WorldWideScience

Sample records for chitosan improves maize

  1. Combined effect of chitosan and water activity on growth and fumonisin production by Fusarium verticillioides and Fusarium proliferatum on maize-based media.

    Science.gov (United States)

    Ferrochio, Laura V; Cendoya, Eugenia; Zachetti, Vanessa G L; Farnochi, Maria C; Massad, Walter; Ramirez, Maria L

    2014-08-18

    The objectives of the present study were to determine the in vitro efficacy of chitosan (0.5, 1.0, 2.0 and 3.0mg/mL) under different water availabilities (0.995, 0.99, 0.98, 0.96 and 0.93) at 25°C on lag phase, growth rate and fumonisin production by isolates of Fusarium verticillioides and Fusarium proliferatum. The presence of chitosan affected growth and fumonisin production, and this effect was dependent on the dose and aW treatment used. The presence of chitosan increased the lag phase, and reduced the growth rate of both Fusarium species significantly at all concentrations used, especially at 0.93 aW. Also, significant reduction of fumonisin production was observed in both Fusarium species at all conditions assayed. The present study has shown the combined effects of chitosan and aW on growth and fumonisin production by the two most important Fusarium species present on maize. Low molecular weight (Mw) chitosan with more than 70% of degree of deacetylation (DD) at 0.5mg/mL was able to significantly reduce growth rate and fumonisin production on maize-based media, with maximum levels of reduction in both parameters obtained at the highest doses used. As fumonisins are unavoidable contaminants in food and feed chains, their presence needs to be reduced to minimize their effects on human and animal health and to diminish the annual market loss through rejected maize. In this scenario post-harvest use of chitosan could be an important alternative treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Maize seed coatings and seedling sprayings with chitosan and hydrogen peroxide:their influence on some phenological and biochemical behaviors

    Institute of Scientific and Technical Information of China (English)

    Eva-Guadalupe LIZ(A)RRAGA-PAUL(I)N; Susana-Patricia MIRANDA-CASTRO; Ernesto MORENO-MART(I)NEZ; Alma-Virginia LARA-SAGAH(O)N; Irineo TORRES-PACHECO

    2013-01-01

    Objective:To evaluate the effect of chitosan(CH)and hydrogen peroxide(H2O2)seed coatings and seedling sprinklings on two different maize varieties by measuring their phenology,the H2O2 presence,the catalase (CAT)activity,and the protein quantity.Methods:Seven groups of ten seeds for each maize variety were treated with CH(2%(20 g/L)and 0.2%(2 g/L))or H2O2(8 mmol/L)by coating,sprinkling,or both.Germination and seedling growth were measured.One month after germination,the presence of H2O2 in seedlings in the coated seed treatments was evaluated.Protein content and CAT activity were determined under all treatments.Results:H2O2 seed coating enhanced the germination rate and increased seedling and stem length in the quality protein maize(QPM)variety.Seedlings had a higher emergence velocity under this treatment in both varieties.CH and H2O2 sprinklings did not have an effect on seedling phenology.Exogenous application of H2O2 promoted an increase of endogenous H2O2.CH and H2O2 seedling sprinkling increased the protein content in both maize varieties,while there was no significant effect on the CAT activity of treated seeds and seedlings.Conclusions:CH and H2O2 enhance some phenological and biochemical features of maize depending on their method of application.

  3. Genomic-based-breeding tools for tropical maize improvement.

    Science.gov (United States)

    Chakradhar, Thammineni; Hindu, Vemuri; Reddy, Palakolanu Sudhakar

    2017-12-01

    Maize has traditionally been the main staple diet in the Southern Asia and Sub-Saharan Africa and widely grown by millions of resource poor small scale farmers. Approximately, 35.4 million hectares are sown to tropical maize, constituting around 59% of the developing worlds. Tropical maize encounters tremendous challenges besides poor agro-climatic situations with average yields recorded <3 tones/hectare that is far less than the average of developed countries. On the contrary to poor yields, the demand for maize as food, feed, and fuel is continuously increasing in these regions. Heterosis breeding introduced in early 90 s improved maize yields significantly, but genetic gains is still a mirage, particularly for crop growing under marginal environments. Application of molecular markers has accelerated the pace of maize breeding to some extent. The availability of array of sequencing and genotyping technologies offers unrivalled service to improve precision in maize-breeding programs through modern approaches such as genomic selection, genome-wide association studies, bulk segregant analysis-based sequencing approaches, etc. Superior alleles underlying complex traits can easily be identified and introgressed efficiently using these sequence-based approaches. Integration of genomic tools and techniques with advanced genetic resources such as nested association mapping and backcross nested association mapping could certainly address the genetic issues in maize improvement programs in developing countries. Huge diversity in tropical maize and its inherent capacity for doubled haploid technology offers advantage to apply the next generation genomic tools for accelerating production in marginal environments of tropical and subtropical world. Precision in phenotyping is the key for success of any molecular-breeding approach. This article reviews genomic technologies and their application to improve agronomic traits in tropical maize breeding has been reviewed in

  4. Risk Adjusted Production Efficiency of Maize Farmers in Ethiopia: Implication for Improved Maize Varieties Adoption

    Directory of Open Access Journals (Sweden)

    Sisay Diriba Lemessa

    2017-09-01

    Full Text Available This study analyzes the technical efficiency and production risk of 862 maize farmers in major maize producing regions of Ethiopia. It employs the stochastic frontier approach (SFA to estimate the level of technical efficiencies of stallholder farmers. The stochastic frontier approach (SFA uses flexible risk properties to account for production risk. Thus, maize production variability is assessed from two perspectives, the production risk and the technical efficiency. The study also attempts to determine the socio-economic and farm characteristics that influence technical efficiency of maize production in the study area. The findings of the study showed the existence of both production risk and technical inefficiency in maize production process. Input variables (amounts per hectare such as fertilizer and labor positively influence maize output. The findings also show that farms in the study area exhibit decreasing returns to scale. Fertilizer and ox plough days reduce output risk while labor and improved seed increase output risk. The mean technical efficiency for maize farms is 48 percent. This study concludes that production risk and technical inefficiency prevents the maize farmers from realizing their frontier output. The best factors that improve the efficiency of the maize farmers in the study area include: frequency of extension contact, access to credit and use of intercropping. It was also realized that altitude and terracing in maize farms had influence on farmer efficiency.

