WorldWideScience

Sample records for chitosan nanoparticle-based neuronal

  1. Chitosan nanoparticle-based neuronal membrane sealing and neuroprotection following acrolein-induced cell injury

    Directory of Open Access Journals (Sweden)

    Shi Riyi

    2010-01-01

    Full Text Available Abstract Background The highly reactive aldehyde acrolein is a very potent endogenous toxin with a long half-life. Acrolein is produced within cells after insult, and is a central player in slow and progressive "secondary injury" cascades. Indeed, acrolein-biomolecule complexes formed by cross-linking with proteins and DNA are associated with a number of pathologies, especially central nervous system (CNS trauma and neurodegenerative diseases. Hydralazine is capable of inhibiting or reducing acrolein-induced damage. However, since hydralazine's principle activity is to reduce blood pressure as a common anti-hypertension drug, the possible problems encountered when applied to hypotensive trauma victims have led us to explore alternative approaches. This study aims to evaluate such an alternative - a chitosan nanoparticle-based therapeutic system. Results Hydralazine-loaded chitosan nanoparticles were prepared using different types of polyanions and characterized for particle size, morphology, zeta potential value, and the efficiency of hydralazine entrapment and release. Hydralazine-loaded chitosan nanoparticles ranged in size from 300 nm to 350 nm in diameter, and with a tunable, or adjustable, surface charge. Conclusions We evaluated the utility of chitosan nanoparticles with an in-vitro model of acrolein-mediated cell injury using PC -12 cells. The particles effectively, and statistically, reduced damage to membrane integrity, secondary oxidative stress, and lipid peroxidation. This study suggests that a chitosan nanoparticle-based therapy to interfere with "secondary" injury may be possible.

  2. Chitosan nanoparticle based delivery systems for sustainable agriculture.

    Science.gov (United States)

    Kashyap, Prem Lal; Xiang, Xu; Heiden, Patricia

    2015-01-01

    Development of technologies that improve food productivity without any adverse impact on the ecosystem is the need of hour. In this context, development of controlled delivery systems for slow and sustained release of agrochemicals or genetic materials is crucial. Chitosan has emerged as a valuable carrier for controlled delivery of agrochemicals and genetic materials because of its proven biocompatibility, biodegradability, non-toxicity, and adsorption abilities. The major advantages of encapsulating agrochemicals and genetic material in a chitosan matrix include its ability to function as a protective reservoir for the active ingredients, protecting the ingredients from the surrounding environment while they are in the chitosan domain, and then controlling their release, allowing them to serve as efficient gene delivery systems for plant transformation or controlled release of pesticides. Despite the great progress in the use of chitosan in the area of medical and pharmaceutical sciences, there is still a wide knowledge gap regarding the potential application of chitosan for encapsulation of active ingredients in agriculture. Hence, the present article describes the current status of chitosan nanoparticle-based delivery systems in agriculture, and to highlight challenges that need to be overcome.

  3. New hybrid magnetic nanoparticles based on chitosan-maltose derivative for antitumor drug delivery.

    Science.gov (United States)

    Alupei, Liana; Peptu, Catalina Anisoara; Lungan, Andreea-Maria; Desbrieres, Jacques; Chiscan, Ovidiu; Radji, Sadia; Popa, Marcel

    2016-11-01

    The aim of the present study is to obtain, for the first time, polymer magnetic nanoparticles based on the chitosan-maltose derivative and magnetite. By chemically modifying the chitosan, its solubility in aqueous media was improved, which in turn facilitates the nanoparticles' preparation. Resulting polymers exhibit enhanced hydrophilia, which is an important factor in increasing the retention time of nanoparticles in the blood flow. The preparation of nanoparticles relied on the double crosslinking technique (ionic and covalent) in reverse emulsion which ensures the mechanical stability of the polymer carrier. The characterization of both the chitosan derivative and nanoparticles was accomplished by Fourier Transform Infrared Spectroscopy, Nuclear Magnetic Resonance Spectroscopy, Scanning Electron Microscopy, Transmission Electron Microscopy, Atomic Force Microscopy, Vibrating Sample Magnetometry, and Thermogravimetric Analysis. The evaluation of morphological, dimensional, structural, and magnetical properties, as well as thermal stability and swelling behavior of nanoparticles was made from the point of view of the polymer/magnetite ratio. The study of 5-Fluorouracil loading and release kinetics as well as evaluating the cytotoxicity and hemocompatibility of nanoparticles justify their adequate behavior in their potential use as devices for targeted transport of antitumor drugs.

  4. Preparation and characterization of hybrid nanoparticles based on chitosan and poly(methacryloylglycylglycine)

    Science.gov (United States)

    Ferri, Marcella; Dash, Mamoni; Cometa, Stefania; De Giglio, Elvira; Sabbatini, Luigia; Chiellini, Federica

    2014-05-01

    The present work investigated the possibility of preparing nanoparticles based on methacryloylglycylglycine (MAGG) and chitosan (CS) by in situ polymerization. The study revealed that nanoparticle formation was strictly dependent on ionic interactions between NH3 + groups from CS and COO- groups arising from the anionic monomer MAGG. The subsequent in situ polymerizations of MAGG in the presence of CS led to the formation of nanoparticles with homogeneous morphology, a uniform particle size distribution, and a good spherical shape as confirmed by laser diffraction granulometry and scanning electron microscopy analyses. Nanoparticle formulations with different amounts of CS and MAGG were prepared, and their chemical compositions were investigated by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The obtained results showed that the polymerization of MAGG in the presence of CS appears to be a very promising approach in the preparation of nanoparticles for drug delivery applications.

  5. Self-assembled nanoparticles based on hydrophobically modified chitosan as carriers for doxorubicin.

    Science.gov (United States)

    Zhang, Jing; Chen, Xi Guang; Li, Yan Yan; Liu, Cheng Sheng

    2007-12-01

    In this study self-assembled nanoparticles based on oleoyl-chitosan (OCH) were prepared with a mean diameter of 255.3 nm and an almost spherical shape. The toxicity profile of OCH nanoparticles was evaluated in vitro via hemolysis test and MTT assay. The hemolysis rates of OCH nanoparticles tested in different conditions came well within permissible limits (5%). The OCH nanoparticles showed no cytotoxicity to mouse embryo fibroblasts. Doxorubicin (DOX) was efficiently loaded into OCH nanoparticles with an encapsulation efficiency of 52.6%. The drug was rapidly and completely released from the nanoparticles (DOX-OCH nanoparticles) at pH 3.8, whereas at pH 7.4 there was a sustained release after a burst release. The inhibitory rates of DOX-OCH nanoparticle suspension to different human cancer cells (A549, Bel-7402, HeLa, and SGC-7901) significantly outperformed that of DOX solution. These results revealed the potential of OCH nanoparticles as carriers for hydrophobic antitumor agents.

  6. Preparation and Charaterization of Self-assembled Nanoparticles Based on Linolenic-acid Modified Chitosan

    Institute of Scientific and Technical Information of China (English)

    LIU Chenguang; Desai Kashappa Goud H.; CHEN Xiguang; Park Hyun-Jin

    2005-01-01

    Chitosan was modified by conjugating coupling with linolenic acid through the 1-ethyl-3-(3-dimethylaminopropyyl) earbodiimide (EDC)-mediated reaction. The degree of substitution 1.8% (i.e. 1.8 linolenic acid group per 100anhydroglucose units) was measured by 1H NMR. The critical aggregation concentration (CAC) of the self-aggregate of hydrophobically modified chitosan was determined by measuring the fluorescence intensity of the pyrene as a fluorescent probe.The CAC value in phosphate-buffered saline (PBS) solution (pH7.4) was 5 × 10-2 mgmL-1. The average particle size of selfaggregates of hydrophobically modified chitosan in PBS solution (pH7.4) was 210.8 nm with a unimodal size distribution ranging from 100 to 500 nm. Transmission electron microscopy (TEM) study showed that the formation of near spherical shape nanoparticles has enough structural integrity. The loading ability of hydrophibically modified chitosan (LA-chitosan)was investigated by using bovine serum albumin (BSA) as the model. The loading capacity of self-aggregated nanoparticles increases (19.85% ± 0.04% to 37.57% ± 0.25 %) with the concentration of BSA (0.1-0.5 mg mL-1).

  7. Nanoparticles Based on Chitosan as Carriers for the Combined Herbicides Imazapic and Imazapyr

    Science.gov (United States)

    Maruyama, Cintia Rodrigues; Guilger, Mariana; Pascoli, Mônica; Bileshy-José, Natalia; Abhilash, P. C.; Fraceto, Leonardo Fernandes; de Lima, Renata

    2016-01-01

    The use of lower concentrations and fewer applications of herbicides is one of the prime objectives of the sustainable agriculture as it decreases the toxicity to non-targeted organisms and the risk of wider environmental contamination. In the present work, nanoparticles were developed for encapsulation of the herbicides imazapic and imazapyr. Alginate/chitosan and chitosan/tripolyphosphate nanoparticles were manufactured, and their physicochemical stability was evaluated. Determinations were made of the encapsulation efficiency and release kinetics, and the toxicity of the nanoparticles was evaluated using cytotoxicity and genotoxicity assays. The effects of herbicides and herbicide-loaded nanoparticles on soil microorganisms were studied in detail using real-time polymerase chain reactions. The nanoparticles showed an average size of 400 nm and remained stable during 30 days of storage at ambient temperature. Satisfactory encapsulation efficiencies of between 50 and 70% were achieved for both types of particles. Cytotoxicity assays showed that the encapsulated herbicides were less toxic, compared to the free compounds, and genotoxicity was decreased. Analyses of soil microbiota revealed changes in the bacteria of the soils exposed to the different treatments. Our study proves that encapsulation of the herbicides improved their mode of action and reduced their toxicity, indicating their suitability for use in future practical applications.

  8. Oxidation and pH responsive nanoparticles based on ferrocene-modified chitosan oligosaccharide for 5-fluorouracil delivery.

    Science.gov (United States)

    Xu, Youqian; Wang, Liang; Li, Ya-Kun; Wang, Cai-Qi

    2014-12-19

    Stimuli-responsive nanoparticles based on biodegradable and biocompatible saccharides are potentially superior carriers under different physical conditions. In this study, we present a detailed investigation on the oxidation and pH responses of ferrocene-modified chitosan oligosaccharide (FcCOS) nanoparticles for 5-Fluorouracil (5-FU) Delivery. The dispersion of FcCOS nanoparticles depends strongly on pH change. NaClO, H2O2 and oxygen, as oxidant models, in a weak acid solution displayed varying accelerations as the disassembly progressed. 5-FU, as a drug model, is efficiently uploaded in FcCOS nanoparticle (approximately 238 nm). The in vitro release of 5-FU from FcCOS nanoparticles studies show that the accumulative release increased with the decrease of pH under bubbled N2. Interestingly, the sample under bubbled air has a higher accumulative release up to 59.64% at pH 3.8, compared with samples under bubbled N2 just 49.02%. The results suggested that FcCOS nanoparticles disassembled faster and the release of drug molecules was accelerated because of the synergistic effect of oxidative agent and low pH. Thus, FcCOS can be developed as an effective pH and oxidation dual-responsive carrier to enhance drug efficacy for cancer treatment.

  9. Self-assembled Nanoparticles based on Folic Acid Modiifed Carboxymethyl Chitosan Conjugated with Targeting Antibody

    Institute of Scientific and Technical Information of China (English)

    HU Zhengyu; ZHENG Hua; LI Dan; XIONG Xiong; TAN Mingyuan; HUANG Dan; GUO Xing; ZHANG Xueqiong; YAN Han

    2016-01-01

    Nanoparticles conjugated with antibody were designed as active drug delivery system to reduce the toxicity and side effects of drugs for acute myeloid leukemia (AML). Moreover, methotrexate (MTX) was chosen as model drug and encapsulate within folic acid modified carboxymethyl chitosan (FA-CMCS) nanoparticles through self-assembling. The chemical structure, morphology, release and targeting of nanoparticles were characterized by routine detection. It is demonstrated that the mean diameter is about 150 nm, the release rate increases with the decreasing of pH, the binding rate of CD33 antibody and FA-CMCS nanoparticles is about 5:2, and nanoparticles can effectively bind onto HL60 cells in vitro. The experimental results indicate that the FA-CMCS nanoparticles conjugated with antibody may be used as a potential pH-sensitive drug delivery system with leukemic targeting properties.

  10. Enhanced apoptotic and anticancer potential of paclitaxel loaded biodegradable nanoparticles based on chitosan.

    Science.gov (United States)

    Gupta, Umesh; Sharma, Saurabh; Khan, Iliyas; Gothwal, Avinash; Sharma, Ashok K; Singh, Yuvraj; Chourasia, Manish K; Kumar, Vipin

    2017-05-01

    Taxanes have established and proven effectivity against different types of cancers; in particular breast cancers. However, the high hemolytic toxicity and hydrophobic nature of paclitaxel and docetaxel have always posed challenges to achieve safe and effective delivery. Use of bio-degradable materials with an added advantage of nanotechnology could possibly improve the condition so as to achieve better and safe delivery. In the present study paclitaxel loaded chitosan nanoparticles were formulated and optimized using simple w/o nanoemulsion technique. The observed average size, pdi, zeta potential, entrapment efficiency and drug loading for the optimized paclitaxel loaded chitosan nanoparticle formulation (PTX-CS-NP-10) was 226.7±0.70nm, 0.345±0.039, 37.4±0.77mV, 79.24±2.95% and 11.57±0.81%; respectively. Nanoparticles were characterized further for size by Transmission Electron Microscopy (TEM). In vitro release studies exhibited sustained release pattern and more than 60% release was observed within 24h. Enhanced in vitro anticancer activity was observed as a result of MTT assay against triple negative MDA-MB-231 breast cancer cell lines. The observed IC50 values obtained for PTX-CS-NP-10 was 9.36±1.13μM and was almost 1.6 folds (p<0.05) less than the pure drug. Similarly, PTX-CS-NP-10 were extremely biocompatible and safe as observed for haemolytic toxicity which was almost 4 folds less (p<0.05) than the naïve drug. Anticancer activity was further evaluated using flow cytometry for apoptosis. Cell apoptosis study revealed that PTX-CS-NP-10 treatment resulted into enhanced (almost double) late cell apoptosis than naïve paclitaxel. Hence the developed nanoparticulate formulation not only reduced the overall toxicity but also resulted into improved anticancer efficacy of paclitaxel. It can be concluded that a robust, stable and comparatively safe nanoformulation of paclitaxel was developed, characterized and evaluated.

  11. Self-assembled nanoparticles based on amphiphilic chitosan derivative and hyaluronic acid for gene delivery.

    Science.gov (United States)

    Liu, Ya; Kong, Ming; Cheng, Xiao Jie; Wang, Qian Qian; Jiang, Li Ming; Chen, Xi Guang

    2013-04-15

    The present work described nanoparticles (NPs) made of oleoyl-carboxymethy-chitosan (OCMCS)/hyaluronic acid (HA) using coacervation process as novel potential carriers for gene delivery. An N/P ratio of 5 and OCMCS/HA weight ratio of 4 were the optimal conditions leading to the smallest (164.94 nm), positive charged (+14.2 mV) and monodispersed NPs. OCMCS-HA/DNA (OHD) NPs showed higher in vitro DNA release rates and increased cellular uptake by Caco-2 cells due to the HA involved in NPs. The MTT survival assay indicated no significant cytotoxicity. The transfection efficiency of OHD NPs was 5-fold higher than OCMCS/DNA (OD) NPs; however, it decreased significantly in the presence of excess free HA. The results indicated that OHD NPs internalized in Caco-2 cells were mediated by the hyaluronan receptor CD44. The data obtained in the present research gave evidence of the potential of OHD NPs for the targeting and further transfer of genes to the epithelial cells.

  12. Immunogenic Properties of a BCG Adjuvanted Chitosan Nanoparticle-Based Dengue Vaccine in Human Dendritic Cells.

    Directory of Open Access Journals (Sweden)

    Taweewun Hunsawong

    2015-09-01

    Full Text Available Dengue viruses (DENVs are among the most rapidly and efficiently spreading arboviruses. WHO recently estimated that about half of the world's population is now at risk for DENV infection. There is no specific treatment or vaccine available to treat or prevent DENV infections. Here, we report the development of a novel dengue nanovaccine (DNV composed of UV-inactivated DENV-2 (UVI-DENV and Mycobacterium bovis Bacillus Calmette-Guerin cell wall components (BCG-CWCs loaded into chitosan nanoparticles (CS-NPs. CS-NPs were prepared by an emulsion polymerization method prior to loading of the BCG-CWCs and UVI-DENV components. Using a scanning electron microscope and a zetasizer, DNV was determined to be of spherical shape with a diameter of 372.0 ± 11.2 nm in average and cationic surface properties. The loading efficacies of BCG-CWCs and UVI-DENV into the CS-NPs and BCG-CS-NPs were up to 97.2 and 98.4%, respectively. THP-1 cellular uptake of UVI-DENV present in the DNV was higher than soluble UVI-DENV alone. DNV stimulation of immature dendritic cells (iDCs resulted in a significantly higher expression of DCs maturation markers (CD80, CD86 and HLA-DR and induction of various cytokine and chemokine productions than in UVI-DENV-treated iDCs, suggesting a potential use of BCG- CS-NPs as adjuvant and delivery system for dengue vaccines.

  13. Self-assembled nanoparticles based on amphiphilic chitosan derivative and arginine for oral curcumin delivery

    Directory of Open Access Journals (Sweden)

    Raja MA

    2016-09-01

    Full Text Available Mazhar Ali Raja, Shah Zeenat, Muhammad Arif, Chenguang Liu College of Marine Life Science, Ocean University of China, Qingdao, Shandong, People’s Republic of China Abstract: Curcumin (Cur is a striking anticancer agent, but its low aqueous solubility, poor absorption, hasty metabolism, and elimination limit its oral bioavailability and consequently hinder its development as a drug. To redress these limitations, amphiphilic chitosan (CS conjugate with improved mucoadhesion and solubility over a wider pH range was developed by modification with hydrophobic acrylonitrile (AN and hydrophilic arginine (Arg; the synthesized conjugate (AN–CS–Arg, which was well characterized by Fourier transform infrared and 1H nuclear magnetic resonance spectroscopy. Results of critical aggregation concentration revealed that the AN–CS–Arg conjugate had low critical aggregation concentration and was prone to form self-assembled nanoparticles (NPs in aqueous medium. Cur-encapsulated AN–CS–Arg NPs (AN–CS–Arg/Cur NPs were developed by a simple sonication method and characterized for the physicochemical parameters such as zeta potential, particle size, and drug encapsulation. The results showed that zeta potential of the prepared NPs was 40.1±2.81 mV and the average size was ~218 nm. A considerable improvement in the aqueous solubility of Cur was observed after encapsulation into AN–CS–Arg/Cur NPs. With the increase in Cur concentration, loading efficiency increased but encapsulation efficiency decreased. The in vitro release profile exhibited sustained release pattern from the AN–CS–Arg/Cur NPs in typical biological buffers. The ex vivo mucoadhesion study revealed that AN–CS–Arg/Cur NPs had greater mucoadhesion than the control CS NPs. Compared with free Cur solution, AN–CS–Arg/Cur NPs showed stronger dose-dependent cytotoxicity against HT-29 cells. In addition, it was observed that cell uptake of AN–CS–Arg/Cur NPs was much higher

  14. Self-aggregated nanoparticles based on amphiphilic poly(lactic acid-grafted-chitosan copolymer for ocular delivery of amphotericin B

    Directory of Open Access Journals (Sweden)

    Zhou WJ

    2013-09-01

    Full Text Available Wenjun Zhou,1 Yuanyuan Wang,2 Jiuying Jian,2 Shengfang Song1 1Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, People’s Republic of China; 2College of Life Science, Chongqing Medical University, Chongqing, People’s Republic of China Background: The purpose of this study was to develop a self-aggregated nanoparticulate vehicle using an amphiphilic poly(lactic acid-grafted-chitosan (PLA-g-CS copolymer and to evaluate its potential for ocular delivery of amphotericin B. Methods: A PLA-g-CS copolymer was synthesized via a “protection-graft-deprotection” procedure and its structure was confirmed by Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance, and X-ray diffraction spectra. Amphotericin B-loaded nanoparticles based on PLA-g-CS (AmB/PLA-g-CS were prepared by the dialysis method and characterized for particle size, zeta potential, and encapsulation efficiency. Studies of these AmB/PLA-g-CS nanoparticles, including their mucoadhesive strength, drug release properties, antifungal activity, ocular irritation, ocular pharmacokinetics, and corneal penetration were performed in vitro and in vivo. Results: Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance, and X-ray diffraction spectra showed that the PLA chains were successfully grafted onto chitosan molecules and that crystallization of chitosan was suppressed. The self-aggregated PLA-g-CS nanoparticles had a core-shell structure with an average particle size of approximately 200 nm and zeta potentials higher than 30 mV. Amphotericin B was incorporated into the hydrophobic core of the nanoparticles with high encapsulation efficiency. Sustained drug release from the nanoparticles was observed in vitro. The ocular irritation study showed no sign of irritation after instillation of the PLA-g-CS nanoparticles into rabbit eyes. The minimal inhibitory concentration of the AmB/PLA-g-CS nanoparticles showed antifungal

  15. Research on Chitosan Nanoparticles based on Dynamic Light Scattering%几丁聚糖纳米颗粒的动态光散射研究

    Institute of Scientific and Technical Information of China (English)

    娄本浊

    2014-01-01

    The chitosan nanoparticles were prepared by ionic gelation method and the size distribution and Zeta potential were measured by dynamic light scattering technique. The results showed that the size distribution of chitosan nanoparticles was from unimodal to bimodal with the TPP content decreasing and it indicated that the aggregation effect between nanoparticles was caused by the TPP content decreasing. The Zeta potential reduced gradually with the TPP content decreased. This was because more NH3+ions on the surface of chitosan nanoparticles neutralized triphosphoric groups for TPP content increasing.%利用离子凝胶法制备几丁聚糖纳米颗粒,并用动态光散射测量所得颗粒的粒径分布与界面电位。研究结果发现,随着CS/TPP比值的减小,几丁聚糖纳米颗粒的粒径由单峰分布转变为双峰分布,说明三聚磷酸钠含量的增加会使几丁聚糖纳米颗粒之间产生聚集效应。界面电位值随着CS/TPP比值的减小而逐渐下降,原因是三聚磷酸钠浓度的增加使几丁聚糖纳米颗粒表面上更多的NH3+离子与三聚磷酸根离子反应中和的缘故。

  16. Nanoparticle-based Sensors

    Directory of Open Access Journals (Sweden)

    V.K. Khanna

    2008-09-01

    Full Text Available Nanoparticles exhibit several unique properties that can be applied to develop chemical and biosensorspossessing desirable features like enhanced sensitivity and lower detection limits. Gold nanoparticles arecoated with sugars tailored to recognise different biological substances. When mixed with a weak solution ofthe sugar-coated nanoparticles, the target substance, e.g., ricin or E.coli, attaches to the sugar, thereby alteringits properties and changing the colour. Spores of bacterium labeled with carbon dots have been found to glowupon illumination when viewed with a confocal microscope. Enzyme/nanoparticle-based optical sensors forthe detection of organophosphate (OP compounds employ nanoparticle-modified fluorescence of an inhibitorof the enzyme to generate the signal for the OP compound detection. Nanoparticles shaped as nanoprisms,built of silver atoms, appear red on exposure to light. These nanoparticles are used as diagnostic labels thatglow when target DNA, e.g., those of anthrax or HIV, are present. Of great importance are tools like goldnanoparticle-enhanced surface-plasmon resonance sensor and silver nanoparticle surface-enhanced portableRaman integrated tunable sensor. Nanoparticle metal oxide chemiresistors using micro electro mechanical systemhotplate are very promising devices for toxic gas sensing. Chemiresistors comprising thin films of nanogoldparticles, encapsulated in monomolecular layers of functionalised alkanethiols, deposited on interdigitatedmicroelectrodes, show resistance changes through reversible absorption of vapours of harmful gases. Thispaper reviews the state-of-the-art sensors for chemical and biological terror agents, indicates their capabilitiesand applications, and presents the future scope of these devices.Defence Science Journal, 2008, 58(5, pp.608-616, DOI:http://dx.doi.org/10.14429/dsj.58.1683

  17. Glycol chitosan

    DEFF Research Database (Denmark)

    Danielsen, E Thomas; Danielsen, E Michael

    2017-01-01

    Chitosan is a polycationic polysaccharide consisting of β-(1-4)-linked glucosamine units and due to its mucoadhesive properties, chemical derivatives of chitosan are potential candidates as enhancers for transmucosal drug delivery. Recently, glycol chitosan (GC), a soluble derivative of chitosan...

  18. Nanoparticle-Based Biosensors and Bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guodong; Wang, Jun; Lin, Yuehe; Wang, Joseph

    2007-10-11

    In this book chapter, we review the recent advances in nanoparticles based bioassay. The nanoparticles include quantum dots, silica nanoparticles and apoferritin nanoparticles. The new nanoparticles-based labels hold great promise for multiplex protein and DNA detection and for enhancing the sensitivity of other bioassays.

  19. Preparation and characteristics of chitosan nanoparticles based on multiepitope DNA vaccine encoding ESAT-6 Th1 epitopes of Mycobacterium tuberculosis and FL%结核杆菌ESAT-6抗原Th1优势表位与FL重组纳米疫苗的制备及其特性研究

    Institute of Scientific and Technical Information of China (English)

    蒋青桃; 冯旰珠; 夏梅; 陈霞; 邱文; 赵聃; 王迎伟

    2011-01-01

    目的:制备适当粒径的壳聚糖纳米粒,并连接质粒,评价该壳聚糖纳米粒对该质粒的结合能力与保护作用,为进一步研究重组纳米疫苗的免疫效果提供基础.方法:采用离子交联法制备成pIRES-TH.FL-壳聚糖纳米粒复合物,用紫外分光光度计检测纳米颗粒对质粒的包埋率;经琼脂糖凝胶电泳分析纳米载体与质粒的结合能力及对该质粒的保护作用;通过喷金电镜观察其大小形态;另用zata电位仪测定粒径和zeta电位:最后用Western blot实验鉴定其在真核细胞中的表达情况.结果:紫外分光光度计检测到该壳聚糖纳米质粒的包埋率为99.28%,琼脂糖凝胶电泳结果显示壳聚糖纳米粒能保护该质粒免受DNase Ⅰ的降解.制得的壳聚糖纳米质粒粒径为300 nm左右.zeta电位为32.4 mV.Western blot证实,该纳米质粒能转染293T细胞并表达目的融合蛋白.结论:本实验成功制备了粒径适当且分布均匀的壳聚糖纳米质粒,并能够在体外实现有效表达.%Objective:To prepare chitosan nanoparticles as gene carrier of multiepitope DNA vaccine,and explore the loading capability and its protection ability to plasmid. Methods:The chitosan nanoparticles were prepared with ionic cross-linking method. The encapsulation rate was determined by UV spectrophotometer. The binding ability and protective effect of plasmid plRES-TH-FL were evaluated by agarose gel electrophoresis analysis. The size,morphology and distribution were observed by transmission electron microscope. The diameter and zeta potential were measured by zetasizer. The pIRES-TH-FL-chitosan nanoparticles were transfected into 293T cells in order to examine their expression. Results:The encapsulation efficiency of pIRES-TH-FI-hitosan nanoparticles was 99.28% by UV spectrophotometer. Agarose gel electrophoresis showed that chitosan nanoparticles can effectively combined with plasmid plRESTH-FL and protected it from nuclease degradation

  20. Chitosan functional properties.

    Science.gov (United States)

    Shepherd, R; Reader, S; Falshaw, A

    1997-06-01

    Chitosan is a partially deacetylated polymer of N-acetyl glucosamine. It is essentially a natural, water-soluble, derivative of cellulose with unique properties. Chitosan is usually prepared from chitin (2 acetamido-2-deoxy beta-1,4-D-glucan) and chitin has been found in a wide range of natural sources (crustaceans, fungi, insects, annelids, molluscs, coelenterata etc.) However chitosan is only manufactured from crustaceans (crab and crayfish) primarily because a large amount of the crustacean exoskeleton is available as a by product of food processing. Squid pens (a waste byproduct of New Zealand squid processing) are a novel, renewable source of chitin and chitosan. Squid pens are currently regarded as waste and so the raw material is relatively cheap. This study was intended to assess the functional properties of squid pen chitosan. Chitosan was extracted from squid pens and assessed for composition, rheology, flocculation, film formation and antimicrobial properties. Crustacean chitosans were also assessed for comparison. Squid chitosan was colourless, had a low ash content and had significantly improved thickening and suspending properties. The flocculation capacity of squid chitosan was low in comparison with the crustacean sourced chitosans. However it should be possible to increase the flocculation capacity of squid pen chitosan by decreasing the degree of acetylation. Films made with squid chitosan were more elastic than crustacean chitosan with improved functional properties. This high quality chitosan could prove particularly suitable for medical/analytical applications.

  1. Nanoparticle-based therapy for respiratory diseases

    Directory of Open Access Journals (Sweden)

    ADRIANA L. DA SILVA

    2013-03-01

    Full Text Available Nanotechnology is an emerging science with the potential to create new materials and strategies involving manipulation of matter at the nanometer scale (<100 nm. With size-dependent properties, nanoparticles have introduced a new paradigm in pharmacotherapy – the possibility of cell-targeted drug delivery with minimal systemic side effects and toxicity. The present review provides a summary of published findings, especially regarding to nanoparticle formulations for lung diseases. The available data have shown some benefits with nanoparticle-based therapy in the development of the disease and lung remodeling in respiratory diseases. However, there is a wide gap between the concepts of nanomedicine and the published experimental data and clinical reality. In addition, studies are still required to determine the potential of nanotherapy and the systemic toxicity of nanomaterials for future human use.

  2. Magnetic core-shell chitosan nanoparticles: rheological characterization and hyperthermia application.

    Science.gov (United States)

    Zamora-Mora, Vanessa; Fernández-Gutiérrez, Mar; San Román, Julio; Goya, Gerardo; Hernández, Rebeca; Mijangos, Carmen

    2014-02-15

    Stabilized magnetic nanoparticles are the subject of intense research for targeting applications and this work deals with the design, preparation and application of specific core-shell nanoparticles based on ionic crosslinked chitosan. The nanometric size of the materials was demonstrated by dynamic light scattering (DLS) and field emission scanning electron microscopy (FESEM) that also proved an increase of the size of chitosan nanoparticles (NPs) with the magnetite content. Steady oscillatory rheology measurements revealed a gel-like behavior of aqueous dispersions of chitosan NPs with concentrations ranging from 0.5% to 2.0% (w/v). The cytotoxicity of all the materials synthesized was analyzed in human fibroblasts cultures using the Alamar Blue and lactate dehydrogenase (LDH) assays. The measured specific power absorption under alternating magnetic fields (f = 580 kHz, H = 24 kA/m) indicated that magnetic core-shell chitosan NPs can be useful as remotely driven heaters for magnetic hyperthermia.

  3. Substrate independent silver nanoparticle based antibacterial coatings.

    Science.gov (United States)

    Taheri, Shima; Cavallaro, Alex; Christo, Susan N; Smith, Louise E; Majewski, Peter; Barton, Mary; Hayball, John D; Vasilev, Krasimir

    2014-05-01

    Infections arising from bacterial adhesion and colonization on medical device surfaces are a significant healthcare problem. Silver based antibacterial coatings have attracted a great deal of attention as a potential solution. This paper reports on the development of a silver nanoparticles based antibacterial surface that can be applied to any type of material surface. The silver nanoparticles were surface engineered with a monolayer of 2-mercaptosuccinic acid, which facilitates the immobilization of the nanoparticles to the solid surface, and also reduces the rate of oxidation of the nanoparticles, extending the lifetime of the coatings. The coatings had excellent antibacterial efficacy against three clinically significant pathogenic bacteria i.e. Staphylococcus epidermidis, Staphylococcus aureus and Pseudomonas aeruginosa. Studies with primary human fibroblast cells showed that the coatings had no cytotoxicity in vitro. Innate immune studies in cultures of primary macrophages demonstrated that the coatings do not significantly alter the level of expression of pro-inflammatory cytokines or the adhesion and viability of these cells. Collectively, these coatings have an optimal combination of properties that make them attractive for deposition on medical device surfaces such as wound dressings, catheters and implants.

  4. Preparation of chitosan gel

    Directory of Open Access Journals (Sweden)

    Lagerge S.

    2012-06-01

    Full Text Available Aerogel conditioning of the chitosan makes it possible to prepare porous solids of significant specific surface. The increase in the chitosan concentration or the degree of acetylation decreases the specific surface of the synthesized chitosan gel. Whereas drying with supercritical CO2 more effectively makes it possible to preserve the volume of the spheres of gel and to have a more significant specific surface in comparison with evaporative drying.

  5. Gold nanoparticle-based microfluidic sensor for mercury detection

    DEFF Research Database (Denmark)

    Lafleur, Josiane P.; Jensen, Thomas Glasdam; Kutter, Jörg Peter

    2011-01-01

    The contamination of natural resources by human activity can have severe socio-economical impacts. Conventional methods of environmental analysis can be significantly improved by the development of portable microscale technologies for remote/field sensing. A gold nanoparticle-based lab-on-a-chip ......The contamination of natural resources by human activity can have severe socio-economical impacts. Conventional methods of environmental analysis can be significantly improved by the development of portable microscale technologies for remote/field sensing. A gold nanoparticle-based lab...

  6. Chitosan Nanoparticles Prepared by Ionotropic Gelation: An Overview of Recent Advances.

    Science.gov (United States)

    Desai, Kashappa Goud

    2016-01-01

    The objective of this review is to summarize recent advances in chitosan nanoparticles prepared by ionotropic gelation. Significant progress has occurred in this area since the method was first reported. The gelation technique has been improved through a number of creative methodological modifications. Ionotropic gelation via electrospraying and spinning disc processing produces nanoparticles with a more uniform size distribution. Large-scale manufacturing of the nanoparticles can be achieved with the latter approach. Hydrophobic and hydrophilic drugs can be simultaneously encapsulated with high efficiency by emulsification followed by ionic gelation. The turbulent mixing approach facilitates nanoparticle formation at a relatively high polymer concentration (5 mg/mL). The technique can be easily tuned to achieve the desired polymer/surface modifications (e.g., blending, coating, and surface conjugation). Using factorial-design-based approaches, optimal conditions for nanoparticle formation can be determined with a minimum number of experiments. New insights have been gained into the mechanism of chitosan-tripolyphosphate nanoparticle formation. Chitosan nanoparticles prepared by ionotropic gelation tend to aggregate/agglomerate in unfavorable environments. Factors influencing this phenomenon and strategies that can be adopted to minimize the instability are discussed. Ionically cross-linked nanoparticles based on native chitosan and modified chitosan have shown excellent efficacy for controlled and targeted drug-delivery applications.

  7. Red Fluorescent Carbon Nanoparticle-Based Cell Imaging Probe.

    Science.gov (United States)

    Ali, Haydar; Bhunia, Susanta Kumar; Dalal, Chumki; Jana, Nikhil R

    2016-04-13

    Fluorescent carbon nanoparticle-based probes with tunable visible emission are biocompatible, environment friendly and most suitable for various biomedical applications. However, synthesis of red fluorescent carbon nanoparticles and their transformation into functional nanoparticles are very challenging. Here we report red fluorescent carbon nanoparticle-based nanobioconjugates of nanoparticles are synthesized via high temperature colloid-chemical approach and transformed into water-soluble functional nanoparticles via coating with amphiphilic polymer followed by covalent linking with desired biomolecules. Following this approach, carbon nanoparticles are functionalized with polyethylene glycol, primary amine, glucose, arginine, histidine, biotin and folic acid. These functional nanoparticles can be excited with blue/green light (i.e., 400-550 nm) to capture their emission spanning from 550 to 750 nm. Arginine and folic acid functionalized nanoparticles have been demonstrated as fluorescent cell labels where blue and green excitation has been used for imaging of labeled cells. The presented method can be extended for the development of carbon nanoparticle-based other bioimaging probes.

  8. Comparison of chitosan nanoparticles and chitosan hydrogels for vaccine delivery

    DEFF Research Database (Denmark)

    Gordon, Sarah; Saupe, Anne; McBurney, Warren

    2008-01-01

    In this work the potential of chitosan nanoparticles (CNP) and thermosensitive chitosan hydrogels as particulate and sustained release vaccine delivery systems was investigated. CNP and chitosan hydrogels were prepared, loaded with the model protein antigen ovalbumin (OVA) and characterised...... of the release of fluorescently-labelled OVA (FITC-OVA) from CNP and chitosan hydrogels in-vitro showed that approximately 50% of the total protein was released from CNP within a period of ten days; release of antigen from chitosan gel occurred in a more sustained manner, with ... released after 10 days. The slow release from gel formulations may be explained by the strong interactions of the protein with chitosan. While OVA-loaded CNP showed no significant immunogenicity, formulations of OVA in chitosan gel were able to stimulate both cell-mediated and humoral immunity in-vivo....

  9. Neural Stem Cell Affinity of Chitosan and Feasibility of Chitosan-Based Porous Conduits as Scaffolds for Nerve Tissue Engineering

    Institute of Scientific and Technical Information of China (English)

    WANG Aijun; AO Qiang; HE Qing; GONG Xiaoming; GONG Kai; GONG Yandao; ZHAO Nanming; ZHANG Xiufang

    2006-01-01

    Neural stem cells (NSCs) are currently considered as powerful candidate seeding cells for regeneration of both spinal cords and peripheral nerves. In this study, NSCs derived from fetal rat cortices were co-cultured with chitosan to evaluate the cell affinity of this material. The results showed that NSCs grew and proliferated well on chitosan films and most of them differentiated into neuron-like cells after 4 days of culture. Then, molded and braided chitosan conduits were fabricated and characterized for their cytotoxicity, swelling, and mechanical properties. Both types of conduits had no cytotoxic effects on fibroblasts (L929 cells) or neuroblastoma (Neuro-2a) cells. The molded conduits are much softer and more flexible while the braided conduits possess much better mechanical properties, which suggests different potential applications.

  10. DNA/chitosan electrostatic complex.

    Science.gov (United States)

    Bravo-Anaya, Lourdes Mónica; Soltero, J F Armando; Rinaudo, Marguerite

    2016-07-01

    Up to now, chitosan and DNA have been investigated for gene delivery due to chitosan advantages. It is recognized that chitosan is a biocompatible and biodegradable non-viral vector that does not produce immunological reactions, contrary to viral vectors. Chitosan has also been used and studied for its ability to protect DNA against nuclease degradation and to transfect DNA into several kinds of cells. In this work, high molecular weight DNA is compacted with chitosan. DNA-chitosan complex stoichiometry, net charge, dimensions, conformation and thermal stability are determined and discussed. The influence of external salt and chitosan molecular weight on the stoichiometry is also discussed. The isoelectric point of the complexes was found to be directly related to the protonation degree of chitosan. It is clearly demonstrated that the net charge of DNA-chitosan complex can be expressed in terms of the ratio [NH3(+)]/[P(-)], showing that the electrostatic interactions between DNA and chitosan are the main phenomena taking place in the solution. Compaction of DNA long chain complexed with low molar mass chitosan gives nanoparticles with an average radius around 150nm. Stable nanoparticles are obtained for a partial neutralization of phosphate ionic sites (i.e.: [NH3(+)]/[P(-)] fraction between 0.35 and 0.80).

  11. Antitumour Activity of Chitosan Hydrogen Selenites

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Chitosans reacted with selenious acid to prepare chitosan hydrogen selenites, which were found to be growth-inhibitory against sarcoma 180 solid tumor. The results indicated that the activity also depended on the molecular weight of chitosan supports.

  12. Antitumour Acitivty of Chitosan Hydrogen Selenites

    Institute of Scientific and Technical Information of China (English)

    CaiQinQIN; XiaoHaiGAO; 等

    2002-01-01

    Chitosans reacted with selenious acid to prepare chitosan hydrogen selenites, which were found to be growth-inhibitory against sarcoma 180 solid tumor. The results indicated that the activity also depended on the molecular weight of chitosan supports.

  13. Fluorescent nanoparticles based on AIE fluorogens for bioimaging

    Science.gov (United States)

    Yan, Lulin; Zhang, Yan; Xu, Bin; Tian, Wenjing

    2016-01-01

    Fluorescent nanoparticles (FNPs) have recently attracted increasing attention in the biomedical field because of their unique optical properties, easy fabrication and outstanding performance in imaging. Compared with conventional molecular probes including small organic dyes and fluorescent proteins, FNPs based on aggregation-induced emission (AIE) fluorogens have shown significant advantages in tunable emission and brightness, good biocompatibility, superb photo- and physical stability, potential biodegradability and facile surface functionalization. In this review, we summarize the latest advances in the development of fluorescent nanoparticles based on AIE fluorogens including polymer nanoparticles and silica nanoparticles over the past few years, and the various biomedical applications based on these fluorescent nanoparticles are also elaborated.

  14. Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: A review

    OpenAIRE

    M. Abd Elgadir; Md.Salim Uddin; Sahena Ferdosh; Aishah Adam; Ahmed Jalal Khan Chowdhury; Md. Zaidul Islam Sarker

    2015-01-01

    Chitosan is a promising biopolymer for drug delivery systems. Because of its beneficial properties, chitosan is widely used in biomedical and pharmaceutical fields. In this review, we summarize the physicochemical and drug delivery properties of chitosan, selected studies on utilization of chitosan and chitosan-based nanoparticle composites in various drug delivery systems, and selected studies on the application of chitosan films in both drug delivery and wound healing. Chitosan is considere...

  15. Preparation of chitosan nanofiber tube by electrospinning.

    Science.gov (United States)

    Matsuda, Atsushi; Kagata, Go; Kino, Rikako; Tanaka, Junzo

    2007-03-01

    Water-insoluble chitosan nanofiber sheets and tubes coated with chitosan-cast film were prepared by electrospinning. When as-spun chitosan nanofiber sheets and tubes were immersed in 28% ammonium aqueous solution, they became insoluble in water and showed nanofiber structures confirmed by SEM micrography. Mechanical properties of chitosan nanofiber sheets and tubes were improved by coating with chitosan-cast film, which gave them a compressive strength higher than that of crab-tendon chitosan, demonstrating that chitosan nanofiber tubes coated with chitosan-cast film are usable as nerve-regenerative guide tubes.

  16. Chitosan and chemically modified chitosan beads for acid dyes sorption

    Institute of Scientific and Technical Information of China (English)

    AZLAN Kamari; WAN SAIME Wan Ngah; LAI KEN Liew

    2009-01-01

    The capabilities of chitosan and chitosan-EGDE (ethylene glycol diglycidyl ether) beads for removing Acid Red 37 (AR 37) and Acid Blue 25 (AB 25) from aqueous solution were examined. Chitosan beads were cross-linked with EGDE to enhance its chemical resistance and mechanical strength. Experiments were performed as a function of pH, agitation period and concentration of AR 37 and AB 25. It was shown that the adsorption capacities of chitosan were comparatively higher than chitosan-EGDE for both acid dyes. This is mainly because cross-linking using EGDE reduces the major adsorption sites -NH3+ on chitosan. Langmuir isotherm model showed best conformity compared to Freundlich and BET. The kinetic experimental data agreed very well to the pseudo second-order kinetic model. The desorption study revealed that after three cycles of adsorption and desorption by NaOH and HCl, both adsorbents retained their promising adsorption abilities. FT-IR analysis proved that the adsorption of acid dyes onto chitosan-based adsorbents was a physical adsorption. Results also showed that chitosan and chitosan-EGDE beads were favourable adsorbers and could be employed as low-cost alternatives for the removal of acid dyes in wastewater treatment.

  17. Nanoparticle-based immunosensors and immunoassays for aflatoxins

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu; Niessner, Reinhard [Institute of Hydrochemistry and Chair of Analytical Chemistry, Technische Universität München, Marchioninistrasse 17, D-81377 München (Germany); Tang, Dianping [Key Laboratory of Analysis and Detection for Food Safety, MOE & Fujian Province, Department of Chemistry, Fuzhou University, Fuzhou 350108 (China); Knopp, Dietmar, E-mail: dietmar.knopp@ch.tum.de [Institute of Hydrochemistry and Chair of Analytical Chemistry, Technische Universität München, Marchioninistrasse 17, D-81377 München (Germany)

    2016-03-17

    Aflatoxins are naturally existing mycotoxins produced mainly by Aspergillus flavus and Aspergillus parasiticus, present in a wide range of food and feed products. Because of their extremely high toxicity and carcinogenicity, strict control of maximum residue levels of aflatoxins in foodstuff is set by many countries. In daily routine, different chromatographic methods are used almost exclusively. As supplement, in several companies enzyme immunoassay-based sample testing as primary screening is performed. Recently, nanomaterials such as noble metal nanoparticles, magnetic particles, carbon nanomaterials, quantum dots, and silica nanomaterials are increasingly utilized for aflatoxin determination to improve the sensitivity and simplify the detection. They are employed either as supports for the immobilization of biomolecules or as electroactive or optical labels for signal transduction and amplification. Several nanoparticle-based electrochemical, piezoelectric, optical, and immunodipstick assays for aflatoxins have been developed. In this review, we summarize these recent advances and illustrate novel concepts and promising applications in the field of food safety. - Highlights: • Novel concepts and promising applications of nanoparticle-based immunological methods for the determination of aflatoxins. • Inclusion of most important nanomaterials and hybrid nanostructures. • Inclusion of electrochemical, optical and mass-sensitive biosensors as well as optical and immunochromatographic assays.

  18. Nanoparticle-Based and Bioengineered Probes and Sensors to Detect Physiological and Pathological Biomarkers in Neural Cells.

    Science.gov (United States)

    Maysinger, Dusica; Ji, Jeff; Hutter, Eliza; Cooper, Elis

    2015-01-01

    Nanotechnology, a rapidly evolving field, provides simple and practical tools to investigate the nervous system in health and disease. Among these tools are nanoparticle-based probes and sensors that detect biochemical and physiological properties of neurons and glia, and generate signals proportionate to physical, chemical, and/or electrical changes in these cells. In this context, quantum dots (QDs), carbon-based structures (C-dots, grapheme, and nanodiamonds) and gold nanoparticles are the most commonly used nanostructures. They can detect and measure enzymatic activities of proteases (metalloproteinases, caspases), ions, metabolites, and other biomolecules under physiological or pathological conditions in neural cells. Here, we provide some examples of nanoparticle-based and genetically engineered probes and sensors that are used to reveal changes in protease activities and calcium ion concentrations. Although significant progress in developing these tools has been made for probing neural cells, several challenges remain. We review many common hurdles in sensor development, while highlighting certain advances. In the end, we propose some future directions and ideas for developing practical tools for neural cell investigations, based on the maxim "Measure what is measurable, and make measurable what is not so" (Galileo Galilei).

  19. Nanoparticle-based and bioengineered probes and sensors to detect physiological and pathological biomarkers in neural cells

    Directory of Open Access Journals (Sweden)

    Dusica eMaysinger

    2015-12-01

    Full Text Available Nanotechnology, a rapidly evolving field, provides simple and practical tools to investigate the nervous system in health and disease. Among these tools are nanoparticle-based probes and sensors that detect biochemical and physiological properties of neurons and glia, and generate signals proportionate to physical, chemical, and/or electrical changes in these cells. In this context, quantum dots (QDs, carbon-based structures (C-dots, graphene and nanodiamonds and gold nanoparticles are the most commonly used nanostructures. They can detect and measure enzymatic activities of proteases (metalloproteinases, caspases, ions, metabolites, and other biomolecules under physiological or pathological conditions in neural cells. Here, we provide some examples of nanoparticle-based and genetically engineered probes and sensors that are used to reveal changes in protease activities and calcium ion concentrations. Although significant progress in developing these tools has been made for probing neural cells, several challenges remain. We review many common hurdles in sensor development, while highlighting certain advances. In the end, we propose some future directions and ideas for developing practical tools for neural cell investigations, based on the maxim Measure what is measurable, and make measurable what is not so (Galileo Galilei.

  20. Nanoparticle-based immunosensors and immunoassays for aflatoxins.

    Science.gov (United States)

    Wang, Xu; Niessner, Reinhard; Tang, Dianping; Knopp, Dietmar

    2016-03-17

    Aflatoxins are naturally existing mycotoxins produced mainly by Aspergillus flavus and Aspergillus parasiticus, present in a wide range of food and feed products. Because of their extremely high toxicity and carcinogenicity, strict control of maximum residue levels of aflatoxins in foodstuff is set by many countries. In daily routine, different chromatographic methods are used almost exclusively. As supplement, in several companies enzyme immunoassay-based sample testing as primary screening is performed. Recently, nanomaterials such as noble metal nanoparticles, magnetic particles, carbon nanomaterials, quantum dots, and silica nanomaterials are increasingly utilized for aflatoxin determination to improve the sensitivity and simplify the detection. They are employed either as supports for the immobilization of biomolecules or as electroactive or optical labels for signal transduction and amplification. Several nanoparticle-based electrochemical, piezoelectric, optical, and immunodipstick assays for aflatoxins have been developed. In this review, we summarize these recent advances and illustrate novel concepts and promising applications in the field of food safety.

  1. Plant Viruses as Nanoparticle-Based Vaccines and Adjuvants

    Directory of Open Access Journals (Sweden)

    Marie-Ève Lebel

    2015-08-01

    Full Text Available Vaccines are considered one of the greatest medical achievements in the battle against infectious diseases. However, the intractability of various diseases such as hepatitis C, HIV/AIDS, malaria, tuberculosis, and cancer poses persistent hurdles given that traditional vaccine-development methods have proven to be ineffective; as such, these challenges have driven the emergence of novel vaccine design approaches. In this regard, much effort has been put into the development of new safe adjuvants and vaccine platforms. Of particular interest, the utilization of plant virus-like nanoparticles and recombinant plant viruses has gained increasing significance as an effective tool in the development of novel vaccines against infectious diseases and cancer. The present review summarizes recent advances in the use of plant viruses as nanoparticle-based vaccines and adjuvants and their mechanism of action. Harnessing plant-virus immunogenic properties will enable the design of novel, safe, and efficacious prophylactic and therapeutic vaccines against disease.

  2. Flocculation Kinetics of Chitosan

    Institute of Scientific and Technical Information of China (English)

    陈亮; 林志艳; 陈东辉

    2003-01-01

    Under the various conditions, the experiments of flocculation of bentonite solution with chitosan were carried out. And the flocculation kinetics was studied by the changes of floc size along with time. The results show that hydraulic gradient G (s-1) plays a key role in growing up of floc size and both of molecular weight and initial turbidity of bentonite solution influence the floc size in steady state and the time needed for steady floc size.

  3. Mucosal immunization with PsaA protein, using chitosan as a delivery system, increases protection against acute otitis media and invasive infection by Streptococcus pneumoniae.

    Science.gov (United States)

    Xu, J-H; Dai, W-J; Chen, B; Fan, X-Y

    2015-03-01

    As infection with Streptococcus pneumoniae (mainly via the mucosal route) is a leading cause of acute otitis media, sinus and bacterial pneumonia, the mucosal immunity plays an important role in the prevention of pneumococcal diseases. Therefore, intranasal vaccination may be an effective immunization strategy, but requires appropriate mucosal vaccine delivery systems. In this work, chitosan was used as a mucosal delivery system to form chitosan-PsaA nanoparticles based on ionotropic gelation methods and used to immunize BALB/c mice intranasally. Compared to mice immunized with naked PsaA, levels of IFN-γ, IL-17A and IL-4 in spleen lymphocytes, the systemic (IgG in serum) and mucosal (IgA in mucosal lavage) specific antibodies were enhanced significantly in mice inoculated with chitosan-PsaA. Furthermore, increased protection against acute otitis media following middle ear challenge with pneumococcus serotype 14, and improved survival following intraperitoneal challenge with pneumococcus serotype 3 or serotype 14, was found in the mice immunized with chitosan-PsaA nanoparticles. Thus, intranasal immunization with chitosan-PsaA can successfully induce mucosal and systemic immune responses and increase protection against pneumococcal acute otitis media and invasive infections. Hence, intranasal immunization with PsaA protein, based on chitosan as a delivery system, is an efficient immunization strategy for preventing pneumococcal infections.

  4. Nanoparticle-based drug delivery systems: promising approaches against infections

    Energy Technology Data Exchange (ETDEWEB)

    Ranghar, Shweta; Sirohi, Parul [Department of Applied Mechanics, Motilal Nehru National Institute of Technology, Allahabad (India); Verma, Pritam; Agarwal, Vishnu, E-mail: vishnu_agarwal02@rediffmail.com [Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad (India)

    2014-03-15

    Despite the fact that many new drugs and technologies have been developed to combat the infectious diseases, these have continued to be global health challenges. The use of conventional antimicrobial agents against these infections is always associated with problems such as the development of multiple drug resistance and adverse side effects. In addition, the inefficient traditional drug delivery system results in inadequate therapeutic index, low bioavailability of drugs and many other limitations. In this regard, antimicrobial nanoparticles and nanosized drug delivery carriers have emerged as potent effective agents against the infections. Nanoparticles have unique properties owing to their ultra small and controllable size such as high surface area, enhanced reactivity, and functionalizable structure. This review focused on different classes of antimicrobial nanoparticles, including metal, metal oxide and others along with their mechanism of action and their potential use against the infections. The review also focused on the development of nanoparticle systems for antimicrobial drug delivery and use of these systems for delivery of various antimicrobial agents, giving an overview about modern nanoparticle based therapeutic strategies against the infections. (author)

  5. Preparation and Characterization of Acylated Chitosan

    Institute of Scientific and Technical Information of China (English)

    LI Ming-chun; LIU Chao; XIN Mei-hua; ZHAO Huang; WANG Min; FENG Zhen; SUN Xiao-li

    2005-01-01

    Fully acylated chitosan and N, N-diacyl chitosan were prepared. The products were characterized by elemental analysis, FTIR and 1H NMR. The experimental results indicate that the average degree of acylation depends on the volume ratio of pyridine to chloroform in the reaction medium, the chain length of the acylation agent used, and the molecular weight of chitosan raw materials. The XRD measurements were carried out for pure chitosan, fully acylated chitosan and N, N-diacyl chitosan to verify the crystallinity change caused by the acylation.

  6. Preparation and evaluation of oleoyl-carboxymethy-chitosan (OCMCS) nanoparticles as oral protein carriers.

    Science.gov (United States)

    Liu, Ya; Cheng, Xiao Jie; Dang, Qi Feng; Ma, Fang Kui; Chen, Xi Guang; Park, Hyun Jin; Kim, Bum Keun

    2012-02-01

    Oleoyl-carboxymethy chitosan (OCMCS) nanoparticles based on chitosan with different molecular weights (50, 170 and 820 kDa) were prepared by self-assembled method. The nanoparticles had spherical shape, positive surface charges and the mean diameters were 157.4, 274.1 and 396.7 nm, respectively. FITC-labeled OCMCS nanoparticles were internalized via the intestinal mucosa and observed in liver, spleen, intestine and heart following oral deliverance to carps (Cyprinus carpio). Extracellular products (ECPs) of Aeromonas hydrophila as microbial antigen was efficiently loaded to form OCMCS-ECPs nanoparticles and shown to be sustained release in PBS. Significantly higher (P < 0.05) antigen-specific antibodies were detected in serum after orally immunized with OCMCS-ECPs nanoparticles than that immunized with ECPs alone and non-immunized in control group in carps. These results implied that amphiphilic modified chitosan nanoparticles had great potential to be applied as carriers for the oral administration of protein drugs.

  7. Characterization of Chitosan Nanofiber Sheets for Antifungal Application

    OpenAIRE

    Mayumi Egusa; Ryo Iwamoto; Hironori Izawa; Minoru Morimoto; Hiroyuki Saimoto; Hironori Kaminaka; Shinsuke Ifuku

    2015-01-01

    Chitosan produced by the deacetylation of chitin is a cationic polymer with antimicrobial properties. In this study, we demonstrate the improvement of chitosan properties by nanofibrillation. Nanofiber sheets were prepared from nanofibrillated chitosan under neutral conditions. The Young’s modulus and tensile strength of the chitosan NF sheets were higher than those of the chitosan sheets prepared from dissolving chitosan in acetic acid. The chitosan NF sheets showed strong mycelial growth in...

  8. Comperative study of catalase immobilization on chitosan, magnetic chitosan and chitosan-clay composite beads.

    Science.gov (United States)

    Başak, Esra; Aydemir, Tülin; Dinçer, Ayşe; Becerik, Seda Çınar

    2013-12-01

    Catalase was immobilized on chitosan and modified chitosan. Studies were carried out on free-immobilized catalase concerning the determination of optimum temperature, pH, thermal, storage stability, reusability, and kinetic parameters. Optimum temperature and pH for free catalase and catalase immobilized were found as 35°C and 7.0, respectively. After 100 times of repeated tests, the immobilized catalases on chitosan-clay and magnetic chitosan maintain over 50% and 60% of the original activity, respectively. The ease of catalase immobilization on low-cost matrices and good stability upon immobilization in the present study make it a suitable product for further use in the food industry.

  9. Application of irradiated chitosan for fruit preservation

    Energy Technology Data Exchange (ETDEWEB)

    Lan, K.N. [Post-harvest Technology Institute, 4, Ngo Quyen-Ha Noi (Viet Nam); Lam, N.D. [Ha Noi Radiation Center, VAEC, 5T-160, Nghiado, Tuliem, Ha Noi (Viet Nam); Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-03-01

    Preliminary test of mango (Mangifera indica) preservation by irradiated chitosan coating has been investigated. The coating by using irradiated chitosan in 1.5% solution has extended the shelf life of mango from 7 to 15 days. At the 15th day mango coated by irradiated chitosan has been keeping good color, natural ripening, without spoilage, weight loss 10%, whereas the mango without coating was spoiled completely and the coating of fruit with unirradiated chitosan inhibited the ripening. (author)

  10. Enhancing Biological Wastewater Treatment with Chitosan

    Institute of Scientific and Technical Information of China (English)

    陈亮; 陈东辉; 朱珺

    2003-01-01

    Chitin and chitosan have been applied to biological wastewater treatment.From a number of parallel comparison experiments,it can be concluded that the application of chitin and chitosan can both enhance the biological treatment,besides which chitosan is more efficient than chitin.The study on the enhancement mechanism reveals the difference between the two additives:chitosan improves the sludge structure and settlibility,while chitin acts as a kind of carrier for microorganism in the biological treatment system.

  11. Synthesis of Chitosan Quaternary Ammonium Salts

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A series of N-alkyl or N-aryl chitosan quaternary ammonium salts were prepared via Schiffs base intermediates. Quaternization of N-substituted chitosan derivatives was carried out using methyl iodide to produce water-soluble cationic chitosan quaternary ammonium salt. The products were characterized by IR, 1HNMR and elemental analysis. The degree of substitution of chitosan quaternary ammonium salt was calculated by elemental analysis.

  12. Chitosan-supported Borohydride Reducing Agent

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new chitosan-supported borohydride reducing reagent (CBER) was prepared by treatment of KBH4 with the resin of chitosan derivative, which was first synthesized fiom the reaction of cross-linked chitosan microsphere with glycidyl trimethylammonium chloride. CBER could reduce aromatic carbonyl compound to corresponding alcohol.

  13. FK506-loaded chitosan conduit promotes the regeneration of injured sciatic nerves in the rat through the upregulation of brain-derived neurotrophic factor and TrkB.

    Science.gov (United States)

    Zhao, Jia; Zheng, Xifu; Fu, Chongyang; Qu, Wei; Wei, Guoqiang; Zhang, Weiguo

    2014-09-15

    FK506 has been shown to exert neurotrophic and neuroprotective effects, but its long-term application for nerve regeneration is limited. This study evaluated the potential application of a novel FK506-loaded chitosan conduit for peripheral nerve repair, and explored the underlying mechanism. A sciatic nerve injury model was created in male Wistar rats, which were then randomly divided into three treatment groups (n=40, each): chitosan-only, chitosan+FK506 injection, and FK506-loaded chitosan. We found significant recovery of normal morphology of sciatic nerves and higher density of myelinated nerve fibers in rats treated with FK506-loaded chitosan. Similarly, the total number of myelinated nerve fibers, myelin sheath thickness, and axon diameters were significantly higher in this group compared with the others, and the compound muscle action potentials and motor nerve conduction velocity values of sciatic nerves were significantly higher. BDNF and TrkB levels in motor neurons were highest in rats treated with FK506-loaded chitosan. In conclusion, FK506-loaded chitosan promoted peripheral nerve repair and regeneration in a rat model of sciatic nerve injury. These effects are correlated with increased BDNF and TrkB expression in motor neurons.

  14. LYOTROPIC LIQUID CRYSTALLINE BEHAVIOR OF FIVE CHITOSAN DERIVATIVES

    Institute of Scientific and Technical Information of China (English)

    Yan-ming Dong; Zhi-qiang Li

    1999-01-01

    Five chitosan derivatives, i.e. O-butyryl chitosan, O-benzoyl chitosan, N-phthaloyl chitosan, N-maleoyl chitosan and O-cyanoethyl chitosan, were prepared from chitosan. All of them had better solubilitythan chitosan, and demonstrated lyotropic liquid crystalline behavior in various solvents. The critical liquid crystalline behavior of three O-substituted chitosan derivatives was evidently different from two Nsubstituted analogues. Typical fingerprint textures of cholesteric phase were only observed in three Osubstituted derivatives. The critical concentration (v/v%) of three O-substituted derivatives does not depend on the acidity of acidic solvents.

  15. A framework for grouping nanoparticles based on their measurable characteristics

    Directory of Open Access Journals (Sweden)

    Sayes CM

    2013-09-01

    Full Text Available Christie M Sayes,1–3 P Alex Smith,2 Ivan V Ivanov3 1Center for Aerosol and Nanomaterials Engineering, RTI International, Research Triangle Park, NC, USA; 2Department of Biomedical Engineering, 3Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA Background: There is a need to take a broader look at nanotoxicological studies. Eventually, the field will demand that some generalizations be made. To begin to address this issue, we posed a question: are metal colloids on the nanometer-size scale a homogeneous group? In general, most people can agree that the physicochemical properties of nanomaterials can be linked and related to their induced toxicological responses. Methods: The focus of this study was to determine how a set of selected physicochemical properties of five specific metal-based colloidal materials on the nanometer-size scale – silver, copper, nickel, iron, and zinc – could be used as nanodescriptors that facilitate the grouping of these metal-based colloids. Results: The example of the framework pipeline processing provided in this paper shows the utility of specific statistical and pattern recognition techniques in grouping nanoparticles based on experimental data about their physicochemical properties. Interestingly, the results of the analyses suggest that a seemingly homogeneous group of nanoparticles could be separated into sub-groups depending on interdependencies observed in their nanodescriptors. Conclusion: These particles represent an important category of nanomaterials that are currently mass produced. Each has been reputed to induce toxicological and/or cytotoxicological effects. Here, we propose an experimental methodology coupled with mathematical and statistical modeling that can serve as a prototype for a rigorous framework that aids in the ability to group nanomaterials together and to facilitate the subsequent analysis of trends in data based on quantitative

  16. SYNTHESIS AND PROPERTIES OF SULFHYDRYL CHITOSAN

    Institute of Scientific and Technical Information of China (English)

    杨宇民; 邵健; 姚成

    2001-01-01

    A new adsorbent for heavy metal ions, sulfhydryl chitosan (S-chitosan), was produced by treatment of chitosan with sulhydryl acetic acid in the presence of sulfuric acid as a catalyst. Its structure was confirmed by elemental analysis and FT-IR spectra analysis. The adsorption properties of sulfhydryl chitosan for Cu( Ⅱ ), Cd( Ⅱ ), Pb( Ⅱ ), Cr( Ⅲ ) and Ni( Ⅱ ) were investigated, and the effect of pH value on adsorption, adsorption kinetics, and selective adsorption was examined. It was shown that S-chitosan has good adsorption for Pb( Ⅱ ), Cu( Ⅱ ) and Cd( Ⅱ ) like chitosan, is also insoluble in acid solution; has good adsorption kinetic properties for heavy metal ions; and can be used in acid solution. The adsorption capacities of S-chitosan can be affected by media acidity. The adsorbed Cu( Ⅱ ) Cd ( Ⅱ )and Pb( Ⅱ ) could be eluted by diluted chlorhydric acid.

  17. Electrospinning of Chitosan-Xanthan Nanofibers

    DEFF Research Database (Denmark)

    Shekarforoush, Elhamalsadat; Mendes, Ana Carina Loureiro; Chronakis, Ioannis S.

    Electrospun chitosan-xanthan gum nanofibers were produced and the correlation between the rheological properties of chitosan-xanthan solutions and electrospinability were investigated at different xanthan gum concentrations. Uniform chitosan-xanthan nanofibers with diameters ranging from 382......+182 to 842+296 nm were developed based on the chitosan-xanthan gum content. Overall chitosan-xanthan gum solutions exhibited shear thinning behavior for all the concentrations tested, which tended to increase with the increase of concentration of xanthan. Furthermore the electrical conductivity...... of the chitosan-xanthan solutions was observed to increase with the increase of xanthan gum concentrations. We can conclude that the optimal electrospinning process is directed by the apparent viscosity properties and the electrical conductivity of the chitosan-xanthan solutions. We are currently investigating...

  18. SYNTHESIS AND PROPERTIES OF SULFHYDRYL CHITOSAN

    Institute of Scientific and Technical Information of China (English)

    杨宇民; 邵健; 姚成

    2001-01-01

    A new adsorbent for heavy metal ions, sulfhydryl chitosan (S-chitosan), was produced by treatment of chitosan with sulhydryl acetic acid in the presence of sulfuric acid as a catalyst. Its structure was confrrmed by elemental analysis and FI'-IR spectra analysis. The adsorption properties of sulthydryl chitosan for Cu(Ⅱ ), Cd(Ⅱ ), Pb(Ⅱ), Cr(Ⅲ) and Ni(Ⅱ) were investigated, and the effect of pH value on adsorption, adsorption kinetics, and selective adsorption was examined. It was shown that S-chitosan has good adsorption for Pb(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) like chitosan, is also insoluble in acid solution; has good adsorption kinetic properties for heavy metal ions; and can be used in acid solution. The adsorption capacities of S-chitosan can be affected by media acidity. The adsorbed Cu(Ⅱ) Cd(Ⅱ) and Pb(Ⅱ) could be eluted by diluted chlorhydric acid.

  19. LOW MOLECULAR WEIGHT O-CARBOXYMETHYLATED CHITOSANS DERIVED FROM IRRADIATED CHITOSAN AND THEIR ANTIBACTERIAL ACTIVITY

    Institute of Scientific and Technical Information of China (English)

    Xu-pin Zhuang; Xiao-fei Liu; Zhi Li; Yun-lin Guan; Kang-de Yao

    2004-01-01

    Original chitosan with My of 2.7 × 10 5 was degraded by irradiation with y-rays and a series of low molecular weight O-carboxymethylated chitosans (O-CMCh) were prepared based on the irradiated chitosan. A kinetic model of the irradiation of chitosan was put forward. Results show that the irradiation degradation of chitosan obeys the rule of random degradation and the degree of deacetylation of irradiated chitosan is slightly raised. The antibacterial activity of O-CMCh is significantly influenced by its MW, and a suppositional antibacterial peak appears when Mv is equal to 2 × 10 5.

  20. Effects of chitosan/collagen substrates on the behavior of rat neural stem cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Spinal cord and brain injuries usually lead to cavity formation.The transplantation by combining stem cells and tissue engineering scaffolds has the potential to fill the cavities and replace the lost neural cells.Both chitosan and collagen have their unique characteristics.In this study,the effects of chitosan and collagen on the behavior of rat neural stem cells (at the neurosphere level) were tested in vitro in terms of cytotoxicity and supporting ability for stem cell survival,proliferation and differentiation.Under the serum-free condition,both chitosan membranes and collagen gels had low cytotoxicity to neurospheres.That is,cells migrated from neurospheres,and processes extended out from these neurospheres and the differentiated cells.Compared with the above two materials,chitosan-collagen membranes were more suitable for the co-culture with rat neural stem cells,because,except for low cytotoxicity and supporting ability for the cell survival,in this group,a large number of cells were observed to migrate out from neurospheres,and the differentiating percentage from neurospheres into neurons was significantly increased.Further modification of chitosan-collagen membranes may shed light on in vivo nerve regeneration by transplanting neural stem cells.

  1. Novel Chitosan-based Biomaterials

    Institute of Scientific and Technical Information of China (English)

    Mingchun Li; Meihua Xin

    2005-01-01

    @@ 1Introduction Chitosan with two long side chains of N-alkyl group is an important amphiphilic material, which has potential application in tissue engineering and drug delivery system. In this paper the amphiphilic N, N-dilauryl chitosan has been prepared by the phase transfer catalysis. The π-A isotherms of the products were measured in order to find some fundamental data for making self-assembled vesicles out of this kind of material. The LB film experiment indicates that N, N-dilauryl chitosan can form ultrathin LB film with highly ordered layer structure and smooth surface. The thickness of each layer of the LB film was measured as 1.74 nm by XRD.

  2. Nanoparticle-Based Systems for T1-Weighted Magnetic Resonance Imaging Contrast Agents

    Science.gov (United States)

    Zhu, Derong; Liu, Fuyao; Ma, Lina; Liu, Dianjun; Wang, Zhenxin

    2013-01-01

    Because magnetic resonance imaging (MRI) contrast agents play a vital role in diagnosing diseases, demand for new MRI contrast agents, with an enhanced sensitivity and advanced functionalities, is very high. During the past decade, various inorganic nanoparticles have been used as MRI contrast agents due to their unique properties, such as large surface area, easy surface functionalization, excellent contrasting effect, and other size-dependent properties. This review provides an overview of recent progress in the development of nanoparticle-based T1-weighted MRI contrast agents. The chemical synthesis of the nanoparticle-based contrast agents and their potential applications were discussed and summarized. In addition, the recent development in nanoparticle-based multimodal contrast agents including T1-weighted MRI/computed X-ray tomography (CT) and T1-weighted MRI/optical were also described, since nanoparticles may curtail the shortcomings of single mode contrast agents in diagnostic and clinical settings by synergistically incorporating functionality. PMID:23698781

  3. Chitosan as a starting material for wound healing applications

    OpenAIRE

    Patrulea,Viorica; Ostafe, V.; Borchard, Gerrit; Jordan, Olivier

    2015-01-01

    Chitosan and its derivatives have attracted great attention due to their properties beneficial for application to wound healing. The main focus of the present review is to summarize studies involving chitosan and its derivatives, especially N,N,N-trimethyl-chitosan (TMC), N,O-carboxymethyl-chitosan (CMC) and O-carboxymethyl-N,N,N-trimethyl-chitosan (CMTMC), used to accelerate wound healing. Moreover, formulation strategies for chitosan and its derivatives, as well as their in vitro, in vivo a...

  4. Chitosan nanoparticles and their Tween 80 modified counterparts disrupt the developmental profile of zebrafish embryos.

    Science.gov (United States)

    Yuan, Zhongyue; Li, Ying; Hu, Yulan; You, Jian; Higashisaka, Kazuma; Nagano, Kazuya; Tsutsumi, Yasuo; Gao, Jianqing

    2016-12-30

    Chitosan nanoparticles (CS-NPs) and their Tween 80 modified counterparts (TmCS-NPs) are among the most commonly used brain-targeted vehicles. However, their potential developmental toxicity is poorly understood. In this study, zebrafish embryos are introduced as an in vivo platform. Both NPs showed a dose-dependent increase in developmental toxicity (decreased hatching rate, increased mortality and incidences of malformation). Neurobehavioral changes included decreased spontaneous movement in TmCS-NP treated embryos and hyperactive effect in CS-NP treated larvae. Both NPs remarkably inhibited axonal development of primary and secondary motor neurons, and affected the muscle structure. Overall, this study demonstrated that CS-NPs and TmCS-NPs could affect embryonic development, disrupt neurobehavior of zebrafish larvae and affect muscle and neuron development, suggesting more attention on biodegradable chitosan nanoparticles.

