Escherichia coli B

    Science.gov (United States)

    Schindler, Peter R. G.; Teuber, Michael

    1975-01-01

    Though the primary action of the cationic antibiotic polymyxin B is against the membrane of susceptible bacteria, severe morphological changes are detected in the cytoplasm. Using fluorescence microscopy and a mono-N-dansyl-polymyxin B derivative, we could demonstrate aggregations of the antibiotic with cellular material, possibly nucleic acids and/or ribosomes. These aggregations were only produced by minimum inhibitory or higher concentrations of the antibiotic as shown with Salmonella and Escherichia strains differing in their polymyxin susceptibility. The outer membrane of Salmonella typhimurium revealed characteristic blebs when treated with polymyxin B. This was investigated by the gentle methods of spray-freezing and freeze-etching. The obtained electron micrographs suggest that the polymyxin-induced blebs are projections of the outer monolayer of the outer membrane. A possible mechanism of penetration of polymyxin B through the cell envelope of gram-negative bacteria is presented. Images PMID:169730

  2. Chlamydial Pneumonitis: A Creepy Neonatal Disease

    Directory of Open Access Journals (Sweden)

    Kam Lun Hon

    2013-01-01

    Full Text Available We present a case of neonatal chlamydial pneumonitis to illustrate that a high index of suspicion is necessary to make the diagnosis so that treatment can be promptly instituted. The child was afebrile and the only symptom was a cough. The respiratory equations are calculated to understand the respiratory physiology. There was no overt abnormality with ventilation, oxygenation, compliance, resistance, or ventilation-perfusion mismatch despite radiographic abnormality. The literature is searched to review if treatment with a systemic macrolide antibiotic is needed in an otherwise asymptomatic neonate with chlamydial pneumonitis.

  3. Outer Membrane Targeting of Pseudomonas aeruginosa Proteins Shows Variable Dependence on the Components of Bam and Lol Machineries

    OpenAIRE

    Hoang, Hanh H.; Nickerson, Nicholas N.; Lee, Vincent T.; Kazimirova, Anastasia; Chami, Mohamed; Pugsley, Anthony P.; Lory, Stephen

    2011-01-01

    ABSTRACT In Gram-negative bacteria, the Lol and Bam machineries direct the targeting of lipidated and nonlipidated proteins, respectively, to the outer membrane (OM). Using Pseudomonas aeruginosa strains with depleted levels of specific Bam and Lol proteins, we demonstrated a variable dependence of different OM proteins on these targeting pathways. Reduction in the level of BamA significantly affected the ability of the β-barrel membrane protein OprF to localize to the OM, while the targeting...

  4. Physiological Characterization of SusG, an Outer Membrane Protein Essential for Starch Utilization by Bacteroides thetaiotaomicron

    OpenAIRE

    Shipman, Joseph A.; Cho, Kyu Hong; Siegel, Hilary A.; Salyers, Abigail A.

    1999-01-01

    Results from previous studies had suggested that Bacteroides thetaiotaomicron utilizes starch by binding the polysaccharide to the bacterial surface and subsequently degrading the polymer by using cell-associated enzymes. Most of the starch-degrading activity was localized to the periplasm, but a portion appeared to be membrane associated. This raised the possibility that some breakdown might occur in the outer membrane prior to exposure of the polysaccharide to the periplasmic polysaccharide...

  5. Fusion of the Endoplasmic Reticulum and Mitochondrial Outer Membrane in Rats Brown Adipose Tissue: Activation of Thermogenesis by Ca2+

    OpenAIRE

    de Meis, Leopoldo; Ketzer, Luisa A.; da Costa, Rodrigo Madeiro; de Andrade, Ivone Rosa; Benchimol, Marlene

    2010-01-01

    Brown adipose tissue (BAT) mitochondria thermogenesis is regulated by uncoupling protein 1 (UCP 1), GDP and fatty acids. In this report, we observed fusion of the endoplasmic reticulum (ER) membrane with the mitochondrial outer membrane of rats BAT. Ca2+-ATPase (SERCA 1) was identified by immunoelectron microscopy in both ER and mitochondria. This finding led us to test the Ca2+ effect in BAT mitochondria thermogenesis. We found that Ca2+ increased the rate of respiration and heat production ...

  6. Chlamydial entry involves TARP binding of guanine nucleotide exchange factors.

    Directory of Open Access Journals (Sweden)

    B Josh Lane

    2008-03-01

    Full Text Available Chlamydia trachomatis attachment to cells induces the secretion of the elementary body-associated protein TARP (Translocated Actin Recruiting Protein. TARP crosses the plasma membrane where it is immediately phosphorylated at tyrosine residues by unknown host kinases. The Rac GTPase is also activated, resulting in WAVE2 and Arp2/3-dependent recruitment of actin to the sites of chlamydia attachment. We show that TARP participates directly in chlamydial invasion activating the Rac-dependent signaling cascade to recruit actin. TARP functions by binding two distinct Rac guanine nucleotide exchange factors (GEFs, Sos1 and Vav2, in a phosphotyrosine-dependent manner. The tyrosine phosphorylation profile of the sequence YEPISTENIYESI within TARP, as well as the transient activation of the phosphatidylinositol 3-kinase (PI3-K, appears to determine which GEF is utilized to activate Rac. The first and second tyrosine residues, when phosphorylated, are utilized by the Sos1/Abi1/Eps8 and Vav2, respectively, with the latter requiring the lipid phosphatidylinositol 3,4,5-triphosphate. Depletion of these critical signaling molecules by siRNA resulted in inhibition of chlamydial invasion to varying degrees, owing to a possible functional redundancy of the two pathways. Collectively, these data implicate TARP in signaling to the actin cytoskeleton remodeling machinery, demonstrating a mechanism by which C.trachomatis invades non-phagocytic cells.

  7. Outer Membrane Proteins of Brucella abortus Vaccinal and Field Strains and their Immune Response in Buffaloes

    Directory of Open Access Journals (Sweden)

    Rukhshanda Munir*, M. Afzal1, M. Hussain2, S. M. S. Naqvi3 and A. Khanum3

    2010-04-01

    Full Text Available Outer membrane proteins (OMPs of three strains of B. abortus i.e. S19, RB51 and a local field isolate of biotype 1 were isolated through disrupting cells to generate membranes by centrifugation and sodium lauryl sarcosinate solubilisation of inner membrane proteins. Distinct OMP profiles of each strain were seen on SDS-PAGE. SDS-PAGE analysis of S19 and field isolate revealed eight protein bands in each strain. The OMPs of S19 had molecular masses 89.0, 73.0, 53.7, 49.0, 38.0, 27.0, 22.3, and 17.7 kDa, while field isolate had OMPs of 151.3, 89.0, 75.8, 67.6, 37.0, 27.0, 24.0 and 19.0 kDa. B. abortus RB51 yielded 11 OMP bands ranging from 12.5 to 107.1 kDa, with 34.2, 15.8 and 12.5 kDa as additional OMPs. Western immunoblot analysis using antisera raised against all three strains in buffaloes indicated an almost similar pattern of immuno-reactive OMPs in S19 and field strain. Two OMPs of molecular weight 37-38 and 19 kDa were immuno-reactive in all strains in buffaloes. There is possibility of use of these OMPs in a recombinant vaccine for B. abortus. A distinct protein of molecular weight of 151.3 kDa was identified in field strain but not in both vaccine strains of B. abortus. Use of this OMP in a diagnostic assay may differentiate between vaccinated and infected animals.

  8. The ultrastructure of Ignicoccus: Evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon

    Directory of Open Access Journals (Sweden)

    Reinhard Rachel

    2002-01-01

    Full Text Available A novel genus of hyperthermophilic, strictly chemolithotrophic archaea, Ignicoccus, has been described recently, with (so far three isolates in pure culture. Cells were prepared for ultrastructural investigation by cultivation in cellulose capillaries and processing by high-pressure freezing, freeze-substitution and embedding in Epon. Cells prepared in accordance with this protocol consistently showed a novel cell envelope structure previously unknown among the Archaea: a cytoplasmic membrane; a periplasmic space with a variable width of 20 to 400 nm, containing membrane-bound vesicles; and an outer sheath, approximately 10 nm wide, resembling the outer membrane of gram-negative bacteria. This sheath contained three types of particles: numerous tightly, irregularly packed single particles, about 8 nm in diameter; pores with a diameter of 24 nm, surrounded by tiny particles, arranged in a ring with a diameter of 130 nm; and clusters of up to eight particles, each particle 12 nm in diameter. Freeze-etched cells exhibited a smooth surface, without a regular pattern, with frequent fracture planes through the outer sheath, indicating the presence of an outer membrane and the absence of an S-layer. The study illustrates the novel complex architecture of the cell envelope of Ignicoccus as well as the importance of elaborate preparation procedures for ultrastructural investigations.

  9. Variation in the TonB-dependent Outer-Membrane Proteins in Plant-Associated Strains of Pseudomonas fluorescens

    Science.gov (United States)

    Nutrient acquisition is key to the ecological fitness of environmental bacteria such as Pseudomonas fluorescens and TonB-dependent outer-membrane proteins are important components of the cellular machinery for the uptake of substrates from the environment. Genomic sequences of ten strains of plant-a...

  10. Methylation and in vivo expression of the surface-exposed Leptospira interrogans outer membrane protein OmpL32

    Science.gov (United States)

    Recent studies have revealed that bacterial protein methylation is a widespread post-translational modification that is required for virulence in selected pathogenic bacteria. In particular, altered methylation of outer membrane proteins has been shown to modulate the effectiveness of the host immu...

  11. Specialized transducing bacteriophage lambda carrying the structural gene for a major outer membrane matrix protein of Escherichia coli K-12.

    OpenAIRE

    Mutoh, N; Nagasawa, T; Mizushima, S

    1981-01-01

    A specialized transducing phage lambda carrying the structural gene for the OmpF protein, an outer membrane matrix protein, was isolated. The phage carries the 20.5--21-min region of the Escherichia coli K-12 chromosome and carries asnS, ompF, and aspC genes.

  12. Diversity of TonB-dependent outer-membrane proteins in plant-associated strains of Pseudomonas fluorescens

    Science.gov (United States)

    Genomic sequences of ten strains of plant-associated Pseudomonas spp. were surveyed for the presence of TonB-dependent outer-membrane proteins (TBDPs), which function in the uptake of substrates from the environment by many Gram-negative bacteria. The ten strains, representing P. fluorescens, P. ch...

  13. 1H, 13C and 15N assignment of the GNA1946 outer membrane lipoprotein from Neisseria meningitidis

    NARCIS (Netherlands)

    Neumoin, A.; Leonchiks, A.; Petit, P.; Vuillard, L.; Pizza, M.; Soriani, M.; Boelens, R.; Bonvin, A.M.J.J.

    2011-01-01

    GNA1946 (Genome-derived Neisseria Antigen 1946) is a highly conserved exposed outer membrane lipoprotein from Neisseria meningitidis bacteria of 287 amino acid length (31 kDa). Although the structure of NMB1946 has been solved recently by X-Ray crystallography, understanding the behaviour of GNA1946

  14. Laboratory diagnosis of persistent human chlamydial infection

    Directory of Open Access Journals (Sweden)

    Mirja ePuolakkainen

    2013-12-01

    Full Text Available Diagnostic assays for persistent chlamydial infection are much needed to conduct high-quality, large-scale studies investigating the persistent state in vivo, its disease associations and the response to therapy. Yet in most studies the distinction between acute and persistent infection is based on the interpretation of the data obtained by the assays developed to diagnose acute infections or on complex assays available for research only and/or difficult to establish for clinical use. Novel biomarkers for detection of persistent chlamydial infection are urgently needed. Chlamydial whole genome proteome arrays are now available and they can identify chlamydial antigens that are differentially expressed between acute infection and persistent infection. Utilizing these data will lead to the development of novel diagnostic assays. Carefully selected specimens from well-studied patient populations are clearly needed in the process of translating the proteomic data into assays useful for clinical practice. Before such antigens are identified and validated assays become available, we face a challenge of deciding whether the persistent infection truly induced appearance of the proposed marker or do we just base our diagnosis of persistent infection on the presence of the suggested markers. Consequently, we must bear this in mind when interpreting the available data.

  15. Immunogenicity of a Haemophilus influenzae polysaccharide-Neisseria meningitidis outer membrane protein complex conjugate vaccine.

    Science.gov (United States)

    Donnelly, J J; Deck, R R; Liu, M A

    1990-11-01

    Polysaccharide-protein conjugate vaccines made with different carriers vary in their ability to elicit antipolysaccharide IgG antibody responses in young infants and an adult mouse model, suggesting that the carrier proteins used in the conjugate vaccines differ in their ability to act as carriers, or that additional mechanisms of immunogenicity play a role. A conjugate vaccine of Haemophilus influenzae PRP coupled to the outer membrane protein complex (OMPC) of Neisseria meningitidis serogroup B is immunogenic in children as young as 2 mo of age and is immunogenic in infant rhesus monkeys, an animal model for infant humans. In the present study, PRP-OMPC was found to induce efficient IgM to IgG switching of anti-PRP serum antibody in adult mice, whereas PRP conjugated to two other protein carriers did not. Thus the PRP-OMPC conjugate was examined in order to determine why PRP coupled to OMPC was so immunogenic, even more immunogenic than conjugates made with other carrier proteins. The OMPC carrier differs from the other protein carriers in that the proteins are present in a liposomal form containing lipids (including LPS) derived from the outer membrane of N. meningitidis. We studied the OMPC to see whether the different components or the nature of the OMPC carrier could contribute to its enhanced immunogenicity. Specifically we evaluated the OMPC for both classic Th cell carrier activity and adjuvanticity, and the LPS component of OMPC for systemic polyclonal B cell activation. Carrier recognition of the OMPC moiety of PRP-OMPC was demonstrated. In addition the PRP-OMPC conjugate vaccine was observed to have adjuvant properties for both T cell-dependent and T cell-independent Ag in the absence of LPS-induced systemic polyclonal B cell activation. These observations suggest that in addition to functioning as a classic protein carrier whereby the proteins in OMPC provide Th cell epitopes, the OMPC also has adjuvant activity that distinguishes it from other protein

  16. A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yimo; Wang, Zheming; Liu, Juan; Levar, Caleb; Edwards, Marcus; Babauta, Jerome T.; Kennedy, David W.; Shi, Zhi; Beyenal, Haluk; Bond, Daniel R.; Clarke, Thomas A.; Butt, Julea N.; Richardson, David J.; Rosso, Kevin M.; Zachara, John M.; Fredrickson, Jim K.; Shi, Liang

    2014-09-24

    The multiheme, outer membrane c-type cytochrome (c-Cyt) OmcB of Geobacter sulfurreducens was previously proposed to mediate electron transfer across the outer membrane. However, the underlying mechanism has remained uncharacterized. In G. sulfurreducens, the omcB gene is part of two tandem four-gene clusters, each is predicted to encode a transcriptional factor (OrfR/OrfS), a porin-like outer membrane protein (OmbB/OmbC), a periplasmic c-type cytochrome (OmaB/OmaC), and an outer membrane c-Cyt (OmcB/OmcC), respectively. Here we showed that OmbB/OmbC, OmaB/OmaC and OmcB/OmcC of G. sulfurreducens PCA formed the porin-cytochrome (Pcc) protein complexes, which were involved in transferring electrons across the outer membrane. The isolated Pcc protein complexes reconstituted in proteoliposomes transferred electrons from reduced methyl viologen across the lipid bilayer of liposomes to Fe(III)-citrate and ferrihydrite. The pcc clusters were found in all eight sequenced Geobacter and 11 other bacterial genomes from six different phyla, demonstrating a widespread distribution of Pcc protein complexes in phylogenetically diverse bacteria. Deletion of ombB-omaB-omcB-orfS-ombC-omaC-omcC gene clusters had no impact on the growth of G. sulfurreducens PCA with fumarate, but diminished the ability of G. sulfurreducens PCA to reduce Fe(III)-citrate and ferrihydrite. Complementation with the ombB-omaB-omcB gene cluster restored the ability of G. sulfurreducens PCA to reduce Fe(III)-citrate and ferrihydrite.

  17. A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA

    Science.gov (United States)

    Liu, Yimo; Wang, Zheming; Liu, Juan; Levar, Caleb; Edwards, Marcus J; Babauta, Jerome T; Kennedy, David W; Shi, Zhi; Beyenal, Haluk; Bond, Daniel R; Clarke, Thomas A; Butt, Julea N; Richardson, David J; Rosso, Kevin M; Zachara, John M; Fredrickson, James K; Shi, Liang

    2014-01-01

    The multi-heme, outer membrane c-type cytochrome (c-Cyt) OmcB of Geobacter sulfurreducens was previously proposed to mediate electron transfer across the outer membrane. However, the underlying mechanism has remained uncharacterized. In G. sulfurreducens, the omcB gene is part of two tandem four-gene clusters, each is predicted to encode a transcriptional factor (OrfR/OrfS), a porin-like outer membrane protein (OmbB/OmbC), a periplasmic c-type cytochrome (OmaB/OmaC) and an outer membrane c-Cyt (OmcB/OmcC) respectively. Here, we showed that OmbB/OmbC, OmaB/OmaC and OmcB/OmcC of G. sulfurreducens PCA formed the porin-cytochrome (Pcc) protein complexes, which were involved in transferring electrons across the outer membrane. The isolated Pcc protein complexes reconstituted in proteoliposomes transferred electrons from reduced methyl viologen across the lipid bilayer of liposomes to Fe(III)-citrate and ferrihydrite. The pcc clusters were found in all eight sequenced Geobacter and 11 other bacterial genomes from six different phyla, demonstrating a widespread distribution of Pcc protein complexes in phylogenetically diverse bacteria. Deletion of ombB-omaB-omcB-orfS-ombC-omaC-omcC gene clusters had no impact on the growth of G. sulfurreducens PCA with fumarate but diminished the ability of G. sulfurreducens PCA to reduce Fe(III)-citrate and ferrihydrite. Complementation with the ombB-omaB-omcB gene cluster restored the ability of G. sulfurreducens PCA to reduce Fe(III)-citrate and ferrihydrite. PMID:25139405

  18. A conformational landscape for alginate secretion across the outer membrane of Pseudomonas aeruginosa

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jingquan [Trinity College, Dublin (Ireland); Rouse, Sarah L. [University of Oxford, South Parks Road, Oxford (United Kingdom); Li, Dianfan; Pye, Valerie E.; Vogeley, Lutz; Brinth, Alette R.; El Arnaout, Toufic [Trinity College, Dublin (Ireland); Whitney, John C.; Howell, P. Lynne [The Hospital for Sick Children, Toronto, Ontario (Canada); University of Toronto, Toronto, Ontario (Canada); Sansom, Mark S. P. [University of Oxford, South Parks Road, Oxford (United Kingdom); Caffrey, Martin, E-mail: martin.caffrey@tcd.ie [Trinity College, Dublin (Ireland)

    2014-08-01

    Crystal structures of the β-barrel porin AlgE reveal a mechanism whereby alginate is exported from P. aeruginosa for biofilm formation. The exopolysaccharide alginate is an important component of biofilms produced by Pseudomonas aeruginosa, a major pathogen that contributes to the demise of cystic fibrosis patients. Alginate exits the cell via the outer membrane porin AlgE. X-ray structures of several AlgE crystal forms are reported here. Whilst all share a common β-barrel constitution, they differ in the degree to which loops L2 and T8 are ordered. L2 and T8 have been identified as an extracellular gate (E-gate) and a periplasmic gate (P-gate), respectively, that reside on either side of an alginate-selectivity pore located midway through AlgE. Passage of alginate across the membrane is proposed to be regulated by the sequential opening and closing of the two gates. In one crystal form, the selectivity pore contains a bound citrate. Because citrate mimics the uronate monomers of alginate, its location is taken to highlight a route through AlgE taken by alginate as it crosses the pore. Docking and molecular-dynamics simulations support and extend the proposed transport mechanism. Specifically, the P-gate and E-gate are flexible and move between open and closed states. Citrate can leave the selectivity pore bidirectionally. Alginate docks stably in a linear conformation through the open pore. To translate across the pore, a force is required that presumably is provided by the alginate-synthesis machinery. Accessing the open pore is facilitated by complex formation between AlgE and the periplasmic protein AlgK. Alginate can thread through a continuous pore in the complex, suggesting that AlgK pre-orients newly synthesized exopolysaccharide for delivery to AlgE.

  19. A conformational landscape for alginate secretion across the outer membrane of Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Crystal structures of the β-barrel porin AlgE reveal a mechanism whereby alginate is exported from P. aeruginosa for biofilm formation. The exopolysaccharide alginate is an important component of biofilms produced by Pseudomonas aeruginosa, a major pathogen that contributes to the demise of cystic fibrosis patients. Alginate exits the cell via the outer membrane porin AlgE. X-ray structures of several AlgE crystal forms are reported here. Whilst all share a common β-barrel constitution, they differ in the degree to which loops L2 and T8 are ordered. L2 and T8 have been identified as an extracellular gate (E-gate) and a periplasmic gate (P-gate), respectively, that reside on either side of an alginate-selectivity pore located midway through AlgE. Passage of alginate across the membrane is proposed to be regulated by the sequential opening and closing of the two gates. In one crystal form, the selectivity pore contains a bound citrate. Because citrate mimics the uronate monomers of alginate, its location is taken to highlight a route through AlgE taken by alginate as it crosses the pore. Docking and molecular-dynamics simulations support and extend the proposed transport mechanism. Specifically, the P-gate and E-gate are flexible and move between open and closed states. Citrate can leave the selectivity pore bidirectionally. Alginate docks stably in a linear conformation through the open pore. To translate across the pore, a force is required that presumably is provided by the alginate-synthesis machinery. Accessing the open pore is facilitated by complex formation between AlgE and the periplasmic protein AlgK. Alginate can thread through a continuous pore in the complex, suggesting that AlgK pre-orients newly synthesized exopolysaccharide for delivery to AlgE

  20. In silico local structure approach: a case study on outer membrane proteins.

    Science.gov (United States)

    Martin, Juliette; de Brevern, Alexandre G; Camproux, Anne-Claude

    2008-04-01

    The detection of Outer Membrane Proteins (OMP) in whole genomes is an actual question, their sequence characteristics have thus been intensively studied. This class of protein displays a common beta-barrel architecture, formed by adjacent antiparallel strands. However, due to the lack of available structures, few structural studies have been made on this class of proteins. Here we propose a novel OMP local structure investigation, based on a structural alphabet approach, i.e., the decomposition of 3D structures using a library of four-residue protein fragments. The optimal decomposition of structures using hidden Markov model results in a specific structural alphabet of 20 fragments, six of them dedicated to the decomposition of beta-strands. This optimal alphabet, called SA20-OMP, is analyzed in details, in terms of local structures and transitions between fragments. It highlights a particular and strong organization of beta-strands as series of regular canonical structural fragments. The comparison with alphabets learned on globular structures indicates that the internal organization of OMP structures is more constrained than in globular structures. The analysis of OMP structures using SA20-OMP reveals some recurrent structural patterns. The preferred location of fragments in the distinct regions of the membrane is investigated. The study of pairwise specificity of fragments reveals that some contacts between structural fragments in beta-sheets are clearly favored whereas others are avoided. This contact specificity is stronger in OMP than in globular structures. Moreover, SA20-OMP also captured sequential information. This can be integrated in a scoring function for structural model ranking with very promising results. PMID:17932925

  1. Model of mouth-to-mouth transfer of bacterial lipoproteins through inner membrane LolC, periplasmic LolA, and outer membrane LolB.

    Science.gov (United States)

    Okuda, Suguru; Tokuda, Hajime

    2009-04-01

    Outer membrane-specific lipoproteins in Escherichia coli are released from the inner membrane by an ATP-binding cassette transporter, the LolCDE complex, which causes the formation of a soluble complex with a periplasmic molecular chaperone, LolA. LolA then transports lipoproteins to the outer membrane where an outer membrane receptor, LolB, incorporates lipoproteins into the outer membrane. The molecular mechanisms underlying the Lol-dependent lipoprotein sorting have been clarified in detail. However, it remained unclear how Lol factors interact with each other to conduct very efficient lipoprotein transfer in the periplasm where ATP is not available. To address this issue, a photo-reactive phenylalanine analogue, p-benzoyl-phenylalanine, was introduced at various positions of LolA and LolB, of which the overall structures are very similar and comprise an incomplete beta-barrel with a hydrophobic cavity inside. Cells expressing LolA or LolB derivatives containing the above analogue were irradiated with UV for in vivo photo-cross-linking. These analyses revealed a hot area in the same region of LolA and LolB, through which LolA and LolB interact with each other. This area is located at the entrance of the hydrophobic cavity. Moreover, this area in LolA is involved in the interaction with a membrane subunit, LolC, whereas no cross-linking occurs between LolA and the other membrane subunit, LolE, or ATP-binding subunit LolD, despite the structural similarity between LolC and LolE. The hydrophobic cavities of LolA and LolB were both found to bind lipoproteins inside. These results indicate that the transfer of lipoproteins through Lol proteins occurs in a mouth-to-mouth manner. PMID:19307584

  2. Proteomic analysis of outer membrane vesicles from the probiotic strain Escherichia coli Nissle 1917.

    Science.gov (United States)

    Aguilera, Laura; Toloza, Lorena; Giménez, Rosa; Odena, Antonia; Oliveira, Eliandre; Aguilar, Juan; Badia, Josefa; Baldomà, Laura

    2014-02-01

    Escherichia coli Nissle 1917 (EcN) is a probiotic used for the treatment of intestinal disorders. EcN improves gastrointestinal homeostasis and microbiota balance; however, little is known about how this probiotic delivers effector molecules to the host. Outer membrane vesicles (OMVs) are constitutively produced by Gram-negative bacteria and have a relevant role in bacteria-host interactions. Using 1D SDS-PAGE and highly sensitive LC-MS/MS analysis we identified in this study 192 EcN vesicular proteins with high confidence in three independent biological replicates. Of these proteins, 18 were encoded by strain-linked genes and 57 were common to pathogen-derived OMVs. These proteins may contribute to the ability of this probiotic to colonize the human gut as they fulfil functions related to adhesion, immune modulation or bacterial survival in host niches. This study describes the first global OMV proteome of a probiotic strain and provides evidence that probiotic-derived OMVs contain proteins that can target these vesicles to the host and mediate their beneficial effects on intestinal function. All MS data have been deposited in the ProteomeXchange with identifier PXD000367 (http://proteomecentral.proteomexchange.org/dataset/PXD000367). PMID:24307187

  3. Differential Responses of Pattern Recognition Receptors to Outer Membrane Vesicles of Three Periodontal Pathogens.

    Science.gov (United States)

    Cecil, Jessica D; O'Brien-Simpson, Neil M; Lenzo, Jason C; Holden, James A; Chen, Yu-Yen; Singleton, William; Gause, Katelyn T; Yan, Yan; Caruso, Frank; Reynolds, Eric C

    2016-01-01

    Highly purified outer membrane vesicles (OMVs) of the periodontal pathogens, Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia were produced using tangential flow ultrafiltration, ultracentrifugation and Optiprep density gradient separation. Cryo-TEM and light scattering showed OMVs to be single lipid-bilayers with modal diameters of 75 to 158 nm. Enumeration of OMVs by nanoparticle flow-cytometry at the same stage of late exponential culture indicated that P. gingivalis was the most prolific OMV producer. P. gingivalis OMVs induced strong TLR2 and TLR4-specific responses and moderate responses in TLR7, TLR8, TLR9, NOD1 and NOD2 expressing-HEK-Blue cells. Responses to T. forsythia OMVs were less than those of P. gingivalis and T. denticola OMVs induced only weak responses. Compositional analyses of OMVs from the three pathogens demonstrated differences in protein, fatty acids, lipopolysaccharide, peptidoglycan fragments and nucleic acids. Periodontal pathogen OMVs induced differential pattern recognition receptor responses that have implications for their role in chronic periodontitis. PMID:27035339

  4. Structural characterization of outer membrane components of the type IV pili system in pathogenic Neisseria.

    Directory of Open Access Journals (Sweden)

    Samta Jain

    Full Text Available Structures of the type IV pili secretin complexes from Neisseria gonorrhoeae and Neisseria meningitidis, embedded in outer membranes were investigated by transmission electron microscopy. Single particle averaging revealed additional domains not observed previously. Secretin complexes of N. gonorrhoeae showed a double ring structure with a 14-15-fold symmetry in the central ring, and a 14-fold symmetry of the peripheral ring with 7 spikes protruding. In secretin complexes of N. meningitidis, the spikes were absent and the peripheral ring was partly or completely lacking. When present, it had a 19-fold symmetry. The structures of the complexes in several pil mutants were determined. Structures obtained from the pilC1/C2 adhesin and the pilW minor pilin deletion strains were similar to wild-type, whereas deletion of the homologue of N. meningitidis PilW resulted in the absence of secretin structures. Remarkably, the pilE pilin subunit and pilP lipoprotein deletion mutants showed a change in the symmetry of the peripheral ring from 14 to 19 and loss of spikes. The pilF ATPase mutant also lost the spikes, but maintained 14-fold symmetry. These results show that secretin complexes contain previously unidentified large and flexible extra domains with a probable role in stabilization or assembly of type IV pili.

  5. Protecting enzymatic function through directed packaging into bacterial outer membrane vesicles

    Science.gov (United States)

    Alves, Nathan J.; Turner, Kendrick B.; Medintz, Igor L.; Walper, Scott A.

    2016-01-01

    Bacteria possess innate machinery to transport extracellular cargo between cells as well as package virulence factors to infect host cells by secreting outer membrane vesicles (OMVs) that contain small molecules, proteins, and genetic material. These robust proteoliposomes have evolved naturally to be resistant to degradation and provide a supportive environment to extend the activity of encapsulated cargo. In this study, we sought to exploit bacterial OMV formation to package and maintain the activity of an enzyme, phosphotriesterase (PTE), under challenging storage conditions encountered for real world applications. Here we show that OMV packaged PTE maintains activity over free PTE when subjected to elevated temperatures (>100-fold more activity after 14 days at 37 °C), iterative freeze-thaw cycles (3.4-fold post four-cycles), and lyophilization (43-fold). We also demonstrate how lyophilized OMV packaged PTE can be utilized as a cell free reagent for long term environmental remediation of pesticide/chemical warfare contaminated areas. PMID:27117743

  6. Molecular Evolution of the Yersinia Major Outer Membrane Protein C (OmpC).

    Science.gov (United States)

    Stenkova, Anna M; Bystritskaya, Evgeniya P; Guzev, Konstantin V; Rakin, Alexander V; Isaeva, Marina P

    2016-01-01

    The genus Yersinia includes species with a wide range of eukaryotic hosts (from fish, insects, and plants to mammals and humans). One of the major outer membrane proteins, the porin OmpC, is preferentially expressed in the host gut, where osmotic pressure, temperature, and the concentrations of nutrients and toxic products are relatively high. We consider here the molecular evolution and phylogeny of Yersinia ompC. The maximum likelihood gene tree reflects the macroevolution processes occurring within the genus Yersinia. Positive selection and horizontal gene transfer are the key factors of ompC diversification, and intraspecies recombination was revealed in two Yersinia species. The impact of recombination on ompC evolution was different from that of another major porin gene, ompF, possibly due to the emergence of additional functions and conservation of the basic transport function. The predicted antigenic determinants of OmpC were located in rapidly evolving regions, which may indicate the evolutionary mechanisms of Yersinia adaptation to the host immune system. PMID:27578962

  7. Molecular biology of Neisseria meningitidis class 5 and H.8 outer membrane proteins

    International Nuclear Information System (INIS)

    One of the surface structures responsible for inter- and intrastrain antigenic variability in meningococci is the heat-modifiable class 5 (C.5) protein. Neisseria meningitidis strain FAM18 (a meningococcal disease isolate) expressed two different C.5 proteins (C.5a and C.5b) identifiable by sodium dodecyl sulfate polyacrylamide gel electrophoresis. We generated two monoclonal antibodies (MAbs), each specific for one of the identified C.5 proteins. The MAbs, which were bactericidal for variants expressing the appropriate C.5 protein, were used to study C.5 expression changes in FAM18. The H.8 protein is an antigenically conserved outer membrane protein expressed almost exclusively by the pathogenic Neisseria. We have cloned and sequenced an H.8 gene from N. meningitidis FAM18. The predicted H.8 amino acid sequence indicated that the most probable signal peptide processing site matched the consensus prokaryotic lipoprotein processing/modification sequence. We then showed that the H.8 protein could be labeled with 14C-palmitic acid, confirming that H.8 was a lipoprotein. Processing of the H.8 protein was inhibited by globomycin in E. coli indicating that H.8 was modified by the described lipoprotein processing/modifying pathway described in both gram negative and gram positive genera

  8. Cloning of Vibrio cholerae outer membrane protein W in Pichia pastoris.

    Directory of Open Access Journals (Sweden)

    Javad Alizadeh

    2013-09-01

    Full Text Available The outer membrane protein W (ompW of Vibrio cholerae is involved in stimulating the immune response via induction of protective immunity. It also plays an important role in bacterial pathogenesis by increasing the adaptability of pathogenic strains. In this study we aimed to clone V. cholerae ompW gene in the strain X-33 of Pichia pastoris.A gene encoding ompW was cloned into the Ppicza vector downstream of alcohol oxidase promoter. Then recombinant vector was transformed into the genome of the strain X-33 of P. pastoris. After growth of zeocin-resistant transformants, clones were selected and subsequently confirmed for cloning by PCR enzymatic digestion and sequencing.PCR, enzymatic digestion and sequencing showed that the ompW gene was correctly cloned into P. pastoris genome.Results of our study showed that the methylotrophic yeast P. pastoris can be considered as an appropriate host instead of mammalian and prokaryotic systems for cloning of ompW. As far as data show, this is the first time that ompW of V. cholera is cloned into the methylotrophic P. pastoris.

  9. Outer membrane vesicles of Lysobacter sp. XL1: biogenesis, functions, and applied prospects.

    Science.gov (United States)

    Kudryakova, Irina V; Shishkova, Nina A; Vasilyeva, Natalia V

    2016-06-01

    Outer membrane vesicles (OMVs) produced by Gram-negative bacteria have been intensively investigated in recent times. Vesicle formation models have been proposed, some factors affecting the process were established, and important roles vesicles play in vital activities of their producing cells were determined. Studies of pathogenic bacterial vesicles contribute to understanding the causes of acute infection and developing drugs on their basis. Despite intensive research, issues associated with the understanding of vesicle biogenesis, the mechanisms of bacterium-bacterium and pathogen-host interactions with participation of vesicles, still remain unresolved. This review discusses some results obtained in the research into OMVs of Lysobacter sp. XL1 VKM B-1576. This bacterium secretes into the environment a spectrum of bacteriolytic enzymes that hydrolyze peptidoglycan of competing bacteria, thus leading to their lysis. One of these enzymes, lytic endopeptidase L5, has been shown not only to be secreted by means of vesicles but also to be involved in their formation. As part of vesicles, the antimicrobial potential of L5 enzyme has been found to be considerably expanded. Vesicles have been shown to have a therapeutic effect in respect of anthrax infection and staphylococcal sepsis modelled in mice. The scientific basis for constructing liposomal antimicrobial preparations from vesicle phospholipids and recombinant bacteriolytic enzyme L5 has been formed. PMID:27098257

  10. Ultrastructural characteristics of ostrich eggshell: outer shell membrane and the calcified layers

    Directory of Open Access Journals (Sweden)

    P.D.G. Richards

    2000-07-01

    Full Text Available The ultrastructure of the eggshell of the domestic hen has been well researched and structural studies of other avian species, such as the ostrich, often base their interpretation of egg shell structure on that of the chicken. In the ostrich, lowered hatchability and hatching trauma may be due to shell ultrastructural abnormalities. In the present study the ultrastructure of the calcified portion, and the outer shell membrane (OSM, of domesticated ostrich eggshells was investigated using standard electron microscopic techniques. Transmission and scanning electron microscopy studies demonstrated intimate contact between cup-shaped structures present on the OSMand the mammillary layer of the calcified portion of the shell. The initial calcium carbonate growth of the calcified shell was of a dendritic nature with nucleation sites on the surface of the cup's contents. The dendritic growth gave way to a more randomly-orientated, smaller crystallite growth structure, which changed in formas it neared the vertical crystal layer (VCL. The VCL is described as being both amorphous and 'crumbly' depending on the plane of fracture. These observations suggest that firstly, initial calcification is contained within the cups and is then directed outwards to formthe shell and that secondly, the VCL may contain an evolutionary, calcified cuticular layer. These observations serve as a baseline for studies investigating the effect of shell structure and strength on hatchling trauma and the influence of maternal diet.

  11. Outer membrane protein (OMP) based vaccine for Neisseria meningitidis serogroup B.

    Science.gov (United States)

    Pillai, Subramonia; Howell, Alan; Alexander, Kristin; Bentley, B Erin; Jiang, Han-Qian; Ambrose, Karita; Zhu, Duzhang; Zlotnick, Gary

    2005-03-18

    A family of outer membrane lipoproteins of Neisseria meningitidis, LP2086, has been shown to induce serum bactericidal activity against a broad variety of meningococcal strains. Two sub-families of serologically distinct LP2086 proteins (A and B) have been identified. In the present study, we have shown that polyclonal anti-serum against rLP2086 is protective in vivo in an infant rat passive-protection model. Additionally, the LP2086 protein is displayed on the surface of 91% meningococcal strains as measured in a whole cell ELISA using polyclonal anti-sera raised against these proteins. We also demonstrate based on the reactivity of anti-rLP2086 antibody with recombinantly expressed C- and N-terminal fragments of rLP2086 in a Western blot assay that the C-terminal fragment of LP2086 dictates sub-family specificity and the N-terminal fragment determines the family specificity. A formulation containing family A and B of LP2086 potentially would provide broad protection against a majority of Neisseria meningitidis strains. PMID:15755596

  12. Essential Role of the ESX-5 Secretion System in Outer Membrane Permeability of Pathogenic Mycobacteria.

    Directory of Open Access Journals (Sweden)

    Louis S Ates

    2015-05-01

    Full Text Available Mycobacteria possess different type VII secretion (T7S systems to secrete proteins across their unusual cell envelope. One of these systems, ESX-5, is only present in slow-growing mycobacteria and responsible for the secretion of multiple substrates. However, the role of ESX-5 substrates in growth and/or virulence is largely unknown. In this study, we show that esx-5 is essential for growth of both Mycobacterium marinum and Mycobacterium bovis. Remarkably, this essentiality can be rescued by increasing the permeability of the outer membrane, either by altering its lipid composition or by the introduction of the heterologous porin MspA. Mutagenesis of the first nucleotide-binding domain of the membrane ATPase EccC5 prevented both ESX-5-dependent secretion and bacterial growth, but did not affect ESX-5 complex assembly. This suggests that the rescuing effect is not due to pores formed by the ESX-5 membrane complex, but caused by ESX-5 activity. Subsequent proteomic analysis to identify crucial ESX-5 substrates confirmed that all detectable PE and PPE proteins in the cell surface and cell envelope fractions were routed through ESX-5. Additionally, saturated transposon-directed insertion-site sequencing (TraDIS was applied to both wild-type M. marinum cells and cells expressing mspA to identify genes that are not essential anymore in the presence of MspA. This analysis confirmed the importance of esx-5, but we could not identify essential ESX-5 substrates, indicating that multiple of these substrates are together responsible for the essentiality. Finally, examination of phenotypes on defined carbon sources revealed that an esx-5 mutant is strongly impaired in the uptake and utilization of hydrophobic carbon sources. Based on these data, we propose a model in which the ESX-5 system is responsible for the transport of cell envelope proteins that are required for nutrient uptake. These proteins might in this way compensate for the lack of Msp

  13. Essential Role of the ESX-5 Secretion System in Outer Membrane Permeability of Pathogenic Mycobacteria

    KAUST Repository

    Ates, Louis S.

    2015-05-04

    Mycobacteria possess different type VII secretion (T7S) systems to secrete proteins across their unusual cell envelope. One of these systems, ESX-5, is only present in slow-growing mycobacteria and responsible for the secretion of multiple substrates. However, the role of ESX-5 substrates in growth and/or virulence is largely unknown. In this study, we show that esx-5 is essential for growth of both Mycobacterium marinum and Mycobacterium bovis. Remarkably, this essentiality can be rescued by increasing the permeability of the outer membrane, either by altering its lipid composition or by the introduction of the heterologous porin MspA. Mutagenesis of the first nucleotide-binding domain of the membrane ATPase EccC5 prevented both ESX-5-dependent secretion and bacterial growth, but did not affect ESX-5 complex assembly. This suggests that the rescuing effect is not due to pores formed by the ESX-5 membrane complex, but caused by ESX-5 activity. Subsequent proteomic analysis to identify crucial ESX-5 substrates confirmed that all detectable PE and PPE proteins in the cell surface and cell envelope fractions were routed through ESX-5. Additionally, saturated transposon-directed insertion-site sequencing (TraDIS) was applied to both wild-type M. marinum cells and cells expressing mspA to identify genes that are not essential anymore in the presence of MspA. This analysis confirmed the importance of esx-5, but we could not identify essential ESX-5 substrates, indicating that multiple of these substrates are together responsible for the essentiality. Finally, examination of phenotypes on defined carbon sources revealed that an esx-5 mutant is strongly impaired in the uptake and utilization of hydrophobic carbon sources. Based on these data, we propose a model in which the ESX-5 system is responsible for the transport of cell envelope proteins that are required for nutrient uptake. These proteins might in this way compensate for the lack of MspA-like porins in slow

  14. Essential Role of the ESX-5 Secretion System in Outer Membrane Permeability of Pathogenic Mycobacteria.

    Science.gov (United States)

    Ates, Louis S; Ummels, Roy; Commandeur, Susanna; van de Weerd, Robert; van der Weerd, Robert; Sparrius, Marion; Weerdenburg, Eveline; Alber, Marina; Kalscheuer, Rainer; Piersma, Sander R; Abdallah, Abdallah M; Abd El Ghany, Moataz; Abdel-Haleem, Alyaa M; Pain, Arnab; Jiménez, Connie R; Bitter, Wilbert; Houben, Edith N G

    2015-05-01

    Mycobacteria possess different type VII secretion (T7S) systems to secrete proteins across their unusual cell envelope. One of these systems, ESX-5, is only present in slow-growing mycobacteria and responsible for the secretion of multiple substrates. However, the role of ESX-5 substrates in growth and/or virulence is largely unknown. In this study, we show that esx-5 is essential for growth of both Mycobacterium marinum and Mycobacterium bovis. Remarkably, this essentiality can be rescued by increasing the permeability of the outer membrane, either by altering its lipid composition or by the introduction of the heterologous porin MspA. Mutagenesis of the first nucleotide-binding domain of the membrane ATPase EccC5 prevented both ESX-5-dependent secretion and bacterial growth, but did not affect ESX-5 complex assembly. This suggests that the rescuing effect is not due to pores formed by the ESX-5 membrane complex, but caused by ESX-5 activity. Subsequent proteomic analysis to identify crucial ESX-5 substrates confirmed that all detectable PE and PPE proteins in the cell surface and cell envelope fractions were routed through ESX-5. Additionally, saturated transposon-directed insertion-site sequencing (TraDIS) was applied to both wild-type M. marinum cells and cells expressing mspA to identify genes that are not essential anymore in the presence of MspA. This analysis confirmed the importance of esx-5, but we could not identify essential ESX-5 substrates, indicating that multiple of these substrates are together responsible for the essentiality. Finally, examination of phenotypes on defined carbon sources revealed that an esx-5 mutant is strongly impaired in the uptake and utilization of hydrophobic carbon sources. Based on these data, we propose a model in which the ESX-5 system is responsible for the transport of cell envelope proteins that are required for nutrient uptake. These proteins might in this way compensate for the lack of MspA-like porins in slow

  15. Specific association of lectin LecB with the surface of Pseudomonas aeruginosa: role of outer membrane protein OprF.

    Directory of Open Access Journals (Sweden)

    Horst Funken

    Full Text Available The fucose binding lectin LecB affects biofilm formation and is involved in pathogenicity of Pseudomonas aeruginosa. LecB resides in the outer membrane and can be released specifically by treatment of an outer membrane fraction with fucose suggesting that it binds to specific ligands. Here, we report that LecB binds to the outer membrane protein OprF. In an OprF-deficient P. aeruginosa mutant, LecB is no longer detectable in the membrane but instead in the culture supernatant indicating a specific interaction between LecB and OprF.

  16. Outer Membrane Proteins of Fibrobacter succinogenes with Potential Roles in Adhesion to Cellulose and in Cellulose Digestion▿

    OpenAIRE

    Jun, Hyun-Sik; Qi, Meng; Gong, Joshua; Egbosimba, Emmanuel E.; Forsberg, Cecil W.

    2007-01-01

    Comparative analysis of binding of intact glucose-grown Fibrobacter succinogenes strain S85 cells and adhesion-defective mutants AD1 and AD4 to crystalline and acid-swollen (amorphous) cellulose showed that strain S85 bound efficiently to both forms of cellulose while mutant Ad1 bound to acid-swollen cellulose, but not to crystalline cellulose, and mutant Ad4 did not bind to either. One- and two-dimensional electrophoresis (2-DE) of outer membrane cellulose binding proteins and of outer membr...

  17. Targeting and Assembly of Components of the TOC Protein Import Complex at the Chloroplast Outer Envelope Membrane

    Directory of Open Access Journals (Sweden)

    Lynn G.L. Richardson

    2014-06-01

    Full Text Available The translocon at the outer envelope membrane of chloroplasts (TOC initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β–barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus.

  18. Elucidation of the outer membrane proteome of Salmonella enterica serovar Typhimurium utilising a lipid-based protein immobilization technique

    Directory of Open Access Journals (Sweden)

    Appleton Hazel

    2010-02-01

    Full Text Available Abstract Background Salmonella enterica serovar Typhimurium (S. Typhimurium is a major cause of human gastroenteritis worldwide. The outer membrane proteins expressed by S. Typhimurium mediate the process of adhesion and internalisation within the intestinal epithelium of the host thus influencing the progression of disease. Since the outer membrane proteins are surface-exposed, they provide attractive targets for the development of improved antimicrobial agents and vaccines. Various techniques have been developed for their characterisation, but issues such as carryover of cytosolic proteins still remain a problem. In this study we attempted to characterise the surface proteome of S. Typhimurium using Lipid-based Protein Immobilisation technology in the form of LPI™ FlowCells. No detergents are required and no sample clean up is needed prior to downstream analysis. The immobilised proteins can be digested with proteases in multiple steps to increase sequence coverage, and the peptides eluted can be characterised directly by liquid chromatography - tandem mass spectrometry (LC-MS/MS and identified from mass spectral database searches. Results In this study, 54 outer membrane proteins, were identified with two or more peptide hits using a multi-step digest approach. Out of these 28 were lipoproteins, nine were involved in transport and three with enzyme activity These included the transporters BtuB which is responsible for the uptake of vitamin B12, LamB which is involved in the uptake of maltose and maltodextrins and LolB which is involved in the incorporation of lipoproteins in the outer membrane. Other proteins identified included the enzymes MltC which may play a role in cell elongation and division and NlpD which is involved in catabolic processes in cell wall formation as well as proteins involved in virulence such as Lpp1, Lpp2 and OmpX. Conclusion Using a multi-step digest approach the LPI™ technique enables the incorporation of a

  19. Expression and Purification of the Major Outer Membrane Protein of Chlamydia Trachomatis in Prokaryotic Cell

    Institute of Scientific and Technical Information of China (English)

    李忠玉; 吴移谋; 陈超群; 万艳平; 朱翠明

    2004-01-01

    To clone and construct the recombinant plasmid containing the major outer membrane protein (MOMP) gene of Chlamydia trachomatis ( C.trachomatis ) and to express the fusion protein in E. coli BL21, the MOMP gene was amphfied by polymerase chain reaction (PCR) from genome of C. trachomatis serovar D. The fragment was cloned into the prokaryotic expression vector pET-22b( + ) after digestion with BamH Ⅰ and Not Ⅰ and transformed into E. coli XL1-Blue. Recombinants were selected by enzyme digestion and sequencing and the recombinant plasmid with MOMP gene was then transformed into E. coli BL21 with IPTG to express the target gene. The expression recombinant proteins were purified by Ni-NTA affinity chromatography, and identified by SDS-PAGE and Western blot. It was found that a 1.2 kb MOMP gene was isolated. The DNA sequence of MOMP was found to be just the same as the sequence published by GenBank. A recombinant plasmid containing MOMP gene was constructed to express the fusion proteins in E.coli. SDS-PAGE analysis showed that the relative molecular weight of the recombinant protein was about 47 kDa that was consistent with the theoretical predicted value, and the specificity of the expressed protein was conformed by Western blot. It concluded that the MOMP gene could be expressed in the prokaryotic system, by which it provided the foundation for the future studies on the biological activities of C. trachomatis and for the development of vaccine against this pathogen.

  20. Comparative proteomic analysis of outer membrane vesicles from Shigella flexneri under different culture conditions

    International Nuclear Information System (INIS)

    Highlights: • We utilized mTRAQ-based quantification to study protein changes in Congo red-induced OMVs. • A total of 148 proteins were identified in S. flexneri-derived OMVs. • Twenty-eight and five proteins are significantly up- and down-regulated in the CR-induced OMV, respectively. • The result implied that a special sorting mechanism of particular proteins into OMVs may exist. • Key node proteins in the protein interaction network might be important for pathogenicity. - Abstract: The production of outer membrane vesicles (OMVs) is a common and regulated process of gram-negative bacteria. Nonetheless, the processes of Shigella flexneri OMV production still remain unclear. S. flexneri is the causative agent of endemic shigellosis in developing countries. The Congo red binding of strains is associated with increased infectivity of S. flexneri. Therefore, understanding the modulation pattern of OMV protein expression induced by Congo red will help to elucidate the bacterial pathogenesis. In the present study, we investigated the proteomic composition of OMVs and the change in OMV protein expression induced by Congo red using mTRAQ-based quantitative comparative proteomics. mTRAQ labelling increased the confidence in protein identification, and 148 total proteins were identified in S. flexneri-derived OMVs. These include a variety of important virulence factors, including Ipa proteins, TolC family, murein hydrolases, and members of the serine protease autotransporters of Enterobacteriaceae (SPATEs) family. Among the identified proteins, 28 and five proteins are significantly up- and down-regulated in the Congo red-induced OMV, respectively. Additionally, by comprehensive comparison with previous studies focused on DH5a-derived OMV, we identified some key node proteins in the protein–protein interaction network that may be involved in OMV biogenesis and are common to all gram-negative bacteria

  1. Nitazoxanide Inhibits Pilus Biogenesis by Interfering with Folding of the Usher Protein in the Outer Membrane.

    Science.gov (United States)

    Chahales, Peter; Hoffman, Paul S; Thanassi, David G

    2016-04-01

    Many bacterial pathogens assemble surface fibers termed pili or fimbriae that facilitate attachment to host cells and colonization of host tissues. The chaperone/usher (CU) pathway is a conserved secretion system that is responsible for the assembly of virulence-associated pili by many different Gram-negative bacteria. Pilus biogenesis by the CU pathway requires a dedicated periplasmic chaperone and an integral outer membrane (OM) assembly and secretion platform termed the usher. Nitazoxanide (NTZ), an antiparasitic drug, was previously shown to inhibit the function of aggregative adherence fimbriae and type 1 pili assembled by the CU pathway in enteroaggregativeEscherichia coli, an important causative agent of diarrhea. We show here that NTZ also inhibits the function of type 1 and P pili from uropathogenicE. coli(UPEC). UPEC is the primary causative agent of urinary tract infections, and type 1 and P pili mediate colonization of the bladder and kidneys, respectively. By analysis of the different stages of the CU pilus biogenesis pathway, we show that treatment of bacteria with NTZ causes a reduction in the number of usher molecules in the OM, resulting in a loss of pilus assembly on the bacterial surface. In addition, we determine that NTZ specifically prevents proper folding of the usher β-barrel domain in the OM. Our findings demonstrate that NTZ is a pilicide with a novel mechanism of action and activity against diverse CU pathways. This suggests that further development of the NTZ scaffold may lead to new antivirulence agents that target the usher to prevent pilus assembly. PMID:26824945

  2. Xylella fastidiosa outer membrane vesicles modulate plant colonization by blocking attachment to surfaces.

    Science.gov (United States)

    Ionescu, Michael; Zaini, Paulo A; Baccari, Clelia; Tran, Sophia; da Silva, Aline M; Lindow, Steven E

    2014-09-16

    Outer membrane vesicles (OMVs) of Gram-negative bacteria have been studied intensively in recent years, primarily in their role in delivering virulence factors and antigens during pathogenesis. However, the near ubiquity of their production suggests that they may play other roles, such as responding to envelope stress or trafficking various cargoes to prevent dilution or degradation by other bacterial species. Here we show that OMVs produced by Xylella fastidiosa, a xylem-colonizing plant pathogenic bacterium, block its interaction with various surfaces such as the walls of xylem vessels in host plants. The release of OMVs was suppressed by the diffusible signal factor-dependent quorum-sensing system, and a X. fastidiosa ΔrpfF mutant in which quorum signaling was disrupted was both much more virulent to plants and less adhesive to glass and plant surfaces than the WT strain. The higher virulence of the ΔrpfF mutant was associated with fivefold higher numbers of OMVs recovered from xylem sap of infected plants. The frequency of attachment of X. fastidiosa to xylem vessels was 20-fold lower in the presence of OMVs than in their absence. OMV production thus is a strategy used by X. fastidiosa cells to adjust attachment to surfaces in its transition from adhesive cells capable of insect transmission to an "exploratory" lifestyle for systemic spread within the plant host which would be hindered by attachment. OMV production may contribute to the movement of other bacteria in porous environments by similarly reducing their contact with environmental constituents. PMID:25197068

  3. Outer membrane protein shifts in biocide-resistant Pseudomonas aeruginosa PAO1.

    Science.gov (United States)

    Winder, C L; Al-Adham, I S; Abdel Malek, S M; Buultjens, T E; Horrocks, A J; Collier, P J

    2000-08-01

    Benzisothiazolone (BIT), N-methylisothiazolone (MIT) and 5-chloro-N-methylisothiazolone (CMIT) are highly effective biocidal agents and are used as preservatives in a variety of cosmetic preparations. The isothiazolones have proven efficacy against many fungal and bacterial species including Pseudomonas aeruginosa. However, some species are beginning to exhibit resistance towards this group of compounds after extended exposure. This experiment induced resistance in cultures of Ps. aeruginosa exposed to incrementally increasing sub-minimum inhibitory concentrations (MICs) of the isothiazolones in their pure chemical forms. The induced resistance was observed as a gradual increase in MIC with each new passage. The MICs for all three test isothiazolones and a thiol-interactive control compound (thiomersal) increased by approximately twofold during the course of the experiment. The onset of resistance was also observed by reference to the altered presence of an outer membrane protein, designated the T-OMP, in SDS-PAGE preparations. T-OMP was observed to disappear from the biocide-exposed preparations and reappear when the resistance-induced cultures were passaged in the absence of biocide. This reappearance of T-OMP was not accompanied by a complete reversal of induced resistance, but by a small decrease in MIC. The induction of resistance towards one biocide resulted in the development of cross-resistance towards other members of the group and the control, thiomersal. It has been suggested that the disappearance of T-OMP from these preparations is associated with the onset of resistance to the isothiazolones in their Kathon form (CMIT and MIT). PMID:10971761

  4. Identification and validation of T-cell epitopes in outer membrane protein (OMP) of Salmonella typhi.

    Science.gov (United States)

    Tanu, Arifur Rahman; Ashraf, Mohammad Arif; Hossain, Md Faruk; Ismail, Md; Shekhar, Hossain Uddin

    2014-01-01

    This study aims to design epitope-based peptides for the utility of vaccine development by targeting outer membrane protein F (Omp F), because two available licensed vaccines, live oral Ty21a and injectable polysaccharide, are 50% to 80% protective with a higher rate of side effects. Conventional vaccines take longer time for development and have less differentiation power between vaccinated and infected cells. On the other hand, Peptide-based vaccines present few advantages over other vaccines, such as stability of peptide, ease to manufacture, better storage, avoidance of infectious agents during manufacture, and different molecules can be linked with peptides to enhance their immunogenicity. Omp F is highly conserved and facilitates attachment and fusion of Salmonella typhi with host cells. Using various databases and tools, immune parameters of conserved sequences from Omp F of different isolates of Salmonella typhi were tested to predict probable epitopes. Binding analysis of the peptides with MHC molecules, epitopes conservancy, population coverage, and linear B cell epitope prediction were analyzed. Among all those predicted peptides, ESYTDMAPY epitope interacted with six MHC alleles and it shows highest amount of interaction compared to others. The cumulative population coverage for these epitopes as vaccine candidates was approximately 70%. Structural analysis suggested that epitope ESYTDMAPY fitted well into the epitope-binding groove of HLA-C*12:03, as this HLA molecule was common which interact with each and every predicted epitopes. So, this potential epitope may be linked with other molecules to enhance its immunogenicity and used for vaccine development. PMID:25258481

  5. Identification of Outer Membrane and Exoproteins of Carbapenem-Resistant Multilocus Sequence Type 258 Klebsiella pneumoniae.