  5. Chitosan fibers with improved biological and mechanical properties for tissue engineering applications.

    Science.gov (United States)

    Albanna, Mohammad Z; Bou-Akl, Therese H; Blowytsky, Oksana; Walters, Henry L; Matthew, Howard W T

    2013-04-01

    The low mechanical properties of hydrogel materials such as chitosan hinder their broad utility for tissue engineering applications. Previous research efforts improved the mechanical properties of chitosan fiber through chemical and physical modifications; however, unfavorable toxicity effects on cells were reported. In this paper, we report the preparation of chitosan fibers with improved mechanical and biocompatibility properties. The structure-property relationships of extruded chitosan fibers were explored by varying acetic acid (AA) concentration, ammonia concentration, annealing temperature and degree of heparin crosslinking. Results showed that optimizing AA concentration to 2vol% improved fiber strength and stiffness by 2-fold. Extruding chitosan solution into 25wt% of ammonia solution reduced fiber diameters and improved fiber strength by 2-fold and stiffness by 3-fold, due to an increase in crystallinity as confirmed by XRD. Fiber annealing further reduced fiber diameter and improved fiber strength and stiffness as temperature increased. Chitosan fibers crosslinked with heparin had increased diameter but lower strength and stiffness properties and higher breaking strain values. When individual parameters were combined, further improvement in fiber mechanical properties was achieved. All mechanically improved fibers and heparin crosslinked fibers promoted valvular interstitial cells (VIC) attachment and growth over 10 day cultures. Our results demonstrate the ability to substantially improve the mechanical properties of chitosan fibers without adversely affecting their biological properties. The investigated treatments offer numerous advantages over previous physical/chemical modifications and thus are expected to expand the utility of chitosan fibers with tunable mechanical properties in various tissue engineering applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. The mechanisms of root exudates of maize in improvement of iron nutrition of peanut in peanut/maize intercropping system by 14C tracer technique

    International Nuclear Information System (INIS)

    Zuo Yuanmei; Chen Qing; Zhang Fusuo

    2004-01-01

    The related mechanisms of root exudates of maize in improvement iron nutrition of peanut intercropped with maize was investigated by 14 C tracer technique. Neighboring roots between maize and peanut were separated by a 30 μm nylon net, the iron nutrition of peanut was also improved just like normal intercropping of maize and peanut. The results proved that root exudates of maize played an important role in improvement iron nutrition of peanut. The photosynthesis carbohydrate of maize could exuded into the rhizosphere of peanut and transfer into shoot and root of peanut in intercropping system. Root exudates of maize could increased efficiency of iron in soil and improved iron utilization of peanut

  7. Microfungal spores (Ustilago maydis and U. digitariae) immobilised chitosan microcapsules for heavy metal removal.

    Science.gov (United States)

    Sargın, İdris; Arslan, Gulsin; Kaya, Murat

    2016-03-15

    Designing effective chitosan-based biosorbents from unexploited biomass for heavy metal removal has received much attention over the past decade. Ustilago, loose smut, is a ubiquitous fungal plant pathogen infecting over 4000 species including maize and weed. This study aimed to establish whether the spores of the phytopathogenic microfungi Ustilago spores can be immobilised in cross-linked chitosan matrix, and it reports findings on heavy metal sorption performance of chitosan/Ustilago composite microcapsules. Immobilisation of Ustilago maydis and U. digitariae spores (from maize and weed) in chitosan microcapsules was achieved via glutaraldehyde cross-linking. The cross-linked microcapsules were characterised using scanning electron microscopy, FT-IR spectroscopy and thermogravimetric analysis. Sorption capacities of chitosan-U. maydis and chitosan-U. digitariae microcapsules were investigated and compared to cross-linked chitosan beads: Cu(II): 66.72, 69.26, 42.57; Cd(II): 49.46, 53.96, 7.87; Cr(III): 35.88, 49.40, 43.68; Ni(II): 41.67, 33.46, 16.43 and Zn(II): 30.73, 60.81, 15.04mg/g, respectively. Sorption experiments were conducted as a function of initial metal ion concentration (2-10mg/L), contact time (60-480min), temperature (25, 35 and 45°C), amount of the sorbent (0.05-0.25g) and pH of the metal solution. The microcapsules with spores exhibited better performance over the plain chitosan beads, demonstrating their potential use in water treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Improving effects of chitosan nanofiber scaffolds on osteoblast proliferation and maturation

    Science.gov (United States)

    Ho, Ming-Hua; Liao, Mei-Hsiu; Lin, Yi-Ling; Lai, Chien-Hao; Lin, Pei-I; Chen, Ruei-Ming