  5. Chitosan adsorption to salivary pellicles

    NARCIS (Netherlands)

    van der Mei, Henderina; Engels, Eefje; de Vries, Jacob; Dijkstra, Rene JB; Busscher, Hendrik

    2007-01-01

    The salivary pellicle is a negatively charged protein film, to which oral bacteria readily adhere. Chitosans are cationic biomolecules with known antimicrobial properties that can be modified in different ways to enhance its antimicrobial activity. Here, we determined the changes in surface chemical

  6. Chitosan Modification and Pharmaceutical/Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Jiali Zhang

    2010-06-01

    Full Text Available Chitosan has received much attention as a functional biopolymer for diverse applications, especially in pharmaceutics and medicine. Our recent efforts focused on the chemical and biological modification of chitosan in order to increase its solubility in aqueous solutions and absorbability in the in vivo system, thus for a better use of chitosan. This review summarizes chitosan modification and its pharmaceutical/biomedical applications based on our achievements as well as the domestic and overseas developments: (1 enzymatic preparation of low molecular weight chitosans/chitooligosaccharides with their hypocholesterolemic and immuno-modulating effects; (2 the effects of chitin, chitosan and their derivatives on blood hemostasis; and (3 synthesis of a non-toxic ion ligand—D-Glucosaminic acid from Oxidation of D-Glucosamine for cancer and diabetes therapy.

  7. In Vitro Degradation of Polyglycolide/Chitosan Hybrid Braids

    Institute of Scientific and Technical Information of China (English)

    YUAN Xiaoyan; ZHANG Qingwei; WANG Yonglin; YAO Kangde

    2005-01-01

    Hybrid braids of polyglycolide (PGA) and chitosan were prepared by the three-yarn braiding method from PGA and chitosan fiber bundles. These braids were in vitro degraded by incubating them in phosphate buffered saline (PBS) at pH 7.4 and 37 ℃ for 5 weeks. Results suggested that PGA/chitosan hybrid braids degraded significantly. Scanning electron micrographs showed that chitosan fibers in the PGA/chitosan hybrid braid with about 750% PGA in weight (PGA75/chitosan) were shaped into gel-like after 5 weeks, but those in the hybrid braid with about 250% PGA in weight (PGA25/chitosan) did not change. After 5 weeks, the ultimate tensile loads of PGA and PGA75/chitosan braids lost almost completely, but those of chitosan and PGA25/chitosan braids remained around 14 N. The PGA/chitosan hybrid braids with higher initial ultimate tensile load would have potential applications in tendon/ligament tissue reconstruction.

  8. ADSORPTION OF LDL ON THE MODIFIED CHITOSAN

    Institute of Scientific and Technical Information of China (English)

    LIUManying; ZHAOLirui; 等

    2000-01-01

    In this paper,the selective adsorption of LDL on chitosan modified with PEG and Asp.was studied.The adsorption rate of LDL and HDL on the double modified chitosan was 57% and 12% respoectively,The results shown that the double modified chitosan can be used a adsorbent for selective binding to LDL,this work may help to develop functional columns for hemoperfusion.

  9. Enhanced immune response and protective effects of nano-chitosan-based DNA vaccine encoding T cell epitopes of Esat-6 and FL against Mycobacterium tuberculosis infection.

    Directory of Open Access Journals (Sweden)

    Ganzhu Feng

    Full Text Available Development of a novel and effective vaccine against Mycobacterium tuberculosis (M.tb is a challenging for preventing TB infection. In this study, a novel nanoparticle-based recombinant DNA vaccine was developed, which contains Esat-6 three T cell epitopes (Esat-6/3e and fms-like tyrosine kinase 3 ligand (FL genes (termed Esat-6/3e-FL, and was enveloped with chitosan (CS nanoparticles (nano-chitosan. The immunologic and protective efficacy of the nano-chitosan-based DNA vaccine (termed nano-Esat-6/3e-FL was assessed in C57BL/6 mice after intramuscular prime vaccination with the plasmids DNA and nasal boost with the Esat-6/3e peptides. The results showed that the immunized mice remarkably elicited enhanced T cell responses and protection against M.tb H37Rv challenge. These findings indicate that the nano-chitosan can significantly elevate the immunologic and protective effects of the DNA vaccine, and the nano-Esat-6/3e-FL is a useful vaccine for preventing M.tb infection in mice.

  10. Gold nanoparticle-based fluorescent sensor for the analysis of dithiocarbamate pesticides in water

    DEFF Research Database (Denmark)

    Senkbeil, Silja; Lafleur, Josiane P.; Jensen, Thomas Glasdam;

    2012-01-01

    and environmental health. This paper demonstrates the potential of a gold nanoparticle-based microfluidic sensor for in field detection of dithiocarbamate pesticides at remote locations. Combining the attractive optical properties of gold nanoparticles with on chip mixing and detection, using a simple digital...... camera, a detection limit of 16 μg L-1 for Ziram, a dithiocarbamate pesticide, was obtained....

  11. Gold nanoparticle-based optical microfluidic sensors for analysis of environmental pollutants

    DEFF Research Database (Denmark)

    Lafleur, Josiane P.; Senkbeil, Silja; Jensen, Thomas G.;

    2012-01-01

    -field, detection of two important classes of environmental contaminants – heavy metals and pesticides. Using gold nanoparticle-based microfluidic sensors linked to a simple digital camera as the detector, detection limits as low as 0.6 μg L−1 and 16 μg L−1 could be obtained for the heavy metal mercury...

  12. Nanoparticles Based on a Hydrophilic Polyester with a Sheddable PEG Coating for Protein Delivery

    NARCIS (Netherlands)

    Samadi, Neda; van Steenbergen, Mies J.; van den Dikkenberg, Joep B.; Vermonden, Tina; van Nostrum, Cornelus F.; Amidi, Maryam; Hennink, Wim E.

    2014-01-01

    Purpose To investigate the effect of polyethylene glycol (PEG) in nanoparticles based on blends of hydroxylated aliphatic polyester, poly(D,L-lactic-co-glycolic-co-hydroxymethyl glycolic acid) (PLGHMGA) and PEG-PLGHMGA block copolymers on their degradation and release behavior. Methods Protein-loade

  13. Nanoindentation of Chitosan Doped with Silver Nanoparticles

    Science.gov (United States)

    Palumbo, Matthew; Teklu, Alem; Kuthirummal, Narayanan; Levi-Polyachenko, Nicole; Department of Physics; Astronomy, College of Charleston Collaboration; Department of Plastic; Reconstructive Surgery, Wake Forest University Health Sciences Collaboration

    Imaging and spectroscopic analysis via nanoindentation was performed with the Nanosurf EasyScan2 AFM on the pure and silver doped chitosan samples allowing for a more localized determination of their stiffness, hardness, and reduced Young's modulus. The pure chitosan sample was tested to have a stiffness of 0.367 N/m, a hardness of 1.12 GPa, and a reduced Young's modulus of 30.5 MPa. The film with 5mg Ag nanoparticle per gram of chitosan was tested on the boundaries between the chitosan and Ag nanoparticles to show an increase in stiffness of about 4.6% at 0.384 N/m, an increase in hardness of about 5.4% at 1.18 GPa, and an increase in the reduced Young's modulus of about 5.0% at 3.2 MPa in comparison to the pure chitosan sample. On the other hand, upon increasing the doping to 10mg Ag nanoparticle per gram of chitosan showed a decrease in stiffness of about 6.3% at 0.344 N/m, a decrease in hardness of about 27.0% at 0.820 GPa, and a decrease in the reduced Young's modulus of about 6.0% at 28.7 MPa in comparison to the pure chitosan sample. Obviously, films doped with 5mg Ag nanoparicle per gram of chitosan provided the composites with improved mechanical strength compared to chitosan alone.

  14. Alkylation of Chitosan as Nerve Conduit Biomaterial

    Institute of Scientific and Technical Information of China (English)

    邓劲光; 公衍道; 程明愚; 赵南明; 张秀芳

    2002-01-01

    Chitosan under physiological conditions is a degradable and biocompatible biomaterial with a wide variety of useful physicochemical properties. However, as a nerve conduit biomaterial, its solubility was very low, so chitosan was modified chemically to enhance its solubility. The free amino groups of long molecular chains in chitosan are responsible for its solubility, and the solubility could be adjusted by controlling the free amidogen capacity with N-alkylation. The results show that the solubility of N-alkylation chitosan is increased to 10%, which is an increase of 500%.

  15. Preparation of chitosan nanofibers from completely deacetylated chitosan powder by a downsizing process.

    Science.gov (United States)

    Aklog, Yihun Fantahun; Dutta, Ajoy Kumar; Izawa, Hironori; Morimoto, Minoru; Saimoto, Hiroyuki; Ifuku, Shinsuke

    2015-01-01

    Chitosan nanofibers were easily prepared from fully deacetylated chitosan dry powder using a high-pressure waterjet system. From SEM observation, after 10 cycles of treatment, most of the chitosan had been reduced to homogeneous nanofibers measuring tens of nanometers. On the other hand, further mechanical treatment did not show a significant change. Relative crystallinity of chitosan nanofibers gradually decreased as the number of passes increased since high-pressure waterjet treatment damaged the crystalline region of chitosan nanofibers. The transmittance of the chitosan nanofiber slurry increased steeply, as the number of passes increased, indicating that the chitosan fibers were disintegrated effectively. Viscosity of chitosan nanofiber slurry also showed that the chitosan disintegrated well into nanofibers up to 10 passes. Above 10 passes, disintegration efficiency was saturated. The molecular weights of the nanofibers steeply decreased due to the depolymerization of chitosan by mechanical disintegration. The Young's modulus and tensile strength of chitosan nanofiber sheets were improved as the number of treatments increased, but further treatments deteriorated the tensile strength.

  16. A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications.

    Science.gov (United States)

    H P S, Abdul Khalil; Saurabh, Chaturbhuj K; A S, Adnan; Nurul Fazita, M R; Syakir, M I; Davoudpour, Y; Rafatullah, M; Abdullah, C K; M Haafiz, M K; Dungani, R

    2016-10-01

    Chitin is one of the most abundant natural polymers in world and it is used for the production of chitosan by deacetylation. Chitosan is antibacterial in nature, non-toxic, and biodegradable thus it can be used for the production of biodegradable film which is a green alternative to commercially available synthetic counterparts. However, their poor mechanical and thermal properties restricted its wide spread applications. Chitosan is highly compatible with other biopolymers thus its blending with cellulose and/or incorporation of nanofiber isolated from cellulose namely cellulose nanofiber and cellulose nanowhiskers are generally useful. Cellulosic fibers in nano scale are attractive reinforcement in chitosan to produce environmental friendly composite films with improved physical properties. Thus chitosan based composites have wide applicability and potential in the field of biomedical, packaging and water treatment. This review summarises properties and preparation procedure of chitosan-cellulose blends and nano size cellulose reinforcement in chitosan bionanocomposites for different applications.

  17. Characterization of Chitosan and fabrication of Chitosan hydrogels matrices for biomedical applications

    Directory of Open Access Journals (Sweden)

    Charhouf I.

    2013-09-01

    Full Text Available The development of injectable hydrogels for drug delivery is a major challenge. Chitosan is a copolymer of N-acetylglucosamine and glucosamine units and is represented as a copolymer. Chitosan occurs in nature in the cell walls of some fungi, exoskeletons of insects and marine animals such as crabs and prawns. Chitosan and its derivatives possess a wide range of useful properties. They are biodegradable, and biocompatible with antibacterial and antioxidant activities. They are useful in drug delivery formulations and tissue engineering. The objective of the present study was to characterize chitosan, prepare chitosan hydrogels and study the gelation of this hydrogels over time. Chitosan with DDA% ∼ 80%–90% were characterized by infrared spectroscopy, conductimetry and pH-metry. In addition, chitosan hydrogels were prepared using an ionic gelation method making it suitable for biomedical applications.

  18. Topical formulations and wound healing applications of chitosan.

    Science.gov (United States)

    Ueno, H; Mori, T; Fujinaga, T

    2001-11-05

    Chitosan is being used as a wound-healing accelerator in veterinary medicine. To our knowledge, chitosan enhances the functions of inflammatory cells such as polymorphonuclear leukocytes (PMN) (phagocytosis, production of osteopontin and leukotriene B4), macrophages (phagocytosis, production of interleukin (IL)-1, transforming growth factor beta 1 and platelet derived growth factor), and fibroblasts (production of IL-8). As a result, chitosan promotes granulation and organization, therefore chitosan is beneficial for the large open wounds of animals. However, there are some reported complications of chitosan application. Firstly, chitosan causes lethal pneumonia in dogs which are given a high dose of chitosan. In spite of application of chitosan to various species, this finding is observed only in dogs. Secondly, intratumor injection of chitosan on mice bearing tumor increases the rate of metastasis and tumor growth. Therefore, it is important to consider these effects of chitosan, prior to drug delivery.

  19. Neuronal growth and differentiation on biodegradable membranes.

    Science.gov (United States)

    Morelli, Sabrina; Piscioneri, Antonella; Messina, Antonietta; Salerno, Simona; Al-Fageeh, Mohamed B; Drioli, Enrico; De Bartolo, Loredana

    2015-02-01

    Semipermeable polymeric membranes with appropriate morphological, physicochemical and transport properties are relevant to inducing neural regeneration. We developed novel biodegradable membranes to support neuronal differentiation. In particular, we developed chitosan, polycaprolactone and polyurethane flat membranes and a biosynthetic blend between polycaprolactone and polyurethane by phase-inversion techniques. The biodegradable membranes were characterized in order to evaluate their morphological, physicochemical, mechanical and degradation properties. We investigated the efficacy of these different membranes to promote the adhesion and differentiation of neuronal cells. We employed as model cell system the human neuroblastoma cell line SHSY5Y, which is a well-established system for studying neuronal differentiation. The investigation of viability and specific neuronal marker expression allowed assessment that the correct neuronal differentiation and the formation of neuronal network had taken place in vitro in the cells seeded on different biodegradable membranes. Overall, this study provides evidence that neural cell responses depend on the nature of the biodegradable polymer used to form the membranes, as well as on the dissolution, hydrophilic and, above all, mechanical membrane properties. PCL-PU membranes exhibit mechanical properties that improve neurite outgrowth and the expression of specific neuronal markers.

  20. Effect of chitosan content on gel content of epoxized natural rubber grafted with chitosan in latex form.

    Science.gov (United States)

    Riyajan, Sa-Ad; Sukhlaaied, Wattana

    2013-04-01

    The epoxidized natural rubber (ENR) latex-g-chitosan (ENR-g-chitosan) was prepared in latex form using potassium persulphate as an initiator. Firstly, the reduction in molecular weight of chitosan was subjected to the addition of K2S2O8 at 70 °C for 15 min. The structure of the modified chitosan was characterized by ATR-FTIR. Secondarily, the influence of chitosan contents, reaction time, and temperature and K2S2O8 concentrations on the gel content of the modified ENR was investigated. The chemical structure of the ENR-g-chitosan was confirmed by (1)H-NMR and ATR-FTIR. The ether linkage of the ENR-g-chitosan was conformed at 1154 an 1089 cm(-1) by ATR-FTIR and 3.60 ppm by (1)H-NMR. The gel content of ENR-g-chitosan at 5% chitosan showed the highest value compared with other samples. But when chitosan increased from 5% to 10% or 20%, the gel content of ENR-g-chitosan dramatically decreased. The ENR-g-chitosan showed good thermal resistance due to incorporation of chitosan. The morphology of ENR-g-chitosan particle showed the core-shell structure observed by TEM. The optimum condition of grafting ENR with chitosan was found at 65°C for 3h of reaction time, ratio of ENR/chitosan at 9:1.

  1. Multifaceted Applications of Chitosan in Cancer Drug Delivery and Therapy

    Directory of Open Access Journals (Sweden)

    Anish Babu

    2017-03-01

    Full Text Available Chitosan is a versatile polysaccharide of biological origin. Due to the biocompatible and biodegradable nature of chitosan, it is intensively utilized in biomedical applications in scaffold engineering as an absorption enhancer, and for bioactive and controlled drug release. In cancer therapy, chitosan has multifaceted applications, such as assisting in gene delivery and chemotherapeutic delivery, and as an immunoadjuvant for vaccines. The present review highlights the recent applications of chitosan and chitosan derivatives in cancer therapy.

  2. Preparation and Blood Compatibility of Oxidized-chitosan Films

    Institute of Scientific and Technical Information of China (English)

    Yue Dong YANG; Jiu Gao YU; Yong Guo ZHOU; Pei Guo LI

    2005-01-01

    Chitosan membrane was modified by the selective oxidization of chitosan molecules on its surface with NO2 gas. FTIR spectra indicated there were plenty of-COOH and -COO- groups on the modified membrane surface. The SEM study showed the modified membrane surface was rough rather than smooth as chitosan membrane. All antithrombosis test, hemolysis test and blood cell morphology observation with SEM revealed that modified chitosan membranes have superior blood compatibility to chitosan.

  3. Superadsorption of LiOH solution on chitosan as a new type of solvent for chitosan by freezing/blasting.

    Science.gov (United States)

    Fan, Min; Hu, Qiaoling

    2013-04-15

    The adsorption behavior and mechanism of chitosan in aqueous LiOH solution was studied systemically. The results showed that the adsorption of chitosan was mainly due to the breakage of its hydrogen bonds, which were destroyed by the reaction of LiOH with the acetyl and the hydroxyl groups of chitosan. Low temperature also played a crucial role in the adsorption of chitosan. The adsorption of chitosan decreased with increased DD. The adsorption ratio of LiOH to chitosan (nLiOH/nCS) increased linearly while the adsorption ratio of water to chitosan (n(H2O)/n(CS)) decreased with the increased DD. All chitosans reached their maximal swelling degree when the concentration of LiOH was 4.8 wt%. Chitosan was stable in LiOH aqueous solution. The LiOH solution may be a potential favorable solvent for chitosan.

  4. Chitosan magnetic nanoparticles for drug delivery systems.

    Science.gov (United States)

    Assa, Farnaz; Jafarizadeh-Malmiri, Hoda; Ajamein, Hossein; Vaghari, Hamideh; Anarjan, Navideh; Ahmadi, Omid; Berenjian, Aydin

    2016-06-01

    The potential of magnetic nanoparticles (MNPs) in drug delivery systems (DDSs) is mainly related to its magnetic core and surface coating. These coatings can eliminate or minimize their aggregation under physiological conditions. Also, they can provide functional groups for bioconjugation to anticancer drugs and/or targeted ligands. Chitosan, as a derivative of chitin, is an attractive natural biopolymer from renewable resources with the presence of reactive amino and hydroxyl functional groups in its structure. Chitosan nanoparticles (NPs), due to their huge surface to volume ratio as compared to the chitosan in its bulk form, have outstanding physico-chemical, antimicrobial and biological properties. These unique properties make chitosan NPs a promising biopolymer for the application of DDSs. In this review, the current state and challenges for the application magnetic chitosan NPs in drug delivery systems were investigated. The present review also revisits the limitations and commercial impediments to provide insight for future works.

  5. Chitosan dan Aplikasi Klinisnya Sebagai Biomaterial

    Directory of Open Access Journals (Sweden)

    Bambang Irawan

    2015-10-01

    Full Text Available The development of new materials with both organic and inorganic structures is of great interest to obtain special material properties. Chitosan [2-amino-2-deoxy-D-glucan] can be obtained by N-deacetylation of chitin. Chitin is the second most abundant biopolymer in nature and the supporting material of crustaceans, insects, fungi etc. Chitosan is unique polysaccharide and has been widely used in various biomedical application due to its biocompatibility, low toxicity, biodegradability, non-immunogenic and non-carcinogenic character. In the past few years, chitosan and some of its modifications have been reported for use in biomedical applications such as artificial skin, wound dressing, anticoagulant, suture, drug delivery, vaccine carrier and dietary fibers. Recently, the use of chitosan and its derivatives has received much attention as temporary scaffolding to promotie mineralization or stimulate endochodral ossification. This article aims to give a broad overview of chitosan and its clinical applications as biomaterial.

  6. Hydrogels made from chitosan and silver nitrate.

    Science.gov (United States)

    Kozicki, Marek; Kołodziejczyk, Marek; Szynkowska, Małgorzata; Pawlaczyk, Aleksandra; Leśniewska, Ewa; Matusiak, Aleksandra; Adamus, Agnieszka; Karolczak, Aleksandra

    2016-04-20

    This work describes a gelation of chitosan solution with silver nitrate. Above the critical concentration of chitosan (c*), continuous hydrogels of chitosan-silver can be formed. At lower concentrations, the formation of nano- and micro-hydrogels is discussed. The sol-gel analysis was performed to characterise the hydrogels' swelling properties. Moreover, the following were employed: (i) mechanical testing of hydrogels, (ii) inductively coupled plasma-optical emission spectroscopy (ICP-OES) for the measurement of silver concentration, (iii) scanning electron microscopy (SEM) to examine the morphology of products obtained, and (iv) dynamic light scattering (DLS) and UV-vis spectrophotometry to examine products formed at low concentration of chitosan (chydrogels were used for modification of cotton fabric in order to give it antimicrobial properties. The products obtained acted against Escherichia coli and Bacillus subtilis apart from the chitosan used that showed no such activity.

  7. Antimicrobial and antitumor activities of chitosan from shiitake stipes, compared to commercial chitosan from crab shells.

    Science.gov (United States)

    Chien, Rao-Chi; Yen, Ming-Tsung; Mau, Jeng-Leun

    2016-03-15

    Chitosan was prepared by alkaline N-deacetylation of chitin obtained from shiitake stipes and crab shells and its antimicrobial and antitumor activities were studied. Chitosan from shiitake stipes and crab shells exhibited excellent antimicrobial activities against eight species of Gram positive and negative pathogenic bacteria with inhibition zones of 11.4-26.8mm at 0.5mg/ml. Among chitosan samples, shiitake chitosan C120 was the most effective with inhibition zones of 16.4-26.8mm at 0.5mg/ml. In addition, shiitake and crab chitosan showed a moderate anti-proliferative effect on IMR 32 and Hep G2 cells. At 5mg/ml, the viability of IMR 32 cells incubated with chitosan was 68.8-85.0% whereas that of Hep G2 cells with chitosan was 60.4-82.9%. Overall, shiitake chitosan showed slightly better antimicrobial and antitumor activities than crab chitosan. Based on the results obtained, shiitake and crab chitosan were strong antimicrobial agents and moderate antitumor agents.

  8. A magnetic nanoparticles-based method for DNA extraction from the saliva of stroke patients

    Institute of Scientific and Technical Information of China (English)

    Li Yi; Ying Huang; Ting Wu; Jun Wu

    2013-01-01

    C677T polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene is a risk factor for stroke, suggesting that widespread detection could help to prevent stroke. DNA from 70 stroke pa-tients and 70 healthy controls was extracted from saliva using a magnetic nanoparticles-based method and from blood using conventional methods. Real-time PCR results revealed that the C677T polymorphism was genotyped by PCR using DNA extracted from both saliva and blood samples. The genotype results were confirmed by gene sequencing, and results for saliva and blood samples were consistent. The mutation TT genotype frequency was significantly higher in the stroke group than in controls. Homocysteine levels were significantly higher than controls in both TT genotype groups. Therefore, this noninvasive magnetic nanoparticles-based method using saliva samples could be used to screen for the MTHFR C677T polymorphism in target populations.

  9. Comparison of photovoltaic performance of TiO2 nanoparticles based thin films via different routes

    Science.gov (United States)

    Ji, Yajun

    2015-11-01

    Well crystallized TiO2 nanoparticles were prepared by hydrothermal and sol-gel routes, respectively. The morphologies, structures, crystallinity and optical properties of resulted TiO2 nanoparticles-based thin films via the two methods were examined by field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD) and reflectance spectra. In addition, comparison of photovoltaic performance of TiO2 nanoparticles-based thin films by the two methods was performed. It is found that the maximum energy conversion efficiency of 4.06% was achieved based on the obtained electrode via hydrothermal, which is much better than that of the sol-gels route. The uniform film structure with improved dye absorption capability, increased diffused reflectance property and relatively low charge recombination rates for injected electrons are believed to be responsible to the superior photoelectrochemical properties of dye-sensitized solar cells (DSSC) via hydrothermal route.

  10. Environmental applications of chitosan and its derivatives.

    Science.gov (United States)

    Yong, Soon Kong; Shrivastava, Manoj; Srivastava, Prashant; Kunhikrishnan, Anitha; Bolan, Nanthi

    2015-01-01

    Chitosan originates from the seafood processing industry and is one of the most abundant of bio-waste materials. Chitosan is a by-product of the alkaline deacetylation process of chitin. Chemically, chitosan is a polysaccharide that is soluble in acidic solution and precipitates at higher pHs. It has great potential for certain environmental applications, such as remediation of organic and inorganic contaminants, including toxic metals and dyes in soil, sediment and water, and development of contaminant sensors. Traditionally, seafood waste has been the primary source of chitin. More recently, alternative sources have emerged such as fungal mycelium, mushroom and krill wastes, and these new sources of chitin and chitosan may overcome seasonal supply limitations that have existed. The production of chitosan from the above-mentioned waste streams not only reduces waste volume, but alleviates pressure on landfills to which the waste would otherwise go. Chitosan production involves four major steps, viz., deproteination, demineralization, bleaching and deacetylation. These four processes require excessive usage of strong alkali at different stages, and drives chitosan's production cost up, potentially making the application of high-grade chitosan for commercial remediation untenable. Alternate chitosan processing techniques, such as microbial or enzymatic processes, may become more cost-effective due to lower energy consumption and waste generation. Chitosan has proved to be versatile for so many environmental applications, because it possesses certain key functional groups, including - OH and -NH2 . However, the efficacy of chitosan is diminished at low pH because of its increased solubility and instability. These deficiencies can be overcome by modifying chitosan's structure via crosslinking. Such modification not only enhances the structural stability of chitosan under low pH conditions, but also improves its physicochemical characteristics, such as porosity

  11. In Situ Synthesis of Metal Sulfide Nanoparticles Based on 2D Metal-Organic Framework Nanosheets.

    Science.gov (United States)

    Lu, Qipeng; Zhao, Meiting; Chen, Junze; Chen, Bo; Tan, Chaoliang; Zhang, Xiao; Huang, Ying; Yang, Jian; Cao, Feifei; Yu, Yifu; Ping, Jianfeng; Zhang, Zhicheng; Wu, Xue-Jun; Zhang, Hua

    2016-09-01

    A facile in situ synthetic method is developed to synthesize metal sulfide nanoparticles based on 2D M-TCPP (M = Cu, Cd, or Co, TCPP = tetrakis(4-carboxyphenyl)porphyrin)) metal-organic framework nanosheets. The obtained CuS/Cu-TCPP composite nanosheet is used as the active material in photoelectrochemical cells, showing notably increased photocurrent due to the improved exciton separation and charge carrier transport.

  12. Functional modification of chitosan for biomedical application

    Science.gov (United States)

    Tang, Ruogu

    Chitosan is a linear polysaccharide. Normally commercial chitosan consists of randomly distributed beta-(1-4)-linked D-glucosamine (deacetylated proportion) and N-acetyl-D-glucosamine (acetylated proportion) together. Chitosan has been proved to be a multifunctional biopolymer that presents several unique properties due to free amino groups in the repeating unit therefore chitosan has been widely applied in various areas. To be specific, provided by the excellent biocompatibility, chitosan is expected to be used in biological and medical applications including wound dressing, implants, drug carrier/delivery, etc. In this thesis, we worked on chitosan functionalization for biomedical application. The thesis are composed of three parts: In the first part, we focused on modifying the chitosan thin film, chemically introducing the nitric oxide functional groups on chitosan film. We covalently bonded small molecule diazeniumdiolates onto the chitosan films and examined the antimicrobial function and biocompatibility. Commercial chitosan was cast into films from acidic aqueous solutions. Glutaraldehyde reacted with the chitosan film to introduce aldehyde groups onto the chitosan film (GA-CS film). GA-CS reacted with a small molecule NO donor, NOC-18, to covalently immobilize NONO groups onto the polymer (NO-CS film). The-CHO and [NONO] group were verified by FT IR, UV and Griess reagent. The NO releasing rate in aqueous solution and and thermal stability were studied quantitatively to prove its effectiveness. A series of antimicrobial tests indicated that NO-CS films have multiple functions: 1. It could inhibit the bacteria growth in nutrient rich environment; 2. It could directly inactivate bacteria and biofilm; 3. It could reduce the bacteria adherence on the film surface as well as inhibit biofilm formation. In addition, the NO-CS film was proved to be biocompatible with cell and it was also compatible with other antibiotics like Amoxicillin. In the second part, we

  13. Nanoparticle-Based Drug Delivery for Therapy of Lung Cancer: Progress and Challenges

    Directory of Open Access Journals (Sweden)

    Anish Babu

    2013-01-01

    Full Text Available The last decade has witnessed enormous advances in the development and application of nanotechnology in cancer detection, diagnosis, and therapy culminating in the development of the nascent field of “cancer nanomedicine.” A nanoparticle as per the National Institutes of Health (NIH guidelines is any material that is used in the formulation of a drug resulting in a final product smaller than 1 micron in size. Nanoparticle-based therapeutic systems have gained immense popularity due to their ability to overcome biological barriers, effectively deliver hydrophobic therapies, and preferentially target disease sites. Currently, many formulations of nanocarriers are utilized including lipid-based, polymeric and branched polymeric, metal-based, magnetic, and mesoporous silica. Innovative strategies have been employed to exploit the multicomponent, three-dimensional constructs imparting multifunctional capabilities. Engineering such designs allows simultaneous drug delivery of chemotherapeutics and anticancer gene therapies to site-specific targets. In lung cancer, nanoparticle-based therapeutics is paving the way in the diagnosis, imaging, screening, and treatment of primary and metastatic tumors. However, translating such advances from the bench to the bedside has been severely hampered by challenges encountered in the areas of pharmacology, toxicology, immunology, large-scale manufacturing, and regulatory issues. This review summarizes current progress and challenges in nanoparticle-based drug delivery systems, citing recent examples targeted at lung cancer treatment.

  14. Influence of Heat Treatment on the Morphologies of Copper Nanoparticles Based Films by a Spin Coating Method

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2017-01-01

    Full Text Available We have investigated the influence of heat treatment on the morphologies of copper nanoparticles based films on glass slides by a spin coating method. The experiments show that heat treatment can modify the sizes and morphologies of copper nanoparticles based films on glass slides. We suggest that through changing the parameters of heat treatment process may be helpful to vary the scattering and absorbing intensity of copper nanoparticles when used in energy harvesting/conversion and optical devices.

  15. Coloration of cotton fibers using nano chitosan.

    Science.gov (United States)

    Wijesena, Ruchira N; Tissera, Nadeeka D; de Silva, K M Nalin

    2015-12-10

    A method of coloration of cotton fabrics with nano chitosan is proposed. Nano chitosan were prepared using crab shell chitin nanofibers through alkaline deacetylation process. Average nano fiber diameters of nano chitosan were 18 nm to 35 nm and the lengths were in the range of 0.2-1.3 μm according to the atomic force microscope study. The degree of deacetylation of the material was found to be 97.3%. The prepared nano chitosan dyed using acid blue 25 (2-anthraquinonesulfonic acid) and used as the coloration agent for cotton fibers. Simple wet immersion method was used to color the cotton fabrics by nano chitosan dispersion followed by acid vapor treatment. Scanning electron microscope and atomic force microscope study of the treated cotton fiber revealed that the nano chitosan were consistently deposited on the cotton fiber surface and transformed in to a thin polymer layer upon the acid vapor treatment. The color strength of the dyed fabrics could be changed by changing the concentration of dyed nano chitosan dispersion.

  16. Bioavailability enhancement of glucosamine hydrochloride by chitosan.

    Science.gov (United States)

    Qian, Shuai; Zhang, Qizhi; Wang, Yanfeng; Lee, Benjamin; Betageri, Guru V; Chow, Moses S S; Huang, Min; Zuo, Zhong

    2013-10-15

    Glucosamine, as a dietary supplement for management of osteoarthritis, has a low and erratic oral bioavailability due to its transport-mediated absorption and presystemic loss in liver and GI tract. The present study described an effective approach to improve glucosamine intestinal absorption and hence its bioavailability using chitosan. Effects of chitosan on intestinal permeability and pharmacokinetics of glucosamine were evaluated in Caco-2 cell monolayer and rats, respectively. In addition, randomized crossover pharmacokinetic studies in beagle dogs were performed to evaluate the oral bioavailabilities of the developed glucosamine oral formulations containing chitosan (QD-Glu solution and QD-Glu tablet) in comparison to its commercial products. Caco-2 permeability studies demonstrated that chitosan could enhance the absorptive transport of glucosamine by 1.9-4.0-fold via the reversible opening of the cell tight junction. After oral administration of glucosamine solutions containing chitosan in rats, it was found that 0.5% (w/v) chitosan exhibited the highest enhancement in Cmax (2.8-fold) and AUC0-∞ (2.5-fold) of glucosamine. Further pharmacokinetic studies in beagle dogs demonstrated that QD-Glu solution and QD-Glu tablet showed much higher relative bioavailabilities of 313% and 186%, when comparing with Wellesse™ solution and Voltaflex™ tablet, respectively. In conclusion, chitosan could serve as a promising oral absorption enhancer for glucosamine.

  17. Chitosan-collagen porous scaffold and bone marrow mesenchymal stem cell transplantation for ischemic stroke

    Directory of Open Access Journals (Sweden)

    Feng Yan

    2015-01-01

    Full Text Available In this study, we successfully constructed a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffold in vitro, transplanted either the composite or bone marrow mesenchymal stem cells alone into the ischemic area in animal models, and compared their effects. At 14 days after co-transplantation of bone marrow mesenchymal stem cells and the hitosan-collagen scaffold, neurological function recovered noticeably. Vascular endothelial growth factor expression and nestin-labeled neural precursor cells were detected in the ischemic area, surrounding tissue, hippocampal dentate gyrus and subventricular zone. Simultaneously, a high level of expression of glial fibrillary acidic protein and a low level of expression of neuron-specific enolase were visible in BrdU-labeled bone marrow mesenchymal stem cells. These findings suggest that transplantation of a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffold has a neuroprotective effect following ischemic stroke.

  18. IMMOBILIZATION OF PAPAIN ON CHITOSAN

    OpenAIRE

    Cahyaningrum, Sari Edi; Narsito, Narsito; Santoso, Sri Juari; Agustini, Rudiana

    2010-01-01

    In this study, papain was immobilized on chitosan with Mg(II) cosslinked agent. Studies on free and immobilized papain systems for determination of optimum pH, optimum temperatur, thermal stability and reusability were carried out. The results showed that free papain had optimum pH 6.5 and optimum temperature 55 °C while the immobile papain hadoptimum pH 8 and optimum temperature 80 °C. The thermal stability of the immobilized papain, relative to that of the free papain, was markedly increase...

  19. Chitosan Conduit for Peripheral Nerve Regeneration

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Chitosan, the N-deacetylated form of chitin, has good biocompatibility and biodegradability.This paper investigates the feasibility of using chitosan conduits for peripheral nerve regeneration.Cell culture experiments were used to test the material's cytotoxicity and affinity to nerve cells.Conduit implantation experiments were used to study the degradation of the material and the regeneration of injured sciatic nerves.The primary results indicate that chitosan has good mechanical properties, biocompatibility, and biodegradability and it may be a promising biomaterial for peripheral nerve regeneration.

  20. Chitosan-Pectin Synergistic Interaction and Gelation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Mixed gels of chitosan-pectin were prepared by varying the ratio of constituents in the presence of NaCl. Mixed gel at 3% of total polysaccharide concentration with addtion of 12% NaCl showed a synergistic maximum when the ratio of chitosan to pectin was 60 : 40. The effect of the polysaccharide concentration,the preparation temperature(Tp), the time of incubation, balk salt concentration, the molecular weight and the degree of deacetylation of chitosan on gelation have been studied. Interaction mechanism between molecules of both polysaccharides was investigated by FT-IR spectrometry.

  1. Electrospun antibacterial chitosan-based fibers.

    Science.gov (United States)

    Ignatova, Milena; Manolova, Nevena; Rashkov, Iliya

    2013-07-01

    Chitosan is non-toxic, biocompatible, and biodegradable polysaccharide from renewable resources, known to have inherent antibacterial activity, which is mainly due to its polycationic nature. The combining of all assets of chitosan and its derivatives with the unique properties of electrospun nanofibrous materials is a powerful strategy to prepare new materials that can find variety of biomedical applications. In this article the most recent studies on different approaches for preparation of antibacterial fibrous materials from chitosan and its derivatives such as electrospinning, coating, and electrospinning-electrospraying, loading of drugs or bioactive nanoparticles are summarized.

  2. Oxidation-mediated chitosan as additives for creation of chitosan aerogels with diverse three-dimensional interconnected skeletons

    Science.gov (United States)

    Zhang, Sizhao; Feng, Jian; Feng, Junzong; Jiang, Yonggang

    2017-02-01

    Naturally occurring polymer-based aerogels have myriad practical utilizations due to environmentally benign and fruitful resources. However, engineering morphology-controllable biomass aerogels still represents a great challenge. Here we present a facile solution to synthesize chitosan aerogels having distinguished textures by reacting oxidized chitosan with formaldehyde and chitosan sol. In more detail, chitosan was chemically oxidized using two types of oxidation agents such as ammonium persulphate (SPD) and sodium periodate (APS) to obtain corresponding oxidized chitosan, subsequently cross-linked with chitosan solution containing formaldehyde to harvest SPD-oxidized chitosan aerogels (SCAs) and APS-SPD-oxidized ones (ASCAs) after aging, solvent exchange and supercritical drying processes. We found that the morphologies of as-prepared chitosan aerogels are strongly dependent upon the oxidation pattern towards chitosan. The structural textures of SCAs and ASCAs appear nanoflake-like and nanofiber-like structures, which may be related to spatial freedom of active groups located in chitosan. Selected area electron diffraction analysis reveals that the crystalline properties of chitosan aerogels generally appear the serious deterioration comparing to raw chitosan owing to their interconnected skeletal structure formation. The occurrence of characteristic groups displays cross-linked chain construction by using chemical state measurements such as FT-IR and XPS. Further, a plausible mechanism for controlling morphology of chitosan aerogels is also established. This new family of method for creation of chitosan aerogels may open up a perspective for biomass aerogels with controllable textures.

  3. Some features of irradiated chitosan and its biological effect

    Energy Technology Data Exchange (ETDEWEB)

    Hai, Le; Hien, Nguyen Quoc; Luan, Le Quang; Hanh, Truong Thi; Man, Nguyen Tan; Ha, Pham Thi Le; Thuy, Tran Thi [Nuclear Research Institute, VAEC, Dalat (Viet Nam); Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Preparation of chitosan oligomer by radiation degradation was carried out on the gamma Co-60 source. The radiation degradation yield (G{sub d}) of the chitosan was found to be of 1.03. The oligochitosan with 50% of dp>8 fraction was obtained by irradiating the 10% (w/v) chitosan solution in 5% acetic acid at 45 kGy for the chitosan having the initial viscometric average molecular weight, Mv=60,000. Irradiated chitosan showed higher antifungal effect than that of unirradiated one. Furthermore, the irradiated chitosan also showed the growth-promotion effect for plants. (author)

  4. Preparation and characterisation of irradiated crab chitosan and New Zealand Arrow squid pen chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Shavandi, Amin, E-mail: amin.shavandi@postgrad.otago.ac.nz [Department of Food Sciences, University of Otago, Dunedin (New Zealand); Bekhit, Adnan A. [Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Alexandria, Alexandria (Egypt); Bekhit, Alaa El-Din A. [Department of Food Sciences, University of Otago, Dunedin (New Zealand); Sun, Zhifa [Department of Physics, University of Otago, Dunedin (New Zealand); Ali, M. Azam [Department of Applied Sciences, University of Otago, Dunedin (New Zealand)

    2015-11-01

    The properties of chitosan from Arrow squid (Nototodarus sloanii) pen (CHS) and commercial crab shell (CHC) were investigated using FTIR, DSC, SEM and XRD before and after irradiation at the dose of 28 kGy in the presence or absence of 5% water. Also, the viscosity, deacetylation degree, water and oil holding capacities, colour and antimicrobial activities of the chitosan samples were determined. Irradiation decreased (P < 0.05) the viscosity of CHC from 0.21 to 0.03 Pa s and of CHS from 1.71 to 0.23 Pa s. The inclusion of water had no effect on the viscosity of irradiated chitosan. Irradiation did not affect the degree of deacetylation of CHC, but increased the deacetylation degree of CHS from 72.78 to 82.29% in samples with 5% water. Water and oil holding capacities of CHS (1197.30% and 873.3%, respectively) were higher (P < 0.05) than those found in CHC (340.70% and 264.40%, respectively). The water and oil holding capacities were decreased for both types of chitosan irradiation, but were not affected by the addition of water. Squid pen chitosan was whiter in colour (White Index = 90.06%) compared to CHC (White Index = 83.70%). Generally, the CHC samples (control and irradiated) exhibited better antibacterial activity compared to CHS, but the opposite was observed with antifungal activity. - Highlights: • Chitosan prepared from Arrow squid pens (Nototodarus sloanii). • Chitosan samples were gamma irradiated at 28 kGy. • Squid pen chitosan showed high fat and water uptake capacities compared to crab shell chitosan. • Gamma irradiation enhanced the DDA of squid pen chitosan but not crab shell chitosan.

  5. Effects of carboxymethyl chitosan on the blood system of rats

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Dawei [College of Marine Life Sciences, Ocean University of China, Qingdao 266003 (China); Han, Baoqin, E-mail: baoqinh@ouc.edu.cn [College of Marine Life Sciences, Ocean University of China, Qingdao 266003 (China); Dong, Wen; Yang, Zhao; Lv, You; Liu, Wanshun [College of Marine Life Sciences, Ocean University of China, Qingdao 266003 (China)

    2011-04-29

    Highlights: {yields} We report, for the first time, the safety of carboxymethyl chitosan in blood system. {yields} CM-Chitosan has no significant effects on coagulation function of rats. {yields} CM-Chitosan has no significant effects on anticoagulation performance of rats. {yields} CM-Chitosan has no significant effects on fibrinolytic function of rats. {yields} CM-Chitosan has no significant effects on hemorheology of rats. -- Abstract: Carboxymethyl chitosan (CM-chitosan), a derivative of chitosan, was extensively studied in the biomedical materials field for its beneficial biological properties of hemostasis and stimulation of healing. However, studies examining the safety of CM-chitosan in the blood system are lacking. In this study CM-chitosan was implanted into the abdominal cavity of rats to determine blood indexes at different times and to evaluate the effects of CM-chitosan on the blood system of rats. Coagulation function was reflected by thrombin time (TT), prothrombin time (PT), activated partial thromboplatin time (APTT), fibrinogen (FIB) and platelet factor 4 (PF4) indexes; anti-coagulation performance was assessed by the index of antithrombinIII (ATIII); fibrinolytic function was reflected by plasminogen (PLG) and fibrin degradation product (FDP) indexes; and blood viscosity (BV) and plasma viscosity (PV) indexes reflected hemorheology. Results showed that CM-chitosan has no significant effects on the blood system of rats, and provides experimental basis for CM-chitosan to be applied in the field of biomedical materials.

  6. Fluorescent Bioactive Corrole Grafted-Chitosan Films.

    Science.gov (United States)

    Barata, Joana F B; Pinto, Ricardo J B; Vaz Serra, Vanda I R C; Silvestre, Armando J D; Trindade, Tito; Neves, Maria Graça P M S; Cavaleiro, José A S; Daina, Sara; Sadocco, Patrizia; Freire, Carmen S R

    2016-04-11

    Transparent corrole grafted-chitosan films were prepared by chemical modification of chitosan with a corrole macrocycle, namely, 5,10,15-tris(pentafluorophenyl)corrole (TPFC), followed by solvent casting. The obtained films were characterized in terms of absorption spectra (UV-vis), FLIM (fluorescence lifetime imaging microscopy), structure (FTIR, XPS), thermal stability (TGA), thermomechanical properties (DMA), and antibacterial activity. The results showed that the chemical grafting of chitosan with corrole units did not affect its film-forming ability and that the grafting yield increased with the reaction time. The obtained transparent films presented fluorescence which increases with the amount of grafted corrole units. Additionally, all films showed bacteriostatic effect against S. aureus, as well as good thermomechanical properties and thermal stability. Considering these features, promising applications may be envisaged for these corrole-chitosan films, such as biosensors, bioimaging agents, and bioactive optical devices.

  7. Grafting of chitosan with fatty acyl derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Chiandotti, Roberto S.; Rodrigues, Paula C.; Akcelrud, Leni, E-mail: leni@leniak.ne [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept de Quimica

    2010-07-01

    The internal plasticization of chitosan with covalently linked long aliphatic branches, typically 12C, was accomplished through the condensation of the amino groups of chitosan with acidic derivatives of lauric acid, as lauroyl anhydride or lauroyl chloride, that are more reactive than the fatty acid itself. The chemical pathway led to selective N-acylation. The degree of substitution was quantitatively determined by FTIR and {sup 1}H NMR and varied between 3 and 35%. The FTIR quantitative analysis was based in a calibration method with good accuracy. The modified chitosan products were soluble in neutral water and/or DMF according to the degree of substitution. The modified chitosan films were more flexible than the pristine, non-modified ones. (author)

  8. Kinetics of Dyes Adsorbed by Chitosan

    Institute of Scientific and Technical Information of China (English)

    CHEN Liang; CHEN Dong-hui; GAO Liang

    2002-01-01

    A study on adsorption of Acidic Blue RAWL and Cationic Blue X-GRRL dyes by chitosan have been conducted.The adsorption kinetic parameters including adsorption rate K and effective diffusing coefficient D'i under the optimal pH ranges have been determined. Analysis through the enthalpy calculation reveals a substantial thermodynamic difference between the adsorption processes of the two dyes, which helps to understand the adsorption mechanism by chitosan.

  9. Insight into Flocculation Mechanism of Chitosan

    Institute of Scientific and Technical Information of China (English)

    陈亮; 陈东辉; 吴重亮

    2003-01-01

    Grain analyzer, t urbidimeter, Zeta potential instrument and microscope with Panansonic CCD are used to analyse the distribution of the bentonite grain, test the Zeta potential of bentonite and observe the structure of flocs. Through the comparison among chitosan, PAM, and aluminum salt, it can be inferred that the flocculation mechanism of chitosan is something like interpartical bridging of PAM rather than the electrical neutralization by prositive charge.

  10. Effect of Chitosan on Meat Preservation

    OpenAIRE

    Darmadji, Purnama; Izumimoto, Masathoshi

    2014-01-01

    The effect of chitosan as preservative on the qualities of meat including microbiological, chemical, sensory and color qualities were examined In liquid medium chitosan 0.01% inhibited the growth of some spoilage and pathogenic bacteria such as Bacillus subtilis, Escherichia coli, Pseudomonas fragi and Staphylococcus aureus. At 0.1% concentration it also inhibited the growth of meat starter cultures, Lactoba¬cillus plantarum, Pediococcus Pentosaceus and Micro-coccus varians. In meat, during ...

  11. Effect of Chitosan Properties on Immunoreactivity

    Directory of Open Access Journals (Sweden)

    Sruthi Ravindranathan

    2016-05-01

    Full Text Available Chitosan is a widely investigated biopolymer in drug and gene delivery, tissue engineering and vaccine development. However, the immune response to chitosan is not clearly understood due to contradicting results in literature regarding its immunoreactivity. Thus, in this study, we analyzed effects of various biochemical properties, namely degree of deacetylation (DDA, viscosity/polymer length and endotoxin levels, on immune responses by antigen presenting cells (APCs. Chitosan solutions from various sources were treated with mouse and human APCs (macrophages and/or dendritic cells and the amount of tumor necrosis factor-α (TNF-α released by the cells was used as an indicator of immunoreactivity. Our results indicate that only endotoxin content and not DDA or viscosity influenced chitosan-induced immune responses. Our data also indicate that low endotoxin chitosan (<0.01 EU/mg ranging from 20 to 600 cP and 80% to 97% DDA is essentially inert. This study emphasizes the need for more complete characterization and purification of chitosan in preclinical studies in order for this valuable biomaterial to achieve widespread clinical application.

  12. Manipulating fluorescence color and intensity with regular metal nanoparticle-based composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, Andrey G., E-mail: nikitin@cinam.univ-mrs.fr [Centre Interdisciplinaire de Nanoscience de Marseille (CINaM, UPR 3118 CNRS), Aix-Marseille University, Campus de Luminy, Case 913, 13288 Marseille, France and Faculty of Physics and Technology, Al-Farabi Kazakh National University, 71 Al-Farabi Ave., 050040 Almaty (Kazakhstan)

    2016-02-01

    This paper first studies the role of structural parameters of ordered metal nanoparticle-based composites in the modification of the spectra and intensity of directional emission from organic molecules. It then investigates the possibilities of white light generation via color conversion using two materials, one emitting in the green and the other one in the red spectral region. The structures under study exhibit enhanced emission within small solid angle in the forward direction due to excitation of the quasiguided modes. These modes modify the angle-dependent local photon density of states and, thus, result in efficient directional outcoupling of radiation.

  13. Nanoparticle-based targeted therapeutics in head-and-neck cancer.

    Science.gov (United States)

    Wu, Ting-Ting; Zhou, Shui-Hong

    2015-01-01

    Head-and-neck cancer is a major form of the disease worldwide. Treatment consists of surgery, radiation therapy and chemotherapy, but these have not resulted in improved survival rates over the past few decades. Versatile nanoparticles, with selective tumor targeting, are considered to have the potential to improve these poor outcomes. Application of nanoparticle-based targeted therapeutics has extended into many areas, including gene silencing, chemotherapeutic drug delivery, radiosensitization, photothermal therapy, and has shown much promise. In this review, we discuss recent advances in the field of nanoparticle-mediated targeted therapeutics for head-and-neck cancer, with an emphasis on the description of targeting points, including future perspectives.

  14. Plasmonic Nanoparticle-based Protein Detection by Optical Shift of a Resonant Microcavity

    CERN Document Server

    Santiago-Cordoba, Miguel A; Vollmer, Frank; Demirel, Melik C

    2011-01-01

    We demonstrated a biosensing approach which, for the first time, combines the high-sensitivity of whispering gallery modes (WGM) with a metallic nanoparticle based assay. We provided a computational model based on generalized Mie theory to explain the higher sensitivity of protein detection through Plasmonic enhancement. We quantitatively analyzed the binding of a model protein (i.e., BSA) to gold nanoparticles from high-Q WGM resonance frequency shifts, and fit the results to an adsorption isotherm, which agrees with the theoretical predictions of a two-component adsorption model.

  15. Yb-doped yttria-alumino-silicate nano-particles based optical fibers: Fabrication and characterization

    Science.gov (United States)

    Paul, M. C.; Pal, M.; Kir'yanov, A. V.; Das, S.; Bhadra, S. K.; Barmenkov, Yu. O.; Martinez-Gamez, A. A.; Lucio-Martínez, J. L.

    2012-04-01

    An efficient method to fabricate transparent glass ceramic fibers containing in-situ grown Yb 3+ doped oxide nano-particles based on yttria-alumino-silicate glass is presented. These large-mode area Yb 3+ doped fibers having a core diameter around 25.0 μm were drawn by a proper control over the involved process parameters; by this, the size of nano-particles was maintained within 5-10 nm. The main spectroscopic and laser properties of the fabricated fibers along with the nano-structuration results are reported. These results reveal that the developed method offers new scopes for the contemporary Yb 3+ fiber based devices.

  16. Alginate-Chitosan Microcapsules for Renal Arterial Embolization

    Institute of Scientific and Technical Information of China (English)

    LI Sha; HOU Xin-pu

    2003-01-01

    @@ Two natural, nontoxic, biodegradable and well biocompatible polyelectrolyte polymers, sodium alginate (Alg) and chitosan (CTS), which contain opposite charges, were selected to establish alginate-chitosan microcapsules by electrostatic interaction.

  17. Clarification Effects of Chitosan on Apple Fruit Juice

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-fei; LI He-sheng; ZHANG Xiao-ping; HUANG Xiao-chun

    2003-01-01

    Chitosan is a good flocculant. The paper deals with the clarification of apple juice by means of chitosan. The results showed that the transmittance was over 97% and soluble solid content was stable basically, under the technological condition of chitosan of 0.5 - 1.2 g L-1 , temperature of 45 - 55℃ and pH 4.5. After the orthogonal trial, the optimum technological conditions of apple juice clarification by using chitosan were 0.3 g L-1 chitosan, 45℃C and pH 4.5. The research of the apple juice clarification with chitosan made a basis of the application of chitosan and provided the theoretical basis for the clarification of apple juice with chitosan.

  18. Dyeing Characteristics of Chitosan Biguanidine Hydrochloride Treated Wool Fabrics

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xue; HE JIN-xin

    2010-01-01

    @@ Chitosan biguanidine hydrochloride(CGH)has been synthesized by the guanidineylation reaction of chitosan with dicyandiamide.The structures of CGH were characterized by Fourier transform infrared spectroscopy and 13CNMR spectra.

  19. Chitosan-Coated Magnetic Nanoparticles with Low Chitosan Content Prepared in One-Step

    Directory of Open Access Journals (Sweden)

    Yolanda Osuna

    2012-01-01

    Full Text Available Chitosan-coated magnetic nanoparticles (CMNP were obtained at 50°C in a one-step method comprising coprecipitation in the presence of low chitosan content. CMNP showed high magnetization and superparamagnetism. They were composed of a core of 9.5 nm in average diameter and a very thin chitosan layer in accordance with electron microscopy measurements. The results from Fourier transform infrared spectrometry demonstrated that CMNP were obtained and those from thermogravimetric analysis allowed to determine that they were composed of 95 wt% of magnetic nanoparticles and 5 wt% of chitosan. 67% efficacy in the Pb+2 removal test indicated that only 60% of amino groups on CMNP surface bound to Pb, probably due to some degree of nanoparticle flocculation during the redispersion. The very low weight ratio chitosan to magnetic nanoparticles obtained in this study, 0.053, and the high yield of the precipitation reactions (≈97% are noticeable.

  20. The effect of andiroba oil and chitosan concentration on the physical properties of chitosan emulsion film

    Directory of Open Access Journals (Sweden)

    Vanessa Tiemi Kimura

    2016-01-01

    Full Text Available Abstract Chitosan film is used as a dressing to heal burns. The physical and biological properties of the film can be modified by the addition of phytotherapic compounds. This work used the casting -solvent evaporation technique to prepare chitosan film containing andiroba oil (Carapa guianensis which has anti-inflammatory, antibiotic, and healing properties. The objective of this study was to determine the effect of the concentrations of chitosan and andiroba oil on the physical properties of chitosan films. The emulsion films were evaluated concerning the mechanical properties and fluid handling capacity. Additionally, scanning electron microscopy and thermal analysis were performed. The results showed that the barrier and mechanical properties were affected by the addition of andiroba oil, and these may be modulated as a function of the concentration of oil added to the film. The thermal analysis showed no evidence of chemical interactions between the oil and chitosan.

  1. An Investigation of Chitosan for Sorption of Radionuclides

    Science.gov (United States)

    2012-06-05

    including metal ions, organic dyes , phenols, nitrates, and humic substances [8]. Additionally, chitosan has been found to readily form a covalent bond with...processing by photodegradation in some “problem wastes” before the radionuclides could be removed by standard methods [16]. The potential for chitosan...organic dyes . The performance of chitosan as a sorbent for aqueous pollutants will depend on physicochemical properties of the chitosan itself and the

  2. Preparations, characterizations and applications of chitosan-based nanoparticles

    Science.gov (United States)

    Liu, Chenguang; Tan, Yulong; Liu, Chengsheng; Chen, Xiguang; Yu, Lejun

    2007-07-01

    Chitosan is a natural polysaccharide prepared by the N-deacetylation of chitin. In this paper we have reviewed the methods of preparation of chitosan-based nanoparticles and their pharmaceutical applications. There are five methods of their preparations: emulsion cross-linking, emulsion-droplet coalescence, ionic gelation, reverse micellar method and chemically modified chitosan method. Chitosan nanoparticles are used as carriers for low molecular weight drug, vaccines and DNA. Releasing characteristics, biodistribution and applications are also summarized.

  3. Removal of azo dye from aqueous solutions using chitosan

    Directory of Open Access Journals (Sweden)

    Zuhair Jabbar

    2014-06-01

    Full Text Available Adsorption of Congo Red (CR from aqueous solution onto chitosan was investigated in a batch system. The effects of solution pH, initial dye concentration, and temperature were studied. Results indicated that chitosan could be used as a biosorbent to remove the azo dyes from contaminated water. Synthesize of chitosan involved three main stages as preconditioning, demineralization, deproteinization and deacetylation. Chitosan was characterized using Fourier Transform Infrared Spectroscopy (FTIR and solubility in 1% acetic acid.

  4. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Randy Chi Fai Cheung

    2015-08-01

    Full Text Available Chitosan is a natural polycationic linear polysaccharide derived from chitin. The low solubility of chitosan in neutral and alkaline solution limits its application. Nevertheless, chemical modification into composites or hydrogels brings to it new functional properties for different applications. Chitosans are recognized as versatile biomaterials because of their non-toxicity, low allergenicity, biocompatibility and biodegradability. This review presents the recent research, trends and prospects in chitosan. Some special pharmaceutical and biomedical applications are also highlighted.

  5. Preparations, Characterizations and Applications of Chitosan-based Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Chitosan is a natural polysaccharide prepared by the N-deacetylation of chitin. In this paper we have reviewed the methods of preparation of chitosan-based nanoparticles and their pharmaceutical applications. There are five methods of their preparations: emulsion cross-linking, emulsion-droplet coalescence, ionic gelation, reverse micellar method and chemically modified chitosan method. Chitosan nanoparticles are used as carriers for low molecular weight drug, vaccines and DNA. Releasing characteristics, biodistribution and applications are also summarized.

  6. Complex Coacervation composed of Polyelectrolytes Alginate and Chitosan

    Institute of Scientific and Technical Information of China (English)

    盛楠楠

    2016-01-01

    Alginate sodium (ALG) and chitosan (CHI) can form fiber, films, microspheres, hydrogels and all with a wide range of biomedical applications.Few works have been done as a result of the easily flocculation of chitosan in negatively charged matrix.Complex coacervation composed of polyelectrolytes alginate and chitosan were successfully fabricated.The results showed that the lower molecular weights of the chitosan is better for the fabricated of the complex coacervation.

  7. PREPARATION OF CHITOSAN COATED METAL AFFINITY CHROMATOGRAPHY ADSORBENT

    Institute of Scientific and Technical Information of China (English)

    AanTianwei; XuWeijiang; 等

    1998-01-01

    A new and an inexpensive adsorbent of chitosan coated silica for immobilized metal affinity chromatography(IMAC) was studied.After a double coating,the chitosan coated on silica beads could be up to 53.4mg/g silica beads.When pH>3.8,the metal ligand Cu2+ was chelated on the coated chitosan with a bound capacity of 14.6mg/g chitosan without introducing iminodiacetic acid(IDA).

  8. [Mirror neurons].

    Science.gov (United States)

    Rubia Vila, Francisco José

    2011-01-01

    Mirror neurons were recently discovered in frontal brain areas of the monkey. They are activated when the animal makes a specific movement, but also when the animal observes the same movement in another animal. Some of them also respond to the emotional expression of other animals of the same species. These mirror neurons have also been found in humans. They respond to or "reflect" actions of other individuals in the brain and are thought to represent the basis for imitation and empathy and hence the neurobiological substrate for "theory of mind", the potential origin of language and the so-called moral instinct.

  9. Effects of Chitosan Concentration on the Protein Release Behaviour of Electrospun Poly(ε-caprolactone/Chitosan Nanofibers

    Directory of Open Access Journals (Sweden)

    Fatemeh Roozbahani

    2015-01-01

    Full Text Available Poly(ε-caprolactone/chitosan (PCL/chitosan blend nanofibers with different ratios of chitosan were electrospun from a formic acid/acetic acid (FA/AA solvent system. Bovine serum albumin (BSA was used as a model protein to incorporate biochemical cues into the nanofibrous scaffolds. The morphological characteristics of PCL/chitosan and PCL/chitosan/BSA Nanofibers were investigated by scanning electron microscopy (SEM. Fourier transform infrared spectroscopy (FTIR was used to detect the presence of polymeric ingredients and BSA in the Nanofibers. The effects of the polymer blend ratio and BSA concentration on the morphological characteristics and consequently on the BSA release pattern were evaluated. The average fiber diameter and pore size were greater in Nanofibers containing BSA. The chitosan ratio played a significant role in the BSA release profile from the PCL/chitosan/BSA blend. Nanofibrous scaffolds with higher chitosan ratios exhibited less intense bursts in the BSA release profile.

  10. Adhesion and viability of two enterococcal strains on covalently grafted chitosan and chitosan/kappa-carrageenan multilayers

    NARCIS (Netherlands)

    Bratskaya, S.; Marinin, D.; Simon, F.; Synytska, A.; Zschoche, S.; Busscher, H. J.; Jager, D.; van der Mei, H. C.

    2007-01-01

    Chitosans are natural aminopolysaccharides, whose low cytotoxicity suggests their potential use for nonadhesive, antibacterial coatings on biomaterials implant surfaces. Here, the antiadhesive behavior and ability to kill bacteria upon adhesion ("contact killing") of chitosan coatings were evaluated

  11. Interactions between chitosan and cells measured by AFM

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Sheng-Wen; Thien, Doan Van Hong; Ho, Ming-Hua [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10617, Taiwan (China); Hsieh, Hsyue-Jen [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Li, Chung-Hsing [Division of Orthodontics and Pediatric Dentistry, Department of Dentistry, Tri-Service General Hospital, Taipei, Taiwan (China); Hung, Chang-Hsiang [Department of Dentistry, Kinmen Hospital Department of Health, Taiwan (China); Li, Hsi-Hsin, E-mail: mhho@mail.ntust.edu.t [Deputy Superintendent, Kinmen Hospital Department of Health, Taiwan (China)

    2010-10-01

    Chitosan, a biocompatible material that has been widely used in bone tissue engineering, is believed to have a high affinity to osteoblastic cells. This research is the first to prove this hypothesis. By using atomic force microscopy (AFM) with a chitosan-modified cantilever, quantitative evaluation of the interforce between chitosan and cells was carried out. A chitosan tip functionalized with Arg-Gly-Asp (RGD) was also used to measure the interforce between RGD-chitosan and osteoblastic cells. This research concluded by examining cell adhesion and spreading of chitosan substrates as further characterization of the interactions between cells and chitosan. The force measured by AFM showed that the interforce between chitosan and osteoblasts was the highest (209 nN). The smallest adhesion force (61.8 nN) appeared between chitosan and muscle fibroblasts, which did not demonstrate any osteoblastic properties. This result proved that there was a significant interaction between chitosan and bone cells, and correlated with the observations of cell attachment and spreading. The technique developed in this research directly quantified the adhesion between chitosan and cells. This is the first study to demonstrate that specific interaction exists between chitosan and osteoblasts.

  12. Pyridine-grafted chitosan derivative as an antifungal agent.

    Science.gov (United States)

    Jia, Ruixiu; Duan, Yunfei; Fang, Qiang; Wang, Xiangyang; Huang, Jianying

    2016-04-01

    Pyridine moieties were introduced into chitosan by nucleophilic substitution to afford N-(1-carboxybutyl-4-pyridinium) chitosan chloride (pyridine chitosan). The resulting chitosan derivative was well characterized, and its antifungal activity was examined, based on the inhibition of mycelial growth and spore germination. The results indicated that pyridine chitosan exhibited enhanced antifungal activity by comparison with pristine chitosan. The values of the minimum inhibitory concentration and the minimal fungicidal concentration of pyridine chitosan against Fulvia fulva were 0.13 mg/ml and 1 mg/ml, respectively, while the corresponding values against Botrytis cinerea were 0.13 mg/ml and 4 mg/ml, respectively. Severe morphological changes of pyridine chitosan-treated B. cinerea were observed, indicative that pyridine chitosan could damage and deform the structure of fungal hyphae and subsequently inhibit strain growth. Non-toxicity of pyridine chitosan was demonstrated by an acute toxicity study. These results are beneficial for assessing the potential utilization of this chitosan derivative and for exploring new functional antifungal agents with chitosan in the food industry.

  13. A facile inhibitor screening of SARS coronavirus N protein using nanoparticle-based RNA oligonucleotide

    Directory of Open Access Journals (Sweden)

    Roh C

    2012-05-01

    Full Text Available Changhyun RohDivision of Biotechnology, Advanced Radiation Technology Institute (ARTI, Korea Atomic Energy Research Institute (KAERI, Jeongeup, Republic of KoreaAbstract: Hundreds of million people worldwide have been infected with severe acute respiratory syndrome (SARS, and the rate of global death from SARS has remarkably increased. Hence, the development of efficient drug treatments for the biological effects of SARS is highly needed. We have previously shown that quantum dots (QDs-conjugated RNA oligonucleotide is sensitive to the specific recognition of the SARS-associated coronavirus (SARS-CoV nucleocapsid (N protein. In this study, we found that a designed biochip could analyze inhibitors of the SARS-CoV N protein using nanoparticle-based RNA oligonucleotide. Among the polyphenolic compounds examined, (--catechin gallate and (--gallocatechin gallate demonstrated a remarkable inhibition activity on SARS-CoV N protein. (--catechin gallate and (--gallocatechin gallate attenuated the binding affinity in a concentrated manner as evidenced by QDs-conjugated RNA oligonucleotide on a designed biochip. At a concentration of 0.05 µg mL–1, (--catechin gallate and (--gallocatechin gallate showed more than 40% inhibition activity on a nanoparticle-based RNA oligonucleotide biochip system.Keywords: SARS, RNA oligonucleotide, quantum dots, inhibitor, screening

  14. Preparation and Characterization of Chitosan Hydrochloride

    Institute of Scientific and Technical Information of China (English)

    FENG; HuiXia

    2001-01-01

    Chitin 1 is a biodegradable and nontoxic polysaccharide widely spread among marine and terrestrial invertebrates and fungi. It is usually obtained from waste materials of the sea food-processing industry, mainly shells of crab, shrimp, prawn and krill. Native chitin occurs in such natural composite materials usually combined with inorganics, proteins, lipids and pigments. Its isolation calls for chemical treatments to eliminate these contaminants, some of which maybe coimmercially explored. By treating crude chitin with aqueous 40~50% sodium hydroxide at 110~115℃ chitosan is obtained. However, the fully deacetylated product is rarely obtained due to the risks of side reactions and chain deplolymerization. Chitosan and chitin are closely related since both are linear polysaccharides containing 2-acetamido-2-deoxy-D-glucopyranose and 2-amino-2-deoxy-D-glucopyranose units joined by β (1→4) glycosidic bonds. They can be distinguished by their contents of the above-mentioned units and by their solubilities in aqueous media. The acetylated units predominate in chitin while chitosan chains contain mostly deacetylated units. Chitin is soluble in a very limited number of solvents while chitosan is soluble in aqueous dilute solutions of a number of mineral and organic acids, being the most common ones, the hydrochloric and acetic acids. In aqueous dilute acid media chitosan forms salts, producing polyelectrolyte chains bearing positive charges on the nitrogen atoms of their amine groups. In fact the salt of chitosan may be formed in a separate step or as a consequence of the presence of acid in the water suspension of the neutralized form of chitosan.  ……

  15. Preparation and Characterization of Chitosan Hydrochloride

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Chitin 1 is a biodegradable and nontoxic polysaccharide widely spread among marine and terrestrial invertebrates and fungi. It is usually obtained from waste materials of the sea food-processing industry, mainly shells of crab, shrimp, prawn and krill. Native chitin occurs in such natural composite materials usually combined with inorganics, proteins, lipids and pigments. Its isolation calls for chemical treatments to eliminate these contaminants, some of which maybe coimmercially explored. By treating crude chitin with aqueous 40~50% sodium hydroxide at 110~115℃ chitosan is obtained. However, the fully deacetylated product is rarely obtained due to the risks of side reactions and chain deplolymerization. Chitosan and chitin are closely related since both are linear polysaccharides containing 2-acetamido-2-deoxy-D-glucopyranose and 2-amino-2-deoxy-D-glucopyranose units joined by β (1→4) glycosidic bonds. They can be distinguished by their contents of the above-mentioned units and by their solubilities in aqueous media. The acetylated units predominate in chitin while chitosan chains contain mostly deacetylated units. Chitin is soluble in a very limited number of solvents while chitosan is soluble in aqueous dilute solutions of a number of mineral and organic acids, being the most common ones, the hydrochloric and acetic acids. In aqueous dilute acid media chitosan forms salts, producing polyelectrolyte chains bearing positive charges on the nitrogen atoms of their amine groups. In fact the salt of chitosan may be formed in a separate step or as a consequence of the presence of acid in the water suspension of the neutralized form of chitosan.

  16. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery

    Directory of Open Access Journals (Sweden)

    Ahmed TA

    2016-01-01

    Full Text Available Tarek A Ahmed1,2 Bader M Aljaeid11Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; 2Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, EgyptAbstract: Naturally occurring polymers, particularly of the polysaccharide type, have been used pharmaceutically for the delivery of a wide variety of therapeutic agents. Chitosan, the second abundant naturally occurring polysaccharide next to cellulose, is a biocompatible and biodegradable mucoadhesive polymer that has been extensively used in the preparation of micro- as well as nanoparticles. The prepared particles have been exploited as a potential carrier for different therapeutic agents such as peptides, proteins, vaccines, DNA, and drugs for parenteral and nonparenteral administration. Therapeutic agent-loaded chitosan micro- or nanoparticles were found to be more stable, permeable, and bioactive. In this review, we are highlighting the different methods of preparation and characterization of chitosan micro- and nanoparticles, while reviewing the pharmaceutical applications of these particles in drug delivery. Moreover, the roles of chitosan derivatives and chitosan metal nanoparticles in drug delivery have been illustrated.Keywords: nanoparticles, microparticles, preparation, characterization, pharmaceutical application

  17. In vitro treatments of Echinococcus granulosus with fungal chitosan, as a novel biomolecule

    Institute of Scientific and Technical Information of China (English)

    Bahman Rahimi-Esboei; Mahdi Fakhar; Aroona Chabra; Mahboobeh Hosseini

    2013-01-01

    Objective: To determined the antiparasitic activity of the isolated chitosan from Penicillium viridicatum, Penicillium aurantiogriseum and commercial chitosan against protoscolicidal of hydatid cysts were determined. Methods:After isolating chitosan from fungal cell walls, four concentrations (50, 100, 200, 400μg/mL) of each type of prepared chitosan and commercial chitosan were used for 10, 30, 60, and 180 min, respectively. Results: Among different type of chitosan, commercial chitosan with the highest degree of deacetylation showed high scolicidal activity in vitro. Fungal chitosan could be recommended, as good as commercial chitosan, for hydatic cysts control. Conclusions:It seems to be a good alternative to synthetic and chemical scolicidal.

