Sample records for chk2-dependent hur phosphorylation

  1. ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage


    Chen, Lihong; Gilkes, Daniele M.; Pan, Yu; Lane, William S; Chen, Jiandong


    The p53 tumor suppressor is activated after DNA damage to maintain genomic stability and prevent transformation. Rapid activation of p53 by ionizing radiation is dependent on signaling by the ATM kinase. MDM2 and MDMX are important p53 regulators and logical targets for stress signals. We found that DNA damage induces ATM-dependent phosphorylation and degradation of MDMX. Phosphorylated MDMX is selectively bound and degraded by MDM2 preceding p53 accumulation and activation. Reduction of MDMX...

  2. ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage. (United States)

    Chen, Lihong; Gilkes, Daniele M; Pan, Yu; Lane, William S; Chen, Jiandong


    The p53 tumor suppressor is activated after DNA damage to maintain genomic stability and prevent transformation. Rapid activation of p53 by ionizing radiation is dependent on signaling by the ATM kinase. MDM2 and MDMX are important p53 regulators and logical targets for stress signals. We found that DNA damage induces ATM-dependent phosphorylation and degradation of MDMX. Phosphorylated MDMX is selectively bound and degraded by MDM2 preceding p53 accumulation and activation. Reduction of MDMX level by RNAi enhances p53 response to DNA damage. Loss of ATM prevents MDMX degradation and p53 stabilization after DNA damage. Phosphorylation of MDMX on S342, S367, and S403 were detected by mass spectrometric analysis, with the first two sites confirmed by phosphopeptide-specific antibodies. Mutation of MDMX on S342, S367, and S403 each confers partial resistance to MDM2-mediated ubiquitination and degradation. Phosphorylation of S342 and S367 in vivo require the Chk2 kinase. Chk2 also stimulates MDMX ubiquitination and degradation by MDM2. Therefore, the E3 ligase activity of MDM2 is redirected to MDMX after DNA damage and contributes to p53 activation.

  3. Regulation of the mRNA-binding protein HuR by posttranslational modification: spotlight on phosphorylation. (United States)

    Eberhardt, Wolfgang; Doller, Anke; Pfeilschifter, Josef


    The ubiquitous mRNA-binding protein human antigen R (HuR) and its neuronal relatives (HuB, HuC, HuD) participate in the post-transcriptional regulation of many AU-rich element-bearing mRNAs. In addition to its originally described role in controlling mRNA decay, the binding of HuR to target mRNAs can affect many aspects of mRNA processing including splicing, polyadenylation, intracellular trafficking, translation and modulation of mRNA repression by miRNAs. In accordance to the growing list of signalling events which are involved in regulating these different HuR functions, recent data implicate that posttranslational modification, namely protein kinase-triggered phosphorylation of HuR plays a crucial role in connecting extracellular signal inputs to a specific post-transcriptional program by HuR. Notably, in addition to directly targeting HuR functions, posttranslational modifications of HuR have a major impact on the sequestration and binding to various HuR ligand proteins as has been demonstrated e.g. for the 14-3-3 chaperones. However, the detailed mechanisms of how a specific modification of HuR coordinates different aspects in HuR regulation are currently poorly understood. Due to the fact that most of the described HuR activities are closely related to its subcellular localization and the binding to cargo mRNA, this review will focus on these aspects of HuR functions and their control by posttranslational modification, particularly by HuR phosphorylations by different protein kinases.

  4. Domain-specific phosphomimetic mutation allows dissection of different protein kinase C (PKC) isotype-triggered activities of the RNA binding protein HuR. (United States)

    Schulz, Sebastian; Doller, Anke; Pendini, Nicole R; Wilce, Jacqueline A; Pfeilschifter, Josef; Eberhardt, Wolfgang


    The ubiquitous mRNA binding protein human antigen R (HuR) participates in the post-transcriptional regulation of many AU-rich element (ARE)-bearing mRNAs. Previously, by using in vitro kinase assay, we have identified serines (Ser) 158, 221 and 318 as targets of protein kinase C (PKC)-triggered phosphorylation. In this study, we tested whether GFP- or GST-tagged HuR constructs bearing a phosphomimetic Ser (S)-to-Asp (D) substitution at the different PKC target sites, would affect different HuR functions including HuR nucleo-cytoplasmic redistribution and binding to different types of ARE-containing mRNAs. The phosphomimetic GFP-tagged HuR protein bearing a phosphomimetic substitution in the hinge region of HuR (HuR-S221D) showed an increased cytoplasmic abundance when compared to wild-type HuR. Conversely, data from in vitro kinase assay and electrophoretic mobility shift assay (EMSA), implicates that phosphorylation at Ser 221 is not relevant for mRNA binding of HuR. Quantification of in vitro binding affinities of GST-tagged wild-type HuR and corresponding HuR proteins bearing a phosphomimetic substitution in either RRM2 (HuR-S158D) or in RRM3 (HuR-S318D) by microscale thermophoresis (MST) indicates a specific binding of wild-type HuR to type I, II or type III-ARE-oligonucleotides in the high nanomolar range. Interestingly, phosphomimetic mutation at position 158 or 318 had a negative influence on HuR binding to type I- and type II-ARE-mRNAs whereas it significantly enhanced HuR affinity to a type III-ARE substrate. Our data suggest that differential phosphorylation of HuR by PKCs at different HuR domains coordinates subcellular HuR distribution and leads to a preferential binding to U-rich bearing target mRNA.

  5. Hur ser egentligen AKK-samspel ut?

    DEFF Research Database (Denmark)

    Pilesjö, Maja Sigurd

    Hur ser egentligen AKK-samspel ut? Interaktionsmönster mellan barn med omfattande kommunikativ och motorisk funktionsnedsättning och deras vardagliga samtalspartners. Hur kan egentligen samspel mellan barn med kommunikationsvårighe- ter gå till och faktiskt också fung- era? Maja Sigurd Pilesjö...

  6. Buller : Hur planeras en bullerfri stad?


    Milosevic, Suncica


    Milosevic, S. 2014. Buller – Hur planers en bullerfri stad?. Kulturgeografiska institutionen, Uppsatser, Uppsala universitet.   This essay is about noise pollution caused by urbanization. The field study takes place in Uppsala and explores their organization of handling problems with noise pollution caused by traffic. Noise pollution has long been neglected as an environmental hazard. Studies show that noise pollution can cause severe health problems such as increased blood pressure. Therefor...

  7. Saturated fatty acids induce post-transcriptional regulation of HAMP mRNA via AU-rich element-binding protein, human antigen R (HuR). (United States)

    Lu, Sizhao; Mott, Justin L; Harrison-Findik, Duygu Dee


    Iron is implicated in fatty liver disease pathogenesis. The human hepcidin gene, HAMP, is the master switch of iron metabolism. The aim of this study is to investigate the regulation of HAMP expression by fatty acids in HepG2 cells. For these studies, both saturated fatty acids (palmitic acid (PA) and stearic acid (SA)) and unsaturated fatty acid (oleic acid (OA)) were used. PA and, to a lesser extent, SA, but not OA, up-regulated HAMP mRNA levels, as determined by real-time PCR. To understand whether PA regulates HAMP mRNA at the transcriptional or post-transcriptional level, the transcription inhibitor actinomycin D was employed. PA-mediated induction of HAMP mRNA expression was not blocked by actinomycin D. Furthermore, PA activated HAMP 3'-UTR, but not promoter, activity, as shown by reporter assays. HAMP 3'-UTR harbors a single AU-rich element (ARE). Mutation of this ARE abolished the effect of PA, suggesting the involvement of ARE-binding proteins. The ARE-binding protein human antigen R (HuR) stabilizes mRNA through direct interaction with AREs on 3'-UTR. HuR is regulated by phosphorylation-mediated nucleo-cytoplasmic shuttling. PA activated this process. The binding of HuR to HAMP mRNA was also induced by PA in HepG2 cells. Silencing of HuR by siRNA abolished PA-mediated up-regulation of HAMP mRNA levels. PKC is known to phosphorylate HuR. Staurosporine, a broad-spectrum PKC inhibitor, inhibited both PA-mediated translocation of HuR and induction of HAMP expression. Similarly, rottlerin, a novel class PKC inhibitor, abrogated PA-mediated up-regulation of HAMP expression. In conclusion, lipids mediate post-transcriptional regulation of HAMP throughPKC- and HuR-dependent mechanisms.

  8. Hur arbetar man med so-ämnena i skolan?



    Syftet med arbetet är att genom litteraturstudier och en empirisk undersökning få en inblick i hur lärare undervisar i so idag. Vi vill också se vad styrdokumenten säger om so-ämnena och utifrån litteraturstudier och intervjuer ta reda på hur vi själva skulle vilja arbeta. I den första delen av arbetet har vi valt att redovisa relevanta delar ur de nuvarande styrdokumenten och ger där även en kortfattad historisk tillbakablick. Därefter följer en litteraturgenomgång där vi valt att redovisa ...

  9. Adaptive and maladaptive expression of the mRNA regulatory protein HuR

    Institute of Scientific and Technical Information of China (English)

    Suman; Govindaraju; Beth; S; Lee


    The RNA-binding proteins involved in regulation of mRNA post-transcriptional processing and translation control the fates of thousands of mRNA transcripts and basic cellular processes. The best studied of these, HuR, is well characterized as a mediator of mRNA stability and translation, and more recently, as a factor in nuclear functions such as pre-mRNA splicing. Due to HuR’s role in regulating thousands of mRNA transcripts, including those for other RNA-binding proteins, HuR can act as a master regulator of cell survival and proliferation. HuR itself is subject to multiple post-translationa modifications including regulation of its nucleocytoplasmic distribution. However, the mechanisms that govern HuR levels in the cell have only recently begun to be defined. These mechanisms are critical to cell health, as it has become clear in recent years that aberrant expression of HuR can lead alternately to decreased cell viability or to promotion of pathological proliferation and invasiveness. HuR is expressed as alternate mRNAs that vary in their untranslated regions, leading to differences in transcript stability and translatability. Multiple transcription factors and modulators of mRNA stability that regulate HuR mRNA expression have been identified. In addition, translation of HuR is regulated by numerous microRNAs, several of which have been demonstrated to have anti-tumor properties due to their suppression of HuR expression. This review summarizes the current state of knowledge of the factors that regulate HuR expression, along with the circumstances under which these factors contribute to cancer and inflammation.

  10. Intestinal epithelial HuR modulates distinct pathways of proliferation and apoptosis and attenuates small intestinal and colonic tumor development. (United States)

    Giammanco, Antonina; Blanc, Valerie; Montenegro, Grace; Klos, Coen; Xie, Yan; Kennedy, Susan; Luo, Jianyang; Chang, Sung-Hee; Hla, Timothy; Nalbantoglu, Ilke; Dharmarajan, Sekhar; Davidson, Nicholas O


    HuR is a ubiquitous nucleocytoplasmic RNA-binding protein that exerts pleiotropic effects on cell growth and tumorigenesis. In this study, we explored the impact of conditional, tissue-specific genetic deletion of HuR on intestinal growth and tumorigenesis in mice. Mice lacking intestinal expression of HuR (Hur (IKO) mice) displayed reduced levels of cell proliferation in the small intestine and increased sensitivity to doxorubicin-induced acute intestinal injury, as evidenced by decreased villus height and a compensatory shift in proliferating cells. In the context of Apc(min/+) mice, a transgenic model of intestinal tumorigenesis, intestinal deletion of the HuR gene caused a three-fold decrease in tumor burden characterized by reduced proliferation, increased apoptosis, and decreased expression of transcripts encoding antiapoptotic HuR target RNAs. Similarly, Hur(IKO) mice subjected to an inflammatory colon carcinogenesis protocol [azoxymethane and dextran sodium sulfate (AOM-DSS) administration] exhibited a two-fold decrease in tumor burden. Hur(IKO) mice showed no change in ileal Asbt expression, fecal bile acid excretion, or enterohepatic pool size that might explain the phenotype. Moreover, none of the HuR targets identified in Apc(min/+)Hur(IKO) were altered in AOM-DSS-treated Hur(IKO) mice, the latter of which exhibited increased apoptosis of colonic epithelial cells, where elevation of a unique set of HuR-targeted proapoptotic factors was documented. Taken together, our results promote the concept of epithelial HuR as a contextual modifier of proapoptotic gene expression in intestinal cancers, acting independently of bile acid metabolism to promote cancer. In the small intestine, epithelial HuR promotes expression of prosurvival transcripts that support Wnt-dependent tumorigenesis, whereas in the large intestine epithelial HuR indirectly downregulates certain proapoptotic RNAs to attenuate colitis-associated cancer. Cancer Res; 74(18); 5322-35. ©2014 AACR.

  11. HuR knockdown changes the oncogenic potential of oral cancer cells. (United States)

    Kakuguchi, Wataru; Kitamura, Tetsuya; Kuroshima, Takeshi; Ishikawa, Makoto; Kitagawa, Yoshimasa; Totsuka, Yasunori; Shindoh, Masanobu; Higashino, Fumihiro


    HuR binds to AU-rich element-containing mRNA to protect them from rapid degradation. Here, we show that knockdown of HuR changes the oncogenic properties of oral cancer cells. Oral squamous cell carcinoma cell lines, HSC-3 and Ca9.22, which express HuR protein and cytoplasmic AU-rich element mRNA more abundantly than normal cells, were subjected to HuR knockdown. In the HuR-knockdown cancer cells, the cytoplasmic expression of c-fos, c-myc, and COX-2 mRNAs was inhibited compared with those in cells that had been transfected with a control small interfering RNA, and the half-lives of these mRNAs were shorter than those of their counterparts in the control cells. HuR-knockdown cells failed to make colonies in soft agar, suggesting that the cells had lost their ability for anchorage-independent cell growth. Additionally, the motile and invasive activities of the cells decreased remarkably by HuR knockdown. Furthermore, the expression of cell cycle-related proteins, such as cyclin A, cyclin B1, cyclin D1, and cyclin-dependent kinase 1, was reduced in HuR-knockdown cancer cells, and HuR bound to cdk1 mRNA to stabilize it. These findings suggest that HuR knockdown changes the features of oral cancer cells, at least in part, by affecting their cell cycle and shows potential as an effective therapeutic approach.

  12. Different modes of interaction by TIAR and HuR with target RNA and DNA. (United States)

    Kim, Henry S; Wilce, Matthew C J; Yoga, Yano M K; Pendini, Nicole R; Gunzburg, Menachem J; Cowieson, Nathan P; Wilson, Gerald M; Williams, Bryan R G; Gorospe, Myriam; Wilce, Jacqueline A


    TIAR and HuR are mRNA-binding proteins that play important roles in the regulation of translation. They both possess three RNA recognition motifs (RRMs) and bind to AU-rich elements (AREs), with seemingly overlapping specificity. Here we show using SPR that TIAR and HuR bind to both U-rich and AU-rich RNA in the nanomolar range, with higher overall affinity for U-rich RNA. However, the higher affinity for U-rich sequences is mainly due to faster association with U-rich RNA, which we propose is a reflection of the higher probability of association. Differences between TIAR and HuR are observed in their modes of binding to RNA. TIAR is able to bind deoxy-oligonucleotides with nanomolar affinity, whereas HuR affinity is reduced to a micromolar level. Studies with U-rich DNA reveal that TIAR binding depends less on the 2'-hydroxyl group of RNA than HuR binding. Finally we show that SAXS data, recorded for the first two domains of TIAR in complex with RNA, are more consistent with a flexible, elongated shape and not the compact shape that the first two domains of Hu proteins adopt upon binding to RNA. We thus propose that these triple-RRM proteins, which compete for the same binding sites in cells, interact with their targets in fundamentally different ways.

  13. Multiple Functions of the RNA-Binding Protein HuR in Cancer Progression, Treatment Responses and Prognosis

    Directory of Open Access Journals (Sweden)

    Baocheng Wang


    Full Text Available The human embryonic lethal abnormal vision-like protein, HuR, is a member of the Hu family of RNA-binding proteins. Over the past decade, this ubiquitously expressed protein has been extensively investigated in cancer research because it is involved in the regulation of mRNA stability and translation in many cell types. HuR activity and function is associated with its subcellular distribution, transcriptional regulation, translational and post-translational modifications. HuR regulation of target mRNAs is based on the interaction between the three specific domains of HuR protein and one or several U- or AU-rich elements (AREs in the untranslated region of target mRNAs. A number of cancer-related transcripts containing AREs, including mRNAs for proto-oncogenes, cytokines, growth factors, and invasion factors, have been characterized as HuR targets. It has been proposed that HuR has a central tumorigenic activity by enabling multiple cancer phenotypes. In this review, we comprehensively survey the existing evidence with regard to the diverse functions of HuR in caner development and progression. The current data also suggest that HuR might be a novel and promising therapeutic target and a marker for treatment response and prognostic evaluation.

  14. Transcriptomic-Wide Discovery of Direct and Indirect HuR RNA Targets in Activated CD4+ T Cells.

    Directory of Open Access Journals (Sweden)

    Patsharaporn Techasintana

    Full Text Available Due to poor correlation between steady state mRNA levels and protein product, purely transcriptomic profiling methods may miss genes posttranscriptionally regulated by RNA binding proteins (RBPs and microRNAs (miRNAs. RNA immunoprecipitation (RIP methods developed to identify in vivo targets of RBPs have greatly elucidated those mRNAs which may be regulated via transcript stability and translation. The RBP HuR (ELAVL1 and family members are major stabilizers of mRNA. Many labs have identified HuR mRNA targets; however, many of these analyses have been performed in cell lines and oftentimes are not independent biological replicates. Little is known about how HuR target mRNAs behave in conditional knock-out models. In the present work, we performed HuR RIP-Seq and RNA-Seq to investigate HuR direct and indirect targets using a novel conditional knock-out model of HuR genetic ablation during CD4+ T activation and Th2 differentiation. Using independent biological replicates, we generated a high coverage RIP-Seq data set (>160 million reads that was analyzed using bioinformatics methods specifically designed to find direct mRNA targets in RIP-Seq data. Simultaneously, another set of independent biological replicates were sequenced by RNA-Seq (>425 million reads to identify indirect HuR targets. These direct and indirect targets were combined to determine canonical pathways in CD4+ T cell activation and differentiation for which HuR plays an important role. We show that HuR may regulate genes in multiple canonical pathways involved in T cell activation especially the CD28 family signaling pathway. These data provide insights into potential HuR-regulated genes during T cell activation and immune mechanisms.

  15. Altered regulation of ELAVL1/HuR in HLA-B27-expressing U937 monocytic cells.

    Directory of Open Access Journals (Sweden)

    Anna S Sahlberg

    Full Text Available OBJECTIVE: To investigate the role of HLA-B27 expression in the regulation of RNA binding protein (RBP Embryonic Lethal Abnormal Vision (ELAV L1/Human antigen R (HuR expression in Salmonella-infected or LPS-stimulated human monocytic cells, since HuR is a critical regulator of the post-transcriptional fate of many genes (e.g. TNFα important in inflammatory response. METHODS: U937 monocytic cells were stably transfected with pSV2neo resistant vector (mock, wild type HLA-B27, or mutated HLA-B27 with amino acid substitutions in the B pocket. Cells were differentiated, infected with Salmonella enteritidis or stimulated with lipopolysaccharide. The expression levels of HuR protein and cleavage products (CP1 and CP2 were detected by Western blotting and flow cytometry. Specific inhibitors were used to study the role of PKR and p38 in HuR expression and generation of CPs. TNFα and IL-10 secretion after p38 and PKR inhibition were measured by ELISA. RESULTS: Full length HuR is overexpressed and HuR cleavage is disturbed in U937 monocytic cells expressing HLA-B27 heavy chains (HC. Increased full length HuR expression, disturbed cleavage and reduced dependence on PKR after infection correlate with the expression of glutamic acid 45 in the B pocket that is linked to the misfolding of HLA-B27. CONCLUSION: Results show that the expression of HLA-B27 HCs modulates the intracellular environment of U937 monocyte/macrophages by altering HuR regulation. This phenomenon is at least partly dependent on the misfolding feature of the B27 molecule. Since HuR is an important regulator of multiple genes involved in inflammatory response observations offer an explanation how HLA-B27 may modulate inflammatory response.

  16. The cytoskeletal inhibitors latrunculin A and blebbistatin exert antitumorigenic properties in human hepatocellular carcinoma cells by interfering with intracellular HuR trafficking

    Energy Technology Data Exchange (ETDEWEB)

    Doller, Anke; Badawi, Amel [Pharmazentrum Frankfurt/ZAFES, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main (Germany); Schmid, Tobias; Brauß, Thilo [Institut für Biochemie I (Pathobiochemie), Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main (Germany); Pleli, Thomas [Medizinische Klinik 1, Schwerpunkt Gastroenterologie und Hepatologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main (Germany); Meyer zu Heringdorf, Dagmar [Pharmazentrum Frankfurt/ZAFES, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main (Germany); Piiper, Albrecht [Medizinische Klinik 1, Schwerpunkt Gastroenterologie und Hepatologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main (Germany); Pfeilschifter, Josef [Pharmazentrum Frankfurt/ZAFES, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main (Germany); Eberhardt, Wolfgang, E-mail: [Pharmazentrum Frankfurt/ZAFES, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main (Germany)


    The impact of the RNA-binding protein HuR for the post-transcriptional deregulation of tumor-relevant genes is well established. Despite of elevations in HuR expression levels, an increase in cytoplasmic HuR abundance in many cases correlates with a high grade of malignancy. Here, we demonstrated that administration of the actin-depolymerizing macrolide latrunculin A, or blebbistatin, an inhibitor of myosin II ATPase activity, caused a dose- and time-dependent reduction in the high cytoplasmic HuR content of HepG2 and Huh7 hepatocellular carcinoma (HCC) cells. Subcellular fractionation revealed that in addition, both inhibitors strongly attenuated cytoskeletal and membrane-bound HuR abundance and conversely increased the HuR amount in nuclear cell fractions. Concomitant with changes in intracellular HuR localization, both cytoskeletal inhibitors markedly decreased the half-lives of cyclooxygenase-2 (COX-2), cyclin A and cyclin D{sub 1} encoding mRNAs resulting in a significant reduction in their expression levels in HepG2 cells. Importantly, a similar reduction in the expression of these HuR targets was achieved by a RNA interference (RNAi)-mediated knockdown of either HuR or nonmuscle myoin IIA. Using polysomal fractionation, we further demonstrate that the decrease in cytoplasmic HuR by latrunculin A or blebbistatin is accompanied by a marked change in the allocation of HuR and its mRNA cargo from polysomes to ribonucleoprotein (RNP) particles. Functionally, the basal migration and prostaglandin E{sub 2} synthesis are similarly impaired in inhibitor-treated and stable HuR-knockdown HepG2 cells. Our data demonstrate that interfering with the actomyosin-dependent HuR trafficking may comprise a valid therapeutic option for antagonizing pathologic posttranscriptional gene expression by HuR and furthermore emphasize the potential benefit of HuR inhibitory strategies for treatment of HCC. - Highlights: • We tested the effects of latrunculin A and blebbistatin on

  17. Discriminating between HuR and TTP binding sites using the k-spectrum kernel method (United States)

    Goldberg, Debra S.; Dowell, Robin


    Background The RNA binding proteins (RBPs) human antigen R (HuR) and Tristetraprolin (TTP) are known to exhibit competitive binding but have opposing effects on the bound messenger RNA (mRNA). How cells discriminate between the two proteins is an interesting problem. Machine learning approaches, such as support vector machines (SVMs), may be useful in the identification of discriminative features. However, this method has yet to be applied to studies of RNA binding protein motifs. Results Applying the k-spectrum kernel to a support vector machine (SVM), we first verified the published binding sites of both HuR and TTP. Additional feature engineering highlighted the U-rich binding preference of HuR and AU-rich binding preference for TTP. Domain adaptation along with multi-task learning was used to predict the common binding sites. Conclusion The distinction between HuR and TTP binding appears to be subtle content features. HuR prefers strongly U-rich sequences whereas TTP prefers AU-rich as with increasing A content, the sequences are more likely to be bound only by TTP. Our model is consistent with competitive binding of the two proteins, particularly at intermediate AU-balanced sequences. This suggests that fine changes in the A/U balance within a untranslated region (UTR) can alter the binding and subsequent stability of the message. Both feature engineering and domain adaptation emphasized the extent to which these proteins recognize similar general sequence features. This work suggests that the k-spectrum kernel method could be useful when studying RNA binding proteins and domain adaptation techniques such as feature augmentation could be employed particularly when examining RBPs with similar binding preferences. PMID:28333956

  18. The RNA-binding protein HuR regulates DNA methylation through stabilization of DNMT3b mRNA. (United States)

    López de Silanes, Isabel; Gorospe, Myriam; Taniguchi, Hiroaki; Abdelmohsen, Kotb; Srikantan, Subramanya; Alaminos, Miguel; Berdasco, María; Urdinguio, Rocío G; Fraga, Mario F; Jacinto, Filipe V; Esteller, Manel


    The molecular basis underlying the aberrant DNA-methylation patterns in human cancer is largely unknown. Altered DNA methyltransferase (DNMT) activity is believed to contribute, as DNMT expression levels increase during tumorigenesis. Here, we present evidence that the expression of DNMT3b is post-transcriptionally regulated by HuR, an RNA-binding protein that stabilizes and/or modulates the translation of target mRNAs. The presence of a putative HuR-recognition motif in the DNMT3b 3'UTR prompted studies to investigate if this transcript associated with HuR. The interaction between HuR and DNMT3b mRNA was studied by immunoprecipitation of endogenous HuR ribonucleoprotein complexes followed by RT-qPCR detection of DNMT3b mRNA, and by in vitro pulldown of biotinylated DNMT3b RNAs followed by western blotting detection of HuR. These studies revealed that binding of HuR stabilized the DNMT3b mRNA and increased DNMT3b expression. Unexpectedly, cisplatin treatment triggered the dissociation of the [HuR-DNMT3b mRNA] complex, in turn promoting DNMT3b mRNA decay, decreasing DNMT3b abundance, and lowering the methylation of repeated sequences and global DNA methylation. In summary, our data identify DNMT3b mRNA as a novel HuR target, present evidence that HuR affects DNMT3b expression levels post-transcriptionally, and reveal the functional consequences of the HuR-regulated DNMT3b upon DNA methylation patterns.

  19. HuR interacts with human immunodeficiency virus type 1 reverse transcriptase, and modulates reverse transcription in infected cells

    Directory of Open Access Journals (Sweden)

    Ennifar Eric


    Full Text Available Abstract Reverse transcription of the genetic material of human immunodeficiency virus type 1 (HIV-1 is a critical step in the replication cycle of this virus. This process, catalyzed by reverse transcriptase (RT, is well characterized at the biochemical level. However, in infected cells, reverse transcription occurs in a multiprotein complex – the reverse transcription complex (RTC – consisting of viral genomic RNA associated with viral proteins (including RT and, presumably, as yet uncharacterized cellular proteins. Very little is known about the cellular proteins interacting with the RTC, and with reverse transcriptase in particular. We report here that HIV-1 reverse transcription is affected by the levels of a nucleocytoplasmic shuttling protein – the RNA-binding protein HuR. A direct protein-protein interaction between RT and HuR was observed in a yeast two-hybrid screen and confirmed in vitro by homogenous time-resolved fluorescence (HTRF. We mapped the domain interacting with HuR to the RNAse H domain of RT, and the binding domain for RT to the C-terminus of HuR, partially overlapping the third RRM RNA-binding domain of HuR. HuR silencing with specific siRNAs greatly impaired early and late steps of reverse transcription, significantly inhibiting HIV-1 infection. Moreover, by mutagenesis and immunoprecipitation studies, we could not detect the binding of HuR to the viral RNA. These results suggest that HuR may be involved in and may modulate the reverse transcription reaction of HIV-1, by an as yet unknown mechanism involving a protein-protein interaction with HIV-1 RT.

  20. Downregulation of β-Adrenoceptors in Isoproterenol-Induced Cardiac Remodeling through HuR.

    Directory of Open Access Journals (Sweden)

    Qian Yin

    Full Text Available β-adrenergic receptors (β-ARs play an important role in cardiac remodeling, which is the key pathological process in various heart diseases and leads to heart failure. However, the regulation of β-AR expression in remodeling hearts is still unclear. This study aims to clarify the possible mechanisms underlying the regulation of β1- and β2-AR expression in cardiac remodeling. The rat model of cardiac remodeling was established by subcutaneous injection of isoproterenol(ISO at the dose of 0.25 mg·kg(-1·d(-1 for 7 days. We found that the expression of β1- and β2-ARs decreased in the remodeling heart. The mechanisms may include the inhibition of DNA transcription and the increase of mRNA degradation. cAMP-response element binding protein(CREB is a well-known transcription factor of β-AR. However, the expression and activation of CREB was not changed in the remodeling heart. Further, human Antigen-R (HuR, a RNA binding protein, which binds to the 3'-untranslated region of the β-AR mRNA and promotes RNA degradation, was increased in the remodeling model. And in vitro, HuR deficiency reversed the reduction of β-AR mRNA induced by ISO. Therefore, the present findings indicate that HuR, but not CREB, is responsible for the reduction of β-AR expression in ISO induced cardiac remodeling.

  1. Expression of ARE-binding proteins AUF1 and HuR in follicular adenoma and carcinoma of thyroid gland. (United States)

    Trojanowicz, B; Sekulla, C; Dralle, H; Hoang-Vu, C


    Both adenylate-uridylate rich elements binding proteins AUF1 and HuR may participate in thyroid carcinoma progression. In this study we investigated the expression of both factors on a protein level with a special focus on follicular adenoma and follicular thyroid carcinoma. By employment of immunofluorescence and western blot on 68 thyroid tissues including 7 goiter, 16 follicular adenoma (4 adenomatous hyperplasia), 19 follicular thyroid carcinomas, 13 papillary thyroid carcinomas and 14 undifferentiated thyroid carcinomas we investigated protein expression of AUF1 and HuR. In addition to previous results we demonstrated that AUF1 and HuR are significantly up-regulated in carcinoma tissues as compared with follicular adenoma or goiter tissues. Furthermore, by evaluation of AUF1 or HuR expression, or combination of both proteins on total tissue lysates, we were able to demonstrate a significant difference between follicular adenoma and follicular thyroid carcinoma. Overexpression of AUF1 and HuR is a common finding observed in thyroid malignancy. Analysis of the tissues obtained by surgical resection as demonstrated in this study is comparable to a fine needle aspiration and in combination with AUF1/HuR immuno-analysis may support the conventional immunohistological investigations. The promising results of this study were performed on relatively small collective, but justify future development of a quick thyroid diagnostic test on larger cohort of the patients, especially for thyroid samples which are inadequate for histological examinations.

  2. MicroRNA-16 Modulates HuR Regulation of Cyclin E1 in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xun Guo


    Full Text Available RNA binding protein (RBPs and microRNAs (miRNAs or miRs are post-transcriptional regulators of gene expression that are implicated in development of cancers. Although their individual roles have been studied, the crosstalk between RBPs and miRNAs is under intense investigation. Here, we show that in breast cancer cells, cyclin E1 upregulation by the RBP HuR is through specific binding to regions in the cyclin E1 mRNA 3' untranslated region (3'UTR containing U-rich elements. Similarly, miR-16 represses cyclin E1, dependent on its cognate binding sites in the cyclin E1 3'UTR. Evidence in the literature indicates that HuR can regulate miRNA expression and recruit or dissociate RNA-induced silencing complexes (RISC. Despite this, miR-16 and HuR do not affect the other’s expression level or binding to the cyclin E1 3'UTR. While HuR overexpression partially blocks miR-16 repression of a reporter mRNA containing the cyclin E1 3'UTR, it does not block miR-16 repression of endogenous cyclin E1 mRNA. In contrast, miR-16 blocks HuR-mediated upregulation of cyclin E1. Overall our results suggest that miR-16 can override HuR upregulation of cyclin E1 without affecting HuR expression or association with the cyclin E1 mRNA.

  3. Kommunsammanläggningarna 1952–1974. Hur blev de politiskt möjliga?

    Directory of Open Access Journals (Sweden)

    Gissur Ó Erlingsson


    Full Text Available

    Under perioden 1952–1974 genomfördes ett antal omvälvande förändringar av den svenska kommunstrukturen. På 22 år gick Sverige från 2 498 till 278 kommuner. Hur blir sådana omfattande reformer möjliga? Vi besvarar denna fråga genom att analysera det politiska spelet bakom reformerna. Vi undersöker (a de huvudsakliga argumenten för kommunsammanläggningarna, (b grad av konsensus bakom besluten, (c om, och i sådant fall vilka alternativ till reformerna som presenterades under de debatter som föregick dem, samt slutligen (d hur man politiskt lyckades genomdriva dessa reformer. Vi ställer två olika förklaringsmodeller mot varandra; evolutionära förklaringar, som betraktar sammanläggningarna som rationella tillpassningar till förändrade omvärldsförhållanden, ställs mot ett socialt konfliktperspektiv som förklarar sammanläggningarna utifrån deras fördelningseffekter. Vi argumenterar för att vår analys av de svenska kommunsammanläggningarna ger stöd åt det sociala konfliktperspektivet.

  4. Changes in Cellular mRNA Stability, Splicing, and Polyadenylation through HuR Protein Sequestration by a Cytoplasmic RNA Virus

    Directory of Open Access Journals (Sweden)

    Michael D. Barnhart


    Full Text Available The impact of RNA viruses on the posttranscriptional regulation of cellular gene expression is unclear. Sindbis virus causes a dramatic relocalization of the cellular HuR protein from the nucleus to the cytoplasm in infected cells. This is to the result of the expression of large amounts of viral RNAs that contain high-affinity HuR binding sites in their 3′ UTRs effectively serving as a sponge for the HuR protein. Sequestration of HuR by Sindbis virus is associated with destabilization of cellular mRNAs that normally bind HuR and rely on it to regulate their expression. Furthermore, significant changes can be observed in nuclear alternative polyadenylation and splicing events on cellular pre-mRNAs as a result of sequestration of HuR protein by the 3′ UTR of transcripts of this cytoplasmic RNA virus. These studies suggest a molecular mechanism of virus-host interaction that probably has a significant impact on virus replication, cytopathology, and pathogenesis.

  5. RNA-binding protein HuR sequesters microRNA-21 to prevent translation repression of proinflammatory tumor suppressor gene programmed cell death 4. (United States)

    Poria, D K; Guha, A; Nandi, I; Ray, P S


    Translation control of proinflammatory genes has a crucial role in regulating the inflammatory response and preventing chronic inflammation, including a transition to cancer. The proinflammatory tumor suppressor protein programmed cell death 4 (PDCD4) is important for maintaining the balance between inflammation and tumorigenesis. PDCD4 messenger RNA translation is inhibited by the oncogenic microRNA, miR-21. AU-rich element-binding protein HuR was found to interact with the PDCD4 3'-untranslated region (UTR) and prevent miR-21-mediated repression of PDCD4 translation. Cells stably expressing miR-21 showed higher proliferation and reduced apoptosis, which was reversed by HuR expression. Inflammatory stimulus caused nuclear-cytoplasmic relocalization of HuR, reversing the translation repression of PDCD4. Unprecedentedly, HuR was also found to bind to miR-21 directly, preventing its interaction with the PDCD4 3'-UTR, thereby preventing the translation repression of PDCD4. This suggests that HuR might act as a 'miRNA sponge' to regulate miRNA-mediated translation regulation under conditions of stress-induced nuclear-cytoplasmic translocation of HuR, which would allow fine-tuned gene expression in complex regulatory environments.


    Directory of Open Access Journals (Sweden)



    Full Text Available Conodont fauna from the Upper Devonian (Frasnian Bahram Formation at the Hur section, north of Kerman, southeast Iran, is dominated by species of Icriodus and Polygnathus. This fauna allowed discrimination of two biointervals from the Lower rhenana Zone to an Upper rhenana-linguiformis interval. The age of the lower part of the studied section is tentatively considered to be older than the Lower rhenana Zone. 

  7. Chemopreventive apigenin controls UVB-induced cutaneous proliferation and angiogenesis through HuR and thrombospondin-1. (United States)

    Tong, Xin; Mirzoeva, Salida; Veliceasa, Dorina; Bridgeman, Bryan B; Fitchev, Philip; Cornwell, Mona L; Crawford, Susan E; Pelling, Jill C; Volpert, Olga V


    Plant flavonoid apigenin prevents and inhibits UVB-induced carcinogenesis in the skin and has strong anti-proliferative and anti-angiogenic properties. Here we identify mechanisms, by which apigenin controls these oncogenic events. We show that apigenin acts, at least in part, via endogenous angiogenesis inhibitor, thrombospondin-1 (TSP1). TSP1 expression by the epidermal keratinocytes is potently inhibited by UVB. It inhibits cutaneous angiogenesis and UVB-induced carcinogenesis. We show that apigenin restores TSP1 in epidermal keratinocytes subjected to UVB and normalizes proliferation and angiogenesis in UVB-exposed skin. Importantly, reconstituting TSP1 anti-angiogenic function in UVB-irradiated skin with a short bioactive peptide mimetic representing exclusively its anti-angiogenic domain reproduced the anti-proliferative and anti-angiogenic effects of apigenin. Cox-2 and HIF-1α are important mediators of angiogenesis. Both apigenin and TSP1 peptide mimetic attenuated their induction by UVB. Finally we identified the molecular mechanism, whereby apigenin did not affect TSP1 mRNA, but increased de novo protein synthesis. Knockdown studies implicated the RNA-binding protein HuR, which controls mRNA stability and translation. Apigenin increased HuR cytoplasmic localization and physical association with TSP1 mRNA causing de novo TSP1 synthesis. HuR cytoplasmic localization was, in turn, dependent on CHK2 kinase. Together, our data provide a new mechanism, by which apigenin controls UVB-induced carcinogenesis.

  8. HuR and podoplanin expression is associated with a high risk of malignant transformation in patients with oral preneoplastic lesions. (United States)

    Habiba, Umma; Kitamura, Tetsuya; Yanagawa-Matsuda, Aya; Higashino, Fumihiro; Hida, Kyoko; Totsuka, Yasunori; Shindoh, Masanobu


    The risk of malignant transformation in oral preneoplastic lesions (OPLs) is challenging to assess. The objective of the present study was to determine the expression of ELAV like RNA binding protein 1 (HuR) and podoplanin in OPLs, and to evaluate the use of each protein as biomarkers for the risk assessment of malignant transformations. Immunohistochemistry for HuR and podoplanin was performed on the tissues of 51 patients with OPL, including cases of low grade dysplasia (LGD) and high grade dysplasia (HGD). The association between the protein expression patterns and clinicopathological parameters, including oral cancer free survival (OCFS) time, was analyzed during the follow-up period. HuR and podoplanin expression was observed in 28 (55%) and 36 (71%) of 51 patients, respectively. Kaplan-Meier analysis showed that the expression of HuR and podoplanin was associated with the risk of progression to oral cancer (P<0.05). Multivariate analysis revealed that HuR and podoplanin expression was associated with a 2.93-fold (95% confidence interval (CI), 0.98-10.34; P=0.055) and 2.06-fold (95% CI, 0.55-8.01; P=0.283) increase in risk of malignant transformation, respectively. The risk of OPL malignant transformation was considerably increased with the coexpression of HuR and podoplanin compared with the histological grading (95% CI, 1.64-23.59; P=0.005). The results of the present study demonstrated that the expression of HuR and podoplanin associates with malignant transformation and suggests that the proteins may be used as biomarkers to identify OPL patients with an increased risk of cancer development.

  9. HuR and podoplanin expression is associated with a high risk of malignant transformation in patients with oral preneoplastic lesions (United States)

    Habiba, Umma; Kitamura, Tetsuya; Yanagawa-Matsuda, Aya; Higashino, Fumihiro; Hida, Kyoko; Totsuka, Yasunori; Shindoh, Masanobu


    The risk of malignant transformation in oral preneoplastic lesions (OPLs) is challenging to assess. The objective of the present study was to determine the expression of ELAV like RNA binding protein 1 (HuR) and podoplanin in OPLs, and to evaluate the use of each protein as biomarkers for the risk assessment of malignant transformations. Immunohistochemistry for HuR and podoplanin was performed on the tissues of 51 patients with OPL, including cases of low grade dysplasia (LGD) and high grade dysplasia (HGD). The association between the protein expression patterns and clinicopathological parameters, including oral cancer free survival (OCFS) time, was analyzed during the follow-up period. HuR and podoplanin expression was observed in 28 (55%) and 36 (71%) of 51 patients, respectively. Kaplan-Meier analysis showed that the expression of HuR and podoplanin was associated with the risk of progression to oral cancer (P<0.05). Multivariate analysis revealed that HuR and podoplanin expression was associated with a 2.93-fold (95% confidence interval (CI), 0.98–10.34; P=0.055) and 2.06-fold (95% CI, 0.55–8.01; P=0.283) increase in risk of malignant transformation, respectively. The risk of OPL malignant transformation was considerably increased with the coexpression of HuR and podoplanin compared with the histological grading (95% CI, 1.64–23.59; P=0.005). The results of the present study demonstrated that the expression of HuR and podoplanin associates with malignant transformation and suggests that the proteins may be used as biomarkers to identify OPL patients with an increased risk of cancer development. PMID:27899983

  10. pp32 (ANP32A expression inhibits pancreatic cancer cell growth and induces gemcitabine resistance by disrupting HuR binding to mRNAs.

    Directory of Open Access Journals (Sweden)

    Timothy K Williams

    Full Text Available The expression of protein phosphatase 32 (PP32, ANP32A is low in poorly differentiated pancreatic cancers and is linked to the levels of HuR (ELAV1, a predictive marker for gemcitabine response. In pancreatic cancer cells, exogenous overexpression of pp32 inhibited cell growth, supporting its long-recognized role as a tumor suppressor in pancreatic cancer. In chemotherapeutic sensitivity screening assays, cells overexpressing pp32 were selectively resistant to the nucleoside analogs gemcitabine and cytarabine (ARA-C, but were sensitized to 5-fluorouracil; conversely, silencing pp32 in pancreatic cancer cells enhanced gemcitabine sensitivity. The cytoplasmic levels of pp32 increased after cancer cells are treated with certain stressors, including gemcitabine. pp32 overexpression reduced the association of HuR with the mRNA encoding the gemcitabine-metabolizing enzyme deoxycytidine kinase (dCK, causing a significant reduction in dCK protein levels. Similarly, ectopic pp32 expression caused a reduction in HuR binding of mRNAs encoding tumor-promoting proteins (e.g., VEGF and HuR, while silencing pp32 dramatically enhanced the binding of these mRNA targets. Low pp32 nuclear expression correlated with high-grade tumors and the presence of lymph node metastasis, as compared to patients' tumors with high nuclear pp32 expression. Although pp32 expression levels did not enhance the predictive power of cytoplasmic HuR status, nuclear pp32 levels and cytoplasmic HuR levels associated significantly in patient samples. Thus, we provide novel evidence that the tumor suppressor function of pp32 can be attributed to its ability to disrupt HuR binding to target mRNAs encoding key proteins for cancer cell survival and drug efficacy.

  11. Mõiste giš-hur tähendusest sumeri ja akkadi kirjanduslikes ja rituaaltekstides

    Directory of Open Access Journals (Sweden)

    Liina Ootsing-Lüecke


    Full Text Available The aim of this article is to interpret the meaning and concept of the word ‘plan’ or ‘drawing’ in Sumerian and Akkadian written sources and to give a brief summary of this phenomenon in Mesopotamia in the 3rd–1st millennium BC. The Sumerian word ĝiš-hur (lit. ‘wood scratch’, meaning ‘plan’ or ‘design’, and the Akkadian word esē ru(m(‘to draw’, ‘to design’, ‘drawing’, ‘design’ or ‘plan’ are mostly mentioned in a substantive context which encompasses the divine sphere. Gods and kings establish the world order with various ‘designs’ and ‘plans’.The Sumerian phenomenon of me (the ‘divine power’ of gods which describes god’s essence and is a divine attribute, and the Akkadian term parsu(m (‘cultic ordinance’ which encompasses divine ‘order’ and ‘cultic rites’, are both closely connected with the phenomena of ĝiš-hur and esē ru(m. In Sumerian and Akkadian myths and epics, the phrases ‘the plan of heaven and earth’ and ‘the cosmic order’ refer to the actions of gods and kings who always plan or design something substantial. A ‘plan’ is a means of securing power for a king. Gods also have ‘plans’ and ‘designs’ and deliver them to kings in an effort to strengthen and guarantee their reign. Kings have a duty to fulfil the ‘plan’ or ‘regulations’ of the land or kingdom. In Sumerian mythology the phenomenon of ĝiš-hur is connected with the underground aquifer abzu and its master, the god Enki. This understanding is also reflected in the late Babylonian epic of creation, which describes the establishing and securing the universal order. Sumerians and Akkadians also ‘designed’ and ‘drew’ many ‘temple’, ‘town’ and ‘kingdom’ plans, which had only local importance, but the loss of these plans is grieved about in several lamentation compositions. In later bilingual texts, abstract ‘cosmic’ and ‘life’ designs are mentioned. In

  12. HuR cytoplasmic expression is associated with increased cyclin A expression and poor outcome with upper urinary tract urothelial carcinoma

    Directory of Open Access Journals (Sweden)

    Liang Peir-In


    Full Text Available Abstract Background HuR is an RNA-binding protein that post-transcriptionally modulates the expressions of various target genes implicated in carcinogenesis, such as CCNA2 encoding cyclin A. No prior study attempted to evaluate the significance of HuR expression in a large cohort with upper urinary tract urothelial carcinomas (UTUCs. Methods In total, 340 cases of primary localized UTUC without previous or concordant bladder carcinoma were selected. All of these patients received ureterectomy or radical nephroureterectomy with curative intents. Pathological slides were reviewed, and clinical findings were collected. Immunostaining for HuR and cyclin A was performed and evaluated by using H-score. The results of cytoplasmic HuR and nuclear cyclin A expressions were correlated with disease-specific survival (DSS, metastasis-free survival (MeFS, urinary bladder recurrence-free survival (UBRFS, and various clinicopathological factors. Results HuR cytoplasmic expression was significantly related to the pT status, lymph node metastasis, a higher histological grade, the pattern of invasion, vascular and perineurial invasion, and cyclin A expression (p = 0.005. Importantly, HuR cytoplasmic expression was strongly associated with a worse DSS (p p p = 0.0370 in the univariate analysis, and the first two results remained independently predictive of adverse outcomes (p = 0.038, relative risk [RR] = 1.996 for DSS; p = 0.027, RR = 1.880 for MeFS. Cyclin A nuclear expression was associated with a poor DSS (p = 0.0035 and MeFS (p = 0.0015 in the univariate analysis but was not prognosticatory in the multivariate analyses. High-risk patients (pT3 or pT4 with/without nodal metastasis with high HuR cytoplasmic expression had better DSS if adjuvant chemotherapy was performed (p = 0.015. Conclusions HuR cytoplasmic expression was correlated with adverse phenotypes and cyclin A overexpression and also independently predictive

  13. MiR-291b-3p Induces Apoptosis in Liver Cell Line NCTC1469 by Reducing the Level of RNA-binding Protein HuR

    Directory of Open Access Journals (Sweden)

    Jun Guo


    Full Text Available Background: There is increasing evidence that miRNAs are involved in cellular apoptosis. However, the specific role of miR-291b-3p in apoptosis has not been elucidated. In the present study, we investigated the effect of miR-291b-3p on NCTC1469 cell growth and apoptosis. Methods: Cell viability and apoptosis were examined in NCTC1469 cells transfected with miR-291b-3p mimics, inhibitor miRNA or negative control. Using computational miRNA target prediction databases, HuR was predicted as a target of miR-291b-3p. Luciferase assay, immunofluorescence and western blot were used to further explore the effects of miR-291b-3p on HuR expression. In addition, the effect of HuR on cell apoptosis was evaluated using a HuR-specific siRNA. Results: TNF-α-induced hepatocyte apoptosis was accompanied by enhanced expression of miR-291b-3p, suggesting that miR-291b-3p might contribute to the apoptotic process. Follow-up experiments showed that upregulation of miR-291b-3p decreased cell viability and induced NCTC1469 cell apoptosis. Additionally, similar to the activity of miR-519, which is another member of the same miRNA family, miR-291b-3p suppressed HuR translation through binding to the HuR coding region (CR. We further showed that the downregulation of HuR expression by miR-291b-3p was accompanied by reduced Bcl-2 expression. Moreover, knockdown of HuR also impaired Bcl-2 expression and increased the ratio of Bax/Bcl-2. More significantly, downregulation of miR-291b-3p failed to increase Bcl2 expression in NCTC1469 cells that were co-transfected with siRNA-HuR. Finally, inhibition of miR-291b-3p led to reduced apoptosis, while knockdown of HuR by siRNA promoted apoptosis, even in NCTC1469 cells that were co-transfected with the miR-291b-3p inhibitor. Conclusion: The current data suggested that miR-291b-3p contributed to NCTC1469 cell apoptosis by regulating the expression of HuR, which in turn increased Bcl-2 stability.

  14. Unga vuxnas upplevelser av Internet Communities : En studie om hur virtuell gemenskap kan utveckla socialt kapital och lärande


    Tefera, Behailu


    Syftet med denna studie var att undersöka vilka upplevelser unga vuxna har beträffande den virtuella gemenskapen på Internet communities och hur det påverkar deras hälsa och lärande. Studien grundar sig på folkhälsopedagogiskt perspektiv och bygger på en kvalitativ studie. Under genomförandet av arbetet har åtta individer deltagit i individuella intervjuer. I bakgrunden belyser jag hur den teknologiska utvecklingen förändrar det sociala samspelet i samhället. Ökande kommunikation via Internet...

  15. The RNA-binding protein HuR regulates DNA methylation through stabilization of DNMT3b mRNA


    Lopez de Silanes, I.; Gorospe, M.; Taniguchi, H; Abdelmohsen, K; Srikantan, S.; Alaminos, M.; Berdasco, M.; Urdinguio, R. G.; Fraga, M. F.; Jacinto, F. V.; Esteller, M.


    The molecular basis underlying the aberrant DNA-methylation patterns in human cancer is largely unknown. Altered DNA methyltransferase (DNMT) activity is believed to contribute, as DNMT expression levels increase during tumorigenesis. Here, we present evidence that the expression of DNMT3b is post-transcriptionally regulated by HuR, an RNA-binding protein that stabilizes and/or modulates the translation of target mRNAs. The presence of a putative HuR-recognition motif in the DNMT3b 3???UTR pr...

  16. Motivation och Agila aktiviteter : En fallstudie om hur agila aktiviteter motiverar deltagare i ett utvecklarteam på Tradera


    Nord Olsson, Hjalmar; Wiskman, Daniel


    Studiens syfte har varit att undersöka hur agila aktiviteter kan bidra till att motivera deltagare i ett agilt utvecklarteam. För att besvara studiens syfte genomfördes en fallstudie under nio veckor där ett utvecklarteam på företaget Tradera observerades. Utöver observationerna gjordes även intervjuer med en majoritet av teamets medlemmar. Genom att kombinera den klassiska motivationsteorin Job Characteristics Modell med scrumteori utvecklades en konceptuell analysmodell. Den koncept...

  17. Single-dose Toxicity of ShinYangHur Herbal Acupuncture

    Directory of Open Access Journals (Sweden)

    Eunhye Cha


    Full Text Available Objectives: This study was carried out to analyze the single-dose toxicity of ShinYangHur (SYH herbal acupuncture injected into the muscles of Sprague-Dawley (SD rats. Methods: The SYH herbal acupuncture was made in a clean room at the Korean Pharmacopuncture Institute (KPI, Korea-Good Manufacturing Practice, K-GMP. After the mixing process with sterile distilled water, the pH was controlled to between 7.0 and 7.5. Then, NaCl was added to make a 0.9% isotonic solution by using sterilized equipment. All experiments were conducted at Biotoxtech, an institution authorized to perform non clinical studies under the regulations of Good Laboratory Practice (GLP. SD rats were chosen for the pilot study. Doses of SYH herbal acupuncture, 0.25, 0.5, and 1.0 mL, were administered to the experimental groups, and a dose of normal saline solution, 1.0 mL, was administered to the control group. This study was conducted under the approval of the Institutional Animal Ethics Committee. Results: No deaths or abnormalities occurred in any of the four groups. No significant changes in weight, hematological parameters or clinical chemistry between the control group and the experimental groups were observed. To check for abnormalities in organs and tissues, we used microscopy was used to examine representative histological sections of each specified organ; the results showed no significant differences in any of the organs or tissues. Conclusion: The above outcomes suggest that treatment with SYH herbal acupuncture is relatively safe. Further studies on this subject are needed to yield more concrete evidence.

  18. Cytoplasmic expression of HuR may be a valuable diagnostic tool for determining the potential for malignant transformation of oral verrucous borderline lesions (United States)



    Oral verrucous carcinoma (OVC) is a low grade variant of oral squamous cell carcinoma, and oral verrucous hyperplasia (OVH) is a benign lesion without malignant features. However, pathologists are sometimes presented with borderline lesions and are indecisive as to diagnose them as benign or malignant. Thus, these lesions are tentatively termed oral verrucous lesions (OVLs). HuR is an ARE mRNA-binding protein, normally localized in the nucleus but cytoplasmic exportation is frequently observed in cancer cells. The present study aimed to elucidate whether expression of the HuR protein facilitates the diagnosis of true malignant lesions. Clinicopathological features were evaluated, and immunohistochemical analysis for p53, Ki67 and HuR proteins was performed in 48 cases of OVH, OVC and OVL, and the outcomes were correlated using appropriate statistical analysis. The association of these three proteins in relation to malignant transformation was analyzed after a 3-year follow-up of 25 OVL cases. The basal characteristics (age, gender and location) of all cases had no significant association with the types of lesions. Gingiva (39.4%) was the common site for all lesions. Distribution of the examined proteins had a significant association with the lesions. As compared with the OVLs, the number of immunostained-positive cells was significantly higher in the OVCs and lower in the OVH cases. During follow-up, 24% of the OVLs underwent malignant transformation for which high HuR expression and a diffuse staining pattern in the epithelium were observed. Taken together, the high degree of HuR expression with diffuse staining pattern in the epithelium may be an effective diagnostic tool that determines the potential of OVLs for malignant transformation. PMID:24534848

  19. Interleukin 1β Regulation of the System xc- Substrate-specific Subunit, xCT, in Primary Mouse Astrocytes Involves the RNA-binding Protein HuR. (United States)

    Shi, Jingxue; He, Yan; Hewett, Sandra J; Hewett, James A


    System xc(-) is a heteromeric amino acid cystine/glutamate antiporter that is constitutively expressed by cells of the CNS, where it functions in the maintenance of intracellular glutathione and extracellular glutamate levels. We recently determined that the cytokine, IL-1β, increases the activity of system xc(-) in CNS astrocytes secondary to an up-regulation of its substrate-specific light chain, xCT, and that this occurs, in part, at the level of transcription. However, an in silico analysis of the murine xCT 3'-UTR identified numerous copies of adenine- and uridine-rich elements, raising the possibility that undefined trans-acting factors governing mRNA stability and translation may also contribute to xCT expression. Here we show that IL-1β increases the level of mRNA encoding xCT in primary cultures of astrocytes isolated from mouse cortex in association with an increase in xCT mRNA half-life. Additionally, IL-1β induces HuR translocation from the nucleus to the cytoplasm. RNA immunoprecipitation analysis reveals that HuR binds directly to the 3'-UTR of xCT in an IL-1β-dependent manner. Knockdown of endogenous HuR protein abrogates the IL-1β-mediated increase in xCT mRNA half-life, whereas overexpression of HuR in unstimulated primary mouse astrocytes doubles the half-life of constitutive xCT mRNA. This latter effect is accompanied by an increase in xCT protein levels, as well as a functional increase in system xc(-) activity. Altogether, these data support a critical role for HuR in mediating the IL-1β-induced stabilization of astrocyte xCT mRNA.

  20. Hatkärlek. Hur Facebook påverkar oss i vår vardag.


    Hallström, Annie


    Facebook har öppnat upp för ett helt nytt sätt att kommunicera, och de flesta har en åsikt om det, om de använder sig av Facebook eller inte. Olika personer använder Facebook på olika sätt. Syftet med studien är att undersöka hur informanterna upplever att användandet av Facebook påverkar dem i deras vardag. För att uppnå syftet användes metoderna deltagande observation och kvalitativ intervju med sex Facebook - användare. Vid observationerna studeras vad informanterna faktiskt gör på Faceboo...

  1. A novel high throughput biochemical assay to evaluate the HuR protein-RNA complex formation.

    Directory of Open Access Journals (Sweden)

    Vito G D'Agostino

    Full Text Available The RNA binding protein HuR/ELAVL1 binds to AU-rich elements (AREs promoting the stabilization and translation of a number of mRNAs into the cytoplasm, dictating their fate. We applied the AlphaScreen technology using purified human HuR protein, expressed in a mammalian cell-based system, to characterize in vitro its binding performance towards a ssRNA probe whose sequence corresponds to the are present in TNFα 3' untranslated region. We optimized the method to titrate ligands and analyzed the kinetic in saturation binding and time course experiments, including competition assays. The method revealed to be a successful tool for determination of HuR binding kinetic parameters in the nanomolar range, with calculated Kd of 2.5±0.60 nM, k on of 2.76±0.56*10(6 M(-1 min(-1, and k off of 0.007±0.005 min(-1. We also tested the HuR-RNA complex formation by fluorescent probe-based RNA-EMSA. Moreover, in a 384-well plate format we obtained a Z-factor of 0.84 and an averaged coefficient of variation between controls of 8%, indicating that this biochemical assay fulfills criteria of robustness for a targeted screening approach. After a screening with 2000 small molecules and secondary verification with RNA-EMSA we identified mitoxantrone as an interfering compound with rHuR and TNFα probe complex formation. Notably, this tool has a large versatility and could be applied to other RNA Binding Proteins recognizing different RNA, DNA, or protein species. In addition, it opens new perspectives in the identification of small-molecule modulators of RNA binding proteins activity.

  2. Bankernas kreditprocess för privatpersoner : En studie om/hur Baselregelverket och andra regelverk har påverkat kreditprocessen


    Dalhäll, Caroline; Wass, Cecilia


    Bakgrund: 1990-talskrisen och dagens finanskris har liknande uppkomst som härleds till alltför generös utlåning. Som följd uppkom stora kreditförluster i majoriteten av bankerna. För att öka riskmedvetenheten hos bankerna samt för att stabilisera den finansiella ekonomin finns myndigheter och kommittéer som övervakar och sätter regler för hur bankverksamheten skall fungera.      Syfte: Syftet med denna studie var att undersöka om, och i så fall hur, kreditgivningsprocessen mot privatpersoner ...

  3. HuR and Ago2 Bind the Internal Ribosome Entry Site of Enterovirus 71 and Promote Virus Translation and Replication.

    Directory of Open Access Journals (Sweden)

    Jing-Yi Lin

    Full Text Available EV71 (enterovirus 71 RNA contains an internal ribosomal entry site (IRES that directs cap-independent initiation of translation. IRES-dependent translation requires the host's translation initiation factors and IRES-associated trans-acting factors (ITAFs. We reported recently that mRNA decay factor AUF1 is a negative-acting ITAF that binds IRES stem-loop II. We also reported that the small RNA-processing enzyme Dicer produces at least four small RNAs (vsRNAs from the EV71 IRES. One of these, vsRNA1, derived from IRES stem-loop II, reduces IRES activity and virus replication. Since its mechanism of action is unknown, we hypothesized that it might control association of ITAFs with the IRES. Here, we identified the mRNA stability factor HuR and the RISC subunit Argonaute 2 (Ago2 as two ITAFs that bind stem-loop II. In contrast to AUF1, HuR and Ago2 promote EV71 IRES activity and virus replication. In vitro RNA-binding assays revealed that vsRNA1 can alter association of Ago2, HuR, and AUF1 with stem-loop II. This presents a possible mechanism by which vsRNA1 could control viral translation and replication.

  4. PARP1 promotes gene expression at the post-transcriptional level by modulating the RNA-binding protein HuR (United States)

    Ke, Yueshuang; Han, Yanlong; Guo, Xiaolan; Wen, Jitao; Wang, Ke; Jiang, Xue; Tian, Xue; Ba, Xueqing; Boldogh, Istvan; Zeng, Xianlu


    Poly(ADP-ribosyl)ation (PARylation) is mainly catalysed by poly-ADP-ribose polymerase 1 (PARP1), whose role in gene transcription modulation has been well established. Here we show that, in response to LPS exposure, PARP1 interacts with the adenylateuridylate-rich element-binding protein embryonic lethal abnormal vision-like 1 (Elavl1)/human antigen R (HuR), resulting in its PARylation, primarily at site D226. PARP inhibition and the D226 mutation impair HuR's PARylation, nucleocytoplasmic shuttling and mRNA binding. Increases in mRNA level or stability of pro-inflammatory cytokines/chemokines are abolished by PARP1 ablation or inhibition, or blocked in D226A HuR-expressing cells. The present study demonstrates a mechanism to regulate gene expression at the post-transcriptional level, and suggests that blocking the interaction of PARP1 with HuR could be a strategy to treat inflammation-related diseases that involve increased mRNA stability. PMID:28272405

  5. Protein phosphorylation and photorespiration. (United States)

    Hodges, M; Jossier, M; Boex-Fontvieille, E; Tcherkez, G


    Photorespiration allows the recycling of carbon atoms of 2-phosphoglycolate produced by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) oxygenase activity, as well as the removal of potentially toxic metabolites. The photorespiratory pathway takes place in the light, encompasses four cellular compartments and interacts with several other metabolic pathways and functions. Therefore, the regulation of this cycle is probably of paramount importance to plant metabolism, however, our current knowledge is poor. To rapidly respond to changing conditions, proteins undergo a number of different post-translational modifications that include acetylation, methylation and ubiquitylation, but protein phosphorylation is probably the most common. The reversible covalent addition of a phosphate group to a specific amino acid residue allows the modulation of protein function, such as activity, subcellular localisation, capacity to interact with other proteins and stability. Recent data indicate that many photorespiratory enzymes can be phosphorylated, and thus it seems that the photorespiratory cycle is, in part, regulated by protein phosphorylation. In this review, the known phosphorylation sites of each Arabidopsis thaliana photorespiratory enzyme and several photorespiratory-associated proteins are described and discussed. A brief account of phosphoproteomic protocols is also given since the published data compiled in this review are the fruit of this approach.

  6. Hepatitis B Virus X Upregulates HuR Protein Level to Stabilize HER2 Expression in Hepatocellular Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Chao-Ming Hung


    Full Text Available Hepatitis B virus- (HBV- associated hepatocellular carcinoma (HCC is the most common type of liver cancer. However, the underlying mechanism of HCC tumorigenesis is very complicated and HBV-encoded X protein (HBx has been reported to play the most important role in this process. Activation of downstream signal pathways of epidermal growth factor receptor (EGFR family is known to mediate HBx-dependent HCC tumor progression. Interestingly, HER2 (also known as ErbB2/Neu/EGFR2 is frequently overexpressed in HBx-expressing HCC patients and is associated with their poor prognosis. However, it remains unclear whether and how HBx regulates HER2 expression. In this study, our data showed that HBx expression increased HER2 protein level via enhancing its mRNA stability. The induction of RNA-binding protein HuR expression by HBx mediated the HER2 mRNA stabilization. Finally, the upregulated HER2 expression promoted the migration ability of HBx-expressing HCC cells. These findings deciphered the molecular mechanism of HBx-mediated HER2 upregulation in HBV-associated HCC.

  7. Musikern som varumärke : En kvalitativ studie om hur frilansande folkmusiker   lanserar sig själva


    Lindblom, Hanna


    Denna uppsats syftar till att få en inblick i hur frilansande folkmusiker i Sverige gör för att lansera sig själva som artister, vilka redskap som används samt vilken funktion dessa redskap fyller. Detta har undersökts genom kvalitativa intervjuer med fyra frilansmusiker inom den folkmusikaliska genren. Musikbranschens förändrade förutsättningar, ställda i relation till Lundberg, Malm & Ronströms (2000) begrepp görare, vetare och makare, utgör de teoretiska utgångspunkterna för uppsatsen....

  8. Determination of GPCR Phosphorylation Status: Establishing a Phosphorylation Barcode. (United States)

    Prihandoko, Rudi; Bradley, Sophie J; Tobin, Andrew B; Butcher, Adrian J


    G protein-coupled receptors (GPCRs) are rapidly phosphorylated following agonist occupation in a process that mediates receptor uncoupling from its cognate G protein, a process referred to as desensitization. In addition, this process provides a mechanism by which receptors can engage with arrestin adaptor molecules and couple to downstream signaling pathways. The importance of this regulatory process has been highlighted recently by the understanding that ligands can direct receptor signaling along one pathway in preference to another, the phenomenon of signaling bias that is partly mediated by the phosphorylation status or phosphorylation barcode of the receptor. Methods to determine the phosphorylation status of a GPCR in vitro and in vivo are necessary to understand not only the physiological mechanisms involved in GPCR signaling, but also to fully examine the signaling properties of GPCR ligands. This unit describes detailed methods for determining the overall phosphorylation pattern on a receptor (the phosphorylation barcode), as well as mass spectrometry approaches that can define the precise sites that become phosphorylated. These techniques, coupled with the generation and characterization of receptor phosphorylation-specific antibodies, provide a full palate of techniques necessary to determine the phosphorylation status of any given GPCR subtype.

  9. Protein tyrosine phosphorylation in streptomycetes. (United States)

    Waters, B; Vujaklija, D; Gold, M R; Davies, J


    Using phosphotyrosine-specific antibodies, we demonstrate that in several Streptomyces spp. a variety of proteins are phosphorylated on tyrosine residues. Tyrosine phosphorylation was found in a number of Streptomyces species including Streptomyces lividans, Streptomyces hygroscopicus and Streptomyces lavendulae. Each species exhibited a unique pattern of protein tyrosine phosphorylation. Moreover, the patterns of tyrosine phosphorylation varied during the growth phase and were also influenced by culture conditions. We suggest that metabolic shifts during the complex growth cycle of these filamentous bacteria, and possibly secondary metabolic pathways, may be controlled by the action of protein tyrosine kinases and phosphatases, as has been demonstrated in signal transduction pathways in eukaryotic organisms.

  10. Inhibition of miR-9 de-represses HuR and DICER1 and impairs Hodgkin lymphoma tumour outgrowth in vivo

    DEFF Research Database (Denmark)

    Leucci, Eleonora; Zriwil, Alya; Gregersen, L. H.;


    MicroRNAs are important regulators of gene expression in normal development and disease. miR-9 is overexpressed in several cancer forms, including brain tumours, hepatocellular carcinomas, breast cancer and Hodgkin lymphoma (HL). Here we demonstrated a relevance for miR-9 in HL pathogenesis...... of evidence indicate that they are essential for the persistence of HL. We show that inhibition of miR-9 leads to derepression of DICER and HuR, which in turn results in a decrease in cytokine production by HL cells followed by an impaired ability to attract normal inflammatory cells. Finally, inhibition...... of miR-9 by a systemically delivered antimiR-9 in a xenograft model of HL increases the protein levels of HuR and DICER1 and results in decreased tumour outgrowth, confirming that miR-9 actively participates in HL pathogenesis and points to miR-9 as a potential therapeutic target.Oncogene advance online...

  11. HuR and TIA1/TIAL1 Are Involved in Regulation of Alternative Splicing of SIRT1 Pre-mRNA

    Directory of Open Access Journals (Sweden)

    Wenhui Zhao


    Full Text Available SIRT1 is a pleiotropic protein that plays critical and multifunctional roles in metabolism, senescence, longevity, stress-responses, and cancer, and has become an important therapeutic target across a range of diseases. Recent research demonstrated that SIRT1 pre-mRNA undergoes alternative splicing to produce different isoforms, such as SIRT1 full-length and SIRT1-∆Exon8 variants. Previous studies revealed these SIRT1 mRNA splice variants convey different characteristics and functions to the protein, which may in turn explain the multifunctional roles of SIRT1. However, the mechanisms underlying the regulation of SIRT1 alternative splicing remain to be elucidated. Our objective is to search for new pathways that regulate of SIRT1 alternative splicing. Here we describe experiments showing that HuR and TIA1/TIAL1, two kinds of RNA-binding proteins, were involved in the regulation of alternative splicing of SIRT1 pre-mRNA under normal and stress circumstances: HuR increased SIRT1-∆Exon8 by promoting SIRT1 exon 8 exclusion, whereas TIA1/TIAL1 inhibition of the exon 8 exclusion led to a decrease in SIRT1-∆Exon8 mRNA levels. This study provides novel insight into how the alternative splicing of SIRT1 pre-mRNA is regulated, which has fundamental implications for understanding the critical and multifunctional roles of SIRT1.

  12. Phosphorylation of chicken growth hormone

    Energy Technology Data Exchange (ETDEWEB)

    Aramburo, C.; Montiel, J.L. (Universidad Nacional Autonoma de Mexico (Mexico)); Donoghue, D.; Scanes, C.G. (Rutgers Univ., New Brunswick, NJ (USA)); Berghman, L.R. (Laboratory for Neuroendocrinology and Immunological Biotechnology, Louvain (Belgium))


    The possibility that chicken growth hormone (cGH) can be phosphorylated has been examined. Both native and biosynthetic cGH were phosphorylated by cAMP-dependent protein kinase (and {gamma}-{sup 32}P-ATP). The extent of phosphorylation was however less than that observed with ovine prolactin. Under the conditions employed, glycosylated cGH was not phosphorylated. Chicken anterior pituitary cells in primary culture were incubated in the presence of {sup 32}P-phosphate. Radioactive phosphate was incorporated in vitro into the fraction immunoprecipitable with antisera against cGH. Incorporation was increased with cell number and time of incubation. The presence of GH releasing factor (GRF) increased the release of {sup 32}P-phosphate labeled immunoprecipitable GH into the incubation media but not content of immunoprecipitable GH in the cells. The molecular weight of the phosphorylated immunoreactive cGH in the cells corresponded to cGH dimer.

  13. Vad och hur gör de? − att synliggöra lärande i grundskolans slöjdpraktik via videoetnografi och mikroanalys

    Directory of Open Access Journals (Sweden)

    Marléne Johansson


    Full Text Available Artikeln bygger på resultat och erfarenheter av etnografiskt insamlade videoinspelningar från grundskolans slöjdundervisning utgående från tre studier; dels vid ett projekt med förstudier under slutet av 1990-talet (Johansson, 1996, dels vid avhandlingsprojektet Slöjdpraktik i skolan (Johansson, 2002 och dels inom forskningsprojektet Kommunikation och lärande i slöjdpraktiker, (”Komolär-projektet”, under 2005−2010 (Lindström, Borg, Johansson & Lindberg, 2003.Att insamla empiri i autentiska slöjdmiljöer är av intresse då lärandesituationer kan synliggöras när elever med hjälp av material och redskap arbetar med att tillverka artefakter. Utifrån detaljerade analyser av slöjdaktiviteter går det att upptäcka det som utspelar sig och möjligheter ges att uppfatta något annat jämfört med vad man kan tro känna väl eller ha förenklade och till och med felaktiga uppfattningar om. Videoobservationer möjliggör att antaganden istället görs på empiriskt grundat datamaterial. Med risk att videofilma och analysera det man tror sig veta och söka har forskningsprojektens insamlingar mer förutsättningslöst arbetat efter vad och hur elever och lärare gör i slöjdpraktik och vad man får veta när slöjdaktiviteter analyseras mer ingående. Videomaterialen har analyserats både på en mer övergripande nivå och detaljerat med hjälp av mikroanalyser. Därefter har lärandet synliggjorts och beskrivits bland annat i teman för att visa hur personerna är resurser för varandra och hur lärandet utvecklas genom olika språkanvändning och med slöjdpraktikens fysiska redskap och material.Sökord: metod, slöjd, klassrumsforskning, videoetnografi, mikroanalysURN:NBN:no-29955

  14. 胞质HuR在卵巢上皮性癌的表达及意义%The expression and significance of cytoplasmic HuR in epithelial ovarian carcinoma

    Institute of Scientific and Technical Information of China (English)

    齐玉明; 石彬; 郭皓; 成艳梅


    Objective To investigate the correlation between the expression of HuR in epithelial ovarian cancer and clinicopathological parameters in order to explore the factors that affect the prognosis of patients with epithelial ovarian carcinoma. Methods The expressions of cytoplasmic and nuclear HuR in normal ovary tissues,borderline tissue of ovary tumor and epithelial ovarian carcinoma were detected by SP immunohistochemical technique and RT-PCR. The relationship between cytoplasmic HuR expression and prognostic factors was analyzed.Results The expressions of cytoplasmic and nuclear HuR in epithelial ovarian cancer tissue were significantly higher than those in borderline tissue of epithelial ovarian tumor and normal ovarian tissues,however,there was no significant difference between the borderline tissue of epithelial ovarian tumor and normal ovarian tissue ( P >0.05). The statistical analysis showed that the positive expression rate of cytoplasmic HuR in epithelial ovarian carcinoma was closely correlated with histological grade and FIGO stage, but the positive expression rate of nuclear HuR was not correlated with the clinicopathological parameters. Conclusion The over-expression of HuR may play an important role in the growth and progress of epithelial ovarian carcinoma. To detect the expression of cytoplasmic HuR in epithelial ovarian carcinoma may predict the characteristics of oncobiology behaviour. The expression of cytoplasmic HuR may act as an independent prognostic indicator.%目的 检测HuR在卵巢上皮性癌中的表达及与临床病理参数的关系,寻求卵巢癌的预后因素.方法 采用免疫组化链霉菌抗生物素蛋白-过氧化物酶连接(SP)法和逆转录RT-PCR技术,检测胞质和胞核HuR在正常、交界性、恶性卵巢组织中的表达;分析胞质HuR的表达与预后的关系.结果 胞质和胞核HuR在恶性卵巢肿瘤组织的表达明显高于交界性卵巢肿瘤和正常卵巢组织,胞质和胞核HuR在交界性

  15. Mångkultur i olika förskolor : En studie om hur pedagoger involverar den kulturella mångfalden



    Denna studie handlar om hur pedagoger på olika förskolor arbetar för att involvera barns olika kulturer. Genom kvantitativ och kvalitativ metod har vi studerat om arbetet skiljer sig mellan förskolor som är mer och mindre mångkulturella, vi har också jämfört arbetet på förskolor i två orter, dels i Uppsala som är en relativt stor stad och en mindre ort Sala.   Resultatet visar att det inte fanns några större skillnader mellan Uppsala och Sala vad gäller pedagogers arbete med mångkultur eller ...

  16. Millennials : Hur företag ska arbeta med styrning för att behålla den nya generationen


    Lemchen, Gabriella; Gjärdman, Alexander


    Generationen millennials ses av många ledare som lata, krävande men även illojala. Vilket har gjort det svårt för många företag att leda, styra samt förankra dem. Anledningen grundar sig mångt och mycket i en generationskrock där ledare ur de äldre generationerna inte vet hur de ska styra den yngre generationen. Millennials är framstående inom kunskapsintensiva tjänsteföretag idag och är även den generation som byter arbetsgivare mer frekvent än tidigare generationer. Det är därför vitalt för...

  17. Kvinnlig könsstympning : Hur kvinnlig könsstympning kan förklaras och förstås som ett sociologiskt fenomen.



    Kvinnlig könsstympning uppmärksammades i västvärlden på 1970-talet då invandringen till väst från länder där könsstympning praktiseras ökade. När Waris Dirie gav ut sin självbiografiska bok En blomma i Afrikas öken 1999 kom könsstympning åter på tapeten. Eftersom könsstympning är en sedvänja som praktiserats i tusentals år världen över och fortfarande utövas i flera länder idag, väcktes ett intresse att ta reda på omständigheterna kring fenomenet. Vart, hur och varför uppstod denna till synes...

  18. Handledningens vad, hur och varför – interaktionella mönster med fokus på röst

    Directory of Open Access Journals (Sweden)

    Hanna Sveen


    Full Text Available Självständiga arbeten har fått en allt mer central roll i svensk högre utbildning, och därför får även handledning av dessa av större betydelse. Trots att det finns viss forskning som rör handledning av självständiga arbeten är det ovanligt med empirisk forskning av själva handledningspraktiken, d v s vad som görs, hur det görs och varför. Vi vill koppla dessa frågor till pedagogiska aspekter som stöttning, perspektivprövning och studentens självständighet. Vi undersöker därför det vi kallar handledningspraktiken vilken utgörs av all interaktion mellan handledare och student. Fokus för den här artikeln ligger dock på handledningssamtal. Genom att använda språkvetenskapliga angreppsätt vill vi belysa ett av de interaktionella mönster som vi har identifierat i handledningssamtalen, nämligen samma persons användning av olika röster. Vi utgår från Bahktins röstbegrepp för att studera hur röst operationaliseras i samtalen och ger dem dialogisk karaktär. 