    2014-01-01

    Osteoblast maturation plays a key role in regulating osteogenesis. Electrospun nanofibrous products were reported to possess a high surface area and porosity. In this study, we developed chitosan nanofibers and examined the effects of nanofibrous scaffolds on osteoblast maturation and the possible mechanisms. Macro- and micro observations of the chitosan nanofibers revealed that these nanoproducts had a flat surface and well-distributed fibers with nanoscale diameters. Mouse osteoblasts were able to attach onto the chitosan nanofiber scaffolds, and the scaffolds degraded in a time-dependent manner. Analysis by scanning electron microscopy further showed mouse osteoblasts adhered onto the scaffolds along the nanofibers, and cell–cell communication was also detected. Mouse osteoblasts grew much better on chitosan nanofiber scaffolds than on chitosan films. In addition, human osteoblasts were able to adhere and grow on the chitosan nanofiber scaffolds. Interestingly, culturing human osteoblasts on chitosan nanofiber scaffolds time-dependently increased DNA replication and cell proliferation. In parallel, administration of human osteoblasts onto chitosan nanofibers significantly induced osteopontin, osteocalcin, and alkaline phosphatase (ALP) messenger (m)RNA expression. As to the mechanism, chitosan nanofibers triggered runt-related transcription factor 2 mRNA and protein syntheses. Consequently, results of ALP-, alizarin red-, and von Kossa-staining analyses showed that chitosan nanofibers improved osteoblast mineralization. Taken together, results of this study demonstrate that chitosan nanofibers can stimulate osteoblast proliferation and maturation via runt-related transcription factor 2-mediated regulation of osteoblast-associated osteopontin, osteocalcin, and ALP gene expression. PMID:25246786

  9. Improvement of Diet-induced Obesity by Ingestion of Mushroom Chitosan Prepared from Flammulina velutipes.

    Science.gov (United States)

    Miyazawa, Noriko; Yoshimoto, Hiroaki; Kurihara, Shoichi; Hamaya, Tadao; Eguchi, Fumio

    2018-02-01

    The anti-obesity effects of mushroom chitosan prepared from Flammulina velutipes were investigated using an animal model with diet-induced obesity. In this study, 5-week-old imprinting control region (ICR) mice were divided into six groups of 10 mice each and fed different diets based on the MF powdered diet (standard diet) for 6 weeks: standard diet control group, high-fat diet control group (induced dietary obesity) consisting of the standard diet and 20% lard, and mushroom chitosan groups consisting of the high-fat diet with mushroom chitosan added at 100, 500, 1,000, and 2,000 mg/kg body weight. On the final day of the experiment, mean body weight was 39.1 g in the high-fat control group and 36.3 g in the 2,000 mg/kg mushroom chitosan group, compared to 35.8 g in the standard diet control group. In the mushroom chitosan groups, a dose-dependent suppression of weight gain and marked improvements in serum triglycerides, total cholesterol, LDL-cholesterol, and HDL-cholesterol were found. The mushroom chitosan groups showed fewer and smaller fat deposits in liver cells than the high-fat diet control group, and liver weight was significantly reduced. Glutamic oxaloacetic transaminase (GOT) and glutamate pyruvic transaminase (GPT), which are indices of the hepatic function, all showed dose-dependent improvement with mushroom chitosan administration. These results suggested that mushroom chitosan acts to suppress enlargement of the liver from fat deposition resulting from a high-fat diet and to restore hepatic function. The lipid content of feces showed a marked increase correlated with the mushroom chitosan dose. These findings suggest the potential use of mushroom chitosan as a functional food ingredient that contributes to the prevention or improvement of dietary obesity by inhibiting digestion and absorption of fats in the digestive tract and simultaneously promotes lipolysis in adipocytes.

  10. Gentamicin modified chitosan film with improved antibacterial property and cell biocompatibility.

    Science.gov (United States)

    Liu, Yang; Ji, Peihong; Lv, Huilin; Qin, Yong; Deng, Linhong

    2017-05-01

    Gentamicin modified chitosan film (CS-GT) was produced using a three-step procedure comprising: (i) the chitosan solution was air-dried to form a chitosan (CS) film, (ii) using citric acid to generate the amide and carboxyl groups on the surface of CS, (iii) the CS with surface carboxyl groups was modified by grafting of gentamicin. After modification, this CS-GT film has excellent hydrophilicity and biocompatibility. It is very evident that the gentamicin grafting treatment significantly improves the antibacterial properties of the CS film. Our preliminary results suggest that this novel gentamicin modified chitosan film, which can be prepared in large quantities and at low cost, should have potential application in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Improving effects of chitosan nanofiber scaffolds on osteoblast proliferation and maturation

    Directory of Open Access Journals (Sweden)

    Ho MH

    2014-09-01

    showed that chitosan nanofibers improved osteoblast mineralization. Taken together, results of this study demonstrate that chitosan nanofibers can stimulate osteoblast proliferation and maturation via runt-related transcription factor 2-mediated regulation of osteoblast-associated osteopontin, osteocalcin, and ALP gene expression. Keywords: chitosan nanofibers, osteoblast-associated gene expression, osteoblast maturation, Runx2

  12. An improved method for chromosome counting in maize.

    Science.gov (United States)

    Kato, A

    1997-09-01

    An improved method for counting chromosomes in maize (Zea mays L.) is presented. Application of cold treatment (5C, 24 hr), heat treatment (42 C, 5 min) and a second cold treatment (5C, 24 hr) to root tips before fixation increased the number of condensed and dispersed countable metaphase chromosome figures. Fixed root tips were prepared by the enzymatic maceration-air drying method and preparations were stained with acetic orcein. Under favorable conditions, one preparation with 50-100 countable chromosome figures could be obtained in diploid maize using this method. Conditions affecting the dispersion of the chromosomes are described. This technique is especially useful for determining the somatic chromosome number in triploid and tetraploid maize lines.