  18. Safety evaluation of chitosan and chitosan acid salts from Panurilus argus lobster.

    Science.gov (United States)

    Lagarto, Alicia; Merino, Nelson; Valdes, Odalys; Dominguez, Jesus; Spencer, Evelyn; de la Paz, Nilia; Aparicio, Guillermo

    2015-01-01

    Chitosan is a natural polymer with excellent properties such as biocompatibility, biodegradability, non-toxicity and adsorptive abilities. We obtained chitosan derived from Panurilus argus lobster shell and its lactate and acetate salts to introduce in pharmaceutical industry. We examined the single and repeated dose toxicity of chitosan and its lactate and acetate salts. Single oral doses of 2000 mg/kg were well tolerated for all three materials. In the repeat dose tests, animals treated with chitosan only show a slight erythrocytes increase. Variations in erythrocyte and leukocyte count and some biochemical parameters were observed in animals treated with chitosan acid salts. One g/kg orally was found to be the subacute NOAEL for chitosan due to the hematological findings observed were not considered adverse. Chitosans obtained from Panurilus argus lobster shell have low toxicity and may be safe in rats because it did not cause any lethality or changes in the general behavior in both the single and repeated dose toxicity studies.

  19. Radiation Synthesis and Application of Carboxymethylated Chitosan Hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Young Chang

    2007-08-15

    This research proposal is to investigate radiation effect of carboxymethylated chitosan in order to obtain the crosslinked carboxymethylated chitosan. The application studies on CM-chitosan- based intelligent hydrogels will be tried too. Chitin is the most abundant natural amino polysaccharide and estimated to be produced annually almost as much as cellulose. Chitosan is the deacetylated product of chitin showing the enhanced solubility in dilute acids, further, carboxymethylated chitosan (CM-chitosan) can solve in both acidic and basic physiological media, which might be good candidates as a kind of biomedical materials. Radiation technique is an important method for modification of chitin derivatives. It includes radiation-induced degradation, grafting, and crosslinking. It was found that CM-chitosan degraded in solid state or dilute aqueous solution under irradiation, but crosslinked at paste-like sate when the concentration of CM-chitosan is more than 10%. Both degraded and crosslinked CM-chitosan have antibacterial activity, so it is essential to investigate in detail the radiation effect of CM-chitosan. Study on radiation effect of CM-chitosan in different condition is beneficial to modification of CM-chitosan by irradiation technique. However, little study was reported on radiation crosslinking and application of CM-chitosan. The radiation-closslinked CM-chitosan synthesized from chitosan was characterized by a Fourier transform infrared spectroscopy (FT-IR) analysis. A kinetic swelling in water and the mechanical properties such as a gelation, water absorptivity, and gel strength were also investigated. For the preparation of crosslinked CM-chitosan by using gamma irradiation, the concentration of an aqueous CM-chitosan is above 10wt%. We confirmed that the gel contents was in the range of 15-63%, and when the irradiation dose was increased, the degree of gelation was decreased by disintegration of the CM-chitosan. In conclusion, we developed a new

  20. Preparation of ultrafine chitosan particles by reverse microemulsion

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Ultrafine chitosan particles were prepared by reverse microemulsion consisting of water, Triton X-100, octanol and cyclohexane. Two methods of preparing ultrafine chitosan particles were adopted and compared using TEM and IR, and possible mechanisms for the formation of ultrafine chitosan particles were proposed. Experimental results show that the method which combined ionic gelation and cross-linking gave uniformly sized chitosan nanoparticles with an average diameter of 92 nm, while the cross-linking without ionic gelation produced spindly chitosan particles with an average length of 943 nm and width of 188 nm.

  1. Hg(II) removal from water by chitosan and chitosan derivatives: a review.

    Science.gov (United States)

    Miretzky, P; Cirelli, A Fernandez

    2009-08-15

    Mercury (Hg) is one of the most toxic heavy metals commonly found in the global environment. Its toxicity is related to the capacity of its compounds to bioconcentrate in organisms and to biomagnify through food chain. A wide range of adsorbents has been used for removing Hg(II) from contaminated water. Chitosan is obtained by alkaline deacetylation of chitin. The adsorption capacity of chitosan depends on the origin of the polysaccharide, and on the experimental conditions in the preparation, that determine the degree of deacetylation. A great number of chitosan derivatives have been obtained by crosslinking with glutaraldehyde or epichlorohydrin among others or by grafting new functional groups on the chitosan backbone with the aim of adsorbing Hg(II). The new functional groups are incorporated to change the pH range for Hg(II) sorption and/or to change the sorption sites in order to increase sorption selectivity. The chemical modification affords a wide range of derivatives with modified properties for specific applications. Hg(II) adsorption on chitosan or chitosan derivatives is now assumed to occur through several single or mixed interactions: chelation or coordination on amino groups in a pendant fashion or in combination with vicinal hydroxyl groups, electrostatic attraction in acidic media or ion exchange with protonated amino groups. This review reports the recent developments in the Hg(II) removal in waste water treatment, using chitosan and its derivatives in order to provide useful information about the different technologies. When possibly the adsorption capacity of chitosan and chitosan derivatives under different experimental conditions is reported to help to compare the efficacy of the Hg(II) removal process. A comparison with the adsorption capacity of other low-cost adsorbents is also tabled.

  2. Flocculation efficiency of chitosan for papermaking applications

    Directory of Open Access Journals (Sweden)

    Raluca Nicu

    2013-02-01

    Full Text Available There is a large interest in bio-polymers as environment-friendly alternatives to synthetic additives in papermaking. In this work, the behavior of three chitosans with different molecular weights and cationic charges were investigated as flocculation additives in papermaking on two systems: calcium carbonate (GCC and pulp/GCC suspension. Comparison was made with two traditional cationic polymers used in wet end chemistry (poly-diallyldimethyl-ammonium chloride (PDADMAC and poly-ethylene imine (PEI. Flocculation efficiency was evaluated by flocculation parameters (mean floc size and number of counts and by floc behavior under shear conditions, using a focused beam reflectance measurement (FBRM technique. Results indicated different behaviors between the three chitosans when they were used for the flocculation of GCC and pulp/GCC suspensions. Chitosans were found to be more efficient over PDADMAC and PEI for flocculating small particles of the GCC suspension, but less efficient for increasing floc sizes, regardless of their MW or CCD. Flocculation parameters for pulp/GCC suspensions suggested the flocculation behavior of chitosan was close to that of PEI, but chitosan had higher efficiency and affinity towards cellulose fibers.

  3. ALTERED ENZYMATIC ACTIVITY OF LYSOZYMES BOUND TO VARIOUSLY SULFATED CHITOSANS

    Institute of Scientific and Technical Information of China (English)

    Hong-wei Wang; Lin Yuan; Tie-liang Zhao; He Huang; Hong Chen; Di Wu

    2012-01-01

    The purpose of this research is to investigate the effects of the variously sulfated chitosans on lysozyme activity and structure.It was shown that the specific enzymatic activity of lysozyme remained almost similar to the native protein after being bound to 6-O-sulfated chitosan (6S-chitosan) and 3,6-O-sulfated chitosan (3,6S-chitosan),but decreased greatly after being bound to 2-N-6-O-sulfated chitosan (2,6S-chitosan).Meanwhile,among these sulfated chitosans,2,6S-chitosan induced the greatest conformational change in lysozyme as indicated by the fluorescence spectra.These findings demonstrated that when sulfated chitosans of different structures bind to lysozyme,lysozyme undergoes conformational change of different magnitudes,which results in corresponding levels of lysozyme activity.Further study on the interaction of sulfated chitosans with lysozyme by surface plasmon resonance (SPR) suggested that their affinities might be determined by their molecular structures.

  4. Chitosan in Mucoadhesive Drug Delivery: Focus on Local Vaginal Therapy

    Directory of Open Access Journals (Sweden)

    Toril Andersen

    2015-01-01

    Full Text Available Mucoadhesive drug therapy destined for localized drug treatment is gaining increasing importance in today’s drug development. Chitosan, due to its known biodegradability, bioadhesiveness and excellent safety profile offers means to improve mucosal drug therapy. We have used chitosan as mucoadhesive polymer to develop liposomes able to ensure prolonged residence time at vaginal site. Two types of mucoadhesive liposomes, namely the chitosan-coated liposomes and chitosan-containing liposomes, where chitosan is both embedded and surface-available, were made of soy phosphatidylcholine with entrapped fluorescence markers of two molecular weights, FITC-dextran 4000 and 20,000, respectively. Both liposomal types were characterized for their size distribution, zeta potential, entrapment efficiency and the in vitro release profile, and compared to plain liposomes. The proof of chitosan being both surface-available as well as embedded into the liposomes in the chitosan-containing liposomes was found. The capability of the surface-available chitosan to interact with the model porcine mucin was confirmed for both chitosan-containing and chitosan-coated liposomes implying potential mucoadhesive behavior. Chitosan-containing liposomes were shown to be superior in respect to the simplicity of preparation, FITC-dextran load, mucoadhesiveness and in vitro release and are expected to ensure prolonged residence time on the vaginal mucosa providing localized sustained release of entrapped model substances.

  5. Degradation of chitosan-based materials after different sterilization treatments

    Science.gov (United States)

    San Juan, A.; Montembault, A.; Gillet, D.; Say, J. P.; Rouif, S.; Bouet, T.; Royaud, I.; David, L.

    2012-02-01

    Biopolymers have received in recent years an increasing interest for their potential applications in the field of biomedical engineering. Among the natural polymers that have been experimented, chitosan is probably the most promising in view of its exceptional biological properties. Several techniques may be employed to sterilize chitosan-based materials. The aim of our study was to compare the effect of common sterilization treatments on the degradation of chitosan-based materials in various physical states: solutions, hydrogels and solid flakes. Four sterilization methods were compared: gamma irradiation, beta irradiation, exposure to ethylene oxide and saturated water steam sterilization (autoclaving). Exposure to gamma or beta irradiation was shown to induce an important degradation of chitosan, regardless of its physical state. The chemical structure of chitosan flakes was preserved after ethylene oxide sterilization, but this technique has a limited use for materials in the dry state. Saturated water steam sterilization of chitosan solutions led to an important depolymerization. Nevertheless, steam sterilization of chitosan flakes bagged or dispersed in water was found to preserve better the molecular weight of the polymer. Hence, the sterilization of chitosan flakes dispersed in water would represent an alternative step for the preparation of sterilized chitosan solutions. Alternatively, autoclaving chitosan physical hydrogels did not significantly modify the macromolecular structure of the polymer. Thus, this method is one of the most convenient procedures for the sterilization of physical chitosan hydrogels after their preparation.

  6. Effects of sulfate chitosan derivatives on nonalcoholic fatty liver disease

    Science.gov (United States)

    Yu, Mingming; Wang, Yuanhong; Jiang, Tingfu; Lv, Zhihua

    2014-06-01

    Sulfate chitosan derivatives have good solubility and therapeutic effect on the cell model of NAFLD. The aim of this study was to examine the therapeutic effect of sulfate chitosan derivatives on NAFLD. The male Wistar rats were orally fed high fat emulsion and received sulfate chitosan derivatives for 5 weeks to determine the pre-treatment effect of sulfate chitosan derivatives on NAFLD. To evaluate the therapeutic effect of sulfate chitosan derivatives on NAFLD, the rats were orally fed with high concentration emulsion for 5 weeks, followed by sulfate chitosan derivatives for 3 weeks. Histological analysis and biomedical assays showed that sulfate chitosan derivatives can dramatically prevent the development of hepatic steatosis in hepatocyte cells. In animal studies, pre-treatment and treatment with sulfate chitosan derivatives significantly protected against hepatic steatohepatitis induced by high fat diet according to histological analysis. Furthermore, increased TC, ALT, MDA, and LEP in NAFLD were significantly ameliorated by pre-treatment and treatment with sulfate chitosan derivatives. Furthermore, increased TG, AST, and TNF-α in NAFLD were significantly ameliorated by treatment with sulfate chitosan derivatives. Sulfate chitosan derivatives have good pre-treatment and therapeutic effect on NAFLD.

  7. Effects of Sulfate Chitosan Derivatives on Nonalcoholic Fatty Liver Disease

    Institute of Scientific and Technical Information of China (English)

    YU Mingming; WANG Yuanhong; JIANG Tingfu; LV Zhihua

    2014-01-01

    Sulfate chitosan derivatives have good solubility and therapeutic effect on the cell model of NAFLD. The aim of this study was to examine the therapeutic effect of sulfate chitosan derivatives on NAFLD. The male Wistar rats were orally fed high fat emulsion and received sulfate chitosan derivatives for 5 weeks to determine the pre-treatment effect of sulfate chitosan derivatives on NAFLD. To evaluate the therapeutic effect of sulfate chitosan derivatives on NAFLD, the rats were orally fed with high concentra-tion emulsion for 5 weeks, followed by sulfate chitosan derivatives for 3 weeks. Histological analysis and biomedical assays showed that sulfate chitosan derivatives can dramatically prevent the development of hepatic steatosis in hepatocyte cells. In animal studies, pre-treatment and treatment with sulfate chitosan derivatives significantly protected against hepatic steatohepatitis induced by high fat diet according to histological analysis. Furthermore, increased TC, ALT, MDA, and LEP in NAFLD were significantly amelio-rated by pre-treatment and treatment with sulfate chitosan derivatives. Furthermore, increased TG, AST, and TNF-α in NAFLD were significantly ameliorated by treatment with sulfate chitosan derivatives. Sulfate chitosan derivatives have good pre-treatment and therapeutic effect on NAFLD.

  8. Chitosan Fibers Modified with HAp/β–TCP Nanoparticles

    Directory of Open Access Journals (Sweden)

    Dariusz Wawro

    2011-10-01

    Full Text Available This paper describes a method for preparing chitosan fibers modified with hydroxyapatite (HAp, tricalcium phosphate (β-TCP, and HAp/β-TCP nanoparticles. Fiber-grade chitosan derived from the northern shrimp (Pandalus borealis and nanoparticles of tricalcium phosphate (β-TCP and hydroxyapatite (HAp suspended in a diluted chitosan solution were used in the investigation. Diluted chitosan solution containing nanoparticles of Hap/β-TCP was introduced to a 5.16 wt% solution of chitosan in 3.0 wt% acetic acid. The properties of the spinning solutions were examined. Chitosan fibers modified with nanoparticles of HAp/β-TCP were characterized by a level of tenacity and calcium content one hundred times higher than that of regular chitosan fibers.

  9. Effect of chitosan coatings on postharvest green asparagus quality.

    Science.gov (United States)

    Qiu, Miao; Jiang, Hengjun; Ren, Gerui; Huang, Jianying; Wang, Xiangyang

    2013-02-15

    Fresh postharvest green asparagus rapidly deteriorate due to its high respiration rate. The main benefits of edible active coatings are their edible characteristics, biodegradability and increase in food safety. In this study, the quality of the edible coatings based on 0.50%, 0.25% high-molecular weight chitosan (H-chitosan), and 0.50%, 0.25% low-molecular weight chitosan (L-chitosan) on postharvest green asparagus was investigated. On the basis of the results obtained, 0.25% H-chitosan and 0.50% L-chitosan treatments ensured lower color variation, less weight loss and less ascorbic acid, decrease presenting better quality of asparagus than other concentrations of chitosan treatments and the control during the cold storage, and prolonging a shelf life of postharvest green asparagus.

  10. Suppression of Zn stress on barley by irradiated chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, N.; Mitomo, H. [Gunma Univ., Faculty of Engineering, Department of Biological and Chemical Engineering, Kiryu, Gunma (Japan); Ha, P.T.L. [Nuclear Research Institute, Dalat (Viet Nam); Watanabe, S.; Ito, T.; Takeshita, H.; Yoshii, F.; Kume, T. [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Chitosan was irradiated up to 1000 kGy in solid state. Irradiation of chitosan caused the reduction of molecular weight. The molecular weight of the chitosan reduced from ca. 4 x 10{sup 5} to ca. 6 x 10{sup 3} by irradiation at 1000 kGy. For the barley growth promotion, irradiated chitosan showed the significant effect and 1000 kGy irradiated chitosan improved 20% of growth. Using the positron emitting tracer imaging system (PETIS), the effect of chitosan on uptake and transportation of {sup 62}Zn in barley were investigated. It was found that the transportation of Zn from root to shoot and the damage of plant by Zn were suppressed with irradiated chitosan. (author)

  11. Immobilization of nitrite oxidizing bacteria using biopolymeric chitosan media

    Institute of Scientific and Technical Information of China (English)

    Pranee Lertsutthiwong; Duangcheewan Boonpuak; Wiboonluk Pungrasmi; Sorawit Powtongsook

    2013-01-01

    The effects of chitosan characteristics including the degree of deacetylation,molecular weight,particle size,pH pretreatment and immobilization time on the immobilization of nitrite-oxidizing bacteria (NOB) on biopolymeric chitosan were investigated.Nitrite removal efficiency of immobilized NOB depended on the degree of deacetylation,particle size,pH pretreatment on the surface of chitosan and immobilization time.Scanning electron microscope characterization illustrated that the number of NOB cells attached to the surface of chitosan increased with an increment of immobilization time.The optimal condition for NOB immobilization on chitosan was achieved during a 24-hr immobilization period using chitosan with the degree of deacetylation larger than 80% and various particle size ranges between 1-5 mm at pH 6.5.In general,the NOB immobilized on chitosan flakes has a high potential to remove excess nitrite from wastewater and aquaculture systems.

  12. Growth rate inhibition of phytopathogenic fungi by characterized chitosans

    Directory of Open Access Journals (Sweden)

    Enio N. Oliveira Junior

    2012-06-01

    Full Text Available The inhibitory effects of fifteen chitosans with different degrees of polymerization (DP and different degrees of acetylation (F A on the growth rates (GR of four phytopathogenic fungi (Alternaria alternata, Botrytis cinerea, Penicillium expansum, and Rhizopus stolonifer were examined using a 96-well microtiter plate and a microplate reader. The minimum inhibitory concentrations (MICs of the chitosans ranged from 100 µg × mL-1 to 1,000 µg × mL-1 depending on the fungus tested and the DP and F A of the chitosan. The antifungal activity of the chitosans increased with decreasing F A. Chitosans with low F A and high DP showed the highest inhibitory activity against all four fungi. P. expansum and B. cinerea were relatively less susceptible while A. alternata and R. stolonifer were relatively more sensitive to the chitosan polymers. Scanning electron microscopy of fungi grown on culture media amended with chitosan revealed morphological changes.

  13. Electrochemical detection of short HIV sequences on chitosan/Fe{sub 3}O{sub 4} nanoparticle based screen printed electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Lam Dai, E-mail: lamtd@ims.vast.ac.vn [Institute of Materials Science, Vietnamese Academy of Science and Technology, 18, Hoang Quoc Viet Road (Viet Nam); Nguyen, Binh Hai [Institute of Materials Science, Vietnamese Academy of Science and Technology, 18, Hoang Quoc Viet Road (Viet Nam); Van Hieu, Nguyen [International Training Institute for Materials Science, Hanoi University of Science and Technology, 1, Dai Co Viet Road, Hanoi (Viet Nam); Tran, Hoang Vinh; Nguyen, Huy Le [Faculty of Chemical Technology, Hanoi University of Science and Technology, 1, Dai Co Viet Road, Hanoi (Viet Nam); Nguyen, Phuc Xuan [Institute of Materials Science, Vietnamese Academy of Science and Technology, 18, Hoang Quoc Viet Road (Viet Nam)

    2011-03-12

    In this study, a novel CS/Fe{sub 3}O{sub 4} nanobiocomposite-based platform for electrochemical detection of HIV-1 was developed. The most attractive feature of this system is a suitable microenvironment (Fe{sub 3}O{sub 4} nanoparticles) which could contribute to electron transfer and thus sensitivity enhancement when using methylene blue (MB) as an external mediator and Square Wave Voltammetry (SWV), Electrochemical Impedance Spectroscopy (EIS) techniques. The proposed screen printed electrode (SPE) had a low detection limit (as low as 50 pM), acceptable stability and good reproducibility, which would be valuable for clinical diagnosis. In addition, this sensing interface may be feasibly adapted for multiplexed detection of other species of bacterial pathogens.

  14. Chitosan films and blends for packaging material.

    Science.gov (United States)

    van den Broek, Lambertus A M; Knoop, Rutger J I; Kappen, Frans H J; Boeriu, Carmen G

    2015-02-13

    An increased interest for hygiene in everyday life as well as in food, feed and medical issues lead to a strong interest in films and blends to prevent the growth and accumulation of harmful bacteria. A growing trend is to use synthetic and natural antimicrobial polymers, to provide non-migratory and non-depleting protection agents for application in films, coatings and packaging. In food packaging, antimicrobial effects add up to the barrier properties of the materials, to increase the shelf life and product quality. Chitosan is a natural bioactive polysaccharide with intrinsic antimicrobial activity and, due to its exceptional physicochemical properties imparted by the polysaccharide backbone, has been recognized as a natural alternative to chemically synthesized antimicrobial polymers. This, associated with the increasing preference for biofunctional materials from renewable resources, resulted in a significant interest on the potential for application of chitosan in packaging materials. In this review we describe the latest developments of chitosan films and blends as packaging material.

  15. Structural Characterization of Chitosan-Clay Nanocomposite

    Science.gov (United States)

    Paluszkiewicz, C.; Weselucha-Birczynska, A.; Stodolak, E.

    2010-08-01

    Novel materials originating from renowable sources mainly consist of biopolymers and their composites or nanocomposites. A typical material belonging to this group is chitosane (CS), which is a cationic natural polysaccharide that can be produced by alkaline N-deacetylation of chitine. Chitosane has a variety of applications in biomedical products, cosmetics, and food processing [1, 2].Organic-inorganic hybrid materials basing on chitosane and nanoclay (montmoryllonite, MMT) were characterized by the vibrational spectrocopy methods (Micro-Raman spectroscopy and FT-Raman spectroscopy) and the thermal analysis methods (TG, DSC). It was shown, that small amount on a nanofiller (MMT, 3 wt.%) used to modify the polymer matrix influences the structure of its polymeric chains.

  16. Chitosan drug binding by ionic interaction.

    Science.gov (United States)

    Boonsongrit, Yaowalak; Mitrevej, Ampol; Mueller, Bernd W

    2006-04-01

    Three model drugs (insulin, diclofenac sodium, and salicylic acid) with different pI or pKa were used to prepare drug-chitosan micro/nanoparticles by ionic interaction. Physicochemical properties and entrapment efficiencies were determined. The amount of drug entrapped in the formulation influences zeta potential and surface charge of the micro/nanoparticles. A high entrapment efficiency of the micro/nanoparticles could be obtained by careful control of formulation pH. The maximum entrapment efficiency did not occur in the highest ionization range of the model drugs. The high burst release of drugs from chitosan micro/nanoparticles was observed regardless of the pH of dissolution media. It can be concluded that the ionic interaction between drug and chitosan is low and too weak to control the drug release.

  17. Simulations of the structure and dynamics of nanoparticle-based ionic liquids

    KAUST Repository

    Hong, Bingbing

    2012-01-01

    We use molecular dynamics simulations over microsecond time scales to study the structure and dynamics of coarse-grained models for nanoparticle-based ionic liquids. The systems of interest consist of particles with charged surface groups and linear or three-arm counterions, which also act as the solvent. A comparable uncharged model of nanoparticles with tethered chains is also studied. The pair correlation functions display a rich structure resulting from the packing of cores and chains, as well as electrostatic effects. Even though electrostatic interactions between oppositely charged ions at contact are much greater than the thermal energy, we find that chain dynamics at intermediate time scales are dominated by chain hopping between core particles. The uncharged core particles with tethered chains diffuse faster than the ionic core particles. © 2012 The Royal Society of Chemistry.

  18. Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol-gel processing.

    Science.gov (United States)

    Manca, Michele; Cannavale, Alessandro; De Marco, Luisa; Aricò, Antonino S; Cingolani, Roberto; Gigli, Giuseppe

    2009-06-02

    We present a robust and cost-effective coating method to fabricate long-term durable superhydrophobic andsimultaneouslyantireflective surfaces by a double-layer coating comprising trimethylsiloxane (TMS) surface-functionalized silica nanoparticles partially embedded into an organosilica binder matrix produced through a sol-gel process. A dense and homogeneous organosilica gel layer was first coated onto a glass substrate, and then, a trimethylsilanized nanospheres-based superhydrophobic layer was deposited onto it. After thermal curing, the two layers turned into a monolithic film, and the hydrophobic nanoparticles were permanently fixed to the glass substrate. Such treated surfaces showed a tremendous water repellency (contact angle = 168 degrees ) and stable self-cleaning effect during 2000 h of outdoor exposure. Besides this, nanotextured topology generated by the self-assembled nanoparticles-based top layer produced a fair antireflection effect consisting of more than a 3% increase in optical transmittance.

  19. Synthesis and characterisation of highly fluorescent core-shell nanoparticles based on Alexa dyes

    Energy Technology Data Exchange (ETDEWEB)

    Natte, Kishore; Behnke, Thomas; Orts-Gil, Guillermo, E-mail: guillermo.orts-gil@bam.de; Wuerth, Christian; Friedrich, Joerg F.; Oesterle, Werner; Resch-Genger, Ute, E-mail: ute.resch@bam.de [BAM Federal Institute for Materials Research and Testing (Germany)

    2012-02-15

    Current and future developments in the emerging field of nanobiotechnology are closely linked to the rational design of novel fluorescent nanomaterials, e.g. for biosensing and imaging applications. Here, the synthesis of bright near infrared (NIR)-emissive nanoparticles based on the grafting of silica nanoparticles (SNPs) with 3-aminopropyl triethoxysilane (APTES) followed by covalent attachment of Alexa dyes and their subsequent shielding by an additional silica shell are presented. These nanoparticles were investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM) and fluorescence spectroscopy. TEM studies revealed the monodispersity of the initially prepared and fluorophore-labelled silica particles and the subsequent formation of raspberry-like structures after addition of a silica precursor. Measurements of absolute fluorescence quantum yields of these scattering particle suspensions with an integrating sphere setup demonstrated the influence of dye labelling density-dependent fluorophore aggregation on the signaling behaviour of such nanoparticles.

  20. Comparison and Characterisation of Regenerated Chitosan from 1-Butyl-3-methylimidazolium Chloride and Chitosan from Crab Shells

    Directory of Open Access Journals (Sweden)

    Saniyat Islam

    2015-01-01

    Full Text Available Chitosan is a biopolymer derived from chitin which is naturally occurring in the exoskeleton of crustaceans. This paper reports dissolution and regeneration of chitosan by directly dissolving in an ionic liquid solvent, 1-butyl-3-methylimidazolium chloride (BMIMCl. This will provide an ideal platform to solubilise these kinds of polymers to achieve the dissolution. The current study dissolved chitosan from crab shell utilising BMIMCl as a solvent and characterised the resultant regenerated polymer. The regenerated chitosan showed increased hydrogen bonding when characterised by Fourier transform infrared (FTIR spectral analysis. In addition, the study also compared the characteristics of regenerated and generic chitosan. The regenerated chitosan was also evaluated for antimicrobial properties and showed to possess antibacterial features similar to the commercial grade. This method can be utilised in future for blending of polymers with chitosan in a dissolved phase.

  1. Comparison and Characterisation of Regenerated Chitosan from 1-Butyl-3-methylimidazolium Chloride and Chitosan from Crab Shells.

    Science.gov (United States)

    Islam, Saniyat; Arnold, Lyndon; Padhye, Rajiv

    2015-01-01

    Chitosan is a biopolymer derived from chitin which is naturally occurring in the exoskeleton of crustaceans. This paper reports dissolution and regeneration of chitosan by directly dissolving in an ionic liquid solvent, 1-butyl-3-methylimidazolium chloride (BMIMCl). This will provide an ideal platform to solubilise these kinds of polymers to achieve the dissolution. The current study dissolved chitosan from crab shell utilising BMIMCl as a solvent and characterised the resultant regenerated polymer. The regenerated chitosan showed increased hydrogen bonding when characterised by Fourier transform infrared (FTIR) spectral analysis. In addition, the study also compared the characteristics of regenerated and generic chitosan. The regenerated chitosan was also evaluated for antimicrobial properties and showed to possess antibacterial features similar to the commercial grade. This method can be utilised in future for blending of polymers with chitosan in a dissolved phase.

  2. Solid polymer electrolyte from phosphorylated chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Fauzi, Iqbal, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.

  3. Polyethylene glycol-modified arachidyl chitosan-based nanoparticles for prolonged blood circulation of doxorubicin.

    Science.gov (United States)

    Termsarasab, Ubonvan; Yoon, In-Soo; Park, Ju-Hwan; Moon, Hyun Tae; Cho, Hyun-Jong; Kim, Dae-Duk

    2014-04-10

    Doxorubicin (DOX)-loaded nanoparticles based on polyethylene glycol-conjugated chitosan oligosaccharide-arachidic acid (CSOAA-PEG) were explored for potential application to leukemia therapy. PEG was conjugated with CSOAA backbone via amide bond formation and the final product was verified by (1)H NMR analysis. Using the synthesized CSOAA-PEG, nanoparticles having characteristics of a 166-nm mean diameter, positive zeta potential, and spherical shape were produced for the delivery of DOX. The mean diameter of CSOAA-PEG nanoparticles in the serum solution (50% fetal bovine serum) remained relatively constant over 72 h as compared with CSOAA nanoparticles (changes of 20.92% and 223.16%, respectively). The sustained release pattern of DOX from CSOAA-PEG nanoparticles was displayed at physiological pH, and the release rate increased under the acidic pH conditions. The cytotoxicity of the CSOAA-PEG conjugate was negligible in human leukemia cells (K562) at the concentrations tested (∼ 100 μg/ml). The uptake rate of DOX from the nanoparticles by K562 cells was higher than that from the solution. Judging from the results of pharmacokinetic studies in rats, in vivo clearance rate of DOX from the CSOAA-PEG nanoparticle group was slower than other groups, subsequently extending the circulation period. The PEGylated CSOAA-based nanoparticles could represent an effective nano-sized delivery system for DOX which has been used for the treatment of blood malignancies.

  4. Enhancement of temozolomide stability by loading in chitosan-carboxylated polylactide-based nanoparticles

    Science.gov (United States)

    Di Martino, Antonio; Kucharczyk, Pavel; Capakova, Zdenka; Humpolicek, Petr; Sedlarik, Vladimir

    2017-02-01

    In the presented work, amphiphilic nanoparticles based on chitosan and carboxy-enriched polylactic acid have been prepared to improve the stability of the pro-drug temozolomide in physiological media by encapsulation. The carrier, with a diameter in the range of 150-180 nm, was able to accommodate up to 800 μg of temozolomide per mg of polymer. The obtained formulation showed good stability in physiological condition and preparation media up to 1 month. Temozolomide loaded inside the carrier exhibited greater stability than the free drug, in particular in simulated physiological solution at pH 7.4 where the hydrolysis in the inactive metabolite was clearly delayed. CS-SPLA nanoparticles demonstrated a pH-dependent TMZ release kinetics with the opportunity to increase or decrease the rate. Mass spectroscopy, UV-Vis analysis, and in vitro cell tests confirmed the improvement in temozolomide stability and effectiveness when loaded into the polymeric carrier, in comparison with the free drug.

  5. Thiolated chitosan nanoparticles for enhancing oral absorption of docetaxel: preparation, in vitro and ex vivo evaluation

    Science.gov (United States)

    Saremi, Shahrooz; Atyabi, Fatemeh; Akhlaghi, Seyedeh Parinaz; Ostad, Seyed Nasser; Dinarvand, Rassoul

    2011-01-01

    The aim of this study was to prepare and evaluate mucoadhesive core-shell nanoparticles based on copolymerization of thiolated chitosan coated on poly methyl methacrylate cores as a carrier for oral delivery of docetaxel. Docetaxel-loaded nanoparticles with various concentrations were prepared via a radical emulsion polymerization method using cerium ammonium nitrate as an initiator. The physicochemical properties of the obtained nanoparticles were characterized by: dynamic light-scattering analysis for their mean size, size distribution, and zeta potential; scanning electron microscopy and transmission electron microscopy for surface morphology; and differential scanning calorimetry analysis for confirmation of molecular dispersity of docetaxel in the nanoparticles. Nanoparticles were spherical with mean diameter below 200 nm, polydispersity of below 0.15, and positive zeta potential values. The entrapment efficiency of the nanoparticles was approximately 90%. In vitro release studies showed a sustained release characteristic for 10 days after a burst release at the beginning. Ex vivo studies showed a significant increase in the transportation of docetaxel from intestinal membrane of rat when formulated as nanoparticles. Cellular uptake of nanoparticles was investigated using fluoresceinamine-loaded nanoparticles. Docetaxel nanoparticles showed a high cytotoxicity effect in the Caco-2 and MCF-7 cell lines after 72 hours. It can be concluded that by combining the advantages of both thiolated polymers and colloidal particles, these nanoparticles can be proposed as a drug carrier system for mucosal delivery of hydrophobic drugs. PMID:21289989

  6. Effect of chitosan and its derivatives as antifungal and preservative agents on postharvest green asparagus.

    Science.gov (United States)

    Qiu, Miao; Wu, Chu; Ren, Gerui; Liang, Xinle; Wang, Xiangyang; Huang, Jianying

    2014-07-15

    The antifungal activity and effect of high-molecular weight chitosan (H-chitosan), low-molecular weight chitosan (L-chitosan) and carboxymethyl chitosan (C-chitosan) coatings on postharvest green asparagus were evaluated. L-chitosan and H-chitosan efficiently inhibited the radial growth of Fusarium concentricum separated from postharvest green asparagus at 4 mg/ml, which appeared to be more effective in inhibiting spore germination and germ tube elongation than that of C-chitosan. Notably, spore germination was totally inhibited by L-chitosan and H-chitosan at 0.05 mg/ml. Coated asparagus did not show any apparent sign of phytotoxicity and maintained good quality over 28 days of cold storage, according to the weight loss and general quality aspects. Present results inferred that chitosan could act as an attractive preservative agent for postharvest green asparagus owing to its antifungal activity and its ability to stimulate some defense responses during storage.

  7. Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning

    Directory of Open Access Journals (Sweden)

    2011-04-01

    Full Text Available Chitosan is soluble in most acids. The protonation of the amino groups on the chitosan backbone inhibits the electrospinnability of pure chitosan. Recently, electrospinning of nanofibers based on chitosan has been widely researched and numerous nanofibers containing chitosan have been prepared by decreasing the number of the free amino groups of chitosan as the nanofibiers have enormous possibilities for better utilization in various areas. This article reviews the preparations and properties of the nanofibers which were electrospun from pure chitosan, blends of chitosan and synthetic polymers, blends of chitosan and protein, chitosan derivatives, as well as blends of chitosan and inorganic nanoparticles, respectively. The applications of the nanofibers containing chitosan such as enzyme immobilization, filtration, wound dressing, tissue engineering, drug delivery and catalysis are also summarized in detail.

  8. Photoelectrochemical Solar Cells Based on Chitosan Electroylte

    Institute of Scientific and Technical Information of China (English)

    M.H.A.Buraidah; A.K.Arof

    2007-01-01

    1 Results ITO-ZnTe/Chitosan-NH4I-I2/ITO photoelectrochemical solar cells have been fabricated and characterized by current-voltage characteristics.In this work,the ZnTe thin film was prepared by electrodeposition on indium-tin-oxide coated glass.The chitosan electrolyte consists of NH4I salt and iodine.Iodine was added to provide the I3-/I- redox couple.The PEC solar cell was fabricated by sandwiching an electrolyte film between the ZnTe semiconductor and ITO conducting glass.The area of the solar cell...

  9. Chitosan-Silica Hybrid Porous Membranes

    OpenAIRE

    Pandis, C.; S. Madeira; Matos, J.,; Kyritsis, A.; Mano, J. F.; Ribelles, J.L. Gómez

    2014-01-01

    Chitosan–silica porous hybrids were prepared by a novel strategy in order to improve the mechanical properties of chitosan (CHT) in the hydrogel state. The inorganic silica phase was introduced by sol–gel reactions in acidic medium inside the pores of already prepared porous scaffolds. In order to make the scaffolds insoluble in acidic media chitosan was cross-linked by genipin (GEN) with an optimum GEN concentration of 3.2 wt.%. Sol–gel reactions took place with Tetraethylorthosilicate (TEOS...

  10. Integration of Nanoparticle-Based Paper Sensors into the Classroom: An Example of Application for Rapid Colorimetric Analysis of Antioxidants

    Science.gov (United States)

    Sharpe, Erica; Andreescu, Silvana

    2015-01-01

    We describe a laboratory experiment that employs the Nanoceria Reducing Antioxidant Capacity (or NanoCerac) Assay to introduce students to portable nanoparticle-based paper sensors for rapid analysis and field detection of polyphenol antioxidants. The experiment gives students a hands-on opportunity to utilize nanoparticle chemistry to develop…

  11. Chitosan Effects on Plant Systems

    Science.gov (United States)

    Malerba, Massimo; Cerana, Raffaella

    2016-01-01

    Chitosan (CHT) is a natural, safe, and cheap product of chitin deacetylation, widely used by several industries because of its interesting features. The availability of industrial quantities of CHT in the late 1980s enabled it to be tested in agriculture. CHT has been proven to stimulate plant growth, to protect the safety of edible products, and to induce abiotic and biotic stress tolerance in various horticultural commodities. The stimulating effect of different enzyme activities to detoxify reactive oxygen species suggests the involvement of hydrogen peroxide and nitric oxide in CHT signaling. CHT could also interact with chromatin and directly affect gene expression. Recent innovative uses of CHT include synthesis of CHT nanoparticles as a valuable delivery system for fertilizers, herbicides, pesticides, and micronutrients for crop growth promotion by a balanced and sustained nutrition. In addition, CHT nanoparticles can safely deliver genetic material for plant transformation. This review presents an overview on the status of the use of CHT in plant systems. Attention was given to the research that suggested the use of CHT for sustainable crop productivity. PMID:27347928

  12. [Kinetics of in vitro drug release from chitosan and N-alkyl chitosan membranes].

    Science.gov (United States)

    Li, M; Xin, M; Wang, Q; Yao, K

    2001-03-01

    By using the so-called "lag-time" method, we studied the effect of membrane thickness(h), initial drug concentration(Co) and flow rate(V) on the difusion coefficient(D) of model drug in membranes. The experiment indicates that D increases as h and v increase; D Keeps constant when C0 changes; Under the same condition, the D value of N-alkyl chitosan membrane is bigger than that of pure chitosan membrane.

  13. Chitosan and chitosan chlorhydrate based various approaches for enhancement of dissolution rate of carvedilol

    Directory of Open Access Journals (Sweden)

    Shete Amol S

    2012-12-01

    Full Text Available Abstract Background and the purpose of the study Carvedilol nonselective β-adrenoreceptor blocker, chemically (±-1-(Carbazol-4-yloxy-3-[[2-(o-methoxypHenoxy ethyl] amino]-2-propanol, slightly soluble in ethyl ether; and practically insoluble in water, gastric fluid (simulated, TS, pH 1.1, and intestinal fluid (simulated, TS without pancreatin, pH 7.5 Compounds with aqueous solubility less than 1% W/V often represents dissolution rate limited absorption. There is need to enhance the dissolution rate of carvedilol. The objective of our present investigation was to compare chitosan and chitosan chlorhydrate based various approaches for enhancement of dissolution rate of carvedilol. Methods The different formulations were prepared by different methods like solvent change approach to prepare hydrosols, solvent evaporation technique to form solid dispersions and cogrind mixtures. The prepared formulations were characterized in terms of saturation solubility, drug content, infrared spectroscopy (FTIR, differential scanning calorimetry (DSC, powder X-ray diffraction (PXRD, electron microscopy, in vitro dissolution studies and stability studies. Results The practical yield in case of hydrosols was ranged from 59.76 to 92.32%. The drug content was found to uniform among the different batches of hydrosols, cogrind mixture and solid dispersions ranged from 98.24 to 99.89%. There was significant improvement in dissolution rate of carvedilol with chitosan chlorhdyrate as compare to chitosan and explanation to this behavior was found in the differences in the wetting, solubilities and swelling capacity of the chitosan and chitosan salts, chitosan chlorhydrate rapidly wet and dissolve upon its incorporation into the dissolution medium, whereas the chitosan base, less water soluble, would take more time to dissolve. Conclusion This technique is scalable and valuable in manufacturing process in future for enhancement of dissolution of poorly water soluble

  14. Grafting of Chitosan and Chitosantrimethoxylsilylpropyl Methacrylate on Single Walled Carbon Nanotubes-Synthesis and Characterization

    OpenAIRE

    2010-01-01

    Acid functionalized single walled carbon nanotubes (CNTs) were grafted to chitosan by first reacting the oxidized CNTs with thionyl chloride to form acyl-chlorinated CNTs. This product was subsequently dispersed in chitosan and covalently grafted to form CNT-chitosan. CNT-chitosan was further grafted onto 3-trimethoxysilylpropyl methacrylate by free radical polymerization conditions, to yield CNT-g-chitosan-g-3-trimethoxysilylpropyl methacrylate (TMSPM), hereafter referred to as CNT-chitosan-...

  15. Optimization and Characterization of Chitosan Enzymolysis by Pepsin

    Directory of Open Access Journals (Sweden)

    Bi Foua Claude Alain Gohi

    2016-07-01

    Full Text Available Pepsin was used to effectively degrade chitosan in order to make it more useful in biotechnological applications. The optimal conditions of enzymolysis were investigated on the basis of the response surface methodology (RSM. The structure of the degraded product was characterized by degree of depolymerization (DD, viscosity, molecular weight, FTIR, UV-VIS, SEM and polydispersity index analyses. The mechanism of chitosan degradation was correlated with cleavage of the glycosidic bond, whereby the chain of chitosan macromolecules was broken into smaller units, resulting in decreasing viscosity. The enzymolysis by pepsin was therefore a potentially applicable technique for the production of low molecular chitosan. Additionally, the substrate degradation kinetics of chitosan were also studied over a range of initial chitosan concentrations (3.0~18.0 g/L in order to study the characteristics of chitosan degradation. The dependence of the rate of chitosan degradation on the concentration of the chitosan can be described by Haldane’s model. In this model, the initial chitosan concentration above which the pepsin undergoes inhibition is inferred theoretically to be about 10.5 g/L.

  16. The chitosan prepared from crab tendons: II. The chitosan/apatite composites and their application to nerve regeneration.

    Science.gov (United States)

    Yamaguchi, Isamu; Itoh, Soichiro; Suzuki, Masumi; Osaka, Akiyoshi; Tanaka, Junzo

    2003-08-01

    The chitosan tubes derived from crab tendons form a hollow tube structure, which is useful for nerve regeneration. However, in order to use the chitosan tubes effectively for nerve regeneration, there remain two problems to be solved. First, the mechanical strength of the tubes is quite high along the longitudinal axis, but is somewhat low for a pressure from side. Second, the chitosan tube walls swell to reduce the inner space of the tubes in vivo. These two problems limit the clinical use of the chitosan tubes. In this study, to solve the problems, apatite was made to react with the chitosan tubes to enhance the mechanical strength of the tube walls. Transmission electron microscopy showed that apatite crystals were formed in the walls of the chitosan tubes. The c-axis of the crystals aligned well in parallel with chitosan molecules. These results indicate that the apatite crystals grow in the tubes starting from the nucleation sites of the chitosan molecules, probably by forming complexes with amino groups of chitosan and calcium ions. Further, the tubes were thermally annealed at 120 degrees C to prevent from swelling, and simultaneously formed into a triangular shape to enhance the stabilization of the tube structure. By these treatments, the hollow tubes could keep their shape even in vivo after implantation. Animal tests using SD rats further showed that the chitosan tubes effectively induced the regeneration of nerve tissue, and were gradually degraded and absorbed in vivo.

  17. Effects of Chitosan Alkali Pretreatment on the Preparation of Electrospun PCL/Chitosan Blend Nanofibrous Scaffolds for Tissue Engineering Application

    Directory of Open Access Journals (Sweden)

    Fatemeh Roozbahani

    2013-01-01

    Full Text Available Recently, nanofibrous scaffolds have been used in the field of biomedical engineering as wound dressings, tissue engineering scaffolds, and drug delivery applications. The electrospun nanofibrous scaffolds can be used as carriers for several types of drugs, genes, and growth factors. PCL is one of the most commonly applied synthetic polymers for medical use because of its biocompatibility and slow biodegradability. PCL is hydrophobic and has no cell recognition sites on its structure. Electrospinning of chitosan and PCL blend was investigated in formic acid/acetic acid as the solvent with different PCL/chitosan ratios. High viscosity of chitosan solutions makes difficulties in the electrospinning process. Strong hydrogen bonds in a 3D network in acidic condition prevent the movement of polymeric chains exposed to the electrical field. Consequently, the amount of chitosan in PCL/chitosan blend was limited and more challenging when the concentration of PCL increases. The treatment of chitosan in alkali condition under high temperature reduced its molecular weight. Longer treatment time further decreased the molecular weight of chitosan and hence its viscosity. Electrospinning of PCL/chitosan blend was possible at higher chitosan ratio, and SEM images showed a decrease in fiber diameter and narrower distribution with increase in the chitosan ratio.

  18. Photochemical tissue bonding with chitosan adhesive films

    Directory of Open Access Journals (Sweden)

    Piller Sabine C

    2010-09-01

    Full Text Available Abstract Background Photochemical tissue bonding (PTB is a promising sutureless technique for tissue repair. PTB is often achieved by applying a solution of rose bengal (RB between two tissue edges, which are irradiated by a green laser to crosslink collagen fibers with minimal heat production. In this study, RB has been incorporated in chitosan films to create a novel tissue adhesive that is laser-activated. Methods Adhesive films, based on chitosan and containing ~0.1 wt% RB were manufactured and bonded to calf intestine by a solid state laser (λ = 532 nm, Fluence~110 J/cm2, spot size~0.5 cm. A single-column tensiometer, interfaced with a personal computer, tested the bonding strength. K-type thermocouples recorded the temperature (T at the adhesive-tissue interface during laser irradiation. Human fibroblasts were also seeded on the adhesive and cultured for 48 hours to assess cell growth. Results The RB-chitosan adhesive bonded firmly to the intestine with adhesion strength of 15 ± 2 kPa, (n = 31. The adhesion strength dropped to 0.5 ± 0.1 (n = 8 kPa when the laser was not applied to the adhesive. The average temperature of the adhesive increased from 26°C to 32°C during laser exposure. Fibroblasts grew confluent on the adhesive without morphological changes. Conclusion A new biocompatible chitosan adhesive has been developed that bonds photochemically to tissue with minimal temperature increase.

  19. Chitosan Adhesive Films for Photochemical Tissue Bonding

    Science.gov (United States)

    Lauto, Antonio; Mawad, Damia; Barton, Matthew; Piller, Sabine C.; Longo, Leonardo

    2011-08-01

    Photochemical tissue bonding (PTB) is a promising sutureless technique for tissue repair. PTB is often achieved by applying a solution of rose bengal (RB) between two tissue edges, which are irradiated by a green laser to crosslink collagen fibers with minimal heat production. In this study, RB has been incorporated in chitosan films to create a novel tissue adhesive that is laser-activated. Materials and Methods. Adhesive films, based on chitosan and containing ˜0.1wt% RB were manufactured and bonded to calf intestine by a solid state laser (wavelength = 532 nm, Fluence ˜110 J/cm2, spot size ˜5 mm). A single-column tensiometer, interfaced with a personal computer, tested the bonding strength. K-type thermocouples recorded the temperature (T) at the adhesive-tissue interface during laser irradiation. Human fibroblasts were also seeded on the adhesive and cultured for 48 hours to assess cell growth. Results and Conclusion. The RB-chitosan adhesive bonded firmly to the intestine (15±2 kPa, n = 31). The adhesion strength dropped to 0.5±0.1 kPa (n = 8) when the laser was not applied to the adhesive. The average temperature of the adhesive increased from 26 °C to 32 °C during laser exposure. Fibroblasts grew confluent on the adhesive without morphological changes. A new biocompatible chitosan adhesive has been developed that bonds photochemically to tissue with minimal temperature increase.

  20. TRACTION RESISTANCE IN CHITOSAN TREATED COTTON

    Directory of Open Access Journals (Sweden)

    LOX Wouter

    2015-05-01

    Full Text Available Nowadays natural products interest has increased. However, when some products are included on textile fibers, they have no affinity and need some binders or other kind of auxiliaries to improve the yeld of the process, and some of them are not so natural as the product which are binding and consequently the “bio” definition is missed as some of them can be considered as highly pollutant. Chitosan is a common used bonding agent for cotton. It improves the antimicrobial and antifungal activity, improves wound healing and is a non-toxic bonding agent. The biopolymer used in this work is chitosan, which is a deacetylated derivative of chitin. These properties depend on the amount of deacetylation (DD and the Molecular weight (MW. Along with these improving properties, as it requires some acid pH to ve solved the treatment with chitosan can have some decreasing mechanical properties. The aim of that paper is to evaluate the change in breaking force of the treated samples and a change in elongation of those samples. It compared different amounts of concentration of chitosan with non treated cotton. The traction resistance test were performed on a dynamometer. The test was conducted according to the UNE EN ISO 13934-1 standard.

  1. The Mechanical and Biological Properties of Chitosan Scaffolds for Tissue Regeneration Templates Are Significantly Enhanced by Chitosan from Gongronella butleri

    Directory of Open Access Journals (Sweden)

    Hiroshi Tamura

    2009-04-01

    Full Text Available Chitosan with a molecular weight (MW of 104 Da and 13% degree of acetylation (DA was extracted from the mycelia of the fungus Gongronella butleri USDB 0201 grown in solid substrate fermentation and used to prepare scaffolds by the freeze-drying method. The mechanical and biological properties of the fungal chitosan scaffolds were evaluated and compared with those of scaffolds prepared using chitosans obtained from shrimp and crab shells and squid bone plates (MW 105-106 Da and DA 10-20%. Under scanning electron microscopy, it was observed that all scaffolds had average pore sizes of approximately 60-90 mm in diameter. Elongated pores were observed in shrimp chitosan scaffolds and polygonal pores were found in crab, squid and fungal chitosan scaffolds. The physico-chemical properties of the chitosans had an effect on the formation of pores in the scaffolds, that consequently influenced the mechanical and biological properties of the scaffolds. Fungal chitosan scaffolds showed excellent mechanical, water absorption and lysozyme degradation properties, whereas shrimp chitosan scaffolds (MW 106Da and DA 12% exhibited the lowest water absorption properties and lysozyme degradation rate. In the evaluation of biocompatibility of chitosan scaffolds, the ability of fibroblast NIH/3T3 cells to attach on all chitosan scaffolds was similar, but the proliferation of cells with polygonal morphology was faster on crab, squid and fungal chitosan scaffolds than on shrimp chitosan scaffolds. Therefore fungal chitosan scaffold, which has excellent mechanical and biological properties, is the most suitable scaffold to use as a template for tissue regeneration.

  2. Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering

    Directory of Open Access Journals (Sweden)

    Naghavi Alhosseini S

    2012-01-01

    Full Text Available Sanaz Naghavi Alhosseini1, Fathollah Moztarzadeh1, Masoud Mozafari1, Shadnaz Asgari2, Masumeh Dodel3, Ali Samadikuchaksaraei4,5, Saeid Kargozar6, Newsha Jalali11Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence, Amirkabir University of Technology, Tehran, Iran; 2Neural Systems and Dynamics Laboratory, Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; 3Nanotechnology and Tissue Engineering Department, Stem Cell Technology Research Center, Tehran, Iran; 4Department of Biotechnology and Cellular and Molecular Research Center, Tehran University of Medical Sciences, Tehran, Iran; 5Biological Systems Engineering Laboratory, Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, London, UK; 6Department of Biotechnology, Tehran University of Medical Sciences, Tehran, IranAbstract: Among several attempts to integrate tissue engineering concepts into strategies to repair different parts of the human body, neuronal repair stands as a challenging area due to the complexity of the structure and function of the nervous system and the low efficiency of conventional repair approaches. Herein, electrospun polyvinyl alcohol (PVA/chitosan nanofibrous scaffolds have been synthesized with large pore sizes as potential matrices for nervous tissue engineering and repair. PVA fibers were modified through blending with chitosan and porosity of scaffolds was measured at various levels of their depth through an image analysis method. In addition, the structural, physicochemical, biodegradability, and swelling of the chitosan nanofibrous scaffolds were evaluated. The chitosan-containing scaffolds were used for in vitro cell culture in contact with PC12 nerve cells, and they were found to exhibit the most balanced properties to meet the basic required specifications for nerve cells. It could be concluded that addition of chitosan to the PVA

  3. The Use of chitosan in The Formation of Silver Nanoparticles, Chitosanic Nanoparticles and Fibrous Structures

    Science.gov (United States)

    Abdelgawad, Abdelrahman Mohamed

    Nanoscale materials have attracted much attention in the last two decades due to their unique properties. The size effect attains new chemical and physical properties to these materials. Nanoparticles and nanofiber are major component of nanomaterials and they have heavily investigated in the literature for different applications. Nanoparticles could be produced from both metals as well as polymers. Chitosan, which is a natural polymer, can be used as capping agent in the preparation of metallic nanoparticles and itself, can produce nanoparticles. The utilization of nanoparticles and nanofibers for wound dressing materials is a very popular approach. Acquiring antibacterial properties to the wound dressing materials could be obtained either by formulation of nanomaterials composites or direct chemical modification of the substance. To improve the antibacterial properties of chitosan two approaches were applied. First, is through the formulation of chitosan with silver nanoparticles and the formation of nanofiber mats. In this study, the concepts of green chemistry were applied and silver nanoparticles were prepared in high concentration using chitosan as a capping polymer and glucose as a reducing agent. Nanofiber mats of polyvinyl alcohol/chitosan/silvernanoparticles were produced via electrospinning. The antibacterial activity of these fibers shows bactericidal effect against E. coli at low concentrations of Ag-NPs. In the second approach, direct chemical modification of chitosan was performed by grafting of Iodoacetic acid to the amino group at carbon-2. The chemical structure of chitosan Iodoacetamide derivative (CIA) was confirmed by FTIR and H1-NMR. The derivative was amorphous and water soluble at neutral pH. The minimum inhibitory concentration of CIA, against E. coli, was 400ig/mL and the derivative was bacteriostatic after 4h of treatment. Nanofiber mats of polyvinyl alcohol/chitosan/chitosan Iodoacetamide were produced via electrospinning. The

  4. Recent advances in chitosan-based nanoparticulate pulmonary drug delivery

    Science.gov (United States)

    Islam, Nazrul; Ferro, Vito

    2016-07-01

    The advent of biodegradable polymer-encapsulated drug nanoparticles has made the pulmonary route of administration an exciting area of drug delivery research. Chitosan, a natural biodegradable and biocompatible polysaccharide has received enormous attention as a carrier for drug delivery. Recently, nanoparticles of chitosan (CS) and its synthetic derivatives have been investigated for the encapsulation and delivery of many drugs with improved targeting and controlled release. Herein, recent advances in the preparation and use of micro-/nanoparticles of chitosan and its derivatives for pulmonary delivery of various therapeutic agents (drugs, genes, vaccines) are reviewed. Although chitosan has wide applications in terms of formulations and routes of drug delivery, this review is focused on pulmonary delivery of drug-encapsulated nanoparticles of chitosan and its derivatives. In addition, the controversial toxicological effects of chitosan nanoparticles for lung delivery will also be discussed.

  5. Chitosan as a MAMP, searching for a PRR.

    Science.gov (United States)

    Iriti, Marcello; Faoro, Franco

    2009-01-01

    Chitosan, a deacetylated chitin derivative, behaves like a general elicitor, inducing a non-host resistance and priming a systemic acquired immunity. The defence responses elicited by chitosan include rising of cytosolic H(+) and Ca(2+), activation of MAP-kinases, callose apposition, oxidative burst, hypersensitive response (HR), synthesis of abscissic acid (ABA), jasmonate, phytoalexins and pathogenesis related (PR) proteins. Putative receptors for chitosan are a chitosan-binding protein, recently isolated, and possibly the chitin elicitor-binding protein (CEBiP). Nevertheless, it must be pointed out that biological activity of chitosan, besides the plant model, strictly depends on its physicochemical properties (deacetylation degree, molecular weight and viscosity), and that there is a threshold for chitosan concentration able to switch the induction of a cell death programme into necrotic cell death (cytotoxicity).

  6. Antimicrobial Activity of Chitosan-Carbon Nanotube Hydrogels

    Directory of Open Access Journals (Sweden)

    Jayachandran Venkatesan

    2014-05-01

    Full Text Available In the present study, we have prepared chitosan-carbon nanotube (Chitosan-CNT hydrogels by the freeze-lyophilization method and examined their antimicrobial activity. Different concentrations of CNT were used in the preparation of Chitosan-CNT hydrogels. These differently concentrated CNT hydrogels were chemically characterized using Fourier Transform-Infrared Spectroscopy, Scanning Electron Microscopy and Optical microscopy. The porosity of the hydrogels were found to be >94%. Dispersion of chitosan was observed in the CNT matrix by normal photography and optical microscopy. The addition of CNT in the composite scaffold significantly reduced the water uptake ability. In order to evaluate antimicrobial activity, the serial dilution method was used towards Staphylococcus aureus, Escherichia coli and Candida tropicalis. The composite Chitosan-CNT hydrogel showed greater antimicrobial activity with increasing CNT concentration, suggesting that Chitosan-CNT hydrogel scaffold will be a promising biomaterial in biomedical applications.

  7. Removal of Petroleum Spill in Water by Chitin and Chitosan

    Directory of Open Access Journals (Sweden)

    Francisco Cláudio de Freitas Barros

    2014-05-01

    Full Text Available The present study was undertaken to evaluate the capacity of adsorption of crude oil spilled in seawater by chitin flakes, chitin powder, chitosan flakes, chitosan powder, and chitosan solution. The results showed that, although chitosan flakes had a better adsorption capacity by oil (0.379 ± 0.030 grams oil per gram of adsorbent, the biopolymer was sinking after adsorbing oil. Chitosan solution did not present such inconvenience, despite its lower adsorption capacity (0.013 ± 0.001 grams oil per gram of adsorbent. It was able to form a polymeric film on the oil slick, which allowed to restrain and to remove the oil from the samples of sea water. The study also suggests that chitosan solution 0.5% has greater efficiency against oil spills in alkaline medium than acidic medium.

  8. Chitosan bio-based organic-inorganic hybrid aerogel microspheres.

    Science.gov (United States)

    El Kadib, Abdelkrim; Bousmina, Mosto

    2012-07-02

    Recently, organic-inorganic hybrid materials have attracted tremendous attention thanks to their outstanding properties, their efficiency, versatility and their promising applications in a broad range of areas at the interface of chemistry and biology. This article deals with a new family of surface-reactive organic-inorganic hybrid materials built from chitosan microspheres. The gelation of chitosan (a renewable amino carbohydrate obtained by deacetylation of chitin) by pH inversion affords highly dispersed fibrillar networks shaped as self-standing microspheres. Nanocasting of sol-gel processable monomeric alkoxides inside these natural hydrocolloids and their subsequent CO(2) supercritical drying provide high-surface-area organic-inorganic hybrid materials. Examples including chitosan-SiO(2), chitosan-TiO(2), chitosan-redox-clusters and chitosan-clay-aerogel microspheres are described and discussed on the basis of their textural and structural properties, thermal and chemical stability and their performance in catalysis and adsorption.

  9. Chitin and Chitosan as Direct Compression Excipients in Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Adnan A. Badwan

    2015-03-01

    Full Text Available Despite the numerous uses of chitin and chitosan as new functional materials of high potential in various fields, they are still behind several directly compressible excipients already dominating pharmaceutical applications. There are, however, new attempts to exploit chitin and chitosan in co-processing techniques that provide a product with potential to act as a direct compression (DC excipient. This review outlines the compression properties of chitin and chitosan in the context of DC pharmaceutical applications.

  10. [Depolymerization of chitosan by chinolytic complex from Bacillus sp. 739].

    Science.gov (United States)

    Il'ina, A V; Varlamov, V P; Melent'ev, A I; Aktuganov, G E

    2001-01-01

    Low-molecular-weight (3-6 kDa) water-soluble chitosan was obtained by enzymatic depolymerization. Hydrolysis of crab chitosan was induced by O-glycoside hydrolase (EC 3.2.1), an extracellular chitinolytic complex from Bacillus sp. 739. The optimum conditions for hydrolysis were found (sodium-acetate buffer, pH 5.2; 55 degrees C; an enzyme/substrate ratio 4 U/g chitosan; 1 h).

  11. Extraction of Copper(I Thiosulfate by Modified Chitosan

    Directory of Open Access Journals (Sweden)

    Okky Anggraito

    2014-06-01

    Full Text Available Chitosan is one of non-toxic natural biopolymer and abundance in nature. Chitosan have two active sites such as amine and hydroxyl groups. Amine groups (-NH2 in chitosan can be modified into secondary amine (-NHR. In this research, copper was dissolved as copper(I thiosulfate as anion complex (Cu(S2O323- and chitosan was modified by trimethylamine sulfur trioxide (TMAS. One of hydrogen atom in –NH2 was substituted by –SO3Na. The result of this research, the modified chitosan was identified by FT-IR. FT-IR spectra gave characteristic band at 3600-3200 cm-1 (O-H and N-H; 1648 cm-1 (C=O; 1115,74 cm-1 (S=O and 617,18 cm-1 (N-S. The result of surface analysis using SEM and TEM showed that the surface morphology of sulfated chitosan as a result of modification is different in comparison with chitosan. Based on chitosan, pH extraction was adjusted to pH 3 until 8. After optimum pH of extraction was obtained then re-extraction was done by using thiosulfate solution at 0.05 ; 0.10 ; 0.50 ; and 1.00 M. Extraction and re-extraction of copper(I thiosulfate was analyzed by Atomic Absorption Spectrophotometer (AAS. The highest efficiency extraction using modified chitosan and chitosan respectively at pH 3 and 6. The efficiency re-extraction using modified chitosan and chitosan respectively 100% and below 100%.

  12. Extraction of Copper(I Thiosulfate by Modified Chitosan

    Directory of Open Access Journals (Sweden)

    Okky Anggraito

    2013-12-01

    Full Text Available Chitosan is one of non-toxic natural biopolymer and abundance in nature. Chitosan have two active sites such as amine and hydroxyl groups. Amine groups (-NH2 in chitosan can be modified into secondary amine (-NHR. In this research, copper was dissolved as copper(I thiosulfate as anion complex (Cu(S2O323- and chitosan was modified by trimethylamine sulfur trioxide (TMAS. One of hydrogen atom in –NH2 was substituted by –SO3Na. The result of this research, the modified chitosan was identified by FT-IR. FT-IR spectra gave characteristic band at 3600-3200 cm-1 (O-H and N-H; 1648 cm-1 (C=O; 1115,74 cm-1 (S=O and 617,18 cm-1 (N-S. The result of surface analysis using SEM and TEM showed that the surface morphology of sulfated chitosan as a result of modification is different in comparison with chitosan. Based on chitosan, pH extraction was adjusted to pH 3 until 8. After optimum pH of extraction was obtained then re-extraction was done by using thiosulfate solution at 0.05 ; 0.10 ; 0.50 ; and 1.00 M. Extraction and re-extraction of copper(I thiosulfate was analyzed by Atomic Absorption Spectrophotometer (AAS. The highest efficiency extraction using modified chitosan and chitosan respectively at pH 3 and 6. The efficiency re-extraction using modified chitosan and chitosan respectively 100% and below 100%.

  13. Preparation and Characterization of Chitosan /Ethylcellulose Complex Microcapsule

    Institute of Scientific and Technical Information of China (English)

    史新元; 谭天伟

    2003-01-01

    In this work a system which consists of chitosan microcores entrapped in ethylcellulose is presented.Vitamin D2 was eficiently entrapped in chitosan microcores with spray-drying method and was microencapsulated by coating of ethylcellulose.The average size of chitosan microspheres was 6.06μm.The morphology and release properties of microcapsules were tested.The results of release in vitro showed that the microcapsule could realize sustained release for 12h in artificial intestinal juice.

  14. Ionic Conductivity of Chitosan Membrane and Application for Electrochemical Devices

    Institute of Scientific and Technical Information of China (English)

    A. K. Arof

    2005-01-01

    @@ 1Introduction The product that is able to dissolve in dilute acetic acid when chitin is deacetylated is generally referred to as chitosan. Chitosan is well known for its aptitude to generate thin films[1]. The oxygen and nitrogen atoms of chitosan, in particular, have lone pair electrons that can form complexes with inorganic salts. However,the NH2 groups react much more rapidly than OH moieties towards salt[1-3].

  15. Chitosan-Based Nanoparticles for Mucosal Delivery of RNAi Therapeutics

    DEFF Research Database (Denmark)

    Martirosyan, Alina; Olesen, Morten Jarlstad; Howard, Kenneth A.

    2014-01-01

    of the polysaccharide chitosan have been used to facilitate delivery of siRNA across mucosal surfaces following local administration. This chapter describes the mucosal barriers that need to be addressed in order to design an effective mucosal delivery strategy and the utilization of the mucoadhesive properties...... of chitosan. Focus is given to preparation methods and the preclinical application of chitosan nanoparticles for respiratory and oral delivery of siRNA....

  16. The Adsorption Effect of Quaternized Chitosan Derivatives on Bile Acid

    Institute of Scientific and Technical Information of China (English)

    Shu Xian MENG; Ya Qing FENG; Wen Jin LI; Cai Xia YIN; Jin Ping DENG

    2006-01-01

    Three quaternized chitosan derivatives were synthesized and their adsorption performance of bile acid from aqueous solution was studied. The adsorption capacities and rates of bile acid onto quaternized chitosan derivatives were evaluated. The kinetic experimental data properly correlated with the second-order kinetic model, which indicated that the chemical sorption is the rate-limiting step. The results showed that the quaternized chitosan derivatives are favorable adsorbents for bile acid.

  17. Surface grafted chitosan gels. Part I. Molecular insight into the formation of chitosan and poly(acrylic acid) multilayers

    DEFF Research Database (Denmark)

    Liu, Chao; Thormann, Esben; Claesson, Per M.

    2014-01-01

    Composite polyelectrolyte multilayers of chitosan and low molecular weight poly(acrylic acid) (PAA) have been assembled by sequential adsorption as a first step toward building a surface anchored chitosan gel. Silane chemistry was used to graft the first chitosan layer to prevent film detachment...... and decomposition. The assembly process is characterized by nonlinear growth behavior, with different adsorption kinetics for chitosan and PAA. In situ analysis of the multilayer by means of surface sensitive total internal reflection Raman (TIRR) spectroscopy, combined with target factor analysis of the spectra...... molecular weight chitosan shows a similar behavior, although to a much lower extent. Our data demonstrate that the charged monomeric units of chitosan are mainly compensated by carboxylate ions from PAA. Furthermore, the morphology and mechanical properties of the multilayers were investigated in situ using...

  18. Chitosan in Molecularly-Imprinted Polymers: Current and Future Prospects

    Directory of Open Access Journals (Sweden)

    Long Xu

    2015-08-01

    Full Text Available Chitosan is widely used in molecular imprinting technology (MIT as a functional monomer or supporting matrix because of its low cost and high contents of amino and hydroxyl functional groups. The various excellent properties of chitosan, which include nontoxicity, biodegradability, biocompatibility, and attractive physical and mechanical performances, make chitosan a promising alternative to conventional functional monomers. Recently, chitosan molecularly-imprinted polymers have gained considerable attention and showed significant potential in many fields, such as curbing environmental pollution, medicine, protein separation and identification, and chiral-compound separation. These extensive applications are due to the polymers’ desired selectivity, physical robustness, and thermal stability, as well as their low cost and easy preparation. Cross-linkers, which fix the functional groups of chitosan around imprinted molecules, play an important role in chitosan molecularly-imprinted polymers. This review summarizes the important cross-linkers of chitosan molecularly-imprinted polymers and illustrates the cross-linking mechanism of chitosan and cross-linkers based on the two glucosamine units. Finally, some significant attempts to further develop the application of chitosan in MIT are proposed.

  19. Osteoconduction exerted by methylpyrrolidinone chitosan used in dental surgery.

    Science.gov (United States)

    Muzzarelli, R A; Biagini, G; Bellardini, M; Simonelli, L; Castaldini, C; Fratto, G

    1993-01-01

    Surgical wounds from wisdom tooth avulsions were medicated with freeze-dried methylpyrrolidinone chitosan, a gel-forming resorbable biopolymer obtained from crab chitosan by chemical modification. Methylpyrrolidinone chitosan promoted osteoconduction and the space left after avulsion was filled with newly formed bone tissue, which conferred desirable mechanical and physiological characteristics to the healed would site. Morphological evidence obtained from biopsies confirmed the radiographic data. Methylpyrrolidinone chitosan was progressively depolymerized by lysozyme and was no longer detected 6 months after surgery. None of the 10 patients reported adverse effects over one year of observation.

  20. In situ chitosan gelation initiated by atmospheric plasma treatment.

    Science.gov (United States)

    Molina, R; Jovancic, P; Vilchez, S; Tzanov, T; Solans, C

    2014-03-15

    This work reports on the feasibility of atmospheric dielectric barrier discharge (DBD) plasma as a novel synthetic pathway for the liquid phase gelation of chitosan. The DBD plasma chitosan gelation process did not significantly alter the chemical structure of the biopolymer as confirmed by FTIR study. However, the oxidation processes and local heating effect associated with the solvent evaporation during the plasma treatment could provoke both reaction of chitosan degradation and the cleavage of β-1-4-glycosidic linkages with the concomitant generation of aldehyde groups able to crosslink via Schiff-base with amino groups from other chitosan molecules. Shear viscosity measurements suggested the formation of chitosan fragments of lower molecular weight after the plasma treatment of 1% (w/v) chitosan and fragments of higher molecular weight after the plasma treatment of 2% (w/v) chitosan. The crosslinking density of hydrogels generated during the in situ DBD plasma chitosan gelation process increased as a function of the treatment time and concentration of chitosan. As of consequence of the increase of the cross-linking density, the equilibrium swelling ratio and water content decreased significantly.

  1. Development of monetite/phosphorylated chitosan composite bone cement.

    Science.gov (United States)

    Boroujeni, Nariman Mansouri; Zhou, Huan; Luchini, Timothy J F; Bhaduri, Sarit B

    2014-02-01

    In this article, we report the development of a biodegradable monetite [dicalcium phosphate anhydrous (DCPA), CaHPO4 ]/phosphorylated chitosan (p-chitosan) composite orthopedic cement. The cement pastes showed desirable handling properties, injectability, and washout resistance. The incorporation of p-chitosan powders at 5 wt % shortened the setting time of DCPA and significantly improved the mechanical performance of DCPA cement, increasing the compressive strength almost twice from 11.09 ± 1.85 MPa at 0% chitosan to 23.43 ± 1.47 MPa at 5 wt % p-chitosan. On the other hand, higher p-chitosan content or untreated chitosan incorporation lowered the performance of DCPA cements. The cytocompatibility of the composite cement was investigated in vitro using the preosteoblast cell line MC3T3-E1. An increase in cell proliferation was observed in both DCPA and DCPA-p-chitosan. The results show that both the materials are as cytocompatible as hydroxyapatite. Based on these results, DCPA-p-chitosan composite cement can be considered as potential bone repair material.

  2. Research of the Mechanism of Enhancing Biological Treatment by Chitosan

    Institute of Scientific and Technical Information of China (English)

    CHEN Liang; QIN Bing; CHEN Dong-hui

    2006-01-01

    Chitosan of different molecular weight (M. W. ) was added into SBR bioreactor to treat domestic wastewater. From comparison of treatment efficiency, sludge activity, sludge structure etc., we revealed the mechanism that chitosan enhanced the biological treatment function of activated sludge. The results proved that, chitosan is certain to restrain the reaction of activated sludge, but it do improve the structure of sludge fiocs and increase the treatment efficiency of activated sludge. The bigger the M. W. of chitosan is, the better the efficiency of enhancing biological treatment can be.