    Directory of Open Access Journals (Sweden)

    Amanda J Brinkworth

    Full Text Available Carbapenem-resistant Klebsiella pneumoniae strains have emerged as a cause of life-threatening infections in susceptible individuals (e.g., transplant recipients and critically ill patients. Strains classified as multilocus sequence type (ST 258 are among the most prominent causes of carbapenem-resistant K. pneumoniae infections worldwide, but the basis for the success of this lineage remains incompletely determined. To gain a more comprehensive view of the molecules potentially involved in the success of ST258, we used a proteomics approach to identify surface-associated and culture supernatant proteins produced by ST258. Protein samples were prepared from varied culture conditions in vitro, and were analyzed by a combination of two-dimensional electrophoresis and liquid chromatography followed by tandem mass spectrometry (LC-MS/MS. We identified a total of 193 proteins in outer membrane preparations from bacteria cultured in Luria-Bertani broth (LB or RPMI 1640 tissue culture media (RPMI. Compared with LB, several iron-acquisition proteins, including IutA, HmuR, HmuS, CirA, FepA, FitA, FoxA, FhuD, and YfeX, were more highly expressed in RPMI. Of the 177 proteins identified in spent media, only the fimbrial subunit, MrkA, was predicted to be extracellular, a finding that suggests few proteins (or a limited quantity are freely secreted by ST258. Notably, we discovered 203 proteins not reported in previous K. pneumoniae proteome studies. In silico modeling of proteins with unknown function revealed several proteins with beta-barrel transmembrane structures typical of porins, as well as possible host-interacting proteins. Taken together, these findings contribute several new targets for the mechanistic study of drug-resistance and pathogenesis by ST258 K. pneumoniae isolates.

  6. Immunological characteristics of outer membrane protein omp31 of goat Brucella and its monoclonal antibody.

    Science.gov (United States)

    Zheng, W Y; Wang, Y; Zhang, Z C; Yan, F

    2015-01-01

    We examined the immunological characteristics of outer membrane protein omp31 of goat Brucella and its monoclonal antibody. Genomic DNA from the M5 strain of goat Brucella was amplified by polymerase chain reaction and cloned into the prokaryotic expression vector pGEX-4T-1. The expression and immunological characteristics of the fusion protein GST-omp31 were subjected to preliminary western blot detection with goat Brucella rabbit immune serum. The Brucella immunized BALB/c mouse serum was detected using purified protein. The high-potency mouse splenocytes and myeloma Sp2/0 cells were fused. Positive clones were screened by enzyme-linked immunosorbent assay to establish a hybridoma cell line. Mice were inoculated intraperitoneally with hybridoma cells to prepare ascites. The mAb was purified using the n-caprylic acid-ammonium sulfate method. The characteristics of mAb were examined using western blotting and enzyme-linked immunosorbent assay. A 680-base pair band was observed after polymerase chain reaction. Enzyme digestion identification and sequencing showed that the pGEX-4T-1-omp31 prokaryotic expression vector was successfully established; a target band of approximately 57 kDa with an apparent molecular weight consistent with the size of the target fusion protein. At 25°C, the expression of soluble expression increased significantly; the fusion protein GST-omp31 was detected by western blotting. Anti-omp31 protein mAb was obtained from 2 strains of Brucella. The antibody showed strong specificity and sensitivity and did not cross-react with Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Mycobacterium tuberculosis, or Bacillus pyocyaneus. The pGEX-4T-1-omp31 prokaryotic expression vector was successfully established and showed good immunogenicity. The antibody also showed strong specificity and good sensitivity. PMID:26505344

  7. Comparative proteomic analysis of outer membrane vesicles from Shigella flexneri under different culture conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yong; Liu, Liguo; Fu, Hua; Wei, Candong, E-mail: weicando@ipbcams.ac.cn; Jin, Qi, E-mail: zdsys@vip.sina.com

    2014-10-31

    Highlights: • We utilized mTRAQ-based quantification to study protein changes in Congo red-induced OMVs. • A total of 148 proteins were identified in S. flexneri-derived OMVs. • Twenty-eight and five proteins are significantly up- and down-regulated in the CR-induced OMV, respectively. • The result implied that a special sorting mechanism of particular proteins into OMVs may exist. • Key node proteins in the protein interaction network might be important for pathogenicity. - Abstract: The production of outer membrane vesicles (OMVs) is a common and regulated process of gram-negative bacteria. Nonetheless, the processes of Shigella flexneri OMV production still remain unclear. S. flexneri is the causative agent of endemic shigellosis in developing countries. The Congo red binding of strains is associated with increased infectivity of S. flexneri. Therefore, understanding the modulation pattern of OMV protein expression induced by Congo red will help to elucidate the bacterial pathogenesis. In the present study, we investigated the proteomic composition of OMVs and the change in OMV protein expression induced by Congo red using mTRAQ-based quantitative comparative proteomics. mTRAQ labelling increased the confidence in protein identification, and 148 total proteins were identified in S. flexneri-derived OMVs. These include a variety of important virulence factors, including Ipa proteins, TolC family, murein hydrolases, and members of the serine protease autotransporters of Enterobacteriaceae (SPATEs) family. Among the identified proteins, 28 and five proteins are significantly up- and down-regulated in the Congo red-induced OMV, respectively. Additionally, by comprehensive comparison with previous studies focused on DH5a-derived OMV, we identified some key node proteins in the protein–protein interaction network that may be involved in OMV biogenesis and are common to all gram-negative bacteria.

  8. Outer membrane protein OmpQ of Bordetella bronchiseptica is required for mature biofilm formation.

    Science.gov (United States)

    Cattelan, Natalia; Villalba, María Inés; Parisi, Gustavo; Arnal, Laura; Serra, Diego Omar; Aguilar, Mario; Yantorno, Osvaldo

    2016-02-01

    Bordetella bronchiseptica, an aerobic Gram-negative bacterium, is capable of colonizing the respiratory tract of diverse animals and chronically persists inside the hosts by forming biofilm. Most known virulence factors in Bordetella species are regulated by the BvgAS two-component transduction system. The Bvg-activated proteins play a critical role during host infection. OmpQ is an outer membrane porin protein which is expressed under BvgAS control. Here, we studied the contribution of OmpQ to the biofilm formation process by B. bronchiseptica. We found that the lack of expression of OmpQ did not affect the growth kinetics and final biomass of B. bronchiseptica under planktonic growth conditions. The ΔompQ mutant strain displayed no differences in attachment level and in early steps of biofilm formation. However, deletion of the ompQ gene attenuated the ability of B. bronchiseptica to form a mature biofilm. Analysis of ompQ gene expression during the biofilm formation process by B. bronchiseptica showed a dynamic expression pattern, with an increase of biofilm culture at 48 h. Moreover, we demonstrated that the addition of serum anti-OmpQ had the potential to reduce the biofilm biomass formation in a dose-dependent manner. In conclusion, we showed for the first time, to the best of our knowledge, evidence of the contribution of OmpQ to a process of importance for B. bronchiseptica pathobiology. Our results indicate that OmpQ plays a role during the biofilm development process, particularly at later stages of development, and that this porin could be a potential target for strategies of biofilm formation inhibition. PMID:26673448

  9. Discovery of Salmonella Virulence Factors Translocated via Outer Membrane Vesicles to Murine Macrophages.

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyunjin; Ansong, Charles; Adkins, Joshua N.; Heffron, Fred

    2011-06-01

    We have previously shown that the regulators SpvR, FruR, IHF, PhoP/PhoQ, SsrA/SsrB, SlyA, Hnr, RpoE, SmpB, CsrA, RpoS, Crp, OmpR/EnvZ, and Hfq are essential for Salmonella Typhimurium virulence in mice. Here we use quantitative LC-MS-based proteomics profiling of in-frame deletion mutants of these 14 regulators to identify proteins that are coordinately regulated by these virulence regulators and are thus presumably novel factors contributing to Salmonella pathogenesis. Putative candidate proteins from proteomics analysis were determined, which exhibited similar abundance profiles to those of Salmonella pathogenicity island (SPI)-2 type III secretion system (TTSS) proteins. A subset of 5 proteins including STM0082, STM1548, PdgL, STM1633, and STM3595 was selected for further analysis. All 5 proteins were expressed inside macrophage cells and STM0082 (SrfN) was secreted into host cytoplasm. Furthermore, deletion of STM0082 attenuated virulence in mice when administered intraperitoneally as determined by competitive index. srfN transcription was positively regulated by SsrAB, however, secretion was independent of SPI-2 TTSS as well as SPI-1 TTSS and flagella. Proteins including PagK and STM2585A, which are positively regulated by PhoP/PhoQ, have sec signal peptides as predicted for SrfN and were secreted into macrophage cytoplasm regardless of SPI-2 TTSS. Isolation of outer membrane vesicles (OMVs) revealed the presence of SrfN, PagK, and STM2585A inside vesicle compartments. This result is the first case showing delivery of virulence effectors via OMVs in S. Typhimurium. Moreover, Hfq regulation of SrfN translation suggests that small non-coding RNAs may be responsible for regulating effector protein expression.

  10. Legionella pneumophila-Derived Outer Membrane Vesicles Promote Bacterial Replication in Macrophages.

    Science.gov (United States)

    Jung, Anna Lena; Stoiber, Cornelia; Herkt, Christina E; Schulz, Christine; Bertrams, Wilhelm; Schmeck, Bernd

    2016-04-01

    The formation and release of outer membrane vesicles (OMVs) is a phenomenon of Gram-negative bacteria. This includes Legionella pneumophila (L. pneumophila), a causative agent of severe pneumonia. Upon its transmission into the lung, L. pneumophila primarily infects and replicates within macrophages. Here, we analyzed the influence of L. pneumophila OMVs on macrophages. To this end, differentiated THP-1 cells were incubated with increasing doses of Legionella OMVs, leading to a TLR2-dependent classical activation of macrophages with the release of pro-inflammatory cytokines. Inhibition of TLR2 and NF-κB signaling reduced the induction of pro-inflammatory cytokines. Furthermore, treatment of THP-1 cells with OMVs prior to infection reduced replication of L. pneumophila in THP-1 cells. Blocking of TLR2 activation or heat denaturation of OMVs restored bacterial replication in the first 24 h of infection. With prolonged infection-time, OMV pre-treated macrophages became more permissive for bacterial replication than untreated cells and showed increased numbers of Legionella-containing vacuoles and reduced pro-inflammatory cytokine induction. Additionally, miRNA-146a was found to be transcriptionally induced by OMVs and to facilitate bacterial replication. Accordingly, IRAK-1, one of miRNA-146a's targets, showed prolonged activation-dependent degradation, which rendered THP-1 cells more permissive for Legionella replication. In conclusion, L. pneumophila OMVs are initially potent pro-inflammatory stimulators of macrophages, acting via TLR2, IRAK-1, and NF-κB, while at later time points, OMVs facilitate L. pneumophila replication by miR-146a-dependent IRAK-1 suppression. OMVs might thereby promote spreading of L. pneumophila in the host. PMID:27105429

  11. The Role of Helicobacter pylori Outer Membrane Proteins in Adherence and Pathogenesis

    Directory of Open Access Journals (Sweden)

    Armelle Ménard

    2013-08-01

    Full Text Available Helicobacter pylori is one of the most successful human pathogens, which colonizes the mucus layer of the gastric epithelium of more than 50% of the world’s population. This curved, microaerophilic, Gram-negative bacterium induces a chronic active gastritis, often asymptomatic, in all infected individuals. In some cases, this gastritis evolves to more severe diseases such as peptic ulcer disease, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma. H. pylori has developed a unique set of factors, actively supporting its successful survival and persistence in its natural hostile ecological niche, the human stomach, throughout the individual’s life, unless treated. In the human stomach, the vast majority of H. pylori cells are motile in the mucus layer lining, but a small percentage adheres to the epithelial cell surfaces. Adherence to the gastric epithelium is important for the ability of H. pylori to cause disease because this intimate attachment facilitates: (1 colonization and persistence, by preventing the bacteria from being eliminated from the stomach, by mucus turnover and gastric peristalsis; (2 evasion from the human immune system and (3 efficient delivery of proteins into the gastric cell, such as the CagA oncoprotein. Therefore, bacteria with better adherence properties colonize the host at higher densities. H. pylori is one of the most genetically diverse bacterial species known and is equipped with an extraordinarily large set of outer membrane proteins, whose role in the infection and persistence process will be discussed in this review, as well as the different receptor structures that have been so far described for mucosal adherence.

  12. Covalently linked hopanoid-lipid A improves outer-membrane resistance of a Bradyrhizobium symbiont of legumes.

    Science.gov (United States)

    Silipo, Alba; Vitiello, Giuseppe; Gully, Djamel; Sturiale, Luisa; Chaintreuil, Clémence; Fardoux, Joel; Gargani, Daniel; Lee, Hae-In; Kulkarni, Gargi; Busset, Nicolas; Marchetti, Roberta; Palmigiano, Angelo; Moll, Herman; Engel, Regina; Lanzetta, Rosa; Paduano, Luigi; Parrilli, Michelangelo; Chang, Woo-Suk; Holst, Otto; Newman, Dianne K; Garozzo, Domenico; D'Errico, Gerardino; Giraud, Eric; Molinaro, Antonio

    2014-01-01

    Lipopolysaccharides (LPSs) are major components of the outer membrane of Gram-negative bacteria and are essential for their growth and survival. They act as a structural barrier and play an important role in the interaction with eukaryotic hosts. Here we demonstrate that a photosynthetic Bradyrhizobium strain, symbiont of Aeschynomene legumes, synthesizes a unique LPS bearing a hopanoid covalently attached to lipid A. Biophysical analyses of reconstituted liposomes indicate that this hopanoid-lipid A structure reinforces the stability and rigidity of the outer membrane. In addition, the bacterium produces other hopanoid molecules not linked to LPS. A hopanoid-deficient strain, lacking a squalene hopene cyclase, displays increased sensitivity to stressful conditions and reduced ability to survive intracellularly in the host plant. This unusual combination of hopanoid and LPS molecules may represent an adaptation to optimize bacterial survival in both free-living and symbiotic states. PMID:25355435

  13. Chlamydial Pneumonitis: A Creepy Neonatal Disease

    OpenAIRE

    Kam Lun Hon; Leung, Alexander K.C.

    2013-01-01

    We present a case of neonatal chlamydial pneumonitis to illustrate that a high index of suspicion is necessary to make the diagnosis so that treatment can be promptly instituted. The child was afebrile and the only symptom was a cough. The respiratory equations are calculated to understand the respiratory physiology. There was no overt abnormality with ventilation, oxygenation, compliance, resistance, or ventilation-perfusion mismatch despite radiographic abnormality. The literature is search...

  14. Mcp3 is a novel mitochondrial outer membrane protein that follows a unique IMP-dependent biogenesis pathway.

    Science.gov (United States)

    Sinzel, Monika; Tan, Tao; Wendling, Philipp; Kalbacher, Hubert; Özbalci, Cagakan; Chelius, Xenia; Westermann, Benedikt; Brügger, Britta; Rapaport, Doron; Dimmer, Kai Stefan

    2016-07-01

    Mitochondria are separated from the remainder of the eukaryotic cell by the mitochondrial outer membrane (MOM). The MOM plays an important role in different transport processes like lipid trafficking and protein import. In yeast, the ER-mitochondria encounter structure (ERMES) has a central, but poorly defined role in both activities. To understand the functions of the ERMES, we searched for suppressors of the deficiency of one of its components, Mdm10, and identified a novel mitochondrial protein that we named Mdm10 complementing protein 3 (Mcp3). Mcp3 partially rescues a variety of ERMES-related phenotypes. We further demonstrate that Mcp3 is an integral protein of the MOM that follows a unique import pathway. It is recognized initially by the import receptor Tom70 and then crosses the MOM via the translocase of the outer membrane. Mcp3 is next relayed to the TIM23 translocase at the inner membrane, gets processed by the inner membrane peptidase (IMP) and finally integrates into the MOM. Hence, Mcp3 follows a novel biogenesis route where a MOM protein is processed by a peptidase of the inner membrane. PMID:27226123

  15. Methylation and in vivo expression of the surface-exposed Leptospira interrogans outer-membrane protein OmpL32

    OpenAIRE

    Eshghi, Azad; Pinne, Marija; Haake, David A.; Zuerner, Richard L; Frank, Ami; Cameron, Caroline E.

    2012-01-01

    Recent studies have revealed that bacterial protein methylation is a widespread post-translational modification that is required for virulence in selected pathogenic bacteria. In particular, altered methylation of outer-membrane proteins has been shown to modulate the effectiveness of the host immune response. In this study, 2D gel electrophoresis combined with MALDI-TOF MS identified a Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 protein, corresponding to ORF LIC11848, wh...

  16. Calorimetric Studies of Bovine Rod Outer Segment Disk Membranes Support a Monomeric Unit for Both Rhodopsin and Opsin

    OpenAIRE

    Edrington, Thomas C.; Bennett, Michael; Albert, Arlene D.

    2008-01-01

    The photoreceptor rhodopsin is a G-protein coupled receptor that has recently been proposed to exist as a dimer or higher order oligomer, in contrast to the previously described monomer, in retinal rod outer segment disk membranes. Rhodopsin exhibits considerably greater thermal stability than opsin (the bleached form of the receptor), which is reflected in an ∼15°C difference in the thermal denaturation temperatures (Tm) of rhodopsin and opsin as measured by differential scanning calorimetry...

  17. Outer Membrane Protein Complex of Meningococcus Enhances the Antipolysaccharide Antibody Response to Pneumococcal Polysaccharide–CRM197 Conjugate Vaccine ▿

    OpenAIRE

    Lai, Zengzu; Schreiber, John R.

    2011-01-01

    Bacterial polysaccharides (PS) are T cell-independent antigens that do not induce immunologic memory and are poor immunogens in infants. Conjugate vaccines in which the PS is covalently linked to a carrier protein have enhanced immunogenicity that resembles that of T cell-dependent antigens. The Haemophilus influenzae type b (Hib) conjugate vaccine, which uses the outer membrane protein complex (OMPC) from meningococcus as a carrier protein, elicits protective levels of anti-capsular PS antib...

  18. Evasion of IFN-γ Signaling by Francisella novicida Is Dependent upon Francisella Outer Membrane Protein C

    OpenAIRE

    Nallaparaju, Kalyan C.; Yu, Jieh-Juen; Rodriguez, Stephen A.; Zogaj, Xhavit; Manam, Srikanth; Guentzel, M. Neal; Seshu, Janakiram; Murthy, Ashlesh K.; Chambers, James P.; Klose, Karl E.; Arulanandam, Bernard P.

    2011-01-01

    Background Francisella tularensis is a Gram-negative facultative intracellular bacterium and the causative agent of the lethal disease tularemia. An outer membrane protein (FTT0918) of F. tularensis subsp. tularensis has been identified as a virulence factor. We generated a F. novicida (F. tularensis subsp. novicida) FTN_0444 (homolog of FTT0918) fopC mutant to study the virulence-associated mechanism(s) of FTT0918. Methods and Findings The ΔfopC strain phenotype was characterized using immun...

  19. Characterization of Four Outer Membrane Proteins Involved in Binding Starch to the Cell Surface of Bacteroides thetaiotaomicron

    OpenAIRE

    Shipman, Joseph A.; Berleman, James E.; Salyers, Abigail A.

    2000-01-01

    Bacteroides thetaiotaomicron, a gram-negative obligate anaerobe, utilizes polysaccharides by binding them to its cell surface and allowing cell-associated enzymes to hydrolyze them into digestible fragments. We use the starch utilization system as a model to analyze the initial steps involved in polysaccharide binding and breakdown. In a recent paper, we reported that one of the outer membrane proteins involved, SusG, had starch-degrading activity but was not sufficient for growth on starch. ...

  20. Role of protein D2 and lipopolysaccharide in diffusion of quinolones through the outer membrane of Pseudomonas aeruginosa.

    OpenAIRE

    Michéa-Hamzehpour, M; Furet, Y X; Pechère, J C

    1991-01-01

    Routes of quinolone permeation in Pseudomonas aeruginosa were investigated by using sparfloxacin as a prototype compound. [14C]sparfloxacin cell labeling was 13 to 28% lower in three protein D2-deficient mutants resistant to imipenem than in their imipenem-susceptible counterparts. In four impermeability-type quinolone-resistant strains isolated from pefloxacin-treated animals, we observed two- to fourfold-greater resistance to imipenem, reduced protein D2 expression in the outer membrane acc...

  1. Immune Response to an 18-Kilodalton Outer Membrane Antigen Identifies Lipoprotein 20 as a Helicobacter pylori Vaccine Candidate

    OpenAIRE

    Keenan, Jacqueline; Oliaro, Jane; Domigan, Neil; Potter, Howard; Aitken, Geoff; Allardyce, Randall; Roake, Justin

    2000-01-01

    Experiments were performed using the standardized murine model of Helicobacter pylori infection to determine the immunogenicity of H. pylori outer membrane vesicles in immune protection. These vesicles, which are naturally shed from the surface of the bacterium, induce a protective response when administered intragastrically to mice in the presence of cholera holotoxin, despite the absence of the urease enzyme and associated Hsp54 chaperonin. Immunoblotting identified a specific serum immunog...

  2. Outer membrane protein profiles and multilocus enzyme electrophoresis analysis for differentiation of clinical isolates of Proteus mirabilis and Proteus vulgaris.

    OpenAIRE

    Kappos, T; John, M A; Hussain, Z; Valvano, M A

    1992-01-01

    Outer membrane protein (MP) profiles and multilocus enzyme electrophoresis (MEE) analysis were used as tools for differentiating clinical isolates of Proteus spp. Fourteen distinct MP profiles were established by sodium dodecyl sulfate-urea polyacrylamide gel electrophoresis in 54 clinical isolates of Proteus spp. (44 strains identified as P. mirabilis and 10 strains identified as P. vulgaris). Forty-one isolates of P. mirabilis and eight isolates of P. vulgaris were grouped within six and th...

  3. Heterogeneity of outer membrane proteins in Borrelia burgdorferi: comparison of osp operons of three isolates of different geographic origins.

    OpenAIRE

    JONSSON, M; Noppa, L; Barbour, A G; Bergström, S

    1992-01-01

    Biochemical and immunochemical studies of the outer membrane proteins of Borrelia burgdorferi have shown that the OspA and OspB proteins from strains of different geographic origins may differ considerably in their reactivities with monoclonal antibodies and in their apparent molecular weights. To further characterize this variation in Osp proteins between strains, the osp operons and deduced translation products from two strains, one from Sweden (ACAI) and one from eastern Russia (Ip90), wer...

  4. Covalently linked hopanoid-lipid A improves outer-membrane resistance of a Bradyrhizobium symbiont of legumes

    OpenAIRE

    Silipo, A.; Vitiello, G.; Gully, Djamel; L. Sturiale; Chaintreuil, Clémence; Fardoux, Joël; Gargani, D.; Lee, H I; Kulkarni, G; Busset, N.; Marchetti, R.; Palmigiano, A.; Moll, H; Engel, R; Lanzetta, R

    2014-01-01

    Lipopolysaccharides (LPSs) are major components of the outer membrane of Gram-negative bacteria and are essential for their growth and survival. They act as a structural barrier and play an important role in the interaction with eukaryotic hosts. Here we demonstrate that a photosynthetic Bradyrhizobium strain, symbiont of Aeschynomene legumes, synthesizes a unique LPS bearing a hopanoid covalently attached to lipid A. Biophysical analyses of reconstituted liposomes indicate that this hopanoid...

  5. Genome-Wide Study of Pseudomonas aeruginosa Outer Membrane Protein Immunogenicity Using Self-Assembling Protein Microarrays▿ †

    OpenAIRE

    Montor, Wagner R.; Huang, Jin; Hu, Yanhui; Hainsworth, Eugenie; Lynch, Susan; Kronish, Jeannine-Weiner; Ordonez, Claudia L.; Logvinenko, Tanya; Lory, Stephen; LaBaer, Joshua

    2009-01-01

    Pseudomonas aeruginosa is responsible for potentially life-threatening infections in individuals with compromised defense mechanisms and those with cystic fibrosis. P. aeruginosa infection is notable for the appearance of a humoral response to some known antigens, such as flagellin C, elastase, alkaline protease, and others. Although a number of immunogenic proteins are known, no effective vaccine has been approved yet. Here, we report a comprehensive study of all 262 outer membrane and expor...

  6. Differentiation of Neisseria gonorrhoeae strains by polymerase chain reaction and restriction fragment length polymorphism of outer membrane protein IB genes.

    OpenAIRE

    Lau, Q C; Chow, V T; Poh, C. L.

    1995-01-01

    OBJECTIVES--To employ polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) analysis for the rapid differentiation of Neisseria gonorrhoeae protein IB (PIB) isolates and to compare its usefulness with the widely accepted auxotype/serovar classification scheme. METHODS--The outer membrane protein IB genes of 47 gonococcal isolates belonging to 10 different serovars were amplified by PCR. The approximately 1 kb DNA products were then digested separately with restri...

  7. Influence of O Polysaccharides on Biofilm Development and Outer Membrane Vesicle Biogenesis in Pseudomonas aeruginosa PAO1

    OpenAIRE

    Murphy, Kathleen; Park, Amber J.; Hao, Youai; Brewer, Dyanne; Lam, Joseph S.; Khursigara, Cezar M.

    2014-01-01

    Pseudomonas aeruginosa is a common opportunistic human pathogen known for its ability to adapt to changes in its environment during the course of infection. These adaptations include changes in the expression of cell surface lipopolysaccharide (LPS), biofilm development, and the production of a protective extracellular exopolysaccharide matrix. Outer membrane vesicles (OMVs) have been identified as an important component of the extracellular matrix of P. aeruginosa biofilms and are thought to...

  8. Immunization of Mice With Vibrio cholerae Outer-Membrane Vesicles Protects Against Hyperinfectious Challenge and Blocks Transmission

    OpenAIRE

    Bishop, Anne L.; Tarique, Abdullah A.; Patimalla, Bharathi; Calderwood, Stephen B.; Qadri, Firdausi; Camilli, Andrew

    2011-01-01

    Background. Vibrio cholerae excreted by cholera patients is “hyperinfectious” (HI), which can be modeled by passage through infant mice. Immunization of adult female mice with V. cholerae outer-membrane vesicles (OMVs) passively protects suckling mice from challenge. Although V. cholerae is unable to colonize protected pups, the bacteria survive passage and have the potential to be transmitted to susceptible individuals. Here, we investigated the impact of OMV immunization and the HI state on...

  9. Targeting of a Tail-anchored Protein to Endoplasmic Reticulum and Mitochondrial Outer Membrane by Independent but Competing Pathways

    OpenAIRE

    Borgese, Nica; Gazzoni, Ilaria; Barberi, Massimo; Colombo, Sara; Pedrazzini, Emanuela

    2001-01-01

    Many mitochondrial outer membrane (MOM) proteins have a transmembrane domain near the C terminus and an N-terminal cytosolic moiety. It is not clear how these tail-anchored (TA) proteins posttranslationally select their target, but C-terminal charged residues play an important role. To investigate how discrimination between MOM and endoplasmic reticulum (ER) occurs, we used mammalian cytochrome b5, a TA protein existing in two, MOM or ER localized, versions. Substi...

  10. Distribution of a protein antigenically related to the major anaerobically induced gonococcal outer membrane protein among other Neisseria species.

    Science.gov (United States)

    Hoehn, G T; Clark, V L

    1990-12-01

    The Pan 1 protein of Neisseria gonorrhoeae is a novel 54-kDa outer membrane protein expressed only when gonococci are grown in the absence of oxygen. It is a major antigen recognized by sera from patients with gonococcal infection. We raised mouse monospecific polyclonal antiserum to gel-purified Pan 1 from gonococcal strain F62. The antiserum was broadly cross-reactive among gonococcal strains; all strains tested reacted in immunoblot analysis proportionate to the amount of Pan 1 visible in silver-stained sodium dodecyl sulfate (SDS)-polyacrylamide gels. In immunoblot experiments, N. lactamica and N. cinerea reacted very strongly to the anti-Pan 1 antiserum, whereas N. sicca, N. flava, and N. mucosa did not react at all. The other commensals tested, N. subflava and N. perflava, exhibited only a minor reaction. These results correlated with the apparent amount of Pan 1 seen on SDS-polyacrylamide gels of outer membranes. SDS-polyacrylamide gel analysis of six meningococcal strains revealed no visible anaerobically induced outer membrane proteins, and the subsequent immunoblots showed only slight or no reaction to the anti-Pan 1 antibody. In the four meningococcal strains that did react slightly with the antiserum, a Pan 1-like protein was seen only in anaerobically grown cells. Thus, meningococci did not express Pan 1 at levels comparable to that found in gonococci; however, when Pan 1 was expressed in meningococcal strains, it was oxygen regulated. This is the first example of a protein found in the gonococcal outer membrane that, under identical growth conditions, is not expressed at similar levels in the meningococcus. PMID:2123827

  11. Immunization with a 22-kDa outer membrane protein elicits protective immunity to multidrug-resistant Acinetobacter baumannii

    OpenAIRE

    Weiwei Huang; Yufeng Yao; Shijie Wang; Ye Xia; Xu Yang; Qiong Long; Wenjia Sun; Cunbao Liu; Yang Li; Xiaojie Chu; Hongmei Bai; Yueting Yao; Yanbing Ma

    2016-01-01

    A. baumannii infections are becoming more and more serious health issues with rapid emerging of multidrug and extremely drug resistant strains, and therefore, there is an urgent need for the development of nonantibiotic-based intervention strategies. This study aimed at identifying whether an outer membrane protein with molecular weight of about 22 kDa (Omp22) holds the potentials to be an efficient vaccine candidate and combat A. baumannii infection. Omp22 which has a molecule length of 217 ...

  12. Overexpression, refolding, and purification of the histidine-tagged outer membrane efflux protein OprM of Pseudomonas aeruginosa.

    Science.gov (United States)

    Charbonnier, F; Köhler, T; Pechère, J C; Ducruix, A

    2001-10-01

    This paper describes the overproduction and purification of the C-terminus polyhistidine-tagged outer membrane protein OprM, which is a part of the MexA-MexB-OprM active efflux system of Pseudomonas aeruginosa. Renaturation of the protein from inclusion bodies of Escherichia coli was achieved using guanidine-HCl as denaturing agent and n-octylpolyoxyethylene (C8POE) and n-octyltetraoxyethylene (C8E4) as nonionic detergents. The refolded protein was purified by ion-exchange and nickel-affinity chromatography. The final yield was 6 mg of pure histidine-tagged OprM per liter of E. coli culture. Renaturation was monitored by the effects of heating prior to SDS-PAGE, using a typical and exclusive property of outer membrane proteins. Immunoblotting revealed that the recombinant protein is addressed to the outer membrane of E. coli, after maturation by excision of its N-terminal signal sequence. Complementation of an oprM deletion mutant with the plasmid encoded histidine-tagged OprM protein restored antibiotic susceptibilities to wild-type levels, demonstrating functionality of recombinant OprM. PMID:11570853

  13. Outer-selective pressure-retarded osmosis hollow fiber membranes from vacuum-assisted interfacial polymerization for osmotic power generation

    KAUST Repository

    Sun, Shipeng

    2013-11-19

    In this paper, we report the technical breakthroughs to synthesize outer-selective thin-film composite (TFC) hollow fiber membranes, which is in an urgent need for osmotic power generation with the pressure-retarded osmosis (PRO) process. In the first step, a defect-free thin-film composite membrane module is achieved by vacuum-assisted interfacial polymerization. The PRO performance is further enhanced by optimizing the support in terms of pore size and mechanical strength and the TFC layer with polydopamine coating and molecular engineering of the interfacial polymerization solution. The newly developed membranes can stand over 20 bar with a peak power density of 7.63 W/m2, which is equivalent to 13.72 W/m2 of its inner-selective hollow fiber counterpart with the same module size, packing density, and fiber dimensions. The study may provide insightful guidelines for optimizing the interfacial polymerization procedures and scaling up of the outer-selective TFC hollow fiber membrane modules for PRO power generation. © 2013 American Chemical Society.

  14. Accelerated microevolution in an outer membrane protein (OMP of the intracellular bacteria Wolbachia

    Directory of Open Access Journals (Sweden)

    Russell Jacob A

    2010-02-01

    Full Text Available Abstract Background Outer membrane proteins (OMPs of Gram-negative bacteria are key players in the biology of bacterial-host interactions. However, while considerable attention has been given to OMPs of vertebrate pathogens, relatively little is known about the role of these proteins in bacteria that primarily infect invertebrates. One such OMP is found in the intracellular bacteria Wolbachia, which are widespread symbionts of arthropods and filarial nematodes. Recent experimental studies have shown that the Wolbachia surface protein (WSP can trigger host immune responses and control cell death programming in humans, suggesting a key role of WSP for establishment and persistence of the symbiosis in arthropods. Results Here we performed an analysis of 515 unique alleles found in 831 Wolbachia isolates, to investigate WSP structure, microevolution and population genetics. WSP shows an eight-strand transmembrane β-barrel structure with four extracellular loops containing hypervariable regions (HVRs. A clustering approach based upon patterns of HVR haplotype diversity was used to group similar WSP sequences and to estimate the relative contribution of mutation and recombination during early stages of protein divergence. Results indicate that although point mutations generate most of the new protein haplotypes, recombination is a predominant force triggering diversity since the very first steps of protein evolution, causing at least 50% of the total amino acid variation observed in recently diverged proteins. Analysis of synonymous variants indicates that individual WSP protein types are subject to a very rapid turnover and that HVRs can accommodate a virtually unlimited repertoire of peptides. Overall distribution of WSP across hosts supports a non-random association of WSP with the host genus, although extensive horizontal transfer has occurred also in recent times. Conclusions In OMPs of vertebrate pathogens, large recombination impact, positive

  15. Spatial arrangement of rhodopsin in retinal rod outer segment membranes studied by spin-labeling and pulsed electron double resonance

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Satoshi [Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Department of Space and Earth Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Hara, Hideyuki [Bruker Biospin, Yokohama, Kanagawa 215-0022 (Japan); Tokunaga, Fumio [Department of Space and Earth Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Arata, Toshiaki, E-mail: arata@bio.sci.osaka-u.ac.jp [Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Department of Space and Earth Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Use of spin labeling and PELDOR to measure inter-rhodopsin distance in ROS. Black-Right-Pointing-Pointer Strong decay of PELDOR signal indicated a high density (mM range) of rhodopsin. Black-Right-Pointing-Pointer The decay was modeled by rhodopsin monomers dispersed in a planar membrane. -- Abstract: We have determined the spatial arrangement of rhodopsin in the retinal rod outer segment (ROS) membrane by measuring the distances between rhodopsin molecules in which native cysteines were spin-labeled at {approx}1.0 mol/mol rhodopsin. The echo modulation decay of pulsed electron double resonance (PELDOR) from spin-labeled ROS curved slightly with strong background decay. This indicated that the rhodopsin was densely packed in the retina and that the rhodopsin molecules were not aligned well. The curve was simulated by a model in which rhodopsin is distributed randomly as monomers in a planar membrane.

  16. Comparison of dot-ELISA and standard ELISA for detection of Neisseria meningitidis outer membrane complex-specific antibodies

    Directory of Open Access Journals (Sweden)

    Elza FT Belo

    2010-02-01

    Full Text Available Dot-ELISA using the outer membrane complex antigens of Neisseria meningitidis as a target was standardized for rapid detection of meningococcal-specific antibodies in human serum. We investigated the level of meningococcal-specific IgG, IgA, and IgM in serum using dot-ELISA with outer membrane antigens prepared from Neisseria meningitidis serotype B:4.19:P1.15,3,7,9 (a strain isolated from a Brazilian epidemic. The dot-ELISA is based on the same principles as the standard ELISA and is useful for detection of anti-N. meningitidis B antibodies in serum of patients with meningococcal infections. For the assay, outer membrane complexes (OMCs were absorbed by nitrocellulose membrane and blocked with a 5% skim milk solution. Serum samples were drawn upon hospital admission and during convalescence from patients with meningococcal septicemia, and single samples were drawn from uninfected controls. We retrospectively examined a total of 57 serum samples: 35 from patients infected with N. meningitidis B, 12 from patients infected with Haemophilus influenzae b, and 10 from health individuals. When performed at room temperature, dot-ELISA took approximately four hours to perform, and the optimum antigen concentration was 0.42 µg per dot. The specificity of IgG, IgM, and IgA demonstrates that dot-ELISA using OMCs from N. meningitidis B as a target is suitable for serologic verification of clinically suspected meningococcal disease in patients and for titer determination of antibodies produced during different phases of natural infection. Furthermore, the sensitivity of dot-ELISA was comparable to that of standard ELISA. Overall, dot-ELISA is simple to perform, rapid, and low cost. Further validation of the test as a screening tool is required.

  17. Purification of integral outer-membrane protein OmpC, a surface antigen from Salmonella typhi for structure-function studies: a method applicable to enterobacterial major outer-membrane protein.

    Science.gov (United States)

    Arockiasamy, A; Krishnaswamy, S

    2000-07-15

    Extraction of the outer-membrane porin, OmpC, from Salmonella typhi Ty21a was done by using a modified salt-extraction procedure. It was possible to extract only the major outer-membrane protein (OMP) from the crude membrane using this method. Aberrant lipopolysaccharide (LPS) production in the galE mutant Ty21a has resulted in more isoforms of OmpC and subsequently led to anomalous mobility in SDS-PAGE. The purity of the preparation was confirmed by denaturing urea SDS-PAGE and N-terminal sequencing. The major OMP extracts had LPS of both bound and free forms. The free form of LPS could be removed by gel filtration and the bound form, largely, was removed using ion-exchange chromatography and by passing through ultrafiltration devices. This method has been used to extract the native trimer of OmpC, the major OMP, in a large scale, for structure-function studies. S. typhi Ty21a OmpC preparation yielded reproducible diffraction-quality crystals. Extracts of porin from wild-type Escherichia coli HB101, grown under high osmolarity conditions, showed a single species of OMP on SDS-PAGE. This suggests the possible application of the method to other gram-negative bacterial porins. PMID:10929809

  18. Lipopolysaccharide density and structure govern the extent and distance of nanoparticle interaction with actual and model bacterial outer membranes

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Kurt H.; Gunsolus, Ian L.; Kuech, Thomas R.; Troiano, Julianne M.; Melby, Eric S.; Lohse, Samuel E.; Hu, Dehong; Chrisler, William B.; Murphy, Catherine; Orr, Galya; Geiger, Franz M.; Haynes, Christy L.; Pedersen, Joel A.

    2015-07-24

    Design of nanomedicines and nanoparticle-based antimicrobial and antifouling formulations, and assessment of the potential implications of nanoparticle release into the environment require understanding nanoparticle interaction with bacterial surfaces. Here we demonstrate electrostatically driven association of functionalized nanoparticles with lipopolysaccharides of Gram-negative bacterial outer membranes and find that lipopolysaccharide structure influences the extent and location of binding relative to the lipid-solution interface. By manipulating the lipopolysaccharide content in Shewanella oneidensis outer membranes, we observed electrostatically driven interaction of cationic gold nanoparticles with the lipopolysaccharide-containing leaflet. We probed this interaction by quartz crystal microbalance with dissipation monitoring (QCM-D) and second harmonic generation (SHG) using solid-supported lipopolysaccharide-containing bilayers. Association of cationic nanoparticles increased with lipopolysaccharide content, while no association of anionic nanoparticles was observed. The harmonic-dependence of QCM-D measurements suggested that a population of the cationic nanoparticles was held at a distance from the outer leaflet-solution interface of bilayers containing smooth lipopolysaccharides (those bearing a long O-polysaccharide). Additionally, smooth lipopolysaccharides held the bulk of the associated cationic particles outside of the interfacial zone probed by SHG. Our results demonstrate that positively charged nanoparticles are more likely to interact with Gram-negative bacteria than are negatively charged particles, and this interaction occurs primarily through lipopolysaccharides.

  19. Release of outer membrane fragments from wild-type Escherichia coli and from several E. coli lipopolysaccharide mutants by EDTA and heat shock treatments.

    OpenAIRE

    Marvin, H J; ter Beest, M B; Witholt, B

    1989-01-01

    EDTA-induced outer membrane losses from whole cells of wild-type Escherichia coli (O111:B4) and several lipopolysaccharide (LPS) mutants derived from E. coli K-12 D21 were analyzed. EDTA treatment induced losses of LPS (up to 40%), outer membrane proteins OmpA, OmpF/C, and lipoprotein, periplasmic proteins, and phosphatidylethanolamine. The extent of these releases was strain specific. Successively more EDTA was necessary to induce these losses from strains containing LPS with increasing poly...

  20. Protection of immunocompromised mice against lethal infection with Pseudomonas aeruginosa by active or passive immunization with recombinant P. aeruginosa outer membrane protein F and outer membrane protein I fusion proteins.

    OpenAIRE

    von Specht, B U; Knapp, B.; Muth, G; Bröker, M.; Hungerer, K D; Diehl, K D; Massarrat, K; Seemann, A; Domdey, H

    1995-01-01

    Recombinant outer membrane proteins (Oprs) of Pseudomonas aeruginosa were expressed in Escherichia coli as glutathione S-transferase (GST)-linked fusion proteins. GST-linked Oprs F and I (GST-OprF190-350 [GST linked to OprF spanning amino acids 190 to 350] and GST-OprI21-83, respectively) and recombinant hybrid Oprs (GST-OprF190-342-OprI21-83 and GST-OprI21-83-OprF190-350) were isolated and tested for their efficacy as vaccines in immunodeficient mice. GST-OprF-OprI protected the mice against...

  1. Roles of the Protruding Loop of Factor B Essential for the Localization of Lipoproteins (LolB) in the Anchoring of Bacterial Triacylated Proteins to the Outer Membrane*

    Science.gov (United States)

    Hayashi, Yumi; Tsurumizu, Ryoji; Tsukahara, Jun; Takeda, Kazuki; Narita, Shin-ichiro; Mori, Makiko; Miki, Kunio; Tokuda, Hajime

    2014-01-01

    The Lol system comprising five Lol proteins, LolA through LolE, sorts Escherichia coli lipoproteins to outer membranes. The LolCDE complex, an ATP binding cassette transporter in inner membranes, releases outer membrane-specific lipoproteins in an ATP-dependent manner, causing formation of the LolA-lipoprotein complex in the periplasm. LolA transports lipoproteins through the periplasm to LolB on outer membranes. LolB is itself a lipoprotein anchored to outer membranes, although the membrane anchor is functionally dispensable. LolB then localizes lipoproteins to outer membranes through largely unknown mechanisms. The crystal structure of LolB is similar to that of LolA, and it possesses a hydrophobic cavity that accommodates acyl chains of lipoproteins. To elucidate the molecular function of LolB, a periplasmic version of LolB, mLolB, was mutagenized at various conserved residues. Despite the lack of acyl chains, most defective mutants were insoluble. However, a derivative with glutamate in place of leucine 68 was soluble and unable to localize lipoproteins to outer membranes. This leucine is present in a loop protruding from mLolB into an aqueous environment, and no analogous loop is present in LolA. Thus, leucine 68 was replaced with other residues. Replacement by acidic, but not hydrophobic, residues generated for the first time mLolB derivatives that can accept but cannot localize lipoproteins to outer membranes. Moreover, deletion of the leucine with neighboring residues impaired the lipoprotein receptor activity. Based on these observations, the roles of the protruding loop of LolB in the last step of lipoprotein sorting are discussed. PMID:24569999

  2. Roles of the protruding loop of factor B essential for the localization of lipoproteins (LolB) in the anchoring of bacterial triacylated proteins to the outer membrane.

    Science.gov (United States)

    Hayashi, Yumi; Tsurumizu, Ryoji; Tsukahara, Jun; Takeda, Kazuki; Narita, Shin-ichiro; Mori, Makiko; Miki, Kunio; Tokuda, Hajime

    2014-04-11

    The Lol system comprising five Lol proteins, LolA through LolE, sorts Escherichia coli lipoproteins to outer membranes. The LolCDE complex, an ATP binding cassette transporter in inner membranes, releases outer membrane-specific lipoproteins in an ATP-dependent manner, causing formation of the LolA-lipoprotein complex in the periplasm. LolA transports lipoproteins through the periplasm to LolB on outer membranes. LolB is itself a lipoprotein anchored to outer membranes, although the membrane anchor is functionally dispensable. LolB then localizes lipoproteins to outer membranes through largely unknown mechanisms. The crystal structure of LolB is similar to that of LolA, and it possesses a hydrophobic cavity that accommodates acyl chains of lipoproteins. To elucidate the molecular function of LolB, a periplasmic version of LolB, mLolB, was mutagenized at various conserved residues. Despite the lack of acyl chains, most defective mutants were insoluble. However, a derivative with glutamate in place of leucine 68 was soluble and unable to localize lipoproteins to outer membranes. This leucine is present in a loop protruding from mLolB into an aqueous environment, and no analogous loop is present in LolA. Thus, leucine 68 was replaced with other residues. Replacement by acidic, but not hydrophobic, residues generated for the first time mLolB derivatives that can accept but cannot localize lipoproteins to outer membranes. Moreover, deletion of the leucine with neighboring residues impaired the lipoprotein receptor activity. Based on these observations, the roles of the protruding loop of LolB in the last step of lipoprotein sorting are discussed. PMID:24569999

  3. Shewanella oneidensis MR-1 Nanowires are Outer Membrane and Periplasmic Extensions of the Extracellular Electron Transport Components

    Energy Technology Data Exchange (ETDEWEB)

    Pirbadian, S.; Barchinger, S. E.; Leung, K. M.; Byun, H. S.; Jangir, Y.; Bouhenni, Rachida; Reed, Samantha B.; Romine, Margaret F.; Saffarini, Daad; Shi, Liang; Gorby, Yuri A.; Golbeck, J. H.; El-Naggar, Mohamed Y.

    2014-08-20

    Bacterial nanowires offer an extracellular electron transport (EET) pathway for linking the respiratory chain of bacteria to external surfaces, including oxidized metals in the environment and engineered electrodes in renewable energy devices. Despite the global, environmental, and technological consequences of this biotic-abiotic interaction, the composition, physiological relevance, and electron transport mechanisms of bacterial nanowires remain unclear. We report the first in vivo observations of the formation and respiratory impact of nanowires in the model metal-reducing microbe Shewanella neidensis MR-1. Using live fluorescence measurements, immunolabeling, and quantitative gene expression analysis, we report that S. oneidensis MR-1 nanowires are extensions of the outer membrane and periplasm that include the multiheme cytochromes responsible for EET, rather than pilin-based structures, as previously thought. These bacterial nanowires were also associated with outer membrane vesicles and vesicle chains, structures ubiquitous in gram-negative bacteria. Redoxfunctionalized membrane and vesicular extensions may represent a general microbial strategy for electron transport and energy distribution.

  4. Evaluation of methods for predicting the topology of β-barrel outer membrane proteins and a consensus prediction method

    Directory of Open Access Journals (Sweden)

    Hamodrakas Stavros J

    2005-01-01

    Full Text Available Abstract Background Prediction of the transmembrane strands and topology of β-barrel outer membrane proteins is of interest in current bioinformatics research. Several methods have been applied so far for this task, utilizing different algorithmic techniques and a number of freely available predictors exist. The methods can be grossly divided to those based on Hidden Markov Models (HMMs, on Neural Networks (NNs and on Support Vector Machines (SVMs. In this work, we compare the different available methods for topology prediction of β-barrel outer membrane proteins. We evaluate their performance on a non-redundant dataset of 20 β-barrel outer membrane proteins of gram-negative bacteria, with structures known at atomic resolution. Also, we describe, for the first time, an effective way to combine the individual predictors, at will, to a single consensus prediction method. Results We assess the statistical significance of the performance of each prediction scheme and conclude that Hidden Markov Model based methods, HMM-B2TMR, ProfTMB and PRED-TMBB, are currently the best predictors, according to either the per-residue accuracy, the segments overlap measure (SOV or the total number of proteins with correctly predicted topologies in the test set. Furthermore, we show that the available predictors perform better when only transmembrane β-barrel domains are used for prediction, rather than the precursor full-length sequences, even though the HMM-based predictors are not influenced significantly. The consensus prediction method performs significantly better than each individual available predictor, since it increases the accuracy up to 4% regarding SOV and up to 15% in correctly predicted topologies. Conclusions The consensus prediction method described in this work, optimizes the predicted topology with a dynamic programming algorithm and is implemented in a web-based application freely available to non-commercial users at http://bioinformatics.biol.uoa.gr/ConBBPRED.

  5. Surface Immunolabeling and Consensus Computational Framework To Identify Candidate Rare Outer Membrane Proteins of Treponema pallidum▿ †

    Science.gov (United States)

    Cox, David L.; Luthra, Amit; Dunham-Ems, Star; Desrosiers, Daniel C.; Salazar, Juan C.; Caimano, Melissa J.; Radolf, Justin D.

    2010-01-01

    Treponema pallidum reacts poorly with the antibodies present in rabbit and human syphilitic sera, a property attributed to the paucity of proteins in its outer membrane. To better understand the basis for the syphilis spirochete's “stealth pathogenicity,” we used a dual-label, 3-step amplified assay in which treponemes encapsulated in gel microdroplets were probed with syphilitic sera in parallel with anti-FlaA antibodies. A small (approximately 5 to 10%) but reproducible fraction of intact treponemes bound IgG and/or IgM antibodies. Three lines of evidence supported the notion that the surface antigens were likely β-barrel-forming outer membrane proteins (OMPs): (i) surface labeling with anti-lipoidal (VDRL) antibodies was not observed, (ii) immunoblot analysis confirmed prior results showing that T. pallidum glycolipids are not immunoreactive, and (iii) labeling of intact organisms was not appreciably affected by proteinase K (PK) treatment. With this method, we also demonstrate that TprK (TP0897), an extensively studied candidate OMP, and TP0136, a lipoprotein recently reported to be surface exposed, are both periplasmic. Consistent with the immunolabeling studies, TprK was also found to lack amphiphilicity, a characteristic property of β-barrel-forming proteins. Using a consensus computational framework that combined subcellular localization and β-barrel structural prediction tools, we generated ranked groups of candidate rare OMPs, the predicted T. pallidum outer membrane proteome (OMPeome), which we postulate includes the surface-exposed molecules detected by our enhanced gel microdroplet assay. In addition to underscoring the syphilis spirochete's remarkably poor surface antigenicity, our findings help to explain the complex and shifting balance between pathogen and host defenses that characterizes syphilitic infection. PMID:20876295

  6. Crystal structure of the outer membrane protease OmpT from Escherichia coli suggests a novel catalytic site

    OpenAIRE

    Vandeputte-Rutten, Lucy; Kramer, R. Arjen; Kroon, Jan; Dekker, Niek; Egmond, Maarten R.; Gros, Piet

    2001-01-01

    OmpT from Escherichia coli belongs to a family of highly homologous outer membrane proteases, known as omptins, which are implicated in the virulence of several pathogenic Gram-negative bacteria. Here we present the crystal structure of OmpT, which shows a 10-stranded antiparallel β-barrel that protrudes far from the lipid bilayer into the extracellular space. We identified a putative binding site for lipopolysaccharide, a molecule that is essential for OmpT activity. The proteolytic site is ...

  7. Mitochondrial Carnitine Palmitoyltransferase 1a (CPT1a) Is Part of an Outer Membrane Fatty Acid Transfer Complex*

    OpenAIRE

    Lee, Kwangwon; Kerner, Janos; Hoppel, Charles L.

    2011-01-01

    CPT1a (carnitine palmitoyltransferase 1a) in the liver mitochondrial outer membrane (MOM) catalyzes the primary regulated step in overall mitochondrial fatty acid oxidation. It has been suggested that the fundamental unit of CPT1a exists as a trimer, which, under native conditions, could form a dimer of the trimers, creating a hexamer channel for acylcarnitine translocation. To examine the state of CPT1a in the MOM, we employed a combined approach of sizing by mass and isolation using an immu...

  8. Identification of a surface-exposed immunodominant epitope on outer membrane protein P1 of Haemophilus influenzae type b.

    OpenAIRE

    Proulx, C; Munson, R S; Grass, S; Hamel, J; Martin, D.; Brodeur, B R

    1991-01-01

    Eight murine monoclonal antibodies (MAbs) directed against outer membrane protein P1 of Haemophilus influenzae type b were generated and characterized. Seven of the eight MAbs reacted with recombinant P1 and purified P1 protein from H. influenzae type b strains MinnA and 1613; MAb P1.8 was specific for the latter strain. A panel of 32 nontypeable and 140 encapsulated Haemophilus strains recovered worldwide representing the major clonal families of serotypes a, b, and d was used to evaluate th...

  9. Two Outer Membrane Proteins Are Required for Maximal Type I Secretion of the Caulobacter crescentus S-Layer Protein

    OpenAIRE

    Toporowski, Michael C.; Nomellini, John F.; Awram, Peter; Smit, John

    2004-01-01

    Transport of RsaA, the crystalline S-layer subunit protein of Caulobacter crescentus, is mediated by a type I secretion mechanism. Two proteins have been identified that play the role of the outer membrane protein (OMP) component in the RsaA secretion machinery. The genes rsaFa and rsaFb were identified by similarity to the Escherichia coli hemolysin secretion OMP TolC by using the C. crescentus genome sequence. The rsaFa gene is located several kilobases downstream of the other transporter g...

  10. Isolation and characterization of channel-forming proteins in the outer membrane of E. coli and Borrelia species

    OpenAIRE

    Denker, Katrin

    2006-01-01

    In this study pore forming proteins of the gram-negative bacteria B. burgdorferi, B. duttonii and E.coli were investigated. Therefore the study is subdivided into three parts. In the first part outer membrane preparation of three relapsing fever Borrelia were investigated. In the second part the putative TolC homologue BB0124 of B. burgdorferi, the Lyme borreliosis agent, was studied. In the last part the influence of point mutants within the greasy slide of the maltose specific porin (LamB) ...