  19. Analysis of the kinetic of expression of tristetraprolin and HuR by rheumatoid arthritis patients pheripheral blood mononuclear cells stimulated with lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    G. Ferraccioli


    Full Text Available Objective. Given the role of TNF-α in Rheumatoid Arthritis (RA we decided to define the characteristics of the TNF- α synthesis by peripheral blood mononuclear cells (PBMNCs obtained from active-aggressive RA patients giving a particular attention to the modulation of the expression of two fundamental proteins in TNF-α mRNA stability regulation, Tristetraprolin (TTP and HuR. Methods. 11 RA patients with active disease were enrolled in the study before their entry in 2 double blind protocols: Infliximab versus MTX and Etanercept versus MTX. 9 healthy blood donors were taken as controls. PBMNCs obtained by Ficoll centrifugation and plastic adherence were stimulated with lipopolysaccharide (LPS and TNF-α was measured in the supernatant during 8 hours by ELISA. At each time point the cells were harvested and analysed for TNF- α, TTP and HuR mRNA expression by semi-quantitative PCR. Results. MNCs TNF-α secretion after LPS stimulation did not differ significantly between RA and control subjects, even if a tendency towards a more prompt response was observed in the patients. More importantly only the DMARDs responsive patients (DAS <3.7 at the 6th month, with a minimal reduction of 1.2 points disclosed precociously (at the first month a significant change in the profile of TNF-α secretion and maintained it until the 6th month. The “normalization” of the synthetic behaviour was accompanied by the resetting in the regulation of the expression of the TTP, that appeared significantly different in the patients before and after therapy. Conclusions. Independently from the type of therapy, responsive patients demonstrate a rapid change in the cellular biology at the systemic level that might drive the resolution of the phlogistic process at the synovial level.

  20. Chemistry of Phosphorylated Formaldehyde Derivatives. Part I

    Directory of Open Access Journals (Sweden)

    Vasily P. Morgalyuk


    Full Text Available The underinvestigated derivatives of unstable phosphorylated formaldehyde acetals and some of the structurally related compounds, such as thioacetals, aminonitriles, aminomethylphosphinoyl compounds, are considered. Separately considered are halogen aminals of phosphorylated formaldehyde, acetals of phosphorylated formaldehyde of H-phosphinate-type and a phosphorylated gem-diol of formaldehyde. Synthetic methods, chemical properties and examples of practical applications are given.

  1. Propofol directly increases tau phosphorylation.

    Directory of Open Access Journals (Sweden)

    Robert A Whittington

    Full Text Available In Alzheimer's disease (AD and other tauopathies, the microtubule-associated protein tau can undergo aberrant hyperphosphorylation potentially leading to the development of neurofibrillary pathology. Anesthetics have been previously shown to induce tau hyperphosphorylation through a mechanism involving hypothermia-induced inhibition of protein phosphatase 2A (PP2A activity. However, the effects of propofol, a common clinically used intravenous anesthetic, on tau phosphorylation under normothermic conditions are unknown. We investigated the effects of a general anesthetic dose of propofol on levels of phosphorylated tau in the mouse hippocampus and cortex under normothermic conditions. Thirty min following the administration of propofol 250 mg/kg i.p., significant increases in tau phosphorylation were observed at the AT8, CP13, and PHF-1 phosphoepitopes in the hippocampus, as well as at AT8, PHF-1, MC6, pS262, and pS422 epitopes in the cortex. However, we did not detect somatodendritic relocalization of tau. In both brain regions, tau hyperphosphorylation persisted at the AT8 epitope 2 h following propofol, although the sedative effects of the drug were no longer evident at this time point. By 6 h following propofol, levels of phosphorylated tau at AT8 returned to control levels. An initial decrease in the activity and expression of PP2A were observed, suggesting that PP2A inhibition is at least partly responsible for the hyperphosphorylation of tau at multiple sites following 30 min of propofol exposure. We also examined tau phosphorylation in SH-SY5Y cells transfected to overexpress human tau. A 1 h exposure to a clinically relevant concentration of propofol in vitro was also associated with tau hyperphosphorylation. These findings suggest that propofol increases tau phosphorylation both in vivo and in vitro under normothermic conditions, and further studies are warranted to determine the impact of this anesthetic on the acceleration of

  2. Directional and quantitative phosphorylation networks

    DEFF Research Database (Denmark)

    Jørgensen, Claus; Linding, Rune


    as recognition sites, guiding phosphorylation by kinases and subsequent binding of modular domains (e.g. SH2 and BRCT). Characterization of such modification-modulated interactions on a proteome-wide scale requires extensive computational and experimental analysis. Here, we review the latest advances in methods...... for unravelling phosphorylation-mediated cellular interaction networks. In particular, we will discuss how the combination of new quantitative mass-spectrometric technologies and computational algorithms together are enhancing mapping of these largely uncharted dynamic networks. By combining quantitative...

  3. Properties of phosphorylated thymidylate synthase

    DEFF Research Database (Denmark)

    Frączyk, Tomasz; Ruman, Tomasz; Wilk, Piotr;


    Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat, Trichin......Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat...

  4. Nucleoside phosphorylation in amide solutions (United States)

    Schoffstall, A. M.; Kokko, B.


    The paper deals with phosphorylation in possible prebiotic nonaqueous solvents. To this end, phosphorylation of nucleosides using inorganic phosphates in amide solutions is studied at room and elevated temperatures. Reaction proceeds most readily in formamide and N-methylformamide. Products obtained at elevated temperature are nucleotides, nucleoside 2',3'-cyclic phosphates, and when the phosphate concentration is high, nucleoside diphosphates. At room temperature, adenosine afforded a mixture of nucleotides, but none of the cyclic nucleotide. Conditions leading to the highest relative percentage of cyclic nucleotide involve the use of low concentrations of phosphate and an excess of nucleoside.


    Energy Technology Data Exchange (ETDEWEB)



    Protein phosphorylation and dephosphorylation play key roles in many aspects of plant biology, including control of cell division, pathways of carbon and nitrogen metabolism, pattern formation, hormonal responses, and abiotic and biotic responses to environmental signals. A Symposium on Plant Protein Phosphorylation was hosted on the Columbia campus of the University of Missouri from May 26-28, 2010. The symposium provided an interdisciplinary venue at which scholars studying protein modification, as it relates to a broad range of biological questions and using a variety of plant species, presented their research. It also provided a forum where current international challenges in studies related to protein phosphorylation could be examined. The symposium also stimulated research collaborations through interactions and networking among those in the research community and engaged students and early career investigators in studying issues in plant biology from an interdisciplinary perspective. The proposed symposium, which drew 165 researchers from 13 countries and 21 States, facilitated a rapid dissemination of acquired knowledge and technical expertise regarding protein phosphorylation in plants to a broad range of plant biologists worldwide.

  6. Cellular regulation by protein phosphorylation. (United States)

    Fischer, Edmond H


    A historical account of the discovery of reversible protein phosphorylation is presented. This process was uncovered in the mid 1950s in a study undertaken with Edwin G. Krebs to elucidate the complex hormonal regulation of skeletal muscle glycogen phosphorylase. Contrary to the known activation of this enzyme by AMP which serves as an allosteric effector, its hormonal regulation results from a phosphorylation of the protein by phosphorylase kinase following the activation of the latter by Ca(2+) and ATP. The study led to the establishment of the first hormonal cascade of successive enzymatic reactions, kinases acting on kinases, initiated by cAMP discovered by Earl Sutherland. It also showed how two different physiological processes, carbohydrate metabolism and muscle contraction, could be regulated in concert.

  7. Affinity chromatography of phosphorylated proteins. (United States)

    Tchaga, Grigoriy S


    This chapter covers the use of immobilized metal ion affinity chromatography (IMAC) for enrichment of phosphorylated proteins. Some requirements for successful enrichment of these types of proteins are discussed. An experimental protocol and a set of application data are included to enable the scientist to obtain high-yield results in a very short time with pre-packed phospho-specific metal ion affinity resin (PMAC).

  8. Phosphorylation of brain proteins in generalized convulsions

    Energy Technology Data Exchange (ETDEWEB)

    Horan, M.P.


    Phosphorylation of neuronal proteins is being proposed as a modulating influence on several aspects of neuronal function. By labeling proteins with radioactive phosphorus (/sup 32/P) and then separating these proteins by polyacrylamide gel electrophoresis, the author can determine what factors change the phosphorylation of these proteins. They have used such a system to analyze the effects of generalized convulsions on protein phosphorylation. Electroshock (ES) and pentylenetetrazol (PTZ) were utilized to produce generalized convulsions. Brain membranes, taken from rats immediately after a convulsion, exhibited an increase in protein phosphorylation in vitro. The most noticeable change took place in proteins in the 18,000-20,000 MW range. They have designated these proteins as the low molecular weight (LMW) proteins. The change in phosphorylation was basically the same after one convulsions as after six daily convulsions. Twenty-four hours after a single convulsion no change in phosphorylation was observed. When rat membranes are exposed to PTZ in vitro, phosphorylation is increased at 20 sec but has returned to control level at 90 sec of incubation. This effect is produced without a convulsion. In general, as the concentration of magnesium is increased from 5 mM to 10 mM phosphorylation is increased. Increasing the incubation time from 20 sec to 90 sec and increasing the calcium concentration to 10 mM both decrease phosphorylation of the LMW proteins. Human temporal cortex samples present with phosphorylated proteins having patterns very similar to those in rat membranes.

  9. Traditionell matematikundervisning duger väl? : En litteraturstudie om alternativa undervisningsmetoder i matematik och hur dessa kan påverka elevers prestationer i och attityder till matematik.



    Utifrån vår erfarenhet är traditionell undervisning den undervisningsmetod som används främst i de svenska klassrummen. Lärarutbildningen har till största del haft en kritisk inställning till traditionell undervisning. Syftet i denna litteraturstudie är därför att granska vilka alternativa undervisningsmetoder forskning skriver om i matematikämnet. Vidare granskas hur dessa undervisningsmetoder kan påverka elevers prestationer i och attityder till matematik. Litteraturstudien har genomförts g...

  10. ”Vissa barn älskar faktiskt sånna dära TV-reklamer” : - En övergripande studie om hur barn upplever och tolkar TV-reklam -


    Norberg, Lotta


    ABSTRACT Titel: “Some kids really love those commercials” -A study of how children experience and construe commercials. (Vissa barn älskar faktiskt sånna dära TV-reklamer” – En övergripande studie om hur barn upplever och tolkar tv-reklam.) Number of pages: 40 Author: Lotta Norberg Tutor: Amelie Hössjer Course: Media and Communication Studies C Period: Autumn term 2007 University: Division of Media and Communication, Department of Information Science, Uppsala University Purpose/Aim: The aim o...

  11. Skapande av hög medvetenhet : En studie i hur ett företag med begränsade resurser kan skapa hög medvetenhet med kostnadseffektiva marknadsförings metoder


    Edlund, Alexander; Hansson, Fredrik


    Title: Creating high awareness – A study in how a company can create awareness with cost efficient marketing methods. (Skapande av hög medvetenhet – En studie i hur ett företag kan skapa medvetenhet med kostnadseffektiva marknadsförings metoder). Authors: Alexander Edlund and Fredrik Hansson Aim: Our aim is to reveal the pros and cons of cost efficient marketing and decide which cost efficient method works best in creating awareness. We also want to determine if the methods can be integrated ...

  12. Analysis of mitotic phosphorylation of Borealin

    Directory of Open Access Journals (Sweden)

    Date Dipali A


    Full Text Available Abstract Background The main role of the chromosomal passenger complex is to ensure that Aurora B kinase is properly localized and activated before and during mitosis. Borealin, a member of the chromosomal passenger complex, shows increased expression during G2/M phases and is involved in targeting the complex to the centromere and the spindle midzone, where it ensures proper chromosome segregation and cytokinesis. Borealin has a consensus CDK1 phosphorylation site, threonine 106 and can be phosphorylated by Aurora B Kinase at serine 165 in vitro. Results Here, we show that Borealin is phosphorylated during mitosis in human cells. Dephosphorylation of Borealin occurs as cells exit mitosis. The phosphorylated form of Borealin is found in an INCENP-containing complex in mitosis. INCENP-containing complexes from cells in S phase are enriched in the phosphorylated form suggesting that phosphorylation may encourage entry of Borealin into the chromosomal passenger complex. Although Aurora B Kinase is found in complexes that contain Borealin, it is not required for the mitotic phosphorylation of Borealin. Mutation of T106 or S165 of Borealin to alanine does not alter the electrophoretic mobility shift of Borealin. Experiments with cyclohexamide and the phosphatase inhibitor sodium fluoride suggest that Borealin is phosphorylated by a protein kinase that can be active in interphase and mitosis and that the phosphorylation may be regulated by a short-lived phosphatase that is active in interphase but not mitosis. Conclusion Borealin is phosphorylated during mitosis. Neither residue S165, T106 nor phosphorylation of Borealin by Aurora B Kinase is required to generate the mitotic, shifted form of Borealin. Suppression of phosphorylation during interphase is ensured by a labile protein, possibly a cell cycle regulated phosphatase.

  13. SIMAC - A phosphoproteomic strategy for the rapid separation of mono-phosphorylated from multiply phosphorylated peptides

    DEFF Research Database (Denmark)

    Thingholm, Tine E; Jensen, Ole N; Robinson, Phillip J


    spectrometric analysis, such as immobilized metal affinity chromatography or titanium dioxide the coverage of the phosphoproteome of a given sample is limited. Here we report a simple and rapid strategy - SIMAC - for sequential separation of mono-phosphorylated peptides and multiply phosphorylated peptides from...... and an optimized titanium dioxide chromatographic method. More than double the total number of identified phosphorylation sites was obtained with SIMAC, primarily from a three-fold increase in recovery of multiply phosphorylated peptides....

  14. Phosphorylation by Cdk1 induces Plk1-mediated vimentin phosphorylation during mitosis

    NARCIS (Netherlands)

    Yamaguchi, Tomoya; Goto, Hidemasa; Yokoyama, Tomoya; Silljé, Herman; Hanisch, Anja; Uldschmid, Andreas; Takai, Yasushi; Oguri, Takashi; Nigg, Erich A; Inagaki, Masaki


    Several kinases phosphorylate vimentin, the most common intermediate filament protein, in mitosis. Aurora-B and Rho-kinase regulate vimentin filament separation through the cleavage furrow-specific vimentin phosphorylation. Cdk1 also phosphorylates vimentin from prometaphase to metaphase, but its si

  15. Characterizing the Microenvironment Surrounding Phosphorylated Protein Sites

    Institute of Scientific and Technical Information of China (English)

    Shi-Cai Fan; Xue-Gong Zhang


    Protein phosphorylation plays an important role in various cellular processes. Due to its high complexity, the mechanism needs to be further studied. In the last few years, many methods have been contributed to this field, but almost all of them investigated the mechanism based on protein sequences around protein sites. In this study, we implement an exploration by characterizing the microenvironment surrounding phosphorylated protein sites with a modified shell model, and obtain some significant properties by the rank-sum test, such as the lack of some classes of residues, atoms, and secondary structures. Furthermore, we find that the depletion of some properties affects protein phosphorylation remarkably. Our results suggest that it is a meaningful direction to explore the mechanism of protein phosphorylation from microenvironment and we expect further findings along with the increasing size of phosphorylation and protein structure data.

  16. Oxidative phosphorylation in cancer cells. (United States)

    Solaini, Giancarlo; Sgarbi, Gianluca; Baracca, Alessandra


    Evidence suggests that mitochondrial metabolism may play a key role in controlling cancer cells life and proliferation. Recent evidence also indicates how the altered contribution of these organelles to metabolism and the resistance of cancer mitochondria against apoptosis-associated permeabilization are closely related. The hallmarks of cancer growth, increased glycolysis and lactate production in tumours, have raised attention due to recent observations suggesting a wide spectrum of oxidative phosphorylation deficit and decreased availability of ATP associated with malignancies and tumour cell expansion. More specifically, alteration in signal transduction pathways directly affects mitochondrial proteins playing critical roles in controlling the membrane potential as UCP2 and components of both MPTP and oxphos complexes, or in controlling cells life and death as the Bcl-2 proteins family. Moreover, since mitochondrial bioenergetics and dynamics, are also involved in processes of cells life and death, proper regulation of these mitochondrial functions is crucial for tumours to grow. Therefore a better understanding of the key pathophysiological differences between mitochondria in cancer cells and in their non-cancer surrounding tissue is crucial to the finding of tools interfering with these peculiar tumour mitochondrial functions and will disclose novel approaches for the prevention and treatment of malignant diseases. Here, we review the peculiarity of tumour mitochondrial bioenergetics and the mode it is linked to the cell metabolism, providing a short overview of the evidence accumulated so far, but highlighting the more recent advances.

  17. Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome

    DEFF Research Database (Denmark)

    Mann, Matthias; Ong, Shao En; Grønborg, Mads


    In signal transduction in eukaryotes, protein phosphorylation is a key event. To understand signaling processes, we must first acquire an inventory of phosphoproteins and their phosphorylation sites under different conditions. Because phosphorylation is a dynamic process, elucidation of signaling...

  18. Compartment-Specific Phosphorylation of Squid Neurofilaments. (United States)

    Grant, Philip; Pant, Harish C


    Studies of the giant axon and synapse of third-order neurons in the squid stellate ganglion have provided a vast literature on neuronal physiology and axon transport. Large neuronal size also lends itself to comparative biochemical studies of cell body versus axon. These have focused on the regulation of synthesis, assembly, posttranslational modification and function of neuronal cytoskeletal proteins (microtubules (MTs) and neurofilaments (NFs)), the predominant proteins in axoplasm. These contribute to axonal organization, stability, transport, and impulse transmission responsible for rapid contractions of mantle muscles underlying jet propulsion. Studies of vertebrate NFs have established an extensive literature on NF structure, organization, and function; studies of squid NFs, however, have made it possible to compare compartment-specific regulation of NF synthesis, assembly, and function in soma versus axoplasm. Since NFs contain over 100 eligible sites for phosphorylation by protein kinases, the compartment-specific patterns of phosphorylation have been a primary focus of biochemical studies. We have learned that NF phosphorylation is tightly compartmentalized; extensive phosphorylation occurs only in the axonal compartment in squid and in vertebrate neurons. This extensive phosphorylation plays a key role in organizing NFs, in association with microtubules (MTs), into a stable, dynamic functional lattice that supports axon growth, diameter, impulse transmission, and synaptic activity. To understand how cytoskeletal phosphorylation is topographically regulated, the kinases and phosphatases, bound to NFs isolated from cell bodies and axoplasm, have also been studied.

  19. Fibronectin phosphorylation by ecto-protein kinase

    Energy Technology Data Exchange (ETDEWEB)

    Imada, Sumi; Sugiyama, Yayoi; Imada, Masaru (Meiji Institute of Health Science, Odawara (Japan))


    The presence of membrane-associated, extracellular protein kinase (ecto-protein kinase) and its substrate proteins was examined with serum-free cultures of Swiss 3T3 fibroblast. When cells were incubated with ({gamma}-{sup 32})ATP for 10 min at 37{degree}C, four proteins with apparent molecular weights between 150 and 220 kDa were prominently phosphorylated. These proteins were also radiolabeled by lactoperoxidase catalyzed iodination and were sensitive to mild tryptic digestion, suggesting that they localized on the cell surface or in the extracellular matrix. Phosphorylation of extracellular proteins with ({gamma}-{sup 32}P)ATP in intact cell culture is consistent with the existence of ecto-protein kinase. Anti-fibronectin antibody immunoprecipitated one of the phosphoproteins which comigrated with a monomer and a dimer form of fibronectin under reducing and nonreducing conditions of electrophoresis, respectively. The protein had affinity for gelatin as demonstrated by retention with gelatin-conjugated agarose. This protein substrate of ecto-protein kinase was thus concluded to be fibronectin. The sites of phosphorylation by ecto-protein kinase were compared with those of intracellularly phosphorylated fibronectin by the analysis of radiolabeled amino acids and peptides. Ecto-protein kinase phosphorylated fibronectin at serine and threonine residues which were distinct from the sites of intracellular fibronectin phosphorylation.

  20. Protein phosphorylation: Localization in regenerating optic axons

    Energy Technology Data Exchange (ETDEWEB)

    Larrivee, D. (Cornell Univ. Medical College, New York, NY (USA))


    A number of axonal proteins display changes in phosphorylation during goldfish optic nerve regeneration. (1) To determine whether the phosphorylation of these proteins was closely linked to their synthesis in the retinal ganglion cell body, cycloheximide was injected intraocularly into goldfish whose optic nerves had been regenerating for 3 weeks. Cycloheximide reduced the incorporation of (3H)proline and 32P orthophosphate into total nerve protein by 84% and 46%, respectively. Of the 20 individual proteins examined, 17 contained less than 15% of the (3H)proline label measured in corresponding controls, whereas 18 proteins contained 50% or more of the 32P label, suggesting that phosphorylation was largely independent of synthesis. (2) To determine whether the proteins were phosphorylated in the ganglion cell axons, axonal transport of proteins was blocked by intraocular injection of vincristine. Vincristine reduced (3H)proline labeling of total protein by 88% and 32P labeling by 49%. Among the individual proteins (3H)proline labeling was reduced by 90% or more in 18 cases but 32P labeling was reduced only by 50% or less. (3) When 32P was injected into the cranial cavity near the ends of the optic axons, all of the phosphoproteins were labeled more intensely in the optic tract than in the optic nerve. These results suggest that most of the major phosphoproteins that undergo changes in phosphorylation in the course of regeneration are phosphorylated in the optic axons.

  1. PKA regulates calcineurin function through the phosphorylation of RCAN1: Identification of a novel phosphorylation site

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Sook; Lee, Eun Hye [Department of Molecular Bioscience, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Lee, Kooyeon [Department of Bio-Health Technology, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Jo, Su-Hyun, E-mail: [Department of Physiology, BK21 Plus Graduate Program, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Seo, Su Ryeon, E-mail: [Department of Molecular Bioscience, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701 (Korea, Republic of)


    Calcineurin is a calcium/calmodulin-dependent phosphatase that has been implicated in T cell activation through the induction of nuclear factors of activated T cells (NFAT). We have previously suggested that endogenous regulator of calcineurin (RCAN1, also known as DSCR1) is targeted by protein kinase A (PKA) for the control of calcineurin activity. In the present study, we characterized the PKA-mediated phosphorylation site in RCAN1 by mass spectrometric analysis and revealed that PKA directly phosphorylated RCAN1 at the Ser 93. PKA-induced phosphorylation and the increase in the half-life of the RCAN1 protein were prevented by the substitution of Ser 93 with Ala (S93A). Furthermore, the PKA-mediated phosphorylation of RCAN1 at Ser 93 potentiated the inhibition of calcineurin-dependent pro-inflammatory cytokine gene expression by RCAN1. Our results suggest the presence of a novel phosphorylation site in RCAN1 and that its phosphorylation influences calcineurin-dependent inflammatory target gene expression. - Highlights: • We identify novel phosphorylation sites in RCAN1 by LC-MS/MS analysis. • PKA-dependent phosphorylation of RCAN1 at Ser 93 inhibits calcineurin-mediated intracellular signaling. • We show the immunosuppressive function of RCAN1 phosphorylation at Ser 93 in suppressing cytokine expression.

  2. En Studie i Rött : Hur beskrivs, uppfattas och kopplas färg samman med innehåll i Mark Rothkos abstrakta målningar?


    Frisk, Mattias


    Undersökning av färgen i förhållande till innehåll i Mark Rothkos abstrakta verk. Studien innefattar en undersökning i hur man skriver om färg i anslutning till Rothkos abstrakta målningars innehåll och huruvida färg kan avgöra betydelser. A study about color in relationship to content in Mark Rothko’s abstract paintings. It includes a research in how people write about color when discussing Mark Rothko´s paintings and how that is related to content. It also looks at color in relationship...

  3. Phosphorylation of Cdc5 regulates its accumulation

    Directory of Open Access Journals (Sweden)

    Simpson-Lavy Kobi J


    Full Text Available Abstract Background Cdc5 (polo kinase/Plk1 is a highly conserved key regulator of the S. cerevisiae cell cycle from S-phase until cytokinesis. However, much of the regulatory mechanisms that govern Cdc5 remain to be determined. Cdc5 is phosphorylated on up to 10 sites during mitosis. In this study, we investigated the function of phosphorylation site T23, the only full consensus Cdk1 (Cdc28 phosphorylation site present. Findings Cdc5T23A introduces a degron that reduces its cellular amount to undetectable levels, which are nevertheless sufficient for normal cell proliferation. The degron acts in cis and is reversed by N-terminal GFP-tagging. Cdk1 kinase activity is required to maintain Cdc5 levels during G2. This, Cdk1 inhibited, Cdc5 degradation is APC/CCdh1 independent and requires new protein synthesis. Cdc5T23E is hyperactive, and reduces the levels of Cdc5 (in trans and drastically reduces Clb2 levels. Conclusions Phosphorylation of Cdc5 by Cdk1 is required to maintain Cdc5 levels during G2. However, phosphorylation of T23 (probably by Cdk1 caps Cdc5 and other CLB2 cluster protein accumulation, preventing potential protein toxicity, which may arise from their overexpression or from APC/CCdh1 inactivation.

  4. Phosphorylation state-dependent interaction between AKAP7δ/γ and phospholamban increases phospholamban phosphorylation (United States)

    Rigatti, Marc; Le, Andrew V.; Gerber, Claire; Moraru, Ion I.; Dodge-Kafka, Kimberly L.


    Changes in heart rate and contractility in response to sympathetic stimulation occur via activation of cAMP dependent protein kinase A (PKA), leading to phosphorylation of numerous substrates that alter Ca2+ cycling. Phosphorylation of these substrates is coordinated by A-kinase anchoring proteins (AKAPs), which recruit PKA to specific substrates [1]. Phosphorylation of the PKA substrate phospholamban (PLB) is a critical determinant of Ca2+ re-entry into the sarcoplasmic reticulum and is coordinated by AKAP7δ/γ [2,3]. Here, we further these findings by showing that phosphorylation of PLB requires interaction with AKAP7δ/γ and that this interaction occurs only when PLB is unphosphorylated. Additionally, we find that two mutants of PLB (R9C and Δ14), which are associated with dilated cardiomyopathy in humans, prevent association with AKAP7δ/γ and display reduced phosphorylation in vitro. This finding implicates the AKAP7δ/γ-PLB interaction in the pathology of the disease phenotype. Further exploration of the AKAP7δ/γ-PLB association demonstrated a phosphorylation state-dependence of the interaction. Computational modeling revealed that this mode of interaction allows for small amounts of AKAP and PKA (100–200nM) to regulate the phosphorylation of large quantities of PLB (50µM). Our results confirm that AKAP7γ/δ binding to PLB is important for phosphorylation of PLB, and describe a novel phosphorylation state-dependent binding mechanism that explains how phosphorylation of highly abundant PKA substrates can be regulated by AKAPs present at ~100–200 fold lower concentrations. PMID:26027516

  5. Ben-Hur Staircase Climbs (United States)

    Dodge, John; Simoson, Andrew


    How many ways may one climb an even number of stairs so that left and right legs are exercised equally, that is, both legs take the same number of strides, take the same number of total stairs, and take strides of either 1 or 2 stairs at a time? We characterize the solution with a difference equation and find its generating function.

  6. Genusnormer i omvandling – en väg till jämställdhet? : En studie om hur mäns konstruktion av maskulinitet och femininitet påverkar jämställdhetsattityder på mansdominerade arbetsplatser


    Bark, Hanna; Gatier, Markus; Sandström, Linda


    Titel: Genusnormer i omvandling – en väg till jämställdhet? En studie om hur mäns konstruktion av maskulinitet och femininitet påverkar jämställdhetsattityder på mansdominerade arbetsplatser. Författare: Hanna Bark, Markus Gatier och Linda Sandström Handledare: Marie Aurell Institution: Managementhögskolan, Blekinge Tekniska Högskola Kurs: Kandidatarbete i Företagsekonomi, 15 högskolepoäng. Syfte: Syftet med denna studie är att öka kunskap och förståelse för hur män konstruerar genus på mansd...

  7. Huréaulita, Mn+2(5(H2O4[PO3(OH]2[PO4]2, de diferentes yacimientos del distrito pegmatítico Totoral, San Luis Hureaulite, Mn+2(5(H2O4[PO3(OH]2[PO4]2, from different deposits of the Totoral pegmatitic field, San Luis

    Directory of Open Access Journals (Sweden)

    J. Oyarzábal


    Full Text Available Huréaulita, un fosfato de manganeso (II hidratado, ha sido hallado en tres pegmatitas del distrito pegmatítico Totoral, sierra de San Luis, Argentina. En la pegmatita berilífera Santa Ana, localizada en el grupo Cerro La Torre, este fosfato se desarrolla, junto con eosforita, como pequeños cristales euhedrales prismáticos adosados sobre superficies de exfoliación de sicklerita, y deriva de la alteración hidrotermal de litiofilita primaria. En la pegmatita berilífera Ranquel, perteneciente al grupo Loma Alta, huréaulita se encuentra asociada con ferrisicklerita, purpurita, fosfosiderita, strengita, reddingita, meta-autunita, eosforita, vivianita e hidroxil-apatita, y ha sido formada por retrabajado hidrotermal de trifilita; los cristales son idiomorfos, tienen 5 mm de longitud y exhiben típicas formas monoclínicas. En la pegmatita litífera San Luis II, del grupo Paso del Rey, huréaulita forma cristales prismáticos cortos o delgadas costras rosadas intercrecidas entre fibras de dufrénita y en asociación con ferrisicklerita, bermanita y carbonato-fluorapatita, su génesis es atribuida a extrema alteración hidrotermal de litiofilita. En las diferentes yacencias estudiadas, huréaulita muestra similares características físicas y ópticas, pero distintos contenidos en Fe-Mg-Ca como sustituciones octaédricas, en relación con la secuencia de fosfatos secundarios con los que se asocia.Huréaulite, a hydrated manganese (II phosphate mineral, has been found in three different pegmatites of the Totoral pegmatitic field, San Luis ranges, Argentina. In Santa Ana mine, a berillium-bearing pegmatite located in the Cerro La Torre group, this phosphate mineral occurs associated with eosphorite as little prismatic idiomorphic crystals implanted on sicklerite exfoliation surfaces, and originated by the hydrothermal alteration of primary lithiophilite. In Ranquel, a berillium-bearing pegmatite located in the Loma Alta group, huréaulite is

  8. Mapping of p140Cap phosphorylation sites

    DEFF Research Database (Denmark)

    Repetto, Daniele; Aramu, Simona; Boeri Erba, Elisabetta;


    Protein phosphorylation tightly regulates specific binding of effector proteins that control many diverse biological functions of cells (e. g. signaling, migration and proliferation). p140Cap is an adaptor protein, specifically expressed in brain, testis and epithelial cells, that undergoes phosp...

  9. Protein-Tyrosine Phosphorylation in Bacillus subtilis

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Bottini, N.


    phosphorylation, indicating that this post-translational modifi cation could regulate physiological processes ranging from stress response and exopolysaccharide synthesis to DNA metabolism. Some interesting work in this fi eld was done in Bacillus subtilis , and we here present the current state of knowledge...

  10. Phosphorylated α-synuclein in Parkinson's disease

    DEFF Research Database (Denmark)

    Stewart, Tessandra; Sossi, Vesna; Aasly, Jan O;


    INTRODUCTION: α-Synuclein (α-syn) is a key protein in Parkinson's disease (PD), and one of its phosphorylated forms, pS129, is higher in PD patients than healthy controls. However, few studies have examined its levels in longitudinally collected cerebrospinal fluid (CSF) or in preclinical cases. ...

  11. Ion channels, phosphorylation and mammalian sperm capacitation

    Institute of Scientific and Technical Information of China (English)

    Pablo E Visconti; Dario Krapf; José Luis de la Vega-Beltrán; Juan José Acevedo; Alberto Darszon


    Sexually reproducing animals require an orchestrated communication between spermatozoa and the egg to generate a new individual. Capacitation, a maturational complex phenomenon that occurs in the female reproductive tract, renders spermatozoa capable of binding and fusing with the oocyte, and it is a requirement for mammalian fertilization. Capacitation encompasses plasma membrane reorganization, ion permeability regulation, cholesterol loss and changes in the phosphorylation state of many proteins. Novel tools to study sperm ion channels, image intracellular ionic changes and proteins with better spatial and temporal resolution, are unraveling how modifications in sperm ion transport and phosphorylation states lead to capacitation. Recent evidence indicates that two parallel pathways regulate phosphorylation events leading to capacitation, one of them requiring activation of protein kinase A and the second one involving inactivation of ser/thr phosphatases. This review examines the involvement of ion transporters and phosphorylation signaling processes needed for spermatozoa to achieve capacitation. Understanding the molecular mechanisms leading to fertilization is central for societies to deal with rising male infertility rates, to develop safe male gamete-based contraceptives and to preserve biodiversity through better assisted fertilization strategies.

  12. Transferases for alkylation, glycosylation and phosphorylation

    NARCIS (Netherlands)

    Auriol, D.; ter Halle, R.; Lefèvre, F.; Visser, D.F.; Gordon, G.E.R.; Bode, M.L.; Mathiba, K.; Brady, D.; De Winter, K.; Desmet, T.; Cerdobbel, A.; Soetaert, W.; van Herk, T.; Hartog, A.F.; Wever, R.; Brzezińska-rodak, M.; Klimek-Ochab, M.; Żymańczyk-Duda, E.; Mukherjee, J.; Gupta, M.N.; Yin, W.B.; Li, S.M.; Gruber-Khadjawi, M.; Whittall, J.; Sutton, P.W.


    This chapter contains sections titled: Industrial Production of Caffeic Acid-α-D-O-Glucoside Enzymatic Synthesis of 5-Methyluridine by Transglycosylation of Guanosine and Thymine Preparation and Use of Sucrose Phosphorylase as Cross-Linked Enzyme Aggregate (CLEA) Enzymatic Synthesis of Phosphorylate

  13. Phosphorylation sites within Ebola virus nucleoprotein

    Institute of Scientific and Technical Information of China (English)

    Sora; Yasri; Viroj; Wiwanitkit


    To understand the infection process, the viral multiplication and entry to the cell is widely studied. The Ebola virus nucleoprotein is the important problem for the pathological process. Focusing on the specific biological process, the post translational modification is needed. Here, the authors used the bioinformatics study to find the phosphorylation sites within the Ebola virus nucleoprotein and could identify many new sites.

  14. Ion channels, phosphorylation and mammalian sperm capacitation. (United States)

    Visconti, Pablo E; Krapf, Dario; de la Vega-Beltrán, José Luis; Acevedo, Juan José; Darszon, Alberto


    Sexually reproducing animals require an orchestrated communication between spermatozoa and the egg to generate a new individual. Capacitation, a maturational complex phenomenon that occurs in the female reproductive tract, renders spermatozoa capable of binding and fusing with the oocyte, and it is a requirement for mammalian fertilization. Capacitation encompasses plasma membrane reorganization, ion permeability regulation, cholesterol loss and changes in the phosphorylation state of many proteins. Novel tools to study sperm ion channels, image intracellular ionic changes and proteins with better spatial and temporal resolution, are unraveling how modifications in sperm ion transport and phosphorylation states lead to capacitation. Recent evidence indicates that two parallel pathways regulate phosphorylation events leading to capacitation, one of them requiring activation of protein kinase A and the second one involving inactivation of ser/thr phosphatases. This review examines the involvement of ion transporters and phosphorylation signaling processes needed for spermatozoa to achieve capacitation. Understanding the molecular mechanisms leading to fertilization is central for societies to deal with rising male infertility rates, to develop safe male gamete-based contraceptives and to preserve biodiversity through better assisted fertilization strategies.

  15. Protein Synthesis Initiation Factors: Phosphorylation and Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Karen S. Browning


    The initiation of the synthesis of proteins is a fundamental process shared by all living organisms. Each organism has both shared and unique mechanisms for regulation of this vital process. Higher plants provide for a major amount of fixation of carbon from the environment and turn this carbon into food and fuel sources for our use. However, we have very little understanding of how plants regulate the synthesis of the proteins necessary for these metabolic processes. The research carried out during the grant period sought to address some of these unknowns in the regulation of protein synthesis initiation. Our first goal was to determine if phosphorylation plays a significant role in plant initiation of protein synthesis. The role of phosphorylation, although well documented in mammalian protein synthesis regulation, is not well studied in plants. We showed that several of the factors necessary for the initiation of protein synthesis were targets of plant casein kinase and showed differential phosphorylation by the plant specific isoforms of this kinase. In addition, we identified and confirmed the phosphorylation sites in five of the plant initiation factors. Further, we showed that phosphorylation of one of these factors, eIF5, affected the ability of the factor to participate in the initiation process. Our second goal was to develop a method to make initiation factor 3 (eIF3) using recombinant methods. To date, we successfully cloned and expressed 13/13 subunits of wheat eIF3 in E. coli using de novo gene construction methods. The final step in this process is to place the subunits into three different plasmid operons for co-expression. Successful completion of expression of eIF3 will be an invaluable tool to the plant translation community.

  16. Neurofilament Phosphorylation during Development and Disease: Which Came First, the Phosphorylation or the Accumulation?

    Directory of Open Access Journals (Sweden)

    Jeffrey M. Dale


    Full Text Available Posttranslational modification of proteins is a ubiquitous cellular mechanism for regulating protein function. Some of the most heavily modified neuronal proteins are cytoskeletal proteins of long myelinated axons referred to as neurofilaments (NFs. NFs are type IV intermediate filaments (IFs that can be composed of four subunits, neurofilament heavy (NF-H, neurofilament medium (NF-M, neurofilament light (NF-L, and α-internexin. Within wild type axons, NFs are responsible for mediating radial growth, a process that determines axonal diameter. NFs are phosphorylated on highly conserved lysine-serine-proline (KSP repeats located along the C-termini of both NF-M and NF-H within myelinated axonal regions. Phosphorylation is thought to regulate aspects of NF transport and function. However, a key pathological hallmark of several neurodegenerative diseases is ectopic accumulation and phosphorylation of NFs. The goal of this review is to provide an overview of the posttranslational modifications that occur in both normal and diseased axons. We review evidence that challenges the role of KSP phosphorylation as essential for radial growth and suggests an alternative role for NF phosphorylation in myelinated axons. Furthermore, we demonstrate that regulation of NF phosphorylation dynamics may be essential to avoiding NF accumulations.

  17. BAD Phosphorylation: A Novel Link between Apoptosis and Cancer


    Polzien, Lisa


    BAD (Bcl-2 antagonist of cell death, Bcl-2 associated death promoter) is a pro-apoptotic member of the Bcl-2 protein family that is regulated by phosphorylation in response to survival factors. Although much attention has been devoted to the identification of phosphorylation sites in murine BAD (mBAD), little data are available with respect to phosphorylation of human BAD (hBAD) protein. In this work, we investigated the quantitative contribution of BAD targeting kinases in phosphorylating se...

  18. Protein phosphorylation in bcterial signaling and regulation

    KAUST Repository

    Mijakovic, Ivan


    In 2003, it was demonstrated for the first time that bacteria possess protein-tyrosine kinases (BY-kinases), capable of phosphorylating other cellular proteins and regulating their activity. It soon became apparent that these kinases phosphorylate a number of protein substrates, involved in different cellular processes. More recently, we found out that BY-kinases can be activated by several distinct protein interactants, and are capable of engaging in cross-phosphorylation with other kinases. Evolutionary studies based on genome comparison indicate that BY-kinases exist only in bacteria. They are non-essential (present in about 40% bacterial genomes), and their knockouts lead to pleiotropic phenotypes, since they phosphorylate many substrates. Surprisingly, BY-kinase genes accumulate mutations at an increased rate (non-synonymous substitution rate significantly higher than other bacterial genes). One direct consequence of this phenomenon is no detectable co-evolution between kinases and their substrates. Their promiscuity towards substrates thus seems to be “hard-wired”, but why would bacteria maintain such promiscuous regulatory devices? One explanation is the maintenance of BY-kinases as rapidly evolving regulators, which can readily adopt new substrates when environmental changes impose selective pressure for quick evolution of new regulatory modules. Their role is clearly not to act as master regulators, dedicated to triggering a single response, but they might rather be employed to contribute to fine-tuning and improving robustness of various cellular responses. This unique feature makes BY-kinases a potentially useful tool in synthetic biology. While other bacterial kinases are very specific and their signaling pathways insulated, BY-kinase can relatively easily be engineered to adopt new substrates and control new biosynthetic processes. Since they are absent in humans, and regulate some key functions in pathogenic bacteria, they are also very promising

  19. Phosphorylation sites within Ebola virus nucleoprotein

    Directory of Open Access Journals (Sweden)

    Sora Yasri


    Full Text Available To understand the infection process, the viral multiplication and entry to the cell is widely studied. The Ebola virus nucleoprotein is the important problem for the pathological process. Focusing on the specific biological process, the post translational modification is needed. Here, the authors used the bioinformatics study to find the phosphorylation sites within the Ebola virus nucleoprotein and could identify many new sites.

  20. Solid polymer electrolyte from phosphorylated chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Fauzi, Iqbal, E-mail:; Arcana, I Made, E-mail: [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)


    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.

  1. Linear motif atlas for phosphorylation-dependent signaling

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Jensen, LJ; Diella, F;


    Systematic and quantitative analysis of protein phosphorylation is revealing dynamic regulatory networks underlying cellular responses to environmental cues. However, matching these sites to the kinases that phosphorylate them and the phosphorylation-dependent binding domains that may subsequently...... sequence models of linear motifs. The atlas is available as a community resource (

  2. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Brunak, Søren; Olsen, JV


    ) or CDK2 were almost fully phosphorylated in mitotic cells. In particular, nuclear proteins and proteins involved in regulating metabolic processes have high phosphorylation site occupancy in mitosis. This suggests that these proteins may be inactivated by phosphorylation in mitotic cells....

  3. The in vivo phosphorylation sites of rat brain dynamin I

    DEFF Research Database (Denmark)

    Graham, Mark E; Anggono, Victor; Bache, Nicolai


    Dynamin I (dynI) is phosphorylated in synaptosomes at Ser(774) and Ser(778) by cyclin-dependent kinase 5 to regulate recruitment of syndapin I for synaptic vesicle endocytosis, and in PC12 cells on Ser(857). Hierarchical phosphorylation of Ser(774) precedes phosphorylation of Ser(778). In contrast...

  4. Phosphorylation of Astrin Regulates Its Kinetochore Function. (United States)

    Chung, Hee Jin; Park, Ji Eun; Lee, Nam Soo; Kim, Hongtae; Jang, Chang-Young


    The error-free segregation of chromosomes, which requires the precisely timed search and capture of chromosomes by spindles during early mitotic and meiotic cell division, is responsible for genomic stability and is achieved by the spindle assembly checkpoint in the metaphase-anaphase transition. Mitotic kinases orchestrate M phase events, such as the reorganization of cell architecture and kinetochore (KT) composition with the exquisite phosphorylation of mitotic regulators, to ensure timely and temporal progression. However, the molecular mechanisms underlying the changes of KT composition for stable spindle attachment during mitosis are poorly understood. Here, we show that the sequential action of the kinase Cdk1 and the phosphatase Cdc14A control spindle attachment to KTs. During prophase, the mitotic spindle protein Spag5/Astrin is transported into centrosomes by Kinastrin and phosphorylated at Ser-135 and Ser-249 by Cdk1, which, in prometaphase, is loaded onto the spindle and targeted to KTs. We also demonstrate that Cdc14A dephosphorylates Astrin, and therefore the overexpression of Cdc14A sequesters Astrin in the centrosome and results in aberrant chromosome alignment. Mechanistically, Plk1 acts as an upstream kinase for Astrin phosphorylation by Cdk1 and targeting phospho-Astrin to KTs, leading to the recruitment of outer KT components, such as Cenp-E, and the stable attachment of spindles to KTs. These comprehensive findings reveal a regulatory circuit for protein targeting to KTs that controls the KT composition change of stable spindle attachment and chromosome integrity.

  5. Control mechanisms in mitochondrial oxidative phosphorylation

    Institute of Scientific and Technical Information of China (English)

    Jana Hroudová; Zdeněk Fi(s)ar


    Distribution and activity of mitochondria are key factors in neuronal development, synaptic plasticity and axogenesis. The majority of energy sources, necessary for cellular functions, originate from oxidative phosphorylation located in the inner mitochondrial membrane. The adenosine-5'- triphosphate production is regulated by many control mechanism–firstly by oxygen, substrate level, adenosine-5'-diphosphate level, mitochondrial membrane potential, and rate of coupling and proton leak. Recently, these mechanisms have been implemented by "second control mechanisms," such as reversible phosphorylation of the tricarboxylic acid cycle enzymes and electron transport chain complexes, allosteric inhibition of cytochrome c oxidase, thyroid hormones, effects of fatty acids and uncoupling proteins. Impaired function of mitochondria is implicated in many diseases ranging from mitochondrial myopathies to bipolar disorder and schizophrenia. Mitochondrial dysfunctions are usually related to the ability of mitochondria to generate adenosine-5'-triphosphate in response to energy demands. Large amounts of reactive oxygen species are released by defective mitochondria, similarly, decline of antioxidative enzyme activities (e.g. in the elderly) enhances reactive oxygen species production. We reviewed data concerning neuroplasticity, physiology, and control of mitochondrial oxidative phosphorylation and reactive oxygen species production.

  6. Phosphorylation of erythrocyte membrane liberates calcium

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, V.P.S.; Brockerhoff, H.


    Phosphorylation of permeabilized erythrocyte ghost membranes with ATP results in an increase free calcium level as measured with the help of Ca/sup 2 +/ electrode and /sup 45/Ca. This effect could not be observed in the presence of p/sup -/ chloromercuric benzoate, an inhibitor of kinases. The rise in the free calcium due to phosphorylation of the membrane was accompanied by a decrease in the level of phosphatidylinositol (PI) and an increase in phosphatidylinositolmonophosphate (PIP) and phosphatidylinositolbisphosphate (PIP/sub 2/). These results support the proposal that an inositol shuttle, PI in equilibrium PIP in equilibrium PIP/sub 2/, operates to maintain the intracellular calcium concentration. The cation is believed to be sequestered in a cage formed by the head groups of two acidic phospholipid molecules, e.g., phosphatidylserine and phosphatidylinositol, with the participation of both PO and fatty acid ester CO groups. When the inositol group of such a cage is phosphorylated, inter-headgroup hydrogen bonding between the lipids is broken. As a result the cage opens and calcium is released.

  7. Tyrosine phosphorylation of the human guanylyl cyclase C receptor

    Indian Academy of Sciences (India)

    Rashna Bhandari; Roy Mathew; K Vijayachandra; Sandhya S Visweswariah


    Tyrosine phosphorylation events are key components of several cellular signal transduction pathways. This study describes a novel method for identification of substrates for tyrosine kinases. Co-expression of the tyrosine kinase EphB1 with the intracellular domain of guanylyl cyclase C (GCC) in Escherichia coli cells resulted in tyrosine phosphorylation of GCC, indicating that GCC is a potential substrate for tyrosine kinases. Indeed, GCC expressed in mammalian cells is tyrosine phosphorylated, suggesting that tyrosine phosphorylation may play a role in regulation of GCC signalling. This is the first demonstration of tyrosine phosphorylation of any member of the family of membrane-associated guanylyl cyclases.

  8. A strategy to quantitate global phosphorylation of bone matrix proteins. (United States)

    Sroga, Grażyna E; Vashishth, Deepak


    Current studies of protein phosphorylation focus primarily on the importance of specific phosphoproteins and their landscapes of phosphorylation in the regulation of different cellular functions. However, global changes in phosphorylation of extracellular matrix phosphoproteins measured "in bulk" are equally important. For example, correct global phosphorylation of different bone matrix proteins is critical to healthy tissue biomineralization. To study changes of bone matrix global phosphorylation, we developed a strategy that combines a procedure for in vitro phosphorylation/dephosphorylation of fully mineralized bone in addition to quantitation of the global phosphorylation levels of bone matrix proteins. For the first time, we show that it is possible to enzymatically phosphorylate/dephosphorylate fully mineralized bone originating from either cadaveric human donors or laboratory animals (mice). Using our strategy, we detected the difference in the global phosphorylation levels of matrix proteins isolated from wild-type and osteopontin knockout mice. We also observed that the global phosphorylation levels of matrix proteins isolated from human cortical bone were lower than those isolated from trabecular bone. The developed strategy has the potential to open new avenues for studies on the global phosphorylation of bone matrix proteins and their role in biomineralization as well for other tissues/cells and protein-based materials.

  9. A phosphorylation cascade controls the degradation of active SREBP1. (United States)

    Bengoechea-Alonso, Maria T; Ericsson, Johan


    Sterol regulatory element-binding proteins (SREBPs) are a family of transcription factors that regulates cholesterol and lipid metabolism. The active forms of these transcription factors are targeted by a number of post-translational modifications, including phosphorylation. Phosphorylation of Thr-426 and Ser-430 in SREBP1a creates a docking site for the ubiquitin ligase Fbw7, resulting in the degradation of the transcription factor. Here, we identify a novel phosphorylation site in SREBP1a, Ser-434, which regulates the Fbw7-dependent degradation of SREBP1. We demonstrate that both SREBP1a and SREBP1c are phosphorylated on this residue (Ser-410 in SREBP1c). Importantly, we demonstrate that the mature form of endogenous SREBP1 is phosphorylated on Ser-434. Glycogen synthase kinase-3 phosphorylates Ser-434, and the phosphorylation of this residue is attenuated in response to insulin signaling. Interestingly, phosphorylation of Ser-434 promotes the glycogen synthase kinase-3-dependent phosphorylation of Thr-426 and Ser-430 and destabilizes SREBP1. Consequently, mutation of Ser-434 blocks the interaction between SREBP1 and Fbw7 and attenuates Fbw7-dependent degradation of SREBP1. Importantly, insulin fails to enhance the levels of mature SREBP1 in cells lacking Fbw7. Thus, the degradation of mature SREBP1 is controlled by cross-talk between multiple phosphorylated residues in its C-terminal domain and the phosphorylation of Ser-434 could function as a molecular switch to control these processes.

  10. Multistep phosphorylation systems: tunable components of biological signaling circuits. (United States)

    Valk, Evin; Venta, Rainis; Ord, Mihkel; Faustova, Ilona; Kõivomägi, Mardo; Loog, Mart


    Multisite phosphorylation of proteins is a powerful signal processing mechanism that plays crucial roles in cell division and differentiation as well as in disease. We recently demonstrated a novel phenomenon in cell cycle regulation by showing that cyclin-dependent kinase-dependent multisite phosphorylation of a crucial substrate is performed sequentially in the N-to-C terminal direction along the disordered protein. The process is controlled by key parameters, including the distance between phosphorylation sites, the distribution of serines and threonines in sites, and the position of docking motifs. According to our model, linear patterns of phosphorylation along disordered protein segments determine the signal-response function of a multisite phosphorylation switch. Here we discuss the general advantages and engineering principles of multisite phosphorylation networks as processors of kinase signals. We also address the idea of using the mechanistic logic of linear multisite phosphorylation networks to design circuits for synthetic biology applications.

  11. Calcium regulation of oxidative phosphorylation in rat skeletal muscle mitochondria. (United States)

    Kavanagh, N I; Ainscow, E K; Brand, M D


    Activation of oxidative phosphorylation by physiological levels of calcium in mitochondria from rat skeletal muscle was analysed using top-down elasticity and regulation analysis. Oxidative phosphorylation was conceptually divided into three subsystems (substrate oxidation, proton leak and phosphorylation) connected by the membrane potential or the protonmotive force. Calcium directly activated the phosphorylation subsystem and (with sub-saturating 2-oxoglutarate) the substrate oxidation subsystem but had no effect on the proton leak kinetics. The response of mitochondria respiring on 2-oxoglutarate at two physiological concentrations of free calcium was quantified using control and regulation analysis. The partial integrated response coefficients showed that direct stimulation of substrate oxidation contributed 86% of the effect of calcium on state 3 oxygen consumption, and direct activation of the phosphorylation reactions caused 37% of the increase in phosphorylation flux. Calcium directly activated phosphorylation more strongly than substrate oxidation (78% compared to 45%) to achieve homeostasis of mitochondrial membrane potential during large increases in flux.

  12. Phosphorylated testis-specific serine/threonine kinase 4 may phosphorylate Crem at Ser-117. (United States)

    Fu, Guolong; Wei, Youheng; Wang, Xiaoli; Yu, Long


    We aimed to investigate the internal existence status of testis-specific serine/threonine kinase 4 (Tssk4) and the interaction of Tssk4 and Cre-responsive element modulator (Crem). The internal existence status of Tssk4 in testis of mice was detected using western blotting and dephosphorylation method. The interaction of Tssk4 and Crem was analyzed by western blotting, immunohistochemistry, immunofluorescence, in vitro co-immunoprecipitation assays, and in vitro kinase assay. The results revealed that Tssk4 existed in testis both in phosphorylation and unphosphorylation status by a temporal manner with the development of testis. Immunofluorescence results showed that Tssk4 had identical distribution pattern with Crem in testis, which was utterly different to the localization of Cre-responsive element binding (Creb). In conclusion, our study demonstrated that phosphorylated Tssk4 might participate in testis genes expressions by phosphorylating Crem at Ser-117.

  13. Genetic Manipulation of Neurofilament Protein Phosphorylation. (United States)

    Jones, Maria R; Villalón, Eric; Garcia, Michael L


    Neurofilament biology is important to understanding structural properties of axons, such as establishment of axonal diameter by radial growth. In order to study the function of neurofilaments, a series of genetically modified mice have been generated. Here, we describe a brief history of genetic modifications used to study neurofilaments, as well as an overview of the steps required to generate a gene-targeted mouse. In addition, we describe steps utilized to analyze neurofilament phosphorylation status using immunoblotting. Taken together, these provide comprehensive analysis of neurofilament function in vivo, which can be applied to many systems.

  14. Phosphorylation of eIF4E Confers Resistance to Cellular Stress and DNA-Damaging Agents through an Interaction with 4E-T: A Rationale for Novel Therapeutic Approaches.

    Directory of Open Access Journals (Sweden)

    Alba Martínez

    Full Text Available Phosphorylation of the eukaryotic translation initiation factor eIF4E is associated with malignant progression and poor cancer prognosis. Accordingly, here we have analyzed the association between eIF4E phosphorylation and cellular resistance to oxidative stress, starvation, and DNA-damaging agents in vitro. Using immortalized and cancer cell lines, retroviral expression of a phosphomimetic (S209D form of eIF4E, but not phospho-dead (S209A eIF4E or GFP control, significantly increased cellular resistance to stress induced by DNA-damaging agents (cisplatin, starvation (glucose+glutamine withdrawal, and oxidative stress (arsenite. De novo accumulation of eIF4E-containing cytoplasmic bodies colocalizing with the eIF4E-binding protein 4E-T was observed after expression of phosphomimetic S209D, but not S209A or wild-type eIF4E. Increased resistance to cellular stress induced by eIF4E-S209D was lost upon knockdown of endogenous 4E-T or use of an eIF4E-W73A-S209D mutant unable to bind 4E-T. Cancer cells treated with the Mnk1/2 inhibitor CGP57380 to prevent eIF4E phosphorylation and mouse embryonic fibroblasts derived from Mnk1/2 knockout mice were also more sensitive to arsenite and cisplatin treatment. Polysome analysis revealed an 80S peak 2 hours after arsenite treatment in cells overexpressing phosphomimetic eIF4E, indicating translational stalling. Nonetheless, a selective increase was observed in the synthesis of some proteins (cyclin D1, HuR, and Mcl-1. We conclude that phosphorylation of eIF4E confers resistance to various cell stressors and that a direct interaction or regulation of 4E-T by eIF4E is required. Further delineation of this process may identify novel therapeutic avenues for cancer treatment, and these results support the use of modern Mnk1/2 inhibitors in conjunction with standard therapy.

  15. Phosphorylation regulates coilin activity and RNA association

    Directory of Open Access Journals (Sweden)

    Hanna J. Broome


    The Cajal body (CB is a domain of concentrated components found within the nucleus of cells in an array of species that is functionally important for the biogenesis of telomerase and small nuclear ribonucleoproteins. The CB is a dynamic structure whose number and size change during the cell cycle and is associated with other nuclear structures and gene loci. Coilin, also known as the marker protein for the CB, is a phosphoprotein widely accepted for its role in maintaining CB integrity. Recent studies have been done to further elucidate functional activities of coilin apart from its structural role in the CB in an attempt to explore the rationale for coilin expression in cells that have few CBs or lack them altogether. Here we show that the RNA association profile of coilin changes in mitosis with respect to that during interphase. We provide evidence of transcriptional and/or processing dysregulation of several CB-related RNA transcripts as a result of ectopic expression of both wild-type and phosphomutant coilin proteins. We also show apparent changes in transcription and/or processing of these transcripts upon coilin knockdown in both transformed and primary cell lines. Additionally, we provide evidence of specific coilin RNase activity regulation, on both U2 and hTR transcripts, by phosphorylation of a single residue, serine 489. Collectively, these results point to additional functions for coilin that are regulated by phosphorylation.

  16. Prebiotic Phosphorylation Reactions on the Early Earth

    Directory of Open Access Journals (Sweden)

    Maheen Gull


    Full Text Available Phosphorus (P is an essential element for life. It occurs in living beings in the form of phosphate, which is ubiquitous in biochemistry, chiefly in the form of C-O-P (carbon, oxygen and phosphorus, C-P, or P-O-P linkages to form life. Within prebiotic chemistry, several key questions concerning phosphorus chemistry have developed: what were the most likely sources of P on the early Earth? How did it become incorporated into the biological world to form the P compounds that life employs today? Can meteorites be responsible for the delivery of P? What were the most likely solvents on the early Earth and out of those which are favorable for phosphorylation? Or, alternatively, were P compounds most likely produced in relatively dry environments? What were the most suitable temperature conditions for phosphorylation? A route to efficient formation of biological P compounds is still a question that challenges astrobiologists. This article discusses these important issues related to the origin of biological P compounds.

  17. Modelling the Krebs cycle and oxidative phosphorylation. (United States)

    Korla, Kalyani; Mitra, Chanchal K


    The Krebs cycle and oxidative phosphorylation are the two most important sets of reactions in a eukaryotic cell that meet the major part of the total energy demands of a cell. In this paper, we present a computer simulation of the coupled reactions using open source tools for simulation. We also show that it is possible to model the Krebs cycle with a simple black box with a few inputs and outputs. However, the kinetics of the internal processes has been modelled using numerical tools. We also show that the Krebs cycle and oxidative phosphorylation together can be combined in a similar fashion - a black box with a few inputs and outputs. The Octave script is flexible and customisable for any chosen set-up for this model. In several cases, we had no explicit idea of the underlying reaction mechanism and the rate determining steps involved, and we have used the stoichiometric equations that can be easily changed as and when more detailed information is obtained. The script includes the feedback regulation of the various enzymes of the Krebs cycle. For the electron transport chain, the pH gradient across the membrane is an essential regulator of the kinetics and this has been modelled empirically but fully consistent with experimental results. The initial conditions can be very easily changed and the simulation is potentially very useful in a number of cases of clinical importance.

  18. Chemoselective synthesis and analysis of naturally occurring phosphorylated cysteine peptides (United States)

    Bertran-Vicente, Jordi; Penkert, Martin; Nieto-Garcia, Olaia; Jeckelmann, Jean-Marc; Schmieder, Peter; Krause, Eberhard; Hackenberger, Christian P. R.


    In contrast to protein O-phosphorylation, studying the function of the less frequent N- and S-phosphorylation events have lagged behind because they have chemical features that prevent their manipulation through standard synthetic and analytical methods. Here we report on the development of a chemoselective synthetic method to phosphorylate Cys side-chains in unprotected peptides. This approach makes use of a reaction between nucleophilic phosphites and electrophilic disulfides accessible by standard methods. We achieve the stereochemically defined phosphorylation of a Cys residue and verify the modification using electron-transfer higher-energy dissociation (EThcD) mass spectrometry. To demonstrate the use of the approach in resolving biological questions, we identify an endogenous Cys phosphorylation site in IICBGlc, which is known to be involved in the carbohydrate uptake from the bacterial phosphotransferase system (PTS). This new chemical and analytical approach finally allows further investigating the functions and significance of Cys phosphorylation in a wide range of crucial cellular processes.

  19. Control of Collagen Triple Helix Stability by Phosphorylation. (United States)

    Acevedo-Jake, Amanda M; Ngo, Daniel H; Hartgerink, Jeffrey D


    The phosphorylation of the collagen triple helix plays an important role in collagen synthesis, assembly, signaling, and immune response, although no reports detailing the effect this modification has on the structure and stability of the triple helix exist. Here we investigate the changes in stability and structure resulting from the phosphorylation of collagen. Additionally, the formation of pairwise interactions between phosphorylated residues and lysine is examined. In all tested cases, phosphorylation increases helix stability. When charged-pair interactions are possible, stabilization via phosphorylation can play a very large role, resulting inasmuch as a 13.0 °C increase in triple helix stability. Two-dimensional NMR and molecular modeling are used to study the local structure of the triple helix. Our results suggest a mechanism of action for phosphorylation in the regulation of collagen and also expand upon our understanding of pairwise amino acid stabilization of the collagen triple helix.

  20. Chemical Approaches to Studying Labile Amino Acid Phosphorylation. (United States)

    Marmelstein, Alan M; Moreno, Javier; Fiedler, Dorothea


    Phosphorylation of serine, threonine, and tyrosine residues is the archetypal posttranslational modification of proteins. While phosphorylation of these residues has become standard textbook knowledge, phosphorylation of other amino acid side chains is underappreciated and minimally characterized by comparison. This disparity is rooted in the relative instability of these chemically distinct amino acid side chain moieties, namely phosphoramidates, acyl phosphates, thiophosphates, and phosphoanhydrides. In the case of the O-phosphorylated amino acids, synthetic constructs were critical to assessing their stability and developing tools for their study. As the chemical biology community has become more aware of these alternative phosphorylation sites, methodology has been developed for the synthesis of well-characterized standards and close mimics of these phosphorylated amino acids as well. In this article, we review the synthetic chemistry that is a prerequisite to progress in this field.

  1. Phosphorylation modifies the molecular stability of β-amyloid deposits (United States)

    Rezaei-Ghaleh, Nasrollah; Amininasab, Mehriar; Kumar, Sathish; Walter, Jochen; Zweckstetter, Markus


    Protein aggregation plays a crucial role in neurodegenerative diseases. A key feature of protein aggregates is their ubiquitous modification by phosphorylation. Little is known, however, about the molecular consequences of phosphorylation of protein aggregates. Here we show that phosphorylation of β-amyloid at serine 8 increases the stability of its pathogenic aggregates against high-pressure and SDS-induced dissociation. We further demonstrate that phosphorylation results in an elevated number of hydrogen bonds at the N terminus of β-amyloid, the region that is critically regulated by a variety of post-translational modifications. Because of the increased lifetime of phosphorylated β-amyloid aggregates, phosphorylation can promote the spreading of β-amyloid in Alzheimer pathogenesis. Our study suggests that regulation of the molecular stability of protein aggregates by post-translational modifications is a crucial factor for disease progression in the brain.

  2. Synthesis of O-Phosphorylated Oligopeptides Using Phosphoramidite

    Institute of Scientific and Technical Information of China (English)


    Reversible protein phosphorylation is of great importance in the regulation of many cellular processes. Structurally well-defined compounds are needed for the study of the roles of the phospho-proteins in biological processes. In this paper, O-phosphorylated oligopeptides were synthesized using bis-alkyloxy-N,N-dialkylphosphoramidite reacting with the oligopeptide followed by oxidation. Many hydroxyl groups in oligopeptides can be phosphorylated in one step.

  3. Constitutive phosphorylation of Shc proteins in human tumors

    DEFF Research Database (Denmark)

    Pelicci, G; Lanfrancone, L; Salcini, A E


    cells. In tumor cells with known TK gene alterations Shc proteins were constitutively phosphorylated and complexed with the activated TK. No constitutive Shc phosphorylation was found in primary cell cultures and normal tissues. In 14 of 27 tumor cell lines with no reported TK alterations, Shc proteins...... activated TKs and that the analysis of Shc phosphorylation allow the identification of tumors with constitutive TK activation....

  4. A New Intermolecular Phosphoryl Transfer between Serine and Histidine Residues

    Institute of Scientific and Technical Information of China (English)

    SU,Yu-Qian; NIU,Ming-Yu; CAO,Shu-Xia; ZHANG,Jian-Chen; QU,Ling-Bo; LIAO,Xin-Cheng; ZHAO,Yu-Fen


    @@ Phosphoryl transfer constitutes one of the most important reactions in functionalized molecules, bioorganic chemistry and biochemistry.[1] The transformations are involved in diverse processes, such as activated state change of phosphorus, DNA/RNA synthesis, energy metabolism and signal transduction. So, phosphoryl transfer reaction which can be performed by either intramolecular or intermolecular phosphorylation and dephosphorylation mechanism has been investigated by many scientists in wide fields.

  5. Evolutionary constraints of phosphorylation in eukaryotes, prokaryotes, and mitochondria. (United States)

    Gnad, Florian; Forner, Francesca; Zielinska, Dorota F; Birney, Ewan; Gunawardena, Jeremy; Mann, Matthias


    High accuracy mass spectrometry has proven to be a powerful technology for the large scale identification of serine/threonine/tyrosine phosphorylation in the living cell. However, despite many described phosphoproteomes, there has been no comparative study of the extent of phosphorylation and its evolutionary conservation in all domains of life. Here we analyze the results of phosphoproteomics studies performed with the same technology in a diverse set of organisms. For the most ancient organisms, the prokaryotes, only a few hundred proteins have been found to be phosphorylated. Applying the same technology to eukaryotic species resulted in the detection of thousands of phosphorylation events. Evolutionary analysis shows that prokaryotic phosphoproteins are preferentially conserved in all living organisms, whereas-site specific phosphorylation is not. Eukaryotic phosphosites are generally more conserved than their non-phosphorylated counterparts (with similar structural constraints) throughout the eukaryotic domain. Yeast and Caenorhabditis elegans are two exceptions, indicating that the majority of phosphorylation events evolved after the divergence of higher eukaryotes from yeast and reflecting the unusually large number of nematode-specific kinases. Mitochondria present an interesting intermediate link between the prokaryotic and eukaryotic domains. Applying the same technology to this organelle yielded 174 phosphorylation sites mapped to 74 proteins. Thus, the mitochondrial phosphoproteome is similarly sparse as the prokaryotic phosphoproteomes. As expected from the endosymbiotic theory, phosphorylated as well as non-phosphorylated mitochondrial proteins are significantly conserved in prokaryotes. However, mitochondrial phosphorylation sites are not conserved throughout prokaryotes, consistent with the notion that serine/threonine phosphorylation in prokaryotes occurred relatively recently in evolution. Thus, the phosphoproteome reflects major events in the

  6. A Crystallographic Snapshot of Tyrosine Trans-phosphorylation in Action

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Xu, C; Ma, J; Eliseenkova, A; Li, W; Pollock, P; Pitteloud, N; Miller, W; Neubert, T; Mohammadi, M


    Tyrosine trans-phosphorylation is a key event in receptor tyrosine kinase signaling, yet, the structural basis for this process has eluded definition. Here, we present the crystal structure of the FGF receptor 2 kinases caught in the act of trans-phosphorylation of Y769, the major C-terminal phosphorylation site. The structure reveals that enzyme- and substrate-acting kinases engage each other through elaborate and specific interactions not only in the immediate vicinity of Y769 and the enzyme active site, but also in regions that are as much of 18 {angstrom} away from D626, the catalytic base in the enzyme active site. These interactions lead to an unprecedented level of specificity and precision during the trans-phosphorylation on Y769. Time-resolved mass spectrometry analysis supports the observed mechanism of trans-phosphorylation. Our data provide a molecular framework for understanding the mechanism of action of Kallmann syndrome mutations and the order of trans-phosphorylation reactions in FGFRs. We propose that the salient mechanistic features of Y769 trans-phosphorylation are applicable to trans-phosphorylation of the equivalent major phosphorylation sites in many other RTKs.

  7. A grammar inference approach for predicting kinase specific phosphorylation sites. (United States)

    Datta, Sutapa; Mukhopadhyay, Subhasis


    Kinase mediated phosphorylation site detection is the key mechanism of post translational mechanism that plays an important role in regulating various cellular processes and phenotypes. Many diseases, like cancer are related with the signaling defects which are associated with protein phosphorylation. Characterizing the protein kinases and their substrates enhances our ability to understand the mechanism of protein phosphorylation and extends our knowledge of signaling network; thereby helping us to treat such diseases. Experimental methods for predicting phosphorylation sites are labour intensive and expensive. Also, manifold increase of protein sequences in the databanks over the years necessitates the improvement of high speed and accurate computational methods for predicting phosphorylation sites in protein sequences. Till date, a number of computational methods have been proposed by various researchers in predicting phosphorylation sites, but there remains much scope of improvement. In this communication, we present a simple and novel method based on Grammatical Inference (GI) approach to automate the prediction of kinase specific phosphorylation sites. In this regard, we have used a popular GI algorithm Alergia to infer Deterministic Stochastic Finite State Automata (DSFA) which equally represents the regular grammar corresponding to the phosphorylation sites. Extensive experiments on several datasets generated by us reveal that, our inferred grammar successfully predicts phosphorylation sites in a kinase specific manner. It performs significantly better when compared with the other existing phosphorylation site prediction methods. We have also compared our inferred DSFA with two other GI inference algorithms. The DSFA generated by our method performs superior which indicates that our method is robust and has a potential for predicting the phosphorylation sites in a kinase specific manner.

  8. Phosphorylation of proteins during human myometrial contractions: A phosphoproteomic approach. (United States)

    Hudson, Claire A; López Bernal, Andrés


    Phasic myometrial contractility is a key component of human parturition and the contractions are driven by reversible phosphorylation of myosin light chains catalyzed by the calcium (Ca(2+))-dependent enzyme myosin light chain kinase (MYLK). Other yet unknown phosphorylation or de-phosphorylation events may contribute to myometrial contraction and relaxation. In this study we have performed a global phosphoproteomic analysis of human myometrial tissue using tandem mass tagging to detect changes in the phosphorylation status of individual myometrial proteins during spontaneous and oxytocin-driven phasic contractions. We were able to detect 22 individual phosphopeptides whose relative ratio changed (fold > 2 or contraction. The most significant changes in phosphorylation were to MYLK on serine 1760, a site associated with reductions in calmodulin binding and subsequent kinase activity. Phosphorylated MYLK (ser1760) increased significantly during spontaneous (9.83 ± 3.27 fold, P contractions and we were able to validate these data using immunoblotting. Pathway analysis suggested additional proteins involved in calcium signalling, cGMP-PRKG signalling, adrenergic signalling and oxytocin signalling were also phosphorylated during contractions. This study demonstrates that a global phosphoproteomic analysis of myometrial tissue is a sensitive approach to detect changes in the phosphorylation of proteins during myometrial contractions, and provides a platform for further validation of these changes and for identification of their functional significance.

  9. Intermolecular Phosphoryl Transfer Between Serine and Histidine Residues

    Institute of Scientific and Technical Information of China (English)

    Yu Qian SU; Ming Yu NIU; Shu Xia CAO; Jian Chen ZHANG; Yu Fen ZHAO


    A novel intermolecular phosphoryl transfer from O-trimethylsilyl-N-(O, O-diisopropyl) phosphoryl serine trimethylsilyl ester to N, N'-bis(trimethylsilyl) histidine trimethylsilyl ester was studied through electrospray ionization mass spectrometry (ESI-MS). It was proposed that the transfer reaction went through penta-coordinated phosphorus intermediate.

  10. Phosphorylation of the Epstein-Barr virus nuclear antigen 2

    DEFF Research Database (Denmark)

    Grässer, F A; Göttel, S; Haiss, P


    A major in vivo phosphorylation site of the Epstein-Barr virus nuclear antigen 2 (EBNA-2) was found to be localized at the C-terminus of the protein. In vitro phosphorylation studies using casein kinase 1 (CK-1) and casein kinase 2 (CK-2) revealed that EBNA-2 is a substrate for CK-2, but not for CK......-1. The CK-2 specific phosphorylation site was localized in the 140 C-terminal amino acids using a recombinant trpE-C-terminal fusion protein. In a similar experiment, the 58 N-terminal amino acids expressed as a recombinant trpE-fusion protein were not phosphorylated. Phosphorylation of a synthetic...

  11. Sequential phosphorylation of GRASP65 during mitotic Golgi disassembly

    Directory of Open Access Journals (Sweden)

    Danming Tang


    GRASP65 phosphorylation during mitosis and dephosphorylation after mitosis are required for Golgi disassembly and reassembly during the cell cycle. At least eight phosphorylation sites on GRASP65 have been identified, but whether they are modified in a coordinated fashion during mitosis is so far unknown. In this study, we raised phospho-specific antibodies that recognize phosphorylated T220/T224, S277 and S376 residues of GRASP65, respectively. Biochemical analysis showed that cdc2 phosphorylates all three sites, while plk1 enhances the phosphorylation. Microscopic studies using these antibodies for double and triple labeling demonstrate sequential phosphorylation and dephosphorylation during the cell cycle. S277 and S376 are phosphorylated from late G2 phase through metaphase until telophase when the new Golgi is reassembled. T220/224 is not modified until prophase, but is highly modified from prometaphase to anaphase. In metaphase, phospho-T220/224 signal localizes on both Golgi haze and mitotic Golgi clusters that represent dispersed Golgi vesicles and Golgi remnants, respectively, while phospho-S277 and S376 labeling is more concentrated on mitotic Golgi clusters. Expression of a phosphorylation-resistant GRASP65 mutant T220A/T224A inhibited mitotic Golgi fragmentation to a much larger extent than the expression of the S277A and S376A mutants. In cytokinesis, T220/224 dephosphorylation occurs prior to that of S277, but after S376. This study provides evidence that GRASP65 is sequentially phosphorylated and dephosphorylated during mitosis at different sites to orchestrate Golgi disassembly and reassembly during cell division, with phosphorylation of the T220/224 site being most critical in the process.

  12. Phosphoryl functionalized mesoporous silica for uranium adsorption (United States)

    Xue, Guo; Yurun, Feng; Li, Ma; Dezhi, Gao; Jie, Jing; Jincheng, Yu; Haibin, Sun; Hongyu, Gong; Yujun, Zhang


    Phosphoryl functionalized mesoporous silica (TBP-SBA-15) was synthesized by modified mesoporous silica with γ-amino propyl triethoxy silane and tributyl phosphate. The obtained samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle X-ray diffraction (SAXRD), thermo-gravimetric/differential thermalanalyzer (TG/DTA), N2 adsorption-desorption (BET) and Fourier transform infrared spectroscopy (FT-IR) techniques. Results showed that TBP-SBA-15 had large surface areas with ordered channel structure. Moreover, the effects of adsorption time, sorbent dose, solution pH, initial uranium concentration and temperature on the uranium adsorption behaviors were investigated. TBP-SBA-15 showed a high uranium adsorption capacity in a broad range of pH values. The U(VI) adsorption rate of TBP-SBA-15 was fast and nearly achieved completion in 10 min with the sorbent dose of 1 g/L. The U(VI) adsorption of TBP-SBA-15 followed the pseudo-second-order kinetic model and Freundlich isotherm model, indicating that the process was belonged to chemical adsorption. Furthermore, the thermodynamic parameters (ΔG0, ΔH0 and ΔS0) confirmed that the adsorption process was endothermic and spontaneous.

  13. Phosphorylation sites of Arabidopsis MAP Kinase Substrate 1 (MKS1)

    DEFF Research Database (Denmark)

    Caspersen, M.B.; Qiu, J.-L.; Zhang, X.


    The Arabidopsis MAP kinase 4 (MPK4) substrate MKS1 was expressed in Escherichia coli and purified, full-length, 6x histidine (His)-tagged MKS1 was phosphorylated in vitro by hemagglutinin (HA)-tagged MPK4 immuno-precipitated from plants. MKS1 phosphorylation was initially verified by electrophore......The Arabidopsis MAP kinase 4 (MPK4) substrate MKS1 was expressed in Escherichia coli and purified, full-length, 6x histidine (His)-tagged MKS1 was phosphorylated in vitro by hemagglutinin (HA)-tagged MPK4 immuno-precipitated from plants. MKS1 phosphorylation was initially verified...... phosphopeptide detection. As MAP kinases generally phosphorylate serine or threonine followed by proline (Ser/Thr-Pro), theoretical masses of potentially phosphorylated peptides were calculated and mass spectrometric peaks matching these masses were fragmented and searched for a neutral-loss signal...... at approximately 98 Da indicative of phosphorylation. Additionally, mass spectrometric peaks present in the MPK4-treated MKS1, but not in the control peptide map of untreated MKS1, were fragmented. Fragmentation spectra were subjected to a MASCOT database search which identified three of the twelve Ser-Pro serine...