  3. Theoretical studies of ionic conductivity of crosslinked chitosan membranes

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Ernesto Lopez [Programa de Ingenieria Molecular y Nuevos Materiales, Universidad Autonoma de la Ciudad de Mexico, Fray Servando Teresa de Mier 92, 1er. Piso, Col Centro, Mexico D.F. CP 06080 (Mexico); Oviedo-Roa, R.; Contreras-Perez, Gustavo; Martinez-Magadan, Jose Manuel [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas Norte 152, Col. San Bartolo Atepehuacan, CP 07730 Mexico D.F. (Mexico); Castillo-Alvarado, F.L. [Escuela Superior de Fisica y Matematicas del Instituto Politecnico Nacional, Edificio 9 de la UPALM, Colonia Lindavista, Mexico D.F. CP 07738 (Mexico)

    2010-11-15

    Ionic conductivity of crosslinked chitosan membranes was studied using techniques of molecular modeling and simulation. The COMPASS force field was used. The simulation allows the description of the mechanism of ionic conductivity along the polymer matrix. The theoretical results obtained are compared with experimental results for chitosan membranes. The analysis suggests that the conduction mechanism is portrayed by the overlapping large Polaron tunneling model. In addition, when the chitosan membrane was crosslinked with an appropriate degree of crosslinking its ionic conductivity, at room temperature, was increased by about one order of magnitude. The chitosan membranes can be used as electrolytes in solid state batteries, electric double layer capacitors and fuel cells. (author)

  4. Effect of chitosan coating on the characteristics of DPPC liposomes

    Directory of Open Access Journals (Sweden)

    Mohsen M. Mady

    2010-07-01

    Full Text Available Because it is both biocompatible and biodegradable, chitosan has been used to provide a protective capsule in new drug formulations. The present work reports on investigations into some of the physicochemical properties of chitosan-coated liposomes, including drug release rate, transmission electron microscopy (TEM, zeta potential and turbidity measurement. It was found that chitosan increases liposome stability during drug release. The coating of DPPC liposomes with a chitosan layer was confirmed by electron microscopy and the zeta potential of liposomes. The coating of liposomes by chitosan resulted in a marginal increase in the size of the liposomes, adding a layer of (92 ± 27.1 nm. The liposomal zeta potential was found to be increasingly positive as chitosan concentration increased from 0.1% to 0.3% (w/v, before stabilising at a relatively constant value. Turbidity studies revealed that the coating of DPPC liposomes with chitosan did not significantly modify the main phase transition temperature of DPPC at examined chitosan concentrations. The appropriate combination of liposomal and chitosan characteristics may produce liposomes with specific, prolonged and controlled release.

  5. DILUTE SOLUTION BEHAVIOR OF CHITOSAN IN DIFFERENT ACID SOLVENTS

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; WANG Lihua; QIN Wen

    1994-01-01

    Dilute solution behavior of chitosan was studied in formic acid, acetic acid,lactic acid and hydrochloric acid aqueous solution under different pH values. The reduced viscosities, ηsp/C,of chitosan solutions were dependent on the properties of acid and pH value of solvents. For a given chitosan concentration, ηsp/C decreased with the increase of acid concentration, or decreasing pH of solvent, indicating shielding effect of excessive acid similar to adding salt into solution. The stabilities of dilute chitosan solution in formic acid and lactic acid were better than that in acetic acid and hydrochloric acid.

  6. Chitosan in Molecularly-Imprinted Polymers: Current and Future Prospects.

    Science.gov (United States)

    Xu, Long; Huang, Yun-An; Zhu, Qiu-Jin; Ye, Chun

    2015-08-07

    Chitosan is widely used in molecular imprinting technology (MIT) as a functional monomer or supporting matrix because of its low cost and high contents of amino and hydroxyl functional groups. The various excellent properties of chitosan, which include nontoxicity, biodegradability, biocompatibility, and attractive physical and mechanical performances, make chitosan a promising alternative to conventional functional monomers. Recently, chitosan molecularly-imprinted polymers have gained considerable attention and showed significant potential in many fields, such as curbing environmental pollution, medicine, protein separation and identification, and chiral-compound separation. These extensive applications are due to the polymers' desired selectivity, physical robustness, and thermal stability, as well as their low cost and easy preparation. Cross-linkers, which fix the functional groups of chitosan around imprinted molecules, play an important role in chitosan molecularly-imprinted polymers. This review summarizes the important cross-linkers of chitosan molecularly-imprinted polymers and illustrates the cross-linking mechanism of chitosan and cross-linkers based on the two glucosamine units. Finally, some significant attempts to further develop the application of chitosan in MIT are proposed.

  7. Evaluation of antibacterial efficiency of chitosan and chitosan nanoparti- cles on cariogenic streptococci: an in vitro study

    Directory of Open Access Journals (Sweden)

    Azam Aliasghari

    2016-05-01

    Full Text Available Background and Objectives: The most prevalent and worldwide oral disease is dental caries that affects a significant pro- portion of the world population. There are some classical approaches for control, prevention and treatment of this pathologic condition; however, the results are still not completely successful. Therefore new methods are needed for better management of this important challenge. Chitosan is a natural and non-toxic polysaccharide with many biological applications, particu- larly as an antimicrobial agent. Chitosan nanoparticle is a bioactive and environment friendly material with unique physico- chemical properties. The aim of the present study was to investigate the antimicrobial effect of chitosan and nano-chitosan on the most important cariogenic streptococci.Materials and Methods: For evaluation of antimicrobial effect of chitosan and nano-chitosan against oral streptococci broth micro-dilution method was carried out for four bacterial species; Streptococcus mutans, Streptococcus sobrinus, Streptococ- cus sanguis and Streptococcus salivarius. Also the effect of these materials on adhesion of above bacteria was evaluated. One-way ANOVA and post hoc Tukey test were used for statistical analysis.Results: The MICs of chitosan for S. mutans, S. sanguis, S. salivarius and S. sobrinus were 1.25, 1.25, 0.625 and 0.625 mg/ mL, respectively. The MIC of chitosan nanoparticle for S. mutans, S. salivarius and S. sobrinus was 0.625 mg/mL and for S. sanguis was 0.312 mg/mL. Chitosan and chitosan nanoparticles at a concentration of 5 mg/mL also reduced biofilm forma- tion of S. mutans up to 92.5% and 93.4%, respectively.Conclusion:  Te results of this study supported the use of chitosan and chitosan nanoparticles as antimicrobial agents against cariogenic Streptococci.

  8. Inverse I-V Injection Characteristics of ZnO Nanoparticle-Based Diodes.

    Science.gov (United States)

    Mundt, Paul; Vogel, Stefan; Bonrad, Klaus; von Seggern, Heinz

    2016-08-10

    Simple Al/ZnO(NP)/Au diodes produced by spin coating of ZnO nanoparticle dispersions (ZnO(NP)) on Al/Al2O3 and Au substrates and subsequent Au deposition have been investigated to understand electron injection properties of more complex devices, incorporating ZnO(NP) as injection layer. Inverse I-V characteristics have been observed compared to conventional Al/ZnO(SP)/Au diodes produced by reactive ion sputtering of ZnO. SEM micrographs reveal that the void-containing contact of ZnO(NP) with the bottom Al electrode and the rough morphology of the top Au electrode are likely to be responsible for the observed injection and ejection probabilities of electrons. A simple tunneling model, incorporating the voids, explains the strongly reduced injection currents from Al whereas the top electrode fabricated by vapor deposition of Au onto the nanoparticle topology adopts the inverse ZnO(NP) morphology leading to enlarged injection areas combined with Au-tip landscapes. These tips in contrast to the smooth sputtered ZnO(SP) lead to electric field enhancement and strongly increased injection of electrons in reverse direction. The injected charge piles up at the barrier generated by voids between ZnO(NP) and the bottom electrode forcing a change in the barrier shape and therefore allowing for higher ejection rates. Both effects in combination explain the inverse I-V characteristic of nanoparticle based diodes.

  9. Inorganic nanoparticle-based drug codelivery nanosystems to overcome the multidrug resistance of cancer cells.

    Science.gov (United States)

    Chen, Yu; Chen, Hangrong; Shi, Jianlin

    2014-08-04

    Biocompatible inorganic material-based nanosystems provide a novel choice to effectively circumvent the intrinsic drawbacks of traditional organic materials in biomedical applications, especially in overcoming the multidrug resistance (MDR) of cancer cells due to their unique structural and compositional characteristics, for example, high stability, large surface area, tunable compositions, abundant physicochemical multifunctionalities, and specific biological behaviors. In this review, we focus on the recent developments in the construction of inorganic nanoparticles-based drug codelivery nanosystems (mesoporous SiO2, Fe3O4, Au, Ag, quantum dots, carbon nanotubes, graphene oxide, LDH, etc.) to efficiently circumvent the MDR of cancer cells, including the well-known codelivery of small molecular anticancer drug/macromolecular therapeutic gene and codelivery of small molecular chemosensitizer/anticancer drug, and very recently explored codelivery of targeting ligands/anticancer drug, codelivery of energy/anticancer drug, and codelivery of contrast agent for diagnostic imaging and anticancer drug. The unsolved issues, future developments, and potential clinical translations of these codelivery nanosystems are also discussed. These elaborately designed biocompatible inorganic materials-based nanosystems offer an unprecedented opportunity and show the encouraging bright future for overcoming the MDR of tumors in clinic personalized medicine and the pharmaceutical industry.

  10. A ferrite nano-particles based fully printed process for tunable microwave components

    KAUST Repository

    Ghaffar, Farhan A.

    2016-08-15

    With the advent of nano-particles based metallic inks, inkjet printing emerged as an attractive medium for fast prototyping as well as for low cost and flexible electronics. However, at present, it is limited to printing of metallic inks on conventional microwave substrates. For fully printed designs, ideally, the substrate must also be printed. In this work, we demonstrate a fully printed process utilizing a custom Fe2O3 based magnetic ink for functional substrate printing and a custom silver-organo-complex (SOC) ink for metal traces printing. Due to the magnetic nature of the ink, this process is highly suitable for tunable microwave components. The printed magnetic substrate is characterized for the magnetostatic as well as microwave properties. The measured B(H) curve shows a saturation magnetization and remanence of 1560 and 350 Gauss respectively. As a proof of concept, a patch antenna is implemented in the proposed stack up which shows a tuning range of 4 % around the center frequency. © 2016 IEEE.

  11. Self-organized nanoparticles based on drug-interpolyelectrolyte complexes as drug carriers

    Energy Technology Data Exchange (ETDEWEB)

    Palena, M. C.; Manzo, R. H.; Jimenez-Kairuz, A. F., E-mail: alvaro@fcq.unc.edu.ar [Universidad Nacional de Cordoba, UNITEFA-CONICET, Departamento de Farmacia, Facultad de Ciencias Quimicas (Argentina)

    2012-06-15

    Potential applications in drug delivery from nanostructures composed of two oppositely charged polymethacrylates, eudragit{sup Registered-Sign} L100 (EL) and eudragit{sup Registered-Sign} EPO (EE), loaded with three model basic drugs (D), atenolol, propranolol, and metroclopramide were evaluated. The self-organized nanoparticles based on drug-interpolyelectrolyte complexes (DIPEC), (EL-D{sub 50})-EE{sub X}, were obtained by mixing the aqueous dispersions of both polyelectrolytes at room temperature in an ultrasound bath. Dispersions of (EL-D{sub 50}) neutralized with increasing proportions of EE exhibited a rise of turbidity, particle sizes in the range of 150-400 nm, and high negative zeta potential. The sign of zeta potential was shifted from negative to positive by changes in composition of DIPEC. Freeze dried DIPEC were easily redispersed in water yielding nearly the same parameters of fresh dispersions. In vitro release experiments using Franz cells showed that DIPEC systems behave as a drug reservoir that slowly releases the drug as water is placed in the receptor compartment. The release rate was raised by ionic exchange with counterions present in simulated physiological fluids placed in the receptor media. Delivery of D from DIPEC exhibited a remarkable robustness toward simulated physiological media of different pH. The DIPEC systems exhibit interesting properties to design nanoparticulate drug delivery systems for oral and/or topical routes.

  12. The generation of iPS cells using non-viral magnetic nanoparticle based transfection.

    Science.gov (United States)

    Lee, Chang Hyun; Kim, Jung-Hyun; Lee, Hyun Joo; Jeon, Kilsoo; Lim, HyeJin; Choi, Hye yeon; Lee, Eung-Ryoung; Park, Seung Hwa; Park, Jae-Yong; Hong, Sunghoi; Kim, Soonhag; Cho, Ssang-Goo

    2011-10-01

    Induced pluripotent stem (iPS) cells have been generated from various somatic cells; however, a major restriction of the technology is the use of potentially harmful genome-integrating viral DNAs. Here, without a viral vector, we generated iPS cells from fibroblasts using a non-viral magnetic nanoparticle-based transfection method that employs biodegradable cationic polymer PEI-coated super paramagnetic nanoparticles (NP). Our findings support the possible use of transient expression of iPS genes in somatic cells by magnet-based nanofection for efficient generation of iPS cells. Results of dynamic light scattering (DLS) analysis and TEM analyses demonstrated efficient conjugation of NP with iPS genes. After transfection, nanofection-mediated iPS cells showed ES cell-like characteristics, including expression of endogenous pluripotency genes, differentiation of three germ layer lineages, and formation of teratomas. Our results demonstrate that magnet-based nanofection may provide a safe method for use in generation of virus-free and exogenous DNA-free iPS cells, which will be crucial for future clinical applications in the field of regenerative medicine.

  13. Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy.

    Science.gov (United States)

    Tamarov, Konstantin P; Osminkina, Liubov A; Zinovyev, Sergey V; Maximova, Ksenia A; Kargina, Julia V; Gongalsky, Maxim B; Ryabchikov, Yury; Al-Kattan, Ahmed; Sviridov, Andrey P; Sentis, Marc; Ivanov, Andrey V; Nikiforov, Vladimir N; Kabashin, Andrei V; Timoshenko, Victor Yu

    2014-11-13

    Offering mild, non-invasive and deep cancer therapy modality, radio frequency (RF) radiation-induced hyperthermia lacks for efficient biodegradable RF sensitizers to selectively target cancer cells and thus avoid side effects. Here, we assess crystalline silicon (Si) based nanomaterials as sensitizers for the RF-induced therapy. Using nanoparticles produced by mechanical grinding of porous silicon and ultraclean laser-ablative synthesis, we report efficient RF-induced heating of aqueous suspensions of the nanoparticles to temperatures above 45-50 °C under relatively low nanoparticle concentrations (heating rate was linearly dependent on nanoparticle concentration, while laser-ablated nanoparticles demonstrated a remarkably higher heating rate than porous silicon-based ones for the whole range of the used concentrations from 0.01 to 0.4 mg/mL. The observed effect is explained by the Joule heating due to the generation of electrical currents at the nanoparticle/water interface. Profiting from the nanoparticle-based hyperthermia, we demonstrate an efficient treatment of Lewis lung carcinoma in vivo. Combined with the possibility of involvement of parallel imaging and treatment channels based on unique optical properties of Si-based nanomaterials, the proposed method promises a new landmark in the development of new modalities for mild cancer therapy.

  14. Enhancing magnetic nanoparticle-based DNA transfection: Intracellular-active cassette features

    Science.gov (United States)

    Vernon, Matthew Martin

    Efficient plasmid DNA transfection of embryonic stem cells, mesenchymal stem cells, neural cell lines and the majority of primary cell lines is a current challenge in gene therapy research. Magnetic nanoparticle-based DNA transfection is a gene vectoring technique that is promising because it is capable of outperforming most other non-viral transfection methods in terms of both transfection efficiency and cell viability. The nature of the DNA vector implemented depends on the target cell phenotype, where the particle surface chemistry and DNA binding/unbinding kinetics of the DNA carrier molecule play a critical role in the many steps required for successful gene transfection. Accordingly, Neuromag, an iron oxide/polymer nanoparticle optimized for transfection of neural phenotypes, outperforms many other nanoparticles and lipidbased DNA carriers. Up to now, improvements to nanomagnetic transfection techniques have focused mostly on particle functionalization and transfection parameter optimization (cell confluence, growth media, serum starvation, magnet oscillation parameters, etc.). None of these parameters are capable of assisting the nuclear translocation of delivered plasmid DNA once the particle-DNA complex is released from the endosome and dissociates in the cell's cytoplasm. In this study, incorporation of a DNA targeting sequence (DTS) feature in the transfecting plasmid DNA confers improved nuclear translocation, demonstrating significant improvement in nanomagnetic transfection efficiency in differentiated SH-SY5Y neuroblastoma cells. Other parameters, such as days in vitro, are also found to play a role and represent potential targets for further optimization.

  15. Preparation and evaluation of solid lipid nanoparticles based nanogel for dermal delivery of meloxicam.

    Science.gov (United States)

    Khurana, S; Bedi, P M S; Jain, N K

    2013-01-01

    The aim of the current investigation was to prepare and investigate the potential of solid lipid nanoparticles based gel (SLN-gel) for the dermal delivery of meloxicam (MLX). The meloxicam loaded SLN (MLX-SLN) gel was developed and characterized by means of photon correlation spectroscopy, rheometry, and differential scanning calorimetry to determine the physicochemical properties. The behavior of SLN gel on rat skin was evaluated in vitro using Franz diffusion cells to determine the skin permeation and penetration characteristics, in vivo on mice to determine the skin tolerance by histopathological examinations. The anti-inflammatory potential of SLN gel was assessed by carrageenan induced rat paw edema test. Biophysical studies including differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) were undertaken to study the interaction between the SLN gel and skin. MLX-SLN gel with nanometric particle size exhibited the controlled release abilities and simultaneously the potential to transport the drug to various skin layers. SLN gel displayed viscoelastic properties with predominantly elastic behavior and exhibited plastic flow. Biophysical studies elucidated the interaction between the SLN gel and stratum corneum (SC) lipids, and proposed the lipid bilayer fluidization as the possible mechanism for the increased penetration of meloxicam into skin. The nano-gel system showed marked anti-inflammatory activity and excellent skin tolerability. It can be concluded that SLN gel may be a promising delivery system for MLX in the treatment of inflammatory disorders.

  16. Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy

    Science.gov (United States)

    Tamarov, Konstantin P.; Osminkina, Liubov A.; Zinovyev, Sergey V.; Maximova, Ksenia A.; Kargina, Julia V.; Gongalsky, Maxim B.; Ryabchikov, Yury; Al-Kattan, Ahmed; Sviridov, Andrey P.; Sentis, Marc; Ivanov, Andrey V.; Nikiforov, Vladimir N.; Kabashin, Andrei V.; Timoshenko, Victor Yu

    2014-11-01

    Offering mild, non-invasive and deep cancer therapy modality, radio frequency (RF) radiation-induced hyperthermia lacks for efficient biodegradable RF sensitizers to selectively target cancer cells and thus avoid side effects. Here, we assess crystalline silicon (Si) based nanomaterials as sensitizers for the RF-induced therapy. Using nanoparticles produced by mechanical grinding of porous silicon and ultraclean laser-ablative synthesis, we report efficient RF-induced heating of aqueous suspensions of the nanoparticles to temperatures above 45-50°C under relatively low nanoparticle concentrations (nanoparticles the heating rate was linearly dependent on nanoparticle concentration, while laser-ablated nanoparticles demonstrated a remarkably higher heating rate than porous silicon-based ones for the whole range of the used concentrations from 0.01 to 0.4 mg/mL. The observed effect is explained by the Joule heating due to the generation of electrical currents at the nanoparticle/water interface. Profiting from the nanoparticle-based hyperthermia, we demonstrate an efficient treatment of Lewis lung carcinoma in vivo. Combined with the possibility of involvement of parallel imaging and treatment channels based on unique optical properties of Si-based nanomaterials, the proposed method promises a new landmark in the development of new modalities for mild cancer therapy.

  17. Polyurethane and polyurea nanoparticles based on polyoxyethylene castor oil derivative surfactant suitable for endovascular applications.

    Science.gov (United States)

    Morral-Ruíz, Genoveva; Melgar-Lesmes, Pedro; García, María Luísa; Solans, Conxita; García-Celma, María José

    2014-01-30

    The design of new, safe and effective nanotherapeutic systems is an important challenge for the researchers in the nanotechnology area. This study describes the formation of biocompatible polyurethane and polyurea nanoparticles based on polyoxyethylene castor oil derivative surfactant formed from O/W nano-emulsions by polymerization at the droplet interfaces in systems composed by aqueous solution/Kolliphor(®) ELP/medium chain triglyceride suitable for intravenous administration. Initial nano-emulsions incorporating highly hydrophilic materials were prepared by the phase inversion composition (PIC) method. After polymerization, nanoparticles with a small particle diameter (25-55 nm) and low polydispersity index were obtained. Parameters such as concentration of monomer, O/S weight ratio as well as the polymerization temperature were crucial to achieve a correct formation of these nanoparticles. Moreover, FT-IR studies showed the full conversion of the monomer to polyurethane and polyurea polymers. Likewise the involvement of the surfactant in the polymerization process through their nucleophilic groups to form the polymeric matrix was demonstrated. This could mean a first step in the development of biocompatible systems formulated with polyoxyethylene castor oil derivative surfactants. In addition, haemolysis and cell viability assays evidenced the good biocompatibility of KELP polyurethane and polyurea nanoparticles thus indicating the potential of these nanosystems as promising drug carriers.

  18. Intense pulsed light treatment of cadmium telluride nanoparticle-based thin films.

    Science.gov (United States)

    Dharmadasa, Ruvini; Lavery, Brandon; Dharmadasa, I M; Druffel, Thad

    2014-04-09

    The search for low-cost growth techniques and processing methods for semiconductor thin films continues to be a growing area of research; particularly in photovoltaics. In this study, electrochemical deposition was used to grow CdTe nanoparticulate based thin films on conducting glass substrates. After material characterization, the films were thermally sintered using a rapid thermal annealing technique called intense pulsed light (IPL). IPL is an ultrafast technique which can reduce thermal processing times down to a few minutes, thereby cutting production times and increasing throughput. The pulses of light create localized heating lasting less than 1 ms, allowing films to be processed under atmospheric conditions, avoiding the need for inert or vacuum environments. For the first time, we report the use of IPL treatment on CdTe thin films. X-ray diffraction (XRD), optical absorption spectroscopy (UV-Vis), scanning electron microscopy (SEM) and room temperature photoluminescence (PL) were used to study the effects of the IPL processing parameters on the CdTe films. The results found that optimum recrystallization and a decrease in defects occurred when pulses of light with an energy density of 21.6 J cm(-2) were applied. SEM images also show a unique feature of IPL treatment: the formation of a continuous melted layer of CdTe, removing holes and voids from a nanoparticle-based thin film.

  19. Characterization of nanoparticle-based contrast agents for molecular magnetic resonance imaging

    Science.gov (United States)

    Shan, Liang; Chopra, Arvind; Leung, Kam; Eckelman, William C.; Menkens, Anne E.

    2012-09-01

    The development of molecular imaging agents is currently undergoing a dramatic expansion. As of October 2011, 4,800 newly developed agents have been synthesized and characterized in vitro and in animal models of human disease. Despite this rapid progress, the transfer of these agents to clinical practice is rather slow. To address this issue, the National Institutes of Health launched the Molecular Imaging and Contrast Agents Database (MICAD) in 2005 to provide freely accessible online information regarding molecular imaging probes and contrast agents for the imaging community. While compiling information regarding imaging agents published in peer-reviewed journals, the MICAD editors have observed that some important information regarding the characterization of a contrast agent is not consistently reported. This makes it difficult for investigators to evaluate and meta-analyze data generated from different studies of imaging agents, especially for the agents based on nanoparticles. This article is intended to serve as a guideline for new investigators for the characterization of preclinical studies performed with nanoparticle-based MRI contrast agents. The common characterization parameters are summarized into seven categories: contrast agent designation, physicochemical properties, magnetic properties, in vitro studies, animal studies, MRI studies, and toxicity. Although no single set of parameters is suitable to define the properties of the various types of contrast agents, it is essential to ensure that these agents meet certain quality control parameters at the preclinical stage, so that they can be used without delay for clinical studies.

  20. Fabrication of semi-transparent superoleophobic thin film from fabrics and nanoparticle-based hierarchical structure

    Directory of Open Access Journals (Sweden)

    Nishizawa S.

    2013-08-01

    Full Text Available Superoleophobic thin films have many potential applications including fluid transfer, fluid power systems, stain resistant and antifouling materials, and microfluidics among others. Transparency is also desired with superhydrophobicity for their numerous applications; however transparency and oleophobicity are almost incompatible relationship with each other in the point of surface structure. Because oleophobicity required rougher structure at nano-micro scale than hydrophobicity, and these rough structure brings light scattering. So far, there is very few report of the compatible of transparency and superoleophobicity. In this report, we proposed the see-through type fabrics using the nanoparticle-based hierarchical structure thin film for improving both of oleophobicity and transparency. The vacant space between fibrils of fabrics has two important roles: the one is to through the light, another one is to introduce air layer to realize Cassie state of liquid droplet on thin film. To realize the low surface energy and nanoscale rough structure surface on fibrils, we used the spray method with perfluoroalkyl methacrylic copolymer (PMC, silica nano particles and volatile solvent. From the SEM image, the hierarchical structures of nanoparticle were formed uniformly on the fabrics. The transparency of thin film obtained was approximately 61% and the change of transparency between pre-coated fabrics and coated was 11%. From investigation of the surface wettability, the contact angles of oils (rapeseed oil and hexadecane and water droplet on the fabricated film were over 150 degree.

  1. N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride nanoparticle as a novel delivery system for parathyroid hormone-related protein 1-34.

    Science.gov (United States)

    Zhao, Sheng-hao; Wu, Xiao-ting; Guo, Wei-chun; Du, Yu-min; Yu, Ling; Tang, Jin

    2010-06-30

    Chitosan (CS) and epoxy propyl trimethyl ammonium chloride (EPTAC) were used to prepare the water-soluble N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC). HTCC and sodium tripolyphosphate (TPP) were mixed to form HTCC nanoparticles based on ionic gelation. Parathyroid hormone-related protein 1-34 (PTHrP1-34) was incorporated into the HTCC nanoparticles. The particle size and morphology of nanoparticles were determined by transmission electron microscopy (TEM). HTCC/PTHrP1-34 nanoparticles were 100-180 nm in size and their encapsulation efficiency and loading capacity were related to HTCC concentration, TPP concentration and initial concentration of PTHrP1-34. Relatively optimum encapsulation efficiency (78.4%) and loading capacity (13.7%) of PTHrP1-34 is achieved, and the in vitro release profile of PTHrP1-34 from nanoparticles has an initial burst, which is followed up by a slow release phase. These studies showed that HTCC/PTHrP1-34 nanoparticles are suitable for the treatment of osteoporosis, because of their slow-continuous-release properties, and the relevant in vivo experiments and clinical trials should be further studied.

  2. Preparation, characterization and antibacterial activity of chitosan and phosphorylated chitosan from cuttlebone of Sepia kobiensis (Hoyle, 1885

    Directory of Open Access Journals (Sweden)

    Annaian Shanmugam

    2016-03-01

    Full Text Available Chitosan is a commercially available derivative of chitin that has been extensively studied for its antimicrobial properties. In order to improve the water solubility and its biological activity, the chemical modification or derivatisation is attempted. In the present investigation, the chitosan prepared from the cuttlebone of Sepia kobiensis was being chemically modified by reacting it with orthophosphoric acid so as to obtain phosphorylated chitosan. Then the chitosan and phosphorylated chitosan were structurally characterized through FT-IR spectroscopy. Further the antibacterial activity of chitosan and phosphorylated chitosan was tested against clinically isolated human pathogens (Gram-positive: Streptococcus sp., Streptococcus pneumoniae and Staphylococcus aureus and Gram-negative: Escherichia coli, Vibrio cholerae, V. alginolyticus, Vibrio parahaemolyticus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella sp. and Proteus vulgaris by well diffusion method and the Minimum Inhibitory Concentration (MIC was also calculated. The results of the present study suggests that the chitosan and phosphorylated chitosan has concentration dependent antibacterial activity with variation against several pathogenic human pathogenic bacterial strains which indicates their possible use as antibacterial agents.

  3. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery

    OpenAIRE

    Ahmed TA; Aljaeid BM

    2016-01-01

    Tarek A Ahmed1,2 Bader M Aljaeid11Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; 2Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, EgyptAbstract: Naturally occurring polymers, particularly of the polysaccharide type, have been used pharmaceutically for the delivery of a wide variety of therapeutic agents. Chitosan, the second abundant naturally o...

  4. Synthesis and Characterization of a Novel Soluble Diethoxy Phosphoryl Chitosan%Synthesis and Characterization of a Novel Soluble Diethoxy Phosphoryl Chitosan

    Institute of Scientific and Technical Information of China (English)

    Ma, Li; Li, Kerang; Li, Limin; Liu, Pu

    2012-01-01

    A simple and efficient method for the preparation of a novel soluble chitosan derivative, diethoxy phosphoryl chitosan (PH-chitosan), has been developed. Ph-chitosan was characterized by elemental analysis, FT-IR, NMR, ICP, XRD, TG and SEM, respectively. The chemical identity of PH-chitosan was determined by FT-IR and confirmed by NMR, and those results unequivocally demonstrated that diethoxy phosphoryl groups were grafted onto the amino and hydroxyl groups of chitosan. The results of XRD indicated that the crystalline structure of chitosan was destroyed due to the incorporation of diethoxy phosphoryl group resulting in loss of hydrogen bond. The analysis of TG demonstrated that PH-chitosan was less thermal stable than chitosan. This simple synthetic method provided a new and available approach to prepare a soluble high molecule weight chitosan derivative.

  5. [Neuronal network].

    Science.gov (United States)

    Langmeier, M; Maresová, D

    2005-01-01

    Function of the central nervous system is based on mutual relations among the nerve cells. Description of nerve cells and their processes, including their contacts was enabled by improvement of optical features of the microscope and by the development of impregnation techniques. It is associated with the name of Antoni van Leeuwenhoek (1632-1723), J. Ev. Purkyne (1787-1869), Camillo Golgi (1843-1926), and Ramón y Cajal (1852-1934). Principal units of the neuronal network are the synapses. The term synapse was introduced into neurophysiology by Charles Scott Sherrington (1857-1952). Majority of the interactions between nerve cells is mediated by neurotransmitters acting at the receptors of the postsynaptic membrane or at the autoreceptors of the presynaptic part of the synapse. Attachment of the vesicles to the presynaptic membrane and the release of the neurotransmitter into the synaptic cleft depend on the intracellular calcium concentration and on the presence of several proteins in the presynaptic element.

  6. A role for ABA in the plants response to chitosan

    Directory of Open Access Journals (Sweden)

    Americo Rodrigues

    2014-06-01

    Full Text Available Chitosan is a biopolymer of glucosamine residue that can be produced by deacetylation of chitin present in seafood wastes such as shrimp or crab shell. Chitosan and its derivatives are nontoxic and biodegradable, and have been used in applications like cosmetics, medicine or agriculture. When used to enhance plant defenses, chitosan induces host defense responses in both monocotyledons and dicotyledons. These responses include lignification, chitinase and glucanase activation, phytoalexin biosynthesis, among others (El Hadrami et al., 2010. Reduction of plant leaves transpiration due to stomatal closure without affecting the photosynthetic rate or production yields has also been described in plants treated with chitosan. This effect was observed in different plants like bean (Phaseolus vulgaris(Khokon et al., 2010, pepper (Capsicum sp(Bittelli et al., 2001 or barley (Hordeum vulgare (Koers et al., 2011 among others. Abscisic acid (ABA plays a crucial role in the regulation of stomata aperture (Kim et al., 2010 but the role of this phytohormone in the chitosan induced stomatal closure is not clearly understood. Chitosan treatment of bean leaves triggers a 3 times increase in ABA content indicating an involvement of ABA in chitosan induced stomatal closure (Iriti et al., 2009. However, in Arabidopsis, aba2-2 mutants and wild type plants treated with an ABA biosynthesis inhibitor presented chitosan induced stomatal closure similar to wild type untreated plants suggesting that endogenous ABA is not required for this effect (Issak et al., 2013. The involvement of ABA in this process is also suggested by the observation that chitosan and ABA have convergent signaling components, like calcium and reactive oxygen species (Srivastava et al., 2009. The aim of this work is to better understand the role of ABA in chitosan induced stomatal closure, leading to a reduction of transpiration and concomitantly to higher water-use efficiency, using molecular and

  7. Insecticidal and fungicidal activity of new synthesized chitosan derivatives.

    Science.gov (United States)

    Rabea, Entsar I; Badawy, Mohamed E I; Rogge, Tina M; Stevens, Christian V; Höfte, Monica; Steurbaut, Walter; Smagghe, Guy

    2005-10-01

    Chitosan, the N-deacetylated derivative of chitin, is a potential biopolysaccharide owing to its specific structure and properties. In this paper, we report on the synthesis of 24 new chitosan derivatives, N-alkyl chitosans (NAC) and N-benzyl chitosans (NBC), that are soluble in dilute aqueous acetic acid. The different derivatives were synthesized by reductive amination and analyzed by 1H NMR spectroscopy. A high degree of substitution (DS) was obtained with N-(butyl)chitosan (DS 0.36) at a 1:1 mole ratio for NAC derivatives and N-(2,4-dichlorobenzyl)chitosan (DS 0.52) for NBC derivatives. Their insecticidal and fungicidal activities were tested against larvae of the cotton leafworm Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae), the grey mould Botrytis cinerea Pers (Leotiales: Sclerotiniaceae) and the rice leaf blast Pyricularia grisea Cavara (Teleomorph: Magnaporthe grisea (Hebert) Barr). The oral feeding bioassay indicated that all the derivatives had significant insecticidal activity at 5 g kg(-1) in artificial diet. The most active was N-(2-chloro-6-fluorobenzyl)chitosan, which caused 100% mortality at 0.625 g kg(-1), with an estimated LC50 of 0.32 g kg(-1). Treated larvae ceased feeding after 2-3 days; the mechanism of action remains unknown. In a radial hyphal growth bioassay with both plant pathogens, all derivatives showed a higher fungicidal action than chitosan. N-Dodecylchitosan, N-(p-isopropylbenzyl)chitosan and N-(2,6-dichlorobenzyl)chitosan were the most active against B cinerea, with EC50 values of 0.57, 0.57 and 0.52 g litre(-1), respectively. Against P grisea, N-(m-nitrobenzyl)chitosan was the most active, with 77% inhibition at 5 g litre(-1). The effect of different substitutions is discussed in relation to insecticidal and fungicidal activity.

  8. Pretreatment of Palm Oil Mill Effluent (POME Using Magnetic Chitosan

    Directory of Open Access Journals (Sweden)

    N. Saifuddin

    2011-01-01

    Full Text Available Chitosan is a natural organic polyelectrolyte of high molecular weight and charge density; obtained from deacetylation of chitin. This study explored the potential and effectiveness of applying chitosan-magnetite nanocomposite particles as a primary coagulant and flocculent, in comparison with chitosan for pre-treatment of palm oil mill effluent (POME. A series of batch coagulation processes with chitosan-magnetite nanocomposite particles and chitosan under different conditions, i.e. dosage and pH were conducted, in order to determine their optimum conditions. The performance was assessed in terms of turbidity, total suspended solids (TSS and chemical oxygen demand (COD reductions. Chitosan-magnetite particles showed better parameter reductions with much lower dosage consumption, compared to chitosan, even at the original pH of POME, i.e. 4.5. At pH 6, the optimum chitosan-magnetite dosage of 250 mg/L was able to reduce turbidity, TSS and COD levels by 98.8%, 97.6% and 62.5% respectively. At this pH, the coagulation of POME by chitosan-magnetite was brought by the combination of charge neutralization and polymer bridging mechanism. On the other hand, chitosan seems to require much higher dosage, i.e. 370 mg/L to achieve the best turbidity, TSS and COD reductions, which were 97.7%, 91.7% and 42.70%, respectively. The synergistic effect of cationic character of both the chitosan amino group and the magnetite ion in the pre-treatment process for POME brings about enhanced performance for effective agglomeration, adsorption and coagulation.

  9. Synthesis and Adsorption Property of Dihydroxyl Azacrown Ether-Grafted Chitosan

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A novel dihydroxyl azacrown ether chitosan was synthesized by reacting dihydroxyl azacrown ether with epoxy activated chitosan. The adsorption property of the azacrown ether chitosan for Pb2+, Cr3+, and Ag+, were determined. The experimental results showed that the dihydroxyl azacrown ether grafted chitosan has high adsorption capacity and high selectivity for some metal ions.

  10. Synthesis and Adsorption Property of Dihydroxyl Azacrown Ether—Grafted Chitosan

    Institute of Scientific and Technical Information of China (English)

    ZhiKuanYANG; LiZHUANG; 等

    2002-01-01

    A novel dihydroxyl azacrown ether chitosan was synthesized by reacting dihydroxyl azacrown ether with epoxy activated chitosan. The adsorption property of the azacrown ether chitosan for Pb2+, Cr3+, and Ag+, were determined. The experimental results showed that the dihydroxyl azacrown ether grafted chitosan has high adsorption capacity and high selectivity for some metal ions.

  11. Immobilization of catalase on chitosan and amino acid- modified chitosan beads.

    Science.gov (United States)

    Başak, Esra; Aydemir, Tülin

    2013-08-01

    Bovine liver catalase was covalently immobilized onto amino acid-modified chitosan beads. The beads were characterized with SEM, FTIR, TGA and the effects of immobilization on optimum pH and temperature, thermostability, reusability were evaluated. Immobilized catalase showed the maximal enzyme activity at pH 7.0 at 30°C. The kinetic parameters, Km and Vmax, for immobilized catalase on alanine-chitosan beads and lysine-chitosan beads were estimated to be 25.67 mM, 27 mM and 201.39 μmol H2O2/min, 197.50 μmol H2O2/min, respectively. The activity of the immobilized catalase on Ala-CB and Lys-CB retained 40% of its high initial activity after 100 times of reuse.

  12. Application of Chitosan Flocculant to Conditioning Sludge

    Institute of Scientific and Technical Information of China (English)

    李步祥; 陈亮; 陈东辉; 张印堂

    2003-01-01

    The dewaterability of activated sludge conditioned by chitosan fiocculant was studied. The effects of chitasan characteristics such as molecular weight,degree of deacetylation, and dose on the dewaterability were investigated. The sludge dewaterability is evaluated in terms of specific resistance to filtration, residual turbidity of supernatant, moisture content of cake, and settling rate. Sludge dehydrating behaviors conditioned with CTS, PAM and PAC fiocculants were compared. The conditioning was also carried out with dual flocculants in two stages. It is found that the sludge conditioned with CTS has better dewaterability than that with PAC. The optimum conditions with chitosan are: dose 0.8~1.2 g per 100 g dry cake, molecular weight 300,000, and degree of deacetylation 70%. The conditioning in two stages with dual flocculants is found to be more effective than that with single flocculant.

  13. RECENT TRENDS IN ALGINATE, CHITOSAN AND ALGINATE-CHITOSAN ANTIMICROBIAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    Albert Ivancic

    2016-12-01

    Full Text Available Natural polysaccharides alginate and chitosan have been used extensively, separately or in mixtures (systems, in manufacturing of pharmaceutical products (antimicrobial and not only. Alginates usually serve as basis for antimicrobial systems, while chitosan, in certain proportions, enhances their physicochemical and antimicrobial properties. Focusing on the recent literature (mostly since 2000, this review outlines the main synthetic approaches for the preparation of systems based on both polymers as well as identify potential areas of their application as antimicrobial agents. Various techniques used for systems preparation like microparticles, films, fibers, nanoparticles, sponges, applications and usefulness of these systems as carriers of antimicrobial compounds will also be discussed.

  14. Novel thermosensitive chitosan hydrogels: in vivo evaluation.

    Science.gov (United States)

    Patois, Emilie; Osorio-da Cruz, Suzanne; Tille, Jean-Christophe; Walpoth, Beat; Gurny, Robert; Jordan, Olivier

    2009-11-01

    Chitosan is an attractive biopolymer for the preparation of hydrogels. Its unique combination of biocompatibility, biodegradability, bioadhesivity, and tissue-promoting abilities allows pharmaceutical applications. We investigated novel thermosensitive hydrogels based on chitosan homogeneously reacetylated to a deacetylation degree of about 50%, combined with selected polyols or polyoses such as trehalose, a nontoxic polysaccharide. The latter, a gel-inducing and lyoprotective agent enabled the formulation to be lyophilized and rehydrated without affecting the thermosensitive behavior. This made possible long-term storage and promoted its use in a clinical setup. The thermally induced sol-gel transition allowed injectability and in situ setting. Rheological characterization revealed that storage moduli could be increased by one decade by increasing the chitosan concentration from 1.4 to 2.2% (w/w). Evaluation in vivo provided evidence of in situ implant formation in subcutaneous tissue of Sprague-Dawley rats and permanence for up to 3 months. Histopathological analysis demonstrated a mild, chronic, inflammatory reaction that disappeared with the complete absorption of the gel implant over a few months period. Such in situ forming hydrogels could be advantageous for specific applications in drug delivery and tissue engineering.

  15. Photosensitive chitosan to control cell attachment.

    Science.gov (United States)

    Cheng, Nan; Cao, Xudong

    2011-09-01

    An approach to control cell adhesion using a photocleavable molecule on chitosan has been developed and studied. Photocleavable 4,5-dimethoxy-2-nitrobenzyl chloroformate (NVOC) was introduced into chitosan to control the surface properties. The two UV illuminations with a photomask controlled the cleavage of NVOC and the presentation of deprotected amines on one chitosan surface spatially and temporally. The following immobilizations of cell repulsive poly(ethylene glycol) after the first illumination and cell adhesive sequence Arg-Gly-Asp-Ser (RGDS) after the second illumination on the surface helped create surface heterogeneity. Fourier transform infrared spectroscopy (FTIR), water contact angle, and UV-visible spectroscopy were used to characterize the surfaces and photoactivation during the process. To study the cell attachment and morphology on our designed surfaces, NIH/3T3 fibroblast cell was used. Cell number and morphology on the surfaces were investigated. The cell study demonstrated the feasibility of the surfaces on the control of cell adhesion and the formation of cell patterns by UV illuminations and the following immobilizations of different biomolecules.

  16. ECM-Chitosan Bandage for Tissue Repair

    Science.gov (United States)

    Lauto, Antonio; Longo, Leonardo

    2010-05-01

    Extracellular matrices (ECMs) are currently applied in reconstructive surgery to enhance wound healing and tissue remodelling. Sutures and staples are usually employed to stabilize ECM on tissue although they may damage the matrix structure. In this investigation, a novel biocompatible bandage was developed to implant ECM on tissue without sutures. An adhesive film, based on chitosan, was integrated with small intestine submucosa (SIS) in a single bandage strip. This bandage was bonded to sheep small intestine upon laser irradiation of the chitosan film (P = 0.12 W, Fluence = 46±1 J/cm2) to assess tissue adhesion strength. Thermocouples were used to estimate temperatures under SIS during laser irradiation. The bandage successfully bonded to intestine achieving a shear stress of 9.6±1.6 kPa(n = 15). During laser irradiation, the temperature increased modestly to 31±2 0C(n = 14) beneath the ECM portion of the bandage. The SIS-chitosan bandage bonded effectively to tissue without sutures and preserved the ECM structure avoiding irreversible thermal denaturation of imbedded bioactive proteins.

  17. Thermal stability of brushite with chitosan samples

    Science.gov (United States)

    Chikanova, E. S.; Golovanova, O. A.; Malikova, T. V.; Kuimova, M. V.

    2017-01-01

    In this paper, the powders of brushite from an aqueous solution of Ca(NO3)2- (NH4)2HPO4 with different content of chitosan were synthesized. XRD data revealed that all samples are single-phase and are brushite (CaHPO4·2H2O). By FT-IR spectroscopy and BET methods, it was found that chitosan adsorbs onto the surface of powders. With increase of the content of the additive, the average size of crystallites increases 4.0 – 4.8 – 11.8 μm, respectively, and the dissolution rate in isotonic solution also decreases. The thermal stability of the composite powders was studied. It was established that the highest destruction of samples occurs in the range 473-673 K by removing of adsorption and crystallization water and partial change of the structure of the mineral and chitosan. At a temperature of 873 K, carbonization of the organic additive occurs.

  18. Chitosan-Based Multifunctional Platforms for Local Delivery of Therapeutics

    Directory of Open Access Journals (Sweden)

    Seong-Chul Hong

    2017-03-01

    Full Text Available Chitosan has been widely used as a key biomaterial for the development of drug delivery systems intended to be administered via oral and parenteral routes. In particular, chitosan-based microparticles are the most frequently employed delivery system, along with specialized systems such as hydrogels, nanoparticles and thin films. Based on the progress made in chitosan-based drug delivery systems, the usefulness of chitosan has further expanded to anti-cancer chemoembolization, tissue engineering, and stem cell research. For instance, chitosan has been used to develop embolic materials designed to efficiently occlude the blood vessels by which the oxygen and nutrients are supplied. Indeed, it has been reported to be a promising embolic material. For better anti-cancer effect, embolic materials that can locally release anti-cancer drugs were proposed. In addition, a complex of radioactive materials and chitosan to be locally injected into the liver has been investigated as an efficient therapeutic tool for hepatocellular carcinoma. In line with this, a number of attempts have been explored to use chitosan-based carriers for the delivery of various agents, especially to the site of interest. Thus, in this work, studies where chitosan-based drug delivery systems have successfully been used for local delivery will be presented along with future perspectives.

  19. Barrier properties of nano silicon carbide designed chitosan nanocomposites.

    Science.gov (United States)

    Pradhan, Gopal C; Dash, Satyabrata; Swain, Sarat K

    2015-12-10

    Nano silicon carbide (SiC) designed chitosan nanocomposites were prepared by solution technique. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were used for studying structural interaction of nano silicon carbide (SiC) with chitosan. The morphology of chitosan/SiC nanocomposites was investigated by field emission scanning electron microscope (FESEM), and high resolution transmission electron microscope (HRTEM). The thermal stability of chitosan was substantially increased due to incorporation of stable silicon carbide nanopowder. The oxygen permeability of chitosan/SiC nanocomposites was reduced by three folds as compared to the virgin chitosan. The chemical resistance properties of chitosan were enhanced due to the incorporation of nano SiC. The biodegradability was investigated using sludge water. The tensile strength of chitosan/SiC nanocomposites was increased with increasing percentage of SiC. The substantial reduction in oxygen barrier properties in combination with increased thermal stability, tensile strength and chemical resistance properties; the synthesized nanocomposite may be suitable for packaging applications.

  20. Crosslinked collagen/chitosan matrix for artificial livers

    NARCIS (Netherlands)

    Wang, X.H.; Li, D.P.; Wang, W.J.; Feng, Q.L.; Cui, F.Z.; Xu, Y.X.; Song, X.H.; Werf, van der Mark

    2003-01-01

    Matrices composed of collagen and chitosan may create an appropriate environment for the regeneration of livers. In this study, we have prepared, characterized and evaluated a new collagen/chitosan matrix (CCM). The CCM was made by using crosslinking agent 1-ethyl-3-(3-dimethylaminopropyl)-carbodiim

  1. Enzymolysis of chitosan by papain and its kinetics.

    Science.gov (United States)

    Pan, A-Dan; Zeng, Hong-Yan; Foua, Gohi Bi; Alain, Claude; Li, Yu-Qin

    2016-01-01

    Low molecular weight chitosan (LMWC) was obtained by the enzymolysis of chitosan by papain. Enzymolysis conditions (initial chitosan concentration, temperature, pH and ratio of papain to chitosan) were optimized by conducting experiments at three different levels using the response surface methodology (RSM) to obtain high soluble reducing sugars (SRSs) concentrations. Meanwhile, the influence of chitosan substrate concentration on the activity of papain was assessed in the experiments. The enzymolysis process was analyzed using pseudo-first-order and pseudo-second-order kinetic models and the experiment data were found to be more consistent with the pseudo-second-order kinetic model. In addition, the kinetic behavior of the enzymolysis was also investigated by using Haldane model, and chitosan exhibited substrate inhibition. It was clear that the Haldane kinetic model adequately described the dynamic behavior of the chitosan enzymolysis by papain. When the initial chitosan concentration was above 8.0g/L, the papain was overloaded and exhibited significant inhibition.

  2. Preparation and biomedical applications of chitin and chitosan nanofibers.

    Science.gov (United States)

    Azuma, Kazuo; Ifuku, Shinsuke; Osaki, Tomohiro; Okamoto, Yoshiharu; Minami, Saburo

    2014-10-01

    Chitin (β-(1-4)-poly-N-acetyl-D-glucosamine) is widely distributed in nature and is the second most abundant polysaccharide after cellulose. Chitin occurs in nature as ordered macrofibrils. It is the major structural component in the exoskeleton of crab and shrimp shells and the cell wall of fungi and yeast. As chitin is not readily dissolved in common solvents, it is often converted to its more deacetylated derivative, chitosan. Chitin, chitosan, and its derivatives are widely used in tissue engineering, wound healing, and as functional foods. Recently, easy methods for the preparation of chitin and chitosan nanofibers have been developed, and studies on biomedical applications of chitin and chitosan nanofibers are ongoing. Chitin and chitosan nanofibers are considered to have great potential for various biomedical applications, because they have several useful properties such as high specific surface area and high porosity. This review summarizes methods for the preparation of chitin and chitosan nanofibers. Further, biomedical applications of chitin and chitosan nanofibers in (i) tissue engineering, (ii) wound dressing, (iii) cosmetic and skin health, (iv) stem cell technology, (v) anti-cancer treatments and drug delivery, (vi) anti-inflammatory treatments, and (vii) obesity treatment are summarized. Many studies indicate that chitin and chitosan nanofibers are suitable materials for various biomedical applications.

  3. Pharmacokinetics and biodegradation performance of a hydroxypropyl chitosan derivative

    Science.gov (United States)

    Shao, Kai; Han, Baoqin; Dong, Wen; Song, Fulai; Liu, Weizhi; Liu, Wanshun

    2015-10-01

    Hydroxypropyl chitosan (HP-chitosan) has been shown to have promising applications in a wide range of areas due to its biocompatibility, biodegradability and various biological activities, especially in the biomedical and pharmaceutical fields. However, it is not yet known about its pharmacokinetics and biodegradation performance, which are crucial for its clinical applications. In order to lay a foundation for its further applications and exploitations, here we carried out fluorescence intensity and GPC analyses to determine the pharmacokinetics mode of fluorescein isothiocyanate-labeled HP-chitosan (FITC-HP-chitosan) and its biodegradability. The results showed that after intraperitoneal administration at a dose of 10 mg per rat, FITC-HP-chitosan could be absorbed rapidly and distributed to liver, kidney and spleen through blood. It was indicated that FITC-HP-chitosan could be utilized effectively, and 88.47% of the FITC-HP-chitosan could be excreted by urine within 11 days with a molecular weight less than 10 kDa. Moreover, our data indicated that there was an obvious degradation process occurred in liver (hydroxypropyl-modified chitosan as materials in drug delivery, tissue engineering and biomedical area.

  4. Synthesis and Characterization of Oil-Chitosan Composite Spheres

    Directory of Open Access Journals (Sweden)

    Wei-Ting Wang

    2013-05-01

    Full Text Available Oil-chitosan composite spheres were synthesized by encapsulation of sunflower seed oil in chitosan droplets, dropping into NaOH solution and in situ solidification. Hydrophilic materials (i.e., iron oxide nanoparticles and lipophilic materials (i.e., rhodamine B or epirubicin could be encapsulated simultaneously in the spheres in a one step process. The diameters of the prepared spheres were 2.48 ± 0.11 mm (pure chitosan spheres, 2.31 ± 0.08 mm (oil-chitosan composites, 1.49 ± 0.15 mm (iron-oxide embedded oil-chitosan composites, and 1.69 ± 0.1 mm (epirubicin and iron oxide encapsulated oil-chitosan composites, respectively. Due to their superparamagnetic properties, the iron-oxide embedded oil-chitosan composites could be guided by a magnet. A lipophilic drug (epirubicin could be loaded in the spheres with encapsulation rate measured to be 72.25%. The lipophilic fluorescent dye rhodamine B was also loadable in the spheres with red fluorescence being observed under a fluorescence microscope. We have developed a novel approach to an in situ process for fabricating oil-chitosan composite spheres with dual encapsulation properties, which are potential multifunctional drug carriers.

  5. Synthesis and characterization of oil-chitosan composite spheres.

    Science.gov (United States)

    Huang, Keng-Shiang; Wang, Chih-Yu; Yang, Chih-Hui; Grumezescu, Alexandru Mihai; Lin, Yung-Sheng; Kung, Chao-Pin; Lin, I-Yin; Chang, Yi-Ching; Weng, Wei-Jie; Wang, Wei-Ting

    2013-05-16

    Oil-chitosan composite spheres were synthesized by encapsulation of sunflower seed oil in chitosan droplets, dropping into NaOH solution and in situ solidification. Hydrophilic materials (i.e., iron oxide nanoparticles) and lipophilic materials (i.e., rhodamine B or epirubicin) could be encapsulated simultaneously in the spheres in a one step process. The diameters of the prepared spheres were 2.48 ± 0.11 mm (pure chitosan spheres), 2.31 ± 0.08 mm (oil-chitosan composites), 1.49 ± 0.15 mm (iron-oxide embedded oil-chitosan composites), and 1.69 ± 0.1 mm (epirubicin and iron oxide encapsulated oil-chitosan composites), respectively. Due to their superparamagnetic properties, the iron-oxide embedded oil-chitosan composites could be guided by a magnet. A lipophilic drug (epirubicin) could be loaded in the spheres with encapsulation rate measured to be 72.25%. The lipophilic fluorescent dye rhodamine B was also loadable in the spheres with red fluorescence being observed under a fluorescence microscope. We have developed a novel approach to an in situ process for fabricating oil-chitosan composite spheres with dual encapsulation properties, which are potential multifunctional drug carriers.

  6. Biopolymers produced from gelatin and chitosan using polyphenols

    Science.gov (United States)

    Chitin, and its derivative chitosan, is an abundant waste product derived from crustaceans (e.g. crab). It has unique properties which enable its use in, but not limited to, cosmetic, medical, and food applications. Chitosan has recently been studied, in conjunction with other waste carbohydrates ...

  7. of Clove on Physicochemical Properties of Chitosan-Based Films

    Directory of Open Access Journals (Sweden)

    Paola Reyes-Chaparro

    2015-01-01

    Full Text Available Mechanical and barrier properties of chitosan films prepared with essential oils of clove and functional extract were studied. The films made with functional extracts (esters E6 and E7 presented the significant increment of extensibility compared with the untreated chitosan films. In the case of punction test, the films made with the esters E6 and E7 resisted more the applied strength before tearing up compared with the chitosan control film (without any treatment. Thermogravimetric analysis values were determined for the chitosan control film and chitosan film treated with clove essential oil obtaining 112.17°C and 176.73°C, respectively. Atomic force microscopy (AFM was used to determine their morphology by analyzing their surfaces and phase arrangement; AFM was also used to observe the porosity in chitosan-based antimicrobial films and the chitosan films incorporating functional extracts. The water vapour permeability (WVP data showed that incorporating the functional extract to the formulation of films has a positive effect on water vapour barrier properties. In general, the incorporation of essential oils and functional extract of clove at 20% in chitosan films caused microstructural changes that were dependent on the different affinity of components.

  8. Fabrication of chitosan-magnetite nanocomposite strip for chromium removal

    Science.gov (United States)

    Sureshkumar, Vaishnavi; Kiruba Daniel, S. C. G.; Ruckmani, K.; Sivakumar, M.

    2016-02-01

    Environmental pollution caused by heavy metals is a serious threat. In the present work, removal of chromium was carried out using chitosan-magnetite nanocomposite strip. Magnetite nanoparticles (Fe3O4) were synthesized using chemical co-precipitation method at 80 °C. The nanoparticles were characterized using UV-visible spectroscopy, fourier transform infrared spectroscopy, X-ray diffraction spectrometer, atomic force microscope, dynamic light scattering and vibrating sample magnetometer, which confirm the size, shape, crystalline nature and magnetic behaviour of nanoparticles. Atomic force microscope revealed that the particle size was 15-30 nm and spherical in shape. The magnetite nanoparticles were mixed with chitosan solution to form hybrid nanocomposite. Chitosan strip was casted with and without nanoparticle. The affinity of hybrid nanocomposite for chromium was studied using K2Cr2O7 (potassium dichromate) solution as the heavy metal solution containing Cr(VI) ions. Adsorption tests were carried out using chitosan strip and hybrid nanocomposite strip at different time intervals. Amount of chromium adsorbed by chitosan strip and chitosan-magnetite nanocomposite strip from aqueous solution was evaluated using UV-visible spectroscopy. The results confirm that the heavy metal removal efficiency of chitosan-magnetite nanocomposite strip is 92.33 %, which is higher when compared to chitosan strip, which is 29.39 %.

  9. Thermal decomposition of natural polysaccharides: Chitin and chitosan

    Directory of Open Access Journals (Sweden)

    Kuchina Yu.A.

    2015-03-01

    Full Text Available The results of the thermal analysis of shrimp’s chitin and chitosan have been presented (samples of polysaccharide differed by the deacetylation degree have been studied. The thermal analysis has been carried out by differential thermogravimetry and differential scanning calorimetry. Activation energy of process of chitin and chitosan thermal destruction has been calculated

  10. Preparation and properties of polyvinyl acetal sponge modified by chitosan

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The polyvinyl acetal sponge modified by chitosan was prepared by adding chitosan/polyvinyl alcohol (PVA) solution during the acetalation reaction of PVA and formaldehyde.The effect of vesicant and chitosan to the pore morphology,water absorption ratio,water absorption rate,expansion time and mechanical properties were studied.The polyvinyl acetal sponge modified by chitosan was used as a hemostatic packing material for the injured rabbit nasal tissue.The hemostatic effect and the healing effect of the modified sponge on the nasal mucosa after nasal surgery were studied.The results indicated that the polyvinyl acetal sponge modified by chitosan has an interconnected pore structure and the wall between large pores also has small pores.The chitosan adhered on the inner surface of the pores.The increased content of vesicant led to an increase in pore diameter,in the water absorption ratio and in expansion time.However,there was only a small change in the water absorption rate and a decrease in tensile strength and compression strength were noted.With an increase in chitosan content,the pore diameter and interconnection of the sponge was reduced.Water absorption ratio,expansion time and water absorption rate decreased,but tensile strength and compression strength improved.Observation of the rabbit nasal tissue after surgical operation suggested that polyvinyl acetal sponge modified by chitosan has an anti-inflammatory,hemostatic and antiadherent characteristic and could promote the healing and functional recovery of rabbit nasal mucosa.

  11. Nanoparticle-Based Paper Sensors for Field-Portable Analysis of Antioxidants

    Science.gov (United States)

    Sharpe, Erica Marie

    Abstract & Overview: The goal of this thesis was to develop portable nanoparticle-based paper sensors for field analysis, with focus on antioxidant detection. The method introduces a novel concept in the sensing arena that relies on the use of redox active inorganic nanoparticles, primarily cerium oxide, as colorimetric probes to replace commonly used soluble dyes. The sensors have an integrated detection mechanism with all the reagents needed for analysis confined to the sensing platform. Research work in this thesis focuses on the study of the redox and surface chemistry of these particles, their reactivity with target analytes and integration into paper-based platforms. A unique feature of these particles is their ability to replace or stabilize enzymes and extend their operational lifetime providing additional opportunities for improved detection schemes for enzyme-based systems. We demonstrate the above principles for the construction of sensors for detection of analytes such as hydrogen peroxide, glucose, and polyphenolic antioxidants. The advantage of the newly designed system include, in addition to portability and stability, the low production costs, the rapid analysis time, and the ability to provide quantitative information without use of advanced instrumentation. The results of this work opened up new opportunities for designing portable easy-to- use sensors for field analysis. The developed assays are particularly appealing for remote sensing applications where specialized equipment is not available, and also for high throughput analysis of a large number of samples. Our investigation to demonstrate applicability of the system focused primarily on the detection of antioxidants. Therefore, the thesis highlights predominantly this application.

  12. Inhibition of Bacillus cereus spore outgrowth and multiplication by chitosan.

    Science.gov (United States)

    Mellegård, Hilde; From, Cecilie; Christensen, Bjørn E; Granum, Per E

    2011-10-03

    Bacillus cereus is an endospore-forming bacterium able to cause food-associated illness. Different treatment processes are used in the food industry to reduce the number of spores and thereby the potential of foodborne disease. Chitosan is a polysaccharide with well-documented antibacterial activity towards vegetative cells. The activity against bacterial spores, spore germination and subsequent outgrowth and growth (the latter two events hereafter denoted (out)growth), however, is poorly documented. By using six different chitosans with defined macromolecular properties, we evaluated the effect of chitosan on Bacillus cereus spore germination and (out)growth using optical density assays and a dipicolinic acid release assay. (Out)growth was inhibited by chitosan, but germination was not. The action of chitosan was found to be concentration-dependent and also closely related to weight average molecular weight (M(w)) and fraction of acetylation (F(A)) of the biopolymer. Chitosans of low acetylation (F(A)=0.01 or 0.16) inhibited (out)growth more effectively than higher acetylated chitosans (F(A)=0.48). For the F(A)=0.16 chitosans with medium (56.8kDa) and higher M(w) (98.3kDa), a better (out)growth inhibition was observed compared to low M(w) (10.6kDa) chitosan. The same trend was not evident with chitosans of 0.48 acetylation, where the difference in activity between the low (19.6kDa) and high M(w) (163.0kDa) chitosans was only minor. In a spore test concentration corresponding to 10(2)-10(3)CFU/ml (spore numbers relevant to food), less chitosan was needed to suppress (out)growth compared to higher spore numbers (equivalent to 10(8)CFU/ml), as expected. No major differences in chitosan susceptibility between three different strains of B. cereus were detected. Our results contribute to a better understanding of chitosan activity towards bacterial spore germination and (out)growth.

  13. Chitosan as a barrier membrane material in periodontal tissue regeneration.

    Science.gov (United States)

    Xu, Chun; Lei, Chang; Meng, Liuyan; Wang, Changning; Song, Yaling

    2012-07-01

    Periodontal regeneration is defined as regeneration of the tooth-supporting tissues including cementum, periodontal ligament, and alveolar bone. Guided tissue regeneration (GTR) has been demonstrated to be an effective technique to achieve periodontal regeneration. In the GTR procedures, various kinds of membranes play important roles. Chitosan, a deacetylated derivative of chitin, is biocompatible, biodegradable, and antimicrobial. It acts as hydrating agent and possesses tissue healing and osteoinducing effect. Chitosan can be easily processed into membranes, gels, nanofibers, beads, nanoparticles, scaffolds, and sponges forms and can be used in drug delivery systems. Here, we review the bioproperties of chitosan and report the progress of application of chitosan as membranes in GTR and guided bone regeneration (GBR), which indicates that chitosan could be a good substrate candidate as the materials for the GTR/GBR membranes.

  14. Active naringin-chitosan films: impact of UV irradiation.

    Science.gov (United States)

    Iturriaga, Leire; Olabarrieta, Idoia; Castellan, Alain; Gardrat, Christian; Coma, Véronique

    2014-09-22

    Bioactive citrus extract-chitosan films were prepared through solvent casting-evaporation method. The impact of near UV irradiation was studied to reach a better understanding of the film behavior. The antimicrobial activity of films against Listeria innocua was maintained after UV irradiation. To study the interaction between chitosan and citrus extract components, naringin (main component) was selected as the model compound. UV treatment caused modifications of the flavanone regardless of the solvent used for its dissolution, depending on the concentration of naringin in the film: the greater the concentration the lower the modification. DSC results suggested cross-links due to UV irradiation and interactions between naringin and chitosan. This was confirmed by a decrease in the naringin release from the irradiated samples. Naringin- and citrus extract-chitosan films showed an increased absorbance in the UV region compared to pure chitosan films, showing potentiality for decreasing the lipid oxidation induced by UV light in foodstuffs.

  15. Chitosan as flocculant agent for clarification of stevia extract

    Directory of Open Access Journals (Sweden)

    Silvia P. D. de Oliveira

    2012-01-01

    Full Text Available Stevia is used as a sweetener due to its low calorific value and its taste, which is very similar to that of sucrose. After extraction from dried leaves, stevia extract is dark in colour, and therefore needs to be whitened to increase acceptance by consumers. In this study we tested chitosan, a cationic polyelectrolyte, as flocculant agent for the whitening of the Stevia extract. Positive charges of chitosan can interact electrostatically with a counter-ion, sodium tripolyphosphate (TPP, and then chitosan precipitates. A factorial design was used to study the whitening process, in which Glycosides Removal, Colour Removal, Turbidity Removal and Soluble Solids Removal were evaluated. The studied factors were Chitosan Mass and pH of the TPP solution. The results showed that chitosan is a good flocculant agent, being able to flocculate both the glycosides and the pigments that make the extract coloured.

  16. Dairy Wastewater Treatment Using Low Molecular Weight Crab Shell Chitosan

    Science.gov (United States)

    Geetha Devi, M.; Dumaran, Joefel Jessica; Feroz, S.

    2012-08-01

    The investigation of possible use of low molecular weight crab shell chitosan (MW 20 kDa) in the treatment of dairy waste water was studied. Various experiments have been carried out using batch adsorption technique to study the effects of the process variables, which include contact time, stirring speed, pH and adsorbent dosage. Treated effluent characteristics at optimum condition showed that chitosan can be effectively used as adsorbent in the treatment of dairy wastewater. The optimum conditions for this study were at 150 mg/l of chitosan, pH 5 and 50 min of mixing time with 50 rpm of mixing speed. Chitosan showed the highest performance under these conditions with 79 % COD, 93 % turbidity and 73 % TSS reduction. The result showed that chitosan is an effective coagulant, which can reduce the level of COD, TSS and turbidity in dairy industry wastewater.

  17. Two different molecular conformations found in chitosan type II salts.

    Science.gov (United States)

    Lertworasirikul, Amornrat; Tsue, Shin-ichiro; Noguchi, Keiichi; Okuyama, Kenji; Ogawa, Kozo

    2003-05-23

    The type II structure of chitosan acidic salts prepared from crab tendon in solid state was studied using an X-ray fiber diffraction technique together with the linked-atom least-squares (LALS) technique. The cylindrical Patterson method was applied to confirm the molecular conformation of the chitosan. It was shown that there are two different helical conformations for type II salts. One is the relaxed twofold helix having a tetrasaccharide as an asymmetric unit as found in chitosan.HCl salt, which was previously reported as a conformation of chitosan.HCOOH salt. The other is the fourfold helix having a disaccharide as an asymmetric unit newly found in chitosan.HI salt.

  18. Synthesis of Chitosan /Alginate/ Silver Nanoparticles Hydrogel Scaffold

    Directory of Open Access Journals (Sweden)

    Ramli Roslinda Hani

    2016-01-01

    Full Text Available This work reports the preparation of silver nanoparticles (AgNPs and synthesis of natural based hydrogel scaffold with an inclusion of AgNPs, chitosan/alginate/silver nanoparticles. The synthesised hydrogel scaffolds were characterised by using Fourier Transform Infrared Resonance Spectroscopy (FTIR. The FTIR result revealed that the shifting of the three peaks of 3252.95 cm−1 (–OH and –NH2 stretching, 1591.33 cm−1 (C=O stretching and 1411.88 cm−1 (N–H stretching of chitosan/alginate/silver nanoparticles in compared to chitosan/alginate hydrogel indicating the presence of electrostatic interaction of –NH3+ in chitosan reacted with the – COO– group of alginate and binding of the silver (Ag. These results indicated that chitosan/alginate/silver nanoparticles were consolidated in the composite system.

  19. Physiochemical and optical properties of chitosan based graphene oxide bionanocomposite.

    Science.gov (United States)

    Kumar, Santosh; Koh, Joonseok

    2014-09-01

    In the present investigation an ecofriendly approach and a simple homogeneous solution casting method led to the development of biodegradable chitosan/graphene oxide bionanocomposites. The formation of bionanocomposite was confirmed by UV-vis, FT-IR, Raman spectroscopy, XRD, and further evaluated by thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The circular dichroism (CD) study of chitosan/graphene oxide revealed that the intensity of the negative transition band at wavelength of 200-222 nm decreased with the different pH of chitosan/graphene oxide solutions. It was also found that the pH conditions affect the interaction between chitosan and graphene oxide. Optical properties of chitosan/graphene oxide are evaluated by photoluminescence (PL) spectroscopy which showed blue shift at excitation wavelength of 255 nm compared to graphene oxide. These results strongly suggest that the bionanocomposite materials may open new vistas in biotechnological, biosensor and biomedical applications.

  20. Physicochemical and functional characteristics of radiation-processed shrimp chitosan

    Science.gov (United States)

    Ocloo, F. C. K.; Quayson, E. T.; Adu-Gyamfi, A.; Quarcoo, E. A.; Asare, D.; Serfor-Armah, Y.; Woode, B. K.

    2011-07-01

    The effects of gamma irradiation on chitosan samples were determined in terms of physicochemical and functional properties. Shrimp chitosan was extracted from shell using a chemical process involving demineralization, deproteinization, decolorization and deacetylation. Commercial snow chitosan was also used. Samples (in a solid state) were given irradiation dose of 25 kGy at a dose rate of 1.1013 kGy/h in air and 0 kGy samples were used as controls. Results showed that moisture contents were between 8.690% and 13.645%. There were no significant differences ( P>0.05) in the degree of deacetylation of the chitosan samples. Significant differences ( Pantioxidant activity compared with BHT. Water binding capacity ranged from 582.40% to 656.75% and fat binding capacity was between 431.00% and 560.55%. Irradiation had a major effect on the viscosity and the viscosity-average molecular weight of the chitosan samples.

  1. Surface grafted chitosan gels. Part II. Gel formation and characterization

    DEFF Research Database (Denmark)

    Liu, Chao; Thormann, Esben; Claesson, Per M.

    2014-01-01

    Responsive biomaterial hydrogels attract significant attention due to their biocompatibility and degradability. In order to make chitosan based gels, we first graft one layer of chitosan to silica, and then build a chitosan/poly(acrylic acid) multilayer using the layer-by-layer approach. After...... cross-linking the chitosan present in the polyelectrolyte multilayer, poly(acrylic acid) is partly removed by exposing the multilayer structure to a concentrated carbonate buffer solution at a high pH, leaving a surface-grafted cross-linked gel. Chemical cross-linking enhances the gel stability against...... detachment and decomposition. The chemical reaction between gluteraldehyde, the cross-linking agent, and chitosan was followed in situ using total internal reflection Raman (TIRR) spectroscopy, which provided a molecular insight into the complex reaction mechanism, as well as the means to quantify the cross...

  2. The production of fully deacetylated chitosan by compression method

    Directory of Open Access Journals (Sweden)

    Xiaofei He

    2016-03-01

    Full Text Available Chitosan’s activities are significantly affected by degree of deacetylation (DDA, while fully deacetylated chitosan is difficult to produce in a large scale. Therefore, this paper introduces a compression method for preparing 100% deacetylated chitosan with less environmental pollution. The product is characterized by XRD, FT-IR, UV and HPLC. The 100% fully deacetylated chitosan is produced in low-concentration alkali and high-pressure conditions, which only requires 15% alkali solution and 1:10 chitosan powder to NaOH solution ratio under 0.11–0.12 MPa for 120 min. When the alkali concentration varied from 5% to 15%, the chitosan with ultra-high DDA value (up to 95% is produced.