  11. Monoclonal antibodies against the iron regulated outer membrane Proteins of Acinetobacter baumannii are bactericidal

    OpenAIRE

    Goel Vikas; Kapil Arti

    2001-01-01

    Abstract Background Iron is an important nutrient required by all forms of life.In the case of human hosts,the free iron availability is 10-18M,which is far less than what is needed for the survival of the invading bacterial pathogen.To survive in such conditions, bacteria express new proteins in their outer membrane and also secrete iron chelators called siderophores. Results/ Discussion Acinetobacter baumannii ATCC 19606, a nosocomial pathogen which grows under iron restricted conditions, e...

  12. Molecular cloning and characterization of the structural gene for protein I, the major outer membrane protein of Neisseria gonorrhoeae.

    OpenAIRE

    Carbonetti, N H; Sparling, P F

    1987-01-01

    Protein I (P.I) is the major outer membrane protein of Neisseria gonorrhoeae and serves as a porin. By using oligonucleotide probes derived from the known amino-terminal sequence of the mature protein, we have cloned the gene encoding the P.I of gonococcal strain FA19 in three overlapping fragments and determined the DNA sequence. The gene sequence predicts a protein with characteristics typical of the porins of other Gram-negative bacteria. A clone expressing P.I in Escherichia coli was obta...

  13. The Transition from Closed to Open Conformation of Treponema pallidum Outer Membrane-associated Lipoprotein TP0453 Involves Membrane Sensing and Integration by Two Amphipathic Helices*

    Science.gov (United States)

    Luthra, Amit; Zhu, Guangyu; Desrosiers, Daniel C.; Eggers, Christian H.; Mulay, Vishwaroop; Anand, Arvind; McArthur, Fiona A.; Romano, Fabian B.; Caimano, Melissa J.; Heuck, Alejandro P.; Malkowski, Michael G.; Radolf, Justin D.

    2011-01-01

    The molecular architecture and composition of the outer membrane (OM) of Treponema pallidum (Tp), the noncultivable agent of venereal syphilis, differ considerably from those of typical Gram-negative bacteria. Several years ago we described TP0453, the only lipoprotein associated with the inner leaflet of the Tp OM. Whereas polypeptides of other treponemal lipoproteins are hydrophilic, non-lipidated TP0453 can integrate into membranes, a property attributed to its multiple amphipathic helices (AHs). Furthermore, membrane integration of the TP0453 polypeptide was found to increase membrane permeability, suggesting the molecule functions in a porin-like manner. To better understand the mechanism of membrane integration of TP0453 and its physiological role in Tp OM biogenesis, we solved its crystal structure and used mutagenesis to identify membrane insertion elements. The crystal structure of TP0453 consists of an α/β/α-fold and includes five stably folded AHs. In high concentrations of detergent, TP0453 transitions from a closed to open conformation by lateral movement of two groups of AHs, exposing a large hydrophobic cavity. Triton X-114 phase partitioning, liposome floatation assay, and bis-1-anilino-8-naphthalenesulfonate binding revealed that two adjacent AHs are critical for membrane sensing/integration. Using terbium-dipicolinic acid complex-loaded large unilamellar vesicles, we found that TP0453 increased efflux of fluorophore only at acidic pH. Gel filtration and cross-linking experiments demonstrated that one AH critical for membrane sensing/insertion also forms a dimeric interface. Based on structural dynamics and comparison with Mycobacterium tuberculosis lipoproteins LprG and LppX, we propose that TP0453 functions as a carrier of lipids, glycolipids, and/or derivatives during OM biogenesis. PMID:21965687

  14. Sensitivity of inhibition of rat liver mitochondrial outer-membrane carnitine palmitoyltransferase by malonyl-CoA to chemical- and temperature-induced changes in membrane fluidity.

    Science.gov (United States)

    Kolodziej, M P; Zammit, V A

    1990-01-01

    We have tested the possibility that alterations in the fluidity of the outer membrane of rat liver mitochondria could result in changes in the sensitivity of overt carnitine palmitoyltransferase (CPT I) to malonyl-CoA [Zammit (1986) Biochem. Soc. Trans. 14. 676-679]. The sensitivity of CPT I to malonyl-CoA inhibition was measured by using highly purified mitochondrial outer membranes prepared from fed or 48 h-starved rats in the presence and absence of agents that increase membrane fluidity by perturbing membrane lipid order [benzyl alcohol, isoamyl alcohol (3-methylbutan-l-ol) and 2-(2-methoxyethoxy)ethyl-8-(cis-2-n-octylpropyl)octanoate (A2C)]. All these agents resulted in marked decreases in the ability of malonyl-CoA to inhibit CPT I. This effect was accompanied by a modest increase in the absolute activity of CPT I in the absence of malonyl-CoA when the short-chain alcohols were used, but not when A2C was used, suggesting that the effect of increased membrane fluidity to decrease the malonyl-CoA sensitivity of CPT I may occur independently from other actions that may affect more directly the active site of the enzyme. In confirmation of the potential importance of fluidity changes, we showed that a marked increase in sensitivity of CPT I to malonyl-CoA could be produced when assays were performed at lower temperatures than those normally employed. These observations are discussed in the context of the slowness of the changes in CPT I sensitivity to malonyl-CoA inhibition that are induced by physiological perturbations. PMID:2268270

  15. Solid-state NMR of the Yersinia pestis outer membrane protein Ail in lipid bilayer nanodiscs sedimented by ultracentrifugation

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yi; Fujimoto, L. Miya; Yao, Yong; Marassi, Francesca M., E-mail: fmarassi@sbmri.org [Sanford-Burnham Medical Research Institute (United States)

    2015-04-15

    Solid-state NMR studies of sedimented soluble proteins has been developed recently as an attractive approach for overcoming the size limitations of solution NMR spectroscopy while bypassing the need for sample crystallization or precipitation (Bertini et al. Proc Natl Acad Sci USA 108(26):10396–10399, 2011). Inspired by the potential benefits of this method, we have investigated the ability to sediment lipid bilayer nanodiscs reconstituted with a membrane protein. In this study, we show that nanodiscs containing the outer membrane protein Ail from Yersinia pestis can be sedimented for solid-state NMR structural studies, without the need for precipitation or lyophilization. Optimized preparations of Ail in phospholipid nanodiscs support both the structure and the fibronectin binding activity of the protein. The same sample can be used for solution NMR, solid-state NMR and activity assays, facilitating structure–activity correlation experiments across a wide range of timescales.

  16. Solid-state NMR of the Yersinia pestis outer membrane protein Ail in lipid bilayer nanodiscs sedimented by ultracentrifugation

    International Nuclear Information System (INIS)

    Solid-state NMR studies of sedimented soluble proteins has been developed recently as an attractive approach for overcoming the size limitations of solution NMR spectroscopy while bypassing the need for sample crystallization or precipitation (Bertini et al. Proc Natl Acad Sci USA 108(26):10396–10399, 2011). Inspired by the potential benefits of this method, we have investigated the ability to sediment lipid bilayer nanodiscs reconstituted with a membrane protein. In this study, we show that nanodiscs containing the outer membrane protein Ail from Yersinia pestis can be sedimented for solid-state NMR structural studies, without the need for precipitation or lyophilization. Optimized preparations of Ail in phospholipid nanodiscs support both the structure and the fibronectin binding activity of the protein. The same sample can be used for solution NMR, solid-state NMR and activity assays, facilitating structure–activity correlation experiments across a wide range of timescales

  17. Development of new cloning vectors for the production of immunogenic outer membrane fusion proteins in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Cornelis, P.; Sierra, J.C.; Lim, A. Jr.; Malur, A. [Vrije Universiteit Brussel, Paardenstraat (Belgium)] [and others

    1996-02-01

    The Pseudomonas aeruginosa lipoprotein gene (oprI) was modified by cloning an in-frame polylinker in both orientations at the end of oprI. The resulting plasmids pVUBI and pVUB2 allow high lipoprotein production in E. coli after IPTG induction. The modified lipoproteins are present in the outer membrane and surface-exposed. Outer membrane-bound fusion proteins of different sizes were produced and used to generate antibodies without use of adjuvant. An 87 bp DNA fragment from the vp72 capsid protein gene of African Swine Fever virus (ASFV) and the entire Leishmania major glycoprotein gp63 gene were expressed in this system. Finally, a fusion lipoprotein containing a 16 amino acid epitope from the preS2b region of Hepatitis B virus (HBV) was presented by an antigen-presenting cell line to a T-cell hybridoma while the corresponding cross-linked S2b peptide was not. The results suggest that OprI-based fusion proteins can be used to generate both humoral and cellular immune responses. 44 refs., 7 figs.

  18. Crystallization and preliminary crystallographic studies of the C-terminal domain of outer membrane protein A from enterohaemorrhagic Escherichia coli

    International Nuclear Information System (INIS)

    In this study, recombinant OmpAC from EHEC was purified and crystallized and a diffraction data set was collected to 2.7 Å resolution. Outer membrane protein A (OmpA) of enterohaemorrhagic Escherichia coli (EHEC) plays multiple roles in bacterial physiology and pathogenesis, such as mediation of bacterial conjunction, maintenance of cell shape, induction of adhesion of EHEC to host cells etc. Better understanding of the functions of OmpA will help in the control of EHEC infections. OmpA is composed of two domains: the N-terminal domain and the C-terminal domain. The N-terminal domain is a β-barrel structure and embeds in the outer membrane of the bacterium. The structure and function of the C-terminal domain of OmpA (OmpAC) remain elusive. In this study, recombinant OmpAC from EHEC was purified and crystallized and a diffraction data set was collected to 2.7 Å resolution. The crystals belonged to space group I4132, with unit-cell parameter a = 158.99 Å. The Matthews coefficient and solvent content were calculated to be 2.55 Å3 Da−1 and 51.77%, respectively, for two molecules in the asymmetric unit

  19. Purification, crystallization and preliminary X-ray crystallographic analysis of the outer membrane lipoprotein NlpE from Escherichia coli

    International Nuclear Information System (INIS)

    A water-soluble mutant of the outer membrane lipoprotein NlpE has been overexpressed, purified and crystallized. Diffraction data from two crystal forms obtained under two different conditions were collected to 2.8 and 3.0 Å resolution and processed in space groups P43212 and C2, respectively. The outer membrane lipoprotein NlpE functions in stress response by activating the Cpx signal transduction pathway. The nonlipidated Cys1Ala mutant of NlpE with a C-terminal His tag from Escherichia coli was constructed, overexpressed and purified. Crystals of NlpE were grown in two distinct forms by the sitting-drop vapour-diffusion method at 298 K. The tetragonal crystals diffracted to 2.8 Å resolution and belong to space group P43212. The monoclinic crystals diffracted to 3.0 Å resolution and belong to space group C2. Initial phases were obtained from a tetragonal crystal of selenomethionylated protein by the MAD method

  20. Undressing of Waddlia chondrophila to enrich its outer membrane proteins to develop a new species-specific ELISA

    Directory of Open Access Journals (Sweden)

    J. Lienard

    2014-01-01

    Full Text Available Waddlia chondrophila, an obligate intracellular bacterium of the Chlamydiales order, is considered as an agent of bovine abortion and a likely cause of miscarriage in humans. Its role in respiratory diseases was questioned after the detection of its DNA in clinical samples taken from patients suffering from pneumonia or bronchiolitis. To better define the role of Waddlia in both miscarriage and pneumonia, a tool allowing large-scale serological investigations of Waddlia seropositivity is needed. Therefore, enriched outer membrane proteins of W. chondrophila were used as antigens to develop a specific ELISA. After thorough analytical optimization, the ELISA was validated by comparison with micro-immunofluorescence and it showed a sensitivity above 85% with 100% specificity. The ELISA was subsequently applied to human sera to specify the role of W. chondrophila in pneumonia. Overall, 3.6% of children showed antibody reactivity against W. chondrophila but no significant difference was observed between children with and without pneumonia. Proteomic analyses were then performed using mass spectrometry, highlighting members of the outer membrane protein family as the dominant proteins. The major Waddlia putative immunogenic proteins were identified by immunoblot using positive and negative human sera. The new ELISA represents an efficient tool with high throughput applications. Although no association with pneumonia and Waddlia seropositivity was observed, this ELISA could be used to specify the role of W. chondrophila in miscarriage and in other diseases.

  1. Expression, crystallization and preliminary X-ray crystallographic studies of the outer membrane protein OmpW from Escherichia coli

    International Nuclear Information System (INIS)

    The outer membrane protein OmpW from E. coli was overexpressed in inclusion bodies and refolded with the help of detergent. The protein has been crystallized and the crystals diffract to 3.5 Å resolution. OmpW is an eight-stranded 21 kDa molecular-weight β-barrel protein from the outer membrane of Gram-negative bacteria. It is a major antigen in bacterial infections and has implications in antibiotic resistance and in the oxidative degradation of organic compounds. OmpW from Escherichia coli was cloned and the protein was expressed in inclusion bodies. A method for refolding and purification was developed which yields properly folded protein according to circular-dichroism measurements. The protein has been crystallized and crystals were obtained that diffracted to a resolution limit of 3.5 Å. The crystals belong to space group P422, with unit-cell parameters a = 122.5, c = 105.7 Å. A homology model of OmpW is presented based on known structures of eight-stranded β-barrels, intended for use in molecular-replacement trials

  2. A novel Geobacteraceae-specific outer membrane protein J (OmpJ is essential for electron transport to Fe (III and Mn (IV oxides in Geobacter sulfurreducens

    Directory of Open Access Journals (Sweden)

    Schiffer Marianne

    2005-07-01

    Full Text Available Abstract Background Metal reduction is thought to take place at or near the bacterial outer membrane and, thus, outer membrane proteins in the model dissimilatory metal-reducing organism Geobacter sulfurreducens are of interest to understand the mechanisms of Fe(III reduction in the Geobacter species that are the predominant Fe(III reducers in many environments. Previous studies have implicated periplasmic and outer membrane cytochromes in electron transfer to metals. Here we show that the most abundant outer membrane protein of G. sulfurreducens, OmpJ, is not a cytochrome yet it is required for metal respiration. Results When outer membrane proteins of G. sulfurreducens were separated via SDS-PAGE, one protein, designated OmpJ (outer membrane protein J, was particularly abundant. The encoding gene, which was identified from mass spectrometry analysis of peptide fragments, is present in other Geobacteraceae, but not in organisms outside this family. The predicted localization and structure of the OmpJ protein suggested that it was a porin. Deletion of the ompJ gene in G. sulfurreducens produced a strain that grew as well as the wild-type strain with fumarate as the electron acceptor but could not grow with metals, such as soluble or insoluble Fe (III and insoluble Mn (IV oxide, as the electron acceptor. The heme c content in the mutant strain was ca. 50% of the wild-type and there was a widespread loss of multiple cytochromes from soluble and membrane fractions. Transmission electron microscopy analyses of mutant cells revealed an unusually enlarged periplasm, which is likely to trigger extracytoplasmic stress response mechanisms leading to the degradation of periplasmic and/or outer membrane proteins, such as cytochromes, required for metal reduction. Thus, the loss of the capacity for extracellular electron transport in the mutant could be due to the missing c-type cytochromes, or some more direct, but as yet unknown, role of OmpJ in metal

  3. Structure, Function and Regulation of Outer Membrane Proteins Involved in Drug Transport in Enterobactericeae: the OmpF/C – TolC Case

    OpenAIRE

    Masi, Muriel; Pagès, Jean-Marie

    2013-01-01

    Antibiotic translocation across membranes of Gram-negative bacteria is a key step for the activity on their specific intracellular targets. Resistant bacteria control their membrane permeability as a first line of defense to protect themselves against external toxic compounds such as antibiotics and biocides. On one hand, resistance to small hydrophilic antibiotics such as ß-lactams and fluoroquinolones frequently results from the « closing » of their way in: the general outer membrane porins...

  4. Engineering of the E. coli Outer Membrane Protein FhuA to overcome the Hydrophobic Mismatch in Thick Polymeric Membranes

    Directory of Open Access Journals (Sweden)

    Fioroni Marco

    2011-03-01

    Full Text Available Abstract Background Channel proteins like the engineered FhuA Δ1-159 often cannot insert into thick polymeric membranes due to a mismatch between the hydrophobic surface of the protein and the hydrophobic surface of the polymer membrane. To address this problem usually specific block copolymers are synthesized to facilitate protein insertion. Within this study in a reverse approach we match the protein to the polymer instead of matching the polymer to the protein. Results To increase the FhuA Δ1-159 hydrophobic surface by 1 nm, the last 5 amino acids of each of the 22 β-sheets, prior to the more regular periplasmatic β-turns, were doubled leading to an extended FhuA Δ1-159 (FhuA Δ1-159 Ext. The secondary structure prediction and CD spectroscopy indicate the β-barrel folding of FhuA Δ1-159 Ext. The FhuA Δ1-159 Ext insertion and functionality within a nanocontainer polymeric membrane based on the triblock copolymer PIB1000-PEG6000-PIB1000 (PIB = polyisobutylene, PEG = polyethyleneglycol has been proven by kinetic analysis using the HRP-TMB assay (HRP = Horse Radish Peroxidase, TMB = 3,3',5,5'-tetramethylbenzidine. Identical experiments with the unmodified FhuA Δ1-159 report no kinetics and presumably no insertion into the PIB1000-PEG6000-PIB1000 membrane. Furthermore labeling of the Lys-NH2 groups present in the FhuA Δ1-159 Ext channel, leads to controllability of in/out flux of substrates and products from the nanocontainer. Conclusion Using a simple "semi rational" approach the protein's hydrophobic transmembrane region was increased by 1 nm, leading to a predicted lower hydrophobic mismatch between the protein and polymer membrane, minimizing the insertion energy penalty. The strategy of adding amino acids to the FhuA Δ1-159 Ext hydrophobic part can be further expanded to increase the protein's hydrophobicity, promoting the efficient embedding into thicker/more hydrophobic block copolymer membranes.

  5. The mitochondrial outer membrane protein hFis1 regulates mitochondrial morphology and fission through self-interaction

    International Nuclear Information System (INIS)

    Mitochondrial fission in mammals is mediated by at least two proteins, DLP1/Drp1 and hFis1. DLP1 mediates the scission of mitochondrial membranes through GTP hydrolysis, and hFis1 is a putative DLP1 receptor anchored at the mitochondrial outer membrane by a C-terminal single transmembrane domain. The cytosolic domain of hFis1 contains six α-helices (α1-α6) out of which α2-α5 form two tetratricopeptide repeat (TPR) folds. In this study, by using chimeric constructs, we demonstrated that the cytosolic domain contains the necessary information for hFis1 function during mitochondrial fission. By using transient expression of different mutant forms of the hFis1 protein, we found that hFis1 self-interaction plays an important role in mitochondrial fission. Our results show that deletion of the α1 helix greatly increased the formation of dimeric and oligomeric forms of hFis1, indicating that α1 helix functions as a negative regulator of the hFis1 self-interaction. Further mutational approaches revealed that a tyrosine residue in the α5 helix and the linker between α3 and α4 helices participate in hFis1 oligomerization. Mutations causing oligomerization defect greatly reduced the ability to induce not only mitochondrial fragmentation by full-length hFis1 but also the formation of swollen ball-shaped mitochondria caused by α1-deleted hFis1. Our data suggest that oligomerization of hFis1 in the mitochondrial outer membrane plays a role in mitochondrial fission, potentially through participating in fission factor recruitment

  6. Decreased outer membrane permeability protects mycobacteria from killing by ubiquitin-derived peptides.

    Science.gov (United States)

    Purdy, Georgiana E; Niederweis, Michael; Russell, David G

    2009-09-01

    Ubiquitin-derived peptides are bactericidal in vitro and contribute to the mycobactericidal activity of the lysosome. To further define interactions of ubiquitin-derived peptides with mycobacteria, we screened for mutants with increased resistance to the bactericidal activity of the synthetic ubiquitin-derived peptide Ub2. The four Ub2-resistant Mycobacterium smegmatis mutants were also resistant to the bactericidal action of other antimicrobial peptides and macrophages. Two mutants were in the mspA gene encoding the main M. smegmatis porin. Using a translocation-deficient MspA point mutant, we showed that susceptibility of M. smegmatis to Ub2 was independent of MspA channel activity. Instead, the M. smegmatis Ub2-resistant mutants shared a common phenotype of decreased cell wall permeability compared with wild-type bacteria. Expression of mspA rendered Mycobacterium tuberculosis CDC1551 more susceptible both to ubiquitin-derived peptides in vitro and to lysosomal killing in macrophages. Finally, biochemical assays designed to assess membrane integrity indicated that Ub2 treatment impairs membrane function of M. smegmatis and M. tuberculosis cells. The M. smegmatis Ub2-resistant mutants were more resistant than wild-type M. smegmatis to this damage. We conclude that Ub2 targets mycobacterial membranes and that reduced membrane permeability provides mycobacteria intrinsic resistance against antimicrobial compounds including bactericidal ubiquitin-derived peptides. PMID:19682257

  7. Reconstitution of nanomachine driving the assembly of proteins into bacterial outer membranes

    International Nuclear Information System (INIS)

    Over 9.5 million people die each year due to infectious diseases caused by pathogens. Many species of pathogenic bacteria require nanomachines acting like a molecular pump that shuttle key disease-causing molecules (proteins) from inside bacteria cells to the outside surface, priming the bacteria for infections. How such proteins are assembled remains an important question in biology. If we can inhibit the nanomachines function in transporting specific violence factors, it would disable the disease process. Therefore it is crucial to understand how the proteins are transported through the nanomachines from the periplasm to the extracellular space. Measuring the activity of the component parts of membrane-embedded nanomachines in solution is a major technological challenge. The translocation assembly module (the TAM) is a nanomachine required for virulence of bacterial pathogens. We have reconstituted a membrane containing the TAM onto a gold surface for characterization by Quartz Crystal Microbalance with Dissipation (QCM-D) and Magnetic Contrast Neutron Reflectrometry (MCNR). We show that dynamic movements within the TamA component of the TAM are initiated in the presence of a substrate protein, Ag43, and that these movements recapitulate an initial stage in membrane protein assembly. The reconstituted system provides a powerful new means to study molecular movements in biological membranes, and the technology is widely applicable to studying the dynamics of diverse cellular nanomachines.

  8. Role of Tim50 in the transfer of precursor proteins from the outer to the inner membrane of mitochondria.

    Science.gov (United States)

    Mokranjac, Dejana; Sichting, Martin; Popov-Celeketić, Dusan; Mapa, Koyeli; Gevorkyan-Airapetov, Lada; Zohary, Keren; Hell, Kai; Azem, Abdussalam; Neupert, Walter

    2009-03-01

    Transport of essentially all matrix and a number of inner membrane proteins is governed, entirely or in part, by N-terminal presequences and requires a coordinated action of the translocases of outer and inner mitochondrial membranes (TOM and TIM23 complexes). Here, we have analyzed Tim50, a subunit of the TIM23 complex that is implicated in transfer of precursors from TOM to TIM23. Tim50 is recruited to the TIM23 complex via Tim23 in an interaction that is essentially independent of the rest of the translocase. We find Tim50 in close proximity to the intermembrane space side of the TOM complex where it recognizes both types of TIM23 substrates, those that are to be transported into the matrix and those destined to the inner membrane, suggesting that Tim50 recognizes presequences. This function of Tim50 depends on its association with TIM23. We conclude that the efficient transfer of precursors between TOM and TIM23 complexes requires the concerted action of Tim50 with Tim23. PMID:19144822

  9. Vaccination with the Defined Chlamydial Secreted Protein CPAF Induces Robust Protection Against Female Infertility Following Repeated Genital Chlamydial Challenge

    OpenAIRE

    Murthy, Ashlesh K.; Li, Weidang; Guentzel, M. Neal; Zhong, Guangming; Arulanandam, Bernard P.

    2011-01-01

    We previously have shown the efficacy of recombinant (r) chlamydial protease-like activity factor (CPAF) vaccination against hydrosalpinx development following primary genital chlamydial challenge. In this study, we evaluated further the protection induced by rCPAF vaccination against infertility. Following primary challenge, fertility levels were not significantly different between the mock- and CPAF-vaccinated and Chlamydia alone challenged mice. However, following secondary genital chlamyd...

  10. Iodo-gen-catalysed iodination for identification of surface-exposed outer membrane proteins of Escherichia coli K12

    International Nuclear Information System (INIS)

    Surface proteins of Escherichia coli K12 were identified by radiolabelling using 1,3,4,6 - tatrachloro, 3-alpha, 6-alpha - diphenylgycoluryl (Iodo-Gen) and 131I. Labelled proteins were localized in the outer membrane of the cells. Using this technique it has been possible to observe technique it has been possible to observe that the eletrophoretic pattern of surface proteins changes according to the growth phases in culture. Radiolabelling of E.coli cells inculbated at 420C showed that the syntheses of two surface proteins were temperature-inducible. At least one such protein may be involved in the process of cell division in E.coli K12. (author)

  11. VDAC electronics: 3. VDAC-Creatine kinase-dependent generation of the outer membrane potential in respiring mitochondria.

    Science.gov (United States)

    Lemeshko, Victor V

    2016-07-01

    Mitochondrial energy in cardiac cells has been reported to be channeled into the cytosol through the intermembrane contact sites formed by the adenine nucleotide translocator, creatine kinase and VDAC. Computational analysis performed in this study showed a high probability of the outer membrane potential (OMP) generation coupled to such a mechanism of energy channeling in respiring mitochondria. OMPs, positive inside, calculated at elevated concentrations of creatine are high enough to restrict ATP release from mitochondria, to significantly decrease the apparent Km,ADP for state 3 respiration and to maintain low concentrations of Ca(2+) in the mitochondrial intermembrane space. An inhibition by creatine of Ca(2+)-induced swelling of isolated mitochondria and other protective effects of creatine reported in the literature might be explained by generated positive OMP. We suggest that VDAC-creatine kinase-dependent generation of OMP represents a novel physiological factor controlling metabolic state of mitochondria, cell energy channeling and resistance to death. PMID:27085978

  12. Cloning and sequence analysis of hsf, an outer membrane protein gene of Pasteurella multocida serotype B:2

    Directory of Open Access Journals (Sweden)

    A. Priyadarshini

    2014-12-01

    Full Text Available Aim: The present study was undertaken to clone, sequence and analyze the hsf, an outer membrane protein gene of Pasteurella multocida serotype B:2 Materials and Methods: hsf gene was amplified from genomic DNA of P. multocida. Polymerase chain reaction (PCR product was cloned in pET-32a vector and was characterized. hsf gene was sequenced, analyzed and phylogenetic tree was constructed taking sequences of other strains. Results: Amplicon size was found to be 785 bp. Recombinant got characterized through colony PCR and restriction enzyme analysis. Conclusion: hsf gene of P. multocida serotype B is similar to serotype A, but different from serotype D. Further work is needed to evaluate role of Hsf protein in protection studies and to study the antigenic properties of this recombinant protein as a candidate for vaccine.

  13. Improved diagnostic PCR assay for Actinobacillus pleuropneumoniae based on the nucleotide sequence of an outer membrane lipoprotein

    DEFF Research Database (Denmark)

    Gram, Trine; Ahrens, Peter

    1998-01-01

    species related to A. pleuropneumoniae or isolated from pigs were assayed. They were all found negative in the PCR, as were tonsil cultures from 50 pigs of an A. pleuropneumoniae-negative herd. The sensitivity assessed by agarose gel analysis of the PCR product was 10(2) CFU/PCR test tube. The specificity......The gene (omlA) coding for an outer membrane protein of Actinobacillus pleuropneumoniae serotypes 1 and 5 has been described earlier and has formed the basis for development of a specific PCR assay, The corresponding regions of all 12 A. pleuropneumoniae reference strains of biovar 1 were sequenced...... and sensitivity of this PCR compared to those of culture suggest the use of this PCR for routine identification of A. pleuropneumoniae....

  14. Crystal Structures of the Outer Membrane Domain of Intimin and Invasin from Enterohemorrhagic E. coli and Enteropathogenic Y. pseudotuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Fairman, James W.; Dautin, Nathalie; Wojtowicz, Damian; Liu, Wei; Noinaj, Nicholas; Barnard, Travis J.; Udho, Eshwar; Przytycka, Teresa M.; Cherezov, Vadim; Buchanan, Susan K. (CUA); (Einstein); (NIH); (Scripps)

    2012-12-10

    Intimins and invasins are virulence factors produced by pathogenic Gram-negative bacteria. They contain C-terminal extracellular passenger domains that are involved in adhesion to host cells and N-terminal {beta} domains that are embedded in the outer membrane. Here, we identify the domain boundaries of an E. coli intimin {beta} domain and use this information to solve its structure and the {beta} domain structure of a Y. pseudotuberculosis invasin. Both {beta} domain structures crystallized as monomers and reveal that the previous range of residues assigned to the {beta} domain also includes a protease-resistant domain that is part of the passenger. Additionally, we identify 146 nonredundant representative members of the intimin/invasin family based on the boundaries of the highly conserved intimin and invasin {beta} domains. We then use this set of sequences along with our structural data to find and map the evolutionarily constrained residues within the {beta} domain.

  15. Major heat-modifiable outer membrane protein in gram-negative bacteria: comparison with the ompA protein of Escherichia coli.

    OpenAIRE

    Beher, M G; Schnaitman, C A; Pugsley, A P

    1980-01-01

    The outer membranes of several strains of Escherichia coli, other enteric bacteria, and a variety of nonenteric gram-negative bacteria all contain a major heat-modifiable protein similar to the OmpA protein of E. coli K-12. The heat-modifiable proteins from these bacteria resemble the K-12 protein in molecular weight, in preferential release from the outer membrane by sodium dodecyl sulfate in the presence of Mg2+, and in characteristic cleavage by proteases to yield a smaller fragment which ...

  16. Evidence for proteolytic cleavage of the 120-kilodalton outer membrane protein of rickettsiae: identification of an avirulent mutant deficient in processing.

    OpenAIRE

    Hackstadt, T; Messer, R; Cieplak, W; Peacock, M G

    1992-01-01

    The 120-kDa rickettsial outer membrane protein (rOmpB) is encoded by a gene with the capacity to encode a protein of approximately 168 kDa. The carboxy-terminal end of the molecule is apparently cleaved to yield 120- and 32-kDa products. Both polypeptides are surface exposed and remain associated with the outer membrane of intact rickettsiae. All species of rickettsiae examined display similar cleavage of rOmpB. Comparison of diverse species of rickettsiae demonstrate a conserved N terminus o...

  17. Fusion of the endoplasmic reticulum and mitochondrial outer membrane in rats brown adipose tissue: activation of thermogenesis by Ca2+.

    Science.gov (United States)

    de Meis, Leopoldo; Ketzer, Luisa A; da Costa, Rodrigo Madeiro; de Andrade, Ivone Rosa; Benchimol, Marlene

    2010-01-01

    Brown adipose tissue (BAT) mitochondria thermogenesis is regulated by uncoupling protein 1 (UCP 1), GDP and fatty acids. In this report, we observed fusion of the endoplasmic reticulum (ER) membrane with the mitochondrial outer membrane of rats BAT. Ca(2+)-ATPase (SERCA 1) was identified by immunoelectron microscopy in both ER and mitochondria. This finding led us to test the Ca(2+) effect in BAT mitochondria thermogenesis. We found that Ca(2+) increased the rate of respiration and heat production measured with a microcalorimeter both in coupled and uncoupled mitochondria, but had no effect on the rate of ATP synthesis. The Ca(2+) concentration needed for half-maximal activation varied between 0.08 and 0.11 microM. The activation of respiration was less pronounced than that of heat production. Heat production and ATP synthesis were inhibited by rotenone and KCN. Liver mitochondria have no UCP1 and during respiration synthesize a large amount of ATP, produce little heat, GDP had no effect on mitochondria coupling, Ca(2+) strongly inhibited ATP synthesis and had little or no effect on the small amount of heat released. These finding indicate that Ca(2+) activation of thermogenesis may be a specific feature of BAT mitochondria not found in other mitochondria such as liver. PMID:20209153

  18. Massive endocytosis driven by lipidic forces originating in the outer plasmalemmal monolayer: a new approach to membrane recycling and lipid domains

    OpenAIRE

    Fine, Michael; Llaguno, Marc C.; Lariccia, Vincenzo; Lin, Mei-Jung; Yaradanakul, Alp; Hilgemann, Donald W.

    2011-01-01

    The roles that lipids play in endocytosis are the subject of debate. Using electrical and imaging methods, we describe massive endocytosis (MEND) in baby hamster kidney (BHK) and HEK293 cells when the outer plasma membrane monolayer is perturbed by the nonionic detergents, Triton X-100 (TX100) and NP-40. Some alkane detergents, the amphipathic drugs, edelfosine and tamoxifen, and the phospholipase inhibitor, U73122, are also effective. Uptake of the membrane tracer, FM 4–64, into vesicles and...

  19. Immunization against chlamydial genital infection in guinea pigs with UV-inactivated and viable chlamydiae administered by different routes

    International Nuclear Information System (INIS)

    Female guinea pigs were immunized with viable or UV light-inactivated chlamydiae, belonging to the species Chlamydia psittaci, by intravenous, subcutaneous, oral, or ocular routes. All animals were then inoculated vaginally with viable chlamydiae to determine the extent of protection against challenge infection induced by the various regimens. The course of genital infection was significantly reduced in intensity in all groups of animals except the unimmunized controls and those animals immunized orally with inactivated antigen. Guinea pigs immunized with viable antigen were more likely to develop resistance to challenge infection and, in general, had a significantly greater degree of protection than animals immunized with inactivated antigen. No one route seemed superior in producing a protective response. Animals in all groups demonstrating protection developed serum and secretion immunoglobulin G antibody responses to chlamydiae. Lymphocyte proliferative reactions to chlamydial antigen were variable among groups. Immunoblot analysis of serum and secretions indicated a wide range of antibody specificities, but most protected animals produced antibodies to the major outer membrane protein, lipopolysaccharide, and the 61-kilodalton protein. No definitive associations could be made between the increased ability of immunization with viable organisms to produce resistance to challenge infection and a particular immune parameter. These data indicate that viable chlamydiae given by various routes are able to induce a strong immune response which can provide resistance against reinfection in some cases or at least reduce the degree of infection to a greater degree than inactivated antigen. However, complete resistance to genital tract infection may be difficult to obtain and alternate immunizations strategies may have to be developed

  20. Robust outer-selective thin-film composite polyethersulfone hollow fiber membranes with low reverse salt flux for renewable salinity-gradient energy generation

    KAUST Repository

    Cheng, Zhen Lei

    2016-01-08

    This study reports outer-selective thin-film composite (TFC) hollow fiber membranes with extremely low reverse salt fluxes and robustness for harvesting salinity-gradient energy from pressure retarded osmosis (PRO) processes. Almost defect-free polyamide layers with impressive low salt permeabilities were synthesized on top of robust polyethersulfone porous supports. The newly developed TFC-II membrane shows a maximum power density of 7.81 W m−2 using 1 M NaCl and DI water as feeds at 20 bar. Reproducible data obtained in the 2nd and 3rd runs confirm its stability under high hydraulic pressure differences. Comparing to other PRO membranes reported in the literature, the newly developed membrane exhibits not only the smallest slope between water flux decline and ΔPΔP increase but also the lowest ratio of reverse salt flux to water flux. Thus, the effective osmotic driving force could be well maintained even under high pressure operations. For the first time, the effect of feed pressure buildup induced by feed flowrate was evaluated towards PRO performance. A slight increment in feed pressure buildup was found to be beneficial to water flux and power density up to 10.06 W m−2 without comprising the reverse salt flux. We believe this study may open up new perspectives on outer-selective PRO hollow fiber membranes and provide useful insights to understand and design next-generation outer-selective TFC hollow fiber membranes for osmotic power generation.

  1. Differential modification of the Pseudomonas aeruginosa PAO1 outer membrane under hydrogen peroxide and gamma ray

    International Nuclear Information System (INIS)

    Complete text of publication follows. Objective: Pseudomonas aeruginosa PAO1 is causes opportunistic infections in humans. Studies with animals suggest that an adaptive mechanism is important for the ability of P. aeruginosa PAO1. The adaptive mechanism is protective mechanism against oxidative stress. This mechanism is aimed at preventing by reactive oxygen species. Reactive oxygen species can induce and modulate a variety of biological responses including gene expression. Materials and Methods: Pseudomonas aeruginosa PAO1(a wild-type strain) was grown aerobically with vigorous shaking at 30 deg C in LB broth (Difco). When the optical cells density at 600 nm reached 0.4 that exposed to 0.5-50 mM H2O2 for 30 min and 30-100 Gy Gamma irradiation (60Co, ca.150 TBq of capacity, AECL) for 30 min. For the recovery, the cultures were immediately exchanged fresh media and incubation for 30 min. then, cells were prefixed with 2.5% glutaraldehyde for 30 min at 4 deg C. After two washes by centrifugation at 15,000 X g for 5 min each, the cells were postfixed with 1% osmium tetroxide for 16 h at 24 deg C. The sample was dehydrated with absolute ethanol, stained with 2% uracyl acetate, embedded in Epon resin. Thin sections were stained with lead citrate and uranyl acetate and observed with a electron microscope. Expression level of candidate genes were analyzed using real-time PCR. The amplification program was consist of one cycle at 94 deg C for 30 sec, followed 40 cycles of 94 deg C (5 sec) - 60 deg C (31 sec). Results and Conclusion: In the present study, we have observed differential membrane damage to P. aeruginosa PAO1 cells when exposed to different oxidative stresses such as hydrogen peroxide 0.5-50 mM for 30 min and gamma radiation 30-100 Gy for 30 min using TEM. In order to understand its behaviour, we isolated 3 genes which are related to membrane maintaining. Its transcription level was identified using Real-Time PCR. Each gene was differently expressed under

  2. Do bacterial vaginosis and chlamydial infection affect serum cytokine level?

    Directory of Open Access Journals (Sweden)

    Bogavac Mirjana

    2010-01-01

    Full Text Available Introduction. Serbia is the country with extremely low birth rate and a relatively high percentage of preterm deliveries (8%. With this in mind, discovering new diagnostic methods that could be used for the prediction of preterm delivery is of great importance. In this study we tried to determine whether bacterial vaginosis and chlamydial infection could provoke preterm delivery by activation of systemic cytokine network. Objective. The aim of this study was to determine serum levels of proinflammatory cytokines (IL-1β, IL-8, IFN-γ, IL-6 and TNF-α in pregnant women with symptoms of preterm delivery and to make correlation between these parameters and the presence of bacterial vaginosis or chlamydial infection. Method. In the serum of 35 pregnant women, which were divided in groups according to the presence or absence of bacterial vaginosis and chlamydial infection, commercial ELISA tests for proinflammatory cytokines were performed. Results. The serum level of IFN-γ was significantly increased in pregnant women having chlamydial infection, as well as the level of IL-1β in women with bacterial vaginosis. The levels of TNF-α, IL-6 and IL-8 were not significantly different between the investigated groups. Conclusion. The preliminary results obtained in this research point out the possibility that not only intrauterine or systemic infections, but also bacterial vaginosis and chlamydial infection can cause a partial activation of systemic cytokine network and contribute to the occurrence of preterm delivery.

  3. Preliminary crystallographic analysis of the antibiotic discharge outer membrane lipoprotein OprM of Pseudomonas aeruginosa with an exceptionally long unit cell and complex lattice structure

    OpenAIRE

    Akama, Hiroyuki; Kanemaki, Misa; Tsukihara, Tomitake; Nakagawa, Atsushi; Nakae, Taiji

    2004-01-01

    The OprM subunit of the MexAB-OprM efflux pump in P. aeruginosa is an outer membrane-anchored lipoprotein. OprM crystals have been grown at 293 K in the presence of 2-methyl-2,4-propanediol and a combination of surfactants and diffracted to 2.56 Å resolution.

  4. IMMUNE RESPONSE INDUCED BY N-LAUROYLSARCOSINE EXTRACTED OUTER-MEMBRANE PROTEINS OF AN ISOLATE OF EDWARDSIELLA ICTALURI IN CHANNEL CATFISH

    Science.gov (United States)

    A virulent isolate of Edwardsiella ictaluri (AL-93-75), the causative agent of enteric septicaemia of catfish (ESC), was used to derive a lipopolysaccharide-reduced N-lauroylsarcosine outer- membrane protein (OMP) fraction vaccine. The OMP fraction was analyzed using sodium dodecyl sulfate-polyacryl...

  5. Identification of two novel genes encoding 97- to 99-kilodalton outer membrane proteins of Chlamydia pneumoniae.Infect Immun. 1999 Jan;67(1):375-83

    DEFF Research Database (Denmark)

    Knudsen, K; Madsen, AS; Mygind, P;

    1999-01-01

    of putative outer membrane proteins encoded by the Chlamydia psittaci and Chlamydia trachomatis gene families. By use of a monospecific polyclonal antibody against purified recombinant Omp4, it was shown that without heating, the protein migrated at 65 to 75 kDa in sodium dodecyl sulfate...

  6. Subdominant antigens in bacterial vaccines: Am779 is subdominant in the anaplasma marginale outer membrane vaccine but does not associate with protective immunity

    Science.gov (United States)

    Identification of specific antigens responsible for the ability of complex immunogens to induce protection is a major goal in development of bacterial vaccines. Much of the investigation has focused on highly abundant and highly immunodominant outer membrane proteins. Recently however, genomic and p...

  7. Evasion of IFN-γ signaling by Francisella novicida is dependent upon Francisella outer membrane protein C.

    Directory of Open Access Journals (Sweden)

    Kalyan C Nallaparaju

    Full Text Available Francisella tularensis is a Gram-negative facultative intracellular bacterium and the causative agent of the lethal disease tularemia. An outer membrane protein (FTT0918 of F. tularensis subsp. tularensis has been identified as a virulence factor. We generated a F. novicida (F. tularensis subsp. novicida FTN_0444 (homolog of FTT0918 fopC mutant to study the virulence-associated mechanism(s of FTT0918.The ΔfopC strain phenotype was characterized using immunological and biochemical assays. Attenuated virulence via the pulmonary route in wildtype C57BL/6 and BALB/c mice, as well as in knockout (KO mice, including MHC I, MHC II, and µmT (B cell deficient, but not in IFN-γ or IFN-γR KO mice was observed. Primary bone marrow derived macrophages (BMDM prepared from C57BL/6 mice treated with rIFN-γ exhibited greater inhibition of intracellular ΔfopC than wildtype U112 strain replication; whereas, IFN-γR KO macrophages showed no IFN-γ-dependent inhibition of ΔfopC replication. Moreover, phosphorylation of STAT1 was downregulated by the wildtype strain, but not the fopC mutant, in rIFN-γ treated macrophages. Addition of NG-monomethyl-L-arginine, an NOS inhibitor, led to an increase of ΔfopC replication to that seen in the BMDM unstimulated with rIFN-γ. Enzymatic screening of ΔfopC revealed aberrant acid phosphatase activity and localization. Furthermore, a greater abundance of different proteins in the culture supernatants of ΔfopC than that in the wildtype U112 strain was observed.F. novicida FopC protein facilitates evasion of IFN-γ-mediated immune defense(s by down-regulation of STAT1 phosphorylation and nitric oxide production, thereby promoting virulence. Additionally, the FopC protein also may play a role in maintaining outer membrane stability (integrity facilitating the activity and localization of acid phosphatases and other F. novicida cell components.

  8. Expression, purification, crystallization and preliminary X-ray diffraction analysis of the TonB-dependent haem outer membrane transporter ShuA from Shigella dysenteriae

    International Nuclear Information System (INIS)

    ShuA from S. dysenteriae was crystallized in several crystallization conditions containing detergents. Adding heavy atoms during crystallization strongly improved the crystal quality and the resolution limits. Diffraction data were collected at an energy remote from the Pb M absorption edges. As part of efforts towards understanding the crystallization of membrane proteins and membrane transport across the outer membrane of Gram-negative bacteria, the TonB-dependent haem outer membrane transporter ShuA of Shigella dysenteriae bound to heavy atoms was crystallized in several crystallization conditions using detergents. The insertion of a His6 tag into an extracellular loop of ShuA, instead of downstream of the Escherichia coli peptide signal, allowed efficient targeting to the outer membrane and the rapid preparation of crystallizable protein. Crystals diffracting X-rays beyond 3.5 Å resolution were obtained by co-crystallizing ShuA with useful heavy atoms for phasing (Eu, Tb, Pb) by the MAD method at the synchrotron, and the SAD or SIRAS method at the Cu wavelength. The authors collected X-ray diffraction data at 2.3 Å resolution using one crystal of ShuA-Pb, and at 3.2 Å resolution at an energy remote from the Pb M absorption edges for phasing on PROXIMA-1 at SOLEIL

  9. Treponema pallidum in Gel Microdroplets: A Method for Topological Analysis of BamA (TP0326) and Localization of Rare Outer Membrane Proteins.

    Science.gov (United States)

    Luthra, Amit; Anand, Arvind; Radolf, Justin D

    2015-01-01

    The noncultivable spirochete Treponema pallidum subspecies pallidum (T. pallidum) is the etiological agent of venereal syphilis. In contrast to the outer membranes (OMs) of gram-negative bacteria, the OM of T. pallidum lacks lipopolysaccharide, contains a paucity of integral membrane proteins, and is extremely labile. The lability of the T. pallidum OM greatly hinders efforts to localize the bacterium's rare outer membrane proteins (OMPs). To circumvent this problem, we developed the gel microdroplet method in which treponemes are encapsulated in porous agarose beads and then probed with specific antibodies in the absence or presence of low concentrations of the non-ionic detergent Triton X-100. To demonstrate the general utility of this method for surface localization of any T. pallidum antigen, herein we describe a protocol for immunolabeling of encapsulated treponemes using antibodies directed against the β-barrel and POTRA domains of TP0326, the spirochete's BamA ortholog. PMID:26427677

  10. Resistance of a vaccinia virus A34R deletion mutant to spontaneous rupture of the outer membrane of progeny virions on the surface of infected cells

    International Nuclear Information System (INIS)

    The extracellular form of vaccinia virus is referred to as an enveloped virion (EV) because it contains an additional lipoprotein membrane surrounding the infectious mature virion (MV) that must be discarded prior to cell fusion and entry. Most EVs adhere to the surface of the parent cell and mediate spread of the infection to adjacent cells. Here we show that some attached EVs have ruptured envelopes. Rupture was detected by fluorescence microscopy of unfixed and unpermeabilized cells using antibodies to the F13 and L1 proteins, which line the inner side of the EV membrane and the outer side of the MV membrane, respectively. The presence of ruptured EV membranes was confirmed by immunogold transmission electron microscopy. EVs with broken membranes were present on several cell lines examined including one deficient in glycosaminoglycans, which are thought to play a role in breakage of the EV membrane prior to fusion of the MV. No correlation was found between EVs with ruptured membranes and actin tail formation. Studies with several mutant viruses indicated that EV membranes lacking the A34 protein were unbroken. This result was consistent with other properties of A34R deletion mutants including resistance of the EV membrane to polyanions, small plaque formation and low infectivity that can be increased by disruption of the EV membrane by freezing and thawing

  11. Brucella abortus ornithine lipids are dispensable outer membrane components devoid of a marked pathogen-associated molecular pattern.

    Directory of Open Access Journals (Sweden)

    Leyre Palacios-Chaves

    Full Text Available The brucellae are α-Proteobacteria facultative intracellular parasites that cause an important zoonosis. These bacteria escape early detection by innate immunity, an ability associated to the absence of marked pathogen-associated molecular patterns in the cell envelope lipopolysaccharide, lipoproteins and flagellin. We show here that, in contrast to the outer membrane ornithine lipids (OL of other Gram negative bacteria, Brucella abortus OL lack a marked pathogen-associated molecular pattern activity. We identified two OL genes (olsB and olsA and by generating the corresponding mutants found that olsB deficient B. abortus did not synthesize OL or their lyso-OL precursors. Liposomes constructed with B. abortus OL did not trigger IL-6 or TNF-α release by macrophages whereas those constructed with Bordetella pertussis OL and the olsB mutant lipids as carriers were highly active. The OL deficiency in the olsB mutant did not promote proinflammatory responses or generated attenuation in mice. In addition, OL deficiency did not increase sensitivity to polymyxins, normal serum or complement consumption, or alter the permeability to antibiotics and dyes. Taken together, these observations indicate that OL have become dispensable in the extant brucellae and are consistent within the trend observed in α-Proteobacteria animal pathogens to reduce and eventually eliminate the envelope components susceptible of recognition by innate immunity.

  12. Mitochondrial Carnitine Palmitoyltransferase 1a (CPT1a) Is Part of an Outer Membrane Fatty Acid Transfer Complex*

    Science.gov (United States)

    Lee, Kwangwon; Kerner, Janos; Hoppel, Charles L.

    2011-01-01

    CPT1a (carnitine palmitoyltransferase 1a) in the liver mitochondrial outer membrane (MOM) catalyzes the primary regulated step in overall mitochondrial fatty acid oxidation. It has been suggested that the fundamental unit of CPT1a exists as a trimer, which, under native conditions, could form a dimer of the trimers, creating a hexamer channel for acylcarnitine translocation. To examine the state of CPT1a in the MOM, we employed a combined approach of sizing by mass and isolation using an immunological method. Blue native electrophoresis followed by detection with immunoblotting and mass spectrometry identified large molecular mass complexes that contained not only CPT1a but also long chain acyl-CoA synthetase (ACSL) and the voltage-dependent anion channel (VDAC). Immunoprecipitation with antisera against the proteins revealed a strong interaction between the three proteins. Immobilized CPT1a-specific antibodies immunocaptured not only CPT1a but also ACSL and VDAC, further strengthening findings with blue native electrophoresis and immunoprecipitation. This study shows strong protein-protein interaction between CPT1a, ACSL, and VDAC. We propose that this complex transfers activated fatty acids through the MOM. PMID:21622568

  13. Mitochondrial carnitine palmitoyltransferase 1a (CPT1a) is part of an outer membrane fatty acid transfer complex.

    Science.gov (United States)

    Lee, Kwangwon; Kerner, Janos; Hoppel, Charles L

    2011-07-22

    CPT1a (carnitine palmitoyltransferase 1a) in the liver mitochondrial outer membrane (MOM) catalyzes the primary regulated step in overall mitochondrial fatty acid oxidation. It has been suggested that the fundamental unit of CPT1a exists as a trimer, which, under native conditions, could form a dimer of the trimers, creating a hexamer channel for acylcarnitine translocation. To examine the state of CPT1a in the MOM, we employed a combined approach of sizing by mass and isolation using an immunological method. Blue native electrophoresis followed by detection with immunoblotting and mass spectrometry identified large molecular mass complexes that contained not only CPT1a but also long chain acyl-CoA synthetase (ACSL) and the voltage-dependent anion channel (VDAC). Immunoprecipitation with antisera against the proteins revealed a strong interaction between the three proteins. Immobilized CPT1a-specific antibodies immunocaptured not only CPT1a but also ACSL and VDAC, further strengthening findings with blue native electrophoresis and immunoprecipitation. This study shows strong protein-protein interaction between CPT1a, ACSL, and VDAC. We propose that this complex transfers activated fatty acids through the MOM. PMID:21622568

  14. An Outer Membrane Protein Involved in the Uptake of Glucose Is Essential for Cytophaga hutchinsonii Cellulose Utilization.

    Science.gov (United States)

    Zhou, Hong; Wang, Xia; Yang, Tengteng; Zhang, Weixin; Chen, Guanjun; Liu, Weifeng

    2016-03-01

    Cytophaga hutchinsonii specializes in cellulose digestion by employing a collection of novel cell-associated proteins. Here, we identified a novel gene locus, CHU_1276, that is essential for C. hutchinsonii cellulose utilization. Disruption of CHU_1276 in C. hutchinsonii resulted in complete deficiency in cellulose degradation, as well as compromised assimilation of cellobiose or glucose at a low concentration. Further analysis showed that CHU_1276 was an outer membrane protein that could be induced by cellulose and low concentrations of glucose. Transcriptional profiling revealed that CHU_1276 exerted a profound effect on the genome-wide response to both glucose and Avicel and that the mutant lacking CHU_1276 displayed expression profiles very different from those of the wild-type strain under different culture conditions. Specifically, comparison of their transcriptional responses to cellulose led to the identification of a gene set potentially regulated by CHU_1276. These results suggest that CHU_1276 plays an essential role in cellulose utilization, probably by coordinating the extracellular hydrolysis of cellulose substrate with the intracellular uptake of the hydrolysis product in C. hutchinsonii. PMID:26773084

  15. Edwardsiella tarda Outer Membrane Protein C: An Immunogenic Protein Induces Highly Protective Effects in Flounder (Paralichthys olivaceus) against Edwardsiellosis

    Science.gov (United States)

    Liu, Fuguo; Tang, Xiaoqian; Sheng, Xiuzhen; Xing, Jing; Zhan, Wenbin

    2016-01-01

    Outer membrane protein C of Edwardsiella tarda is a major cell surface antigen and it was identified to be an immunogenic protein by Western blot using flounder (Paralichthys olivaceus) anti-recombinant OmpC (rOmpC), and anti-E. tarda antibodies. rOmpC tested the immune protective effect against E. tarda challenge in a flounder model and produced a relative percentage of survival rate of 85%. The immune response of flounder induced by rOmpC was investigated, and the results showed that: (1) the levels of specific serum antibodies induced by rOmpC were significantly higher than the control group after the second week after immunization, and the peak level occurred at week five after immunization; (2) rOmpC could induce the proliferation of sIg+ lymphocytes, and the peak levels of sIg+ lymphocytes in blood, spleen, and pronephros occurred at 4–5 weeks after immunization; and (3) the MHCIIα, CD4-1, IL-1β, IL-6 and TNF-α genes were significantly induced after being injected with rOmpC. Taken together, these results demonstrated that rOmpC could evoke highly protective effects against E. tarda challenge and induce strong innate immune response and humoral immune response of flounder, which indicated that OmpC was a promising vaccine candidate against E. tarda infection. PMID:27420049

  16. Cloning and sequence analysis of gene oipA encoding an outer membrane protein of human Helicobacter pylori

    Institute of Scientific and Technical Information of China (English)

    Dao-Rong Chen; Ai-Long Huang; Xiao-Hong Tao; Pi-Long Wang; Zheng Jiang

    2004-01-01

    AIM: To construct a recombinant E. coli strain that would highly express the proinflammatory outer membrane protein of human Helicobacter pylori(Hpylori).METHODS: The oipA DNA was amplified by PCR, inserted into pET-32a, and transformed into Top10 E. coli strain.This recombinant plasmid of Top10 was sent out for nucleotide sequence analysis. Finally this sequence AF479754 was compared with HP0638 and JHP0581.RESULTS: The sequence of the aim gene was obtained. It had 924 base pairs. The identity was 95.32% against HP0638, 95.02% against JHP0581, which was higher than the identity between HP0638 and JHP0581.CONCLUSION: Although the aim gene was obtained, but it was different from the published sequence of GenBank. It is not clear what makes this difference. Maybe it is because different strain was used or because there were some variations. So more researches are required to prove it.

  17. TP0326, a Treponema pallidum β-Barrel Assembly Machinery A (BamA) Ortholog and Rare Outer Membrane Protein

    Science.gov (United States)

    Desrosiers, Daniel C.; Anand, Arvind; Luthra, Amit; Dunham-Ems, Star M; LeDoyt, Morgan; Cummings, Michael A. D.; Eshghi, Azad; Cameron, Caroline E.; Cruz, Adriana R.; Salazar, Juan C.; Caimano, Melissa J.; Radolf, Justin D.