  14. Expression and phosphorylation of neurofilament protein in different neuronal tissues

    Institute of Scientific and Technical Information of China (English)


    The neurofilament proteins (NFPs) from different neuronal tissues including Alzheimer and Huntington disease gray matter, rat brain gray, white matter and spinal cord were separated biochemically into two major fractions. A systematic investigation on the distribution, expression and phosphorylation of NFPs in those fractions was undertaken in the present study. It was found that only non-phosphorylated NF-H and NF-M, but not NF-L subunit were detected in Alzheimer brain gray matter high speed supernatant, whereas all neurofilament subunits including non-phosphorylated and phosphorylated were measured in high speed pellet fraction of the same tissue. The hyperphosphorylation of NF-H and NF-M in Alzheimer brain was shown by phosphorylation dependent monoclonal antibodies SMI31 and SMI34. This hyperphosphorylation was confirmed by non-phosphorylation dependent antibody SMI32 with dephosphosphorylation of the samples. Furthermore, an increased amount of NF-H, NH-M and NF-L, detected by SMI33 and NR4 respectively, was also observed in Alzheimer samples, in which the elevation in NF-L was significant. A significantly different immunoblot patterns in distribution, expression and phosphorylation were determined in various position of the neural system and alternative fractions. To our best knowledge, this is the first data shown definite abnormality of NFPs in Alzheimer disease. The information obtained in the present study will be extremely valuable in further study of the proteins both in physiological and pathological conditions.

  15. Cytochrome C is tyrosine 97 phosphorylated by neuroprotective insulin treatment.

    Directory of Open Access Journals (Sweden)

    Thomas H Sanderson

    Full Text Available Recent advancements in isolation techniques for cytochrome c (Cytc have allowed us to discover post-translational modifications of this protein. We previously identified two distinct tyrosine phosphorylated residues on Cytc in mammalian liver and heart that alter its electron transfer kinetics and the ability to induce apoptosis. Here we investigated the phosphorylation status of Cytc in ischemic brain and sought to determine if insulin-induced neuroprotection and inhibition of Cytc release was associated with phosphorylation of Cytc. Using an animal model of global brain ischemia, we found a ∼50% decrease in neuronal death in the CA1 hippocampal region with post-ischemic insulin administration. This insulin-mediated increase in neuronal survival was associated with inhibition of Cytc release at 24 hours of reperfusion. To investigate possible changes in the phosphorylation state of Cytc we first isolated the protein from ischemic pig brain and brain that was treated with insulin. Ischemic brains demonstrated no detectable tyrosine phosphorylation. In contrast Cytc isolated from brains treated with insulin showed robust phosphorylation of Cytc, and the phosphorylation site was unambiguously identified as Tyr97 by immobilized metal affinity chromatography/nano-liquid chromatography/electrospray ionization mass spectrometry. We next confirmed these results in rats by in vivo application of insulin in the absence or presence of global brain ischemia and determined that Cytc Tyr97-phosphorylation is strongly induced under both conditions but cannot be detected in untreated controls. These data suggest a mechanism whereby Cytc is targeted for phosphorylation by insulin signaling, which may prevent its release from the mitochondria and the induction of apoptosis.

  16. Acute exercise modifies titin phosphorylation and increases cardiac myofilament stiffness

    Directory of Open Access Journals (Sweden)

    Anna Eliane Müller


    Full Text Available Titin-based myofilament stiffness is largely modulated by phosphorylation of its elastic I-band regions N2-Bus (decreases passive stiffness, PT and PEVK (increases PT. Here, we tested the hypothesis that acute exercise changes titin phosphorylation and modifies myofilament stiffness. Adult rats were exercised on a treadmill for 15min, untrained animals served as controls. Titin phosphorylation was determined by Western blot analysis using phosphospecific antibodies to Ser4099 and Ser4010 in the N2-Bus region (PKG and PKA-dependent. respectively, and to Ser11878 and Ser 12022 in the PEVK region (PKCα and CaMKIIδ-dependent, respectively. Passive tension was determined by step-wise stretching of isolated skinned cardiomyocytes to sarcomere length ranging from 1.9-2.4µm and showed a significantly increased PT from exercised samples, compared to controls. In cardiac samples titin N2-Bus phosphorylation was significantly decreased by 40% at Ser4099, however, no significant changes were observed at Ser4010. PEVK phosphorylation at Ser11878 was significantly increased, which is probably mediated by the observed exercise-induced increase in PKCα activity. Interestingly, relative phosphorylation of Ser12022 was substantially decreased in the exercised samples. Surprisingly, in skeletal samples from acutely exercised animals we detected a significant decrease in PEVK phosphorylation at Ser11878 and an increase in Ser12022 phosphorylation; however, PKCα activity remained unchanged. In summary, our data show that a single exercise bout of 15 min affects titin domain phosphorylation and titin-based myocyte stiffness with obviously divergent effects in cardiac and skeletal muscle tissues. The observed changes in titin stiffness could play an important role in adapting the passive and active properties of the myocardium and the skeletal muscle to increased physical activity.

  17. PKC isoforms interact with and phosphorylate DNMT1

    Directory of Open Access Journals (Sweden)

    Pradhan Sriharsa


    Full Text Available Abstract Background DNA methyltransferase 1 (DNMT1 has been shown to be phosphorylated on multiple serine and threonine residues, based on cell type and physiological conditions. Although recent studies have suggested that protein kinase C (PKC may be involved, the individual contribution of PKC isoforms in their ability to phosphorylate DNMT1 remains unknown. The PKC family consists of at least 12 isoforms that possess distinct differences in structure, substrate requirement, expression and localization. Results Here we show that PKCα, βI, βII, δ, γ, η, ζ and μ preferentially phosphorylate the N-terminal domain of human DNMT1. No such phosphorylation of DNMT1 was observed with PKCε. Using PKCζ as a prototype model, we also found that PKC physically interacts with and phosphorylates DNMT1. In vitro phosphorylation assays conducted with recombinant fragments of DNMT1 showed that PKCζ preferentially phosphorylated the N-terminal region of DNMT1. The interaction of PKCζ with DNMT1 was confirmed by GST pull-down and co-immunoprecipitation experiments. Co-localization experiments by fluorescent microscopy further showed that endogenous PKCζ and DNMT1 were present in the same molecular complex. Endogenous PKCζ activity was also detected when DNMT1 was immunoprecipitated from HEK-293 cells. Overexpression of both PKCζ and DNMT1 in HEK-293 cells, but not of either alone, reduced the methylation status of genes distributed across the genome. Moreover, in vitro phosphorylation of DNMT1 by PKCζ reduced its methytransferase activity. Conclusions Our results indicate that phosphorylation of human DNMT1 by PKC is isoform-specific and provides the first evidence of cooperation between PKCζ and DNMT1 in the control of the DNA methylation patterns of the genome.

  18. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns

    DEFF Research Database (Denmark)

    Larsen, Martin Røssel; Thingholm, Tine E; Jensen, Ole N


    Reversible phosphorylation of proteins regulates the majority of all cellular processes, e.g. proliferation, differentiation, and apoptosis. A fundamental understanding of these biological processes at the molecular level requires characterization of the phosphorylated proteins. Phosphorylation i...

  19. Rosamines targeting the cancer oxidative phosphorylation pathway.

    Directory of Open Access Journals (Sweden)

    Siang Hui Lim

    Full Text Available Reprogramming of energy metabolism is pivotal to cancer, so mitochondria are potential targets for anticancer therapy. A prior study has demonstrated the anti-proliferative activity of a new class of mitochondria-targeting rosamines. This present study describes in vitro cytotoxicity of second-generation rosamine analogs, their mode of action, and their in vivo efficacies in a tumor allografted mouse model. Here, we showed that these compounds exhibited potent cytotoxicity (average IC50<0.5 µM, inhibited Complex II and ATP synthase activities of the mitochondrial oxidative phosphorylation pathway and induced loss of mitochondrial transmembrane potential. A NCI-60 cell lines screen further indicated that rosamine analogs 4 and 5 exhibited potent antiproliferative effects with Log10GI50 = -7 (GI50 = 0.1 µM and were more effective against a colorectal cancer sub-panel than other cell lines. Preliminary in vivo studies on 4T1 murine breast cancer-bearing female BALB/c mice indicated that treatment with analog 5 in a single dosing of 5 mg/kg or a schedule dosing of 3 mg/kg once every 2 days for 6 times (q2d×6 exhibited only minimal induction of tumor growth delay. Our results suggest that rosamine analogs may be further developed as mitochondrial targeting agents. Without a doubt proper strategies need to be devised to enhance tumor uptake of rosamines, i.e. by integration to carrier molecules for better therapeutic outcome.

  20. Phosphorylation of the viral coat protein regulates RNA virus infection

    Directory of Open Access Journals (Sweden)

    Hoover HS


    Full Text Available Haley S Hoover, C Cheng Kao Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA Abstract: Coat proteins (CPs are the most abundant protein produced during a viral infection. CPs have been shown to regulate the infection processes of RNA viruses, including RNA replication and gene expression. The numerous activities of the CP in infection are likely to require regulation, possibly through posttranslational modifications. Protein posttranslational modifications are involved in signal transduction, expanding and regulating protein function, and responding to changes in the environment. Accumulating evidence suggests that phosphorylation of viral CPs is involved in the regulation of the viral infection process from enabling virion disassembly to regulation of viral protein synthesis and replication. CP phosphorylation also affects viral trafficking and virion assembly. This review focuses on the regulatory roles that phosphorylation of CPs has in the life cycle of viruses with RNA genomes. Keywords: viral capsid protein, posttranslational modification, phosphorylation, protein–RNA interaction

  1. Prostate Cell Specific Regulation of Androgen Receptor Phosphorylation In Vivo (United States)


    analysis indicates that the screen is preferentially isolating proteins with a known role in gene transcription and we are currently assessing the phosphorylation- dependence of the putative AR interacting proteins .

  2. The Synthesis of a Series of Phosphoryl Coumarins

    Institute of Scientific and Technical Information of China (English)


    Different hydroxy substituted coumarins were successfully phosphorylated with diisopropylphophite (DIPPH) by the Atherton-Todd reaction in 76-89% yields. Moreover, the reaction activities of different hydroxys of the coumarins in the Atherton-Todd reaction were studied.

  3. Phosphorylation: The Molecular Switch of Double-Strand Break Repair

    Directory of Open Access Journals (Sweden)

    K. C. Summers


    Full Text Available Repair of double-stranded breaks (DSBs is vital to maintaining genomic stability. In mammalian cells, DSBs are resolved in one of the following complex repair pathways: nonhomologous end-joining (NHEJ, homologous recombination (HR, or the inclusive DNA damage response (DDR. These repair pathways rely on factors that utilize reversible phosphorylation of proteins as molecular switches to regulate DNA repair. Many of these molecular switches overlap and play key roles in multiple pathways. For example, the NHEJ pathway and the DDR both utilize DNA-PK phosphorylation, whereas the HR pathway mediates repair with phosphorylation of RPA2, BRCA1, and BRCA2. Also, the DDR pathway utilizes the kinases ATM and ATR, as well as the phosphorylation of H2AX and MDC1. Together, these molecular switches regulate repair of DSBs by aiding in DSB recognition, pathway initiation, recruitment of repair factors, and the maintenance of repair mechanisms.

  4. A Green Synthesis of Diisopropyl Phosphoryl Amino Acid

    Institute of Scientific and Technical Information of China (English)


    In this paper, we report that diisopropyl phosphoryl amino acid could be prepared with reasonable yields under solvent-free condition by adding amino acid to the mixture of diisopropyl phosphite and N-chlorodiisopropylamine.

  5. Identification of Phosphorylation Sites Regulating sst3 Somatostatin Receptor Trafficking. (United States)

    Lehmann, Andreas; Kliewer, Andrea; Günther, Thomas; Nagel, Falko; Schulz, Stefan


    The human somatostatin receptor 3 (sst3) is expressed in about 50% of all neuroendocrine tumors and hence a promising target for multireceptor somatostatin analogs. The sst3 receptor is unique among ssts in that it exhibits a very long intracellular C-terminal tail containing a huge number of potential phosphate acceptor sites. Consequently, our knowledge about the functional role of the C-terminal tail in sst3 receptor regulation is very limited. Here, we have generated a series of phosphorylation-deficient mutants that enabled us to determine crucial sites for its agonist-induced β-arrestin mobilization, internalization, and down-regulation. Based on this information, we generated phosphosite-specific antibodies for C-terminal Ser(337)/Thr(341), Thr(348), and Ser(361) that enabled us to investigate the temporal patterns of sst3 phosphorylation and dephosphorylation. We found that the endogenous ligand somatostatin induced a rapid and robust phosphorylation that was completely blocked by the sst3 antagonist NVP-ACQ090. The stable somatostatin analogs pasireotide and octreotide promoted clearly less phosphorylation compared with somatostatin. We also show that sst3 phosphorylation occurred within seconds to minutes, whereas dephosphorylation of the sst3 receptor occurred at a considerable slower rate. In addition, we also identified G protein-coupled receptor kinases 2 and 3 and protein phosphatase 1α and 1β as key regulators of sst3 phosphorylation and dephosphorylation, respectively. Thus, we here define the C-terminal phosphorylation motif of the human sst3 receptor that regulates its agonist-promoted phosphorylation, β-arrestin recruitment, and internalization of this clinically relevant receptor.

  6. Fission yeast Rad52 phosphorylation restrains error prone recombination pathways.

    Directory of Open Access Journals (Sweden)

    Angela Bellini

    Full Text Available Rad52 is a key protein in homologous recombination (HR, a DNA repair pathway dedicated to double strand breaks and recovery of blocked or collapsed replication forks. Rad52 allows Rad51 loading on single strand DNA, an event required for strand invasion and D-loop formation. In addition, Rad52 functions also in Rad51 independent pathways because of its ability to promote single strand annealing (SSA that leads to loss of genetic material and to promote D-loops formation that are cleaved by Mus81 endonuclease. We have previously reported that fission yeast Rad52 is phosphorylated in a Sty1 dependent manner upon oxidative stress and in cells where the early step of HR is impaired because of lack of Rad51. Here we show that Rad52 is also constitutively phosphorylated in mus81 null cells and that Sty1 partially impinges on such phosphorylation. As upon oxidative stress, the Rad52 phosphorylation in rad51 and mus81 null cells appears to be independent of Tel1, Rad3 and Cdc2. Most importantly, we show that mutating serine 365 to glycine (S365G in Rad52 leads to loss of the constitutive Rad52 phosphorylation observed in cells lacking Rad51 and to partial loss of Rad52 phosphorylation in cells lacking Mus81. Contrariwise, phosphorylation of Rad52-S365G protein is not affected upon oxidative stress. These results indicate that different Rad52 residues are phosphorylated in a Sty1 dependent manner in response to these distinct situations. Analysis of spontaneous HR at direct repeats shows that mutating serine 365 leads to an increase in spontaneous deletion-type recombinants issued from mitotic recombination that are Mus81 dependent. In addition, the recombination rate in the rad52-S365G mutant is further increased by hydroxyurea, a drug to which mutant cells are sensitive.

  7. Tau Phosphorylation by GSK3 in Different Conditions (United States)

    Avila, Jesús; León-Espinosa, Gonzalo; García, Esther; García-Escudero, Vega; Hernández, Félix; DeFelipe, Javier


    Almost a 20% of the residues of tau protein are phosphorylatable amino acids: serine, threonine, and tyrosine. In this paper we comment on the consequences for tau of being a phosphoprotein. We will focus on serine/threonine phosphorylation. It will be discussed that, depending on the modified residue in tau molecule, phosphorylation could be protective, in processes like hibernation, or toxic like in development of those diseases known as tauopathies, which are characterized by an hyperphosphorylation and aggregation of tau. PMID:22675648

  8. Structural basis for Mep2 ammonium transceptor activation by phosphorylation. (United States)

    van den Berg, Bert; Chembath, Anupama; Jefferies, Damien; Basle, Arnaud; Khalid, Syma; Rutherford, Julian C


    Mep2 proteins are fungal transceptors that play an important role as ammonium sensors in fungal development. Mep2 activity is tightly regulated by phosphorylation, but how this is achieved at the molecular level is not clear. Here we report X-ray crystal structures of the Mep2 orthologues from Saccharomyces cerevisiae and Candida albicans and show that under nitrogen-sufficient conditions the transporters are not phosphorylated and present in closed, inactive conformations. Relative to the open bacterial ammonium transporters, non-phosphorylated Mep2 exhibits shifts in cytoplasmic loops and the C-terminal region (CTR) to occlude the cytoplasmic exit of the channel and to interact with His2 of the twin-His motif. The phosphorylation site in the CTR is solvent accessible and located in a negatively charged pocket ∼30 Å away from the channel exit. The crystal structure of phosphorylation-mimicking Mep2 variants from C. albicans show large conformational changes in a conserved and functionally important region of the CTR. The results allow us to propose a model for regulation of eukaryotic ammonium transport by phosphorylation.

  9. Protein phosphorylation in isolated hepatocytes of septic and endotoxemic rats

    Energy Technology Data Exchange (ETDEWEB)

    Deaciuc, I.V.; Spitzer, J.A. (Louisiana State Univ. Medical Center, New Orleans (USA))


    The purpose of this study was to investigate possible alterations induced by sepsis and endotoxicosis in the late phase of Ca2+-dependent signaling in rat liver. Hepatocytes isolated from septic or chronically endotoxin (ET)-treated rats were labeled with (32P)H3PO4 and stimulated with various agents. Proteins were resolved by one-dimensional polyacrylamide gel electrophoresis and autoradiographed. Vasopressin (VP)- and phenylephrine (PE)-induced responses were attenuated in both septic and ET-treated rats for cytosolic and membrane proteins compared with their respective controls. Glucagon and 12-O-myristate phorbol-13-acetate (TPA) affected only the phosphorylation of membrane proteins. Glucagon-induced changes in the phosphorylation of membrane proteins were affected by both sepsis and endotoxicosis, whereas TPA-stimulated phosphorylation was lowered only in endotoxicosis. Response to the Ca2+ ionophore A23187 was depressed in septic rats for cytosolic proteins. The phosphorylation of two cytosolic proteins, i.e., 93 and 61 kDa (previously identified as glycogen phosphorylase and pyruvate kinase, respectively), in response to VP, PE, and A23187 was severely impaired by endotoxicosis and sepsis. TPA did not affect the phosphorylation state of these two proteins. The results show that sepsis and endotoxicosis produce perturbations of the phosphorylation step in Ca2+ transmembrane signaling. Such changes can explain alterations of glycogenolysis and gluconeogenesis associated with sepsis and endotoxicosis.

  10. Protein phosphorylation and its role in archaeal signal transduction. (United States)

    Esser, Dominik; Hoffmann, Lena; Pham, Trong Khoa; Bräsen, Christopher; Qiu, Wen; Wright, Phillip C; Albers, Sonja-Verena; Siebers, Bettina


    Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems. Euryarchaeota (e.g. halophiles, methanogens, thermophiles), like Bacteria and Eukaryotes, rely on bacterial-type two-component signal transduction systems (phosphorylation on His and Asp), as well as on the protein phosphorylation on Ser, Thr and Tyr by Hanks-type protein kinases. Instead, Crenarchaeota (e.g. acidophiles and (hyper)thermophiles) only depend on Hanks-type protein phosphorylation. In this review, the current knowledge of reversible protein phosphorylation in Archaea is presented. It combines results from identified phosphoproteins, biochemical characterization of protein kinases and protein phosphatases as well as target enzymes and first insights into archaeal signal transduction by biochemical, genetic and polyomic studies.

  11. Structural Basis for Inactivation of the Human Pyruvate Dehydrogenase Complex by Phosphorylation: Role of Disordered Phosphorylation Loops

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Masato; Wynn, R. Max; Chuang, Jacinta L.; Tso, Shih-Chia; Machius, Mischa; Li, Jun; Chuang, David T. (UTSMC)


    We report the crystal structures of the phosporylated pyruvate dehydrogenase (E1p) component of the human pyruvate dehydrogenase complex (PDC). The complete phosphorylation at Ser264-{alpha} (site 1) of a variant E1p protein was achieved using robust pyruvate dehydrogenase kinase 4 free of the PDC core. We show that unlike its unmodified counterpart, the presence of a phosphoryl group at Ser264-{alpha} prevents the cofactor thiamine diphosphate-induced ordering of the two loops carrying the three phosphorylation sites. The disordering of these phosphorylation loops is caused by a previously unrecognized steric clash between the phosphoryl group at site 1 and a nearby Ser266-{alpha}, which nullifies a hydrogen-bonding network essential for maintaining the loop conformations. The disordered phosphorylation loops impede the binding of lipoyl domains of the PDC core to E1p, negating the reductive acetylation step. This results in the disruption of the substrate channeling in the PDC, leading to the inactivation of this catalytic machine.

  12. Integrin Ligation Results in Nephrin Tyrosine Phosphorylation In Vitro.

    Directory of Open Access Journals (Sweden)

    Rakesh Verma

    Full Text Available Nephrin is expressed at the basolateral aspect of podocytes and is an important signaling protein at the glomerular slit diaphragm. In vitro studies have demonstrated that Nephrin phosphorylation-dependent signaling is able to assemble a protein complex that is able to polymerize actin. However, proximal signaling events that result in nephrin tyrosine phosphorylation are not well understood. Nephrin deletion in mice and human nephrin mutations result in developmental failure of the podocyte intercellular junction resutling in proteinuria. This has been presumed to be due to a failure to respond to an external polarized cue in the absence of nephrin or a failure to transduce an outside-in signal in patients with nephrin mutations. The nephrin extracellular domain binds to itself or neph1 across the foot process intercellular junction. Nephrin is tyrosine phosphorylation-silent in healthy glomeruli when presumably the nephrin extracellular domain is in an engaged state. These observations raise the possibility of an alternate proximal signaling mechanism that might be responsible for nephrin tyrosine phosphorylation. Here we present data showing that integrin engagement at the basal aspect of cultured podocytes results in nephrin tyrosine phosphorylation. This is abrogated by incubating podocytes with an antibody that prevents integrin β1 ligation and activation in response to binding to extracellular matrix. Furthermore, nephrin tyrosine phosphorylation was observed in podocytes expressing a membrane-targeted nephrin construct that lacks the extracellular domain. We propose, integrin-activation based signaling might be responsible for nephrin phosphorylation rather than engagment of the nephrin extracellular domain by a ligand.

  13. Tyrosine phosphorylation of NEDD4 activates its ubiquitin ligase activity. (United States)

    Persaud, Avinash; Alberts, Philipp; Mari, Sara; Tong, Jiefei; Murchie, Ryan; Maspero, Elena; Safi, Frozan; Moran, Michael F; Polo, Simona; Rotin, Daniela


    Ligand binding to the receptor tyrosine kinase fibroblast growth factor (FGF) receptor 1 (FGFR1) causes dimerization and activation by transphosphorylation of tyrosine residues in the kinase domain. FGFR1 is ubiquitylated by the E3 ligase NEDD4 (also known as NEDD4-1), which promotes FGFR1 internalization and degradation. Although phosphorylation of FGFR1 is required for NEDD4-dependent endocytosis, NEDD4 directly binds to a nonphosphorylated region of FGFR1. We found that activation of FGFR1 led to activation of c-Src kinase-dependent tyrosine phosphorylation of NEDD4, enhancing the ubiquitin ligase activity of NEDD4. Using mass spectrometry, we identified several FGF-dependent phosphorylated tyrosines in NEDD4, including Tyr(43) in the C2 domain and Tyr(585) in the HECT domain. Mutating these tyrosines to phenylalanine to prevent phosphorylation inhibited FGF-dependent NEDD4 activity and FGFR1 endocytosis and enhanced cell proliferation. Mutating the tyrosines to glutamic acid to mimic phosphorylation enhanced NEDD4 activity. Moreover, the NEDD4 C2 domain bound the HECT domain, and the presence of phosphomimetic mutations inhibited this interaction, suggesting that phosphorylation of NEDD4 relieves an inhibitory intra- or intermolecular interaction. Accordingly, activation of FGFR1 was not required for activation of NEDD4 that lacked its C2 domain. Activation of c-Src by epidermal growth factor (EGF) also promoted tyrosine phosphorylation and enhanced the activity of NEDD4. Thus, we identified a feedback mechanism by which receptor tyrosine kinases promote catalytic activation of NEDD4 and that may represent a mechanism of receptor crosstalk.

  14. Phosphorylation of ATPase subunits of the 26S proteasome. (United States)

    Mason, G G; Murray, R Z; Pappin, D; Rivett, A J


    The 26S proteasome complex plays a major role in the non-lysosomal degradation of intracellular proteins. Purified 26S proteasomes give a pattern of more than 40 spots on 2D-PAGE gels. The positions of subunits have been identified by mass spectrometry of tryptic peptides and by immunoblotting with subunit-specific antipeptide antibodies. Two-dimensional polyacrylamide gel electrophoresis of proteasomes immunoprecipitated from [32P]phosphate-labelled human embryo lung L-132 cells revealed the presence of at least three major phosphorylated polypeptides among the regulatory subunits as well as the C8 and C9 components of the core 20S proteasome. Comparison with the positions of the regulatory polypeptides revealed a minor phosphorylated form to be S7 (MSS1). Antibodies against S4, S6 (TBP7) and S12 (MOV34) all cross-reacted at the position of major phosphorylated polypeptides suggesting that several of the ATPase subunits may be phosphorylated. The phosphorylation of S4 was confirmed by double immunoprecipitation experiments in which 26S proteasomes were immunoprecipitated as above and dissociated and then S4 was immunoprecipitated with subunit-specific antibodies. Antibodies against the non-ATPase subunit S10, which has been suggested by others to be phosphorylated, did not coincide with the position of a phosphorylated polypeptide. Some differences were observed in the 2D-PAGE pattern of proteasomes immunoprecipitated from cultured cells compared to purified rat liver 26S proteasomes suggesting possible differences in subunit compositions of 26S proteasomes.

  15. Phosphorylation of ribosomal protein S6 mediates compensatory renal hypertrophy. (United States)

    Xu, Jinxian; Chen, Jianchun; Dong, Zheng; Meyuhas, Oded; Chen, Jian-Kang


    The molecular mechanism underlying renal hypertrophy and progressive nephron damage remains poorly understood. Here we generated congenic ribosomal protein S6 (rpS6) knock-in mice expressing nonphosphorylatable rpS6 and found that uninephrectomy-induced renal hypertrophy was significantly blunted in these knock-in mice. Uninephrectomy-induced increases in cyclin D1 and decreases in cyclin E in the remaining kidney were attenuated in the knock-in mice compared with their wild-type littermates. Uninephrectomy induced rpS6 phosphorylation in the wild-type mice; however, no rpS6 phosphorylation was detected in uninephrectomized or sham-operated knock-in mice. Nonetheless, uninephrectomy stimulated comparable 4E-BP1 phosphorylation in both knock-in and wild-type mice, indicating that mTORC1 was still activated in the knock-in mice. Moreover, the mTORC1 inhibitor rapamycin prevented both rpS6 and 4E-BP1 phosphorylation, significantly blunted uninephrectomy-induced renal hypertrophy in wild-type mice, but did not prevent residual renal hypertrophy despite inhibiting 4E-BP1 phosphorylation in uninephrectomized knock-in mice. Thus, both genetic and pharmacological approaches unequivocally demonstrate that phosphorylated rpS6 is a downstream effector of the mTORC1-S6K1 signaling pathway mediating renal hypertrophy. Hence, rpS6 phosphorylation facilitates the increase in cyclin D1 and decrease in cyclin E1 that underlie the hypertrophic nature of uninephrectomy-induced kidney growth.

  16. Neurofilament subunit (NFL) head domain phosphorylation regulates axonal transport of neurofilaments.

    LENUS (Irish Health Repository)

    Yates, Darran M


    Neurofilaments are the intermediate filaments of neurons and are synthesised in neuronal cell bodies and then transported through axons. Neurofilament light chain (NFL) is a principal component of neurofilaments, and phosphorylation of NFL head domain is believed to regulate the assembly of neurofilaments. However, the role that NFL phosphorylation has on transport of neurofilaments is poorly understood. To address this issue, we monitored axonal transport of phosphorylation mutants of NFL. We mutated four known phosphorylation sites in NFL head domain to either preclude phosphorylation, or mimic permanent phosphorylation. Mutation to preclude phosphorylation had no effect on transport but mutation of three sites to mimic permanent phosphorylation inhibited transport. Mutation of all four sites together to mimic permanent phosphorylation proved especially potent at inhibiting transport and also disrupted neurofilament assembly. Our results suggest that NFL head domain phosphorylation is a regulator of neurofilament axonal transport.

  17. Cellular Functions Regulated by Phosphorylation of EGFR on Tyr845

    Directory of Open Access Journals (Sweden)

    Ken-ichi Sato


    Full Text Available The Src gene product (Src and the epidermal growth factor receptor (EGFR are prototypes of oncogene products and function primarily as a cytoplasmic non-receptor tyrosine kinase and a transmembrane receptor tyrosine kinase, respectively. The identification of Src and EGFR, and the subsequent extensive investigations of these proteins have long provided cutting edge research in cancer and other molecular and cellular biological studies. In 1995, we reported that the human epidermoid carcinoma cells, A431, contain a small fraction of Src and EGFR in which these two kinase were in physical association with each other, and that Src phosphorylates EGFR on tyrosine 845 (Y845 in the Src-EGFR complex. Y845 of EGFR is located in the activation segment of the kinase domain, where many protein kinases contain kinase-activating autophosphorylation sites (e.g., cAMP-dependent protein kinase, Src family kinases, transmembrane receptor type tyrosine kinases or trans-phosphorylation sites (e.g., cyclin-dependent protein kinase, mitogen-activated protein kinase, Akt protein kinase. A number of studies have demonstrated that Y845 phosphorylation serves an important role in cancer as well as normal cells. Here we compile the experimental facts involving Src phosphorylation of EGFR on Y845, by which cell proliferation, cell cycle control, mitochondrial regulation of cell metabolism, gamete activation and other cellular functions are regulated. We also discuss the physiological relevance, as well as structural insights of the Y845 phosphorylation.

  18. Determining in vivo phosphorylation sites using mass spectrometry. (United States)

    Breitkopf, Susanne B; Asara, John M


    Phosphorylation is the most studied protein post-translational modification (PTM) in biological systems, since it controls cell growth, proliferation, survival, and other processes. High-resolution/high mass accuracy mass spectrometers are used to identify protein phosphorylation sites due to their speed, sensitivity, selectivity, and throughput. The protocols described here focus on two common strategies: (1) identifying phosphorylation sites from individual proteins and small protein complexes, and (2) identifying global phosphorylation sites from whole-cell and tissue extracts. For the first, endogenous or epitope-tagged proteins are typically immunopurified from cell lysates, purified via gel electrophoresis or precipitation, and enzymatically digested into peptides. Samples can be optionally enriched for phosphopeptides using immobilized metal affinity chromatography (IMAC) or titanium dioxide (TiO(2)) and then analyzed by microcapillary liquid chromatography/tandem mass spectrometry (LC-MS/MS). Global phosphorylation site analyses that capture pSer/pThr/pTyr sites from biological sources sites are more resource and time consuming and involve digesting the whole-cell lysate, followed by peptide fractionation by strong cation-exchange chromatography, phosphopeptide enrichment by IMAC or TiO(2), and LC-MS/MS. Alternatively, the protein lysate can be fractionated by SDS-PAGE, followed by digestion, phosphopeptide enrichment, and LC-MS/MS. One can also immunoprecipitate only phosphotyrosine peptides using a pTyr antibody followed by LC-MS/MS.

  19. Phosphorylation of actopaxin regulates cell spreading and migration (United States)

    Clarke, Dominic M.; Brown, Michael C.; LaLonde, David P.; Turner, Christopher E.


    Actopaxin is an actin and paxillin binding protein that localizes to focal adhesions. It regulates cell spreading and is phosphorylated during mitosis. Herein, we identify a role for actopaxin phosphorylation in cell spreading and migration. Stable clones of U2OS cells expressing actopaxin wild-type (WT), nonphosphorylatable, and phosphomimetic mutants were developed to evaluate actopaxin function. All proteins targeted to focal adhesions, however the nonphosphorylatable mutant inhibited spreading whereas the phosphomimetic mutant cells spread more efficiently than WT cells. Endogenous and WT actopaxin, but not the nonphosphorylatable mutant, were phosphorylated in vivo during cell adhesion/spreading. Expression of the nonphosphorylatable actopaxin mutant significantly reduced cell migration, whereas expression of the phosphomimetic increased cell migration in scrape wound and Boyden chamber migration assays. In vitro kinase assays demonstrate that extracellular signal-regulated protein kinase phosphorylates actopaxin, and treatment of U2OS cells with the MEK1 inhibitor UO126 inhibited adhesion-induced phosphorylation of actopaxin and also inhibited cell migration. PMID:15353548

  20. Tau phosphorylation affects its axonal transport and degradation (United States)

    Rodríguez-Martín, Teresa; Cuchillo-Ibáñez, Inmaculada; Noble, Wendy; Nyenya, Fanon; Anderton, Brian H.; Hanger, Diane P.


    Phosphorylated forms of microtubule-associated protein tau accumulate in neurofibrillary tangles in Alzheimer's disease. To investigate the effects of specific phosphorylated tau residues on its function, wild type or phosphomutant tau was expressed in cells. Elevated tau phosphorylation decreased its microtubule binding and bundling, and increased the number of motile tau particles, without affecting axonal transport kinetics. In contrast, reducing tau phosphorylation enhanced the amount of tau bound to microtubules and inhibited axonal transport of tau. To determine whether differential tau clearance is responsible for the increase in phosphomimic tau, we inhibited autophagy in neurons which resulted in a 3-fold accumulation of phosphomimic tau compared with wild type tau, and endogenous tau was unaffected. In autophagy-deficient mouse embryonic fibroblasts, but not in neurons, proteasomal degradation of phosphomutant tau was also reduced compared with wild type tau. Therefore, autophagic and proteasomal pathways are involved in tau degradation, with autophagy appearing to be the primary route for clearing phosphorylated tau in neurons. Defective autophagy might contribute to the accumulaton of tau in neurodegenerative diseases. PMID:23601672

  1. Ca/calmodulin-dependent phosphorylation of endocytic scaffold ITSN1

    Directory of Open Access Journals (Sweden)

    Morderer D. Ye.


    Full Text Available ITSN1 is an endocytic scaffold protein with a prominent function in synaptic transmission. It is known that Ca signaling is crucial for the regulation of synaptic proteins functioning. Aim. Checking the possibility of Ca/calmodulin-dependent phosphorylation of ITSN1. Methods. Affinity chromatography, in vitro kinase reaction, Western blotting, gel staining with fluorescent stains. Results. We show that the fraction of calmodulin-binding proteins is able to phosphorylate the recombinant fragments encoding the coiled-coil region and the SH3 domain-containing region of ITSN1 in the presence of Ca ions and calmodulin. Conclusions. The coiled-coil region and the SH3 domain-containing region of ITSN1 undergo Ca/calmodulin-dependent phosphorylation in vitro, suggesting a possible regulation of ITSN1 by Ca signaling.

  2. Crystal Structure of a Phosphorylation-coupled Saccharide Transporter

    Energy Technology Data Exchange (ETDEWEB)

    Y Cao; X Jin; E Levin; H Huang; Y Zong; W Hendrickson; J Javitch; K Rajashankar; M Zhou; et al.


    Saccharides have a central role in the nutrition of all living organisms. Whereas several saccharide uptake systems are shared between the different phylogenetic kingdoms, the phosphoenolpyruvate-dependent phosphotransferase system exists almost exclusively in bacteria. This multi-component system includes an integral membrane protein EIIC that transports saccharides and assists in their phosphorylation. Here we present the crystal structure of an EIIC from Bacillus cereus that transports diacetylchitobiose. The EIIC is a homodimer, with an expansive interface formed between the amino-terminal halves of the two protomers. The carboxy-terminal half of each protomer has a large binding pocket that contains a diacetylchitobiose, which is occluded from both sides of the membrane with its site of phosphorylation near the conserved His250 and Glu334 residues. The structure shows the architecture of this important class of transporters, identifies the determinants of substrate binding and phosphorylation, and provides a framework for understanding the mechanism of sugar translocation.

  3. Exploring the intramolecular phosphorylation sites in human Chk2

    DEFF Research Database (Denmark)

    Olsen, Birgitte B; Larsen, Martin R; Boldyreff, Brigitte;


    A comparative biochemical analysis was performed using recombinant human protein kinase Chk2 (checkpoint kinase 2) expressed in bacteria and insect cells. Dephosphorylated, inactive, recombinant human Chk2 could be reactivated in a concentration-dependent manner. Despite distinct time....... Mass spectrometric analyses of human recombinant Chk2 isolated from bacteria and insect cells showed distinct differences. The number of phosphorylated residues in human recombinant Chk2 isolated from bacteria was 16, whereas in the case of the recombinant human Chk2 from insect cells it was 8. Except...... for phosphorylated amino acid T378 which was not found in the Chk2 isolated from bacteria, all other phosphorylated residues identified in human Chk2 from insect cells were present also in Chk2 from bacteria....

  4. Signal integration by chloroplast phosphorylation networks: An update

    Directory of Open Access Journals (Sweden)

    Anna eSchoenberg


    Full Text Available Forty years after the initial discovery of light-dependent protein phosphorylation at the thylakoid membrane system, we are now beginning to understand the roles of chloroplast phosphorylation networks in their function to decode and mediate information on the metabolic status of the organelle to long-term adaptations in plastid and nuclear gene expression. With the help of genetics and functional genomics tools, chloroplast kinases and several hundred phosphoproteins were identified that now await detailed functional characterization. The regulation and the target protein spectrum of some kinases are understood, but this information is fragmentary with respect to kinase and target protein crosstalk in a changing environment. In this review we will highlight the most recent advances in the field and discuss approaches that might lead to a comprehensive understanding of plastid signal integration by protein phosphorylation.

  5. Identification and quantitation of signal molecule-dependent protein phosphorylation

    KAUST Repository

    Groen, Arnoud J.


    Phosphoproteomics is a fast-growing field that aims at characterizing phosphorylated proteins in a cell or a tissue at a given time. Phosphorylation of proteins is an important regulatory mechanism in many cellular processes. Gel-free phosphoproteome technique involving enrichment of phosphopeptide coupled with mass spectrometry has proven to be invaluable to detect and characterize phosphorylated proteins. In this chapter, a gel-free quantitative approach involving 15N metabolic labelling in combination with phosphopeptide enrichment by titanium dioxide (TiO2) and their identification by MS is described. This workflow can be used to gain insights into the role of signalling molecules such as cyclic nucleotides on regulatory networks through the identification and quantification of responsive phospho(proteins). © Springer Science+Business Media New York 2013.

  6. Chemical phosphorylation of deoxyribonucleosides and thermolytic DNA oligonucleotides. (United States)

    Ausín, Cristina; Grajkowski, Andrzej; Cieślak, Jacek; Beaucage, Serge L


    The phosphorylating reagent bis[S-(4,4'-dimethoxytrityl)-2-mercaptoethyl]-N,N-diisopropylphosphoramidite is prepared in three steps from commercial methyl thioglycolate and diisopropylphosphoramidous dichloride. The phosphorylating reagent has been used successfully in the solid-phase synthesis of deoxyribonucleoside 5'-/3'-phosphate or -thiophosphate monoesters and oligonucleotide 5'-phosphate/-thiophosphate monoesters. Bis[S-(4,4'-dimethoxytrityl)-2-mercaptoethyl]-N,N-diisopropylphosphoramidite has also been employed in the construction of a thermolytic dinucleotide prodrug model to evaluate the ability of the reagent to produce thermosentive oligonucleotide prodrugs under mild temperature conditions ( approximately 25 degrees C) for potential therapeutic applications.

  7. Phosphorylation site dynamics of early T-cell receptor signaling

    DEFF Research Database (Denmark)

    Chylek, Lily A; Akimov, Vyacheslav; Dengjel, Jörn;


    a systems-level understanding of how these components cooperate to control signaling dynamics, especially during the crucial first seconds of stimulation. Here, we used quantitative proteomics to characterize reshaping of the T-cell phosphoproteome in response to TCR/CD28 co-stimulation, and found...... that diverse dynamic patterns emerge within seconds. We detected phosphorylation dynamics as early as 5 s and observed widespread regulation of key TCR signaling proteins by 30 s. Development of a computational model pointed to the presence of novel regulatory mechanisms controlling phosphorylation of sites...

  8. Phosphorylation of formate dehydrogenase in potato tuber mitochondria

    DEFF Research Database (Denmark)

    Bykova, N.V.; Stensballe, A.; Egsgaard, H.;


    of phosphorylation of both FDH and PDH was strongly decreased by NAD+, formate, and pyruvate, indicating that reversible phosphorylation of FDH and PDHs was regulated in a similar fashion. At low oxygen concentrations inside the intact potato tubers, FDH activity was strongly increased relative to cytochrome c...... oxidase activity pointing to a possible involvement of FDH in hypoxic metabolism. Computational sequence analysis indicated that a conserved local sequence motif of pyruvate formate-lyase is found in the Arabidopsis thaliana genome, and this enzyme might be the source of formate for FDH in plants....

  9. The phosphorylation pattern of bovine heart complex I subunits

    DEFF Research Database (Denmark)

    Palmisano, Giuseppe; Sardanelli, Anna Maria; Signorile, Anna;


    The phosphoproteome of bovine heart complex I of the respiratory chain has been analysed with a procedure based on nondenaturing gel electrophoretic separation of complex I from small quantities of mitochondria samples, in-gel digestion, in combination with phosphopeptide enrichment by titanium...... dioxide and MS. The results, complemented by analyses of purified samples of complex I, showed phosphorylation of five subunits of the complex, 42 kDa (human gene NDUFA10), ESSS, B14.5a (human gene NDUFA7), B14.5b (human gene NDUFC2) and B16.6 (GRIM-19). MS also revealed the presence of phosphorylated...

  10. Hur upplever elever raster? : En fenomenologisk studie


    Åberg, Anna


    The essential thing about breaks has been in relation to time, body, movement, force and room during my examination. Through conversations high-school students from two schools have taken part in this study. The examination is based on conversations with the students and has focused on students’ experiences of breaks, and is also carried through by the method of phenomenology. The results of my studie show that students - during their breaks - experience a feeling of allways heading for somet...

  11. Discrimination between acid and alkali-labile phosphorylated residues on Immobilon: phosphorylation studies of nucleoside diphosphate kinase

    DEFF Research Database (Denmark)

    Biondi, R M; Walz, K; Issinger, O G


    to deplete phosphate from membranes incubated successively under acid and basic conditions. The technique was applied to the study of nucleoside diphosphate kinase (NDP kinase) phosphorylation. In this enzyme, autophosphorylation of active site histidine is an accepted intermediate step in the catalytic...... phosphate transfer activity of nucleoside diphosphate kinase (NDP kinase). Nonetheless, a significant degree of autophosphorylation on other residues has been reported by several laboratories, and the hypothesis has been advanced that this nonhistidine phosphorylation may play an important role in NDP...... of phosphoserine after strong acid hydrolysis of the histidine autophosphorylated enzyme is in fact a nonenzymatic transphosphorylation from phosphohistidine due to the harsh acid treatment. This methodology was also applied to in vivo phosphorylation studies of C. albicans NDP kinase. We believe...

  12. Elucidation of O-Phosphoryl and N-Phosphoryl Amino Acids by Electrospray Ionization Tandem Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    ZHANG,Jian-Chen(张建臣); CAO,Shu-Xiaa(曹书霞); XU,Juna(徐军); LIAO,Xin-Cheng(廖新成); ZHAO,Yu-Fen(赵玉芬)


    Mass spectroscopic characteristics of phosphoryl amino acids were studied in detail by positive and negative electrospray ionization mass spectrometry (ESI-MS) in conjunction with tandem mass spectrometry (MS/MS). Besides N-diisopropyloxyphosphoryl amino acids (N-DIPP-AA), O-phospho- and O-diisopropyloxyphosphoryl amino acids (O-DIPP-AA) were studied and compared to N-DIPP-AA. The fragmentation pathways of [M+H]+, [M+Na]+ and [M-H]- ions of phosphoryl amino acids were summarized. In addition to several similar patterns,each of them showed its characteristic fragmention.

  13. Phytophthora infestans specific phosphorylation patterns and new putative control targets. (United States)

    Frades, Itziar; Andreasson, Erik


    In this study we applied biomathematical searches of gene regulatory mechanisms to learn more about oomycete biology and to identify new putative targets for pesticides or biological control against Phytophthora infestans. First, oomycete phylum-specific phosphorylation motifs were found by discriminative n-gram analysis. We found 11.600 P. infestans specific n-grams, mapping 642 phosphoproteins. The most abundant group among these related to phosphatidylinositol metabolism. Due to the large number of possible targets found and our hypothesis that multi-level control is a sign of usefulness as targets for intervention, we identified overlapping targets with a second screen. This was performed to identify proteins dually regulated by small RNA and phosphorylation. We found 164 proteins to be regulated by both sRNA and phosphorylation and the dominating functions where phosphatidylinositol signalling/metabolism, endocytosis, and autophagy. Furthermore we performed a similar regulatory study and discriminative n-gram analysis of proteins with no clear orthologs in other species and proteins that are known to be unique to P. infestans such as the RxLR effectors, Crinkler (CRN) proteins and elicitins. We identified CRN proteins with specific phospho-motifs present in all life stages. PITG_12626, PITG_14042 and PITG_23175 are CRN proteins that have species-specific phosphorylation motifs and are subject to dual regulation.

  14. Mechanism of Ribonuclease III Catalytic Regulation by Serine Phosphorylation (United States)

    Gone, Swapna; Alfonso-Prieto, Mercedes; Paudyal, Samridhdi; Nicholson, Allen W.


    Ribonuclease III (RNase III) is a conserved, gene-regulatory bacterial endonuclease that cleaves double-helical structures in diverse coding and noncoding RNAs. RNase III is subject to multiple levels of control, reflective of its global regulatory functions. Escherichia coli (Ec) RNase III catalytic activity is known to increase during bacteriophage T7 infection, reflecting the expression of the phage-encoded protein kinase, T7PK. However, the mechanism of catalytic enhancement is unknown. This study shows that Ec-RNase III is phosphorylated on serine in vitro by purified T7PK, and identifies the targets as Ser33 and Ser34 in the N-terminal catalytic domain. Kinetic experiments reveal a 5-fold increase in kcat and a 1.4-fold decrease in Km following phosphorylation, providing a 7.4–fold increase in catalytic efficiency. Phosphorylation does not change the rate of substrate cleavage under single-turnover conditions, indicating that phosphorylation enhances product release, which also is the rate-limiting step in the steady-state. Molecular dynamics simulations provide a mechanism for facilitated product release, in which the Ser33 phosphomonoester forms a salt bridge with the Arg95 guanidinium group, thereby weakening RNase III engagement of product. The simulations also show why glutamic acid substitution at either serine does not confer enhancement, thus underscoring the specific requirement for a phosphomonoester.

  15. One-Pot Synthesis of N-Phosphoryl Amino Acids

    Institute of Scientific and Technical Information of China (English)

    GUO Xin; FU Hua; LIN Chang-Xue; ZHAO Yu-Fen


    @@ Phosphoramidates have been considered as an important class of rationally designed therapeutics especially asoligonucleotide analogs employed as antisene and antigene agents. [1] N-Phosphoryl amino acids are of biological andpharmaceutical interest, [2] and can be used as the building blocks in synthesis of polypeptides. [3

  16. Phosphorylation of as1-casein is regulated by different genes

    NARCIS (Netherlands)

    Bijl, E.; Valenberg, van H.J.F.; Huppertz, T.; Hooijdonk, van A.C.M.; Bovenhuis, H.


    Casein phosphorylation is a posttranslational modification catalyzed by kinase enzymes that attach phosphate groups to specific AA in the protein sequence. This modification is one of the key factors responsible for the stabilization of calcium phosphate nanoclusters in casein micelles and for the i

  17. Enteric GFAP expression and phosphorylation in Parkinson's disease

    NARCIS (Netherlands)

    Clairembault, Thomas; Kamphuis, W.; Leclair-Visonneau, Laurène; Rolli-Derkinderen, Malvyne; Coron, Emmanuel; Neunlist, Michel; Hol, Elly M; Derkinderen, Pascal


    Enteric glial cells (EGCs) are in many respects similar to astrocytes of the central nervous system and express similar proteins including glial fibrillary acidic protein (GFAP). Changes in GFAP expression and/or phosphorylation have been reported during brain damage or central nervous system degene

  18. Circadian KaiC phosphorylation: a multi-layer network.

    Directory of Open Access Journals (Sweden)

    Congxin Li


    Full Text Available Circadian KaiC phosphorylation in cyanobacteria reconstituted in vitro recently initiates a series of studies experimentally and theoretically to explore its mechanism. In this paper, we report a dynamic diversity in hexameric KaiC phosphoforms using a multi-layer reaction network based on the nonequivalence of the dual phosphorylation sites (S431 and T432 in each KaiC subunit. These diverse oscillatory profiles can generate a kaleidoscopic phase modulation pattern probably responsible for the genome-wide transcription rhythms directly and/or indirectly in cyanobacteria. Particularly, our model reveals that a single KaiC hexamer is an energy-based, phosphorylation-dependent and self-regulated circadian oscillator modulated by KaiA and KaiB. We suggest that T432 is the main regulator for the oscillation amplitude, while S431 is the major phase regulator. S431 and T432 coordinately control the phosphorylation period. Robustness of the Kai network was examined by mixing samples in different phases, and varying protein concentrations and temperature. Similar results were obtained regardless of the deterministic or stochastic method employed. Therefore, the dynamic diversities and robustness of Kai oscillator make it a qualified core pacemaker that controls the cellular processes in cyanobacteria pervasively and accurately.

  19. A mathematical model of phosphorylation AKT in Acute Myeloid Leukemia (United States)

    Adi, Y. A.; Kusumo, F. A.; Aryati, L.; Hardianti, M. S.


    In this paper we consider a mathematical model of PI3K/AKT signaling pathways in phosphorylation AKT. PI3K/AKT pathway is an important mediator of cytokine signaling implicated in regulation of hematopoiesis. Constitutive activation of PI3K/AKT signaling pathway has been observed in Acute Meyloid Leukemia (AML) it caused by the mutation of Fms-like Tyrosine Kinase 3 in internal tandem duplication (FLT3-ITD), the most common molecular abnormality associated with AML. Depending upon its phosphorylation status, protein interaction, substrate availability, and localization, AKT can phosphorylate or inhibite numerous substrates in its downstream pathways that promote protein synthesis, survival, proliferation, and metabolism. Firstly, we present a mass action ordinary differential equation model describing AKT double phosphorylation (AKTpp) in a system with 11 equations. Finally, under the asumtion enzyme catalyst constant and steady state equilibrium, we reduce the system in 4 equation included Michaelis Menten constant. Simulation result suggested that a high concentration of PI3K and/or a low concentration of phospatase increased AKTpp activation. This result also indicates that PI3K is a potential target theraphy in AML.

  20. Eph-mediated tyrosine phosphorylation of citron kinase controls abscission (United States)

    Jungas, Thomas; Perchey, Renaud T.; Fawal, Mohamad; Callot, Caroline; Froment, Carine; Burlet-Schiltz, Odile; Besson, Arnaud


    Cytokinesis is the last step of cell division, culminating in the physical separation of daughter cells at the end of mitosis. Cytokinesis is a tightly regulated process that until recently was mostly viewed as a cell-autonomous event. Here, we investigated the role of Ephrin/Eph signaling, a well-known local cell-to-cell communication pathway, in cell division. We show that activation of Eph signaling in vitro leads to multinucleation and polyploidy, and we demonstrate that this is caused by alteration of the ultimate step of cytokinesis, abscission. Control of abscission requires Eph kinase activity, and Src and citron kinase (CitK) are downstream effectors in the Eph-induced signal transduction cascade. CitK is phosphorylated on tyrosines in neural progenitors in vivo, and Src kinase directly phosphorylates CitK. We have identified the specific tyrosine residues of CitK that are phosphorylated and show that tyrosine phosphorylation of CitK impairs cytokinesis. Finally, we show that, similar to CitK, Ephrin/Eph signaling controls neuronal ploidy in the developing neocortex. Our study indicates that CitK integrates intracellular and extracellular signals provided by the local environment to coordinate completion of cytokinesis. PMID:27551053

  1. Studies on the synthesis of phosphorylated and alanylated cytokinins.

    NARCIS (Netherlands)

    Shadid, B.


    New approaches are described in this thesis towards the syntheses of phosphorylated and alanylated cytokinins.In chapter 1 a general picture of the stucture of cytokinins, their occurence in nature, their biological synthesis, their effects on plants and their chemical synthesis is described.A liter

  2. Annealing properties of potato starches with different degrees of phosphorylation

    DEFF Research Database (Denmark)

    Muhrbeck, Per; Svensson, E


    Changes in the gelatinization temperature interval and gelatinization enthalpy with annealing time at 50 degrees C were followed for a number of potato starch samples, with different degrees of phosphorylation, using differential scanning calorimetry. The gelatinization temperature increased with...... and crystalline structure of amylopectin helices. (C) 1997 Elsevier Science Ltd....

  3. Histone 3 s10 phosphorylation: "caught in the R loop!". (United States)

    Skourti-Stathaki, Konstantina; Proudfoot, Nicholas J


    In this issue of Molecular Cell, Castellano-Pozo et al. (2013) describe a connection between R loop structures and histone 3 S10 phosphorylation (H3S10P), a mark of chromatin compaction. Their results constitute a significant advance in our understanding of the role of R loops in genomic instability.

  4. Construction and Analysis of N-phosphoryl Peptide Libraries

    Institute of Scientific and Technical Information of China (English)

    Shu Xia CAO; Jian Chen ZHANG; Ming Yu NIU; Kui LU; Xin Cheng LIAO; Yu Fen ZHAO


    N-Phosphoryl peptide libraries were constructed by transformation from homo-oligopeptide libraries, which was synthesized by self-assembly of amino acids with the assistance of phosphorus oxychloride. Electrospray ionization mass spectrometry (ESI-MS) was used to monitor the reaction.

  5. Animation Model to Conceptualize ATP Generation: A Mitochondrial Oxidative Phosphorylation (United States)

    Jena, Ananta Kumar


    Adenosine triphosphate (ATP) is the molecular unit of intracellular energy and it is the product of oxidative phosphorylation of cellular respiration uses in cellular processes. The study explores the growth of the misconception levels amongst the learners and evaluates the effectiveness of animation model over traditional methods. The data…

  6. Genetic defects in the oxidative phosphorylation (OXPHOS) system.

    NARCIS (Netherlands)

    Janssen, R.J.R.J.; Heuvel, L.P.W.J. van den; Smeitink, J.A.M.


    The oxidative phosphorylation (OXPHOS) system consists of five multiprotein complexes and two mobile electron carriers embedded in the lipid bilayer of the mitochondrial inner membrane. With the exception of complex II and the mobile carriers, the other parts of the OXPHOS system are under dual gene

  7. Spatial separation of Plk1 phosphorylation and activity

    Directory of Open Access Journals (Sweden)

    Wytse eBruinsma


    Full Text Available Polo-like kinase 1 (Plk1 is one of the major kinases controlling mitosis and cell division. Plk1 is first recruited to the centrosome in S phase, then appears on the kinetochores in late G2 and at the end of mitosis it translocates to the central spindle. Activation of Plk1 requires phosphorylation of T210 by Aurora A, an event that critically depends on the co-factor Bora. However, conflicting reports exist as to where Plk1 is first activated. Phosphorylation of T210 is first observed at the centrosomes, but kinase activity seems to be restricted to the nucleus in the earlier phases of G2. Here we demonstrate that Plk1 activity manifests itself first in the nucleus using a nuclear FRET-based biosensor for Plk1 activity. However, we find that Bora is restricted to the cytoplasm and that Plk1 is phosphorylated on T210 at the centrosomes. Our data demonstrate that while Plk1 activation occurs on centrosomes, downstream target phosphorylation by Plk1 first occurs in the nucleus. We discuss several explanations for this surprising separation of activation and function.

  8. Decoding the phosphorylation code in Hedgehog signal transduction

    Institute of Scientific and Technical Information of China (English)

    Yongbin Chen; Jin Jiang


    Hedgehog (Hh) signaling plays pivotal roles in embryonic development and adult tissue homeostasis,and its deregulation leads to numerous human disorders including cancer.Binding of Hh to Patched (Ptc),a twelve-transmembrane protein,alleviates its inhibition of Smoothened (Smo),a seven-transmembrane protein related to G-proteincoupled receptors (GPCRs),leading to Smo phosphorylation and activation.Smo acts through intracellular signaling complexes to convert the latent transcription factor Cubitus interruptus (Ci)/Gli from a truncated repressor to a fulllength activator,leading to derepression/activation of Hh target genes.Increasing evidence suggests that phosphorylation participates in almost every step in the signal relay from Smo to Ci/Gli,and that differential phosphorylation of several key pathway components may be crucial for translating the Hh morphogen gradient into graded pathway activities.In this review,we focus on the multifaceted roles that phosphorylation plays in Hh signal transduction,and discuss the conservation and difference between Drosophila and mammalian Hh signaling mechanisms.

  9. Serine phosphorylation of syndecan-2 proteoglycan cytoplasmic domain

    DEFF Research Database (Denmark)

    Oh, E S; Couchman, J R; Woods, A


    Protein kinase C (PKC) is involved in cell-matrix and cell-cell adhesion, and the cytoplasmic domain of syndecan-2 contains two serines (residues 197 and 198) which lie in a consensus sequence for phosphorylation by PKC. Other serine and threonine residues are present but not in a consensus seque...

  10. Bioinformatics Study of Cancer-Related Mutations within p53 Phosphorylation Site Motifs

    Directory of Open Access Journals (Sweden)

    Xiaona Ji


    Full Text Available p53 protein has about thirty phosphorylation sites located at the N- and C-termini and in the core domain. The phosphorylation sites are relatively less mutated than other residues in p53. To understand why and how p53 phosphorylation sites are rarely mutated in human cancer, using a bioinformatics approaches, we examined the phosphorylation site and its nearby flanking residues, focusing on the consensus phosphorylation motif pattern, amino-acid correlations within the phosphorylation motifs, the propensity of structural disorder of the phosphorylation motifs, and cancer mutations observed within the phosphorylation motifs. Many p53 phosphorylation sites are targets for several kinases. The phosphorylation sites match 17 consensus sequence motifs out of the 29 classified. In addition to proline, which is common in kinase specificity-determining sites, we found high propensity of acidic residues to be adjacent to phosphorylation sites. Analysis of human cancer mutations in the phosphorylation motifs revealed that motifs with adjacent acidic residues generally have fewer mutations, in contrast to phosphorylation sites near proline residues. p53 phosphorylation motifs are mostly disordered. However, human cancer mutations within phosphorylation motifs tend to decrease the disorder propensity. Our results suggest that combination of acidic residues Asp and Glu with phosphorylation sites provide charge redundancy which may safe guard against loss-of-function mutations, and that the natively disordered nature of p53 phosphorylation motifs may help reduce mutational damage. Our results further suggest that engineering acidic amino acids adjacent to potential phosphorylation sites could be a p53 gene therapy strategy.

  11. Phosphorylation of acidic ribosomal proteins from rabbit reticulocytes by a ribosome-associated casein kinase

    DEFF Research Database (Denmark)

    Issinger, O G


    Two acidic proteins from 80-S ribosomes were isolated and purified to homogeneity. The purified acidic proteins could be phosphorylated by casein kinase using [gamma-32P]ATP and [gamma-32P]GTP as a phosphoryl donor. The proteins became phosphorylated in situ, too. Sodium dodecyl sulfate polyacryl......Two acidic proteins from 80-S ribosomes were isolated and purified to homogeneity. The purified acidic proteins could be phosphorylated by casein kinase using [gamma-32P]ATP and [gamma-32P]GTP as a phosphoryl donor. The proteins became phosphorylated in situ, too. Sodium dodecyl sulfate...

  12. Proteomic analysis of tyrosine phosphorylation during human liver transplantation

    Directory of Open Access Journals (Sweden)

    Boutros Tarek


    Full Text Available Abstract Background Ischemia-reperfusion (I/R causes a dramatic reprogramming of cell metabolism during liver transplantation and can be linked to an alteration of the phosphorylation level of several cellular proteins. Over the past two decades, it became clear that tyrosine phosphorylation plays a pivotal role in a variety of important signalling pathways and was linked to a wide spectrum of diseases. Functional profiling of the tyrosine phosphoproteome during liver transplantation is therefore of great biological significance and is likely to lead to the identification of novel targets for drug discovery and provide a basis for novel therapeutic strategies. Results Using liver biopsies collected during the early phases of organ procurement and transplantation, we aimed at characterizing the global patterns of tyrosine phosphorylation during hepatic I/R. A proteomic approach, based on the purification of tyrosine phosphorylated proteins followed by their identification using mass spectrometry, allowed us to identify Nck-1, a SH2/SH3 adaptor, as a potential regulator of I/R injury. Using immunoblot, cell fractionation and immunohistochemistry, we demonstrate that Nck-1 phosphorylation, expression and localization were affected in liver tissue upon I/R. In addition, mass spectrometry identification of Nck-1 binding partners during the course of the transplantation also suggested a dynamic interaction between Nck-1 and actin during I/R. Conclusion Taken together, our data suggest that Nck-1 may play a role in I/R-induced actin reorganization, which was previously reported to be detrimental for the hepatocytes of the transplanted graft. Nck-1 could therefore represent a target of choice for the design of new organ preservation strategies, which could consequently help to reduce post-reperfusion liver damages and improve transplantation outcomes.

  13. Phosphorylation of the chromatin binding domain of KSHV LANA.

    Directory of Open Access Journals (Sweden)

    Crystal Woodard

    Full Text Available The Kaposi sarcoma associated herpesvirus (KSHV latency associated nuclear antigen (LANA is expressed in all KSHV associated malignancies and is essential for maintenance of KSHV genomes in infected cells. To identify kinases that are potentially capable of modifying LANA, in vitro phosphorylation assays were performed using an Epstein Barr virus plus LANA protein microarray and 268 human kinases purified in active form from yeast. Interestingly, of the Epstein-Barr virus proteins on the array, the EBNA1 protein had the most similar kinase profile to LANA. We focused on nuclear kinases and on the N-terminus of LANA (amino acids 1-329 that contains the LANA chromatin binding domain. Sixty-three nuclear kinases phosphorylated the LANA N-terminus. Twenty-four nuclear kinases phosphorylated a peptide covering the LANA chromatin binding domain (amino acids 3-21. Alanine mutations of serine 10 and threonine 14 abolish or severely diminish chromatin and histone binding by LANA. However, conversion of these residues to the phosphomimetic glutamic acid restored histone binding suggesting that phosphorylation of serine 10 and threonine 14 may modulate LANA function. Serine 10 and threonine 14 were validated as substrates of casein kinase 1, PIM1, GSK-3 and RSK3 kinases. Short-term treatment of transfected cells with inhibitors of these kinases found that only RSK inhibition reduced LANA interaction with endogenous histone H2B. Extended treatment of PEL cell cultures with RSK inhibitor caused a decrease in LANA protein levels associated with p21 induction and a loss of PEL cell viability. The data indicate that RSK phosphorylation affects both LANA accumulation and function.

  14. A redox-regulated tyrosine phosphorylation cascade in rat spermatozoa. (United States)

    Lewis, B; Aitken, R J


    Rat spermatozoa from both the caput and cauda epididymidis were shown to generate superoxide anion (O2-.) both spontaneously and following stimulation with NAD(P)H. Caput spermatozoa gave a significantly greater O2- response to NADPH stimulation than caudal cells, whereas in both cell types the responses to exogenous NADPH and NADH were approximately equivalent. Analysis of H2O2 production revealed that this oxidant was generated only by caudal epididymal cells and only in these cells did the stimulation of reactive oxygen species (ROS) production with NADPH lead to an increase in tyrosine phosphorylation. Stimulation of ROS production with NADPH increased intracellular cyclic adenosine monophosphate (cAMP) levels in both caput and caudal epididymal cells, but only in caudal cells did cAMP stimulate tyrosine phosphorylation, in keeping with the NADPH results. On the basis of these findings we propose that tyrosine phosphorylation in rat spermatozoa is driven by ROS acting via 2 different but complementary mechanisms; O2-. stimulates tyrosine kinase activity indirectly through the elevation of intracellular cAMP while H2O2 acts directly on the kinase/phosphatase system, stimulating the former and inhibiting the latter. Zinc was examined as a potential regulator of this signal transduction cascade and was shown to suppress tyrosine phosphorylation in caput cells but to promote this activity in caudal spermatozoa, possibly through an inhibitory effect on tyrosine phosphatase activity. These results reveal the maturation of a redox-regulated, cAMP-mediated, signal transduction cascade during epididymal transit in the rat that is sensitive to zinc and plays a key role in the control of tyrosine phosphorylation events associated with capacitation.

  15. PR65A phosphorylation regulates PP2A complex signaling.

    Directory of Open Access Journals (Sweden)

    Kumar Kotlo

    Full Text Available Serine-threonine Protein phosphatase 2 A (PP2A, a member of the PPP family of phosphatases, regulates a variety of essential cellular processes, including cell-cycling, DNA replication, transcription, translation, and secondary signaling pathways. In the heart, increased PP2A activity/signaling has been linked to cardiac remodeling, contractile dysfunction and, in failure, arrythmogenicity. The core PP2A complex is a hetero-trimeric holoenzyme consisting of a 36 kDa catalytic subunit (PP2Ac; a regulatory scaffold subunit of 65 kDa (PR65A or PP2Aa; and one of at least 18 associated variable regulatory proteins (B subunits classified into 3 families. In the present study, three in vivo sites of phosphorylation in cardiac PR65A are identified (S303, T268, S314. Using HEK cells transfected with recombinant forms of PR65A with phosphomimetic (P-PR65A and non-phosphorylated (N-PR65A amino acid substitutions at these sites, these phosphorylations were shown to inhibit the interaction of PR65A with PP2Ac and PP2A holoenzyme signaling. Forty-seven phospho-proteins were increased in abundance in HEK cells transfected with P-PR65A versus N-PR65A by phospho-protein profiling using 2D-DIGE analysis on phospho-enriched whole cell protein extracts. Among these proteins were elongation factor 1α (EF1A, elongation factor 2, heat shock protein 60 (HSP60, NADPH-dehydrogenase 1 alpha sub complex, annexin A, and PR65A. Compared to controls, failing hearts from the Dahl rat had less phosphorylated PR65A protein abundance and increased PP2A activity. Thus, PR65A phosphorylation is an in vivo mechanism for regulation of the PP2A signaling complex and increased PP2A activity in heart failure.

  16. HSP20 phosphorylation and airway smooth muscle relaxation

    Directory of Open Access Journals (Sweden)

    Mariam Ba


    Full Text Available Mariam Ba1, Cherie A Singer1, Manoj Tyagi2, Colleen Brophy3, Josh E Baker4, Christine Cremo4, Andrew Halayko5, William T Gerthoffer21Department of Pharmacology, University of Nevada School of Medicine, Reno, NV, USA; 2Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, USA; 3Harrington Department of Biochemistry, Arizona State University, Tempe, AZ, USA; 4Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA; 5Departments of Physiology and Internal Medicine, University of Manitoba, Winnipeg, MB, CanadaAbstract: HSP20 (HSPB6 is a small heat shock protein expressed in smooth muscles that is hypothesized to inhibit contraction when phosphorylated by cAMP-dependent protein kinase. To investigate this hypothesis in airway smooth muscle (ASM we showed that HSP20 was constitutively expressed as well as being inducible in cultured hASM cells by treatment with 1 µM isoproterenol or 10 µM salmeterol. In contrast, a mixture of proinflammatory mediators (interleukin-1β, tumor necrosis factor α, and interferon γ inhibited expression of HSP20 by about 50% in 48 hours. To determine whether phosphorylation of HSP20 is sufficient to induce relaxation, canine tracheal smooth muscle was treated with a cell permeant phosphopeptide that mimics the phosphorylation of HSP20. The HSP20 phosphopeptide antagonized carbacholinduced contraction by 60% with no change in myosin light chain phosphorylation. Recombinant full length HSP20 inhibited skeletal actin binding to smooth muscle myosin subfragment 1 (S1, and recombinant cell permeant TAT-HSP20 S16D mutant reduced F-actin filaments in cultured hASM cells. Carbachol stimulation of canine tracheal smooth muscle tissue caused redistribution of HSP20 from large macromolecular complexes (200–500 kDa to smaller complexes (<60 kDa. The results are consistent with HSP20 expression and macromolecular structure being dynamically regulated in airway

  17. Molecular mechanism of APC/C activation by mitotic phosphorylation. (United States)

    Zhang, Suyang; Chang, Leifu; Alfieri, Claudio; Zhang, Ziguo; Yang, Jing; Maslen, Sarah; Skehel, Mark; Barford, David


    In eukaryotes, the anaphase-promoting complex (APC/C, also known as the cyclosome) regulates the ubiquitin-dependent proteolysis of specific cell-cycle proteins to coordinate chromosome segregation in mitosis and entry into the G1 phase. The catalytic activity of the APC/C and its ability to specify the destruction of particular proteins at different phases of the cell cycle are controlled by its interaction with two structurally related coactivator subunits, Cdc20 and Cdh1. Coactivators recognize substrate degrons, and enhance the affinity of the APC/C for its cognate E2 (refs 4-6). During mitosis, cyclin-dependent kinase (Cdk) and polo-like kinase (Plk) control Cdc20- and Cdh1-mediated activation of the APC/C. Hyperphosphorylation of APC/C subunits, notably Apc1 and Apc3, is required for Cdc20 to activate the APC/C, whereas phosphorylation of Cdh1 prevents its association with the APC/C. Since both coactivators associate with the APC/C through their common C-box and Ile-Arg tail motifs, the mechanism underlying this differential regulation is unclear, as is the role of specific APC/C phosphorylation sites. Here, using cryo-electron microscopy and biochemical analysis, we define the molecular basis of how phosphorylation of human APC/C allows for its control by Cdc20. An auto-inhibitory segment of Apc1 acts as a molecular switch that in apo unphosphorylated APC/C interacts with the C-box binding site and obstructs engagement of Cdc20. Phosphorylation of the auto-inhibitory segment displaces it from the C-box-binding site. Efficient phosphorylation of the auto-inhibitory segment, and thus relief of auto-inhibition, requires the recruitment of Cdk-cyclin in complex with a Cdk regulatory subunit (Cks) to a hyperphosphorylated loop of Apc3. We also find that the small-molecule inhibitor, tosyl-l-arginine methyl ester, preferentially suppresses APC/C(Cdc20) rather than APC/C(Cdh1), and interacts with the binding sites of both the C-box and Ile-Arg tail motifs. Our

  18. Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action


    Eldar-Finkelman, Hagit; Krebs, Edwin G.


    The phosphorylation of insulin receptor substrate 1 (IRS-1) on tyrosine residues by the insulin receptor (IR) tyrosine kinase is involved in most of the biological responses of insulin. IRS-1 mediates insulin signaling by recruiting SH2 proteins through its multiple tyrosine phosphorylation sites. The phosphorylation of IRS-1 on serine/threonine residues also occurs in cells; however, the particular protein kinase(s) promoting this type of phosphorylation are unknown. Here we report that glyc...

  19. The Self-catalytic Esterification Reaction of O-Phosphoryl Serine Derivative

    Institute of Scientific and Technical Information of China (English)

    Jin Tang DU; Yan Mei LI; Zhong Zhou CHEN; Shi Zhong LUO; Yu Fen ZHAO


    O-Phosphoryl serine derivative can perform self-catalytic esterification reaction in the mixture of CH3OH and CHCl3 at the room temperature. The phosphoryl group participation was the key step of the esterification. This type of reactions were proposed through an intermediate of mixed phosphoric-carboxylic anhydride that might provide a clue to the function of the phosphoryl group in the phosphorylated enzymes and in the prebiotic synthesis of protein.

  20. Phospho.ELM: A database of experimentally verified phosphorylation sites in eukaryotic proteins

    DEFF Research Database (Denmark)

    Diella, F.; Cameron, S.; Gemund, C.


    need for an accurate database dedicated to phosphorylation to provide easily retrievable information on phosphoproteins. Description: Phospho. ELM is a new resource containing experimentally verified phosphorylation sites manually curated from the literature and is developed...... to be phosphorylated by cellular kinases. Additional annotation includes literature references, subcellular compartment, tissue distribution, and information about the signaling pathways involved as well as links to the molecular interaction database MINT. Phospho. ELM version 2.0 contains 1703 phosphorylation site...

  1. Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription. (United States)

    Heidemann, Martin; Hintermair, Corinna; Voß, Kirsten; Eick, Dirk


    The eukaryotic RNA polymerase II (RNAPII) catalyzes the transcription of all protein encoding genes and is also responsible for the generation of small regulatory RNAs. RNAPII has evolved a unique domain composed of heptapeptide repeats with the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 at the C-terminus (CTD) of its largest subunit (Rpb1). Dynamic phosphorylation patterns of serine residues in CTD during gene transcription coordinate the recruitment of factors to the elongating RNAPII and to the nascent transcript. Recent studies identified threonine 4 and tyrosine 1 as new CTD modifications and thereby expanded the "CTD code". In this review, we focus on CTD phosphorylation and its function in the RNAPII transcription cycle. We also discuss in detail the limitations of the phosphospecific CTD antibodies, which are used in all studies. This article is part of a Special Issue entitled: RNA Polymerase II Transcript Elongation.

  2. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. (United States)

    Brunelle, Joslyn K; Bell, Eric L; Quesada, Nancy M; Vercauteren, Kristel; Tiranti, Valeria; Zeviani, Massimo; Scarpulla, Richard C; Chandel, Navdeep S


    Mammalian cells detect decreases in oxygen concentrations to activate a variety of responses that help cells adapt to low oxygen levels (hypoxia). One such response is stabilization of the protein HIF-1 alpha, a component of the transcription factor HIF-1. Here we show that a small interfering RNA (siRNA) against the Rieske iron-sulfur protein of mitochondrial complex III prevents the hypoxic stabilization of HIF-1 alpha protein. Fibroblasts from a patient with Leigh's syndrome, which display residual levels of electron transport activity and are incompetent in oxidative phosphorylation, stabilize HIF-1 alpha during hypoxia. The expression of glutathione peroxidase or catalase, but not superoxide dismutase 1 or 2, prevents the hypoxic stabilization of HIF-1 alpha. These findings provide genetic evidence that oxygen sensing is dependent on mitochondrial-generated reactive oxygen species (ROS) but independent of oxidative phosphorylation.

  3. ERK phosphorylation regulates sleep and plasticity in Drosophila.

    Directory of Open Access Journals (Sweden)

    William M Vanderheyden

    Full Text Available Given the relationship between sleep and plasticity, we examined the role of Extracellular signal-regulated kinase (ERK in regulating baseline sleep, and modulating the response to waking experience. Both sleep deprivation and social enrichment increase ERK phosphorylation in wild-type flies. The effects of both sleep deprivation and social enrichment on structural plasticity in the LNvs can be recapitulated by expressing an active version of ERK (UAS-ERK(SEM pan-neuronally in the adult fly using GeneSwitch (Gsw Gsw-elav-GAL4. Conversely, disrupting ERK reduces sleep and prevents both the behavioral and structural plasticity normally induced by social enrichment. Finally, using transgenic flies carrying a cAMP response Element (CRE-luciferase reporter we show that activating ERK enhances CRE-Luc activity while disrupting ERK reduces it. These data suggest that ERK phosphorylation is an important mediator in transducing waking experience into sleep.

  4. Cell entry of Lassa virus induces tyrosine phosphorylation of dystroglycan. (United States)

    Moraz, Marie-Laurence; Pythoud, Christelle; Turk, Rolf; Rothenberger, Sylvia; Pasquato, Antonella; Campbell, Kevin P; Kunz, Stefan


    The extracellular matrix (ECM) receptor dystroglycan (DG) serves as a cellular receptor for the highly pathogenic arenavirus Lassa virus (LASV) that causes a haemorrhagic fever with high mortality in human. In the host cell, DG provides a molecular link between the ECM and the actin cytoskeleton via the adapter proteins utrophin or dystrophin. Here we investigated post-translational modifications of DG in the context of LASV cell entry. Using the tyrosine kinase inhibitor genistein, we found that tyrosine kinases are required for efficient internalization of virus particles, but not virus-receptor binding. Engagement of cellular DG by LASV envelope glycoprotein (LASV GP) in human epithelial cells induced tyrosine phosphorylation of the cytoplasmic domain of DG. LASV GP binding to DG further resulted in dissociation of the adapter protein utrophin from virus-bound DG. This virus-induced dissociation of utrophin was affected by genistein treatment, suggesting a role of receptor tyrosine phosphorylation in the process.