  3. PREPARATION AND PROPERTIES OF CHITOSAN/LIGNIN COMPOSITE FILMS

    Institute of Scientific and Technical Information of China (English)

    Long Chen; Chang-yu Tang; Nan-ying Ning; Chao-yu Wang; Qiang Fu; Qin Zhang

    2009-01-01

    Biodegradable composite films based on chitosan and lignin with various composition were prepared via the solution-casting technique.FT-IR results indicate the existence of hydrogen bonding between chitosan and lignin,and SEM images show that lignin could be well dispersed in chitosan when the content of lignin is below 20 wt% due to the strong interfacial interaction.As a result of strong interaction and good dispersion,the tensile strength,storage modulus,thermal degradation temperature and glass transition temperature of chitosan have been largely improved by adding lignin.Our work provides a simple and cheap way to prepare fully biodegradable chitosan/lignin composites,which could be used as packaging films or wound dressings.

  4. A Coarse-Grained Model for Simulating Chitosan Hydrogels

    Science.gov (United States)

    Xu, Hongcheng; Matysiak, Silvina

    Hydrogels are biologically-derived materials composed of water-filled cross-linking polymer chains. It has widely been used as biodegradable material and has many applications in medical devices. The chitosan hydrogel is stimuli-responsive for undergoing pH-sensitive self-assembly process, allowing programmable tuning of the chitosan deposition through electric pulse. To explore the self-assembly mechanism of chitosan hydroge, we have developed an explicit-solvent coarse-grained chitosan model that has roots in the MARTINI force field, and the pH change is modeled by protonating chitosan chains using the Henderson-Hasselbalch equation. The mechanism of hydrogel network formation will be presented. The self-assembled polymer network qualitatively reproduce many experimental observables such as the pH-dependent strain-stress curve, bulk moduli, and structure factor. Our model is also capable of simulating other similar polyelectrolyte polymer systems.

  5. Chitosan application to X-ray irradiated wound in dogs.

    Science.gov (United States)

    Ueno, H; Ohya, T; Ito, H; Kobayashi, Y; Yamada, K; Sato, M

    2007-01-01

    Radiation-impaired wounds are characterized by fibroblast and endothelial cell injury, resulting in delayed wound healing. Several previous studies have indicated that chitosan accelerates wound healing by up-regulating growth factor synthesis. In this study, the topical application of chitosan onto radiation-impaired wounds was investigated. An X-ray irradiated (25Gy) skin wound was treated with cotton fibre-type chitosan in dogs. Histopathologically, neovascularization was significantly accelerated in irradiated wounds in the chitosan application group (rad-chi group) when compared with irradiated wounds in the control group (rad-cont group). Vascular endothelial growth factor (VEGF) messenger ribonucleic acid (mRNA) expression in granulation tissue was positive in the rad-chi group, but was negative in the rad-cont group. The present results confirmed advanced granulation and capillary formation in wounds treated with chitosan, even after irradiation.

  6. Super-paramagnetic loaded nanoparticles based on biological macromolecules for in vivo targeted MR imaging.

    Science.gov (United States)

    Sanjai, Chutimon; Kothan, Suchart; Gonil, Pattarapond; Saesoo, Somsak; Sajomsang, Warayuth

    2016-05-01

    Target-specific MRI contrast agent based on super-paramagnetic iron oxide-chitosan-folic acid (SPIONP-CS-FA) nanoparticles was fabricated by using an ionotropic gelation method, which involved the loading of SPIONPs at various concentrations into CS-FA nanoparticles by electrostatic interaction. The SPIONP-CS-FA nanoparticles were characterized by ATR-FTIR, XRD, TEM, and VSM techniques. This study revealed that the advantages of this system would be green fabrication, low cytotoxicity at iron concentrations ranging from 0.52 mg/L to 4.16 mg/L, and high water stability (pH 6) at 4°C over long periods. Average particle size and positive zeta-potential of the SPIONP-CS-FA nanoparticles was found to be 130 nm with narrow size distribution and 42 mV, respectively. In comparison to SPIONP-0.5-CS nanoparticles, SPIONP-0.5-CS-FA nanoparticles showed higher and specific cellular uptake levels into human cervical adenocarcinoma cells due to the presence of folate receptors, while in vivo results (Wistar rat) indicated that only liver tissue showed significant decreases in MR image intensity on T2 weighted images and T2* weighted images after post-injection, in comparison with other organs. Our results demonstrated that SPIONP-CS-FA nanoparticles can be applied as an either tumor or organ specific MRI contrast agents.

  7. Chitosan Dermal Substitute and Chitosan Skin Substitute Contribute to Accelerated Full-Thickness Wound Healing in Irradiated Rats

    Directory of Open Access Journals (Sweden)

    Abu Bakar Mohd Hilmi

    2013-01-01

    Full Text Available Wounds with full-thickness skin loss are commonly managed by skin grafting. In the absence of a graft, reepithelialization is imperfect and leads to increased scar formation. Biomaterials can alter wound healing so that it produces more regenerative tissue and fewer scars. This current study use the new chitosan based biomaterial in full-thickness wound with impaired healing on rat model. Wounds were evaluated after being treated with a chitosan dermal substitute, a chitosan skin substitute, or duoderm CGF. Wounds treated with the chitosan skin substitute showed the most re-epithelialization (33.2 ± 2.8%, longest epithelial tongue (1.62 ± 0.13 mm, and shortest migratory tongue distance (7.11 ± 0.25 mm. The scar size of wounds treated with the chitosan dermal substitute (0.13 ± 0.02 cm and chitosan skin substitute (0.16 ± 0.05 cm were significantly decreased (P<0.05 compared with duoderm (0.45 ± 0.11 cm. Human leukocyte antigen (HLA expression on days 7, 14, and 21 revealed the presence of human hair follicle stem cells and fibroblasts that were incorporated into and surviving in the irradiated wound. We have proven that a chitosan dermal substitute and chitosan skin substitute are suitable for wound healing in full-thickness wounds that are impaired due to radiation.

  8. Flow Cytometry Detection of Bacterial Cell Entrapment within the Chitosan Hydrogel and Antibacterial Property of Extracted Chitosan

    Directory of Open Access Journals (Sweden)

    Nafise Sadat Majidi

    2016-09-01

    Full Text Available Background:   Chitosan is unbranched polysaccharide composed of D-glucosamine and N-acetyl-D-glucosamine. Chitosan, derived from shrimp shell, has broad antimicrobial properties against Gram-negative, Gram-positive bacteria and fungi. Methods:  Chitosan was extracted from shrimp shell and studied for cell entrapment and anti-bacterial properties. The hydrogel chitosan was used as the beads for cell entrapment and chitosan beads were designed to deliver cells and nutrients. These data confirmed with flow cytometric analyses.                 Results:   Experimental results exhibited that internal diffusion through the chitosan matrix was the main mechanism for whole gelation by TPP (Tri-polyphosphate. The minimum inhibitory concentration (MIC for chitosan against Staphylococcus aureus and Escherichia coli was 16 and 32 μg/ml respectively. Conclusion:  Despite the antimicrobial properties of chitosan, trapped bacteria in the gel network were alive and were chelated indicating that their access to the outside was limited.

  9. Characterization and toxicology evaluation of chitosan nanoparticles on the embryonic development of zebrafish, Danio rerio.

    Science.gov (United States)

    Wang, Yanbo; Zhou, Jinru; Liu, Lin; Huang, Changjiang; Zhou, Deqing; Fu, Linglin

    2016-05-05

    In the present study, chitosan nanoparticles were prepared, characterized and used to evaluate the embryonic toxicology on zebrafish (Danio rerio). The average particle size of chitosan nanoparticles was 84.86nm. The increased mortality and decreased hatching rate was found in the zebrafish embryo exposure to normal chitosan particles and chitosan nanoparticles with the increased addition concentration. At 120h post-fertilization (hpf), the rate of mortality were 25.0 and 44.4% in the groups treated with chitosan nanoparticles and normal chitosan particles at 250mg/L, respectively. At 72hpf, the hatching rate in the groups treated with normal chitosan particles were lower (Pchitosan nanoparticles and the control groups across all the addition concentrations. More abundant typical malformation of embryos was observed in the groups treated with normal chitosan particles compared with those treated with chitosan nanoparticles. The LC50 (medium lethal concentration) of chitosan nanoparticles was 280mg/L at 96hpf and 270mg/L at 120hpf. As for normal chitosan particles, the LC50 was 257mg/L at both 96hpf and 120hpf. The TC50 (medium teratogenic concentration) of the zebrafish treated with chitosan nanoparticles and normal chitosan particles were 257mg/L and 137mg/L, respectively. It indicated that the chitosan nanoparticles were relatively more secure compared with normal chitosan particles.

  10. Chitosan Removes Toxic Heavy Metal Ions from Cigarette Mainstream Smoke

    Institute of Scientific and Technical Information of China (English)

    ZHOU Wen; XU Ying; WANG Dongfeng; ZHOU Shilu

    2013-01-01

    This study investigated the removal of heavy metal ions from cigarette mainstream smoke using chitosan.Chitosan of various deacetylation degrees and molecular weights were manually added to cigarette filters in different dosages.The mainstream smoke particulate matter was collected by a Cambridge filter pad,digested by a microwave digestor,and then analyzed for contents of heavy metal ions,including As(Ⅲ/Ⅴ),Pb(Ⅱ),Cd(Ⅱ),Cr(Ⅲ/Ⅵ) and Ni(Ⅱ),by graphite furnace atomic absorption spectrometry (GFAAS).The results showed that chitosan had a removal effect on Pb(Ⅱ),Cd(Ⅱ),Cr(Ⅲ/Ⅵ) and Ni(Ⅱ).Of these,the percent removal of Ni(Ⅱ) was elevated with an increasing dosage of chitosan.Chitosan of a high deace tylation degree exhibited good binding performance toward Cd(Ⅱ),Cr(Ⅲ/Ⅵ) and Ni(Ⅱ),though with poor efficiency for Pb(Ⅱ).Except As(Ⅲ/Ⅴ),all the tested metal ions showed similar tendencies in the growing contents with an increasing chitosan molecular weight.Nonetheless,the percent removal of Cr(Ⅲ/Ⅵ) peaked with a chitosan molecular weight of 200 kDa,followed by a dramatic decrease with an increasing chitosan molecular weight.Generally,chitosan had different removal effects on four out of five tested metal ions,and the percent removal of Cd(Ⅱ),Pb(Ⅱ),Cr(Ⅲ/Ⅵ) and Ni(Ⅱ) was approximately 55%,45%,50%,and 16%,respectively.In a word,chitosan used in cigarette filter can remove toxic heavy metal ions in the mainstream smoke,improve cigarette safety,and reduce the harm to smokers.

  11. Effectiveness of chitosan on the inactivation of enteric viral surrogates.

    Science.gov (United States)

    Davis, Robert; Zivanovic, Svetlana; D'Souza, Doris H; Davidson, P Michael

    2012-10-01

    Chitosan is known to have bactericidal and antifungal activity. Although human noroviruses are the leading cause of non-bacterial gastroenteritis, information on the efficacy of chitosan against foodborne viruses is very limited. The objective of this work was to determine the effectiveness of different molecular weight chitosans against the cultivable human norovirus and enteric virus surrogates, feline calicivirus, FCV-F9, murine norovirus, MNV-1, and bacteriophages, MS2 and phiX174. Five purified chitosans (53, 222, 307, 421, ~1150 kDa) were dissolved in water, 1% acetic acid, or aqueous HCl pH = 4.3, sterilized by membrane filtration, and mixed with equal volume of virus to obtain a final concentration of 0.7% chitosan and 5 log(10) PFU/ml virus. Virus-chitosan suspensions were incubated for 3 h at 37 °C. Untreated viruses in PBS, in PBS with acetic acid, and in PBS with HCl were tested as controls. Each experiment was run in duplicate and replicated at least twice. Water-soluble chitosan (53 kDa) reduced phiX174, MS2, FCV-F9 and MNV-1 titers by 0.59, 2.44, 3.36, and 0.34 log(10) PFU/ml respectively. Chitosans in acetic acid decreased phiX174 by 1.19-1.29, MS2 by 1.88-5.37, FCV-F9 by 2.27-2.94, and MNV-1 by 0.09-0.28 log(10) PFU/ml, respectively. Increasing the MW of chitosan corresponded with an increasing antiviral effect on MS2, but did not appear to play a role for the other three tested viral surrogates. Overall, chitosan treatments showed the greatest reduction for FCV-F9, and MS2 followed by phiX174, and with no significant effect on MNV-1.

  12. Characterization and electrical properties of chitosan for waste water treatment

    Science.gov (United States)

    Saengkaew, Phannee; Chantanachai, Kanittha; Cheewajaroen, Kulthawat; Nimsiri, Woraporn

    2016-05-01

    Chitosan extracted from shrimp shell waste was characterized in order to use for the industrial wastewater treatment. By XRF technique, the qualitative and semi-quantitative analyses of pure chitosan were performed with the relative compositions of Ca, Mg, Si, Fe, Al, and Na of 0.321%, 0.738%, 0.713%, 0.363%, 0.338%, and 3.858%, respectively. In the case of two types of the contaminated chitosan from the wastewater treatment before and after a process of a primary H2O2-treatment, the relative compositions of Ca, Mg, Si and Fe were obtained with an increasing of 0.356%, 1.321%, 1.536%, 0.451% and 0.406%, 1.105%, 1.178%, 0.591%, respectively. This shows that the suspended materials in the wastewater were absorbed by chitosan. By I-V Measurements, the across-through voltage of the pure chitosan disc was 0.245V±0.053 at the applied voltage of 17V, and resistance of 53.9MΩ ±10.3 at the applied voltage of 590V. After the utilization for the wastewater treatment, the across voltage of chitosan discs from two cases were 0.133V±0.047 and 0.223V±0.063, and the resistance of 122.8MΩ ±16.1 and 24.8MΩ ±5.1. The used chitosan has a lower conductivity because of a decreasing in the chitosan's electrical dipoles by combining with the suspended ions in the wastewater. Moreover, the adsorption efficiencies of chitosan for formaldehyde in the wastewater of two cases were 31.08% and 25.40%. In summary, chitosan is efficiently utilized in the wastewater treatment by absorption of the suspended materials and formaldehyde due to its molecular structure providing a good electrical property.

  13. SOLID-STATE FERMENTATIVE PRODUCTION AND BIOACTIVITY OF FUNGAL CHITOSAN

    Directory of Open Access Journals (Sweden)

    Barry Aigbodion Omogbai

    2013-10-01

    Full Text Available Chitosan production was investigated using a laboratory-scale solid substrate fermentation (SSF technique with four species of fungi: Penicillium expansum, Aspergillus niger, Rhizopus oryzae and Fusarium moniliforme.The peak growth for the organisms was after 16 days. Aspergillus niger had the highest growth with a maximal dry cell biomass of 15.8g/kg after 16 days cultivation on corn straw under solid substrate fermentation. This was closely followed by Rhizopus oryzae (14.6g/kg, Penicillium expansum (13.8g/kg and Fusarium moniliforme (10.6g/kg respectively. The fungus Rhizopus oryzae had the highest chitosan production with a maximum of 8.57g/kg in 16 days under solid substrate fermentation (SSF with a medium containing corn straw. Aspergillus niger showed a modest chitosan yield of 6.8g/kg. Penicillium expansum and Fusarium moniliforme had low chitosan yields of 4.31g/kg and 3.1g/kg respectively. The degree of deacetylation of fungal chitosans ranged between 75.3-91.5% with a viscosity of 3.6-7.2 centipoises (Cp.Chitosan extracted from Rhizopus oryzae was found to have antibacterial activity on some bacterial isolates. At a concentration of 50mg/L, Rhizopus oryzae chitosan paralleled crab chitosan in susceptibility testing against some food-borne bacterial pathogens. Escherichia coli, Salmonella typhi, Pseudomonas aeruginosa and Bacillus subtilis showed inhibition rates of 83.2%, 67.9%, 63.8% and 62.4% respectively in response to 50mg/l Rhizopus oryzae chitosan in 24 h. The rate of inhibition (% increased with increase in chitosan concentration.

  14. Intranasal, siRNA Delivery to the Brain by TAT/MGF Tagged PEGylated Chitosan Nanoparticles

    Directory of Open Access Journals (Sweden)

    Meenakshi Malhotra

    2013-01-01

    Full Text Available Neurodegeneration is characterized by progressive loss of structure and function of neurons. Several therapeutic methods and drugs are available to alleviate the symptoms of these diseases. The currently used delivery strategies such as implantation of catheters, intracarotid infusions, surgeries, and chemotherapies are invasive in nature and pose a greater risk of postsurgical complications, which can have fatal side effects. The current study utilizes a peptide (TAT and MGF tagged PEGylated chitosan nanoparticle formulation for siRNA delivery, administered intranasally, which can bypass the blood brain barrier. The study investigates the optimal dose, duration, biodistribution, and toxicity, of the nanoparticle-siRNA formulation, in-vivo. The results indicate that 0.5 mg/kg of siRNA is delivered successfully to the hippocampus, thalamus, hypothalamus, and Purkinje cells in the cerebellum after 4 hrs of post intranasal delivery. The results indicate maximum delivery to the brain in comparison to other tissues with no cellular toxic effects. This study shows the potential of peptide-tagged PEGylated chitosan nanoparticles to be delivered intranasally and target brain tissue for the treatment of neurological disorders.

  15. Effects of chitosan solution concentration and incorporation of chitin and glycerol on dense chitosan membrane properties.

    Science.gov (United States)

    Dallan, Paula Rulf Marreco; Moreira, Patrícia da Luz; Petinari, Leandro; Malmonge, Sônia Maria; Beppu, Marisa Masumi; Genari, Selma Candelária; Moraes, Angela Maria

    2007-02-01

    The aim of this work was to perform a systematic study about the effects induced by chitosan solution concentration and by chitin or glycerol incorporation on dense chitosan membranes with potential use as burn dressings. The membrane properties analyzed were total raw material cost, thickness, morphology, swelling ratio, tensile strength, percentage of strain at break, crystallinity, in vitro enzymatic degradation with lysozyme, and in vitro Vero cells adhesion. While the use of the most concentrated chitosan solution (2.5% w/w) increased membrane cost, it also improved the biomaterial mechanical resistance and ductility, as well as reduced membrane degradation when exposed for 2 months to lysozyme. The remaining evaluated properties were not affected by initial chitosan solution concentration. Chitin incorporation, on the other hand, reduced the membranes cost, swelling ratio, mechanical properties, and crystallinity, resulting in thicker biomaterials with irregular surface more easily degradable when exposed to lysozyme. Glycerol incorporation also reduced the membranes cost and crystallinity and increased membranes degradability after exposure to lysozyme. Strong Vero cells adhesion was not observed in any of the tested membrane formulations. The overall results indicate that the majority of the prepared membranes meet the performance requirements of temporary nonbiodegradable burn dressings (e.g. adequate values of mechanical resistance and ductility, low values of in vitro cellular adhesion on their surfaces, low extent of degradation when exposed to lysozyme solution, and high stability in aqueous solutions).

  16. General artificial neuron

    Science.gov (United States)

    Degeratu, Vasile; Schiopu, Paul; Degeratu, Stefania

    2007-05-01

    In this paper the authors present a model of artificial neuron named the general artificial neuron. Depending on application this neuron can change self number of inputs, the type of inputs (from excitatory in inhibitory or vice versa), the synaptic weights, the threshold, the type of intensifying functions. It is achieved into optoelectronic technology. Also, into optoelectronic technology a model of general McCulloch-Pitts neuron is showed. The advantages of these neurons are very high because we have to solve different applications with the same neural network, achieved from these neurons, named general neural network.

  17. Methotrexate-loaded PEGylated chitosan nanoparticles: synthesis, characterization, and in vitro and in vivo antitumoral activity.

    Science.gov (United States)

    Chen, Juan; Huang, Liuqing; Lai, Huixian; Lu, Chenghao; Fang, Ming; Zhang, Qiqing; Luo, Xuetao

    2014-07-07

    Cancer nanotherapeutics are rapidly progressing and being implemented to solve several limitations of conventional drug delivery systems. In this paper, we report a novel strategy of preparing methotrexate (MTX) nanoparticles based on chitosan (CS) and methoxypoly(ethylene glycol) (mPEG) used as nanocarriers to enhance their targeting and prolong blood circulation. MTX and mPEG-conjugated CS nanoparticles (NPs) were prepared and evaluated for their targeting efficiency and toxicity in vitro and in vivo. The MTX-mPEG-CS NP size determined by dynamic light scattering was 213 ± 2.0 nm with a narrow particle size distribution, and its loading content (LC %) and encapsulation efficiency (EE) were 44.19 ± 0.64% and 87.65 ± 0.79%, respectively. In vitro release behavior of MTX was investigated. In vivo optical imaging in mice proved that MTX was released from particles subsequently and targeted to tumor tissue, showing significantly prolonged retention and specific selectivity. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay obviously indicated that the higher inhibition efficiency of MTX-mPEG-CS NPs meant that much more MTX was transferred into the tumor cells. A significant right-shift in the flow cytometry (FCM) assay demonstrated that MTX-loaded nanoparticles were far superior to a pure drug in the inhibition of growth and proliferation of Hela cells. These results suggest that MTX-mPEG-CS NPs could be a promising targeting anticancer chemotherapeutic agent, especially for cervical carcinoma.

  18. Chitosan-collagen porous scaffold and bone marrow mesenchymal stem cell transplantation for ischemic stroke

    Institute of Scientific and Technical Information of China (English)

    Feng Yan; Wei Yue; Yue-lin Zhang; Guo-chao Mao; Ke Gao; Zhen-xing Zuo; Ya-jing Zhang; Hui Lu

    2015-01-01

    In this study, we successfully constructed a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffoldin vitro, transplanted either the composite or bone marrow mesenchymal stem cells alone into the ischemic area in animal models, and compared their effects. At 14 days after co-transplantation of bone marrow mesenchymal stem cells and the hi-tosan-collagen scaffold, neurological function recovered noticeably. Vascular endothelial growth factor expression and nestin-labeled neural precursor cells were detected in the ischemic area, surrounding tissue, hippocampal dentate gyrus and subventricular zone. Simultaneously, a high level of expression of glial ifbrillary acidic protein and a low level of expression of neuron-spe-ciifc enolase were visible in BrdU-labeled bone marrow mesenchymal stem cells. These ifndings suggest that transplantation of a composite of bone marrow mesenchymal stem cells and a chi-tosan-collagen scaffold has a neuroprotective effect following ischemic stroke.

  19. Folate-Chitosan Nanoparticles Loaded with Ursolic Acid Confer Anti-Breast Cancer Activities in vitro and in vivo

    Science.gov (United States)

    Jin, Hua; Pi, Jiang; Yang, Fen; Jiang, Jinhuan; Wang, Xiaoping; Bai, Haihua; Shao, Mingtao; Huang, Lei; Zhu, Haiyan; Yang, Peihui; Li, Lihua; Li, Ting; Cai, Jiye; Chen, Zheng W.

    2016-07-01

    Ursolic acid (UA) has proved to have broad-spectrum anti-tumor effects, but its poor water solubility and incompetent targeting property largely limit its clinical application and efficiency. Here, we synthesized a nanoparticle-based drug carrier composed of chitosan, UA and folate (FA-CS-UA-NPs) and demonstrated that FA-CS-UA-NPs could effectively diminish off-target effects and increase local drug concentrations of UA. Using MCF-7 cells as in vitro model for anti-cancer mechanistic studies, we found that FA-CS-UA-NPs could be easily internalized by cancer cells through a folate receptor-mediated endocytic pathway. FA-CS-UA-NPs entered into lysosome, destructed the permeability of lysosomal membrane, and then got released from lysosomes. Subsequently, FA-CS-UA-NPs localized into mitochondria but not nuclei. The prolonged retention of FA-CS-UA-NPs in mitochondria induced overproduction of ROS and destruction of mitochondrial membrane potential, and resulted in the irreversible apoptosis in cancer cells. In vivo experiments showed that FA-CS-UA-NPs could significantly reduce breast cancer burden in MCF-7 xenograft mouse model. These results suggested that FA-CS-UA-NPs could further be explored as an anti-cancer drug candidate and that our approach might provide a platform to develop novel anti-cancer drug delivery system.

  20. Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy

    Directory of Open Access Journals (Sweden)

    Miele E

    2012-07-01

    treatment regimens in a substantial way. These nanoparticles could be designed to surmount one or more of the barriers encountered by siRNA. Nanoparticle drug formulations afford the chance to improve drug bioavailability, exploiting superior tissue permeability, payload protection, and the “stealth” features of these entities. The main aims of this review are: to explain the siRNA mechanism with regard to potential applications in siRNA-based cancer therapy; to discuss the possible usefulness of nanoparticle-based delivery of certain molecules for overcoming present therapeutic limitations; to review the ongoing relevant clinical research with its pitfalls and promises; and to evaluate critically future perspectives and challenges in siRNA-based cancer therapy.Keywords: small interfering RNA, nanoparticles, cancer therapy, delivery strategies, biological barriers, clinical trials

  1. A silver nanoparticle-based method for determination of antioxidant capacity of rapeseed and its products.

    Science.gov (United States)

    Szydłowska-Czerniak, Aleksandra; Tułodziecka, Agnieszka; Szłyk, Edward

    2012-08-21

    A novel silver nanoparticle-based (AgNP) method and two modified procedures, ferric reducing antioxidant power (FRAP) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH), were used for determination of antioxidant capacities of the ethanolic, methanolic, methanolic-aqueous (1 : 1 v/v) and aqueous extracts of rapeseed and its products. The AgNP method based on the electron-transfer reaction between silver ions and antioxidants in an optimized ammonium buffer medium (pH = 8.4) and determination of silver nanoparticle formation has been elaborated. The novel AgNP method was validated using sinapic acid, gallic acid, caffeic acid, ascorbic acid and quercetin as standard antioxidant solutions in concentration ranges of 0.03-0.21 µmol mL(-1), 0.02-0.20 µmol mL(-1), 0.01-0.18 µmol mL(-1), 0.03-0.30 µmol mL(-1) and 0.001-0.009 µmol mL(-1). The calculated detection (DL = 0.01, 0.02, 0.009, 0.02 and 0.0004 µmol mL(-1) for sinapic, gallic, caffeic, ascorbic acids and quercetin, respectively) and quantification limits (QL = 0.04, 0.06, 0.03, 0.08 and 0.001 µmol mL(-1) for sinapic, gallic, caffeic, ascorbic acids and quercetin, respectively) confirm linearity concentration ranges for determination of antioxidant capacity by AgNP assay. The average antioxidant capacities of the studied rapeseed samples ranged between 14.7 and 126.2 µmol sinapic acid per gram for the proposed AgNP method, 7.4-112.7 µmol sinapic acid per gram for the FRAP method and 39.1-339.8 µmol sinapic acid per gram for DPPH assay. The methanol-water mixture (1:1 v/v) was the most efficient solvent for extraction of antioxidants from the studied rapeseed samples. There are significant, positive correlations between the novel AgNP and the modified FRAP, DPPH and FC methods for all extracts of the studied rapeseed samples (r = 0.7564-0.8516, p extracts) demonstrate the benefit of the proposed AgNP method for analysis of the antioxidant capacity of rapeseed samples. Results of the principal component analysis

  2. Zinc oxide nanoparticles based microfluidic immunosensor applied in congenital hypothyroidism screening.

    Science.gov (United States)

    Seia, Marco A; Pereira, Sirley V; Fernández-Baldo, Martin A; De Vito, Irma E; Raba, Julio; Messina, Germán A

    2014-07-01

    In this article, we present an innovative approach for congenital hypothyroidism (CHT) screening. This pathology is the most common preventable cause of mental retardation, affecting newborns around the world. Its consequences could be avoided with an early diagnosis through the thyrotropin (TSH) level measurement. To accomplish the determination of TSH, synthesized zinc oxide (ZnO) nanobeads (NBs) covered by chitosan (CH), ZnO-CH NBs, were covalently attached to the central channel of the designed microfluidic device. These beads were employed as platform for anti-TSH monoclonal antibody immobilization to specifically recognize and capture TSH in neonatal samples without any special pretreatment. Afterwards, the amount of this trapped hormone was quantified by horseradish peroxidase (HRP)-conjugated anti-TSH antibody. HRP reacted with its enzymatic substrate in a redox process, which resulted in the appearance of a current whose magnitude was directly proportional to the level of TSH in the neonatal sample. The structure and morphology of synthesized ZnO-CH NBs were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The calculated detection limits for electrochemical detection and the enzyme-linked immunosorbent assay procedure were 0.00087 μUI mL(-1) and 0.015 μUI mL(-1), respectively, and the within- and between-assay coefficients of variation were below 6.31% for the proposed method. According to the cut-off value for TSH neonatal screening, a reasonably good limit of detection was achieved. These above-mentioned features make the system advantageous for routine clinical analysis adaptation.

  3. Chitosan as an edible invisible film for quality preservation of herring and atlantic cod.

    Science.gov (United States)

    Jeon, You-Jin; Kamil, Janak Y V A; Shahidi, Fereidoon

    2002-08-28

    The effect of chitosan with different molecular weights as coatings for shelf-life extension of fresh fillets of Atlantic cod (Gadus morhua) and herring (Clupea harengus) was evaluated over a 12-day storage at refrigerated temperature (4 +/- 1 degrees C). Three chitosan preparations from snow crab (Chinoecetes opilio) processing wastes, differing in viscosities and molecular weights, were prepared; their apparent viscosities (360, 57, and 14 cP) depended on the deacetylation time (4, 10, and 20 h, respectively) of the chitin precursor. Upon coating with chitosans, a significant (p chitosan after 4, 6, 8, 10, and 12 days of storage, respectively. Chitosan coating significantly (p chitosan were inter-related; the efficacy of chitosans with viscosities of 57 and 360 cP was superior to that of chitosan with a 14 cP viscosity. Thus, chitosan as edible coating would enhance the quality of seafoods during storage.

  4. Effects of Partially N-acetylated Chitosans to Elicit Resistance Reaction on Brassica napus L.

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xue-kun; TANG Zhang-lin; CHEN Li; GUO Yi-hong; CHEN Yun-ping; LI Jia-na

    2002-01-01

    The effects to elicit resistance reaction on oilseed rape (Brassica napus L. cv Xinongchangjiao )by four partially N-acetylated chitosan 7B, 8B, 9B and 10B (Degree of acetylation (D. A. ) is 30%, 20%,10%, 0%, respectively) and Glycol chitosan (GC, D.A. is 0%) were investigated and compared. Results showed that chitosan were similar to salicylic acid (SA), and could induce resistance reaction, but the reaction was influenced by the degree of acetylation of chitosan. Fully deacetylated chitosans, 10B and GC, elicited chitinase activity, but partially acetylated chitosan, 7B, 8B and 9B, inhibited chitinase activity. Phenyalanine ammonia-lyase (PAL) was also elicited. Elicitor activity increased with on increasing degree of acetylation, 7B induced highest PAL activity among all chitosans. All chitosans induced peroxidase (POD) in a similar level.After elicited by glycol chitosan, like SA treatment, the seedlings increased disease resistance to Sclerotinia sclerotiorum significantly.

  5. Data of 1H/13C NMR spectra and degree of substitution for chitosan alkyl urea

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2016-06-01

    Full Text Available The data shown in this article are related to the subject of an article in Carbohydrate Polymers, entitled “Synthesis and characterization of chitosan alkyl urea” [1]. 1H NMR and 13C NMR spectra of chitosan n-octyl urea, chitosan n-dodecyl urea and chitosan cyclohexyl urea are displayed. The chemical shifts of proton and carbon of glucose skeleton in these chitosan derivatives are designated in detail. Besides, 1H NMR spectra of chitosan cyclopropyl urea, chitosan tert-butyl urea, chitosan phenyl urea and chitosan N,N-diethyl urea and the estimation of the degree of substitution are also presented. The corresponding explanations can be found in the above-mentioned article.

  6. Degradation and compatibility behaviors of poly(glycolic acid) grafted chitosan.

    Science.gov (United States)

    Zhang, Luzhong; Dou, Sufeng; Li, Yan; Yuan, Ying; Ji, Yawei; Wang, Yaling; Yang, Yumin

    2013-07-01

    The films of poly(glycolic acid) grafted chitosan were prepared without using a catalyst to improve the degradable property of chitosan. The films were characterized by Fourier transform-infrared spectroscopy and X-ray photoelectron spectroscopy (XPS). The degradation of the poly(glycolic acid) grafted chitosan films were investigated in the lysozyme solution. In vitro degradation tests revealed that the degradation rate of poly(glycolic acid) grafted chitosan films increased dramatically compared with chitosan. The degradation rate of poly(glycolic acid) grafted chitosan films gradually increased with the increasing of the molar ratio of glycolic acid to chitosan. Additionally, the poly(glycolic acid) grafted chitosan films have good biocompatibility, as demonstrated by in vitro cytotoxicity of the extraction fluids. The biocompatible and biodegradable poly(glycolic acid) grafted chitosan would be an effective material with controllable degradation rate to meet the diverse needs in biomedical fields.

  7. Chitosan-coupled solid lipid nanoparticles: Tuning nanostructure and mucoadhesion.

    Science.gov (United States)

    Sandri, Giuseppina; Motta, Simona; Bonferoni, Maria Cristina; Brocca, Paola; Rossi, Silvia; Ferrari, Franca; Rondelli, Valeria; Cantù, Laura; Caramella, Carla; Del Favero, Elena

    2017-01-01

    Solid Lipid Nanoparticles (SLNs) composed of biodegradable physiological lipids have been widely proposed as efficient drug delivery systems, also for ophthalmic administration. Recently, chitosan-associated-SLNs have been developed to further improve the residence time of these colloidal systems in the precorneal area by means of mucoadhesive interaction. In the present study, a one-step preparation protocol was used aiming both at scale-up ease and at stronger coupling between chitosan and SLNs. The resulting particles were chitosan associated-SLNs (CS-SLNs). These nanoparticles were characterized, as compared to both the chitosan-free and the usual chitosan-coated ones, by applying a multi-technique approach: light, neutron and X-ray scattering, Zeta-potential, AFM, calorimetry. It was assessed that, while keeping the features of nano-size and surface-charge required for an efficient vector, these new nanoparticles display a strong and intimate interaction between chitosan and SLNs, far more settled than the usual simple coverage. Moreover, this one-step preparation method allows to obtain a strong and intimate interaction between chitosan and SLNs, firmer than the usual simple coating. This confers to the CS-SLNs an improved mucoadhesion, opening the way for a high-performing ophthalmic formulation.

  8. Functional gene silencing mediated by chitosan/siRNA nanocomplexes

    Energy Technology Data Exchange (ETDEWEB)

    Ji, A M; Su, D; Che, O; Li, W S; Sun, L; Zhang, Z Y; Xu, F [Department of Pharmaceutical Science, Zhujiang Hospital, Southern Medical University, Guangzhou 510282 (China); Yang, B, E-mail: andrewfxu1998@gmail.co [Department of Chemistry, Indiana University-Bloomington, Bloomington, IN 47405 (United States)

    2009-10-07

    Chitosan/siRNA nanoparticles to knock down FHL2 gene expression were reported in this work. The physicochemical properties such as particle size, surface charge, morphology and complex stability of chitosan nanoparticle-incorporated siRNA were evaluated. Nanoparticles which were formulated with chitosan/siRNA exhibited irregular, lamellar and dendritic structures with a hydrodynamic radius size of about 148 nm and net positive charges with zeta-potential value of 58.5 mV. The knockdown effect of the chitosan/siRNA nanoparticles on gene expression in FHL2 over-expressed human colorectal cancer Lovo cells was investigated. The result showed that FHL2 siRNA formulated within chitosan nanoparticles could knock down about 69.6% FHL2 gene expression, which is very similar to the 68.8% reduced gene expression when siRNA was transfected with liposome Lipofectamine. Western analysis further showed significant FHL-2 protein expression reduced by the chitosan/siRNA nanoparticles. The results also showed that blocking FHL2 expression by siRNA could also inhibit the growth and proliferation of human colorectal cancer Lovo cells. The current results demonstrated that chitosan-based siRNA nanoparticles were a very efficient delivery system for siRNA in vivo as previously reported.

  9. Evaluation of Hemagglutination Activity of Chitosan Nanoparticles Using Human Erythrocytes

    Directory of Open Access Journals (Sweden)

    Jefferson Muniz de Lima

    2015-01-01

    Full Text Available Chitosan is a polysaccharide composed of randomly distributed chains of β-(1-4 D-glucosamine and N-acetyl-D-glucosamine. This compound is obtained by partial or total deacetylation of chitin in acidic solution. The chitosan-based hemostatic agents have been gaining much attention in the management of bleeding. The aim of this study was to evaluate in vitro hemagglutination activity of chitosan nanoparticles using human erythrocytes. The preparation of nanoparticles was achieved by ionotropic gelification technique followed by neutralization with NaOH 1 mol/L−1. The hemagglutination activity was performed on a solution of 2% erythrocytes (pH 7.4 on PBS collected from five healthy volunteers. The hemolysis determination was made by spectrophotometric analysis. Chitosan nanoparticle solutions without NaOH addition changed the reddish colour of the wells into brown, suggesting an oxidative reaction of hemoglobin and possible cell lysis. All neutralized solutions of chitosan nanoparticles presented positive haemagglutination, without any change in reaction color. Chitosan nanoparticles presented hemolytic activity ranging from 186.20 to 223.12%, while neutralized solutions ranged from 2.56 to 72.54%, comparing to distilled water. Results highlight the need for development of new routes of synthesis of chitosan nanoparticles within human physiologic pH.

  10. Evaluation of hemagglutination activity of chitosan nanoparticles using human erythrocytes.

    Science.gov (United States)

    de Lima, Jefferson Muniz; Sarmento, Ronaldo Rodrigues; de Souza, Joelma Rodrigues; Brayner, Fábio André; Feitosa, Ana Paula Sampaio; Padilha, Rafael; Alves, Luiz Carlos; Porto, Isaque Jerônimo; Batista, Roberta Ferreti Bonan Dantas; de Oliveira, Juliano Elvis; de Medeiros, Eliton Souto; Bonan, Paulo Rogério Ferreti; Castellano, Lúcio Roberto

    2015-01-01

    Chitosan is a polysaccharide composed of randomly distributed chains of β-(1-4) D-glucosamine and N-acetyl-D-glucosamine. This compound is obtained by partial or total deacetylation of chitin in acidic solution. The chitosan-based hemostatic agents have been gaining much attention in the management of bleeding. The aim of this study was to evaluate in vitro hemagglutination activity of chitosan nanoparticles using human erythrocytes. The preparation of nanoparticles was achieved by ionotropic gelification technique followed by neutralization with NaOH 1 mol/L(-1). The hemagglutination activity was performed on a solution of 2% erythrocytes (pH 7.4 on PBS) collected from five healthy volunteers. The hemolysis determination was made by spectrophotometric analysis. Chitosan nanoparticle solutions without NaOH addition changed the reddish colour of the wells into brown, suggesting an oxidative reaction of hemoglobin and possible cell lysis. All neutralized solutions of chitosan nanoparticles presented positive haemagglutination, without any change in reaction color. Chitosan nanoparticles presented hemolytic activity ranging from 186.20 to 223.12%, while neutralized solutions ranged from 2.56 to 72.54%, comparing to distilled water. Results highlight the need for development of new routes of synthesis of chitosan nanoparticles within human physiologic pH.

  11. Synthesis and application of magnetic chitosan nanoparticles in oilfield

    Science.gov (United States)

    Lian, Qi; Zheng, Xuefang

    2016-01-01

    The novel magnetic Co0.5Mn0.5Fe2O4-chitosan nanoparticles has the advantage of excellent biodegradation and a high level of controllability. The Co0.5Mn0.5Fe2O4-chitosan nanoparticles was prepared successfully. The size of the Co0.5Mn0.5Fe2O4-chitosan nanoparticles were all below 100 nm. The saturated magnetization of the Co0.5Mn0.5Fe2O4-chitosan nanoparticles could reach 80 emu/g and showed the characteristics of superparamagnetism at the same time. The image of TEM and SEM electron microscopy showed that the cubic-shape magnetic Co0.5Mn0.5Fe2O4 particles were encapsulated by the spherical chitosan nanoparticles. The evaluation on the interfacial properties of the product showed that the interfacial tension between crude oil and water could be reduce to ultra-low values as low as 10-3 mN/m when the magnetic Co0.5Mn0.5Fe2O4-chitosan nanoparticle was used in several blocks in Shengli Oilfield without other additives. Meanwhile, the magnetic Co0.5Mn0.5Fe2O4-chitosan nanoparticles possessed good salt-resisting capacity.

  12. Bromine pretreated chitosan for adsorption of lead (II) from water

    Indian Academy of Sciences (India)

    Rajendra Dongre; Minakshi Thakur; Dinesh Ghugal; Jostna Meshram

    2012-10-01

    Pollution by heavy metals like lead (II) is responsible for health hazards and environmental degradation. Adsorption is a prevalent method applied for removal of heavy metal pollutants from water. This study explored adsorption performances of 30% bromine pretreated chitosan for lead (II) abatement from water. Bromine pretreatment alters porosity and specific surface area of chitosan by means of physicochemical interaction with cationic sites of chitosan skeleton, besides imparting anionic alteration at amino linkages of chitosan, to remove lead (II) by chemical interactions on superfluous active sites as characterized by FTIR, SEM, DTA and elemental analysis. Lead adsorptions were studied in batch mode by varying parameters viz. pH, bromine loading, sorbent dosage, initial lead concentration, contact time and temperature. The adsorption equilibrium data was well fitted to Freundlich isotherm and maximum sorption capacity of 30% bromine pretreated chitosan sorbent was 1.755 g/kg with 85–90% lead removal efficiency. Though cost and applicability of sorbent is unproven, yet contrast to raw chitosan derivatives, activated carbons and some resins, 30% bromine pretreated chitosan endow benign and efficient lead abatement technique.

  13. Rheological and structural studies of carboxymethyl derivatives of chitosan

    Science.gov (United States)

    Winstead, Cherese; Katagumpola, Pushpika

    2014-05-01

    The degrees of substitution of chitosan derivatives were varied and the viscoelastic behavior of these biopolymer solutions was studied using rheology. Chitosan is a cationic copolymer of glucosamine and N-acetylglucosamine obtained by alkaline deacetylation of chitin. Due to its inherent non-toxicity, biocompatibility, and biodegradability, chitosan has gained much interest. However, the poor solubility of the biopolymer in water and most common organic solvents limits its applications. Therefore, the focus of this work is the chemical modification of chitosan via carboxymethylation as well as studying the viscoelastic behavior of these polymer solutions. Varying degrees of substitution (DS) of carboxymethyl chitosan derivatives were synthesized by treating chitosan with monochloroacetic acid under alkylated medium varying the reaction time and temperature. The effect of degree of substitution on the rheology of these polymer solutions was studied as a function of concentration. The viscosity of chitosan derivatives sharply increased with increase in degree of substitution. G' and G" dependence on strain and angular frequency were studied and were found to exhibit predominantly viscous behavior. Additional characterization of the derivatized products were further studied using Fourier transform infrared (FT-IR), 1H Nuclear Magnetic Resonance (1H NMR) spectroscopy, X-ray diffraction (XRD), and thermal gravimetric analysis as well as differential scanning calorimetry (DSC). Degree of substitution (DS) was calculated by titrimetric method.

  14. Physicochemical and biofunctional properties of crab chitosan nanoparticles.

    Science.gov (United States)

    Nguyen, The Han; Kwak, Hae Soo; Kim, Sang Moo

    2013-08-01

    The physicochemical and biofunctional properties of crab chitosan nanoparticles of two different sizes (Nano A and B) manufactured by dry milling method were evaluated for commercialization. The deacetylation degrees (DD) of Nano A, B and the control chitosan were 90.9, 93.0, and 92.7% respectively whereas their molecular weights (M(w)) were 43.9, 44.7 and 208.8 kDa. The average sizes of the dispersed Nano A, B and the control chitosan in cetyltrimethylammonium chloride were 735.9, 849.4 and 2,382.4 nm, respectively, which were lower than 1441.7, 2935.6 and 6832.9 nm of the intact chitosans. Chitosan nanoparticles had mild tyrosinase, antioxidant and angiotensin I converting enzyme (ACE), but weak collagenase, elastase and beta-glucuronidase inhibitory activity. However, Nano A had strong alpha-glucosidase inhibitory activity, which was comparable to that of acarbose, a commercial alpha-glucosidase inhibitor. In addition, the minimum inhibitory concentrations (MICs) of chitosan and its nanoparticles ranged from 30 to > 200 microg/mL against each four gram-positive and gram-negative bacteria. Therefore, crab chitosan nanoparticles could be used as a nutraceutical, cosmeceutical or pharmaceutical product.

  15. Rheological and structural studies of carboxymethyl derivatives of chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Winstead, Cherese; Katagumpola, Pushpika [Delaware State University, Department of Chemistry, 1200 N. Dupont Highway, Dover, DE 19901 (United States)

    2014-05-15

    The degrees of substitution of chitosan derivatives were varied and the viscoelastic behavior of these biopolymer solutions was studied using rheology. Chitosan is a cationic copolymer of glucosamine and N-acetylglucosamine obtained by alkaline deacetylation of chitin. Due to its inherent non-toxicity, biocompatibility, and biodegradability, chitosan has gained much interest. However, the poor solubility of the biopolymer in water and most common organic solvents limits its applications. Therefore, the focus of this work is the chemical modification of chitosan via carboxymethylation as well as studying the viscoelastic behavior of these polymer solutions. Varying degrees of substitution (DS) of carboxymethyl chitosan derivatives were synthesized by treating chitosan with monochloroacetic acid under alkylated medium varying the reaction time and temperature. The effect of degree of substitution on the rheology of these polymer solutions was studied as a function of concentration. The viscosity of chitosan derivatives sharply increased with increase in degree of substitution. G' and G' dependence on strain and angular frequency were studied and were found to exhibit predominantly viscous behavior. Additional characterization of the derivatized products were further studied using Fourier transform infrared (FT-IR), {sup 1}H Nuclear Magnetic Resonance ({sup 1}H NMR) spectroscopy, X-ray diffraction (XRD), and thermal gravimetric analysis as well as differential scanning calorimetry (DSC). Degree of substitution (DS) was calculated by titrimetric method.

  16. Synthesis and properties of Chitosan-silica hybrid aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Ayers, Michael R.; Hunt, Arlon J.

    2001-06-01

    Chitosan, a polymer that is soluble in dilute aqueous acid, is derived from chitin, a natural polyglucosamide. Aquagels where the solid phase consists of both chitosan and silica can be easily prepared by using an acidic solution of chitosan to catalyze the hydrolysis and condensation of tetraethylorthosilicate. Gels with chitosan/TEOS mass ratios of 0.1-1.1 have been prepared by this method. Standard drying processes using CO{sub 2} give the corresponding aerogels. The amount of chitosan in the gel plays a role in the shrinkage of the aerogel during drying. Gels with the lowest chitosan/silica ratios show the most linear shrinkage, up to 24%, while those with the highest ratios show only a 7% linear shrinkage. Pyrolysis at 700 C under nitrogen produces a darkened aerogel due to the thermal decomposition of the chitosan, however, the aerogel retains its monolithic form. The pyrolyzed aerogels absorb slightly more infrared radiation in the 2-5 {micro}m region than the original aerogels. B.E.T. surface areas of these aerogels range from 470-750 m{sup 2}/g. Biocompatibility screening of this material shows a very high value for hemolysis, but a low value for cytotoxicity.

  17. Transglutaminase-catalyzed grafting collagen on chitosan and its characterization.

    Science.gov (United States)

    Fan, Lihong; Wu, Huan; Zhou, Xiaoyu; Peng, Min; Tong, Jun; Xie, Weiguo; Liu, Shuhua

    2014-05-25

    Collagen grafted chitosan was prepared with microbial transglutaminase (MTGase) as biocatalyst which showed high efficiency, selectivity, mild reaction condition and environmental friendliness. The reaction conditions that influenced the degree of substitution (DS) were optimized, which included the reaction time, the reaction temperature, the mass ratio of collagen to chitosan and the mass ratio of MTGase to chitosan. In this study, the water-solubility collagen-chitosan could serve not only to reduce the loss of moisture but also to absorb the moisture. And the moisture absorption and moisture retention abilities were closely related to the DS values. In addition, in vitro antioxidant activity was evaluated in terms of DS values and concentration. Furthermore, L929 mouse fibroblasts were cultured with collagen-chitosan, and methylthiazol tetrazolium (MTT) assay exhibited that collagen-chitosan with DS of 0.660 displayed pronounced cell viability at 2.5mg/ml. Therefore, the water-soluble collagen-chitosan showed the potentiality to repair skin in cosmetic, biomedical and pharmaceutical fields.

  18. Fungal mycelium--the source of chitosan for chromatography.

    Science.gov (United States)

    Kucera, Jiri

    2004-08-25

    Mycelium of the mold Aspergillus niger was used as a raw material for the preparation of microbial chitosan. Aspergillus niger, the mold used for the production of citric acid, contains approx. 15% of chitin, which can be separated, transformed into chitosan, and used as a sorbent for chromatography. The main advantage of this material in comparison with krill chitosan is the uniformity of particle size leading to the low back-pressure in the column. The other advantage is the fact, that original fibrous structure of mycelial pellets could be stabilized before chitosan preparation by cross-linking with glutaraldehyde. The product prepared by this way -- crosslinked chitosan of uniform particle size, is highly porous, with high water regain and, as a result, low sedimentation velocity. Low sedimentation velocity is not disadvantage in chromatographic application, but may form some problems in batchwise operation. Chitosan as a polymer of glucosamine is anion exchanger in nature and the chromatographic properties of this anion exchanger was demonstrated by the chromatography of bovine blood plasma, glucose oxidase, and chicken pepsinogen. In all cases, the course of chromatography on crosslinked chitosan was compared with the chromatography on MONO Q (bovine blood plasma) or DEAE-cellulose (glucose oxidase, chicken pepsinogen) under the same protocol.

  19. Synthesis and evaluation of chitosan-Vitamin C complex

    Directory of Open Access Journals (Sweden)

    Tian X

    2009-01-01

    Full Text Available Chitosan is a biocompatible, biodegradable and non-toxic polysaccharide polymer. It dissolves in water only if the pH is lower than 6.5. To extend its range of application, many water-soluble derivatives have therefore been prepared. In this research, chitosan-vitamin C complex was synthesized and characterized with Fourier transformed infrared spectroscopy, differential scanning calorimetry and 1 H-NMR. The solubility of chitosan-vitamin C complex in distilled water was greatly improved. The ·O2 - scavenging activity of chitosan-vitamin C complex was compared with chitosan and vitamin C by measuring the auto-oxidation rate of pyrogallic acid. Results showed that the scavenging activity on ·O2 - by chitosan-vitamin C complex was stronger than that by CS. At low concentrations (< 0.05 mg/ml, the scavenging activity of chitosan-vitamin C complex was stronger than that of vitamin C, but after certain concentrations (>0.1mg/ml, its scavenging activity was lower than that of vitamin C.

  20. Thermal and magnetic properties of chitosan-iron oxide nanoparticles.

    Science.gov (United States)

    Soares, Paula I P; Machado, Diana; Laia, César; Pereira, Laura C J; Coutinho, Joana T; Ferreira, Isabel M M; Novo, Carlos M M; Borges, João Paulo

    2016-09-20

    Chitosan is a biopolymer widely used for biomedical applications such as drug delivery systems, wound healing, and tissue engineering. Chitosan can be used as coating for other types of materials such as iron oxide nanoparticles, improving its biocompatibility while extending its range of applications. In this work iron oxide nanoparticles (Fe3O4 NPs) produced by chemical precipitation and thermal decomposition and coated with chitosan with different molecular weights were studied. Basic characterization on bare and chitosan-Fe3O4 NPs was performed demonstrating that chitosan does not affect the crystallinity, chemical composition, and superparamagnetic properties of the Fe3O4 NPs, and also the incorporation of Fe3O4 NPs into chitosan nanoparticles increases the later hydrodynamic diameter without compromising its physical and chemical properties. The nano-composite was tested for magnetic hyperthermia by applying an alternating current magnetic field to the samples demonstrating that the heating ability of the Fe3O4 NPs was not significantly affected by chitosan.

  1. The Importance of Chitosan Films in Food Industry

    Directory of Open Access Journals (Sweden)

    Filiz Uçan

    2013-12-01

    Full Text Available Requirement simple technology, low production costs, lack of polluting effects and reliability in terms of health of it is the most important advantages of edible films. Chitosan that extend the shelf life of food and increase the economic efficiency of packaging materials is one of the new materials used for edible films. Chitosan was obtained by deacetylation of chitin which is the most commonly occurred polymer after cellulose in nature, in shells of arthropods such as crab, shrimp, lobster and in cell walls of some bacteria and fungi. Chitosan has the important bioactive properties such as hemostatic, bacteriostatic, fungistatic, spermicidal, anticarcinogenic, anticholesteremic, antacids, antiulcer, wound and bone healing accelerator and stimulating the immune system. As well as these features, the film forming and barrier properties of its, chitosan is made the ideal material for edible films and coatings in antimicrobial characters. Especially, in the protection of qualities and the improving storage times of fruits and vegetables, have been revealed the potential use of chitosan. The coating food with chitosan films reduces the oxygen partial pressure in the package, maintains temperature with moisture transfer between food and its environment, declines dehydration, delays enzymatic browning in fruits and controls respiration. In addition to, chitosan are also used on issues such as the increasing the natural flavour, setting texture, increasing of the emulsifying effect, stabilization of color and deacidification.

  2. Production and Characterization Chitosan Nano from Black Tiger Shrimpwith Ionic Gelation Methods

    Directory of Open Access Journals (Sweden)

    Laode Muhamad Hazairin Nadia

    2014-11-01

    Full Text Available Black tiger shrimp shell (Penaeus monodon has a potential as raw materials in the manufacturing process of nano-chitosan that contains chitin. The purposes of this study is to formed nano-chitosan through ionic gelation process and size reduction by magnetic stirrer and determine the characteristic of nano-chitosan based on morphology and size of nanoparticles. Nano-chitosan were formed by ionic gelation method, which is polyelectrolite complexation between the positively charged chitosan and negative charged tripolyphosphate. Yield of chitosan from Black Tiger Shrimp shell are 19,08%, while the yield of nano-chitosan by size reduction treatment using a magnetic stirrer is 80,67%. Value of the deacetylation degree from chitosan which is used to formed nano-chitosan is equal to 98,65%, it indicates the chitosan which is produced is a native chitosan. Nano-chitosan have an average size of 228.74 nm, fairly uniform, relatively stable and has a sphere like particle shape. Particle size reduction with magnetic stirrer, can distribute more homogeneous particle size. Added tripolyphosphate (TPP and surfactants (Tween 80 can enhance the mechanical properties of chitosan that are naturally fragile and enhanced formation if ionic crosslinking between chitosan molecules.

  3. Chitosan-nanosilica hybrid materials: Preparation and properties

    Energy Technology Data Exchange (ETDEWEB)

    Podust, T.V., E-mail: tania_list@yahoo.com [Chuiko Institute of Surface Chemistry, 17 General Naumov Street, Kyiv 03164 (Ukraine); Kulik, T.V., E-mail: tanyakulyk@i.ua [Chuiko Institute of Surface Chemistry, 17 General Naumov Street, Kyiv 03164 (Ukraine); Palyanytsya, B.B.; Gun’ko, V.M. [Chuiko Institute of Surface Chemistry, 17 General Naumov Street, Kyiv 03164 (Ukraine); Tóth, A. [Department of Physical Chemistry and Material Science, Budapest University of Technology and Economics, H-1521 Budapest (Hungary); Mikhalovska, L. [School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton BN2 4GJ (United Kingdom); Menyhárd, A. [Department of Physical Chemistry and Material Science, Budapest University of Technology and Economics, H-1521 Budapest (Hungary); Institute of Materials Science and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences (Hungary); László, K. [Department of Physical Chemistry and Material Science, Budapest University of Technology and Economics, H-1521 Budapest (Hungary)

    2014-11-30

    Highlights: • Hybrid chitosan-nanosilica materials were synthesized using an adsorption modification method. • The chitosan adsorption capacity is higher on the silica/titania and silica/alumina than on the fumed silica. • Nanosilicas undergo structural and textural alterations due to modification by chitosan. • The more severe chitosan thermodestruction occurs on the silica/titania and silica/alumina surfaces than on the plain silica surface. - Abstract: The research focuses on the synthesis of novel organic–inorganic hybrid materials based on polysaccharide chitosan and nanosilicas (SiO{sub 2}, TiO{sub 2}/SiO{sub 2} and Al{sub 2}O{sub 3}/SiO{sub 2}). The chitosan modified nanooxides were obtained by the equilibrium adsorption method. The chitosan adsorption capacities of silica/titania and silica/alumina are higher than of the plain silica due to the additional active sites present on the surfaces of the mixed oxides. The hybrid materials were characterized by low-temperature nitrogen adsorption/desorption, photon correlation spectroscopy (PCS), scanning electron microscopy (SEM), thermogravimetry (TG/DTG) and temperature-programmed desorption with mass spectrometry control (TPD MS) methods. The chitosan treatment only modestly influences the surface area S{sub BET} of the nanooxides but the rearrangement of the secondary and tertiary structures (aggregates and agglomerates) results in an enhancement of the mesoporosity and affects the size of the aggregates. The more severe thermodestruction of the polysaccharide desorbing from the modified mixed silicas indicates a stronger interaction between the chitosan and the mixed oxides compared to the silanol groups of the plain silica surface.

  4. NEURON and Python

    OpenAIRE

    Michael Hines; Davison, Andrew P.; Eilif Muller

    2009-01-01

    The NEURON simulation program now allows Python to be used, alone or in combination with NEURON's traditional Hoc interpreter. Adding Python to NEURON has the immediate benefit of making available a very extensive suite of analysis tools written for engineering and science. It also catalyzes NEURON software development by offering users a modern programming tool that is recognized for its flexibility and power to create and maintain complex programs. At the same time, nothing is lost because ...

  5. Chitosan: A Promising Marine Polysaccharide for Biomedical Research.

    Science.gov (United States)

    Periayah, Mercy Halleluyah; Halim, Ahmad Sukari; Saad, Arman Zaharil Mat

    2016-01-01

    Biomaterials created 50 years ago are still receiving considerable attention for their potential to support development in the biomedical field. Diverse naturally obtained polysaccharides supply a broad range of resources applicable in the biomedical field. Lately, chitosan, a marine polysaccharide derived from chitins-which are extracted from the shells of arthropods such as crab, shrimp, and lobster-is becoming the most wanted biopolymer for use toward therapeutic interventions. This is a general short review of chitosan, highlighting the history, properties, chemical structure, processing method, and factors influencing the usage of chitosan derivatives in the biomedical field.

  6. Laser based fabrication of chitosan mediated silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zamiri, Reza; Azmi, B.Z.; Naseri, Mahmoud Goodarz [Universiti Putra Malaysia, Department of Physics, Faculty of Science, UPM Serdang, Selangor (Malaysia); Ahangar, Hossein Abbastabar [Islamic Azad University, Najafabad Branch, Department of Material Engineering, Isfahan (Iran, Islamic Republic of); Darroudi, Majid [Ferdowsi University of Mashhad, Department of Chemistry, Faculty of Science, Mashhad (Iran, Islamic Republic of); Nazarpour, Forough Kalaei [Universiti Putra Malaysia, Institute of Bioscience, Serdang, Selangor (Malaysia)

    2011-10-15

    We report fabrication of silver nanoparticles (Ag NPs) by laser ablation technique in different concentrations of aqueous chitosan solution. The ablation process of silver plate was carried out by using a nanosecond Q-switched Nd:YAG pulsed laser and the characterization of Ag NPs was done by Transmission electron microscopy, UV-Vis spectroscopy, and X-ray diffraction. UV-visible plasmon absorption spectra revealed that the formation efficiency as well as the stability of nanoparticles was increased by addition of chitosan. On the other hand, the size decrement of nanoparticles was more remarkable in the higher chitosan concentration. (orig.)

  7. Use of chitosan for chromium removal from exhausted tanning baths.

    Science.gov (United States)

    Cesaro, Raffaele; Fabbricino, Massimiliano; Lanzetta, Rosa; Mancino, Anna; Naviglio, Biagio; Parrilli, Michelangelo; Sartorio, Roberto; Tomaselli, Michele; Tortora, Gelsomina

    2008-01-01

    A novel approach, based on chitosan heavy-metal sequestrating ability, is proposed for chromium(III) removal from spent tanning liquor. Experimental results, obtained at lab-scale using real wastewater, are presented and discussed. Resulting efficiencies are extremely high, and strongly dependent on chitosan dose and pH value. Comparative analyses with other polysaccharides is also carried out showing that amine groups are more efficient than carboxyl and sulphate ones. Chromium recovery from sorption complexes and chitosan regeneration is finally proposed to optimize the whole process.

  8. Chitosan-induced antiviral activity and innate immunity in plants.

    Science.gov (United States)

    Iriti, Marcello; Varoni, Elena Maria

    2015-02-01

    Immunity represents a trait common to all living organisms, and animals and plants share some similarities. Therefore, in susceptible host plants, complex defence machinery may be stimulated by elicitors. Among these, chitosan deserves particular attention because of its proved efficacy. This survey deals with the antiviral activity of chitosan, focusing on its perception by the plant cell and mechanism of action. Emphasis has been paid to benefits and limitations of this strategy in crop protection, as well as to the potential of chitosan as a promising agent in virus disease control.

  9. Chitosan: A promising marine polysaccharide for biomedical research

    Directory of Open Access Journals (Sweden)

    Mercy Halleluyah Periayah

    2016-01-01

    Full Text Available Biomaterials created 50 years ago are still receiving considerable attention for their potential to support development in the biomedical field. Diverse naturally obtained polysaccharides supply a broad range of resources applicable in the biomedical field. Lately, chitosan, a marine polysaccharide derived from chitins—which are extracted from the shells of arthropods such as crab, shrimp, and lobster—is becoming the most wanted biopolymer for use toward therapeutic interventions. This is a general short review of chitosan, highlighting the history, properties, chemical structure, processing method, and factors influencing the usage of chitosan derivatives in the biomedical field.

  10. Enzymatic grafting of carboxyl groups on to chitosan--to confer on chitosan the property of a cationic dye adsorbent.

    Science.gov (United States)

    Chao, An-Chong; Shyu, Shin-Shing; Lin, Yu-Chuang; Mi, Fwu-Long

    2004-01-01

    Chitosan (CTS) is a good adsorbent for dyes but lacks the ability to adsorb cationic dyes. In this study, chitosan was modified to possess the ability to adsorb cationic dyes from water. Four kinds of phenol derivatives: 4-hydroxybenzoic acid (BA), 3,4-dihydroxybenzoic acid (DBA), 3,4-dihydroxyphenyl-acetic acid (PA), hydrocaffeic acid (CA) were used individually as substrates of tyrosinase to graft onto chitosan. FTIR analysis provided supporting evidence of phenol derivatives being grafted. The grafting amounts of these phenol derivatives onto chitosan were examined by the adsorption of an anionic dye (amaranth) and reached a plateau value. The final contents of carboxyl groups in chitosan (mmol carboxyl groups per kg chitosan) were measured as 46.36 for BA, 70.32 for DBA, 106.44 for PA, and 113.15 for CA. These modified chitosans were used in experiments on uptake of the cationic dyes crystal violet (CV) and bismarck brown Y (BB) by a batch adsorption technique at pH 7 for CV and at pH 9 for BB and 30 degrees C. Langmuir type adsorption was found, and the maximum adsorption capacities for both dyes were increased with the following order CTS-CA>CTS-PA>CTS-DBA>CTS-BA.

  11. PREPARATION AND CHARACTERIZATION OF SOLUBLE EGGSHELL MEMBRANE PROTEIN/CHITOSAN BLEND FILMS

    Institute of Scientific and Technical Information of China (English)

    Qing-lei Qi; Qiang Li; Jian-wei Lu; Zhao-xia Guo; Jian Yu

    2009-01-01

    Biopolymer chitosan was used to modify the mechanical properties of soluble eggshell membrane protein (SEP) films. The SEP/chitosan blend films were prepared by solution casting from 10% aqueous acetic acid. Tensile strength and elongation at break of the blend films increased with increasing amount of chitosan. Microphase separation was observed by field emission scanning electron microscopy, although interaction between the two components was revealed by FTIR. The biocompatibility of SEP/chitosan blend flints containing 10%-50% of chitosan, as demonstrated by cell culture of NIH3T3, was much better than that of pure chitosan.

  12. Preparation of a Cyclomaltoheptaose (β-cyclodextrin) Cross-linked Chitosan Derivative via Glyoxal or Glutaraldehyde

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A cyclomaltoheptaose-β-cyclodextrin (β-CD) crosslinked chitosan derivative via glyoxal or glutaraldehyde was prepared. The structures of β-CD crosslined chitosan with glyoxal or glutaraldehyde were characterized by IR spectra. The surface morphology of the β-CD crosslinked chitosan particles was examined using a scanning electron microscope. The immobilization capacity of β-CD on chitosan was affected on the weight ratio of β-CD/chitosan, the utilization amount of crosslinking agent, the acidity of the reaction system and the temperature. The adsorption for nicotine indicated that the chitosan-β-CD was a good adsorbent.

  13. Recent progress on synthesis, property and application of modified chitosan: An overview.

    Science.gov (United States)

    Wang, Junhua; Wang, Li; Yu, Haojie; Zain-Ul-Abdin; Chen, Yongsheng; Chen, Qing; Zhou, Weidong; Zhang, Hongtao; Chen, Xiao

    2016-07-01

    Because of the unique chemical structure, chitosan and its derivatives have been paid close extensive attention as the potential bio-functional material. This review presents recent synthesis of modified chitosan via N-substitution, O-substitution, free radical graft copolymerization and other modification methods and properties of the modified chitosan. The applications of the modified chitosan in metal ions adsorption, dye removal and pharmaceutical fields are illustrated as well. The rapid development in the modification of chitosan describes broad perspectives of the modified chitosan.

  14. Biopolymer chitosan: Properties, interactions and its use in the treatment of textiles

    Directory of Open Access Journals (Sweden)

    Jocić Dragan

    2004-01-01

    Full Text Available The biopolymer chitosan is obtained by the deacetylation of chitin, the second most abundant polysaccharide in nature, after cellulose. It is becoming an increasingly important biopolymer because it offers unique physico-chemical and biological properties. Due to its solubility, chitosan allows processing from aqueous solutions. This review provides information on important chitosan properties, as well as on some interactions that are of special interest for chitosan application. It summarizes some of the most important developments in the use of chitosan in the treatment of textile materials. Special emphasis is given to improved dyeing properties of the textile material treated with chitosan.

  15. Synthesis and Characterization of Biodegradable Ultrasonicated Films made from Chitosan/al2o3 Polymer Nanocomposites

    Science.gov (United States)

    Prakash, B.; Jothirajan, M. A.; Umapathy, S.; Amala, Viji

    Chitosan is a biopolymer which is biodegradable, biocompatible, non toxic and cationic in nature. Due to these interesting properties, it finds advanced applications in sensors, drug delivery vehicle and gene therapy etc., In this present work, the biocompatible Al2O3 Nano particles were embedded into Chitosan Polymer matrix by ultrasonication route. XRD and FTIR studies confirm the presence of Al2O3 nanoparticle in the Chitosan polymer matrix. The morphological, optical, electrical properties of the polymer nano composite films are carried out by employing scanning electron microscopy (SEM), UV- Vis, LCR and Impedance studies.

  16. Experimental Study and Stabilization Mechanisms of Silica Nanoparticles Based Brine Mud with High Temperature Resistance for Horizontal Shale Gas Wells

    Directory of Open Access Journals (Sweden)

    Xian-yu Yang

    2015-01-01

    Full Text Available Previous studies showed that silica nanoparticles based fresh water drilling muds had good thermal stability up to 160°C; however its performance at high salt concentration was rather poor. Therefore, high performance silica nanoparticles based brine mud (NPBMs with high temperature resistance for horizontal shale gas wells was proposed. Thermal stability tests from ambient temperature to 180°C, along with pressure transmission tests and rheology analysis, were performed to evaluate comprehensive properties of the NPBMs. Results show that the NPBMs embody excellent salt tolerance and thermal resistance for their rheological parameters did not suffer significant fluctuation. Fluid loss of the NPBM-1 (4% NaCl plus 3% KCl at 180°C was only 7.6 mL while the NPBM-2 (10% NaCl plus 3% KCl had a fluid loss of 6.6 mL at 150°C. Low water activity and good lubricity of the NPBMs were beneficial to improve wellbore stability and reduce friction resistance. Pressure transmission tests on the NPBM-1 show that it can mitigate or even prevent the transmission of drilling mud pressure into shale thus improving wellbore stability. Additionally, optimal rheological models for the NPBM-1 and the NPBM-2 were Herschel-Bulkley model and Power Law model separately.

  17. pH-responsive biocompatible fluorescent polymer nanoparticles based on phenylboronic acid for intracellular imaging and drug delivery.

    Science.gov (United States)

    Li, Shengliang; Hu, Kelei; Cao, Weipeng; Sun, Yun; Sheng, Wang; Li, Feng; Wu, Yan; Liang, Xing-Jie

    2014-11-21

    To address current medical challenges, there is an urgent need to develop drug delivery systems with multiple functions, such as simultaneous stimuli-responsive drug release and real-time imaging. Biocompatible polymers have great potential for constructing smart multifunctional drug-delivery systems through grafting with other functional ligands. More importantly, novel biocompatible polymers with intrinsic fluorescence emission can work as theranostic nanomedicines for real-time imaging and drug delivery. Herein, we developed a highly fluorescent nanoparticle based on a phenylboronic acid-modified poly(lactic acid)-poly(ethyleneimine)(PLA-PEI) copolymer loaded with doxorubicin (Dox) for intracellular imaging and pH-responsive drug delivery. The nanoparticles exhibited superior fluorescence properties, such as fluorescence stability, no blinking and excitation-dependent fluorescence behavior. The Dox-loaded fluorescent nanoparticles showed pH-responsive drug release and were more effective in suppressing the proliferation of MCF-7 cells. In addition, the biocompatible fluorescent nanoparticles could be used as a tool for intracellular imaging and drug delivery, and the process of endosomal escape was traced by real-time imaging. These pH-responsive and biocompatible fluorescent polymer nanoparticles, based on phenylboronic acid, are promising tools for intracellular imaging and drug delivery.

  18. Biocompatibility of folate-modified chitosan nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Subhankari Prasad Chakraborty; Sumanta Kumar Sahu; Panchanan Pramanik; Somenath Roy

    2012-01-01

    Objective: To evaluate the acute toxicity of carboxymethyl chitosan-2, 2’ ethylenedioxy bis-ethylamine-folate (CMC-EDBE-FA) and as well as possible effect on microbial growth and in vitro cell cyto-toxicity. Methods: CMC-EDBE-FA was prepared on basis of carboxymethyl chitosan tagged with folic acid by covalently linkage through 2, 2’ ethylenedioxy bis-ethylamine. In vivo acute toxicity, in vitro cyto-toxicity and antimicrobial activity of CMC-EDBE-FA nanoparticle were determined. Results: Vancomycin exhibited the antibacterial activity against vancomycin sensitive Staphylococcus aureus, but CMC-EDBE-FA nanoparticle did not give any antibacterial activity as evidenced by minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), disc agar diffusion (DAD) and killing kinetic assay. Further, the CMC-EDBE-FA nanoparticle showed no signs of in vivo acute toxicity up to a dose level of 1000 mg/kg p.o., and as well as in vitro cyto-toxicity up to 250 μg/mL. Conclusions: These findings suggest that CMC-EDBE-FA nanoparticle is expected to be safe for biomedical applications.