    2011-01-01

    SUMMARY Definitive identification of Treponema pallidum (Tp) rare outer membrane proteins (OMPs) has long eluded researchers. TP0326, the sole protein in Tp with sequence homology to a Gram-negative OMP, belongs to the BamA family of proteins essential for OM biogenesis. Structural modeling predicted that five polypeptide transport-associated (POTRA) domains comprise the N-terminus of TP0326, while the C-terminus forms an 18-stranded amphipathic β-barrel. Circular dichroism, heat-modifiability by SDS-PAGE, Triton X-114 phase partitioning and liposome incorporation supported these topological predictions and confirmed that the β-barrel is responsible for the native protein's amphiphilicity. Expression analyses revealed that native TP0326 is expressed at low abundance, while a protease-surface accessibility assay confirmed surface exposure. Size-exclusion chromatography and blue native polyacrylamide gel electrophoresis revealed a modular Bam complex in Tp considerably larger than that of E. coli. Non-orthologous ancillary factors and self-association of TP0326 via its β-barrel may both contribute to the Bam complex. Tp-infected rabbits mount a vigorous antibody response to both POTRA and β-barrel portions of TP0326, whereas humans with secondary syphilis respond predominantly to POTRA. The syphilis spirochete appears to have devised a stratagem for harnessing the Bam pathway while satisfying its need to limit surface antigenicity. PMID:21488980

  18. Microbead-based immunoassay using the outer membrane layer of Escherichia coli combined with autodisplayed Z-domains

    Science.gov (United States)

    Kim, Do-Hoon; Bong, Ji-Hong; Yoo, Gu; Chang, Seo-Yoon; Park, Min; Chang, Young Wook; Kang, Min-Jung; Jose, Joachim; Pyun, Jae-Chul

    2016-01-01

    The Z-domain has the potential to control the orientation of immobilized antibodies because of its binding affinity to the Fc regions of antibodies (IgGs). In this work, Z-domains were autodisplayed on the outer membrane (OM) of Escherichia coli. OM particles were isolated and coated onto microbeads with positive, neutral, or negative surface charges. Other conditions such as incubation time and initial OM concentration were also optimized for the OM coating to obtain maximum antibody-binding. Using three kinds of model proteins with different isoelectric points (pI), streptavidin (pI = 5, negative charge at pH 7), horseradish peroxidase (pI = 7, neutral charge at pH 7), and avidin (pI = 10, positive charge at pH 7), protein immobilization onto the microbeads was carried out through physical adsorption and electrostatic interactions. Using fluorescently labeled antibodies and fluorescence-activated cell sorting, it was determined that the neutral and the positively charged microbeads effectively bound antibodies while minimizing non-specific protein binding. The OM-coated microbeads with autodisplayed Z-domains were applied to C-reactive protein immunoassay. This immunoassay achieved 5-fold improved sensitivity compared to conventional immunoassay based on physical adsorption of antibodies at the cutoff concentration of medical diagnosis of inflammatory diseases (1000 ng/ml) and cardiovascular diseases (200 ng/ml).

  19. Identification of polyvalent protective immunogens from outer membrane proteins in Vibrio parahaemolyticus to protect fish against bacterial infection.

    Science.gov (United States)

    Peng, Bo; Ye, Jin-Zhou; Han, Yi; Zeng, Li; Zhang, Jian-Ying; Li, Hui

    2016-07-01

    Vaccination is one of the most effective and economic way to prevent infectious diseases in aquaculture. The development of effective vaccines, however, is still limited, especially for polyvalent vaccines, which are against multiple species. With this regard, identification of polyvalent protective immunogens, serving as polyvalent vaccines, became a key step in vaccine development. In the current study, 17 outer membrane proteins from Vibrio parahaemolyticus were identified as immunogens. Further, four of the 17 proteins including VP2309, VP0887, VPA0548 and VP1019 were characterized as efficiently protective immunogens against V. parahaemolyticus' infection through passive and active immunizations in zebrafish. Importantly, these four proteins showed cross-protective capability against infections by Aeromonas hydrophila or/and Pseudomonas fluorescens, which shared similar epitopes with V. parahaemolyticus in homology of these proteins. Further investigation showed that the expression level of the four protective immunogens elevated in response to fish plasma in a dose-dependent manner. These results indicate that the four protective immunogens are polyvalent vaccine candidates in aquaculture. PMID:27071519

  20. Isolation and Identification of Outer Membrane Proteins of Helicobacter Pylori of Iranian Patient by SDS-PAGE

    Directory of Open Access Journals (Sweden)

    M. Doosty

    1998-04-01

    Full Text Available The function of Helicobacter pylori (H.pylori is confirmed as one of the factors which motivates gastric and duodenal ulcer and gastritis. Various methods are used to diagnose the infection. Serological tests are the easiest and most harmless for the patients. Probably, H.pylori strains in Iran are different from the strains in other countries. Hence, it seems neccessary to design a specific serological test to recognize and identify different strains of bacterial antigenic proteins of Iranian patients."nSince the most manifest and specific to these bacterial antigens are the "Outer Membrane Protein" (OMP, therefore, the first necessary step is to separate and purify H.pylori OMP and then to identify antigenic proteins."nIn this study, we received bacteria colony that belonged to 15 patients with gastric or duodenal ulcer, which had been growed in blood agar or brucella broth. After processing such as washing, freezing and defreezing, sonicating, centrifugation with high speed (10,000 g and treatment with sarcosyl, the sarcosyl insoluble fraction was extracted. Sodium Dodecyl Sulfate - Poly Acrylamide Gel Electrophoresis (SDS-PAGE was preformed. From all 15 OMP specimens, we isolated protein bands."nThe first two bands with higher MW, were major bands and the two lighter bands were the minor bands. Approximate MW of these 4 proteins are equal to 67000, 61000, 30000 and 17000 dalton

  1. Protective immunity induced by 67 K outer membrane protein of phase I Coxiella burnetii in mice and guinea pigs

    International Nuclear Information System (INIS)

    A 67 K outer membrane protein (OMP) isolated from phase I Coxiella burnetii QiYi strain was purified with monoclonal antibodies (MoAb) coupled to CNBr-Sepharose 4B. Chemical analyses of the 67 K protein showed that it contained seventeen kids of amino acids and no lipopolysaccharides. The immunogenicity and protectivity of the 67 K protein against C. burnetii was evaluated in mice and guinea pigs bi in vitro lymphocyte proliferation assay, delayed-type skin test, antibody conversion rate, and immunization and challenge tests. Intraperitoneal injection of the 67 K protein resulted in antibody production against phase I and II whole cell antigens. The anti-67 K antibody conversion rate was found to be 100% in mice and guinea pigs as well. Lymphocytes were responses in vitro to specific antigen. In addition, delayed-type hypersensitivity appeared two weeks after immunization with the 67 K protein. Moreover, 199% of mice and guinea pigs inoculated with the 67 K protein were protected against a challenge with 103 ID50 virulent C. burnetii. In conclusion, these results demonstrate that the 67 K OMP elicits in vivo and in vitro both B cell-mediated and T cell-mediated immunity in mice and guinea pigs. Thus the 67 K protein is a candidate for an effective subunit vaccine against Q fever. (author)

  2. Cytotoxic and Inflammatory Responses Induced by Outer Membrane Vesicle-Associated Biologically Active Proteases from Vibrio cholerae.

    Science.gov (United States)

    Mondal, Ayan; Tapader, Rima; Chatterjee, Nabendu Sekhar; Ghosh, Amit; Sinha, Ritam; Koley, Hemanta; Saha, Dhira Rani; Chakrabarti, Manoj K; Wai, Sun Nyunt; Pal, Amit

    2016-05-01

    Proteases in Vibrio cholerae have been shown to play a role in its pathogenesis. V. cholerae secretes Zn-dependent hemagglutinin protease (HAP) and calcium-dependent trypsin-like serine protease (VesC) by using the type II secretion system (TIISS). Our present studies demonstrated that these proteases are also secreted in association with outer membrane vesicles (OMVs) and transported to human intestinal epithelial cells in an active form. OMV-associated HAP induces dose-dependent apoptosis in Int407 cells and an enterotoxic response in the mouse ileal loop (MIL) assay, whereas OMV-associated VesC showed a hemorrhagic fluid response in the MIL assay, necrosis in Int407 cells, and an increased interleukin-8 (IL-8) response in T84 cells, which were significantly reduced in OMVs from VesC mutant strain. Our results also showed that serine protease VesC plays a role in intestinal colonization of V. cholerae strains in adult mice. In conclusion, our study shows that V. cholerae OMVs secrete biologically active proteases which may play a role in cytotoxic and inflammatory responses. PMID:26930702

  3. Large-scale preparation of the homogeneous LolA–lipoprotein complex and efficient in vitro transfer of lipoproteins to the outer membrane in a LolB-dependent manner

    OpenAIRE

    Watanabe, Shoji; Oguchi, Yuki; Yokota, Naoko; Tokuda, Hajime

    2007-01-01

    An ATP-binding cassette transporter LolCDE complex of Escherichia coli releases lipoproteins destined to the outer membrane from the inner membrane as a complex with a periplasmic chaperone, LolA. Interaction of the LolA–lipoprotein complex with an outer membrane receptor, LolB, then causes localization of lipoproteins to the outer membrane. As far as examined, formation of the LolA–lipoprotein complex strictly depends on ATP hydrolysis by the LolCDE complex in the presence of LolA. It has be...

  4. Delivery of a Chlamydial Adhesin N-PmpC Subunit Vaccine to the Ocular Mucosa Using Particulate Carriers.

    Directory of Open Access Journals (Sweden)

    Aleksandra Inic-Kanada

    Full Text Available Trachoma, caused by the intracellular bacterium Chlamydia trachomatis (Ct, remains the world's leading preventable infectious cause of blindness. Recent attempts to develop effective vaccines rely on modified chlamydial antigen delivery platforms. As the mechanisms engaged in the pathology of the disease are not fully understood, designing a subunit vaccine specific to chlamydial antigens could improve safety for human use. We propose the delivery of chlamydia-specific antigens to the ocular mucosa using particulate carriers, bacterial ghosts (BGs. We therefore characterized humoral and cellular immune responses after conjunctival and subcutaneous immunization with a N-terminal portion (amino acid 1-893 of the chlamydial polymorphic membrane protein C (PmpC of Ct serovar B, expressed in probiotic Escherichia coli Nissle 1917 bacterial ghosts (EcN BGs in BALB/c mice. Three immunizations were performed at two-week intervals, and the immune responses were evaluated two weeks after the final immunization in mice. In a guinea pig model of ocular infection animals were immunized in the same manner as the mice, and protection against challenge was assessed two weeks after the last immunization. N-PmpC was successfully expressed within BGs and delivery to the ocular mucosa was well tolerated without signs of inflammation. N-PmpC-specific mucosal IgA levels in tears yielded significantly increased levels in the group immunized via the conjunctiva compared with the subcutaneously immunized mice. Immunization with N-PmpC EcN BGs via both immunization routes prompted the establishment of an N-PmpC-specific IFNγ immune response. Immunization via the conjunctiva resulted in a decrease in intensity of the transitional inflammatory reaction in conjunctiva of challenged guinea pigs compared with subcutaneously and non-immunized animals. The delivery of the chlamydial subunit vaccine to the ocular mucosa using a particulate carrier, such as BGs, induced both

  5. Delivery of a Chlamydial Adhesin N-PmpC Subunit Vaccine to the Ocular Mucosa Using Particulate Carriers.

    Science.gov (United States)

    Inic-Kanada, Aleksandra; Stojanovic, Marijana; Schlacher, Simone; Stein, Elisabeth; Belij-Rammerstorfer, Sandra; Marinkovic, Emilija; Lukic, Ivana; Montanaro, Jacqueline; Schuerer, Nadine; Bintner, Nora; Kovacevic-Jovanovic, Vesna; Krnjaja, Ognjen; Mayr, Ulrike Beate; Lubitz, Werner; Barisani-Asenbauer, Talin

    2015-01-01

    Trachoma, caused by the intracellular bacterium Chlamydia trachomatis (Ct), remains the world's leading preventable infectious cause of blindness. Recent attempts to develop effective vaccines rely on modified chlamydial antigen delivery platforms. As the mechanisms engaged in the pathology of the disease are not fully understood, designing a subunit vaccine specific to chlamydial antigens could improve safety for human use. We propose the delivery of chlamydia-specific antigens to the ocular mucosa using particulate carriers, bacterial ghosts (BGs). We therefore characterized humoral and cellular immune responses after conjunctival and subcutaneous immunization with a N-terminal portion (amino acid 1-893) of the chlamydial polymorphic membrane protein C (PmpC) of Ct serovar B, expressed in probiotic Escherichia coli Nissle 1917 bacterial ghosts (EcN BGs) in BALB/c mice. Three immunizations were performed at two-week intervals, and the immune responses were evaluated two weeks after the final immunization in mice. In a guinea pig model of ocular infection animals were immunized in the same manner as the mice, and protection against challenge was assessed two weeks after the last immunization. N-PmpC was successfully expressed within BGs and delivery to the ocular mucosa was well tolerated without signs of inflammation. N-PmpC-specific mucosal IgA levels in tears yielded significantly increased levels in the group immunized via the conjunctiva compared with the subcutaneously immunized mice. Immunization with N-PmpC EcN BGs via both immunization routes prompted the establishment of an N-PmpC-specific IFNγ immune response. Immunization via the conjunctiva resulted in a decrease in intensity of the transitional inflammatory reaction in conjunctiva of challenged guinea pigs compared with subcutaneously and non-immunized animals. The delivery of the chlamydial subunit vaccine to the ocular mucosa using a particulate carrier, such as BGs, induced both humoral and

  6. Targeted Protein Degradation of Outer Membrane Decaheme Cytochrome MtrC Metal Reductase in Shewanella oneidensis MR-1 Measured Using Biarsenical Probe CrAsH-EDT2

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Yijia; Chen, Baowei; Shi, Liang; Fredrickson, Jim K.; Bigelow, Diana J.; Squier, Thomas C.

    2011-10-14

    Development of efficient microbial biofuel cells requires an ability to exploit interfacial electron transfer reactions to external electron acceptors, such as metal oxides; such reactions occur in the facultative anaerobic gram-negative bacterium Shewanella oneidensis MR-1 through the catalytic activity of the outer membrane decaheme c-type cytochrome MtrC. Central to the utility of this pathway to synthetic biology is an understanding of cellular mechanisms that maintain optimal MtrC function, cellular localization, and renewal by degradation and resynthesis. In order to monitor trafficking to the outer membrane, and the environmental sensitivity of MtrC, we have engineered a tetracysteine tag (i.e., CCPGCC) at its C-terminus that permits labeling by the cell impermeable biarsenical fluorophore, carboxy-FlAsH (CrAsH) of MtrC at the surface of living Shewanella oneidensis MR-1 cells. In comparison, the cell permeable reagent FlAsH permits labeling of the entire population of MtrC, including proteolytic fragments resulting from incorrect maturation. We demonstrate specific labeling by CrAsH of engineered MtrC which is dependent on the presence of a functional type-2 secretion system (T2S), as evidenced by T2S system gspD or gspG deletion mutants which are incapable of CrAsH labeling. Under these latter conditions, MtrC undergoes proteolytic degradation to form a large 35-38 kDa fragment; this degradation product is also resolved during normal turnover of the CrAsH-labeled MtrC protein. No MtrC protein is released into the medium during turnover, suggesting the presence of cellular turnover systems involving MtrC reuptake and degradation. The mature MtrC localized on the outer membrane is a long-lived protein, with a turnover rate of 0.043 hr-1 that is insensitive to O2 concentration. Maturation of MtrC is relatively inefficient, with substantial rates of turnover of the immature protein prior to export to the outer membrane (i.e., 0.028 hr-1) that are consistent

  7. Immunogenicity and protective role of antigenic regions from five outer membrane proteins of Flavobacterium columnare in grass carp Ctenopharyngodon idella

    Science.gov (United States)

    Luo, Zhang; Liu, Zhixin; Fu, Jianping; Zhang, Qiusheng; Huang, Bei; Nie, Pin

    2016-02-01

    Flavobacterium columnare causes columnaris disease in freshwater fish. In the present study, the antigenic regions of five outer membrane proteins (OMPs), including zinc metalloprotease, prolyl oligopeptidase, thermolysin, collagenase and chondroitin AC lyase, were bioinformatically analyzed, fused together, and then expressed as a recombinant fusion protein in Escherichia coli. The expressed protein of 95.6 kDa, as estimated by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was consistent with the molecular weight deduced from the amino acid sequence. The purified recombinant protein was used to vaccinate the grass carp, Ctenopharyngodon idella. Following vaccination of the fish their IgM antibody levels were examined, as was the expression of IgM, IgD and IgZ immunoglobulin genes and other genes such as MHC Iα and MHC IIβ, which are also involved in adaptive immunity. Interleukin genes (IL), including IL-1β, IL-8 and IL-10, and type I and type II interferon (IFN) genes were also examined. At 3 and 4 weeks post-vaccination (wpv), significant increases in IgM antibody levels were observed in the fish vaccinated with the recombinant fusion protein, and an increase in the expression levels of IgM, IgD and IgZ genes was also detected following the vaccinations, thus indicating that an adaptive immune response was induced by the vaccinations. Early increases in the expression levels of IL and IFN genes were also observed in the vaccinated fish. At four wpv, the fish were challenged with F. columnare, and the vaccinated fish showed a good level of protection against this pathogen, with 39% relative percent survival (RPS) compared with the control group. It can be concluded, therefore, that the five OMPs, in the form of a recombinant fusion protein vaccine, induced an immune response in fish and protection against F. columnare.

  8. Cellular Immune Responses in Humans Induced by Two Serogroup B Meningococcal Outer Membrane Vesicle Vaccines Given Separately and in Combination.

    Science.gov (United States)

    Oftung, Fredrik; Korsvold, Gro Ellen; Aase, Audun; Næss, Lisbeth M

    2016-04-01

    MenBvac and MeNZB are safe and efficacious outer membrane vesicle (OMV) vaccines against serogroup B meningococcal disease. Antibody responses have previously been investigated in a clinical trial with these two OMV vaccines given separately (25 μg/dose) or in combination (12.5 and 12.5 μg/dose) in three doses administered at 6-week intervals. Here, we report the results from analyzing cellular immune responses against MenBvac and MeNZB OMVs in terms of antigen-specific CD4(+)T cell proliferation and secretion of cytokines. The proliferative CD4(+)T cell responses to the combined vaccine were of the same magnitude as the homologous responses observed for each individual vaccine. The results also showed cross-reactivity in the sense that both vaccine groups receiving separate vaccines responded to both homologous and heterologous OMV antigen when assayed for antigen-specific cellular proliferation. In addition, a multiplex bead array assay was used to analyze the presence of Th1 and Th2 cytokines in cell culture supernatants. The results showed that gamma interferon, interleukin-4 (IL-4), and IL-10 responses could be detected as a result of vaccination with both the MenBvac and the MeNZB vaccines given separately, as well as when given in combination. With respect to cross-reactivity, the cytokine results paralleled the observations made for proliferation. In conclusion, the results demonstrate that cross-reactive cellular immune responses involving both Th1 and Th2 cytokines can be induced to the same extent by different tailor-made OMV vaccines given either separately or in combination with half the dose of each vaccine. PMID:26865595

  9. Outer membrane vesicles from Brucella abortus promote bacterial internalization by human monocytes and modulate their innate immune response.

    Directory of Open Access Journals (Sweden)

    Cora N Pollak

    Full Text Available Outer membrane vesicles (OMVs released by some gram-negative bacteria have been shown to exert immunomodulatory effects that favor the establishment of the infection. The aim of the present study was to assess the interaction of OMVs from Brucella abortus with human epithelial cells (HeLa and monocytes (THP-1, and the potential immunomodulatory effects they may exert. Using confocal microscopy and flow cytometry, FITC-labeled OMVs were shown to be internalized by both cell types. Internalization was shown to be partially mediated by clathrin-mediated endocytosis. Pretreatment of THP-1 cells with Brucella OMVs inhibited some cytokine responses (TNF-α and IL-8 to E. coli LPS, Pam3Cys or flagellin (TLR4, TLR2 and TLR5 agonists, respectively. Similarly, pretreatment with Brucella OMVs inhibited the cytokine response of THP-1 cells to B. abortus infection. Treatment of THP-1 cells with OMVs during IFN-γ stimulation reduced significantly the inducing effect of this cytokine on MHC-II expression. OMVs induced a dose-dependent increase of ICAM-1 expression on THP-1 cells and an increased adhesion of these cells to human endothelial cells. The addition of OMVs to THP-1 cultures before the incubation with live B. abortus resulted in increased numbers of adhered and internalized bacteria as compared to cells not treated with OMVs. Overall, these results suggest that OMVs from B. abortus exert cellular effects that promote the internalization of these bacteria by human monocytes, but also downregulate the innate immune response of these cells to Brucella infection. These effects may favor the persistence of Brucella within host cells.

  10. Insertion of fluorescent fatty acid probes into the outer membranes of the pathogenic spirochaetes Treponema pallidum and Borrelia burgdorferi.

    Science.gov (United States)

    Cox, D L; Radolf, J D

    2001-05-01

    The authors examined the ability of octadecanoyl (C(18)), hexadecanoyl (C(16)) and dodecanoyl (C(12)) fatty acid (FA) conjugates of 5-aminofluorescein (OAF, HAF and DAF, respectively) to insert into the outer membranes (OMs) of Treponema pallidum, Borrelia burgdorferi and Escherichia coli. Biophysical studies have demonstrated that these compounds stably insert into phospholipid bilayers with the acyl chain within the hydrophobic interior of the apical leaflet and the hydrophilic fluorescein moiety near the phospholipid head groups. Consistent with the known poor intrinsic permeability of the E. coli OM to hydrophobic compounds and surfactants, E. coli was not labelled with any of the FA probes. OAF inserted more readily into OMs of B. burgdorferi than into those of T. pallidum, although both organisms were completely labelled at concentrations at or below 2 microg ml(-1). Intact spirochaetes were labelled with OAF but not with antibodies against known periplasmic antigens, thereby confirming that the probe interacted exclusively with the spirochaetal OMs. Separate experiments in which organisms were cooled to 4 degrees C (i.e. below the OM phase-transition temperatures) indicated that labelling with OAF was due to insertion of the probe into the OMs. B. burgdorferi, but not T. pallidum, was labelled by relatively high concentrations of HAF and DAF. Taken as a whole, these findings support the prediction that the lack of lipopolysaccharide renders T. pallidum and B. burgdorferi OMs markedly more permeable to lipophilic compounds than their Gram-negative bacterial counterparts. The data also raise the intriguing possibility that these two pathogenic spirochaetes obtain long-chain FAs, nutrients they are unable to synthesize, by direct permeation of their OMs. PMID:11320119

  11. Pseudomonas aeruginosa outer membrane vesicles triggered by human mucosal fluid and lysozyme can prime host tissue surfaces for bacterial adhesion

    Directory of Open Access Journals (Sweden)

    Matteo Maria Emiliano Metruccio

    2016-06-01

    Full Text Available Pseudomonas aeruginosa is a leading cause of human morbidity and mortality that often targets epithelial surfaces. Host immunocompromise, or the presence of indwelling medical devices, including contact lenses, can predispose to infection. While medical devices are known to accumulate bacterial biofilms, it is not well understood why resistant epithelial surfaces become susceptible to P. aeruginosa. Many bacteria, including P. aeruginosa, release Outer Membrane Vesicles (OMVs in response to stress that can fuse with host cells to alter their function. Here, we tested the hypothesis that mucosal fluid can trigger OMV release to compromise an epithelial barrier. This was tested using tear fluid and corneal epithelial cells in vitro and in vivo. After 1 h both human tear fluid, and the tear component lysozyme, greatly enhanced OMV release from P. aeruginosa strain PAO1 compared to PBS controls (~100 fold. TEM and SDS-PAGE showed tear fluid and lysozyme-induced OMVs were similar in size and protein composition, but differed from biofilm-harvested OMVs, the latter smaller with fewer proteins. Lysozyme-induced OMVs were cytotoxic to human corneal epithelial cells in vitro and murine corneal epithelium in vivo. OMV exposure in vivo enhanced Ly6G/C expression at the corneal surface, suggesting myeloid cell recruitment, and primed the cornea for bacterial adhesion (~4-fold, P < 0.01. Sonication disrupted OMVs retained cytotoxic activity, but did not promote adhesion, suggesting the latter required OMV-mediated events beyond cell killing. These data suggest that mucosal fluid induced P. aeruginosa OMVs could contribute to loss of epithelial barrier function during medical device-related infections.

  12. Immunological study of the outer membrane proteins of Vibrio harveyi: insights that link immunoprotectivity to interference with bacterial infection.

    Science.gov (United States)

    Yu, Lan-ping; Hu, Yong-hua; Sun, Bo-guang; Sun, Li

    2013-10-01

    Vibrio harveyi is a bacterial pathogen that affects marine vertebrates and invertebrates. In this study, we identified 13 outer membrane proteins (OMPs) from a pathogenic V. harveyi strain and analyzed their immunological properties. In vivo immunogenicity analysis showed that antibodies specific to recombinant proteins of the 13 OMPs were detected in the antiserum of V. harveyi-infected rat. When used as subunit vaccines to immunize Japanese flounder (Paralichthys olivaceus), all OMPs were able to elicit specific serum antibody production in the vaccinated fish; however, only two OMPs (OMP173 and OMP214) induced high levels (>70%) of relative percent survival. Pre-incubation of V. harveyi with the antisera of protective OMPs significantly impaired bacterial infectivity against peripheral blood leukocytes (PBL), whereas the antisera of non-protective OMPs had no apparent effect on infection. OMP173 antibodies could bind whole V. harveyi cells and exhibit bactericidal effect in a complement-dependent manner. Passive immunization showed that fish received OMP173 antiserum before being infected with V. harveyi exhibited significantly reduced mortality rate and lower bacterial loads in liver, spleen, and kidney. Finally, treatment of FG cells with OMP173 prior to V. harveyi infection protected the cells from bacterial invasion to a significant extent. Take together, these results indicate that two of the examined OMPs induce protective immunity through production of specific antibodies that block bacterial invasion, and that one OMP is likely to be involved in host cell interaction during the infection process. Thus, the immunoprotectivity of the OMPs is probably associated with functional participations of the OMPs in bacterial infection. PMID:23932987

  13. Gene synthesis, bacterial expression, and 1H NMR spectroscopic studies of the rat outer mitochondrial membrane cytochrome b5.

    Science.gov (United States)

    Rivera, M; Barillas-Mury, C; Christensen, K A; Little, J W; Wells, M A; Walker, F A

    1992-12-01

    The gene coding for the water-soluble domain of the outer mitochondrial membrane cytochrome b5 (OM cytochrome b5) from rat liver has been synthetized and expressed in Escherichia coli. The DNA sequence was obtained by back-translating the known amino acid sequence [Lederer, F., Ghrir, R., Guiard, B., Cortial, S., & Ito, A. (1983) Eur. J. Biochem. 132, 95-102]. The recombinant OM cytochrome b5 was characterized by UV-visible, EPR, and 1H NMR spectroscopy. The UV-visible and EPR spectra of the OM cytochrome b5 are almost identical to the ones obtained from the overexpressed rat microsomal cytochrome b5 [Bodman, S. B. V., Schyler, M. A., Jollie, D. R., & Sligar, S. G. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 9443-9447]. The one-dimensional 1H NMR spectrum of the OM cytochrome b5 indicates that the rhombic perturbation of the ferric center is essentially identical to that in the microsomal beef, rabbit, chicken, and rat cytochromes b5. Two-dimensional 1H NMR spectroscopy (NOESY) and one-dimensional NOE difference spectroscopy were used to assign the contact-shifted resonances that correspond to each of the two isomers that result from the rotation of the heme around its alpha-gamma-meso axis. The assignment of the resonances allowed the determination of the heme orientation ratio in the OM cytochrome b5, which was found to be 1.0 +/- 0.1. It is noteworthy that the two cytochromes b5 that have similar populations of the two heme isomers (large heme disorder) originate from the rat liver. PMID:1333795

  14. Differential expression of in vivo and in vitro protein profile of outer membrane of Acidovorax avenae subsp. avenae.

    Directory of Open Access Journals (Sweden)

    Muhammad Ibrahim

    Full Text Available Outer membrane (OM proteins play a significant role in bacterial pathogenesis. In this work, we examined and compared the expression of the OM proteins of the rice pathogen Acidovorax avenae subsp. avenae strain RS-1, a Gram-negative bacterium, both in an in vitro culture medium and in vivo rice plants. Global proteomic profiling of A. avenae subsp. avenae strain RS-1 comparing in vivo and in vitro conditions revealed the differential expression of proteins affecting the survival and pathogenicity of the rice pathogen in host plants. The shotgun proteomics analysis of OM proteins resulted in the identification of 97 proteins in vitro and 62 proteins in vivo by mass spectrometry. Among these OM proteins, there is a high number of porins, TonB-dependent receptors, lipoproteins of the NodT family, ABC transporters, flagellins, and proteins of unknown function expressed under both conditions. However, the major proteins such as phospholipase and OmpA domain containing proteins were expressed in vitro, while the proteins such as the surface anchored protein F, ATP-dependent Clp protease, OmpA and MotB domain containing proteins were expressed in vivo. This may indicate that these in vivo OM proteins have roles in the pathogenicity of A. avenae subsp. avenae strain RS-1. In addition, the LC-MS/MS identification of OmpA and MotB validated the in silico prediction of the existance of Type VI secretion system core components. To the best of our knowledge, this is the first study to reveal the in vitro and in vivo protein profiles, in combination with LC-MS/MS mass spectra, in silico OM proteome and in silico genome wide analysis, of pathogenicity or plant host required proteins of a plant pathogenic bacterium.

  15. Autotransported serine protease A of Neisseria meningitidis: an immunogenic, surface-exposed outer membrane, and secreted protein.

    Science.gov (United States)

    Turner, David P J; Wooldridge, Karl G; Ala'Aldeen, Dlawer A A

    2002-08-01

    Several autotransporter proteins have previously been identified in Neisseria meningitidis. Using molecular features common to most members of the autotransporter family of proteins, we have identified an additional novel ca. 112-kDa autotransporter protein in the meningococcal genomic sequence data. This protein, designated autotransported serine protease A (AspA), has significant N-terminal homology to the secreted serine proteases (subtilases) from several organisms and contains a serine protease catalytic triad. The amino acid sequence of AspA is well-conserved in serogroup A, B, and C meningococci. In Neisseria gonorrhoeae, the AspA homologue appears to be a pseudogene. The gene encoding AspA was cloned and expressed from meningococcal strain MC58 (B15:P1.16b). Anti-AspA antibodies were detected in patients' convalescent-phase sera, suggesting that AspA is expressed in vivo during infection and is immunogenic and cross-reactive. Rabbit polyclonal monospecific anti-AspA serum was used to probe whole-cell proteins from a panel of wild-type meningococcal strains and two AspA mutant strains. Expression of the ca. 112-kDa precursor polypeptide was detected in 12 of 20 wild-type meningococcal strains examined, suggesting that AspA expression is phase variable. Immunogold electron microscopy and cellular fractionation studies showed that the AspA precursor is transported to the outer membrane and remains surface exposed. Western blot experiments confirmed that smaller, ca. 68- or 70-kDa components of AspA (AspA68 and AspA70, respectively) are then secreted into the meningococcal culture supernatant. Site-directed mutagenesis of S426 abolished secretion of both rAspA68 and rAspA70 in Escherichia coli, confirming that AspA is an autocleaved autotransporter protein. In conclusion, we characterized a novel, surface-exposed and secreted, immunogenic, meningococcal autotransporter protein. PMID:12117956

  16. Identification of an iron-regulated outer membrane protein of Neisseria meningitidis involved in the utilization of hemoglobin complexed to haptoglobin.

    OpenAIRE

    Lewis, L. A.; Dyer, D W

    1995-01-01

    Hemoglobin complexed to the plasma protein haptoglobin can be used by Neisseria meningitidis as a source of iron to support growth in vitro. An N meningitidis mutant, DNM2E4, was generated by insertion of the mini-Tn3erm transposon into the gene coding for an 85-kDa iron-regulated outer membrane protein. Membrane proteins prepared from DNM2E4 were identical to those of the wild-type strain except that the 85-kDa protein was not produced. This mutant was unable to use hemoglobin-haptoglobin co...

  17. Cholate extracts of mitochondrial outer membranes increase inhibition by malonyl-CoA of carnitine palmitoyltransferase-I by a mechanism involving phospholipids.

    Science.gov (United States)

    Mynatt, R L; Greenhaw, J J; Cook, G A

    1994-01-01

    It has been reported that sodium cholate can separate the catalytic component of carnitine palmitoyltransferase-I (CPT-I) from a putative malonyl-CoA-binding regulatory protein capable of conferring sensitivity to malonyl-CoA on CPT-II. We found that cholate preferentially extracted a contaminating malonyl-CoA-sensitive CPT from mitochondrial inner membranes. When cholate extracts of outer membranes were incubated either with cholate extracts of inner membranes or with osmotically swollen mitochondria, inhibition of CPT by malonyl-CoA was increased. Treatment of intact mitochondria with subtilisin abolished the increased inhibition by malonyl-CoA, suggesting that the outer-membrane CPT-I was responsible for the increased inhibition. Incubation of cholate extracts with proteinase K did not prevent the increased inhibition. Fractionation of the cholate extract indicated the presence of phospholipids. Addition of cardiolipin or phosphatidylglycerol to osmotically swollen mitochondria increased sensitivity of CPT to malonyl-CoA, but several other phospholipids did not. When cardiolipin was added to intact mitochondria from either starved or fed rats, there were large increases in inhibition by malonyl-CoA; sensitivity in mitochondria from starved rats increased to that normally observed with mitochondria from fed rats. These results suggest that phospholipids are responsible for the increased inhibition of CPT by malonyl-CoA with added cholate extracts and that changes in membrane composition may be involved in the physiological regulation of CPT-I. PMID:8192665

  18. Structure, Function and Regulation of Outer Membrane Proteins Involved in Drug Transport in Enterobactericeae: the OmpF/C - TolC Case.

    Science.gov (United States)

    Masi, Muriel; Pagès, Jean-Marie

    2013-01-01

    Antibiotic translocation across membranes of Gram-negative bacteria is a key step for the activity on their specific intracellular targets. Resistant bacteria control their membrane permeability as a first line of defense to protect themselves against external toxic compounds such as antibiotics and biocides. On one hand, resistance to small hydrophilic antibiotics such as ß-lactams and fluoroquinolones frequently results from the « closing » of their way in: the general outer membrane porins. On the other hand, an effective way out for a wide range of antibiotics is provided by TolC-like proteins, which are outer membrane components of multidrug efflux pumps. Accordingly, altered membrane permeability, including porin modifications and/or efflux pumps' overexpression, is always associated to multidrug resistance (MDR) in a number of clinical isolates. Several recent studies have highlighted our current understanding of porins/TolC structures and functions in Enterobacteriaceae. Here, we review the transport of antibiotics through the OmpF/C general porins and the TolC-like channels with regards to recent data on their structure, function, assembly, regulation and contribution to bacterial resistance. Because MDR strains have evolved global strategies to identify and fight our antibiotic arsenal, it is important to constantly update our global knowledge on antibiotic transport. PMID:23569467

  19. Variable opacity (Opa) outer membrane proteins account for the cell tropisms displayed by Neisseria gonorrhoeae for human leukocytes and epithelial cells.

    OpenAIRE

    Kupsch, E M; Knepper, B; Kuroki, T; Heuer, I; Meyer, T F

    1993-01-01

    Opacity proteins (Opa) of Neisseria gonorrhoeae, a family of variant outer membrane proteins implicated in pathogenesis, are subject to phase variation. In strain MS11, 11 different opa gene alleles have been identified, the expression of which can be turned on and off independently. Using a reverse genetic approach, we demonstrate that a single Opa protein variant of strain MS11, Opa50, enables gonococci to invade epithelial cells. The remaining variant Opa proteins show no, or very little, ...

  20. Helicobacter pylori ATCC 43629/NCTC 11639 Outer Membrane Vesicles (OMVs) from Biofilm and Planktonic Phase Associated with Extracellular DNA (eDNA)

    OpenAIRE

    Grande, Rossella; Di Marcantonio, Maria C.; Robuffo, Iole; Pompilio, Arianna; Celia, Christian; Di Marzio, Luisa; Paolino, Donatella; Codagnone, Marilina; Muraro, Raffaella; Stoodley, Paul; Hall-Stoodley, Luanne; Mincione, Gabriella

    2015-01-01

    Helicobacter pylori persistence is associated with its capacity to develop biofilms as a response to changing environmental conditions and stress. Extracellular DNA (eDNA) is a component of H. pylori biofilm matrix but the lack of DNase I activity supports the hypothesis that eDNA might be protected by other extracellular polymeric substances (EPS) and/or Outer Membrane Vesicles (OMVs), which bleb from the bacteria surface during growth. The aim of the present study was to both identify the e...

  1. Intranasal Delivery of Group B Meningococcal Native Outer Membrane Vesicle Vaccine Induces Local Mucosal and Serum Bactericidal Antibody Responses in Rabbits

    OpenAIRE

    Shoemaker, David R.; Saunders, Nancy B.; Brandt, Brenda L.; Moran, E. Ellen; LaClair, Andrew D.; Zollinger, Wendell D.

    2005-01-01

    We have previously shown that intranasal immunization of mice with meningococcal native outer membrane vesicles (NOMV) induces both a good local mucosal antibody response and a good systemic bactericidal antibody response. However, in the intranasal mouse model, some of the NOMV entered the lung and caused an acute granulocytic response. We therefore developed an alternate animal model using the rabbit. This model reduces the probability of lung involvement and more closely mimics intranasal ...

  2. Efficacy of bacterin-, outer membrane protein- and fimbriae extract-based vaccines for the control of Salmonella Enteritidis experimental infection in chickens

    OpenAIRE

    2013-01-01

    The efficacy of three vaccines was evaluated in chickens for the control of experimental infection with Salmonella Enteritidis (SE) phage type 4. The vaccines were produced with bacterin, outer membrane proteins (OMP) and fimbriae crude extract (FE). The chickens were vaccinated intramuscularly with two doses of each vaccine at 12 and 15 weeks of age. The chickens were then orally challenged with 10(9) CFU/chicken Salmonella Enteritidis phage type 4 at 18 weeks of age. Fecal swabs were perfor...

  3. Molecular Cloning, Sequencing, and Expression of omp-40, the Gene Coding for the Major Outer Membrane Protein from the Acidophilic Bacterium Thiobacillus ferrooxidans†

    OpenAIRE

    Guiliani, Nicolas; Jerez, Carlos A.

    2000-01-01

    Thiobacillus ferrooxidans is one of the chemolithoautotrophic bacteria important in industrial biomining operations. Some of the surface components of this microorganism are probably involved in adaptation to their acidic environment and in bacterium-mineral interactions. We have isolated and characterized omp40, the gene coding for the major outer membrane protein from T. ferrooxidans. The deduced amino acid sequence of the Omp40 protein has 382 amino acids and a calculated molecular weight ...

  4. Oral Immunization with Recombinant Mycobacterium smegmatis Expressing the Outer Membrane Protein 26-Kilodalton Antigen Confers Prophylactic Protection against Helicobacter pylori Infection ▿ †

    OpenAIRE

    Lü, Lin; Zeng, Han-qing; Wang, Pi-Long; Shen, Wei; Xiang, Ting-xiu; Mei, Zhe-chuan

    2011-01-01

    Helicobacter pylori infection is prevalent worldwide and results in chronic gastritis, which may lead to gastric mucosa-associated lymphoid tissue lymphoma and gastric cancer. We have previously reported that oral immunization with recombinant Mycobacterium smegmatis expressing the H. pylori outer membrane protein 26-kilodalton (Omp26) antigen affords therapeutic protection against H. pylori infection in mice. In the present study, we investigated the prophylactic effects of this vaccine cand...

  5. Dynamic FtsA and FtsZ localization and outer membrane alterations during polar growth and cell division in Agrobacterium tumefaciens

    OpenAIRE

    Zupan, John R.; Cameron, Todd A.; Anderson-Furgeson, James; Zambryski, Patricia C.

    2013-01-01

    Growth and cell division in rod-shaped bacteria have been primarily studied in species that grow predominantly by peptidoglycan (PG) synthesis along the length of the cell. Rhizobiales species, however, predominantly grow by PG synthesis at a single pole. Here we characterize the dynamic localization of several Agrobacterium tumefaciens components during the cell cycle. First, the lipophilic dye FM 4-64 predominantly stains the outer membranes of old poles versus growing poles. In cells about...

  6. Cloning and sequencing of a gene encoding a 21-kilodalton outer membrane protein from Bordetella avium and expression of the gene in Salmonella typhimurium.

    Science.gov (United States)

    Gentry-Weeks, C R; Hultsch, A L; Kelly, S M; Keith, J M; Curtiss, R

    1992-12-01

    Three gene libraries of Bordetella avium 197 DNA were prepared in Escherichia coli LE392 by using the cosmid vectors pCP13 and pYA2329, a derivative of pCP13 specifying spectinomycin resistance. The cosmid libraries were screened with convalescent-phase anti-B. avium turkey sera and polyclonal rabbit antisera against B. avium 197 outer membrane proteins. One E. coli recombinant clone produced a 56-kDa protein which reacted with convalescent-phase serum from a turkey infected with B. avium 197. In addition, five E. coli recombinant clones were identified which produced B. avium outer membrane proteins with molecular masses of 21, 38, 40, 43, and 48 kDa. At least one of these E. coli clones, which encoded the 21-kDa protein, reacted with both convalescent-phase turkey sera and antibody against B. avium 197 outer membrane proteins. The gene for the 21-kDa outer membrane protein was localized by Tn5seq1 mutagenesis, and the nucleotide sequence was determined by dideoxy sequencing. DNA sequence analysis of the 21-kDa protein revealed an open reading frame of 582 bases that resulted in a predicted protein of 194 amino acids. Comparison of the predicted amino acid sequence of the gene encoding the 21-kDa outer membrane protein with protein sequences in the National Biomedical Research Foundation protein sequence data base indicated significant homology to the OmpA proteins of Shigella dysenteriae, Enterobacter aerogenes, E. coli, and Salmonella typhimurium and to Neisseria gonorrhoeae outer membrane protein III, Haemophilus influenzae protein P6, and Pseudomonas aeruginosa porin protein F. The gene (ompA) encoding the B. avium 21-kDa protein hybridized with 4.1-kb DNA fragments from EcoRI-digested, chromosomal DNA of Bordetella pertussis and Bordetella bronchiseptica and with 6.0- and 3.2-kb DNA fragments from EcoRI-digested, chromosomal DNA of B. avium and B. avium-like DNA, respectively. A 6.75-kb DNA fragment encoding the B. avium 21-kDa protein was subcloned into the

  7. Immunization with chlamydial plasmid protein pORF5 DNA vaccine induces protective immunity against genital chlamydial infection in mice

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To validate the immune protective efficacy of pORF5 DNA vaccine and to analyze potential mechanisms related to this protection. In this study, pORF5 DNA vaccine was constructed and evaluated for its protective immunity in a mouse model of genital chlamydial infection. Groups of BALB/c mice were immunized intranasally with pORF5 DNA vaccine. Humoral and cell mediated immune responses were evaluated. The clearance ability of chlamydial challenge from the genital tract and the chlamy- dia-induced upper genital tract gross pathology and histopathological characterization were also de- tected. The results showed that the total and the IgG2a anti-pORF5 antibody levels in serum were sig- nificantly elevated after pcDNA3.1-pORF5 vaccination, as were the total antibody and IgA levels in vaginal fluids. pcDNA3.1-pORF5 induced a significantly high level of Th1 response as measured by robust gamma interferon (IFN-γ). Minimal IL-4 was produced by immune T cells in response to the re-stimulation with pORF5 protein or the inactive elementary body in vitro. pcDNA3.1-pORF5-vacci- nated mice displayed significantly reduced bacterial shedding upon a chlamydial challenge and an accelerated resolution of infection. 100% of pcDNA3.1-pORF5 vaccinated mice successfully resolved the infection by day 24. pcDNA3.1-pORF5-immunized mice also exhibited protection against patho- logical consequences of chlamydial infection. The stimulated index was significantly higher than that of mice immunized with pcDNA3.1 and PBS (P<0.05). Together, these results demonstrated that immu- nization with pORF5 DNA vaccine is a promising approach for eliciting a protective immunity against a genital chlamydial challenge.

  8. Bipartite Topology of Treponema pallidum Repeat Proteins C/D and I: OUTER MEMBRANE INSERTION, TRIMERIZATION, AND PORIN FUNCTION REQUIRE A C-TERMINAL β-BARREL DOMAIN.

    Science.gov (United States)

    Anand, Arvind; LeDoyt, Morgan; Karanian, Carson; Luthra, Amit; Koszelak-Rosenblum, Mary; Malkowski, Michael G; Puthenveetil, Robbins; Vinogradova, Olga; Radolf, Justin D

    2015-05-01

    We previously identified Treponema pallidum repeat proteins TprC/D, TprF, and TprI as candidate outer membrane proteins (OMPs) and subsequently demonstrated that TprC is not only a rare OMP but also forms trimers and has porin activity. We also reported that TprC contains N- and C-terminal domains (TprC(N) and TprC(C)) orthologous to regions in the major outer sheath protein (MOSP(N) and MOSP(C)) of Treponema denticola and that TprC(C) is solely responsible for β-barrel formation, trimerization, and porin function by the full-length protein. Herein, we show that TprI also possesses bipartite architecture, trimeric structure, and porin function and that the MOSP(C)-like domains of native TprC and TprI are surface-exposed in T. pallidum, whereas their MOSP(N)-like domains are tethered within the periplasm. TprF, which does not contain a MOSP(C)-like domain, lacks amphiphilicity and porin activity, adopts an extended inflexible structure, and, in T. pallidum, is tightly bound to the protoplasmic cylinder. By thermal denaturation, the MOSP(N) and MOSP(C)-like domains of TprC and TprI are highly thermostable, endowing the full-length proteins with impressive conformational stability. When expressed in Escherichia coli with PelB signal sequences, TprC and TprI localize to the outer membrane, adopting bipartite topologies, whereas TprF is periplasmic. We propose that the MOSP(N)-like domains enhance the structural integrity of the cell envelope by anchoring the β-barrels within the periplasm. In addition to being bona fide T. pallidum rare outer membrane proteins, TprC/D and TprI represent a new class of dual function, bipartite bacterial OMP. PMID:25805501

  9. Disease association with two Helicobacter pylori duplicate outer membrane protein genes, homB and homA

    Directory of Open Access Journals (Sweden)

    Oleastro Monica

    2009-06-01

    Full Text Available Abstract Background homB encodes a Helicobacter pylori outer membrane protein. This gene was previously associated with peptic ulcer disease (PUD and was shown to induce activation of interleukin-8 secretion in vitro, as well as contributing to bacterial adherence. Its 90%-similar gene, homA, was previously correlated with gastritis. The present study aimed to evaluate the gastric disease association with homB and homA, as well as with the H. pylori virulence factors cagA, babA and vacA, in 415 H. pylori strains isolated from patients from East Asian and Western countries. The correlation among these genotypes was also evaluated. Results Both homB and homA genes were heterogeneously distributed worldwide, with a marked difference between East Asian and Western strains. In Western strains (n = 234, 124 PUD and 110 non-ulcer dyspepsia (NUD, homB, cagA and vacA s1 were all significantly associated with PUD (p = 0.025, p = 0.014, p = 0.039, respectively, and homA was closely correlated with NUD (p = 0.072. In East Asian strains (n = 138, 73 PUD and 65 NUD, homB was found more frequently than homA, and none of these genes was associated with the clinical outcome. Overall, homB was associated with the presence of cagA (p = 0.043 and vacA s1 (p homA was found more frequently in cagA-negative (p = 0.062 and vacA s2 (p Polymorphisms in homB and homA copy number were observed, with a clear geographical specificity, suggesting an involvement of these genes in host adaptation. A correlation between the homB two-copy genotype and PUD was also observed, emphasizing the role of homB in the virulence of the strain. Conclusion The global results suggest that homB and homA contribute to the determination of clinical outcome.

  10. Detection of nearest neighbors to specific fluorescently tagged ligands in rod outer segment and lymphocyte plasma membranes by photosensitization of 5-iodonaphthyl 1-azide

    International Nuclear Information System (INIS)

    Lima bean agglutinin-fluorescein 5-isothiocyanate conjugate (FluNCS-lima bean lectin) interacts with specific receptor molecules on membranes both from the rod outer segment (ROS) of the frog retina and from S49 mouse lymphoma cells. When [125I]-5-iodonaphthyl 1-azide (125I-INA), which freely and randomly partitions into the lipid bilayer, is added to membranes and the suspension is irradiated at 480 nm, the FluNCS-conjugated lectin photosensitizes the [125I]INA but only at discrete sites. This results in the selective labeling of specific proteins: an 88-kDa protein on ROS membranes and a 56-kDa protein on S49 plasma membranes. Labeling is dependent upon the interaction of the FluNCS-lectin with glycosylated receptor sites, since N-acetylgalactosamine, but not methyl alpha-mannoside, blocked labeling of the 56-kDa protein on S49 membranes. In contrast, a random labeling pattern of membrane proteins was observed upon irradiation at 480 nm using other fluorescein conjugates, such as FluNCS-bovine serum albumin (FluNCS-BSA) or FluNCS-soybean trypsin inhibitor (FluNCS-STI), which interact with cell membranes in a nonselective manner, or with N-(fluorescein-5-thiocarbamoyl)-n-undecyclamine (FluNCS-NHC11), which is freely miscible in the membrane lipid. Random labeling was also obtained by direct photoexcitation of [125I]INA at 314 nm, with no distinct labeling of the 88- and 56-kDa proteins in the respective membranes. These results suggest that protein ligands can be used to guide sensitizers to discrete receptor sites and lead to their selective labeling by photosensitized activation of [125I]INA

  11. Detection of nearest neighbors to specific fluorescently tagged ligands in rod outer segment and lymphocyte plasma membranes by photosensitization of 5-iodonaphthyl 1-azide

    Energy Technology Data Exchange (ETDEWEB)

    Raviv, Y.; Bercovici, T.; Gitler, C.; Salomon, Y. (Weizmann Institute of Science, Rehovot (Israel))

    1989-02-07

    Lima bean agglutinin-fluorescein 5-isothiocyanate conjugate (FluNCS-lima bean lectin) interacts with specific receptor molecules on membranes both from the rod outer segment (ROS) of the frog retina and from S49 mouse lymphoma cells. When (125I)-5-iodonaphthyl 1-azide (125I-INA), which freely and randomly partitions into the lipid bilayer, is added to membranes and the suspension is irradiated at 480 nm, the FluNCS-conjugated lectin photosensitizes the (125I)INA but only at discrete sites. This results in the selective labeling of specific proteins: an 88-kDa protein on ROS membranes and a 56-kDa protein on S49 plasma membranes. Labeling is dependent upon the interaction of the FluNCS-lectin with glycosylated receptor sites, since N-acetylgalactosamine, but not methyl alpha-mannoside, blocked labeling of the 56-kDa protein on S49 membranes. In contrast, a random labeling pattern of membrane proteins was observed upon irradiation at 480 nm using other fluorescein conjugates, such as FluNCS-bovine serum albumin (FluNCS-BSA) or FluNCS-soybean trypsin inhibitor (FluNCS-STI), which interact with cell membranes in a nonselective manner, or with N-(fluorescein-5-thiocarbamoyl)-n-undecyclamine (FluNCS-NHC11), which is freely miscible in the membrane lipid. Random labeling was also obtained by direct photoexcitation of (125I)INA at 314 nm, with no distinct labeling of the 88- and 56-kDa proteins in the respective membranes. These results suggest that protein ligands can be used to guide sensitizers to discrete receptor sites and lead to their selective labeling by photosensitized activation of (125I)INA.

  12. Diagnosis of Helicobacter pylori infection and diseases associated with Helicobacter pylori by Helicobacter pylori outer membrane proteins

    Institute of Scientific and Technical Information of China (English)

    Zheng Jiang; Ai-Long Huang; Xiao-Hong Tao; Pi-Long Wang

    2004-01-01

    AIM: To examine the serological response of patients with upper gastrointestinal diseases and Helicobocter pylori(Hpylori)infection to two H pylori outer membrane proteins (OMPs)(Mr18 000 and Mr26 000) acquired by gene recombinanttechnique, and to determine the diagnostic significance of serological tests derived from these OMPs.METHODS: Recombinant vectors encoding the two H pylori OMPs were used to transform and express in BL21 (DE3)E. coli. After purification with Ni2+-NTA agarose resin, colloid gold kits were prepared with purified recombinant proteins to detect H pylori infection and H pylori-associated diseases by the immunity-marker technology. We selected 150 patients with H pyloriinfection and digestive symptoms without previous treatment, induding chronic gastritis (n = 60), duodenal ulcer (n = 30), gastric ulcer (n = 30), and gastric cancer (n = 30).As controls, 33 H pylori-negative healthy volunteers were also recruited. Serum samples were collected from all subjects, and the antibodies to specific proteins of H pylori were tested with the colloid gold test kits. The sensitivity,specificity and accuracy of the colloid gold tests were evaluated, by using the combination of standard diagnostic methods (13C urea breath test and bacteria culture) and classic enzyme-linked immunosorbent assay (ELISA) as reference.RESULTS: After purification with Ni2+-NTA agarose resin,the purity of recombinant fusion proteins was about 95%.The recombinant fusion proteins were recognized by the specific monoclonal antibodies against the two H pylori OMPs,as demonstrated by the ELISA. Of the 150 serum samples from patients infected with H pylori 141 (94.0%) responded positively to the recombinant protein with Mr26 000, while the seropositive rates were 95.0%, 96.7%, 96.7% and 90.0%for patients with H pylori-associated chronic gastritis,duodenal ulcer, gastric ulcer, and gastric cancer respectively.The sensitivity, specificity, and accuracy of the colloid gold kit with Mr26 000

  13. Role of Outer-Membrane Cytochromes MtrC and OmcA in the Biomineralization of Ferrihydrite by Shewanella oneidensis MR-1.

    Energy Technology Data Exchange (ETDEWEB)

    Reardon, Catherine L.; Dohnalkova, Alice; Nachimuthu, Ponnusamy; Kennedy, David W.; Saffarini, Daad; Arey, Bruce W.; Shi, Liang; Wang, Zheming; Moore, Dean A.; Mclean, Jeffrey S.; Moyles, Dianne M.; Marshall, Matthew J.; Zachara, John M.; Fredrickson, Jim K.; Beliaev, Alex S.

    2010-01-01

    In an effort to improve the understanding of electron transfer mechanisms at the microbe-mineral interface, Shewanella oneidensis MR-1 mutants with in-frame deletions of outer membrane cytochrome genes mtrC, omcA, or both, were characterized for the ability to reduce metal oxides using a suite of microscopic, spectroscopic, and biochemicalr techniques. The results indicate that neither MtrC nor OmcA are essential for the reduction of soluble, complexed Fe(III)-citrate or Fe(III)-NTA; however, at least one of these outer membrane cytochromes is required for the reduction of Fe(III)- and Mn(III/IV)- oxides. In vitro analysis of purified, recombinant protein demonstrated that both cytochromes transfer electrons directly to metal-oxides; however, MtrC transfers electrons at a faster rate than OmcA. Immunolocalization of MtrC and OmcA reveal that both cytochromes are surface-exposed on the cell outer-membrane and co-localize with insoluble iron precipitates when respiring ferrihydrite or cultured aerobically with Fe(III)-citrate. Additionally, during prolonged incubation, wild-type cells promoted biotransformation of ferrihydrite to vivianite [Fe3(PO4)2•8H2O] while the double cytochrome mutant was unable to form any secondary mineral phases. Collectively, our results support a role for direct electron transfer from OMCs to metal oxides by establishing their in vitro electron transfer activities, confirming the requirement of either MtrC or OmcA for in vivo reductive biomineralization of ferrihydrite, and localizing the cytochromes to the cell exterior where they can directly contact mineral substrates.