  13. Input subsidies and demand for improved maize : relative prices and household heterogeneity matter!

    OpenAIRE

    Holden, Stein Terje

    2013-01-01

    This study uses simple non-separable farm household models calibrated to household, market, farming and policy context conditions in Central and Southern Malawi. The models are used to simulate how household characteristics, design and access to input subsidies affect the demand for improved maize seeds; how increasing land scarcity affects the cropping system and demand for improved maize; and how access to improved maize seeds affects household welfare with varying access to input subsidies...

  14. Studies for improving and formulating of chitosan-based coatings by radiation treatment for fruit preservation

    International Nuclear Information System (INIS)

    Nguyen Duy Lam; Tran Bang Diep; Tran Minh Quynh; Le Thi Dinh; Nguyen Van Binh; Ho Minh Duc; Vo Van Thuan

    2003-01-01

    Presented are the investigations: effect of chitosan on fruit - spoiling microorganism and enhancement of antifungal activity by radiation treatment; improvement of antimicrobial activity of chitosan by its derivatives synthesis in combination with radiation treatment; dependence of chitosan antimicrobial activity on molecular weight and distribution of molecular weight; comparative study on the antifungal activity of chitosan of various origins tested in different conditions of radiation treatment and culture mediums; formulation of chitosan membranes and for their properties in mango coating; effectiveness of chitosan-based coatings on fresh fruit appearance and quality during storage; influence of irradiated chitosan on rice plant growing in media contaminated with salt and heavy metals; effect of chitosan solution varied in concentration and molecular weight on seed germination and seedling growth of groundnut, soybean and cabbage. (NHA)

  15. An improved ternary vector system for Agrobacterium-mediated rapid maize transformation.

    Science.gov (United States)

    Anand, Ajith; Bass, Steven H; Wu, Emily; Wang, Ning; McBride, Kevin E; Annaluru, Narayana; Miller, Michael; Hua, Mo; Jones, Todd J

    2018-05-01

    A simple and versatile ternary vector system that utilizes improved accessory plasmids for rapid maize transformation is described. This system facilitates high-throughput vector construction and plant transformation. The super binary plasmid pSB1 is a mainstay of maize transformation. However, the large size of the base vector makes it challenging to clone, the process of co-integration is cumbersome and inefficient, and some Agrobacterium strains are known to give rise to spontaneous mutants resistant to tetracycline. These limitations present substantial barriers to high throughput vector construction. Here we describe a smaller, simpler and versatile ternary vector system for maize transformation that utilizes improved accessory plasmids requiring no co-integration step. In addition, the newly described accessory plasmids have restored virulence genes found to be defective in pSB1, as well as added virulence genes. Testing of different configurations of the accessory plasmids in combination with T-DNA binary vector as ternary vectors nearly doubles both the raw transformation frequency and the number of transformation events of usable quality in difficult-to-transform maize inbreds. The newly described ternary vectors enabled the development of a rapid maize transformation method for elite inbreds. This vector system facilitated screening different origins of replication on the accessory plasmid and T-DNA vector, and four combinations were identified that have high (86-103%) raw transformation frequency in an elite maize inbred.

  16. Socio-economic assessment on maize production and adoption of open pollinated improved varieties in Dang, Nepal

    Directory of Open Access Journals (Sweden)

    Sanjiv Subedi

    2017-12-01

    Full Text Available Research was conducted from February to May, 2017 for socioeconomic assessment on maize production and adoption of open pollinated improved maize varieties in Dang district of Nepal. Altogether, 100 samples were taken by simple random sampling from the major maize growing areas and relevant publications were reviewed. Focal Group Discussion and Key Informant Survey were also done. Descriptive statistics, unpaired t-test, probit regression and indexing were used for data analysis using statistical tools- SPSS, STATA and MS-Excel. Probit econometric model revealed that ethnicity (1% level, gender (5% level, area under open pollinated improved maize (1% level, seed source dummy (1 % level and number of visits by farmers to agrovet (5% level significantly determined the adoption of open pollinated improved maize varieties. In addition, unpaired t-test revealed that the productivity of open pollinated improved maize varieties was significantly higher (at 1% level than local; also, the multinational companies' hybrids showed significantly higher productivity (at 1% level when compared to open pollinated improved varieties. Furthermore, indexing identified- lack of availability of quality seeds and fertilizers (I= 0.86 as the major problem associated with the maize production. Giving aggressive subsidy on open pollinated improved seeds and dealership to registered agrovets for selling the subsidy seeds could enhance the adoption. Moreover, government organizations working in the areas of agricultural extension and research must focus on adoption of open pollinated improved maize varieties among the farmers, substituting the local and developing the high yielding hybrid varieties in Nepal to increase the maize productivity.

  17. Direct compression of chitosan: process and formulation factors to improve powder flow and tablet performance.

    Science.gov (United States)

    Buys, Gerhard M; du Plessis, Lissinda H; Marais, Andries F; Kotze, Awie F; Hamman, Josias H

    2013-06-01

    Chitosan is a polymer derived from chitin that is widely available at relatively low cost, but due to compression challenges it has limited application for the production of direct compression tablets. The aim of this study was to use certain process and formulation variables to improve manufacturing of tablets containing chitosan as bulking agent. Chitosan particle size and flow properties were determined, which included bulk density, tapped density, compressibility and moisture uptake. The effect of process variables (i.e. compression force, punch depth, percentage compaction in a novel double fill compression process) and formulation variables (i.e. type of glidant, citric acid, pectin, coating with Eudragit S®) on chitosan tablet performance (i.e. mass variation, tensile strength, dissolution) was investigated. Moisture content of the chitosan powder, particle size and the inclusion of glidants had a pronounced effect on its flow ability. Varying the percentage compaction during the first cycle of a double fill compression process produced chitosan tablets with more acceptable tensile strength and dissolution rate properties. The inclusion of citric acid and pectin into the formulation significantly decreased the dissolution rate of isoniazid from the tablets due to gel formation. Direct compression of chitosan powder into tablets can be significantly improved by the investigated process and formulation variables as well as applying a double fill compression process.