  19. Chitosan-alginate membranes accelerate wound healing.

    Science.gov (United States)

    Caetano, Guilherme Ferreira; Frade, Marco Andrey Cipriani; Andrade, Thiago Antônio Moretti; Leite, Marcel Nani; Bueno, Cecilia Zorzi; Moraes, Ângela Maria; Ribeiro-Paes, João Tadeu

    2015-07-01

    The purpose of this study was to evaluate the efficacy of chitosan-alginate membrane to accelerate wound healing in experimental cutaneous wounds. Two wounds were performed in Wistar rats by punching (1.5 cm diameter), treated with membranes moistened with saline solution (CAM group) or with saline only (SL group). After 2, 7, 14, and 21 days of surgery, five rats of each group were euthanized and reepithelialization was evaluated. The wounds/scars were harvested for histological, flow cytometry, neutrophil infiltrate, and hydroxyproline analysis. CAM group presented higher inflammatory cells recruitment as compared to SL group on 2(nd) day. On the 7(th) day, CAM group showed higher CD11b(+) level and lower of neutrophils than SL group. The CAM group presented higher CD4(+) cells influx than SL group on 2(nd) day, but it decreased during the follow up and became lower on 14(th) and 21(st) days. Higher fibroplasia was noticed on days 7 and 14 as well as higher collagenesis on 21(st) in the CAM group in comparison to SL group. CAM group showed faster reepithelialization on 7(th) day than SL group, although similar in other days. In conclusion, chitosan-alginate membrane modulated the inflammatory phase, stimulated fibroplasia and collagenesis, accelerating wound healing process in rats.

  20. Radiation degradation of alginate and chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, Naotsugu; Mitomo, Hiroshi [Department of Biological and Chemical Engineering, Faculty of Engineering, Gunma University, Kiryu, Gunma (Japan); Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-03-01

    Alginate and chitosan were irradiated in solid or aqueous solution condition with Co{sup 60} gamma rays in the dose range of 20 to 500 kGy. Degradation was observed both in solid and solution conditions. The degradation in solution was remarkably greater than that in solid. For example, the molecular weight of alginate in 4%(w/v) solution decreased from 2 x 10{sup 5} for 0 kGy to 6 x 10{sup 3} for 50 kGy irradiation while the equivalent degradation by solid irradiation required 500 kGy. The activated species from irradiated water must be responsible for the degradation in solution. The degradation was also accompanied with the color change of alginate: the color became deep brown for highly degraded alginate. UV spectra showed a distinct absorption peak at 265 nm for colored alginates, increasing with dose. The fact that discoloration of colored alginate was caused on exposure to ozone suggests a formation of double bond in pyranose-ring by scission of glycosidic bond. Degradation behavior of chitosan in irradiation was almost the same as that of alginate. (author)

  1. Properties of Novel Hydroxypropyl Methylcellulose Films Containing Chitosan Nanoparticles

    Science.gov (United States)

    In this work, chitosan nanoparticles were prepared and incorporated in hydroxypropyl methylcellulose (HPMC) films under different conditions. Mechanical properties, water vapor and oxygen permeability, water solubility and scanning and transmission electron microscopy (SEM and TEM) results were ana...

  2. Drug delivery glucantime in PVP/chitosan membranes

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Maria J.A.; Lugao, Ademar B.; Parra, Duclerc F., E-mail: mariajhho@yahoo.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Amato, Valdir S. [Universidade de Sao Paulo (DMIP/FM/USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Departamento de Molestias Infecciosas e Parasitarias

    2015-07-01

    The current study of polymer science considers the area of biomedical application very important to establish developments in new polymeric materials. Examples of that are hydrogels for controlled release of drugs. In this work, hydrogels of poly (N-2-vinil-pyrrolidone) (PVP) containing chitosan and clay nanoparticles were obtained and characterized to investigate chitosan influence on Glucantime drug delivery. The matrixes were crosslinked by gamma irradiation process with doses of 25 kGy. Hydrogels morphologies were observed by X Ray diffraction (DRX). Atomic Force Microscopy (AFM) and swelling kinetic at 22 °C to study the capacity of water retention and, finally, drug delivery tests were performed 'in vitro'. The system showed higher gel fraction for the matrix with 1.0% of clay and 0.5% of chitosan. In this case, besides the interactions of clay ions with PVP, there are interactions of chitosan amine group with PVP amide group. (author)

  3. Surface modification on silicon with chitosan and biological research

    Energy Technology Data Exchange (ETDEWEB)

    Lue Xiaoying; Cui Wei; Huang Yan; Zhao Yi [State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096 (China); Wang Zhigong, E-mail: luxy@seu.edu.c [Institute of RF- and OE-ICs, Southeast University, Nanjing, 210096 (China)

    2009-08-15

    The aim of the present study was to investigate the effect of chitosan modification of silicon (Si) on protein adsorption, cell adhesion and cell proliferation. Chitosan was first immobilized on the Si surface through a (3-aminopropyl)triethoxysilane (APTES) bridge. The surface was then characterized by contact angle measurement, atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS) and energy dispersive x-ray spectroscopy (EDX). The amount of protein adsorbed on the native Si and chitosan-modified Si surface was evaluated by a modified Coomassie brilliant blue (CBB) protein assay. The adhesion and proliferation behavior of L-929 and pc12 cells were then assessed by microscopy and methylthiazoltetrazolium (MTT) tests. The results showed that the chitosan modification could resist protein adsorption and inhibit the adhesion and proliferation of two kinds of cells on Si.

  4. Preparation of water soluble chitosan by hydrolysis using hydrogen peroxide.

    Science.gov (United States)

    Xia, Zhenqiang; Wu, Shengjun; Chen, Jinhua

    2013-08-01

    Chitosan is not soluble in water, which limits its wide application particularly in the medicine and food industry. In the present study, water soluble chitosan (WSC) was prepared by hydrolyzing chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid in homogeneous phase. Factors affecting hydrolysis were investigated and the optimal hydrolysis conditions were determined. The WSC structure was characterized by Fourier transform infrared spectroscopy. The resulting products were composed of chitooligosaccharides of DP 2-9. The WSC content of the product and the yield were 94.7% and 92.3% (w/w), respectively. The results indicate that WSC can be effectively prepared by hydrolysis of chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid.

  5. Development of chitosan-based antimicrobial leather coatings.

    Science.gov (United States)

    Fernandes, Isabel P; Amaral, Joana S; Pinto, Vera; Ferreira, Maria José; Barreiro, Maria Filomena

    2013-10-15

    The development of antimicrobial coatings for footwear components is of great interest both from industry and consumer's point of view. In this work, antimicrobial leather materials were developed taking advantage of chitosan intrinsic antimicrobial activity and film forming capacity. Considering the specificities of the leather tanning industry, different coating technologies, namely drum, calender and spray, were tested, being the best results achieved with the drum. This last approach was further investigated to assess the effect of chitosan content, type of solubilizing acid, and impregnation time on the achieved antimicrobial capacity. Considering chitosan price (economic reasons) and the obtained results (antimicrobial activity and coating effectiveness, as inspected by SEM), the impregnation in the drum using a chitosan content of 1% (w/v) in a formic acid solution during 2h, is proposed as the best option for obtaining leather with antimicrobial capacity.

  6. Comprehensive characterization of chitosan/PEO/levan ternary blend films.

    Science.gov (United States)

    Bostan, Muge Sennaroglu; Mutlu, Esra Cansever; Kazak, Hande; Sinan Keskin, S; Oner, Ebru Toksoy; Eroglu, Mehmet S

    2014-02-15

    Ternary blend films of chitosan, PEO (300,000) and levan were prepared by solution casting method and their phase behavior, miscibility, thermal and mechanical properties as well as their surface energy and morphology were characterized by different techniques. FT-IR analyses of blend films indicated intermolecular hydrogen bonding between blend components. Thermal and XRD analysis showed that chitosan and levan suppressed the crystallinity of PEO up to nearly 25% of PEO content in the blend, which resulted in more amorphous film structures at higher PEO/(chitosan+levan) ratios. At more than 30% of PEO concentration, contact angle (CA) measurements showed a surface enrichment of PEO whereas at lower PEO concentrations, chitosan and levan were enriched on the surfaces leading to more amorphous and homogenous surfaces. This result was further confirmed by atomic force microscopy (AFM) images. Cell proliferation and viability assay established the high biocompatibility of the blend films.

  7. Chitosan nanofibers fabricated by combined ultrasonic atomization and freeze casting.

    Science.gov (United States)

    Wang, Yihan; Wakisaka, Minato

    2015-05-20

    Aligned chitosan nanofibers exhibiting diameters smaller than 100 nm were easily prepared by combining ultrasonic atomization with freeze casting. A major advantage of this approach is the use of distilled water as main solvent. Scanning electron microscopy demonstrated that fiber diameter and morphology mainly depended on the atomizing tools, freezing temperature, and chitosan solution viscosity. Minimum diameter and uniform orientation were achieved using an electric flosser as an atomizing tool, liquid nitrogen as a coolant, 0.4 wt% aqueous chitosan solution (molecular weight = 22 kDa), and a small amount of lactic acid as solvent at 0 °C. The resulting chitosan nanofibers may find application in biomedical and food engineering. Moreover, this new technology may be applicable to other natural and synthetic water-soluble polymers.

  8. Use of chitosan to prolong mozzarella cheese shelf life.

    Science.gov (United States)

    Altieri, C; Scrocco, C; Sinigaglia, M; Del Nobile, M A

    2005-08-01

    This study was undertaken to evaluate the feasibility of using chitosan, a natural antimicrobial substance, to improve the preservation of a very perishable cheese. The effectiveness of chitosan to inhibit the growth of spoilage microorganisms in Mozzarella cheese was studied during refrigerated storage. A lactic acid/chitosan solution was added directly to the starter used for Mozzarella cheese manufacturing. Mozzarella cheese samples were stored at 4 degrees C for about 10 d and microbial populations as well as the pH were monitored. Results demonstrated that chitosan inhibited the growth of some spoilage microorganisms such as coliforms, whereas it did not influence the growth of other microorganisms, such as Micrococcaceae, and lightly stimulated lactic acid bacteria.

  9. PLA/chitosan/keratin composites for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Tanase, Constantin Edi, E-mail: etanase@live.com [Faculty of Medical Bioengineering, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 9-13 Kogalniceanu Street, 700454 Iasi (Romania); Spiridon, Iuliana [“Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania)

    2014-07-01

    Novel composites based on PLA, chitosan and keratin was obtained via blend preparation. The goal of this contribution was to evaluate mechanical and in vitro behavior of the composites. The results point out composites with improved Young modulus and decreased tensile strength, significant increase in hardness (compared to PLA) and a good uptake of the surface properties. Biological assessments using human osteosarcoma cell line on these composites indicate a good viability/proliferation outcome. Hence preliminary results regarding mechanical behavior and in vitro osteoblast response suggest that these composites might have prospective application in medical field. - Highlights: • PLA, chitosan and keratin composites are prepared by blend preparation. • PLA, chitosan and keratin composites present improved mechanical properties and water uptake compare to PLA. • PLA, chitosan and keratin composites present good in vitro behavior.

  10. PERFORMANCE EVALUATION OF SAND AND CHITOSAN AS DUAL FILTER MEDIA

    Directory of Open Access Journals (Sweden)

    MADHUKAR M

    2012-01-01

    Full Text Available Nuisance due to suspended and colloidal particles causing turbidity has become widespread, severe problem due to urban population and industrial activities. The consequences of turbidity are presence of microorganisms,reduction of dissolved oxygen, etc. Consumption of such water is known to cause water borne diseases.Available water treatment methods for the removal of turbidity and pathogens are coagulation, filtration and disinfection. The common filter media used are sand, activated carbon etc. Chitosan has been used as acoagulant aid and adsorbent. Chitosan when used as a filter media causes the colloidal particles to bind together and is subsequently removed during the process. The column studies using Chitosan in combination with conventional sand filter was carried out in a borosilicate glass column. Chitosan was placed on top of sand layerand constant down flow pattern of 100mL/min was followed. Dual filter media was effective in the reducing turbidity by 93%.

  11. Femtosecond Laser Patterning of the Biopolymer Chitosan for Biofilm Formation

    Science.gov (United States)

    Estevam-Alves, Regina; Ferreira, Paulo Henrique Dias; Coatrini, Andrey C.; Oliveira, Osvaldo N.; Fontana, Carla Raquel; Mendonca, Cleber Renato

    2016-01-01

    Controlling microbial growth is crucial for many biomedical, pharmaceutical and food industry applications. In this paper, we used a femtosecond laser to microstructure the surface of chitosan, a biocompatible polymer that has been explored for applications ranging from antimicrobial action to drug delivery. The influence of energy density on the features produced on chitosan was investigated by optical and atomic force microscopies. An increase in the hydrophilic character of the chitosan surface was attained upon laser micromachining. Patterned chitosan films were used to observe Staphylococcus aureus (ATCC 25923) biofilm formation, revealing an increase in the biofilm formation in the structured regions. Our results indicate that fs-laser micromachining is an attractive option to pattern biocompatible surfaces, and to investigate basic aspects of the relationship between surface topography and bacterial adhesion. PMID:27548153

  12. Postharvest Chitosan Treatment Induces Resistance in Potato Against Fusarium sulphureum

    Institute of Scientific and Technical Information of China (English)

    SUN Xiao-juan; BI Yang; LI Yong-cai; HAN Rui-feng; GE Yong-hong

    2008-01-01

    The effects of chitosan treatment and inoculation on dry rot in tubers and slices of potato were studied. The results showed that chitosan treatment significantly reduced the lesion diameter of potato inoculated with Fusarium sulphureum.The treatment at 0.25% showed the best effect. Chitosan at 0.25% increased the activities of peroxidase and polyphenoloxidase, and the contents of flavonoid compounds and lignin in tissues. Increased activities of β-1,3-glucanase,and phenylalanine ammonialyase were observed, but there were no significant differences between the treated and the control. These findings suggested that the effects of chitosan could be associated with the induced resistance against Fusarium dry rot in potato.

  13. A NOVEL APPROACH TO SYNTHESIZE CHITOSAN BEADS CROSSLINKED BY EPICHLOROHYDRIN

    Institute of Scientific and Technical Information of China (English)

    WANG Yongjian; BAI Shu; SUN Yan

    2001-01-01

    The present investigation describes a novel method for preparing spherical chitosan particles based on crosslinking with epichlorohydrin. Certain amount of pre-crosslinking agent was added to form chitosan gels by traditional inverse phase suspension polymerization. Then the gels were crosslinked by epichlorohydrin at basic condition to obtain chitosan beads. The effects of reaction conditions, such as crosslinking time, the amount of crosslinking agent and the NaOtt concentration,on the physical properties of the chitosan beads were investigated. The beads were found to have more amino groups in the polymer chains than the beads crosslinked by glutaraldehyde. The capacity for copper ions is as high as 40mg/g. The beads have good mechanical strength and can be reused.

  14. A NOVEL APPROACH TO SYNTHESIZE CHITOSAN BEADS CROSSLINKED BY EPICHLOROHYDRIN

    Institute of Scientific and Technical Information of China (English)

    WANGYongjina; BAIShu; 等

    2001-01-01

    The present investigation describes a novel method for preparing spherical chitosan particles based on crosslinking with epichlorohydrin.Certain amount of pre-crosslinking agent was added to form chitosan gels by traditional inverse phase suspension polymerization.Then the gels were crosslinked by epichlorohydrin at basic condition to obtain chitosan beads.The effects of reaction conditions,such as crosslinking time,the amount of crosslinking agent and the NaOH concentration,on the physical properties of the chitosan beads were investigated.The beads were found to have more amino groups in the polymer chains than the beads crosslinked by glutaraldehyde.The capacity for copper ions in as high as 40mg/g,The beads have good mechanical strength and can be reused.

  15. Chitosan-based formulations of drugs, imaging agents and biotherapeutics

    NARCIS (Netherlands)

    Amidi, M.; Hennink, W.E.

    2010-01-01

    This preface is part of the Advanced Drug Delivery Reviews theme issue on “Chitosan-Based Formulations of Drugs, Imaging Agents and Biotherapeutics”. This special Advanced Drug Delivery Reviews issue summarizes recent progress and different applications of chitosanbased formulations.

  16. Chitosan and fish collagen as biomaterials for regenerative medicine.

    Science.gov (United States)

    Hayashi, Yoshihiko; Yamada, Shizuka; Yanagi Guchi, Kajiro; Koyama, Zenya; Ikeda, Takeshi

    2012-01-01

    This chapter focuses and reviews on the characteristics and biomedical application of chitosan and collagen from marine products and advantages and disadvantages of regeneration medicine. The understanding of the production processes of chitosan and collagen and the conformation of these biomaterials are indispensable for promoting the theoretical and practical availability. The initial inflammatory reactions associated with chitosan application to hard and soft tissues need to be controlled before it can be considered for clinical application as scaffold. Further, as chitosan takes too long for biodegradation in vivo, generally it is not suitable for the scaffold for degenerative medicine in especially dental pulp tissue. The collagen extract from the scales of tropical fish has been reported to have a degeneration temperature of 35°C. The properties of biocompatibility and biodegradation of fish atelocollagen are suitable for the scaffold in regenerative medicine.

  17. Microscopic and spectroscopic analysis of chitosan-DNA conjugates.

    Science.gov (United States)

    Agudelo, D; Kreplak, L; Tajmir-Riahi, H A

    2016-02-10

    Conjugations of DNA with chitosans 15 kD (ch-15), 100 kD (ch-100) and 200 kD (ch-200) were investigated in aqueous solution at pH 5.5-6.5. Multiple spectroscopic methods and atomic force microscopy (AFM) were used to locate the chitosan binding sites and the effect of polymer conjugation on DNA compaction and particle formation. Structural analysis showed that chitosan-DNA conjugation is mainly via electrostatic interactions through polymer cationic charged NH2 and negatively charged backbone phosphate groups. As polymer size increases major DNA compaction and particle formation occurs. At high chitosan concentration major DNA structural changes observed indicating a partial B to A-DNA conformational transition.

  18. Enhancing mechanical properties of chitosan films via modification with vanillin.

    Science.gov (United States)

    Zhang, Zhi-Hong; Han, Zhong; Zeng, Xin-An; Xiong, Xia-Yu; Liu, Yu-Jia

    2015-11-01

    The vanillin/chitosan composite films were prepared using the solvent evaporation method. The properties of the films including optical property, water vapor permeability (WVP), tensile strength (TS) and elongation at break (%E) were studied to investigate the effect of cross-linking agent of vanillin on chitosan films by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectrum (FT-IR). Results showed that the TS of composite films increased by 53.3% and the WVP decreased by 36.5% compared with pure chitosan film that were due to the formation of the dense network structure by FT-IR spectra. There were almost no changes of the thermal stability of the composite films compared with the pure chitosan film by TGA analysis. In addition, from the SEM images, it could be seen that the film with addition of vanillin with 0.5-10% concentration exhibited good compatibility.

  19. Development of spray-dried chitosan microcarriers for nanoparticle delivery

    OpenAIRE

    Tokarova V.; Kaspar O.; Knejzlik Z.; Ulbrich P.; Stepanek F.

    2012-01-01

    The design of chitosan microspheres for the encapsulation and release of nanoparticles has been considered. The composite microcarriers have been produced by spray drying and the effect of factors including the chitosan cross-linking ratio (using tri-polyphosphate as the cross-linking agent), nanoparticle loading in the polymer matrix and the internal structure of the microspheres (uniform dispersion of nanoparticles vs. core-shell structure) on the in vitro release kinetics have been systema...

  20. Chitosan-mediated synthesis of carbon nanotube-gold nanohybrids

    Institute of Scientific and Technical Information of China (English)

    GRAVEL; Edmond; FOILLARD; Stéphanie; DORIS; Eric

    2010-01-01

    Metal-nanotube nanohybrids were produced by in situ synthesis and stabilization of gold nanoparticles on chitosan-functionalized carbon nanotubes.The formation of gold nanoparticles from tetrachloroauric acid was observed after only a few minutes of contact with the functionalized nanotubes,at room temperature.These results suggest that adsorption of chitosan at the surface of carbon nanotubes permits smooth reduction of the metallic salt and efficient anchoring of gold nanoparticles to the nanotubes.

  1. Mechanism of chitosan adsorption on silica from aqueous solutions.

    Science.gov (United States)

    Tiraferri, Alberto; Maroni, Plinio; Rodríguez, Diana Caro; Borkovec, Michal

    2014-05-06

    We present a study of the adsorption of chitosan on silica. The adsorption behavior and the resulting layer properties are investigated by combining optical reflectometry and the quartz crystal microbalance. Exactly the same surfaces are used to measure the amount of adsorbed chitosan with both techniques, allowing the systematic combination of the respective experimental results. This experimental protocol makes it possible to accurately determine the thickness of the layers and their water content for chitosan adsorbed on silica from aqueous solutions of varying composition. In particular, we study the effect of pH in 10 mM NaCl, and we focus on the influence of electrolyte type and concentration for two representative pH conditions. Adsorbed layers are stable, and their properties are directly dependent on the behavior of chitosan in solution. In mildly acidic solutions, chitosan behaves like a weakly charged polyelectrolyte, whereby electrostatic attraction is the main driving force for adsorption. Under these conditions, chitosan forms rigid and thin adsorption monolayers with an average thickness of approximately 0.5 nm and a water content of roughly 60%. In neutral solutions, on the other hand, chitosan forms large aggregates, and thus adsorption layers are significantly thicker (∼10 nm) as well as dissipative, resulting in a large maximum of adsorbed mass around the pK of chitosan. These films are also characterized by a substantial amount of water, up to 95% of their total mass. Our results imply the possibility to produce adsorption layers with tailored properties simply by adjusting the solution chemistry during adsorption.

  2. Preparation and Properties of Antibacterial Lyocell Fibers Containing Chitosan Derivative

    Institute of Scientific and Technical Information of China (English)

    ZHUANG Xu-pin; LIU Xiao-fei; CHENG Bo-wen; KANG Wei-min

    2006-01-01

    The O-carboxymethyl chitosan sodium salt, NaCMCh, was initially synthesized and analyzed with better antibacterial activity than chitosan. Then NaCMCh was dissolved in the N-methylmorpholine-N- oxide, NMMO, solution with cellulose for spinning of the lyocell fiber. The results showed that the lyocell fibers modified with over 2 wt% NaCMCh has good antibacterial activity in against the E. coli and with NaCMCh content below 6 wt% has considerable mechanical properties.

  3. Properties of emulsions stabilised by sodium caseinate–chitosan complexes

    NARCIS (Netherlands)

    Zinoviadou, K.; Scholten, E.; Moschakis, T.; Biliaderis, C.G.

    2012-01-01

    Oil-in-water emulsions (10%, w/w, oil) were prepared at pH 5.7 by using electrostatically formed complexes of 0.5% (w/w) sodium caseinate (Na-CAS) and 0–0.6% (w/w) chitosan. Emulsions stabilized by complexes with increased levels of chitosan (>0.2% w/w) had a smaller average droplet size and exhi

  4. Study of a new neuron

    CERN Document Server

    Adler, Stephen Louis; Weckel, J D

    1994-01-01

    We study a modular neuron alternative to the McCulloch-Pitts neuron that arises naturally in analog devices in which the neuron inputs are represented as coherent oscillatory wave signals. Although the modular neuron can compute XOR at the one neuron level, it is still characterized by the same Vapnik-Chervonenkis dimension as the standard neuron. We give the formulas needed for constructing networks using the new neuron and training them using back-propagation. A numerical study of the modular neuron on two data sets is presented, which demonstrates that the new neuron performs at least as well as the standard neuron.

  5. Lactic acid demineralization of shrimp shell and chitosan synthesis

    Directory of Open Access Journals (Sweden)

    Alewo Opuada AMEH

    2015-05-01

    Full Text Available The use of lactic acid was compared to hydrochloric acid for shrimp shell demineralization in chitosan synthesis. Five different acid concentrations were considered for the study: 1.5M, 3.0M, 4.5M, 6.0M and 7.5M. After demineralization, the shrimp shell were deproteinized and subsequently deacetylated to produce chitosan using sodium hydroxide solution. The synthesized chitosan samples were characterized using solubility, FTIR, SEM, XRD and viscosity. The SEM, FTIR and XRD analysis indicated that chitosan was synthesized with a high degree of deacetylation (83.18±2.11 when lactic acid was used and 84.2±5.00 when HCl was used. The degree of deacetylation and the molecular weight of the chitosan samples were also estimated. ANOVA analysis (at 95% confidence interval indicated that acid type and concentration did not significantly affect the solubility, degree of deacetylation, viscosity and molecular weight of the chitosan within the range considered.

  6. Preparation and characterization of N-benzoyl-O-acetyl-chitosan.

    Science.gov (United States)

    Cai, Jinping; Dang, Qifeng; Liu, Chengsheng; Fan, Bing; Yan, Jingquan; Xu, Yanyan; Li, Jingjing

    2015-01-01

    A novel amphipathic chitosan derivative, N-benzoyl-O-acetyl-chitosan (BACS), was prepared by using the selective partial acylation of chitosan (CS), benzoyl chloride, and acetic acid under high-intensity ultrasound. The chemical structure and physical properties of BACS were characterized by FTIR, (1)H NMR, TGA, and XRD techniques. The degrees of substitution of benzoyl and acetyl for the chitosan derivatives were 0.26 and 1.15, respectively, which were calculated from the peak areas in NMR spectra by using the combined integral methods. The foaming properties of CS and BACS were determined and the results suggested BACS had better foam capacity and stability than those of chitosan. In addition, the antimicrobial activities of CS and BACS were also investigated against two species of bacteria (Escherichia coli and Staphylococcus aureus) and a fungus (Aspergillus niger), the results indicated that the antibacterial and antifungal activities of BACS were much stronger than those of the parent chitosan. These findings suggested that BACS was preferable for use as a food additive with a dual role of both foaming agent and food preservative.

  7. Preparation and Evaluation of Inhalable Itraconazole Chitosan Based Polymeric Micelles

    Directory of Open Access Journals (Sweden)

    Esmaeil Moazeni

    2012-12-01

    Full Text Available Background: This study evaluated the potential of chitosan based polymeric micelles as a nanocarrier system for pulmonary delivery of itraconazole (ITRA.Methods: Hydrophobically modified chitosan were synthesized by conjugation of stearic acid to the hydrophilic depolymerized chitosan. FTIR and 1HNMR were used to prove the chemical structure and physical properties of the depolymerized and the stearic acid grafted chitosan. ITRA was entrapped into the micelles and physicochemical properties of the micelles were investigated. Fluorescence spectroscopy, dynamic laser light scattering andtransmission electron microscopy were used to characterize the physicochemical properties of the prepared micelles. The in vitro pulmonary profile of polymeric micelles was studied by an air-jet nebulizer connected to a twin stage impinger.Results: The polymeric micelles prepared in this study could entrap up to 43.2±2.27 μg of ITRA per milliliter. All micelles showed mean diameter between 120–200 nm. The critical micelle concentration of the stearic acid grafted chitosan was found to be 1.58×10-2 mg/ml. The nebulization efficiency was up to 89% and the fine particle fraction (FPF varied from 38% to 47%. The micelles had enough stability to remain encapsulation of the drug during nebulization process.Conclusions: In vitro data showed that stearic acid grafted chitosan based polymeric micelles has a potential to be used as nanocarriers for delivery of itraconazole through inhalation.

  8. A mechanistic based approach for enhancing buccal mucoadhesion of chitosan

    DEFF Research Database (Denmark)

    Meng-Lund, Emil; Muff-Westergaard, Christian; Sander, Camilla

    2014-01-01

    Mucoadhesive buccal drug delivery systems can enhance rapid drug absorption by providing an increased retention time at the site of absorption and a steep concentration gradient. An understanding of the mechanisms behind mucoadhesion of polymers, e.g. chitosan, is necessary for improving the muco......Mucoadhesive buccal drug delivery systems can enhance rapid drug absorption by providing an increased retention time at the site of absorption and a steep concentration gradient. An understanding of the mechanisms behind mucoadhesion of polymers, e.g. chitosan, is necessary for improving...... the mucoadhesiveness of buccal formulations. The interaction between chitosan of different chain lengths and porcine gastric mucin (PGM) was studied using a complex coacervation model (CCM), isothermal titration calorimetry (ITC) and a tensile detachment model (TDM). The effect of pH was assessed in all three models...... and the approach to add a buffer to chitosan based drug delivery systems is a means to optimize and enhance buccal drug absorption. The CCM demonstrated optimal interactions between chitosan and PGM at pH 5.2. The ITC experiments showed a significantly increase in affinity between chitosan and PGM at pH 5...

  9. Solid-Phase Preparation and Characterization of Chitosan

    Institute of Scientific and Technical Information of China (English)

    GaoLe-ping; DuYu-min; ZhangDao-bin; ShiXiao-wen; ZhanHuai-yu; SongWen-hua

    2003-01-01

    Chitosan was prepared with stressing method by blending chitin and solid alkali in a single-screw extruder at given temperature and characterized by potentiometric titration, gel permeation chromatography (GPC), infrared spectrum (IR) and carborr13 magnetic resonance sperctroscopy (13C NMR). Chitosan with a deacetylation degree (DD) of 76. 1% was obtained at a mass ratio 0.2 : 1 : 1 for H20/chitin/NaOH at 160℃ for 12 mirL Compared to conventional solution method(usually 1 : 10 for chitin/NaOH), the alkali assumption greatly decreased. Molecular weight of chitosan obtained by solid-phase method(S3,M. 1.54 X 10s ) was lower than that obtained by suspension method(Y2,Mw3. 34×105). During deacetylation, molecular weight decreased with high reaction temperature and long reaction time but remained same at different initial ratios of NaOH/chitirL It might be concluded that degradation of chitosan was caused by breakout of the main chain of the oxidized chitosan catalyzed by alkali during the deactylation. IR and 13C NMR showed that structures of chitosans prepared by solid-phase method were not changed.

  10. Chitosan Composites for Bone Tissue Engineering—An Overview

    Directory of Open Access Journals (Sweden)

    Jayachandran Venkatesan

    2010-08-01

    Full Text Available Bone contains considerable amounts of minerals and proteins. Hydroxyapatite [Ca10(PO46(OH2] is one of the most stable forms of calcium phosphate and it occurs in bones as major component (60 to 65%, along with other materials including collagen, chondroitin sulfate, keratin sulfate and lipids. In recent years, significant progress has been made in organ transplantation, surgical reconstruction and the use of artificial protheses to treat the loss or failure of an organ or bone tissue. Chitosan has played a major role in bone tissue engineering over the last two decades, being a natural polymer obtained from chitin, which forms a major component of crustacean exoskeleton. In recent years, considerable attention has been given to chitosan composite materials and their applications in the field of bone tissue engineering due to its minimal foreign body reactions, an intrinsic antibacterial nature, biocompatibility, biodegradability, and the ability to be molded into various geometries and forms such as porous structures, suitable for cell ingrowth and osteoconduction. The composite of chitosan including hydroxyapatite is very popular because of the biodegradability and biocompatibility in nature. Recently, grafted chitosan natural polymer with carbon nanotubes has been incorporated to increase the mechanical strength of these composites. Chitosan composites are thus emerging as potential materials for artificial bone and bone regeneration in tissue engineering. Herein, the preparation, mechanical properties, chemical interactions and in vitro activity of chitosan composites for bone tissue engineering will be discussed.

  11. Porous PCL/Chitosan and nHA/PCL/Chitosan Scaffolds for Tissue Engineering Applications: Fabrication and Evaluation

    Directory of Open Access Journals (Sweden)

    Rashid Mad Jin

    2015-01-01

    Full Text Available Two semicrystalline polymers were blended to fabricate porous scaffolds for tissue engineering applications. Scaffolds containing polycaprolactone (PCL/chitosan and nanohydroxyapatite (nHA incorporated nHA/PCL/chitosan were produced using the freeze-drying technique. A model drug, tetracycline hydrochloride (tetracycline HCL, was incorporated into the scaffolds. The scaffolds were characterized using a scanning electron microscope (SEM, EDX, and water contact angle. The antibacterial properties of the nHA/PCL/chitosan/tetracycline HCL scaffold were tested and the scaffolds showed positive results on gram-positive and gram-negative bacteria. The cell biocompatibility using human skin fibroblast cells (HSF 1184 was examined. The scaffold materials were found to be nontoxic to human skin fibroblast cells (HSF 1184 and showed positive proliferation activities. The nHA/PCL/chitosan/tetracycline HCL scaffold has potential for controlling implant-associated bacterial infections during operative procedures and can potentially be used as a scaffold for tissue engineering applications.

  12. Cajal bodies in neurons.

    Science.gov (United States)

    Lafarga, Miguel; Tapia, Olga; Romero, Ana M; Berciano, Maria T

    2016-09-14

    Cajal is commonly regarded as the father of modern neuroscience in recognition of his fundamental work on the structure of the nervous system. But Cajal also made seminal contributions to the knowledge of nuclear structure in the early 1900s, including the discovery of the "accessory body" later renamed "Cajal body" (CB). This important nuclear structure has emerged as a center for the assembly of ribonucleoproteins (RNPs) required for splicing, ribosome biogenesis and telomere maintenance. The modern era of CB research started in the 1990s with the discovery of coilin, now known as a scaffold protein of CBs, and specific probes for small nuclear RNAs (snRNAs). In this review, we summarize what we have learned in the recent decades concerning CBs in post-mitotic neurons, thereby ruling out dynamic changes in CB functions during the cell cycle. We show that CBs are particularly prominent in neurons, where they frequently associate with the nucleolus. Neuronal CBs are transcription-dependent nuclear organelles. Indeed, their number dynamically accommodates to support the high neuronal demand for splicing and ribosome biogenesis required for sustaining metabolic and bioelectrical activity. Mature neurons have canonical CBs enriched in coilin, survival motor neuron protein and snRNPs. Disruption and loss of neuronal CBs associate with severe neuronal dysfunctions in several neurological disorders such as motor neuron diseases. In particular, CB depletion in motor neurons seems to reflect a perturbation of transcription and splicing in spinal muscular atrophy, the most common genetic cause of infant mortality.

  13. Multifunctional, chitosan-based nano therapeutics: design and application for two- and three-dimensional cell culture systems

    Science.gov (United States)

    Suarato, Giulia

    in neuronal cell polarization, with the aim of regulating axon development. Our preliminary data indicated that, when treated with HGC-LKB1 NPs, primary ray embryo hippocampal neurons in vitro presented a multiple axon phenotype, validating the potential use of our multifunctional system as local protein delivery agent. In addition, we successfully performed for the first time in utero electroporation delivery of the chitosan nano-micelles, demonstrating the in vivo uptake potential of our system.

  14. Investigating Effects of Gelatin-Chitosan Film on Culture of Bone Marrow Stromal Cells in Rat

    Directory of Open Access Journals (Sweden)

    A Karami joyani

    2015-02-01

    Conclusion: Results of proliferation,differentiation and apoptosis cultured BMSCs on a gelatin-chitosan film showed that gelatin-chitosan film can be used as a good model of a biodegradable scaffold in tissue engineering and cell therapy.

  15. Evaluation of structural and functional properties of chitosan-chlorogenic acid complexes.

    Science.gov (United States)

    Wei, Zihao; Gao, Yanxiang

    2016-05-01

    The objectives of the present study were to first synthesize chitosan-chlorogenic acid (CA) covalent complex and then compare structural and functional properties between chitosan-CA covalent complex and physical complex. First, chitosan-CA covalent complex was synthesized and its total phenolic content was as high as 276.5 ± 6.2 mg/g. Then structural and functional properties of chitosan-CA covalent and physical complexes were analyzed. The covalent reaction induced formation of both amide and ester bonds in chitosan. Data of X-ray diffraction (XRD) and scanning electron microscopy (SEM) indicated that the complexations of CA changed crystallinity and morphology of chitosan, and covalent complexation induced a larger change of physical structure than physical complexation. In terms of functional properties, chitosan-CA covalent complex exhibited better thermal stability than physical complex in terms of antioxidant activity, and the viscosity of chitosan was significantly increased by covalent modification.

  16. The behaviors of Microcystis aeruginosa cells and extracellular microcystins during chitosan flocculation and flocs storage processes.

    Science.gov (United States)

    Pei, Hai-Yan; Ma, Chun-Xia; Hu, Wen-Rong; Sun, Feng

    2014-01-01

    This work aimed to study the effects of chitosan on cell integrity and extracellular microcystins (MCs) of Microcystis aeruginosa cells during flocculation and flocs storage processes. The impacts of chitosan addition, flocculation stirring and flocs storage time were comprehensively detected to prevent or reduce cell lysis and MCs release. Response surface method (RSM) was applied to optimize the chitosan flocculation. Under chitosan concentration 7.31 mg/L and optimized mechanical conditions, 99% of M. aeruginosa cells were integrated removed. Furthermore, amounts of extracellular MCs were adsorbed by chitosan polymers in this process. With chitosan flocs protect, though cells showed some damage, extracellular MCs concentration in flocculated samples lower than background level within first 2 d. However, lots of MCs release was observed after 4d which may result from chitosan degradation and cells lysis. Therefore, chitosan flocs should be treated within 2d to prevent the adsorbed MCs releasing again.

  17. Modification of chitosan with monomethyl fumaric acid in an ionic liquid solution.

    Science.gov (United States)

    Wang, Zhaodong; Zheng, Liuchun; Li, Chuncheng; Zhang, Dong; Xiao, Yaonan; Guan, Guohu; Zhu, Wenxiang

    2015-03-01

    Antibacterial and antioxidant monomethyl fumaric acid (MFA) was selected to modify chitosan, using aqueous solution of an ionic liquid as a homogeneous and green reaction media. The chemical structures of resulting polymers were systematically characterized by (1)H NMR, diffusion ordered spectroscopy, solid (13)C NMR and wide-angle X-ray diffraction. The results show that two kinds of MFA modified chitosan materials with totally different chemical structures have been synthesized. One product was a MF-chitosan salt composed of chitosan cation and MFA anion, which was obtained with the mediation of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide. The other one synthesized with the mediation of EDC was a MF-chitosan amide in which MFA and chitosan are covalently attached. Solubility of chitosan has been improved, and MF-chitosan salt can be readily dissolved in water. The antioxidant activity has been enhanced with the introduction of MFA, irrespective of the chemical structure.

  18. Antibacterial Characteristics and Activity of Water-Soluble Chitosan Derivatives Prepared by the Maillard Reaction

    Directory of Open Access Journals (Sweden)

    Ying-Chien Chung

    2011-10-01

    Full Text Available The antibacterial activity of water-soluble chitosan derivatives prepared by Maillard reactions against Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Escherichia coli, Shigella dysenteriae, and Salmonella typhimurium was examined. Relatively high antibacterial activity against various microorganisms was noted for the chitosan-glucosamine derivative as compared to the acid-soluble chitosan. In addition, it was found that the susceptibility of the test organisms to the water-soluble chitosan derivative was higher in deionized water than in saline solution. Metal ions were also found to reduce the antibacterial activity of the water-soluble chitosan derivative on S. aureus. The marked increase in glucose level, protein content and lactate dehydrogenase (LDH activity was observed in the cell supernatant of S. aureus exposed to the water-soluble chitosan derivative in deionized water. The results suggest that the water-soluble chitosan produced by Maillard reaction may be a promising commercial substitute for acid-soluble chitosan.

  19. Porous PCL/Chitosan and nHA/PCL/Chitosan Scaffolds for Tissue Engineering Applications: Fabrication and Evaluation

    OpenAIRE

    Rashid Mad Jin; Naznin Sultana; Sayang Baba; Salehhuddin Hamdan; Ahmad Fauzi Ismail

    2015-01-01

    Two semicrystalline polymers were blended to fabricate porous scaffolds for tissue engineering applications. Scaffolds containing polycaprolactone (PCL)/chitosan and nanohydroxyapatite (nHA) incorporated nHA/PCL/chitosan were produced using the freeze-drying technique. A model drug, tetracycline hydrochloride (tetracycline HCL), was incorporated into the scaffolds. The scaffolds were characterized using a scanning electron microscope (SEM), EDX, and water contact angle. The antibacterial prop...

  20. Collagen and chitosan membranes from alternative sources: evaluation of their potential for Tissue Engineering applications

    OpenAIRE

    2015-01-01

    Natural polymers such as collagen and chitosan possess physical, chemical and biological characteristics that make them good candidates as extracellular matrix scaffolds with potential applications in Tissue Engineering. In the present work, collagen and chitosan biopolymer membranes made from waste material, were evaluated for dermal fibroblasts cell culture. Several membrane compositions were analyzed, including 100% collagen, 100% chitosan, 8:2, 2:8, 6:4, 4:6 collagen-chitosan, obtained fr...

  1. Synthesis and Characterization of Chitosan-g-poly(D, L-lactic acid) Copolymer

    Institute of Scientific and Technical Information of China (English)

    Hua YANG; Shao Bing ZHOU; Xian Mo DENG

    2005-01-01

    Biodegradable chitosan-g-poly (D, L-lactic acid) copolymers were prepared via two methods. (1) The lactide was grafted onto hydroxyl groups of chitosan by using macromolecular initiator sodium of trimethylsilyl-chitosan, (2) poly (D,L-lactic acid)(PLA) with low molecular weight can be linked to the amino group by coupling activated PLA to trimethylsilyl-chitosan. Two graft copolymers had hydrophilic-hydrophobic character and can be applied as carriers for drug delivery.

  2. Extraction and Separation of Fucoidan from Laminaria japonica with Chitosan as Extractant

    OpenAIRE

    Ronge Xing; Song Liu; Huahua Yu; Xiaolin Chen; Yukun Qin; Kecheng Li; Pengcheng Li

    2013-01-01

    Herein the extraction method of fucoidan from Laminaria japonica is reported. Firstly, chitosan, chitosan-N-2-hydroxypropyl trimethyl ammonium chloride (HACC), and hexadecyltrimethylammonium bromide (CPAB) were used to extract the fucoidan. The results showed that chitosan was the optimal extractant compared with the other two extractants. After extraction, different aqueous solutions, including NaCl, KCl, and HCl (pH2), were used to separate fucoidan from chitosan-fucoidan complex. The resul...

  3. Haemostatic chitosan coated gauze: in vitro interaction with human blood and in-vivo effectiveness

    OpenAIRE

    Pogorielov, M.; Kalinkevich, O.; Deineka, V.; Garbuzova, V.; Solodovnik, A.; Kalinkevich, A.; Kalinichenko, T.; Gapchenko, A.; Sklyar, A.; Danilchenko, S.

    2015-01-01

    Background Chitosan and its derivates are widely used for biomedical application due to antioxidative, anti-inflammatory, antimicrobial and tissue repair induced properties. Chitosan-based materials also used as a haemostatic agent but influence of different molecular weight and concentration of chitosan on biological response of blood cells is still not clear. The aim of this research was to evaluate interaction between human blood cells and various forms of chitosan-based materials with dif...

  4. Preparation and optimization of chitosan nanoparticles and magnetic chitosan nanoparticles as delivery systems using Box-Behnken statistical design.

    Science.gov (United States)

    Elmizadeh, Hamideh; Khanmohammadi, Mohammadreza; Ghasemi, Keyvan; Hassanzadeh, Gholamreza; Nassiri-Asl, Marjan; Garmarudi, Amir Bagheri

    2013-06-01

    Chitosan nanoparticles and magnetic chitosan nanoparticles can be applied as delivery systems for the anti-Alzheimer drug tacrine. Investigation was carried out to elucidate the influence of process parameters on the mean particle size of chitosan nanoparticles produced by spontaneous emulsification. The method was optimized using design of experiments (DOE) by employing a 3-factor, 3-level Box-Behnken statistical design. This statistical design is used in order to achieve the minimum size and suitable morphology of nanoparticles. Also, magnetic chitosan nanoparticles were synthesized according to optimal method. The designed nanoparticles have average particle size from 33.64 to 74.87nm, which were determined by field emission scanning electron microscopy (FE-SEM). Drug loading in the nanoparticles as drug delivery systems has been done according to the presented optimal method and appropriate capacity of drug loading was shown by ultraviolet spectrophotometry. Chitosan and magnetic chitosan nanoparticles as drug delivery systems were characterized by Diffuse Reflectance Fourier Transform Mid Infrared spectroscopy (DR-FTMIR).

  5. Noise and Neuronal Heterogeneity

    CERN Document Server

    Barber, Michael J

    2010-01-01

    We consider signal transaction in a simple neuronal model featuring intrinsic noise. The presence of noise limits the precision of neural responses and impacts the quality of neural signal transduction. We assess the signal transduction quality in relation to the level of noise, and show it to be maximized by a non-zero level of noise, analogous to the stochastic resonance effect. The quality enhancement occurs for a finite range of stimuli to a single neuron; we show how to construct networks of neurons that extend the range. The range increases more rapidly with network size when we make use of heterogeneous populations of neurons with a variety of thresholds, rather than homogeneous populations of neurons all with the same threshold. The limited precision of neural responses thus can have a direct effect on the optimal network structure, with diverse functional properties of the constituent neurons supporting an economical information processing strategy that reduces the metabolic costs of handling a broad...

  6. Disruption of Aedes aegypti olfactory system development through chitosan/siRNA nanoparticle targeting of semaphorin-1a.

    Directory of Open Access Journals (Sweden)

    Keshava Mysore

    Full Text Available Despite the devastating impact of mosquito-borne illnesses on human health, surprisingly little is known about mosquito developmental biology, including development of the olfactory system, a tissue of vector importance. Analysis of mosquito olfactory developmental genetics has been hindered by a lack of means to target specific genes during the development of this sensory system. In this investigation, chitosan/siRNA nanoparticles were used to target semaphorin-1a (sema1a during olfactory system development in the dengue and yellow fever vector mosquito Aedes aegypti. Immunohistochemical analyses and anterograde tracing of antennal sensory neurons, which were used to track the progression of olfactory development in this species, revealed antennal lobe defects in sema1a knockdown fourth instar larvae. These findings, which correlated with a larval odorant tracking behavioral phenotype, identified previously unreported roles for Sema1a in the developing insect larval olfactory system. Analysis of sema1a knockdown pupae also revealed a number of olfactory phenotypes, including olfactory receptor neuron targeting and projection neuron defects coincident with a collapse in the structure and shape of the antennal lobe and individual glomeruli. This study, which is to our knowledge the first functional genetic analysis of insect olfactory development outside of D. melanogaster, identified critical roles for Sema1a during Ae. aegypti larval and pupal olfactory development and advocates the use of chitosan/siRNA nanoparticles as an effective means of targeting genes during post-embryonic Ae. aegypti development. Use of siRNA nanoparticle methodology to understand sensory developmental genetics in mosquitoes will provide insight into the evolutionary conservation and divergence of key developmental genes which could be exploited in the development of both common and species-specific means for intervention.

  7. Disruption of Aedes aegypti olfactory system development through chitosan/siRNA nanoparticle targeting of semaphorin-1a.

    Science.gov (United States)

    Mysore, Keshava; Flannery, Ellen M; Tomchaney, Michael; Severson, David W; Duman-Scheel, Molly

    2013-01-01

    Despite the devastating impact of mosquito-borne illnesses on human health, surprisingly little is known about mosquito developmental biology, including development of the olfactory system, a tissue of vector importance. Analysis of mosquito olfactory developmental genetics has been hindered by a lack of means to target specific genes during the development of this sensory system. In this investigation, chitosan/siRNA nanoparticles were used to target semaphorin-1a (sema1a) during olfactory system development in the dengue and yellow fever vector mosquito Aedes aegypti. Immunohistochemical analyses and anterograde tracing of antennal sensory neurons, which were used to track the progression of olfactory development in this species, revealed antennal lobe defects in sema1a knockdown fourth instar larvae. These findings, which correlated with a larval odorant tracking behavioral phenotype, identified previously unreported roles for Sema1a in the developing insect larval olfactory system. Analysis of sema1a knockdown pupae also revealed a number of olfactory phenotypes, including olfactory receptor neuron targeting and projection neuron defects coincident with a collapse in the structure and shape of the antennal lobe and individual glomeruli. This study, which is to our knowledge the first functional genetic analysis of insect olfactory development outside of D. melanogaster, identified critical roles for Sema1a during Ae. aegypti larval and pupal olfactory development and advocates the use of chitosan/siRNA nanoparticles as an effective means of targeting genes during post-embryonic Ae. aegypti development. Use of siRNA nanoparticle methodology to understand sensory developmental genetics in mosquitoes will provide insight into the evolutionary conservation and divergence of key developmental genes which could be exploited in the development of both common and species-specific means for intervention.

  8. Synthesis, characterization and functionalization of silicon nanoparticle based hybrid nanomaterials for photovoltaic and biological applications

    Science.gov (United States)

    Xu, Zejing

    Silicon nanoparticles are attractive candidates for biological, photovoltaic and energy storage applications due to their size dependent optoelectronic properties. These include tunable light emission, high brightness, and stability against photo-bleaching relative to organic dyes (see Chapter 1). The preparation and characterization of silicon nanoparticle based hybrid nanomaterials and their relevance to photovoltaic and biological applications are described. The surface-passivated silicon nanoparticles were produced in one step from the reactive high-energy ball milling (RHEBM) of silicon wafers with various organic ligands. The surface structure and optical properties of the passivated silicon nanoparticles were systematically characterized. Fast approaches for purifying and at the same time size separating the silicon nanoparticles using a gravity GPC column were developed. The hydrodynamic diameter and size distribution of these size-separated silicon nanoparticles were determined using GPC and Diffusion Ordered NMR Spectroscopy (DOSY) as fast, reliable alternative approaches to TEM. Water soluble silicon nanoparticles were synthesized by grafting PEG polymers onto functionalized silicon nanoparticles with distal alkyne or azide moieties. The surface-functionalized silicon nanoparticles were produced from the reactive high-energy ball milling (RHEBM) of silicon wafers with a mixture of either 5-chloro-1-pentyne in 1-pentyne or 1,7 octadiyne in 1-hexyne to afford air and water stable chloroalkyl or alkynyl terminated nanoparticles, respectively. Nanoparticles with the ω-chloroalkyl substituents were easily converted to ω-azidoalkyl groups through the reaction of the silicon nanoparticles with sodium azide in DMF. The azido terminated nanoparticles were then grafted with monoalkynyl-PEG polymers using a copper catalyzed alkyne-azide cycloaddition (CuAAC) reaction to afford core-shell silicon nanoparticles with a covalently attached PEG shell. Covalently

  9. Chitin and Chitosan: Production and Application of Versatile Biomedical Nanomaterials.

    Science.gov (United States)

    Elieh-Ali-Komi, Daniel; Hamblin, Michael R

    2016-03-01

    Chitin is the most abundant aminopolysaccharide polymer occurring in nature, and is the building material that gives strength to the exoskeletons of crustaceans, insects, and the cell walls of fungi. Through enzymatic or chemical deacetylation, chitin can be converted to its most well-known derivative, chitosan. The main natural sources of chitin are shrimp and crab shells, which are an abundant byproduct of the food-processing industry, that provides large quantities of this biopolymer to be used in biomedical applications. In living chitin-synthesizing organisms, the synthesis and degradation of chitin require strict enzymatic control to maintain homeostasis. Chitin synthase, the pivotal enzyme in the chitin synthesis pathway, uses UDP-N-acetylglucosamine (UDPGlcNAc), produce the chitin polymer, whereas, chitinase enzymes degrade chitin. Bacteria are considered as the major mediators of chitin degradation in nature. Chitin and chitosan, owing to their unique biochemical properties such as biocompatibility, biodegradability, non-toxicity, ability to form films, etc, have found many promising biomedical applications. Nanotechnology has also increasingly applied chitin and chitosan-based materials in its most recent achievements. Chitin and chitosan have been widely employed to fabricate polymer scaffolds. Moreover, the use of chitosan to produce designed-nanocarriers and to enable microencapsulation techniques is under increasing investigation for the delivery of drugs, biologics and vaccines. Each application is likely to require uniquely designed chitosan-based nano/micro-particles with specific dimensions and cargo-release characteristics. The ability to reproducibly manufacture chitosan nano/microparticles that can encapsulate protein cargos with high loading efficiencies remains a challenge. Chitosan can be successfully used in solution, as hydrogels and/or nano/microparticles, and (with different degrees of deacetylation) an endless array of derivatives with

  10. Mesmerising mirror neurons.

    Science.gov (United States)

    Heyes, Cecilia

    2010-06-01

    Mirror neurons have been hailed as the key to understanding social cognition. I argue that three currents of thought-relating to evolution, atomism and telepathy-have magnified the perceived importance of mirror neurons. When they are understood to be a product of associative learning, rather than an adaptation for social cognition, mirror neurons are no longer mesmerising, but they continue to raise important questions about both the psychology of science and the neural bases of social cognition.

  11. Immobilization of laminin peptide in molecularly aligned chitosan by covalent bonding.

    Science.gov (United States)

    Matsuda, Atsushi; Kobayashi, Hisatoshi; Itoh, Soichiro; Kataoka, Kazunori; Tanaka, Junzo

    2005-05-01

    We developed a new biomaterial effective for nerve regeneration consisting of molecularly aligned chitosan with laminin peptides bonded covalently. Molecularly aligned chitosan was prepared from crab (Macrocheira kaempferi) tendons by ethanol treatment and 4 wt%-NaOH aqueous solutions to remove proteins and calcium phosphate, followed by deacetyl treatment using a 50 wt%-NaOH aqueous solution at 100 degrees C. Molecularly aligned tendon chitosan was chemically thiolated by reacting 4-thiobutyrolactone with the chitosan amino group. The introduction of thiol groups and their distribution to tendon chitosan and chitosan cast film were confirmed using ATR FT-IR, (1)H-NMR, and EDS. The 1.24 micromol/g of thiol groups introduced on the surface of tendon chitosan and the chitosan cast film was confirmed using ultraviolet (UV) spectra. Thiol groups of cysteine located at the end of synthetic laminin peptides were then reacted chemically with thiolated chitosan to form chitosan-S-S-laminin peptide. YIGSR estimated at 0.92 micromol/g and IKVAV estimated at 0.28 micromol/g on thiolated tendon chitosan were confirmed using UV spectra. YIGSR was estimated at 0.85 micromol/g and IKVAV was estimated at 0.34 micromol/g on the thiolated chitosan cast film.

  12. Bioactivity of Variant Molecular Weight Chitosan Against Drug-Resistant Bacteria Isolated from Human Wounds.

    Science.gov (United States)

    Bano, Ijaz; Arshad, Muhammad; Ghauri, Muhammad Afzal; Yasin, Tariq; Younus, Muhammad

    2017-03-30

    Chitosan available from crab shells is usually of high molecular weight which may result in reduced efficiency for its antibacterial activity. One of the techniques for improving chitosan antibacterial efficiency is reducing its molecular weight. The irradiation of chitosan by gamma radiations is considered to be one of the most effective and widely used methods for improving its antibacterial activity. Chitosan obtained from crab shells was irradiated with gamma radiations at different doses, and effects on chitosan were analyzed by molecular weight determination and Fourier Transform Infrared spectroscopy. Unirradiated and irradiated chitosans were studied for their antibacterial properties against bacterial pathogens, that is, Pseudomonas aeruginosa (SS29), Escherichia coli (SS2, SS9), Proteus mirabilis (SS77), and Staphylococcus aureus (LM15). Studies have shown that irradiation has significantly developed and improved the antibacterial activity of crab shell chitosan. A correlation was found between bacterial metabolites and antibacterial activity by the analysis for 4-hydroxy-2-alkylquinolines and related metabolites of P. aeruginosa (SS29) in the absence and presence of chitosan by liquid chromatography mass spectrometer, exhibiting the suppression of these virulence factors due to chitosan. Antibacterial efficiency of chitosan was found to be molecular weight dependent and applied concentration of the chitosan. The findings suggest on the use of low-molecular weight chitosan as antibacterial agent in pharmaceutical preparations.

  13. RADIATION DEGRADATION OF CHITOSAN IN THE PRESENCE OF H2O2

    Institute of Scientific and Technical Information of China (English)

    Yi-hong Lu; Gen-shuan Wei; Jing Peng

    2004-01-01

    In order to obtain the chitosan oligomers, chitosan was irradiated in the solid state with and without H2O2 as a radiation degradation sensitizer, respectively. At room temperature, the viscosity average-molecular weight (Mη) of chitosan was decreased from 1.6 × 106 to 2.2 × 105 at an absorbed dose of 72 kGy without H2O2, and decreased to 2.7 × 104 at 2 kGy in the presence of an appropriate H2O2 content. In addition, the radiation degradation rate of chitosan containing 38.2wt%H2O2 is 59 times higher than that in the solid state without H2O2. FT-IR analysis suggests that there is no obvious change in the chemical structure of irradiated chitosan with and without H2O2 at a dose below 20 kGy, compared with unirradiated chitosan. On the other hand, the degree of deacetylation (DD) of irradiated chitosan in the studied dose range changed slightly, while DD of irradiated chitosan with H2O2 increased significantly. The XRD pattern indicates that the irradiated chitosan with H2O2 has more perfect crystalline structure than unirradiated chitosan. Therefore, it could be expected that irradiation of chitosan using H2O2 as a sensitizer would be a very effective method to prepare low molecular weight chitosan,because of its feasibility and benignancy to environment.

  14. Degradation and compatibility behaviors of poly(glycolic acid) grafted chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Luzhong; Dou, Sufeng [Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001 (China); Li, Yan [College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009 (China); Yuan, Ying; Ji, Yawei [Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001 (China); Wang, Yaling [College of Chemistry and Chemical Engineering, Nantong University, Nantong 226001 (China); Yang, Yumin, E-mail: yangym@ntu.edu.cn [Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001 (China)

    2013-07-01

    The films of poly(glycolic acid) grafted chitosan were prepared without using a catalyst to improve the degradable property of chitosan. The films were characterized by Fourier transform-infrared spectroscopy and X-ray photoelectron spectroscopy (XPS). The degradation of the poly(glycolic acid) grafted chitosan films were investigated in the lysozyme solution. In vitro degradation tests revealed that the degradation rate of poly(glycolic acid) grafted chitosan films increased dramatically compared with chitosan. The degradation rate of poly(glycolic acid) grafted chitosan films gradually increased with the increasing of the molar ratio of glycolic acid to chitosan. Additionally, the poly(glycolic acid) grafted chitosan films have good biocompatibility, as demonstrated by in vitro cytotoxicity of the extraction fluids. The biocompatible and biodegradable poly(glycolic acid) grafted chitosan would be an effective material with controllable degradation rate to meet the diverse needs in biomedical fields. - Highlights: ► Chitosan-g-poly(glycolic acid) copolymer was prepared without using a catalyst. ► Degradation rate of copolymer increased dramatically compared with that of chitosan. ► Degradation rate was controlled by the molar ratio of glycolic acid to chitosan. ► In vitro cytotoxicity tests revealed that the copolymer has good biocompatibility. ► The copolymer has a great potential to meet diverse needs in biomedical fields.

  15. Rapid and sensitive detection of cholera toxin using gold nanoparticle-based simple colorimetric and dynamic light scattering assay.

    Science.gov (United States)

    Khan, Sadia Afrin; DeGrasse, Jeffrey A; Yakes, Betsy Jean; Croley, Timothy R

    2015-09-10

    Herein, a rapid and simple gold nanoparticle based colorimetric and dynamic light scattering (DLS) assay for the sensitive detection of cholera toxin has been developed. The developed assay is based on the distance dependent properties of gold nanoparticles which cause aggregation of antibody-conjugated gold nanoparticles in the presence of cholera toxin resulting discernible color change. This aggregation induced color change caused a red shift in the plasmon band of nanoparticles which was measured by UV-Vis spectroscopy. In addition, we employed DLS assay to monitor the extent of aggregation in the presence of different concentration of cholera toxin. Our assay can visually detect as low as 10 nM of cholera toxin which is lower than the previously reported colorimetric methods. The reported assay is very fast and showed an excellent specificity against other diarrhetic toxins. Moreover, we have demonstrated the feasibility of our method for cholera toxin detection in local lake water.

  16. Synthesis and characterization of magnetite/PLGA/chitosan nanoparticles

    Science.gov (United States)

    Ibarra, Jaime; Melendres, Julio; Almada, Mario; Burboa, María G.; Taboada, Pablo; Juárez, Josué; Valdez, Miguel A.

    2015-09-01

    In this work, we report the synthesis and characterization of a new hybrid nanoparticles system performed by magnetite nanoparticles, loaded in a PLGA matrix, and stabilized by different concentrations of chitosan. Magnetite nanoparticles were hydrophobized with oleic acid and entrapped in a PLGA matrix by the emulsion solvent evaporation method, after that, magnetite/PLGA/chitosan nanoparticles were obtained by adding dropwise magnetite/PLGA nanoparticles in chitosan solutions. Magnetite/PLGA nanoparticles produced with different molar ratios did not show significant differences in size and the 3:1 molar ratio showed best spherical shapes as well as uniform particle size. Isothermal titration calorimetry studies demonstrated that the first stage of PLGA-chitosan interaction is mostly regulated by electrostatic forces. Based on a single set of identical sites model, we obtained for the average number of binding sites a value of 3.4, which can be considered as the number of chitosan chains per nanoparticle. This value was confirmed by using a model based on the DLVO theory and fitting zeta potential measurements of magnetite/PLGA/chitosan nanoparticles. From the adjusted parameters, we found that an average number of chitosan molecules of 3.6 per nanoparticle are attached onto the surface of the PLGA matrix. Finally, we evaluated the effect of surface charge of nanoparticles on a membrane model of endothelial cells performed by a mixture of three phospholipids at the air-water interface. Different isotherms and adsorption curves show that cationic surface of charged nanoparticles strongly interact with the phospholipids mixture and these results can be the basis of future experiments to understand the nanoparticles- cell membrane interaction.

  17. Chitosan for gene delivery and orthopedic tissue engineering applications.

    Science.gov (United States)

    Raftery, Rosanne; O'Brien, Fergal J; Cryan, Sally-Ann

    2013-05-15

    Gene therapy involves the introduction of foreign genetic material into cells in order exert a therapeutic effect. The application of gene therapy to the field of orthopaedic tissue engineering is extremely promising as the controlled release of therapeutic proteins such as bone morphogenetic proteins have been shown to stimulate bone repair. However, there are a number of drawbacks associated with viral and synthetic non-viral gene delivery approaches. One natural polymer which has generated interest as a gene delivery vector is chitosan. Chitosan is biodegradable, biocompatible and non-toxic. Much of the appeal of chitosan is due to the presence of primary amine groups in its repeating units which become protonated in acidic conditions. This property makes it a promising candidate for non-viral gene delivery. Chitosan-based vectors have been shown to transfect a number of cell types including human embryonic kidney cells (HEK293) and human cervical cancer cells (HeLa). Aside from its use in gene delivery, chitosan possesses a range of properties that show promise in tissue engineering applications; it is biodegradable, biocompatible, has anti-bacterial activity, and, its cationic nature allows for electrostatic interaction with glycosaminoglycans and other proteoglycans. It can be used to make nano- and microparticles, sponges, gels, membranes and porous scaffolds. Chitosan has also been shown to enhance mineral deposition during osteogenic differentiation of MSCs in vitro. The purpose of this review is to critically discuss the use of chitosan as a gene delivery vector with emphasis on its application in orthopedic tissue engineering.

  18. Synthesis and adsorption properties of chitosan-crown ether resins

    Institute of Scientific and Technical Information of China (English)

    彭长宏; 陈艺锋; 唐谟堂

    2003-01-01

    Two kinds of novel chitosan-crown ether resins, Schiff base type chitosan-benzo-15-crown-5 (CTS-B15)and chitosan-benzo-18-crown-6 (CTS-B18), were synthesized through the reaction between -NH2 in chitosan and -CHO in 4′-formyl benzo-crown ethers. Their structures were characterized by elemental analysis and FT-IR spectra analysis. The elemental analysis results show that the mass fractions of nitrogen in CTS-B15 and CTS-B18 are much lower than those of chitosan. The results of FT-IR spectra of CTS-B15 and CTS-B18 reveal that there exist characteristic peak of C= N, N-H and Ar, and characteristic peak of pyr anoside in the chain of chitosan-crown ether resins, showing that the structures of chitosan-crown ethers are as expected. The adsorption properties of CTS-B15 and CTS-B18 for Pd2+ , Cu2 + and Hg2+ were studied and the experimental results show that these adsorbents have both good adsorption characterization and especially high particular adsorption selectivity for Pd2+ when Cu2+ and Hg2+ are in coexistence, and the coefficients of selectivity of CTS-B15 and CTS-B18 for metal ions are KPd2+/cu2+ =7.56, KPd2+/Hg2+ = 68.00, Kcu2+/Hg2+ = 9.00 and KPd2+/cu2+ = 6.00, KPd2+/Hg2+ = 19. 00, Kcu2+/Hg2+ = 3.00, respectively.

  19. Pacemaking Kisspeptin Neurons

    Science.gov (United States)

    Kelly, Martin J.; Zhang, Chunguang; Qiu, Jian; Rønnekleiv, Oline K.

    2013-01-01

    Kisspeptin (Kiss1) neurons are vital for reproduction. GnRH neurons express the kisspeptin receptor, GPR 54, and kisspeptins potently stimulate the release of GnRH by depolarising and inducing sustained action potential firing in GnRH neurons. As such Kiss1 neurons may be the pre-synaptic pacemaker neurons in the hypothalamic circuitry that controls reproduction. There are at least two different populations of Kiss1 neurons: one in the rostral periventricular area (RP3V) that is stimulated by oestrogens and the other in the arcuate nucleus that is inhibited by oestrogens. How each of these Kiss1 neuronal populations participate in the regulation of the reproductive cycle is currently under intense investigation. Based on electrophysiological studies in the guinea pig and mouse, Kiss1 neurons in general are capable of generating burst firing behavior. Essentially all Kiss1 neurons, which have been studied thus far in the arcuate nucleus, express the ion channels necessary for burst firing, which include hyperpolarization-activated, cyclic nucleotide gated cation (HCN) channels and the T-type calcium (Cav3.1) channels. Under voltage clamp conditions, these channels produce distinct currents that under current clamp conditions can generate burst firing behavior. The future challenge is to identify other key channels and synaptic inputs involved in the regulation of the firing properties of Kiss1 neurons and the physiological regulation of the expression of these channels and receptors by oestrogens and other hormones. The ultimate goal is to understand how Kiss1 neurons control the different phases of GnRH neurosecretion and hence reproduction. PMID:23884368

  20. Nonadhesive, silica nanoparticles-based brush-coated contact lens casesCompromising between ease of cleaning and microbial transmission to contact lenses

    NARCIS (Netherlands)

    Qu, Wenwen; Hooymans, Johanna M. M.; Qiu, Jun; de-Bont, Nik; Gelling, Onko-Jan; van der Mei, Henny C.; Busscher, Henk J.

    2013-01-01

    Surface properties of lens cases are determinant for their cleanability and for microbial transmission from lens cases to contact lenses (CLs). PEG-polymer-brush-coatings are known to decrease microbial adhesion more than other surface-coatings. Here, we applied a robust, silica nanoparticles-based

  1. Evaluation of the chitosan/glycerol-{beta}-phosphate disodium salt hydrogel application in peripheral nerve regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Lu; Zhang Xiufang; Gong Yandao [State Key Lab Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084 (China); Ao Qiang; Han Hongyan, E-mail: gongyd@tsinghua.edu.c, E-mail: aoqiang@tsinghua.edu.c [Institute of Neurological Disorders, Yuquan Hospital, Tsinghua University, Beijing 100049 (China)

    2010-06-01

    Research efforts have been devoted to evaluating the application of the chitosan (CS)/glycerol-{beta}-phosphate (GP) disodium salt hydrogel in peripheral nerve regeneration. The gelation time was determined to be 770 s using ultraviolet spectrophotometry. A standard 10 mm long rat sciatic nerve defect model was employed, followed by bridging the proximal and distal stumps with chitosan conduits injected with the Schwann cell-containing hydrogel. Injections of the blank hydrogel, Schwann cell suspension and culture medium were used as controls. Two months later, electrophysiological assessment and fluorogold retrograde tracing showed that compound muscle action potentials (CMAPs) and fluorogold-labeled neurons were only detected in the Schwann cell suspension group and culture medium group. The rats were then killed, and implanted conduits were removed for examination. There were no regenerated nerves found in groups injected with the blank hydrogel or Schwann cell-containing hydrogel, while the other two groups clearly displayed regenerated nerves across the gaps. In the subsequent histological assessment, immunohistochemistry, toluidine blue staining and transmission electron microscopy were performed to evaluate the regenerated nerves. The relative wet weight ratio, Masson trichrome staining and acetylcholinesterase staining were employed for the examination of gastrocnemius muscles in all four groups. The Schwann cell suspension group showed the best results for all these indexes; the culture medium group ranked second and the two hydrogel-injected groups showed the least optimal results. In conclusion, our data revealed that the implanted CS/GP hydrogel actually impeded nerve regeneration, which is inconsistent with former in vitro reports and general supposition. We believe that the application of the CS/GP hydrogel in nerve regeneration requires a further study before a satisfactory result is obtained. In addition, the present study also confirmed that

  2. Juvenil neuronal ceroid lipofuscinosis

    DEFF Research Database (Denmark)

    Ostergaard, J R; Hertz, Jens Michael

    1998-01-01

    Neuronal ceroid-lipofuscinosis is a group of neurodegenerative diseases which are characterized by an abnormal accumulation of lipopigment in neuronal and extraneuronal cells. The diseases can be differentiated into several subgroups according to age of onset, the clinical picture, neurophysiolog...

  3. Corticospinal mirror neurons.

    Science.gov (United States)

    Kraskov, A; Philipp, R; Waldert, S; Vigneswaran, G; Quallo, M M; Lemon, R N

    2014-01-01

    Here, we report the properties of neurons with mirror-like characteristics that were identified as pyramidal tract neurons (PTNs) and recorded in the ventral premotor cortex (area F5) and primary motor cortex (M1) of three macaque monkeys. We analysed the neurons' discharge while the monkeys performed active grasp of either food or an object, and also while they observed an experimenter carrying out a similar range of grasps. A considerable proportion of tested PTNs showed clear mirror-like properties (52% F5 and 58% M1). Some PTNs exhibited 'classical' mirror neuron properties, increasing activity for both execution and observation, while others decreased their discharge during observation ('suppression mirror-neurons'). These experiments not only demonstrate the existence of PTNs as mirror neurons in M1, but also reveal some interesting differences between M1 and F5 mirror PTNs. Although observation-related changes in the discharge of PTNs must reach the spinal cord and will include some direct projections to motoneurons supplying grasping muscles, there was no EMG activity in these muscles during action observation. We suggest that the mirror neuron system is involved in the withholding of unwanted movement during action observation. Mirror neurons are differentially recruited in the behaviour that switches rapidly between making your own movements and observing those of others.

  4. Culturing rat hippocampal neurons.

    Science.gov (United States)

    Audesirk, G; Audesirk, T; Ferguson, C

    2001-01-01

    Cultured neurons are widely used to investigate the mechanisms of neurotoxicity. Embryonic rat hippocampal neurons may be grown as described under a wide variety of conditions to suit differing experimental procedures, including electrophysiology, morphological analysis of neurite development, and various biochemical and molecular analyses.

  5. Effect of chitosan-based edible coating on preservation of white shrimp during partially frozen storage.

    Science.gov (United States)

    Wu, Shengjun

    2014-04-01

    Chitosan and chitooligosaccharides are preservatives with proven antibacterial activity, while glutathione has antioxidant activity. This study investigated the effects of chitosan coating combined with chitooligosaccharides and glutathione (0.8% glutathione+1% chitooligosaccharides+1% chitosan) on preservation of white shrimp (Penaeus vannamei) during partially frozen storage. Chitosan-based coating treatments effectively inhibited bacterial growth, reduced total volatile basic nitrogen and malondialdehyde, and basically maintained the sensory properties of white shrimp (P. vannamei) during partially frozen storage. Therefore, chitosan-based edible coating combined with chitooligosaccharides and glutathione could be a promising antimicrobial and oxidant method to prevent metamorphism of white shrimp with extended shelf life.