  5. Regulation of PCNA Function by Tyrosine Phosphorylation in Prostate Cancer (United States)


    strategy targets a subpopulation of PCNA harboring a specific posttranslational modification (Y211 phosphorylation), which has been shown to be expressed...impact in tumor cells versus normal tissues. It should also be noted that posttranslational modification is not a requirement for PCNA to conduct DNA...chemical modifications , can further improve the specificity, delivery, and sta- bility for systemic administration. To this regard, it is noteworthy that

  6. Structure of a bacterial enzyme regulated by phosphorylation, isocitrate dehydrogenase.



    The structure of isocitrate dehydrogenase [threo-DS-isocitrate: NADP+ oxidoreductase (decarboxylating), EC] from Escherichia coli has been solved and refined at 2.5 A resolution and is topologically different from that of any other dehydrogenase. This enzyme, a dimer of identical 416-residue subunits, is inactivated by phosphorylation at Ser-113, which lies at the edge of an interdomain pocket that also contains many residues conserved between isocitrate dehydrogenase and isopropylma...

  7. Snapshot of a phosphorylated substrate intermediate by kinetic crystallography


    Käck, Helena; Gibson, Katharine J.; Lindqvist, Ylva; Schneider, Gunter


    The ATP-dependent enzyme dethiobiotin synthetase from Escherichia coli catalyses the formation of dethiobiotin from CO2 and 7,8-diaminopelargonic acid. The reaction is initiated by the formation of a carbamate and proceeds through a phosphorylated intermediate, a mixed carbamic phosphoric anhydride. Here, we report the crystal structures at 1.9- and 1.6-Å resolution, respectively, of the enzyme–MgATP–diaminopelargonic acid and enzyme–MgADP–carbamic–phosphoric acid anhydride complexes, observe...

  8. Spatial proximity statistics suggest a regulatory role of protein phosphorylation on compound binding. (United States)

    Korkuć, Paula; Walther, Dirk


    Phosphorylation is an important post-translational modification that regulates protein function by the attachment of negatively charged phosphate groups to phosphorylatable amino acid residues. As a mode of action, an influence of phosphorylation on the binding of compounds to proteins has been discussed and described for a number of proteins in the literature. However, a systematic statistical survey probing for enriched phosphorylation sites close to compound binding sites in support of this notion and with properly chosen random reference distributions has not been presented yet. Using high-resolution protein structures from the Protein Data Bank including their co-crystallized non-covalently bound compounds and experimentally determined phosphorylation sites, we analyzed the pairwise distance distributions of phosphorylation and compound binding sites on protein surfaces. We found that phosphorylation sites are indeed located at significantly closer distances to compounds than expected by chance holding true specifically also for the subset of compound binding sites serving as catalytic sites of metabolic reactions. This tendency was particularly evident when treating phosphorylation sites as collective sets supporting the relevance of phosphorylation hotspots. Interestingly, phosphorylation sites were found to be closer to negatively charged than to positively charged compounds suggesting a stronger modulation of the binding of negatively charged compounds in dependence on phosphorylation status than on positively charged compounds. The enrichment of phosphorylation sites near compound binding sites confirms a regulatory role of phosphorylation in compound binding and provides a solid statistical basis for the literature-reported selected events.

  9. Phosphorylation of the Na+,K+-ATPase and the H+,K+-ATPase

    DEFF Research Database (Denmark)

    Poulsen, Hanne; Morth, Jens Preben; Jensen, Jan Egebjerg;


    Phosphorylation is a widely used, reversible means of regulating enzymatic activity. Among the important phosphorylation targets are the Na(+),K(+)- and H(+),K(+)-ATPases that pump ions against their chemical gradients to uphold ionic concentration differences over the plasma membrane. The two...... as supported by electrophysiological results presented here. We further review the other proposed pump phosphorylations....

  10. Roles of “junk phosphorylation” in modulating biomolecular association of phosphorylated proteins?

    DEFF Research Database (Denmark)

    Tan, Chris Soon Heng; Jørgensen, Claus; Linding, Rune


    Protein phosphorylation dynamically regulates cellular activities in response to environmental cues. Sequence conservation analysis of recent proteome-wide phosphorylation data revealed that many previously unidentified phosphorylation sites are not well-conserved leading to the proposal that man...... evolutionary approaches to interpret physiological important sites....

  11. Large-scale analysis of phosphorylation site occupancy in eukaryotic proteins

    DEFF Research Database (Denmark)

    Rao, R Shyama Prasad; Møller, Ian Max


    maximum randomness. An analysis of phosphorylation motifs indicated that just 40 motifs and a much lower number of associated kinases might account for nearly 50% of the known phosphorylations in eukaryotic proteins. Our results provide a broad picture of the phosphorylation sites in eukaryotic proteins....

  12. Synaptic Activation of Ribosomal Protein S6 Phosphorylation Occurs Locally in Activated Dendritic Domains (United States)

    Pirbhoy, Patricia Salgado; Farris, Shannon; Steward, Oswald


    Previous studies have shown that induction of long-term potentiation (LTP) induces phosphorylation of ribosomal protein S6 (rpS6) in postsynaptic neurons, but the functional significance of rpS6 phosphorylation is poorly understood. Here, we show that synaptic stimulation that induces perforant path LTP triggers phosphorylation of rpS6 (p-rpS6)…

  13. TTBK2: A Tau Protein Kinase beyond Tau Phosphorylation

    Directory of Open Access Journals (Sweden)

    Jung-Chi Liao


    Full Text Available Tau tubulin kinase 2 (TTBK2 is a kinase known to phosphorylate tau and tubulin. It has recently drawn much attention due to its involvement in multiple important cellular processes. Here, we review the current understanding of TTBK2, including its sequence, structure, binding sites, phosphorylation substrates, and cellular processes involved. TTBK2 possesses a casein kinase 1 (CK1 kinase domain followed by a ~900 amino acid segment, potentially responsible for its localization and substrate recruitment. It is known to bind to CEP164, a centriolar protein, and EB1, a microtubule plus-end tracking protein. In addition to autophosphorylation, known phosphorylation substrates of TTBK2 include tau, tubulin, CEP164, CEP97, and TDP-43, a neurodegeneration-associated protein. Mutations of TTBK2 are associated with spinocerebellar ataxia type 11. In addition, TTBK2 is essential for regulating the growth of axonemal microtubules in ciliogenesis. It also plays roles in resistance of cancer target therapies and in regulating glucose and GABA transport. Reported sites of TTBK2 localization include the centriole/basal body, the midbody, and possibly the mitotic spindles. Together, TTBK2 is a multifunctional kinase involved in important cellular processes and demands augmented efforts in investigating its functions.

  14. Glucose phosphorylation is required for Mycobacterium tuberculosis persistence in mice.

    Directory of Open Access Journals (Sweden)

    Joeli Marrero


    Full Text Available Mycobacterium tuberculosis (Mtb is thought to preferentially rely on fatty acid metabolism to both establish and maintain chronic infections. Its metabolic network, however, allows efficient co-catabolism of multiple carbon substrates. To gain insight into the importance of carbohydrate substrates for Mtb pathogenesis we evaluated the role of glucose phosphorylation, the first reaction in glycolysis. We discovered that Mtb expresses two functional glucokinases. Mtb required the polyphosphate glucokinase PPGK for normal growth on glucose, while its second glucokinase GLKA was dispensable. (13C-based metabolomic profiling revealed that both enzymes are capable of incorporating glucose into Mtb's central carbon metabolism, with PPGK serving as dominant glucokinase in wild type (wt Mtb. When both glucokinase genes, ppgK and glkA, were deleted from its genome, Mtb was unable to use external glucose as substrate for growth or metabolism. Characterization of the glucokinase mutants in mouse infections demonstrated that glucose phosphorylation is dispensable for establishing infection in mice. Surprisingly, however, the glucokinase double mutant failed to persist normally in lungs, which suggests that Mtb has access to glucose in vivo and relies on glucose phosphorylation to survive during chronic mouse infections.

  15. Catalytic constants enable the emergence of bistability in dual phosphorylation. (United States)

    Conradi, Carsten; Mincheva, Maya


    Dual phosphorylation of proteins is a principal component of intracellular signalling. Bistability is considered an important property of such systems and its origin is not yet completely understood. Theoretical studies have established parameter values for multistationarity and bistability for many types of proteins. However, up to now no formal criterion linking multistationarity and bistability to the parameter values characterizing dual phosphorylation has been established. Deciding whether an unclassified protein has the capacity for bistability, therefore requires careful numerical studies. Here, we present two general algebraic conditions in the form of inequalities. The first employs the catalytic constants, and if satisfied guarantees multistationarity (and hence the potential for bistability). The second involves the catalytic and Michaelis constants, and if satisfied guarantees uniqueness of steady states (and hence absence of bistability). Our method also allows for the direct computation of the total concentration values such that multistationarity occurs. Applying our results yields insights into the emergence of bistability in the ERK-MEK-MKP system that previously required a delicate numerical effort. Our algebraic conditions present a practical way to determine the capacity for bistability and hence will be a useful tool for examining the origin of bistability in many models containing dual phosphorylation.

  16. Raf activation is regulated by tyrosine 510 phosphorylation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Fan Xia


    Full Text Available The proto-oncoprotein Raf is pivotal for mitogen-activated protein kinase (MAPK signaling, and its aberrant activation has been implicated in multiple human cancers. However, the precise molecular mechanism of Raf activation, especially for B-Raf, remains unresolved. By genetic and biochemical studies, we demonstrate that phosphorylation of tyrosine 510 is essential for activation of Drosophila Raf (Draf, which is an ortholog of mammalian B-Raf. Y510 of Draf is phosphorylated by the c-src homolog Src64B. Acidic substitution of Y510 promotes and phenylalanine substitution impairs Draf activation without affecting its enzymatic activity, suggesting that Y510 plays a purely regulatory role. We further show that Y510 regulates Draf activation by affecting the autoinhibitory interaction between the N- and C-terminal fragments of the protein. Finally, we show that Src64B is required for Draf activation in several developmental processes. Together, these results suggest a novel mechanism of Raf activation via Src-mediated tyrosine phosphorylation. Since Y510 is a conserved residue in the kinase domain of all Raf proteins, this mechanism is likely evolutionarily conserved.

  17. Mcm2 phosphorylation and the response to replicative stress

    Directory of Open Access Journals (Sweden)

    Stead Brent E


    Full Text Available Abstract Background The replicative helicase in eukaryotic cells is comprised of minichromosome maintenance (Mcm proteins 2 through 7 (Mcm2-7 and is a key target for regulation of cell proliferation. In addition, it is regulated in response to replicative stress. One of the protein kinases that targets Mcm2-7 is the Dbf4-dependent kinase Cdc7 (DDK. In a previous study, we showed that alanine mutations of the DDK phosphorylation sites at S164 and S170 in Saccharomyces cerevisiae Mcm2 result in sensitivity to caffeine and methyl methanesulfonate (MMS leading us to suggest that DDK phosphorylation of Mcm2 is required in response to replicative stress. Results We show here that a strain with the mcm2 allele lacking DDK phosphorylation sites (mcm2AA is also sensitive to the ribonucleotide reductase inhibitor, hydroxyurea (HU and to the base analogue 5-fluorouracil (5-FU but not the radiomimetic drug, phleomycin. We screened the budding yeast non-essential deletion collection for synthetic lethal interactions with mcm2AA and isolated deletions that include genes involved in the control of genome integrity and oxidative stress. In addition, the spontaneous mutation rate, as measured by mutations in CAN1, was increased in the mcm2AA strain compared to wild type, whereas with a phosphomimetic allele (mcm2EE the mutation rate was decreased. These results led to the idea that the mcm2AA strain is unable to respond properly to DNA damage. We examined this by screening the deletion collection for suppressors of the caffeine sensitivity of mcm2AA. Deletions that decrease spontaneous DNA damage, increase homologous recombination or slow replication forks were isolated. Many of the suppressors of caffeine sensitivity suppressed other phenotypes of mcm2AA including sensitivity to genotoxic drugs, the increased frequency of cells with RPA foci and the increased mutation rate. Conclusions Together these observations point to a role for DDK-mediated phosphorylation

  18. PPARγ1 phosphorylation enhances proliferation and drug resistance in human fibrosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Xiaojuan; Shu, Yuxin; Niu, Zhiyuan; Zheng, Wei; Wu, Haochen [State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing (China); Lu, Yan, E-mail: [State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing (China); Shen, Pingping, E-mail: [State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing (China); Model Animal Research Center (MARC), Nanjing University, Nanjing (China)


    Post-translational regulation plays a critical role in the control of cell growth and proliferation. The phosphorylation of peroxisome proliferator-activated receptor γ (PPARγ) is the most important post-translational modification. The function of PPARγ phosphorylation has been studied extensively in the past. However, the relationship between phosphorylated PPARγ1 and tumors remains unclear. Here we investigated the role of PPARγ1 phosphorylation in human fibrosarcoma HT1080 cell line. Using the nonphosphorylation (Ser84 to alanine, S84A) and phosphorylation (Ser84 to aspartic acid, S84D) mutant of PPARγ1, the results suggested that phosphorylation attenuated PPARγ1 transcriptional activity. Meanwhile, we demonstrated that phosphorylated PPARγ1 promoted HT1080 cell proliferation and this effect was dependent on the regulation of cell cycle arrest. The mRNA levels of cyclin-dependent kinase inhibitor (CKI) p21{sup Waf1/Cip1} and p27{sup Kip1} descended in PPARγ1{sup S84D} stable HT1080 cell, whereas the expression of p18{sup INK4C} was not changed. Moreover, compared to the PPARγ1{sup S84A}, PPARγ1{sup S84D} up-regulated the expression levels of cyclin D1 and cyclin A. Finally, PPARγ1 phosphorylation reduced sensitivity to agonist rosiglitazone and increased resistance to anticancer drug 5-fluorouracil (5-FU) in HT1080 cell. Our findings establish PPARγ1 phosphorylation as a critical event in human fibrosarcoma growth. These findings raise the possibility that chemical compounds that prevent the phosphorylation of PPARγ1 could act as anticancer drugs. - Highlights: • Phosphorylation attenuates PPARγ1 transcriptional activity. • Phosphorylated PPARγ1 promotes HT1080 cells proliferation. • PPARγ1 phosphorylation regulates cell cycle by mediating expression of cell cycle regulators. • PPARγ1 phosphorylation reduces sensitivity to agonist and anticancer drug. • Our findings establish PPARγ1 phosphorylation as a critical event in HT1080

  19. The upper and lower limits of the mechanistic stoichiometry of mitochondrial oxidative phosphorylation. Stoichiometry of oxidative phosphorylation. (United States)

    Beavis, A D; Lehninger, A L


    Determination of the intrinsic or mechanistic P/O ratio of oxidative phosphorylation is difficult because of the unknown magnitude of leak fluxes. Applying a new approach developed to overcome this problem (see our preceding paper in this journal), the relationships between the rate of O2 uptake [( Jo)3], the net rate of phosphorylation (Jp), the P/O ratio, and the respiratory control ratio (RCR) have been determined in rat liver mitochondria when the rate of phosphorylation was systematically varied by three specific means. (a) When phosphorylation is titrated with carboxyatractyloside, linear relationships are observed between Jp and (Jo)3. These data indicate that the upper limit of the mechanistic P/O ratio is 1.80 for succinate and 2.90 for 3-hydroxybutyrate oxidation. (b) Titration with malonate or antimycin yields linear relationships between Jp and (Jo)3. These data give the lower limit of the mechanistic P/O ratio of 1.63 for succinate and 2.66 for 3-hydroxybutyrate oxidation. (c) Titration with a protonophore yields linear relationships between Jp, (Jo)3, and (Jo)4 and between P/O and 1/RCR. Extrapolation of the P/O ratio to 1/RCR = 0 yields P/O ratios of 1.75 for succinate and 2.73 for 3-hydroxybutyrate oxidation which must be equal to or greater than the mechanistic stoichiometry. When published values for the H+/O and H+/ATP ejection ratios are taken into consideration, these measurements suggest that the mechanistic P/O ratio is 1.75 for succinate oxidation and 2.75 for NADH oxidation.

  20. Phosphoproteome analysis of E-coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation

    DEFF Research Database (Denmark)

    Macek, B.; Gnad, F.; Soufi, Boumediene


    we use a recently developed proteomics approach based on phosphopeptide enrichment and high accuracy MS to analyze the phosphoproteome of the model Gram-negative bacterium Escherichia coli. We report 81 phosphorylation sites on 79 E. coli proteins, with distribution of Ser/Thr/Tyr phosphorylation...... sites 68%/23%/9%. Despite their phylogenetic distance, phosphoproteomes of E. coli and B. subtilis show striking similarity in size, classes of phosphorylated proteins, and distribution of Ser/Thr/Tyr phosphorylation sites. By combining the two datasets, we created the largest phosphorylation site...

  1. dbPPT: a comprehensive database of protein phosphorylation in plants. (United States)

    Cheng, Han; Deng, Wankun; Wang, Yongbo; Ren, Jian; Liu, Zexian; Xue, Yu


    As one of the most important protein post-translational modifications, the reversible phosphorylation is critical for plants in regulating a variety of biological processes such as cellular metabolism, signal transduction and responses to environmental stress. Numerous efforts especially large-scale phosphoproteome profiling studies have been contributed to dissect the phosphorylation signaling in various plants, while a large number of phosphorylation events were identified. To provide an integrated data resource for further investigations, here we present a comprehensive database of dbPPT (database of Phosphorylation site in PlanTs, at, which contains experimentally identified phosphorylation sites in proteins from plants. The phosphorylation sites in dbPPT were manually curated from the literatures, whereas datasets in other public databases were also integrated. In total, there were 82,175 phosphorylation sites in 31,012 proteins from 20 plant organisms in dbPPT, presenting a larger quantity of phosphorylation sites and a higher coverage of plant species in comparison with other databases. The proportions of residue types including serine, threonine and tyrosine were 77.99, 17.81 and 4.20%, respectively. All the phosphoproteins and phosphorylation sites in the database were critically annotated. Since the phosphorylation signaling in plants attracted great attention recently, such a comprehensive resource of plant protein phosphorylation can be useful for the research community. Database URL: http://dbppt.biocuckoo.or

  2. Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues

    Directory of Open Access Journals (Sweden)

    Lei eShi


    Full Text Available Bacteria possess protein serine/threonine and tyrosine kinases which resemble eukaryal kinases in their capacity to phosphorylate multiple substrates. We hypothesized that the analogy might extend further, and bacterial kinases may also undergo mutual phosphorylation and activation, which is currently considered as a hallmark of eukaryal kinase networks. In order to test this hypothesis, we explored the capacity of all members of four different classes of serine/threonine and tyrosine kinases present in the firmicute model organism Bacillus subtilis to phosphorylate each other in vitro and interact with each other in vivo. The interactomics data suggested a high degree of connectivity among all types of kinases, while phosphorylation assays revealed equally wide-spread cross-phosphorylation events. Our findings suggest that the Hanks-type kinases PrkC, PrkD and YabT exhibit the highest capacity to phosphorylate other B. subtilis kinases, while the BY-kinase PtkA and the two-component-like kinases RsbW and SpoIIAB show the highest propensity to be phosphorylated by other kinases. Analysis of phosphorylated residues on several selected recipient kinases suggests that most cross-phosphorylation events concern key regulatory residues. Therefore, cross-phosphorylation events are very likely to influence the capacity of recipient kinases to phosphorylate substrates downstream in the signal transduction cascade. We therefore conclude that bacterial serine/threonine and tyrosine kinases probably engage in a network-type behavior previously described only in eukaryal cells.

  3. Identification of Mitosis-Specific Phosphorylation in Mitotic Chromosome-Associated Proteins. (United States)

    Ohta, Shinya; Kimura, Michiko; Takagi, Shunsuke; Toramoto, Iyo; Ishihama, Yasushi


    During mitosis, phosphorylation of chromosome-associated proteins is a key regulatory mechanism. Mass spectrometry has been successfully applied to determine the complete protein composition of mitotic chromosomes, but not to identify post-translational modifications. Here, we quantitatively compared the phosphoproteome of isolated mitotic chromosomes with that of chromosomes in nonsynchronized cells. We identified 4274 total phosphorylation sites and 350 mitosis-specific phosphorylation sites in mitotic chromosome-associated proteins. Significant mitosis-specific phosphorylation in centromere/kinetochore proteins was detected, although the chromosomal association of these proteins did not change throughout the cell cycle. This mitosis-specific phosphorylation might play a key role in regulation of mitosis. Further analysis revealed strong dependency of phosphorylation dynamics on kinase consensus patterns, thus linking the identified phosphorylation sites to known key mitotic kinases. Remarkably, chromosomal axial proteins such as non-SMC subunits of condensin, TopoIIα, and Kif4A, together with the chromosomal periphery protein Ki67 involved in the establishment of the mitotic chromosomal structure, demonstrated high phosphorylation during mitosis. These findings suggest a novel mechanism for regulation of chromosome restructuring in mitosis via protein phosphorylation. Our study generated a large quantitative database on protein phosphorylation in mitotic and nonmitotic chromosomes, thus providing insights into the dynamics of chromatin protein phosphorylation at mitosis onset.

  4. The effect of phosphorylation on arrestin-rhodopsin interaction in the squid visual system. (United States)

    Robinson, Kelly A; Ou, Wei-Lin; Guan, Xinyu; Sugamori, Kim S; Bandyopadhyay, Abhishek; Ernst, Oliver P; Mitchell, Jane


    Invertebrate visual opsins are G protein-coupled receptors coupled to retinoid chromophores that isomerize reversibly between inactive rhodopsin and active metarhodopsin upon absorption of photons of light. The squid visual system has an arrestin protein that binds to metarhodopsin to block signaling to Gq and activation of phospholipase C. Squid rhodopsin kinase (SQRK) can phosphorylate both metarhodopsin and arrestin, a dual role that is unique among the G protein-coupled receptor kinases. The sites and role of arrestin phosphorylation by SQRK were investigated here using recombinant proteins. Arrestin was phosphorylated on serine 392 and serine 397 in the C-terminus. Unphosphorylated arrestin bound to metarhodopsin and phosphorylated metarhodopsin with similar high affinities (Kd 33 and 21 nM respectively), while phosphorylation of arrestin reduced the affinity 3- to 5-fold (Kd 104 nM). Phosphorylation of metarhodopsin slightly increased the dissociation of arrestin observed during a 1 hour incubation. Together these studies suggest a unique role for SQRK in phosphorylating both receptor and arrestin and inhibiting the binding of these two proteins in the squid visual system. Invertebrate visual systems are inactivated by arrestin binding to metarhodopsin that does not require receptor phosphorylation. Here we show that squid rhodopsin kinase phosphorylates arrestin on two serines (S392,S397) in the C-terminus and phosphorylation decreases the affinity of arrestin for squid metarhodopsin. Metarhodopsin phosphorylation has very little effect on arrestin binding but does increase arrestin dissociation.

  5. Effect of phosphorylation on antioxidant activities of pumpkin (Cucurbita pepo, Lady godiva) polysaccharide. (United States)

    Song, Yi; Ni, Yuanying; Hu, Xiaosong; Li, Quanhong


    Phosphorylated derivatives of pumpkin polysaccharide with different degree of substitution were synthesized using POCl3 and pyridine. Antioxidant activities and cytoprotective effects of unmodified polysaccharide and phosphorylated derivatives were investigated employing various in vitro systems. Results showed that high ratio of POCl3/pyridine could increase the degree of substitution and no remarkable degradation occurred in the phosphorylation process. Characteristic absorption of phosphorylation appeared both in the IR and (31)P NMR spectrum. The df values between 2.27 and 2.55 indicated the relatively expanded conformation of the phosphorylated derivatives. All the phosphorylated polysaccharides exhibited higher antioxidant activities. H2O2-induced oxidative damages on rat thymic lymphocyte were also prevented by the derivatives. In general, phosphorylation could improve the antioxidant activities of pumpkin polysaccharide both in vitro and in a cell system.

  6. Injectable hydrogels derived from phosphorylated alginic acid calcium complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han-Sem; Song, Minsoo, E-mail:; Lee, Eun-Jung; Shin, Ueon Sang, E-mail:


    Phosphorylation of sodium alginate salt (NaAlg) was carried out using H{sub 3}PO{sub 4}/P{sub 2}O{sub 5}/Et{sub 3}PO{sub 4} followed by acid–base reaction with Ca(OAc){sub 2} to give phosphorylated alginic acid calcium complexes (CaPAlg), as a water dispersible alginic acid derivative. The modified alginate derivatives including phosphorylated alginic acid (PAlg) and CaPAlg were characterized by nuclear magnetic resonance spectroscopy for {sup 1}H, and {sup 31}P nuclei, high resolution inductively coupled plasma optical emission spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. CaPAlg hydrogels were prepared simply by mixing CaPAlg solution (2 w/v%) with NaAlg solution (2 w/v%) in various ratios (2:8, 4:6, 6:4, 8:2) of volume. No additional calcium salts such as CaSO{sub 4} or CaCl{sub 2} were added externally. The gelation was completed within about 3–40 min indicating a high potential of hydrogel delivery by injection in vivo. Their mechanical properties were tested to be ≤ 6.7 kPa for compressive strength at break and about 8.4 kPa/mm for elastic modulus. SEM analysis of the CaPAlg hydrogels showed highly porous morphology with interconnected pores of width in the range of 100–800 μm. Cell culture results showed that the injectable hydrogels exhibited comparable properties to the pure alginate hydrogel in terms of cytotoxicity and 3D encapsulation of cells for a short time period. The developed injectable hydrogels showed suitable physicochemical and mechanical properties for injection in vivo, and could therefore be beneficial for the field of soft tissue engineering. - Highlights: • Preparation of water-soluble alginic acid complexes with calcium phosphate • Self-assembly of the phosphorylated alginic acid calcium complexes with sodium alginate • Preparation of injectable hydrogels with diverse gelation times within about 3–40 min.

  7. Phosphorylation and Acetylation of Acyl-CoA Synthetase- I

    DEFF Research Database (Denmark)

    Frahm, Jennifer L; Li, Lei O; Grevengoed, Trisha J;


    -translational regulation. In order to investigate the post-translational modifications of ACSL1 under different physiological conditions, we overexpressed ACSL1 in hepatocytes, brown adipocytes, and 3T3-L1 differentiated adipocytes, treated these cells with different hormones, and analyzed the resulting phosphorylated...... and acetylated amino acids by mass spectrometry. We then compared these results to the post-translational modifications observed in vivo in liver and brown adipose tissue after mice were fasted or exposed to a cold environment. We identified universal N-terminal acetylation, 15 acetylated lysines, and 25...

  8. Ovarian hormones and prolactin increase renal NaCl cotransporter phosphorylation. (United States)

    Rojas-Vega, Lorena; Reyes-Castro, Luis A; Ramírez, Victoria; Bautista-Pérez, Rocío; Rafael, Chloe; Castañeda-Bueno, María; Meade, Patricia; de Los Heros, Paola; Arroyo-Garza, Isidora; Bernard, Valérie; Binart, Nadine; Bobadilla, Norma A; Hadchouel, Juliette; Zambrano, Elena; Gamba, Gerardo


    Unique situations in female physiology require volume retention. Accordingly, a dimorphic regulation of the thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC) has been reported, with a higher activity in females than in males. However, little is known about the hormones and mechanisms involved. Here, we present evidence that estrogens, progesterone, and prolactin stimulate NCC expression and phosphorylation. The sex difference in NCC abundance, however, is species dependent. In rats, NCC phosphorylation is higher in females than in males, while in mice both NCC expression and phosphorylation is higher in females, and this is associated with increased expression and phosphorylation of full-length STE-20 proline-alanine-rich kinase (SPAK). Higher expression/phosphorylation of NCC was corroborated in humans by urinary exosome analysis. Ovariectomy in rats resulted in decreased expression and phosphorylation of the cotransporter and promoted the shift of SPAK isoforms toward the short inhibitory variant SPAK2. Conversely, estradiol or progesterone administration to ovariectomized rats restored NCC phosphorylation levels and shifted SPAK expression and phosphorylation towards the full-length isoform. Estradiol administration to male rats induced a significant increase in NCC phosphorylation. NCC is also modulated by prolactin. Administration of this peptide hormone to male rats induced increased phosphorylation of NCC, an effect that was observed even using the ex vivo kidney perfusion strategy. Our results indicate that estradiol, progesterone, and prolactin, the hormones that are involved in sexual cycle, pregnancy and lactation, upregulate the activity of NCC.

  9. Posthoc phosphorylation of proteins derived from ischemic rat hippocampus, striatum and neocortex. (United States)

    Kirschenbaum, B; Pulsinelli, W A


    Disruption of the brain's protein phosphorylation system by ischemia may cause irreversible metabolic and structural alterations leading eventually to cell death. To examine the effect of ischemia on the phosphorylation state of brain proteins, tissue homogenates derived from the hippocampus, striatum and neocortex of normal rats and rats subjected to severe forebrain ischemia were phosphorylated with [gamma-32P]ATP. The phosphorylated proteins were separated by two-dimensional polyacrylamide gel electrophoresis and changes were assessed by autoradiography. Cerebral ischemia caused marked alterations of the phosphorylation state of many brain proteins; phosphorylation of some proteins was increased while phosphorylation of others was decreased. Despite differences in the sensitivity of the hippocampus, striatum and neocortex to ischemic injury the direction and approximate magnitude of protein phosphorylation changes caused by ischemia were similar in all three regions. Since the pattern of protein phosphorylation in the ischemia-vulnerable hippocampus was identical to that in the ischemia-resistant paramedian neocortex we conclude that abnormalities of protein phosphorylation may be necessary for ischemic injury to neurons but none are sufficient to explain the selective vulnerability of certain brain regions to ischemic damage.

  10. Vasopressin regulation of multisite phosphorylation of UT-A1 in the inner medullary collecting duct. (United States)

    Hoban, Carol A; Black, Lauren N; Ordas, Ronald J; Gumina, Diane L; Pulous, Fadi E; Sim, Jae H; Sands, Jeff M; Blount, Mitsi A


    Vasopressin signaling is critical for the regulation of urea transport in the inner medullary collecting duct (IMCD). Increased urea permeability is driven by a vasopressin-mediated elevation of cAMP that results in the direct phosphorylation of urea transporter (UT)-A1. The identification of cAMP-sensitive phosphorylation sites, Ser(486) and Ser(499), in the rat UT-A1 sequence was the first step in understanding the mechanism of vasopressin action on the phosphorylation-dependent modulation of urea transport. To investigate the significance of multisite phosphorylation of UT-A1 in response to elevated cAMP, we used highly specific and sensitive phosphosite antibodies to Ser(486) and Ser(499) to determine cAMP action at each phosphorylation site. We found that phosphorylation at both sites was rapid and sustained. Furthermore, the rate of phosphorylation of the two sites was similar in both mIMCD3 cells and rat inner medullary tissue. UT-A1 localized to the apical membrane in response to vasopressin was phosphorylated at Ser(486) and Ser(499). We confirmed that elevated cAMP resulted in increased phosphorylation of both sites by PKA but not through the vasopressin-sensitive exchange protein activated by cAMP pathway. These results elucidate the multisite phosphorylation of UT-A1 in response to cAMP, thus providing the beginning of understanding the intracellular factors underlying vasopressin stimulation of urea transport in the IMCD.

  11. Akt Phosphorylation and PI (3, 4, 5) P3 Binding Coordinately Inhibit the Tumor Suppressive Activity of Merlin (United States)


    Johnson KC, Eckman MS, & Jacks T (2002) Merlin phosphorylation by p21-activated kinase 2 and effects of phosphorylation on merlin localization. J...J. L., Johnson, K. C., Eckman , M. S. & Jacks, T. Merlin phosphorylation by p21-activated kinase 2 and effects of phosphorylation on merlin

  12. Functional Analysis of PKC Phosphorylation Sites on Myelin Protein Zero

    Institute of Scientific and Technical Information of China (English)

    GangXu; MichaelShy; JohnKamhoz; JanneBalsamo


    Objective To analyze the function of Protein kinase C(PKC) phosphorylation sites on mylelin protein zero (P0) at adhesion and myelination.Methods Mutations of p0 cyto-plasmic domain motif (RSTK) and adjacent sequence which are targeted by PKC were studied.Results The point mutations in this region or an adjacent serine residue could abolish P0 adhe-sion function. PKCα,along with the PKC binding protein RACK1,were associated with wild type P0.Inhibition of PKC activity abolished the P0 mediated adhesion.Point mutation in the RSTKtarget site that abolished adhesion did not alter the association of PKC with P0,but deletion of a 14 amino acid region,which included the PSTK motif,could abolish the association.Conclusion PKC mediated phosphorylation of specific residues within the cytoplasmic domain of P0 is neces-sary for P0 mediated adhesion.The alteration of this phoporylation can cause demyelinating neu-ropathy in human.

  13. (Patho-)physiological relevance of PINK1-dependent ubiquitin phosphorylation (United States)

    Fiesel, Fabienne C; Ando, Maya; Hudec, Roman; Hill, Anneliese R; Castanedes-Casey, Monica; Caulfield, Thomas R; Moussaud-Lamodière, Elisabeth L; Stankowski, Jeannette N; Bauer, Peter O; Lorenzo-Betancor, Oswaldo; Ferrer, Isidre; Arbelo, José M; Siuda, Joanna; Chen, Li; Dawson, Valina L; Dawson, Ted M; Wszolek, Zbigniew K; Ross, Owen A; Dickson, Dennis W; Springer, Wolfdieter


    Mutations in PINK1 and PARKIN cause recessive, early-onset Parkinson’s disease (PD). Together, these two proteins orchestrate a protective mitophagic response that ensures the safe disposal of damaged mitochondria. The kinase PINK1 phosphorylates ubiquitin (Ub) at the conserved residue S65, in addition to modifying the E3 ubiquitin ligase Parkin. The structural and functional consequences of Ub phosphorylation (pS65-Ub) have already been suggested from in vitro experiments, but its (patho-)physiological significance remains unknown. We have generated novel antibodies and assessed pS65-Ub signals in vitro and in cells, including primary neurons, under endogenous conditions. pS65-Ub is dependent on PINK1 kinase activity as confirmed in patient fibroblasts and postmortem brain samples harboring pathogenic mutations. We show that pS65-Ub is reversible and barely detectable under basal conditions, but rapidly induced upon mitochondrial stress in cells and amplified in the presence of functional Parkin. pS65-Ub accumulates in human brain during aging and disease in the form of cytoplasmic granules that partially overlap with mitochondrial, lysosomal, and total Ub markers. Additional studies are now warranted to further elucidate pS65-Ub functions and fully explore its potential for biomarker or therapeutic development. PMID:26162776

  14. Integrating phosphorylation network with transcriptional network reveals novel functional relationships.

    Directory of Open Access Journals (Sweden)

    Lin Wang

    Full Text Available Phosphorylation and transcriptional regulation events are critical for cells to transmit and respond to signals. In spite of its importance, systems-level strategies that couple these two networks have yet to be presented. Here we introduce a novel approach that integrates the physical and functional aspects of phosphorylation network together with the transcription network in S.cerevisiae, and demonstrate that different network motifs are involved in these networks, which should be considered in interpreting and integrating large scale datasets. Based on this understanding, we introduce a HeRS score (hetero-regulatory similarity score to systematically characterize the functional relevance of kinase/phosphatase involvement with transcription factor, and present an algorithm that predicts hetero-regulatory modules. When extended to signaling network, this approach confirmed the structure and cross talk of MAPK pathways, inferred a novel functional transcription factor Sok2 in high osmolarity glycerol pathway, and explained the mechanism of reduced mating efficiency upon Fus3 deletion. This strategy is applicable to other organisms as large-scale datasets become available, providing a means to identify the functional relationships between kinases/phosphatases and transcription factors.

  15. Auto-phosphorylation Represses Protein Kinase R Activity (United States)

    Wang, Die; de Weerd, Nicole A.; Willard, Belinda; Polekhina, Galina; Williams, Bryan R. G.; Sadler, Anthony J.


    The central role of protein kinases in controlling disease processes has spurred efforts to develop pharmaceutical regulators of their activity. A rational strategy to achieve this end is to determine intrinsic auto-regulatory processes, then selectively target these different states of kinases to repress their activation. Here we investigate auto-regulation of the innate immune effector protein kinase R, which phosphorylates the eukaryotic initiation factor 2α to inhibit global protein translation. We demonstrate that protein kinase R activity is controlled by auto-inhibition via an intra-molecular interaction. Part of this mechanism of control had previously been reported, but was then controverted. We account for the discrepancy and extend our understanding of the auto-inhibitory mechanism by identifying that auto-inhibition is paradoxically instigated by incipient auto-phosphorylation. Phosphor-residues at the amino-terminus instigate an intra-molecular interaction that enlists both of the N-terminal RNA-binding motifs of the protein with separate surfaces of the C-terminal kinase domain, to co-operatively inhibit kinase activation. These findings identify an innovative mechanism to control kinase activity, providing insight for strategies to better regulate kinase activity. PMID:28281686

  16. Adriamycin induces H2AX phosphorylation in human spermatozoa

    Institute of Scientific and Technical Information of China (English)

    Zhong-Xiang Li; Ting-Ting Wang; Yan-Ting Wu; Chen-Ming Xu; Min-Yue Dong; Jian-Zhong Sheng; He-Feng Huang


    Aim: To investigate whether adriamycin induces DNA damage and the formation of γH2AX (the phosphorylated form of histone H2AX) foci in mature spermatozoa. Methods: Human spermatozoa were treated with adriamycin at different concentrations. γH2AX was analyzed by immunofluorescent staining and flow cytometry and double- strand breaks (DSB) were detected by the comet assay. Results: The neutral comet assay revealed that the treatment with adriamycin at 2 μg/mL for different times (0.5, 2, 8 and 24 h), or for 8 h at different concentrations (0.4, 2 and 10 μg/mL), induced significant DSB in spermatozoa. Immunofluorent staining and flow cytometry showed that the expression of γH2AX was increased in a dose-dependent and time-dependant manner after the treatment of adriamycin. Adriamycin also induced the concurrent appearance of DNA maintenance/repair proteins RAD50 and 53BP1 with γH2AX in spermatozoa. Wortmannin, an inhibitor of the phosphatidylinositol 3-kinase (PI3K) family, abolished the co-appearance of these two proteins with γH2AX. Conclusion: Human mature spermatozoa have the same response to DSB-induced H2AX phosphorylation and subsequent recruitment of DNA maintenance/repair proteins as somatic cells.

  17. Phosphorylation of psyllium seed polysaccharide and its characterization. (United States)

    Rao, Monica R P; Warrier, Deepa U; Gaikwad, Snehal R; Shevate, Prachi M


    Psyllium is widely used as a medicinally active natural polysaccharide for treating conditions like constipation, diarrhea, and irritable bowel syndrome, inflammatory bowel disease, ulcerative colitis and colon cancer. Studies have been performed to characterize and modify the polysaccharide obtained from psyllium seed husk and to evaluate its use as a pharmaceutical excipient, but no studies have been performed to evaluate the properties of the polysaccharide present in psyllium seeds. The present study focuses on phosphorylation of psyllium seed polysaccharide (PPS) using sodium tri-meta phosphate as the cross-linking agent. The modified phosphorylated psyllium seed polysaccharide was then evaluated for physicochemical properties, rheological properties, spectral analysis, thermal analysis, crosslinking density and acute oral toxicity studies. The modified polysaccharide (PhPPS) has a high swelling index due to which it can be categorized as a hydrogel. The percent increase in swelling of PhPPS as compared to PPS was found to be 90.26%. The PPS & PhPPS mucilages of all strengths were found to have shear thinning properties. These findings are suggestive of the potential use of PhPPS as gelling & suspending agent. PhPPS was found to have a mucoadhesive property which was comparable with carbopol.

  18. Identification and quantification of the phosphorylated ovalbumin by high resolution mass spectrometry under dry-heating treatment. (United States)

    Wang, Hui; Tu, Zong-Cai; Liu, Guang-Xian; Zhang, Lu; Chen, Yuan


    The specific phosphorylation sites and degree of phosphorylation (DP) at each site are directly related to protein's structure and functional properties. Thus, characterizing the introduced phosphate groups is of great importance. This study was to monitor the phosphorylation sites, DP and the number of phosphorylation sites in P-Oval achieved by dry heating in the presence of pyrophosphate for 1, 2 and 5days by using Fourier transform ion cyclotron mass spectrometry (FTICR MS). Two phosphorylation sites were found in natural ovalbumin, but the number of phosphorylation sites increased to 8, 8 and 10 after dry-heating phosphorylation for 1, 2 and 5days, respectively. In addition, dual-phosphorylated peptides were detected for samples without extensive heating. The phosphorylation sites were found to be mainly on Ser residues, which could be the preferred phosphorylation site for dry heating in the presence of pyrophosphate.

  19. Rapid Identification of Protein Kinase Phosphorylation Site Motifs Using Combinatorial Peptide Libraries. (United States)

    Miller, Chad J; Turk, Benjamin E


    Eukaryotic protein kinases phosphorylate substrates at serine, threonine, and tyrosine residues that fall within the context of short sequence motifs. Knowing the phosphorylation site motif for a protein kinase facilitates designing substrates for kinase assays and mapping phosphorylation sites in protein substrates. Here, we describe an arrayed peptide library protocol for rapidly determining kinase phosphorylation consensus sequences. This method uses a set of peptide mixtures in which each of the 20 amino acid residues is systematically substituted at nine positions surrounding a central site of phosphorylation. Peptide mixtures are arrayed in multiwell plates and analyzed by radiolabel assay with the kinase of interest. The preferred sequence is determined from the relative rate of phosphorylation of each peptide in the array. Consensus peptides based on these sequences typically serve as efficient and specific kinase substrates for high-throughput screening or incorporation into biosensors.

  20. Changes in phosphorylation of myofibrillar proteins during postmortem development of porcine muscle

    DEFF Research Database (Denmark)

    Huang, Honggang; Larsen, Martin Røssel; Lametsch, Rene


    phosphorylated protein bands with the highest scores. The results indicate that the phosphorylation pattern of myofibrillar proteins in PM muscle is mainly changed with PM time, but only to a minor extent influenced by the rate of pH decline, suggesting that the phosphorylation of myofibrillar proteins may......A gel-based phosphoproteomic study was performed to investigate the postmortem (PM) changes in protein phosphorylation of the myofibrillar proteins in three groups of pigs with different pH decline rates, from PM 1 h to 24 h. The global phosphorylation level in the group with a fast pH decline rate...... was higher than that in the slow and intermediate groups at early PM time, but became the lowest at 24 h. The protein phosphorylation level of seven individual protein bands was only significantly (ptime, and two protein bands were subjected to a synergy effect between PM time and p...

  1. Crystal Structure of a Phosphorylated Light Chain Domain of Scallop Smooth-Muscle Myosin

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, V.S.; Robinson, H.; O-Neall-Hennessey, E.; Reshetnikova, L.; Brown, J. H.; Szent-Gyorgyi, A. G.; Cohen, C.


    We have determined the crystal structure of a phosphorylated smooth-muscle myosin light chain domain (LCD). This reconstituted LCD is of a sea scallop catch muscle myosin with its phosphorylatable regulatory light chain (RLC SmoA). In the crystal structure, Arg{sup 16}, an arginine residue that is present in this isoform but not in vertebrate smooth-muscle RLC, stabilizes the phosphorylation site. This arginine interacts with the carbonyl group of the phosphorylation-site serine in the unphosphorylated LCD (determined previously), and with the phosphate group when the serine is phosphorylated. However, the overall conformation of the LCD is essentially unchanged upon phosphorylation. This result provides additional evidence that phosphorylation of the RLC is unlikely to act as an on-switch in regulation of scallop catch muscle myosin.

  2. Tau phosphorylation in human, primate, and rat brain: evidence that a pool of tau is highly phosphorylated in vivo and is rapidly dephosphorylated in vitro. (United States)

    Garver, T D; Harris, K A; Lehman, R A; Lee, V M; Trojanowski, J Q; Billingsley, M L


    The extent of tau phosphorylation is thought to regulate the binding of tau to microtubules: Highly phosphorylated tau does not bind to tubules, whereas dephosphorylated tau can bind to microtubules. It is interesting that the extent of tau phosphorylation in vivo has not been accurately determined. Tau was rapidly isolated from human temporal neocortex and hippocampus, rhesus monkey temporal neocortex, and rat temporal neocortex and hippocampus under conditions that minimized dephosphorylation. In brain slices, we observed that tau isolated under such conditions largely existed in several phosphorylated states, including a pool that was highly phosphorylated; this was determined using epitope-specific monoclonal and polyclonal antibodies. This highly phosphorylated tau was dephosphorylated during a 120-min time course in vitro, presumably as a result of neuronal phosphatase activity. The slow-mobility forms of tau were shifted to faster-mobility forms following in vitro incubation with alkaline phosphatase. Laser densitometry was used to estimate the percent of tau in slow-mobility, highly phosphorylated forms. Approximately 25% of immunoreactive tau was present as slow-mobility (66- and 68-kDa) forms of tau. The percentage of immunoreactive tau in faster-mobility pools (42-54 kDa) increased in proportion to the decrease in content of 66-68-kDa tau as a function of neuronal phosphatases or alkaline phosphatase treatment. These data suggest that the turnover of phosphorylated sites on tau is rapid and depends on neuronal phosphatases. Furthermore, tau is highly phosphorylated in normal-appearing human, primate, and rodent brain.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Histone H1 phosphorylation occurs site-specifically during interphase and mitosis: identification of a novel phosphorylation site on histone H1. (United States)

    Sarg, Bettina; Helliger, Wilfried; Talasz, Heribert; Förg, Barbara; Lindner, Herbert H


    H1 histones, isolated from logarithmically growing and mitotically enriched human lymphoblastic T-cells (CCRF-CEM), were fractionated by reversed phase and hydrophilic interaction liquid chromatography, subjected to enzymatic digestion, and analyzed by amino acid sequencing and mass spectrometry. During interphase the four H1 subtypes present in these cells differ in their maximum phosphorylation levels: histone H1.5 is tri-, H1.4 di-, and H1.3 and H1.2, only monophosphorylated. The phosphorylation is site-specific and occurs exclusively on serine residues of SP(K/A)K motifs. The phosphorylation sites of histone H1.5 from mitotically enriched cells were also examined. In contrast to the situation in interphase, at mitosis there were additional phosphorylations, exclusively at threonine residues. Whereas the tetraphosphorylated H1.5 arises from the triphosphosphorylated form by phosphorylation of one of two TPKK motifs in the C-terminal domain, namely Thr137 and Thr154, the pentaphosphorylated H1.5 was the result of phosphorylation of one of the tetraphosphorylated forms at a novel nonconsensus motif at Thr10 in the N-terminal tail. Despite the fact that histone H1.5 has five (S/T)P(K/A)K motifs, all of these motifs were never found to be phosphorylated simultaneously. Our data suggest that phosphorylation of human H1 variants occurs nonrandomly during both interphase and mitosis and that distinct serine- or threonine-specific kinases are involved in different cell cycle phases. The order of increased phosphorylation and the position of modification might be necessary for regulated chromatin decondensation, thus facilitating processes of replication and transcription as well as of mitotic chromosome condensation.

  4. In vitro phosphorylation as tool for modification of silk and keratin fibrous materials


    Volkov, Vadim; Cavaco-Paulo, Artur


    An overview is given of the recent work on in vitro enzymatic phosphorylation of silk fibroin and human hair keratin. Opposing to many chemical "conventional" approaches, enzymatic phosphorylation is in fact a mild reaction and the treatment falls within "green chemistry" approach. Silk and keratin are not phosphorylated in vivo, but in vitro. This enzyme-driven modification is a major technological breakthrough. Harsh chemical chemicals are avoided, and mild conditions make enzymatic phospho...

  5. Comparative analysis reveals conserved protein phosphorylation networks implicated in multiple diseases

    DEFF Research Database (Denmark)

    Tan, Chris Soon Heng; Bodenmiller, Bernd; Pasculescu, Adrian


    Protein kinases enable cellular information processing. Although numerous human phosphorylation sites and their dynamics have been characterized, the evolutionary history and physiological importance of many signaling events remain unknown. Using target phosphoproteomes determined with a similar...... experimental and computational pipeline, we investigated the conservation of human phosphorylation events in distantly related model organisms (fly, worm, and yeast). With a sequence-alignment approach, we identified 479 phosphorylation events in 344 human proteins that appear to be positionally conserved over...

  6. Formaldehyde-induced histone H3 phosphorylation via JNK and the expression of proto-oncogenes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Ikuma; Ibuki, Yuko, E-mail:


    Graphical abstract: - Highlights: • Formaldehyde modified histones. • The phosphorylation of H3S10 was increased at the promoter regions of proto-oncogenes. • The phosphorylation of H2AXS139 was attributed to FA-induced DNA damage. • The FA-induced initiation and promotion of cancer could be judged by these modifications. - Abstract: Formaldehyde (FA) is a very reactive compound that forms DNA adducts and DNA-protein crosslinks, which are known to contribute to FA-induced mutations and carcinogenesis. Post-translational modifications to histones have recently attracted attention due to their link with cancer. In the present study, we examined histone modifications following a treatment with FA. FA significantly phosphorylated histone H3 at serine 10 (H3S10), and at serine 28 (H3S28), the time-course of which was similar to the phosphorylation of H2AX at serine 139 (γ-H2AX), a marker of DNA double strand breaks. The temporal deacetylation of H3 was observed due to the reaction of FA with the lysine residues of histones. The phosphorylation mechanism was then analyzed by focusing on H3S10. The nuclear distribution of the phosphorylation of H3S10 and γ-H2AX did not overlap, and the phosphorylation of H3S10 could not be suppressed with an inhibitor of ATM/ATR, suggesting that the phosphorylation of H3S10 was independent of the DNA damage response. ERK and JNK in the MAPK pathways were phosphorylated by the treatment with FA, in which the JNK pathway was the main target for phosphorylation. The phosphorylation of H3S10 increased at the promoter regions of c-fos and c-jun, indicating a relationship between FA-induced tumor promotion activity and phosphorylation of H3S10. These results suggested that FA both initiates and promotes cancer, as judged by an analysis of histone modifications.

  7. Mitotic phosphorylation of VCIP135 blocks p97ATPase-mediated Golgi membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Totsukawa, Go; Matsuo, Ayaka; Kubota, Ayano; Taguchi, Yuya; Kondo, Hisao, E-mail:


    Highlights: •VCIP135 is mitotically phosphorylated on Threonine-760 and Serine-767 by Cdc2. •Phosphorylated VCIP135 does not bind to p97ATPase. •The phosphorylation of VCIP135 inhibits p97ATPase-mediated Golgi membrane fusion. -- Abstract: In mammals, the Golgi apparatus is disassembled early mitosis and reassembled at the end of mitosis. For Golgi disassembly, membrane fusion needs to be blocked. Golgi biogenesis requires two distinct p97ATPase-mediated membrane fusion, the p97/p47 and p97/p37 pathways. We previously reported that p47 phosphorylation on Serine-140 and p37 phosphorylation on Serine-56 and Threonine-59 result in mitotic inhibition of the p97/p47 and the p97/p37 pathways, respectively [11,14]. In this study, we show another mechanism of mitotic inhibition of p97-mediated Golgi membrane fusion. We clarified that VCIP135, an essential factor in both p97 membrane fusion pathways, is phosphorylated on Threonine-760 and Serine-767 by Cdc2 at mitosis and that this phosphorylated VCIP135 does not bind to p97. An in vitro Golgi reassembly assay revealed that VCIP135(T760E, S767E), which mimics mitotic phosphorylation, caused no cisternal regrowth. Our results indicate that the phosphorylation of VCIP135 on Threonine-760 and Serine-767 inhibits p97-mediated Golgi membrane fusion at mitosis.

  8. Phosphorylation of p37 is important for Golgi disassembly at mitosis

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Yayoi [Department of Molecular Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Mitsubishi Kagaku Institute of Life Sciences, Tokyo 194-8511 (Japan); Tamura, Kaori [Department of Molecular Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Totsukawa, Go [Department of Molecular Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Mitsubishi Kagaku Institute of Life Sciences, Tokyo 194-8511 (Japan); Kondo, Hisao, E-mail: [Department of Molecular Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan)


    Research highlights: {yields} p37 is phosphorylated on Serine-56 and Threonine-59 by Cdc2 at mitosis. {yields} Phosphorylated p37 does not bind to Golgi membranes. {yields} p37 phosphorylation inhibits p97/p37-mediated Golgi membrane fusion. -- Abstract: In mammals, the Golgi apparatus is disassembled at early mitosis and reassembled at the end of mitosis. For Golgi disassembly, membrane fusion needs to be blocked. Golgi biogenesis requires two distinct p97ATPase-mediated membrane fusion, the p97/p47 and p97/p37 pathways. We previously reported that p47 phosphorylation on Serine-140 by Cdc2 results in mitotic inhibition of the p97/p47 pathway . In this study, we demonstrate that p37 is phosphorylated on Serine-56 and Threonine-59 by Cdc2 at mitosis, and this phosphorylated p37 does not bind to Golgi membranes. Using an in vitro Golgi reassembly assay, we show that mutated p37(S56D, T59D), which mimics mitotic phosphorylation, does not cause any cisternal regrowth, indicating that p37 phosphorylation inhibits the p97/p37 pathway. Our results demonstrate that p37 phosphorylation on Serine-56 and Threonine-59 is important for Golgi disassembly at mitosis.

  9. Evolutionary conservation of mammalian sperm proteins associates with overall, not tyrosine, phosphorylation in human spermatozoa. (United States)

    Schumacher, Julia; Ramljak, Sanja; Asif, Abdul R; Schaffrath, Michael; Zischler, Hans; Herlyn, Holger


    We investigated possible associations between sequence evolution of mammalian sperm proteins and their phosphorylation status in humans. As a reference, spermatozoa from three normozoospermic men were analyzed combining two-dimensional gel electrophoresis, immunoblotting, and mass spectrometry. We identified 99 sperm proteins (thereof 42 newly described) and determined the phosphorylation status for most of them. Sequence evolution was studied across six mammalian species using nonsynonymous/synonymous rate ratios (dN/dS) and amino acid distances. Site-specific purifying selection was assessed employing average ratios of evolutionary rates at phosphorylated versus nonphosphorylated amino acids (α). According to our data, mammalian sperm proteins do not show statistically significant sequence conservation difference, no matter if the human ortholog is a phosphoprotein with or without tyrosine (Y) phosphorylation. In contrast, overall phosphorylation of human sperm proteins, i.e., phosphorylation at serine (S), threonine (T), and/or Y residues, associates with above-average conservation of sequences. Complementary investigations suggest that numerous protein-protein interactants constrain sequence evolution of sperm phosphoproteins. Although our findings reject a special relevance of Y phosphorylation for sperm functioning, they still indicate that overall phosphorylation substantially contributes to proper functioning of sperm proteins. Hence, phosphorylated sperm proteins might be considered as prime candidates for diagnosis and treatment of reduced male fertility.

  10. Orientation of the peptide formation of N-phosphoryl amino acids in solution

    Institute of Scientific and Technical Information of China (English)


    The peptide formation of N-phosphoryl aminoacids with amino acids proceeds in aqueous solution withoutany coupling reagents. After being separated in sephadex gelcolumn, the phosphoryl dipeptides were analyzed by theelectrospray ionization tandem mass spectrometry (ESIMS/MS). The result demonstrates that phosphoryl dipeptides were detected in all the reaction systems. It is found that theformation of N-phosphoryl dipeptides is oriented: theN-terminal amino acid residues of the N-phosphoryl dipep-tides are from N-phosphoryl amino acids, and the peptideelongation happened at the C-terminal. Only (-dipeptide, no(-dipeptide, is formed in the N-phosphoryl dipeptides,showing that ?-carboxylic group is activated selectively byN-phosphorylation. Theoretical calculation shows that the peptide formation of N-phosphoryl amino acids might hap-pen through a penta-coordinate carboxylic-phosphoric in-termediate in solution. These results might give some clues tothe study on the origin of proteins and protein biosynthesis.

  11. Dynamic modulation of the Kv2.1 channel by Src-dependent tyrosine phosphorylation


    Song, Min-Young; Hong, Chansik; Bae, Seong Han; So, Insuk; Park, Kang-Sik


    The voltage-gated K+ channel Kv2.1 is expressed as a highly phosphorylated protein in most central neurons, where it plays a key role in regulating neuronal membrane excitability. Previous studies have shown that Kv2.1 channel activity is upregulated by Src-mediated phosphorylation through an unknown mechanism. However, a systematic analysis of the molecular mechanism of Kv2.1 channel phosphorylation by Src is lacking. Here we show that tyrosine phosphorylation by Src plays a fundamental role...

  12. Phosphorylation of ribosomal proteins influences subunit association and translation of poly (U) in Streptomyces coelicolor. (United States)

    Mikulík, Karel; Bobek, Jan; Ziková, Alice; Smětáková, Magdalena; Bezoušková, Silvie


    The occurrence of phosphorylated proteins in ribosomes of Streptomyces coelicolor was investigated. Little is known about which biological functions these posttranslational modifications might fulfil. A protein kinase associated with ribosomes phosphorylated six ribosomal proteins of the small subunit (S3, S4, S12, S13, S14 and S18) and seven ribosomal proteins of the large subunit (L2, L3, L7/L12, L16, L17, L23 and L27). The ribosomal proteins were phosphorylated mainly on the Ser/Thr residues. Phosphorylation of the ribosomal proteins influences ribosomal subunits association. Ribosomes with phosphorylated proteins were used to examine poly (U) translation activity. Phosphorylation induced about 50% decrease in polyphenylalanine synthesis. After preincubation of ribosomes with alkaline phosphatase the activity of ribosomes was greatly restored. Small differences were observed between phosphorylated and unphosphorylated ribosomes in the kinetic parameters of the binding of Phe-tRNA to the A-site of poly (U) programmed ribosomes, suggesting that the initial binding of Phe-tRNA is not significantly affected by phosphorylation. On contrary, the rate of peptidyl transferase was about two-fold lower than that in unphosphorylated ribosomes. The data presented demonstrate that phosphorylation of ribosomal proteins affects critical steps of protein synthesis.

  13. Protein Kinase B/Akt Binds and Phosphorylates PED/PEA-15, Stabilizing Its Antiapoptotic Action


    Trencia, Alessandra; Perfetti, Anna; Cassese, Angela; Vigliotta, Giovanni; Miele, Claudia; Oriente, Francesco; Santopietro, Stefania; Giacco, Ferdinando; Condorelli, Gerolama; Formisano, Pietro; Beguinot, Francesco


    The antiapoptotic protein PED/PEA-15 features an Akt phosphorylation motif upstream from Ser116. In vitro, recombinant PED/PEA-15 was phosphorylated by Akt with a stoichiometry close to 1. Based on Western blotting with specific phospho-Ser116 PED/PEA-15 antibodies, Akt phosphorylation of PED/PEA-15 occurred mainly at Ser116. In addition, a mutant of PED/PEA-15 featuring the substitution of Ser116→Gly (PEDS116→G) showed 10-fold-decreased phosphorylation by Akt. In intact 293 cells, Akt also i...

  14. Atomic force microscopy characterization of kinase-mediated phosphorylation of a peptide monolayer (United States)

    Zhuravel, Roman; Amit, Einav; Elbaz, Shir; Rotem, Dvir; Chen, Yu-Ju; Friedler, Assaf; Yitzchaik, Shlomo; Porath, Danny


    We describe the detailed microscopic changes in a peptide monolayer following kinase-mediated phosphorylation. A reversible electrochemical transformation was observed using square wave voltammetry (SWV) in the reversible cycle of peptide phosphorylation by ERK2 followed by dephosphorylation by alkaline phosphatase. A newly developed method for analyzing local roughness, measured by atomic force microscope (AFM), showed a bimodal distribution. This may indicate either a hole-formation mechanism and/or regions on the surface in which the peptide changed its conformation upon phosphorylation, resulting in increased roughness and current. Our results provide the mechanistic basis for developing biosensors for detecting kinase-mediated phosphorylation in disease.

  15. The Physiological Role of Mitophagy: New Insights into Phosphorylation Events

    Directory of Open Access Journals (Sweden)

    Yuko Hirota


    Full Text Available Mitochondria play an essential role in oxidative phosphorylation, fatty acid oxidation, and the regulation of apoptosis. However, this organelle also produces reactive oxygen species (ROS that continually inflict oxidative damage on mitochondrial DNA, proteins, and lipids, which causes further production of ROS. To oppose this oxidative stress, mitochondria possess quality control systems that include antioxidant enzymes and the repair or degradation of damaged mitochondrial DNA and proteins. If the oxidative stress exceeds the capacity of the mitochondrial quality control system, it seems that autophagy degrades the damaged mitochondria to maintain cellular homeostasis. Indeed, recent evidence from yeast to mammals indicates that the autophagy-dependent degradation of mitochondria (mitophagy contributes to eliminate dysfunctional, aged, or excess mitochondria. In this paper, we describe the molecular processes and regulatory mechanisms of mitophagy in yeast and mammalian cells.

  16. Wnt signaling through T-cell factor phosphorylation

    Institute of Scientific and Technical Information of China (English)

    Sergei Y Sokol


    Embryonic signaling pathways often lead to a switch from default repression to transcriptional activation of target genes. A major consequence of Wnt signaling is stabilization of p-catenin, which associates with T-cell factors (TCFs) and 'converts' them from repressors into transcriptional activators. The molecular mechanisms responsible for this conversion remain poorly understood. Several studies have reported on the regulation of TCF by phosphorylation,yet its physiological significance has been unclear: in some cases it appears to promote target gene activation, in oth-ers Wnt-dependent transcription is inhibited. This review focuses on recent progress in the understanding of context-dependent post-translational regulation of TCF function by Wnt signaling.

  17. Phosphorylated 5-ethynyl-2'-deoxyuridine for advanced DNA labeling. (United States)

    Seo, Siyoong; Onizuka, Kazumitsu; Nishioka, Chieko; Takahashi, Eiki; Tsuneda, Satoshi; Abe, Hiroshi; Ito, Yoshihiro


    The representative DNA-labeling agent 5-ethynyl-2'-deoxyuridine (EdU) was chemically modified to improve its function. Chemical monophosphorylation was expected to enhance the efficiency of the substrate in DNA polymerization by circumventing the enzymatic monophosphorylation step that consumes energy. In addition, to enhance cell permeability, the phosphates were protected with bis-pivaloyloxymethyl that is stable in buffer and plasma, and degradable inside various cell types. The phosphorylated EdU (PEdU) was less toxic than EdU, and had the same or a slightly higher DNA-labeling ability in vitro. PEdU was also successfully applied to DNA labeling in vivo. In conclusion, PEdU can be used as a less toxic DNA-labeling agent for studies that require long-term cell survival or very sensitive cell lines.

  18. A Simple Hydraulic Analog Model of Oxidative Phosphorylation. (United States)

    Willis, Wayne T; Jackman, Matthew R; Messer, Jeffrey I; Kuzmiak-Glancy, Sarah; Glancy, Brian


    Mitochondrial oxidative phosphorylation is the primary source of cellular energy transduction in mammals. This energy conversion involves dozens of enzymatic reactions, energetic intermediates, and the dynamic interactions among them. With the goal of providing greater insight into the complex thermodynamics and kinetics ("thermokinetics") of mitochondrial energy transduction, a simple hydraulic analog model of oxidative phosphorylation is presented. In the hydraulic model, water tanks represent the forward and back "pressures" exerted by thermodynamic driving forces: the matrix redox potential (ΔGredox), the electrochemical potential for protons across the mitochondrial inner membrane (ΔGH), and the free energy of adenosine 5'-triphosphate (ATP) (ΔGATP). Net water flow proceeds from tanks with higher water pressure to tanks with lower pressure through "enzyme pipes" whose diameters represent the conductances (effective activities) of the proteins that catalyze the energy transfer. These enzyme pipes include the reactions of dehydrogenase enzymes, the electron transport chain (ETC), and the combined action of ATP synthase plus the ATP-adenosine 5'-diphosphate exchanger that spans the inner membrane. In addition, reactive oxygen species production is included in the model as a leak that is driven out of the ETC pipe by high pressure (high ΔGredox) and a proton leak dependent on the ΔGH for both its driving force and the conductance of the leak pathway. Model water pressures and flows are shown to simulate thermodynamic forces and metabolic fluxes that have been experimentally observed in mammalian skeletal muscle in response to acute exercise, chronic endurance training, and reduced substrate availability, as well as account for the thermokinetic behavior of mitochondria from fast- and slow-twitch skeletal muscle and the metabolic capacitance of the creatine kinase reaction.

  19. Molecular dynamics simulation of phosphorylated KID post-translational modification.

    Directory of Open Access Journals (Sweden)

    Hai-Feng Chen

    Full Text Available BACKGROUND: Kinase-inducible domain (KID as transcriptional activator can stimulate target gene expression in signal transduction by associating with KID interacting domain (KIX. NMR spectra suggest that apo-KID is an unstructured protein. After post-translational modification by phosphorylation, KID undergoes a transition from disordered to well folded protein upon binding to KIX. However, the mechanism of folding coupled to binding is poorly understood. METHODOLOGY: To get an insight into the mechanism, we have performed ten trajectories of explicit-solvent molecular dynamics (MD for both bound and apo phosphorylated KID (pKID. Ten MD simulations are sufficient to capture the average properties in the protein folding and unfolding. CONCLUSIONS: Room-temperature MD simulations suggest that pKID becomes more rigid and stable upon the KIX-binding. Kinetic analysis of high-temperature MD simulations shows that bound pKID and apo-pKID unfold via a three-state and a two-state process, respectively. Both kinetics and free energy landscape analyses indicate that bound pKID folds in the order of KIX access, initiation of pKID tertiary folding, folding of helix alpha(B, folding of helix alpha(A, completion of pKID tertiary folding, and finalization of pKID-KIX binding. Our data show that the folding pathways of apo-pKID are different from the bound state: the foldings of helices alpha(A and alpha(B are swapped. Here we also show that Asn139, Asp140 and Leu141 with large Phi-values are key residues in the folding of bound pKID. Our results are in good agreement with NMR experimental observations and provide significant insight into the general mechanisms of binding induced protein folding and other conformational adjustment in post-translational modification.

  20. Ultrasensitivity in phosphorylation-dephosphorylation cycles with little substrate.

    Directory of Open Access Journals (Sweden)

    Bruno M C Martins

    Full Text Available Cellular decision-making is driven by dynamic behaviours, such as the preparations for sunrise enabled by circadian rhythms and the choice of cell fates enabled by positive feedback. Such behaviours are often built upon ultrasensitive responses where a linear change in input generates a sigmoidal change in output. Phosphorylation-dephosphorylation cycles are one means to generate ultrasensitivity. Using bioinformatics, we show that in vivo levels of kinases and phosphatases frequently exceed the levels of their corresponding substrates in budding yeast. This result is in contrast to the conditions often required by zero-order ultrasensitivity, perhaps the most well known means for how such cycles become ultrasensitive. We therefore introduce a mechanism to generate ultrasensitivity when numbers of enzymes are higher than numbers of substrates. Our model combines distributive and non-distributive actions of the enzymes with two-stage binding and concerted allosteric transitions of the substrate. We use analytical and numerical methods to calculate the Hill number of the response. For a substrate with [Formula: see text] phosphosites, we find an upper bound of the Hill number of [Formula: see text], and so even systems with a single phosphosite can be ultrasensitive. Two-stage binding, where an enzyme must first bind to a binding site on the substrate before it can access the substrate's phosphosites, allows the enzymes to sequester the substrate. Such sequestration combined with competition for each phosphosite provides an intuitive explanation for the sigmoidal shifts in levels of phosphorylated substrate. Additionally, we find cases for which the response is not monotonic, but shows instead a peak at intermediate levels of input. Given its generality, we expect the mechanism described by our model to often underlay decision-making circuits in eukaryotic cells.

  1. Human ATP synthase beta is phosphorylated at multiple sites and shows abnormal phosphorylation at specific sites in insulin-resistant muscle

    DEFF Research Database (Denmark)

    Højlund, K; Yi, Z; Lefort, N;


    AIMS/HYPOTHESIS: Insulin resistance in skeletal muscle is linked to mitochondrial dysfunction in obesity and type 2 diabetes. Emerging evidence indicates that reversible phosphorylation regulates oxidative phosphorylation (OxPhos) proteins. The aim of this study was to identify and quantify site......-specific phosphorylation of the catalytic beta subunit of ATP synthase (ATPsyn-beta) and determine protein abundance of ATPsyn-beta and other OxPhos components in skeletal muscle from healthy and insulin-resistant individuals. METHODS: Skeletal muscle biopsies were obtained from lean, healthy, obese, non-diabetic and type...... 2 diabetic volunteers (each group n = 10) for immunoblotting of proteins, and hypothesis-driven identification and quantification of phosphorylation sites on ATPsyn-beta using targeted nanospray tandem mass spectrometry. Volunteers were metabolically characterised by euglycaemic...

  2. The phosphorylated C-terminus of cAR1 plays a role in cell-type-specific gene expression and STATa tyrosine phosphorylation. (United States)

    Briscoe, C; Moniakis, J; Kim, J Y; Brown, J M; Hereld, D; Devreotes, P N; Firtel, R A


    cAMP receptors mediate some signaling pathways via coupled heterotrimeric G proteins, while others are G-protein-independent. This latter class includes the activation of the transcription factors GBF and STATa. Within the cellular mounds formed by aggregation of Dictyostelium, micromolar levels of cAMP activate GBF function, thereby inducing the transcription of postaggregative genes and initiating multicellular differentiation. Activation of STATa, a regulator of culmination and ecmB expression, results from cAMP receptor-dependent tyrosine phosphorylation and nuclear localization, also in mound-stage cells. During mound development, the cAMP receptor cAR1 is in a low-affinity state and is phosphorylated on multiple serine residues in its C-terminus. This paper addresses possible roles of cAMP receptor phosphorylation in the cAMP-mediated stimulation of GBF activity, STATa tyrosine phosphorylation, and cell-type-specific gene expression. To accomplish this, we have expressed cAR1 mutants in a strain in which the endogenous cAMP receptors that mediate postaggregative gene expression in vivo are deleted. We then examined the ability of these cells to undergo morphogenesis and induce postaggregative and cell-type-specific gene expression and STATa tyrosine phosphorylation. Analysis of cAR1 mutants in which the C-terminal tail is deleted or the ligand-mediated phosphorylation sites are mutated suggests that the cAR1 C-terminus is not essential for GBF-mediated postaggregative gene expression or STATa tyrosine phosphorylation, but may play a role in regulating cell-type-specific gene expression and morphogenesis. A mutant receptor, in which the C-terminal tail is constitutively phosphorylated, exhibits constitutive activation of STATa tyrosine phosphorylation in pulsed cells in suspension and a significantly impaired ability to induce cell-type-specific gene expression. The constitutively phosphorylated receptor also exerts a partial dominant negative effect on

  3. CDK4 T172 phosphorylation is central in a CDK7-dependent bidirectional CDK4/CDK2 interplay mediated by p21 phosphorylation at the restriction point.

    Directory of Open Access Journals (Sweden)

    Xavier Bisteau


    Full Text Available Cell cycle progression, including genome duplication, is orchestrated by cyclin-dependent kinases (CDKs. CDK activation depends on phosphorylation of their T-loop by a CDK-activating kinase (CAK. In animals, the only known CAK for CDK2 and CDK1 is cyclin H-CDK7, which is constitutively active. Therefore, the critical activation step is dephosphorylation of inhibitory sites by Cdc25 phosphatases rather than unrestricted T-loop phosphorylation. Homologous CDK4 and CDK6 bound to cyclins D are master integrators of mitogenic/oncogenic signaling cascades by initiating the inactivation of the central oncosuppressor pRb and cell cycle commitment at the restriction point. Unlike the situation in CDK1 and CDK2 cyclin complexes, and in contrast to the weak but constitutive T177 phosphorylation of CDK6, we have identified the T-loop phosphorylation at T172 as the highly regulated step determining CDK4 activity. Whether both CDK4 and CDK6 phosphorylations are catalyzed by CDK7 remains unclear. To answer this question, we took a chemical-genetics approach by using analogue-sensitive CDK7(as/as mutant HCT116 cells, in which CDK7 can be specifically inhibited by bulky adenine analogs. Intriguingly, CDK7 inhibition prevented activating phosphorylations of CDK4/6, but for CDK4 this was at least partly dependent on its binding to p21 (cip1 . In response to CDK7 inhibition, p21-binding to CDK4 increased concomitantly with disappearance of the most abundant phosphorylation of p21, which we localized at S130 and found to be catalyzed by both CDK4 and CDK2. The S130A mutation of p21 prevented the activating CDK4 phosphorylation, and inhibition of CDK4/6 and CDK2 impaired phosphorylations of both p21 and p21-bound CDK4. Therefore, specific CDK7 inhibition revealed the following: a crucial but partly indirect CDK7 involvement in phosphorylation/activation of CDK4 and CDK6; existence of CDK4-activating kinase(s other than CDK7; and novel CDK7-dependent positive

  4. Phosphorylation of the androgen receptor by PIM1 in hormone refractory prostate cancer. (United States)

    Ha, S; Iqbal, N J; Mita, P; Ruoff, R; Gerald, W L; Lepor, H; Taneja, S S; Lee, P; Melamed, J; Garabedian, M J; Logan, S K


    Integration of cellular signaling pathways with androgen receptor (AR) signaling can be achieved through phosphorylation of AR by cellular kinases. However, the kinases responsible for phosphorylating the AR at numerous sites and the functional consequences of AR phosphorylation are only partially understood. Bioinformatic analysis revealed AR serine 213 (S213) as a putative substrate for PIM1, a kinase overexpressed in prostate cancer. Therefore, phosphorylation of AR serine 213 by PIM1 was examined using a phosphorylation site-specific antibody. Wild-type PIM1, but not catalytically inactive PIM1, specifically phosphorylated AR but not an AR serine-to-alanine mutant (S213A). In vitro kinase assays confirmed that PIM1 can phosphorylate AR S213 in a ligand-independent manner and cell type-specific phosphorylation was observed in prostate cancer cell lines. Upon PIM1 overexpression, AR phosphorylation was observed in the absence of hormone and was further increased in the presence of hormone in LNCaP, LNCaP-abl and VCaP cells. Moreover, phosphorylation of AR was reduced in the presence of PIM kinase inhibitors. An examination of AR-mediated transcription showed that reporter gene activity was reduced in the presence of PIM1 and wild-type AR, but not S213A mutant AR. Androgen-mediated transcription of endogenous PSA, Nkx3.1 and IGFBP5 was also decreased in the presence of PIM1, whereas IL6, cyclin A1 and caveolin 2 were increased. Immunohistochemical analysis of prostate cancer tissue microarrays showed significant P-AR S213 expression that was associated with hormone refractory prostate cancers, likely identifying cells with catalytically active PIM1. In addition, prostate cancers expressing a high level of P-AR S213 were twice as likely to be from biochemically recurrent cancers. Thus, AR phosphorylation by PIM1 at S213 impacts gene transcription and is highly prevalent in aggressive prostate cancer.

  5. Phosphorylation of threonine 333 regulates trafficking of the human sst5 somatostatin receptor. (United States)

    Petrich, Aline; Mann, Anika; Kliewer, Andrea; Nagel, Falko; Strigli, Anne; Märtens, Jan Carlo; Pöll, Florian; Schulz, Stefan


    The frequent overexpression of the somatostatin receptors sst2 and sst5 in neuroendocrine tumors provides the molecular basis for therapeutic application of novel multireceptor somatostatin analogs. Although the phosphorylation of the carboxyl-terminal region of the sst2 receptor has been studied in detail, little is known about the agonist-induced regulation of the human sst5 receptor. Here, we have generated phosphosite-specific antibodies for the carboxyl-terminal threonines 333 (T333) and 347 (T347), which enabled us to selectively detect either the T333-phosphorylated or the T347-phosphorylated form of sst5. We show that agonist-mediated phosphorylation occurs at T333, whereas T347 is constitutively phosphorylated in the absence of agonist. We further demonstrate that the multireceptor somatostatin analog pasireotide and the sst5-selective ligand L-817,818 but not octreotide or KE108 were able to promote a detectable T333 phosphorylation. Interestingly, BIM-23268 was the only sst5 agonist that was able to stimulate T333 phosphorylation to the same extent as natural somatostatin. Agonist-induced T333 phosphorylation was dose-dependent and selectively mediated by G protein-coupled receptor kinase 2. Similar to that observed for the sst2 receptor, phosphorylation of sst5 occurred within seconds. However, unlike that seen for the sst2 receptor, dephosphorylation and recycling of sst5 were rapidly completed within minutes. We also identify protein phosphatase 1γ as G protein-coupled receptor phosphatase for the sst5 receptor. Together, we provide direct evidence for agonist-selective phosphorylation of carboxyl-terminal T333. In addition, we identify G protein-coupled receptor kinase 2-mediated phosphorylation and protein phosphatase 1γ-mediated dephosphorylation of T333 as key regulators of rapid internalization and recycling of the human sst5 receptor.