  18. Heavy Metal Removal by Chitosan and Chitosan Composite

    International Nuclear Information System (INIS)

    Abdel-Mohdy, F.A.; El-Sawy, S.; Ibrahim, M.S.

    2005-01-01

    Radiation grafting of diethyl aminoethyl methacrylate (DEAEMA) on chitosan to impart ion exchange properties and to be used for the separation of metal ions from waste water, was carried out. The effect of experimental conditions such as monomer concentration and the radiation dose on grafting were studied. On using chitosan, grafted chitosan and some chitosan composites in metal ion removal they show high up-take capacity for Cu 2+ and lower uptake capacities for the other divalent metal ions used (Zn and Co). Competitive study, performed with solutions containing mixture of metal salts, showed high selectivity for Cu 2+ than the other metal ion. Limited grafting of DEAEMA polymer -containing specific functional groups-onto the chitosan backbone improves the sorption performance

  19. Improved preservation effects of litchi fruit by combining chitosan ...

    African Journals Online (AJOL)

    Improved preservation effects of litchi fruit by combining chitosan coating with ascorbic acid treatment during postharvest storage. ... Moreover, increased activities of super oxide dismutase (SOD) and catalase (CAT) and contents of AsA and glutathione were observed in pulp of treated fruit, thus leading to lowered contents ...

  20. Transfection efficiency of chitosan and thiolated chitosan in retinal pigment epithelium cells: A comparative study

    Directory of Open Access Journals (Sweden)

    Ana V Oliveira

    2013-01-01

    Full Text Available Objective: Gene therapy relies on efficient vector for a therapeutic effect. Efficient non-viral vectors are sought as an alternative to viral vectors. Chitosan, a cationic polymer, has been studied for its gene delivery potential. In this work, disulfide bond containing groups were covalently added to chitosan to improve the transfection efficiency. These bonds can be cleaved by cytoplasmic glutathione, thus, releasing the DNA load more efficiently. Materials and Methods: Chitosan and thiolated chitosan nanoparticles (NPs were prepared in order to obtain a NH3 + :PO4− ratio of 5:1 and characterized for plasmid DNA complexation and release efficiency. Cytotoxicity and gene delivery studies were carried out on retinal pigment epithelial cells. Results: In this work, we show that chitosan was effectively modified to incorporate a disulfide bond. The transfection efficiency of chitosan and thiolated chitosan varied according to the cell line used, however, thiolation did not seem to significantly improve transfection efficiency. Conclusion: The apparent lack of improvement in transfection efficiency of the thiolated chitosan NPs is most likely due to its size increase and charge inversion relatively to chitosan. Therefore, for retinal cells, thiolated chitosan does not seem to constitute an efficient strategy for gene delivery.

  1. Technology adoption analysis of improved maize technology in western hills of Nepal

    Directory of Open Access Journals (Sweden)

    Jeevan Lamichhane

    2015-12-01

    Full Text Available The survey was carried out in two districts namely Palpa and Baglung to determine the current level of adoption of improved maize production practices. This study identifies the technology adoption extent and pattern of improved maize technologies in Western Hills of Nepal. In each of these districts, two village development committees (V.D.Cs were surveyed. Deurali and Khasyouli V.D.C from Palpa and Kudule and Malika V.D.C from Baglung Districts were selected. Structured Questionnaire were administered to 30 randomly selected households in each VDC. Altogether 120 Households were surveyed. The degree of adoption was measured on the seed rate, adoption of improved varieties, application of Nitrogenous, Phosphatic and Potassium fertilizer, Weeding and method of planting. The adoption index was used to determine the adoption level of the respondents. There seems to be a gap between the recommended practice and current level of practice at the farmers level in some of the factors like Nitrogenous, Phosphorus and Potassium fertilizers, method of planting .The study revealed that majority farmers belonged to high adoption category (57% followed by medium adoption category (54% and low adoption category (9%. The Technology Adoption Index (TAI was found 63%. In nutshell there is still large scope for yield improvement of the maize in the study area by adopting improved maize varieties.

  2. Econometric analysis of improved maize varieties and sustainable agricultural practices (SAPs) in Eastern Zambia

    NARCIS (Netherlands)

    Manda, J.

    2016-01-01

    Maize is the principle food staple in Zambia, providing both food and income for most of the rural populace. It is estimated that over 50% of the daily caloric intake is derived from maize; with an average consumption of over 85kg per year. Because of the importance of maize, a number of improved

  3. Advances in Maize Transformation Technologies and Development of Transgenic Maize.

    Science.gov (United States)

    Yadava, Pranjal; Abhishek, Alok; Singh, Reeva; Singh, Ishwar; Kaul, Tanushri; Pattanayak, Arunava; Agrawal, Pawan K

    2016-01-01

    Maize is the principal grain crop of the world. It is also the crop where genetic engineering has been employed to a great extent to improve its various traits. The ability to transform maize is a crucial step for application of gene technology in maize improvement. There have been constant improvements in the maize transformation technologies over past several years. The choice of genotype and the explant material to initiate transformation and the different types of media to be used in various stages of tissue culture can have significant impact on the outcomes of the transformation efforts. Various methods of gene transfer, like the particle bombardment, protoplast transformation, Agrobacterium -mediated, in planta transformation, etc., have been tried and improved over years. Similarly, various selection systems for retrieval of the transformants have been attempted. The commercial success of maize transformation and transgenic development is unmatched by any other crop so far. Maize transformation with newer gene editing technologies is opening up a fresh dimension in transformation protocols and work-flows. This review captures the various past and recent facets in improvement in maize transformation technologies and attempts to present a comprehensive updated picture of the current state of the art in this area.