  6. Effects of Chitosan on the Shelf Life of Harbin Red-sausage

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Chitosan and Chitin can inhibit the growth of bacteria. The effect of different concentrations of chitosan solutions on the shelf life of Harbin Red-sausage was studied in this paper. Dipping the Red-sausage with chitosan could extend the shelf life significantly. The optimal composition of coating solution was 3% chitosan solution, whose deacetylated rate was 94%, which was dissolved in 2% acetic acid solution. The CFUs of the sausages with the chitosan deacetylated rate 94% treatment were significantly lower than control at the whole storage (P <0.05).

  7. Modified carbohydrate-chitosan compounds, methods of making the same and methods of using the same

    Energy Technology Data Exchange (ETDEWEB)

    Venditti, Richard A; Pawlak, Joel J; Salam, Abdus; El-Tahlawy, Khaled Fathy

    2015-03-10

    Compositions of matter are provided that include chitosan and a modified carbohydrate. The modified carbohydrate includes a carbohydrate component and a cross linking agent. The modified carbohydrate has increased carboxyl content as compared to an unmodified counterpart carbohydrate. A carboxyl group of the modified carbohydrate is covalently bonded with an amino group of chitosan. The compositions of matter provided herein may include cross linked starch citrate-chitosan and cross linked hemicellulose citrate-chitosan, including foams thereof. These compositions yield excellent absorbency and metal chelation properties. Methods of making cross linked modified carbohydrate-chitosan compounds are also provided.

  8. Surface modification of an Mg-1Ca alloy to slow down its biocorrosion by chitosan.

    Science.gov (United States)

    Gu, X N; Zheng, Y F; Lan, Q X; Cheng, Y; Zhang, Z X; Xi, T F; Zhang, D Y

    2009-08-01

    The surface morphologies before and after immersion corrosion test of various chitosan-coated Mg-1Ca alloy samples were studied to investigate the effect of chitosan dip coating on the slowdown of biocorrosion. It showed that the corrosion resistance of the Mg-Ca alloy increased after coating with chitosan, and depended on both the chitosan molecular weight and layer numbers of coating. The Mg-Ca alloy coated by chitosan with a molecular weight of 2.7 x 10(5) for six layers has smooth and intact surface morphology, and exhibits the highest corrosion resistance in a simulated body fluid.

  9. Surface modification of an Mg-1Ca alloy to slow down its biocorrosion by chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Gu, X N; Zheng, Y F; Lan, Q X [State Key Laboratory for Turbulence and Complex System and College of Engineering, Peking University, Beijing 100871 (China); Cheng, Y; Xi, T F [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zhang, Z X [Biomedical Engineering Research Center, Research Institute of Peking University in Shenzhen, Shenzhen 518057 (China); Zhang, D Y, E-mail: gxn139888@pku.edu.c, E-mail: yfzheng@pku.edu.c, E-mail: 8lanqiuxiang@163.co, E-mail: chengyan@pku.edu.c, E-mail: top5460@163.co, E-mail: xitingfei@tom.co, E-mail: zhangdeyuan@lifetechmed.co [Lifetech Scientific (Shenzhen) Co. Ltd, Hi-Tech Park, Shenzhen 518000 (China)

    2009-08-15

    The surface morphologies before and after immersion corrosion test of various chitosan-coated Mg-1Ca alloy samples were studied to investigate the effect of chitosan dip coating on the slowdown of biocorrosion. It showed that the corrosion resistance of the Mg-Ca alloy increased after coating with chitosan, and depended on both the chitosan molecular weight and layer numbers of coating. The Mg-Ca alloy coated by chitosan with a molecular weight of 2.7 x 10{sup 5} for six layers has smooth and intact surface morphology, and exhibits the highest corrosion resistance in a simulated body fluid.

  10. NEURON and Python.

    Science.gov (United States)

    Hines, Michael L; Davison, Andrew P; Muller, Eilif

    2009-01-01

    The NEURON simulation program now allows Python to be used, alone or in combination with NEURON's traditional Hoc interpreter. Adding Python to NEURON has the immediate benefit of making available a very extensive suite of analysis tools written for engineering and science. It also catalyzes NEURON software development by offering users a modern programming tool that is recognized for its flexibility and power to create and maintain complex programs. At the same time, nothing is lost because all existing models written in Hoc, including graphical user interface tools, continue to work without change and are also available within the Python context. An example of the benefits of Python availability is the use of the xml module in implementing NEURON's Import3D and CellBuild tools to read MorphML and NeuroML model specifications.

  11. Imaging calcium in neurons.

    Science.gov (United States)

    Grienberger, Christine; Konnerth, Arthur

    2012-03-08

    Calcium ions generate versatile intracellular signals that control key functions in all types of neurons. Imaging calcium in neurons is particularly important because calcium signals exert their highly specific functions in well-defined cellular subcompartments. In this Primer, we briefly review the general mechanisms of neuronal calcium signaling. We then introduce the calcium imaging devices, including confocal and two-photon microscopy as well as miniaturized devices that are used in freely moving animals. We provide an overview of the classical chemical fluorescent calcium indicators and of the protein-based genetically encoded calcium indicators. Using application examples, we introduce new developments in the field, such as calcium imaging in awake, behaving animals and the use of calcium imaging for mapping single spine sensory inputs in cortical neurons in vivo. We conclude by providing an outlook on the prospects of calcium imaging for the analysis of neuronal signaling and plasticity in various animal models.

  12. NEURON and Python

    Directory of Open Access Journals (Sweden)

    Michael Hines

    2009-01-01

    Full Text Available The NEURON simulation program now allows Python to be used, alone or in combination with NEURON's traditional Hoc interpreter. Adding Python to NEURON has the immediate benefit of making available a very extensive suite of analysis tools written for engineering and science. It also catalyzes NEURON software development by offering users a modern programming tool that is recognized for its flexibility and power to create and maintain complex programs. At the same time, nothing is lost because all existing models written in Hoc, including GUI tools, continue to work without change and are also available within the Python context. An example of the benefits of Python availability is the use of the XML module in implementing NEURON's Import3D and CellBuild tools to read MorphML and NeuroML model specifications.

  13. Superhydrophobic chitosan-based coatings for textile processing

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, N.A., E-mail: NAI-72@yandex.ru [Ivanovo State Textile Academy, F. Engels Avenue 21, 153000 Ivanovo (Russian Federation); Philipchenko, A.B. [Kazan State Medical University, Butlerova 49, 420012 Kazan, Tatarstan (Russian Federation)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Chitosan nanoparticles can be used for design of the superhydrophobic anti-bacterial textile. Black-Right-Pointing-Pointer Spraying the nanoparticle dispersion allows one to get multiscale textured coating. Black-Right-Pointing-Pointer Relative number of fluoroanions per elementary unit of chitosan plays the crucial role in the structure of aggregates and coating wettability. - Abstract: A simple method to design the superhydrophobic anti-bacterial textile for biomedical applications was developed. For the coating formulation the spraying of nanoparticles dispersion over the textile sample was applied, allowing the way to get multiscale textured layer on a top of cotton fabric. The anti-bacterial functionality of coating is supported by using chitosan-based nanoparticles. In our approach the fabrication of nanoparticles was based on electrostatic interaction between amine group of chitosan and negatively charged fluoroanion. It was demonstrated that the relative number of fluoroanions per elementary unit of chitosan plays the crucial role in the structure of aggregates in the coating and its wettability as well as in durability of coatings in contact with aqueous media.

  14. Antifungal property of quaternized chitosan and its derivatives.

    Science.gov (United States)

    Sajomsang, Warayuth; Gonil, Pattarapond; Saesoo, Somsak; Ovatlarnporn, Chitchamai

    2012-01-01

    Five water-soluble chitosan derivatives were carried out by quaternizing either iodomethane or N-(3-chloro-2-hydroxypropyl) trimethylammonium chloride (Quat188) as a quaternizing agent under basic condition. The degree of quaternization (DQ) ranged between 28±2% and 90±2%. The antifungal activity was evaluated by using disc diffusion method, minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) methods against Trichophyton rubrum (T. rubrum), Trichophyton mentagrophyte (T. mentagrophyte), and Microsporum gypseum (M. gypseum) at pH 7.2. All quaternized chitosans and its derivatives showed more effective against T. rubrum than M. gypseum and T. mentagrophyte. The MIC and MFC values were found to range between 125-1000 μg/mL and 500-4000 μg/mL, respectively against all fungi. Our results indicated that the quaternized N-(4-N,N-dimethylaminocinnamyl) chitosan chloride showed highest antifungal activity against T. rubrum and M. gypseum compared to other quaternized chitosan derivatives. The antifungal activity tended to increase with an increase in molecular weight, degree of quaternization and hydrophobic moiety against T. rubrum. However, the antifungal activity was depended on type of fungal as well as chemical structure of the quaternized chitosan derivatives.

  15. In Vitro Biocompatibility of Electrospun Chitosan/Collagen Scaffold

    Directory of Open Access Journals (Sweden)

    Peiwei Wang

    2013-01-01

    Full Text Available Chitosan/collagen composite nanofibrous scaffold has been greatly concerned in recent years for its favorable physicochemical properties which mimic the native extracellular matrix (ECM both morphologically and chemically. In a previous study, we had successfully fabricated nanofibrous chitosan/collagen composite by electrospinning. In the present study, we further investigate the biocompatibility of such chitosan/collagen composite nanofiber to be used as scaffolds in vascular tissue engineering. The porcine iliac artery endothelial cells (PIECs were employed for morphogenesis, attachment, proliferation, and phenotypic studies. Four characteristic EC markers, including two types of cell adhesion molecules, one proliferation molecule (PCNA, and one function molecule (p53, were studied by semiquantitative RT-PCR. Results showed that the chitosan/collagen composite nanofibrous scaffold could enhance the attachment, spreading, and proliferation of PIECs and preserve the EC phenotype. Our work provides profound proofs for the applicable potency of scaffolds made from chitosan/collagen composite nanofiber to be used in vascular tissue engineering.

  16. Adherence of paclitaxel drug in magnetite chitosan nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Escobar Zapata, Edna V.; Martinez Perez, Carlos A.; Rodriguez Gonzalez, Claudia A.; Castro Carmona, Javier S. [Instituto de Ingenieria y Tecnologia, Universidad Autonoma de Ciudad Juarez, Ave. Del Charro 610 norte, Col. Partido Romero, C.P. 32320, Cd. Juarez Chihuahua (Mexico); Quevedo Lopez, Manuel A. [Departamento de Polimeros y Materiales, Universidad de Sonora, Blvd. Luis Encinas y Rosales, Hermosillo, Sonora (Mexico); Garcia-Casillas, Perla E., E-mail: pegarcia@uacj.mx [Instituto de Ingenieria y Tecnologia, Universidad Autonoma de Ciudad Juarez, Ave. Del Charro 610 norte, Col. Partido Romero, C.P. 32320, Cd. Juarez Chihuahua (Mexico)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Chitosan silica magnetite adsorbs antineoplastic drug. Black-Right-Pointing-Pointer Silica coating improve the drug adherence. - Abstract: Cancer treatment is a big challenge in medicine where chemotherapies and radiotherapies are aggressive and poorly effective having side effects as delirium, fatigue, insomnia, nausea and vomiting which are common problems for cancer patients. For this reason, during the last two decades, many researchers have developed several techniques to improve the current therapies; one of them is the functionalization of magnetic nanoparticles for drug delivery. In this work, magnetic nanoparticles with an average crystallite size 21.8 nm were covered in a core/shell type; magnetite/silica, magnetite/chitosan, and a double shell magnetite/silica/chitosan were developed for attaching an antineoplastic drug. The mechanism for the functionalization of the nanoparticles with a single and double shell was studied with Fourier transformed infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The adherence of an antineoplastic drug, paclitaxel, onto functionalized nanoparticles was analyzed with a UV-Visible spectroscopy at a wavelength of 253 nm. It was found that the adherence of the drug is improved up to 18% when magnetite nanoparticles are coated with a single chitosan shell, and when the nanoparticles are coated with a silica/chitosan shell the adherence increases up to 29%.

  17. [The modified process for preparing natural organic polymer flocculant chitosan].

    Science.gov (United States)

    Zeng, D; Yu, G; Zhang, P; Feng, Z

    2001-05-01

    The modified process for preparing chitosan from crab or lobster shells was developed. In the decalcification stage, 10% HCl was used as soaking solution with addition of a small quantity of A as a promoter, and the mass ratio of reactants was 10% HCl:A:crab or lobster shells = 3.5:0.5:1, continuously stirring the crab or lobster shells at 30 degrees C for 3 h in place of simply soaking the crab or lobster shells at room temperature for 16-24 h in the previous process. In the deacetylation stage, 40% NaOH solution was used with addition of a small quantity of B as a promoter, and the mass ratio of reactants was 40% NaOH:B:chitin = 4:0.2:1, keeping reaction at 105 degrees C for 2 h in place of at 115 degrees C for 6 h in the previous process. By this new process, the cost of the raw materials used for preparing chitosan was cut down 49%, the preparation time was shortened by one half, and the main properties of this chitosan such as viscosity, deacetylation and molecular weight all approached or exceeded those of the Sigma' commercial chitosan (Chitosan C-3646).

  18. Single molecule atomic force microscopy and force spectroscopy of chitosan.

    Science.gov (United States)

    Kocun, Marta; Grandbois, Michel; Cuccia, Louis A

    2011-02-01

    Atomic force microscopy (AFM) and AFM-based force spectroscopy was used to study the desorption of individual chitosan polymer chains from substrates with varying chemical composition. AFM images of chitosan adsorbed onto a flat mica substrate show elongated single strands or aggregated bundles. The aggregated state of the polymer is consistent with the high level of flexibility and mobility expected for a highly positively charged polymer strand. Conversely, the visualization of elongated strands indicated the presence of stabilizing interactions with the substrate. Surfaces with varying chemical composition (glass, self-assembled monolayer of mercaptoundecanoic acid/decanethiol and polytetrafluoroethylene (PTFE)) were probed with chitosan modified AFM tips and the corresponding desorption energies, calculated from plateau-like features, were attributed to the desorption of individual polymer strands. Desorption energies of 2.0±0.3×10(-20)J, 1.8±0.3×10(-20)J and 3.5±0.3×10(-20)J were obtained for glass, SAM of mercaptoundecanoic/dodecanethiol and PTFE, respectively. These single molecule level results can be used as a basis for investigating chitosan and chitosan-based materials for biomaterial applications.

  19. Correlation of chitosan's rheological properties to its ability to electrospin

    Science.gov (United States)

    Krause, Wendy E.; Queen, Hailey A.; Klossner, Rebecca R.; Coughlin, Andrew J.

    2007-03-01

    Chitosan, derived from chitin found in the exoskeleton of crustaceans, has been investigated extensively for use in biomedical applications ranging from drug delivery to scaffolds for tissue engineering. Therefore, forming nanofibers of this linear polysaccharide is desirable for use in such applications, because the nanofibers can be tailored to mimic the size and porosity of the extracellular matrix. Electrostatic spinning (electrospinning) is a convenient method to produce nonwoven mats of nanofibers. The ability of the solutions to successfully electospin is closely correlated with the rheological properties of the solutions. Chitosan is challenging to electrospin due to its relatively high viscosity at modest concentrations. Solutions of chitosan blended with poly(ethylene oxide) (PEO) have been electrospun successfully with freshly prepared solutions. If the blended solutions are stored, they do not readily electrospin. Moreover, chitosan/PEO blend solutions show a drastic decrease in zero shear rate viscosity over time, which can be attributed to phase separation. The challenges associated with electrospinning charged biopolymers (chitosan is cationic) will be discussed in terms of their rheological properties. Successes and failures will be highlighted and compared results for readily electrospun neutral polymers.

  20. Chitosan-based nanocoatings for hypothermic storage of living cells.

    Science.gov (United States)

    Bulwan, Maria; Antosiak-Iwańska, Magdalena; Godlewska, Ewa; Granicka, Ludomira; Zapotoczny, Szczepan; Nowakowska, Maria

    2013-11-01

    The formation of ultrathin chitosan-based nanocoating on HL-60 model cells and their protective function in hypothermic storage are presented. HL-60 cells are encapsulated in ultrathin shells by adsorbing cationic and anionic chitosan derivatives in a stepwise, layer-by-layer, procedure carried out in an aqueous medium under mild conditions. The chitosan-based films are also deposited on model lipid bilayer and the interactions are studied using ellipsometry and atomic force microscopy. The cells covered with the chitosan-based films and stored at 4 °C for 24 h express viability comparable to that of the control sample incubated at 37 °C, while the unprotected cells stored under the same conditions do not show viability. It is shown that the chitosan-based shell protects HL-60 cells against damaging effect of hypothermic storage. Such nanocoatings provide protection, mechanical stability, and support the cell membrane, while ensuring penetration of small molecules such as nutrients/gases what is essential for cell viability.

  1. Chitosan-based polyherbal toothpaste: As novel oral hygiene product

    Directory of Open Access Journals (Sweden)

    Mohire Nitin

    2010-01-01

    Full Text Available Objective: The objective of the present work was to develop chitosan-based polyherbal toothpaste and evaluate its plaque-reducing potential and efficacy in reduction of dental pathogens. Materials and Methods: Antimicrobial activity of herbal extracts against dental pathogens were performed by using disk diffusion method. The pharmaceutical evaluation of toothpaste was carried out as per the US Government Tooth Paste Specifications. A 4-week clinical study was conducted in patients with oro-dental problems to evaluate the plaque removing efficacy of chitosan-based polyherbal toothpaste with commercially available chlorhexidine gluconate (0.2% w/v mouthwash as positive control. Total microbial count was carried out to determine the percentage decrease in the oral bacterial count over the period of treatment. Result: Herbal extracts were found to possess satisfactory antimicrobial activity against most of the dental pathogens. Chitosan-containing polyherbal toothpaste significantly reduces the plaque index by 70.47% and bacterial count by 85.29%, and thus fulfills the majority of esthetic and medicinal requirements of oral hygiene products. Conclusion: Chitosan-based polyherbal toothpaste proves itself as a promising novel oral hygiene product as compared with currently available oral hygiene products. A further study to confirm the exact mechanism and active constituents behind antiplaque and antimicrobial activity of chitosan-based polyherbal toothpaste and its efficacy in large number of patient population is on high demand.

  2. Chitosan grafted monomethyl fumaric acid as a potential food preservative.

    Science.gov (United States)

    Khan, Imran; Ullah, Shafi; Oh, Deog-Hwan

    2016-11-01

    The present study aims at in vitro antibacterial and antioxidant activity evaluation of chitosan modified with monomethyl fumaric acid (MFA) using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) as mediator. Three different kinds of chitosan derivatives Ch-Ds-1,Ch-Ds-2 and Ch-Ds-3 were synthesized by feeding different concentration of MFA. The chemical structures of resulting materials were characterized by (1)H NMR, (13)C NMR, HR-XRD, FT-IR and TNBS assay. The results showed that Ch-Ds-1, Ch-Ds-2 and Ch-Ds-3 were successfully synthesized. The % amino groups of chitosan modified by MFA were evaluated by TNBS assay and ranging from 1.82±0.05% to 7.88±0.04%. All the chitosan derivatives are readily soluble in water and swelled by dimethyl sulfoxide (DMSO), toluene and dimethyl formamide (DMF). The antioxidant activity for all the chitosan derivatives have been significantly improved (Pfood preservative and packaging material for long time food safety and security.

  3. Docetaxel loaded chitosan nanoparticles: formulation, characterization and cytotoxicity studies.

    Science.gov (United States)

    Jain, Ankit; Thakur, Kanika; Kush, Preeti; Jain, Upendra K

    2014-08-01

    The primary objective of the present investigation was to explore biodegradable chitosan as a polymeric material for formulating docetaxel nanoparticles (DTX-NPs) to be used as a delivery system for breast cancer treatment. Docetaxel loaded chitosan nanoparticles were formulated by water-in-oil nanoemulsion system and characterized in terms of particle size, zeta potential, polydispersity index, drug entrapment efficiency (EE), loading capacity (LC), scanning electron microscopy (SEM), in vitro release study and drug release kinetics. Further, to evaluate the potential anticancer efficacy of docetaxel loaded chitosan nanoparticulate system, in vitro cytotoxicity studies on human breast cancer cell line (MDA-MB-231) were carried out. The morphological studies revealed the spherical shape of docetaxel loaded chitosan nanoparticles having an average size of 170.1±5.42-227.6±7.87nm, polydispersity index in the range of 0.215±0.041-0.378±0.059 and zeta potential between 28.3 and 31.4mV. Nanoparticles exhibited 65-76% of drug entrapment and 8-12% loading capacity releasing about 68-83% of the drug within 12h following Higuchi's square-root kinetics. An increase of 20% MDA-MB-231 cell line growth inhibition was determined by docetaxel loaded chitosan nanoparticles with respect to the free drug after 72h incubation.

  4. Covalently Bonded Chitosan on Graphene Oxide via Redox Reaction

    Directory of Open Access Journals (Sweden)

    Víctor M. Castaño

    2013-03-01

    Full Text Available Carbon nanostructures have played an important role in creating a new field of materials based on carbon. Chemical modification of carbon nanostructures through grafting has been a successful step to improve dispersion and compatibility in solvents, with biomolecules and polymers to form nanocomposites. In this sense carbohydrates such as chitosan are extremely valuable because their functional groups play an important role in diversifying the applications of carbon nanomaterials. This paper reports the covalent attachment of chitosan onto graphene oxide, taking advantage of this carbohydrate at the nanometric level. Grafting is an innovative route to modify properties of graphene, a two-dimensional nanometric arrangement, which is one of the most novel and promising nanostructures. Chitosan grafting was achieved by redox reaction using different temperature conditions that impact on the morphology and features of graphene oxide sheets. Transmission Electron Microscopy, Fourier Transform Infrared, Raman and Energy Dispersive spectroscopies were used to study the surface of chitosan-grafted-graphene oxide. Results show a successful modification indicated by the functional groups found in the grafted material. Dispersions of chitosan-grafted-graphene oxide samples in water and hexane revealed different behavior due to the chemical groups attached to the graphene oxide sheet.

  5. Chitosan-nanosilica hybrid materials: Preparation and properties

    Science.gov (United States)

    Podust, T. V.; Kulik, T. V.; Palyanytsya, B. B.; Gun'ko, V. M.; Tóth, A.; Mikhalovska, L.; Menyhárd, A.; László, K.

    2014-11-01

    The research focuses on the synthesis of novel organic-inorganic hybrid materials based on polysaccharide chitosan and nanosilicas (SiO2, TiO2/SiO2 and Al2O3/SiO2). The chitosan modified nanooxides were obtained by the equilibrium adsorption method. The chitosan adsorption capacities of silica/titania and silica/alumina are higher than of the plain silica due to the additional active sites present on the surfaces of the mixed oxides. The hybrid materials were characterized by low-temperature nitrogen adsorption/desorption, photon correlation spectroscopy (PCS), scanning electron microscopy (SEM), thermogravimetry (TG/DTG) and temperature-programmed desorption with mass spectrometry control (TPD MS) methods. The chitosan treatment only modestly influences the surface area SBET of the nanooxides but the rearrangement of the secondary and tertiary structures (aggregates and agglomerates) results in an enhancement of the mesoporosity and affects the size of the aggregates. The more severe thermodestruction of the polysaccharide desorbing from the modified mixed silicas indicates a stronger interaction between the chitosan and the mixed oxides compared to the silanol groups of the plain silica surface.

  6. CHITOSAN-GOLD NANOPARTICLES AS DELIVERY SYSTEMS FOR CURCUMIN

    Directory of Open Access Journals (Sweden)

    K. Satish Kumar* D. Gnanaprakash, K. Mayilvaganan, C. Arunraj and S. Mohankumar

    2012-11-01

    Full Text Available The present study deals with investigating the effect of chitosan nano particles as carriers for an anticancer drug curcumin. The chitosan-curcumin nanocapsules were prepared in the presence and absence of gold nanoparticles via solvent evaporation method. Scanning electron microscopy and transmission electron microscopy was done to characterize the drug entrapped nanocapsules. The average diameter of gold nanoparticles was found to be in the range of 18-20 nm and size of the nanocapsules was found to be in the range of 200-250 nm. Fourier transform-infrared analysis revealed no possible interactions among the constituents with the chitosan nanoparticles. The controlled drug release of anticancer drug entrapped nanocapsules was carried out in 0.1M HCl and 0.1M phosphate buffer (pH 7. Experimental studies revealed that curcumin encapsulated chitosan with gold nanoparticles was controlled and steady when compared with curcumin encapsulated chitosan nanoparticles. Application of in vitro drug release date to various kinetic equations indicated higuchi matrix model indicating uniform distribution of curcumin in the nanocapsules.

  7. Chitosan-lithium triflate electrolyte in secondary lithium cells

    Energy Technology Data Exchange (ETDEWEB)

    Morni, N.M.; Arof, A.K. [Malaya Univ., Kuala Lumpur (Malaysia). Physics Div.

    1999-01-01

    Films prepared from high molecular weight chitosan are shown to exhibit the highest electrical conductivity of 2.14 x 10{sup -7} S cm{sup -1}. The electrical conductivity is further enhanced to 1.03 x 10{sup -5} S cm{sup -1} when ethylene carbonate (EC) is used as a plasticizer. X-ray diffraction (XRD) shows that EC disrupts the crystalline nature of chitosan acetate. Infrared (IR) spectroscopy reveals a shift in the amide band from 1590 to 1575 cm{sup -1} on addition of LiCF{sub 3}SO{sub 3}. A film with a (chitosan + 0.4 g EC) to LiCF{sub 3}SO{sub 3} ratio of 80:20 gives the highest electrical conductivity of 3.0 x 10{sup -4} S cm{sup -1}. This film is used as an electrolyte for the fabrication of chitosan-based secondary cells, viz., Li/chitosan-EC-LiCF{sub 3}SO{sub 3}/V{sub 2}O{sub 5}. The characteristics of the cells are presented in this paper. (orig.)

  8. Chitosan application as a biocoagulant in wastewater contaminated with hydrocarbons

    Directory of Open Access Journals (Sweden)

    Juan M. Álava

    2015-09-01

    Full Text Available The environment contamination in Ecuador, done by the production, transport and commercialization of hydrocarbons, requires further research regarding new treatment alternatives that use biodegradable substances. In this study, abdominal shrimp shell waste, Litopenaeus vannamei was used to obtain chitosan and then apply it as a biocoagulant to a wastewater sample contaminated with hydrocarbon products. The produced chitosan was characterised by potentiometric titration, resulting in a deacetylation degree (%DD of 87.18%– 93.72% and by intrinsic viscosimetry, obtaining an average molecular weight (g/mol of 5.2x105 –5.4x105. The application of chitosan was done in a jar test, for which a completely randomised factorial design 2k was set, resulting in an evident statistically significant effect for all the factor studied, that is, pH (Initial, chitosan type and agitation method, using the turbidity percentage removal as the response variable. As a result, a pH of 5.5, a 2 mg(Chitosan/L(sample and a fast agitation method were applied to a contaminated sample reducing the turbidity in 98.19%, the oxygen chemical demand in 78.17%, color in 91.45% and total petroleum hydrocarbon in 99.09%.

  9. A rational approach towards the design of chitosan-based nanoparticles obtained by ionotropic gelation.

    Science.gov (United States)

    Kleine-Brueggeney, H; Zorzi, G K; Fecker, T; El Gueddari, N E; Moerschbacher, B M; Goycoolea, F M

    2015-11-01

    Chitosan is a linear aminopolysaccharide that has been widely used for the formation of chitosan-based nanoparticles by ionic gelation with sodium tripolyphosphate (TPP). Often, the experimental design used to obtain these systems does not take into consideration important variables, such as the degree of acetylation (DA) and the molecular weight (Mw) of chitosan. In this work, we studied the formation of chitosan-TPP nanoparticles with chitosan samples of varying DA and Mw (DA0 ∼ 0-47% and Mw ∼ 2.5-282 kDa). We addressed the influence the degree of space occupancy and the degree of crosslinking on the physical properties of chitosan-TPP nanoparticles. Nanoparticles that comprised chitosan of DA ∼ 0-21.7% behaved differently than those made of chitosan of DA ∼ 34.7-47%. We attributed these differences to the polymer conformation and chain flexibility of the distinct chitosans in solution. Moreover, chitosan of high Mw were found to have a stronger preference for incorporating into the formed nanoparticles than do low-Mw ones, as determined by SEC-HPLC. These results open new perspectives to understand the formation of chitosan nanoparticles by the ionic gelation technique.

  10. Influence of chitosan and its derivatives on cell development and physiology of Ustilago maydis.

    Science.gov (United States)

    Olicón-Hernández, Dario Rafael; Hernández-Lauzardo, Ana N; Pardo, Juan Pablo; Peña, Antonio; Velázquez-del Valle, Miguel G; Guerra-Sánchez, Guadalupe

    2015-08-01

    Ustilago maydis, a dimorphic fungus causing corn smut disease, serves as an excellent model to study different aspects of cell development. This study shows the influence of chitosan, oligochitosan and glycol chitosan on cell growth and physiology of U. maydis. These biological macromolecules affected the cell growth of U. maydis. In particular, it was found that chitosan completely inhibited U. maydis growth at 1mg/mL concentration. Microscopic studies revealed swellings on the surface of the cells treated with the polymers, and chitosan caused complete destruction of the membrane and formation of vesicles on the periphery of the cell. Oligochitosan and chitosan caused changes in oxygen consumption, K(+) efflux and H(+)-ATPase activity. Oligochitosan induced a faster consumption of oxygen in the cells, while glycol chitosan provoked slower oxygen consumption. It is noteworthy that chitosan completely inhibited the fungal respiratory activity. The strongest effects were exhibited by chitosan in all evaluated aspects. These findings showed high sensitivity of U. maydis to chitosan and provided evidence for antifungal effects of chitosan derivatives. To our knowledge, this is a first report showing that chitosan and its derivatives affect the cell morphology and physiological processes in U. maydis.

  11. Improved postharvest quality in patagonian squash (Cucurbita moschata) coated with radiation depolymerized chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, Maria Alicia; Goitia, Maria Teresa [Laboratorio de Investigaciones Basicas Aplicadas en Quitina, Departamento de Quimica, Universidad Nacional del Sur. Avenida Alem 1253, B8000CPB Bahia Blanca (Argentina); Yossen, Mariana [Instituto de Desarrollo Tecnologico para la Industria Quimica (INTEC), CONICET-Universidad Nacional del Litoral, Ruta Nacional 168-Paraje ' El Pozo' , 3000 Santa Fe (Argentina); Cifone, Norma; Agullo, Enrique [Laboratorio de Investigaciones Basicas Aplicadas en Quitina, Departamento de Quimica, Universidad Nacional del Sur. Avenida Alem 1253, B8000CPB Bahia Blanca (Argentina); Andreucetti, Noemi, E-mail: andreuce@criba.edu.ar [Laboratorio de Radioisotopos, Departamento de Quimica, Universidad Nacional del Sur, Avenida Alem 1253, B8000CPB Bahia Blanca (Argentina)

    2011-12-15

    Different molecular weight chitosans were evaluated on the decay of coated Anquito squashes (Cucurbita moschata) as well as the maintenance of the fruit quality along five storage months. The original chitosan (Mw=391 kDa, 83% DD), was depolymerized by gamma radiation. Apart from chain scission, other chemical changes were not detected by FTIR or UV-vis analyses. The molecular weight characterization of chitosans was done by size exclusion chromatography with dual light scattering and concentration detection (SEC-MALLS-RI). The coating effectiveness was evaluated on the following parameters: fungal decay incidence, weight loss, firmness, total reducing sugar, soluble solid, flesh color, carotene content, pH and titratable acidity. No sign of fungal decay was observed in squashes coated with 122 and 56 kDa chitosans, which were also the most effective treatments in reducing the weight loss. The chitosan with Mw=122 kDa was also the best treatment considering firmness, internal aspect, sugar and carotene content. Then, radiation degraded chitosan was better in C. moschata preservation than the original chitosan. - Highlights: > Original Chitosan was radiation depolymerized producing chitosans with lower molecular weights. > Gamma-irradiated chitosans only exhibit chain scission. > SEC-MALLS-RI chromatography is a useful tool in molecular weight analysis. > Depolymerized chitosans were the best in maintaining the quality and the storage life of coated squashes.

  12. POTENTIAL APPLICATIONS OF CHITOSAN NANOPARTICLES AS NOVEL SUPPORT IN ENZYME IMMOBILIZATION

    Directory of Open Access Journals (Sweden)

    Hoda Jafarizadeh Malmiri

    2012-01-01

    Full Text Available Chitosan is an attractive natural biopolymer from renewable resources with the presence of reactive amino and hydroxyl functional groups in its structure. Due to the good biocompatibility of chitosan, it can be used in magnetic-field assisted drug delivery, enzyme or cell immobilization and many other industrial applications. In the past decade, nanotechnology has been a considerable research interest in the area of preparation of immobilized enzyme carriers. This study looks at characteristics and applications of chitosan and chitosan nanoparticles and their potentials as suitable supports for enzyme immobilization. Results indicated that activity of immobilized enzymes and performance of enzyme immobilization onto chitosan nanoparticles are higher than chitosan macro and microparticles. As compared to other biopolymers nanoparticles, application of chitosan nanoparticles to immobilize enzymes strongly increases stability of immobilized enzymes and their easy separability from the reaction mixture at the end of the biochemical process.

  13. Characterization and potential applications of gamma irradiated chitosan and its blends with poly(vinyl alcohol).

    Science.gov (United States)

    Bano, Ijaz; Ghauri, Muhammad Afzal; Yasin, Tariq; Huang, Qingrong; Palaparthi, Annie D'Souza

    2014-04-01

    Naturally available chitosan (CHI), of high molecular weight, results in reduced efficiency of these polymers for antibacterial activity. In this regard, irradiation is a widely used method for achieving reduction in molecular weight of polymers, which may improve some of its characteristics. Chitosan was extracted from crab shells and degraded by gamma radiations. Effect of radiation dose on chitosan was analyzed by Fourier transform infrared (FTIR) spectroscopy. Furthermore, the irradiated chitosan was blended with poly(vinyl alcohol) (PVA) and crosslinked with tetraethylorthosilicate (TEOS) into membranes. The membranes were found to be smooth, transparent and macroporous in structure, exhibiting high tensile strength (TS: 27-47 MPa) and elongation at break (EB: 292.6-407.3%). The effect of molecular weight of chitosan and chitosan blends on antibacterial activity was determined. Irradiated low molecular weight chitosan and membranes showed strong antibacterial activity against Escherichia coli and Bacillus subtilis.

  14. Chitin-Chitosan Yield of Freshwater Crab (Potamon potamios, Olivier 1804 Shell

    Directory of Open Access Journals (Sweden)

    Yildiz Bolat*, Şengül Bilgin, Ali Günlü, Levent Izci, Seval Bahadır Koca, Soner Çetinkaya1 and Habil Uğur Koca

    2010-10-01

    Full Text Available In this study, freshwater crab (Potamon potamios, Olivier 1804, economically unevaluated, was used to obtain chitin-chitosan. Chitin-chitosan was extracted with standardized modified chemical method. Chitosan was extracted with demineralization, deproteinization, decoloration (chitin and deacetylation (chitosan. Grinded shell was obtained as 60% after boiling, drying and grinding processes. Chitosan yield of crab shell was determined as 4.65% from grinded crab shell after demineralization (yield is 34.32%, deproteinization (yield is 7.25%, decoloration (yield is 6.83% and deacetylation processes. Moreover, freshwater crab stock was estimated with catch per unit effort (CPUE data in Eğirdir Lake for calculation of quantity of chitosan. Population size was estimated between 12.85±11.88 and 23.86±25.39 tones and freshwater crab was determined as an appropriate crustacean to obtain chitin-chitosan.

  15. Synthesis of (2-pyridyl)-Acetyl Chitosan and Its Antioxidant Activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Rongchun [Dezhou Univ., Dezhou (China)

    2011-10-15

    In this paper, chloracetyl chitosan (CACTS) was prepared at first. In the molecules of CACTS, there are active chlorine groups, which can take part in other reactions. Thus, number of chitosan derivatives will be obtained after chlorine is substituted. Choosing pyridine as the active group, a novel water-soluble chitosan derivative, (2-pyridyl)-acetyl chitosan (PACTS) was obtained and its antioxidant activity against hydroxyl radicals and superoxide radicals was assessed. The results indicated that PACTS had better antioxidant activity than that of chitosan, carboxymethyl chitosan (CMCTS), hydroxypropyl chitosan (HPCTS), and Vitamin C. And the IC{sub 50} values against hydroxyl radicals and superoxide radicals were 0.31 mg/mL and 0.21 mg/mL, respectively.

  16. Effect of Chitosan on Rhizome Rot Disease of Turmeric Caused by Pythium aphanidermatum.

    Science.gov (United States)

    Anusuya, Sathiyanarayanan; Sathiyabama, Muthukrishnan

    2014-01-01

    Chitosan was evaluated for its potential to induce antifungal hydrolases in susceptible turmeric plant (Curcuma longa L.). Under field conditions, the application of chitosan (crab shell) to turmeric plants by foliar spray method induces defense enzymes such as chitinases and chitosanases. Such an increase in enzyme activity was enhanced by spraying chitosan (0.1% w/v) on leaves of turmeric plants at regular intervals. Gel electrophoresis revealed new chitinase and chitosanase isoforms in leaves of turmeric plants treated with chitosan. Treated turmeric plants showed increased resistance towards rhizome rot disease caused by Pythium aphanidermatum, whereas control plants expressed severe rhizome rot disease. Increased activity of defense enzymes in leaves of chitosan treated turmeric plants may play a role in restricting the development of disease symptoms. The eliciting properties of chitosan make chitosan a potential antifungal agent for the control of rhizome rot disease of turmeric.

  17. Production of chitosan from endolichenic fungi isolated from mangrove environment and its antagonistic activity

    Institute of Scientific and Technical Information of China (English)

    Logesh AR; Thillaimaharani KA; Sharmila K; Kalaiselvam M; Raffi SM

    2012-01-01

    Objective:To screen the chitosan producing ability of endolichenic fungi and its antibacterial activity. Methods: Lichen collected from mangroves was screened for endophytes and the chitosan producing ability of endolichenic fungi by submerged fermentation was also determined. Antibacterial activity was carried out against different pathogens. Results:Totally 4 different groups of fungi were isolated from the lichen Roccella montagnei. Among the four genera, Aspergillus niger (A. niger) is potential to produce chitosan (1.3 g/L) on the twelfth day of incubation. Glucose plays an important role in the productivity of chitosan and the yield was maximum at 10% (1.93 g/L). Antibacterial activity revealed that Vibrio cholerae was sensitive to chitosan followed by Escherichia coli. Conclusions: In conclusion, our findings suggest that A. niger is a potential candidate to produce more chitosan than the other strains and glucose plays an important role in the production of chitosan which proves to have a good antibacterial activity.

  18. Preparation and Characterization of Chitosan/Agar Blended Films: Part 2. Thermal, Mechanical, and Surface Properties

    Directory of Open Access Journals (Sweden)

    Esam A. Elhefian

    2012-01-01

    Full Text Available Chitosan/agar (CS/AG films were prepared by blending different proportions of chitosan and agar (considering chitosan as the major component in solution forms. The thermal stability of the blended films was studied using thermal gravimetric analysis (TGA. It was revealed that chitosan and agar form a compatible blend. Studying the mechanical properties of the films showed a decrease in the tensile strength and elongation at break with increasing agar content. Blending of agar with chitosan at all proportions was found to form hydrogel films with enhanced swelling compared to the pure chitosan one. Static water contact angle measurements confirmed the increasing affinity of the blended films towards water suggesting that blending of agar with chitosan improves the wettability of the obtained films.

  19. Induction of volatile organic compound in the leaves of Lycopersicon esculentum by chitosan oligomer

    Institute of Scientific and Technical Information of China (English)

    He Peiqing; Lin Xuezheng; Shen Jihong; Huang Xiaohang; Chen Kaoshan; Li Guangyou

    2005-01-01

    Induction of VOCs (volatile organic compounds) in the leaves of Lycopersicon esculentum by chitosan oligomer elictor was studied. The results demonstrated that VOCs in chitosan oligomer-treated leaves showed stronger inhibitory activity against Botrytis cinerea than that in water-treated leaves, and the spore germination was reduced by 22.1% in 144h after elicitor treatment at a concentration of 1.0%. A total of 16 constituents were detected in water-treated leaves, and chitosan oligomer treatment increased the amount of VOCs production. Chitosan oligomer at different concentration and different time courses of induction treatment could induce different amount of VOCs. Chitosan oligomer resulted in an optimal production of VOCs in 144h after elicitation at concentration of 0.6%. Chitosan oligomer also enhanced activtity of PAL and LOX. The results showed that the enhancement of VOCs production after chitosan oligomer treatment might be an important agent for L.esculentum acquiring resistance against pathogen.

  20. Single-step synthesis of magnetic chitosan composites and application for chromate (Cr(VI)) removal

    Institute of Scientific and Technical Information of China (English)

    杨卫春; 唐琼芝; 董舒宇; 柴立元; 王海鹰

    2016-01-01

    Magnetic chitosan composites (Fe3O4@chitosan) were synthesized in one single-step, characterized and applied in Cr(VI) removal from water. With the increase of loading proportion of chitosan, Cr(VI) adsorption capacity of Fe3O4@chitosan composites increased from 10.771 to 21.040 mg/g. The optimum adsorption capacities of Cr(VI) on Fe3O4@chitosan-3 were found in a pH range of 3.0−5.0. Kinetic study results show that the adsorption process follows pseudo-second-order model, indicating that the rate-limiting step in the adsorption of Cr(VI) involves chemisorptions. Moreover, FT-IR spectra analysis confirms that the amine and hydroxyl groups of chitosan are predominantly responsible for binding. Results from this work demonstrate that the prepared Fe3O4@chitosan composites possess great potential in Cr(VI) removal from contaminated water.

  1. Study on Preparation of the Low-Molecular-Weight Chitosan Using Cellulase

    Institute of Scientific and Technical Information of China (English)

    LI He-sheng; SUN Yu-xi; HUANG Xiao-chun; WANG Hong-fei; QIU Di-hong

    2006-01-01

    The degradation of chitosan ( DD of 72.05%) with aid of cellulase was carried out under the conditions of 45℃, pH 5.0 and a ratio of 1:15( chitosan/enzyme). The results showed cellulase could degrade chitosan efficiently. Viscosity of chitosan was decreased very quickly and reducing sugar released was increased with time during degradation. By using the membrane, the separation of the hydrolysis mixture was studied. Rejection of protein can be reached to be 99.74%.65.9% of low-molecular-weight chitosans was less than 2 kDa. Solubility of low-molecular-weight chitosan was found to be better than chitosan and transmittance could reach to be more than 95 % in entire range of pH 1 ~ 13.

  2. Modified chitosan hydrogels as drug delivery and tissue engineering systems: present status and applications

    Directory of Open Access Journals (Sweden)

    Tapan Kumar Giri

    2012-10-01

    Full Text Available Chitosan, a natural cationic polysaccharide, is prepared industrially by the hydrolysis of the aminoacetyl groups of chitin, a naturally available marine polymer. Chitosan is a non-toxic, biocompatible and biodegradable polymer and has attracted considerable interest in a wide range of biomedical and pharmaceutical applications including drug delivery, cosmetics, and tissue engineering. The primary hydroxyl and amine groups located on the backbone of chitosan are responsible for the reactivity of the polymer and also act as sites for chemical modification. However, chitosan has certain limitations for use in controlled drug delivery and tissue engineering. These limitations can be overcome by chemical modification. Thus, modified chitosan hydrogels have gained importance in current research on drug delivery and tissue engineering systems. This paper reviews the general properties of chitosan, various methods of modification, and applications of modified chitosan hydrogels.

  3. Novel High-Viscosity Polyacrylamidated Chitosan for Neural Tissue Engineering: Fabrication of Anisotropic Neurodurable Scaffold via Molecular Disposition of Persulfate-Mediated Polymer Slicing and Complexation

    Directory of Open Access Journals (Sweden)

    Viness Pillay

    2012-10-01

    Full Text Available Macroporous polyacrylamide-grafted-chitosan scaffolds for neural tissue engineering were fabricated with varied synthetic and viscosity profiles. A novel approach and mechanism was utilized for polyacrylamide grafting onto chitosan using potassium persulfate (KPS mediated degradation of both polymers under a thermally controlled environment. Commercially available high molecular mass polyacrylamide was used instead of the acrylamide monomer for graft copolymerization. This grafting strategy yielded an enhanced grafting efficiency (GE = 92%, grafting ratio (GR = 263%, intrinsic viscosity (IV = 5.231 dL/g and viscometric average molecular mass (MW = 1.63 × 106 Da compared with known acrylamide that has a GE = 83%, GR = 178%, IV = 3.901 dL/g and MW = 1.22 × 106 Da. Image processing analysis of SEM images of the newly grafted neurodurable scaffold was undertaken based on the polymer-pore threshold. Attenuated Total Reflectance-FTIR spectral analyses in conjugation with DSC were used for the characterization and comparison of the newly grafted copolymers. Static Lattice Atomistic Simulations were employed to investigate and elucidate the copolymeric assembly and reaction mechanism by exploring the spatial disposition of chitosan and polyacrylamide with respect to the reactional profile of potassium persulfate. Interestingly, potassium persulfate, a peroxide, was found to play a dual role initially degrading the polymers—“polymer slicing”—thereby initiating the formation of free radicals and subsequently leading to synthesis of the high molecular mass polyacrylamide-grafted-chitosan (PAAm-g-CHT—“polymer complexation”. Furthermore, the applicability of the uniquely grafted scaffold for neural tissue engineering was evaluated via PC12 neuronal cell seeding. The novel PAAm-g-CHT exhibited superior neurocompatibility in terms of cell infiltration owing to the anisotropic porous architecture, high molecular mass mediated robustness

  4. Effects of carbon nanotubes in a chitosan/collagen-based composite on mouse fibroblast cell proliferation.

    Science.gov (United States)

    Zhao, Wen; Yu, Wenwen; Zheng, Jiawei; Wang, Ying; Zhang, Zhiyuan; Zhang, Dongsheng

    2014-01-01

    This study investigated the in vitro cytocompatibility of carbon nanotubes (CNTs) in a chitosan/collagen-based composite. Mouse fibroblasts were cultured on the surface of a novel material consisting of CNTs in a chitosan/collagen-based composite (chitosan/collagen+CNTs group). Chitosan/collagen composites without CNTs served as the control material (chitosan/collagen group) and cells cultured normally in tissue culture plates served as blank controls (blank control group). Cell adhesion and proliferation were observed, and cell apoptosis was measured. The doubling time (DT1) of cells was significantly shorter in the chitosan/collagen+CNTs group than in the chitosan/collagen group, and that in the chitosan/collagen group was shorter than in the blank control group. The CNTs in the chitosan/collagen-based composites promoted mouse fibroblast adhesion, producing a distinct cytoskeletal structure. At 24 h after culture, the cytoskeleton of the cells in the chitosan/collagen+CNTs group displayed typical fibroblastic morphology, with clear microfilaments. Cells in the chitosan/collagen group were typically round, with an unclear cytoskeleton. The blank control group even had a few unattached cells. At 4 days after incubation, no early apoptosis of cells was detected in the blank control group, whereas early apoptosis of cells was observed in the chitosan/collagen+CNTs and chitosan/collagen groups. No significant difference in the proportion of living cells was detected among the three groups. After entering the plateau stage, the average cell number in the chitosan/collagen+CNTs group was similar to that in the chitosan/collagen group and significantly smaller than that in the blank control group. Early apoptosis of cells in the blank control group was not detectable. There were significant differences in early apoptosis among the three groups. These results suggest that CNTs in a chitosan/collagen-based composite did not cause significant cytotoxic effects on mouse

  5. Pluronic F127/chitosan blend microspheres for mucoadhesive drug delivery

    Science.gov (United States)

    Gu, W. Z.; Hu, X. F.

    2017-01-01

    Pluronic F127/chitosan blend microspheres were prepared via emulsification and cross-linking process using glutaraldehyde as a cross-linker. Compared with chitosan microspheres fabricated under the same experimental conditions, blend microspheres exhibited better physical stability and higher swelling capacity. Puerarin, a traditional Chinese medicine, was incorporated into microparticlesas the model drug. The in vitro release of puerarin from blend microspheres was reduced because of the improved compatibility of the drug with the matrices. According to the results from in vitro adhesion experiments, mucoadhesive behavior of blend microspheres on a mucosa-like surface was similar to that of chitosan microspheres, despite their good ability of anti-protein absorption in solution.

  6. Characterization and Antiproliferative Activity of Nobiletin-Loaded Chitosan Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ana G. Luque-Alcaraz

    2012-01-01

    Full Text Available Nobiletin is a polymethoxyflavonoid with a remarkable antiproliferative effect. In order to overcome its low aqueous solubility and chemical instability, the use of nanoparticles as carriers has been proposed. This study explores the possibility of binding nobiletin to chitosan nanoparticles, as well as to evaluate their antiproliferative activity. The association and loading efficiencies are 69.1% and 7.0%, respectively. The formation of an imine bond between chitosan amine groups and the carbonyl group of nobiletin, via Schiff-base, is proposed. Nobiletin-loaded chitosan nanoparticles exhibit considerable inhibition (IC50=8 μg/mL of cancerous cells, revealing their great potential for applications in cancer chemotherapy.

  7. Sorption of uranyl onto glutaraldehyde derivatives of chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Mohapatra, P.K.; Rawat, N.; Manchanda, V.K. [Radiochemistry Division, B.A.R.C., Trombay, Mumbai (India); Guibal, E. [Ecole des Mines d' Ales, Laboratoire Genie de l' Environment Industriel, Ales (France)

    2004-07-01

    Though active uptake is a possibility in the uptake of metal ions by microorganisms, there is a distinct role of passive phenomena mediated by the functional groups present in the cell wall. Predominant constituents of polymers such as chitin or chitosan are the functional groups containing nitrogen donor atoms. Work on biopolymers such as chitosan is getting increasingly popular due to their eco-friendly nature, low cost and high abundance. However, reports on their applications to metal ion sorption from waste solutions have been limited due to their slow kinetics and instability in acidic solutions. These have been overcome by preparing gel type resin beads and also by functionalizing cross linking the chitosan biopolymers. (orig.)

  8. Development of polyamide-6/chitosan membranes for desalination

    Directory of Open Access Journals (Sweden)

    A. EL-Gendi

    2014-06-01

    Full Text Available This article deals with “developing novel polyamide-6/chitosan membranes for water desalting using wet phase inversion technique”, in which novel polyamide-6/chitosan membranes were prepared using an appropriate polymer concerning the national circumferences, along with the definition of different controlling parameters of the preparing processes and their effects on the characteristics of the produced membranes. Further, evaluation process of the fabricated sheets was undertaken. Preparation process was followed by assessment of the membrane structural characteristics; then the desalting performance of each prepared membrane was evaluated under different operating conditions in order to find the structure–property relationship. The results show that the membrane flux increases with the increase of operating pressure. The salt rejection and permeation flux have been enhanced this indicates that the chitosan (CS addition to the polyamide-6 (PA-6 membrane increases the membrane hydrophilic property. Hydraulic permeability coefficient is not stable and varies considerably with the operating pressure.

  9. Antimicrobial Chitosan based formulations with impact on different biomedical applications.

    Science.gov (United States)

    Radulescu, Marius; Ficai, Denisa; Oprea, Ovidiu; Ficai, Anton; Andronescu, Ecaterina; Holban, Alina M

    2015-01-01

    Owing to its physico-chemical characteristics, the biodegradable and biocompatible polymer derived from crustacean shells, Chitosan is one of the preferred candidates for green biomedical applications and also for several industries. Its solubility in acid solutions and ability to form complexes with anionic macromolecules to yield nanoparticles, microparticles and hydrogels, as well as the ability of chitosan based nanocomposites to remain stable at physiological pH recommend this polymer for the development of efficient drug delivery systems. This paper reviews the main utilities of chitosan as a drug delivery component and describes the most recent technologies which utilize this polymer for developing nanostructured systems with antimicrobial effect, offering a perspective of using these findings in new, ecological biomedical applications.

  10. Chitosan-based membrane chromatography for protein adsorption and separation.

    Science.gov (United States)

    Liu, Yezhuo; Feng, Zhicheng; Shao, Zhengzhong; Chen, Xin

    2012-08-01

    A chitosan-based membrane chromatography was set up by using natural chitosan/carboxymethylchitosan (CS/CMCS) blend membrane as the matrix. The dynamic adsorption property for protein (lysozyme as model protein) was detailed discussed with the change in pore size of the membrane, the flow rate and the initial concentration of the feed solution, and the layer of membrane in membrane stack. The best dynamic adsorption capacity of lysozyme on the CS/CMCS membrane chromatography was found to be 15.3mg/mL under the optimal flow conditions. Moreover, the CS/CMCS membrane chromatography exhibited good repeatability and reusability with the desorption efficiency of ~90%. As an application, lysozyme and ovalbumin were successfully separated from their binary mixture through the CS/CMCS membrane chromatography. This implies that such a natural chitosan-based membrane chromatography may have great potential on the bioseparation field in the future.

  11. Adsorption of hexavalent chromium by graphite–chitosan binary composite

    Indian Academy of Sciences (India)

    RAJENDRA S DONGRE

    2016-06-01

    Graphite chitosan binary (GCB) composite was prepared for hexavalent chromium adsorption from studied water. GCB was characterized by TGA, FTIR, SEM and X-ray diffraction techniques.Wide porous sorptive surface of 3.89 m$^2$ g$^{−1}$ and absorptive functionalities of GCB was due to 20% (w/w) graphite support on chitosan evidenced from FTIR and SEM that impart maximum adsorption at pH 4, agitation with 200 rpm for 180 min. Adsorption studies revealed intraparticle diffusion models and best-fitted kinetics was pseudo 2nd order one. A wellfitted Langmuir isotherm model suggested monolayer adsorption with an adsorption capacity ($q_m$) of 105.6 mg g$^{−1}$ and $R^2 = 0.945$. Sorption mechanisms based on metal ionic interactions, intrusion/diffusion and chemisorptions onto composite. This graphite chitosan binary composite improve sorbent capacity for Cr(VI).

  12. Chitosan Hydrogel in combination with Nerolidol for healing wounds.

    Science.gov (United States)

    Ferreira, Maria Onaira Gonçalves; Leite, Layara Lorrana Ribeiro; de Lima, Idglan Sá; Barreto, Humberto Medeiros; Nunes, Lívio César Cunha; Ribeiro, Alessandra Braga; Osajima, Josy Anteveli; da Silva Filho, Edson Cavalcanti

    2016-11-01

    Chitosan is a natural polymer with antibacterial property, that is biodegradable, extremely abundant and non-toxic. This study aimed to develop and characterize chitosan hydrogels in combination with nerolidol, in order to optimize the antimicrobial and healing properties. The hydrogels were prepared using a reaction of the chitosan with acetic acid solution, followed by the addition of 2 or 4% of the nerolidol. Using thermogravimetry, differential scanning calorimetry and infrared spectroscopy, the incorporation of nerolidol in the hydrogel was confirmed. Direct contact tests using hydrogels and Staphylococcus aureus showed a synergistic effect in the materials, enabling total inhibition of bacterial growth. The hydrogel containing 2% nerolidol showed excellent healing effects. The beginning of re-epithelialization and reorganization of collagen was already observed on the 7th day of treatment. The material created proofed to be promising as a healing and antibacterial agent.

  13. Production and characterization of Chitosan from shrimp shells waste

    Directory of Open Access Journals (Sweden)

    Anshar Patria

    2013-07-01

    Full Text Available This research aims to study the production of chitosan from shrimp shell waste origin andcharacterize the chitosan quality of shrimp shell waste that includes parameters yield, solubility,intrinsic viscosity, molecular weight and deacetylation degree. Results showed that the treatment ofheating temperature and heating time in the process of deacetylation caused significant (P≤0.01influence on yield, solubility, intrinsic viscosity, molecular weight and deacetylation degree of producedchitosan. Whereas, the interaction between heating temperature and heating time on the process ofdeacetylation gave no significant effect on yield, solubility, intrinsic viscosity, molecular weight anddeacetylation degree of chitosan produced. The best results in this study were obtained from heatingtemperature of 100˚C and 80 min heating time.

  14. Synthesis of magnetic cytosine-imprinted chitosan nanoparticles

    Science.gov (United States)

    Lee, Mei-Hwa; Ahluwalia, Arti; Chen, Jian-Zhou; Shih, Neng-Lang; Lin, Hung-Yin

    2017-02-01

    Molecularly imprinted polymer nanoparticles incorporating magnetic nanoparticles (MNPs) have been investigated for their selective adsorption properties. Here we describe the synthesis and characterization of magnetic cytosine-imprinted chitosan nanoparticles (CIPs) for gene delivery. In particular, CIPs carrying the mammalian expression plasmid of enhanced green fluorescent protein were prepared by the co-precipitation of MNPs, chitosan and a template nucleobase (cytosine). The results show that the selective reabsorption of cytosine to magnetic CIPs was at least double that of non-imprinted polymers and other nucleobases (such as adenine and thymine). The gene carrier CIPs were used for the transfection of human embryonic kidney 293 cells showing dramatic increase their efficiency with that of conventional chitosan nanoparticles. Furthermore, the gene carrier magnetic CIPs also exhibit low toxicity compared to that of commercially available cationic lipids.

  15. Impact of the structural differences between α- and β-chitosan on their depolymerizing reaction and antibacterial activity.

    Science.gov (United States)

    Jung, Jooyeoun; Zhao, Yanyun

    2013-09-18

    The polymeric structure characteristics of β-chitosan from jumbo squid (Dosidicus gigas) pens and α-chitosan from shrimp shells during depolymerization by cellulase hydrolysis at different degrees of deacetylation (DDA) (60, 75, and 90%) were investigated by using Fourier transform infrared spectroscopy and X-ray diffraction. Antibacterial activity of β-chitosan against Escherichia coli and Listeria innocua was compared with that of α-chitosan at similar Mw and degrees of deacetylation (DDA) by studying inhibition ratio and minimal inhibition concentration (MIC) and was coordinated with the structural characteristics of the two forms of chitosan. β-Chitosan was more reactive to cellulase hydrolysis than α-chitosan due to its relatively lower crystallinity (CI) and loose crystal property, and the 75% DDA chitosan was more susceptible to cellulase than the 90% DDA ones with the 75% DDA of β-chitosan mostly reactive. Both forms of chitosan showed more inhibition against E. coli than against L. innocua, and no difference against L. innocua between the two forms of chitosan was observed. However, the two forms of chitosan exhibited different levels of antibacterial activity against E. coli, in which 75% DDA/31 kDa β-chitosan demonstrated significantly higher inhibition (lower MIC) than that of 75% DDA/31 kDa α-chitosan, whereas 90% DDA/74-76 kDa α-chitosan had a higher inhibition ratio than that of 90% DDA/74-76 kDa of β-chitosan. This result may be explained by the impact of the different structural properties between α- and β-chitosan on chitosan conformations in the solution. This study provided new information about the biological activities of β-chitosan, a bioactive compound with unique functionalities and great potential for food and other applications.

  16. Single neuron computation

    CERN Document Server

    McKenna, Thomas M; Zornetzer, Steven F

    1992-01-01

    This book contains twenty-two original contributions that provide a comprehensive overview of computational approaches to understanding a single neuron structure. The focus on cellular-level processes is twofold. From a computational neuroscience perspective, a thorough understanding of the information processing performed by single neurons leads to an understanding of circuit- and systems-level activity. From the standpoint of artificial neural networks (ANNs), a single real neuron is as complex an operational unit as an entire ANN, and formalizing the complex computations performed by real n

  17. Biocompatibility of chitosan/Mimosa tenuiflora scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Martel-Estrada, Santos Adriana [Instituto de arquitectura diseño y arte, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P. 32320 Cd. Juárez, Chihuahua (Mexico); Rodríguez-Espinoza, Brenda [Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente del PRONAF y Estocolmo, C.P. 32320 Cd. Juárez, Chihuahua (Mexico); Santos-Rodríguez, Elí [ICTP Meso-American Centre for Theoretical Physics (ICTP-MCTP)/Universidad Autónoma de Chiapas, Ciudad Universitaria, Carretera Zapata Km. 4, Real del Bosque (Terán), C.P. 29040 Tuxtla Gutiérrez, Chiapas (Mexico); Jiménez-Vega, Florinda [Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente del PRONAF y Estocolmo, C.P. 32320 Cd. Juárez, Chihuahua (Mexico); García-Casillas, Perla E.; Martínez-Pérez, Carlos A. [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P. 32320 Cd. Juárez, Chihuahua (Mexico); and others

    2015-09-15

    Highlights: • The porosity of the composites allow biological processes for the cell adaptation on the scaffolds. • The composites improve the viability and proliferation of cells. • Composition of the scaffold plays an important role in the biocompatibility. • The results indicate that Mimosa Tenuiflora can induce the differentiation of osteoblast cells. - Abstract: In search of a plant that exhibits osteogenic activity, Mimosa tenuiflora (M. tenuiflora) cortex represents the opportunity to create a biomaterial that, together with the chitosan, is osteoconductive and promote better and rapid regeneration of bone tissue. Thus, the composite of chitosan/M. tenuiflora cortex fabricated will have properties of biocompatibility and allow the osteoblast proliferation. Composites were developed with different concentrations of chitosan/M. tenuiflora cortex (w/w) using thermally induced phase separation technique (TIPS). To analyze the effects of composite on osteoblasts, primary cultures, each sample was collected on days 1, 3 and 7 after seeding. The evaluation of composites consisted of viability and proliferation tests in which we observed the metabolic activity of the cells using MTT reagent and determined the DNA concentration by means of fluorescence. The expression of the marker alkaline phosphatase (ALP) using p-nitrophenyl phosphate was examined, allowing the observation to the activity of proliferation and differentiation of osteoblastic cells. Moreover, an analysis of biomineralization was performed using scanning electron microscopy (SEM), energy dispersive spectroscopy, infrared spectroscopy and X-ray diffraction. The results showed that 80/20 chitosan/M. tenuiflora cortex biocomposite has the best performance with osteoblasts compared to biomaterials 100/0 and 70/30 chitosan/M. tenuiflora composites. Finally, it was determined that the composite of chitosan/M. tenuiflora cortex presents no cytotoxicity and increases the capacity of the osteoblasts

  18. Synthesis and antioxidant properties of chitosan and carboxymethyl chitosan-stabilized selenium nanoparticles.

    Science.gov (United States)

    Chen, Wanwen; Li, Yanfang; Yang, Shuo; Yue, Lin; Jiang, Qixing; Xia, Wenshui

    2015-11-05

    Monodispersible selenium nanoparticles (SeNPs) were synthesized by using chitosan (CS) and carboxymethyl chitosan (CCS) as the stabilizer and capping agent using a facile synthetic approach. The structure, size, morphology and antioxidant activity of the nanocomposites were characterized by transmission electron microscopy (TEM), Ultraviolet-visible spectroscopy (UV-vis), Dynamic Light Scattering (DLS), Fourier transform infrared (FTIR), Thermogravimetric analysis (TGA). The results revealed that the monodispersible SeNPs (mean particle size of about 50 nm) were ligated with CS and CCS to form nanocomposites in aqueous solution for at least 30 days, and for 120 days the nanoparticles increased to 180 nm or so in size. The DPPH scavenging ability of CS-SeNPs was higher than that of CCS-SeNPs, and could reach 93.5% at a concentration of 0.6 mmol/L. Moreover, SeNPs, CS-SeNPs and CCS-SeNPs exhibited a higher ABTS scavenging ability in comparison to Na2SeO3.

  19. Preparation and cytocompatibility of silk fibroin /chitosan scaffolds

    Institute of Scientific and Technical Information of China (English)

    Zhen-ding SHE; Wei-qiang LIU; Qing-ling FENG

    2009-01-01

    One challenge in soft tissue engineering is to find an applicable scaffold, not only having suitable mechanical properties, porous structures, and biodegradable properties, but also being abundant in active groups and having good biocompatibility. In this study, a threedimensional silk fibroin/chitosan (SFCS) scaffold was successfully prepared with interconnected porous structure, excellent hydrophilicity, and proper mechanical properties. Compared with polylactic glycolic acid (PLGA) scaffold, the SFCS scaffold further facilitated the growth of HepG2 cells (human hepatoma cell line). Keeping the good cytocompatibility and combining the advantages of both fibroin and chitosan, the SFCS scaffold should be a prominent candidate for soft tissue engineering, for example, liver.

  20. Removal of copper by modified chitosan adsorptive membrane

    Institute of Scientific and Technical Information of China (English)

    Xiaoshuai LIU; Zihong CHENG; Wei MA

    2009-01-01

    In this study, a novel adsorptive membrane was prepared from chitosan as the functional polymer and some additive blend solutions by solution casting method.The modified chitosan membrane was characterized by FTIR and its Water Swelling Ratio (WSR). The adsorption of copper ions on the adsorptive membrane was investi-gated in batch experiments. The results obtained from the experiments indicated that the membrane had a good adsorption capacity for copper ions, the optimal ionic strength and pH were 0.1 and 5-6, respectively. Compared with the Langmuir isotherm model, the experimental data were found to be following the Freundlich model.

  1. Interaction of Protein and Cell with Different Chitosan Membranes

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Interaction between proteins, cells and biomaterial surfaces is commonly observed and often used to measure biocompatibility of biomaterials.In this investigation, three kinds of biomaterials derived from chitosan were prepared.The surface wettability of these polymers, interaction of protein with material surface, and their effects on cell adhesion and growth were studied.The results show that the surface contact angle and surface charge of biomaterials have a close bearing on protein adsorption as well as cell adhesion and growth, indicating that through different chemical modifications, chitosan can be made into different kinds of biomedical materials to satisfy various needs.

  2. Adsorption dynamics and equilibrium studies of Zn (II) onto chitosan

    Indian Academy of Sciences (India)

    G Karthikeyan; K Anbalagan; N Muthulakshmi Andal

    2004-03-01

    Batch equilibration studies are conducted to determine the nature of adsorption of zinc (II) over chitosan. The factors affecting the adsorption process like particle size, contact time, dosage, pH, effects of chloride and nitrate are identified. The influence of temperature and co-ions on the adsorption process is verified. The fraction of adsorption, and the intraparticle diffusion rate constant, are calculated at different environments and the results are discussed. The nature of adsorption of the zinc (II) - chitosan system is explained using Freundlich, Langmuir isotherms and thermodynamic parameters.

  3. Synthesis of Chitosan /Alginate/ Silver Nanoparticles Hydrogel Scaffold

    OpenAIRE

    Ramli Roslinda Hani; Fhong Soon Chin; Mohd Rus Anika Zafiah

    2016-01-01

    This work reports the preparation of silver nanoparticles (AgNPs) and synthesis of natural based hydrogel scaffold with an inclusion of AgNPs, chitosan/alginate/silver nanoparticles. The synthesised hydrogel scaffolds were characterised by using Fourier Transform Infrared Resonance Spectroscopy (FTIR). The FTIR result revealed that the shifting of the three peaks of 3252.95 cm−1 (–OH and –NH2 stretching), 1591.33 cm−1 (C=O stretching) and 1411.88 cm−1 (N–H stretching) of chitosan/alginate/sil...

  4. Chitosan Obtained from Cell Wall of Aspergillus Niger Mycelium

    Institute of Scientific and Technical Information of China (English)

    HUANG Hui-li; LIN Wen-luan; LIN Jian-ming

    2004-01-01

    Chitin from cell walls of Aspergillus Niger mycelium was prepared. A new method for the preparation of high deacetylation degree chitosan was studied in a dilute sodium hydroxide solution at a high pressure. The experimental results indicate that the deacetylation degree of the chitosan can reach 80% under the condition of a 5.00 mol/L sodium hydroxide solution at 0.1 MPa of pressure for 1 h. This method shows the advantages of the applications in the industry production and environment protection.

  5. Alginate and Chitosan Gel Nanoparticles for Efficient Protein Entrapment

    Science.gov (United States)

    Masalova, O.; Kulikouskaya, V.; Shutava, T.; Agabekov, V.

    Alginate and chitosan nanoparticles were synthesized by ionic gelation of the polymers in the presence of stabilizers (PEG 1500, PEG 6000, TWEEN 80). The stability of 210-240 nm Ca-alginate colloids is affected by nanoparticles ageing and by the presence of a stabilizer. The diameter of chitosan nanoparticles is in the range of 180 to 260 nm and depends on polymer concentration in the reaction mixture, its molecular weight, and stabilizer type. The nanoparticles efficiently entrap a model protein, bovine serum albumin, in the amount up to 0.24 mg per 1 mg of polysaccharide.

  6. Rheological study of chitosan and its blends: An overview

    Directory of Open Access Journals (Sweden)

    Esam A. El-hefian

    2010-06-01

    Full Text Available Chitosan, a modified natural carbohydrate polymer derived from carapaces of crabs and shrimps, has received a great deal of attention for its applications in diverse fields owing to its biodegradability, biocompatibility, non-toxicity and anti-bacterial property. The wide-ranging applications involve a broad spectrum of characterisation techniques and rheology represents one technique of growing importance in this field. This paper is an attempt to review the latest development in the rheology of chitosan, either on its own or associated with other materials, including the parameters that strongly influence its rheological behaviour such as concentration, pH and temperature.

  7. Alginate-chitosan coacervation in production of artificial seeds.

    Science.gov (United States)

    Tay, L F; Khoh, L K; Loh, C S; Khor, E

    1993-08-05

    Survival of secondary embryoids of winter oilseed rape (Brassica napus ssp. oleifera cv. Primor) has been used as an assay for the development of artificial seeds involving complex coacervation of alginate (polyanion) with chitosan (polycation). Germination frequency of 100% was achieved for encapsulated embryoids when alginate formed the inner matrix and chitosan the outer layer. When the matrix makeup was reversed, there was no germination of embryoids. The artificial seeds produced were hardened in dilute alkaline solutions of NaOH and Ca(OH)(2). An optimum setting time could be selected based on a quantitative measurement of resistance of hardened capsules to compression and the germination frequency of the encapsulated embryoids.