  14. Monoclonal antibodies against LipL32, the major outer membrane protein of pathogenic Leptospira: production, characterization, and testing in diagnostic applications.

    Science.gov (United States)

    Fernandes, Cláudia P H; Seixas, Fabiana K; Coutinho, Mariana L; Vasconcellos, Flávia A; Seyffert, Núbia; Croda, Julio; McBride, Alan J; Ko, Albert I; Dellagostin, Odir A; Aleixo, José A G

    2007-02-01

    Pathogenic serovars of Leptospira have a wide antigenic diversity attributed mainly to the lipopolysaccharide present in the outer membrane. In contrast, antigens conserved among pathogenic serovars are mainly represented by outer membrane proteins. Surface exposure of a major and highly conserved outer membrane lipoprotein (LipL32) was recently demonstrated on pathogenic Leptospira. LipL32 in its recombinant form (rLipL32) was used to immunize BALB/c mice to develop murine monoclonal antibodies (MAbs). Three MAbs against rLipL32 were produced, isotyped, and evaluated for further use in diagnostic tests of leptospirosis using different approaches. MAbs were conjugated to peroxidase and evaluated in a native protein enzyme-linked immunosorbent assay (ELISA) with intact and heat-treated leptospiral cells, conjugated to fluorescein isothiocyanate (FITC) for indirect immunofluorescence with intact and methanol fixed cells and were used for LipL32 immunoprecipitation from leptospiral cells. rLipL32 MAbs conjugated to peroxidase or used as primary antibody bound to intact and heat-treated cells in ELISA, proving that they could be used in enzyme immunoassays for detection of the native protein. In immunofluorescence assay, MAbs labeled bacterial cells either intact or methanol fixed. Two MAbs were able to immunoprecipitate the native protein from live and motile leptospiral cells and, adsorbed onto magnetic beads, captured intact bacteria from artificially contaminated human sera for detection by polymerase chain reaction (PCR) amplification. Results of this study suggest that the MAbs produced can be useful for the development of diagnostic tests based on detection of LipL32 leptospiral antigen in biological fluids. PMID:17316084

  15. A component of the Xanthomonadaceae type IV secretion system combines a VirB7 motif with a N0 domain found in outer membrane transport proteins.

    Directory of Open Access Journals (Sweden)

    Diorge P Souza

    2011-05-01

    Full Text Available Type IV secretion systems (T4SS are used by Gram-negative bacteria to translocate protein and DNA substrates across the cell envelope and into target cells. Translocation across the outer membrane is achieved via a ringed tetradecameric outer membrane complex made up of a small VirB7 lipoprotein (normally 30 to 45 residues in the mature form and the C-terminal domains of the VirB9 and VirB10 subunits. Several species from the genera of Xanthomonas phytopathogens possess an uncharacterized type IV secretion system with some distinguishing features, one of which is an unusually large VirB7 subunit (118 residues in the mature form. Here, we report the NMR and 1.0 Å X-ray structures of the VirB7 subunit from Xanthomonas citri subsp. citri (VirB7(XAC2622 and its interaction with VirB9. NMR solution studies show that residues 27-41 of the disordered flexible N-terminal region of VirB7(XAC2622 interact specifically with the VirB9 C-terminal domain, resulting in a significant reduction in the conformational freedom of both regions. VirB7(XAC2622 has a unique C-terminal domain whose topology is strikingly similar to that of N0 domains found in proteins from different systems involved in transport across the bacterial outer membrane. We show that VirB7(XAC2622 oligomerizes through interactions involving conserved residues in the N0 domain and residues 42-49 within the flexible N-terminal region and that these homotropic interactions can persist in the presence of heterotropic interactions with VirB9. Finally, we propose that VirB7(XAC2622 oligomerization is compatible with the core complex structure in a manner such that the N0 domains form an extra layer on the perimeter of the tetradecameric ring.

  16. Specific Bonds between an Iron Oxide Surface and Outer Membrane Cytochromes MtrC and OmcA from Shewanella oneidensis MR-1▿

    OpenAIRE

    Lower, Brian H.; Shi, Liang; Yongsunthon, Ruchirej; Droubay, Timothy C.; McCready, David E.; Lower, Steven K.

    2007-01-01

    Shewanella oneidensis MR-1 is purported to express outer membrane cytochromes (e.g., MtrC and OmcA) that transfer electrons directly to Fe(III) in a mineral during anaerobic respiration. A prerequisite for this type of reaction would be the formation of a stable bond between a cytochrome and an iron oxide surface. Atomic force microscopy (AFM) was used to detect whether a specific bond forms between a hematite (Fe2O3) thin film, created with oxygen plasma-assisted molecular beam epitaxy, and ...

  17. A Western-blot assay for the detection of antibodies against pathogenic Leptospira serogroups with recombinant outer membrane protein LipL32

    OpenAIRE

    Hong-yuan DUAN; Liu, Zhi-Guo; Shao-fu QIU; He, Bin; Zhao, Hai; Song, Li-Hua; Zhu, Hong; Duan, Qing

    2011-01-01

    Objective To provide a possible antigen for rapid serodiagnosis of leptospirosis,the present study focused on the activity of immune-reaction and cross-reaction between outer membrane protein LipL32 and multi-serogroup anti-pathogenic Leptospira antibodies.Methods Based on the given sequence of LipL32 gene of Leptospira icterohaemorrhagiae strain 56601,the primer pair was designed and the DNA fragment was amplified by PCR.The amplified product was inserted into vector pET-28a-(c) to construct...

  18. Distribution of Salmonella paratyphi A outer membrane protein X gene and immune-protective effect related to its recombinant expressed products

    Institute of Scientific and Technical Information of China (English)

    李明雷

    2014-01-01

    Objective To determine the distribution and sequence conservation of outer membrane protein X(ompX)gene in Salmonella paratyphi A isolates as well as the immunogenicity and immono-protection of ompX gene products.Methods OmpX gene in Salmonella paratyphi A isolates was detected by PCR and the amplification products were sequenced after the T-A cloning process.OmpX gene product was expressed with E.coli expression system and the expressed rOmpX was extracted by Ni-NTA affinity

  19. Identification of a TcpC-TcpQ Outer Membrane Complex Involved in the Biogenesis of the Toxin-Coregulated Pilus of Vibrio cholerae

    OpenAIRE

    Bose, Niranjan; Taylor, Ronald K.

    2005-01-01

    The toxin-coregulated pilus (TCP) of Vibrio cholerae and the soluble TcpF protein that is secreted via the TCP biogenesis apparatus are essential for intestinal colonization. The TCP biogenesis apparatus is composed of at least nine proteins but is largely uncharacterized. TcpC is an outer membrane lipoprotein required for TCP biogenesis that is a member of the secretin protein superfamily. In the present study, analysis of TcpC in a series of strains deficient in each of the TCP biogenesis p...

  20. Interdependence of calcium and cobalamin binding by wild-type and mutant BtuB protein in the outer membrane of Escherichia coli.

    OpenAIRE

    Bradbeer, C; Gudmundsdottir, A

    1990-01-01

    The binding of calcium and cobalamin to outer membranes from cells of Escherichia coli that contained amplified levels of wild-type or mutant btuB was studied. The mutant (BBam50) had an aspartyl-prolyl dipeptide inserted after the original 50th amino acid residue of the mature BtuB protein, which is within a region that shows extensive homology with the ferric siderophore receptors. This insertion resulted in cleavage of the BtuB in two places. The larger form retained the insertion but had ...

  1. Immunogenicity of a chimeric peptide corresponding to T helper and B cell epitopes of the Chlamydia trachomatis major outer membrane protein

    OpenAIRE

    1992-01-01

    The immunogenicity of a chimeric T/B cell peptide corresponding to antigenically characterized epitopes of the Chlamydia trachomatis major outer membrane protein (MOMP) was studied in mice to further define its potential use in the development of a subunit vaccine in preventing blinding trachoma in humans. The chimeric peptide, designated A8-VDI, corresponds to a conserved MOMP T helper (Th) cell epitope(s) (A8, residues 106-130) and serovar A VDI (residues 66-80), which contains the serovar-...

  2. From Evolution to Pathogenesis: The Link Between β-Barrel Assembly Machineries in the Outer Membrane of Mitochondria and Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Jhih-Hang Jiang

    2012-06-01

    Full Text Available β-barrel proteins are the highly abundant in the outer membranes of Gram-negative bacteria and the mitochondria in eukaryotes. The assembly of β-barrels is mediated by two evolutionary conserved machineries; the β-barrel Assembly Machinery (BAM in Gram-negative bacteria; and the Sorting and Assembly Machinery (SAM in mitochondria. Although the BAM and SAM have functionally conserved roles in the membrane integration and folding of β-barrel proteins, apart from the central BamA and Sam50 proteins, the remaining components of each of the complexes have diverged remarkably. For example all of the accessory components of the BAM complex characterized to date are located in the bacterial periplasm, on the same side as the N-terminal domain of BamA. This is the same side of the membrane as the substrates that are delivered to the BAM. On the other hand, all of the accessory components of the SAM complex are located on the cytosolic side of the membrane, the opposite side of the membrane to the N-terminus of Sam50 and the substrate receiving side of the membrane. Despite the accessory subunits being located on opposite sides of the membrane in each system, it is clear that each system is functionally equivalent with bacterial proteins having the ability to use the eukaryotic SAM and vice versa. In this review, we summarize the similarities and differences between the BAM and SAM complexes, highlighting the possible selecting pressures on bacteria and eukaryotes during evolution. It is also now emerging that bacterial pathogens utilize the SAM to target toxins and effector proteins to host mitochondria and this will also be discussed from an evolutionary perspective.

  3. Fate of the major outer membrane protein P.IA in early and late events of gonococcal infection of epithelial cells.

    Science.gov (United States)

    Weel, J F; van Putten, J P

    1991-01-01

    We investigated the fate of the major outer membrane protein of Neisseria gonorrhoeae, P.IA, during gonococcal infection of Chang conjunctiva epithelial cells by using immunoelectron microscopy. Probing of P.IA epitopes with mono- and polyclonal antibodies revealed variable, fixation-dependent P.IA epitope exposure in the gonococci used as an inoculum in the infection experiments. Detection of invariable exposed P.IA epitopes in cryosections of infected epithelial cells with a polyclonal antiserum revealed unaltered P.IA exposure on the bacterial membranes during early attachment of the bacteria to the eukaryotic cells. Upon entry of the bacteria into the host cells, however, labelling was extended to membraneous structures that intercalated between the bacteria and the host cell surface, and, occasionally, to the host cell plasma membrane. The latter observation is consistent with the suggested active role of P.I. in the uptake process (as shown in 1985 by E.C. Gotschlich). Once inside the epithelial cells, both morphologically intact and disintegrating bacteria could be distinguished. The disintegration of the bacteria was accompanied by a loss of P.IA immunoreactivity. PMID:1725221

  4. Preliminary crystallographic analysis of the antibiotic discharge outer membrane lipoprotein OprM of Pseudomonas aeruginosa with an exceptionally long unit cell and complex lattice structure

    International Nuclear Information System (INIS)

    The OprM subunit of the MexAB-OprM efflux pump in P. aeruginosa is an outer membrane-anchored lipoprotein. OprM crystals have been grown at 293 K in the presence of 2-methyl-2,4-propanediol and a combination of surfactants and diffracted to 2.56 Å resolution. Crystals of the drug-discharge outer membrane protein OprM (MW = 50.9 kDa) of the MexAB-OprM multidrug transporter of Pseudomonas aeruginosa have been grown at 293 K in the presence of 2-methyl-2,4-propanediol and a combination of surfactants. The crystal belonged to space group R32, with unit-cell parameters a = b = 85.43, c = 1044.3 Å. Diffraction data for OprM were obtained using the undulator synchrotron-radiation beamline at SPring-8 (BL44XU, Osaka University), which allowed an extra-long specimen-to-detector distance with a wide detector area. The crystal diffracted to 2.56 Å resolution using 0.9 Å X-rays from the synchrotron-radiation source. A heavy-atom derivative for isomorphous replacement phasing was obtained using iridium chloride

  5. Preliminary crystallographic analysis of the antibiotic discharge outer membrane lipoprotein OprM of Pseudomonas aeruginosa with an exceptionally long unit cell and complex lattice structure

    Energy Technology Data Exchange (ETDEWEB)

    Akama, Hiroyuki; Kanemaki, Misa [Department of Molecular Life Science, Tokai University School of Medicine, Isehara 259-1193 (Japan); Tsukihara, Tomitake; Nakagawa, Atsushi [The Institute for Protein Research, Osaka University, Suita 565-0871 (Japan); Nakae, Taiji, E-mail: nakae@is.icc.u-tokai.ac.jp [Department of Molecular Life Science, Tokai University School of Medicine, Isehara 259-1193 (Japan)

    2005-01-01

    The OprM subunit of the MexAB-OprM efflux pump in P. aeruginosa is an outer membrane-anchored lipoprotein. OprM crystals have been grown at 293 K in the presence of 2-methyl-2,4-propanediol and a combination of surfactants and diffracted to 2.56 Å resolution. Crystals of the drug-discharge outer membrane protein OprM (MW = 50.9 kDa) of the MexAB-OprM multidrug transporter of Pseudomonas aeruginosa have been grown at 293 K in the presence of 2-methyl-2,4-propanediol and a combination of surfactants. The crystal belonged to space group R32, with unit-cell parameters a = b = 85.43, c = 1044.3 Å. Diffraction data for OprM were obtained using the undulator synchrotron-radiation beamline at SPring-8 (BL44XU, Osaka University), which allowed an extra-long specimen-to-detector distance with a wide detector area. The crystal diffracted to 2.56 Å resolution using 0.9 Å X-rays from the synchrotron-radiation source. A heavy-atom derivative for isomorphous replacement phasing was obtained using iridium chloride.

  6. The Xanthomonas Ax21 protein is processed by the general secretory system and is secreted in association with outer membrane vesicles

    Directory of Open Access Journals (Sweden)

    Ofir Bahar

    2014-01-01

    Full Text Available Pattern recognition receptors (PRRs play an important role in detecting invading pathogens and mounting a robust defense response to restrict infection. In rice, one of the best characterized PRRs is XA21, a leucine rich repeat receptor-like kinase that confers broad-spectrum resistance to multiple strains of the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo. In 2009 we reported that an Xoo protein, called Ax21, is secreted by a type I-secretion system and that it serves to activate XA21-mediated immunity. This report has recently been retracted. Here we present data that corrects our previous model. We first show that Ax21 secretion does not depend on the predicted type I secretion system and that it is processed by the general secretion (Sec system. We further show that Ax21 is an outer membrane protein, secreted in association with outer membrane vesicles. Finally, we provide data showing that ax21 knockout strains do not overcome XA21-mediated immunity.

  7. Overexpression, purification, crystallization and preliminary X-ray crystallographic analysis of the periplasmic domain of outer membrane protein A from Acinetobacter baumannii

    International Nuclear Information System (INIS)

    The crystallization of the OmpA periplasmic domain from A. baumannii is described. Outer membrane protein A from Acinetobacter baumannii (AbOmpA) is a major outer membrane protein and a key player in the bacterial pathogenesis that induces host cell death. AbOmpA is presumed to consist of an N-terminal β-barrel transmembrane domain and a C-terminal periplasmic OmpA-like domain. In this study, the recombinant C-terminal periplasmic domain of AbOmpA was overexpressed in Escherichia coli, purified and crystallized using the vapour-diffusion method. A native diffraction data set was collected to a resolution of 2.0 Å using synchrotron radiation. The space group of the crystal was P21, with unit-cell parameters a = 58.24, b = 98.59, c = 97.96 Å, β = 105.92°. The native crystal contained seven or eight molecules per asymmetric unit and had a calculated Matthews coefficient of 2.93 or 2.56 Å3 Da−1

  8. Membrane Organization and Dynamics of ‘Inner Pair’ and ‘Outer Pair’ Tryptophan Residues in Gramicidin Channels

    OpenAIRE

    Haldar, Sourav; Chaudhuri, Arunima; Gu, Hong; Koeppe, Roger E.; Kombrabail, Mamata; Krishnamoorthy, G.; Chattopadhyay, Amitabha

    2012-01-01

    The linear ion channel peptide gramicidin serves as an excellent prototype for monitoring the organization, dynamics and function of membrane-spanning channels. The tryptophan residues in gramicidin channels are crucial for establishing and maintaining the structure and function of the channel in the membrane bilayer. In order to address the basis of differential importance of tryptophan residues in gramicidin channel, we monitored the effects of pairwise substitution of two of the four grami...

  9. In-vivo identification of direct electron transfer from Shewanella oneidensis MR-1 to electrodes via outer-membrane OmcA-MtrCAB protein complexes

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Akihiro [Department of Applied Chemistry, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Nakamura, Ryuhei, E-mail: nakamura@light.t.u-tokyo.ac.jp [Department of Applied Chemistry, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Hashimoto, Kazuhito, E-mail: hashimoto@light.t.u-tokyo.ac.jp [Department of Applied Chemistry, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); ERATO/JST, HASHIMOTO Light Energy Conversion Project (Japan)

    2011-06-30

    Graphical abstract: . Display Omitted Highlights: > Monolayer biofilm of Shewanella cells was prepared on an ITO electrode. > Extracellular electron transfer (EET) process was examined with series of mutants. > Direct ET was confirmed with outer-membrane-bound OmcA-MtrCAB complex. > The EET process was not prominently influenced by capsular polysaccharide. - Abstract: The direct electron-transfer (DET) property of Shewanella bacteria has not been resolved in detail due to the complexity of in vivo electrochemistry in whole-cell systems. Here, we report the in vivo assignment of the redox signal indicative of the DET property in biofilms of Shewanella oneidensis MR-1 by cyclic voltammetry (CV) with a series of mutants and a chemical marking technique. The CV measurements of monolayer biofilms formed by deletion mutants of c-type cytochromes ({Delta}mtrA, {Delta}mtrB, {Delta}mtrC/{Delta}omcA, and {Delta}cymA), and pilin ({Delta}pilD), capsular polysaccharide ({Delta}SO3177) and menaquinone ({Delta}menD) biosynthetic proteins demonstrated that the electrochemical redox signal with a midpoint potential at 50 mV (vs. SHE) was due to an outer-membrane-bound OmcA-MtrCAB protein complex of decaheme cytochromes, and did not involve either inner-membrane-bound CymA protein or secreted menaquinone. Using the specific binding affinity of nitric monoxide for the heme groups of c-type cytochromes, we further confirmed this conclusion. The heterogeneous standard rate constant for the DET process was estimated to be 300 {+-} 10 s{sup -1}, which was two orders of magnitude higher than that previously reported for the electron shuttling process via riboflavin. Experiments using a mutant unable to produce capsular polysaccharide ({Delta}SO3177) revealed that the DET property of the OmcA-MtrCAB complex was not influenced by insulating and hydrophilic extracellular polysaccharide. Accordingly, under physiological conditions, S. oneidensis MR-1 utilizes a high density of outer-membrane

  10. Clinical and imaging features of neonatal chlamydial pneumonia

    International Nuclear Information System (INIS)

    Objective: To study the clinical and imaging features of chlamydial pneumonia in newborns. Methods: Medical records,chest X-Ray and CT findings of 17 neonates with chlamydia pneumonia were reviewed. The age was ranged from 9.0 to 28.0 days with mean of (16.8 ± 5.8) days. There were 11 males and 6 females. Sixteen were full term infants and one was born post term. All babies were examined with chest X-ray film, and 13 patients also underwent chest CT scan. Serologic test using immunofluorescence method for Chlamydia IgG and IgM antibodies were performed in all patients. Results: All newborns presented with cough but without fever. Positive results of the serologic tests were demonstrated. Chest films showed bilateral hyperventilation in 10 patients, diffuse reticular nodules in 10 patients including nodules mimicking military tuberculosis in 7 patients, and accompanying consolidation in 9 patients. CT features included interstitial reticular nodules in 13 patients with size, density, and distribution varied. Subpleural nodules (11 patients) and fusion of nodules (10 patients) predominated. Bilateral hyperinflation was found in 10 patients, which combined with infiltration in 12 patients, thickening of bronchovascular bundles in 10 patients, and ground glass sign in 5 patients. No pleural effusion and lymphadenopathy was detected in any patient. Conclusions: Bilateral hyperinflation and diffuse interstitial reticular nodules were the most common imaging features of neonatal chlamydial pneumonia. The main clinical characteristic of neonatal chlamydial pneumonia is respiratory symptoms without fever, which is helpful to its diagnosis. (authors)

  11. Evidence for proteolytic cleavage of the 120-kilodalton outer membrane protein of rickettsiae: identification of an avirulent mutant deficient in processing.

    Science.gov (United States)

    Hackstadt, T; Messer, R; Cieplak, W; Peacock, M G

    1992-01-01

    The 120-kDa rickettsial outer membrane protein (rOmpB) is encoded by a gene with the capacity to encode a protein of approximately 168 kDa. The carboxy-terminal end of the molecule is apparently cleaved to yield 120- and 32-kDa products. Both polypeptides are surface exposed and remain associated with the outer membrane of intact rickettsiae. All species of rickettsiae examined display similar cleavage of rOmpB. Comparison of diverse species of rickettsiae demonstrate a conserved N terminus of the 32-kDa fragment, with a predicted procaryotic secretory signal peptide immediately upstream of the proposed cleavage site. Coprecipitation of the 120-kDa rOmpB protein and the 32-kDa peptide by monoclonal antibodies specific for the 120-kDa portion of the molecule suggests that the two fragments remain noncovalently associated on the surface of rickettsiae. Analysis of an avirulent mutant of Rickettsia rickettsii revealed reduced amounts of the 120- and 32-kDa fragments, but with a correspondingly larger rOmpB protein that displayed properties expected of the putative precursor. This avirulent mutant grows intracellularly but fails to cause the lysis of infected cells that is typical of R. rickettsii. DNA sequence analysis of the region of the gene encoding the cleavage site of the avirulent strain revealed no difference from the sequence obtained from virulent R. rickettsii. The 168-kDa putative precursor of the avirulent strain of R. rickettsii was not extracted from the surface by dilute buffers, as is the 120-kDa protein of virulent R. rickettsii or R. prowazekii. These latter results suggest that the 32-kDa C-terminal region of the molecule may serve as a membrane anchor domain. Images PMID:1729180

  12. Overexpression of human SOD1 in VDAC1-less yeast restores mitochondrial functionality modulating beta-barrel outer membrane protein genes.

    Science.gov (United States)

    Magrì, Andrea; Di Rosa, Maria Carmela; Tomasello, Marianna Flora; Guarino, Francesca; Reina, Simona; Messina, Angela; De Pinto, Vito

    2016-06-01

    Cu/Zn Superoxide Dismutase (SOD1), the most important antioxidant defense against ROS in eukaryotic cells, localizes in cytosol and intermembrane space of mitochondria (IMS). Several evidences show a SOD1 intersection with both fermentative and respiratory metabolism. The Voltage Dependent Anion Channel (VDAC) is the main pore-forming protein in the mitochondrial outer membrane (MOM), and is considered the gatekeeper of mitochondrial metabolism. Saccharomyces cerevisiae lacking VDAC1 (Δpor1) is a very convenient model system, since it shows an impaired growth rate on non-fermentable carbon source. Transformation of Δpor1 yeast with human SOD1 completely restores the cell growth deficit in non-fermentative conditions and re-establishes the physiological levels of ROS, as well as the mitochondrial membrane potential. No similar result was found upon yeast SOD1 overexpression. A previous report highlighted the action of SOD1 as a transcription factor. Quantitative Real-Time PCR showed that β-barrel outer-membrane encoding-genes por2, tom40, sam50 are induced by hSOD1, but the same effect was not obtained in Δpor1Δpor2 yeast, indicating a crucial function for yVDAC2. Since the lack of VDAC1 in yeast can be considered a stress factor for the cell, hSOD1 could relieve it stimulating the expression of genes bringing to the recovery of the MOM function. Our results suggest a direct influence of SOD1 on VDAC. PMID:26947057

  13. Uncoupler resistance in E. coli Tuv and Cuv is due to the exclusion of uncoupler by the outer membrane

    DEFF Research Database (Denmark)

    Haworth, Robert S.; Jensen, Peter Ruhdal; Michelsen, Ole;

    1990-01-01

    freely permeable to both TPP+ and hydroxymethylinulin. Tuv and Cuv are able to exclude these compounds. EDTA treatment was necessary prior to measuring membrane potentials in Tuv and Cuv. Under conditions where Δψ could be measured, uncouplers acted to dissipate Δψ with equal potency in all strains...

  14. Structure analysis of OmpC, one of the major proteins in the outer membrane of E. coli, by high resolution electron microscopy

    International Nuclear Information System (INIS)

    This dissertation is concerned with the structure analysis of a pore-forming membrane protein, OmpC, which is one of the major proteins in the outer membrane of Escherichia coli. In order to obtain structural information it was necessary to develop a suitable technique for preparing two-dimensional crystalline arrays of this membrane protein in an unfixed, unstained and hydrated condition. Electron micrographs were recorded at exposures of less than 5 electrons/A2 in order to avoid severe radiation damage. The resulting images were crystallographically averaged, in order to overcome the statistical limitations associated with the low electron exposures. The resulting images, which extend to a resolution of approx. 13.5 A, lend themselves to a natural interpretation that is consistent with the mass density of protein, water and lipid, prior data from 2-D and 3-D structure studies of negatively stained specimens at approx. = 20 A resolution, and published spectroscopic data on the peptide chain secondary structure

  15. Preliminary crystallographic analysis of the antibiotic discharge outer membrane lipoprotein OprM of Pseudomonas aeruginosa with an exceptionally long unit cell and complex lattice structure.

    Science.gov (United States)

    Akama, Hiroyuki; Kanemaki, Misa; Tsukihara, Tomitake; Nakagawa, Atsushi; Nakae, Taiji

    2005-01-01

    Crystals of the drug-discharge outer membrane protein OprM (MW = 50.9 kDa) of the MexAB-OprM multidrug transporter of Pseudomonas aeruginosa have been grown at 293 K in the presence of 2-methyl-2,4-propanediol and a combination of surfactants. The crystal belonged to space group R32, with unit-cell parameters a = b = 85.43, c = 1044.3 A. Diffraction data for OprM were obtained using the undulator synchrotron-radiation beamline at SPring-8 (BL44XU, Osaka University), which allowed an extra-long specimen-to-detector distance with a wide detector area. The crystal diffracted to 2.56 A resolution using 0.9 A X-rays from the synchrotron-radiation source. A heavy-atom derivative for isomorphous replacement phasing was obtained using iridium chloride. PMID:16508113

  16. Efficacy of bacterin-, outer membrane protein- and fimbriae extract-based vaccines for the control of Salmonella Enteritidis experimental infection in chickens

    Directory of Open Access Journals (Sweden)

    Márcia C. Menão

    2013-03-01

    Full Text Available The efficacy of three vaccines was evaluated in chickens for the control of experimental infection with Salmonella Enteritidis (SE phage type 4. The vaccines were produced with bacterin, outer membrane proteins (OMP and fimbriae crude extract (FE. The chickens were vaccinated intramuscularly with two doses of each vaccine at 12 and 15 weeks of age. The chickens were then orally challenged with 10(9 CFU/chicken Salmonella Enteritidis phage type 4 at 18 weeks of age. Fecal swabs were performed for the recovery of shedding SE, and SE was recovered from the liver and spleen. Additionally, antibody titers were measured in the serum by micro-agglutination test. The results indicated that the vaccine produced with bacterin yielded better results and resulted in reduction of fecal shedding and organ invasion by SE after oral challenge, although no vaccine was 100% effective for the control of SE experimental infection.

  17. The role of heparan sulfate on adhesion of 47 and 51 kDa outer membrane proteins of Helicobacter pylori to gastric cancer cells.

    Science.gov (United States)

    López-Bolaños, Claudia C; Guzmán-Murillo, Maria A; Ruiz-Bustos, Eduardo; Ascencio, Felipe

    2009-04-01

    Helicobacter pylori is a common gastrointestinal pathogenic bacterium in humans and the usual preference for the stomach's outer membrane proteins (OMPs) are antigens involved in the adhesion process. Through SDS-PAGE and blotting analyses, using horseradish peroxidase-labeled heparan sulfate (HRP-HS) as a probe, we identified H. pylori OMPs with affinity for heparan sulfate (OMP-HS). Biotin-streptavidin bacterial-adhesion assay was used to evaluate participation of OMP-HS in the adhesion of H. pylori to semi-confluent HeLa S3 and Kato III cell monolayers. The results provide evidence that induction of antibodies against 2 OMP-HSs (HSBP-47 and HSBP-51) could reduce binding of H. pylori to both cell lines and induce detachment of cell-bound bacteria from infected cultured cells. PMID:19396245

  18. Overexpression, refolding, and purification of the major immunodominant outer membrane porin OmpC from Salmonella typhi: characterization of refolded OmpC.

    Science.gov (United States)

    Kumar, P D; Krishnaswamy, S

    2005-03-01

    The major immunodominant integral outer membrane protein C (OmpC) from Salmonella typhi Ty21a was overexpressed, without the signal peptide, in Escherichia coli. The protein aggregates as inclusion bodies (IBs) in the cytoplasm. OmpC from IBs was solubilized with 4 M urea and refolded. This involved rapid dilution of unfolded OmpC into a refolding buffer containing polyoxyethylene-9-lauryl ether (C(12)E(9)) and glycerol. The refolded OmpC (rfOmpC) was shown to be structurally similar to the native OmpC by SDS-PAGE, Western blotting, tryptic digestion, ultrafiltration, circular dichroism, and fluorescence spectroscopic techniques. Crystals of rfOmpC were obtained in preliminary crystallization trials. The rfOmpC also sets a stage for rational design by recombinant DNA technology for vaccine design and high resolution structure determination. PMID:15721780

  19. Novel utilization of the outer membrane proteins for the identification and differentiation of pathogenic versus nonpathogenic microbial strains using mass spectrometry-based proteomics approach

    Science.gov (United States)

    Jabbour, Rabih E.; Wade, Mary; Deshpande, Samir V.; McCubbin, Patrick; Snyder, A. Peter; Bevilacqua, Vicky

    2012-06-01

    Mass spectrometry based proteomic approaches are showing promising capabilities in addressing various biological and biochemical issues. Outer membrane proteins (OMPs) are often associated with virulence in gram-negative pathogens and could prove to be excellent model biomarkers for strain level differentiation among bacteria. Whole cells and OMP extracts were isolated from pathogenic and non-pathogenic strains of Francisella tularensis, Burkholderia thailandensis, and Burkholderia mallei. OMP extracts were compared for their ability to differentiate and delineate the correct database organism to an experimental sample and for the degree of dissimilarity to the nearest-neighbor database strains. This study addresses the comparative experimental proteome analyses of OMPs vs. whole cell lysates on the strain-level discrimination among gram negative pathogenic and non-pathogenic strains.

  20. Cytological evidence that the C-terminus of carnitine palmitoyltransferase I is on the cytosolic face of the mitochondrial outer membrane.

    Science.gov (United States)

    van der Leij, F R; Kram, A M; Bartelds, B; Roelofsen, H; Smid, G B; Takens, J; Zammit, V A; Kuipers, J R

    1999-01-01

    Carnitine palmitoyltransferase I (CPT I) is a key enzyme in the regulation of beta-oxidation. The topology of this enzyme has been difficult to elucidate by biochemical methods. We studied the topology of a fusion protein of muscle-type CPT I (M-CPT I) and green fluorescent protein (GFP) by microscopical means. To validate the use of the fusion protein, designated CPT I-GFP, we checked whether the main characteristics of native CPT I were retained. CPT I-GFP was expressed in HeLa cells after stable transfection. Confocal laser scanning microscopy in living cells revealed an extranuclear punctate distribution of CPT I-GFP, which coincided with a mitochondrial fluorescent marker. Immunogold electron microscopy localized CPT I-GFP almost exclusively to the mitochondrial periphery and showed that the C-terminus of CPT I must be on the cytosolic face of the mitochondrial outer membrane. Western analysis showed a protein that was 6 kDa smaller than predicted, which is consistent with previous results for the native M-CPT I. Mitochondria from CPT I-GFP-expressing cells showed an increased CPT activity that was inhibited by malonyl-CoA and was lost on solubilization with Triton X-100. We conclude that CPT I-GFP adopts the same topology as native CPT I and that its C-terminus is located on the cytosolic face of the mitochondrial outer membrane. The evidence supports a recently proposed model for the domain structure of CPT I based on biochemical evidence. PMID:10417344

  1. Recognition of saccharides by the OpcA, OpaD, and OpaB outer membrane proteins from Neisseria meningitidis.

    Science.gov (United States)

    Moore, Jeremy; Bailey, Simon E S; Benmechernene, Zineb; Tzitzilonis, Christos; Griffiths, Natalie J E; Virji, Mumtaz; Derrick, Jeremy P

    2005-09-01

    The adhesion of the pathogen Neisseria meningitidis to host cell surface proteoglycan, mediated by the integral outer membrane proteins OpcA and Opa, plays an important part in the processes of colonization and invasion by the bacterium. The precise specificities of the OpcA and Opa proteins are, however, unknown. Here we use a fluorescence-based binding assay to show that both proteins bind to mono- and disaccharides with high affinity. Binding of saccharides caused a quench in the intrinsic fluorescence emission of both proteins, and mutation of selected Tyr residues within the external loop regions caused a substantial decrease in fluorescence. We suggest that the intrinsic fluorescence arises from resonance energy transfer from Tyr to Trp residues in the beta-barrel portion of the structure. OpcA bound sialic acid with a Kd of 0.31 microM and was shown to be specific for pyranose saccharides. The binding specificities of two different Opa proteins were compared; unlike OpcA, neither protein bound to monosaccharides, but both bound to maltose, lactose, and sialic acid-containing oligosaccharides, with Kd values in the micromolar range. OpaB had a 10-fold higher affinity for sialic acid-containing ligands than OpaD as a result of the mutation Y165V, which was shown to restore this specificity to OpaD. Finally, the OpcA- and Opa-dependent adhesion of meningococci to epithelial cells was shown to be partially inhibited by exogenously added sialic acid and maltose. The results show that OpcA and the Opa proteins can be thought of as outer membrane lectins and that simple saccharides can modulate their recognition of complex proteoglycan receptors. PMID:16006553

  2. Molecular cloning, sequencing, and expression of omp-40, the gene coding for the major outer membrane protein from the acidophilic bacterium Thiobacillus ferrooxidans.

    Science.gov (United States)

    Guiliani, N; Jerez, C A

    2000-06-01

    Thiobacillus ferrooxidans is one of the chemolithoautotrophic bacteria important in industrial biomining operations. Some of the surface components of this microorganism are probably involved in adaptation to their acidic environment and in bacterium-mineral interactions. We have isolated and characterized omp40, the gene coding for the major outer membrane protein from T. ferrooxidans. The deduced amino acid sequence of the Omp40 protein has 382 amino acids and a calculated molecular weight of 40,095.7. Omp40 forms an oligomeric structure of about 120 kDa that dissociates into the monomer (40 kDa) by heating in the presence of sodium dodecyl sulfate. The degree of identity of Omp40 amino acid sequence to porins from enterobacteria was only 22%. Nevertheless, multiple alignments of this sequence with those from several OmpC porins showed several important features conserved in the T. ferrooxidans surface protein, such as the approximate locations of 16 transmembrane beta strands, eight loops, including a large external L3 loop, and eight turns which allowed us to propose a putative 16-stranded beta-barrel porin structure for the protein. These results together with the previously known capacity of Omp40 to form ion channels in planar lipid bilayers strongly support its role as a porin in this chemolithoautotrophic acidophilic microorganism. Some characteristics of the Omp40 protein, such as the presence of a putative L3 loop with an estimated isoelectric point of 7.21 allow us to speculate that this can be the result of an adaptation of the acidophilic T. ferrooxidans to prevent free movement of protons across its outer membrane. PMID:10831405

  3. Evolutionary Implication of Outer Membrane Lipoprotein-Encoding Genes ompL1, lipL32 and lipL41 of Pathogenic Leptospira Species

    Institute of Scientific and Technical Information of China (English)

    K. Vedhagiri; K. Natarajaseenivasan; P. Chellapandi; S.G. Prabhalaran; Joseph Selvin; S. Sharma; P. Vijayachari

    2009-01-01

    Leptospirosis is recognized as the most widespread zoonosis with a global distribu-tion. In this study, the antigenic variation in Leptospira interrogans and Leptospira borgpetersenii isolated from human urine and field rat kidney was preliminarily confirmed by microscopic agglutination test using monoclonal antibodies, and was further subjected to amplification and identification of outer membrane lipopro-teins with structural gene variation. Sequence similarity analysis revealed that these protein sequences, namely OmpL1, LipL32 and LipL41, showed no more ho-mologies to outer membrane lipoproteins of non-pathogenic Leptospira and other closely related Spirochetes, but showed a strong identity within L. interrogans, suggesting intra-specific phylogenetic lineages that might be originated from a common pathogenic leptospiral origin. Moreover, the ompL1 gene showed more antigenic variation than lipL32 and lipL41 due to less conservation in secondary structural evolution within closely related species. Phylogenetically, ompL1 and lipL41 of these strains gave a considerable proximity to L. weilii and L. santaro-sai. The ompL1 gene of L. interrogans clustered distinctly from other pathogenic and non-pathogenic leptospiral species. The diversity of ompL genes has been an-alyzed and it envisaged that sequence-specific variations at antigenic determinant sites would result in slow evolutionary changes along with new serovar origina-tion within closely related species. Thus, a crucial work on effective recombinant vaccine development and engineered antibodies will hopefully meet to solve the therapeutic challenges.

  4. Immunization with synthetic peptides containing epitopes of the class 1 outer-membrane protein of Neisseria meningitidis: production of bactericidal antibodies on immunization with a cyclic peptide.

    Science.gov (United States)

    Christodoulides, M; McGuinness, B T; Heckels, J E

    1993-08-01

    The class 1 outer-membrane protein of Neisseria meningitidis is the target for subtype-specific, bactericidal monoclonal antibodies (mAbs). The epitopes recognized by these antibodies have been mapped previously to linear peptides corresponding to the sequences thought to be exposed at the apices of surface-exposed loops of the protein. In this work several synthetic peptides containing the subtype Pl.16b epitope have been synthetized with the aim of inducing a polyclonal immune response resembling the reactivity of the mAbs. Initially, peptides of 9 and 15 amino acid residues were synthesized and used for immunization after coupling to a carrier protein. The reactivity of the resulting antisera, with synthetic linear decapeptides, resembled that seen in previous epitope mapping experiments with the protective mAbs. However, despite the induction of antibodies having the desired specificity, the antisera reacted poorly with the native protein in outer membranes, and were non-bactericidal. A 36mer peptide, consisting of the entire surface-exposed loop 4 of the class 1 protein was then synthesized and used for immunization as (i) free peptide, (ii) peptide coupled to carrier and (iii) peptide subjected to cyclization, in an attempt to restrict it to conformations that might more closely resemble the native loop structure. In contrast to antisera raised against linear peptides, antibodies raised by immunization with the 36mer cyclic peptide, did not react with linear peptides recognized by the mAbs, but instead appeared to recognize conformational determinants. This antiserum promoted complement-mediated bactericidal killing of the homologous meningococcal strain, demonstrating the potential of synthetic peptide immunogens for inducing a protective immune response against group B meningococci. PMID:7691983

  5. Lipid-modified azurin of Neisseria meningitidis is a copper protein localized on the outer membrane surface and not regulated by FNR.

    Science.gov (United States)

    Deeudom, Manu; Huston, Wilhemina; Moir, James W B

    2015-04-01

    The laz gene of Neisseria meningitidis is predicted to encode a lipid-modified azurin (Laz). Laz is very similar to azurin, a periplasmic protein, which belongs to the copper-containing proteins in the cupredoxin superfamily. In other bacteria, azurin is an electron donor to nitrite reductase, an important enzyme in the denitrifying process. It is not known whether Laz could function as an electron transfer protein in this important pathogen. Laz protein was heterologously expressed in Escherichia coli and purified. Electrospray mass spectrometry indicated that the Laz protein contains one copper ion. Laz was shown to be redox-active in the presence of its redox center copper ion. When oxidized, Laz exhibits an intense blue colour and absorbs visible light around 626 nm. The absorption is lost when exposed to diethyldithiocarbamate, a copper chelating agent. Polyclonal antibodies were raised against purified Laz for detecting expression of Laz under different growth conditions and to determine the orientation of Laz on the outer membrane. The expression of Laz under microaerobic and microaerobic denitrifying conditions was slightly higher than that under aerobic conditions. However, the expression of Laz was similar between the wild type strain and an fnr mutant, suggesting that Fumarate/Nitrate reduction regulator (FNR) does not regulate the expression of Laz despite the presence of a partial FNR box upstream of the laz gene. We propose that some Laz protein is exposed on the outer membrane surface of N. meningitidis as the αLaz antibodies can increase killing by complement in a capsule deficient N. meningitidis strain, in a dose-dependent fashion. PMID:25666376

  6. Development of a cost-effective vaccine candidate with outer membrane vesicles of a tolA-disrupted Shigella boydii strain.

    Science.gov (United States)

    Mitra, Soma; Sinha, Ritam; Mitobe, Jiro; Koley, Hemanta

    2016-04-01

    Our previous studies on outer membrane vesicles based vaccine development against shigellosis, revealed the inability of Shigella to release significant amount of vesicles naturally, during growth. Disruption of tolA, one of the genes of the Tol-Pal system of Gram negative bacterial membrane, has increased the vesicle release rate of a Shigella boydii type 4 strain to approximately 60% higher. We also noticed the vesicles, released from tolA-disrupted strain captured more OmpA protein and lipopolysaccharide, compared to the vesicles released from its wild type prototype. Six to seven weeks old BALB/c mice, immunized with 25μg of three oral doses of the vesicles, released by tolA mutant, conferred 100% protection against lethal homologous challenge through nasal route, compared to only 60% protection after the same dose of wild type immunogen. Mice, immunized with the vesicles from tolA-mutant, manifested significant secretion of mucosal IgG and IgA. A sharp and significant response of pro-inflammatory cytokines (TNF-α, IL-6, IFN-γ) were also observed in the lung lavage of these groups of mice, within 6h post challenge; but at 24h, these inflammatory cytokines showed the sign of subsidence and the system was taken over by the release of anti-inflammatory cytokines (IL-4 and IL-10). Studies with naïve peritoneal macrophages, proved further, the potency of these vesicles to stimulate nitric oxide and TNF-α, IL-12p70, IL-6 and IL-10 productions in-vitro. The ability of these vesicles to trigger polarization of CD4(+) T cells toward Th1 adaptive immune response, had also been observed along with the presence of anti-inflammatory cytokines in the system. Our study demonstrated, the vesicles from tolA-disrupted Shigella were able to suppress Shigella-mediated inflammation in the host and could balance between inflammation and anti-inflammation, promoting better survival and health of the infected mice. Outer membrane vesicles from tolA-mutant, could be a potential

  7. Chlamydial antigens stabilized with formalin for use in the micro-immunofluorescence test.

    OpenAIRE

    Hanna, L; Keshishyan, H

    1980-01-01

    Formalinized antigen suspensions prepared by differential centrifugation from crude infected yolk sacs and stored at 4 degrees C were satisfactory antigens during at least 36 weeks when used in chlamydial micro-immunofluorescence procedures.

  8. Protective role of serum antibody in immunity to chlamydial genital infection.

    OpenAIRE

    Rank, R G; Batteiger, B E

    1989-01-01

    Female guinea pigs were injected intraperitoneally with pooled immunoglobulin derived from animals immunized to the chlamydial agent of guinea pig inclusion conjunctivitis. Genital infections in animals receiving pooled immunoglobulin from immune animals were markedly decreased with regard to the number of inclusions detected compared with control animals. These data indicated that serum-derived antibody was able to provide a degree of protection against a chlamydial genital tract infection.

  9. The conserved Tarp actin binding domain is important for chlamydial invasion.

    Directory of Open Access Journals (Sweden)

    Travis J Jewett

    Full Text Available The translocated actin recruiting phosphoprotein (Tarp is conserved among all pathogenic chlamydial species. Previous reports identified single C. trachomatis Tarp actin binding and proline rich domains required for Tarp mediated actin nucleation. A peptide antiserum specific for the Tarp actin binding domain was generated and inhibited actin polymerization in vitro and C. trachomatis entry in vivo, indicating an essential role for Tarp in chlamydial pathogenesis. Sequence analysis of Tarp orthologs from additional chlamydial species and C. trachomatis serovars indicated multiple putative actin binding sites. In order to determine whether the identified actin binding domains are functionally conserved, GST-Tarp fusions from multiple chlamydial species were examined for their ability to bind and nucleate actin. Chlamydial Tarps harbored variable numbers of actin binding sites and promoted actin nucleation as determined by in vitro polymerization assays. Our findings indicate that Tarp mediated actin binding and nucleation is a conserved feature among diverse chlamydial species and this function plays a critical role in bacterial invasion of host cells.

  10. Isolation, functional characterization and crystallization of Aq_1259, an outer membrane protein with porin features, from Aquifex aeolicus.

    Science.gov (United States)

    Wang, Tao; Langer, Julian D; Peng, Guohong; Michel, Hartmut

    2012-12-01

    The "hypothetical protein" Aq_1259 was identified by mass spectrometry and purified from native membranes of Aquifex aeolicus. It is a 49.4kDa protein, highly homologous (>52% identity) to several conserved hypothetical proteins from other bacteria. However, none of these proteins has been characterized using biochemical or electrophysiological techniques. Based on the sequence and circular dichroism spectroscopy, the structure of Aq_1259 is predicted to be a β-barrel with 16 β-strands. The strands with loops and turns are distributed evenly through the entire sequence. The function of Aq_1259 was analyzed after incorporation into a lipid bilayer. Electrophysiological measurements revealed a pore that has a basic stationary conductance of 0.48 ± 0.038nS in a buffer with 0.5M NaH₂PO₄ at pH 6.5 and 0.2 ± 0.015nS in a buffer with 0.5M NaCl at pH 6.5. Superimposed on this is a fluctuating conductance of similar amplitude. Aq_1259 could be crystallized. The crystals diffract to a resolution of 3.4Å and belong to space group I222 with cell dimensions of a=138.3Å, b=144.6Å, c=151.8Å. PMID:22842195

  11. Specific bonds between an iron oxide surface and outer membrane cytochromes MtrC and OmcA from Shewanella oneidensis MR-1.

    Science.gov (United States)

    Lower, Brian H; Shi, Liang; Yongsunthon, Ruchirej; Droubay, Timothy C; McCready, David E; Lower, Steven K

    2007-07-01

    Shewanella oneidensis MR-1 is purported to express outer membrane cytochromes (e.g., MtrC and OmcA) that transfer electrons directly to Fe(III) in a mineral during anaerobic respiration. A prerequisite for this type of reaction would be the formation of a stable bond between a cytochrome and an iron oxide surface. Atomic force microscopy (AFM) was used to detect whether a specific bond forms between a hematite (Fe(2)O(3)) thin film, created with oxygen plasma-assisted molecular beam epitaxy, and recombinant MtrC or OmcA molecules coupled to gold substrates. Force spectra displayed a unique force signature indicative of a specific bond between each cytochrome and the hematite surface. The strength of the OmcA-hematite bond was approximately twice that of the MtrC-hematite bond, but direct binding to hematite was twice as favorable for MtrC. Reversible folding/unfolding reactions were observed for mechanically denatured MtrC molecules bound to hematite. The force measurements for the hematite-cytochrome pairs were compared to spectra collected for an iron oxide and S. oneidensis under anaerobic conditions. There is a strong correlation between the whole-cell and pure-protein force spectra, suggesting that the unique binding attributes of each cytochrome complement one another and allow both MtrC and OmcA to play a prominent role in the transfer of electrons to Fe(III) in minerals. Finally, by comparing the magnitudes of binding force for the whole-cell versus pure-protein data, we were able to estimate that a single bacterium of S. oneidensis (2 by 0.5 microm) expresses approximately 10(4) cytochromes on its outer surface. PMID:17468239

  12. Determination of the genus-specific antigens in outer membrane proteins from the strains of Leptospira interrogans and Leptospira biflexa with different virulence

    Institute of Scientific and Technical Information of China (English)

    罗依惠; 严杰; 毛亚飞; 李淑萍

    2004-01-01

    Objective: To determine the existence of genus-specific antigens in outer membrane proteins (OMPs) of leptospira with different virulence. Methods: Microscope agglutination test (MAT) was applied to detect the agglutination between commercial rabbit antiserum against leptospiral genus-specific TR/Patoc I antigen and 17 strains of Leptospira interrongans belonging to 15 serogroups and 2 strains of Leptospira biflexa belonging to 2 serogroups. The outer envelopes (OEs) of L.interrogans serogroup Icterohaemorrhagiae serovar lai strain lai (56601) with strong virulence and serogroup Pomona serovar pomona strain Luo (56608) with low virulence, and L.biflexa serogroup Semaranga serovar patoc strain Patoc I without virulence were prepared by using the method reported in Auran et al.(1972). OMPs in the OEs were obtained by treatment with sodium deoxycholate. SDS-PAGE and western blot were used for analyzing the features of the OMPs on electrophoretic pattern and the immunoreactivity to the antiserum against TR/Patoc I antigen, respectively. Results: All the tested strains belonging to different leptospiral serogroups agglutinated to the antiserum against leptospiral genus-specific TR/Patoc I antigen with agglutination titers ranging from 1:256-1:512. A similar SDS-PAGE pattern of the OMPs from the three strains of leptospira with different virulence was shown and the molecular weight of a major protein fragment in the OMPs was found to be approximately 60 KDa. A positive protein fragment with approximately 32 KDa confirmed by Western blot, was able to react with the antiserum against leptospiral genus-specific TR/Patoc I antigen, and was found in each the OMPs of the three stains of leptospira. Conclusion: There are genus-specific antigens on the surface of L.interrogans and L.biflexa. The OMP with molecular weight of 32 KDa may be one of the genus-specific protein antigens of leptospira.

  13. Determination of the genus-specific antigens in outer membrane proteins from the strains of Leptospira interrogans and Leptospira biflexa with different virulence

    Institute of Scientific and Technical Information of China (English)

    罗依惠; 严杰; 毛亚飞; 李淑萍

    2004-01-01

    Objective:To determine the existence of genus-specific antigens in outer membrane proteins (OMPs) of leptospira with different virulence. Methods: Microscope agglutination test (MAT) was applied to detect the agglutination between commercial rabbit antiserum against leptospiral genus-specific TR/Patoc I antigen and 17 strains of Leptospira interrongans belonging to 15 serogroups and 2 strains of Leptospira biflexa belonging to 2 serogroups.The outer envelopes (OEs) of L.interrogans serogroup Icterohaemorrhagiae serovar lai strain lai (56601) with strong virulence and serogroup Pomona serovar pomona strain Luo (56608) with low virulence,and L.biflexa serogroup Semaranga serovar patoc strain Patoc I without virulence were prepared by using the method reported in Auran et al.(1972).OMPs in the OEs were obtained by treatment with sodium deoxycholate. SDS-PAGE and western blot were used for analyzing the features of the OMPs on electrophoretic pattern and the immunoreactivity to the antiserum against TR/Patoc I antigen, respectively. Results:All the tested strains belonging to different leptospiral serogroups agglutinated to the antiserum against leptospiral genus-specific TR/Patoc I antigen with agglutination titers ranging from 1:256-1:512. A similar SDS-PAGE pattern of the OMPs from the three strains of leptospira with different virulence was shown and the molecular weight of a major protein fragment in the OMPs was found to be approximately 60 KDa.A positive protein fragment with approximately 32 KDa confirmed by Western blot,was able to react with the antiserum against leptospiral genus-specific TR/Patoc I antigen, and was found in each the OMPs of the three stains of leptospira.Conclusion: There are genus-specific antigens on the surface of L.interrogans and L.biflexa. The OMP with molecular weight of 32 KDa may be one of the genus-specific protein antigens of leptospira.

  14. Epidemiological observation on effect of Leptospiral outer membrane vaccine%钩端螺旋体外膜菌苗流行病学效果研究

    Institute of Scientific and Technical Information of China (English)

    程均福; 秦进才; 谢广中; 张锦麟; 张流波; 丁建平; 严有望; 张新炳

    2001-01-01

    Objective To study the safety and effect of Leptospiral outer membrane vaccine. Methods Eighty thousands dosages of Leptospiral outer membrane vaccine were vaccinated in Jingzhou and Shishou city Hubei prevince. Temperaure, side-effects such as Local edema with in 48 hours as well as the incidence of Leptospirsis within a year among those were vaccinated and unvaccinated were observed. Results (1)No any severe side-effect and abnormal reaction, was found, only 2 case suffered from slight fever and local edema which receded in 48 hrs. (2) Effects of Leptospiral outer membrane vaccine were as follows: 2 cases were attacked by lcterohaemorrhagiae in vaccination group and 47 cases in control group, so the protection rate 95.57% and confidence interval (CI) was 85.43%-98.20%. Fifteen hebdomadis cases were found in control group. The protection rate of this vaccine reached 100.00%, CI 77.08%-100.00%. Conclusion Safty and protective effect were well showed when type of bacteria was concordant with that in vaccination district.%目的 证实钩端螺旋体外膜菌苗的安全性和免疫效果。方法 在湖北省荆州市和石首市现场接种钩端螺旋体外膜菌苗80 000人份,观察48 h内体温、局部红肿等副反应和一年内接种钩端螺旋体外膜菌苗者发病情况,同时设对照组。结果 所有钩端螺旋体外膜菌苗接种者未见严重副反应和异常反应,仅2例菌苗接种者有低热和局部红肿,48 h后消失,安全性良好。接种组发生黄疸出血群钩端螺旋体病人2例,对照组发生黄疸出血群钩端螺旋体病人47例,黄疸出血群钩端螺旋体外膜菌苗保护效果95.57%,95%可信限为85.43%~98.20%;对照组发生七日热群钩端螺旋体病人15例,七日热群钩端螺旋体外膜菌苗有效率100.00%,95%可信限下限77.08%。结论 钩端螺旋体外膜菌苗安全性良好,接种与疫区流行菌群一致的钩端螺旋体外膜菌苗,可以取

  15. Characterization of Brucella abortus and Brucella melitensis native haptens as outer membrane O-type polysaccharides independent from the smooth lipopolysaccharide.

    Science.gov (United States)

    Aragón, V; Díaz, R; Moreno, E; Moriyón, I

    1996-02-01

    Brucella native haptens (NHs) extracted with hot water from smooth (S)-type B. abortus and B. melitensis were purified to high levels of serological activity and compared with the polysaccharide obtained by acid hydrolysis (PS) of the S lipopolysaccharide (S-LPS). By 13C nuclear magnetic resonance analysis, NHs showed the spectrum of a homopolymer of alpha-1,2- or alpha-1,2- plus alpha-1,3-linked 4-formamido-4,6-dideoxy-D-mannose (N-formylperosamine) previously reported for the LPS O chain. However, while PS contained up to 0.6% 3-deoxy-D-manno-2-octulosonate, this LPS-core marker was absent from NH. High performance liquid chromatography and thin-layer chromatography showed heterogeneity in NH purified from whole cells but not in PS. By immunoprecipitation, polysaccharides indistinguishable from NH were demonstrated in extracts obtained with phenol-water, saline at 60 degrees C, and ether-water treatments, and none of these treatments caused S-LPS hydrolysis detectable with antibodies to the O chain and lipid A. Two lines of evidence showed that NH was in the cell surface. First, NH became biotinylated when B. abortus live cells were labelled with biotin-hydrazide, and the examination of cell fractions and electron microscopy sections with streptavidin-peroxidase and streptavidin-coloidal gold, respectively, showed that labelling was extrinsic. Moreover, whereas only traces of NH were found in cytosols, the amount of NH was enriched in cell envelopes and in the outer membrane blebs spontaneously released by brucellae during growth. Interactions between NH and S-LPS were observed in crude cell extracts, and such interactions could be reconstituted by using purified NH and LPS. The results demonstrate that NH is not a hydrolytic product of S-LPS and suggest a model in which LPS-independent O-type polysaccharides (NH) are intertwined with the O chain in the outer membrane of S-type brucellae. PMID:8576040

  16. Mechanistic insight into the TH1-biased immune response to recombinant subunit vaccines delivered by probiotic bacteria-derived outer membrane vesicles.