  6. O-GlcNAc modification: why so intimately associated with phosphorylation?

    Directory of Open Access Journals (Sweden)

    Ande Sudharsana R


    Full Text Available Abstract Post-translational modification of proteins at serine and threonine side chains by β-N-acetylglucosamine (O-GlcNAc mediated by the enzyme β-N-acetylglucosamine transferase has been emerging as a fundamental regulatory mechanism encompassing a wide range of proteins involved in cell division, metabolism, transcription and cell signaling. Furthermore, an extensive interplay between O-GlcNAc modification and serine/threonine phosphorylation in a variety of proteins has been reported to exist. However, our understanding of the regulatory mechanisms involved in O-GlcNAc modification and its interplay with serine/threonine phosphorylation in proteins is still elusive. Recent success in the mapping of O-GlcNAc modification sites in proteins as a result of technological advancement in mass spectrometry have revealed two important clues which may be inherently connected to the regulation of O-GlcNAc modification and its interplay with phosphorylation in proteins. First, almost all O-GlcNAc modified proteins are known phospho proteins. Second, the prevalence of tyrosine phosphorylation among O-GlcNAc modified proteins is exceptionally higher (~68% than its normal occurrence (~2% alone. We hypothesize that phosphorylation may be a requisite for O-GlcNAc modification and tyrosine phosphorylation plays a role in the interplay between O-GlcNAc modification and serine/threonine phosphorylation in proteins. In other words, the interplay between O-GlcNAc modification and phosphorylation is not limited to serine/threonine phosphorylation but also includes tyrosine phosphorylation. Our hypothesis provides an opportunity to understand the underlying mechanism involved in O-GlcNAc modification and its interplay with serine/threonine phosphorylation in proteins. Furthermore, implication of our hypothesis extends to tyrosine kinase signaling.

  7. Phosphorylation by Dyrk1A of clathrin coated vesicle-associated proteins: identification of the substrate proteins and the effects of phosphorylation.

    Directory of Open Access Journals (Sweden)

    Noriko Murakami

    Full Text Available Dyrk1A phosphorylated multiple proteins in the clathrin-coated vesicle (CCV preparations obtained from rat brains. Mass spectrometric analysis identified MAP1A, MAP2, AP180, and α- and β-adaptins as the phosphorylated proteins in the CCVs. Each protein was subsequently confirmed by [(32P]-labeling and immunological methods. The Dyrk1A-mediated phosphorylation released the majority of MAP1A and MAP2 and enhanced the release of AP180 and adaptin subunits from the CCVs. Furthermore, Dyrk1A displaced adaptor proteins physically from CCVs in a kinase-concentration dependent manner. The clathrin heavy chain release rate, in contrast, was not affected by Dyrk1A. Surprisingly, the Dyrk1A-mediated phosphorylation of α- and β-adaptins led to dissociation of the AP2 complex, and released only β-adaptin from the CCVs. AP180 was phosphorylated by Dyrk1A also in the membrane-free fractions, but α- and β-adaptins were not. Dyrk1A was detected in the isolated CCVs and was co-localized with clathrin in neurons from mouse brain sections and from primary cultured rat hippocampus. Previously, we proposed that Dyrk1A inhibits the onset of clathrin-mediated endocytosis in neurons by phosphorylating dynamin 1, amphiphysin 1, and synaptojanin 1. Current results suggest that besides the inhibition, Dyrk1A promotes the uncoating process of endocytosed CCVs.

  8. Identification of phosphorylation sites in protein kinase A substrates using artificial neural networks and mass spectrometry

    DEFF Research Database (Denmark)

    Hjerrild, Majbrit; Stensballe, Allan; Rasmussen, Thomas E


    Protein phosphorylation plays a key role in cell regulation and identification of phosphorylation sites is important for understanding their functional significance. Here, we present an artificial neural network algorithm: NetPhosK ( that predicts protein...

  9. Chlamydia trachomatis serovar L2 induces protein tyrosine phosphorylation during uptake by HeLa cells

    DEFF Research Database (Denmark)

    Birkelund, Svend; Johnsen, H; Christiansen, Gunna


    . By use of a monoclonal antibody against phosphotyrosine, we showed that three classes of proteins are tyrosine phosphorylated: a triple band of 68, 66, and 64 kDa, a 97-kDa band, and a 140-kDa band. The phosphorylation could be detected by immunoblotting from 15 min after infection of HeLa cells. We...

  10. Monitoring the native phosphorylation state of plasma membrane proteins from a single mouse cerebellum

    DEFF Research Database (Denmark)

    Schindler, J.; Ye, J. Y.; Jensen, Ole Nørregaard


    Neuronal processing in the cerebellum involves the phosphorylation and dephosphorylation of various plasma membrane proteins such as AMPA or NMDA receptors. Despite the importance of changes in phosphorylation pattern, no global phospho-proteome analysis has yet been performed. As plasma membrane...

  11. Phosphorylation of K[superscript +] Channels at Single Residues Regulates Memory Formation (United States)

    Vernon, Jeffrey; Irvine, Elaine E.; Peters, Marco; Jeyabalan, Jeshmi; Giese, K. Peter


    Phosphorylation is a ubiquitous post-translational modification of proteins, and a known physiological regulator of K[superscript +] channel function. Phosphorylation of K[superscript +] channels by kinases has long been presumed to regulate neuronal processing and behavior. Although circumstantial evidence has accumulated from behavioral studies…

  12. Calcium-regulated in vivo protein phosphorylation in Zea mays L. root tips (United States)

    Raghothama, K. G.; Reddy, A. S.; Friedmann, M.; Poovaiah, B. W.


    Calcium dependent protein phosphorylation was studied in corn (Zea mays L.) root tips. Prior to in vivo protein phosphorylation experiments, the effect of calcium, ethyleneglycol-bis-(beta-aminoethyl ether)-N-N' -tetraacetic acid (EGTA) and calcium ionophore (A-23187) on phosphorus uptake was studied. Calcium increased phosphorus uptake, whereas EGTA and A-23187 decreased it. Consequently, phosphorus concentration in the media was adjusted so as to attain similar uptake in different treatments. Phosphoproteins were analyzed by two-dimensional gel electrophoresis. Distinct changes in phosphorylation were observed following altered calcium levels. Calcium depletion in root tips with EGTA and A-23187 decreased protein phosphorylation. However, replenishment of calcium following EGTA and ionophore pretreatment enhanced phosphorylation of proteins. Preloading of the root tips with 32P in the presence of EGTA and A-23187 followed by a ten minute calcium treatment, resulted in increased phosphorylation indicating the involvement of calcium, calcium and calmodulin-dependent kinases. Calmodulin antagonist W-7 was effective in inhibiting calcium-promoted phosphorylation. These studies suggest a physiological role for calcium-dependent phosphorylation in calcium-mediated processes in plants.

  13. Bcl10 is phosphorylated on Ser138 by Ca2+/calmodulin-dependent protein kinase II. (United States)

    Ishiguro, Kazuhiro; Ando, Takafumi; Goto, Hidemi; Xavier, Ramnik


    Ordered assembly of scaffold proteins Carma1-Bcl10-Malt1 determines NF-kappaB activation following T cell receptor (TCR) engagement. Carma1-Bcl10 interaction and the signaling pathway are controlled by Carma1 phosphorylation, which are induced by PKCtheta and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). In addition to Carma1 phosphorylation, previous studies have demonstrated that Bcl10 is phosphorylated in the C-terminal Ser/Thr rich region following TCR engagement. However the kinases that phosphorylate Bcl10 are incompletely understood. Here we show that CaMKII phosphorylates Bcl10 on Ser138. Furthermore, a CaMKII inhibitor, KN93, and CaMKII siRNA substantially reduce Bcl10 phosphorylation induced by phorbol myristate acetate/ionomycin. S138A mutation prolongs Bcl10-induced NF-kappaB activation, suggesting that Bcl10 phosphorylation is involved in attenuation of NF-kappaB activation. These findings suggest that CaMKII modulates NF-kappaB activation via phosphorylating Bcl10 as well as Carma1.

  14. Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Macek, B;


    Single-stranded DNA-binding proteins (SSBs) are required for repair, recombination and replication in all organisms. Eukaryotic SSBs are regulated by phosphorylation on serine and threonine residues. To our knowledge, phosphorylation of SSBs in bacteria has not been reported. A systematic search ...

  15. PhosphoBase, a database of phosphorylation sites: release 2.0

    DEFF Research Database (Denmark)

    Kreegipuu, A.; Blom, Nikolaj; Brunak, Søren


    PhosphoBase contains information about phosphorylated residues in proteins and data about peptide phosphorylation by a variety of protein kinases. The data are collected from literature and compiled into a common format. The current release of PhosphoBase (October 1998, version 2.0) comprises 414...

  16. NetPhosYeast: prediction of protein phosphorylation sites in yeast

    DEFF Research Database (Denmark)

    Ingrell, C.R.; Miller, Martin Lee; Jensen, O.N.;


    sites compared to those in humans, suggesting the need for an yeast-specific phosphorylation site predictor. NetPhosYeast achieves a correlation coefficient close to 0.75 with a sensitivity of 0.84 and specificity of 0.90 and outperforms existing predictors in the identification of phosphorylation sites...

  17. Serine/threonine/tyrosine phosphorylation regulates DNA binding of bacterial transcriptional regulators

    DEFF Research Database (Denmark)

    Kalantari, Aida; Derouiche, Abderahmane; Shi, Lei;


    Reversible phosphorylation of bacterial transcriptional regulators (TRs) belonging to the family of two-component systems (TCSs) is a well-established mechanism for regulating gene expression. Recent evidence points to the fact that reversible phosphorylation of bacterial TRs on other types...

  18. Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action (United States)

    Eldar-Finkelman, Hagit; Krebs, Edwin G.


    The phosphorylation of insulin receptor substrate 1 (IRS-1) on tyrosine residues by the insulin receptor (IR) tyrosine kinase is involved in most of the biological responses of insulin. IRS-1 mediates insulin signaling by recruiting SH2 proteins through its multiple tyrosine phosphorylation sites. The phosphorylation of IRS-1 on serine/threonine residues also occurs in cells; however, the particular protein kinase(s) promoting this type of phosphorylation are unknown. Here we report that glycogen synthase kinase 3 (GSK-3) is capable of phosphorylating IRS-1 and that this modification converts IRS-1 into an inhibitor of IR tyrosine kinase activity in vitro. Expression of wild-type GSK-3 or an “unregulated” mutant of the kinase (S9A) in CHO cells overexpressing IRS-1 and IR, resulted in increased serine phosphorylation levels of IRS-1, suggesting that IRS-1 is a cellular target of GSK-3. Furthermore, insulin-induced tyrosine phosphorylation of IRS-1 and IR was markedly suppressed in cells expressing wild-type or the S9A mutant, indicating that expression of GSK-3 impairs IR tyrosine kinase activity. Taken together, our studies suggest a new role for GSK-3 in attenuating insulin signaling via its phosphorylation of IRS-1 and may provide new insight into mechanisms important in insulin resistance. PMID:9275179

  19. Phosphorylation impact on Spleen Tyrosine kinase conformation by Surface Enhanced Raman Spectroscopy (United States)

    Cottat, Maximilien; Yasukuni, Ryohei; Homma, Yo; Lidgi-Guigui, Nathalie; Varin-Blank, Nadine; Lamy de La Chapelle, Marc; Le Roy, Christine


    Spleen Tyrosine Kinase (Syk) plays a crucial role in immune cell signalling and its altered expression or activation are involved in several cancers. Syk activity relies on its phosphorylation status and its multiple phosphorylation sites predict several Syk conformations. In this report, we characterized Syk structural changes according to its phosphorylation/activation status by Surface Enhanced Raman Spectroscopy (SERS). Unphosphorylated/inactive and phosphorylated/active Syk forms were produced into two expression systems with different phosphorylation capability. Syk forms were then analysed by SERS that was carried out in liquid condition on a lithographically designed gold nanocylinders array. Our study demonstrated that SERS signatures of the two Syk forms were drastically distinct, indicating structural modifications related to their phosphorylation status. By comparison with the atomic structure of the unphosphorylated Syk, the SERS peak assignments of the phosphorylated Syk nearest gold nanostructures revealed a differential interaction with the gold surface. We finally described a model for Syk conformational variations according to its phosphorylation status. In conclusion, SERS is an efficient technical approach for studying in vitro protein conformational changes and might be a powerful tool to determine protein functions in tumour cells.

  20. High-accuracy identification and bioinformatic analysis of in vivo protein phosphorylation sites in yeast

    DEFF Research Database (Denmark)

    Gnad, Florian; de Godoy, Lyris M F; Cox, Jürgen;


    Protein phosphorylation is a fundamental regulatory mechanism that affects many cell signaling processes. Using high-accuracy MS and stable isotope labeling in cell culture-labeling, we provide a global view of the Saccharomyces cerevisiae phosphoproteome, containing 3620 phosphorylation sites...... - is integrated into the PHOSIDA database (

  1. Systems-wide analysis of BCR signalosomes and downstream phosphorylation and ubiquitylation

    DEFF Research Database (Denmark)

    Satpathy, Shankha; Wagner, Sebastian A; Beli, Petra;


    ) and to investigate the dynamics of downstream phosphorylation and ubiquitylation signaling. We identify most of the previously known components of BCR signaling, as well as many proteins that have not yet been implicated in this system. BCR activation leads to rapid tyrosine phosphorylation and ubiquitylation...

  2. Escherichia coli Phosphoenolpyruvate-Dependent Phosphotransferase System : Equilibrium Kinetics and Mechanism of Enzyme I Phosphorylation

    NARCIS (Netherlands)

    Hoving, H; Lolkema, Juke S.; Robillard, George T.


    The phosphorylation of enzyme I from the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system was studied by means of isotope exchange between phosphoenolpyruvate and pyruvate. Experiments monitoring 1H-2H exchange showed that enzyme I phosphorylation is accompanied by the transf

  3. NPM phosphorylation stimulates Cdk1, overrides G2/M checkpoint and increases leukemic blasts in mice. (United States)

    Du, Wei; Zhou, Yun; Pike, Suzette; Pang, Qishen


    An elevated level of nucleophosmin (NPM) is often found in actively proliferative cells including human tumors. To identify the regulatory role for NPM phosphorylation in proliferation and cell cycle control, a series of mutants targeting the consensus cyclin-dependent kinase (CDK) phosphorylation sites was created to mimic or abrogate either single-site or multi-site phosphorylation. Simultaneous inactivation of two CDK phosphorylation sites at Ser10 and Ser70 (NPM-AA) induced G(2)/M cell cycle arrest, phosphorylation of Cdk1 at Tyr15 (Cdc2(Tyr15)) and increased cytoplasmic accumulation of Cdc25C. Strikingly, stress-induced Cdk1(Tyr15) and Cdc25C sequestration was suppressed by expression of a phosphomimetic NPM mutant created on the same CDK sites (S10E/S70E, NPM-EE). Further analysis revealed that phosphorylation of NPM at both Ser10 and Ser70 was required for proper interaction between Cdk1 and Cdc25C. Moreover, NPM-EE directly bound to Cdc25C and prevented phosphorylation of Cdc25C at Ser216 during mitosis. Finally, NPM-EE overrided stress-induced G(2)/M arrest and increased leukemia blasts in a NOD/SCID xenograft model. Thus, these findings reveal a novel function of NPM on regulation of cell cycle progression, in which phosphorylation of NPM controls cell cycle progression at G(2)/M transition through modulation of Cdk1 and Cdc25C activities.

  4. Vasopressin induces phosphorylation of the thiazide-sensitive sodium chloride cotransporter in the distal convoluted tubule

    DEFF Research Database (Denmark)

    Pedersen, Nis Borbye; Hofmeister, Marlene Vind; Rosenbaek, Lena L;


    The thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC) is important for renal electrolyte balance and its phosphorylation causes an increase in its transport activity and cellular localization. Here, we generated phospho-specific antibodies against two conserved N-terminal phosphorylation sites...

  5. Identification of phosphorylation sites in protein kinase A substrates using artificial neural networks and mass spectrometry

    DEFF Research Database (Denmark)

    Hjerrild, M.; Stensballe, A.; Rasmussen, T.E.;


    Protein phosphorylation plays a key role in cell regulation and identification of phosphorylation sites is important for understanding their functional significance. Here, we present an artificial neural network algorithm: NetPhosK ( that predicts protein...

  6. Identification of a novel mitotic phosphorylation motif associated with protein localization to the mitotic apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Feng; Camp, David G.; Gritsenko, Marina A.; Luo, Quanzhou; Kelly, Ryan T.; Clauss, Therese RW; Brinkley, William R.; Smith, Richard D.; Stenoien, David L.


    The chromosomal passenger complex (CPC) is a critical regulator of chromosome, cytoskeleton and membrane dynamics during mitosis. Here, we identified phosphopeptides and phosphoprotein complexes recognized by a phosphorylation specific antibody that labels the CPC using liquid chromatography coupled to mass spectrometry. A mitotic phosphorylation motif (PX{G/T/S}{L/M}[pS]P or WGL[pS]P) was identified in 11 proteins including Fzr/Cdh1 and RIC-8, two proteins with potential links to the CPC. Phosphoprotein complexes contained known CPC components INCENP, Aurora-B and TD-60, as well as SMAD2, 14-3-3 proteins, PP2A, and Cdk1, a likely kinase for this motif. Protein sequence analysis identified phosphorylation motifs in additional proteins including SMAD2, Plk3 and INCENP. Mitotic SMAD2 and Plk3 phosphorylation was confirmed using phosphorylation specific antibodies, and in the case of Plk3, phosphorylation correlates with its localization to the mitotic apparatus. A mutagenesis approach was used to show INCENP phosphorylation is required for midbody localization. These results provide evidence for a shared phosphorylation event that regulates localization of critical proteins during mitosis.

  7. Identification of a novel mitotic phosphorylation motif associated with protein localization to the mitotic apparatus. (United States)

    Yang, Feng; Camp, David G; Gritsenko, Marina A; Luo, Quanzhou; Kelly, Ryan T; Clauss, Therese R W; Brinkley, William R; Smith, Richard D; Stenoien, David L


    The chromosomal passenger complex (CPC) is a crucial regulator of chromosome, cytoskeleton and membrane dynamics during mitosis. Here, using liquid chromatography coupled to mass spectrometry (LC-MS), we identified phosphopeptides and phosphoprotein complexes recognized by a phosphorylation-specific antibody that labels the CPC. A mitotic phosphorylation motif {PX[G/T/S][L/M]S(P) P or WGLS(P) P} was identified by MS in 11 proteins, including FZR1 (Cdh1) and RIC8A-two proteins with potential links to the CPC. Phosphoprotein complexes contained the known CPC components INCENP, Aurora-B (Aurkb) and TD-60 (Rcc2, RCC1-like), as well as SMAD2, 14-3-3 proteins, PP2A and Cdk1 (Cdc2a), a probable kinase for this motif. Protein sequence analysis identified phosphorylation motifs in additional proteins, including SMAD2, PLK3 and INCENP. Mitotic SMAD2 and PLK3 phosphorylation was confirmed using phosphorylation-specific antibodies, and, in the case of Plk3, phosphorylation correlated with its localization to the mitotic apparatus and the midbody. A mutagenesis approach was used to show that INCENP phosphorylation is required for its localization to the midbody. These results provide evidence for a shared phosphorylation event that regulates localization of crucial proteins during mitosis.

  8. Drosophila deoxyribonucleoside kinase mutants with enhanced ability to phosphorylate purine analogs

    DEFF Research Database (Denmark)

    Knecht, Wolfgang; Rozpedowska, E.; Le Breton, C.;


    ability to phosphorylate pyrimidines, while the ability to phosphorylate purine analogs was relatively similar to the wild-type enzyme. We selected two mutants, for expression in the osteosarcoma 143B, the glioblastoma U-87M-G and the breast cancer MCF7 cell lines. The sensitivities of the transduced cell...

  9. Phosphorylation of nm23/nucleoside diphosphate kinase by casein kinase 2 in vitro

    DEFF Research Database (Denmark)

    Engel, M; Issinger, O G; Lascu, I;


    We have investigated phosphorylation of human nucleoside diphosphate kinase (NDPK) and of homologous NDPK from different species by human casein kinase 2 (CK-2). The human NDPK isotypes A and B were phosphorylated by CK-2 in vitro both when the purified proteins and total lysate of HL-60 leukemia...

  10. Differential phosphorylation of NG2 proteoglycan by ERK and PKCα helps balance cell proliferation and migration (United States)

    Makagiansar, Irwan T.; Williams, Scott; Mustelin, Tomas; Stallcup, William B.


    Two distinct Thr phosphorylation events within the cytoplasmic domain of the NG2 proteoglycan help regulate the cellular balance between proliferation and motility. Protein kinase Cα mediates the phosphorylation of NG2 at Thr2256, resulting in enhanced cell motility. Extracellular signal–regulated kinase phosphorylates NG2 at Thr2314, stimulating cell proliferation. The effects of NG2 phosphorylation on proliferation and motility are dependent on β1-integrin activation. Differential cell surface localization of the two distinctly phosphorylated forms of NG2 may be the mechanism by which the NG2–β1-integrin interaction promotes proliferation in one case and motility in the other. NG2 phosphorylated at Thr2314 colocalizes with β1-integrin on microprotrusions from the apical cell surface. In contrast, NG2 phosphorylated at Thr2256 colocalizes with β1-integrin on lamellipodia at the leading edges of cells. Thus, phosphorylation and the resulting site of NG2–integrin localization may determine the specific downstream effects of integrin signaling. PMID:17591920

  11. Differential phosphorylation of NG2 proteoglycan by ERK and PKCalpha helps balance cell proliferation and migration. (United States)

    Makagiansar, Irwan T; Williams, Scott; Mustelin, Tomas; Stallcup, William B


    Two distinct Thr phosphorylation events within the cytoplasmic domain of the NG2 proteoglycan help regulate the cellular balance between proliferation and motility. Protein kinase Calpha mediates the phosphorylation of NG2 at Thr2256, resulting in enhanced cell motility. Extracellular signal-regulated kinase phosphorylates NG2 at Thr2314, stimulating cell proliferation. The effects of NG2 phosphorylation on proliferation and motility are dependent on beta1-integrin activation. Differential cell surface localization of the two distinctly phosphorylated forms of NG2 may be the mechanism by which the NG2-beta1-integrin interaction promotes proliferation in one case and motility in the other. NG2 phosphorylated at Thr2314 colocalizes with beta1-integrin on microprotrusions from the apical cell surface. In contrast, NG2 phosphorylated at Thr2256 colocalizes with beta1-integrin on lamellipodia at the leading edges of cells. Thus, phosphorylation and the resulting site of NG2-integrin localization may determine the specific downstream effects of integrin signaling.

  12. Tousled-like kinases phosphorylate Asf1 to promote histone supply during DNA replication

    DEFF Research Database (Denmark)

    Kamalyukova, Ilnaz M; Young, Clifford; Strømme, Caroline B


    During DNA replication, nucleosomes are rapidly assembled on newly synthesized DNA to restore chromatin organization. Asf1, a key histone H3-H4 chaperone required for this process, is phosphorylated by Tousled-like kinases (TLKs). Here, we identify TLK phosphorylation sites by mass spectrometry a...


    Institute of Scientific and Technical Information of China (English)


    Objective.To explore the association between the abnormal phosphorylation sites found in Alzheimer disease (AD) τ and the inhibition of its biological activity. Methods.Ultracentrifugation,chromatography,manual Edman degradation and autosequence techniques were used to prepare and phosphorylate human recombinant τ ,isolate and purify 32P τ peptides and determine phosphorylation sites. Results.Phosphorylation of τ by casein kinase 1 (CK 1),cyclic AMP dependent protein kinase (PKA) and glycogen synthetase kinase 3 (GSK 3) separately inhibited its biological activity and the inhibition of this activity by GSK 3 was significantly increased if τ was prephosphorylated by CK 1 or PKA.The most potent inhibition was seen by a combined phosphorylation of τ with PKA and GSK 3.The treatment of τ by PKA and GSK 3 combination induced phosphorylation of τ at Ser 195,Ser 198,Ser 199,Ser 202,Thr 205,Thr 231,Ser 235,Ser 262,Ser 356,Ser 404,whereas Thr 181,Ser 184,Ser 262,Ser 356 and Ser 400 were phosphorylated by GSK 3 alone under the same condition. Conclusion.Phosphorylation of τ by PKA plus GSK 3 at Thr 205 might play a key role in τ pathology in AD.

  14. Two putative protein kinase CK2 phosphorylation sites are important for Myf-5 activity

    DEFF Research Database (Denmark)

    Winter, B; Kautzner, I; Issinger, O G;


    Myf-5, a member of a family of muscle-specific transcription factors, is important for myogenic cell determination and differentiation. Here, we report that Myf-5 protein constitutes a substrate for phosphorylation in vitro by protein kinase CK2. We identified two potential phosphorylation sites ...

  15. Myosin Vb and Rab11a regulate phosphorylation of ezrin in enterocytes

    NARCIS (Netherlands)

    Dhekne, Herschel S.; Hsiao, Nai-Hua; Roelofs, Pieter; Kumari, Meena; Slim, Christiaan L.; Rings, Edmond H. H. M.; van IJzendoorn, Sven C. D.


    Microvilli at the apical surface of enterocytes allow the efficient absorption of nutrients in the intestine. Ezrin activation by its phosphorylation at T567 is important for microvilli development, but how such ezrin phosphorylation is controlled is not well understood. We demonstrate that a subset

  16. A Positive Feedback Loop between Akt and mTORC2 via SIN1 Phosphorylation

    Directory of Open Access Journals (Sweden)

    Guang Yang


    Full Text Available The mechanistic target of rapamycin complex 2 (mTORC2 regulates cell survival and cytoskeletal organization by phosphorylating its AGC kinase substrates; however, little is known about the regulation of mTORC2 itself. It was previously reported that Akt phosphorylates the mTORC2 subunit SIN1 at T86, activating mTORC2 through a positive feedback loop, though another study reported that S6K phosphorylates SIN1 at the same site, inhibiting mTORC2 activity. We performed extensive analysis of SIN1 phosphorylation upon inhibition of Akt, S6K, and mTOR under diverse cellular contexts, and we found that, in all cell lines and conditions studied, Akt is the major kinase responsible for SIN1 phosphorylation. These findings refine the activation mechanism of the Akt-mTORC2 signaling branch as follows: PDK1 phosphorylates Akt at T308, increasing Akt kinase activity. Akt phosphorylates SIN1 at T86, enhancing mTORC2 kinase activity, which leads to phosphorylation of Akt S473 by mTORC2, thereby catalyzing full activation of Akt.

  17. A Positive Feedback Loop between Akt and mTORC2 via SIN1 Phosphorylation. (United States)

    Yang, Guang; Murashige, Danielle S; Humphrey, Sean J; James, David E


    The mechanistic target of rapamycin complex 2 (mTORC2) regulates cell survival and cytoskeletal organization by phosphorylating its AGC kinase substrates; however, little is known about the regulation of mTORC2 itself. It was previously reported that Akt phosphorylates the mTORC2 subunit SIN1 at T86, activating mTORC2 through a positive feedback loop, though another study reported that S6K phosphorylates SIN1 at the same site, inhibiting mTORC2 activity. We performed extensive analysis of SIN1 phosphorylation upon inhibition of Akt, S6K, and mTOR under diverse cellular contexts, and we found that, in all cell lines and conditions studied, Akt is the major kinase responsible for SIN1 phosphorylation. These findings refine the activation mechanism of the Akt-mTORC2 signaling branch as follows: PDK1 phosphorylates Akt at T308, increasing Akt kinase activity. Akt phosphorylates SIN1 at T86, enhancing mTORC2 kinase activity, which leads to phosphorylation of Akt S473 by mTORC2, thereby catalyzing full activation of Akt.

  18. Phosphorylation of nucleoporin Tpr governs its differential localization and is required for its mitotic function. (United States)

    Rajanala, Kalpana; Sarkar, Anshuk; Jhingan, Gagan Deep; Priyadarshini, Raina; Jalan, Manisha; Sengupta, Sagar; Nandicoori, Vinay Kumar


    A major constituent of the nuclear basket region of the nuclear pore complex (NPC), nucleoporin Tpr, plays roles in regulating multiple important processes. We have previously established that Tpr is phosphorylated in both a MAP-kinase-dependent and MAP-kinase-independent manner, and that Tpr acts as both a substrate and as a scaffold for ERK2 (also known as MAPK1). Here, we report the identification of S2059 and S2094 as the major novel ERK-independent phosphorylation sites and T1677, S2020, S2023 and S2034 as additional ERK-independent phosphorylation sites found in the Tpr protein in vivo. Our results suggest that protein kinase A phosphorylates the S2094 residue and that the site is hyperphosphorylated during mitosis. Furthermore, we find that Tpr is phosphorylated at the S2059 residue by CDK1 and the phosphorylated form distinctly localizes with chromatin during telophase. Abrogation of S2059 phosphorylation abolishes the interaction of Tpr with Mad1, thus compromising the localization of both Mad1 and Mad2 proteins, resulting in cell cycle defects. The identification of novel phosphorylation sites on Tpr and the observations presented in this study allow better understanding of Tpr functions.

  19. Phosphorylation Variation during the Cell Cycle Scales with Structural Propensities of Proteins

    DEFF Research Database (Denmark)

    Tyanova, S.; Frishman, D.; Cox, J.;


    of the cell division cycle we investigate how the variation of the amount of phosphorylation correlates with the protein structure in the vicinity of the modified site. We find two distinct phosphorylation site groups: intrinsically disordered regions tend to contain sites with dynamically varying levels...

  20. Phosphorylation of Serine422 increases the stability and transactivation activities of human Osterix

    DEFF Research Database (Denmark)

    Xu, Yuexin; Yao, Bing; Shi, Kaikai;


    Osterix (Osx) is an essential regulator for osteoblast differentiation and bone formation. Although phosphorylation has been reported to be involved in the regulation of Osx activity, the precise underlying mechanisms remain to be elucidated. Here we identified S422 as a novel phosphorylation sit...

  1. Involvement of Phosphorylated "Apis Mellifera" CREB in Gating a Honeybee's Behavioral Response to an External Stimulus (United States)

    Gehring, Katrin B.; Heufelder, Karin; Feige, Janina; Bauer, Paul; Dyck, Yan; Ehrhardt, Lea; Kühnemund, Johannes; Bergmann, Anja; Göbel, Josefine; Isecke, Marlene; Eisenhardt, Dorothea


    The transcription factor cAMP-response element-binding protein (CREB) is involved in neuronal plasticity. Phosphorylation activates CREB and an increased level of phosphorylated CREB is regarded as an indicator of CREB-dependent transcriptional activation. In honeybees ("Apis mellifera") we recently demonstrated a particular high…

  2. ERK5 pathway regulates the phosphorylation of tumour suppressor hDlg during mitosis

    Energy Technology Data Exchange (ETDEWEB)

    Inesta-Vaquera, Francisco A. [Departamento de Inmunologia y Oncologia, Centro Nacional de Biotecnologia-CSIC, Campus de Cantoblanco-UAM, 28049 Madrid (Spain); Campbell, David G.; Arthur, J. Simon C. [MRC Protein Phosphorylation Unit, Sir James Black Building, School of Life Sciences, University of Dundee, Dundee DD1 5EH (United Kingdom); Cuenda, Ana, E-mail: [Departamento de Inmunologia y Oncologia, Centro Nacional de Biotecnologia-CSIC, Campus de Cantoblanco-UAM, 28049 Madrid (Spain)


    Research highlights: {yields} hDlg is phosphorylated during mitosis in multiple residues. {yields} Prospho-hDlg is excluded from the midbody during mitosis. {yields} hDlg is not phosphorylated by p38{gamma} or JNK1/2 during mitosis. {yields} ERK5 pathway mediates hDlg phosphorylation in mitosis. -- Abstract: Human disc-large (hDlg) is a scaffold protein critical for the maintenance of cell polarity and adhesion. hDlg is thought to be a tumour suppressor that regulates the cell cycle and proliferation. However, the mechanism and pathways involved in hDlg regulation during these processes is still unclear. Here we report that hDlg is phosphorylated during mitosis, and we establish the identity of at least three residues phosphorylated in hDlg; some are previously unreported. Phosphorylation affects hDlg localisation excluding it from the contact point between the two daughter cells. Our results reveal a previously unreported pathway for hDlg phosphorylation in mitosis and show that ERK5 pathway mediates hDlg cell cycle dependent phosphorylation. This is likely to have important implications in the correct timely mitotic entry and mitosis progression.

  3. Identification of phosphorylated proteins in erythrocytes infected by the human malaria parasite Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Xia Dong


    Full Text Available Abstract Background Previous comparative proteomic analysis on Plasmodium falciparum isolates of different adhesion properties suggested that protein phosphorylation varies between isolates with different cytoadherence properties. But the extent and dynamic changes in phosphorylation have not been systematically studied. As a baseline for these future studies, this paper examined changes in the phosphoproteome of parasitized red blood cells (pRBC. Methods Metabolic labelling with [35S] methionine on pRBC and 2D gel electrophoresis (2-DE has previously been used to show the expression of parasite proteins and changes in protein iso-electric point (PI. 2-DE of different parasite strains was combined with immunoblotting using monoclonal antibodies specifically to phosphorylated serine/threonine and tyrosine, to obtain the phosphorylation profiles throughout the erythrocytic lifecycle. Affinity chromatography was used to purify/enrich phosphorylated proteins and these proteins from mature trophozoite stages which were identified using high-accuracy mass spectrometry and MASCOT search. Results 2D-immunoblots showed that P. falciparum infection greatly increased phosphorylation of a set of proteins in pRBC, the dominant size classes for phosphorylated tyrosine proteins were 95, 60, 50 and 30 kDa and for phosphorylated serine/threonine were 120, 95, 60, 50, 43, 40 and 30 kDa. The most abundant molecules from 2D-gel mapping of phosphorylated proteins in ItG infected RBCs were identified by MALDI-TOF. A proteomic overview of phosphorylated proteins in pRBC was achieved by using complementary phosphorylated protein enrichment techniques combined with nano-flow LC/MS/MS analysis and MASCOT MS/MS ions search with phosphorylation as variable modifications. The definite phosphoproteins of pRBC are reported and discussed. Conclusion Protein phosphorylation is a major process in P. falciparum-parasitized erythrocytes. Preliminary screens identified 170 P

  4. The physiological link between metabolic rate depression and tau phosphorylation in mammalian hibernation.

    Directory of Open Access Journals (Sweden)

    Jens T Stieler

    Full Text Available Abnormal phosphorylation and aggregation of tau protein are hallmarks of a variety of neurological disorders, including Alzheimer's disease (AD. Increased tau phosphorylation is assumed to represent an early event in pathogenesis and a pivotal aspect for aggregation and formation of neurofibrillary tangles. However, the regulation of tau phosphorylation in vivo and the causes for its increased stage of phosphorylation in AD are still not well understood, a fact that is primarily based on the lack of adequate animal models. Recently we described the reversible formation of highly phosphorylated tau protein in hibernating European ground squirrels. Hence, mammalian hibernation represents a model system very well suited to study molecular mechanisms of both tau phosphorylation and dephosphorylation under in vivo physiological conditions. Here, we analysed the extent and kinetics of hibernation-state dependent tau phosphorylation in various brain regions of three species of hibernating mammals: arctic ground squirrels, Syrian hamsters and black bears. Overall, tau protein was highly phosphorylated in torpor states and phosphorylation levels decreased after arousal in all species. Differences between brain regions, hibernation-states and phosphosites were observed with respect to degree and kinetics of tau phosphorylation. Furthermore, we tested the phosphate net turnover of tau protein to analyse potential alterations in kinase and/or phosphatase activities during hibernation. Our results demonstrate that the hibernation-state dependent phosphorylation of tau protein is specifically regulated but involves, in addition, passive, temperature driven regulatory mechanisms. By determining the activity-state profile for key enzymes of tau phosphorylation we could identify kinases potentially involved in the differentially regulated, reversible tau phosphorylation that occurs during hibernation. We show that in black bears hibernation is associated with

  5. Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins

    KAUST Repository

    Bigeard, Jean


    In eukaryotes, most of the DNA is located in the nucleus where it is organized with histone proteins in a higher order structure as chromatin. Chromatin and chromatin-associated proteins contribute to DNA-related processes such as replication and transcription as well as epigenetic regulation. Protein functions are often regulated by PTMs among which phosphorylation is one of the most abundant PTM. Phosphorylation of proteins affects important properties, such as enzyme activity, protein stability, or subcellular localization. We here describe the main specificities of protein phosphorylation in plants and review the current knowledge on phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. We also outline some future challenges to further elucidate protein phosphorylation and chromatin regulation.

  6. Phosphorylation of p300 by ATM controls the stability of NBS1

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Eun Ryoung [Department of Molecular Science and Technology, College of Natural Sciences, Ajou University, Suwon 443-749 (Korea, Republic of); Choi, Jae Duk [Department of Molecular Science and Technology, College of Natural Sciences, Ajou University, Suwon 443-749 (Korea, Republic of); School of Biological Sciences, Seoul National University, Seoul 151 (Korea, Republic of); Jeong, Gajin [School of Biological Sciences, Seoul National University, Seoul 151 (Korea, Republic of); Lee, Jong-Soo, E-mail: [Department of Molecular Science and Technology, College of Natural Sciences, Ajou University, Suwon 443-749 (Korea, Republic of)


    Acetyltransferase, p300 is a transcriptional cofactor of signal-responsive transcriptional regulation. The surveillance kinase ataxia-telangiectasia mutated (ATM) plays a central role in regulation of a wide range of cellular DNA damage responses. Here, we investigated whether and how ATM mediates phosphorylation of p300 in response to DNA damage and how p300 phosphorylation is functionally linked to DNA damage. ATM-phosphorylated p300 in vitro and in vivo, in response to DNA damage. Phosphorylation of p300 proteins was observed upon {gamma}-irradiation in ATM{sup +} cells but not ATM{sup -} cells. Importantly, expression of nonphosphorylatable serine to alanine form of p300 (S106A) destabilized both p300 and NBS1 proteins, after DNA damage. These data demonstrate that ATM transduces a DNA damage signal to p300, and that ATM-dependent phosphorylation of p300 is required for stabilization of NBS1 proteins in response to DNA damage.

  7. Phosphorylated cystatin alpha is a natural substrate of epidermal transglutaminase for formation of skin cornified envelope. (United States)

    Takahashi, M; Tezuka, T; Katunuma, N


    Both keratohyalin granules (KHG) and cornified envelopes were stained histochemically in an indirect immunofluorescent study by antiphosphorylated cystatin alpha antibody, indicating that phosphorylated cystatin alpha is a component of the cornified envelope proteins. When phosphorylated cystatin alpha (P-cystatin alpha) was incubated with epidermal transglutaminase (TGase) and Ca2+ ions, polymerized protein was produced by formation of epsilon-(gamma-glutamyl)lysine cross-linking peptide bonds between lysine residues of cystatin alpha and glutamine residues of suitable protein(s) in the enzyme preparation. However, phosphorylated and non-phosphorylated cystatins were polymerized to similar extents by the TGase. Immunofluorescent and immunoelectron microscopic observations revealed that P-cystatin alpha could be detected in vivo in the KHG and cornified envelopes. Treatment of sphingosine, a specific inhibitor of protein kinase C, markedly suppressed the incorporation of cystatin alpha into KHG. Thus phosphorylation of cystatin alpha by protein kinase C may play an important role in targeting cystatin alpha into KHG.

  8. Phosphorylated SAP155, the spliceosomal component, is localized to chromatin in postnatal mouse testes

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Ko, E-mail: [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Sonoda, Yoshiyuki [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Jin, Yuji [School of Basic Medicine, Jilin Medical College, Jilin 132013 (China); Abe, Shin-ichi [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan)


    SAP155 is an essential component of the spliceosome and its phosphorylation is required for splicing catalysis, but little is known concerning its expression and regulation during spermatogenesis in postnatal mouse testes. We report that SAP155 is ubiquitously expressed in nuclei of germ and Sertoli cells within the seminiferous tubules of 6- and 35-day postpartum (dpp) testes. Analyses by fractionation of testes revealed that (1) phosphorylated SAP155 was found in the fraction containing nuclear structures at 6 dpp in amounts much larger than that at other ages; (2) non-phosphorylated SAP155 was detected in the fraction containing nucleoplasm; and (3) phosphorylated SAP155 was preferentially associated with chromatin. Our findings suggest that the active spliceosome, containing phosphorylated SAP155, performs pre-mRNA splicing on chromatin concomitant with transcription during testicular development.

  9. Insulin increases phosphorylation of mitochondrial proteins in human skeletal muscle in vivo

    DEFF Research Database (Denmark)

    Zhao, Xiaolu; Bak, Steffen; Pedersen, Andreas James Thestrup;


    There is increasing evidence that multiple proteins involved in key regulatory processes in mitochondria are phosphorylated in mammalian tissues. Insulin regulates glucose metabolism by phosphorylation-dependent signaling and has been shown to stimulate ATP synthesis in human skeletal muscle. Here...... the majority of novel sites. Phosphorylation sites detected more often or exclusively in insulin-stimulated samples include multiple sites in mitochondrial proteins involved in oxidative phosphorylation, tricarboxylic acid cycle, and fatty acid metabolism, as well as several components of the newly defined......, we investigated the effect of insulin on the phosphorylation of mitochondrial proteins in human skeletal muscle in vivo. Using a combination of TiO2 phosphopeptide-enrichment, HILIC fractionation, and LC−MS/MS, we compared the phosphoproteomes of isolated mitochondria from skeletal muscle samples...

  10. Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. (United States)

    Chapman, Rob D; Heidemann, Martin; Albert, Thomas K; Mailhammer, Reinhard; Flatley, Andrew; Meisterernst, Michael; Kremmer, Elisabeth; Eick, Dirk


    RNA polymerase II is distinguished by its large carboxyl-terminal repeat domain (CTD), composed of repeats of the consensus heptapeptide Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Differential phosphorylation of serine-2 and serine-5 at the 5' and 3' regions of genes appears to coordinate the localization of transcription and RNA processing factors to the elongating polymerase complex. Using monoclonal antibodies, we reveal serine-7 phosphorylation on transcribed genes. This position does not appear to be phosphorylated in CTDs of less than 20 consensus repeats. The position of repeats where serine-7 is substituted influenced the appearance of distinct phosphorylated forms, suggesting functional differences between CTD regions. Our results indicate that restriction of serine-7 epitopes to the Linker-proximal region limits CTD phosphorylation patterns and is a requirement for optimal gene expression.

  11. Postmortem Changes in Pork Muscle Protein Phosphorylation in Relation to the RN Genotype

    DEFF Research Database (Denmark)

    Lametsch, René; Larsen, Martin Røssel; Essén-Gustavsson, Birgitta


    Postmortem changes in pork muscle protein phosphorylation in relation to the RN(-) genotype were investigated using one-dimensional gel electrophoresis and a phosphor specific staining. The phosphorylation levels of several protein bands were found to be affected by the RN(-) genotype and to change...... of phosphorylation of these key enzymes during the postmortem metabolism. The results illustrate that the protein phosphorylation level of the muscle proteins could be interpreted as a global metabolic fingerprint containing information about the activity status of the enzymes in the postmortem metabolism....... during postmortem development. Glycogen phosphorylase, phosphofructokinase, and pyruvate kinase were found in protein bands affected by the RN(-) genotype, and the phosphorylation profile indicates that part of the increased rate and extended pH decline of the RN(-) genotype could be a consequence...

  12. Phosphorylation of plant plasma membrane H+-ATPase by the heterologous host S.cerevisiae

    DEFF Research Database (Denmark)

    L. Rudashevskaya, Elena; Ye, Juanying; Jensen, Ole Nørregaard;

    of heterologous system of yeast cells, expressing plant proton pump. Therefore identification of possible regulatory effects by phosphorylation events in plant H+-ATPase in the system is significant. A number of putative phosphorylation sites at regulatory C-domain of H+-ATPase (AHA2) have been point...... It is known, that phosphorylation of both plant and yeast plasma membrane H+-ATPase results in enzyme activation or inhibition. Several sites at the regulatory C-terminus of the enzyme have been found to undergo phosphorylation in vivo in both plant and yeast. The C-termini of plant H......+-ATPases are app. 60 amino acid residues longer than their yeast homologous. Yeast is found to phosphorylate at least one residue within the plant C-terminus. At the same time a wide range of investigations on structure, function, regulation and interaction of H+-ATPase is carried out with implication...

  13. PKD2 and RSK1 Regulate Integrin β4 Phosphorylation at Threonine 1736.

    Directory of Open Access Journals (Sweden)

    Lisa Te Molder

    Full Text Available The integrin α6β4, a major component of hemidesmosomes (HDs, stabilizes keratinocyte cell adhesion to the epidermal basement membrane through binding to the cytoskeletal linker protein plectin and association with keratin filaments. Disruption of the α6β4-plectin interaction through phosphorylation of the β4 subunit results in a reduction in adhesive strength of keratinocytes to laminin-332 and the dissolution of HDs. Previously, we have demonstrated that phosphorylation of T1736 in the C-terminal end of the β4 cytoplasmic domain disrupts the interaction of β4 with the plakin domain of plectin. Furthermore, we showed that β4-T1736 can be phosphorylated by PKD1 in vitro, and although both PMA and EGF induced T1736 phosphorylation, only PMA was able to activate PKD1. Here, we show that depletion of [Ca2+]i augments PMA- and EGF-induced phosphorylation of β4-T1736 and that this is caused by inhibition of the calcium-sensitive protein phosphatase calcineurin and augmentation of ERK1/2 activation. We also show that in keratinocytes the PMA-stimulated phosphorylation of β4-T1736 primarily is mediated by PKD2 activation downstream of PKCδ. On the other hand, both the EGF-stimulated phosphorylation of T1736 and the EGF-induced dissolution of HDs are dependent on a functional MAPK signaling pathway, and treatment with the RSK inhibitor BI-D1870 prevented EGF-stimulated phosphorylation of β4-T1736. Moreover, phosphorylation of β4-T1736 is enhanced by overexpression of wild-type RSK1, while it is reduced by the expression of kinase-inactive RSK1 or by siRNA-mediated depletion of RSK1. In summary, our data indicate that different stimuli can lead to the phosphorylation of β4-T1736 by either PKD2 or RSK1.

  14. Androgen receptor serine 81 phosphorylation mediates chromatin binding and transcriptional activation. (United States)

    Chen, Shaoyong; Gulla, Sarah; Cai, Changmeng; Balk, Steven P


    Our previous findings indicated that androgen receptor (AR) phosphorylation at serine 81 is stimulated by the mitotic cyclin-dependent kinase 1 (CDK1). In this report, we extended our previous study and confirmed that Ser-81 phosphorylation increases during mitosis, coincident with CDK1 activation. We further showed blocking cell cycle at G(1) or S phase did not disrupt androgen-induced Ser-81 phosphorylation and AR-dependent transcription, consistent with a recent report that AR was phosphorylated at Ser-81 and activated by the transcriptional CDK9. To assess the function of Ser-81 phosphorylation in prostate cancer (PCa) cells expressing endogenous AR, we developed a ligand switch strategy using a ligand-binding domain mutation (W741C) that renders AR responsive to the antagonist bicalutamide. An S81A/W741C double mutant AR stably expressed in PCa cells failed to transactivate the endogenous AR-regulated PSA or TMPRSS2 genes. ChIP showed that the S81A mutation prevented ligand-induced AR recruitment to these genes, and cellular fractionation revealed that the S81A mutation globally abrogated chromatin binding. Conversely, the AR fraction rapidly recruited to chromatin after androgen stimulation was highly enriched for Ser-81 phosphorylation. Finally, inhibition of CDK1 and CDK9 decreased AR Ser-81 phosphorylation, chromatin binding, and transcriptional activity. These findings indicate that Ser-81 phosphorylation by CDK9 stabilizes AR chromatin binding for transcription and suggest that CDK1-mediated Ser-81 phosphorylation during mitosis provides a pool of Ser-81 phosphorylation AR that can be readily recruited to chromatin for gene reactivation and may enhance AR activity in PCa.

  15. PINK1-mediated phosphorylation of Parkin boosts Parkin activity in Drosophila.

    Directory of Open Access Journals (Sweden)

    Kahori Shiba-Fukushima


    Full Text Available Two genes linked to early onset Parkinson's disease, PINK1 and Parkin, encode a protein kinase and a ubiquitin-ligase, respectively. Both enzymes have been suggested to support mitochondrial quality control. We have reported that Parkin is phosphorylated at Ser65 within the ubiquitin-like domain by PINK1 in mammalian cultured cells. However, it remains unclear whether Parkin phosphorylation is involved in mitochondrial maintenance and activity of dopaminergic neurons in vivo. Here, we examined the effects of Parkin phosphorylation in Drosophila, in which the phosphorylation residue is conserved at Ser94. Morphological changes of mitochondria caused by the ectopic expression of wild-type Parkin in muscle tissue and brain dopaminergic neurons disappeared in the absence of PINK1. In contrast, phosphomimetic Parkin accelerated mitochondrial fragmentation or aggregation and the degradation of mitochondrial proteins regardless of PINK1 activity, suggesting that the phosphorylation of Parkin boosts its ubiquitin-ligase activity. A non-phosphorylated form of Parkin fully rescued the muscular mitochondrial degeneration due to the loss of PINK1 activity, whereas the introduction of the non-phosphorylated Parkin mutant in Parkin-null flies led to the emergence of abnormally fused mitochondria in the muscle tissue. Manipulating the Parkin phosphorylation status affected spontaneous dopamine release in the nerve terminals of dopaminergic neurons, the survivability of dopaminergic neurons and flight activity. Our data reveal that Parkin phosphorylation regulates not only mitochondrial function but also the neuronal activity of dopaminergic neurons in vivo, suggesting that the appropriate regulation of Parkin phosphorylation is important for muscular and dopaminergic functions.

  16. Distinct and site-specific phosphorylation of the retinoblastoma protein at serine 612 in differentiated cells.

    Directory of Open Access Journals (Sweden)

    Takayuki Hattori

    Full Text Available The retinoblastoma susceptibility protein (pRB is a phosphoprotein that regulates cell cycle progression at the G1/S transition. In quiescent and early G1 cells, pRB predominantly exists in the active hypophosphorylated form. The cyclin/cyclin-dependent protein kinase complexes phosphorylate pRB at the late G1 phase to inactivate pRB. This event leads to the dissociation and activation of E2F family transcriptional factors. At least 12 serine/threonine residues in pRB are phosphorylated in vivo. Although there have been many reports describing bulk phosphorylation of pRB, detail research describing the function of each phosphorylation site remains unknown. Besides its G1/S inhibitory function, pRB is involved in differentiation, prevention of cell death and control of tissue fate. To uncover the function of phosphorylation of pRB in various cellular conditions, we have been investigating phosphorylation of each serine/threonine residue in pRB with site-specific phospho-serine/threonine antibodies. Here we demonstrate that pRB is specifically phosphorylated at Ser612 in differentiated cells in a known kinase-independent manner. We also found that pRB phosphorylated at Ser612 still associates with E2F-1 and tightly binds to nuclear structures including chromatin. Moreover, expression of the Ser612Ala mutant pRB failed to induce differentiation. The findings suggest that phosphorylation of Ser612 provides a distinct function that differs from the function of phosphorylation of other serine/threonine residues in pRB.

  17. Prediction of PK-specific phosphorylation site based on information entropy

    Institute of Scientific and Technical Information of China (English)


    Phosphorylation is a crucial way to control the activity of proteins in many eukaryotic organisms in vivo. Experimental methods to determine phosphorylation sites in substrates are usually restricted by the in vitro condition of enzymes and very intensive in time and labor. Although some in silico methods and web servers have been introduced for automatic detection of phosphorylation sites, sophisticated methods are still in urgent demand to further improve prediction performances. Protein primary se-quences can help predict phosphorylation sites catalyzed by different protein kinase and most com-putational approaches use a short local peptide to make prediction. However, the useful information may be lost if only the conservative residues that are not close to the phosphorylation site are consid-ered in prediction, which would hamper the prediction results. A novel prediction method named IEPP (Information-Entropy based Phosphorylation Prediction) is presented in this paper for automatic de-tection of potential phosphorylation sites. In prediction, the sites around the phosphorylation sites are selected or excluded by their entropy values. The algorithm was compared with other methods such as GSP and PPSP on the ABL, MAPK and PKA PK families. The superior prediction accuracies were ob-tained in various measurements such as sensitivity (Sn) and specificity (Sp). Furthermore, compared with some online prediction web servers on the new discovered phosphorylation sites, IEPP also yielded the best performance. IEPP is another useful computational resource for identification of PK-specific phosphorylation sites and it also has the advantages of simpleness, efficiency and con-venience.

  18. Formaldehyde-induced histone H3 phosphorylation via JNK and the expression of proto-oncogenes. (United States)

    Yoshida, Ikuma; Ibuki, Yuko


    Formaldehyde (FA) is a very reactive compound that forms DNA adducts and DNA-protein crosslinks, which are known to contribute to FA-induced mutations and carcinogenesis. Post-translational modifications to histones have recently attracted attention due to their link with cancer. In the present study, we examined histone modifications following a treatment with FA. FA significantly phosphorylated histone H3 at serine 10 (H3S10), and at serine 28 (H3S28), the time-course of which was similar to the phosphorylation of H2AX at serine 139 (γ-H2AX), a marker of DNA double strand breaks. The temporal deacetylation of H3 was observed due to the reaction of FA with the lysine residues of histones. The phosphorylation mechanism was then analyzed by focusing on H3S10. The nuclear distribution of the phosphorylation of H3S10 and γ-H2AX did not overlap, and the phosphorylation of H3S10 could not be suppressed with an inhibitor of ATM/ATR, suggesting that the phosphorylation of H3S10 was independent of the DNA damage response. ERK and JNK in the MAPK pathways were phosphorylated by the treatment with FA, in which the JNK pathway was the main target for phosphorylation. The phosphorylation of H3S10 increased at the promoter regions of c-fos and c-jun, indicating a relationship between FA-induced tumor promotion activity and phosphorylation of H3S10. These results suggested that FA both initiates and promotes cancer, as judged by an analysis of histone modifications.

  19. Exportability of the mitochondrial oxidative phosphorylation machinery into myelin sheath. (United States)

    Morelli, Alessandro; Ravera, Silvia; Calzia, Daniela; Panfoli, Isabella


    White matter comprises over half of the brain, and its role in axonal survival is being reconsidered, consistently with the observation that axonal degeneration follows demyelination. The recent evidence of an extra-mitochondrial aerobic ATP production in isolated myelin vesicles, thanks to the expression therein of the mitochondrial Oxydative Phosphorylation (OXPHOS) machinery, stands in for myelin playing a functional bioenergetic role in ATP supply for the axon. The observation that subunits of the OXPHOS encoded by the mitochondrial genome are expressed in myelin, suggests that they can be the same as those of the inner mitochondrial membrane. This would mean that the OXPHOS is exportable. Here the hypothesis is exposed that the mitochondrion is the unique site of the assembly of the OXPHOS, so that this is exported to those sub cellular districts displaying high energy demand, such as myelin sheath. There the OXPHOS would display a higher efficiency in oxidative ATP production than inside the mitochondrion itself In this respect, the role of the glia in the nervous conduction is shed new light and the oligodendrocyte mitochondrial OXPHOS are hypothesized to be delivered to nascent myelin.

  20. Importance of glycolysis and oxidative phosphorylation in advanced melanoma

    Directory of Open Access Journals (Sweden)

    Ho Jonhan


    Full Text Available Abstract Serum lactate dehydrogenase (LDH is a prognostic factor for patients with stage IV melanoma. To gain insights into the biology underlying this prognostic factor, we analyzed total serum LDH, serum LDH isoenzymes, and serum lactate in up to 49 patients with metastatic melanoma. Our data demonstrate that high serum LDH is associated with a significant increase in LDH isoenzymes 3 and 4, and a decrease in LDH isoenzymes 1 and 2. Since LDH isoenzymes play a role in both glycolysis and oxidative phosphorylation (OXPHOS, we subsequently determined using tissue microarray (TMA analysis that the levels of proteins associated with mitochondrial function, lactate metabolism, and regulators of glycolysis were all elevated in advanced melanomas compared with nevic melanocytes. To investigate whether in advanced melanoma, the glycolysis and OXPHOS pathways might be linked, we determined expression of the monocarboxylate transporters (MCT 1 and 4. Analysis of a nevus-to-melanoma progression TMA revealed that MCT4, and to a lesser extend MCT1, were elevated with progression to advanced melanoma. Further analysis of human melanoma specimens using the Seahorse XF24 extracellular flux analyzer indicated that metastatic melanoma tumors derived a large fraction of energy from OXPHOS. Taken together, these findings suggest that in stage IV melanomas with normal serum LDH, glycolysis and OXPHOS may provide metabolic symbiosis within the same tumor, whereas in stage IV melanomas with high serum LDH glycolysis is the principle source of energy.

  1. Methylglyoxal mediates adipocyte proliferation by increasing phosphorylation of Akt1.

    Directory of Open Access Journals (Sweden)

    Xuming Jia

    Full Text Available Methylglyoxal (MG is a highly reactive metabolite physiologically presented in all biological systems. The effects of MG on diabetes and hypertension have been long recognized. In the present study, we investigated the potential role of MG in obesity, one of the most important factors to cause metabolic syndrome. An increased MG accumulation was observed in the adipose tissue of obese Zucker rats. Cell proliferation assay showed that 5-20 µM of MG stimulated the proliferation of 3T3-L1 cells. Further study suggested that accumulated-MG stimulated the phosphorylation of Akt1 and its targets including p21 and p27. The activated Akt1 then increased the activity of CDK2 and accelerated the cell cycle progression of 3T3-L1 cells. The effects of MG were efficiently reversed by advanced glycation end product (AGE breaker alagebrium and Akt inhibitor SH-6. In summary, our study revealed a previously unrecognized effect of MG in stimulating adipogenesis by up-regulation of Akt signaling pathway and this mechanism might offer a new approach to explain the development of obesity.

  2. Development of monetite/phosphorylated chitosan composite bone cement. (United States)

    Boroujeni, Nariman Mansouri; Zhou, Huan; Luchini, Timothy J F; Bhaduri, Sarit B


    In this article, we report the development of a biodegradable monetite [dicalcium phosphate anhydrous (DCPA), CaHPO4 ]/phosphorylated chitosan (p-chitosan) composite orthopedic cement. The cement pastes showed desirable handling properties, injectability, and washout resistance. The incorporation of p-chitosan powders at 5 wt % shortened the setting time of DCPA and significantly improved the mechanical performance of DCPA cement, increasing the compressive strength almost twice from 11.09 ± 1.85 MPa at 0% chitosan to 23.43 ± 1.47 MPa at 5 wt % p-chitosan. On the other hand, higher p-chitosan content or untreated chitosan incorporation lowered the performance of DCPA cements. The cytocompatibility of the composite cement was investigated in vitro using the preosteoblast cell line MC3T3-E1. An increase in cell proliferation was observed in both DCPA and DCPA-p-chitosan. The results show that both the materials are as cytocompatible as hydroxyapatite. Based on these results, DCPA-p-chitosan composite cement can be considered as potential bone repair material.

  3. Signaling mechanisms and functional roles of cofilin phosphorylation and dephosphorylation. (United States)

    Mizuno, Kensaku


    Cofilin and actin-depolymerizing factor (ADF) are actin-binding proteins that play an essential role in regulating actin filament dynamics and reorganization by stimulating the severance and depolymerization of actin filaments. Cofilin/ADF are inactivated by phosphorylation at the serine residue at position 3 by LIM-kinases (LIMKs) and testicular protein kinases (TESKs) and are reactivated by dephosphorylation by the slingshot (SSH) family of protein phosphatases and chronophin. This review describes recent advances in our understanding of the signaling mechanisms regulating LIMKs and SSHs and the functional roles of cofilin phospho-regulation in cell migration, tumor invasion, mitosis, neuronal development, and synaptic plasticity. Accumulating evidence demonstrates that the phospho-regulation of cofilin/ADF is a key convergence point of cell signaling networks that link extracellular stimuli to actin cytoskeletal dynamics and that spatiotemporal control of cofilin/ADF activity by LIMKs and SSHs plays a crucial role in a diverse array of cellular and physiological processes. Perturbations in the normal control of cofilin/ADF activity underlie many pathological conditions, including cancer metastasis and neurological and cardiovascular disorders.

  4. Bioavailable copper modulates oxidative phosphorylation and growth of tumors. (United States)

    Ishida, Seiko; Andreux, Pénélope; Poitry-Yamate, Carole; Auwerx, Johan; Hanahan, Douglas


    Copper is an essential trace element, the imbalances of which are associated with various pathological conditions, including cancer, albeit via largely undefined molecular and cellular mechanisms. Here we provide evidence that levels of bioavailable copper modulate tumor growth. Chronic exposure to elevated levels of copper in drinking water, corresponding to the maximum allowed in public water supplies, stimulated proliferation of cancer cells and de novo pancreatic tumor growth in mice. Conversely, reducing systemic copper levels with a chelating drug, clinically used to treat copper disorders, impaired both. Under such copper limitation, tumors displayed decreased activity of the copper-binding mitochondrial enzyme cytochrome c oxidase and reduced ATP levels, despite enhanced glycolysis, which was not accompanied by increased invasiveness of tumors. The antiproliferative effect of copper chelation was enhanced when combined with inhibitors of glycolysis. Interestingly, larger tumors contained less copper than smaller tumors and exhibited comparatively lower activity of cytochrome c oxidase and increased glucose uptake. These results establish copper as a tumor promoter and reveal that varying levels of copper serves to regulate oxidative phosphorylation in rapidly proliferating cancer cells inside solid tumors. Thus, activation of glycolysis in tumors may in part reflect insufficient copper bioavailability in the tumor microenvironment.

  5. P70 S6 kinase mediates tau phosphorylation and synthesis

    DEFF Research Database (Denmark)

    Pei, Jin-Jing; An, Wen-Lin; Zhou, Xin-Wen;


    of total S6 and tau but not global proteins in SH-SY5Y cells. The requirement of p70S6K activation was confirmed in the SH-SY5Y cells that overexpress wild-type htau40. Level of p-p70S6K (T421/S424) was only significantly correlated with p-tau at S262, S214, and T212, but not T212/S214, in Alzheimer......Currently, we found that the 70-kDa p70 S6 kinase (p70S6K) directly phosphorylates tau at S262, S214, and T212 sites in vitro. By immunoprecipitation, p-p70S6K (T421/S424) showed a close association with p-tau (S262 and S396/404). Zinc-induced p70S6K activation could only upregulate translation......'s disease (AD) brains. These suggested that p70S6K might contribute to tau related pathologies in AD brains....

  6. Parkinson's disease associated with impaired oxidative phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Finsterer, J. [Ludwig Boltzmann Inst. for Research in Epilepsy and Neuromuscular Disorders and 2. Neurological Dept., Neurological Hospital Rosenhuegel, Vienna (Austria); Jarius, C. [Institute of Clinical Neurology, University of Vienna, Vienna (Austria); Baumgartner, M. [Radiological Dept., Municipal Hospital Lainz, Vienna (Austria)


    Parkinson's disease may be due to primary or secondary oxidative phosphorylation (OXPHOS) defects. In a 76-year-old man with Parkinson's disease since 1992, slightly but recurrently elevated creatine phosphokinase, recurrently elevated blood glucose, thickening of the left ventricular myocardium, bifascicular block and hypacusis were found. Cerebral MRI showed atrophy, periventricular demyelination, multiple, disseminated, supra- and infratentorial lacunas, and haemosiderin deposits in both posterior horns. Muscle biopsy showed typical features of an OXPHOS defect. Whether the association of Parkinson's disease and impaired OXPHOS was causative or coincidental remains unknown. Possibly, the mitochondrial defect acted as an additional risk factor for Parkinson's disease or the OXPHOS defect worsened the preexisting neurological impairments by a cumulative or synergistic mechanism. In conclusion, this case shows that Parkinson's disease may be associated with a mitochondrially or nuclearly encoded OXPHOS defect, manifesting as hypacusis, myopathy, axonal polyneuropathy, cardiomyopathy and recurrent subclinical ischaemic strokes and haemorrhages. (orig.)

  7. Neonatal cardiomyopathies and metabolic crises due to oxidative phosphorylation defects. (United States)

    Schiff, Manuel; Ogier de Baulny, Hélène; Lombès, Anne


    Neonatal cardiomyopathies due to mitochondrial oxidative phosphorylation (OXPHOS) defects are extremely severe conditions which can be either isolated or included in a multi-organ disease, with or without metabolic crises, of which profound lactic acidosis is the prominent feature. Cardiomyopathy is more often hypertrophic than dilated. Antenatal manifestations such as fetal cardiomyopathy, arrhythmia and/or hydrops have been reported. Pathophysiological mechanisms are complex, going beyond ATP deficiency of the high-energy-consuming neonatal myocardium. Birth is a key metabolic period when the myocardium switches ATP production from anaerobic glycolysis to mitochondrial fatty acid oxidation and OXPHOS. Heart-specificity of the defect may be related to the specific localization of the defect, to the high myocardium dependency on OXPHOS, and/or to interaction between the primary genetic alteration and other factors such as modifier genes. Therapeutic options are limited but standardized diagnostic procedures are mandatory to confirm the OXPHOS defect and to identify its causal mutation, allowing genetic counseling and potential prenatal diagnosis.

  8. Insulin phosphorylates calmodulin in preparations of solubilized rat hepatocyte insulin receptors

    Energy Technology Data Exchange (ETDEWEB)

    Sacks, D.B.; McDonald, J.M.


    It has previously been shown that insulin stimulates the phosphorylation of calmodulin in adipocyte insulin receptor preparations. Here they demonstrate that insulin also stimulates the phosphorylation of calmodulin in wheat germ lectin-enriched insulin receptor preparations obtained from rat hepatocytes. Standard phosphorylation assays were performed at 30C in the presence of 50mM Tris-HCl (pH 7.5), 0.1% (v/v) Triton X-100, 1mM EGTA, 50 M (el-TSP)ATP, 5mM MgCl2, 0.25 M polylysine, 1.2 M calmodulin and various CaS and insulin concentrations. The phosphorylation of calmodulin was determined by SDS-PAGE and autoradiography. Phosphorylation of calmodulin had an absolute requirement for insulin receptors, insulin and certain basic proteins. Phosphorylation was maximal above 13 nM insulin and at submicromolar CaS concentrations, whereas supramicromolar CaS concentrations were inhibitory. As was observed in the adipocyte insulin receptor system, calmodulin phosphorylation was dependent upon the presence of co-factors, such as polylysine, histone H/sub f/2b and protamine sulfate. The role played by these co-factors has not yet been established. These data suggest that both CaS and calmodulin participate in post receptor insulin events in hepatocytes.

  9. Definition of smad3 phosphorylation events that affect malignant and metastatic behaviors in breast cancer cells. (United States)

    Bae, Eunjin; Sato, Misako; Kim, Ran-Ju; Kwak, Mi-Kyung; Naka, Kazuhito; Gim, Jungsoo; Kadota, Mitsutaka; Tang, Binwu; Flanders, Kathleen C; Kim, Tae-Aug; Leem, Sun-Hee; Park, Taesung; Liu, Fang; Wakefield, Lalage M; Kim, Seong-Jin; Ooshima, Akira


    Smad3, a major intracellular mediator of TGFβ signaling, functions as both a positive and negative regulator in carcinogenesis. In response to TGFβ, the TGFβ receptor phosphorylates serine residues at the Smad3 C-tail. Cancer cells often contain high levels of the MAPK and CDK activities, which can lead to the Smad3 linker region becoming highly phosphorylated. Here, we report, for the first time, that mutation of the Smad3 linker phosphorylation sites markedly inhibited primary tumor growth, but significantly increased lung metastasis of breast cancer cell lines. In contrast, mutation of the Smad3 C-tail phosphorylation sites had the opposite effect. We show that mutation of the Smad3 linker phosphorylation sites greatly intensifies all TGFβ-induced responses, including growth arrest, apoptosis, reduction in the size of putative cancer stem cell population, epithelial-mesenchymal transition, and invasive activity. Moreover, all TGFβ responses were completely lost on mutation of the Smad3 C-tail phosphorylation sites. Our results demonstrate a critical role of the counterbalance between the Smad3 C-tail and linker phosphorylation in tumorigenesis and metastasis. Our findings have important implications for therapeutic intervention of breast cancer.

  10. CK2 phosphorylation inactivates DNA binding by the papillomavirus E1 and E2 proteins. (United States)

    Schuck, Stephen; Ruse, Cristian; Stenlund, Arne


    Papillomaviruses have complex life cycles that are understood only superficially. Although it is well established that the viral E1 and E2 proteins play key roles in controlling viral transcription and DNA replication, how these factors are regulated is not well understood. Here, we demonstrate that phosphorylation by the protein kinase CK2 controls the biochemical activities of the bovine papillomavirus E1 and E2 proteins by modifying their DNA binding activity. Phosphorylation at multiple sites in the N-terminal domain in E1 results in the loss of sequence-specific DNA binding activity, a feature that is also conserved in human papillomavirus (HPV) E1 proteins. The bovine papillomavirus (BPV) E2 protein, when phosphorylated by CK2 on two specific sites in the hinge, also loses its site-specific DNA binding activity. Mutation of these sites in E2 results in greatly increased levels of latent viral DNA replication, indicating that CK2 phosphorylation of E2 is a negative regulator of viral DNA replication during latent viral replication. In contrast, mutation of the N-terminal phosphorylation sites in E1 has no effect on latent viral DNA replication. We propose that the phosphorylation of the N terminus of E1 plays a role only in vegetative viral DNA replication, and consistent with such a role, caspase 3 cleavage of E1, which has been shown to be necessary for vegetative viral DNA replication, restores the DNA binding activity to phosphorylated E1.

  11. Obesity does not Lead to Imbalance Between Myocardial Phospholamban Phosphorylation and Dephosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Freire, Paula Paccielli, E-mail:; Alves, Carlos Augusto Barnabe; Deus, Adriana Fernandes de [Departamento de Clínica Médica - Faculdade de Medicina de Botucatu - Universidade Estadual Paulista, Botucatu, SP (Brazil); Leopoldo, Ana Paula Lima; Leopoldo, André Soares [Centro de Educação Física e Desportos - Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Silva, Danielle Cristina Tomaz da; Tomasi, Loreta Casquel de; Campos, Dijon Henrique Salomé; Cicogna, Antonio Carlos [Departamento de Clínica Médica - Faculdade de Medicina de Botucatu - Universidade Estadual Paulista, Botucatu, SP (Brazil)


    The activation of the beta-adrenergic system promotes G protein stimulation that, via cyclic adenosine monophosphate (cAMP), alters the structure of protein kinase A (PKA) and leads to phospholamban (PLB) phosphorylation. This protein participates in the system that controls intracellular calcium in muscle cells, and it is the primary regulator of sarcoplasmic reticulum calcium pump activity. In obesity, the beta-adrenergic system is activated by the influence of increased leptin, therefore, resulting in higher myocardial phospholamban phosphorylation via cAMP-PKA. To investigate the involvement of proteins which regulate the degree of PLB phosphorylation due to beta-adrenergic activation in obesity. In the present study, we hypothesized that there is an imbalance between phospholamban phosphorylation and dephosphorylation, with prevalence of protein phosphorylation. Male Wistar rats were randomly distributed into two groups: control (n = 14), fed with normocaloric diet; and obese (n = 13), fed with a cycle of four unsaturated high-fat diets. Obesity was determined by the adiposity index, and protein expressions of phosphatase 1 (PP-1), PKA, PLB, phosphorylated phospholamban at serine16 (PPLB-Ser16) were assessed by Western blot. Obesity caused glucose intolerance, hyperinsulinemia, hypertriglyceridemia, hyperleptinemia and did not alter the protein expression of PKA, PP-1, PLB, PPLB-Ser16. Obesity does not promote an imbalance between myocardial PLB phosphorylation and dephosphorylation via beta-adrenergic system.

  12. Identification and functional analysis of phosphorylation in Newcastle disease virus phosphoprotein. (United States)

    Qiu, Xusheng; Zhan, Yuan; Meng, Chunchun; Wang, Junqing; Dong, LuNa; Sun, Yingjie; Tan, Lei; Song, Cuiping; Yu, Shengqing; Ding, Chan


    Newcastle disease virus (NDV) encodes a highly phosphorylated P protein; however, the phosphorylation sites have not been identified, and the relationship between phosphorylation and protein function is still unclear. In this study, we bioinformatically predicted 26 amino acid residues in the P protein as potential phosphorylation sites. Furthermore, we treated infected cells with kinase inhibitors to investigate NDV propagation and found that protein kinase C (PKC) is involved in the NDV life cycle and that PKC-activated phosphorylation functions in NDV replication. Using an NDV minigenome assay, we found that expression of a reporter protein decreased when the minigenome system contained P mutants lacking T44, S48, T271, S373 and especially T111. The phosphorylation status of S48, T111, S125 and T271 was determined by Phos-tag SDS-PAGE analysis. Coimmunoprecipitation assays showed that the binding activity of NP and the P-T111A mutant was stronger than that of NP and the wild-type P, suggesting that P-T111 is involved in NP-P interaction. This study sheds light on the mechanism by which P protein phosphorylation affects NDV replication and transcription.

  13. Light-Induced Phosphorylation of Crystallins in the Retinal Pigment Epithelium (United States)

    Lee, Hyunju; Chung, Hyewon; Lee, Sung Haeng; Jahng, Wan Jin


    Protein phosphorylations have essential regulatory roles in visual signaling. Previously, we found that phosphorylation of several proteins in the retina and the retinal pigment epithelium (RPE) is involved in anti-apoptotic signaling under oxidative stress conditions, including light exposure. In this study, we used a phosphoprotein enrichment strategy to evaluate the light-induced phosphoproteome of primary bovine RPE cells. Phosphoprotein-enriched extracts from bovine RPE cells exposed to light or dark conditions for 1 hour were separated by 2D SDS-PAGE. Serine and tyrosine phosphorylation were visualized by 2D phospho western blotting and specific phosphorylation sites were analyzed by tandem mass spectrometry. Light induced a marked increase in tyrosine phosphorylation of beta crystallin A3 and A4. The most abundant light-induced up-regulated phosphoproteins were crystallins of 15–25-kDa, including beta crystallin S and zeta crystallin. Phosphorylation of beta crystallin suggests an anti-apoptotic chaperone function in the RPE. Other chaperones, cytoskeletal proteins, and proteins involved in energy balance were expressed at higher levels in the dark. A detailed analysis of RPE phosphoproteins provides a molecular basis for understanding light-induced signal transduction and anti-apoptosis mechanisms. Our data indicates that phosphorylation of crystallins likely represents an important mechanism for RPE shielding from physiological and pathophysiological light-induced oxidative injury. PMID:21094180

  14. Obesity does not Lead to Imbalance Between Myocardial Phospholamban Phosphorylation and Dephosphorylation

    Directory of Open Access Journals (Sweden)

    Paula Paccielli Freire


    Full Text Available Background: The activation of the beta-adrenergic system promotes G protein stimulation that, via cyclic adenosine monophosphate (cAMP, alters the structure of protein kinase A (PKA and leads to phospholamban (PLB phosphorylation. This protein participates in the system that controls intracellular calcium in muscle cells, and it is the primary regulator of sarcoplasmic reticulum calcium pump activity. In obesity, the beta-adrenergic system is activated by the influence of increased leptin, therefore, resulting in higher myocardial phospholamban phosphorylation via cAMP-PKA. Objective: To investigate the involvement of proteins which regulate the degree of PLB phosphorylation due to beta-adrenergic activation in obesity. In the present study, we hypothesized that there is an imbalance between phospholamban phosphorylation and dephosphorylation, with prevalence of protein phosphorylation. Methods: Male Wistar rats were randomly distributed into two groups: control (n = 14, fed with normocaloric diet; and obese (n = 13, fed with a cycle of four unsaturated high-fat diets. Obesity was determined by the adiposity index, and protein expressions of phosphatase 1 (PP-1, PKA, PLB, phosphorylated phospholamban at serine16 (PPLB-Ser16 were assessed by Western blot. Results: Obesity caused glucose intolerance, hyperinsulinemia, hypertriglyceridemia, hyperleptinemia and did not alter the protein expression of PKA, PP-1, PLB, PPLB-Ser16. Conclusion: Obesity does not promote an imbalance between myocardial PLB phosphorylation and dephosphorylation via beta-adrenergic system.

  15. Mitotic-dependent phosphorylation of leukemia-associated RhoGEF (LARG) by Cdk1. (United States)

    Helms, Michelle C; Grabocka, Elda; Martz, Matthew K; Fischer, Christopher C; Suzuki, Nobuchika; Wedegaertner, Philip B


    Rho GTPases are integral to the regulation of actin cytoskeleton-dependent processes, including mitosis. Rho and leukemia-associated Rho guanine-nucleotide exchange factor (LARG), also known as ARHGEF12, are involved in mitosis as well as diseases such as cancer and heart disease. Since LARG has a role in mitosis and diverse signaling functions beyond mitosis, it is important to understand the regulation of the protein through modifications such as phosphorylation. Here we report that LARG undergoes a mitotic-dependent and cyclin-dependent kinase 1 (Cdk1) inhibitor-sensitive phosphorylation. Additionally, LARG is phosphorylated at the onset of mitosis and dephosphorylated as cells exit mitosis, concomitant with Cdk1 activity. Furthermore, using an in vitro kinase assay, we show that LARG can be directly phosphorylated by Cdk1. Through expression of phosphonull mutants that contain non-phosphorylatable alanine mutations at potential Cdk1 S/TP sites, we demonstrate that LARG phosphorylation occurs in both termini. Using phosphospecific antibodies, we confirm that two sites, serine 190 and serine 1176, are phosphorylated during mitosis in a Cdk1-dependent manner. In addition, these phosphospecific antibodies show phosphorylated LARG at specific mitotic locations, namely the mitotic organizing centers and flanking the midbody. Lastly, RhoA activity assays reveal that phosphonull LARG is more active in cells than phosphomimetic LARG. Our data thus identifies LARG as a phosphoregulated RhoGEF during mitosis.