  4. Chitosan scaffold modified with D-(+) raffinose and enriched with thiol-modified gelatin for improved osteoblast adhesion

    International Nuclear Information System (INIS)

    Galli, C; Parisi, L; Smerieri, A; Lumetti, S; Manfredi, E; Macaluso, G M; Elviri, L; Bianchera, A; Bettini, R; Lagonegro, P

    2016-01-01

    The aim of the present study was to investigate whether chitosan-based scaffolds modified with D-(+) raffinose and enriched with thiol-modified gelatin could selectively improve osteoblast adhesion and proliferation. 2, 3 and 4.5% chitosan films were prepared. Chitosan suitability for tissue engineering was confirmed by protein adsorption assay. Scaffolds were incubated with a 2.5 mg ml −1 BSA solution and the decrease of protein content in the supernatants was measured by spectrophotometry. Chitosan films were then enriched with thiol-modified gelatin and their ability to bind BSA was also measured. Then, 2% chitosan discs with or without thiol-modified gelatin were used as culture substrates for MC3T3-E1 cells. After 72 h cells were stained with trypan blue or with calcein AM and propidium iodide for morphology, viability and proliferation assays. Moreover, cell viability was measured at 48, 72, 96 and 168 h to obtain a growth curve. Chitosan films efficiently bound and retained BSA proportionally to the concentration of chitosan discs. The amount of protein retained was higher on chitosan enriched with thiol-modified gelatin. Moreover, chitosan discs allowed the adhesion and the viability of cells, but inhibited their proliferation. The functionalization of chitosan with thiol-modified gelatin enhanced cell spreading and proliferation. Our data confirm that chitosan is a suitable material for tissue engineering. Moreover, our data show that the enrichment of chitosan with thiol-modified gelatin enhances its biological properties. (paper)

  5. Improvement of Stability and Antioxidant Activities by Using Phycocyanin - Chitosan Encapsulation Technique

    Science.gov (United States)

    Suzery, Meiny; Hadiyanto; Majid, Dian; Setyawan, Deny; Sutanto, Heri

    2017-02-01

    Encapsulation is a coating process to improve the stability of bioactive compounds. Phycocyanin with high antioxidant activity has been encapsulated with chitosan in microcapsules form. In this study aims to determine the best conditions in the encapsulation process using the extrusion method, characterization of the physicochemical properties of the microcapsules, antioxidant activity test using DPPH, in vitro release performance and evaluate the storage stability against temperature. The results of the encapsulation process is obtained: Na-TPP is better than Na-citrate as crosslinker and chitosan content 3% as a coating with ratio of chitosan to phycocyanin ratio 1: 1. Test of antioxidant activity also showed encapsulation with chitosan content 3% has the highest antioxidant activity. Morphological analysis microcapsules were found to have compact spherical shape with diameter range 900-1000 µm. In vitro release testing showed a quick release in an acidic environment (SGF) for 2 hours and slowly release under alkaline conditions (SIF) for 8 hours under mechanical stirring at 37°C. Phycocyanin much more stable against temperature during storage in microcapsules.

  6. Resistance of maize varieties to the maize weevil Sitophilus zeamais

    African Journals Online (AJOL)

    This study aimed at evaluating commonly used maize varieties, collected from Melkasa and Bako Agricultural Research Centers and Haramaya University, Ethiopia, against the maize weevil Sitophilus zeamais Motsch., one of the most important cosmopolitan stored product pests in maize. A total of 13 improved maize ...

  7. Chitosan-glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects.

    Science.gov (United States)

    Hoemann, Caroline D; Hurtig, Mark; Rossomacha, Evgeny; Sun, Jun; Chevrier, Anik; Shive, Matthew S; Buschmann, Michael D

    2005-12-01

    Microfracture is a surgical procedure that is used to treat focal articular cartilage defects. Although joint function improves following microfracture, the procedure elicits incomplete repair. As blood clot formation in the microfracture defect is an essential initiating event in microfracture therapy, we hypothesized that the repair would be improved if the microfracture defect were filled with a blood clot that was stabilized by the incorporation of a thrombogenic and adhesive polymer, specifically, chitosan. The objectives of the present study were to evaluate (1) blood clot adhesion in fresh microfracture defects and (2) the quality of the repair, at six months postoperatively, of microfracture defects that had been treated with or without chitosan-glycerol phosphate/blood clot implants, using a sheep model. In eighteen sheep, two 1-cm2 full-thickness chondral defects were created in the distal part of the femur and treated with microfracture; one defect was made in the medial femoral condyle, and the other defect was made in the trochlea. In four sheep, microfracture defects were created bilaterally; the microfracture defects in one knee received no further treatment, and the microfracture defects in the contralateral knee were filled with chitosan-glycerol phosphate/autologous whole blood and the implants were allowed to solidify. Fresh defects in these four sheep were collected at one hour postoperatively to compare the retention of the chitosan-glycerol phosphate/blood clot with that of the normal clot and to define the histologic characteristics of these fresh defects. In the other fourteen sheep, microfracture defects were made in only one knee and either were left untreated (control group; six sheep) or were treated with chitosan-glycerol phosphate/blood implant (treatment group; eight sheep), and the quality of repair was assessed histologically, histomorphometrically, and biochemically at six months postoperatively. In the defects that were examined

  8. Highly defined 3D printed chitosan scaffolds featuring improved cell growth.

    Science.gov (United States)