    Science.gov (United States)

    Rosenthal, Joseph A; Huang, Chung-Jr; Doody, Anne M; Leung, Tiffany; Mineta, Kaho; Feng, Danielle D; Wayne, Elizabeth C; Nishimura, Nozomi; Leifer, Cynthia; DeLisa, Matthew P; Mendez, Susana; Putnam, David

    2014-01-01

    Recombinant subunit vaccine engineering increasingly focuses on the development of more effective delivery platforms. However, current recombinant vaccines fail to sufficiently stimulate protective adaptive immunity against a wide range of pathogens while remaining a cost effective solution to global health challenges. Taking an unorthodox approach to this fundamental immunological challenge, we isolated the TLR-targeting capability of the probiotic E. coli Nissle 1917 bacteria (EcN) by engineering bionanoparticlate antigen carriers derived from EcN outer membrane vesicles (OMVs). Exogenous model antigens expressed by these modified bacteria as protein fusions with the bacterial enterotoxin ClyA resulted in their display on the surface of the carrier OMVs. Vaccination with the engineered EcN OMVs in a BALB/c mouse model, and subsequent mechanism of action analysis, established the EcN OMV's ability to induce self-adjuvanted robust and protective humoral and T(H)1-biased cellular immunity to model antigens. This finding appears to be strain-dependent, as OMV antigen carriers similarly engineered from a standard K12 E. coli strain derivative failed to generate a comparably robust antigen-specific TH1 bias. The results demonstrate that unlike traditional subunit vaccines, these biomolecularly engineered "pathogen-like particles" derived from traditionally overlooked, naturally potent immunomodulators have the potential to effectively couple recombinant antigens with meaningful immunity in a broadly applicable fashion. PMID:25426709

  17. Mechanistic insight into the TH1-biased immune response to recombinant subunit vaccines delivered by probiotic bacteria-derived outer membrane vesicles.

    Directory of Open Access Journals (Sweden)

    Joseph A Rosenthal

    Full Text Available Recombinant subunit vaccine engineering increasingly focuses on the development of more effective delivery platforms. However, current recombinant vaccines fail to sufficiently stimulate protective adaptive immunity against a wide range of pathogens while remaining a cost effective solution to global health challenges. Taking an unorthodox approach to this fundamental immunological challenge, we isolated the TLR-targeting capability of the probiotic E. coli Nissle 1917 bacteria (EcN by engineering bionanoparticlate antigen carriers derived from EcN outer membrane vesicles (OMVs. Exogenous model antigens expressed by these modified bacteria as protein fusions with the bacterial enterotoxin ClyA resulted in their display on the surface of the carrier OMVs. Vaccination with the engineered EcN OMVs in a BALB/c mouse model, and subsequent mechanism of action analysis, established the EcN OMV's ability to induce self-adjuvanted robust and protective humoral and T(H1-biased cellular immunity to model antigens. This finding appears to be strain-dependent, as OMV antigen carriers similarly engineered from a standard K12 E. coli strain derivative failed to generate a comparably robust antigen-specific TH1 bias. The results demonstrate that unlike traditional subunit vaccines, these biomolecularly engineered "pathogen-like particles" derived from traditionally overlooked, naturally potent immunomodulators have the potential to effectively couple recombinant antigens with meaningful immunity in a broadly applicable fashion.

  18. Outer membrane proteomics of kanamycin-resistant Escherichia coli identified MipA as a novel antibiotic resistance-related protein.

    Science.gov (United States)

    Li, Hui; Zhang, Dan-feng; Lin, Xiang-min; Peng, Xuan-xian

    2015-06-01

    Antibiotic-resistant bacteria are a great threat to human health and food safety and there is an urgent need to understand the mechanisms of resistance for combating these bacteria. In the current study, comparative proteomic methodologies were applied to identify Escherichia coli K-12 outer membrane (OM) proteins related to kanamycin resistance. Mass spectrometry and western blotting results revealed that OM proteins TolC, Tsx and OstA were up-regulated, whereas MipA, OmpA, FadL and OmpW were down-regulated in kanamycin-resistant E. coli K-12 strain. Genetic deletion of tolC (ΔtolC-Km) led to a 2-fold decrease in the minimum inhibitory concentration (MIC) of kanamycin and deletion of mipA (ΔmipA-Km) resulted in a 4-fold increase in the MIC of kanamycin. Changes in the MICs for genetically modified strains could be completely recovered by gene complementation. Compared with the wild-type strain, the survival capability of ΔompA-Km was significantly increased and that of Δtsx-Km was significantly decreased. We further evaluated the role and expression of MipA in response to four other antibiotics including nalidixic acid, streptomycin, chloramphenicol and aureomycin, which suggested that MipA was a novel OM protein related to antibiotic resistance. PMID:25940639

  19. Evaluation of recombinant outer membrane protein C based indirect enzyme-linked immunoassay for the detection of Salmonella antibodies in poultry

    Directory of Open Access Journals (Sweden)

    Jinu Manoj

    2015-08-01

    Full Text Available Aim: To evaluate the efficacy of recombinant outer membrane proteinC (rOmpC based enzyme-linked immunoassay (ELISA for the diagnosis of salmonellosis in poultry. Materials and Methods: Three antigens were prepared, and the indirect ELISA was standardized using the antigens and the antiserum raised in chicken against Omp and rOmpC. Sera were collected from a total of 255 apparently healthy field chickens and screened for the presence of Salmonella antibodies by this ELISA. Results: The sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of Omp revealed major polypeptides at 36, 42 and 52 kDa, and the rOmpC was evident by a single protein band of 43 kDa. The Omp and rOmpC antigen revealed an optimum concentration of 78 and 156 ng, respectively, in the assay, while the whole cell antigen gave an optimum reaction at a concentration of 106 organisms/ml. The test was found to be specific as it did not react with any of the antisera of seven other organisms. The developed ELISA detected Salmonella antibodies from 22 (8.62% samples with rOmpC antigen, while 24 (9.41% samples gave a positive reaction with both Omp and whole cell antigens. Conclusion: We suggest rOmpC based indirect ELISA as a suitable screening tool for serological monitoring of poultry flocks.

  20. Enhanced antibody responses to a detoxified lipopolysaccharide-group B meningococcal outer membrane protein vaccine are due to synergistic engagement of Toll-like receptors.

    Science.gov (United States)

    Chen, Wilbur H; Basu, Subhendu; Bhattacharjee, Apurba K; Cross, Alan S

    2010-10-01

    When given passively or elicited actively, antibodies induced by a detoxified Escherichia coli Rc chemotype (J5) mutant lipopolysaccharide (J5dLPS)-group B meningococcal outer membrane protein (OMP) complex vaccine protected animals from lethal sepsis. The protection from sepsis is believed to be dependent on high levels of antibodies against the core glycolipid (CGL), a region of LPS that is rather conserved among Enterobacteriaceae. The addition of unmethylated deoxycytidyl-deoxyguanosine dinucleotide (CpG)-containing oligodeoxynucleotides (ODN) was used as an immuno-adjuvant to improve antibody responses. In preparation for a Phase I human trial, we elucidated potential contributions by which the sepsis vaccine (J5dLPS-OMP) and CpG ODN might enhance the antibody response and provide evidence that the generation of immune responses is Toll-like receptor (TLR) dependent. Toll-like receptor 2, TLR4, and TLR9 were each essential for generating robust cytokine and antibody responses. The signature cytokine of dendritic cells, interleukin-12, was one of the cytokines that demonstrated synergy with the optimal TLR ligand/ engagement combination. We conclude that the involvement of multiple TLRs upon immunization was critical for the generation of optimal antibody responses. These observations provide further evidence for the inclusion of innate immune-based adjuvants during the development of next-generation vaccines. PMID:19822632

  1. Transfer of fatty acids from the 1-position of phosphatidyl-ethanolamine to the major outer membrane lipoprotein of E coli

    International Nuclear Information System (INIS)

    The fatty acids esterified to Braun's lipoprotein are derived from the phospholipid pool in E. coli. Mutants lacking acyl-CoA synthetase activity (fadD) incorporated extracellular fatty acids specifically into the 1-position of phosphatidylethanolamine (PtdEtn). This pathway was blocked by chloramphenicol and was depressed by preventing the acylation of the amino terminus of the lipoprotein with globomycin. Transfer of fatty acids to lipoprotein was investigated in fadD mutants harboring hybrid plasmids containing either the lipoprotein gene or a lipoprotein-β-lactamase gene fusion under control of the lactose promoter. Labeling of the 1-position of the PtdEtn pool prior to induction of lipoprotein biosynthesis resulted in the transfer of fatty acids from PtdEtn to the lipoproteins. Induction of lipoprotein synthesis in the presence of exogenous [1-14C]palmitate increased the amount of radioactivity entering the PtdEtn pool and efficiently labeled lipoprotein acyl moieties. Lipoprotein fatty acids derived from the 1-position of PtdEtn were resistant to hydroxylamine hydrolysis, and globomycin reduced the incorporation of exogenous [1-14C]palmitic acid into lipoproteins by 80% suggesting that the fatty acid is attached to the amino terminus. These data illustrate the metabolic relationship between turnover of fatty acids in the 1-position of PtdEtn and the maturation of the major outer membrane lipoprotein

  2. The host outer membrane proteins OmpA and OmpC are associated with the Shigella phage Sf6 virion

    International Nuclear Information System (INIS)

    Assembly of dsDNA bacteriophage is a precisely programmed process. Potential roles of host cell components in phage assembly haven't been well understood. It was previously reported that two unidentified proteins were present in bacteriophage Sf6 virion (Casjens et al, 2004, J.Mol.Biol. 339, 379-394, Fig. 2A). Using tandem mass spectrometry, we have identified the two proteins as outer membrane proteins (OMPs) OmpA and OmpC from its host Shigella flexneri. The transmission electron cryo-microscopy structure of Sf6 shows significant density at specific sites at the phage capsid inner surface. This density fit well with the characteristic beta-barrel domains of OMPs, thus may be due to the two host proteins. Locations of this density suggest a role in Sf6 morphogenesis reminiscent of phage-encoded cementing proteins. These data indicate a new, OMP-related phage:host linkage, adding to previous knowledge that some lambdoid bacteriophage genomes contain OmpC-like genes that express phage-encoded porins in the lysogenic state.

  3. Helicobacter pylori Outer Membrane Vesicle Proteins Induce Human Eosinophil Degranulation via a β2 Integrin CD11/CD18- and ICAM-1-Dependent Mechanism

    Directory of Open Access Journals (Sweden)

    Su Hyuk Ko

    2015-01-01

    Full Text Available Eosinophil cationic protein (ECP, a cytotoxic protein contained in eosinophils granules, can contribute to various inflammatory responses. Although Helicobacter pylori infection increases infiltration of eosinophils, the mechanisms of eosinophil degranulation by H. pylori infection are largely unknown. The goal of this study was to investigate the role of H. pylori outer membrane vesicles (OMVs in modulating eosinophil degranulation. We found that eosinophils treated with H. pylori OMVs released significantly more ECP compared with untreated controls. In addition, eosinophils cocultured with OMV-preexposed primary gastric epithelial cells exhibited significantly increased ECP release. Similarly, eosinophils cocultured with culture supernatant (CM from primary gastric epithelial cells exposed to OMVs (OMV-CM released significantly higher amounts of ECP compared with eosinophils cocultured with CM from unexposed control cells. Furthermore, OMVs and OMV-CM both induced the upregulation of ICAM-1 on gastric epithelial cells and β2 integrin CD11b on eosinophils. In addition, both transduction of ICAM-1 shRNA into gastric epithelial cells and treatment with neutralizing mAbs to CD18 significantly decreased OMV-mediated or OMV-CM-mediated release of ECP. These results suggest that the eosinophil degranulation response to H. pylori OMVs occurs via a mechanism that is dependent on both β2 integrin CD11/CD18 and ICAM-1.

  4. Campylobacter jejuni outer membrane vesicle-associated proteolytic activity promotes bacterial invasion by mediating cleavage of intestinal epithelial cell E-cadherin and occludin.

    Science.gov (United States)

    Elmi, Abdi; Nasher, Fauzy; Jagatia, Heena; Gundogdu, Ozan; Bajaj-Elliott, Mona; Wren, Brendan; Dorrell, Nick

    2016-04-01

    Outer membrane vesicles (OMVs) play an important role in the pathogenicity of Gram-negative bacteria. Campylobacter jejuni produces OMVs that trigger IL-8, IL-6, hBD-3 and TNF-α responses from T84 intestinal epithelial cells and are cytotoxic to Caco-2 IECs and Galleria mellonella larvae. Proteomic analysis of 11168H OMVs identified the presence of three proteases, HtrA, Cj0511 and Cj1365c. In this study, 11168H OMVs were shown to possess proteolytic activity that was reduced by pretreatment with specific serine protease inhibitors. OMVs isolated from 11168H htrA, Cj0511 or Cj1365c mutants possess significantly reduced proteolytic activity. 11168H OMVs are able to cleave both E-cadherin and occludin, but this cleavage is reduced with OMVs pretreated with serine protease inhibitors and also with OMVs isolated from htrA or Cj1365c mutants. Co-incubation of T84 monolayers with 11168H OMVs results in a visible reduction in both E-cadherin and occludin. The addition of 11168H OMVs to the co-culture of live 11168H bacteria with T84 cells results in enhanced levels of bacterial adhesion and invasion in a time-dependent and dose-dependent manner. Further investigation of the cleavage of host cell structural proteins by C. jejuni OMVs should enhance our understanding of the interactions of this important pathogen with intestinal epithelial cells. PMID:26451973

  5. Expression and Comparative Analysis of Genes Encoding Outer Membrane Proteins LipL21, LipL32 and OmpL1 in Epidemic Leptospires

    Institute of Scientific and Technical Information of China (English)

    Xiang-Yan ZHANG; Xiao-Kui GUO; Yang YU; Ping HE; Yi-Xuan ZHANG; Bao-Yu HU; Yang YANG; Yi-Xin NIE; Xiu-Gao JIANG; Guo-Ping ZHAO

    2005-01-01

    Leptospiral outer membrane proteins (OMPs) are highly conserved in different species, and play an essential role in the development of new immunoprotection and serodiagnosis strategies. The genes encoding LipL21, LipL32 and OmpL1 were cloned from the complete genome sequence of Leptospira interrogans serovar lai strain Lai and expressed in vitro. Sequence comparison analysis revealed that the three genes were highly conserved among distinct epidemic leptospires, including three major epidemic species Leptospira interrogans, Leptospira borgpetersenii and Leptospira weilii, in China. Immunoblot analysis was further performed to scrutinize 15 epidemic Leptospira reference strains using the antisera of the recombinant OMPs. Both immunoblot assay and reverse transcription-polymerase chain reaction demonstrated that these three OMPs were conservatively expressed in pathogenic L. interrogans strains and other pathogenic leptospires.Additionally, the use of these recombinant OMPs as antigens in enzyme-linked immunosorbent assay (ELISA)for serodiagnosis of leptospirosis was evaluated. The recombinant LipL32 and OmpL1 proteins showed a high degree of ELISA reactivity with sera from patients infected with L. interrogans strain Lai and other pathogenic leptospires. These results may contribute to the identification of candidates for broad-range vaccines and immunodiagnostic antigens in further research.

  6. DipA, a pore-forming protein in the outer membrane of Lyme disease spirochetes exhibits specificity for the permeation of dicarboxylates.

    Directory of Open Access Journals (Sweden)

    Marcus Thein

    Full Text Available Lyme disease Borreliae are highly dependent on the uptake of nutrients provided by their hosts. Our study describes the identification of a 36 kDa protein that functions as putative dicarboxylate-specific porin in the outer membrane of Lyme disease Borrelia. The protein was purified by hydroxyapatite chromatography from Borrelia burgdorferi B31 and designated as DipA, for dicarboxylate-specific porin A. DipA was partially sequenced, and corresponding genes were identified in the genomes of B. burgdorferi B31, Borrelia garinii PBi and Borrelia afzelii PKo. DipA exhibits high homology to the Oms38 porins of relapsing fever Borreliae. B. burgdorferi DipA was characterized using the black lipid bilayer assay. The protein has a single-channel conductance of 50 pS in 1 M KCl, is slightly selective for anions with a permeability ratio for cations over anions of 0.57 in KCl and is not voltage-dependent. The channel could be partly blocked by different di- and tricarboxylic anions. Particular high stability constants up to about 28,000 l/mol (in 0.1 M KCl were obtained among the 11 tested anions for oxaloacetate, 2-oxoglutarate and citrate. The results imply that DipA forms a porin specific for dicarboxylates which may play an important role for the uptake of specific nutrients in different Borrelia species.

  7. Enzymatic methylation of 23-29-kDa bovine retinal rod outer segment membrane proteins. Evidence for methyl ester formation at carboxyl-terminal cysteinyl residues

    International Nuclear Information System (INIS)

    A group of 23-29-kDa polypeptides in the membranes of bovine rod outer segments are substrates for S-adenosylmethionine-dependent methylation reactions. The bulk of the methyl group incorporation is in base-labile ester-like linkages, and does not appear to be due to the widespread D-aspartyl/L-isoaspartyl methyltransferase. To determine the site(s) of methylation, 3H-methylated proteins separated by polyacrylamide gel electrophoresis in sodium dodecyl sulfate were eluted and digested with papain, leucine aminopeptidase-M, and prolidase. After performic acid oxidation of the digest, a base-labile radioactive material was recovered that coeluted with a synthetic standard of cysteic acid methyl ester upon cation exchange and G-15 gel filtration chromatography, as well as in two thin-layer electrophoresis and two thin-layer chromatography systems. These results provide direct evidence for the methylation of the alpha-carboxyl group of a carboxyl-terminal cysteinyl residue, a modification that has been proposed for the 21-kDa Ha-ras product and other cellular proteins

  8. The outer-membrane export signal of Porphyromonas gingivalis type IX secretion system (T9SS) is a conserved C-terminal β-sandwich domain.

    Science.gov (United States)

    de Diego, Iñaki; Ksiazek, Miroslaw; Mizgalska, Danuta; Koneru, Lahari; Golik, Przemyslaw; Szmigielski, Borys; Nowak, Magdalena; Nowakowska, Zuzanna; Potempa, Barbara; Houston, John A; Enghild, Jan J; Thøgersen, Ida B; Gao, Jinlong; Kwan, Ann H; Trewhella, Jill; Dubin, Grzegorz; Gomis-Rüth, F Xavier; Nguyen, Ky-Anh; Potempa, Jan

    2016-01-01

    In the recently characterized Type IX Secretion System (T9SS), the conserved C-terminal domain (CTD) in secreted proteins functions as an outer membrane translocation signal for export of virulence factors to the cell surface in the Gram-negative Bacteroidetes phylum. In the periodontal pathogen Porphyromonas gingivalis, the CTD is cleaved off by PorU sortase in a sequence-independent manner, and anionic lipopolysaccharide (A-LPS) is attached to many translocated proteins, thus anchoring them to the bacterial surface. Here, we solved the atomic structure of the CTD of gingipain B (RgpB) from P. gingivalis, alone and together with a preceding immunoglobulin-superfamily domain (IgSF). The CTD was found to possess a typical Ig-like fold encompassing seven antiparallel β-strands organized in two β-sheets, packed into a β-sandwich structure that can spontaneously dimerise through C-terminal strand swapping. Small angle X-ray scattering (SAXS) revealed no fixed orientation of the CTD with respect to the IgSF. By introducing insertion or substitution of residues within the inter-domain linker in the native protein, we were able to show that despite the region being unstructured, it nevertheless is resistant to general proteolysis. These data suggest structural motifs located in the two adjacent Ig-like domains dictate the processing of CTDs by the T9SS secretion pathway. PMID:27005013

  9. Porphyromonas gingivalis Outer Membrane Vesicles Induce Selective Tumor Necrosis Factor Tolerance in a Toll-Like Receptor 4- and mTOR-Dependent Manner.

    Science.gov (United States)

    Waller, Tobias; Kesper, Laura; Hirschfeld, Josefine; Dommisch, Henrik; Kölpin, Johanna; Oldenburg, Johannes; Uebele, Julia; Hoerauf, Achim; Deschner, James; Jepsen, Sören; Bekeredjian-Ding, Isabelle

    2016-04-01

    Porphyromonas gingivalisis an important member of the anaerobic oral flora. Its presence fosters growth of periodontal biofilm and development of periodontitis. In this study, we demonstrated that lipophilic outer membrane vesicles (OMV) shed fromP. gingivalispromote monocyte unresponsiveness to liveP. gingivalisbut retain reactivity to stimulation with bacterial DNA isolated fromP. gingivalisor AIM2 ligand poly(dA·dT). OMV-mediated tolerance ofP. gingivalisis characterized by selective abrogation of tumor necrosis factor (TNF). Neutralization of interleukin-10 (IL-10) during OMV challenge partially restores monocyte responsiveness toP. gingivalis; full reactivity toP. gingivaliscan be restored by inhibition of mTOR signaling, which we previously identified as the major signaling pathway promoting Toll-like receptor 2 and Toll-like receptor 4 (TLR2/4)-mediated tolerance in monocytes. However, despite previous reports emphasizing a central role of TLR2 in innate immune recognition ofP. gingivalis, our current findings highlight a selective role of TLR4 in the promotion of OMV-mediated TNF tolerance: only blockade of TLR4-and not of TLR2-restores responsiveness toP. gingivalis Of further note, OMV-mediated tolerance is preserved in the presence of cytochalasin B and chloroquine, indicating that triggering of surface TLR4 is sufficient for this effect. Taking the results together, we propose thatP. gingivalisOMV contribute to local immune evasion ofP. gingivalisby hampering the host response. PMID:26857578

  10. Evaluation of PCR assay for common endogenous plasmid and major outer membrane protein gene of C. trachomatis in diagnosis of follicular conjunctivitis

    Directory of Open Access Journals (Sweden)

    Satpathy Gita

    1999-01-01

    Full Text Available Purpose: To evaluate polymerase chain reaction (PCR in diagnosis of Chlamydia trachomatis. Methods: In this study PCR assay was used to amplify the 517bp region of common endogenous plasmid in conjunctival specimens from 178 patients with follicular conjuntivitis, and to amplify the 1000bp region of major outer membrane protein (MOMP gene of C.trachomatis from 71 of these 178 patients. The PCR-amplified products were visualised by agarose gel electrophoresis and ethidium bromide staining and Southern hybridisation with radio-labelled internal probes. The test was compared with a direct immunofluorescence assay using monoclonal antibody for Chlamydia antigen detection. Results: The plasmid PCR assay was positive in 95 (53.37% of the 178 specimens processed whereas the Chlamydia antigen was detected in 69 (38.76% of the 178 specimens by direct immunofluorescence assay (p= 0.005. In the 71 specimens processed for both the PCR assays, plasmid PCR was positive in 52 (73.23% and MOMP PCR was positive in 43 (60.56% of the specimens (p=0.10. Thirty seven of these 71 specimens which were positive in both PCR assays were also positive in direct immunofluorescence assay. Conclusion: The PCR assays could detect Chlamydia in a significantly larger number of specimens than conventional antigen detection assay, and being marginally more sensitive, the plasmid PCR assay has the potential for wider use in the diagnosis of trachoma.

  11. Gonococcal transferrin-binding protein 1 is required for transferrin utilization and is homologous to TonB-dependent outer membrane receptors.

    Science.gov (United States)

    Cornelissen, C N; Biswas, G D; Tsai, J; Paruchuri, D K; Thompson, S A; Sparling, P F

    1992-09-01

    The pathogenic Neisseria species are capable of utilizing transferrin as their sole source of iron. A neisserial transferrin receptor has been identified and its characteristics defined; however, the biochemical identities of proteins which are required for transferrin receptor function have not yet been determined. We identified two iron-repressible transferrin-binding proteins in Neisseria gonorrhoeae, TBP1 and TBP2. Two approaches were taken to clone genes required for gonococcal transferrin receptor function. First, polyclonal antiserum raised against TBP1 was used to identify clones expressing TBP1 epitopes. Second, a wild-type gene copy was cloned that repaired the defect in a transferrin receptor function (trf) mutant. The clones obtained by these two approaches were shown to overlap by DNA sequencing. Transposon mutagenesis of both clones and recombination of mutagenized fragments into the gonococcal chromosome generated mutants that showed reduced binding of transferrin to whole cells and that were incapable of growth on transferrin. No TBP1 was produced in these mutants, but TBP2 expression was normal. The DNA sequence of the gene encoding gonococcal TBP1 (tbpA) predicted a protein sequence homologous to the Escherichia coli and Pseudomonas putida TonB-dependent outer membrane receptors. Thus, both the function and the predicted protein sequence of TBP1 were consistent with this protein serving as a transferrin receptor. PMID:1325963

  12. Helicobacter pylori ATCC 43629/NCTC 11639 Outer Membrane Vesicles (OMVs) from Biofilm and Planktonic Phase Associated with Extracellular DNA (eDNA).

    Science.gov (United States)

    Grande, Rossella; Di Marcantonio, Maria C; Robuffo, Iole; Pompilio, Arianna; Celia, Christian; Di Marzio, Luisa; Paolino, Donatella; Codagnone, Marilina; Muraro, Raffaella; Stoodley, Paul; Hall-Stoodley, Luanne; Mincione, Gabriella

    2015-01-01

    Helicobacter pylori persistence is associated with its capacity to develop biofilms as a response to changing environmental conditions and stress. Extracellular DNA (eDNA) is a component of H. pylori biofilm matrix but the lack of DNase I activity supports the hypothesis that eDNA might be protected by other extracellular polymeric substances (EPS) and/or Outer Membrane Vesicles (OMVs), which bleb from the bacteria surface during growth. The aim of the present study was to both identify the eDNA presence on OMVs segregated from H. pylori ATCC 43629/NCTC 11639 biofilm (bOMVs) and its planktonic phase (pOMVs) and to characterize the physical-chemical properties of the OMVs. The presence of eDNA in bOMVs and pOMVs was initially carried out using DNase I-gold complex labeling and Transmission Electron Microscope analysis (TEM). bOMVs and pOMVs were further isolated and physical-chemical characterization carried out using dynamic light scattering (DLS) analysis. eDNA associated with OMVs was detected and quantified using a PicoGreen spectrophotometer assay, while its extraction was performed with a DNA Kit. TEM images showed that eDNA was mainly associated with the OMV membrane surfaces; while PicoGreen staining showed a four-fold increase of dsDNA in bOMVs compared with pOMVs. The eDNA extracted from OMVs was visualized using gel electrophoresis. DLS analysis indicated that both planktonic and biofilm H. pylori phenotypes generated vesicles, with a broad distribution of sizes on the nanometer scale. The DLS aggregation assay suggested that eDNA may play a role in the aggregation of OMVs, in the biofilm phenotype. Moreover, the eDNA associated with vesicle membrane may impede DNase I activity on H. pylori biofilms. These results suggest that OMVs derived from the H. pylori biofilm phenotype may play a structural role by preventing eDNA degradation by nucleases, providing a bridging function between eDNA strands on OMV surfaces and promoting aggregation. PMID:26733944

  13. Crystallization and preliminary X-ray crystallographic analysis of the Escherichia coli outer membrane cobalamin transporter BtuB in complex with the carboxy-terminal domain of TonB

    Energy Technology Data Exchange (ETDEWEB)

    Shultis, David D.; Purdy, Michael D. [Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908 (United States); Banchs, Christian N. [Interdisciplinary Graduate Program in Biophysics, University of Virginia, Charlottesville, Virginia 22908 (United States); Wiener, Michael C., E-mail: mwiener@virginia.edu [Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908 (United States); Interdisciplinary Graduate Program in Biophysics, University of Virginia, Charlottesville, Virginia 22908 (United States)

    2006-07-01

    Crystals of a complex of the E. coli proteins BtuB (outer membrane cobalamin transporter) and TonB (carboxy-terminal domain) diffracting to 2.1 Å resolution have been obtained. The energy-dependent uptake of organometallic compounds and other micronutrients across the outer membranes of Gram-negative bacteria is carried out by outer membrane active-transport proteins that utilize the proton-motive force of the inner membrane via coupling to the TonB protein. The Escherichia coli outer membrane cobalamin transporter BtuB and a carboxy-terminal domain of the TonB protein, residues 147–239 of the wild-type protein, were expressed and purified individually. A complex of BtuB and TonB{sup 147–239} was formed in the presence of the substrate cyanocobalamin (CN-Cbl; vitamin B{sub 12}) and calcium and was crystallized. BtuB was purified in the detergent LDAO (n-dodecyl-N,N-dimethylamine-N-oxide) and the complex was formed in a detergent mixture of LDAO and C{sub 8}E{sub 4} (tetraethylene glycol monooctylether). Crystals were obtained by sitting-drop vapor diffusion, with the reservoir containing 30%(v/v) polyethylene glycol (PEG 300) and 100 mM sodium acetate pH 5.2. The crystals belong to space group P2{sub 1}2{sub 1}2{sub 1} (unit-cell parameters a = 74.3, b = 82.4, c = 122.6 Å). The asymmetric unit consists of a single BtuB–TonB complex. Data sets have been collected to 2.1 Å resolution at a synchrotron beamline (APS SER-CAT 22-ID)

  14. Crystallization and preliminary X-ray crystallographic analysis of the Escherichia coli outer membrane cobalamin transporter BtuB in complex with the carboxy-terminal domain of TonB

    International Nuclear Information System (INIS)

    Crystals of a complex of the E. coli proteins BtuB (outer membrane cobalamin transporter) and TonB (carboxy-terminal domain) diffracting to 2.1 Å resolution have been obtained. The energy-dependent uptake of organometallic compounds and other micronutrients across the outer membranes of Gram-negative bacteria is carried out by outer membrane active-transport proteins that utilize the proton-motive force of the inner membrane via coupling to the TonB protein. The Escherichia coli outer membrane cobalamin transporter BtuB and a carboxy-terminal domain of the TonB protein, residues 147–239 of the wild-type protein, were expressed and purified individually. A complex of BtuB and TonB147–239 was formed in the presence of the substrate cyanocobalamin (CN-Cbl; vitamin B12) and calcium and was crystallized. BtuB was purified in the detergent LDAO (n-dodecyl-N,N-dimethylamine-N-oxide) and the complex was formed in a detergent mixture of LDAO and C8E4 (tetraethylene glycol monooctylether). Crystals were obtained by sitting-drop vapor diffusion, with the reservoir containing 30%(v/v) polyethylene glycol (PEG 300) and 100 mM sodium acetate pH 5.2. The crystals belong to space group P212121 (unit-cell parameters a = 74.3, b = 82.4, c = 122.6 Å). The asymmetric unit consists of a single BtuB–TonB complex. Data sets have been collected to 2.1 Å resolution at a synchrotron beamline (APS SER-CAT 22-ID)

  15. The Waddlia genome: a window into chlamydial biology.

    Directory of Open Access Journals (Sweden)

    Claire Bertelli

    Full Text Available Growing evidence suggests that a novel member of the Chlamydiales order, Waddlia chondrophila, is a potential agent of miscarriage in humans and abortion in ruminants. Due to the lack of genetic tools to manipulate chlamydia, genomic analysis is proving to be the most incisive tool in stimulating investigations into the biology of these obligate intracellular bacteria. 454/Roche and Solexa/Illumina technologies were thus used to sequence and assemble de novo the full genome of the first representative of the Waddliaceae family, W. chondrophila. The bacteria possesses a 2'116'312 bp chromosome and a 15'593 bp low-copy number plasmid that might integrate into the bacterial chromosome. The Waddlia genome displays numerous repeated sequences indicating different genome dynamics from classical chlamydia which almost completely lack repetitive elements. Moreover, W. chondrophila exhibits many virulence factors also present in classical chlamydia, including a functional type III secretion system, but also a large complement of specific factors for resistance to host or environmental stresses. Large families of outer membrane proteins were identified indicating that these highly immunogenic proteins are not Chlamydiaceae specific and might have been present in their last common ancestor. Enhanced metabolic capability for the synthesis of nucleotides, amino acids, lipids and other co-factors suggests that the common ancestor of the modern Chlamydiales may have been less dependent on their eukaryotic host. The fine-detailed analysis of biosynthetic pathways brings us closer to possibly developing a synthetic medium to grow W. chondrophila, a critical step in the development of genetic tools. As a whole, the availability of the W. chondrophila genome opens new possibilities in Chlamydiales research, providing new insights into the evolution of members of the order Chlamydiales and the biology of the Waddliaceae.

  16. Effects of elevated growth temperature and heat shock on the lipid composition of the inner and outer membranes of Yersinia pseudotuberculosis.

    Science.gov (United States)

    Davydova, Ludmila; Bakholdina, Svetlana; Barkina, Maria; Velansky, Peter; Bogdanov, Mikhail; Sanina, Nina

    2016-04-01

    Differences in the distribution of individual phospholipids between the inner (IM) and outer membranes (OM) of gram-negative bacteria have been detected in mesophilic Escherichia, Erwinia and Salmonella species but have never been investigated in the psychrotrophic Yersinia genus. Therefore, the influence of an elevated growth temperature and heat shock on the phospholipid and fatty acid (FA) compositions of the fractionated Yersinia pseudotuberculosis envelope was investigated. The shift of the growth temperature from 8 °C to 37 °C to mimic the switch from saprophytic to parasitic growth of this bacteria and the exposure of the cells to heat shock, which was induced by a sharp increase in the temperature from 8 °C to 45 °C, increased the lysophosphatidylethanolamine content from zero and 1% to 6% and 10% in the IM and OM, respectively. These changes were accompanied by a decrease in the phosphatidylethanolamine (PE) content and a drastic increase (up to 3-fold higher) in the phosphatidylglycerol (PG) level in the OM of the bacteria, which increases the net negative charge of the cell envelope. The levels of the predominant saturated palmitic (16:0) and cyclopropane FAs were approximately 1.5- and 7.5-fold higher, respectively, but the content of the predominant unsaturated palmitoleic (16:1n-7) and cis-vaccenic (18:1n-7) FAs was approximately 10-30-fold lower in both membranes that were isolated from the cells grown at elevated temperatures. Due to these changes, reflecting the process of "homeoviscous adaptation", the ratio between the unsaturated and saturated FAs decreased but remained higher in the IM than that in the OM. Simultaneously, no significant changes were observed in the FA composition of cells subjected to heat shock, demonstrating a difference between the responses of the heat-shocked and heat-adapted Y. pseudotuberculosis. The unique ability of Y. pseudotuberculosis to reciprocally regulate the ratio of anionic PG and net neutral PE and

  17. The outer membrane protein Omp35 affects the reduction of Fe(III, nitrate, and fumarate by Shewanella oneidensis MR-1

    Directory of Open Access Journals (Sweden)

    Myers Charles R

    2004-06-01

    Full Text Available Abstract Background Shewanella oneidensis MR-1 uses several electron acceptors to support anaerobic respiration including insoluble species such as iron(III and manganese(IV oxides, and soluble species such as nitrate, fumarate, dimethylsulfoxide and many others. MR-1 has complex branched electron transport chains that include components in the cytoplasmic membrane, periplasm, and outer membrane (OM. Previous studies have implicated a role for anaerobically upregulated OM electron transport components in the use of insoluble electron acceptors, and have suggested that other OM components may also contribute to insoluble electron acceptor use. In this study, the role for an anaerobically upregulated 35-kDa OM protein (Omp35 in the use of anaerobic electron acceptors was explored. Results Omp35 was purified from the OM of anaerobically grown cells, the gene encoding Omp35 was identified, and an omp35 null mutant (OMP35-1 was isolated and characterized. Although OMP35-1 grew on all electron acceptors tested, a significant lag was seen when grown on fumarate, nitrate, and Fe(III. Complementation studies confirmed that the phenotype of OMP35-1 was due to the loss of Omp35. Despite its requirement for wild-type rates of electron acceptor use, analysis of Omp35 protein and predicted sequence did not identify any electron transport moieties or predicted motifs. OMP35-1 had normal levels and distribution of known electron transport components including quinones, cytochromes, and fumarate reductase. Omp35 is related to putative porins from MR-1 and S. frigidimarina as well as to the PorA porin from Neisseria meningitidis. Subcellular fraction analysis confirmed that Omp35 is an OM protein. The seven-fold anaerobic upregulation of Omp35 is mediated post-transcriptionally. Conclusion Omp35 is a putative porin in the OM of MR-1 that is markedly upregulated anaerobically by a post-transcriptional mechanism. Omp35 is required for normal rates of growth on Fe

  18. Activation of Immune and Defense Responses in the Intestinal Mucosa by Outer Membrane Vesicles of Commensal and Probiotic Escherichia coli Strains.

    Science.gov (United States)

    José Fábrega, María; Aguilera, Laura; Giménez, Rosa; Varela, Encarna; Alexandra Cañas, María; Antolín, María; Badía, Josefa; Baldomà, Laura

    2016-01-01

    The influence of microbiota in human health is well-known. Imbalances in microbiome structure have been linked to several diseases. Modulation of microbiota composition through probiotic therapy is an attempt to harness the beneficial effects of commensal microbiota. Although, there is wide knowledge of the responses induced by gut microbiota, the microbial factors that mediate these effects are not well-known. Gram-negative bacteria release outer membrane vesicles (OMVs) as a secretion mechanism of microbial factors, which have an important role in intercellular communication. Here, we investigated whether OMVs from the probiotic Escherichia coli strain Nissle 1917 (EcN) or the commensal E. coli strain ECOR12 trigger immune responses in various cellular models: (i) peripheral blood mononuclear cells (PBMCs) as a model of intestinal barrier disruption, (ii) apical stimulation of Caco-2/PMBCs co-culture as a model of intact intestinal mucosa, and (iii) colonic mucosa explants as an ex vivo model. Stimulations with bacterial lysates were also performed. Whereas, both OMVs and lysates activated expression and secretion of several cytokines and chemokines in PBMCs, only OMVs induced basolateral secretion and mRNA upregulation of these mediators in the co-culture model. We provide evidence that OMVs are internalized in polarized Caco-2 cells. The activated epithelial cells elicit a response in the underlying immunocompetent cells. The OMVs effects were corroborated in the ex vivo model. This experimental study shows that OMVs are an effective strategy used by beneficial gut bacteria to communicate with and modulate host responses, activating signaling events through the intestinal epithelial barrier. PMID:27242727

  19. Why do the outer membrane proteins OmpF from E. coli and OprP from P. aeruginosa prefer trimers? Simulation studies.

    Science.gov (United States)

    Niramitranon, Jitti; Sansom, Mark Sp; Pongprayoon, Prapasiri

    2016-04-01

    Porins are water-filled protein channels across the outer membrane of gram-negative bacteria. They facilitate the uptake of nutrients and essential ions. Solutes are filtered by a constriction loop L3 at the mid of a pore. Porins are heat-stable and resistant to toxic agents and detergents. Most porins are trimer, but no clear explanation why trimeric form is preferable. In this work, we thus studied effects of oligomerization on porin structure and function in microscopic detail. A well-studied OmpF (general porin from Escherichia coli) and well-characterised OprP (phosphate-specific pore from Pseudomonas aeruginosa) are used as samples from 2 types of porins found in gram-negative bacteria. MD simulations of trimeric and monomeric pores in pure water and 1M NaCl solution were performed. With a salt solution, the external electric field was applied to mimic a transmembrane potential. Expectedly, OprP is more stable than OmpF. Interestingly, being a monomer turns OmpF into an anion-selective pore. The dislocation of D113's side chain on L3 in OmpF causes the disruption of cation pathway resulting in the reduction of cation influx. In contrast, OprP's structure and function are less dependent on oligomeric states. Both monomeric and trimeric OprP can maintain their anion selectivity. Our findings suggest that trimerization is crucial for both structure and function of general porin OmpF, whereas being trimer in substrate-specific channel OprP supports a pore function. PMID:26895142

  20. A novel recombinant bivalent outer membrane protein of Vibrio vulnificus and Aeromonas hydrophila as a vaccine antigen of American eel (Anguilla rostrata).

    Science.gov (United States)

    SongLin, Guo; PanPan, Lu; JianJun, Feng; JinPing, Zhao; Peng, Lin; LiHua, Duan

    2015-04-01

    The immogenicity of a novel vaccine antigen was evaluated after immunized American eels (Anguilla rostrata) with a recombinant bivalent expressed outer membrane protein (OMP) of Vibrio vulnificus and Aeromonas hydrophila. Three groups of eels were intraperitoneal (i.p) injected with phosphate-buffered saline (PBS group), formaline-killed-whole-cell (FKC) of A. hydrophila and V. vulnificus (FKC group) or the bivalent OMP (OMP group). On 14, 21, 28 and 42 days post-vaccination respectively, proliferation of the whole blood cells, titers of specific antibody and lysozyme activities of experimental eels were detected. On 28 day post-vaccination, eels from three groups were challenged by i.p injection of live A. hydrophila or V. vulnificus. The results showed that, compared with the PBS group, proliferation of whole blood cells in OMP group was significant enhanced on 28 days, and the serum titers of anti-A.hydrophila and anti-V. vulnificus antibody in eels of FKC and OMP group were significant increased on 14, 21 and 28d. Lysozyme Activities in serum, skin mucus, liver and kidney were significant changed between the three groups. Relative Percent Survival (RPS) after challenged A. hydrophila in KFC vs. PBS group and OMP vs. PBS group were 62.5% and 50% respectively, and the RPS challenged V. vulnificus in FKC and OMP vs. PBS group were 37.5% and 50% respectively. These results suggest that American eels immunized with the bivalent OMP would positively affect specific as well as non-specific immune parameters and protect against infection by the two pathogens in fresh water farming. PMID:25655329

  1. Flux control exerted by mitochondrial outer membrane carnitine palmitoyltransferase over beta-oxidation, ketogenesis and tricarboxylic acid cycle activity in hepatocytes isolated from rats in different metabolic states.

    Science.gov (United States)

    Drynan, L; Quant, P A; Zammit, V A

    1996-01-01

    The Flux Control Coefficients of mitochondrial outer membrane carnitine palmitoyltransferase (CPT I) with respect to the overall rates of beta-oxidation, ketogenesis and tricarboxylic acid cycle activity were measured in hepatocytes isolated from rats in different metabolic states (fed, 24 h-starved, starved-refed and starved/insulin-treated). These conditions were chosen because there is controversy as to whether, when significant control ceases to be exerted by CPT I over the rate of fatty oxidation [Moir and Zammit (1994) Trends Biochem. Sci. 19, 313-317], this is transferred to one or more steps proximal to acylcarnitine synthesis (e.g. decreased delivery of fatty acids to the liver) or to the reaction catalysed by mitochondrial 3-hydroxy-3-methyl-glutaryl-CoA synthase [Hegardt (1995) Biochem. Soc. Trans. 23, 486-490]. Therefore isolated hepatocytes were used in the present study to exclude the involvement of changes in the rate of delivery of non-esterified fatty acids (NEFA) to the liver, such as occur in vivo, and to ascertain whether, under conditions of constant supply of NEFA, CPT I retains control over the relevant fluxes of fatty acid oxidation to ketones and carbon dioxide, or whether control is transferred to another (intrahepatocytic) site. The results clearly show that the Flux Control Coefficients of CPT I with respect to overall beta-oxidation and ketogenesis are very high under all conditions investigated, indicating that control is not lost to another intrahepatic site during the metabolic transitions studied. The control of CPT I over tricarboxylic acid cycle activity was always very low. The significance of these findings for the integration of fatty acid and carbohydrate metabolism in the liver is discussed. PMID:8760364

  2. Activity of carnitine palmitoyltransferase in mitochondrial outer membranes and peroxisomes in digitonin-permeabilized hepatocytes. Selective modulation of mitochondrial enzyme activity by okadaic acid.

    Science.gov (United States)

    Guzmán, M; Geelen, M J

    1992-01-01

    A procedure is described for the rapid measurement of the activity of mitochondrial-outer-membrane carnitine palmitoyltransferase (CPTo) and peroxisomal carnitine palmitoyltransferase (CPTp) in digitonin-permeabilized hepatocytes. CPTo activity was determined as the tetradecylglycidate (TDGA)-sensitive malonyl-CoA-sensitive CPT activity, whereas CPTp activity was monitored as the TDGA-insensitive malonyl-CoA-sensitive CPT activity. Under these experimental conditions, the respective contributions of CPTo and CPTp to total hepatocellular malonyl-CoA-sensitive CPT activity were 74.6 and 25.4%, which correlated well with the values of 76.9 and 23.1% for the respective contributions of the mitochondrial and the peroxisomal compartment to total hepatocellular palmitate oxidation. The sensitivity of CPTo to inhibition by malonyl-CoA was very similar to that of CPTp; thus 50% inhibition of CPTo and CPTp activities was achieved with malonyl-CoA concentrations of 2.6 +/- 0.5 and 3.0 +/- 0.4 microM respectively. Short-term incubation of hepatocytes with the phosphatase inhibitor okadaic acid (i) increased the activity of CPTo and the rate of mitochondrial palmitate oxidation, (ii) decreased the affinity of CPTo for palmitoyl-CoA substrate, and (iii) decreased the sensitivity of CPTo to inhibition by malonyl-CoA. By contrast, neither the properties of CPTp nor the rate of peroxisomal palmitate oxidation were changed upon incubation of cells with okadaic acid. Results indicate therefore that CPTo, but not CPTp, may be regulated by a mechanism of phosphorylation/dephosphorylation. The physiological relevance of these findings is discussed. PMID:1332675

  3. TprC/D (Tp0117/131), a Trimeric, Pore-Forming Rare Outer Membrane Protein of Treponema pallidum, Has a Bipartite Domain Structure

    Science.gov (United States)

    Anand, Arvind; Luthra, Amit; Dunham-Ems, Star; Caimano, Melissa J.; Karanian, Carson; LeDoyt, Morgan; Cruz, Adriana R.; Salazar, Juan C.

    2012-01-01

    Identification of Treponema pallidum rare outer membrane proteins (OMPs) has been a longstanding objective of syphilis researchers. We recently developed a consensus computational framework that employs a battery of cellular localization and topological prediction tools to generate ranked clusters of candidate rare OMPs (D. L. Cox et al., Infect. Immun. 78:5178–5194, 2010). TP0117/TP0131 (TprC/D), a member of the T. pallidum repeat (Tpr) family, was a highly ranked candidate. Circular dichroism, heat modifiability by SDS-PAGE, Triton X-114 phase partitioning, and liposome incorporation confirmed that full-length, recombinant TprC (TprCFl) forms a β-barrel capable of integrating into lipid bilayers. Moreover, TprCFl increased efflux of terbium-dipicolinic acid complex from large unilamellar vesicles and migrated as a trimer by blue-native PAGE. We found that in T. pallidum, TprC is heat modifiable, trimeric, expressed in low abundance, and, based on proteinase K accessibility and opsonophagocytosis assays, surface exposed. From these collective data, we conclude that TprC is a bona fide rare OMP as well as a functional ortholog of Escherichia coli OmpF. We also discovered that TprC has a bipartite architecture consisting of a soluble N-terminal portion (TprCN), presumably periplasmic and bound directly or indirectly to peptidoglycan, and a C-terminal β-barrel (TprCC). Syphilitic rabbits generate antibodies exclusively against TprCC, while secondary syphilis patients fail to mount a detectable antibody response against either domain. The syphilis spirochete appears to have resolved a fundamental dilemma arising from its extracellular lifestyle, namely, how to enhance OM permeability without increasing its vulnerability to the antibody-mediated defenses of its natural human host. PMID:22389487

  4. Calculated activity of Mn2+ at the outer surface of the root cell plasma membrane governs Mn nutrition of cowpea seedlings.

    Science.gov (United States)

    Kopittke, Peter M; Blamey, F Pax C; Wang, Peng; Menzies, Neal W

    2011-07-01

    Manganese (Mn) is an essential micronutrient for plant growth but is often toxic in acid or waterlogged soils. Using cowpea (Vigna unguiculata L. Walp.) grown with 0.05-1500 μM Mn in solution, two short-term (48 h) solution culture experiments examined if the effects of cations (Ca, Mg, Na, Al, or H) on Mn nutrition are related to the root cells' plasma membrane (PM) surface potential, ψ(0)(0). When grown in solutions containing levels of Mn that were toxic, both relative root elongation rate (RRER) and root tissue Mn concentration were more closely related to the activity of Mn(2+) at the outer surface of the PM, {Mn(2+)}(0)(0) (R(2)=0.812 and 0.871) than to its activity in the bulk solution, {Mn(2+)}(b) (R(2)=0.673 and 0.769). This was also evident at lower levels of Mn (0.05-10 μM) relevant to studies investigating Mn as an essential micronutrient (R(2)=0.791 versus 0.590). In addition, changes in the electrical driving force for ion transport across the PM influenced both RRER and the Mn concentration in roots. The {Mn(2+)}(b) causing a 50% reduction in root growth was found to be c. 500 to >1000 μM (depending upon solution composition), whilst the corresponding value was 3300 μM when related to {Mn(2+)}(0)(0). Although specific effects such as competition are not precluded, the data emphasize the importance of non-specific electrostatic effects in the Mn nutrition of cowpea seedlings over a 1×10(5)-fold range of Mn concentration in solution. PMID:21511910

  5. Transcriptional regulation of the outer membrane porin gene ompW reveals its physiological role during the transition from the aerobic to the anaerobic lifestyle of Escherichia coli

    Directory of Open Access Journals (Sweden)

    Minfeng eXiao

    2016-05-01

    Full Text Available Understanding bacterial physiology relies on elucidating the regulatory mechanisms and cellular functions of those differentially expressed genes in response to environmental changes. A widespread Gram-negative bacterial outer membrane protein OmpW has been implicated in the adaptation to stresses in various species. It is recently found to be present in the regulon of the global anaerobic transcription factor FNR and ArcA in E. coli. However, little is known about the physiological implications of this regulatory disposition. In this study, we demonstrate that transcription of ompW is indeed mediated by a series of global regulators involved in the anaerobiosis of E. coli. We show that FNR can both activate and repress the expression of ompW through its direct binding to two distinctive sites, -81.5 and -126.5 bp respectively, on ompW promoter. ArcA also participates in repression of ompW under anaerobic condition, but in an FNR dependent manner. Additionally, ompW is also subject to the regulation by CRP and NarL which senses the availability and types of carbon sources and respiration electron acceptors in the environment respectively, implying a role of OmpW in the carbon and energy metabolism of E. coli during its anaerobic adaptation. Molecular docking reveals that OmpW can bind fumarate, an alternative electron acceptor in anaerobic respiration, with sufficient affinity. Moreover, supplement of fumarate or succinate which belongs to the C4-dicarboxylates family of metabolite, to E. coli culture rescues OmpW-mediated colicin S4 killing. Taken together, we propose that OmpW is involved in anaerobic carbon and energy metabolism to mediate the transition from aerobic to anaerobic lifestyle in E. coli.

  6. Assessment of antibodies against surface and outer membrane proteins of Anaplasma phagocytophilum in Lyme borreliosis and tick-borne encephalitis paediatric patients.

    Science.gov (United States)

    Krbková, L; Homola, L; Hlaváčová, A; Mikolášek, P; Bednářová, J; Čermáková, Z

    2016-09-01

    To examine evidence of positive antibodies against immunogenic proteins of Anaplasma phagocytophilum in patients with other tick-borne infections and to diagnose possible co-infections, 412 serum specimens were tested by immunoblotting using three specific Anaplasma antigens: surface proteins p44 and Asp62 and outer membrane protein A (OmpA). In total, 284 serum samples from children with Lyme borreliosis and 12 serum samples from children with tick-borne encephalitis were tested. Sera from patients with viral aseptic meningitis (n = 47) and from blood donors (n = 69) were used as controls. Among all serum specimens from patients with tick-borne infections submitted for this study, six samples (2·0%) showed positive IgM reactions and seven samples (2·4%) were IgG positive for A. phagocytophilum by immunoblot. Borderline reactivity was found in 30 samples (10·14%) for IgM and 36 samples (12·2%) for IgG. The difference between patients and blood donors was statistically significant for IgM (P = 0·006) and for IgG (P = 0·0007) antibodies. A statistically significant result was obtained for IgG (P = 0·02) but not for IgM between patients and children with aseptic meningitis. Immunoblot using three specific antigens provides novel information about the positivity of antibodies to A. phagocytophilum in children with other tick-borne infections. Taking into account clinical and laboratory findings of children despite antibody positivity, no case of human granulocytic anaplasmosis was demonstrated. PMID:27180603

  7. Activation of Immune and Defense Responses in the Intestinal Mucosa by Outer Membrane Vesicles of Commensal and Probiotic Escherichia coli Strains

    Science.gov (United States)

    José Fábrega, María; Aguilera, Laura; Giménez, Rosa; Varela, Encarna; Alexandra Cañas, María; Antolín, María; Badía, Josefa

    2016-01-01

    The influence of microbiota in human health is well-known. Imbalances in microbiome structure have been linked to several diseases. Modulation of microbiota composition through probiotic therapy is an attempt to harness the beneficial effects of commensal microbiota. Although, there is wide knowledge of the responses induced by gut microbiota, the microbial factors that mediate these effects are not well-known. Gram-negative bacteria release outer membrane vesicles (OMVs) as a secretion mechanism of microbial factors, which have an important role in intercellular communication. Here, we investigated whether OMVs from the probiotic Escherichia coli strain Nissle 1917 (EcN) or the commensal E. coli strain ECOR12 trigger immune responses in various cellular models: (i) peripheral blood mononuclear cells (PBMCs) as a model of intestinal barrier disruption, (ii) apical stimulation of Caco-2/PMBCs co-culture as a model of intact intestinal mucosa, and (iii) colonic mucosa explants as an ex vivo model. Stimulations with bacterial lysates were also performed. Whereas, both OMVs and lysates activated expression and secretion of several cytokines and chemokines in PBMCs, only OMVs induced basolateral secretion and mRNA upregulation of these mediators in the co-culture model. We provide evidence that OMVs are internalized in polarized Caco-2 cells. The activated epithelial cells elicit a response in the underlying immunocompetent cells. The OMVs effects were corroborated in the ex vivo model. This experimental study shows that OMVs are an effective strategy used by beneficial gut bacteria to communicate with and modulate host responses, activating signaling events through the intestinal epithelial barrier. PMID:27242727

  8. Isolation and nucleotide sequence of the gene (aniA) encoding the major anaerobically induced outer membrane protein of Neisseria gonorrhoeae.