  16. In vivo phosphorylation dynamics of the Bordetella pertussis virulence-controlling response regulator BvgA. (United States)

    Boulanger, Alice; Chen, Qing; Hinton, Deborah M; Stibitz, Scott


    We have used protein electrophoresis through polyacrylamide gels derivatized with the proprietary ligand Phos-tag™ to separate the response regulator BvgA from its phosphorylated counterpart BvgA∼P. This approach has allowed us to readily ascertain the degree of phosphorylation of BvgA in in vitro reactions, or in crude lysates of Bordetella pertussis grown under varying laboratory conditions. We have used this technique to examine the kinetics of BvgA phosphorylation after shift of B. pertussis cultures from non-permissive to permissive conditions, or of its dephosphorylation following a shift from permissive to non-permissive conditions. Our results provide the first direct evidence that levels of BvgA∼P in vivo correspond temporally to the expression of early and late BvgA-regulated virulence genes. We have also examined a number of other aspects of BvgA function predicted from previous studies and by analogy with other two-component response regulators. These include the site of BvgA phosphorylation, the exclusive role of the cognate BvgS sensor kinase in its phosphorylation in Bordetella pertussis, and the effect of the T194M mutation on phosphorylation. We also detected the phosphorylation of a small but consistent fraction of BvgA purified after expression in Escherichia coli.

  17. Akt-dependent Girdin phosphorylation regulates repair processes after acute myocardial infarction. (United States)

    Hayano, Shinji; Takefuji, Mikito; Maeda, Kengo; Noda, Tomonori; Ichimiya, Hitoshi; Kobayashi, Koichi; Enomoto, Atsushi; Asai, Naoya; Takahashi, Masahide; Murohara, Toyoaki


    Myocardial infarction is a leading cause of death, and cardiac rupture following myocardial infarction leads to extremely poor prognostic feature. A large body of evidence suggests that Akt is involved in several cardiac diseases. We previously reported that Akt-mediated Girdin phosphorylation is essential for angiogenesis and neointima formation. The role of Girdin expression and phosphorylation in myocardial infarction, however, is not understood. Therefore, we employed Girdin-deficient mice and Girdin S1416A knock-in (Girdin(SA/SA)) mice, replacing the Akt phosphorylation site with alanine, to address this question. We found that Girdin was expressed and phosphorylated in cardiac fibroblasts in vitro and that its phosphorylation was crucial for the proliferation and migration of cardiac fibroblasts. In vivo, Girdin was localized in non-cardiomyocyte interstitial cells and phosphorylated in α-smooth muscle actin-positive cells, which are likely to be cardiac myofibroblasts. In an acute myocardial infarction model, Girdin(SA/SA) suppressed the accumulation and proliferation of cardiac myofibroblasts in the infarcted area. Furthermore, lower collagen deposition in Girdin(SA/SA) mice impaired cardiac repair and resulted in increased mortality attributed to cardiac rupture. These findings suggest an important role of Girdin phosphorylation at serine 1416 in cardiac repair after acute myocardial infarction and provide insights into the complex mechanism of cardiac rupture through the Akt/Girdin-mediated regulation of cardiac myofibroblasts.

  18. CK2 phosphorylates Sec31 and regulates ER-To-Golgi trafficking.

    Directory of Open Access Journals (Sweden)

    Mayuko Koreishi

    Full Text Available Protein export from the endoplasmic reticulum (ER is an initial and rate-limiting step of molecular trafficking and secretion. This is mediated by coat protein II (COPII-coated vesicles, whose formation requires small GTPase Sar1 and 6 Sec proteins including Sec23 and Sec31. Sec31 is a component of the outer layer of COPII coat and has been identified as a phosphoprotein. The initiation and promotion of COPII vesicle formation is regulated by Sar1; however, the mechanism regulating the completion of COPII vesicle formation followed by vesicle release is largely unknown. Hypothesizing that the Sec31 phosphorylation may be such a mechanism, we identified phosphorylation sites in the middle linker region of Sec31. Sec31 phosphorylation appeared to decrease its association with ER membranes and Sec23. Non-phosphorylatable mutant of Sec31 stayed longer at ER exit sites and bound more strongly to Sec23. We also found that CK2 is one of the kinases responsible for Sec31 phosphorylation because CK2 knockdown decreased Sec31 phosphorylation, whereas CK2 overexpression increased Sec31 phosphorylation. Furthermore, CK2 knockdown increased affinity of Sec31 for Sec23 and inhibited ER-to-Golgi trafficking. These results suggest that Sec31 phosphorylation by CK2 controls the duration of COPII vesicle formation, which regulates ER-to-Golgi trafficking.

  19. Disease Mutations in the Ryanodine Receptor Central Region: Crystal Structures of a Phosphorylation Hot Spot Domain

    Energy Technology Data Exchange (ETDEWEB)

    Yuchi, Zhiguang; Lau, Kelvin; Van Petegem, Filip (UBC)


    Ryanodine Receptors (RyRs) are huge Ca{sup 2+} release channels in the endoplasmic reticulum membrane and form targets for phosphorylation and disease mutations. We present crystal structures of a domain in three RyR isoforms, containing the Ser2843 (RyR1) and Ser2808/Ser2814 (RyR2) phosphorylation sites. The RyR1 domain is the target for 11 disease mutations. Several of these are clustered near the phosphorylation sites, suggesting that phosphorylation and disease mutations may affect the same interface. The L2867G mutation causes a drastic thermal destabilization and aggregation at room temperature. Crystal structures for other disease mutants show that they affect surface properties and intradomain salt bridges. In vitro phosphorylation experiments show that up to five residues in one long loop of RyR2 can be phosphorylated by PKA or CaMKII. Docking into cryo-electron microscopy maps suggests a putative location in the clamp region, implying that mutations and phosphorylation may affect the allosteric motions within this area.

  20. PKCθ-Mediated PDK1 Phosphorylation Enhances T Cell Activation by Increasing PDK1 Stability (United States)

    Kang, Jung-Ah; Choi, Hyunwoo; Yang, Taewoo; Cho, Steve K.; Park, Zee-Yong; Park, Sung-Gyoo


    PDK1 is essential for T cell receptor (TCR)-mediated activation of NF-κB, and PDK1-induced phosphorylation of PKCθ is important for TCR-induced NF-κB activation. However, inverse regulation of PDK1 by PKCθ during T cell activation has not been investigated. In this study, we found that PKCθ is involved in human PDK1 phosphorylation and that its kinase activity is crucial for human PDK1 phosphorylation. Mass spectrometry analysis of wild-type PKCθ or of kinase-inactive form of PKCθ revealed that PKCθ induced phosphorylation of human PDK1 at Ser-64. This PKCθ-induced PDK1 phosphorylation positively regulated T cell activation and TCR-induced NF-κB activation. Moreover, phosphorylation of human PDK1 at Ser-64 increased the stability of human PDK1 protein. These results suggest that Ser-64 is an important phosphorylation site that is part of a positive feedback loop for human PDK1-PKCθ-mediated T cell activation. PMID:28152304

  1. Synaptic activation of ribosomal protein S6 phosphorylation occurs locally in activated dendritic domains. (United States)

    Pirbhoy, Patricia Salgado; Farris, Shannon; Steward, Oswald


    Previous studies have shown that induction of long-term potentiation (LTP) induces phosphorylation of ribosomal protein S6 (rpS6) in postsynaptic neurons, but the functional significance of rpS6 phosphorylation is poorly understood. Here, we show that synaptic stimulation that induces perforant path LTP triggers phosphorylation of rpS6 (p-rpS6) locally near active synapses. Using antibodies specific for phosphorylation at different sites (ser235/236 versus ser240/244), we show that strong synaptic activation led to dramatic increases in immunostaining throughout postsynaptic neurons with selectively higher staining for p-ser235/236 in the activated dendritic lamina. Following LTP induction, phosphorylation at ser235/236 was detectable by 5 min, peaked at 30 min, and was maintained for hours. Phosphorylation at both sites was completely blocked by local infusion of the NMDA receptor antagonist, APV. Despite robust induction of p-rpS6 following high frequency stimulation, assessment of protein synthesis by autoradiography revealed no detectable increases. Exploration of a novel environment led to increases in the number of p-rpS6-positive neurons throughout the forebrain in a pattern reminiscent of immediate early gene induction and many individual neurons that were p-rpS6-positive coexpressed Arc protein. Our results constrain hypotheses about the possible role of rpS6 phosphorylation in regulating postsynaptic protein synthesis during induction of synaptic plasticity.

  2. Deferoxamine inhibits iron induced hippocampal tau phosphorylation in the Alzheimer transgenic mouse brain. (United States)

    Guo, Chuang; Wang, Pu; Zhong, Man-Li; Wang, Tao; Huang, Xue-Shi; Li, Jia-Yi; Wang, Zhan-You


    Prior work has shown that iron interacts with hyperphosphorylated tau, which contributes to the formation of neurofibrillary tangles (NFTs) in Alzheimer's disease (AD), whereas iron chelator desferrioxamine (DFO) slows down the clinical progression of the cognitive decline associated with this disease. However, the effects of DFO on tau phosphorylation in the presence or absence of iron have yet to be determined. Using amyloid precursor protein (APP) and presenilin 1 (PS1) double transgenic mouse brain as a model system, we investigated the effects and potential mechanisms of intranasal administration of DFO on iron induced abnormal tau phosphorylation. High-dose iron treatment markedly increased the levels of tau phosphorylation at the sites of Thr205, Thr231 and Ser396, whereas highly induced tau phosphorylation was abolished by intranasal administration of DFO in APP/PS1 transgenic mice. Moreover, DFO intranasal administration also decreases Fe-induced the activities of cyclin-dependent kinase 5 (CDK5) and glycogen synthase kinase 3β (GSK3β), which in turn suppressing tau phosphorylation. Cumulatively, our data show that intranasal DFO treatment exerts its suppressive effects on iron induced tau phosphorylation via CDK5 and GSK3β pathways. More importantly, elucidation of DFO mechanism in suppressing tau phosphorylation may provide insights for developing therapeutic strategies to combat AD.

  3. PPARy phosphorylation mediated by JNK MAPK: a potential role in macrophage-derived foam cell formation

    Institute of Scientific and Technical Information of China (English)

    Ran YIN; Yu-gang DONG; Hong-lang LI


    Aim: To investigate whether oxidized low-density lipoprotein (ox-LDL) modulates peroxisome proliferator-activated receptor γ (PPARγ) activity through phosphorylation in macrophages, and the effect of PPARy phosphorylation on macrophages-derived foam cell formation. Methods: After exposing the cultured THP-1 cells to ox-LDL in the presence or absence of different mitogen-activated protein kinase (MAPK) inhibitors, PPARγ and phosphorylated PPARγ protein levels were detected by Western blot. MAPK activity was analyzed using MAP Kinase Assay Kit. Intracellular cholesterol accumulation was assessed by Oil red O staining and cholesterol oxidase enzymatic method. The Mrna level of PPARγ target gene was determined by reverse transcription-polymerase chain reaction (RT-PCR). Results: ox-LDL evaluated PPARγ phosphorylation status and subsequently decreased PPARγ target gene expression in a dose-dependent manner. Ox-LDL also induced MAPK activation. Treatment of THP-1 cells with c-Jun N-terminal kinase-, but not p38- or extracellular signal-regulated kinase-MAPK inhibitor, significantly suppressed PPARγ phosphorylation induced by ox-LDL, which in turn inhibited foam cell formation. Conclusion: In addition to its ligand-dependent activation, ox-LDL modulates PPARγ activity through phosphorylation, which is mediated by MAPK activation. PPARγ phosphorylation mediated by MAPK facilitates foam cell formation from macrophages exposed to ox-LDL.

  4. Tyrosine Phosphorylation of Tau by the Src Family Kinases Lck and Fyn

    Directory of Open Access Journals (Sweden)

    Bird Ian N


    Full Text Available Abstract Background Tau protein is the principal component of the neurofibrillary tangles found in Alzheimer's disease, where it is hyperphosphorylated on serine and threonine residues, and recently phosphotyrosine has been demonstrated. The Src-family kinase Fyn has been linked circumstantially to the pathology of Alzheimer's disease, and shown to phosphorylate Tyr18. Recently another Src-family kinase, Lck, has been identified as a genetic risk factor for this disease. Results In this study we show that Lck is a tau kinase. In vitro, comparison of Lck and Fyn showed that while both kinases phosphorylated Tyr18 preferentially, Lck phosphorylated other tyrosines somewhat better than Fyn. In co-transfected COS-7 cells, mutating any one of the five tyrosines in tau to phenylalanine reduced the apparent level of tau tyrosine phosphorylation to 25-40% of that given by wild-type tau. Consistent with this, tau mutants with only one remaining tyrosine gave poor phosphorylation; however, Tyr18 was phosphorylated better than the others. Conclusions Fyn and Lck have subtle differences in their properties as tau kinases, and the phosphorylation of tau is one mechanism by which the genetic risk associated with Lck might be expressed pathogenically.

  5. Antibody Array Revealed PRL-3 Affects Protein Phosphorylation and Cytokine Secretion. (United States)

    Yang, Yongyong; Lian, Shenyi; Meng, Lin; Qu, Like; Shou, Chengchao


    Phosphatase of regenerating liver 3 (PRL-3) promotes cancer metastasis and progression via increasing cell motility and invasiveness, however the mechanism is still not fully understood. Previous reports showed that PRL-3 increases the phosphorylation of many important proteins and suspected that PRL-3-enhanced protein phosphorylation may be due to its regulation on cytokines. To investigate PRL-3's impact on protein phosphorylation and cytokine secretion, we performed antibody arrays against protein phosphorylation and cytokines separately. The data showed that PRL-3 could enhance tyrosine phosphorylation and serine/threonine phosphorylation of diverse signaling proteins. Meanwhile, PRL-3 could affect the secretion of a subset of cytokines. Furthermore, we discovered the PRL-3-increased IL-1α secretion was regulated by NF-κB and Jak2-Stat3 pathways and inhibiting IL-1α could reduce PRL-3-enhanced cell migration. Therefore, our result indicated that PRL-3 promotes protein phosphorylation by acting as an 'activator kinase' and consequently regulates cytokine secretion.

  6. Serine phosphorylation of CAPA pyrokinin in cockroaches-a taxon-specific posttranslational modification. (United States)

    Sturm, Sebastian; Predel, Reinhard


    In insects, posttranslational modifications of neuropeptides are largely restricted to C- and N-terminal amino acids. The most common modifications, N-terminal pyroglutamate formation and C-terminal α-amidation, may prevent a fast degradation of these messenger molecules. This is particularly important for peptide hormones. Other common posttranslational modifications of proteins such as glycosylation and phosphorylation seem to be very rare in insect neuropeptides. To check this assumption, we used a computer algorithm to search an extensive data set of MALDI-TOF mass spectra from cockroach tissues for ion signal patterns indicating peptide phosphorylation. The results verify that phosphorylation is indeed very rare. However, a candidate was found and experimentally verified as phosphorylated CAPA pyrokinin (GGGGpSGETSGMWFGPRL-NH2) in the cockroach Lamproblatta albipalpus (Blattidae, Lamproblattinae). Tandem mass spectrometry revealed the phosphorylation site as Ser(5). Phosphorylated CAPA pyrokinin was then also detected in most other cockroach lineages (e.g. Blaberidae, Polyphagidae) but not in closely related blattid species such as Periplaneta americana. This is remarkable since the sequence of CAPA pyrokinin is identical in Lamproblatta and Periplaneta. A consensus sequence of CAPA pyrokinins of cockroaches revealed a conserved motif that suggests phosphorylation by a Four-jointed/FAM20C related kinase.

  7. Cardiac mitochondria in heart failure: normal cardiolipin profile and increased threonine phosphorylation of complex IV. (United States)

    Rosca, Mariana; Minkler, Paul; Hoppel, Charles L


    Mitochondrial dysfunction is a major contributor in heart failure (HF). We investigated whether the decrease in respirasome organization reported by us previously in cardiac mitochondria in HF is due to changes in the phospholipids of the mitochondrial inner membrane or modifications of the subunits of the electron transport chain (ETC) complexes. The contents of the main phospholipid species, including cardiolipin, as well as the molecular species of cardiolipin were unchanged in cardiac mitochondria in HF. Oxidized cardiolipin molecular species were not observed. In heart mitochondria isolated from HF, complex IV not incorporated into respirasomes exhibits increased threonine phosphorylation. Since HF is associated with increased adrenergic drive to cardiomyocytes, this increased protein phosphorylation might be explained by the involvement of cAMP-activated protein kinase. Does the preservation of cAMP-induced phosphorylation changes of mitochondrial proteins or the addition of exogenous cAMP have similar effects on oxidative phosphorylation? The usage of phosphatase inhibitors revealed a specific decrease in complex I-supported respiration with glutamate. In saponin-permeabilized cardiac fibers, pre-incubation with cAMP decreases oxidative phosphorylation due to a defect localized at complex IV of the ETC inter alia. We propose that phosphorylation of specific complex IV subunits decreases oxidative phosphorylation either by limiting the incorporation of complex IV in supercomplexes or by decreasing supercomplex stability.

  8. Phosphorylation of human Sgo1 by NEK2A is essential for chromosome congression in mitosis

    Institute of Scientific and Technical Information of China (English)

    Guosheng Fu; Xia Ding; Kai Yuan; Felix Aikhionbare; Jianhui Yao; Xin Cai; Kai Jiang; Xuebiao Yao


    Chromosome segregation in mitosis is orchestrated by the interaction of the kinetochore with spindle microtubules. Our recent study shows that NEK2A interacts with MAD1 at the kinetochore and possibly functions as a novel integrator of spindle checkpoint signaling. However, it is unclear how NEK2 A regulates kinetochore-microtubule attachment in mitosis. Here we show that NEK2A phosphorylates human Sgol and such phosphorylation is essential for faithful chromosome congression in mitosis. NEK2A binds directly to HsSgol in vitro and co-distributes with HsSgol to the kinetochore of mitotic cells. Our in vitro phosphorylation experiment demonstrated that HsSgol is a substrate of NEK2A and the phosphorylation sites were mapped to Ser14 and Ser507 as judged by the incorporation of 32P. Although such phosphorylation is not required for assembly of HsSgol to the kinetochore, expression of non-phosphorylatable mutant HsSgol perturbed chromosome congression and resulted in a dramatic increase in microtubule attachment errors, including syntelic and monotelic attachments. These findings reveal a key role for the NEK2A-mediated phosphorylation of HsSgol in orchestrating dynamic kinetochore-microtubule interaction. We propose that NEK2A-mediated phosphorylation of human Sgol provides a link between centromeric cohesion and spindle microtubule attachment at the kinetochores.

  9. N-Terminus of the Protein Kinase CLK1 Induces SR Protein Hyper-Phosphorylation (United States)

    Aubol, Brandon E.; Plocinik, Ryan M.; Keshwani, Malik M.; McGlone, Maria L.; Hagopian, Jonathan C.; Ghosh, Gourisankar; Fu, Xiang-Dong; Adams, Joseph A.


    SR proteins are essential splicing factors that are regulated through multisite phosphorylation of their RS (arginine-serine-rich) domains by two major families of protein kinases. The SRPKs efficiently phosphorylate the arginine-serine dipeptides in the RS domain using a conserved docking groove in the kinase domain. In contrast, CLKs lack a docking groove and phosphorylate both arginine-serine and serine-proline dipeptides, modifications that generate a hyper-phosphorylated state important for unique SR protein-dependent splicing activities. All CLKs contain long, flexible N-terminal extensions (140-300 residues) that resemble the RS domains present in their substrate SR proteins. We showed that the N-terminus in CLK1 contacts both the kinase domain and the RS domain of the SR protein SRSF1. This interaction not only is essential for facilitating hyper-phosphorylation but also induces cooperative binding of SRSF1 to RNA. The N-terminus of CLK1 enhances the total phosphoryl contents of a panel of physiological substrates including SRSF1, SRSF2, SRSF5 and Tra2β1 by 2–3-fold. These findings suggest that CLK1-dependent hyper-phosphorylation is the result of a general mechanism in which the N-terminus acts as a bridge connecting the kinase domain and the RS domain of the SR protein. PMID:24869919

  10. Quantitation of changes in protein phosphorylation: A simple method based on stable isotope labeling and mass spectrometry


    Bonenfant, Débora; Schmelzle, Tobias; Jacinto, Estela; Crespo, José L; Mini, Thierry; Hall, Michael N.; Jenoe, Paul


    Reversible protein phosphorylation plays an important role in many cellular processes. However, a simple and reliable method to measure changes in the extent of phosphorylation is lacking. Here, we present a method to quantitate the changes in phosphorylation occurring in a protein in response to a stimulus. The method consists of three steps: (i) enzymatic digestion in H216O or isotopically enriched H218O to label individual pools of differentially phosphorylated proteins; (ii) affinity sele...

  11. A general strategy for studying multi-site protein phosphorylation using label-free selected reaction monitoring mass spectrometry1



    The majority of eukaryotic proteins are phosphorylated in vivo and phosphorylation may be the most common regulatory post-translational modification. Many proteins are phosphorylated at numerous sites, often by multiple kinases, which may have different functional consequences. Understanding biological functions of phosphorylation events requires methods to detect and quantify individual sites within a substrate. Here we outline a general strategy that addresses this need and relies on the hi...

  12. TNNI3K is a novel mediator of myofilament function and phosphorylates cardiac troponin I

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui; Wang, Lin; Song, Li; Zhang, Yan-Wan; Ye, Jue; Xu, Rui-Xia; Shi, Na; Meng, Xian-Min [Core Laboratory, Fu Wai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China)


    The phosphorylation of cardiac troponin I (cTnI) plays an important role in the contractile dysfunction associated with heart failure. Human cardiac troponin I-interacting kinase (TNNI3K) is a novel cardiac-specific functional kinase that can bind to cTnI in a yeast two-hybrid screen. The purpose of this study was to investigate whether TNNI3K can phosphorylate cTnI at specific sites and to examine whether the phosphorylation of cTnI caused by TNNI3K can regulate cardiac myofilament contractile function. Co-immunoprecipitation was performed to confirm that TNNI3K could interact with cTnI. Kinase assays further indicated that TNNI3K did not phosphorylate cTnI at Ser23/24 and Ser44, but directly phosphorylated Ser43 and Thr143 in vitro. The results obtained for adult rat cardiomyocytes also indicated that enhanced phosphorylation of cTnI at Ser43 and Thr143 correlated with rTNNI3K (rat TNNI3K) overexpression, and phosphorylation was reduced when rTNNI3K was knocked down. To determine the contractile function modulated by TNNI3K-mediated phosphorylation of cTnI, cardiomyocyte contraction was studied in adult rat ventricular myocytes. The contraction of cardiomyocytes increased with rTNNI3K overexpression and decreased with rTNNI3K knockdown. We conclude that TNNI3K may be a novel mediator of cTnI phosphorylation and contribute to the regulation of cardiac myofilament contraction function.

  13. EBP50 inhibits EGF-induced breast cancer cell proliferation by blocking EGFR phosphorylation. (United States)

    Yao, Wenfang; Feng, Duiping; Bian, Weihua; Yang, Longyan; Li, Yang; Yang, Zhiyu; Xiong, Ying; Zheng, Junfang; Zhai, Renyou; He, Junqi


    Ezrin-radixin-moesin-binding phosphoprotein-50 (EBP50) suppresses breast cancer cell proliferation, potentially through its regulatory effect on epidermal growth factor receptor (EGFR) signaling, although the mechanism by which this occurs remains unknown. Thus in our studies, we aimed to determine the effect of EBP50 expression on EGF-induced cell proliferation and activation of EGFR signaling in the breast cancer cell lines, MDA-MB-231 and MCF-7. In MDA-MB-231 cells, which express low levels of EBP50, EBP50 overexpression inhibited EGF-induced cell proliferation, ERK1/2 and AKT phosphorylation. In MCF-7 cells, which express high levels of EBP50, EBP50 knockdown promoted EGF-induced cell proliferation, ERK1/2 and AKT phosphorylation. Knockdown of EBP50 in EBP50-overexpressed MDA-MB-231 cells abrogated the inhibitory effect of EBP50 on EGF-stimulated ERK1/2 phosphorylation and restoration of EBP50 expression in EBP50-knockdown MCF-7 cells rescued the inhibition of EBP50 on EGF-stimulated ERK1/2 phosphorylation, further confirming that the activation of EGF-induced downstream molecules could be specifically inhibited by EBP50 expression. Since EGFR signaling was triggered by EGF ligands via EGFR phosphorylation, we further detected the phosphorylation status of EGFR in the presence or absence of EBP50 expression. Overexpression of EBP50 in MDA-MB-231 cells inhibited EGF-stimulated EGFR phosphorylation, whereas knockdown of EBP50 in MCF-7 cells enhanced EGF-stimulated EGFR phosphorylation. Meanwhile, total expression levels of EGFR were unaffected during EGF stimulation. Taken together, our data shows that EBP50 can suppress EGF-induced proliferation of breast cancer cells by inhibiting EGFR phosphorylation and blocking EGFR downstream signaling in breast cancer cells. These results provide further insight into the molecular mechanism by which EBP50 regulates the development and progression of breast cancer.

  14. LHC II protein phosphorylation in leaves of Arabidopsis thaliana mutants deficient in non-photochemical quenching. (United States)

    Breitholtz, Hanna-Leena; Srivastava, Renu; Tyystjärvi, Esa; Rintamäki, Eevi


    Phosphorylation of the light-harvesting chlorophyll a/b complex II (LHC II) proteins is induced in light via activation of the LHC II kinase by reduction of cytochrome b(6)f complex in thylakoid membranes. We have recently shown that, besides this activation, the LHC II kinase can be regulated in vitro by a thioredoxin-like component, and H2O2 that inserts an inhibitory loop in the regulation of LHC II protein phosphorylation in the chloroplast. In order to disclose the complex network for LHC II protein phosphorylation in vivo, we studied phosphorylation of LHC II proteins in the leaves of npq1-2 and npq4-1 mutants of Arabidopis thaliana. In comparison to wild-type, these mutants showed reduced non-photochemical quenching and increased excitation pressure of Photosystem II (PS II) under physiological light intensities. Peculiar regulation of LHC II protein phosphorylation was observed in mutant leaves under illumination. The npq4-1 mutant was able to maintain a high amount of phosphorylated LHC II proteins in thylakoid membranes at light intensities that induced inhibition of phosphorylation in wild-type leaves. Light intensity-dependent changes in the level of LHC II protein phosphorylation were smaller in the npq1-2 mutant compared to the wild-type. No significant differences in leaf thickness, dry weight, chlorophyll content, or the amount of LHC II proteins were observed between the two mutant and wild-type lines. We propose that the reduced capacity of the mutant lines to dissipate excess excitation energy induces changes in the production of reactive oxygen species in chloroplasts, which consequently affects the regulation of LHC II protein phosphorylation.

  15. Histone H3 phosphorylation in the rat pineal gland: adrenergic regulation and diurnal variation. (United States)

    Chik, C L; Arnason, T G; Dukewich, W G; Price, D M; Ranger, A; Ho, A K


    In this study, we investigated phosphorylation of Ser10 in histone H3 by norepinephrine (NE) in the rat pineal gland. In whole-animal studies, we demonstrated a marked increase in histone H3 phosphorylation in the rat pineal gland during the first half of the dark period. Exposure to light during this period caused a rapid decline in histone H3 phosphorylation with an estimated t1/2 of less than 15 min, indicating a high level of dephosphorylation activity. Corresponding studies in cultured pineal cells revealed that treatment with NE produced an increase in histone H3 phosphorylation that peaked between 2 and 3 h and declined rapidly by 4 h. The NE-induced histone H3 phosphorylation was blocked by cotreatment with propranolol or KT5720, a protein kinase A inhibitor, but not by prazosin or other kinase inhibitors. Moreover, only treatment with dibutyryl cAMP but not other kinase activators mimicked the effect of NE on histone H3 phosphorylation. The NE-stimulated H3 phosphorylation was markedly increased by cotreatment with a serine/threonine phosphatase inhibitor, tautomycin or okadaic acid, supporting a high level of ongoing histone H3 dephosphorylation activity. Together, our results indicate that histone H3 phosphorylation is a naturally occurring event at night in the rat pineal gland that is driven almost exclusively by a NE-->beta-adrenergic-->cAMP/protein kinase A signaling mechanism. This transient histone H3 phosphorylation probably reflects the nocturnal activation of multiple adrenergic-regulated genes in the rat pineal gland.

  16. The role of glucocorticoid receptor phosphorylation in Mcl-1 and NOXA gene expression

    Directory of Open Access Journals (Sweden)

    Demonacos Constantinos


    Full Text Available Abstract Background The cyclin-dependent kinase (CDK and mitogen-activated protein kinase (MAPK mediated phosphorylation of glucocorticoid receptor (GR exerts opposite effects on GR transcriptional activity and affects other posttranslational modifications within this protein. The major phosphorylation site of human GR targeted by MAPK family is the serine 226 and multiple kinase complexes phosphorylate receptor at the serine 211 residue. We hypothesize that GR posttranslational modifications are involved in the determination of the cellular fate in human lymphoblastic leukemia cells. We investigated whether UV signalling through alternative GR phosphorylation determined the cell type specificity of glucocorticoids (GCs mediated apoptosis. Results We have identified putative Glucocorticoid Response Elements (GREs within the promoter regulatory regions of the Bcl-2 family members NOXA and Mcl-1 indicating that they are direct GR transcriptional targets. These genes were differentially regulated in CEM-C7-14, CEM-C1-15 and A549 cells by glucocorticoids and JNK pathway. In addition, our results revealed that the S211 phosphorylation was dominant in CEM-C7-14, whereas the opposite was the case in CEM-C1-15 where prevalence of S226 GR phosphorylation was observed. Furthermore, multiple GR isoforms with cell line specific patterns were identified in CEM-C7-14 cells compared to CEM-C1-15 and A549 cell lines with the same antibodies. Conclusions GR phosphorylation status kinetics, and site specificity as well as isoform variability differ in CEM-C7-14, CEM-C1-15, and A549 cells. The positive or negative response to GCs induced apoptosis in these cell lines is a consequence of the variable equilibrium of NOXA and Mcl-1 gene expression potentially mediated by alternatively phosphorylated GR, as well as the balance of MAPK/CDK pathways controlling GR phosphorylation pattern. Our results provide molecular base and valuable knowledge for improving the GC

  17. In vitro phosphorylation and acetylation of the murine pocket protein Rb2/p130.

    Directory of Open Access Journals (Sweden)

    Muhammad Saeed

    Full Text Available The retinoblastoma protein (pRb and the related proteins Rb2/p130 and 107 represent the "pocket protein" family of cell cycle regulators. A key function of these proteins is the cell cycle dependent modulation of E2F-regulated genes. The biological activity of these proteins is controlled by acetylation and phosphorylation in a cell cycle dependent manner. In this study we attempted to investigate the interdependence of acetylation and phosphorylation of Rb2/p130 in vitro. After having identified the acetyltransferase p300 among several acetyltransferases to be associated with Rb2/p130 during S-phase in NIH3T3 cells in vivo, we used this enzyme and the CDK4 protein kinase for in vitro modification of a variety of full length Rb2/p130 and truncated versions with mutations in the acetylatable lysine residues 1079, 128 and 130. Mutation of these residues results in the complete loss of Rb2/p130 acetylation. Replacement of lysines by arginines strongly inhibits phosphorylation of Rb2/p130 by CDK4; the inhibitory effect of replacement by glutamines is less pronounced. Preacetylation of Rb2/p130 strongly enhances CDK4-catalyzed phosphorylation, whereas deacetylation completely abolishes in vitro phosphorylation. In contrast, phosphorylation completely inhibits acetylation of Rb2/p130 by p300. These results suggest a mutual interdependence of modifications in a way that acetylation primes Rb2/p130 for phosphorylation and only dephosphorylated Rb2/p130 can be subject to acetylation. Human papillomavirus 16-E7 protein, which increases acetylation of Rb2/p130 by p300 strongly reduces phosphorylation of this protein by CDK4. This suggests that the balance between phosphorylation and acetylation of Rb2/p130 is essential for its biological function in cell cycle control.

  18. Haemophilus ducreyi LspA proteins are tyrosine phosphorylated by macrophage-encoded protein tyrosine kinases. (United States)

    Deng, Kaiping; Mock, Jason R; Greenberg, Steven; van Oers, Nicolai S C; Hansen, Eric J


    The LspA proteins (LspA1 and LspA2) of Haemophilus ducreyi are necessary for this pathogen to inhibit the phagocytic activity of macrophage cell lines, an event that can be correlated with a reduction in the level of active Src family protein tyrosine kinases (PTKs) in these eukaryotic cells. During studies investigating this inhibitory mechanism, it was discovered that the LspA proteins themselves were tyrosine phosphorylated after wild-type H. ducreyi cells were incubated with macrophages. LspA proteins in cell-free concentrated H. ducreyi culture supernatant fluid could also be tyrosine phosphorylated by macrophages. This ability to tyrosine phosphorylate the LspA proteins was not limited to immune cell lineages but could be accomplished by both HeLa and COS-7 cells. Kinase inhibitor studies with macrophages demonstrated that the Src family PTKs were required for this tyrosine phosphorylation activity. In silico methods and site-directed mutagenesis were used to identify EPIYG and EPVYA motifs in LspA1 that contained tyrosines that were targets for phosphorylation. A total of four tyrosines could be phosphorylated in LspA1, with LspA2 containing eight predicted tyrosine phosphorylation motifs. Purified LspA1 fusion proteins containing either the EPIYG or EPVYA motifs were shown to be phosphorylated by purified Src PTK in vitro. Macrophage lysates could also tyrosine phosphorylate the LspA proteins and an LspA1 fusion protein via a mechanism that was dependent on the presence of both divalent cations and ATP. Several motifs known to interact with or otherwise affect eukaryotic kinases were identified in the LspA proteins.

  19. Pro-Tumorigenic Phosphorylation of p120 Catenin in Renal and Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Antonis Kourtidis

    Full Text Available Altered protein expression and phosphorylation are common events during malignant transformation. These perturbations have been widely explored in the context of E-cadherin cell-cell adhesion complexes, which are central in the maintenance of the normal epithelial phenotype. A major component of these complexes is p120 catenin (p120, which binds and stabilizes E-cadherin to promote its adhesive and tumor suppressing function. However, p120 is also an essential mediator of pro-tumorigenic signals driven by oncogenes, such as Src, and can be phosphorylated at multiple sites. Although alterations in p120 expression have been extensively studied by immunohistochemistry (IHC in the context of tumor progression, little is known about the status and role of p120 phosphorylation in cancer. Here we show that tyrosine and threonine phosphorylation of p120 in two sites, Y228 and T916, is elevated in renal and breast tumor tissue samples. We also show that tyrosine phosphorylation of p120 at its N-terminus, including at the Y228 site is required for its pro-tumorigenic potential. In contrast, phosphorylation of p120 at T916 does not affect this p120 function. However, phosphorylation of p120 at T916 interferes with epitope recognition of the most commonly used p120 antibody, namely pp120. As a result, this antibody selectively underrepresents p120 levels in tumor tissues, where p120 is phosphorylated. Overall, our data support a role of p120 phosphorylation as a marker and mediator of tumor transformation. Importantly, they also argue that the level and localization of p120 in human cancer tissues immunostained with pp120 needs to be re-evaluated.

  20. Acute calcineurin inhibition with tacrolimus increases phosphorylated UT-A1. (United States)

    Ilori, Titilayo O; Wang, Yanhua; Blount, Mitsi A; Martin, Christopher F; Sands, Jeff M; Klein, Janet D


    UT-A1, the urea transporter present in the apical membrane of the inner medullary collecting duct, is crucial to the kidney's ability to concentrate urine. Phosphorylation of UT-A1 on serines 486 and 499 is important for plasma membrane trafficking. The effect of calcineurin on dephosphorylation of UT-A1 was investigated. Inner medullary collecting ducts from Sprague-Dawley rats were metabolically labeled and treated with tacrolimus to inhibit calcineurin or calyculin to inhibit protein phosphatases 1 and 2A. UT-A1 was immunoprecipitated, electrophoresed, blotted, and total UT-A1 phosphorylation was assessed by autoradiography. Total UT-A1 was determined by Western blotting. A phospho-specific antibody to pser486-UT-A1 was used to determine whether serine 486 can be hyperphosphorylated by inhibiting phosphatases. Inhibition of calcineurin showed an increase in phosphorylation per unit protein at serine 486. In contrast, inhibition of phosphatases 1 and 2A resulted in an increase in UT-A1 phosphorylation but no increase in pser486-UT-A1. In vitro perfusion of inner medullary collecting ducts showed tacrolimus-stimulated urea permeability consistent with stimulated urea transport. The location of phosphorylated UT-A1 in rats treated acutely and chronically with tacrolimus was determined using immunohistochemistry. Inner medullary collecting ducts of the acutely treated rats showed increased apical membrane association of phosphorylated UT-A1 while chronic treatment reduced membrane association of phosphorylated UT-A1. We conclude that UT-A1 may be dephosphorylated by multiple phosphatases and that the PKA-phosphorylated serine 486 is dephosphorylated by calcineurin. This is the first documentation of the role of phosphatases and the specific site of phosphorylation of UT-A1, in response to tacrolimus.

  1. Coincident regulation of PKCdelta in human platelets by phosphorylation of Tyr311 and Tyr565 and phospholipase C signalling. (United States)

    Hall, Kellie J; Jones, Matthew L; Poole, Alastair W


    PKC (protein kinase C)d plays a complex role in platelets, having effects on both positive and negative signalling functions. It is phosphorylated on tyrosine residues in response to thrombin and collagen, and it has recently been shown that Tyr311 is phosphorylated in response to PAR (protease-activated receptor) 1 and PAR4 receptor activation. In the present study, we show that Tyr311 and Tyr565 are phosphorylated in response to thrombin, and have examined the interplay between phosphorylation and the classical lipid-mediated activation of PKCd. Phosphorylation of both Tyr311 and Tyr565 is dependent on Src kinase and PLC (phospholipase C) activity in response to thrombin. Importantly, direct allosteric activation of PKCd with PMA also induced phosphorylation of Tyr311 and Tyr565, and this was dependent on the activity of Src kinases, but not PLC. Membrane recruitment of PKCd is essential for phosphorylation of this tyrosine residue, but tyrosine phosphorylation is not required for membrane recruitment of PKCd. Both thrombin and PMA induce recruitment of PKCd to the membrane, and for thrombin, this recruitment is a PLC-dependent process. In order to address the functional role of tyrosine residue phosphorylation of PKCd, we demonstrate that phosphorylation can potentiate the activity of the kinase, although phosphorylation does not play a role in membrane recruitment of the kinase. PKCd is therefore regulated in a coincident fashion, PLC-dependent signals recruiting it to the plasma membrane and by phosphorylation on tyrosine residues, potentiating its activity.

  2. Proteomic investigation of phosphorylation sites in poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase. (United States)

    Gagné, Jean-Philippe; Moreel, Xavier; Gagné, Pierre; Labelle, Yves; Droit, Arnaud; Chevalier-Paré, Mélissa; Bourassa, Sylvie; McDonald, Darin; Hendzel, Michael J; Prigent, Claude; Poirier, Guy G


    Phosphorylation is a very common post-translational modification event known to modulate a wide range of biological responses. Beyond the regulation of protein activity, the interrelation of phosphorylation with other post-translational mechanisms is responsible for the control of diverse signaling pathways. Several observations suggest that phosphorylation of poly(ADP-ribose) polymerase-1 (PARP-1) regulates its activity. There is also accumulating evidence to suggest the establishment of phosphorylation-dependent assembly of PARP-1-associated multiprotein complexes. Although it is relatively straightforward to demonstrate phosphorylation of a defined target, identification of the actual amino acids involved still represents a technical challenge for many laboratories. With the use of a combination of bioinformatics-based predictions tools for generic and kinase-specific phosphorylation sites, in vitro phosphorylation assays and mass spectrometry analysis, we investigated the phosphorylation profile of PARP-1 and poly(ADP-ribose) glycohydrolase (PARG), two major enzymes responsible for poly(ADP-ribose) turnover. Mass spectrometry analysis revealed the phosphorylation of several serine/threonine residues within important regulatory domains and motifs of both enzymes. With the use of in vivo microirradiation-induced DNA damage, we show that altered phosphorylation at specific sites can modify the dynamics of assembly and disassembly of PARP-1 at sites of DNA damage. By documenting and annotating a collection of known and newly identified phosphorylation sites, this targeted proteomics study significantly advances our understanding of the roles of phosphorylation in the regulation of PARP-1 and PARG.

  3. Studies on the effect of phosphorylation on the dipeptides actions by radiation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Manwei; Wang Zhiyong; Chu Gaosheng; Zhang Zhicheng [Univ. of Science and Technology of China, Hefei (China)


    The electron transfer within several dipeptides and their corresponding phosphorylated dipeptides was studied by electron pulse radiolysis, laser photolysis and electron spin resonance. The electron transfer rate constants were calculated by data modeling and kinetic analysis. It is found that the phosphoryl group in peptides participates the electron transfer process, and reduces the electron transfer rate in all cases. These are very important in life science since every biological process refers to the phosphorylation and nonphosphorylation of protein. It may be concerned in personalities and individualities of the personae. (author)

  4. The eFIP system for text mining of protein interaction networks of phosphorylated proteins. (United States)

    Tudor, Catalina O; Arighi, Cecilia N; Wang, Qinghua; Wu, Cathy H; Vijay-Shanker, K


    Protein phosphorylation is a central regulatory mechanism in signal transduction involved in most biological processes. Phosphorylation of a protein may lead to activation or repression of its activity, alternative subcellular location and interaction with different binding partners. Extracting this type of information from scientific literature is critical for connecting phosphorylated proteins with kinases and interaction partners, along with their functional outcomes, for knowledge discovery from phosphorylation protein networks. We have developed the Extracting Functional Impact of Phosphorylation (eFIP) text mining system, which combines several natural language processing techniques to find relevant abstracts mentioning phosphorylation of a given protein together with indications of protein-protein interactions (PPIs) and potential evidences for impact of phosphorylation on the PPIs. eFIP integrates our previously developed tools, Extracting Gene Related ABstracts (eGRAB) for document retrieval and name disambiguation, Rule-based LIterature Mining System (RLIMS-P) for Protein Phosphorylation for extraction of phosphorylation information, a PPI module to detect PPIs involving phosphorylated proteins and an impact module for relation extraction. The text mining system has been integrated into the curation workflow of the Protein Ontology (PRO) to capture knowledge about phosphorylated proteins. The eFIP web interface accepts gene/protein names or identifiers, or PubMed identifiers as input, and displays results as a ranked list of abstracts with sentence evidence and summary table, which can be exported in a spreadsheet upon result validation. As a participant in the BioCreative-2012 Interactive Text Mining track, the performance of eFIP was evaluated on document retrieval (F-measures of 78-100%), sentence-level information extraction (F-measures of 70-80%) and document ranking (normalized discounted cumulative gain measures of 93-100% and mean average

  5. NetPhosBac - A predictor for Ser/Thr phosphorylation sites in bacterial proteins

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Soufi, Boumediene; Jers, Carsten;


    predictors on bacterial systems. We used these large bacterial datasets and neural network algorithms to create the first bacteria-specific protein phosphorylation predictor: NetPhosBac. With respect to predicting bacterial phosphorylation sites, NetPhosBac significantly outperformed all benchmark predictors....... Moreover, NetPhosBac predictions of phosphorylation sites in E. coli proteins were experimentally verified on protein and site-specific levels. In conclusion, NetPhosBac clearly illustrates the advantage of taxa-specific predictors and we hope it will provide a useful asset to the microbiological community....

  6. A Positive Feedback Loop between Akt and mTORC2 via SIN1 Phosphorylation


    Guang Yang; Danielle S. Murashige; Sean J. Humphrey; David E. James


    The mechanistic target of rapamycin complex 2 (mTORC2) regulates cell survival and cytoskeletal organization by phosphorylating its AGC kinase substrates; however, little is known about the regulation of mTORC2 itself. It was previously reported that Akt phosphorylates the mTORC2 subunit SIN1 at T86, activating mTORC2 through a positive feedback loop, though another study reported that S6K phosphorylates SIN1 at the same site, inhibiting mTORC2 activity. We performed extensive analysis of SIN...

  7. Characterization of intracellular regions in the human serotonin transporter for phosphorylation sites

    DEFF Research Database (Denmark)

    Sørensen, Lena; Strømgaard, Kristian; Kristensen, Anders S


    /dephosphorylation during transporter regulation by multiple pathways. In particular, activation and/or inhibition of kinases including PKC, PKG, p38MAPK, and CaMKII modulate SERT function and trafficking. The molecular mechanisms by which kinase activity is linked to SERT regulation are poorly understood, including...... the identity of specific phosphorylated residues. To elucidate SERT phosphorylation sites, we have generated peptides corresponding to the entire intracellular region of human SERT and performed in vitro phosphorylation assays with a panel of kinases suggested to be involved in SERT regulation or for which...

  8. Thermodynamic study of the native and phosphorylated regulatory domain of the CFTR

    Energy Technology Data Exchange (ETDEWEB)

    Marasini, Carlotta, E-mail: [Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini 6, 16149 Genova (Italy); Galeno, Lauretta; Moran, Oscar [Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini 6, 16149 Genova (Italy)


    Highlights: Black-Right-Pointing-Pointer CFTR mutations produce cystic fibrosis. Black-Right-Pointing-Pointer Chloride transport depends on the regulatory domain phosphorylation. Black-Right-Pointing-Pointer Regulatory domain is intrinsically disordered. Black-Right-Pointing-Pointer Secondary structure and protein stability change upon phosphorylation. -- Abstract: The regulatory domain (RD) of the cystic fibrosis transmembrane conductance regulator (CFTR), the defective protein in cystic fibrosis, is the region of the channel that regulates the CFTR activity with multiple phosphorylation sites. This domain is an intrinsically disordered protein, characterized by lack of stable or unique tertiary structure. The disordered character of a protein is directly correlated with its function. The flexibility of RD may be important for its regulatory role: the continuous conformational change may be necessary for the progressive phosphorylation, and thus activation, of the channel. However, the lack of a defined and stable structure results in a considerable limitation when trying to in build a unique molecular model for the RD. Moreover, several evidences indicate significant structural differences between the native, non-phosphorylated state, and the multiple phosphorylated state of the protein. The aim of our work is to provide data to describe the conformations and the thermodynamic properties in these two functional states of RD. We have done the circular dichroism (CD) spectra in samples with a different degree of phosphorylation, from the non-phosphorylated state to a bona fide completely phosphorylated state. Analysis of CD spectra showed that the random coil and {beta}-sheets secondary structure decreased with the polypeptide phosphorylation, at expenses of an increase of {alpha}-helix. This observation lead to interpret phosphorylation as a mechanism favoring a more structured state. We also studied the thermal denaturation curves of the protein in the two

  9. Synthesis and Characterization of a Novel Soluble Diethoxy Phosphoryl Chitosan%Synthesis and Characterization of a Novel Soluble Diethoxy Phosphoryl Chitosan

    Institute of Scientific and Technical Information of China (English)

    Ma, Li; Li, Kerang; Li, Limin; Liu, Pu


    A simple and efficient method for the preparation of a novel soluble chitosan derivative, diethoxy phosphoryl chitosan (PH-chitosan), has been developed. Ph-chitosan was characterized by elemental analysis, FT-IR, NMR, ICP, XRD, TG and SEM, respectively. The chemical identity of PH-chitosan was determined by FT-IR and confirmed by NMR, and those results unequivocally demonstrated that diethoxy phosphoryl groups were grafted onto the amino and hydroxyl groups of chitosan. The results of XRD indicated that the crystalline structure of chitosan was destroyed due to the incorporation of diethoxy phosphoryl group resulting in loss of hydrogen bond. The analysis of TG demonstrated that PH-chitosan was less thermal stable than chitosan. This simple synthetic method provided a new and available approach to prepare a soluble high molecule weight chitosan derivative.

  10. Is phosphorylated tau unique to chronic traumatic encephalopathy? Phosphorylated tau in epileptic brain and chronic traumatic encephalopathy. (United States)

    Puvenna, Vikram; Engeler, Madeline; Banjara, Manoj; Brennan, Chanda; Schreiber, Peter; Dadas, Aaron; Bahrami, Ashkon; Solanki, Jesal; Bandyopadhyay, Anasua; Morris, Jacqueline K; Bernick, Charles; Ghosh, Chaitali; Rapp, Edward; Bazarian, Jeffrey J; Janigro, Damir


    Repetitive traumatic brain injury (rTBI) is one of the major risk factors for the abnormal deposition of phosphorylated tau (PT) in the brain and chronic traumatic encephalopathy (CTE). CTE and temporal lobe epilepsy (TLE) affect the limbic system, but no comparative studies on PT distribution in TLE and CTE are available. It is also unclear whether PT pathology results from repeated head hits (rTBI). These gaps prevent a thorough understanding of the pathogenesis and clinical significance of PT, limiting our ability to develop preventative and therapeutic interventions. We quantified PT in TLE and CTE to unveil whether a history of rTBI is a prerequisite for PT accumulation in the brain. Six postmortem CTE (mean 73.3 years) and age matched control samples were compared to 19 surgically resected TLE brain specimens (4 months-58 years; mean 27.6 years). No history of TBI was present in TLE or control; all CTE patients had a history of rTBI. TLE and CTE brain displayed increased levels of PT as revealed by immunohistochemistry. No age-dependent changes were noted, as PT was present as early as 4 months after birth. In TLE and CTE, cortical neurons, perivascular regions around penetrating pial vessels and meninges were immunopositive for PT; white matter tracts also displayed robust expression of extracellular PT organized in bundles parallel to venules. Microscopically, there were extensive tau-immunoreactive neuronal, astrocytic and degenerating neurites throughout the brain. In CTE perivascular tangles were most prominent. Overall, significant differences in staining intensities were found between CTE and control (Pbrain contained low molecular weight tau. Tau deposition may not be specific to rTBI since TLE recapitulated most of the pathological features of CTE.

  11. Quantitation of multisite EGF receptor phosphorylation using mass spectrometry and a novel normalization approach

    DEFF Research Database (Denmark)

    Erba, Elisabetta Boeri; Matthiesen, Rune; Bunkenborg, Jakob


    Using stable isotope labeling and mass spectrometry, we performed a sensitive, quantitative analysis of multiple phosphorylation sites of the epidermal growth factor (EGF) receptor. Phosphopeptide detection efficiency was significantly improved by using the tyrosine phosphatase inhibitor sodium p...

  12. ROS-activated ATM-dependent phosphorylation of cytoplasmic substrates identified by large scale phosphoproteomics screen

    DEFF Research Database (Denmark)

    Kozlov, Sergei V; Waardenberg, Ashley J; Engholm-Keller, Kasper


    ATM (ataxia-telangiectasia, mutated) protein plays a central role in phosphorylating a network of proteins in response to DNA damage. These proteins function in signalling pathways designed to maintain the stability of the genome and minimize the risk of disease by controlling cell cycle checkpoi......ATM (ataxia-telangiectasia, mutated) protein plays a central role in phosphorylating a network of proteins in response to DNA damage. These proteins function in signalling pathways designed to maintain the stability of the genome and minimize the risk of disease by controlling cell cycle...... to identify cytoplasmic proteins altered in their phosphorylation state in control and A-T (ataxia-telangiectasia) cells in response to oxidative damage. We demonstrated that ATM was activated by oxidative damage in the cytoplasm as well as in the nucleus and identified a total of 9,833 phosphorylation sites...

  13. Methods for the Analysis of Protein Phosphorylation-Mediated Cellular Signaling Networks (United States)

    White, Forest M.; Wolf-Yadlin, Alejandro


    Protein phosphorylation-mediated cellular signaling networks regulate almost all aspects of cell biology, including the responses to cellular stimulation and environmental alterations. These networks are highly complex and comprise hundreds of proteins and potentially thousands of phosphorylation sites. Multiple analytical methods have been developed over the past several decades to identify proteins and protein phosphorylation sites regulating cellular signaling, and to quantify the dynamic response of these sites to different cellular stimulation. Here we provide an overview of these methods, including the fundamental principles governing each method, their relative strengths and weaknesses, and some examples of how each method has been applied to the analysis of complex signaling networks. When applied correctly, each of these techniques can provide insight into the topology, dynamics, and regulation of protein phosphorylation signaling networks.

  14. Differentiation of opioid drug effects by hierarchical multi-site phosphorylation. (United States)

    Just, Sascha; Illing, Susann; Trester-Zedlitz, Michelle; Lau, Elaine K; Kotowski, Sarah J; Miess, Elke; Mann, Anika; Doll, Christian; Trinidad, Jonathan C; Burlingame, Alma L; von Zastrow, Mark; Schulz, Stefan


    Differences in the ability of opioid drugs to promote regulated endocytosis of μ-opioid receptors are related to their tendency to produce drug tolerance and dependence. Here we show that drug-specific differences in receptor internalization are determined by a conserved, 10-residue sequence in the receptor's carboxyl-terminal cytoplasmic tail. Diverse opioids induce receptor phosphorylation at serine (S)375, present in the middle of this sequence, but opioids differ markedly in their ability to drive higher-order phosphorylation on flanking residues [threonine (T)370, T376, and T379]. Multi-phosphorylation is required for the endocytosis-promoting activity of this sequence and occurs both sequentially and hierarchically, with S375 representing the initiating site. Higher-order phosphorylation involving T370, T376, and T379 specifically requires GRK2/3 isoforms, and the same sequence controls opioid receptor internalization in neurons. These results reveal a biochemical mechanism differentiating the endocytic activity of opioid drugs.

  15. Effect of some organic solvents on oxidative phosphorylation in rat liver mitochondria

    DEFF Research Database (Denmark)

    Syed, Muzeeb; Skonberg, Christian; Hansen, Steen Honoré


    The effect of acetone, acetonitrile, dimethyl sulfoxide (DMSO), ethanol and methanol on oxidative phosphorylation (ATP synthesis) in rat liver mitochondria has been studied. All the organic solvents inhibited the oxidative phosphorylation in a concentration dependent manner, but with differences...... in potencies. Among the tested organic solvents, acetonitrile and acetone were more potent than ethanol, methanol, and DMSO. There was no significant difference in oxidative phosphorylation, compared to controls, when the concentrations of acetone was below 1% (v/v), of acetonitrile below 2% (v/v), of DMSO...... below 10% (v/v), of ethanol below 5% or of methanol below 2%, respectively. There was complete inhibition of oxidative phosphorylation at 50% (v/v) of acetone, acetonitrile and ethanol. But in the case of DMSO and methanol there were some residual activities observed at the 50% concentration level. DMSO...

  16. Tyrosine-1 and threonine-4 phosphorylation marks complete the RNA polymerase II CTD phospho-code. (United States)

    Heidemann, Martin; Eick, Dirk


    Eukaryotic RNA polymerase II (RNAP II) has evolved an array of heptad repeats with the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 at the carboxy-terminal domain (CTD) of its largest subunit (Rpb1). Dynamic phosphorylation of Ser2, Ser5 and Ser7 residues orchestrates the binding of transcription and RNA processing factors to the transcription machinery. Recent studies show that the two remaining potential phosphorylation sites, tyrosine-1 and threonine-4, are phosphorylated as well and contribute to the previously proposed "CTD code". With the impairment of binding of CTD interacting factors, these novel phosphorylation marks add an accessory layer of regulation to the RNAP II transcription cycle.

  17. Heterogeneity of caprine beta-casein elucidated by RP-HPLC/MS: genetic variants and phosphorylations. (United States)

    Neveu, Carole; Mollé, Daniel; Moreno, Javier; Martin, Patrice; Léonil, Joëlle


    Casein variants occurring in milks from goats homozygous at the alpha(s1)-Cn locus were separated and identified by an RP-HPLC/ESI-MS method. Preferential haplotypes arose as well as some particularities in posttranslational modifications. A new variant of caprine beta-Cn, named C, as well as the phosphorylations pattern of the protein were characterized by the combined use of peptide mass fingerprinting and sequencing by tandem mass spectrometry. The molecular mass of the new variant in its 6P form was measured as 23854 Da and it differs in a mono amino acid substitution, A177 --> V177, from the variant A. The phosphorylation pattern of caprine beta-Cn is homologous to bovine beta-Cn concerning the 5P located on Ser15, 17, 18, 19, 35 but it presents a specific additional phosphorylation site on Thr12 that is comparable to human beta-Cn phosphorylation located on Thr3.

  18. Phosphorylation of dynamin II at serine-764 is associated with cytokinesis

    DEFF Research Database (Denmark)

    Chircop, Megan; Sarcevic, Boris; Larsen, Martin Røssel


    Calcineurin is a phosphatase that is activated at the last known stage of mitosis, abscission. Among its many substrates, it dephosphorylates dynamin II during cytokinesis at the midbody of dividing cells. However, dynamin II has several cellular roles including clathrin-mediated endocytosis......, centrosome cohesion and cytokinesis. It is not known whether dynamin II phosphorylation plays a role in any of these functions nor have the phosphosites involved in cytokinesis been directly identified. We now report that dynamin II from rat lung is phosphorylated to a low stoichiometry on a single major...... was abolished by roscovitine, suggesting the mitotic kinase is cyclin-dependent kinase 1. Cyclin-dependent kinase 1 phosphorylated full length dynamin II and GST-dynamin II-proline-rich domain in vitro, and mutation of Ser-764 to alanine reduced proline-rich domain phosphorylation by 80%, supporting...

  19. ATPase-dependent auto-phosphorylation of the open condensin hinge diminishes DNA binding. (United States)

    Akai, Yuko; Kanai, Ryuta; Nakazawa, Norihiko; Ebe, Masahiro; Toyoshima, Chikashi; Yanagida, Mitsuhiro


    Condensin, which contains two structural maintenance of chromosome (SMC) subunits and three regulatory non-SMC subunits, is essential for many chromosomal functions, including mitotic chromosome condensation and segregation. The ATPase domain of the SMC subunit comprises two termini connected by a long helical domain that is interrupted by a central hinge. The role of the ATPase domain has remained elusive. Here we report that the condensin SMC subunit of the fission yeast Schizosaccharomyces pombe is phosphorylated in a manner that requires the presence of the intact SMC ATPase Walker motif. Principal phosphorylation sites reside in the conserved, glycine-rich stretch at the hinge interface surrounded by the highly basic DNA-binding patch. Phosphorylation reduces affinity for DNA. Consistently, phosphomimetic mutants produce severe mitotic phenotypes. Structural evidence suggests that prior opening (though slight) of the hinge is necessary for phosphorylation, which is implicated in condensin's dissociation from and its progression along DNA.

  20. Megacomplex organization of the oxidative phosphorylation system by structural analysis of respiratory supercomplexes from potato

    NARCIS (Netherlands)

    Bultema, Jelle B.; Braun, Hans-Peter; Boekema, Egbert J.; Kouril, Roman; Kouřil, Roman


    The individual protein complexes of the oxidative phosphorylation system (OXPHOS complexes 1 to V) specifically interact and form defined supramolecular structures, the so-called "respiratory supercomplexes". Some supercomplexes appear to associate into larger structures, or megacomplexes, such as a

  1. Phosphorylation of SAS-6 by ZYG-1 is critical for centriole formation in C. elegans embryos. (United States)

    Kitagawa, Daiju; Busso, Coralie; Flückiger, Isabelle; Gönczy, Pierre


    Despite being essential for proper cell division, the mechanisms governing centrosome duplication are incompletely understood and represent an important open question in cell biology. Formation of a new centriole next to each existing one is critical for centrosome duplication. In Caenorhabditis elegans embryos, the proteins SPD-2, ZYG-1, SAS-6, SAS-5, and SAS-4 are essential for centriole formation, but the mechanisms underlying their requirement remain unclear. Here, we demonstrate that the kinase ZYG-1 phosphorylates the coiled-coil protein SAS-6 at serine 123 in vitro. Importantly, we show that this phosphorylation event is crucial for centriole formation in vivo. Furthermore, we establish that such phosphorylation ensures the maintenance of SAS-6 at the emerging centriole. Overall, our findings establish that phosphorylation of the evolutionarily conserved protein SAS-6 is critical for centriole formation and thus for faithful cell division.

  2. Expression and radiation-induced phosphorylation of histone H2AX in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Kayo; Morita, Takashi [Osaka City Univ. (Japan). Graduate School of Medicine; Yoshida, Shu-hei; Shimoda, Chikashi [Osaka City Univ. (Japan). Graduate School of Science


    The mouse histone H2AX (H2AX) has unique C-terminal Ser residues, which are phosphorylated in response to DNA double-strand breaks (DSBs) by ionizing radiation, suggesting that it plays a role in the maintenance of genomic stability. Here, we show that the H2AX protein was detected in most cells in various tissues, and was abundant in the S phase of the cell cycle. Following X-ray irradiation, H2AX was phosphorylated ({gamma}-H2AX) in the thymus, small intestine and testis. However, H2AX in epithelial cells in the villi of the small intestine were not strongly phosphorylated, even after X-irradiation. Thus, H2AX was expressed in almost all cells. However, the cells that expressed H2AX were not always phosphorylated by X-irradiation, suggesting a different mechanism of kination in those cells. (author)

  3. Modulation of neurite branching by protein phosphorylation in cultured rat hippocampal neurons. (United States)

    Audesirk, G; Cabell, L; Kern, M


    The control of branching of axons and dendrites is poorly understood. It has been hypothesized that branching may be produced by changes in the cytoskeleton [F.J. Diez-Guerra, J. Avila, MAP2 phosphorylation parallels dendrite arborization in hippocampal neurones in culture, NeuroReport 4 (1993) 412-419; P. Friedrich, A. Aszodi, MAP2: a sensitive cross-linker and adjustable spacer in dendritic architecture, FEBS Lett. 295 (1991) 5-9]. The assembly and stability of microtubules, which are prominent cytoskeletal elements in both axons and dendrites, are regulated by microtubule-associated proteins, including tau (predominantly found in axons) and MAP2 (predominantly found in dendrites). The phosphorylation state of tau and MAP2 modulates their interactions with microtubules. In their low-phosphorylation states, tau and MAP2 bind to microtubules and increase microtubule assembly and/or stability. Increased phosphorylation decreases these effects. Diez-Guerra and Avila [F.J. Diez-Guerra, J. Avila, MAP2 phosphorylation parallels dendrite arborization in hippocampal neurones in culture, NeuroReport 4 (1993) 412-419] found that protein phosphorylation correlates with neurite branching in cultured rat hippocampal neurons, and hypothesized that increased protein phosphorylation stimulates neurite branching. To test this hypothesis, we cultured rat hippocampal neurons in the presence of specific modulators of serine-threonine protein kinases and phosphatases. Inhibitors of several protein kinases, which would be expected to decrease protein phosphorylation, reduced branching. KT5720, an inhibitor of cyclic AMP-dependent protein kinase, and KN62, an inhibitor of Ca(2+)-calmodulin-dependent protein kinases, inhibited branching of both axons and dendrites. Calphostin C and chelerythrine, inhibitors of protein kinase C, inhibited branching of axons but not dendrites. Treatments that would be expected to increase protein phosphorylation, including inhibitors of protein

  4. Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress

    Directory of Open Access Journals (Sweden)

    Lane William S


    Full Text Available Abstract Background Heat shock factor (HSF/HSF1 not only is the transcription factor primarily responsible for the transcriptional response of cells to physical and chemical stress but also coregulates other important signaling pathways. The factor mediates the stress-induced expression of heat shock or stress proteins (HSPs. HSF/HSF1 is inactive in unstressed cells and is activated during stress. Activation is accompanied by hyperphosphorylation of the factor. The regulatory importance of this phosphorylation has remained incompletely understood. Several previous studies on human HSF1 were concerned with phosphorylation on Ser303, Ser307 and Ser363, which phosphorylation appears to be related to factor deactivation subsequent to stress, and one study reported stress-induced phosphorylation of Ser230 contributing to factor activation. However, no previous study attempted to fully describe the phosphorylation status of an HSF/HSF1 in stressed cells and to systematically identify phosphoresidues involved in factor activation. The present study reports such an analysis for human HSF1 in heat-stressed cells. Results An alanine scan of all Ser, Thr and Tyr residues of human HSF1 was carried out using a validated transactivation assay, and residues phosphorylated in HSF1 were identified by mass spectrometry and sequencing. HSF1 activated by heat treatment was phosphorylated on Ser121, Ser230, Ser292, Ser303, Ser307, Ser314, Ser319, Ser326, Ser344, Ser363, Ser419, and Ser444. Phosphorylation of Ser326 but none of the other Ser residues was found to contribute significantly to activation of the factor by heat stress. Phosphorylation on Ser326 increased rapidly during heat stress as shown by experiments using a pSer326 phosphopeptide antibody. Heat stress-induced DNA binding and nuclear translocation of a S326A substitution mutant was not impaired in HSF1-negative cells, but the mutant stimulated HSP70 expression several times less well than wild type

  5. Phasic phosphorylation of caldesmon and ERK 1/2 during contractions in human myometrium. (United States)

    Paul, Jonathan; Maiti, Kaushik; Read, Mark; Hure, Alexis; Smith, Julia; Chan, Eng-Cheng; Smith, Roger


    Human myometrium develops phasic contractions during labor. Phosphorylation of caldesmon (h-CaD) and extracellular signal-regulated kinase 1/2 (ERK 1/2) has been implicated in development of these contractions, however the phospho-regulation of these proteins is yet to be examined during periods of both contraction and relaxation. We hypothesized that protein phosphorylation events are implicated in the phasic nature of myometrial contractions, and aimed to examine h-CaD and ERK 1/2 phosphorylation in myometrium snap frozen at specific stages, including; (1) prior to onset of contractions, (2) at peak contraction and (3) during relaxation. We aimed to compare h-CaD and ERK 1/2 phosphorylation in vitro against results from in vivo studies that compared not-in-labor (NIL) and laboring (L) myometrium. Comparison of NIL (n = 8) and L (n = 8) myometrium revealed a 2-fold increase in h-CaD phosphorylation (ser-789; P = 0.012) during onset of labor in vivo, and was associated with significantly up-regulated ERK2 expression (P = 0.022), however no change in ERK2 phosphorylation was observed (P = 0.475). During in vitro studies (n = 5), transition from non-contracting tissue to tissue at peak contraction was associated with increased phosphorylation of both h-CaD and ERK 1/2. Furthermore, tissue preserved at relaxation phase exhibited diminished levels of h-CaD and ERK 1/2 phosphorylation compared to tissue preserved at peak contraction, thereby producing a phasic phosphorylation profile for h-CaD and ERK 1/2. h-CaD and ERK 1/2 are phosphorylated during myometrial contractions, however their phospho-regulation is dynamic, in that h-CaD and ERK 1/2 are phosphorylated and dephosphorylated in phase with contraction and relaxation respectively. Comparisons of NIL and L tissue are at risk of failing to detect these changes, as L samples are not necessarily preserved in the midst of an active contraction.

  6. Distribución geográfica, historia natural y conservación del hurón menor Galictis cuja (Carnivora: Mustelidae en la Patagonia central, Argentina Geographic distribution, natural history and conservation of the lesser grison Galictis cuja (Carnivora: Mustelidae from Central Patagonia, Argentina

    Directory of Open Access Journals (Sweden)

    Marcelo Carrera


    Full Text Available El hurón menor, Galictis cuja, tiene una amplia distribución en el territorio patagónico extraandino, aunque sus registros puntuales son escasos. Este trabajo se desarrolló en la provincia del Chubut, Patagonia Central, Argentina. Aquí se aportan nuevas localidades de registro de G. cuja para esta región; se discuten aspectos de su distribución geográfica y conservación en el Área Natural Protegida Península Valdés (ANP-PV; Patrimonio Natural de la Humanidad y brevemente se explora la representación de G. cuja en los ensambles de carnívoros del ANP-PV desde el Holoceno tardío hasta la actualidad. Se adicionaron 18 nuevos registros de G. cuja en Patagonia central. Se detectó un conflicto entre los pobladores y hurones, que motiva la caza de estos últimos. Se verificó un aparente incremento de abundancia de G. cuja en los últimos miles de años, concomitante con la extinción regional o dramática disminución de Lyncodon patagonicus (Carnivora, Mustelidae.The Lesser Grison, Galictis cuja, is a species widely distributed in extra-Andean Patagonia, although its records are scarce. This work was carried out in Chubut province, Central Patagonia, Argentina. Here we report new occurrence localities of G. cuja for this region; we discuss aspects of their geographical distribution and conservation in the Área Natural Protegida Península Valdés (ANP-PV; World Heritage Site and briefly explores the representation of G. cuja in carnivore assemblages of ANP-PV, since the late Holocene to the present. We added 18 new records of G. cuja in Central Patagonia. We detected a conflict between the rural residents and the Lesser Grison, which motivates the hunting of the latter. There was an apparent increase in abundance of G. cuja in the last thousands of years, concomitant with regional extinction or dramatic reduction of Lyncodon patagonicus (Carnivora, Mustelidae.

  7. Phosphorylation of Serine 271 on 5-Lipoxygenase and Its Role in Nuclear Export*


    Flamand, Nicolas; Luo, Ming; Peters-Golden, Marc; Brock, Thomas G.


    The enzyme 5-lipoxygenase (5-LO) initiates the biosynthesis of leukotrienes, inflammatory mediators involved in immune diseases and defense. The subcellular localization of 5-LO is regulated, with nuclear import commonly leading to increased leukotriene production. We report here that 5-LO is constitutively phosphorylated on Ser-271 in transfected NIH 3T3 cells. This residue is nested in a classical nuclear export sequence, and phosphorylated Ser-271 5-LO was exclusive...

  8. Structural Mechanism for Regulation of Bcl-2 protein Noxa by phosphorylation



    We showed previously that phosphorylation of Noxa, a 54-residue Bcl-2 protein, at serine 13 (Ser13) inhibited its ability to promote apoptosis through interactions with canonical binding partner, Mcl-1. Using EPR spectroscopy, molecular dynamics (MD) simulations and binding assays, we offer evidence that a structural alteration caused by phosphorylation partially masks Noxa’s BH3 domain, inhibiting the Noxa-Mcl-1 interaction. EPR of unphosphorylated Noxa, with spin-labeled amino acid TOAC inc...

  9. A Requirement for SOCS-1 and SOCS-3 Phosphorylation in Bcr-Abl-Induced Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Xiaoxue Qiu


    Full Text Available Suppressors of cytokine signaling 1 and 3 (SOCS-1 and SOCS-3 are inhibitors of the Janus tyrosine kinase (JAK/signal transducers and activators of transcription (STAT pathway and function in a negative feedback loop during cytokine signaling. Abl transformation is associated with constitutive activation of JAK/STAT-dependent signaling. However, the mechanism by which Abl oncoproteins bypass SOCS inhibitory regulation remains poorly defined. Here, we demonstrate that coexpression of Bcr-Abl with SOCS-1 or SOCS-3 results in tyrosine phosphorylation of these SOCS proteins. Interestingly, SOCS-1 is highly tyrosine phosphorylated in one of five primary chronic myelogenous leukemia samples. Bcr-Abl-dependent tyrosine phosphorylation of SOCS-1 and SOCS-3 occurs mainly on Tyr 155 and Tyr 204 residues of SOCS-1 and on Tyr 221 residue of SOCS-3. We observed that phosphorylation of these SOCS proteins was associated with their binding to Bcr-Abl. Bcr-Abl-dependent phosphorylation of SOCS-1 and SOCS-3 diminished their inhibitory effects on the activation of JAK and STAT5 and thereby enhanced JAK/STAT5 signaling. Strikingly, disrupting the tyrosine phosphorylation of SOCS-1 or SOCS-3 impaired the expression of Bcl-XL protein and sensitized K562 leukemic cells to undergo apoptosis. Moreover, selective mutation of tyrosine phosphorylation sites of SOCS-1 or SOCS-3 significantly blocked Bcr-Abl-mediated tumorigenesis in nude mice and inhibited Bcr-Abl-mediated murine bone marrow transformation. Together, these results reveal a mechanism of how Bcr-Abl may overcome SOCS-1 and SOCS-3 inhibition to constitutively activate the JAK/STAT-dependent signaling, and suggest that Bcr-Abl may critically requires tyrosine phosphorylation of SOCS-1 and SOCS-3 to mediate tumorigenesis when these SOCS proteins are present in cells.

  10. Phosphorylation regulates human T-cell leukemia virus type 1 Rex function

    Directory of Open Access Journals (Sweden)

    Ward Michael


    Full Text Available Abstract Background Human T-cell leukemia virus type 1 (HTLV-1 is a pathogenic complex deltaretrovirus, which is the causative agent of adult T-cell leukemia/lymphoma (ATL and HTLV-1-associated myelopathy/tropical spastic paraparesis. In addition to the structural and enzymatic viral gene products, HTLV-1 encodes the positive regulatory proteins Tax and Rex along with viral accessory proteins. Tax and Rex proteins orchestrate the timely expression of viral genes important in viral replication and cellular transformation. Rex is a nucleolar-localizing shuttling protein that acts post-transcriptionally by binding and facilitating the export of the unspliced and incompletely spliced viral mRNAs from the nucleus to the cytoplasm. HTLV-1 Rex (Rex-1 is a phosphoprotein and general protein kinase inhibition correlates with reduced function. Therefore, it has been proposed that Rex-1 function may be regulated through site-specific phosphorylation. Results We conducted a phosphoryl mapping of Rex-1 over-expressed in transfected 293 T cells using a combination of affinity purification and liquid chromatography tandem mass spectrometry. We achieved 100% physical coverage of the Rex-1 polypeptide and identified five novel phosphorylation sites at Thr-22, Ser-36, Thr-37, Ser-97, and Ser-106. We also confirmed evidence of two previously identified residues, Ser-70 and Thr-174, but found no evidence of phosphorylation at Ser-177. The functional significance of these phosphorylation events was evaluated using a Rex reporter assay and site-directed mutational analysis. Our results indicate that phosphorylation at Ser-97 and Thr-174 is critical for Rex-1 function. Conclusion We have mapped completely the site-specific phosphorylation of Rex-1 identifying a total of seven residues; Thr-22, Ser-36, Thr-37, Ser-70, Ser-97, Ser-106, and Thr-174. Overall, this work is the first to completely map the phosphorylation sites in Rex-1 and provides important insight into

  11. Rapamycin induces Bad phosphorylation in association with its resistance to human lung cancer cells. (United States)

    Liu, Yan; Sun, Shi-Yong; Owonikoko, Taofeek K; Sica, Gabriel L; Curran, Walter J; Khuri, Fadlo R; Deng, Xingming


    Inhibition of mTOR signaling by rapamycin has been shown to activate extracellular signal-regulated kinase 1 or 2 (ERK1/2) and Akt in various types of cancer cells, which contributes to rapamycin resistance. However, the downstream effect of rapamycin-activated ERKs and Akt on survival or death substrate(s) remains unclear. We discovered that treatment of human lung cancer cells with rapamycin results in enhanced phosphorylation of Bad at serine (S) 112 and S136 but not S155 in association with activation of ERK1/2 and Akt. A higher level of Bad phosphorylation was observed in rapamycin-resistant cells compared with parental rapamycin-sensitive cells. Thus, Bad phosphorylation may contribute to rapamycin resistance. Mechanistically, rapamycin promotes Bad accumulation in the cytosol, enhances Bad/14-3-3 interaction, and reduces Bad/Bcl-XL binding. Rapamycin-induced Bad phosphorylation promotes its ubiquitination and degradation, with a significant reduction of its half-life (i.e., from 53.3-37.5 hours). Inhibition of MEK/ERK by PD98059 or depletion of Akt by RNA interference blocks rapamycin-induced Bad phosphorylation at S112 or S136, respectively. Simultaneous blockage of S112 and S136 phosphorylation of Bad by PD98059 and silencing of Akt significantly enhances rapamycin-induced growth inhibition in vitro and synergistically increases the antitumor efficacy of rapamycin in lung cancer xenografts. Intriguingly, either suppression of Bad phosphorylation at S112 and S136 sites or expression of the nonphosphorylatable Bad mutant (S112A/S136A) can reverse rapamycin resistance. These findings uncover a novel mechanism of rapamycin resistance, which may promote the development of new strategies for overcoming rapamycin resistance by manipulating Bad phosphorylation at S112 and S136 in human lung cancer.