    Elviri, Lisa; Foresti, Ruben; Bergonzi, Carlo; Zimetti, Francesca; Marchi, Cinzia; Bianchera, Annalisa; Bernini, Franco; Silvestri, Marco; Bettini, Ruggero

    2017-07-12

    The augmented demand for medical devices devoted to tissue regeneration and possessing a controlled micro-architecture means there is a need for industrial scale-up in the production of hydrogels. A new 3D printing technique was applied to the automation of a freeze-gelation method for the preparation of chitosan scaffolds with controlled porosity. For this aim, a dedicated 3D printer was built in-house: a preliminary effort has been necessary to explore the printing parameter space to optimize the printing results in terms of geometry, tolerances and mechanical properties of the product. Analysed parameters included viscosity of the starting chitosan solution, which was measured with a Brookfield viscometer, and temperature of deposition, which was determined by filming the process with a cryocooled sensor thermal camera. Optimized parameters were applied to the production of scaffolds from solutions of chitosan alone or with the addition of raffinose as a viscosity modifier. Resulting hydrogels were characterized in terms of morphology and porosity. In vitro cell culture studies comparing 3D printed scaffolds with their homologous produced by solution casting evidenced an improvement in biocompatibility deriving from the production technique as well as from the solid state modification of chitosan stemming from the addition of the viscosity modifier.

  9. Collagen tissue treated with chitosan solutions in carbonic acid for improved biological prosthetic heart valves

    Energy Technology Data Exchange (ETDEWEB)

    Gallyamov, Marat O., E-mail: glm@spm.phys.msu.ru [Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation); Chaschin, Ivan S. [Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation); Khokhlova, Marina A. [Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Grigorev, Timofey E. [Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation); Bakuleva, Natalia P.; Lyutova, Irina G.; Kondratenko, Janna E. [Bakulev Scientific Center for Cardiovascular Surgery of the Russian Academy of Medical Sciences, Roublyevskoe Sh. 135, Moscow 121552 (Russian Federation); Badun, Gennadii A.; Chernysheva, Maria G. [Radiochemistry Division, Faculty of Chemistry, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Khokhlov, Alexei R. [Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation)

    2014-04-01

    Calcification of bovine pericardium dramatically shortens typical lifetimes of biological prosthetic heart valves and thus precludes their choice for younger patients. The aim of the present work is to demonstrate that the calcification is to be mitigated by means of treatment of bovine pericardium in solutions of chitosan in carbonic acid, i.e. water saturated with carbon dioxide at high pressure. This acidic aqueous fluid unusually combines antimicrobial properties with absolute biocompatibility as far as at normal pressure it decomposes spontaneously and completely into H{sub 2}O and CO{sub 2}. Yet, at high pressures it can protonate and dissolve chitosan materials with different degrees of acetylation (in the range of 16–33%, at least) without any further pretreatment. Even exposure of the bovine pericardium in pure carbonic acid solution without chitosan already favours certain reduction in calcification, somewhat improved mechanical properties, complete biocompatibility and evident antimicrobial activity of the treated collagen tissue. The reason may be due to high extraction ability of this peculiar compressed fluidic mixture. Moreover, exposure of the bovine pericardium in solutions of chitosan in carbonic acid introduces even better mechanical properties and highly pronounced antimicrobial activity of the modified collagen tissue against adherence and biofilm formation of relevant Gram-positive and Gram-negative strains. Yet, the most important achievement is the detected dramatic reduction in calcification for such modified collagen tissues in spite of the fact that the amount of the thus introduced chitosan is rather small (typically ca. 1 wt.%), which has been reliably detected using original tritium labelling method. We believe that these improved properties are achieved due to particularly deep and uniform impregnation of the collagen matrix with chitosan from its pressurised solutions in carbonic acid. - Highlights: • Treatment of GA

  10. Collagen tissue treated with chitosan solutions in carbonic acid for improved biological prosthetic heart valves

    International Nuclear Information System (INIS)

    Gallyamov, Marat O.; Chaschin, Ivan S.; Khokhlova, Marina A.; Grigorev, Timofey E.; Bakuleva, Natalia P.; Lyutova, Irina G.; Kondratenko, Janna E.; Badun, Gennadii A.; Chernysheva, Maria G.; Khokhlov, Alexei R.

    2014-01-01

    Calcification of bovine pericardium dramatically shortens typical lifetimes of biological prosthetic heart valves and thus precludes their choice for younger patients. The aim of the present work is to demonstrate that the calcification is to be mitigated by means of treatment of bovine pericardium in solutions of chitosan in carbonic acid, i.e. water saturated with carbon dioxide at high pressure. This acidic aqueous fluid unusually combines antimicrobial properties with absolute biocompatibility as far as at normal pressure it decomposes spontaneously and completely into H 2 O and CO 2 . Yet, at high pressures it can protonate and dissolve chitosan materials with different degrees of acetylation (in the range of 16–33%, at least) without any further pretreatment. Even exposure of the bovine pericardium in pure carbonic acid solution without chitosan already favours certain reduction in calcification, somewhat improved mechanical properties, complete biocompatibility and evident antimicrobial activity of the treated collagen tissue. The reason may be due to high extraction ability of this peculiar compressed fluidic mixture. Moreover, exposure of the bovine pericardium in solutions of chitosan in carbonic acid introduces even better mechanical properties and highly pronounced antimicrobial activity of the modified collagen tissue against adherence and biofilm formation of relevant Gram-positive and Gram-negative strains. Yet, the most important achievement is the detected dramatic reduction in calcification for such modified collagen tissues in spite of the fact that the amount of the thus introduced chitosan is rather small (typically ca. 1 wt.%), which has been reliably detected using original tritium labelling method. We believe that these improved properties are achieved due to particularly deep and uniform impregnation of the collagen matrix with chitosan from its pressurised solutions in carbonic acid. - Highlights: • Treatment of GA-stabilised bovine

  11. Biofortification of maize flour with grain amaranth for improved nutrition

    African Journals Online (AJOL)

    Biofortification of maize flour with grain amaranth for improved nutrition. ... PROMOTING ACCESS TO AFRICAN RESEARCH. AFRICAN JOURNALS ONLINE ... African Journal of Food, Agriculture, Nutrition and Development. Journal Home ...