    Science.gov (United States)

    Hoehn, G T; Clark, V L

    1992-11-01

    When grown under anaerobic conditions, Neisseria gonorrhoeae, the etiologic agent of the sexually transmitted disease gonorrhea, expresses several novel outer membrane proteins. One of these, Pan 1, has an apparent molecular mass of 54 kDa in electrophoresis and is recognized by serum samples from patients with gonococcal infection. The presence of antibodies to this protein in patient sera suggests that Pan 1 is expressed during gonococcal infection and, more importantly, that N. gonorrhoeae grows anaerobically in vivo. We have cloned the Pan 1 structural gene, aniA, by screening a gonococcal lambda gt11 expression library with monospecific, polyclonal anti-Pan 1 antiserum. Three distinct immunoreactive recombinants, containing overlapping fragments of DNA, were isolated and confirmed to be coding for Pan 1 protein sequences. Northern (RNA blot) hybridization of an insert from an aniA recombinant to total gonococcal cellular RNA revealed the presence of a 1.5-kb transcript that was specific to RNA from anaerobically grown gonococci, indicating that the aniA gene is regulated at the transcriptional level and is monocistronic. To characterize the aniA gene, we have sequenced the entire 2-kb region spanned by the overlapping recombinants. We have also performed primer extension analysis on RNA isolated from aerobically and anaerobically grown gonococci in order to define the aniA promoter region. Two putative primer extension products specific to organisms grown anaerobically were identified by homology to known Escherichia coli promoter sequences, suggesting that the regulation of aniA expression involves multiple promoter regions. PMID:1383156

  9. Identification of the outer membrane porin of Thermus thermophilus HB8: the channel-forming complex has an unusually high molecular mass and an extremely large single-channel conductance.

    Science.gov (United States)

    Maier, E; Polleichtner, G; Boeck, B; Schinzel, R; Benz, R

    2001-01-01

    The outer membrane of the thermophilic bacterium Thermus thermophilus was isolated using sucrose step gradient centrifugation. Its detergent extracts contained an ion-permeable channel with an extremely high single-channel conductance of 20 nS in 1 M KCl. The channel protein was purified by preparative sodium dodecyl sulfate (SDS)-polyacylamide gel electrophoresis. It has a high molecular mass of 185 kDa, and its channel-forming ability resists boiling in SDS for 10 min. PMID:11133980

  10. Identification of the Outer Membrane Porin of Thermus thermophilus HB8: the Channel-Forming Complex Has an Unusually High Molecular Mass and an Extremely Large Single-Channel Conductance

    OpenAIRE

    Maier, Elke; Polleichtner, Georg; Boeck, Birgit; Schinzel, Reinhard; Benz, Roland

    2001-01-01

    The outer membrane of the thermophilic bacterium Thermus thermophilus was isolated using sucrose step gradient centrifugation. Its detergent extracts contained an ion-permeable channel with an extremely high single-channel conductance of 20 nS in 1 M KCl. The channel protein was purified by preparative sodium dodecyl sulfate (SDS)-polyacylamide gel electrophoresis. It has a high molecular mass of 185 kDa, and its channel-forming ability resists boiling in SDS for 10 min.

  11. Regulatory protein OmpR influences the serum resistance of Yersinia enterocolitica O:9 by modifying the structure of the outer membrane.

    Directory of Open Access Journals (Sweden)

    Karolina Skorek

    Full Text Available The EnvZ/OmpR two-component system constitutes a regulatory pathway involved in bacterial adaptive responses to environmental cues. Our previous findings indicated that the OmpR regulator in Yersinia enterocolitica O:9 positively regulates the expression of FlhDC, the master flagellar activator, which influences adhesion/invasion properties and biofilm formation. Here we show that a strain lacking OmpR grown at 37°C exhibits extremely high resistance to the bactericidal activity of normal human serum (NHS compared with the wild-type strain. Analysis of OMP expression in the ompR mutant revealed that OmpR reciprocally regulates Ail and OmpX, two homologous OMPs of Y. enterocolitica, without causing significant changes in the level of YadA, the major serum resistance factor. Analysis of mutants in individual genes belonging to the OmpR regulon (ail, ompX, ompC and flhDC and strains lacking plasmid pYV, expressing YadA, demonstrated the contribution of the respective proteins to serum resistance. We show that Ail and OmpC act in an opposite way to the OmpX protein to confer serum resistance to the wild-type strain, but are not responsible for the high resistance of the ompR mutant. The serum resistance phenotype of ompR seems to be multifactorial and mainly attributable to alterations that potentiate the function of YadA. Our results indicate that a decreased level of FlhDC in the ompR mutant cells is partly responsible for the serum resistance and this effect can be suppressed by overexpression of flhDC in trans. The observation that the loss of FlhDC enhances the survival of wild-type cells in NHS supports the involvement of FlhDC regulator in this phenotype. In addition, the ompR mutant exhibited a lower level of LPS, but this was not correlated with changes in the level of FlhDC. We propose that OmpR might alter the susceptibility of Y. enterocolitica O:9 to complement-mediated killing through remodeling of the outer membrane.

  12. Membraner

    DEFF Research Database (Denmark)

    Bach, Finn

    2009-01-01

    Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner......Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner...

  13. Chlamydial Heat Shock Proteins and Disease Pathology: New Paradigms for Old Problems?

    Directory of Open Access Journals (Sweden)

    G. I. Byrne

    1999-01-01

    Full Text Available The mucosal pathogen Chlamydia trachomatis affects hundreds of millions of people worldwide and is a significant cause of sexually transmitted disease. Although most acute infections can be easily managed, complications often occur that can be especially severe in women. It has been proposed that increased exposure to conserved chlamydial antigens, such as through reinfection or persistent infection, results in chronic inflammation and tissue scarring and contributes to the pathogenesis of endometrial and fallopian tube damage. This immunopathologic damage is believed to be a principal cause of ectopic pregnancy and tubal factor infertility. The chlamydial heat shock protein Hsp60, a homolog of Escherichia coli GroEL, has been identified as one protein capable of eliciting intense mononuclear inflammation. Furthermore, several studies have revealed a correlation between Hsp60 responses and the immunopathologic manifestations of human chlamydial disease. The role of additional antigens in the immunopathologic response to chlamydiae is currently undefined. A prime candidate, however, is the chlamydial GroES homolog Hspl0, which is genetically and physiologically linked to Hsp60. Recent studies provide data to suggest that immune reactivity to Hspl0 is significantly associated with tubal infertility in a chlamydiae-exposed population. Chlamydia pneumoniae is a more recently defined chlamydial species that has been implicated in a variety of ways with chronic disease processes, such as adult onset asthma and atherosclerosis. Evidence indicates that Hsp60 is present in human atheroma and may play a role in lesion development by direct activation of macrophages. Hsp60 causes the elaboration of inflammatory cytokines, the induction of metalloproteinase, and the oxidation of low density lipoprotein. Each of these events is directly associated with the progress of atherosclerosis. Thus, chlamydial heat shock proteins may function in at least two ways to

  14. The Chlamydial Plasmid-Encoded Protein pgp3 Is Secreted into the Cytosol of Chlamydia-Infected Cells▿

    OpenAIRE

    Li, Zhongyu; Chen, Ding; Zhong, Youmin; Wang, Shiping; Zhong, Guangming

    2008-01-01

    The chlamydial cryptic plasmid encodes eight putative open reading frames (ORFs), designated pORF1 to -8. Antibodies raised against these ORF proteins were used to localize the endogenous proteins during chlamydial infection. We found that the pORF5 protein (also known as pgp3) was detected mainly in the cytosol of Chlamydia-infected cells, while the remaining seven proteins were found inside the chlamydial inclusions only. The pgp3 distribution pattern in the host cell cytosol is similar to ...

  15. 脉冲电场作用下细胞频率特性仿真及窗口效应%Analysis of Frequency-domain and Window Effect for Cellular Inner and Outer Membranes Subjected to Pulsatile Electric Field

    Institute of Scientific and Technical Information of China (English)

    姚陈果; 陈新; 李成祥; 米彦; 孙才新

    2011-01-01

    Based on multi-layer dielectric model of spherical biological cell, a simulating method of frequency characteristics of inner and outer membranes is presented in this paper. Frequency-domain analysis showed that inner and outer membranes subjected to pulsed electric field exhibit band-pass and low-pass filter characteristics, respectively.A calculating method of the transmembrane potential of inner and outer membranes induced by time-varying electric field was introduced, and the window effect between electric field and transmembrane potential was also analyzed.When the duration is reduced from microsecond to sub-microsecond, and to nanosecond, the target induced was from the outer membrane to inner membrane gradually. At the same time, the field intensity should be incrcascd to induce corresponding bioelectric effects. Window effect provides theoretical guidance to choosing reasonable parameters for application of pulsatile electric field in tumor treatment.%本文建立了基于球形单细胞多层介电模型的细胞内外膜电场响应模型,提出了内外膜频率特性的仿真计算方法.频率特性分析表明,细胞内外膜在响应外加电场时分别具有带通和低通滤波性能.给出了任意时变脉冲电场作用下细胞内外膜跨膜电位的计算方法,并分析了方波电场脉宽、场强与细胞内外膜跨膜电位的窗口效应.当外加脉冲电场的脉宽从毫秒级降低到亚微秒级,再到纳秒级,所诱导的作用靶点也由细胞外膜逐渐转移到内膜,同时必须增大脉冲电场的场强,以诱导相应的细胞生物电效应.窗口效应为脉冲电场用于肿瘤治疗的参数合理选择提供了理论依据.

  16. Clinico-pathological Responses of Calves Associated with Infection of Pasteurella multocida Type B and the Bacterial Lipopolysaccharide and Outer Membrane Protein Immunogens

    Directory of Open Access Journals (Sweden)

    Faez Firdaus Jesse Abdullah

    2013-10-01

    Full Text Available The current study aims to investigate the Clinico-pathological responses of calves associated with the infections of Pasteurella multocida type B and the bacterial lipopolysaccharide and outer membrane protein immunogens. Alterations in the behavior of animals and pathological lesions observed following innate or experimental infections usually divulge extensive and detrimental changes in the clinical signs, organs and tissues of the animals afflicted with the disease. These alterations are imperative for Veterinary evaluation of herd health. Eight clinically healthy, non-pregnant and non-lactating Brangus cross heifers weighing 150±50 kg were used in the study. The heifers (n = 8 were divided into 4 groups of 2 calves per group. The control calves in group 1 were inoculated intramuscularly with 10 mL of sterile Phosphate Buffered Saline (PBS. Calves in group 2 were inoculated intramuscularly with 10 mL of 1012 colony forming unit (cfu of wild-type P. multocida and calves in group 3 were inoculated intravenously with 10 mL of LPS broth extract. Calves in group 4 were inoculated intramuscularly with 10 mL of OMP broth extract. All animals were observed for 48 h for clinical signs, changes in behavior and mortality pattern, including the time of death. The results divulged significant differences in the Clinico-pathological alterations. Calves inoculated with whole cell P. multocida type B: 2 showed a significant (p<0.05 increased in rectal temperature. The affected calves showed significant severe dullness (p<0.000 and significant rumen hypomotility (p<0.000 was also exhibited. The calves showed signs of hypersalivation at 14 h. There is no significant difference (p = 0.240 in pulmonary oedema in the Calves of group 2 compared to control group 1. Calves of group 4 also showed no significant difference in pulmonary oedema (p = 0.612 compared to control group 1. Calves of group 3 showed significantly moderate pulmonary oedema (p<0.000. All the

  17. NikR Mediates Nickel-Responsive Transcriptional Repression of the Helicobacter pylori Outer Membrane Proteins FecA3 (HP1400) and FrpB4 (HP1512)▿

    OpenAIRE

    Ernst, Florian D.; Stoof, Jeroen; Horrevoets, Wannie M.; Kuipers, Ernst J.; Kusters, Johannes G.; van Vliet, Arnoud H. M.

    2006-01-01

    The transition metal nickel plays an important role in gastric colonization and persistence of the important human pathogen Helicobacter pylori, as it is the cofactor of the abundantly produced acid resistance factor urease. Nickel uptake through the inner membrane is mediated by the NixA protein, and the expression of NixA is controlled by the NikR regulatory protein. Here we report that NikR also controls the nickel-responsive expression of the FecA3 (HP1400) and FrpB4 (HP1512) outer membra...

  18. Immunization with Recombinant Brucella Species Outer Membrane Protein Omp16 or Omp19 in Adjuvant Induces Specific CD4+ and CD8+ T Cells as Well as Systemic and Oral Protection against Brucella abortus Infection

    OpenAIRE

    Pasquevich, Karina A.; Estein, Silvia M.; Samartino, Clara García; Zwerdling, Astrid; Coria, Lorena M.; Barrionuevo, Paula; Fossati, Carlos A.; Giambartolomei, Guillermo H.; Cassataro, Juliana

    2009-01-01

    Available vaccines against Brucella spp. are live attenuated Brucella strains. In order to engineer a better vaccine to be used in animals and humans, our laboratory aims to develop an innocuous subunit vaccine. Particularly, we are interested in the outer membrane proteins (OMPs) of B. abortus: Omp16 and Omp19. In this study, we assessed the use of these proteins as vaccines against Brucella in BALB/c mice. Immunization with lipidated Omp16 (L-Omp16) or L-Omp19 in incomplete Freund's adjuvan...

  19. Chemical Composition of Salmon Ovary Outer Membrane and Its Protein Increases Fecal Mucins Content in C57BL/6J and Type 2 Diabetic/Obese KK-Ay Mice

    OpenAIRE

    Hayato Maeda; Ryota Hosomi; Utako Chiba; Kenji Fukunaga

    2013-01-01

    Salmon ovary outer membrane (SOM) is a byproduct of the salmon industry; however, the effective utilization of SOM for food materials and supplements is anticipated as the demand for fish and seafood increases worldwide. The purposes of the present study were to assess the chemical composition of SOM, the characteristics of SOM protein (SOMP), and its effects on serum and fecal biochemical parameters in mice. SOM contained high levels of crude protein (61.9 g/100 g) and crude lipid (18.9 g/10...

  20. Specific effect of estradiol on the genital mucosal antibody response in chlamydial ocular and genital infections.

    OpenAIRE

    Rank, R G; Barron, A. L.

    1987-01-01

    Estradiol treatment of female guinea pigs was found to alter the course of genital, but not ocular, infection with the chlamydial agent of guinea pig inclusion conjunctivitis. Immunoglobulin G (IgG) and IgA responses in genital secretions of genitally infected animals were delayed by estradiol treatment, but neither response in the eye resulting from either ocular or genital infection was affected. However, the appearance of IgG in the genital tract after ocular infection was markedly inhibit...

  1. Effect of antithymocyte serum on the course of chlamydial genital infection in female guinea pigs.

    OpenAIRE

    Rank, R G; Barron, A. L.

    1983-01-01

    The treatment of female guinea pigs, infected in the genital tract with the chlamydial agent of guinea pig inclusion conjunctivitis, with rabbit anti-guinea pig thymocyte serum extended the course of the infection by 20 to 30 days. The rabbit anti-guinea pig thymocyte serum was shown to suppress delayed hypersensitivity responses to the guinea pig inclusion conjunctivitis agent and the contact allergen oxazolone. The appearance of antibody in genital secretions was delayed, but the infection ...

  2. Hepatitis in farmed hatchling Nile crocodiles (Crocodylus niloticus) due to chlamydial infection.

    Science.gov (United States)

    Huchzermeyer, F W; Gerdes, G H; Foggin, C M; Huchzermeyer, K D; Limper, L C

    1994-03-01

    An investigation into the cause of acute mortality in farmed hatchling crocodiles Crocodylus niloticus led to the isolation of chlamydia from the livers of affected animals. Prominent pathological finds were acute hepatitis with intracellular chlamydial colonies and generalized oedema. A chlamydia presumed to be C. psittaci was isolated from livers of affected hatchlings. Mortality subsided after treatment with oxytetracycline. This disease is now recognized as being a major problem on crocodile farms in Zimbabwe. PMID:7745587

  3. Prevalence of chlamydial infections in fattening pigs and their influencing factors

    OpenAIRE

    Hoffmann, Karolin; Schott, Franziska; Donati, Manuela; Di Francesco, Antonietta; Hässig, Michael; Wanninger, Sabrina; Sidler, Xaver; Borel, Nicole

    2015-01-01

    Chlamydial infections in pigs are associated with respiratory disease, diarrhea, conjunctivitis and other pathologies. The aim of this study was to define the prevalence of Chlamydiaceae in Swiss fattening pigs by applying sensitive and specific detection methods and to correlate prior antibiotic treatment and farm related factors with differences in prevalence. Conjunctival and fecal swabs were collected from 636 pigs in 29 Swiss fattening pig farms with and without antibiotic treatment, at ...

  4. Interleukin-22 Promotes T Helper 1 (Th1)/Th17 Immunity in Chlamydial Lung Infection

    OpenAIRE

    Peng, Ying; Gao, Xiaoling; Yang, Jie; Shekhar, Sudhanshu; Wang, Shuhe; Fan, Yijun; Zhao, Weiming; Yang, Xi

    2014-01-01

    The role of interleukin-22 (IL-22) in intracellular bacterial infections is a controversial issue, although the contribution of this cytokine to host defense against extracellular bacterial pathogens has been well established. In this study, we focused on an intra-cellular bacterium, Chlamydia, and evaluated the production and function of IL-22 in host defense against chlamydial lung infection using a mouse model. We found that Chlamydia muridarum infection elicited quick IL-22 responses in t...

  5. Recent trends in chlamydial and gonococcal conjunctivitis among neonates and adults in an Irish hospital.

    LENUS (Irish Health Repository)

    Quirke, Michael

    2012-02-03

    BACKGROUND: Chlamydia trachomatis and Neisseria gonorrhoeae are two important and frequently overlooked causes of neonatal and adult conjunctivitis. OBJECTIVES AND METHODS: In order to improve primary treatment, prevention, and control of infection caused by these organisms, an analysis of all cases presenting from July 2002 to December 2006 at a major Irish regional teaching hospital was performed. RESULTS: There were 51 cases of conjunctivitis in total. Among neonates and adults, C. trachomatis was the most common cause of conjunctivitis. Of the adult patients, 75% were men. The annual incidence of adult chlamydial conjunctivitis increased yearly from 2002 and correlated with an overall increase in genital chlamydia infection in the region. Neonatal chlamydial conjunctivitis has an overall incidence of 0.65\\/1000 live births and is continuing to rise annually. In 2006, gonococcal conjunctivitis accounted for 20% of all cases of conjunctivitis caused by sexually transmitted bacteria presenting to our hospital. CONCLUSIONS: The recent increase in the incidence of gonococcal keratitis serves to remind us that this important infection should be borne in mind when treating cases of purulent conjunctivitis. The diagnosis of chlamydial and gonococcal conjunctivitis requires a high index of suspicion and prompt treatment with systemic antibiotics.

  6. Identification of MHCII variants associated with chlamydial disease in the koala (Phascolarctos cinereus

    Directory of Open Access Journals (Sweden)

    Quintin Lau

    2014-06-01

    Full Text Available Chlamydiosis, the most common infectious disease in koalas, can cause chronic urogenital tract fibrosis and infertility. High titres of serum immunoglobulin G against 10 kDa and 60 kDa chlamydial heat-shock proteins (c-hsp10 and c-hsp60 are associated with fibrous occlusion of the koala uterus and uterine tube. Murine and human studies have identified associations between specific major histocompatibility complex class II (MHCII alleles or genotypes, and higher c-hsp 60 antibody levels or chlamydia-associated disease and infertility. In this study, we characterised partial MHCII DAB and DBB genes in female koalas (n = 94 from a single geographic population, and investigated associations among antibody responses to c-hsp60 quantified by ELISA, susceptibility to chlamydial infection, or age. The identification of three candidate MHCII variants provides additional support for the functional role of MHCII in the koala, and will inform more focused future studies. This is the first study to investigate an association between MHC genes with chlamydial pathogenesis in a non-model, free-ranging species.

  7. Was the Chlamydial Adaptative Strategy to Tryptophan Starvation an Early Determinant of Plastid Endosymbiosis?

    Science.gov (United States)

    Cenci, Ugo; Ducatez, Mathieu; Kadouche, Derifa; Colleoni, Christophe; Ball, Steven G

    2016-01-01

    Chlamydiales were recently proposed to have sheltered the future cyanobacterial ancestor of plastids in a common inclusion. The intracellular pathogens are thought to have donated those critical transporters that triggered the efflux of photosynthetic carbon and the consequent onset of symbiosis. Chlamydiales are also suspected to have encoded glycogen metabolism TTS (Type Three Secretion) effectors responsible for photosynthetic carbon assimilation in the eukaryotic cytosol. We now review the reasons underlying other chlamydial lateral gene transfers evidenced in the descendants of plastid endosymbiosis. In particular we show that half of the genes encoding enzymes of tryptophan synthesis in Archaeplastida are of chlamydial origin. Tryptophan concentration is an essential cue triggering two alternative modes of replication in Chlamydiales. In addition, sophisticated tryptophan starvation mechanisms are known to act as antibacterial defenses in animal hosts. We propose that Chlamydiales have donated their tryptophan operon to the emerging plastid to ensure increased synthesis of tryptophan by the plastid ancestor. This would have allowed massive expression of the tryptophan rich chlamydial transporters responsible for symbiosis. It would also have allowed possible export of this valuable amino-acid in the inclusion of the tryptophan hungry pathogens. Free-living single cell cyanobacteria are devoid of proteins able to transport this amino-acid. We therefore investigated the phylogeny of the Tyr/Trp transporters homologous to E. coli TyrP/Mre and found yet another LGT from Chlamydiales to Archaeplastida thereby considerably strengthening our proposal. PMID:27446814

  8. Solute Transport Proteins and the Outer Membrane Protein NmpC Contribute to Heat Resistance of Escherichia coli AW1.7▿

    OpenAIRE

    Ruan, Lifang; Pleitner, Aaron; Gänzle, Michael G.; McMullen, Lynn M.

    2011-01-01

    This study aimed to elucidate determinants of heat resistance in Escherichia coli by comparing the composition of membrane lipids, as well as gene expression, in heat-resistant E. coli AW1.7 and heat-sensitive E. coli GGG10 with or without heat shock. The survival of E. coli AW1.7 at late exponential phase was 100-fold higher than that of E. coli GGG10 after incubation at 60°C for 15 min. The cytoplasmic membrane of E. coli AW1.7 contained a higher proportion of saturated and cyclopropane fat...

  9. Sequence Homologies between Mycoplasma and Chlamydia spp. Lead to False-Positive Results in Chlamydial Cell Cultures Tested for Mycoplasma Contamination with a Commercial PCR Assay▿

    OpenAIRE

    Maass, Viola; Kern, Jan Marco; Poeckl, Matthias; Maass, Matthias

    2011-01-01

    Mycoplasma contamination is a frequent problem in chlamydial cell culture. After obtaining contradictory contamination results, we compared three commercial PCR kits for mycoplasma detection. One kit signaled contamination in mycoplasma-free Chlamydia pneumoniae cultures. Sequencing of cloned PCR products revealed primer homology with the chlamydial genome as the basis of this false-positive result.

  10. TraK and TraB are conserved outer membrane proteins of the Neisseria gonorrhoeae Type IV secretion system and are expressed at low levels in wild-type cells.

    Science.gov (United States)

    Ramsey, Meghan E; Hackett, Kathleen T; Bender, Tobias; Kotha, Chaitra; van der Does, Chris; Dillard, Joseph P

    2014-08-15

    Neisseria gonorrhoeae uses a type IV secretion system (T4SS) to secrete chromosomal DNA into the medium, and this DNA is effective in transforming other gonococci via natural transformation. In addition, the T4SS is important in the initial stages of biofilm development and mediates intracellular iron uptake in the absence of TonB. To better understand the mechanism of type IV secretion in N. gonorrhoeae, we examined the expression levels and localization of two predicted T4SS outer membrane proteins, TraK and TraB, in the wild-type strain as well as in overexpression strains and in a strain lacking all of the T4SS proteins. Despite very low sequence similarity to known homologues, TraB (VirB10 homolog) and TraK (VirB9 homolog) localized similarly to related proteins in other systems. Additionally, we found that TraV (a VirB7 homolog) interacts with TraK, as in other T4SSs. However, unlike in other systems, neither TraK nor TraB required the presence of other T4SS components for proper localization. Unlike other gonococcal T4SS proteins we have investigated, protein levels of the outer membrane proteins TraK and TraB were extremely low in wild-type cells and were undetectable by Western blotting unless overexpressed or tagged with a FLAG3 triple-epitope tag. Localization of TraK-FLAG3 in otherwise wild-type cells using immunogold electron microscopy of thin sections revealed a single gold particle on some cells. These results suggest that the gonococcal T4SS may be present in single copy per cell and that small amounts of T4SS proteins TraK and TraB are sufficient for DNA secretion. PMID:24914183

  11. Calculated activity of Mn2+ at the outer surface of the root cell plasma membrane governs Mn nutrition of cowpea seedlings

    OpenAIRE

    Kopittke, Peter M.; Blamey, F. Pax C.; Wang, Peng; Menzies, Neal W.

    2011-01-01

    Manganese (Mn) is an essential micronutrient for plant growth but is often toxic in acid or waterlogged soils. Using cowpea (Vigna unguiculata L. Walp.) grown with 0.05–1500 μM Mn in solution, two short-term (48 h) solution culture experiments examined if the effects of cations (Ca, Mg, Na, Al, or H) on Mn nutrition are related to the root cells’ plasma membrane (PM) surface potential, ψ0 0. When grown in solutions containing levels of Mn that were toxic, both relative root elongation rate (R...

  12. High frequency of chlamydial co-infections in clinically healthy sheep flocks

    Directory of Open Access Journals (Sweden)

    Sachse Konrad

    2011-06-01

    Full Text Available Abstract Background The epidemiological situation of ovine chlamydial infections in continental Europe, especially Germany is poorly characterised. Using the German state of Thuringia as a model example, the chlamydial sero- and antigen prevalence was estimated in thirty-two randomly selected sheep flocks with an average abortion rate lower than 1%. Seven vaccinated flocks were reviewed separately. Results A wide range of samples from 32 flocks were examined. Assumption of a seroprevalence of 10% (CI 95% at flock level, revealed that 94% of the tested flocks were serologically positive with ongoing infection (i.e. animals with seroconversion in nearly half (47% of the flocks. On the basis of an estimated 25% antigen prevalence (CI 95%, PCR and DNA microarray testing, together with sequencing revealed the presence of chlamydiae in 78% of the flocks. The species most frequently found was Chlamydophila (C. abortus (50% followed by C. pecorum (47% and C. psittaci genotype A (25%. Mixed infections occurred in 25% of the tested flocks. Samples obtained from the vaccinated flocks revealed the presence of C. abortus field samples in 4/7 flocks. C. pecorum was isolated from 2/7 flocks and the presence of seroconversion was determined in 3/7 flocks. Conclusions The results imply that chlamydial infections occur frequently in German sheep flocks, even in the absence of elevated abortion rates. The fact that C. pecorum and the potentially zoonotic C. psittaci were found alongside the classical abortifacient agent C. abortus, raise questions about the significance of this reservoir for animal and human health and underline the necessity for regular monitoring. Further studies are needed to identify the possible role of C. psittaci infections in sheep.

  13. Natural killer cells regulate Th1/Treg and Th17/Treg balance in chlamydial lung infection

    OpenAIRE

    Li, Jing; Dong, Xiaojing; Zhao, Lei; Wang, Xiao; Wang, Yan; Yang, Xi; Wang, Hong; Zhao, Weiming

    2016-01-01

    Abstract Natural killer (NK) cell is an important component in innate immunity, playing a critical role in bridging innate and adaptive immunity by modulating the function of other immune cells including T cells. In this study, we focused on the role of NK cells in regulating Th1/Treg and Th17/Treg balance during chlamydial lung infection. We found that NK cell‐depleted mice showed decreased Th1 and Th17 cells, which was correlated with reduced interferon‐γ, interleukin (IL)‐12, IL‐17 and IL‐...

  14. Use of the pre-pro part of Staphylococcus hyicus lipase as a carrier for secretion of Escherichia coli outer membrane protein A (OmpA) prevents proteolytic degradation of OmpA by cell-associated protease(s) in two different gram-positive bacteria.

    OpenAIRE

    Meens, J.; Herbort, M. (Mirco); Klein, M.; Freudl, R

    1997-01-01

    Heterologous protein secretion was studied in the gram-positive bacteria Bacillus subtilis and Staphylococcus carnosus by using the Escherichia coli outer membrane protein OmpA as a model protein. The OmpA protein was found to be translocated across the plasma membrane of both microorganisms. However, the majority of the translocated OmpA was similarly degraded in B. subtilis and S. carnosus despite the fact that the latter organism does not secrete soluble exoproteases into the culture mediu...

  15. 多重耐药奇异变形杆菌外膜通透性改变的初步研究%A preliminary study on outer membrane permeation of multiple-antibiotic-resistant Proteus mirabilis

    Institute of Scientific and Technical Information of China (English)

    贾蓓; 钱元恕

    2000-01-01

    目的 研究奇异变形杆菌诱导耐药后外膜通透性改变与其耐药性的关系.方法 用含头孢噻肟的梯度平板多步诱导2株奇异变形杆菌达稳定耐药;以十二烷基硫酸钠-聚丙烯酰胺凝胶电泳法(SDS-PAGE)电泳耐药前后细菌外膜蛋白;以高效液相色谱法(HPLC)测定细菌对环丙沙星的摄取量;以扫描、透射电镜观察形态学变化.结果 所诱导的细菌对氟喹诺酮类、头孢类、青霉素类抗生素多重耐药;耐药株外膜蛋白相对分子质量40 000含量下降,37 000增加;耐药株与敏感株对环丙沙星摄取曲线峰浓度比为1:1.74和1:1.53,耐药株中环丙沙星浓度低于临界耐药浓度1 mg/L,且耐药株和敏感株胞内浓度相差不到2倍,而其MIC却相差较大;电镜下耐药株菌体变短,外膜皱褶明显,间隙加宽,胞内空泡减少.结论 奇异变形杆菌被诱导多重耐药后,对药物摄入减少,结构发生变化,耐药性可能与外膜通透性变化有关.%Objective To investigate the alterations of outer membrane permeation of multiple-antibiotic-resistant Proteus mirabilis.Methods Laboratory-derived cefotaxime-resistant mutants were induced by serial passages of clinical isolated susceptible Proteus mirabilis on cefotaxime-containing agar.Thereafter,the outer membrane proteins(OMP)of the parental strains and mutants were analyzed by sodium dodeeyl sulfate-polyacrylamide gradient gel electrophresis(SDS-PAGE)and the uptake of ciprofloxacin (CPLX)was determined with high pressure liquid chromatography(HPLC).Lastly,morphological analysis was performed by scanning and transmission electron microscopy.Results Compared with the parental strains.the mutants wete resistant to quinolones,cephalosporins and penicillins;the content of OMP with relative molecular weight 40 000 was reduced and that of 37 000 0MP was increased.The uptake of CPLX was reduced and the ratios of peak concentration were decreased to 1:1.74,1:1.53 compared with that of

  16. Incidence of gonococcal and chlamydial infections and coverage of two laboratory surveillance networks, France, 2012.

    Science.gov (United States)

    La Ruche, G; Le Strat, Y; Fromage, M; Berçot, B; Goubard, A; de Barbeyrac, B; Sednaoui, P; Cambau, E; Lot, F

    2015-01-01

    Surveillance of sexually transmitted diseases in France is based on voluntary networks of laboratories and clinicians. Despite the importance of incidence data in improving knowledge about the national context and in international comparisons, such data were not previously available. During nationwide quality control of laboratories, mandatory for all laboratories, we conducted a survey in June 2013 to estimate the incidence rates of gonococcal and chlamydial infections for 2012 and to estimate the proportion of diagnoses performed (coverage) by the country's two laboratory-based sentinel networks for these diseases. Estimated incidence rates for 2012 were 39 per 100,000 persons aged 15 to 59 years for gonorrhoea and 257 per 100,000 persons aged 15 to 49 years for chlamydia. These rates were consistent with the average levels for a group of other Western countries. However, different estimates between countries may reflect disparate sources of surveillance data and diverse screening strategies. Better comparability between countries requires harmonising data sources and the presentation of results. Estimated coverage rates of the gonococcal and chlamydial infection surveillance networks in France in 2012 were 23% and 18%, respectively, with substantial regional variations. These variations justify improving the representativeness of these networks by adding laboratories in insufficiently covered areas. PMID:26290487

  17. Penicillin G-Induced Chlamydial Stress Response in a Porcine Strain of Chlamydia pecorum

    Directory of Open Access Journals (Sweden)

    Cory Ann Leonard

    2016-01-01

    Full Text Available Chlamydia pecorum causes asymptomatic infection and pathology in ruminants, pigs, and koalas. We characterized the antichlamydial effect of the beta lactam penicillin G on Chlamydia pecorum strain 1710S (porcine abortion isolate. Penicillin-exposed and mock-exposed infected host cells showed equivalent inclusions numbers. Penicillin-exposed inclusions contained aberrant bacterial forms and exhibited reduced infectivity, while mock-exposed inclusions contained normal bacterial forms and exhibited robust infectivity. Infectious bacteria production increased upon discontinuation of penicillin exposure, compared to continued exposure. Chlamydia-induced cell death occurred in mock-exposed controls; cell survival was improved in penicillin-exposed infected groups. Similar results were obtained both in the presence and in the absence of the eukaryotic protein translation inhibitor cycloheximide and at different times of initiation of penicillin exposure. These data demonstrate that penicillin G induces the chlamydial stress response (persistence and is not bactericidal, for this chlamydial species/strain in vitro, regardless of host cell de novo protein synthesis.

  18. Packing of transmembrane domain 2 of carnitine palmitoyltransferase-1A affects oligomerization and malonyl-CoA sensitivity of the mitochondrial outer membrane protein.

    Science.gov (United States)

    Jenei, Zsuzsanna A; Warren, Gemma Z L; Hasan, Muhammad; Zammit, Victor A; Dixon, Ann M

    2011-12-01

    The purpose of this study was to investigate the sequence-dependence of oligomerization of transmembrane domain 2 (TM2) of rat carnitine palmitoyltransferase 1A (rCPT1A), to elucidate the role of this domain in the function of the full-length enzyme. Oligomerization of TM2 was studied qualitatively using complementary genetic assays that facilitate measurement of helix-helix interactions in the Escherichia coli inner membrane, and multiple quantitative biophysical methods. The effects of TM2-mutations on oligomerization and malonyl-CoA inhibition of the full-length enzyme (expressed in the yeast Pichia pastoris) were quantified. Changes designed to disrupt close-packing of the GXXXG(A) motifs reduced the oligomeric state of the corresponding TM2 peptides from hexamer to trimer (or lower), a reduction also observed on mutation of the TM2 sequence in the full-length enzyme. Disruption of these GXXXG(A) motifs had a parallel effect on the malonyl-CoA sensitivity of rCPT1A, reducing the IC(50) from 30.3 ± 5.0 to 3.0 ± 0.6 μM. For all measurements, wild-type rCPT1A was used as a control alongside various appropriate (e.g., molecular mass) standards. Our results suggest that sequence-determined, TM2-mediated oligomerization is likely to be involved in the modulation of malonyl-CoA inhibition of CPT1A in response to short- and long-term changes in protein-protein and protein-lipid interactions that occur in vivo. PMID:21917985

  19. Serum Concentrations of Antibodies against Outer Membrane Protein P6, Protein D, and T- and B-Cell Combined Antigenic Epitopes of Nontypeable Haemophilus influenzae in Children and Adults of Different Ages.

    Science.gov (United States)

    Hua, Chun-Zhen; Hu, Wei-Lin; Shang, Shi-Qiang; Li, Jian-Ping; Hong, Li-Quan; Yan, Jie

    2016-02-01

    Nontypeable Haemophilus influenzae (NTHi) is one of the most common etiologies of acute otitis media, rhinosinusitis, and pneumonia. Outer membrane proteins (OMPs) are the main focus in new vaccine development against NTHi, as the H. influenzae type b (Hib) vaccine does not cover noncapsulated NTHi. The OMPs P6 and protein D are the most promising candidate antigens for an NTHi vaccine, and low antibody levels against them in serum may be correlated with infection caused by NTHi. In the current study, we measured the antibody titers against P6, protein D, and their T- and B-cell combined peptide epitopes in healthy individuals of different ages. We found that children B-cell combined antigenic epitopes. Antibody titers increased at ages 1 to 6 months, peaked at 7 months to 3 years, and remained high at 4 to 6 years. The antibody titers started to decrease after 6 years and were the lowest in the 21- to 30-year group. The geometric mean titers (GMTs) of T- and B-cell combined antigenic epitopes in P6 and protein D were positively correlated with those of the protein antigens. Among 12 peptides tested, P6-61, P6-123, and protein D-167 epitopes were better recognized than others in human serum. These findings might contribute to the development of an effective serotype-independent vaccine for H. influenzae. PMID:26677200

  20. Comparison of Intranasal Outer Membrane Vesicles with Cholera Toxin and Injected MF59C.1 as Adjuvants for Malaria Transmission Blocking Antigens AnAPN1 and Pfs48/45

    Science.gov (United States)

    Pritsch, Michael; Ben-Khaled, Najib; Chaloupka, Michael; Kobold, Sebastian; Berens-Riha, Nicole; Peter, Annabell; Liegl, Gabriele; Schubert, Sören; Hoelscher, Michael; Löscher, Thomas; Wieser, Andreas

    2016-01-01

    Purified protein vaccines often require adjuvants for efficient stimulation of immune responses. There is no licensed mucosal adjuvant on the market to adequately boost the immune response to purified antigens for intranasal applications in humans. Bacterial outer membrane vesicles (OMV) are attractive candidates potentially combining antigenic and adjuvant properties in one substance. To more precisely characterize the potential of Escherichia coli OMV for intranasal vaccination with heterologous antigens, immune responses for AnAPN1 and Pfs48/45 as well as ovalbumin as a reference antigen were assessed in mice. The intranasal adjuvant cholera toxin (CT) and parenteral adjuvant MF59C.1 were used in comparison. Vaccinations were administered intranasally or subcutaneously. Antibodies (total IgG and IgM as well as subclasses IgG1, IgG2a, IgG2b, and IgG3) were measured by ELISA. T cell responses (cytotoxic T cells, Th1, Th17, and regulatory T cells) were determined by flow cytometry. When OMV were used as adjuvant for intranasal immunization, antibody and cellular responses against all three antigens could be induced, comparable to cholera toxin and MF59C.1. Antigen-specific IgG titres above 1 : 105 could be detected in all groups. This study provides the rationale for further development of OMV as a vaccination strategy in malaria and other diseases.

  1. Chemical Composition of Salmon Ovary Outer Membrane and Its Protein Increases Fecal Mucins Content in C57BL/6J and Type 2 Diabetic/Obese KK-Ay Mice

    Directory of Open Access Journals (Sweden)

    Hayato Maeda

    2013-09-01

    Full Text Available Salmon ovary outer membrane (SOM is a byproduct of the salmon industry; however, the effective utilization of SOM for food materials and supplements is anticipated as the demand for fish and seafood increases worldwide. The purposes of the present study were to assess the chemical composition of SOM, the characteristics of SOM protein (SOMP, and its effects on serum and fecal biochemical parameters in mice. SOM contained high levels of crude protein (61.9 g/100 g and crude lipid (18.9 g/100 g. The protein pattern of SOMP was different from those of fish muscle protein and roe; it was abundant in collagen, as calculated from the hydroxyproline content. In addition, SOMP exhibited lower protein digestibility during in vitro digestion analyses compared with casein. Male C57BL/6J and KK-Ay mice were fed a casein-based semi-purified diet or a diet with replacement of part of the dietary protein (50% by SOMP for four weeks. Mice fed the diet containing SOMP showed elevated fecal nitrogen and mucins contents and reduced levels of serum liver injury markers and fecal ammonia. These results show for the first time that chemical composition of SOM, and SOMP, contain a resistant protein fraction and a large amount of collagen. Therefore, SOM is a potential source of marine collagen and functional food material for promoting the health of the liver and colon.

  2. Sortilin is associated with the chlamydial inclusion and is modulated during infection.

    Science.gov (United States)

    Teo, Wei Xuan; Kerr, Markus Charles; Huston, Wilhelmina May; Teasdale, Rohan David

    2016-01-01

    Chlamydia species are obligate intracellular pathogens that have a major impact on human health. The pathogen replicates within an intracellular niche called an inclusion and is thought to rely heavily on host-derived proteins and lipids, including ceramide. Sortilin is a transmembrane receptor implicated in the trafficking of acid sphingomyelinase, which is responsible for catalysing the breakdown of sphingomyelin to ceramide. In this study, we examined the role of sortilin in Chlamydia trachomatis L2 development. Western immunoblotting and immunocytochemistry analysis revealed that endogenous sortilin is not only associated with the inclusion, but that protein levels increase in infected cells. RNAi-mediated depletion of sortilin, however, had no detectable impact on ceramide delivery to the inclusion or the production of infectious progeny. This study demonstrates that whilst Chlamydia redirects sortilin trafficking to the chlamydial inclusion, RNAi knockdown of sortilin expression is insufficient to determine if this pathway is requisite for the development of the pathogen. PMID:26962046

  3. Chlamydial Proctitis in a Young Man Who Has Sex with Men: Misdiagnosed as Inflammatory Bowel Disease.

    Science.gov (United States)

    Lee, Kyung Jin; Kim, Jaeyeon; Shin, Dong Hwan; Jung, Jun Oh; Koh, Seokyoung; Kim, Ka Young; Lee, Jae Min

    2015-12-01

    We report the case of a 20-year-old man with a 2-month history of anal pain and bloody rectal discharge. He was referred to our clinic of gastroenterology for suspected inflammatory bowel disease (IBD). The colonoscopy showed mucosal nodularities on the rectum and an anal tag. Because the colonoscopic findings were not consistent with the typical manifestations of IBD, we took an additional sexual history and performed studies for infectious proctitis, including serologic tests for Chlamydia trachomatis, Neisseria gonorrhoeae, and Treponema pallidum. He had homosexual experience, and the serologic tests and PCR of a rectal swab were positive for C. trachomatis infection. Finally he was diagnosed as having chlamydial proctitis and was treated with intramuscular ceftriaxone 250 mg in a single dose and doxycycline 100 mg orally twice daily for 7 days. After 2 months, he had no lower abdominal symptoms and his endoscopic findings were improved. PMID:26730366

  4. Chlamydial endometritis.

    OpenAIRE

    Paavonen, J; Aine, R; Teisala, K; Heinonen, P K; Punnonen, R; Lehtinen, M; Miettinen, A; Grönroos, P

    1985-01-01

    Endometrial biopsies were obtained from 32 women with suspected pelvic inflammatory disease, of whom 23 (72%) had histopathological evidence of endometritis. Chlamydia trachomatis was isolated from the endometria of nine (39%) women (chlamydia group) but not from the other 14 (non-chlamydia group). Severe plasma cell endometritis and lymphoid follicles with transformed lymphocytes were significantly more common in the chlamydia group than in the non-chlamydia group. This suggests that C trach...

  5. Efficient activation of T cells by human monocyte-derived dendritic cells (HMDCs pulsed with Coxiella burnetii outer membrane protein Com1 but not by HspB-pulsed HMDCs

    Directory of Open Access Journals (Sweden)

    Wang Xile

    2011-09-01

    Full Text Available Abstract Background Coxiella burnetii is an obligate intracellular bacterium and the etiologic agent of Q fever; both coxiella outer membrane protein 1 (Com1 and heat shock protein B (HspB are its major immunodominant antigens. It is not clear whether Com1 and HspB have the ability to mount immune responses against C. burnetii infection. Results The recombinant proteins Com1 and HspB were applied to pulse human monocyte-derived dendritic cells (HMDCs, and the pulsed HMDCs were used to stimulate isogenic T cells. Com1-pulsed HMDCs expressed substantially higher levels of surface molecules (CD83, CD40, CD80, CD86, CD54, and CD58 and a higher level of interleukin-12 than HspB-pulsed HMDCs. Moreover, Com1-pulsed HMDCs induced high-level proliferation and activation of CD4+ and CD8+ cells, which expressed high levels of T-cell activation marker CD69 and inflammatory cytokines IFN-γ and TNF-α. In contrast, HspB-pulsed HMDCs were unable to induce efficient T-cell proliferation and activation. Conclusions Our results demonstrate that Com1-pulsed HMDCs are able to induce efficient T-cell proliferation and drive T cells toward Th1 and Tc1 polarization; however, HspB-pulsed HMDCs are unable to do so. Unlike HspB, Com1 is a protective antigen, which was demonstrated by the adoptive transfer of Com1-pulsed bone marrow dendritic cells into naive BALB/c mice.

  6. Immunization with recombinant Brucella species outer membrane protein Omp16 or Omp19 in adjuvant induces specific CD4+ and CD8+ T cells as well as systemic and oral protection against Brucella abortus infection.

    Science.gov (United States)

    Pasquevich, Karina A; Estein, Silvia M; García Samartino, Clara; Samartino, Clara García; Zwerdling, Astrid; Coria, Lorena M; Barrionuevo, Paula; Fossati, Carlos A; Giambartolomei, Guillermo H; Cassataro, Juliana

    2009-01-01

    Available vaccines against Brucella spp. are live attenuated Brucella strains. In order to engineer a better vaccine to be used in animals and humans, our laboratory aims to develop an innocuous subunit vaccine. Particularly, we are interested in the outer membrane proteins (OMPs) of B. abortus: Omp16 and Omp19. In this study, we assessed the use of these proteins as vaccines against Brucella in BALB/c mice. Immunization with lipidated Omp16 (L-Omp16) or L-Omp19 in incomplete Freund's adjuvant (IFA) conferred significant protection against B. abortus infection. Vaccination with unlipidated Omp16 (U-Omp16) or U-Omp19 in IFA induced a higher degree of protection than the respective lipidated versions. Moreover, the level of protection induced after U-Omp16 or U-Omp19 immunization in IFA was similar to that elicited by live B. abortus S19 immunization. Flow cytometric analysis showed that immunization with U-Omp16 or U-Omp19 induced antigen-specific CD4(+) as well as CD8(+) T cells producing gamma interferon. In vivo depletion of CD4(+) or CD8(+) T cells in mice immunized with U-Omp16 or U-Omp19 plus IFA resulted in a loss of the elicited protection, indicating that both cell types are mediating immune protection. U-Omp16 or U-Omp19 vaccination induced a T helper 1 response, systemic protection in aluminum hydroxide formulation, and oral protection with cholera toxin adjuvant against B. abortus infection. Both immunization routes exhibited a similar degree of protection to attenuated Brucella vaccines (S19 and RB51, respectively). Overall these results indicate that U-Omp16 or U-Omp19 would be a useful candidate for a subunit vaccine against human and animal brucellosis. PMID:18981242

  7. Efficacy of bacterin-, outer membrane protein- and fimbriae extract-based vaccines for the control of Salmonella Enteritidis experimental infection in chickens Eficácia de bactéria inativada (bacterina), proteína da membrana externa e extrato de fimbrias no controle de infecção experimental por Salmonella Enteritidis (SE) em galinhas

    OpenAIRE

    Márcia C. Menão; Claudete S. Astolfi-Ferreira; Terezinha Knöbl; Antonio J. Piantino Ferreira

    2013-01-01

    The efficacy of three vaccines was evaluated in chickens for the control of experimental infection with Salmonella Enteritidis (SE) phage type 4. The vaccines were produced with bacterin, outer membrane proteins (OMP) and fimbriae crude extract (FE). The chickens were vaccinated intramuscularly with two doses of each vaccine at 12 and 15 weeks of age. The chickens were then orally challenged with 10(9) CFU/chicken Salmonella Enteritidis phage type 4 at 18 weeks of age. Fecal swabs were perfor...

  8. Construction and Characterization of DNA Vaccine for Major Outer Membrane Protein Gene of Aeromonas hydrophila%嗜水气单胞菌外膜蛋白基因 DNA 疫苗载体的构建及分析

    Institute of Scientific and Technical Information of China (English)

    李盼; 李素一; 吴唯维; 林天龙; 林晨韬; 陈叙

    2013-01-01

    为构建嗜水气单胞菌的 DNA 疫苗载体,根据已发表的该菌外膜蛋白基因 momp 的核苷酸序列设计一对特异性引物,应用 PCR 技术,扩增到嗜水气单胞菌 L316的主要外膜蛋白基因,并插入到真核表达载体 pcDNA3上,构建成 DNA 疫苗,命名为 pcDNA3-POMP 。以纯化的原核表达蛋白 GST-POMP 免疫 SD 大鼠制备抗血清,用 ELISA 测定抗体效价达到1∶100000以上;用 pcDNA3-POM P 质粒转染293细胞,转染48 h 后收集细胞,提取细胞的 RNA 进行 RT-PCR ,检测到外源基因的表达。至此,初步完成嗜水气单胞菌 DNA 疫苗表达载体的构建,为进一步疫苗免疫和效价的检测奠定基础。%For constructing the DNA vaccine , a pair of specific PCR primers were designed according to the nucleotide sequence of Aeromonas hydrophila major outer membrane protein gene published by our lab previously . The PCR products were inserted into the eukaryotic expression vector pcDNA 3 to construct a DNA vaccine named pcDNA3-POMP . SD rats were immunized with purified prokaryotic-expressed protein GST-POMP to make antiserum ,whose antibody titer ,measured by ELISA ,was over 1 ∶ 100 000 .293 cells were transfected with pcDNA3-POMP ,48 hours after transfection ,the cells were collected for total RNA extraction and RT-PCR ,and the expression of exogenous momp were detected .Therefore ,we have constructed a plasmid of DNA vaccine for Aeromonas hydrophila ,vaccination and evaluation of this DNA vaccine will be studied in the future .

  9. Recombinant Salmonella typhimurium outer membrane protein A is recognized by synovial fluid CD8 cells and stimulates synovial fluid mononuclear cells to produce interleukin (IL)-17/IL-23 in patients with reactive arthritis and undifferentiated spondyloarthropathy.

    Science.gov (United States)

    Chaurasia, S; Shasany, A K; Aggarwal, A; Misra, R

    2016-08-01

    In developing countries, one-third of patients with reactive arthritis (ReA) and undifferentiated spondyloarthropathy (uSpA) are triggered by Salmonella typhimurium. Synovial fluid mononuclear cells (SFMCs) of patients with ReA and uSpA proliferate to low molecular weight fractions (lmwf) of outer membrane proteins (Omp) of S. typhimurium. To characterize further the immunity of Omp of Salmonella, cellular immune response to two recombinant proteins of lmwf, OmpA and OmpD of S. typhimurium (rOmpA/D-sal) was assessed in 30 patients with ReA/uSpA. Using flow cytometry, 17 of 30 patients' SF CD8(+) T cells showed significant intracellular interferon (IFN)-γ to Omp crude lysate of S. typhimurium. Of these 17, 11 showed significantly more CD8(+) CD69(+) IFN-γ T cells to rOmpA-sal, whereas only four showed reactivity to rOmpD-sal. The mean stimulation index was significantly greater in rOmpA-sal than rOmpD-sal [3·0 (1·5-6·5) versus 1·5 (1·0-2·75), P interleukin (IL)-17 [28·60 (6·15-510·86) versus 11·84 (6·83-252·62) pg/ml, P 15-241·52) pg/ml, P < 0·05] and IL-6 [59·78 (2·03-273·36) versus 10·17 (0·004-190·19) ng/ml, P < 0·05]. The rOmpA-sal-specific CD8(+) T cell response correlated with duration of current synovitis (r = 0·53, P < 0·05). Thus, OmpA of S. typhimurium is a target of SF CD8(+) T cells and drives SFMC to produce increased cytokines of the IL-17/IL-23 axis which contribute to the pathogenesis of Salmonella-triggered ReA. PMID:27060348

  10. Outer Membrane Vesicles from the Probiotic Escherichia coli Nissle 1917 and the Commensal ECOR12 Enter Intestinal Epithelial Cells via Clathrin-Dependent Endocytosis and Elicit Differential Effects on DNA Damage

    Science.gov (United States)

    Cañas, María-Alexandra; Giménez, Rosa; Fábrega, María-José; Toloza, Lorena; Badia, Josefa

    2016-01-01

    Interactions between intestinal microbiota and the human host are complex. The gut mucosal surface is covered by a mucin layer that prevents bacteria from accessing the epithelial cells. Thus, the crosstalk between microbiota and the host mainly rely on secreted factors that can go through the mucus layer and reach the epithelium. In this context, vesicles released by commensal strains are seen as key players in signaling processes in the intestinal mucosa. Studies with Gram-negative pathogens showed that outer membrane vesicles (OMVs) are internalized into the host cell by endocytosis, but the entry mechanism for microbiota-derived vesicles is unknown. Escherichia coli strains are found as part of normal human gut microbiota. In this work, we elucidate the pathway that mediate internalization of OMVs from the probiotic E.coli Nissle 1917 (EcN) and the commensal ECOR12 strains in several human intestinal epithelial cell lines. Time course measurement of fluorescence and microscopy analysis performed with rhodamine B-R18-labeled OMVs in the presence of endocytosis inhibitors showed that OMVs from these strains enter epithelial cells via clathrin-mediated endocytosis. Vesicles use the same endocytosis pathway in polarized epithelial monolayers. Internalized OMVs are sorted to lysosomal compartments as shown by their colocalization with clathrin and specific markers of endosomes and lysosomes. OMVs from both strains did not affect cell viability, but reduce proliferation of HT-29 cells. Labeling of 8-oxo-dG adducts in DNA revealed that neither OMVs from EcN nor from ECOR12 promoted oxidative DNA damage. In contrast, flow cytometry analysis of phosphorylated γH2AX evidenced that OMVs from the probiotic EcN significantly produced more double strand breaks in DNA than ECOR12 OMVs. The EcN genotoxic effects have been attributed to the synthesis of colibactin. However, it is not known how colibactin is exported and delivered into host cells. Whether colibactin is secreted

  11. Outer membrane protein A (OmpA of Shigella flexneri 2a induces TLR2-mediated activation of B cells: involvement of protein tyrosine kinase, ERK and NF-κB.