  12. Specific On-Plate Enrichment of Phosphorylated Peptides for Direct MALDI-TOF MS Analysis


    Qiao, L.; Roussel, C.; Wan, J.; P. Yang; Girault, H H; Liu, B.


    An on-plate specific enrichment method is presented for the direct analysis of peptides phosphorylation. An array of sintered TiO2 nanoparticle spots was prepared on a stainless steel plate to provide porous substrate with a very large specific surface and durable functions. These spots were used to selectively capture phosphorylated peptides from peptide mixtures, and the immobilized phosphopeptides could then be analyzed directly by MALDI MS after washing away the nonphos- phorylated pepti...

  13. Phosphorylation and calcium antagonistically tune myosin-binding protein C's structure and function. (United States)

    Previs, Michael J; Mun, Ji Young; Michalek, Arthur J; Previs, Samantha Beck; Gulick, James; Robbins, Jeffrey; Warshaw, David M; Craig, Roger


    During each heartbeat, cardiac contractility results from calcium-activated sliding of actin thin filaments toward the centers of myosin thick filaments to shorten cellular length. Cardiac myosin-binding protein C (cMyBP-C) is a component of the thick filament that appears to tune these mechanochemical interactions by its N-terminal domains transiently interacting with actin and/or the myosin S2 domain, sensitizing thin filaments to calcium and governing maximal sliding velocity. Both functional mechanisms are potentially further tunable by phosphorylation of an intrinsically disordered, extensible region of cMyBP-C's N terminus, the M-domain. Using atomic force spectroscopy, electron microscopy, and mutant protein expression, we demonstrate that phosphorylation reduced the M-domain's extensibility and shifted the conformation of the N-terminal domain from an extended structure to a compact configuration. In combination with motility assay data, these structural effects of M-domain phosphorylation suggest a mechanism for diminishing the functional potency of individual cMyBP-C molecules. Interestingly, we found that calcium levels necessary to maximally activate the thin filament mitigated the structural effects of phosphorylation by increasing M-domain extensibility and shifting the phosphorylated N-terminal fragments back to the extended state, as if unphosphorylated. Functionally, the addition of calcium to the motility assays ablated the impact of phosphorylation on maximal sliding velocities, fully restoring cMyBP-C's inhibitory capacity. We conclude that M-domain phosphorylation may have its greatest effect on tuning cMyBP-C's calcium-sensitization of thin filaments at the low calcium levels between contractions. Importantly, calcium levels at the peak of contraction would allow cMyBP-C to remain a potent contractile modulator, regardless of cMyBP-C's phosphorylation state.

  14. Regulation of Estrogen Receptor Nuclear Export by Ligand-Induced and p38-Mediated Receptor Phosphorylation


    Lee, Heehyoung; Bai, Wenlong


    Estrogen receptors are phosphoproteins which can be activated by ligands, kinase activators, or phosphatase inhibitors. Our previous study showed that p38 mitogen-activated protein kinase was involved in estrogen receptor activation by estrogens and MEKK1. Here, we report estrogen receptor-dependent p38 activation by estrogens in endometrial adenocarcinoma cells and in vitro and in vivo phosphorylation of the estrogen receptor α mediated through p38. The phosphorylation site was identified as...

  15. In vitro and in vivo protein phosphorylation in Avena sativa L. coleoptiles: effects of Ca2+, calmodulin antagonists, and auxin (United States)

    Veluthambi, K.; Poovaiah, B. W.


    In vitro and in vivo protein phosphorylations in oat (Avena sativa L.) coleoptile segments were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and by two-dimensional gel electrophoresis. In vitro phosphorylation of several polypeptides was distinctly promoted at 1 to 15 micromolar free Ca2+ concentrations. Ca2(+)-stimulated phosphorylation was markedly reduced by trifluoperazine, chlorpromazine, and naphthalene sulfonamide (W7). Two polypeptides were phosphorylated both under in vitro and in vivo conditions, but the patterns of phosphorylation of several other polypeptides were different under the two conditions indicating that the in vivo phosphorylation pattern of proteins is not truly reflected by in vitro phosphorylation studies. Trifluoperazine, W7, or ethylene glycol-bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA) + calcium ionophore A23187 treatments resulted in reduced levels of in vivo protein phosphorylation of both control and auxin-treated coleoptile segments. Analysis by two-dimensional electrophoresis following in vivo phosphorylation revealed auxin-dependent changes of certain polypeptides. A general inhibition of phosphorylation by calmodulin antagonists suggested that both control and auxin-treated coleoptiles exhibited Ca2+, and calmodulin-dependent protein phosphorylation in vivo.

  16. Quantifying Kinase-Specific Phosphorylation Stoichiometry Using Stable Isotope Labeling In a Reverse In-Gel Kinase Assay

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang; Cox, Jonathan T.; Huang, Weiliang; Kane, Maureen; Tang, Keqi; Bieberich, Charles J.


    Reversible protein phosphorylation regulates essentially all cellular activities. Aberrant protein phosphorylation is an etiological factor in a wide array of diseases, including cancer1, diabetes2, and Alzheimer’s3. Given the broad impact of protein phosphorylation on cellular biology and organismal health, understanding how protein phosphorylation is regulated and the consequences of gain and loss of phosphoryl moieties from proteins is of primary importance. Advances in instrumentation, particularly in mass spectrometry, coupled with high throughput approaches have recently yielded large datasets cataloging tens of thousands of protein phosphorylation sites in multiple organisms4-6. While these studies are seminal in term of data collection, our understanding of protein phosphorylation regulation remains largely one-dimensional.

  17. The mammalian circadian clock protein period counteracts cryptochrome in phosphorylation dynamics of circadian locomotor output cycles kaput (CLOCK). (United States)

    Matsumura, Ritsuko; Tsuchiya, Yoshiki; Tokuda, Isao; Matsuo, Takahiro; Sato, Miho; Node, Koichi; Nishida, Eisuke; Akashi, Makoto


    The circadian transcription factor CLOCK exhibits a circadian oscillation in its phosphorylation levels. Although it remains unclear whether this phosphorylation contributes to circadian rhythm generation, it has been suggested to be involved in transcriptional activity, intracellular localization, and degradative turnover of CLOCK. Here, we obtained direct evidence that CLOCK phosphorylation may be essential for autonomous circadian oscillation in clock gene expression. Importantly, we found that the circadian transcriptional repressors Cryptochrome (CRY) and Period (PER) showed an opposite effect on CLOCK phosphorylation; CRY impaired BMAL1-dependent CLOCK phosphorylation, whereas PER protected the phosphorylation against CRY. Interestingly, unlike PER1 and PER2, PER3 did not exert a protective action, which correlates with the phenotypic differences among mice lacking the Per genes. Further studies on the regulatory mechanism of CLOCK phosphorylation would thus lead to elucidation of the mechanism of CRY-mediated transcriptional repression and an understanding of the true role of PER in the negative feedback system.

  18. Extensive crosstalk between O-GlcNAcylation and phosphorylation regulates Akt signaling.

    Directory of Open Access Journals (Sweden)

    Shuai Wang

    Full Text Available O-linked N-acetylglucosamine glycosylations (O-GlcNAc and O-linked phosphorylations (O-phosphate, as two important types of post-translational modifications, often occur on the same protein and bear a reciprocal relationship. In addition to the well documented phosphorylations that control Akt activity, Akt also undergoes O-GlcNAcylation, but the interplay between these two modifications and the biological significance remain unclear, largely due to the technique challenges. Here, we applied a two-step analytic approach composed of the O-GlcNAc immunoenrichment and subsequent O-phosphate immunodetection. Such an easy method enabled us to visualize endogenous glycosylated and phosphorylated Akt subpopulations in parallel and observed the inhibitory effect of Akt O-GlcNAcylations on its phosphorylation. Further studies utilizing mass spectrometry and mutagenesis approaches showed that O-GlcNAcylations at Thr 305 and Thr 312 inhibited Akt phosphorylation at Thr 308 via disrupting the interaction between Akt and PDK1. The impaired Akt activation in turn resulted in the compromised biological functions of Akt, as evidenced by suppressed cell proliferation and migration capabilities. Together, this study revealed an extensive crosstalk between O-GlcNAcylations and phosphorylations of Akt and demonstrated O-GlcNAcylation as a new regulatory modification for Akt signaling.

  19. Constitutive Phosphorylation of STAT3 by the CK2-BLNK-CD5 Complex. (United States)

    Rozovski, Uri; Harris, David M; Li, Ping; Liu, Zhiming; Jain, Preetesh; Veletic, Ivo; Ferrajoli, Alessandra; Burger, Jan; O'Brien, Susan; Bose, Prithviraj; Thompson, Philip; Jain, Nitin; Wierda, William; Keating, Michael J; Estrov, Zeev


    In chronic lymphocytic leukemia (CLL), STAT3 is constitutively phosphorylated on serine 727 and plays a role in the pathobiology of CLL. However, what induces constitutive phosphorylation of STAT3 is currently unknown. Mass spectrometry was used to identify casein kinase 2 (CK2), a serine/threonine kinase that co-immunoprecipitated with serine phosphorylated STAT3 (pSTAT3). Furthermore, activated CK2 incubated with recombinant STAT3 induced phosphorylation of STAT3 on serine 727. Although STAT3 and CK2 are present in normal B- and T-cells, STAT3 is not constitutively phosphorylated in these cells. Further study found that CD5 and BLNK co-expressed in CLL, but not in normal B- or T-cells, are required for STAT3 phosphorylation. To elucidate the relationship of CD5 and BLNK to CK2 and STAT3, STAT3 was immunoprecipitated from CLL cells and CK2, CD5, and BLNK were detected in the immunoprecipitate. Conversely, STAT3, CD5, and BLNK were in the immunoprecipitate of CLL cells immunoprecipitated with CK2 antibodies. Furthermore, siRNA knockdown of CD5 or BLNK, or treatment with CD5-neutralizing antibodies significantly reduced the levels of serine pSTAT3 in CLL cells. Finally, confocal microscopy determined that CD5 is cell membrane bound and fractionation studies revealed that the CK2/CD5/BLNK/STAT3 complex remains in the cytoplasm, whereas serine pSTAT3 is shuttled to the nucleus.

  20. Differential roles of ATM- and Chk2-mediated phosphorylations of Hdmx in response to DNA damage. (United States)

    Pereg, Yaron; Lam, Suzanne; Teunisse, Amina; Biton, Sharon; Meulmeester, Erik; Mittelman, Leonid; Buscemi, Giacomo; Okamoto, Koji; Taya, Yoichi; Shiloh, Yosef; Jochemsen, Aart G


    The p53 tumor suppressor plays a major role in maintaining genomic stability. Its activation and stabilization in response to double strand breaks (DSBs) in DNA are regulated primarily by the ATM protein kinase. ATM mediates several posttranslational modifications on p53 itself, as well as phosphorylation of p53's essential inhibitors, Hdm2 and Hdmx. Recently we showed that ATM- and Hdm2-dependent ubiquitination and subsequent degradation of Hdmx following DSB induction are mediated by phosphorylation of Hdmx on S403, S367, and S342, with S403 being targeted directly by ATM. Here we show that S367 phosphorylation is mediated by the Chk2 protein kinase, a downstream kinase of ATM. This phosphorylation, which is important for subsequent Hdmx ubiquitination and degradation, creates a binding site for 14-3-3 proteins which controls nuclear accumulation of Hdmx following DSBs. Phosphorylation of S342 also contributed to optimal 14-3-3 interaction and nuclear accumulation of Hdmx, but phosphorylation of S403 did not. Our data indicate that binding of a 14-3-3 dimer and subsequent nuclear accumulation are essential steps toward degradation of p53's inhibitor, Hdmx, in response to DNA damage. These results demonstrate a sophisticated control by ATM of a target protein, Hdmx, which itself is one of several ATM targets in the ATM-p53 axis of the DNA damage response.

  1. Hierarchical Disabled-1 Tyrosine Phosphorylation in Src family Kinase Activation and Neurite Formation (United States)

    Katyal, Sachin; Gao, Zhihua; Monckton, Elizabeth; Glubrecht, Darryl; Godbout, Roseline


    There are two developmentally regulated alternatively spliced forms of Disabled-1 (Dab1) in the chick retina: an early form (Dab1-E) expressed in retinal precursor cells and a late form (Dab1-L) expressed in neuronal cells. The main difference between these two isoforms is the absence of two Src family kinase (SFK) recognition sites in Dab1-E. Both forms retain two Abl/Crk/Nck recognition sites implicated in the recruitment of SH2 domain-containing signaling proteins. One of the Dab1-L-specific SFK recognition sites, at tyrosine(Y)-198, has been shown to be phosphorylated in Reelin-stimulated neurons. Here, we use Reelin-expressing primary retinal cultures to investigate the role of the four Dab1 tyrosine phosphorylation sites on overall tyrosine phosphorylation, Dab1 phosphorylation, SFK activation and neurite formation. We show that Y198 is essential but not sufficient for maximal Dab1 phosphorylation, SFK activation and neurite formation, with Y232 and Y220 playing particularly important roles in SFK activation and neuritogenesis, and Y185 having modifying effects secondary to Y232 and Y220. Our data support a role for all four Dab1 tyrosine phosphorylation sites in mediating the spectrum of activities associated with Reelin-Dab1 signaling in neurons. PMID:17350651

  2. Aurora A kinase modulates actin cytoskeleton through phosphorylation of Cofilin: Implication in the mitotic process. (United States)

    Ritchey, Lisa; Chakrabarti, Ratna


    Aurora A kinase regulates early mitotic events through phosphorylation and activation of a variety of proteins. Specifically, Aur-A is involved in centrosomal separation and formation of mitotic spindles in early prophase. The effect of Aur-A on mitotic spindles is mediated by the modulation of microtubule dynamics and association with microtubule binding proteins. In this study we show that Aur-A exerts its effects on spindle organization through the regulation of the actin cytoskeleton. Aurora A phosphorylates Cofilin at multiple sites including S(3) resulting in the inactivation of its actin depolymerizing function. Aur-A interacts with Cofilin in early mitotic phases and regulates its phosphorylation status. Cofilin phosphorylation follows a dynamic pattern during the progression of prophase to metaphase. Inhibition of Aur-A activity induced a delay in the progression of prophase to metaphase. Aur-A inhibitor also disturbed the pattern of Cofilin phosphorylation, which correlated with the mitotic delay. Our results establish a novel function of Aur-A in the regulation of actin cytoskeleton reorganization, through Cofilin phosphorylation during early mitotic stages.

  3. Methionine residues around phosphorylation sites are preferentially oxidized in vivo under stress conditions (United States)

    Veredas, Francisco J.; Cantón, Francisco R.; Aledo, J. Carlos


    Protein phosphorylation is one of the most prevalent and well-understood protein modifications. Oxidation of protein-bound methionine, which has been traditionally perceived as an inevitable damage derived from oxidative stress, is now emerging as another modification capable of regulating protein activity during stress conditions. However, the mechanism coupling oxidative signals to changes in protein function remains unknown. An appealing hypothesis is that methionine oxidation might serve as a rheostat to control phosphorylation. To investigate this potential crosstalk between phosphorylation and methionine oxidation, we have addressed the co-occurrence of these two types of modifications within the human proteome. Here, we show that nearly all (98%) proteins containing oxidized methionine were also phosphoproteins. Furthermore, phosphorylation sites were much closer to oxidized methionines when compared to non-oxidized methionines. This proximity between modification sites cannot be accounted for by their co-localization within unstructured clusters because it was faithfully reproduced in a smaller sample of structured proteins. We also provide evidence that the oxidation of methionine located within phosphorylation motifs is a highly selective process among stress-related proteins, which supports the hypothesis of crosstalk between methionine oxidation and phosphorylation as part of the cellular defence against oxidative stress. PMID:28079140

  4. Alzheimer—like phosphorylation of tau and neurofilament induced by cocaine in vivo

    Institute of Scientific and Technical Information of China (English)

    LIUShi-Jie; FANGZheng-Yu; YANGYing; DENGHeng-Mei; WANGJian-Zhi


    AIM:To explore the relationship between cocaine-induced cyclin-dependent kinase-5(CDK5) overexpression or overactivation and Alzheimer-like hyperphosphorylation of cytoskeletal protein. METHODS: Cocaine was injected (ip,20mg·kg-1·d-1) into rats and the phosphorylation of neuronal cytoskeletal proteins was measured by Western blotting.RESULTS:The levels of phosphorylated tau at PHF-1 epitope and phosphorylated neurofilament determined by SMI31 were elevated in rat brain hippocampus, cortex, and caudatoputamen on d 8 and d 16 after the injection of cocaine, when compared with saline control rat at the same brain regions. On the other hand, the levels of tau non-phosphorylated at tau-1 site and non-phosphorylated neurofilament determined by SIM32 were decreased in same brain regions at the same time points examined. No significant difference of phosphorylated tau and neurofilament at those epitopes was seen on d 4. Although cocaine injection could induce significant hyperphosphorylation of neuronal cytoskeletal proteins, the overexpression of CDK5 and p35 was not detected. CONCLUSION:Peritoneal injection of cocaine induces Alzheimer-like hyperphosphorylation of tau and neurofilament in rat brain, and the effect may be not relevant to an increase in overexpression or overactivation of CDK5.

  5. Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52 (United States)

    Jo, Chulman; Gundemir, Soner; Pritchard, Susanne; Jin, Youngnam N.; Rahman, Irfan; Johnson, Gail V. W.


    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal transcription factor in the defence against oxidative stress. Here we provide evidence that activation of the Nrf2 pathway reduces the levels of phosphorylated tau by induction of an autophagy adaptor protein NDP52 (also known as CALCOCO2) in neurons. The expression of NDP52, which we show has three antioxidant response elements (AREs) in its promoter region, is strongly induced by Nrf2, and its overexpression facilitates clearance of phosphorylated tau in the presence of an autophagy stimulator. In Nrf2-knockout mice, phosphorylated and sarkosyl-insoluble tau accumulates in the brains concurrent with decreased levels of NDP52. Moreover, NDP52 associates with phosphorylated tau from brain cortical samples of Alzheimer disease cases, and the amount of phosphorylated tau in sarkosyl-insoluble fractions is inversely proportional to that of NDP52. These results suggest that NDP52 plays a key role in autophagy-mediated degradation of phosphorylated tau in vivo.

  6. Hydroxynonenal-stimulated activity of the uncoupling protein in Acanthamoeba castellanii mitochondria under phosphorylating conditions. (United States)

    Woyda-Ploszczyca, Andrzej; Jarmuszkiewicz, Wieslawa


    The influence of 4-hydroxy-2-nonenal (HNE), a lipid peroxidation end product, on the activity of the amoeba Acanthamoeba castellanii uncoupling protein (AcUCP) in isolated phosphorylating mitochondria was studied. Under phosphorylating conditions, exogenously added HNE induced GTP-sensitive AcUCP-mediated mitochondrial uncoupling. The HNE-induced proton leak decreased the yield of oxidative phosphorylation in an HNE concentration-dependent manner. The present study describes how the contributions of ATP synthase and HNE-induced AcUCP in phosphorylating respiration vary when the rate of succinate oxidation is decreased by limiting succinate uptake or inhibiting complex III activity within the range of a constant membrane potential. In phosphorylating mitochondria, at a given HNE concentration (100 μM), the efficiency of AcUCP in mitochondrial uncoupling increased as the respiratory rate decreased because the AcUCP contribution remained constant while the ATP synthase contribution decreased with the respiratory rate. HNE-induced uncoupling can be inhibited by GTP only when ubiquinone is sufficiently oxidized, indicating that in phosphorylating A. castellanii mitochondria, the sensitivity of AcUCP activity to GTP depends on the redox state of the membranous ubiquinone.

  7. Challenges and strategies for targeted phosphorylation site identification and quantification using mass spectrometry analysis. (United States)

    Blackburn, Kevin; Goshe, Michael B


    Despite its importance, the 'ultimate' method to identify and quantify site-specific protein phosphorylation using mass spectrometry (MS) has yet to be established. This is as much a function of the dynamic range of instrumentation as it is the complexities surrounding the isolation and behavior of phosphopeptides. Phosphorylation site analysis using MS can be quite challenging when analyzing just one protein and quickly becomes a daunting task when attempting to perform proteome-wide measurements. Data-dependent tandem MS-based methods which are useful for the discovery and characterization of novel phosphorylation sites often lack the dynamic range and quantitative aspect required for studying the temporal phases of phosphorylation. While targeted methods such as multiple reaction monitoring do provide a highly specific and quantitative methodology for studying phosphorylation changes over time, they are not suited for initial discovery of previously unreported sites of phosphorylation. Data-independent acquisition represents a relatively new approach for simultaneous qualitative and quantitative sample analysis which holds promise for filling this technological gap.

  8. Leptin signaling plays a critical role in the geniposide-induced decrease of tau phosphorylation. (United States)

    Liu, Jianhui; Liu, Zixuan; Zhang, Yonglan; Yin, Fei


    We have previously demonstrated that geniposide attenuates the production of Aβ1-42 both in vitro and in vivo via enhancing leptin receptor signaling. But the role played by geniposide in the phosphorylation of tau and its underlying molecular mechanisms remain unclear. In this study, we investigated the effect of geniposide on the phosphorylation of tau and the role of leptin signaling in this process. Our data suggested that, accompanied by the up-regulation of leptin receptor expression, geniposide significantly decreased the phosphorylation of tau in rat primary cultured cortical neurons and in APP/PS1 transgenic mice, and this geniposide-induced decrease of tau phosphorylation could be prevented by leptin antagonist (LA). Furthermore, LA also prevented the phosphorylation of Akt at Ser-473 site and GSK-3β at Ser-9 site induced by geniposide. All these results indicate that geniposide may regulate tau phosphorylation through leptin signaling, and geniposide may be a promising therapeutic compound for the treatment of Alzheimer's disease in the future.

  9. Phosphorylation of Ku dictates DNA double-strand break (DSB) repair pathway choice in S phase. (United States)

    Lee, Kyung-Jong; Saha, Janapriya; Sun, Jingxin; Fattah, Kazi R; Wang, Shu-Chi; Jakob, Burkhard; Chi, Linfeng; Wang, Shih-Ya; Taucher-Scholz, Gisela; Davis, Anthony J; Chen, David J


    Multiple DNA double-strand break (DSB) repair pathways are active in S phase of the cell cycle; however, DSBs are primarily repaired by homologous recombination (HR) in this cell cycle phase. As the non-homologous end-joining (NHEJ) factor, Ku70/80 (Ku), is quickly recruited to DSBs in S phase, we hypothesized that an orchestrated mechanism modulates pathway choice between HR and NHEJ via displacement of the Ku heterodimer from DSBs to allow HR. Here, we provide evidence that phosphorylation at a cluster of sites in the junction of the pillar and bridge regions of Ku70 mediates the dissociation of Ku from DSBs. Mimicking phosphorylation at these sites reduces Ku's affinity for DSB ends, suggesting that phosphorylation of Ku70 induces a conformational change responsible for the dissociation of the Ku heterodimer from DNA ends. Ablating phosphorylation of Ku70 leads to the sustained retention of Ku at DSBs, resulting in a significant decrease in DNA end resection and HR, specifically in S phase. This decrease in HR is specific as these phosphorylation sites are not required for NHEJ. Our results demonstrate that the phosphorylation-mediated dissociation of Ku70/80 from DSBs frees DNA ends, allowing the initiation of HR in S phase and providing a mechanism of DSB repair pathway choice in mammalian cells.

  10. Cyclic AMP-dependent protein kinase phosphorylation facilitates GABA(B) receptor-effector coupling. (United States)

    Couve, A; Thomas, P; Calver, A R; Hirst, W D; Pangalos, M N; Walsh, F S; Smart, T G; Moss, S J


    GABA (gamma-aminobutyric acid)(B) receptors are heterodimeric G protein-coupled receptors that mediate slow synaptic inhibition in the central nervous system. Here we show that the functional coupling of GABA(B)R1/GABA(B)R2 receptors to inwardly rectifying K(+) channels rapidly desensitizes. This effect is alleviated after direct phosphorylation of a single serine residue (Ser892) in the cytoplasmic tail of GABA(B)R2 by cyclic AMP (cAMP)-dependent protein kinase (PKA). Basal phosphorylation of this residue is evident in rat brain membranes and in cultured neurons. Phosphorylation of Ser892 is modulated positively by pathways that elevate cAMP concentration, such as those involving forskolin and beta-adrenergic receptors. GABA(B) receptor agonists reduce receptor phosphorylation, which is consistent with PKA functioning in the control of GABA(B)-activated currents. Mechanistically, phosphorylation of Ser892 specifically enhances the membrane stability of GABA(B) receptors. We conclude that signaling pathways that activate PKA may have profound effects on GABA(B) receptor-mediated synaptic inhibition. These results also challenge the accepted view that phosphorylation is a universal negative modulator of G protein-coupled receptors.

  11. Differential regulation of the histone chaperone HIRA during muscle cell differentiation by a phosphorylation switch. (United States)

    Yang, Jae-Hyun; Song, Tae-Yang; Jo, Chanhee; Park, Jinyoung; Lee, Han-Young; Song, Ilang; Hong, Suji; Jung, Kwan Young; Kim, Jaehoon; Han, Jeung-Whan; Youn, Hong-Duk; Cho, Eun-Jung


    Replication-independent incorporation of variant histone H3.3 has a profound impact on chromatin function and numerous cellular processes, including the differentiation of muscle cells. The histone chaperone HIRA and H3.3 have essential roles in MyoD regulation during myoblast differentiation. However, the precise mechanism that determines the onset of H3.3 deposition in response to differentiation signals is unclear. Here we show that HIRA is phosphorylated by Akt kinase, an important signaling modulator in muscle cells. By generating a phosphospecific antibody, we found that a significant amount of HIRA was phosphorylated in myoblasts. The phosphorylation level of HIRA and the occupancy of phosphorylated protein on muscle genes gradually decreased during cellular differentiation. Remarkably, the forced expression of the phosphomimic form of HIRA resulted in reduced H3.3 deposition and suppressed the activation of muscle genes in myotubes. Our data show that HIRA phosphorylation limits the expression of myogenic genes, while the dephosphorylation of HIRA is required for proficient H3.3 deposition and gene activation, demonstrating that the phosphorylation switch is exploited to modulate HIRA/H3.3-mediated muscle gene regulation during myogenesis.

  12. SINTESIS PATI JAGUNG TERFOSFORILASI MELALUI TEKNIK GELOMBANG MIKRO [Microwave-Assisted Synthesis of Phosphorylated Corn Starch

    Directory of Open Access Journals (Sweden)

    Atep Dian Supardan*


    Full Text Available Phosphorylated starch is a type of modified starches which is mostly imported. Commonly, starch to be modified must contain more than 25% of amylose. This study aimed to synthesize phosphorylated starch and evaluate its potency as a heavy metal adsorbent. Corn starch was subjected to phosphorylation through microwave-assisted reaction with a mixture of sodium dihydrogen orthophosphate and disodium hydrogen phosphate. The experiment was designed to optimize the pH, microwave radiation power, and phosphorylation time. The results showed that the maximum phosphate subtitution degree was obtained at pH of 6, microwave radiation of 500 W, and a reaction time of 10 minutes. The degree of subtitution ranged from 0.567 to 0.787. The physicochemical properties of the product i.e. swelling capacity, solubility, water binding capacity, and paste clarity were significantly different than that of the unmodified corn starch. The infrared spectrum showed a high peak absorption at the wavelength of 1651 cm-1, indicating hydrogen bond formation of phosphoric group-water- phosphoric group. In the fingerprint area, there were two new absorption peaks at 1200 and 990 cm-1, which were assigned for the P=O and C-O-P vibrations, respectively. The phosphorylated corn starch adsorbed methylene blue up to 73.3% and mercury up to 73.6%, suggesting the prospect of the microwave-assisted synthetic phosphorylated corn starch as an effective adsorbent for heavy metals.

  13. Phosphorylated STAT3 physically interacts with NPM and transcriptionally enhances its expression in cancer. (United States)

    Ren, Z; Aerts, J L; Pen, J J; Heirman, C; Breckpot, K; De Grève, J


    The signal transducer and activator of transcription 3 (STAT3) can be activated by the tyrosine kinase domain of the chimeric protein nucleophosmin/anaplastic lymphoma kinase (NPM/ALK), and has a pivotal role in mediating NPM/ALK-related malignant cell transformation. Although the role of STAT3 and wild-type NPM in oncogenesis has been extensively investigated, the relationship between both molecules in cancer remains poorly understood. In the present study, we first demonstrate that STAT3 phosphorylation at tyrosine 705 is accompanied by a concomitant increase in the expression level of NPM. Nuclear co-translocation of phosphorylated STAT3 with NPM can be triggered by interferon-alpha (IFN-α) stimulation of Jurkat cells and phosphorylated STAT3 co-localizes with NPM in cancer cells showing constitutive STAT3 activation. We further demonstrate that STAT3 phosphorylation can transcriptionally mediate NPM upregulation in IFN-α-stimulated Jurkat cells and is responsible for maintaining its expression in cancer cells showing constitutive STAT3 activation. Inhibition of STAT3 phosphorylation or knockdown of NPM expression abrogates their simultaneous transnuclear movements. Finally, we found evidence for a physical interaction between NPM and STAT3 in conditions of STAT3 activation. In conclusion, NPM is a downstream effector of the STAT3 signaling, and can facilitate the nuclear entry of phosphorylated STAT3. These observations might open novel opportunities for targeting the STAT3 pathway in cancer.

  14. Apoptotic phosphorylation of histone H3 on Ser-10 by protein kinase Cδ.

    Directory of Open Access Journals (Sweden)

    Choon-Ho Park

    Full Text Available Phosphorylation of histone H3 on Ser-10 is regarded as an epigenetic mitotic marker and is tightly correlated with chromosome condensation during both mitosis and meiosis. However, it was also reported that histone H3 Ser-10 phosphorylation occurs when cells are exposed to various death stimuli, suggesting a potential role in the regulation of apoptosis. Here we report that histone H3 Ser-10 phosphorylation is mediated by the pro-apoptotic kinase protein kinase C (PKC δ during apoptosis. We observed that PKCδ robustly phosphorylates histone H3 on Ser-10 both in vitro and in vivo. Ectopic expression of catalytically active PKCδ efficiently induces condensed chromatin structure in the nucleus. We also discovered that activation of PKCδ is required for histone H3 Ser-10 phosphorylation after treatment with DNA damaging agents during apoptosis. Collectively, these findings suggest that PKCδ is the kinase responsible for histone H3 Ser-10 phosphoryation during apoptosis and thus contributes to chromatin condensation together with other apoptosis-related histone modifications. As a result, histone H3 Ser-10 phosphorylation can be designated a new 'apoptotic histone code' mediated by PKCδ.

  15. Novel method for the high-throughput production of phosphorylation site-specific monoclonal antibodies (United States)

    Kurosawa, Nobuyuki; Wakata, Yuka; Inobe, Tomonao; Kitamura, Haruki; Yoshioka, Megumi; Matsuzawa, Shun; Kishi, Yoshihiro; Isobe, Masaharu


    Threonine phosphorylation accounts for 10% of all phosphorylation sites compared with 0.05% for tyrosine and 90% for serine. Although monoclonal antibody generation for phospho-serine and -tyrosine proteins is progressing, there has been limited success regarding the production of monoclonal antibodies against phospho-threonine proteins. We developed a novel strategy for generating phosphorylation site-specific monoclonal antibodies by cloning immunoglobulin genes from single plasma cells that were fixed, intracellularly stained with fluorescently labeled peptides and sorted without causing RNA degradation. Our high-throughput fluorescence activated cell sorting-based strategy, which targets abundant intracellular immunoglobulin as a tag for fluorescently labeled antigens, greatly increases the sensitivity and specificity of antigen-specific plasma cell isolation, enabling the high-efficiency production of monoclonal antibodies with desired antigen specificity. This approach yielded yet-undescribed guinea pig monoclonal antibodies against threonine 18-phosphorylated p53 and threonine 68-phosphorylated CHK2 with high affinity and specificity. Our method has the potential to allow the generation of monoclonal antibodies against a variety of phosphorylated proteins. PMID:27125496

  16. Effects of Osmoconditioning on Mitochondrial Respiration and Phosphorylation in Soybean Seeds

    Institute of Scientific and Technical Information of China (English)

    Zhang Ming; Wang Xiaofeng


    Cotyledon mitochondrion respiration and oxidative phosphorylation activity were studied in two groups of soybean seeds. One group was primed with polyethylene glycol (PEG) for different periods of time, and the other was unprimed (control), and both were then exposed to imbibition at low temperatures before their germination. The results indicated that when L-Malate (L-Mal) and α-Ketoglutarate (α-Kg) were used as substrates, the ADP-stimulated mitochondria respiration rates of control seeds were markedly higher than state Ⅲ respiration rates of primed seeds. However, the osmoconditioning pretreatment significantly enhanced the oxidative phosphorylation activity of cotyledon mitochondrion in 12 h. The oxidative phosphorylation activity of the mitochondrion of primed seeds was normal and the ADP/O value was consistent with the theoretical one. When reduced nicotinamide adenine dinucleotide (NADH) was used as the substrate, the mitochondria of control seeds still had oxidative phosphorylation activity, while ADP/O value was obviously lower than that of mitochondria of primed seeds. When Succinate (Succ) was used as the substrate, the oxidative phosphorylation activity of the primed seeds was normal after priming for 24 h. When different substrates were used, the emerging order of the oxidative phosphorylation activity of the primed seeds was NADH, α-Kg, Succ and in the last place L-Mal. The mechanism of soybean imbibitionl chilling injury and protective effect of PEG priming were discussed.

  17. Inhibition of oxidative phosphorylation in ascites tumor mitochondria and cells by intramitochondrial Ca2+. (United States)

    Villalobo, A; Lehninger, A L


    Accumulation of Ca2+ (+ phosphate) by respiring mitochondria from Ehrlich ascites or AS30-D hepatoma tumor cells inhibits subsequent phosphorylating respiration in response to ADP. The respiratory chain is still functional since a proton-conducting uncoupler produces a normal stimulation of electron transport. The inhibition of phosphorylating respiration is caused by intramitochondrial Ca2+ (+ phosphate). ATP + Mg2+ together, but not singly, prevents the inhibitory action of Ca2+. Neither AMP, GTP, GDP, nor any other nucleoside 5'-triphosphate or 5'-diphosphate could replace ATP in this effect. Phosphorylating respiration on NAD(NADP)-linked substrates was much more susceptible to the inhibitory effect of intramitochondrial Ca2+ than succinate-linked respiration. Significant inhibition of oxidative phosphorylation is given by the endogenous Ca2+ present in freshly isolated tumor mitochondria. The phosphorylating respiration of permeabilized Ehrlich ascites tumor cells is also inhibited by Ca2+ accumulated by the mitochondria in situ. Possible causes of the Ca2+-induced inhibition of oxidative phosphorylation are considered.

  18. Lignin Hydrolysis and Phosphorylation Mechanism during Phosphoric Acid–Acetone Pretreatment: A DFT Study

    Directory of Open Access Journals (Sweden)

    Wu Qin


    Full Text Available The study focused on the structural sensitivity of lignin during the phosphoric acid–acetone pretreatment process and the resulting hydrolysis and phosphorylation reaction mechanisms using density functional theory calculations. The chemical stabilities of the seven most common linkages (β-O-4, β-β, 4-O-5, β-1, 5-5, α-O-4, and β-5 of lignin in H3PO4, CH3COCH3, and H2O solutions were detected, which shows that α-O-4 linkage and β-O-4 linkage tend to break during the phosphoric acid–acetone pretreatment process. Then α-O-4 phosphorylation and β-O-4 phosphorylation follow a two-step reaction mechanism in the acid treatment step, respectively. However, since phosphorylation of α-O-4 is more energetically accessible than phosphorylation of β-O-4 in phosphoric acid, the phosphorylation of α-O-4 could be controllably realized under certain operational conditions, which could tune the electron and hole transfer on the right side of β-O-4 in the H2PO4− functionalized lignin. The results provide a fundamental understanding for process-controlled modification of lignin and the potential novel applications in lignin-based imprinted polymers, sensors, and molecular devices.

  19. How Phosphorylation and ATPase Activity Regulate Anion Flux though the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). (United States)

    Zwick, Matthias; Esposito, Cinzia; Hellstern, Manuel; Seelig, Anna


    The cystic fibrosis transmembrane conductance regulator (CFTR, ABCC7), mutations of which cause cystic fibrosis, belongs to the ATP-binding cassette (ABC) transporter family and works as a channel for small anions, such as chloride and bicarbonate. Anion channel activity is known to depend on phosphorylation by cAMP-dependent protein kinase A (PKA) and CFTR-ATPase activity. Whereas anion channel activity has been extensively investigated, phosphorylation and CFTR-ATPase activity are still poorly understood. Here, we show that the two processes can be measured in a label-free and non-invasive manner in real time in live cells, stably transfected with CFTR. This study reveals three key findings. (i) The major contribution (≥90%) to the total CFTR-related ATP hydrolysis rate is due to phosphorylation by PKA and the minor contribution (≤10%) to CFTR-ATPase activity. (ii) The mutant CFTR-E1371S that is still conductive, but defective in ATP hydrolysis, is not phosphorylated, suggesting that phosphorylation requires a functional nucleotide binding domain and occurs in the post-hydrolysis transition state. (iii) CFTR-ATPase activity is inversely related to CFTR anion flux. The present data are consistent with a model in which CFTR is in a closed conformation with two ATPs bound. The open conformation is induced by ATP hydrolysis and corresponds to the post-hydrolysis transition state that is stabilized by phosphorylation and binding of chloride channel potentiators.

  20. Lignin hydrolysis and phosphorylation mechanism during phosphoric acid-acetone pretreatment: a DFT study. (United States)

    Qin, Wu; Wu, Lingnan; Zheng, Zongming; Dong, Changqing; Yang, Yongping


    The study focused on the structural sensitivity of lignin during the phosphoric acid-acetone pretreatment process and the resulting hydrolysis and phosphorylation reaction mechanisms using density functional theory calculations. The chemical stabilities of the seven most common linkages (β-O-4, β-β, 4-O-5, β-1, 5-5, α-O-4, and β-5) of lignin in H3PO4, CH3COCH3, and H2O solutions were detected, which shows that α-O-4 linkage and β-O-4 linkage tend to break during the phosphoric acid-acetone pretreatment process. Then α-O-4 phosphorylation and β-O-4 phosphorylation follow a two-step reaction mechanism in the acid treatment step, respectively. However, since phosphorylation of α-O-4 is more energetically accessible than phosphorylation of β-O-4 in phosphoric acid, the phosphorylation of α-O-4 could be controllably realized under certain operational conditions, which could tune the electron and hole transfer on the right side of β-O-4 in the H2PO4- functionalized lignin. The results provide a fundamental understanding for process-controlled modification of lignin and the potential novel applications in lignin-based imprinted polymers, sensors, and molecular devices.

  1. Inhibition of nucleoside diphosphate kinase activity by in vitro phosphorylation by protein kinase CK2. Differential phosphorylation of NDP kinases in HeLa cells in culture

    DEFF Research Database (Denmark)

    Biondi, R M; Engel, M; Sauane, M


    that in vitro protein kinase CK2 catalyzed phosphorylation of human NDPK A inhibits its enzymatic activity by inhibiting the first step of its ping-pong mechanism of catalysis: its autophosphorylation. Upon in vivo 32P labeling of HeLa cells, we observed that both human NDPKs, A and B, were autophosphorylated...

  2. Protein phosphorylation profiling using an in situ proximity ligation assay: phosphorylation of AURKA-elicited EGFR-Thr654 and EGFR-Ser1046 in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Tzu-Chi Chen

    Full Text Available The epidermal growth factor receptor (EGFR, which is up-regulated in lung cancer, involves the activation of mitogenic signals and triggers multiple signaling cascades. To dissect these EGFR cascades, we used 14 different phospho-EGFR antibodies to quantify protein phosphorylation using an in situ proximity ligation assay (in situ PLA. Phosphorylation at EGFR-Thr654 and -Ser1046 was EGF-dependent in the wild-type (WT receptor but EGF-independent in a cell line carrying the EGFR-L858R mutation. Using a ProtoAarray™ containing ∼5000 recombinant proteins on the protein chip, we found that AURKA interacted with the EGFR-L861Q mutant. Moreover, overexpression of EGFR could form a complex with AURKA, and the inhibitors of AURKA and EGFR decreased EGFR-Thr654 and -Ser1046 phosphorylation. Immunohistochemical staining of stage I lung adenocarcinoma tissues demonstrated a positive correlation between AURKA expression and phosphorylation of EGFR at Thr654 and Ser1046 in EGFR-mutant specimens, but not in EGFR-WT specimens. The interplay between EGFR and AURKA provides an explanation for the difference in EGF dependency between EGFR-WT and EGFR-mutant cells and may provide a new therapeutic strategy for lung cancer patients carrying EGFR mutations.

  3. P70S6 Kinase Phosphorylation: A New Site to Assess Pharmacodynamy of Sirolimus

    Directory of Open Access Journals (Sweden)

    Jun-Yu Wang


    Full Text Available Background: The phosphorylation of p70S6 kinase (p70S6K represents an important target for sensitive detection on pharmacodynamic effects of sirolimus, but the methods of assessing p70S6K phosphorylation are still unclear. The aim of this study was to investigate p70S6K phosphorylation located down-stream of the mammalian target of rapamycin (mTOR pathway in peripheral blood mononuclear cells (PBMCs of liver transplant patients through different methods. Methods: Seventy-five liver transplant recipients from Beijing Chaoyang Hospital of the Capital Medical University were analyzed in this study. Patients were divided into three groups, patient treated with sirolimus (n = 22, patient treated with tacrolimus (n = 30, patient treated with cyclosporine (n = 23. The p70S6K phosphorylation of PBMCs in patients and healthy control (HC, n = 12 were analyzed by phospho-flow cytometry and Western blotting. A correlation analysis of data from phospho-flow cytometry and Western blotting was performed. Intra-assay variability of p70S6K phosphorylation in HC and different patients were measured. Results: Intra-assay variability of p70S6K phosphorylation in phospho-flow cytometry was from 4.1% to 8.4% and in Western blotting was from 8.2% to 18%. The p70S6K phosphorylation in patients receiving a sirolimus (19.5 ± 7.7 was significantly lower than in HC (50.1 ± 11.3, P < 0.001, tacrolimus (37.7 ± 15.7, P < 0.001 or cyclosporine treated patients (41.7 ± 11.7, P < 0.001. The p70S6K phosphorylation in HC (50.1 ± 11.3 was significantly higher than in tacrolimus (37.7 ± 15.7, P < 0.01 or cyclosporine-treated patients (41.7 ± 11.7, P < 0.01. There was correlation between data from phospho-flow cytometry and data from Western blotting (r = 0.88, P < 0.001. Conclusions: The degree of mTOR inhibition by assessing p70S6K phosphorylation was established by phospho-flow cytometry and Western blotting. Assessment of p70S6K phosphorylation may play an adjunct role to

  4. P70S6 Kinase Phosphorylation: A New Site to Assess Pharmacodynamy of Sirolimus

    Institute of Scientific and Technical Information of China (English)

    Jun-Yu Wang; Hua Fan


    Background:The phosphorylation ofp70S6 kinase (p70S6K) represents an important target for sensitive detection on pharmacodynamic effects of sirolimus,but the methods of assessing p70S6K phosphorylation are still unclear.The aim of this study was to investigate p70S6K phosphorylation located down-stream of the mammalian target ofrapamycin (mTOR) pathway in peripheral blood mononuclear cells (PBMCs) of liver transplant patients through different methods.Methods:Seventy-five liver transplant recipients from Beijing Chaoyang Hospital of the Capital Medical University were analyzed in this study.Patients were divided into three groups,patient treated with sirolimus (n =22),patient treated with tacrolimus (n =30),patient treated with cyclosporine (n =23).The p70S6K phosphorylation of PBMCs in patients and healthy control (HC,n =12) were analyzed by phospho-flow cytometry and Western blotting.A correlation analysis of data from phospho-flow cytometry and Western blotting was performed.Intra-assay variability of p70S6K phosphorylation in HC and different patients were measured.Results:Intra-assay variability ofp70S6K phosphorylation in phospho-flow cytometry was from 4.1% to 8.4% and in Western blotting was from 8.2% to 18%.The p70S6K phosphorylation in patients receiving a sirolimus (19.5 ± 7.7) was significantly lower than in HC (50.1 ± 11.3,P < 0.001),tacrolimus (37.7 ± 15.7,P < 0.001) or cyclosporine treated patients (41.7 ± 11.7,P < 0.001).The p70S6K phosphorylation in HC (50.1± 11.3) was significantly higher than in tacrolimus (37.7 ± 15.7,P < 0.01) or cyclosporine-treated patients (41.7 ± 11.7,P < 0.01).There was correlation between data from phospho-flow cytometry and data from Westem blotting (r =0.88,P < 0.001).Conclusions:The degree of mTOR inhibition by assessing p70S6K phosphorylation was established by phospho-flow cytometry and Westem blotting.Assessment of p70S6K phosphorylation may play an adjunct role to on pharmacodynamically

  5. Smooth muscle myosin light chain kinase efficiently phosphorylates serine 15 of cardiac myosin regulatory light chain

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Matthew P.; Sikkink, Laura A. [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States); Penheiter, Alan R. [Molecular Medicine Program, Mayo Clinic, Rochester, MN 55905 (United States); Burghardt, Thomas P., E-mail: [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States); Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 (United States); Ajtai, Katalin [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States)


    Highlights: Black-Right-Pointing-Pointer Cardiac myosin regulatory light chain (MYL2) is phosphorylated at S15. Black-Right-Pointing-Pointer Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase. Black-Right-Pointing-Pointer It is a widely believed that MYL2 is a poor substrate for smMLCK. Black-Right-Pointing-Pointer In fact, smMLCK efficiently and rapidly phosphorylates S15 in MYL2. Black-Right-Pointing-Pointer Phosphorylation kinetics measured by novel fluorescence method without radioactivity. -- Abstract: Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca{sup 2+} sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis-Menten V{sub max} and K{sub M} for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially significant

  6. Phosphorylation decreases ubiquitylation of the thiazide-sensitive cotransporter NCC and subsequent clathrin-mediated endocytosis. (United States)

    Rosenbaek, Lena L; Kortenoeven, Marleen L A; Aroankins, Takwa S; Fenton, Robert A


    The thiazide-sensitive sodium chloride cotransporter, NCC, is the major NaCl transport protein in the distal convoluted tubule (DCT). The transport activity of NCC can be regulated by phosphorylation, but knowledge of modulation of NCC trafficking by phosphorylation is limited. In this study, we generated novel tetracycline-inducible Madin-Darby canine kidney type I (MDCKI) cell lines expressing NCC to examine the role of NCC phosphorylation and ubiquitylation on NCC endocytosis. In MDCKI-NCC cells, NCC was highly glycosylated at molecular weights consistent with NCC monomers and dimers. NCC constitutively cycles to the apical plasma membrane of MDCKI-NCC cells, with 20-30% of the membrane pool of NCC internalized within 30 min. The use of dynasore, PitStop2, methyl-β-cyclodextrin, nystatin, and filipin (specific inhibitors of either clathrin-dependent or -independent endocytosis) demonstrated that NCC is internalized via a clathrin-mediated pathway. Reduction of endocytosis resulted in greater levels of NCC in the plasma membrane. Immunogold electron microscopy confirmed the association of NCC with the clathrin-mediated internalization pathway in rat DCT cells. Compared with controls, inducing phosphorylation of NCC via low chloride treatment or mimicking phosphorylation by replacing Thr-53, Thr-58, and Ser-71 residues with Asp resulted in increased membrane abundance and reduced rates of NCC internalization. NCC ubiquitylation was lowest in the conditions with greatest NCC phosphorylation, thus providing a mechanism for the reduced endocytosis. In conclusion, our data support a model where NCC is constitutively cycled to the plasma membrane, and upon stimulation, it can be phosphorylated to both increase NCC activity and decrease NCC endocytosis, together increasing NaCl transport in the DCT.

  7. Kinome analysis of receptor-induced phosphorylation in human natural killer cells.

    Directory of Open Access Journals (Sweden)

    Sebastian König

    Full Text Available BACKGROUND: Natural killer (NK cells contribute to the defense against infected and transformed cells through the engagement of multiple germline-encoded activation receptors. Stimulation of the Fc receptor CD16 alone is sufficient for NK cell activation, whereas other receptors, such as 2B4 (CD244 and DNAM-1 (CD226, act synergistically. After receptor engagement, protein kinases play a major role in signaling networks controlling NK cell effector functions. However, it has not been characterized systematically which of all kinases encoded by the human genome (kinome are involved in NK cell activation. RESULTS: A kinase-selective phosphoproteome approach enabled the determination of 188 kinases expressed in human NK cells. Crosslinking of CD16 as well as 2B4 and DNAM-1 revealed a total of 313 distinct kinase phosphorylation sites on 109 different kinases. Phosphorylation sites on 21 kinases were similarly regulated after engagement of either CD16 or co-engagement of 2B4 and DNAM-1. Among those, increased phosphorylation of FYN, KCC2G (CAMK2, FES, and AAK1, as well as the reduced phosphorylation of MARK2, were reproducibly observed both after engagement of CD16 and co-engagement of 2B4 and DNAM-1. Notably, only one phosphorylation on PAK4 was differentally regulated. CONCLUSIONS: The present study has identified a significant portion of the NK cell kinome and defined novel phosphorylation sites in primary lymphocytes. Regulated phosphorylations observed in the early phase of NK cell activation imply these kinases are involved in NK cell signaling. Taken together, this study suggests a largely shared signaling pathway downstream of distinct activation receptors and constitutes a valuable resource for further elucidating the regulation of NK cell effector responses.

  8. Modelling Ser129 phosphorylation inhibits membrane binding of pore-forming alpha-synuclein oligomers.

    Directory of Open Access Journals (Sweden)

    Georg Sebastian Nübling

    Full Text Available BACKGROUND: In several neurodegenerative diseases, hyperphosphorylation at position Ser129 is found in fibrillar deposits of alpha-synuclein (asyn, implying a pathophysiological role of asyn phosphorylation in neurodegeneration. However, recent animal models applying asyn phosphorylation mimics demonstrated a protective effect of phosphorylation. Since metal-ion induced asyn oligomers were identified as a potential neurotoxic aggregate species with membrane pore-forming abilities, the current study was undertaken to determine effects of asyn phosphorylation on oligomer membrane binding. METHODS: We investigated the influence of S129 phosphorylation on interactions of metal-ion induced asyn oligomers with small unilamellar lipid vesicles (SUV composed of POPC and DPPC applying the phosphorylation mimic asyn129E. Confocal single-particle fluorescence techniques were used to monitor membrane binding at the single-particle level. RESULTS: Binding of asyn129E monomers to gel-state membranes (DPPC-SUV is slightly reduced compared to wild-type asyn, while no interactions with membranes in the liquid-crystalline state (POPC-SUV are seen for both asyn and asyn129E. Conversely, metal-ion induced oligomer formation is markedly increased in asyn129E. Surprisingly, membrane binding to POPC-SUV is nearly absent in Fe(3+ induced asyn129E oligomers and markedly reduced in Al(3+ induced oligomers. CONCLUSION: The protective effect of pseudophosphorylation seen in animal models may be due to impeded oligomer membrane binding. Phosphorylation at Ser129 may thus have a protective effect against neurotoxic asyn oligomers by preventing oligomer membrane binding and disruption of the cellular electrophysiological equilibrium. Importantly, these findings put a new complexion on experimental pharmaceutical interventions against POLO-2 kinase.

  9. Effect of some organic solvents on oxidative phosphorylation in rat liver mitochondria: Choice of organic solvents. (United States)

    Syed, Muzeeb; Skonberg, Christian; Hansen, Steen Honoré


    The effect of acetone, acetonitrile, dimethyl sulfoxide (DMSO), ethanol and methanol on oxidative phosphorylation (ATP synthesis) in rat liver mitochondria has been studied. All the organic solvents inhibited the oxidative phosphorylation in a concentration dependent manner, but with differences in potencies. Among the tested organic solvents, acetonitrile and acetone were more potent than ethanol, methanol, and DMSO. There was no significant difference in oxidative phosphorylation, compared to controls, when the concentrations of acetone was below 1% (v/v), of acetonitrile below 2% (v/v), of DMSO below 10% (v/v), of ethanol below 5% or of methanol below 2%, respectively. There was complete inhibition of oxidative phosphorylation at 50% (v/v) of acetone, acetonitrile and ethanol. But in the case of DMSO and methanol there were some residual activities observed at the 50% concentration level. DMSO showed least effect on oxidative phosphorylation with an IC50 value of 13.3±1.1% (v/v), followed by methanol (IC50 value 8.3±1.0), ethanol (IC50 value 4.6±1.1), acetone (IC50 value 4.3±1.0) and finally acetonitrile (IC50 value 2.1±1.0). All the organic solvents showed modulatory effects on 2,4-dinitrophenol (DNP) mediated inhibition of oxidative phosphorylation with potentiation of the action of DNP. Acetonitrile showed the highest potentiation effect followed by acetone, ethanol, methanol, and DMSO in presence of DNP. The use of organic solvents for investigation of the effects of compounds on oxidative phosphorylation in mitochondria should therefore include the use of relevant concentrations of the organic solvent in order to validate the contribution.

  10. Phosphorylation of the C proteins in heterogeneous ribonucleoprotein (hnRNP) particles in HeLa cells: Characterization of in vivo phosphorylation, comparison with in vitro phosphorylation using casein kinase II, and preliminary studies on the effects of phosphorylation on particle structure

    Energy Technology Data Exchange (ETDEWEB)

    Kleiman, N.J.


    Newly formed pre-messenger RNA associates with protein to form heterogeneous ribonucleoprotein (hnRNP) particles. In HeLa cells, hnRNP particles contain six core proteins. Two proteins, termed C{sub 1} and C{sub 2}, are phosphorylated in vitro by casein kinase 11 (CKII). C{sub 1} protein became {sup 32}P-labeled after HeLa cells were incubated with ({sup 32}P)-orthophosphate in vivo (ibid). Because phosphorylation is a ubiquitous regulatory mechanism, C protein phosphorylation was studied in greater detail. C protein phosphorylation in hnRNP particles was investigated in HeLa cells incubated with ({sup 32}P)-orthophosphate in vivo. Immunoblotting in pH 3.5-10 isoelectric focusing (IEF) gels indicated that C proteins focus only at pH 5.0. In pH 4.5-5.5 IEF gels, individually purified C, and 2 proteins resolve into the same four closely spaced, {sup 32}P-labeled bands. A fifth, unlabeled, more basic species was detached when hnRNP particles were purified without NaF. All {sup 32}P-labeled species contained identical amounts of {sup 32}P per unit protein suggesting that charge heterogeneity is not due to differential phosphorylation. Attempts to detect bound carbohydrate were unsuccessful. {sup 32}P-labeled phosphate was readily removed by potato acid phosphatase. E. coli alkaline phosphatase and snake venom phosphodiesterase were ineffective. {sup 32}P-label was found exclusively in phosphoserine. One-dimensional peptide mapping with chymotrypsin and S. aureus protease detected two phosphorylated peptides. C protein phosphorylation was also investigated in vitro. Incubation of hnRNP particles with rabbit liver CKII and {sup 32}P-ATP followed by IEF in pH 4.5-5.5 gels indicated that all four C protein species were {sup 32}P-labeled. {sup 32}P-label was found exclusively in phosphoserine.

  11. Regulation of HSL serine phosphorylation in skeletal muscle and adipose tissue. (United States)

    Watt, Matthew J; Holmes, Anna G; Pinnamaneni, Srijan K; Garnham, Andrew P; Steinberg, Gregory R; Kemp, Bruce E; Febbraio, Mark A


    Hormone-sensitive lipase (HSL) is important for the degradation of triacylglycerol in adipose and muscle tissue, but the tissue-specific regulation of this enzyme is not fully understood. We investigated the effects of adrenergic stimulation and AMPK activation in vitro and in circumstances where AMPK activity and catecholamines are physiologically elevated in humans in vivo (during physical exercise) on HSL activity and phosphorylation at Ser(563) and Ser(660), the PKA regulatory sites, and Ser(565), the AMPK regulatory site. In human experiments, skeletal muscle, subcutaneous adipose and venous blood samples were obtained before, at 15 and 90 min during, and 120 min after exercise. Skeletal muscle HSL activity was increased by approximately 80% at 15 min compared with rest and returned to resting rates at the cessation of and 120 min after exercise. Consistent with changes in plasma epinephrine, skeletal muscle HSL Ser(563) and Ser(660) phosphorylation were increased by 27% at 15 min (P HSL Ser(565) phosphorylation and AMPK signaling were increased at 90 min during, and after, exercise. Phosphorylation of adipose tissue HSL paralleled changes in skeletal muscle in vivo, except HSL Ser(660) was elevated 80% in adipose compared with 35% in skeletal muscle during exercise. Studies in L6 myotubes and 3T3-L1 adipocytes revealed important tissue differences in the regulation of HSL. AMPK inhibited epinephrine-induced HSL activity in L6 myotubes and was associated with reduced HSL Ser(660) but not Ser(563) phosphorylation. HSL activity was reduced in L6 myotubes expressing constitutively active AMPK, confirming the inhibitory effects of AMPK on HSL activity. Conversely, in 3T3-L1 adipocytes, AMPK activation after epinephrine stimulation did not prevent HSL activity or glycerol release, which coincided with maintenance of HSL Ser(660) phosphorylation. Taken together, these data indicate that HSL activity is maintained in the face of AMPK activation as a result of

  12. Development of a STAT5 phosphorylation assay as a rapid bioassay to assess interleukin-7 potency. (United States)

    Zumpe, C; Engel, K; Wiedemann, N; Metzger, A U; Pischetsrieder, M; Bachmann, C L


    Interleukin (IL)-7 is a cytokine inducing the Janus Kinase (JAK)/Signal Transducer and Activator of Transcription (STAT) pathway. As a consequence of IL-7 activating this pathway, STAT5 is phosphorylated. In pharmaceutical quality control, the potency of biopharmaceuticals is commonly assessed by proliferation assays. This is also possible for IL-7 conjugates. However, the disadvantage of these classical "endpoint-assays" is that they require very long incubation times, up to several days, since they measure the downstream events of a cellular response. As an alternative to this, we developed a rapid intracellular phosphorylation assay, measuring IL-7 induced STAT5 phosphorylation in Kit 225 cells. The Kit 225 human T cell line expresses the IL-7 receptor and is responsive to IL-7, therefore making it a good candidate cell line for assay development. Like the Kinase receptor activation (KIRA) assay, developed by Sadick et al. [1], the STAT5 phosphorylation assay was performed using two separate microtiter plates: the first one for cell stimulation and lysis, the second one for enzyme-linked immuno sorbent assay (ELISA). The assay showed a high accuracy and precision with a mean recovery of 102% and a mean coefficient of variation of 9%. In comparison to the classical proliferation assay, the phosphorylation assay is much faster. Thus, the assay procedure time can at least be reduced from six to three days by using STAT5 phosphorylation instead of proliferation as an endpoint due to the shorter incubation time with IL-7. Moreover, the phosphorylation assay shows a wider dynamic range and higher signal to noise ratios and is thus more robust than the proliferation assay.mAs a consequence, this assay could serve as reliable, accurate, precise and fast alternative to the classical proliferation assay for IL-7. This study also serves as an example for the typical steps during development and qualification / validation of a potency assay for quality control testing.

  13. Effect of organophosphorus insecticides on phosphorylation of the M2 muscarinic acetylcholine receptor

    Institute of Scientific and Technical Information of China (English)

    Shuyin Li; Liming Zou; Carry Pope


    BACKGROUND: Organophosphorus insecticides may promote the accumulation of acetylcholine at synapses and the neuromuscular junction by inhibiting acetylcholinesterase activity to cause disturbance of neural signal conduction and induce a toxic reaction. Organophosphorus insecticides may act on M2 muscarinic acetylcholine receptors, whose combination with G proteins is regulated by phosphorylation of G protein-coupled receptor kinase 2.OBJECTIVE: To investigate the effects of organophosphorus insecticides on the phosphorylation of G protein-coupled receptor kinase 2-mediated M2 muscarinic acetylcholine receptors and to reveal other possible actions of organophosphorus insecticides.DESIGN, TIME AND SETTING: An observational study, which was performed in the Central Laboratory of Shenyang Medical College, and Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University from June 2002 to December 2004.METHODS: The M2 muscarinic acetylcholine receptor was extracted and purified from pig brain using affinity chromatography. Subsequently, the purified M2 muscarinic acetylcholine receptor, G protein-coupled receptor kinase 2, and [OP32] ATP were incubated with different concentrations of paraoxon and chlorpyrifos oxon together. The mixture then underwent polyacrylamide gel electrophoresis, and the gel film was dried and radioactively autographed to detect phosphorylation of the M2 muscarinic acetylcholine receptor. Finally, the radio-labeled phosphorylated M2 receptor protein band was excised for counting with an isotope liquid scintillation counter.MAIN OUTCOME MEASURES: Effects of chlorpyrifos oxon, paraoxon, chlorpyrifos, and parathion in different concentrations on the phosphorylation of the M2 muscarinic acetylcholine receptor; effects of chlorpyrifos oxon on the phosphorylation of the adrenergic receptor.CONCLUSION: Different kinds of organophosphorus insecticides have different effects on the phosphorylation of the G protein

  14. Phosphorylation of PTEN at STT motif is associated with DNA damage response

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Sandip; Mukherjee, Ananda; Karmakar, Parimal, E-mail:


    Highlights: • Phosphorylation PTEN at the C-terminal STT motif is necessary for DNA repair. • DNA damage induces phosphorylation of STT motif of PTEN. • Phospho-PTEN translocates to nucleus after DNA damage. • Phospho-PTEN forms nuclear foci after DNA damage which co localized with γH2AX. - Abstract: Phosphatase and tensin homolog deleted on chromosome Ten (PTEN), a tumor suppressor protein participates in multiple cellular activities including DNA repair. In this work we found a relationship between phosphorylation of carboxy (C)-terminal STT motif of PTEN and DNA damage response. Ectopic expression of C-terminal phospho-mutants of PTEN, in PTEN deficient human glioblastoma cells, U87MG, resulted in reduced viability and DNA repair after etoposide induced DNA damage compared to cells expressing wild type PTEN. Also, after etoposide treatment phosphorylation of PTEN increased at C-terminal serine 380 and threonine 382/383 residues in PTEN positive HEK293T cells and wild type PTEN transfected U87MG cells. One-step further, DNA damage induced phosphorylation of PTEN was confirmed by immunoprecipitation of total PTEN from cellular extract followed by immunobloting with phospho-specific PTEN antibodies. Additionally, phospho-PTEN translocated to nucleus after etoposide treatment as revealed by indirect immunolabeling. Further, phosphorylation dependent nuclear foci formation of PTEN was observed after ionizing radiation or etoposide treatment which colocalized with γH2AX. Additionally, etoposide induced γH2AX, Mre11 and Ku70 foci persisted for a longer period of times in U87MG cells after ectopic expression of PTEN C-terminal phospho-mutant constructs compared to wild type PTEN expressing cells. Thus, our findings strongly suggest that DNA damage induced phosphorylation of C-terminal STT motif of PTEN is necessary for DNA repair.

  15. Fe65 Is Phosphorylated on Ser289 after UV-Induced DNA Damage.

    Directory of Open Access Journals (Sweden)

    Hannah Langlands

    Full Text Available Fe65 undergoes a phosphatase-sensitive gel mobility shift after DNA damage, consistent with protein phosphorylation. A recent study identified Ser228 as a specific site of phosphorylation, targeted by the ATM and ATR protein kinases, with phosphorylation inhibiting the Fe65-dependent transcriptional activity of the amyloid precursor protein (APP. The direct binding of Fe65 to APP not only regulates target gene expression, but also contributes to secretase-mediated processing of APP, producing cytoactive proteolytic fragments including the APP intracellular domain (AICD and cytotoxic amyloid β (Aβ peptides. Given that the accumulation of Aβ peptides in neural plaques is a pathological feature of Alzheimer's disease (AD, it is essential to understand the mechanisms controlling Aβ production. This will aid in the development of potential therapeutic agents that act to limit the deleterious production of Aβ peptides. The Fe65-APP complex has transcriptional activity and the complex is regulated by multiple post-translational modifications and other protein binding partners. In the present study, we have identified Ser289 as a novel site of UV-induced phosphorylation. Interestingly, this phosphorylation was mediated by ATM, rather than ATR, and occurred independently of APP. Neither phosphorylation nor mutation of Ser289 affected the Fe65-APP interaction, though this was markedly decreased after UV treatment, with a concomitant decrease in the protein levels of APP in cells. Using mutagenesis, we demonstrated that Fe65 Ser289 phosphorylation did not affect the transcriptional activity of the Fe65-APP complex, in contrast to the previously described Ser228 site.

  16. Towards the systematic discovery of signal transduction networks using phosphorylation dynamics data

    Directory of Open Access Journals (Sweden)

    Yachie Nozomu


    Full Text Available Abstract Background Phosphorylation is a ubiquitous and fundamental regulatory mechanism that controls signal transduction in living cells. The number of identified phosphoproteins and their phosphosites is rapidly increasing as a result of recent mass spectrometry-based approaches. Results We analyzed time-course phosphoproteome data obtained previously by liquid chromatography mass spectrometry with the stable isotope labeling using amino acids in cell culture (SILAC method. This provides the relative phosphorylation activities of digested peptides at each of five time points after stimulating HeLa cells with epidermal growth factor (EGF. We initially calculated the correlations between the phosphorylation dynamics patterns of every pair of peptides and connected the strongly correlated pairs to construct a network. We found that peptides extracted from the same intracellular fraction (nucleus vs. cytoplasm tended to be close together within this phosphorylation dynamics-based network. The network was then analyzed using graph theory and compared with five known signal-transduction pathways. The dynamics-based network was correlated with known signaling pathways in the NetPath and Phospho.ELM databases, and especially with the EGF receptor (EGFR signaling pathway. Although the phosphorylation patterns of many proteins were drastically changed by the EGF stimulation, our results suggest that only EGFR signaling transduction was both strongly activated and precisely controlled. Conclusions The construction of a phosphorylation dynamics-based network provides a useful overview of condition-specific intracellular signal transduction using quantitative time-course phosphoproteome data under specific experimental conditions. Detailed prediction of signal transduction based on phosphoproteome dynamics remains challenging. However, since the phosphorylation profiles of kinase-substrate pairs on the specific pathway were localized in the dynamics

  17. Claudin-1 required for HCV virus entry has high potential for phosphorylation and O-glycosylation. (United States)

    Ahmad, Waqar; Shabbiri, Khadija; Ijaz, Bushra; Asad, Sultan; Sarwar, Muhammad T; Gull, Sana; Kausar, Humera; Fouzia, Kiran; Shahid, Imran; Hassan, Sajida


    HCV is a leading cause of hepatocellular carcinoma and cirrhosis all over the world. Claudins belong to family of tight junction's proteins that are responsible for establishing barriers for controlling the flow of molecules around cells. For therapeutic strategies, regulation of viral entry into the host cells holds a lot of promise. During HCV infection claudin-1 is highly expressed in liver and believed to be associated with HCV virus entry after HCV binding with or without co-receptor CD81. The claudin-1 assembly with tight junctions is regulated by post translational modifications. During claudins assembly and disassembly with tight junctions, phosphorylation is required at C-terminal tail. In cellular proteins, interplay between phosphorylation and O-β-GlcNAc modification is believed to be functional switch, but it is very difficult to monitor these functional and vibrant changes in vivo. Netphos 2.0 and Disphos 1.3 programs were used for potential phosphorylation; NetPhosK 1.0 and KinasePhos for kinase prediction; and YinOYang 1.2 and OGPET to predict possible O-glycosylation sites. We also identified Yin Yang sites that may have potential for O-β-GlcNAc and phosphorylation interplay at same Ser/Thr residues. We for the first time proposed that alternate phosphorylation and O-β-GlcNAc modification on Ser 192, Ser 205, Ser 206; and Thr 191 may provide an on/off switch to regulate assembly of claudin-1 at tight junctions. In addition these phosphorylation sites may be targeted by novel chemotherapeutic agents to prevent phosphorylation lead by HCV viral entry complex.

  18. Claudin-1 required for HCV virus entry has high potential for phosphorylation and O-glycosylation

    Directory of Open Access Journals (Sweden)

    Fouzia Kiran


    Full Text Available Abstract HCV is a leading cause of hepatocellular carcinoma and cirrhosis all over the world. Claudins belong to family of tight junction's proteins that are responsible for establishing barriers for controlling the flow of molecules around cells. For therapeutic strategies, regulation of viral entry into the host cells holds a lot of promise. During HCV infection claudin-1 is highly expressed in liver and believed to be associated with HCV virus entry after HCV binding with or without co-receptor CD81. The claudin-1 assembly with tight junctions is regulated by post translational modifications. During claudins assembly and disassembly with tight junctions, phosphorylation is required at C-terminal tail. In cellular proteins, interplay between phosphorylation and O-β-GlcNAc modification is believed to be functional switch, but it is very difficult to monitor these functional and vibrant changes in vivo. Netphos 2.0 and Disphos 1.3 programs were used for potential phosphorylation; NetPhosK 1.0 and KinasePhos for kinase prediction; and YinOYang 1.2 and OGPET to predict possible O-glycosylation sites. We also identified Yin Yang sites that may have potential for O-β-GlcNAc and phosphorylation interplay at same Ser/Thr residues. We for the first time proposed that alternate phosphorylation and O-β-GlcNAc modification on Ser 192, Ser 205, Ser 206; and Thr 191 may provide an on/off switch to regulate assembly of claudin-1 at tight junctions. In addition these phosphorylation sites may be targeted by novel chemotherapeutic agents to prevent phosphorylation lead by HCV viral entry complex.

  19. Sensitive targeted quantification of ERK phosphorylation dynamics and stoichiometry in human cells without affinity enrichment. (United States)

    Shi, Tujin; Gao, Yuqian; Gaffrey, Matthew J; Nicora, Carrie D; Fillmore, Thomas L; Chrisler, William B; Gritsenko, Marina A; Wu, Chaochao; He, Jintang; Bloodsworth, Kent J; Zhao, Rui; Camp, David G; Liu, Tao; Rodland, Karin D; Smith, Richard D; Wiley, H Steven; Qian, Wei-Jun


    Targeted mass spectrometry is a promising technology for site-specific quantification of posttranslational modifications. However, a major constraint is the limited sensitivity for quantifying low-abundance PTMs, requiring the use of affinity reagents for enrichment. Herein, we demonstrate the direct site-specific quantification of ERK phosphorylation isoforms (pT, pY, pTpY) and their relative stoichiometry using a sensitive targeted MS approach termed high-pressure, high-resolution separations with intelligent selection, and multiplexing (PRISM). PRISM provides effective enrichment of target peptides into a given fraction from complex mixture, followed by selected reaction monitoring quantification. Direct quantification of ERK phosphorylation in human mammary epithelial cells (HMEC) was demonstrated from as little as 25 μg tryptic peptides from whole cell lysates. Compared to immobilized metal-ion affinity chromatography, PRISM provided ∼10-fold higher signal intensities, presumably due to the better peptide recovery of PRISM. This approach was applied to quantify ERK phosphorylation dynamics in HMEC treated by different doses of epidermal growth factor at both the peak activation (10 min) and steady state (2 h). The maximal ERK activation was observed with 0.3 and 3 ng/mL doses for 10 min and 2 h time points, respectively. The dose-response profiles of individual phosphorylated isoforms showed that singly phosphorylated pT-ERK never increases significantly, while the increase of pY-ERK paralleled that of pTpY-ERK. This data supports for a processive, rather than distributed model of ERK phosphorylation. The PRISM-SRM quantification of protein phosphorylation illustrates the potential for simultaneous quantification of multiple PTMs.

  20. Cell stress promotes the association of phosphorylated HspB1 with F-actin.

    Directory of Open Access Journals (Sweden)

    Joseph P Clarke

    Full Text Available Previous studies have suggested that the small heat shock protein, HspB1, has a direct influence on the dynamics of cytoskeletal elements, in particular, filamentous actin (F-actin polymerization. In this study we have assessed the influence of HspB1 phosphorylation on its interaction(s with F-actin. We first determined the distribution of endogenous non-phosphorylated HspB1, phosphorylated HspB1 and F-actin in neuroendocrine PC12 cells by immunocytochemistry and confocal microscopy. We then investigated a potential direct interaction between HspB1 with F-actin by precipitating F-actin directly with biotinylated phalloidin followed by Western analyses; the reverse immunoprecipitation of HspB1 was also carried out. The phosphorylation influence of HspB1 in this interaction was investigated by using pharmacologic inhibition of p38 MAPK. In control cells, HspB1 interacts with F-actin as a predominantly non-phosphorylated protein, but subsequent to stress there is a redistribution of HspB1 to the cytoskeletal fraction and a significantly increased association of pHspB1 with F-actin. Our data demonstrate HspB1 is found in a complex with F-actin both in phosphorylated and non-phosphorylated forms, with an increased association of pHspB1 with F-actin after heat stress. Overall, our study combines both cellular and biochemical approaches to show cellular localization and direct demonstration of an interaction between endogenous HspB1 and F-actin using methodolgy that specifically isolates F-actin.

  1. Phosphorylation controls the localization and activation of the lumenal carbonic anhydrase in Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Amaya Blanco-Rivero

    Full Text Available BACKGROUND: Cah3 is the only carbonic anhydrase (CA isoform located in the thylakoid lumen of Chlamydomonas reinhardtii. Previous studies demonstrated its association with the donor side of the photosystem II (PSII where it is required for the optimal function of the water oxidizing complex. However this enzyme has also been frequently proposed to perform a critical function in inorganic carbon acquisition and CO(2 fixation and all mutants lacking Cah3 exhibit very poor growth after transfer to low CO(2 conditions. RESULTS/CONCLUSIONS: In the present work we demonstrate that after transfer to low CO(2, Cah3 is phosphorylated and that phosphorylation is correlated to changes in its localization and its increase in activity. When C. reinhardtii wild-type cells were acclimated to limiting CO(2 conditions, the Cah3 activity increased about 5-6 fold. Under these conditions, there were no detectable changes in the level of the Cah3 polypeptide. The increase in activity was specifically inhibited in the presence of Staurosporine, a protein kinase inhibitor, suggesting that the Cah3 protein was post-translationally regulated via phosphorylation. Immunoprecipitation and in vitro dephosphorylation experiments confirm this hypothesis. In vivo phosphorylation analysis of thylakoid polypeptides indicates that there was a 3-fold increase in the phosphorylation signal of the Cah3 polypeptide within the first two hours after transfer to low CO(2 conditions. The increase in the phosphorylation signal was correlated with changes in the intracellular localization of the Cah3 protein. Under high CO(2 conditions, the Cah3 protein was only associated with the donor side of PSII in the stroma thylakoids. In contrast, in cells grown at limiting CO(2 the protein was partly concentrated in the thylakoids crossing the pyrenoid, which did not contain PSII and were surrounded by Rubisco molecules. SIGNIFICANCE: This is the first report of a CA being post

  2. Different modes of endothelial-smooth muscle cell interaction elicit differential β-catenin phosphorylations and endothelial functions. (United States)

    Chang, Shun-Fu; Chen, Li-Jing; Lee, Pei-Ling; Lee, Ding-Yu; Chien, Shu; Chiu, Jeng-Jiann


    β-Catenin phosphorylation plays important roles in modulating its functions, but the effects of different phosphorylated forms of β-catenin in response to heterocellular interaction are unclear. Here we investigated whether distinct modes of phosphorylation on β-catenin could be triggered through heterocellular interactions between endothelial cells (ECs) and smooth muscle cells (SMCs), and the consequent modulation of EC functions. ECs were cocultured with SMCs to initiate direct contact and paracrine interaction. EC-SMC coculture induced EC β-catenin phosphorylations simultaneously at tyrosine 142 (Tyr142) and serine 45/threonine 41 (Ser45/Thr41) at the cytoplasm/nuclei and the membrane, respectively. Treating ECs with SMC-conditional medium induced β-catenin phosphorylation only at Ser45/Thr41. These findings indicate that different phosphorylation effects of EC-SMC coculture were induced through heterocellular direct contact and paracrine effects, respectively. Using specific blocking peptides, antagonists, and siRNAs, we found that the β-catenin Tyr142-phosphorylation was mediated by connexin 43/Fer and that the β-catenin Ser45/Thr41-phosphorylation was mediated by SMC-released bone morphogenetic proteins through VE-cadherin and bone morphogenetic protein receptor-II/Smad5. Transfecting ECs with β-catenin-Tyr142 or -Ser45 mutants showed that these two phosphorylated forms of β-catenin modulate differential EC function: The Tyr142-phosphorylated β-catenin stimulates vascular cell-adhesion molecule-1 expression to increase EC-monocytic adhesion, but the Ser45/Thr41-phosphorylated β-catenin attenuates VE-cadherin-dependent junction structures to increase EC permeability. Our findings provide new insights into the understanding of regulatory complexities of distinct modes of β-catenin phosphorylations under EC-SMC interactions and suggest that different phosphorylated forms of β-catenin play important roles in modulating vascular pathophysiology

  3. Protein kinase CK2 phosphorylates the Fas-associated factor FAF1 in vivo and influences its transport into the nucleus

    DEFF Research Database (Denmark)

    Olsen, Birgitte B; Jessen, Vibeke; Højrup, Peter;


    is phosphorylated in vivo. Furthermore, we analyzed putative physiological functions of FAF1 phosphorylation. The ability of FAF1 to potentiate Fas-induced apoptosis is not influenced by the FAF1 phosphorylation status; however, the nuclear import of a phosphorylation-deficient FAF1 mutant was delayed in comparison...