  8. Glial cell line-derived neurotrophic factor gene delivery via a polyethylene imine grafted chitosan carrier

    Directory of Open Access Journals (Sweden)

    Peng YS

    2014-06-01

    Full Text Available Yu-Shiang Peng,1,* Po-Liang Lai,2,* Sydney Peng,1 His-Chin Wu,3 Siang Yu,1 Tsan-Yun Tseng,4 Li-Fang Wang,5 I-Ming Chu1 1Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 2Department of Orthopedic Surgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, 3Department of Materials Engineering, Tatung University, Taipei, 4Graduate School of Biotechnology and Bioengineering, College of Engineering, Yuan Ze University, Chung-Li, 5Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan *Yu-Shiang Peng and Po-Liang Lai contributed equally to this work Abstract: Parkinson’s disease is known to result from the loss of dopaminergic neurons. Direct intracerebral injections of high doses of recombinant glial cell line-derived neurotrophic factor (GDNF have been shown to protect adult nigral dopaminergic neurons. Because GDNF does not cross the blood–brain barrier, intracerebral gene transfer is an ideal option. Chitosan (CHI is a naturally derived material that has been used for gene transfer. However, the low water solubility often leads to decreased transfection efficiency. Grafting of highly water-soluble polyethylene imines (PEI and polyethylene glycol onto polymers can increase their solubility. The purpose of this study was to design a non-viral gene carrier with improved water solubility as well as enhanced transfection efficiency for treating Parkinsonism. Two molecular weights (Mw =600 and 1,800 g/mol of PEI were grafted onto CHI (PEI600-g-CHI and PEI1800-g-CHI, respectively by opening the epoxide ring of ethylene glycol diglycidyl ether (EX-810. This modification resulted in a non-viral gene carrier with less cytotoxicity. The transfection efficiency of PEI600-g-CHI/deoxyribonucleic acid (DNA polyplexes was significantly higher than either PEI1800-g-CHI/DNA or CHI/DNA polyplexes. The maximal GDNF expression of PEI600-g-CHI/DNA was at the

  9. Chitosan and carboxymethyl-chitosan capping ligands: Effects on the nucleation and growth of hydroxyapatite nanoparticles for producing biocomposite membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dumont, Vitor C.; Mansur, Alexandra A.P.; Carvalho, Sandhra M.; Medeiros Borsagli, Fernanda G.L.; Pereira, Marivalda M.; Mansur, Herman S., E-mail: hmansur@demet.ufmg.br

    2016-02-01

    Synthetic biomaterials based on calcium phosphates (CaP) have been widely studied for bone tissue reconstruction therapies, but no definitive solution that fulfills all of the required properties has been identified. Thus, this study reports the synthesis of composite membranes based on nanohydroxyapatite particles (nHA) embedded in chitosan (CHI) and O-carboxymethyl chitosan (CMC) matrices produced using a one-step co-precipitation method in water media. Biopolymers were used as capping ligands for simultaneously controlling the nucleation and growth of the nHA particles during the precipitation process and also to form the polymeric network of the biocomposites. The bionanocomposites were extensively characterized using light microscopy (LM), scanning and transmission electron microscopy (SEM/TEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), atomic force microscopy (AFM), X-ray micro-CT analysis (μCT), and MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) cell proliferation assays for cell cytotoxicity. The results demonstrated that the ligands used during the synthesis highly affected the composites produced, primarily due the changes in the mechanisms and kinetics of nucleation and growth of the HA particles at the nanoscale level. The SEM images revealed that the use of carboxyl-functionalized chitosan (CMC) ligands significantly reduced the average size of the HA nanoparticles and caused the formation of a narrower size distribution (90 ± 20 nm) compared to the HA nanoparticles produced with chitosan ligands (220 ± 50 nm). The same trend was verified by the AFM analysis, where the nHA particles were formed evenly dispersed in the polymer matrix. However, the CMC-based composites were more homogeneously distributed, which was endorsed by the images collected via X-ray micro-CT. The FTIR spectra and the XRD analysis indicated that nanosized hydroxyapatite was the

  10. Study of the interpolyelectrolyte reaction between chitosan and alginate: influence of alginate composition and chitosan molecular weight.

    Science.gov (United States)

    Becherán-Marón, L; Peniche, C; Argüelles-Monal, W

    2004-04-01

    The interpolyelectrolyte reaction between chitosan (CHI) and alginate (ALG) was followed by conductimetry and potentiometry. Five chitosan samples, all with almost the same degree of N-acetylation (DA approximately 0.20) and molecular weights ranging from 5 x 10(3) to 2.5 x 10(5) Da were used. The polyelectrolyte complex was formed using alginate samples with three different M/G values (0.44, 1.31 and 1.96). The composition of the complex, Z (Z = [CHI]/[ALG]) resulted 0.70 +/- 0.02, independently of the molecular weight of chitosan and the composition of the alginate used. The degree of complexation was 0.51 with no dependence on the alginate composition.

  11. Chitosan Hydrogel Structure Modulated by Metal Ions

    Science.gov (United States)

    Nie, Jingyi; Wang, Zhengke; Hu, Qiaoling

    2016-10-01

    As one of the most important polysaccharide, chitosan (CS) has generated a great deal of interest for its desirable properties and wide applications. In the utilization of CS materials, hydrogel is a major and vital branch. CS has the ability to coordinate with many metal ions by a chelation mechanism. While most researchers focused on the applications of complexes between CS and metal ions, the complexes can also influence gelation process and structure of CS hydrogel. In the present work, such influence was studied with different metal ions, revealing two different kinds of mechanisms. Strong affinity between CS and metal ions leads to structural transition from orientation to multi-layers, while weak affinity leads to composite gel with in-situ formed inorganic particles. The study gave a better understanding of the gelation mechanism and provided strategies for the modulation of hydrogel morphology, which benefited the design of new CS-based materials with hierarchical structure and facilitated the utilization of polysaccharide resources.

  12. Carbon nanotubes - chitosan nanobiocomposite for immunosensor

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, Ajeet [Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, New Delhi-110012 (India); Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi-110025 (India); Solanki, Pratima R.; Pandey, M.K. [Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, New Delhi-110012 (India); Kaneto, Keiichi [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, 808-0196 (Japan); Ahmad, Sharif [Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi-110025 (India); Malhotra, Bansi D., E-mail: bansi.malhotra@gmail.co [Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, New Delhi-110012 (India)

    2010-11-30

    Carboxylic group functionalized single walled (SW) and multi walled (MW) carbon nanotubes (CNT) have been incorporated into biopolymer matrix of chitosan (CH) to fabricate nanobiocomposite film onto indium-tin-oxide (ITO) coated glass plate for co-immobilization of rabbit-immunoglobulin (r-IgGs) and bovine serum albumin (BSA) to detect ochratoxin-A (OTA). The results of electrochemical studies reveal that presence of both CNT results in increased electro-active surface area of CH leading to enhanced electron transport in these nanobiocomposites. Moreover, in CH-SWCNT and CH-MWCNT nanobiocomposites the availability of NH{sub 2}/OH group in CH and surface charged CNT also increases loading of the r-IgGs resulting in enhanced electron transport responsible for improved sensing characteristics. Compared to BSA/r-IgGs/CH-MWCNT/ITO immunoelectrode, electrochemical response studies of BSA/r-IgGs/CH-SWCNT/ITO immunoelectrode carried out as a function of OTA concentration exhibits improved linearity as 0.25-6 ng/dL, detection limit as 0.25 ng/dL, response time as 25 s, and sensitivity as 21 {mu}A ng dL{sup -1} cm{sup -2} with the regression coefficient as 0.998.

  13. Fabrication of fluorescent chitosan-containing microcapsules

    Directory of Open Access Journals (Sweden)

    Zhang R.

    2013-08-01

    Full Text Available Intense emission peaks of Eu(DBM3Phen (DBM and Phen are dibenzoylmethane and 1,10-phenanthroline, respectively in the microcapsules containing molecules of quaternary ammonium chitosan (QACS and sodium alginate are observed. The microcapsules are assembled by using CaCO3 particles as template cores by the layer-by-layer (LbL technique. Observation of microcapsules by the fluorescence mode and the transmission mode in the confocal laser scanning microscopy shows that the microcapsules are intact after core decomposition. Fluorescence under ultraviolet irradiation comes directly from the Eu(DBM3Phen. Homogeneous assembly of Eu(DBM3Phen can be deduced due to the homogeneous fluorescence of the microcapsules in the fluorescence micrographs. The microcapsules show adherence to solid substrates due to large quantities of hydroxyl groups of QACS. AFM measurements of dried hollow microcapsules with only 4 bilayers of (CS/SA fabricated with Eu(DBM3Phen show the intact shell with a thickness of 3.0 nm. Regarding the biocompatible natural polysaccharides and the intense fluorescence emission, the microcapsules in this work might be of great importance in potential application in drug delivery and bioassay.

  14. Preparation and Characterization of Magnetic Chitosan Microcapsules

    Directory of Open Access Journals (Sweden)

    Xiaopeng Xiong

    2013-01-01

    Full Text Available By dispersing aqueous precipitant in liquid paraffin to prepare a W/O emulsion then adding chitosan (CS solution, CS microcapsules have been successfully prepared. It is a facile way to prepare polymer microcapsules by using aqueous precipitant or nonsolvent as template, which avoids the removal of template and would free from the necessity to cross-link the microcapsule as usual methods to directly form dense shell. The hollow feature of the obtained materials is revealed. The diameter of the microcapsules ranges from several μm to over 100 μm. Magnetic CS microcapsules have been prepared in this way when Fe3+ and Fe2+ were mixed with CS to prepare a mixture starting solution. The appearance and microstructure of the composite microcapsules were studied. The results indicate that the formed Fe3O4 nanoparticles are embedded in the CS matrix evenly due to strong interaction between the Fe3O4 nanoparticles and the CS molecules. The Fe3O4 content and the magnetic properties of the composite microcapsule were measured. The composite microcapsules were calcined in air at 700°C to prepare pure inorganic hollow microspheres. It is general to prepare hollow polymeric or composite particles by using this method.

  15. Neuromorphic silicon neuron circuits

    Directory of Open Access Journals (Sweden)

    Giacomo eIndiveri

    2011-05-01

    Full Text Available Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance based Hodgkin-Huxley models to bi-dimensional generalized adaptive Integrate and Fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.

  16. One-Step Biofunctionalization of Quantum Dots with Chitosan and N-palmitoyl Chitosan for Potential Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Herman S. Mansur

    2013-06-01

    Full Text Available Carbohydrates and derivatives (such as glycolipids, glycoproteins are of critical importance for cell structure, metabolism and functions. The effects of carbohydrate and lipid metabolic imbalances most often cause health disorders and diseases. In this study, new carbohydrate-based nanobioconjugates were designed and synthesized at room temperature using a single-step aqueous route combining chitosan and acyl-modified chitosan with fluorescent inorganic nanoparticles. N-palmitoyl chitosan (C-Pal was prepared aiming at altering the lipophilic behavior of chitosan (CHI, but also retaining its reasonable water solubility for potential biomedical applications. CHI and C-Pal were used for producing biofunctionalized CdS quantum dots (QDs as colloidal water dispersions. Fourier transform infrared spectroscopy (FTIR, thermal analysis (TG/DSC, surface contact angle (SCA, and degree of swelling (DS in phosphate buffer were used to characterize the carbohydrates. Additionally, UV-Visible spectroscopy (UV-Vis, photoluminescence spectroscopy (PL, dynamic light scattering (DLS, scanning and transmission electron microscopy (SEM/TEM were used to evaluate the precursors and nanobioconjugates produced. The FTIR spectra associated with the thermal analysis results have undoubtedly indicated the presence of N-palmitoyl groups “grafted” to the chitosan chain (C-Pal which significantly altered its behavior towards water swelling and surface contact angle as compared to the unmodified chitosan. Furthermore, the results have evidenced that both CHI and C-Pal performed as capping ligands on nucleating and stabilizing colloidal CdS QDs with estimated average size below 3.5 nm and fluorescent activity in the visible range of the spectra. Therefore, an innovative “one-step” process was developed via room temperature aqueous colloidal chemistry for producing biofunctionalized quantum dots using water soluble carbohydrates tailored with amphiphilic behavior

  17. One-step biofunctionalization of quantum dots with chitosan and N-palmitoyl chitosan for potential biomedical applications.

    Science.gov (United States)

    Santos, Joyce C C; Mansur, Alexandra A P; Mansur, Herman S

    2013-06-04

    Carbohydrates and derivatives (such as glycolipids, glycoproteins) are of critical importance for cell structure, metabolism and functions. The effects of carbohydrate and lipid metabolic imbalances most often cause health disorders and diseases. In this study, new carbohydrate-based nanobioconjugates were designed and synthesized at room temperature using a single-step aqueous route combining chitosan and acyl-modified chitosan with fluorescent inorganic nanoparticles. N-palmitoyl chitosan (C-Pal) was prepared aiming at altering the lipophilic behavior of chitosan (CHI), but also retaining its reasonable water solubility for potential biomedical applications. CHI and C-Pal were used for producing biofunctionalized CdS quantum dots (QDs) as colloidal water dispersions. Fourier transform infrared spectroscopy (FTIR), thermal analysis (TG/DSC), surface contact angle (SCA), and degree of swelling (DS) in phosphate buffer were used to characterize the carbohydrates. Additionally, UV-Visible spectroscopy (UV-Vis), photoluminescence spectroscopy (PL), dynamic light scattering (DLS), scanning and transmission electron microscopy (SEM/TEM) were used to evaluate the precursors and nanobioconjugates produced. The FTIR spectra associated with the thermal analysis results have undoubtedly indicated the presence of N-palmitoyl groups "grafted" to the chitosan chain (C-Pal) which significantly altered its behavior towards water swelling and surface contact angle as compared to the unmodified chitosan. Furthermore, the results have evidenced that both CHI and C-Pal performed as capping ligands on nucleating and stabilizing colloidal CdS QDs with estimated average size below 3.5 nm and fluorescent activity in the visible range of the spectra. Therefore, an innovative "one-step" process was developed via room temperature aqueous colloidal chemistry for producing biofunctionalized quantum dots using water soluble carbohydrates tailored with amphiphilic behavior offering potential

  18. Motor neurone disease.

    Science.gov (United States)

    2016-03-23

    Essential facts Motor neurone disease describes a group of related diseases, affecting the neurones in the brain and spinal cord. Progressive, incurable and life-limiting, MND is rare, with about 1,100 people developing it each year in the UK and up to 5,000 people affected at any one time. One third of people will die within a year of diagnosis and more than half within two years. About 5% to 10% are alive at ten years.

  19. Neuron division or enucleation.

    Science.gov (United States)

    Sotnikov, O S; Laktionova, A A; Solovieva, I A; Krasnova, T V

    2010-10-01

    The classical Bielschowsky-Gross neurohistological method was used to reproduce all the morphological phenomena interpreted by many authors as signs of neuron division, budding, and fission. It is suggested that these signs are associated with the effects of enucleation, which occurs in many cells of other tissue types in response to a variety of chemical and physical treatments. Studies were performed using neurons isolated from the mollusk Lymnaea stagnalis and exposed in tissue culture to the actin microfilament inhibitor cytochalasin B. Phase contrast time-lapse video recording over periods of 4-8 h demonstrated nuclear displacement, ectopization, and budding, to the level of almost complete fission of the neuron body. This repeats the pattern seen in static fixed preparations in "normal" conditions and after different experimental treatments. Budding of the cytoplasm was also sometimes seen at the early stages of the experiments. Control experiments in which cultured neurons were exposed to the solvent for cytochalasin B, i.e., dimethylsulfoxide (DMSO), did not reveal any changes in neurons over a period of 8 h. We take the view that the picture previously interpreted as neuron division and fission can be explained in terms of the inhibition of actin microfilaments, sometimes developing spontaneously in cells undergoing individual metabolic changes preventing the maintenance of cytoskeleton stability.

  20. NeuronBank: A Tool for Cataloging Neuronal Circuitry.

    Science.gov (United States)

    Katz, Paul S; Calin-Jageman, Robert; Dhawan, Akshaye; Frederick, Chad; Guo, Shuman; Dissanayaka, Rasanjalee; Hiremath, Naveen; Ma, Wenjun; Shen, Xiuyn; Wang, Hsui C; Yang, Hong; Prasad, Sushil; Sunderraman, Rajshekhar; Zhu, Ying

    2010-01-01

    The basic unit of any nervous system is the neuron. Therefore, understanding the operation of nervous systems ultimately requires an inventory of their constituent neurons and synaptic connectivity, which form neural circuits. The presence of uniquely identifiable neurons or classes of neurons in many invertebrates has facilitated the construction of cellular-level connectivity diagrams that can be generalized across individuals within a species. Homologous neurons can also be recognized across species. Here we describe NeuronBank.org, a web-based tool that we are developing for cataloging, searching, and analyzing neuronal circuitry within and across species. Information from a single species is represented in an individual branch of NeuronBank. Users can search within a branch or perform queries across branches to look for similarities in neuronal circuits across species. The branches allow for an extensible ontology so that additional characteristics can be added as knowledge grows. Each entry in NeuronBank generates a unique accession ID, allowing it to be easily cited. There is also an automatic link to a Wiki page allowing an encyclopedic explanation of the entry. All of the 44 previously published neurons plus one previously unpublished neuron from the mollusc, Tritonia diomedea, have been entered into a branch of NeuronBank as have 4 previously published neurons from the mollusc, Melibe leonina. The ability to organize information about neuronal circuits will make this information more accessible, ultimately aiding research on these important models.

  1. NeuronBank: a tool for cataloging neuronal circuitry

    Directory of Open Access Journals (Sweden)

    Paul S Katz

    2010-04-01

    Full Text Available The basic unit of any nervous system is the neuron. Therefore, understanding the operation of nervous systems ultimately requires an inventory of their constituent neurons and synaptic connectivity, which form neural circuits. The presence of uniquely identifiable neurons or classes of neurons in many invertebrates has facilitated the construction of cellular-level connectivity diagrams that can be generalized across individuals within a species. Homologous neurons can also be recognized across species. Here we describe NeuronBank.org, a web-based tool that we are developing for cataloging, searching, and analyzing neuronal circuitry within and across species. Information from a single species is represented in an individual branch of NeuronBank. Users can search within a branch or perform queries across branches to look for similarities in neuronal circuits across species. The branches allow for an extensible ontology so that additional characteristics can be added as knowledge grows. Each entry in NeuronBank generates a unique accession ID, allowing it to be easily cited. There is also an automatic link to a Wiki page allowing an encyclopedic explanation of the entry. All of the 44 previously published neurons plus one previously unpublished neuron from the mollusc, Tritonia diomedea, have been entered into a branch of NeuronBank as have 4 previously published neurons from the mollusc, Melibe leonina. The ability to organize information about neuronal circuits will make this information more accessible, ultimately aiding research on these important models.

  2. NeuronBank: A Tool for Cataloging Neuronal Circuitry

    Science.gov (United States)

    Katz, Paul S.; Calin-Jageman, Robert; Dhawan, Akshaye; Frederick, Chad; Guo, Shuman; Dissanayaka, Rasanjalee; Hiremath, Naveen; Ma, Wenjun; Shen, Xiuyn; Wang, Hsui C.; Yang, Hong; Prasad, Sushil; Sunderraman, Rajshekhar; Zhu, Ying

    2010-01-01

    The basic unit of any nervous system is the neuron. Therefore, understanding the operation of nervous systems ultimately requires an inventory of their constituent neurons and synaptic connectivity, which form neural circuits. The presence of uniquely identifiable neurons or classes of neurons in many invertebrates has facilitated the construction of cellular-level connectivity diagrams that can be generalized across individuals within a species. Homologous neurons can also be recognized across species. Here we describe NeuronBank.org, a web-based tool that we are developing for cataloging, searching, and analyzing neuronal circuitry within and across species. Information from a single species is represented in an individual branch of NeuronBank. Users can search within a branch or perform queries across branches to look for similarities in neuronal circuits across species. The branches allow for an extensible ontology so that additional characteristics can be added as knowledge grows. Each entry in NeuronBank generates a unique accession ID, allowing it to be easily cited. There is also an automatic link to a Wiki page allowing an encyclopedic explanation of the entry. All of the 44 previously published neurons plus one previously unpublished neuron from the mollusc, Tritonia diomedea, have been entered into a branch of NeuronBank as have 4 previously published neurons from the mollusc, Melibe leonina. The ability to organize information about neuronal circuits will make this information more accessible, ultimately aiding research on these important models. PMID:20428500

  3. Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi.

    Science.gov (United States)

    Saharan, Vinod; Mehrotra, Akanksha; Khatik, Rajesh; Rawal, Pokhar; Sharma, S S; Pal, Ajay

    2013-11-01

    The main aim of present study was to prepare chitosan, chitosan-saponin and Cu-chitosan nanoparticles to evaluate their in vitro antifungal activities. Various nanoparticles were prepared using ionic gelation method by interaction of chitosan, sodium tripolyphosphate, saponin and Cu ions. Their particle size, polydispersity index, zeta potential and structures were confirmed by DLS, FTIR, TEM and SEM. The antifungal properties of nanoparticles against phytopathogenic fungi namely Alternaria alternata, Macrophomina phaseolina and Rhizoctonia solani were investigated at various concentrations ranging from 0.001 to 0.1%. Among the various formulations of nanoparticles, Cu-chitosan nanoparticles were found most effective at 0.1% concentration and showed 89.5, 63.0 and 60.1% growth inhibition of A. alternata, M. phaseolina and R. solani, respectively in in vitro model. At the same concentration, Cu-chitosan nanoparticles also showed maximum of 87.4% inhibition rate of spore germination of A. alternata. Chitosan nanoparticles showed the maximum growth inhibitory effects (87.6%) on in vitro mycelial growth of M. phaseolina at 0.1% concentration. From our study it is evident that chitosan based nanoparticles particularly chitosan and Cu-chitosan nanoparticles have tremendous potential for further field screening towards crop protection.

  4. Novel Amino-Pyridine Functionalized Chitosan Quaternary Ammonium Derivatives: Design, Synthesis, and Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Qing Li

    2017-01-01

    Full Text Available Chemical modification of chitosan is increasingly studied for its potential of providing new applications of chitosan. Here, a group of novel chitosan quaternary ammonium derivatives containing pyridine or amino-pyridine were designed and successfully synthesized through chemical modification of chitosan. Pyridine and amino-pyridine were used as functional groups to improve the antifungal activity of chitosan derivatives. The chitosan derivatives’ antioxidant activity against hydroxyl-radical and 1,1-Diphenyl-2-picrylhydrazyl (DPPH-radical was tested in vitro. The results showed that chitosan derivatives had better water solubility and stronger antioxidant activity compared with chitosan in all assays. Especially, compounds 3C and 3E (with 3-amino pyridine and 2,3-diamino pyridine as substitute respectively exhibited stronger hydroxyl-radical and DPPH-radical scavenging ability than other synthesized compounds. These data demonstrated that the synergistic effect of the amino group and pyridine would improve the antioxidant activity of chitosan derivatives, and the position of the amino group on pyridine could influence the antioxidant property of chitosan derivatives.

  5. Synthesis, characterization and biological activity of Schiff bases based on chitosan and arylpyrazole moiety.

    Science.gov (United States)

    Salama, Hend E; Saad, Gamal R; Sabaa, Magdy W

    2015-08-01

    The Schiff bases of chitosan were synthesized by the reaction of chitosan with 3-(4-substituted-phenyl)-1-phenyl-1H-pyrazole-4-carbaldehyde. The structure of the prepared chitosan derivatives was characterized by FT-IR spectroscopy, elemental analysis, and X-ray diffraction studies and thermogravimetric analysis (TG). The results show that the specific properties of Schiff bases of chitosan can be altered by modifying the molecular structures with proper substituent groups.TG results reveal that the thermal stability of the prepared chitosan Schiff bases was lower than chitosan. The activation energy of decomposition was calculated using Coats-Redfern model. The antimicrobial activity of chitosan and Schiff bases of chitosan were investigated against Streptococcus pneumonia, Bacillis subtilis, Escherichia coli (as examples of bacteria) and Aspergillus fumigatus, Geotricum candidum and Syncephalastrum recemosum (as examples of fungi). The results indicated that the antimicrobial activity of the Schiff bases was stronger than that of chitosan and was dependent on the substituent group. The activity of un-substituted arylpyrazole chitosan derivative toward the investigated bacteria and fungi species was better than the other derivatives.

  6. Beta-chitosan extracted from Loligo Japonica for a potential use to inhibit Newcastle disease.

    Science.gov (United States)

    He, Xiaofei; Xing, Ronge; Li, Kecheng; Qin, Yukun; Zou, Ping; Liu, Song; Yu, Huahua; Li, Pengcheng

    2016-01-01

    Beta-chitosan has a parallel structure, which differs from alpha-chitosan's antiparallel structure while producing different properties and difficulties. In this paper, we prepared the beta-chitosan through acid and alkali methods and the resultant material was characterized by elemental analysis, FT-IR, HPLC, XRD, NMR and AFS. To increase the solubility and biological activity of the beta-chitosan, we degraded it through microwave-assisted process. After characterization, we determined that the chitosan had not changed its configuration during the reaction with H2O2 under microwave irradiation. The inhibitory activity of the degraded chitosan for Newcastle disease was revealed by a hemagglutination test and RT-PCR. The yield of the beta-chitosan was approximately 30%, and its molecular weight can be degraded to 1000 to 10,000g/mol. Moreover, the degraded β-chitosan has higher antiviral activity, reducing the hemagglutination titre to zero, compared with alpha-chitosan. Therefore, beta-chitosan has good development prospects during the development of veterinary drugs for Newcastle disease.

  7. Control of Streptococcus sanguinis oral biofilm by novel chlorhexidine-chitosan mouthwash: an in vitro study

    Directory of Open Access Journals (Sweden)

    Bangalore V. Karthikeyan

    2013-04-01

    Full Text Available Objective: The most common prevalent infectious oral diseases in humans are caries and periodontal diseases, which are usually associated with dental plaque. The present in vitro study was designed to evaluate and compare the impact of new mouthwash formulation consisting of chlorhexidine (0.1% and bioadhesive chitosan (0.5% on dental plaque bacterial reduction, to that of chlorhexidine or chitosan alone. Methods: In this study, we analyzed the antimicrobial susceptibility of strains of Streptococcus sanguinis from clinical plaque samples to four different antimicrobial agents. Antimicrobial susceptibilities of the isolates to chlorhexidine (0.2%, chitosan (0.5%, chlorhexidine (0.1% plus chitosan (0.5% combination and saline were evaluated by disc diffusion method. Results: The zone of inhibition showed that chlorhexidine, chitosan and chlorhexidine-chitosan combination mouthwash exert an antimicrobial activity. A markedly higher and significant activity was obtained with chlorhexidine-chitosan combination mouthwash. On intergroup comparison there were statistically significant differences between all the tested solutions, except between chlorhexidine and chitosan mouthwash. Conclusion: Within the limitation of the present study, results showed that chlorhexidine-chitosan combination mouthrinse are superior in antimicrobial activity than chlorhexidine or chitosan alone. [J Exp Integr Med 2013; 3(2.000: 165-169

  8. Effects of laminin-coated carbon nanotube/chitosan fibers on guided neurite growth.

    Science.gov (United States)

    Huang, Yi-Cheng; Hsu, Sung-Hao; Kuo, Wen-Chun; Chang-Chien, Cheng-Lun; Cheng, Henrich; Huang, Yi-You

    2011-10-01

    This study assesses the ability and potential of carbon nanotube (CNT)/chitosan to guide axon re-growth after nerve injuries. The CNT/chitosan fibers were produced via the coagulation and hydrodynamic focusing method. Fiber width and morphology were adjusted using such parameters as syringe pumping rate and the coagulant used. The CNT/chitosan fiber diameters were 50-300 μm for syringe pumping rates of 6-48 mL/h. Polyethylene glycol/NaOH (25%, w/w) solution was a suitable coagulant for forming fibers with small diameters. Physical property tests demonstrate that the CNT/chitosan composites had superior tensile strength and electrical conductivity compared with those of chitosan alone. The MTT and LDH tests reveal that CNT/chitosan composites were not cytotoxic. To improve the neural cell affinity of CNT/chitosan fibers, laminin was incorporated onto fiber surfaces via the oxygen plasma technique; cell adhesion ratio increased significantly from 3.5% to 72.2% with this surface modification. Immunofluorescence staining and SEM imaging indicate that PC12 cells adhered successfully and grew on the laminin (LN)-coated CNT/chitosan films and fibers. Experimental results show that PC12 grown on LN-coated CNT/chitosan fibers in vitro extend longitudinally oriented neurites in a manner similar to that of native peripheral nerves. With the inherent electrical properties of CNTs, oriented CNT/chitosan fibers have a potential for use as nerve conduits in nerve tissue engineering.

  9. Emulsion Electrospinning as an Approach to Fabricate PLGA/Chitosan Nanofibers for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Fatemeh Ajalloueian

    2014-01-01

    Full Text Available Novel nanofibers from blends of polylactic-co-glycolic acid (PLGA and chitosan have been produced through an emulsion electrospinning process. The spinning solution employed polyvinyl alcohol (PVA as the emulsifier. PVA was extracted from the electrospun nanofibers, resulting in a final scaffold consisting of a blend of PLGA and chitosan. The fraction of chitosan in the final electrospun mat was adjusted from 0 to 33%. Analyses by scanning and transmission electron microscopy show uniform nanofibers with homogenous distribution of PLGA and chitosan in their cross section. Infrared spectroscopy verifies that electrospun mats contain both PLGA and chitosan. Moreover, contact angle measurements show that the electrospun PLGA/chitosan mats are more hydrophilic than electrospun mats of pure PLGA. Tensile strengths of 4.94 MPa and 4.21 MPa for PLGA/chitosan in dry and wet conditions, respectively, illustrate that the polyblend mats of PLGA/chitosan are strong enough for many biomedical applications. Cell culture studies suggest that PLGA/chitosan nanofibers promote fibroblast attachment and proliferation compared to PLGA membranes. It can be assumed that the nanofibrous composite scaffold of PLGA/chitosan could be potentially used for skin tissue reconstruction.

  10. Emulsion electrospinning as an approach to fabricate PLGA/chitosan nanofibers for biomedical applications.

    Science.gov (United States)

    Ajalloueian, Fatemeh; Tavanai, Hossein; Hilborn, Jöns; Donzel-Gargand, Olivier; Leifer, Klaus; Wickham, Abeni; Arpanaei, Ayyoob

    2014-01-01

    Novel nanofibers from blends of polylactic-co-glycolic acid (PLGA) and chitosan have been produced through an emulsion electrospinning process. The spinning solution employed polyvinyl alcohol (PVA) as the emulsifier. PVA was extracted from the electrospun nanofibers, resulting in a final scaffold consisting of a blend of PLGA and chitosan. The fraction of chitosan in the final electrospun mat was adjusted from 0 to 33%. Analyses by scanning and transmission electron microscopy show uniform nanofibers with homogenous distribution of PLGA and chitosan in their cross section. Infrared spectroscopy verifies that electrospun mats contain both PLGA and chitosan. Moreover, contact angle measurements show that the electrospun PLGA/chitosan mats are more hydrophilic than electrospun mats of pure PLGA. Tensile strengths of 4.94 MPa and 4.21 MPa for PLGA/chitosan in dry and wet conditions, respectively, illustrate that the polyblend mats of PLGA/chitosan are strong enough for many biomedical applications. Cell culture studies suggest that PLGA/chitosan nanofibers promote fibroblast attachment and proliferation compared to PLGA membranes. It can be assumed that the nanofibrous composite scaffold of PLGA/chitosan could be potentially used for skin tissue reconstruction.

  11. Characterization and inhibitory activity of chitosan on hyphae growth and morphology of Botrytis cinerea plant pathogen

    Directory of Open Access Journals (Sweden)

    Sebastião Silva Junior

    2014-07-01

    Full Text Available Summary. Low and high molecular weight chitosan were tested in different concentrations and growth times with the aim to evaluate the inhibitory activity against Botrytis cinerea, a very important plant pathogen. Tested chitosans were characterized by vibratory spectroscopy and elementary analyzes to determine the deacetylation degree. In addiction molar mass was estimated by viscosity measuring. Scanning electron microscopy was utilized for antimicrobial activity observation. Results showed that both chitosans markedly inhibited fungal growth, which was effected by incubation time and chitosan concentration. Scanning electron microscopy observations revealed that chitosan induced changes in surface morphology. The present study show that chitosan is capable of inhibit the growth and cause serious damage to the cell structure of the B. cinerea, as well as have the ability to form an impervious layer around the cell. Therefore, chitosan could be considered as a potential alternative for synthetic fungicides.Industrial relevance. Ultrastructural analysis showed that chitosan is capable of causing serious damage to the cell structure of the B. cinerea, as well as have the ability to form an impervious layer around the cell. Chitosan could inhibit the growth of B. cinerea in vitro and consequently may be considered as a potential alternative in replacement of synthetic fungicides.Keywords. biopolymer; chitosan; antifungal activity; fungal morphology; electron microscopy

  12. Fabrication and Characteristics of Chitosan Sponge as a Tissue Engineering Scaffold

    Directory of Open Access Journals (Sweden)

    Takeshi Ikeda

    2014-01-01

    Full Text Available Cells, growth factors, and scaffolds are the three main factors required to create a tissue-engineered construct. After the appearance of bovine spongiform encephalopathy (BSE, considerable attention has therefore been focused on nonbovine materials. In this study, we examined the properties of a chitosan porous scaffold. A porous chitosan sponge was prepared by the controlled freezing and lyophilization of different concentrations of chitosan solutions. The materials were examined by scanning electron microscopy, and the porosity, tensile strength, and basic fibroblast growth factor (bFGF release profiles from chitosan sponge were examined in vitro. The morphology of the chitosan scaffolds presented a typical microporous structure, with the pore size ranging from 50 to 200 μm. The porosity of chitosan scaffolds with different concentrations was approximately 75–85%. A decreasing tendency for porosity was observed as the concentration of the chitosan increased. The relationship between the tensile properties and chitosan concentration indicated that the ultimate tensile strength for the sponge increased with a higher concentration. The in vitro bFGF release study showed that the higher the concentration of chitosan solution became, the longer the releasing time of the bFGF from the chitosan sponge was.

  13. Novel procedure to enhance PLA surface properties by chitosan irreversible immobilization

    Science.gov (United States)

    Stoleru, Elena; Dumitriu, Raluca Petronela; Munteanu, Bogdanel Silvestru; Zaharescu, Traian; Tănase, Elisabeta Elena; Mitelut, Amalia; Ailiesei, Gabriela-Liliana; Vasile, Cornelia

    2016-03-01

    A novel two step procedure was applied for poly(lactic acid) (PLA) functionalization consisting in the exposure to cold radiofrequency plasma in nitrogen atmosphere or to gamma irradiation followed by "grafting to" of a chitosan layer using carbodiimide chemistry. The adhesion and stability of the deposited surface layer was assured by plasma/gamma irradiation treatment while the chitosan layer offers antifungal/antibacterial/antioxidant activities. Chitosan with different viscosities/deacetylation degree was deposited by electrospinning or immersion methods. Correlations between rheological behavior of chitosan solutions and chitosan layer deposition conditions are made. The PLA surface properties were investigated by water contact angle measurements, ATR-FTIR spectroscopy, AFM, chemiluminiscence, etc. It has been established that the surface roughness increases direct proportional with cold plasma duration and gamma irradiation dose and further increases by chitosan coating which at its turn depends on chitosan characteristics (viscosity and deacetylation degree) and method of deposition. Nano-fibers with relatively homogeneous and reproducible features are obtained by electrospinning of highly viscous chitosan while with the other two types of chitosan both microparticles and nano-fibers are formed. The chitosan coating obtained by immersion is more homogenous and compact and has a better antibacterial activity than the electrospun layer as fiber meshes.

  14. Chitosan-Coated Collagen Membranes Promote Chondrocyte Adhesion, Growth, and Interleukin-6 Secretion

    Directory of Open Access Journals (Sweden)

    Nabila Mighri

    2015-11-01

    Full Text Available Designing scaffolds made from natural polymers may be highly attractive for tissue engineering strategies. We sought to produce and characterize chitosan-coated collagen membranes and to assess their efficacy in promoting chondrocyte adhesion, growth, and cytokine secretion. Porous collagen membranes were placed in chitosan solutions then crosslinked with glutaraldehyde vapor. Fourier transform infrared (FTIR analyses showed elevated absorption at 1655 cm-1 of the carbon–nitrogen (N=C bonds formed by the reaction between the (NH2 of the chitosan and the (C=O of the glutaraldehyde. A significant peak in the amide II region revealed a significant deacetylation of the chitosan. Scanning electron microscopy (SEM images of the chitosan-coated membranes exhibited surface variations, with pore size ranging from 20 to 50 µm. X-ray photoelectron spectroscopy (XPS revealed a decreased C–C groups and an increased C–N/C–O groups due to the reaction between the carbon from the collagen and the NH2 from the chitosan. Increased rigidity of these membranes was also observed when comparing the chitosan-coated and uncoated membranes at dried conditions. However, under wet conditions, the chitosan coated collagen membranes showed lower rigidity as compared to dried conditions. Of great interest, the glutaraldehyde-crosslinked chitosan-coated collagen membranes promoted chondrocyte adhesion, growth, and interleukin (IL-6 secretion. Overall results confirm the feasibility of using designed chitosan-coated collagen membranes in future applications, such as cartilage repair.

  15. Evaluation of chitosan based vaginal bioadhesive gel formulations for antifungal drugs

    Directory of Open Access Journals (Sweden)

    Şenyiğit Zeynep Ay

    2014-06-01

    Full Text Available The aim of the present study was to evaluate chitosan as a vaginal mucoadhesive gel base for econazole nitrate and miconazole nitrate. To this aim, different types of chitosan with different molecular masses and viscosity properties [low molecular mass chitosan (viscosity: 20,000 mPa s, medium molecular mass chitosan (viscosity: 200,000 mPa s, high molecular mass chitosan (viscosity: 800,000 mPa s] have been used. First, rheological studies were conducted on chitosan gels. Mechanical, syringeability and mucoadhesive properties of chitosan gels were determined. Release profiles of econazole nitrate and miconazole nitrate from chitosan gels were obtained and evaluated kinetically. In addition, anticandidal activities of formulations were determined. Finally, vaginal retention of chitosan gels in rats was evaluated by in vivo distribution studies. Based on the results, it can be concluded that gels prepared with medium molecular mass chitosan might be effectively used for different antifungal agents in the treatment of vaginal candidiosis, since it has high mucoadhesiveness, suitable mechanical and release properties with good vaginal retention

  16. Binding Cellulose and Chitosan via Intermolecular Inclusion Interaction: Synthesis and Characterisation of Gel

    Directory of Open Access Journals (Sweden)

    Jiufang Duan

    2015-01-01

    Full Text Available A novel cellulose-chitosan gel was successfully prepared in three steps: (1 ferrocene- (Fc- cellulose with degrees of substitution (DS of 0.5 wt% was synthesised by ferrocenecarboxylic acid and cellulose within dimethylacetamide/lithium chloride (DMAc/LiCl; (2 the β-cyclodextrin (β-CD groups were introduced onto the chitosan chains by reacting chitosan with epichlorohydrin in dimethyl sulphoxide and a DS of 0.35 wt%; (3 thus, the cellulose-chitosan gel was obtained via an intermolecular inclusion interaction of Fc-cellulose and β-CD-chitosan in DMA/LiCl, that is, by an intermolecular inclusion interaction, between the Fc groups of cellulose and the β-CD groups on the chitosan backbone at room temperature. The successful synthesis of Fc-cellulose and β-CD-chitosan was characterised by 13C-NMR spectroscopy. The gel based on β-CD-chitosan and Fc-cellulose was formed under mild conditions which can engender autonomous healing between cut surfaces after 24 hours: the gel cannot self-heal while the cut surfaces were coated with a solution of a competitive guest (adamantane acid. The cellulose-chitosan complex made by this method underwent self-healing. Therefore, this study provided a novel method of expanding the application of chitosan by binding it with another polymer.

  17. Lipase entrapment in PVA/Chitosan biodegradable film for reactor coatings

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Karla A. [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil); Lopes, Flavio Marques [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil); Unidade Universitária de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, Anápolis, GO (Brazil); Yamashita, Fabio [Departamento de Tecnologia de Alimentos e Medicamentos, Laboratório de Tecnologia, Universidade Estadual de Londrina, Cx. Postal 6001, CEP 86051-990, Londrina, PR (Brazil); Fernandes, Kátia Flávia, E-mail: katia@icb.ufg.br [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil)

    2013-04-01

    This study reports the development and characterization of novel biodegradable film, based on chitosan and polyvinyl alcohol containing lipase entrapped. The films showed a thickness of 70.4 and 79 μm to PVA/Chitosan and PVA/Chitosan/Lipase, respectively. The entrapment of lipase in PVA/Chitosan film resulted in increasing of 69.4% tensile strength (TS), and 52.4% of elongation. SEM images showed the formation of a continuous film, without pores or cracks. The lipase entrapment efficiency was estimated in 92% and the films were repeatedly used for 25 hydrolytic cycles, maintaining 62% of initial activity. The PVA/Chitosan/Lipase film was used for olive oil hydrolysis of high performance. These results indicate that PVA/Chitosan/Lipase is a promising material for biotechnology applications such as triacylglycerol hydrolysis and biodiesel production. - Highlights: ► Development and characterization of PVA/Chitosan biodegradable film ► Lipase immobilization onto PVA/Chitosan film ► PVA/Chitosan/Lipase film for reactor coating ► Olive oil hydrolysis using PVA/Chitosan/Lipase film.

  18. Biocompatibility Studies on Bone Marrow Stromal Cells with Chitosan-gelatin Blends

    Institute of Scientific and Technical Information of China (English)

    YANG Cao; YANG Shu-hua; DU Jing-yuan; XIAO Bao-jun; YE Shu-nan

    2004-01-01

    To study the effect of chitosan-gelatin blends on the growth and proliferation of in vitro cultured bone marrow stromal cells(BMSCs) and explore a new carrier for the application of tissure engineering, cells from long bones of young rabbitsaged less than two weeks were expanded in vitro for one week and seeded onto the surface of pure chitosan and chitosan-gelatin blends. Cells attached to and proliferated on both pure chitosan and chitosan-gelatin blends were monitored with the aid of an inverted light microscope and a scanning electron microscope. The cell viability was monitored by MTT after 2, 4, 6, 8 days seeding. BMSCs could be attached to and proliferated on both pure chitosan and chitosan-gelatin blends and remain their morphologies seen in vivo. Chitosan-gelatin blends could promote BMSCs to proliferate(P<0.01). It is confirmed that chitosan-gelatin blends maintain the bioactivity feature of chitosan and even enhance the growth and proliferation of in vitro cultured BMSCs because of the adding of gelatin. It is a potential carrier for the delivery of cells tissue engineering.

  19. Preparation and characterization of chitosan-natural nano hydroxyapatite-fucoidan nanocomposites for bone tissue engineering.

    Science.gov (United States)

    Lowe, Baboucarr; Venkatesan, Jayachandran; Anil, Sukumaran; Shim, Min Suk; Kim, Se-Kwon

    2016-12-01

    Solid three dimensional (3D) composite scaffolds for bone tissue engineering were prepared using the freeze-drying method. The scaffolds were composed of chitosan, natural nano-hydroxyapatite (nHA) and fucoidan in the following combinations: chitosan, chitosan-fucoidan, chitosan-nHA, and chitosan-nHA-fucoidan. Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and optical microscopy (OM) were used to determine the physiochemical constituents and the morphology of the scaffolds. The addition of nHA into the chitosan-fucoidan composite scaffold reduced the water uptake and water retention. FT-IR analysis confirmed the presence of a phosphate group in the chitosan-nHA-fucoidan scaffold. This group is present because of the presence of nHA (isolated via alkaline hydrolysis from salmon fish bones). Microscopic results indicated that the dispersion of nHA and fucoidan in the chitosan matrix was uniform with a pore size of 10-400μm. The composite demonstrated a suitable micro architecture for cell growth and nutrient supplementation. This compatibility was further elucidated in vitro using periosteum-derived mesenchymal stem cells (PMSCs). The cells demonstrated high biocompatibility and excellent mineralization for the chitosan-nHA-fucoidan scaffold. We believe that a chitosan-nHA-fucoidan composite is a promising biomaterial for the scaffold that can be used for bone tissue regeneration.

  20. Effect Of Chitosan Application On The Performance Of Lentil Genotypes Under Rainfed Conditions

    Directory of Open Access Journals (Sweden)

    Janmohammadi Mohsen

    2014-12-01

    Full Text Available In the current study, influences of chitosan solutions on morphological characteristics, growth and yield components of lentil (Lens culinaris Med. under rainfed conditions have been investigated. A field experiment was conducted in the Northwest of Iran using a split-plot experiment based on a completely randomized design with three replications. The response of twelve genotypes with different origins to chitosan application at the sowing (seed soaking, vegetative and reproductive stage (spraying chitosan onto leaves was evaluated. Results revealed that chitosan application could significantly improve the number of pods per plant, 100-seed weight, grain yield per plant and harvest index in comparison to control plants. The comparison of yield components between chitosan treatments showed that spraying chitosan during the reproductive stage was more efficient than in other stages. However, the responses of the number of pods per plants and grain yield per plants to chitosan treatments were significantly different among the genotypes. Although the highest grain yield was recorded in the 78S 26013 genotype (from Jordan, its response to chitosan treatments was different from the other genotypes and showed the best performance in plants obtained from seed soaked in chitosan solutions. We suggest that the application of chitosan as an agronomic management strategy be further investigated for an efficient technique to induce resistance in lentil plants against biotic and drought stress in semi-arid regions.

  1. Utilization of chitosan as an antimicrobial agent for pasteurized palm sap (Borassus flabellifer Linn.) during storage.

    Science.gov (United States)

    Naknean, Phisut; Jutasukosol, Keawta; Mankit, Theerarat

    2015-02-01

    The objective of this research was to assess the potential of chitosan for improvement the quality of pasteurized palm sap during storage. First, the effect of chitosan content on sensory attributes was investigated to select suitable concentration of chitosan for further study. Fresh palm sap was enriched with chitosan at various concentrations (0-2 g/L) and pasteurized at 80 °C for 10 min, consequently evaluated by consumers. It was found that samples added chitosan in the range of 0-1.00 g/L were considered acceptable. Thus, the addition chitosan in the concentration of 0-1.00 g/L was chosen for further study. The sample without chitosan addition was used as a control sample. Each selected sample was determined for their qualities during storage at 1 week interval. It was found that lightness and transmittance values of all samples tended to increase during storage. Lower PPO and invertase activity were observed in all chitosan-treated samples compared to control sample. Chitosan could minimize the loss of sucrose and the increase in glucose and fructose content during storage. In addition, an increase in chitosan concentration resulted in the increase in DPPH radical scavenging activity. Furthermore, the addition of chitosan could retard the development of microorganism during storage as demonstrated by lower microbial loads compared to control sample. It can be concluded that a combination of pasteurization with chitosan addition (0.50 g/L) and low temperature storage could preserve palm sap for approximately 6 weeks. Thus, the incorporation of chitosan in palm sap could be used as an alternative way to extend shelf life of pasteurized palm sap.

  2. Novel procedure to enhance PLA surface properties by chitosan irreversible immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Stoleru, Elena; Dumitriu, Raluca Petronela [Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487 Iasi (Romania); Munteanu, Bogdanel Silvestru [“Al. I. Cuza” University, Faculty of Physics, 11 Carol I Blvd., 700506 Iasi (Romania); Zaharescu, Traian [INCDIE ICPE CA, Bucharest (Romania); Tănase, Elisabeta Elena; Mitelut, Amalia [Industrial Biotechnology Department, Faculty of Biotechnology – USAMV Bucharest (Romania); Ailiesei, Gabriela-Liliana [Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487 Iasi (Romania); Vasile, Cornelia, E-mail: cvasile@icmpp.ro [Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487 Iasi (Romania)

    2016-03-30

    Graphical abstract: - Highlights: • PLA requires functionalization prior to surface attaching chitosan. • Chitosan with different molecular weights was grafted onto PLA surface. • Antibacterial, antifungal, antioxidant PLA-based materials are obtained. • Nano-fibers coatings obtained by electrospinning of high molecular weight chitosan. - Abstract: A novel two step procedure was applied for poly(lactic acid) (PLA) functionalization consisting in the exposure to cold radiofrequency plasma in nitrogen atmosphere or to gamma irradiation followed by “grafting to” of a chitosan layer using carbodiimide chemistry. The adhesion and stability of the deposited surface layer was assured by plasma/gamma irradiation treatment while the chitosan layer offers antifungal/antibacterial/antioxidant activities. Chitosan with different viscosities/deacetylation degree was deposited by electrospinning or immersion methods. Correlations between rheological behavior of chitosan solutions and chitosan layer deposition conditions are made. The PLA surface properties were investigated by water contact angle measurements, ATR-FTIR spectroscopy, AFM, chemiluminiscence, etc. It has been established that the surface roughness increases direct proportional with cold plasma duration and gamma irradiation dose and further increases by chitosan coating which at its turn depends on chitosan characteristics (viscosity and deacetylation degree) and method of deposition. Nano-fibers with relatively homogeneous and reproducible features are obtained by electrospinning of highly viscous chitosan while with the other two types of chitosan both microparticles and nano-fibers are formed. The chitosan coating obtained by immersion is more homogenous and compact and has a better antibacterial activity than the electrospun layer as fiber meshes.

  3. Accurate optical simulation of nano-particle based internal scattering layers for light outcoupling from organic light emitting diodes

    Science.gov (United States)

    Egel, Amos; Gomard, Guillaume; Kettlitz, Siegfried W.; Lemmer, Uli

    2017-02-01

    We present a numerical strategy for the accurate simulation of light extraction from organic light emitting diodes (OLEDs) comprising an internal nano-particle based scattering layer. On the one hand, the light emission and propagation through the OLED thin film system (including the scattering layer) is treated by means of rigorous wave optics calculations using the T-matrix formalism. On the other hand, the propagation through the substrate is modeled in a ray optics approach. The results from the wave optics calculations enter in terms of the initial substrate radiation pattern and the bidirectional reflectivity distribution of the OLED stack with scattering layer. In order to correct for the truncation error due to a finite number of particles in the simulations, we extrapolate the results to infinitely extended scattering layers. As an application example, we estimate the optimal particle filling fraction for an internal scattering layer in a realistic OLED geometry. The presented treatment is designed to emerge from electromagnetic theory with as few additional assumptions as possible. It could thus serve as a baseline to validate faster but approximate simulation approaches.

  4. Silanization of Ag-deposited magnetite particles: an efficient route to fabricate magnetic nanoparticle-based Raman barcode materials.

    Science.gov (United States)

    Kim, Kwan; Choi, Jeong-Yong; Lee, Hyang Bong; Shin, Kuan Soo

    2010-07-01

    Silica-coated Ag nanostructures usable as magnetic nanoparticle-based Raman barcode materials were developed. Initially, 283 nm sized spherical magnetite particles composed of 13 nm sized superparamagnetic Fe(3)O(4) nanoparticles were synthesized, and silver deposition was conducted using butylamine as the reductant of AgNO(3) in ethanol. The Ag-deposited Fe(3)O(4) (Fe(3)O(4)@Ag) particles are found to be efficient surface-enhanced Raman scattering (SERS) substrates with the enhancement factor at 632.8 nm excitation to be about 3 x 10(6). After SERS markers such as benzenethiol, 4-mercaptotoluene, 4-aminobenzenethiol, and 4-nitrobenzenethiol were adsorbed onto the silver surface, poly(allylamine hydrochloride) (PAH) was coated onto them using the layer-by-layer deposition method such that a subsequent base-catalyzed silanization could readily form a 60 nm thick silica shell around the PAH layer by a biomimetic process. The cross-linked silica shells effectively prevented the SERS-marker molecules from being liberated from the surface of the Fe(3)O(4)@Ag particles. Although the gram magnetization decreased nearly to one-half of the initial value because of coating with silver and silica, the remaining magnetization was nonetheless strong enough for the silica-coated Fe(3)O(4)@Ag particles to be used as barcode materials operating via SERS.

  5. A Nanoparticle Based Sp17 Peptide Vaccine Exposes New Immuno-Dominant and Species Cross-reactive B Cell Epitopes

    Directory of Open Access Journals (Sweden)

    Sue D. Xiang

    2015-10-01

    Full Text Available Sperm protein antigen 17 (Sp17, expressed in primary as well as in metastatic lesions in >83% of patients with ovarian cancer, is a promising ovarian cancer vaccine candidate. Herein we describe the formulation of nanoparticle based vaccines based on human Sp17 (hSp17 sequence derived peptides, and map the immuno-dominant T cell and antibody epitopes induced using such formulations. The primary T and B cell immuno-dominant region within Sp17 was found to be the same when using biocompatible nanoparticle carriers or the conventional “mix-in” pro-inflammatory adjuvant CpG, both mapping to amino acids (aa 111–142. However, delivery of hSp17111–142 as a nanoparticle conjugate promoted a number of new properties, changing the dominant antibody isotype induced from IgG2a to IgG1 and the fine specificity of the B cell epitopes within hSp17111–142, from an immuno-dominant region 134–142 aa for CpG, to region 121–138 aa for nanoparticles. Associated with this change in specificity was a substantial increase in antibody cross-reactivity between mouse and human Sp17. These results indicate conjugation of antigen to nanoparticles can have major effects on fine antigen specificity, which surprisingly could be beneficially used to increase the cross-reactivity of antibody responses.

  6. Silica nanoparticle-based microfluidic immunosensor with laser-induced fluorescence detection for the quantification of immunoreactive trypsin.

    Science.gov (United States)

    Seia, Marco A; Stege, Patricia W; Pereira, Sirley V; De Vito, Irma E; Raba, Julio; Messina, Germán A

    2014-10-15

    The purpose of this study was to develop a silica nanoparticle-based immunosensor with laser-induced fluorescence (LIF) as a detection system. The proposed device was applied to quantify the immunoreactive trypsin (IRT) in cystic fibrosis (CF) newborn screening. A new ultrasonic procedure was used to extract the IRT from blood spot samples collected on filter papers. After extraction, the IRT reacted immunologically with anti-IRT monoclonal antibodies immobilized on a microfluidic glass chip modified with 3-aminopropyl functionalized silica nanoparticles (APSN-APTES-modified glass chips). The bounded IRT was quantified by horseradish peroxidase (HRP)-conjugated anti-IRT antibody (anti-IRT-Ab) using 10-acetyl-3,7-dihydroxyphenoxazine (ADHP) as enzymatic mediator. The HRP catalyzed the oxidation of nonfluorescent ADHP to highly fluorescent resorufin, which was measured by LIF detector, using excitation lambda at 561nm and emission at 585nm. The detection limits (LODs) calculated for LIF detection and for a commercial enzyme-linked immunosorbent assay (ELISA) test kit were 0.87 and 4.2ngml(-1), respectively. The within- and between-assay variation coefficients for the LIF detection procedure were below 6.5%. The blood spot samples collected on filter papers were analyzed with the proposed method, and the results were compared with those of the reference ELISA method, demonstrating a potential usefulness for the clinical assessment of IRT during the early neonatal period.

  7. Rapid and selective detection of experimental snake envenomation - Use of gold nanoparticle based lateral flow assay.

    Science.gov (United States)

    Pawade, Balasaheb S; Salvi, Nitin C; Shaikh, Innus K; Waghmare, Arun B; Jadhav, Nitin D; Wagh, Vishal B; Pawade, Abhilasha S; Waykar, Indrasen G; Potnis-Lele, Mugdha

    2016-09-01

    In this study, we have developed a gold nanoparticle based simple, rapid lateral flow assay (LFA) for detection of Indian Cobra venom (CV) and Russell's viper venom (RV). Presently, there is no rapid, reliable, and field diagnostic test available in India, where snake bite cases are rampant. Therefore, this test has an immense potential from the public health point of view. The test is based on the principle of the paper immunochromatography assay for detection of two snake venom species using polyvalent antisnake venom antibodies (ASVA) raised in equines and species-specific antibodies (SSAbs) against venoms raised in rabbits for conjugation and impregnation respectively. The developed, snake envenomation detection immunoassay (SEDIA) was rapid, selective, and sensitive to detect venom concentrations up to 0.1 ng/ml. The functionality of SEDIA strips was confirmed by experimental envenomation in mice and the results obtained were specific for the corresponding venom. The SEDIA has a potential to be a field diagnostic test to detect snake envenomation and assist in saving lives of snakebite victims.

  8. Flexible hybrid circuit fully inkjet-printed: Surface mount devices assembled by silver nanoparticles-based inkjet ink

    Science.gov (United States)

    Arrese, J.; Vescio, G.; Xuriguera, E.; Medina-Rodriguez, B.; Cornet, A.; Cirera, A.

    2017-03-01

    Nowadays, inkjet-printed devices such as transistors are still unstable in air and have poor performances. Moreover, the present electronics applications require a high degree of reliability and quality of their properties. In order to accomplish these application requirements, hybrid electronics is fulfilled by combining the advantages of the printing technologies with the surface-mount technology. In this work, silver nanoparticle-based inkjet ink (AgNP ink) is used as a novel approach to connect surface-mount devices (SMDs) onto inkjet-printed pads, conducted by inkjet printing technology. Excellent quality AgNP ink-junctions are ensured with high resolution picoliter drop jetting at low temperature (˜150 °C). Electrical, mechanical, and morphological characterizations are carried out to assess the performance of the AgNP ink junction. Moreover, AgNP ink is compared with common benchmark materials (i.e., silver epoxy and solder). Electrical contact resistance characterization shows a similar performance between the AgNP ink and the usual ones. Mechanical characterization shows comparable shear strength for AgNP ink and silver epoxy, and both present higher adhesion than solder. Morphological inspections by field-emission scanning electron microscopy confirm a high quality interface of the silver nanoparticle interconnection. Finally, a flexible hybrid circuit on paper controlled by an Arduino board is manufactured, demonstrating the viability and scalability of the AgNP ink assembling technique.

  9. Nanoparticle-Based Immunochromatographic Test Strip with Fluorescent Detector for Quantification of Phosphorylated Acetycholinesterase: An Exposure Biomarker of Organophosphorous Agents

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiying; Ge, Xiaoxiao; Tang, Yong; Du, Dan; Liu, Deli; Lin, Yuehe

    2013-09-21

    A nanoparticle-based fluorescence immunochromatographic test strip (FITS) coupled with a hand-held detector for highly selective and sensitive detection of phosphorylated acetylcholinesterase (AChE), an exposure biomarker of organophosphate (OP) pesticides and nerve agents, is reported. In this approach, OP-AChE adducts were selectively captured by quantum dot-tagged anti-AChE antibodies (Qdot-anti-AChE) and zirconia nanoparticles (ZrO2 NPs). The sandwich-like immunoreactions were performed among the Qdot-anti-AChE, OP-AChE and ZrO2 NPs to form Qdot-anti-AChE/OP-AChE/ZrO2 complex, which was detected by recording the fluorescence intensity of Qdot captured on the test line. Paraoxon was used as the model OP pesticides. Under optimal conditions, this portable FITS immunosensor demonstrates a highly linear absorption response over the range of 0.01 nM to 10 nM OP-AChE, with a detection limit of 4 pM, coupled with a good reproducibility. Moreover, the FITS immunosensor has been validated with OP-AChE spiked human plasma samples. This is the first report on the development of ZrO2 NPs-based FITS for detection of OP-AChE adduct. The FITS immunosensor provides a sensitive and low-cost sensing platform for on-site screening/evaluating OP pesticides and nerve agents poisoning.

  10. Recent Trends in Rapid Environmental Monitoring of Pathogens and Toxicants: Potential of Nanoparticle-Based Biosensor and Applications

    Directory of Open Access Journals (Sweden)

    Preeyaporn Koedrith

    2015-01-01

    Full Text Available Of global concern, environmental pollution adversely affects human health and socioeconomic development. The presence of environmental contaminants, especially bacterial, viral, and parasitic pathogens and their toxins as well as chemical substances, poses serious public health concerns. Nanoparticle-based biosensors are considered as potential tools for rapid, specific, and highly sensitive detection of the analyte of interest (both biotic and abiotic contaminants. In particular, there are several limitations of conventional detection methods for water-borne pathogens due to low concentrations and interference with various enzymatic inhibitors in the environmental samples. The increase of cells to detection levels requires long incubation time. This review describes current state of biosensor nanotechnology, the advantage over conventional detection methods, and the challenges due to testing of environmental samples. The major approach is to use nanoparticles as signal reporter to increase output rather than spending time to increase cell concentrations. Trends in future development of novel detection devices and their advantages over other environmental monitoring methodologies are also discussed.

  11. Gold nanoparticle-based enzyme-linked antibody-aptamer sandwich assay for detection of Salmonella Typhimurium.

    Science.gov (United States)

    Wu, Wenhe; Li, Jun; Pan, Dun; Li, Jiang; Song, Shiping; Rong, Mingge; Li, Zixi; Gao, Jimin; Lu, Jianxin

    2014-10-01

    Enzyme-linked immunosorbent assay (ELISA) provides a convenient means for the detection of Salmonella enterica serovar Typhimurium (STM), which is important for rapid diagnosis of foodborne pathogens. However, conventional ELISA is limited by antibody-antigen immunoreactions and suffers from poor sensitivity and tedious sample pretreatment. Therefore, development of novel ELISA remains challenging. Herein, we designed a comprehensive strategy for rapid, sensitive, and quantitative detection of STM with high specificity by gold nanoparticle-based enzyme-linked antibody-aptamer sandwich (nano-ELAAS) method. STM was captured and preconcentrated from samples with aptamer-modified magnetic particles, followed by binding with detector antibodies. Then nanoprobes carrying a large amount of reporter antibodies and horseradish peroxidase molecules were used for colorimetric signal amplification. Under the optimized reaction conditions, the nano-ELAAS assay had a quantitative detection range from 1 × 10(3) to 1 × 10(8) CFU mL(-1), a limit of detection of 1 × 10(3) CFU mL(-1), and a selectivity of >10-fold for STM in samples containing other bacteria at higher concentration with an assay time less than 3 h. In addition, the developed nanoprobes were improved in terms of detection range and/or sensitivity when compared with two commercial enzyme-labeled antibody signal reporters. Finally, the nano-ELAAS method was demonstrated to work well in milk samples, a common source of STM contamination.

  12. Nanoparticle-based CT imaging technique for longitudinal and quantitative stem cell tracking within the brain: application in neuropsychiatric disorders.

    Science.gov (United States)

    Betzer, Oshra; Shwartz, Amit; Motiei, Menachem; Kazimirsky, Gila; Gispan, Iris; Damti, Efrat; Brodie, Chaya; Yadid, Gal; Popovtzer, Rachela

    2014-09-23

    A critical problem in the development and implementation of stem cell-based therapy is the lack of reliable, noninvasive means to image and trace the cells post-transplantation and evaluate their biodistribution, final fate, and functionality. In this study, we developed a gold nanoparticle-based CT imaging technique for longitudinal mesenchymal stem cell (MSC) tracking within the brain. We applied this technique for noninvasive monitoring of MSCs transplanted in a rat model for depression. Our research reveals that cell therapy is a potential approach for treating neuropsychiatric disorders. Our results, which demonstrate that cell migration could be detected as early as 24 h and up to one month post-transplantation, revealed that MSCs specifically navigated and homed to distinct depression-related brain regions. We further developed a noninvasive quantitative CT ruler, which can be used to determine the number of cells residing in a specific brain region, without tissue destruction or animal scarification. This technique may have a transformative effect on cellular therapy, both for basic research and clinical applications.

  13. Neurons of human nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Sazdanović Maja

    2011-01-01

    Full Text Available Background/Aim. Nucleus accumbens is a part of the ventral striatum also known as a drug active brain region, especially related with drug addiction. The aim of the study was to investigate the Golgi morphology of the nucleus accumbens neurons. Methods. The study was performed on the frontal and sagittal sections of 15 human brains by the Golgi Kopsch method. We classified neurons in the human nucleus accumbens according to their morphology and size into four types: type I - fusiform neurons; type II - fusiform neurons with lateral dendrite, arising from a part of the cell body; type III - pyramidal-like neuron; type IV - multipolar neuron. The medium spiny neurons, which are mostly noted regarding to the drug addictive conditions of the brain, correspond to the type IV - multipolar neurons. Results. Two regions of human nucleus accumbens could be clearly recognized on Nissl and Golgi preparations each containing different predominant neuronal types. Central part of nucleus accumbens, core region, has a low density of impregnated neurons with predominant type III, pyramidal-like neurons, with spines on secondary branches and rare type IV, multipolar neurons. Contrary to the core, peripheral region, shell of nucleus, has a high density of impregnated neurons predominantly contained of type I and type IV - multipolar neurons, which all are rich in spines on secondary and tertiary dendritic branches. Conclusion. Our results indicate great morphological variability of human nucleus accumbens neurons. This requires further investigations and clarifying clinical significance of this important brain region.

  14. Mechanical properties of paper sheets coated with chitosan nanoparticle

    Science.gov (United States)

    Fithriyah, Nurul Hidayati; Erdawati

    2014-03-01

    Chitosan were selected as cellulose raw material to prepare coating solutions. The morphology, physical characteristics and chemical surface properties of the coatings are discussed in this paper. Different concentrations of chitosan (1-5% w/w) and deposited solution layer (0.5-1.00 μm) were used to obtain coated papers with thicknesses varying between 0.062-0.068 μm. The percentages of coating agent impregnated inside paper were also calculated from the apparent density of coated paper and the density of self-supported films prepared in the same conditions but deposited on an inert and smooth Plexiglass support. These percentages of impregnation ranged from 4.8 to 63.3% and increased as following: chitosan chitosan nanoparticle. The resulting absorption rates indicated significant differences as a function of the nature of coating agent and confirmed results obtained for the percentage of impregnation. To explain differences in the behaviour of coating solutions, it was finally concluded that not only their viscosity must be taken into account but also their affinity toward paper.

  15. Systematic fabrication of chitosan nanoparticle by gamma irradiation

    Science.gov (United States)

    Pasanphan, Wanvimol; Rimdusit, Pakjira; Choofong, Surakarn; Piroonpan, Thananchai; Nilsuwankosit, Sunchai

    2010-10-01

    The present investigation is mainly focused on the systematic preparation of chitosan nanoparticle in the potential range 1-100 nm using γ-ray irradiation. The effect of irradiation conditions in terms of physical form of chitosan, i.e. flake, colloidal and acidic solution, and γ-ray dose was studied. The molecular weights of chitosan were 10, 25, and >1000 times reduced when irradiated with the γ-ray dose as high as 100 kGy in Chi-flake, Chi-colloid, and Chi-acid, respectively. The particle size reduced to 70 nm after being irradiated to only 10 kGy γ-rays and it showed a tendency to decrease when the γ-ray doses were increased. The γ-rays effectively induced the reduction of chitosan particle size to <100 nm with narrow size distribution. The effective size reduction was particularly observed in Chi-colloid. Heterogeneous chemical conjugation of deoxycholic acid onto 10 kGy irradiated Chi-colloid resulted in narrow particle size as small as 50 nm.

  16. Controlling Properties and Cytotoxicity of Chitosan Nanocapsules by Chemical Grafting

    Directory of Open Access Journals (Sweden)

    Laura De Matteis

    2016-09-01

    Full Text Available The tunability of the properties of chitosan-based carriers opens new ways for the application of drugs with low water-stability or high adverse effects. In this work, the combination of a nanoemulsion with a chitosan hydrogel coating and the following poly (ethylene glycol (PEG grafting is proven to be a promising strategy to obtain a flexible and versatile nanocarrier with an improved stability. Thanks to chitosan amino groups, a new easy and reproducible method to obtain nanocapsule grafting with PEG has been developed in this work, allowing a very good control and tunability of the properties of nanocapsule surface. Two different PEG densities of coverage are studied and the nanocapsule systems obtained are characterized at all steps of the optimization in terms of diameter, Z potential and surface charge (amino group analysis. Results obtained are compatible with a conformation of PEG molecules laying adsorbed on nanoparticle surface after covalent linking through their amino terminal moiety. An improvement in nanocapsule stability in physiological medium is observed with the highest PEG coverage density obtained. Cytotoxicity tests also demonstrate that grafting with PEG is an effective strategy to modulate the cytotoxicity of developed nanocapsules. Such results indicate the suitability of chitosan as protective coating for future studies oriented toward drug delivery.

  17. Systematic fabrication of chitosan nanoparticle by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pasanphan, Wanvimol, E-mail: wanvimol.p@ku.ac.t [Department of Applied Radiation and Isotopes, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Rimdusit, Pakjira; Choofong, Surakarn [Department of Applied Radiation and Isotopes, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Piroonpan, Thananchai; Nilsuwankosit, Sunchai [The Department of Nuclear Technology, Faculty of Engineering, Chulalongkorn University, Bangkok 10330 (Thailand)

    2010-10-15

    The present investigation is mainly focused on the systematic preparation of chitosan nanoparticle in the potential range 1-100 nm using {gamma}-ray irradiation. The effect of irradiation conditions in terms of physical form of chitosan, i.e. flake, colloidal and acidic solution, and {gamma}-ray dose was studied. The molecular weights of chitosan were 10, 25, and >1000 times reduced when irradiated with the {gamma}-ray dose as high as 100 kGy in Chi-flake, Chi-colloid, and Chi-acid, respectively. The particle size reduced to 70 nm after being irradiated to only 10 kGy {gamma}-rays and it showed a tendency to decrease when the {gamma}-ray doses were increased. The {gamma}-rays effectively induced the reduction of chitosan particle size to <100 nm with narrow size distribution. The effective size reduction was particularly observed in Chi-colloid. Heterogeneous chemical conjugation of deoxycholic acid onto 10 kGy irradiated Chi-colloid resulted in narrow particle size as small as 50 nm.

  18. Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration

    NARCIS (Netherlands)

    Mota, J.; Yu, N.; Caridade, S.G.; Luz, G.M.; Gomes, M.E.R.; Reis, R.L.; Jansen, J.A.; Walboomers, X.F.; Mano, J.F.

    2012-01-01

    Barrier membranes are used in periodontal applications with the aim of supporting periodontal regeneration by physically blocking migration of epithelial cells. The present work proposes a combination of chitosan (CHT) with bioactive glass nanoparticles (BG-NPs) in order to produce a novel guided ti

  19. Preparation and characterization of nano-hydroxyapatite within chitosan matrix

    Energy Technology Data Exchange (ETDEWEB)

    Rogina, A., E-mail: arogina@fkit.hr; Ivanković, M.; Ivanković, H.

    2013-12-01

    Nano-composites that show some features of natural bone both in composition and in microstructure have been prepared by in situ precipitation method. Apatite phase has been prepared from cost-effective precursors (calcite and urea phosphate) within chitosan (CS) matrix dissolved in aqueous acetic acid solution. The compositional and morphological properties of composites were studied by means of Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) thermogravimetric analysis (TGA) and transmission electron microscopy (TEM). Depending on the reaction conditions (temperature, reaction time, glucose addition and pH control) in addition to hydroxyapatite (HA) as a major phase, octacalcium hydrogen phosphate pentahydrate (OCP) and dicalcium phosphate anhydrate (DCPD) were formed as shown by XRD and FTIR. Crystallite lengths of precipitated HA estimated by Scherrer's equation were between 20 and 30 nm. A fibrous morphology (∼ 400 nm) of HA observed by TEM indicates that HA nucleates on chitosan chains. - Highlights: • Nano-hydroxyapatite (HA) was prepared by in situ precipitation within chitosan hydrogels and colloidal chitosan solution. • pH control was regulated by ammonia and urea degradation. • In situ urea degradation provides homogenous HA formation. • TEM imaging indicates fibrous morphology of HA with crystalline size of 400 nm. • Glucose addition and temperature variation affect inorganic phase formation.

  20. THE THEORETICAL STUDY OF ADSORPTION OF METAL IONS ON CHITOSAN

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The interactions between metal ions such as Zn2+, Pb2+, Mn2+, Hg2+, Cd2+, Ni2+ and chitosan have been investigated using the model cluster model method and density functional method. Full optimization and frequency analysis of all cluster models have been performed employing B3LYP hybrid method at 3-21G basis set level except metal ions which were invoked to use effective core potential (ECP) method. The energy changes, and the main structural parameters have been obtained during the theoretical study of the adsorption of metal ions on the chitosan. The calculations showed that the coordination modes of metal ions with chitosan models were different, the geometries of Mn2+, Zn2+, Cd2+, Hg2+, Pb2+ ions coordinated with two nitrogen atoms and two oxygen atoms were distorted tetrahedral, while the square planar structure of Ni2+ coordinated two nitrogen atoms and two oxygen atoms was observed. The heat of reaction between six metal ions and chitosan models showed the order: Mn2+ >Ni2+ >Zn2+ >Pb2+ >Hg2+ >Cd2+, this suggested that the coordination strength of Mn2+ >Ni2+ >Zn2+ >Pb2+ >Hg2+ >Cd2+.