    Directory of Open Access Journals (Sweden)

    Rajsekhar Bhowmick

    Full Text Available B cells are critically important in combating bacterial infections and their differentiation into plasma cells and memory cells aids bacterial clearance and long-lasting immunity conferred by essentially all vaccines. Outer membrane protein A (OmpA of Shigella flexneri 2a has been demonstrated to induce the production of IgG and IgA in vivo following immunization of mice through intranasal route, but the direct involvement of B cells in OmpA-mediated immune regulation was not determined. Consequently, we investigated whether OmpA can modulate B cell functions and identified the molecular events involved in OmpA-induced B cell immune response in vitro. We show that OmpA of S. flexneri 2a activates B cells to produce protective cytokines, IL-6 and IL-10 as well as facilitates their differentiation into antibody secreting cells (ASCs. The immunostimulatory properties of OmpA are attributed to the increased surface expression of MHCII and CD86 on B cells. We also report here that B cell activation by OmpA is mediated strictly through recognition by TLR2, resulting in initiation of cascades of signal transduction events, involving increased phosphorylation of protein tyrosine kinases (PTKs, ERK and IκBα, leading to nuclear translocation of NF-κB. Importantly, a TLR2 antibody diminishes OmpA-induced upregulation of MHCII and CD86 on B cell surface as well as significantly inhibits B cell differentiation and cytokine secretion. Furthermore, we illustrate that B cell differentiation into ASCs and induction of cytokine secretion by OmpA are dependent on PTKs activity. Moreover, we identify that OmpA-induced B cell differentiation is entirely dependent on ERK pathway, whereas both NF-κB and ERK are essential for cytokine secretion by B cells. Overall, our data demonstrate that OmpA of S. flexneri 2a amplifies TLR signaling in B cells and triggers B cell immune response, which is critical for the development of an effective adaptive immunity to an

  12. A Comparative Study on the Structure of the Outer Membrane Protein Gene in Leptospira Serovar Lai%赖型钩端螺旋体外膜蛋白基因结构比较性研究

    Institute of Scientific and Technical Information of China (English)

    胡昌华; 鲍朗; 晏菊芳; 李学敏; 张万江; 张会东

    2000-01-01

    用PCR方法扩增不同毒力赖型钩体OmpL1基因片段,进行序列测定,用相关软件比较分析核苷酸序列、蛋白质二级结构以及限制性内切酶谱。不同毒力赖型钩体均能扩增出960 bp的片段,非致病Patoc株未能扩出相应片段,中国赖型参考株OmpL1序列(GeneBank No. AF250318)与流感伤寒型相应序列比较有98个核苷酸差异,同源性为89.8%,二级结构预测和氨基酸疏水图显示变异主要发生在跨膜蛋白的膜外区,其膜上成分并未明显变化;赖型强弱毒力株之间OmpL1序列仅8个核苷酸差异,6个氨基酸变异,且集中在C末端292-305位氨基酸之间;限制性内切酶谱分析显示赖型OmpL1基因位点发生特异变化。结果提示,外膜蛋白OmpL1基因是钩体保守性较强的致病标记;赖型钩体减毒致弱可能与OmpL1局部氨基酸发生特异变化相关。%The OmpL1 gene of Leptospira(L.)  serovar lai was amplified and sequenced,  and its nucleotide sequence, protein secondary structure and restriction endonuclease map were further analysed.  A 960 bp fragment was amplified in various virluent L.  interrogans serovar lai,  not in L.bilexa patoc strain. In comparison with L.kirschneri,98 nucleotides were found changed in OmpL1 gene with a homology of 89.8%. The secondary structure predication and hydrop hobicity plot that showed that the difference was located in extra-nsmembrane field, not on the membrane.The OmpL1 gene sequences only had 8 nucleotides and 6 amino acids difference between the strong and weak virulence serovar lai strains, and distributed in 292~305 amino acid sites of the carbon end. Restriction endonuclease map of OmpL1 gene was also changed. These results suggested that the outer membrane protein OmpL1 gene was the conservative pathogenic mark in leptospira, and the attenuation of serovar lai could be related with the local amino acids variation of the OmpL1 gene.

  13. Discovery of chlamydial peptidoglycan reveals bacteria with murein sacculi but without FtsZ

    Science.gov (United States)

    Pilhofer, Martin; Aistleitner, Karin; Biboy, Jacob; Gray, Joe; Kuru, Erkin; Hall, Edward; Brun, Yves V.; Vannieuwenhze, Michael S.; Vollmer, Waldemar; Horn, Matthias; Jensen, Grant J.

    2013-12-01

    Chlamydiae are important pathogens and symbionts with unique cell biological features. They lack the cell-division protein FtsZ, and the existence of peptidoglycan (PG) in their cell wall has been highly controversial. FtsZ and PG together function in orchestrating cell division and maintaining cell shape in almost all other bacteria. Using electron cryotomography, mass spectrometry and fluorescent labelling dyes, here we show that some environmental chlamydiae have cell wall sacculi consisting of a novel PG type. Treatment with fosfomycin (a PG synthesis inhibitor) leads to lower infection rates and aberrant cell shapes, suggesting that PG synthesis is crucial for the chlamydial life cycle. Our findings demonstrate for the first time the presence of PG in a member of the Chlamydiae. They also present a unique example of a bacterium with a PG sacculus but without FtsZ, challenging the current hypothesis that it is the absence of a cell wall that renders FtsZ non-essential.

  14. The outer solar system

    Directory of Open Access Journals (Sweden)

    Encrenaz T.

    2009-02-01

    Full Text Available The outer solar system extends beyond a heliocentric distance of 5 AU. It contains the giant planets and their systems (rings and satellites, the Kuiper belt, the comets (except those which approach episodically the inner solar system and, at its outer edge, the Oort cloud. The outer solar system physically corresponds to the region located outside the « snow line » which corresponded to the distance of ice condensation in the protodolar disk, and thus made the frontier between the terrestrial and the giant planets at the time of the planets’ formation. The outer solar system is charaterized by a very large variety of ob jects, even within a given class of ob jects. Each of the giant planet has its own properties, as well as each of the outer satellites and the ring systems ; all are the products of specific conditions which determined their formation and evolution processes. The existence of the Kuiper belt, suspected on theoretical bases since the 1940s, has been confirmed since 1992 with the observation of over 1200 trans-neptunian ob jects. Thanks to the the developments of more and more performing groundbased instrumentation and the use of large telescopes, these ob jects are now studies in a statistical way, both dynamically and physically, and these studies are precious for constraining the early formation models of the solar system.

  15. IL-17A Synergizes with IFN-γ to Upregulate iNOS and NO Production and Inhibit Chlamydial Growth

    OpenAIRE

    Zhang, Yongci; Wang, Haiping; Ren, Jianyun; Tang, Xiaofei; Jing, Ye; Xing, Donghong; Zhao, Guosheng; Yao, Zhi; Yang, Xi; Bai, Hong

    2012-01-01

    IFN-γ-mediated inducible nitric oxide synthase (iNOS) expression is critical for controlling chlamydial infection through microbicidal nitric oxide (NO) production. Interleukin-17A (IL-17A), as a new proinflammatory cytokine, has been shown to play a protective role in host defense against Chlamydia muridarum (Cm) infection. To define the related mechanism, we investigated, in the present study, the effect of IL-17A on IFN-γ induced iNOS expression and NO production during Cm infection in vit...

  16. Direct fluorescent-antibody confirmation of chlamydial antigen below the detection threshold of the chlamydiazyme enzyme-linked immunosorbent assay.

    OpenAIRE

    Kellogg, J A; Seiple, J W; Stroll, E S

    1993-01-01

    Of 4,000 endocervical specimens tested with the Chlamydiazyme enzyme-linked immunosorbent assay (Abbott Laboratories), 233 (5.8%) gave positive results (A492 above the cutoff), which were confirmed with a blocking reagent (Abbott). An additional 34 specimens (14.6%) with chlamydial antigen were detected and confirmed with the direct fluorescent-antibody test (Syva) from among those 66 Chlamydiazyme-negative specimens which had A492s that ranged from 0.030 to the cutoff and that could be block...

  17. Genetic variation analysis of an outer membrane protein gene of Candidatus Liberibacter asiaticus%柑橘黄龙病菌亚洲种外膜蛋白基因的遗传变异分析

    Institute of Scientific and Technical Information of China (English)

    鹿连明; 杜丹超; 程保平; 胡秀荣; 张利平; 陈国庆

    2014-01-01

    为了解柑橘黄龙病菌亚洲种(Candidatus Liberibacter asiaticus)的遗传多样性,对来源于国内外7个不同地区和浙江台州地区11个不同寄主品种的 Ca.L.asiaticus 的外膜蛋白(outer membrane protein,OMP)基因进行聚合酶链反应限制性片段长度多态性分析(polymerase chain reaction-restriction fragment length polymorphism,PCR-RFLP).PCR 产物经克隆测序后,利用 NCBI Blast 和 DNAMAN 软件对 omp 基因序列进行多重比对,并用 MEGA 软件构建系统发育树.结果显示:在浙江台州地区不同寄主品种上 Ca.L.asiaticus 各分离物的 omp 基因的酶切片段长度不具有多态性,其基因序列也完全一致;而不同地理来源的 Ca.L.asiaticus 的omp 基因经限制性内切酶消化后可产生不同的 RFLP 指纹图谱,其核酸序列和氨基酸序列均存在变异,表明 Ca. L.asiaticus 存在种内遗传多样性.在系统发育树上,所有的 Ca.L.asiaticus 分离物聚为1个分支,而 Ca.L. africanus 和 Ca.L.solanacearum 分别处于不同的分支上.%Summary Huanglongbing (HLB) is a destructive disease that represents a major threat to the world citrus industry.It was first reported from Chaoshan area of Guangdong Province in the early 20th century,and is now known to occur in next to 40 different Asian,African,Oceanian,South and North American countries and areas. Its pathogen is a phloem-limited,non-cultured,Gram-negative bacterium which belongs to the genus Candidatus Liberibacter.Three species,i.e.,Ca. L.asiaticus,Ca. L.americanus,and Ca. L.africanus with Ca. L. africanus subsp.capensis are currently known.So far,the pathogen of HLB disease discovered in China is only Ca.L.asiaticus,which distributes widely in almost all major citrus growing areas such as Guangdong,Guangxi, Fujian,Yunnan,Zhejiang and so on.This pathogen can be transmitted by grafting and Diaphorina citri and infect almost all fruit trees of Citrus Fortunella and Poncirus

  18. Chlamydial infection increases gonococcal colonization in a novel murine coinfection model.

    Science.gov (United States)

    Vonck, Rachel A; Darville, T; O'Connell, C M; Jerse, Ann E

    2011-04-01

    Genital tract infections caused by Neisseria gonorrhoeae and Chlamydia trachomatis serovars D to K occur at high incidence in many areas of the world. Despite high rates of coinfection with these pathogens, investigations of host-parasite interactions have focused on each pathogen individually. We describe here a coinfection model in which female BALB/c mice were first infected with the mouse Chlamydia species C. muridarum and then inoculated with N. gonorrhoeae following treatment with water-soluble 17β-estradiol to promote long-term gonococcal infection. Viable gonococci and chlamydiae were recovered for an average of 8 to 10 days, and diplococci and chlamydial inclusions were observed in lower genital tract tissue by immunohistochemical staining. Estradiol treatment reduced proinflammatory cytokine and chemokine levels in chlamydia-infected mice; however, coinfected mice had a higher percentage of vaginal neutrophils compared to mice infected with either pathogen alone. We detected no difference in pathogen-specific antibody levels due to coinfection. Interestingly, significantly more gonococci were recovered from coinfected mice compared to mice infected with N. gonorrhoeae alone. We found no evidence that C. muridarum increases gonococcal adherence to, or invasion of, immortalized murine epithelial cells. However, increased vaginal concentrations of inflammatory mediators macrophage inflammatory protein 2 and tumor necrosis factor alpha were detected in C. muridarum-infected mice prior to inoculation with N. gonorrhoeae concurrently with the downregulation of cathelicidin-related antimicrobial peptide and secretory leukocyte peptidase inhibitor genes. We conclude that female mice can be successfully infected with both C. muridarum and N. gonorrhoeae and that chlamydia-induced alterations in host innate responses may enhance gonococcal infection. PMID:21245268

  19. The Delphi outer detector

    International Nuclear Information System (INIS)

    The design criteria, construction and performance of the Delphi outer detector are discussed. The detector is a 5-layer, 5 m long, 2 m inner radius, 2.1 m outer radius 'cylindrical' drift chamber consisting of 3480 individual 1.65x1.65 cm2 drift tubes operating in limited streamer mode. The drift time-distance relationship for a single tube has been measured using a pulsed laser as a function of both track angle and longitudinal magnetic field. These data have been used to reconstruct cosmic rays in a completed detector module and yield a transverse resolution of 80 μm per point over most of the cell, rising to 90 μm near the corners of the tubes. The detection efficiency per cell for minimum ionising particles is greater than 98.5%. (orig.)

  20. Outer hair cell piezoelectricity: Frequency response enhancement and resonance behavior

    Science.gov (United States)

    Weitzel, Erik K.; Tasker, Ron; Brownell, William E.

    2003-09-01

    Stretching or compressing an outer hair cell alters its membrane potential and, conversely, changing the electrical potential alters its length. This bi-directional energy conversion takes place in the cell's lateral wall and resembles the direct and converse piezoelectric effects both qualitatively and quantitatively. A piezoelectric model of the lateral wall has been developed that is based on the electrical and material parameters of the lateral wall. An equivalent circuit for the outer hair cell that includes piezoelectricity shows a greater admittance at high frequencies than one containing only membrane resistance and capacitance. The model also predicts resonance at ultrasonic frequencies that is inversely proportional to cell length. These features suggest all mammals use outer hair cell piezoelectricity to support the high-frequency receptor potentials that drive electromotility. It is also possible that members of some mammalian orders use outer hair cell piezoelectric resonance in detecting species-specific vocalizations.

  1. Clonging and Expression of Leptospiral Outer Membrane Protein LipL32 Gene and Application of Recombinant Antigen in Enzyme-linked Immunosorbent Assays%钩端螺旋体外膜脂蛋白LipL32基因的克隆和表达及其在ELISA检测中的应用

    Institute of Scientific and Technical Information of China (English)

    范薇; 于长明; 杨敬; 隋丽华; 战大伟; 贺争鸣; 孙岩松

    2003-01-01

    Objective To construct L32-pQE32 recombinant expression vectors, and to induce the expression of recombinant Leptospiral outer membrane protein LipL32. Establish method of recombinant Leptospiral outer membrane proteinbased ELISA. Method Gene coding of Leptospiral LipL32 protein was amplified by PCR, then recombinant cloning vectors pGEM-T/L32 and expression vectors L32-pQE32 were constructed. Recombinant expression vector was transformed into the competent host E. coli. DH-5α and E. coli. M15. Recombinant Leptospiral LipL32 protein was expressed by IPTG induced method. Immulon microtiter plates were coated at 37℃ overnight with 100 ng of purified recombinant protein per well, 3 positive and 4 negative sera were used in indirect ELISA. Results Mature Leptospiral LipL32 gene fragment about 750 bp was amplified by PCR. LipL32 gene was inserted into expression vectors pQE32, the molecular weight of fusion protein was corresponding to the estimated molecular size of mature Leptospiral LipL32 protein. Results of Western-blot and ELISA demonstrated intense LipL32 reactivity with anti-Leptospira sera. Conclusion findings indicate that recombinant Leptospiral LipL32 may be an important, useful antigen for the serodiagnosis of Leptospira.

  2. Vacuum Outer-Gap Structure in Pulsar Outer Magnetospheres

    Institute of Scientific and Technical Information of China (English)

    LIN Gui-Fang; ZHANG Li

    2009-01-01

    We study the vacuum outer-gap structure in the outer magnetosphere of rotation-powered pulsars by considering the limit of trans-field height through a pair production process. In this case, the trans-field height is limited by the photon-photon pair production process and the outer boundary of the outer gap can be extended outside the light cylinder. By solving self-consistently the Poisson equation for electrical potential and the Boltzmann equations of electrons/positrons and γ-rays in a vacuum outer gap for the parameters of Vela pulsar, we obtain an approximate geometry of the outer gap, i.e. the trans-field height is limited by the pair-production process and increases with the radial distance to the star and the width of the outer gap starts at the inner boundary (near the null charge surface) and ends at the outer boundary which locates inside or outside the light cylinder depending on the inclination angle.

  3. Chlamydial development is blocked in host cells transfected with Chlamydophila caviae incA

    OpenAIRE

    Barnes Jennifer; Alzhanov Damir; Hruby Dennis E; Rockey Daniel D

    2004-01-01

    Abstract Background Chlamydiae produce a set of proteins, termed Inc proteins, that are localized to the inclusion membrane and exposed to the host cell cytosol. Little information exists regarding the interaction of Inc proteins with the eukaryotic cell. To examine these interactions, Vaccinia virus vectors and mammalian plasmid-based systems were used to express inc genes in mammalian cells. Results Cells transfected with plasmids expressing Chlamydophila caviae incA were not productively i...

  4. Computer simulations suggest direct and stable tip to tip interaction between the outer membrane channel TolC and the isolated docking domain of the multidrug RND efflux transporter AcrB.

    Science.gov (United States)

    Schmidt, Thomas H; Raunest, Martin; Fischer, Nadine; Reith, Dirk; Kandt, Christian

    2016-07-01

    One way by which bacteria achieve antibiotics resistance is preventing drug access to its target molecule for example through an overproduction of multi-drug efflux pumps of the resistance nodulation division (RND) protein super family of which AcrAB-TolC in Escherichia coli is a prominent example. Although representing one of the best studied efflux systems, the question of how AcrB and TolC interact is still unclear as the available experimental data suggest that either both proteins interact in a tip to tip manner or do not interact at all but are instead connected by a hexamer of AcrA molecules. Addressing the question of TolC-AcrB interaction, we performed a series of 100 ns - 1 µs-molecular dynamics simulations of membrane-embedded TolC in presence of the isolated AcrB docking domain (AcrBDD). In 5/6 simulations we observe direct TolC-AcrBDD interaction that is only stable on the simulated time scale when both proteins engage in a tip to tip manner. At the same time we find TolC opening and closing freely on extracellular side while remaining closed at the inner periplasmic bottleneck region, suggesting that either the simulated time is too short or additional components are required to unlock TolC. PMID:27045078

  5. Turbine airfoil with outer wall thickness indicators

    Science.gov (United States)

    Marra, John J; James, Allister W; Merrill, Gary B

    2013-08-06

    A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.

  6. Guillain-Barré综合征患者空肠弯曲菌的主要外膜蛋白基因的分子分型%Molecular typing of the major outer membrane protein gene ofCampylobacterjejuni isolates from patients with Guillain-Barré syndrome

    Institute of Scientific and Technical Information of China (English)

    马建军; 徐军; 西村公孝; 齐田孝彦

    2000-01-01

    Objective: To study thd momecular typing of the major outer membrane protein gene(momp) of Campylobacter jejuni(C.jejuni). Methods: The C. jejuni major outer membrane protein gene was arnplified by PCR from a total of 163 strains. AfterHind Ⅲ , HaeⅢ, Mbo Ⅱ and HhaI restriction enzyme digestions, the digest was analyzed by electrophoresis, and then comparedwith heat-stable(HS) serotype and PCR-based restriction fragnent length polymorphism(RFLP) typing of flagellin A gene (flaA). Results: Eight distinct momp RFLP genotypes were observed. Among all of them, one major type (momp-3) accounted for61% of all isolates. All 34 HS-19:Cj(fla)-1 strains,including isolates from patients with Guillain-Barré syndrome(GBS) and en-teritis,belonged to a single genotype(momp-1). Conclusion: The HS-19:Cj(fla)-1 :momp-1 strain is distinctive among C.jejunistains,and HS-19 related GBS may be an excellent model to elucidate the pathogenesis of GBS.%目的:研究空肠弯曲菌(Cj)的主要外膜蛋白(momp)基因的分子分型。方法:采用PCR方法对163株空肠弯曲菌的主要外膜蛋白基因进行扩增,用HindⅢ,HaeⅢ,MboⅡ和HhaI四种内切酶消化后进行电泳分析,并与热稳定性血清型(HS)和鞭毛蛋白A基因(flagellin A gene,fal A)分型方法相比较。结果:共观察到8种不同的主要外膜蛋白的限制性片段长度多态性的基因型,其中主要外膜蛋白基因-3(momp-3)占61%。Guillain-Barré综合征(GBS)和腹泻患者所有34株HS-19:Cj(fla)-1菌株均属同一个单一基因型,即主要外膜蛋白基因-1(momp-1)。结论:HS-19:Cj(fla)-1:momp-1菌株是空肠弯曲菌的一个特殊类型,与HS-19相关的GBS可能是阐明GBS发病机制最好的模型。

  7. 钩端螺旋体Loa22外膜蛋白对钩体黏附Raw264.7细胞的阻断作用研究%Interruption of Leptospiral Outer Membrane Protein Loa22 on Leptospira Adherence to Raw264.7 Cell

    Institute of Scientific and Technical Information of China (English)

    张连英; 杨正久; 丁朋晓; 曾庆华; 谭立志; 陈琳

    2013-01-01

    Objective To study the interruption of leptospiral outer membrane protein Loa22 on Leptospira adherence to Raw 264.7 call.Methods Guinea pigs were immunized with leptospiral Loa22 protein or PBS(severing as the control),and then the sera were collected.Fontana silver staining method was used to test the blocking effect of the sera on Leptospira adherence to Raw 264.7 cell.The adherence rate were determined.Results Leptospira adherence to Raw264.7 cell could be markedly inhibited as the sera from the Loa22 protein immunized guinea pigs was diluted by 1 ∶ 200-1∶ 1,600.The adherence rate was ≤0.01%.The adherence was not affected by the sera from the controls.Conclusions Leptospiral outer membrane protein Loa22 can block Leptospira adherence to Raw264.7 cell as well as protect the cell.%目的 研究钩端螺旋体Loa22蛋白血清阻断钩体黏附Raw264.7细胞的情况. 方法 钩体外膜蛋白Loa22、PBS免疫豚鼠后取血清,PBS为对照,使用镀银染色法检测各免疫血清阻止钩体黏附Raw264.7细胞且测定黏附率. 结果 稀释度为1∶200~1∶1 600的Loa22蛋白血清均显著抑制钩体黏附,粘附率≤0.01%.而相应稀释度的对照组血清不影响钩体黏附. 结论 Loa22蛋白可以阻断钩体黏附细胞,对细胞起到保护作用.

  8. Water Membrane Evaporator

    Science.gov (United States)

    Ungar, Eugene K.; Almlie, Jay C.

    2010-01-01

    A water membrane evaporator (WME) has been conceived and tested as an alternative to the contamination-sensitive and corrosion-prone evaporators currently used for dissipating heat from space vehicles. The WME consists mainly of the following components: An outer stainless-steel screen that provides structural support for the components mentioned next; Inside and in contact with the stainless-steel screen, a hydrophobic membrane that is permeable to water vapor; Inside and in contact with the hydrophobic membrane, a hydrophilic membrane that transports the liquid feedwater to the inner surface of the hydrophobic membrane; Inside and in contact with the hydrophilic membrane, an annular array of tubes through which flows the spacecraft coolant carrying the heat to be dissipated; and An inner exclusion tube that limits the volume of feedwater in the WME. In operation, a pressurized feedwater reservoir is connected to the volume between the exclusion tube and the coolant tubes. Feedwater fills the volume, saturates the hydrophilic membrane, and is retained by the hydrophobic membrane. The outside of the WME is exposed to space vacuum. Heat from the spacecraft coolant is conducted through the tube walls and the water-saturated hydrophilic membrane to the liquid/vapor interface at the hydrophobic membrane, causing water to evaporate to space. Makeup water flows into the hydrophilic membrane through gaps between the coolant tubes.

  9. Membrane protein structure determination: back to the membrane.

    Science.gov (United States)

    Yao, Yong; Ding, Yi; Tian, Ye; Opella, Stanley J; Marassi, Francesca M

    2013-01-01

    NMR spectroscopy enables the structures of membrane proteins to be determined in the native-like environment of the phospholipid bilayer membrane. This chapter outlines the methods for membrane protein structural studies using solid-state NMR spectroscopy with samples of membrane proteins incorporated in proteoliposomes or planar lipid bilayers. The methods for protein expression and purification, sample preparation, and NMR experiments are described and illustrated with examples from OmpX and Ail, two bacterial outer membrane proteins that function in bacterial virulence. PMID:23975776

  10. Rotating bubble membrane radiator

    Science.gov (United States)

    Webb, Brent J.; Coomes, Edmund P.

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  11. The molecular biology and diagnostics of Chlamydia trachomatis

    DEFF Research Database (Denmark)

    Birkelund, Svend

    1992-01-01

    The rapid development of biotechnological methods provides the potential of dissecting the molecular structure of microorganisms. In this review the molecular biology of chlamydia is described. The genus Chlamydia contains three species C. trachomatis, C. psittaci, and C. pneumonia which all are...... important human pathogens. Chlamydia is obligate intracellular bacteria with a unique biphasic life cycle. The extracellularly chlamydial elementary bodies (EB) are small, metabolic inactive, infectious particles with a tight outer cell membrane. After internalization into host cells the chlamydial...

  12. Sensitivity of immunofluorescence with monoclonal antibodies for detection of Chlamydia trachomatis inclusions in cell culture.

    OpenAIRE

    Stephens, R S; Kuo, C C; Tam, M R

    1982-01-01

    Monoclonal antibodies which recognize the species-specific major outer membrane protein antigen of Chlamydia trachomatis were used for immunofluorescence staining of chlamydial inclusions in cell culture. A total of 115 clinical specimens were inoculated onto replicate HeLa 229 cell monolayers and assayed for chlamydial inclusions by immunofluorescence staining and Giemsa staining. Of the isolates, 38 were detected by immunofluorescence staining on passage 1 and 1 was detected on passage 2; 2...

  13. Identification and extraction of Pasteurella haemolytica membrane proteins.

    OpenAIRE

    Squire, P G; Smiley, D W; Croskell, R B

    1984-01-01

    The inner and outer membranes of Pasteurella haemolytica were separated by sucrose density gradient centrifugation after plasmolysis of the cells in 20% sucrose and fragmentation in a French pressure cell. Assays of the two membrane fractions for 2-keto-3-deoxyoctonate, succinate dehydrogenase, and NADH dehydrogenase and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that each of the two membrane fractions was purified fivefold relative to the other. The outer membrane...

  14. Distribution of Prestin on Outer Hair Cell Basolateral Surface

    Institute of Scientific and Technical Information of China (English)

    YU Ning; ZHAI Suo-qiang; YANG Shi-ming; HAN Dong-yi; ZHAO Hong-bo

    2008-01-01

    Prestin has been identified as a motor protein responsible for outer hair cell (OHC) electromotility and is expressed on the OHC surface. Previous studies revealed that OHC eleetromotility and its associated nonlinear capacitance were mainly located at the OHC lateral wall and absent at the apical cutieular plate and the basal nucleus region. Immunofluorescent staining for prestin also failed to demonstrate prestin expression at the OHC basal ends in whole-mount preparation of the organ of Corti. However, there lacks a definitive demonstration of the pattern of prestin distribution. The OHC lateral wall has a trilaminate organization and is composed of the plasma membrane, cortical lattice, and subsurface cisternae. In this study, the location of prestin proteins in dissociated OHCs was examined using immunofluorescent staining and confocal microscopy. We found that prestin was uniformly expressed on the basolateral surface, including the basal pole. No staining was seen on the cuticular plate and stereocilia. When co-stained with a membrane marker di-8-ANEPPS, prestin-labeling was found to be in the outer layer of the OHC lateral wall. After separating the plasma membrane from the underlying subsurface eisternae using a hypotonic extracellular solution, prestin-labeling was found to be in the plasma membrane, not the subsurface cisternae. The data show that prestin is expressed in the plasma membrane on the entire OHC basolateral surface.

  15. The CMS Outer Hadron Calorimeter

    CERN Document Server

    Acharya, Bannaje Sripathi; Banerjee, Sunanda; Banerjee, Sudeshna; Bawa, Harinder Singh; Beri, Suman Bala; Bhandari, Virender; Bhatnagar, Vipin; Chendvankar, Sanjay; Deshpande, Pandurang Vishnu; Dugad, Shashikant; Ganguli, Som N; Guchait, Monoranjan; Gurtu, Atul; Kalmani, Suresh Devendrappa; Kaur, Manjit; Kohli, Jatinder Mohan; Krishnaswamy, Marthi Ramaswamy; Kumar, Arun; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mondal, Naba Kumar; Nagaraj, P; Narasimham, Vemuri Syamala; Patil, Mandakini Ravindra; Reddy, L V; Satyanarayana, B; Sharma, Seema; Singh, B; Singh, Jas Bir; Sudhakar, Katta; Tonwar, Suresh C; Verma, Piyush

    2006-01-01

    The CMS hadron calorimeter is a sampling calorimeter with brass absorber and plastic scintillator tiles with wavelength shifting fibres for carrying the light to the readout device. The barrel hadron calorimeter is complemented with a outer calorimeter to ensure high energy shower containment in CMS and thus working as a tail catcher. Fabrication, testing and calibrations of the outer hadron calorimeter are carried out keeping in mind its importance in the energy measurement of jets in view of linearity and resolution. It will provide a net improvement in missing $\\et$ measurements at LHC energies. The outer hadron calorimeter has a very good signal to background ratio even for a minimum ionising particle and can hence be used in coincidence with the Resistive Plate Chambers of the CMS detector for the muon trigger.

  16. Perinatal morbidity and mortality associated with chlamydial infection: a meta-analysis study

    Directory of Open Access Journals (Sweden)

    Maria José Penna Maisonnette de Attayde Silva

    2011-12-01

    Full Text Available OBJECTIVE: To evaluate the effect of Chlamydia trachomatis infection during pregnancy on perinatal morbidity and mortality. METHODS: Systematic review and meta-analysis in an electronic database and manual, combining high sensitivity specific descriptors seeking to answer the research objective. The articles considered to be of high methodological quality (score above 6 on the Newcastle-Ottawa Scale were assessed by meta-analysis. RESULTS: Summary estimates of 12 studies were calculated by means of Mantel-Haenszel test with 95% confidence interval. It was observed that Chlamydia infection during pregnancy increased risk of preterm labor (relative risk (RR = 1.35 [1.11, 1.63], low birth weight (RR = 1.52 [1.24, 1.87] and perinatal mortality (RR = 1.84 [1.15, 2.94]. No evidence of increased risk was associated with Chlamydia infection in regard to premature rupture of membranes (RR = 1.13 [0.95, 1.34], abortion and postpartum endometritis (RR = 1.20 [0.65, 2.20] and 0.89 [0.49, 1.61] respectively. CONCLUSION: The diagnosis and treatment of Chlamydia cervicitis during pregnancy can reduce perinatal morbidity and mortality associated with this infection. However, clinical trials are needed to confirm these findings.

  17. Activation of the NLRP3 inflammasome by vault nanoparticles expressing a chlamydial epitope

    Science.gov (United States)

    Zhu, Ye; Jiang, Janina; Said-Sadier, Najwane; Boxx, Gale; Champion, Cheryl; Tetlow, Ashley; Kickhoefer, Valerie A.; Rome, Leonard H.; Ojcius, David M.; Kelly, Kathleen A.

    2014-01-01

    The full potential of vaccines relies on development of effective delivery systems and adjuvants and is critical for development of successful vaccine candidates. We have shown that recombinant vaults engineered to encapsulate microbial epitopes are highly stable structures and are an ideal vaccine vehicle for epitope delivery which does not require the inclusion of an adjuvant. We studied the ability of vaults which were engineered for use as a vaccine containing an immunogenic epitope of C. trachomatis, polymorphic membrane protein G (PmpG), to be internalized into human monocytes and behave as a “natural adjuvant”. We here show that incubation of monocytes with the PmpG-1-vaults activates caspase-1 and stimulates IL-1β secretion through a process requiring the NLRP3 inflammasome and that cathepsin B and Syk are involved in the inflammasome activation. We also observed that the PmpG-1-vaults are internalized through a pathway that is transiently acidic and leads to destabilization of lysosomes. In addition, immunization of mice with PmpG-1-vaults induced PmpG-1 responsive CD4+ cells upon re-stimulation with PmpG peptide in vitro, suggesting that vault vaccines can be engineered for specific adaptive immune responses. We conclude that PmpG-1-vault vaccines can stimulate NLRP3 inflammasomes and induce PmpG-specific T cell responses. PMID:25448112

  18. Chlamydia trachomatis IncA Is Localized to the Inclusion Membrane and Is Recognized by Antisera from Infected Humans and Primates†

    OpenAIRE

    Bannantine, John P.; Stamm, Walter E.; Suchland, Robert J.; Rockey, Daniel D.

    1998-01-01

    Chlamydia psittaci produces a collection of proteins, termed IncA, IncB, and IncC, that are localized to the chlamydial inclusion membrane. In this report we demonstrate that IncA is also produced by Chlamydia trachomatis. C. trachomatis IncA is structurally similar to C. psittaci IncA and is also localized to the inclusion membrane. Immunoblot analysis demonstrated that sera from C. trachomatis-infected patients and from experimentally infected monkeys both recognized C. trachomatis IncA.

  19. Impact of Reduced Rhodopsin Expression on the Structure of Rod Outer Segment Disc Membranes†

    OpenAIRE

    Rakshit, Tatini; Park, Paul S.-H.

    2015-01-01

    Rhodopsin is the light receptor embedded in rod outer segment (ROS) disc membranes of photoreceptor cells that initiates vision via phototransduction. The relationship between rhodopsin expression and the formation of membrane structures in the ROS is unclear but important to better understand both normal function and pathological conditions. To determine the impact of reduced rhodopsin expression on the structure of ROS discs and the supramolecular organization of rhodopsin, ROS disc membran...

  20. Immunization with Dendritic Cells Pulsed ex vivo with Recombinant Chlamydial Protease-Like Activity Factor Induces Protective Immunity Against Genital Chlamydia muridarum Challenge

    Directory of Open Access Journals (Sweden)

    Bernard eArulanandam

    2011-12-01

    Full Text Available We have shown that immunization with soluble recombinant (r chlamydial protease-like activity factor (rCPAF and a T helper (Th 1 type adjuvant can induce significantly enhanced bacterial clearance and protection against Chlamydia–induced pathological sequelae in the genital tract. In this study, we investigated the use of bone marrow derived dendritic cells (BMDCs pulsed ex vivo with rCPAF+CpG in an adoptive subcutaneous immunization for the ability to induce protective immunity against genital chlamydial infection. We found that BMDCs pulsed with rCPAF+CpG efficiently up-regulated the expression of activation markers CD86, CD80, CD40 and major histocompatibility complex class II (MHC II, and secreted interleukin-12, but not IL-10 and IL-4. Mice adoptively immunized with rCPAF+CpG-pulsed BMDCs or UV-EB+CpG-pulsed BMDCs produced elevated levels of antigen-specific IFN- and enhanced IgG1 and IgG2a antibodies. Moreover, mice immunized with rCPAF+CpG-pulsed BMDCs or UV-EB+CpG-pulsed BMDCs exhibited significantly reduced genital Chlamydia shedding, accelerated resolution of infection, and reduced oviduct pathology when compared to infected mock-immunized animals. These results suggest that adoptive subcutaneous immunization with ex vivo rCPAF-pulsed BMDCs is an effective approach, comparable to that induced by UV-EB-BMDCs, for inducing robust anti-Chlamydia immunity.

  1. 副猪嗜血杆菌OMP5的克隆表达及其对豚鼠免疫保护作用%Expression of outer membrane protein P5 of Haemophilus parasuis and evaluation of its protective immunity in guinea pigs

    Institute of Scientific and Technical Information of China (English)

    王海峰; 王萍; 黄建珍; 黄冬艳

    2012-01-01

    A pair of primers was designed according to Haemophilus parasuis outer membrane protein P5 ( OMP5 ) gene sequences pub-lished in the GenBank, and the gene of 0MP5 was amplified by PCR from the genomic DNA of H. parasuis strain NC0807. The recombinant plasmid pET-28a-OMP5 was constructed by inserting this fragment into plasnud pET-28a (+). After identification, the recombinant plasmid was transformed into E. coli BL21 (DE3). SDS-PAGE and western blotting analyses revealed that the transformed BL21 (DE3) bacteria could express 0MP5 with molecular weight of 43 ku after induced by IPTG. Sera were examined for the 0MP5 specific antibody titers and all animals were challenged with lethal doses of the highly virulent H. parasuis strain NC0807 after the guinea pigs were immunized with the purified recombinaut protein. The results demonstrated that the recombinant protein could induce the production of a high level of 0MP5 specific antibody and provided the guinea pigs with significant protection from H. parasitis infection. It suggested that 0MP5 is a protective antigen of H. parasuis.%根据GenBank中登录的副猪嗜血杆菌外膜蛋白P5(outer membrane protein P5,OMP5)基因序列设计1对特异性引物,以江西分离株NC0807基因组DNA为模板,扩增出OMP5基因.将其克隆到pEf-28a(+)中,构建重组表达质粒pET-28a-OMP5,质粒转化大肠杆菌BL21( DE3),通过SDS-PAGE和Western blotting分析重组蛋白的表达情况和反应原性.重组蛋白经镍柱亲和层析纯化后免疫豚鼠,测定其免疫原性和保护效率.结果表明,重组蛋白在大肠杆菌中获得了高效表达.表达的蛋白分子质量约为43 ku,能被副猪嗜血杆菌阳性血清识别.动物试验结果表明,重组蛋白免疫后能诱导产生高水平的OMP5特异性抗体,并可显著保护豚鼠抵抗副猪嗜血杆菌强毒菌株的攻击,提示OMP5是副猪嗜血杆菌的保护性抗原.

  2. Outer Texts in Bilingual Dictionaries

    Directory of Open Access Journals (Sweden)

    Rufus H. Gouws

    2011-10-01

    Full Text Available

    Abstract: Dictionaries often display a central list bias with little or no attention to the use ofouter texts. This article focuses on dictionaries as text compounds and carriers of different texttypes. Utilising either a partial or a complete frame structure, a variety of outer text types can beused to enhance the data distribution structure of a dictionary and to ensure a better informationretrieval by the intended target user. A distinction is made between primary frame structures andsecondary frame structures and attention is drawn to the use of complex outer texts and the need ofan extended complex outer text with its own table of contents to guide the user to the relevant textsin the complex outer text. It is emphasised that outer texts need to be planned in a meticulous wayand that they should participate in the lexicographic functions of the specific dictionary, bothknowledge-orientated and communication-orientated functions, to ensure a transtextual functionalapproach.

    Keywords: BACK MATTER, CENTRAL LIST, COMMUNICATION-ORIENTATED FUNCTIONS,COMPLEX TEXT, CULTURAL DATA, EXTENDED COMPLEX TEXT, EXTENDED TEXTS,FRONT MATTER, FRAME STRUCTURE, KNOWLEDGE-ORIENTATED FUNCTIONS, LEXICOGRAPHICFUNCTIONS, OUTER TEXTS, PRIMARY FRAME, SECONDARY FRAME

    Opsomming: Buitetekste in tweetalige woordeboeke. Woordeboeke vertoondikwels 'n partydigheid ten gunste van die sentrale lys met min of geen aandag aan die buitetekstenie. Hierdie artikel fokus op woordeboeke as tekssamestellings en draers van verskillende tekssoorte.Met die benutting van óf 'n gedeeltelike óf 'n volledige raamstruktuur kan 'n verskeidenheidbuitetekste aangewend word om die dataverspreidingstruktuur van 'n woordeboek te verbeteren om 'n beter herwinning van inligting deur die teikengebruiker te verseker. 'n Onderskeidword gemaak tussen primêre en sekondêre raamstrukture en die aandag word gevestig op kompleksebuitetekste en die behoefte aan 'n uitgebreide komplekse

  3. Turbine airfoil with a compliant outer wall

    Science.gov (United States)

    Campbell, Christian X.; Morrison, Jay A.

    2012-04-03

    A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation in the outer layer is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a support structure. The outer layer may be a compliant layer configured such that the outer layer may thermally expand and thereby reduce the stress within the outer layer. The outer layer may be formed from a nonplanar surface configured to thermally expand. In another embodiment, the outer layer may be planar and include a plurality of slots enabling unrestricted thermal expansion in a direction aligned with the outer layer.

  4. The protein moiety of Brucella abortus outer membrane protein 16 is a new bacterial pathogen-associated molecular pattern that activates dendritic cells in vivo, induces a Th1 immune response, and is a promising self-adjuvanting vaccine against systemic and oral acquired brucellosis.

    Science.gov (United States)

    Pasquevich, Karina A; García Samartino, Clara; Coria, Lorena M; Estein, Silvia M; Zwerdling, Astrid; Ibañez, Andrés E; Barrionuevo, Paula; Oliveira, Fernanda Souza de; Carvalho, Natalia Barbosa; Borkowski, Julia; Oliveira, Sergio Costa; Warzecha, Heribert; Giambartolomei, Guillermo H; Cassataro, Juliana

    2010-05-01

    Knowing the inherent stimulatory properties of the lipid moiety of bacterial lipoproteins, we first hypothesized that Brucella abortus outer membrane protein (Omp)16 lipoprotein would be able to elicit a protective immune response without the need of external adjuvants. In this study, we demonstrate that Omp16 administered by the i.p. route confers significant protection against B. abortus infection and that the protective response evoked is independent of the protein lipidation. To date, Omp16 is the first Brucella protein that without the requirement of external adjuvants is able to induce similar protection levels to the control live vaccine S19. Moreover, the protein portion of Omp16 (unlipidated Omp16 [U-Omp16]) elicits a protective response when administered by the oral route. Either systemic or oral immunization with U-Omp16 elicits a Th1-specific response. These abilities of U-Omp16 indicate that it is endowed with self-adjuvanting properties. The adjuvanticity of U-Omp16 could be explained, at least in part, by its capacity to activate dendritic cells in vivo. U-Omp16 is also able to stimulate dendritic cells and macrophages in vitro. The latter property and its ability to induce a protective Th1 immune response against B. abortus infection have been found to be TLR4 dependent. The facts that U-Omp16 is an oral protective Ag and possesses a mucosal self-adjuvanting property led us to develop a plant-made vaccine expressing U-Omp16. Our results indicate that plant-expressed recombinant U-Omp16 is able to confer protective immunity, when given orally, indicating that a plant-based oral vaccine expressing U-Omp16 could be a valuable approach to controlling this disease. PMID:20351187

  5. Outer Texts in Bilingual Dictionaries

    OpenAIRE

    Rufus H Gouws

    2011-01-01

    Abstract: Dictionaries often display a central list bias with little or no attention to the use ofouter texts. This article focuses on dictionaries as text compounds and carriers of different texttypes. Utilising either a partial or a complete frame structure, a variety of outer text types can beused to enhance the data distribution structure of a dictionary and to ensure a better informationretrieval by the intended target user. A distinction is made between primary frame structures...

  6. Biogenesis and Membrane Targeting of Lipoproteins.

    Science.gov (United States)

    Narita, Shin-Ichiro; Tokuda, Hajime

    2010-09-01

    Bacterial lipoproteins represent a unique class of membrane proteins, which are anchored to membranes through triacyl chains attached to the amino-terminal cysteine. They are involved in various functions localized in cell envelope. Escherichia coli possesses more than 90 species of lipoproteins, most of which are localized in the outer membrane, with others being in the inner membrane. All lipoproteins are synthesized in the cytoplasm with an N-terminal signal peptide, translocated across the inner membrane by the Sec translocon to the periplasmic surface of the inner membrane, and converted to mature lipoproteins through sequential reactions catalyzed by three lipoprotein-processing enzymes: Lgt, LspA, and Lnt. The sorting of lipoproteins to the outer membrane requires a system comprising five Lol proteins. An ATP-binding cassette transporter, LolCDE, initiates the sorting by mediating the detachment of lipoproteins from the inner membrane. Formation of the LolA-lipoprotein complex is coupled to this LolCDE-dependent release reaction. LolA accommodates the amino-terminal acyl chain of lipoproteins in its hydrophobic cavity, thereby generating a hydrophilic complex that can traverse the periplasmic space by diffusion. Lipoproteins are then transferred to LolB on the outer membrane and anchored to the inner leaflet of the outer membrane by the action of LolB. In contrast, since LolCDE does not recognize lipoproteins possessing Asp at position +2, these lipoproteins remain anchored to the inner membrane. Genes for Lol proteins are widely conserved among gram-negative bacteria, and Lol-mediated outer membrane targeting of lipoproteins is considered to be the general lipoprotein localization mechanism. PMID:26443779

  7. Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation

    OpenAIRE

    Mishra, Prashant; Carelli, Valerio; Manfredi, Giovanni; Chan, David C.

    2014-01-01

    Mitochondrial fusion is essential for maintenance of mitochondrial function. The mitofusin GTPases control mitochondrial outer membrane fusion, whereas the dynamin-related GTPase Opa1 mediates inner membrane fusion. We show that mitochondrial inner membrane fusion is tuned by the level of oxidative phosphorylation (OXPHOS), whereas outer membrane fusion is insensitive. Consequently, cells from patients with pathogenic mtDNA mutations show a selective defect in mitochondrial inner membrane fus...

  8. An X-ray diffraction study on a single rod outer segment from frog retina

    International Nuclear Information System (INIS)

    X-ray diffraction was recorded from retinal rod outer segments of frog using a microbeam. X-ray diffraction patterns were recorded from isolated single rod outer segments of frog. The outer segments in Ringer’s solution were exposed to a 6 µm microbeam (15 keV) at the BL40XU beamline, SPring-8. The diffraction pattern demonstrated a remarkable regularity in the stacking and flatness of the disk membranes. The electron density profile calculated from the intensity of up to tenth-order reflections showed a pair of bilayers that comprise a disk membrane. The structure of the disk membrane and the changes in the profile on swelling generally agreed with previous reports. Radiation damage was significant with an irradiation of 5 × 105 Gy which is much lower than the known damaging dose on proteins at the liquid-nitrogen temperature

  9. Outer-2-independent domination in graphs

    Indian Academy of Sciences (India)

    Marcin Krzywkowski; Doost Ali Mojdeh; Maryem Raoofi

    2016-02-01

    We initiate the study of outer-2-independent domination in graphs. An outer-2-independent dominating set of a graph is a set of vertices of such that every vertex of ()\\ has a neighbor in and the maximum vertex degree of the subgraph induced by ()\\ is at most one. The outer-2-independent domination number of a graph is the minimum cardinality of an outer-2-independent dominating set of . We show that if a graph has minimum degree at least two, then its outer-2-independent domination number equals the number of vertices minus the 2-independence number. Then we investigate the outer-2-independent domination in graphs with minimum degree one. We also prove the Vizing-type conjecture for outer-2-independent domination and disprove the Vizing-type conjecture for outer-connected domination.

  10. Efficacy of bacterin-, outer membrane protein- and fimbriae extract-based vaccines for the control of Salmonella Enteritidis experimental infection in chickens Eficácia de bactéria inativada (bacterina, proteína da membrana externa e extrato de fimbrias no controle de infecção experimental por Salmonella Enteritidis (SE em galinhas

    Directory of Open Access Journals (Sweden)

    Márcia C. Menão

    2013-03-01

    Full Text Available The efficacy of three vaccines was evaluated in chickens for the control of experimental infection with Salmonella Enteritidis (SE phage type 4. The vaccines were produced with bacterin, outer membrane proteins (OMP and fimbriae crude extract (FE. The chickens were vaccinated intramuscularly with two doses of each vaccine at 12 and 15 weeks of age. The chickens were then orally challenged with 10(9 CFU/chicken Salmonella Enteritidis phage type 4 at 18 weeks of age. Fecal swabs were performed for the recovery of shedding SE, and SE was recovered from the liver and spleen. Additionally, antibody titers were measured in the serum by micro-agglutination test. The results indicated that the vaccine produced with bacterin yielded better results and resulted in reduction of fecal shedding and organ invasion by SE after oral challenge, although no vaccine was 100% effective for the control of SE experimental infection.A eficácia de três vacinas de Salmonella Enteritidis fagotipo 4, produzidas na forma de bacterina, proteínas de membrana externa (OMP e extrato bruto de fímbrias (FE foi avaliada para proteção de aves infectadas experimentalmente. As aves foram vacinadas por via intramuscular com duas doses de cada vacina as 12 e 15 semanas de idade e desafiadas com 10(9 UFCs de Salmonella Enteritidis fagotipo 4 às 18 semanas de idade, por via oral. A eficácia foi determinada através do reisolamento da bactéria nas fezes e no fígado e baço, e os anticorpos foram mensurados no soro. Os resultados demonstraram que a vacina produzida com a bacterina foi mais eficaz em comparação às outras vacinas examinadas, para reduzir a excreção fecal e a invasão de órgãos após o desafio por SE.

  11. 钩端螺旋体外膜蛋白 Loa22优势 T-B联合抗原表位及其免疫原性研究%Identification and immunogenicity analysis of predominant T-B combined antigenic epitopes on the ;outer membrane protein Loa22 of Leptospira interrogans strains

    Institute of Scientific and Technical Information of China (English)

    阮萍; 赵金方; 李阳; 严杰; 胡玮琳

    2015-01-01

    目的:筛选并鉴定致病性问号钩端螺旋体(简称钩体)外膜蛋白Loa22优势T细胞和B细胞( T/B)联合抗原表位及其免疫原性。方法采用PCR检测我国流行的8群8型株问号钩体loa22基因,T-A克隆后测序。构建问号钩体黄疸出血群赖型赖株loa22基因原核表达系统。 Ni-NTA亲和层析法提纯表达的目的重组蛋白rLoa22并制备其兔抗血清及其IgG。采用生物信息学软件预测Loa22的T-B联合抗原表位。采用噬菌体展示联合Western blot法、ELISA分别检测重组噬菌体PⅢ蛋白展示的T-B联合表位肽和人工合成T-B联合表位肽的免疫原性。采用MTS法和ELISA分别检测T-B联合表位肽诱导T细胞活化及其分泌IL-2、IL-4和IFN-γ情况。结果所有受检的致病性钩体株均能检出loa22基因,其核苷酸和氨基酸序列相似性高达85.5%~99.8%和93.9%~99.5%。所构建的loa22基因原核表达系统能高效表达rLoa22。 Loa22-77、Loa22-90、Loa22-125和Loa22-157这4个T-B联合抗原表位中,仅有Loa22-90显示了很强的Western blot阳性条带。 Loa22-90能有效诱导CD4+T细胞增殖及IL-2(Th1)和IL-4(Th2)水平显著升高(P<0.05)。结论 Loa22是问号钩体序列保守的属特异性外膜蛋白抗原,其优势T-B联合抗原表位为Loa22-90,该表位可作为钩端螺旋体多抗原肽疫苗的候选表位。%Objective To screen and identify the predominant T-and B-cell ( T-B) combined an-tigenic epitopes on the outer membrane protein Loa22 of pathogenic Leptospira interrogans ( L.interrogans) stains and to further analyze their immunogenicity.Methods PCR analysis was used to detect loa22 gene in L.interrogans strains belonging to eight different serogroups or serovars prevalent in China.The PCR prod-ucts were sequenced after T-A cloning.A prokaryotic expression system for loa22 gene of L.interrogans sero-group Icterohaemorrhagiae serovar Lai strain Lai was

  12. 应用纯化重组外膜脂蛋白LipL32检测钩端螺旋体病抗体%Application of purified recombinant outer membrane lipoprotein LipL32 in detecting antibodies among leptospirosis cases

    Institute of Scientific and Technical Information of China (English)

    徐国英; 严延生; 张志珊; 李世清; 王灵岚; 邓艳琴; 潘敏楠

    2008-01-01

    Objective To establish recombinant outer membrane lipoprotein LipL32-based antibody detection assays in identifying leptospirosis. Methods Recombinant leptospiral outer membrane protein LipL32 was obtained by genetic engineering method. This purified protein was used in the indirect and sandwich ELISA assays to test the antibodies in sera of human beings and rats, and the results were compared with those obtained by microscopy agglutination test (MAT) and imported ELISA kit. Results When the acute and convalescent phase specimens from 9 leptospiral patients were tested, the detected rates of three ELISAs were similar to the MAT. Among the 45 probable cases which MAT showed positive, 32 (71.11%) samples were positive by r32-I-ELISA, 36(80.00%) by r32-S-ELISA,while 28.89% (13/45) samples were positive and 55.56% (25/45)were suspicious by D.A.I-ELISA. The specificity of r32-I-ELISA and r32-S-ELISA were 97.10 % (67/69) for 69 specimens. 43 healthy specimens were negative by both r32-I-ELISA and r32-S-ELISA, 14 healthy specimens were negative by D.A.I-ELISA. Among 16 non-leptospirosis patients, two specimens were positive by r32-I-ELISA and r32-S-ELISA, D.A.I-ELISA and identified one positive specimen, while 12 specimens were suspicious by D.A.I-ELISA. For 10 syphilis specimens, data obtained through three ELISAs were in consistent with that by MAT. A sandwiched ELISA, using rLipL32 protein as the antigen was developed to detect rat sera. Considering MAT as standard test, the sensitivity and specificity were 86.75 % (131/151), 99.19 % (122/123) respectively with coincidence rate as 92.34% (253/274). Conclusion The recombinant protein LipL32 had high immunoresctivity and could be used as an antigen for the detection of panthogenic leptospirosis. In summary, the novel sandwiched ELISA with rLipL32 showed similar sensitivity and specificity to that of MAT in the antibody detection of rat leptospirosis. It was suitable for large scales field sero-epidemiological studies

  13. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications for...

  14. Unsupported planar lipid membranes formed from mycolic acids of Mycobacterium tuberculosis.

    Science.gov (United States)

    Langford, Kyle W; Penkov, Boyan; Derrington, Ian M; Gundlach, Jens H

    2011-02-01

    The cell wall of mycobacteria includes a thick, robust, and highly impermeable outer membrane made from long-chain mycolic acids. These outer membranes form a primary layer of protection for mycobacteria and directly contribute to the virulence of diseases such as tuberculosis and leprosy. We have formed in vitro planar membranes using pure mycolic acids on circular apertures 20 to 90 μm in diameter. We find these membranes to be long lived and highly resistant to irreversible electroporation, demonstrating their general strength. Insertion of the outer membrane channel MspA into the membranes was observed indicating that the artificial mycolic acid membranes are suitable for controlled studies of the mycobacterial outer membrane and can be used in nanopore DNA translocation experiments. PMID:21076119

  15. Kar5p Is Required for Multiple Functions in Both Inner and Outer Nuclear Envelope Fusion in Saccharomyces cerevisiae

    OpenAIRE

    Rogers, Jason V.; Rose, Mark D.

    2014-01-01

    During mating in the budding yeast Saccharomyces cerevisiae, two haploid nuclei fuse via two sequential membrane fusion steps. SNAREs (i.e., soluble N-ethylmaleimide–sensitive factor attachment protein receptors) and Prm3p mediate outer nuclear membrane fusion, but the inner membrane fusogen remains unknown. Kar5p is a highly conserved transmembrane protein that localizes adjacent to the spindle pole body (SPB), mediates nuclear envelope fusion, and recruits Prm3p adjacent to the SPB. To sepa...

  16. Elucidation of the function of lipoprotein-sorting signals that determine membrane localization

    OpenAIRE

    Masuda, Kazuhiro; Matsuyama, Shin-ichi; Tokuda, Hajime

    2002-01-01

    Escherichia coli lipoproteins are anchored to the inner or outer membrane depending on the residue at position 2. Aspartate at this position makes lipoproteins specific to the inner membrane, whereas other residues cause the release of lipoproteins from the inner membrane in a manner dependent on both ATP binding cassette (ABC) transporter LolCDE and molecular chaperone LolA, followed by LolB-dependent localization in the outer membrane. The function of lipoprotein-sorting signals was examine...

  17. Disrupted yeast mitochondria can import precursor proteins directly through their inner membrane

    OpenAIRE

    1989-01-01

    Import of precursor proteins into the yeast mitochondrial matrix can occur directly across the inner membrane. First, disruption of the outer membrane restores protein import to mitochondria whose normal import sites have been blocked by an antibody against the outer membrane or by a chimeric, incompletely translocated precursor protein. Second, a potential- and ATP-dependent import of authentic or artificial precursor proteins is observed with purified inner membrane vesicles virtually free ...

  18. Unsupported planar lipid membranes formed from mycolic acids of Mycobacterium tuberculosis

    OpenAIRE

    Langford, Kyle W.; Penkov, Boyan; Derrington, Ian M.; Gundlach, Jens H.

    2011-01-01

    The cell wall of mycobacteria includes a thick, robust, and highly impermeable outer membrane made from long-chain mycolic acids. These outer membranes form a primary layer of protection for mycobacteria and directly contribute to the virulence of diseases such as tuberculosis and leprosy. We have formed in vitro planar membranes using pure mycolic acids on circular apertures 20 to 90 μm in diameter. We find these membranes to be long lived and highly resistant to irreversible electroporation...

  19. 76 FR 2919 - Outer Continental Shelf Official Protraction Diagram and Supplemental Official Outer Continental...

    Science.gov (United States)

    2011-01-18

    ... Protraction Diagram and Supplemental Official Outer Continental Shelf Block Diagrams AGENCY: Bureau of Ocean... American Datum of 1983 (NAD 83) Outer Continental Shelf Official Protraction Diagram and Supplemental Official Outer Continental Shelf Block Diagrams. SUMMARY: Notice is hereby given that effective with...

  20. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....