  4. Proteomic Analysis of Calcium- and Phosphorylation-dependentCalmodulin Complexes in Mammalian Cells

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Deok-Jin; Wang, Daojing


    Protein conformational changes due to cofactor binding (e.g. metal ions, heme) and/or posttranslational modifications (e.g. phosphorylation) modulate dynamic protein complexes. Calmodulin (CaM) plays an essential role in regulating calcium (Ca{sup 2+}) signaling and homeostasis. No systematic approach on the identification of phosphorylation-dependent Ca{sup 2+}/CaM binding proteins has been published. Herein, we report a proteome-wide study of phosphorylation-dependent CaM binding proteins from mammalian cells. This method, termed 'Dynamic Phosphoprotein Complex Trapping', 'DPPC Trapping' for short, utilizes a combination of in vivo and in vitro assays. The basic strategy is to drastically shift the equilibrium towards endogenous phosphorylation of Ser, Thr, and Tyr at the global scale by inhibiting corresponding phosphatases in vivo. The phosphorylation-dependent calmodulin-binding proteins are then trapped in vitro in a Ca{sup 2+}-dependent manner by CaM-Sepharose chromatography. Finally, the isolated calmodulin-binding proteins are separated by SDS-PAGE and identified by LC/MS/MS. In parallel, the phosphorylation-dependent binding is visualized by silver staining and/or Western blotting. Using this method, we selectively identified over 120 CaM-associated proteins including many previously uncharacterized. We verified ubiquitin-protein ligase EDD1, inositol 1, 4, 5-triphosphate receptor type 1 (IP{sub 3}R1), and ATP-dependent RNA helicase DEAD box protein 3 (DDX3), as phosphorylation-dependent CaM binding proteins. To demonstrate the utilities of our method in understanding biological pathways, we showed that pSer/Thr of IP{sub 3}R1 in vivo by staurosporine-sensitive kinase(s), but not by PKA/PKG/PKC, significantly reduced the affinity of its Ca{sup 2+}-dependent CaM binding. However, pSer/Thr of IP{sub 3}R1 did not substantially affect its Ca{sup 2+}-independent CaM binding. We further showed that phosphatase PP1, but not PP2A or PP2B

  5. PKCα-specific phosphorylation of the troponin complex in human myocardium: a functional and proteomics analysis.

    Directory of Open Access Journals (Sweden)

    Viola Kooij

    Full Text Available Protein kinase Cα (PKCα is one of the predominant PKC isoforms that phosphorylate cardiac troponin. PKCα is implicated in heart failure and serves as a potential therapeutic target, however, the exact consequences for contractile function in human myocardium are unclear. This study aimed to investigate the effects of PKCα phosphorylation of cardiac troponin (cTn on myofilament function in human failing cardiomyocytes and to resolve the potential targets involved.Endogenous cTn from permeabilized cardiomyocytes from patients with end-stage idiopathic dilated cardiomyopathy was exchanged (∼69% with PKCα-treated recombinant human cTn (cTn (DD+PKCα. This complex has Ser23/24 on cTnI mutated into aspartic acids (D to rule out in vitro cross-phosphorylation of the PKA sites by PKCα. Isometric force was measured at various [Ca(2+] after exchange. The maximal force (Fmax in the cTn (DD+PKCα group (17.1±1.9 kN/m(2 was significantly reduced compared to the cTn (DD group (26.1±1.9 kN/m(2. Exchange of endogenous cTn with cTn (DD+PKCα increased Ca(2+-sensitivity of force (pCa50 = 5.59±0.02 compared to cTn (DD (pCa50 = 5.51±0.02. In contrast, subsequent PKCα treatment of the cells exchanged with cTn (DD+PKCα reduced pCa50 to 5.45±0.02. Two PKCα-phosphorylated residues were identified with mass spectrometry: Ser198 on cTnI and Ser179 on cTnT, although phosphorylation of Ser198 is very low. Using mass spectrometry based-multiple reaction monitoring, the extent of phosphorylation of the cTnI sites was quantified before and after treatment with PKCα and showed the highest phosphorylation increase on Thr143.PKCα-mediated phosphorylation of the cTn complex decreases Fmax and increases myofilament Ca(2+-sensitivity, while subsequent treatment with PKCα in situ decreased myofilament Ca(2+-sensitivity. The known PKC sites as well as two sites which have not been previously linked to PKCα are phosphorylated in human cTn complex treated

  6. HER2 phosphorylates and destabilizes pro-apoptotic PUMA, leading to antagonized apoptosis in cancer cells. (United States)

    Carpenter, Richard L; Han, Woody; Paw, Ivy; Lo, Hui-Wen


    HER2 is overexpressed in 15-20% of breast cancers. HER2 overexpression is known to reduce apoptosis but the underlying mechanisms for this association remain unclear. To elucidate the mechanisms for HER2-mediated survival, we investigated the relationship between HER2 and p53 upregulated modulator of apoptosis (PUMA), a potent apoptosis inducer. Our results showed that HER2 interacts with PUMA, which was independent of HER2 activation. In addition, we observed that HER2 interacted with PUMA in both mitochondrial and non-mitochondrial compartments. We next examined whether HER2 phosphorylates PUMA. Notably, PUMA tyrosine phosphorylation has never been reported. Using an intracellular assay, we found PUMA to be phosphorylated in breast cancer cells with activated HER2. Via cell-free HER2 kinase assay, we observed that PUMA was directly phosphorylated by HER2. Activation of HER2 decreased PUMA protein half-life. To identify which of the three tyrosines within PUMA are targeted by HER2, we generated three PUMA non-phosphorylation mutants each with a single Tyr→Phe substitution. Results indicated that each PUMA single mutant had lost some, but not all phosphorylation by HER2 indicating that HER2 targets all three tyrosines. Consequently, we created an additional PUMA mutant with all three tyrosines mutated (TM-PUMA) that could not be phosphorylated by HER2. Importantly, TM-PUMA was found to have a longer half-life than PUMA. An inverse association was observed between HER2 and PUMA in 93 invasive breast carcinoma samples. We further found that TM-PUMA suppressed growth of breast cancer cells to a greater degree than PUMA. Also, TM-PUMA had a stronger propensity to induce apoptosis than PUMA. Together, our results demonstrate, for the first time, that PUMA can be tyrosine phosphorylated and that HER2-mediated phosphorylation destabilizes PUMA protein. The HER2-PUMA interplay represents a novel mechanism by which PUMA is regulated and a new molecular basis for HER2

  7. CDK2 Regulates HIV-1 Transcription by Phosphorylation of CDK9 on Serine 90

    Directory of Open Access Journals (Sweden)

    Breuer Denitra


    Full Text Available Abstract Background HIV-1 transcription is activated by the viral Tat protein that recruits host positive transcription elongation factor-b (P-TEFb containing CDK9/cyclin T1 to the HIV-1 promoter. P-TEFb in the cells exists as a lower molecular weight CDK9/cyclin T1 dimer and a high molecular weight complex of 7SK RNA, CDK9/cyclin T1, HEXIM1 dimer and several additional proteins. Our previous studies implicated CDK2 in HIV-1 transcription regulation. We also found that inhibition of CDK2 by iron chelators leads to the inhibition of CDK9 activity, suggesting a functional link between CDK2 and CDK9. Here, we investigate whether CDK2 phosphorylates CDK9 and regulates its activity. Results The siRNA-mediated knockdown of CDK2 inhibited CDK9 kinase activity and reduced CDK9 phosphorylation. Stable shRNA-mediated CDK2 knockdown inhibited HIV-1 transcription, but also increased the overall level of 7SK RNA. CDK9 contains a motif (90SPYNR94 that is consensus CDK2 phosphorylation site. CDK9 was phosphorylated on Ser90 by CDK2 in vitro. In cultured cells, CDK9 phosphorylation was reduced when Ser90 was mutated to an Ala. Phosphorylation of CDK9 on Ser90 was also detected with phospho-specific antibodies and it was reduced after the knockdown of CDK2. CDK9 expression decreased in the large complex for the CDK9-S90A mutant and was correlated with a reduced activity and an inhibition of HIV-1 transcription. In contrast, the CDK9-S90D mutant showed a slight decrease in CDK9 expression in both the large and small complexes but induced Tat-dependent HIV-1 transcription. Molecular modeling showed that Ser 90 of CDK9 is located on a flexible loop exposed to solvent, suggesting its availability for phosphorylation. Conclusion Our data indicate that CDK2 phosphorylates CDK9 on Ser 90 and thereby contributes to HIV-1 transcription. The phosphorylation of Ser90 by CDK2 represents a novel mechanism of HIV-1 regulated transcription and provides a new strategy for

  8. In Vivo Phosphorylation Site Mapping and Functional Characterization of Arabidopsis Phototropin 1

    Institute of Scientific and Technical Information of China (English)

    Stuart Sullivan; Catriona E. Thomson; Douglas J.Lamont; Matthew A. Jones; John M.Christie


    Phototropins (phot1 and phot2) are blue-light receptor kinases controlling a range of responses that optimize the photosynthetic efficiency of plants. Light sensing is mediated by two flavin-binding motifs, known as LOV1 and LOV2,located within the N-terminal region of the protein. Photoexcitation via LOV2 leads to activation of the C-terminal kinase domain and consequently receptor autophosphorylation. However, knowledge of the in-vivo phosphorylation sites for Arabidopsis phototropins is lacking and has impeded progress in elucidating the functional significance of receptor phosphorylation. We have purified phot1 from Arabidopsis and identified the in-vivo sites of receptor phosphorylation by liquid chromatography tandem mass spectrometry. Arabidopsis-derived phot1 binds flavin mononucleotide as chromophore and is phosphorylated at four major sites located upstream of LOV2 (Ser58, Ser85, Ser350, and Ser410), three of which are induced by blue light. Nevertheless, structure-function analysis indicates that the biological activity of phot1 can be attributed to a modular unit comprising the LOV2-kinase region of the protein. Thus, peptide regions upstream of LOV2, including the sites of receptor phosphorylation identified here, do not appear to be important for receptor signaling. By contrast, these regions may be necessary for maximizing stomatal performance and possibly light-induced relocalization of phot1.

  9. Cyclin A-Cdk2 Phosphorylates BH3 only Protein Bad in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    HE Kan; CHEN Yue; LI Jing-hua; ZHAN Zhuo; WU Yong-ge; KONG Wei; JIN Ying-hua


    Increasing evidence suggests that Cyclin A-Cdk2 activity is required in the apoptosis process induced by various stimuli. To determine a specific substrate of Cyclin A-Cdk2 for apoptosis, in this study, we carried out anin vitro kinase assay using immunoprecipitated complex Cyclin A-Cdk2 as an enzyme source, and recombinant protein GST-Bad as a substrate. Our study showed that Bad was clearly phosphorylated by Cyclin A-Cdk2 in vitro. To examine whether protein Bad can also be phosphorylated by Cyclin A-Cdk2 kinase in vivo, we transiently overexpressed protein Bad with Cyclin A or Cdk2-dn, a dominant negative version of Cdk2, in Hela cells and determined the phosphorylation status of protein Bad. The test showed that protein Bad was clearly phosphorylated in Cyclin A overexpressed cells,but not in Cdk2-dn or mock transfectent. Moreover, etoposide also caused the phosphorylation of endogenetic Bad. In conclusion, here we provide first time evidence that protein Bad can be a substrate of Cyclin A-Cdk2 apoptosis for in vitro and in vivo.

  10. Zinc ions and alkaline pH alter the phosphorylation state of human erythrocyte membrane proteins

    Energy Technology Data Exchange (ETDEWEB)

    Fennell, R.L. Jr.


    Since the phosphorylation state of the red cell membrane proteins in vitro is likely to be regulated by phosphorylation and dephosphorylation, this research was carried out to investigate the possible role of membrane-bound phosphatase activities. These studies were conducted with red blood cell ghosts and IOVs from normal individuals and from an individual with hereditary spherocytosis. In vitro phosphorylation with ({gamma}-{sup 32}P) ATP was conducted in the presence and the absence of Zn{sup ++}, or erythrocyte ghosts and IOVs were pretreated for 30 minutes at 37{degree}C and pH 7-11 in the presence and the absence of calf intestine alkaline phosphatase. The resulting phosphoproteins were analyzed by SDS-polyacrylamide gel electrophoresis, stained with Coomassie blue, and fluorographed. In the presence of Zn{sup ++}, the red blood ghosts, with or without pretreatment, demonstrated enhanced phosphorylation of membrane proteins, including band 4.2. Preincubation at pH 10 in the presence of absence of exogenous phosphatase further stimulates phosphorylation of these proteins. Under similar conditions, the erythrocyte membranes also demonstrated the ability to hydrolyze p-nitrophenyl phosphate and to remove {sup 32}P from red blood cell phosphoproteins.

  11. TBK1 controls autophagosomal engulfment of polyubiquitinated mitochondria through p62/SQSTM1 phosphorylation. (United States)

    Matsumoto, Gen; Shimogori, Tomomi; Hattori, Nobutaka; Nukina, Nobuyuki


    Selective autophagy adaptor proteins, including p62/SQSTM1, play pivotal roles in the targeted degradation of ubiquitinated proteins or organelles through the autophagy-lysosome system. However, how autophagy adaptors promote the autophagosomal engulfment of selected substrates is poorly understood. Here, we show that p62 phosphorylation at S403 is required for the efficient autophagosomal engulfment of polyubiquitinated mitochondria during Parkin-dependent mitophagy. p62 is able to interact with Parkin-recruited mitochondria without S403 phosphorylation under mitophagy-inducing conditions, but those mitochondria are not enclosed by autophagosomes. Intriguingly, the S403 phosphorylation occurs only in the early period of mitochondrial depolarization. Optineurin and TANK-binding kinase 1 (TBK1) are transiently recruited to the polyubiquitinated mitochondria, and the activated TBK1 phosphorylates p62 at S403. TBK1 inhibitor, BX795, prevents the p62-mediated autophagosomal engulfment of Parkin-recruited mitochondria. Our results suggest that TBK1-mediated S403 phosphorylation regulates the efficient autophagosomal engulfment of ubiquitinated mitochondria as an immediate response to the mitochondrial depolarization.

  12. The Serine/threonine kinase Stk33 exhibits autophosphorylation and phosphorylates the intermediate filament protein Vimentin

    Directory of Open Access Journals (Sweden)

    Herrmann Harald


    Full Text Available Abstract Background Colocalization of Stk33 with vimentin by double immunofluorescence in certain cells indicated that vimentin might be a target for phosphorylation by the novel kinase Stk33. We therefore tested in vitro the ability of Stk33 to phosphorylate recombinant full length vimentin and amino-terminal truncated versions thereof. In order to prove that Stk33 and vimentin are also in vivo associated proteins co-immunoprecipitation experiments were carried out. For testing the enzymatic activity of immunoprecipitated Stk33 we incubated precipitated Stk33 with recombinant vimentin proteins. To investigate whether Stk33 binds directly to vimentin, an in vitro co-sedimentation assay was performed. Results The results of the kinase assays demonstrate that Stk33 is able to specifically phosphorylate the non-α-helical amino-terminal domain of vimentin in vitro. Furthermore, co-immunoprecipitation experiments employing cultured cell extracts indicate that Stk33 and vimentin are associated in vivo. Immunoprecipitated Stk33 has enzymatic activity as shown by successful phosphorylation of recombinant vimentin proteins. The results of the co-sedimentation assay suggest that vimentin binds directly to Stk33 and that no additional protein mediates the association. Conclusion We hypothesize that Stk33 is involved in the in vivo dynamics of the intermediate filament cytoskeleton by phosphorylating vimentin.

  13. A role for Raptor phosphorylation in the mechanical activation of mTOR signaling. (United States)

    Frey, John W; Jacobs, Brittany L; Goodman, Craig A; Hornberger, Troy A


    The activation of mTOR signaling is necessary for mechanically-induced changes in skeletal muscle mass, but the mechanisms that regulate the mechanical activation of mTOR signaling remain poorly defined. In this study, we set out to determine if changes in the phosphorylation of Raptor contribute to the mechanical activation of mTOR. To accomplish this goal, mouse skeletal muscles were subjected to mechanical stimulation via a bout of eccentric contractions (EC). Using mass spectrometry and Western blot analysis, we found that ECs induced an increase in Raptor S696, T706, and S863 phosphorylation, and this effect was not inhibited by rapamycin. This observation suggested that changes in Raptor phosphorylation might be an upstream event in the pathway through which mechanical stimuli activate mTOR. To test this, we employed a phospho-defective mutant of Raptor (S696A/T706A/S863A) and found that the EC-induced activation of mTOR signaling was significantly blunted in muscles expressing this mutant. Furthermore, mutation of the three phosphorylation sites altered the interactions of Raptor with PRAS40 and p70(S6k), and it also prevented the EC-induced dissociation of Raptor from p70(S6k). Combined, these results suggest that changes in the phosphorylation of Raptor play an important role in the pathway through which mechanical stimuli activate mTOR signaling.

  14. IκB kinase phosphorylation of SNAP-23 controls platelet secretion. (United States)

    Karim, Zubair A; Zhang, Jinchao; Banerjee, Meenakshi; Chicka, Michael C; Al Hawas, Rania; Hamilton, Tara R; Roche, Paul A; Whiteheart, Sidney W


    Platelet secretion plays a key role in thrombosis, thus the platelet secretory machinery offers a unique target to modulate hemostasis. We report the regulation of platelet secretion via phosphorylation of SNAP-23 at Ser95. Phosphorylation of this t-soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) occurs upon activation of known elements of the platelet signaling cascades (ie, phospholipase C, [Ca(2+)]i, protein kinase C) and requires IκB kinase (IKK)-β. Other elements of the nuclear factor κB/IκB cascade (ie, IKK-α,-β,-γ/NEMO and CARMA/MALT1/Bcl10 complex) are present in anucleate platelets and IκB is phosphorylated upon activation, suggesting that this pathway is active in platelets and implying a nongenomic role for IKK. Inhibition of IKK-β, either pharmacologically (with BMS-345541, BAY11-7082, or TPCA-1) or by genetic manipulation (platelet factor 4 Cre:IKK-β(flox/flox)), blocked SNAP-23 phosphorylation, platelet secretion, and SNARE complex formation; but, had no effect on platelet morphology or other metrics of platelet activation. Consistently, SNAP-23 phosphorylation enhanced membrane fusion of SNARE-containing proteoliposomes. In vivo studies with IKK inhibitors or platelet-specific IKK-β knockout mice showed that blocking IKK-β activity significantly prolonged tail bleeding times, suggesting that currently available IKK inhibitors may affect hemostasis.

  15. Dynamin Reduces Pyk2 Y402 Phosphorylation and Src Binding in Osteoclasts ▿ † (United States)

    Bruzzaniti, Angela; Neff, Lynn; Sandoval, Amanda; Du, Liping; Horne, William C.; Baron, Roland


    Signaling via the Pyk2-Src-Cbl complex downstream of integrins contributes to the assembly, organization, and dynamics of podosomes, which are the transient adhesion complexes of highly motile cells such as osteoclasts and dendritic cells. We previously demonstrated that the GTPase dynamin is associated with podosomes, regulates actin flux in podosomes, and promotes bone resorption by osteoclasts. We report here that dynamin associates with Pyk2, independent of dynamin's GTPase activity, and reduces Pyk2 Y402 phosphorylation in a GTPase-dependent manner, leading to decreased Src binding to Pyk2. Overexpressing dynamin decreased the macrophage colony-stimulating factor- and adhesion-induced phosphorylation of Pyk2 in osteoclastlike cells, suggesting that dynamin is likely to regulate Src-Pyk2 binding downstream of integrins and growth factor receptors with important cellular consequences. Furthermore, catalytically active Src promotes dynamin-Pyk2 association, and mutating specific Src-phosphorylated tyrosine residues in dynamin blunts the dynamin-induced decrease in Pyk2 phosphorylation. Thus, since Src binds to Pyk2 through its interaction with phospho-Y402, our results suggest that Src activates a negative-feedback loop downstream of integrin engagement and other stimuli by promoting both the binding of dynamin to Pyk2-containing complexes and the dynamin-dependent decrease in Pyk2 Y402 phosphorylation, ultimately leading to the dissociation of Src from Pyk2. PMID:19380485

  16. Dynamin reduces Pyk2 Y402 phosphorylation and SRC binding in osteoclasts. (United States)

    Bruzzaniti, Angela; Neff, Lynn; Sandoval, Amanda; Du, Liping; Horne, William C; Baron, Roland


    Signaling via the Pyk2-Src-Cbl complex downstream of integrins contributes to the assembly, organization, and dynamics of podosomes, which are the transient adhesion complexes of highly motile cells such as osteoclasts and dendritic cells. We previously demonstrated that the GTPase dynamin is associated with podosomes, regulates actin flux in podosomes, and promotes bone resorption by osteoclasts. We report here that dynamin associates with Pyk2, independent of dynamin's GTPase activity, and reduces Pyk2 Y402 phosphorylation in a GTPase-dependent manner, leading to decreased Src binding to Pyk2. Overexpressing dynamin decreased the macrophage colony-stimulating factor- and adhesion-induced phosphorylation of Pyk2 in osteoclastlike cells, suggesting that dynamin is likely to regulate Src-Pyk2 binding downstream of integrins and growth factor receptors with important cellular consequences. Furthermore, catalytically active Src promotes dynamin-Pyk2 association, and mutating specific Src-phosphorylated tyrosine residues in dynamin blunts the dynamin-induced decrease in Pyk2 phosphorylation. Thus, since Src binds to Pyk2 through its interaction with phospho-Y402, our results suggest that Src activates a negative-feedback loop downstream of integrin engagement and other stimuli by promoting both the binding of dynamin to Pyk2-containing complexes and the dynamin-dependent decrease in Pyk2 Y402 phosphorylation, ultimately leading to the dissociation of Src from Pyk2.

  17. Enhancement of tunability of MAPK cascade due to coexistence of processive and distributive phosphorylation mechanisms. (United States)

    Sun, Jianqiang; Yi, Ming; Yang, Lijian; Wei, Wenbin; Ding, Yiming; Jia, Ya


    The processive phosphorylation mechanism becomes important when there is macromolecular crowding in the cytoplasm. Integrating the processive phosphorylation mechanism with the traditional distributive one, we propose a mixed dual-site phosphorylation (MDP) mechanism in a single-layer phosphorylation cycle. Further, we build a degree model by applying the MDP mechanism to a three-layer mitogen-activated protein kinase (MAPK) cascade. By bifurcation analysis, our study suggests that the crowded-environment-induced pseudoprocessive mechanism can qualitatively change the response of this biological network. By adjusting the degree of processivity in our model, we find that the MAPK cascade is able to switch between the ultrasensitivity, bistability, and oscillatory dynamical states. Sensitivity analysis shows that the theoretical results remain unchanged within a reasonably chosen variation of parameter perturbation. By scaling the reaction rates and also introducing new connections into the kinetic scheme, we further construct a proportion model of the MAPK cascade to validate our findings. Finally, it is illustrated that the spatial propagation of the activated MAPK signal can be improved (or attenuated) by increasing the degree of processivity of kinase (or phosphatase). Our research implies that the MDP mechanism makes the MAPK cascade become a flexible signal module, and the coexistence of processive and distributive phosphorylation mechanisms enhances the tunability of the MAPK cascade.

  18. Structural Mechanism for Regulation of Bcl-2 protein Noxa by phosphorylation. (United States)

    Karim, Christine B; Espinoza-Fonseca, L Michel; James, Zachary M; Hanse, Eric A; Gaynes, Jeffrey S; Thomas, David D; Kelekar, Ameeta


    We showed previously that phosphorylation of Noxa, a 54-residue Bcl-2 protein, at serine 13 (Ser13) inhibited its ability to promote apoptosis through interactions with canonical binding partner, Mcl-1. Using EPR spectroscopy, molecular dynamics (MD) simulations and binding assays, we offer evidence that a structural alteration caused by phosphorylation partially masks Noxa's BH3 domain, inhibiting the Noxa-Mcl-1 interaction. EPR of unphosphorylated Noxa, with spin-labeled amino acid TOAC incorporated within the BH3 domain, revealed equilibrium between ordered and dynamically disordered states. Mcl-1 further restricted the ordered component for non-phosphorylated Noxa, but left the pSer13 Noxa profile unchanged. Microsecond MD simulations indicated that the BH3 domain of unphosphorylated Noxa is housed within a flexible loop connecting two antiparallel β-sheets, flanked by disordered N- and C-termini and Ser13 phosphorylation creates a network of salt-bridges that facilitate the interaction between the N-terminus and the BH3 domain. EPR showed that a spin label inserted near the N-terminus was weakly immobilized in unphosphorylated Noxa, consistent with a solvent-exposed helix/loop, but strongly constrained in pSer13 Noxa, indicating a more ordered peptide backbone, as predicted by MD simulations. Together these studies reveal a novel mechanism by which phosphorylation of a distal serine inhibits a pro-apoptotic BH3 domain and promotes cell survival.

  19. Molecular dynamics simulation on HP1 protein binding by histone H3 tail methylation and phosphorylation (United States)

    Jiang, Yan-Ke; Zou, Jian-Wei; Wu, Yu-Qian; Zhang, Na; Yu, Qing-Sen; Jiang, Yong-Jun

    Trimethylation of histone H3 lysine 9 is important for recruiting heterochromatin protein 1 (HP1) to discrete regions of the genome, thereby regulating gene expression, chromatin packaging, and heterochromatin formation. Phosphorylation of histone H3 has been linked with mitotic chromatin condensation. During mitosis in vivo, H3 lysine 9 methylation and serine 10 phosphorylation can occur concomitantly on the same histone tail, whereas the influence of phosphorylation to trimethylation H3 tail recruiting HP1 remains controversial. In this work, molecular dynamics simulation of HP1 complexed with both trimethylated and phosphorylated H3 tail were performed and compared with the results from the previous methylated H3-HP1 trajectory. It is clear from the 10-ns dynamics simulation that two adjacent posttranslational modifications directly increase the flexibility of the H3 tail and weaken HP1 binding to chromatin. A combinatorial readout of two adjacent posttranslational modifications-a stable methylation and a dynamic phosphorylation mark-establish a regulatory mechanism of protein-protein interactions.

  20. The Fanconi Anemia C Protein Binds to and Regulates Stathmin-1 Phosphorylation. (United States)

    Magron, Audrey; Elowe, Sabine; Carreau, Madeleine


    The Fanconi anemia (FA) proteins are involved in a signaling network that assures the safeguard of chromosomes. To understand the function of FA proteins in cellular division events, we investigated the interaction between Stathmin-1 (STMN1) and the FA group C (FANCC) protein. STMN1 is a ubiquitous cytosolic protein that regulates microtubule dynamics. STMN1 activities are regulated through phosphorylation-dephosphorylation mechanisms that control assembly of the mitotic spindle, and dysregulation of STMN1 phosphorylation is associated with mitotic aberrancies leading to chromosome instability and cancer progression. Using different biochemical approaches, we showed that FANCC interacts and co-localizes with STMN1 at centrosomes during mitosis. We also showed that FANCC is required for STMN1 phosphorylation, as mutations in FANCC reduced serine 16- and 38-phosphorylated forms of STMN1. Phosphorylation of STMN1 at serine 16 is likely an event dependent on a functional FA pathway, as it is reduced in FANCA- and FANCD2-mutant cells. Furthermore, FA-mutant cells exhibited mitotic spindle anomalies such as supernumerary centrosomes and shorter mitotic spindles. These results suggest that FA proteins participate in the regulation of cellular division via the microtubule-associated protein STMN1.

  1. The Fanconi Anemia C Protein Binds to and Regulates Stathmin-1 Phosphorylation.

    Directory of Open Access Journals (Sweden)

    Audrey Magron

    Full Text Available The Fanconi anemia (FA proteins are involved in a signaling network that assures the safeguard of chromosomes. To understand the function of FA proteins in cellular division events, we investigated the interaction between Stathmin-1 (STMN1 and the FA group C (FANCC protein. STMN1 is a ubiquitous cytosolic protein that regulates microtubule dynamics. STMN1 activities are regulated through phosphorylation-dephosphorylation mechanisms that control assembly of the mitotic spindle, and dysregulation of STMN1 phosphorylation is associated with mitotic aberrancies leading to chromosome instability and cancer progression. Using different biochemical approaches, we showed that FANCC interacts and co-localizes with STMN1 at centrosomes during mitosis. We also showed that FANCC is required for STMN1 phosphorylation, as mutations in FANCC reduced serine 16- and 38-phosphorylated forms of STMN1. Phosphorylation of STMN1 at serine 16 is likely an event dependent on a functional FA pathway, as it is reduced in FANCA- and FANCD2-mutant cells. Furthermore, FA-mutant cells exhibited mitotic spindle anomalies such as supernumerary centrosomes and shorter mitotic spindles. These results suggest that FA proteins participate in the regulation of cellular division via the microtubule-associated protein STMN1.

  2. Cdk9 T-loop phosphorylation is regulated by the calcium signaling pathway. (United States)

    Ramakrishnan, Rajesh; Rice, Andrew P


    Eukaryotic RNA polymerase II transcriptional elongation is a tightly regulated process and is dependent upon positive transcription elongation factor-b (P-TEFb). The core P-TEFb complex is composed of Cdk9 and Cyclin T and is essential for the expression of most protein coding genes. Cdk9 kinase function is dependent upon phosphorylation of Thr186 in its T-loop. In this study, we examined kinases and signaling pathways that influence Cdk9 T-loop phosphorylation. Using an RNAi screen in HeLa cells, we found that Cdk9 T-loop phosphorylation is regulated by Ca(2+)/calmodulin-dependent kinase 1D (CaMK1D). Using small molecules inhibitors in HeLa cells and primary CD4(+) T lymphocytes, we found that the Ca(2+) signaling pathway is required for Cdk9 T-loop phosphorylation. Inhibition of Ca(2+) signaling led to dephosphorylation of Thr186 on Cdk9. In reporter plasmid assays, inhibition of the Ca(2+) signaling pathway repressed the PCNA promoter and HIV-1 Tat transactivation of the HIV-1 LTR, but not HTLV-1 Tax transactivation of the HTLV-1 LTR, suggesting that perturbation of the Ca(2+) pathway and reduction of Cdk9 T-loop phosphorylation inhibits transcription units that have a rigorous requirement for P-TEFb function.

  3. Neuroinflammation is not a prerequisite for diabetes-induced tau phosphorylation

    Directory of Open Access Journals (Sweden)

    Judith M Van Der Harg


    Full Text Available Abnormal phosphorylation and aggregation of tau is a key hallmark of Alzheimer's disease (AD. AD is a multifactorial neurodegenerative disorder for which Diabetes Mellitus (DM is a risk factor. In animal models for DM, the phosphorylation and aggregation of tau is induced or exacerbated, however the underlying mechanism is unknown. In addition to the metabolic dysfunction, DM is characterized by chronic low-grade inflammation. This was reported to be associated with a neuroinflammatory response in the hypothalamus of DM animal models. Neuroinflammation is also implicated in the development and progression of AD. It is unknown whether DM also induces neuroinflammation in brain areas affected in AD, the cortex and hippocampus. Here we investigated whether neuroinflammation could be the mechanistic trigger to induce tau phosphorylation in the brain of DM animals. Two distinct diabetic animal models were used; rats on free-choice high-fat high-sugar (fcHFHS diet that are insulin resistant and streptozotocin-treated rats that are insulin deficient. The streptozotocin-treated animals demonstrated increased tau phosphorylation in the brain as expected, whereas the fcHFHS diet fed animals did not. Remarkably, neither of the diabetic animal models showed reactive microglia or increased GFAP and COX-2 levels in the cortex or hippocampus. From this, we conclude: 1. DM does not induce neuroinflammation in brain regions affected in AD, and 2. Neuroinflammation is not a prerequisite for tau phosphorylation. Neuroinflammation is therefore not the mechanism that explains the close connection between DM and AD.

  4. Dexmedetomidine-Induced Contraction Involves CPI-17 Phosphorylation in Isolated Rat Aortas (United States)

    Ok, Seong-Ho; Kwon, Seong-Chun; Baik, Jiseok; Hong, Jeong-Min; Oh, Jiah; Han, Jeong Yeol; Sohn, Ju-Tae


    Dexmedetomidine, a highly selective α-2 adrenoceptor agonist, produces vasoconstriction, which leads to transiently increased blood pressure. The goal of this study was to investigate specific protein kinases and the associated cellular signal pathways responsible for the increased calcium sensitization induced by dexmedetomidine in isolated rat aortas, with a particular focus on phosphorylation-dependent inhibitory protein of myosin phosphatase (CPI-17). The effect of Y-27632 and chelerythrine on the dexmedetomidine-induced intracellular calcium concentration ([Ca2+]i) and tension were assessed using fura-2-loaded aortic strips. The effects of rauwolscine, Y-27632, chelerythrine, and ML-7 hydrochloride on the dexmedetomidine-induced phosphorylation of CPI-17 or of the 20-kDa regulatory light chain of myosin (MLC20) were investigated in rat aortic vascular smooth muscle cells. The effects of rauwolscine, Y-27632, and chelerythrine on the membrane translocation of Rho-kinase and protein kinase C (PKC) phosphorylation induced by dexmedetomidine were assessed. Y-27632 and chelerythrine each reduced the slopes of the [Ca2+]i-tension curves of dexmedetomidine-induced contraction, and Y-27632 more strongly reduced these slopes than did chelerythrine. Rauwolscine, Y-27632, chelerythrine, and ML-7 hydrochloride attenuated the dexmedetomidine-induced phosphorylation of CPI-17 and MLC20. Taken together, these results suggest that dexmedetomidine-induced contraction involves calcium sensitization, which appears to be mediated by CPI-17 phosphorylation via Rho-kinase or PKC. PMID:27706026

  5. Structure of phosphorylated UBL domain and insights into PINK1-orchestrated parkin activation. (United States)

    Aguirre, Jacob D; Dunkerley, Karen M; Mercier, Pascal; Shaw, Gary S


    Mutations in PARK2 and PARK6 genes are responsible for the majority of hereditary Parkinson's disease cases. These genes encode the E3 ubiquitin ligase parkin and the protein kinase PTEN-induced kinase 1 (PINK1), respectively. Together, parkin and PINK1 regulate the mitophagy pathway, which recycles damaged mitochondria following oxidative stress. Native parkin is inactive and exists in an autoinhibited state mediated by its ubiquitin-like (UBL) domain. PINK1 phosphorylation of serine 65 in parkin's UBL and serine 65 of ubiquitin fully activate ubiquitin ligase activity; however, a structural rationale for these observations is not clear. Here, we report the structure of the phosphorylated UBL domain from parkin. We find that destabilization of the UBL results from rearrangements to hydrophobic core packing that modify its structure. Altered surface electrostatics from the phosphoserine group disrupt its intramolecular association, resulting in poorer autoinhibition in phosphorylated parkin. Further, we show that phosphorylation of both the UBL domain and ubiquitin are required to activate parkin by releasing the UBL domain, forming an extended structure needed to facilitate E2-ubiquitin binding. Together, the results underscore the importance of parkin activation by the PINK1 phosphorylation signal and provide a structural picture of the unraveling of parkin's ubiquitin ligase potential.

  6. Cdk1/cyclin B-mediated phosphorylation stabilizes SREBP1 during mitosis. (United States)

    Bengoechea-Alonso, Maria T; Ericsson, Johan


    Members of the sterol regulatory element-binding protein (SREBP) family of transcription factors control the biosynthesis of cholesterol and other lipids, and lipid synthesis is critical for cell growth and proliferation. We recently found that the mature forms of SREBP1a and SREBP1c are hyperphosphorylated in mitotic cells, giving rise to a phosphoepitope recognized by the mitotic protein monoclonal-2 (MPM-2) antibody. In addition, we found that mature SREBP1 was stabilized in a phosphorylation-dependent manner during mitosis. We have now mapped the major MPM-2 epitope to a serine residue, S439, in the C terminus of mature SREBP1. Using phosphorylation-specific antibodies, we demonstrate that endogenous SREBP1 is phosphorylated on S439 specifically during mitosis. Mature SREBP1 interacts with the Cdk1/cyclin B complex in mitotic cells and we demonstrate that Cdk1 phosphorylates S439, both in vitro and in vivo. Our results suggest that Cdk1-mediated phosphorylation of S439 stabilizes mature SREBP1 during mitosis, thereby preserving a critical pool of active transcription factors to support lipid synthesis. Taken together with our previous work, the current study suggests that SREBP1 may provide a link between lipid synthesis, proliferation and cell growth. This hypothesis was supported by our observation that siRNA-mediated inactivation of SREBP1 arrested cells in the G(1) phase of the cell cycle, thereby attenuating cell growth.

  7. Regulation of dendritogenesis by ZBP1 depends on its phosphorylation at Ser181

    Directory of Open Access Journals (Sweden)

    Anna Sara Urbanska


    Full Text Available Zipcode Binding Protein 1 (ZBP1 is one of proteins involved in local translation, a mechanism present in polarized cells, enabling rapid, localized protein synthesis in response to extracellular stimuli. It was previously shown that in neurons, processes coordinated by ZBP1 are indispensable for proper axonal growth cone and spine formation. We recently showed that developing neurons with overexpressed or knockdown ZBP1 cannot obtain proper morphology. We also proved that phosphorylation of ZBP1 by Src kinase is needed for proper dendritic branching [1]. Subsequently, we asked a question about other regulators of ZBP1 during dendritogenesis. Now, we demonstrate that ZBP1 is effectively phosphorylated in vitro by mTOR kinase. We took advantage of recently published data regarding potential mTOR-dependent phosphorylation sites in ZBP1 i.e. Ser181 [2] and examined role of this phosphorylation in (i dendritic arborization and (ii cellular distribution of ZBP1. To address these questions, we constructed non-phosphorable (S181A and phosphomimicking (S181E mutants of ZBP1 fused to GFP. We observed that S181E but not S181A reversed morphological deficits caused by ZBP1 knockdown. Another observation was that distribution along the dendrites of non-phosphorable mutant was more even than distribution of wild type ZBP1, which is denser at the dendritic branching points. Thus, we concluded that Ser181 phosphorylation is involved in ZBP1 functions during dendritic growth.

  8. Tyrosine phosphorylation of Munc18c on residue 521 abrogates binding to Syntaxin 4

    Directory of Open Access Journals (Sweden)

    Bryant Nia J


    Full Text Available Abstract Background Insulin stimulates exocytosis of GLUT4 from an intracellular store to the cell surface of fat and muscle cells. Fusion of GLUT4-containing vesicles with the plasma membrane requires the SNARE proteins Syntaxin 4, VAMP2 and the regulatory Sec1/Munc18 protein, Munc18c. Syntaxin 4 and Munc18c form a complex that is disrupted upon insulin treatment of adipocytes. Munc18c is tyrosine phosphorylated in response to insulin in these cells. Here, we directly test the hypothesis that tyrosine phosphorylation of Munc18c is responsible for the observed insulin-dependent abrogation of binding between Munc18c and Syntaxin 4. Results We show that Munc18c is directly phosphorylated by recombinant insulin receptor tyrosine kinase in vitro. Using pull-down assays, we show that phosphorylation abrogates binding of Munc18c to both Syntaxin 4 and the v-SNARE VAMP2, as does the introduction of a phosphomimetic mutation into Munc18c (Y521E. Conclusion Our data indicate that insulin-stimulated tyrosine phosphorylation of Munc18c impairs the ability of Munc18c to bind its cognate SNARE proteins, and may therefore represent a regulatory step in GLUT4 traffic.

  9. Diagnosis and prognosis of male infertility in mammal: the focusing of tyrosine phosphorylation and phosphotyrosine proteins. (United States)

    Kwon, Woo-Sung; Rahman, Md Saidur; Pang, Myung-Geol


    Male infertility refers to the inability of a man to achieve a pregnancy in a fertile female. In more than one-third of cases, infertility arises due to the male factor. Therefore, developing strategies for the diagnosis and prognosis of male infertility is critical. Simultaneously, a satisfactory model for the cellular mechanisms that regulate normal sperm function must be established. In this regard, tyrosine phosphorylation is one of the most common mechanisms through which several signal transduction pathways are adjusted in spermatozoa. It regulates the various aspects of sperm function, for example, motility, hyperactivation, capacitation, the acrosome reaction, fertilization, and beyond. Several recent large-scale studies have identified the proteins that are phosphorylated in spermatozoa to acquire fertilization competence. However, most of these studies are basal and have not presented an overall mechanism through which tyrosine phosphorylation regulates male infertility. In this review, we focus of this mechanism, discussing most of the tyrosine-phosphorylated proteins in spermatozoa that have been identified to date. We categorized tyrosine-phosphorylated proteins in spermatozoa that regulate male infertility using MedScan Reader (v5.0) and Pathway Studio (v9.0).

  10. Identification of phosphorylated butyrylcholinesterase in human plasma using immunoaffinity purification and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Aryal, Uma K.; Lin, Chiann Tso; Kim, Jong Seo; Heibeck, Tyler H.; Wang, Jun; Qian, Weijun; Lin, Yuehe


    Paraoxon (diethyl 4-nitrophenyl phosphate) is an active metabolite of the common insecticide parathion and is acutely toxic due to the inhibition of cholinesterase (ChE) activity in the nervous systems. The Inhibition of butyrylcholinesterase (BChE) activity by paraoxon is due to the formation of phosphorylated BChE adduct, and the detection of the phosphorylated BChE adduct in human plasma can serve as an exposure biomarker of organophosphate pesticides and nerve agents. In this study, we performed immunoaffinity purification and liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis for identifying phosphorylated BChE in human plasma treated by paraoxon. BChE was captured by biotinylated anti-BChE polyclonal antibodies conjugated to streptavidin magnetic beads. Western blot analysis showed that the antibody was effective to recognize both native and modified BChE with high specificity. The exact phosphorylation site of BChE was confirmed on Serine 198 by MS/MS with a 108 Da modification mass and accurately measured parent ion masses. The phosphorylated BChE peptide was also successfully detected in the immunoaffinity purified sample from paraoxon treated human plasma. Thus, immunoaffinity purification combined with mass spectrometry represents a viable approach for the detection of paraoxon-modified BChE and other forms of modified BChE as exposure biomarkers of organophosphates and nerve agents.

  11. BRCA1 and its phosphorylation involved in caffeine-inhibitable event upstream of G2 checkpoint

    Institute of Scientific and Technical Information of China (English)


    Caffeine,which specifically inhibits ATM/ATR kinases,efficiently abrogates the ionizing radiation(IR)-induced G2 arrest and increases the sensitivity of various tumor cells to IR.Mechanisms for the effect of caffeine remain to be elucidated.As a target of ATM/ATR kinases,BRCA1 becomes activated and phosphorylated in response to IR.Thus,in this work,we investigated the possible role of BRCA1 in the effect of caffeine on G2 checkpoint and observed how BRCA1 phosphorylation was regulated in this process.For these purposes,the BRCA1 protein level and the phosphorylation states were analyzed by Western blotting by using an antibody against BRCA1 and phospho-specific antibodies against Ser-1423 and Ser-1524 residues in cells exposed to a combination of IR and caffeine.The results showed that caffeine down-regulated IR-induced BRCA1 expression and specifically abolished BRCA1 phosphorylation of Ser-1524,which was followed by an override of G2 arrest by caffeine.In addition,the ability of BRCA1 to transactivate p21 may be required for MCF-7 but not necessary for Hela response to caffeine.These data suggest that BRCA1 may be a potential target of caffeine.BRCA1 and its phosphorylation are most likely to be involved in the caffeine-inhibitable event upstream of G2 arrest.

  12. HMMpTM: improving transmembrane protein topology prediction using phosphorylation and glycosylation site prediction. (United States)

    Tsaousis, Georgios N; Bagos, Pantelis G; Hamodrakas, Stavros J


    During the last two decades a large number of computational methods have been developed for predicting transmembrane protein topology. Current predictors rely on topogenic signals in the protein sequence, such as the distribution of positively charged residues in extra-membrane loops and the existence of N-terminal signals. However, phosphorylation and glycosylation are post-translational modifications (PTMs) that occur in a compartment-specific manner and therefore the presence of a phosphorylation or glycosylation site in a transmembrane protein provides topological information. We examine the combination of phosphorylation and glycosylation site prediction with transmembrane protein topology prediction. We report the development of a Hidden Markov Model based method, capable of predicting the topology of transmembrane proteins and the existence of kinase specific phosphorylation and N/O-linked glycosylation sites along the protein sequence. Our method integrates a novel feature in transmembrane protein topology prediction, which results in improved performance for topology prediction and reliable prediction of phosphorylation and glycosylation sites. The method is freely available at

  13. Salt-induced redox-independent phosphorylation of light harvesting chlorophyll a/b proteins in Dunaliella salina thylakoid membranes. (United States)

    Liu, Xian-De; Shen, Yun-Gang


    This study investigated the regulation of the major light harvesting chlorophyll a/b protein (LHCII) phosphorylation in Dunaliella salina thylakoid membranes. We found that both light and NaCl could induce LHCII phosphorylation in D. salina thylakoid membranes. Treatments with oxidants (ferredoxin and NADP) or photosynthetic electron flow inhibitors (DCMU, DBMIB, and stigmatellin) inhibited LHCII phosphorylation induced by light but not that induced by NaCl. Furthermore, neither addition of CuCl(2), an inhibitor of cytochrome b(6)f complex reduction, nor oxidizing treatment with ferricyanide inhibited light- or NaCl-induced LHCII phosphorylation, and both salts even induced LHCII phosphorylation in dark-adapted D. salina thylakoid membranes as other salts did. Together, these results indicate that the redox state of the cytochrome b(6)f complex is likely involved in light- but not salt-induced LHCII phosphorylation in D. salina thylakoid membranes.

  14. Tyrosine phosphorylation of Eps15 is required for ligand-regulated, but not constitutive, endocytosis

    DEFF Research Database (Denmark)

    Confalonieri, S; Salcini, A E; Puri, C;


    for endocytosis of the epidermal growth factor receptor (EGFR), the prototypical ligand-inducible receptor, but not of the transferrin receptor (TfR), the prototypical constitutively internalized receptor. Eps15, an endocytic protein that is tyrosine phosphorylated by EGFR, is a candidate for such a function...... of the EGFR, but not of the TfR. A phosphopeptide, corresponding to the phosphorylated sequence of Eps15, inhibited EGFR endocytosis, suggesting that phosphotyrosine in Eps15 serves as a docking site for a phosphotyrosine binding protein. Thus, tyrosine phosphorylation of Eps15 represents the first molecular...... determinant, other than those contained in the receptors themselves, which is involved in the differential regulation of constitutive vs. regulated endocytosis....

  15. ERK Activation Globally Downregulates miRNAs through Phosphorylating Exportin-5. (United States)

    Sun, Hui-Lung; Cui, Ri; Zhou, JianKang; Teng, Kun-Yu; Hsiao, Yung-Hsuan; Nakanishi, Kotaro; Fassan, Matteo; Luo, Zhenghua; Shi, Guqin; Tili, Esmerina; Kutay, Huban; Lovat, Francesca; Vicentini, Caterina; Huang, Han-Li; Wang, Shih-Wei; Kim, Taewan; Zanesi, Nicola; Jeon, Young-Jun; Lee, Tae Jin; Guh, Jih-Hwa; Hung, Mien-Chie; Ghoshal, Kalpana; Teng, Che-Ming; Peng, Yong; Croce, Carlo M


    MicroRNAs (miRNA) are mostly downregulated in cancer. However, the mechanism underlying this phenomenon and the precise consequence in tumorigenesis remain obscure. Here we show that ERK suppresses pre-miRNA export from the nucleus through phosphorylation of exportin-5 (XPO5) at T345/S416/S497. After phosphorylation by ERK, conformation of XPO5 is altered by prolyl isomerase Pin1, resulting in reduction of pre-miRNA loading. In liver cancer, the ERK-mediated XPO5 suppression reduces miR-122, increases microtubule dynamics, and results in tumor development and drug resistance. Analysis of clinical specimens further showed that XPO5 phosphorylation is associated with poor prognosis for liver cancer patients. Our study reveals a function of ERK in miRNA biogenesis and suggests that modulation of miRNA export has potential clinical implications.

  16. Synaptic Clustering of PSD-95 Is Regulated by c-Abl through Tyrosine Phosphorylation (United States)

    de Arce, Karen Perez; Varela-Nallar, Lorena; Farias, Olivia; Cifuentes, Alejandra; Bull, Paulina; Couch, Brian A.; Koleske, Anthony J.; Inestrosa, Nibaldo C.; Alvarez, Alejandra R.


    The c-Abl tyrosine kinase is present in mouse brain synapses, but its precise synaptic function is unknown. We found that c-Abl levels in the rat hippocampus increase postnatally, with expression peaking at the first postnatal week. In 14 d in vitro hippocampal neuron cultures, c-Abl localizes primarily to the postsynaptic compartment, in which it colocalizes with the postsynaptic scaffold protein postsynaptic density protein-95 (PSD-95) in apposition to presynaptic markers. c-Abl associates with PSD-95, and chemical or genetic inhibition of c-Abl kinase activity reduces PSD-95 tyrosine phosphorylation, leading to reduced PSD-95 clustering and reduced synapses in treated neurons. c-Abl can phosphorylate PSD-95 on tyrosine 533, and mutation of this residue reduces the ability of PSD-95 to cluster at postsynaptic sites. Our results indicate that c-Abl regulates synapse formation by mediating tyrosine phosphorylation and clustering of PSD-95. PMID:20220006

  17. Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. (United States)

    Matsumoto, Gen; Wada, Koji; Okuno, Misako; Kurosawa, Masaru; Nukina, Nobuyuki


    Selective macroautophagy (autophagy) of ubiquitinated protein is implicated as a compensatory mechanism of the ubiquitin-proteasome system. p62/SQSTM1 is a key molecule managing autophagic clearance of polyubiquitinated proteins. However, little is known about mechanisms controlling autophagic degradation of polyubiquitinated proteins. Here, we show that the specific phosphorylation of p62 at serine 403 (S403) in its ubiquitin-associated (UBA) domain increases the affinity between UBA and polyubiquitin chain, resulting in efficiently targeting polyubiquitinated proteins in "sequestosomes" and stabilizing sequestosome structure as a cargo of ubiquitinated proteins for autophagosome entry. Casein kinase 2 (CK2) phosphorylates S403 of p62 directly. Furthermore, CK2 overexpression or phosphatase inhibition reduces the formation of inclusion bodies of the polyglutamine-expanded huntingtin exon1 fragment in a p62-dependent manner. We propose that phosphorylation of p62 at S403 regulates autophagic clearance of ubiquitinated proteins and protein aggregates that are poorly degraded by proteasomes.

  18. In vivo modulation of epidermal growth factor receptor phosphorylation in mice expressing different gangliosides. (United States)

    Daniotti, Jose L; Crespo, Pilar M; Yamashita, Tadashi


    We studied in this work the in vivo phosphorylation of the epidermal growth factor receptor (EGFr) in skin from knockout mice lacking different ganglioside glycosyltransferases. Results show an enhancement of EGFr phosphorylation, after EGF stimulation, in skin from Sial-T2 knockout and Sial-T2/GalNAc-T double knockout mice as compared with wild-type and Sial-T1 knockout mice. Qualitative analysis of ganglioside composition in mice skin suggest that the increase of EGFr phosphorylation observed in skin from Sial-T2 knockout and Sial-T2/GalNAc-T double knockout mice in response to EGF might not be primary attributed to the expression of GD3 or a-series gangliosides in mice skin. These studies provide, for the first time, an approach for studying the molecular mechanisms involved in the in vivo regulation of EGFr function by gangliosides.

  19. Contractions induce phosphorylation of the AMPK site Ser565 in hormone-sensitive lipase in muscle

    DEFF Research Database (Denmark)

    Donsmark, Morten; Langfort, Jozef; Holm, Cecilia;


    Intramyocellular triglyceride is an important energy store which is related to insulin resistance. Mobilization of fatty acids from this pool is probably regulated by hormone-sensitive lipase (HSL), which has recently been shown to exist in muscle and to be activated by epinephrine via PKA...... and by contractions via PKC and ERK. 5' AMP-activated protein kinase (AMPK) is an intracellular fuel gauge which regulates metabolism. In this study we incubated rat soleus muscle to investigate if AMPK influences HSL during 5min of repeated tetanic contractions. An eightfold increase in AMPK activity was accompanied...... by a 2.5-fold increase in phosphorylation of the AMPK-site Ser(565) in HSL (pHSL activation while HSL-Ser(565) phosphorylation was not reduced. The study indicates that during contractions AMPK phosphorylates HSL in Ser(565...

  20. Regulation of the inositol 1,4,5-trisphosphate receptor by tyrosine phosphorylation. (United States)

    Jayaraman, T; Ondrias, K; Ondriasová, E; Marks, A R


    Tyrosine kinases indirectly raise intracellular calcium concentration ([Ca2+]i) by activating phospholipases that generate inositol 1,4,5-trisphosphate (IP3). IP3 activates the IP3 receptor (IP3R), an intracellular calcium release channel on the endoplasmic reticulum. T cell receptor stimulation triggered a physical association between the nonreceptor protein tyrosine kinase Fyn and the IP3R, which induced tyrosine phosphorylation of the IP3R. Fyn activated an IP3-gated calcium channel in vitro, and tyrosine phosphorylation of the IP3R during T cell activation was reduced in thymocytes from fyn-/- mice. Thus, activation of the IP3R by tyrosine phosphorylation may play a role in regulating [Ca2+]i.

  1. CDK8-Mediated STAT1-S727 Phosphorylation Restrains NK Cell Cytotoxicity and Tumor Surveillance

    Directory of Open Access Journals (Sweden)

    Eva Maria Putz


    Full Text Available The transcription factor STAT1 is important in natural killer (NK cells, which provide immediate defense against tumor and virally infected cells. We show that mutation of a single phosphorylation site (Stat1-S727A enhances NK cell cytotoxicity against a range of tumor cells, accompanied by increased expression of perforin and granzyme B. Stat1-S727A mice display significantly delayed disease onset in NK cell-surveilled tumor models including melanoma, leukemia, and metastasizing breast cancer. Constitutive phosphorylation of S727 depends on cyclin-dependent kinase 8 (CDK8. Inhibition of CDK8-mediated STAT1-S727 phosphorylation may thus represent a therapeutic strategy for stimulating NK cell-mediated tumor surveillance.

  2. Transcriptional elongation factor ENL phosphorylated by ATM recruits polycomb and switches off transcription for DSB repair. (United States)

    Ui, Ayako; Nagaura, Yuko; Yasui, Akira


    Transcription is repressed if a DNA double-strand break (DSB) is introduced in close proximity to a transcriptional activation site at least in part by H2A-ubiquitination. While ATM signaling is involved, how it controls H2A-ubiquitination remains unclear. Here, we identify that, in response to DSBs, a transcriptional elongation factor, ENL (MLLT1), is phosphorylated by ATM at conserved SQ sites. This phosphorylation increases the interaction between ENL and the E3-ubiquitin-ligase complex of Polycomb Repressive Complex 1 (PRC1) via BMI1. This interaction promotes enrichment of PRC1 at transcription elongation sites near DSBs to ubiquitinate H2A leading to transcriptional repression. ENL SQ sites and BMI1 are necessary for KU70 accumulation at DSBs near active transcription sites and cellular resistance to DSBs. Our data suggest that ATM-dependent phosphorylation of ENL functions as switch from elongation to Polycomb-mediated repression to preserve genome integrity.

  3. A novel post-translational modification in nerve terminals: O-linked N-acetylglucosamine phosphorylation

    DEFF Research Database (Denmark)

    Graham, Mark E; Thaysen-Andersen, Morten; Bache, Nicolai;


    Protein phosphorylation and glycosylation are the most common post-translational modifications observed in biology, frequently on the same protein. Assembly protein AP180 is a synapse-specific phosphoprotein and O-linked beta-N-acetylglucosamine (O-GlcNAc) modified glycoprotein. AP180 is involved...... in the assembly of clathrin coated vesicles in synaptic vesicle endocytosis. Unlike other types of O-glycosylation, O-GlcNAc is nucleocytoplasmic and reversible. It was thought to be a terminal modification, that is, the O-GlcNAc was not found to be additionally modified in any way. We now show that AP180......NAc-P to a Thr residue was confirmed by electron transfer dissociation MS. A second AP180 tryptic peptide was also glycosyl phosphorylated, but the site of modification was not assigned. Sequence similarities suggest there may be a common motif within AP180 involving glycosyl phosphorylation and dual flanking...

  4. IRS-1 serine phosphorylation and insulin resistance in skeletal muscle from pancreas tranplant recipient

    DEFF Research Database (Denmark)

    Bouzakri, K; Karlsson, HRK; Vestergaard, Henrik


    Insulin-dependent diabetic recipients of successful pancreas allografts achieve self-regulatory insulin secretion and discontinue exogenous insulin therapy; however, chronic hyperinsulinemia and impaired insulin sensitivity generally develop. To determine whether insulin resistance is accompanied....... In conclusion, peripheral insulin resistance in pancreas-kidney transplant recipients may arise from a negative feedback regulation of the canonical insulin-signaling cascade from excessive serine phosphorylation of IRS-1, possibly as a consequence of immunosuppressive therapy and hyperinsulinemia....... insulin receptor substrate (IRS)-1 Ser (312) and Ser (616) phosphorylation, IRS-1-associated phosphatidylinositol 3-kinase activity, and extracellular signal-regulated kinase (ERK)-1/2 phosphorylation were elevated in pancreas-kidney transplant recipients, coincident with fasting hyperinsulinemia. Basal...

  5. O-GlcNAcylation Antagonizes Phosphorylation of CDH1 (CDC20 Homologue 1). (United States)

    Tian, Jie; Geng, Qizhi; Ding, Yuehe; Liao, Ji; Dong, Meng-Qiu; Xu, Xingzhi; Li, Jing


    The anaphase promoting complex/cyclosome (APC/C) orchestrates various aspects of the eukaryotic cell cycle. One of its co-activators, Cdh1, is subject to myriad post-translational modifications, such as phosphorylation and ubiquitination. Herein we identify the O-linked N-acetylglucosamine (O-GlcNAc) modification that occurs on Cdh1. Cdh1 is O-GlcNAcylated in cultured cells and mouse brain extracts. Mass spectrometry identifies an O-GlcNAcylated peptide that neighbors a known phosphorylation site. Cell synchronization and mutation studies reveal that O-GlcNAcylation of Cdh1 may antagonize its phosphorylation. Our results thus reveal a pivotal role of O-GlcNAcylation in regulating APC/C activity.

  6. Inhibitory Phosphorylation of Separase Is Essential for Genome Stability and Viability of Murine Embryonic Germ Cells (United States)

    Huang, Xingxu; Andreu-Vieyra, Claudia V; York, J. Philippe; Hatcher, Rashieda; Lu, Tao; Matzuk, Martin M; Zhang, Pumin


    Activity of separase, a cysteine protease that cleaves sister chromatid cohesin at the onset of anaphase, is tightly regulated to ensure faithful chromosome segregation and genome stability. Two mechanisms negatively regulate separase: inhibition by securin and phosphorylation on serine 1121. To gauge the physiological significance of the inhibitory phosphorylation, we created a mouse strain in which Ser1121 was mutated to Ala (S1121A). Here we report that this S1121A point mutation causes infertility in mice. We show that germ cells in the mutants are depleted during development. We further demonstrate that S1121A causes chromosome misalignment during proliferation of the postmigratory primordial germ cells, resulting in mitotic arrest, aneuploidy, and eventual cell death. Our results indicate that inhibitory phosphorylation of separase plays a critical role in the maintenance of sister chromatid cohesion and genome stability in proliferating postmigratory primordial germ cells. PMID:18232736

  7. Inhibitory phosphorylation of separase is essential for genome stability and viability of murine embryonic germ cells.

    Directory of Open Access Journals (Sweden)

    Xingxu Huang


    Full Text Available Activity of separase, a cysteine protease that cleaves sister chromatid cohesin at the onset of anaphase, is tightly regulated to ensure faithful chromosome segregation and genome stability. Two mechanisms negatively regulate separase: inhibition by securin and phosphorylation on serine 1121. To gauge the physiological significance of the inhibitory phosphorylation, we created a mouse strain in which Ser1121 was mutated to Ala (S1121A. Here we report that this S1121A point mutation causes infertility in mice. We show that germ cells in the mutants are depleted during development. We further demonstrate that S1121A causes chromosome misalignment during proliferation of the postmigratory primordial germ cells, resulting in mitotic arrest, aneuploidy, and eventual cell death. Our results indicate that inhibitory phosphorylation of separase plays a critical role in the maintenance of sister chromatid cohesion and genome stability in proliferating postmigratory primordial germ cells.

  8. Phosphorylation controls the functioning of Staphylococcus aureus isocitrate dehydrogenase--favours biofilm formation. (United States)

    Prasad, U Venkateswara; Vasu, D; Yeswanth, S; Swarupa, V; Sunitha, M M; Choudhary, A; Sarma, P V G K


    Isocitrate dehydrogenase (IDH) gene from Staphylococcus aureus ATCC12600 was cloned, sequenced and characterized (HM067707). PknB site was observed in the active site of IDH; thus, it was predicted as IDH may be regulated by phosphorylation. Therefore, in this study, PknB, alkaline phosphatase III (SAOV 2675) and IDH genes (JN695616, JN645811 and HM067707) of S. aureus ATCC12600 were over expressed from clones PV 1, UVPALP-3 and UVIDH 1. On passing the cytosloic fractions through nickel metal chelate column, pure enzymes were obtained. Phosphorylation of pure IDH by PknB resulted in the complete loss of activity and was restored upon dephosphorylation with SAOV 2675 which indicated that phosphorylation and dephosphorylation regulate IDH activity in S. aureus. Further, when S. aureus ATCC12600 was grown in BHI broth, decreased IDH activity and increased biofilm units were observed; therefore, this regulation of IDH alters redox status in this pathogen favouring biofilm formation.

  9. The role of GH receptor tyrosine phosphorylation in Stat5 activation

    DEFF Research Database (Denmark)

    Hansen, J A; Hansen, L H; Wang, X;


    Stimulation of GH receptors leads to rapid activation of Jak2 kinase and subsequent tyrosine phosphorylation of the GH receptor. Three specific tyrosines located in the C-terminal domain of the GH receptor have been identified as being involved in GH-stimulated transcription of the Spi 2.1 promoter....... Mutated GH receptors lacking all but one of these three tyrosines are able to mediate a transcriptional response when transiently transfected into CHO cells together with a Spi 2.1 promoter/luciferase construct. Similarly, these GH receptors were found to be able to mediate activation of Stat5 DNA......-binding activity, whereas the GH receptor mutant lacking all intracellular tyrosines was not. Synthetic tyrosine phosphorylated peptides corresponding to the GH receptor sequence around the three tyrosines inhibited Stat5 DNA-binding activity while their non-phosphorylated counterparts were ineffective. Tyrosine...

  10. Dynamic phosphorylation of Histone Deacetylase 1 by Aurora kinases during mitosis regulates zebrafish embryos development (United States)

    Loponte, Sara; Segré, Chiara V.; Senese, Silvia; Miccolo, Claudia; Santaguida, Stefano; Deflorian, Gianluca; Citro, Simona; Mattoscio, Domenico; Pisati, Federica; Moser, Mirjam A.; Visintin, Rosella; Seiser, Christian; Chiocca, Susanna


    Histone deacetylases (HDACs) catalyze the removal of acetyl molecules from histone and non-histone substrates playing important roles in chromatin remodeling and control of gene expression. Class I HDAC1 is a critical regulator of cell cycle progression, cellular proliferation and differentiation during development; it is also regulated by many post-translational modifications (PTMs). Herein we characterize a new mitosis-specific phosphorylation of HDAC1 driven by Aurora kinases A and B. We show that this phosphorylation affects HDAC1 enzymatic activity and it is critical for the maintenance of a proper proliferative and developmental plan in a complex organism. Notably, we find that Aurora-dependent phosphorylation of HDAC1 regulates histone acetylation by modulating the expression of genes directly involved in the developing zebrafish central nervous system. Our data represent a step towards the comprehension of HDAC1 regulation by its PTM code, with important implications in unravelling its roles both in physiology and pathology. PMID:27458029

  11. Phosphorylation of dynamin I on Ser-795 by protein kinase C blocks its association with phospholipids

    DEFF Research Database (Denmark)

    Powell, K A; Valova, V A; Malladi, C S


    Dynamin I is phosphorylated in nerve terminals exclusively in the cytosolic compartment and in vitro by protein kinase C (PKC). Dephosphorylation is required for synaptic vesicle retrieval, suggesting that its phosphorylation affects its subcellular localization. An in vitro phospholipid binding...... assay was established that prevents lipid vesiculation and dynamin lipid insertion into the lipid. Dynamin I bound the phospholipid in a concentration-dependent and saturable manner, with an apparent affinity of 230 +/- 51 nM. Optimal binding occurred with mixtures of phosphatidylserine...... and phosphatidylcholine of 1:3 with little binding to phosphatidylcholine or phosphatidylserine alone. Phospholipid binding was abolished after dynamin I phosphorylation by PKC and was restored after dephosphorylation by calcineurin. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry revealed...

  12. Insights into the Phosphoryl Transfer Mechanism of Human Ubiquitous Mitochondrial Creatine Kinase. (United States)

    Li, Quanjie; Fan, Shuai; Li, Xiaoyu; Jin, Yuanyuan; He, Weiqing; Zhou, Jinming; Cen, Shan; Yang, ZhaoYong


    Human ubiquitous mitochondrial creatine kinase (uMtCK) is responsible for the regulation of cellular energy metabolism. To investigate the phosphoryl-transfer mechanism catalyzed by human uMtCK, in this work, molecular dynamic simulations of uMtCK∙ATP-Mg(2+)∙creatine complex and quantum mechanism calculations were performed to make clear the puzzle. The theoretical studies hereof revealed that human uMtCK utilizes a two-step dissociative mechanism, in which the E227 residue of uMtCK acts as the catalytic base to accept the creatine guanidinium proton. This catalytic role of E227 was further confirmed by our assay on the phosphatase activity. Moreover, the roles of active site residues in phosphoryl transfer reaction were also identified by site directed mutagenesis. This study reveals the structural basis of biochemical activity of uMtCK and gets insights into its phosphoryl transfer mechanism.

  13. Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database

    DEFF Research Database (Denmark)

    Nühse, Thomas S; Stensballe, Allan; Jensen, Ole N;


    Functional genomic technologies are generating vast amounts of data describing the presence of transcripts or proteins in plant cells. Together with classical genetics, these approaches broaden our understanding of the gene products required for specific responses. Looking to the future, the focus...... of research must shift to the dynamic aspects of biology: molecular mechanisms of function and regulation. Phosphorylation is a key regulatory factor in all aspects of plant biology; but it is difficult, if not impossible, for most researchers to identify in vivo phosphorylation sites within their proteins...... will be a valuable resource for many fields of plant biology and overcome a major impediment to the elucidation of signal transduction pathways. We present an analysis of the characteristics of phosphorylation sites, their conservation among orthologs and paralogs, and the existence of putative motifs surrounding...

  14. Fragmentation of phosphorylated and singly charged peptide ions via interaction with metastable atoms. (United States)

    Berkout, Vadym D; Doroshenko, Vladimir M


    Fragmentation of phosphorylated peptide ions via interaction with electronically excited metastable argon atoms was studied in a linear trap - time-of-flight mass spectrometer. Doubly charged ions of phosphorylated peptides from an Enolase digest were produced by electrospray ionization and subjected to a metastable atom beam in the linear trap. The metastable argon atoms were generated using a glow-discharge source. An intensive series of c- and z- ions were observed in all cases, with the phosphorylation group intact. The formation of molecular radical cations with reduced charge indicated that an electron transfer from a highly excited metastable state of argon to the peptide cation occurred. Additionally, singly charged Bradykinin, Substance P and Fibrinopeptide A molecular ions were fragmented via interaction with electronically excited metastable helium atoms. The fragmentation mechanism was different in this case and involved Penning ionization.

  15. Phosphorylation statuses at different residues of lamin B2, B1, and A/C dynamically and independently change throughout the cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Kuga, Takahisa, E-mail: [Laboratory of Proteome Research, National Institute of Biomedical Innovation, Ibaraki, Osaka 567-0085 (Japan); Department of Molecular Diagnosis (F8), Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670 (Japan); Nozaki, Naohito [Department of Biochemistry and Molecular Biology, Kanagawa Dental College, Yokosuka, Kanagawa 238-8580 (Japan); Matsushita, Kazuyuki; Nomura, Fumio [Department of Molecular Diagnosis (F8), Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670 (Japan); Tomonaga, Takeshi, E-mail: [Laboratory of Proteome Research, National Institute of Biomedical Innovation, Ibaraki, Osaka 567-0085 (Japan); Department of Molecular Diagnosis (F8), Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670 (Japan)


    Lamins, major components of the nuclear lamina, undergo phosphorylation at multiple residues during cell cycle progression, but their detailed phosphorylation kinetics remain largely undetermined. Here, we examined changes in the phosphorylation of major phosphorylation residues (Thr14, Ser17, Ser385, Ser387, and Ser401) of lamin B2 and the homologous residues of lamin B1, A/C during the cell cycle using novel antibodies to the site-specific phosphorylation. The phosphorylation levels of these residues independently changed during the cell cycle. Thr14 and Ser17 were phosphorylated during G{sub 2}/M phase to anaphase/telophase. Ser385 was persistently phosphorylated during mitosis to G{sub 1} phase, whereas Ser387 was phosphorylated discontinuously in prophase and G{sub 1} phase. Ser401 phosphorylation was enhanced in the G{sub 1}/S boundary. Immunoprecipitation using the phospho-antibodies suggested that metaphase-phosphorylation at Thr14, Ser17, and Ser385 of lamins occurred simultaneously, whereas G{sub 1}-phase phosphorylation at Ser385 and Ser387 occurred in distinct pools or with different timings. Additionally, we showed that lamin B2 phosphorylated at Ser17, but not Ser385, Ser387 and Ser401, was exclusively non-ionic detergent soluble, depolymerized forms in growing cells, implicating specific involvement of Ser17 phosphorylation in lamin depolymerization and nuclear envelope breakdown. These results suggest that the phosphorylations at different residues of lamins might play specific roles throughout the cell cycle.

  16. BRAF, KIT and NRAS mutations and expression of c-KIT, phosphorylated extracellular signal-regulated kinase and phosphorylated AKT in Japanese melanoma patients. (United States)

    Oyama, Satomi; Funasaka, Yoko; Watanabe, Atsushi; Takizawa, Toshihiro; Kawana, Seiji; Saeki, Hidehisa


    To clarify the status of gene mutation and activation of growth signal in melanoma of Japanese patients in vivo, we analyzed the mutation of BRAF exon 15, NRAS exon 2, and KIT exons 9, 11, 13, 17 and 18 in melanoma cells obtained by laser capture microdissection, and performed direct sequencing in 20 cases of acral lentiginous melanoma (ALM) and 17 cases of superficial spreading melanoma (SSM). In the study of the mutation of BRAF, pyrosequencing was also done. To examine the cell proliferation signaling, immunohistochemistry for phosphorylated extracellular signal-regulated kinase (pERK), phosphorylated AKT (phosphorylated AKT) and c-KIT was done. The mutation of BRAF p.V600E was detected in 13 cases of ALM (65.0%) and 12 cases of SSM (70.6%). No NRAS mutation was found in all cases. The mutation in exons 9, 11, and 18 of KIT was detected in nine cases. The mutation of BRAF and KIT showed no correlation with clinical stage, lymph node metastasis, tumor thickness, ulceration and histology. pERK and pAKT was observed in small population of melanoma cells and there was no correlation with gene mutation. Our results indicate that the mutations of BRAF and KIT exist in Japanese melanoma patients, however, the cell growth signaling may be regulated by not only these mutated genes, but by other unknown regulatory factors, which may affect the prognosis of melanoma.

  17. The Rho-GTPase effector ROCK regulates meiotic maturation of the bovine oocyte via myosin light chain phosphorylation and cofilin phosphorylation. (United States)

    Lee, So-Rim; Xu, Yong-Nan; Jo, Yu-Jin; Namgoong, Suk; Kim, Nam-Hyung


    Oocyte meiosis involves a unique asymmetric division involving spindle movement from the central cytoplasm to the cortex, followed by polar body extrusion. ROCK is a Rho-GTPase effector involved in various cellular functions in somatic cells as well as oocyte meiosis. ROCK was previously shown to promote actin organization by phosphorylating several downstream targets, including LIM domain kinase (LIMK), phosphorylated cofilin (p-cofilin), and myosin light chain (MLC). In this study, we investigated the roles of ROCK and MLC during bovine oocyte meiosis. We found that ROCK was localized around the nucleus at the oocyte's germinal-vesicle (GV) stage, but spreads to the rest of the cytoplasm in later developmental stages. On the other hand, phosphorylated MLC (p-MLC) localized at the cortex, and its abundance decreased by the metaphase-II stage. Disrupting ROCK activity, via RNAi or the chemical inhibitor Y-27632, blocked both cell cycle progression and polar body extrusion. ROCK inhibition also resulted in decreased cortical actin, p-cofilin, and p-MLC levels. Similar to the phenotype associated with inhibition of ROCK activity, inhibition of MLC kinase by the chemical inhibitor ML-7 caused defects in polar body extrusion. Collectively, our results suggest that the ROCK/MLC/actomyosin as well as ROCK/LIMK/cofilin pathways regulate meiotic spindle migration and cytokinesis during bovine oocyte maturation.

  18. Control of guided hard-tissue regeneration using phosphorylated gelatin and OCT imaging of calcification (United States)

    Ishii, Katsunori; Ma, Zhenhe; Ninomiya, Yoshihisa; Takegoshi, Minori; Kushibiki, Toshihiro; Yamamoto, Masaya; Hinds, Monica; Tabata, Yasuhiko; Wang, Ruikang K.; Awazu, Kunio


    Tendon and ligament are the transition tissues from a hard tissue to a soft tissue. The regenerative medicine of tendons needs reasonable biomaterials to regenerate precisely from the view point of composition and adhesion properties. In regenerative medicine of hard tissues, it has been reported that calcifications are influenced by phosphorylated proteins (phosphate groups) and the biomaterial possessing phosphate groups promote or inhibit the formation of HAP. We have studied to develop and evaluate the phosphorylated soft biomaterials, which is possible to control a calcification by the introduction ratio of phosphate groups, as biomaterials for tendon regeneration. In addition, we have studied measurement technologies. In the present study, we studied a FT-IR analysis of gelatins with different introduction ratio of phosphate groups, an evaluation of calcifications by the difference of introduction ratio of phosphate groups, and a fundamental survey on OCT imaging for calcifications of a gelatin and a phosphorylated gelatin. We use phosphorylated gelatins with different introduction ratios of phosphate group linked by ester bonds. The introduction ratios are measured by the FT-IR calibrated by a molybdenum blue method. Phosphorylated gelatin sheets were calcified using 1.5SBF soaking process and alternative soaking process. These gelatin sheets with different calcification conditions were measured using SD-OCT systems with 843nm centered wavelength SLD. As a result, we demonstrated that it was possible to measure the calcification on/in the gelatin sheets and sponges and phosphorylated using OCT. The main mechanism is the strong back scattering and the high scattering of deposited calcium particles.

  19. Phosphorylation and lipid raft association of fibroblast growth factor receptor-2 in oligodendrocytes. (United States)

    Bryant, M R; Marta, C B; Kim, F S; Bansal, R


    Fibroblast growth factors (FGFs) and their receptors (FGFRs) initiate diverse cellular responses that contribute to the regulation of oligodendrocyte (OL) function. To understand the mechanisms by which FGFRs elicit these cellular responses, we investigated the phosphorylation of signal transduction proteins and the role of cholesterol-glycosphingolipid-enriched "lipid raft" microdomains in differentiated OLs. Surprisingly, we found that the most abundant tyrosine-phosphorylated protein in OLs was the 120-kd isoform of FGFR2 and that it was phosphorylated even in the absence of FGF2, suggesting a potential ligand-independent function for this receptor. Furthermore, FGFR2, but not FGFR1, was associated with lipid raft microdomains in OLs and myelin (but not in astrocytes). This provides the first evidence for the association of FGFR with TX-100-insoluble lipid raft fractions. FGFR2 phosphorylated the key downstream target, FRS2 in OLs. Raft disruption resulted in loss