  12. Heat applied chitosan treatment on hardwood chips to improve physical and mechanical properties of particleboard

    Directory of Open Access Journals (Sweden)

    Mehmet Altay Basturk

    2012-11-01

    Full Text Available High-heat treatment after surface application of chitosan was used in an effort to improve physical and mechanical performances of particleboard. Particleboard is mainly used in the furniture industry and also used as a home decoration material; however, it has a poor dimensional stability. In this work, hardwood chips were obtained from a commercial plant; half of the chips were used for the control panels without chitosan treatment, and the other half were treated with chitosan acetate solutions (2% wt. Those chitosan-treated particles were also exposed to extra high-heat (140oC treatment for 90 minutes to convert chitosan acetate back to chitin. Liquid phenol-formaldehyde resin was sprayed onto dry particles at a level of 6 and 7% (wt based upon oven-dry weight. The mat was pressed (200oC for 11 minutes to form 19 mm thickness and a target of 0.63 g cm-3 density panels. Thickness swelling, linear expansion, and water gain of the treated panels were reduced over untreated panels during a 24-hour water-soak test. In addition, chitosan-treated panels showed better internal bond strength than control panels. Static bending test results showed a negative effect for the chitosan treated particleboard.

  13. Injectable porous nano-hydroxyapatite/chitosan/tripolyphosphate scaffolds with improved compressive strength for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Uswatta, Suren P.; Okeke, Israel U. [Department of Bioengineering, The University of Toledo, Toledo, OH 43614 (United States); Jayasuriya, Ambalangodage C., E-mail: a.jayasuriya@utoledo.edu [Department of Bioengineering, The University of Toledo, Toledo, OH 43614 (United States); Department of Orthopaedic Surgery, The University of Toledo, Toledo, OH 43614 (United States)

    2016-12-01

    In this study we have fabricated porous injectable spherical scaffolds using chitosan biopolymer, sodium tripolyphosphate (TPP) and nano-hydroxyapatite (nHA). TPP was primarily used as an ionic crosslinker to crosslink nHA/chitosan droplets. We hypothesized that incorporating nHA into chitosan could support osteoconduction by emulating the mineralized cortical bone structure, and improve the Ultimate Compressive Strength (UCS) of the scaffolds. We prepared chitosan solutions with 0.5%, 1% and 2% (w/v) nHA concentration and used simple coacervation and lyophilization techniques to obtain spherical scaffolds. Lyophilized spherical scaffolds had a mean diameter of 1.33 mm (n = 25). Further, portion from each group lyophilized scaffolds were soaked and dried to obtain Lyophilized Soaked and Dried (LSD) scaffolds. LSD scaffolds had a mean diameter of 0.93 mm (n = 25) which is promising property for the injectability. Scanning Electron Microscopy images showed porous surface morphology and interconnected pore structures inside the scaffolds. Lyophilized and LSD scaffolds had surface pores < 10 and 2 μm, respectively. 2% nHA/chitosan LSD scaffolds exhibited UCS of 8.59 MPa compared to UCS of 2% nHA/chitosan lyophilized scaffolds at 3.93 MPa. Standardize UCS values were 79.98 MPa and 357 MPa for 2% nHA/chitosan lyophilized and LSD particles respectively. One-way ANOVA results showed a significant increase (p < 0.001) in UCS of 1% and 2% nHA/chitosan lyophilized scaffolds compared to 0% and 0.5% nHA/chitosan lyophilized scaffolds. Moreover, 2% nHA LSD scaffolds had significantly increased (p < 0.005) their mean UCS by 120% compared to 2% nHA lyophilized scaffolds. In a drawback, all scaffolds have lost their mechanical properties by 95% on the 2nd day when fully immersed in phosphate buffered saline. Additionally live and dead cell assay showed no cytotoxicity and excellent osteoblast attachment to both lyophilized and LSD scaffolds at the end of 14th day of in vitro

  14. Injectable porous nano-hydroxyapatite/chitosan/tripolyphosphate scaffolds with improved compressive strength for bone regeneration

    International Nuclear Information System (INIS)

    Uswatta, Suren P.; Okeke, Israel U.; Jayasuriya, Ambalangodage C.

    2016-01-01

    In this study we have fabricated porous injectable spherical scaffolds using chitosan biopolymer, sodium tripolyphosphate (TPP) and nano-hydroxyapatite (nHA). TPP was primarily used as an ionic crosslinker to crosslink nHA/chitosan droplets. We hypothesized that incorporating nHA into chitosan could support osteoconduction by emulating the mineralized cortical bone structure, and improve the Ultimate Compressive Strength (UCS) of the scaffolds. We prepared chitosan solutions with 0.5%, 1% and 2% (w/v) nHA concentration and used simple coacervation and lyophilization techniques to obtain spherical scaffolds. Lyophilized spherical scaffolds had a mean diameter of 1.33 mm (n = 25). Further, portion from each group lyophilized scaffolds were soaked and dried to obtain Lyophilized Soaked and Dried (LSD) scaffolds. LSD scaffolds had a mean diameter of 0.93 mm (n = 25) which is promising property for the injectability. Scanning Electron Microscopy images showed porous surface morphology and interconnected pore structures inside the scaffolds. Lyophilized and LSD scaffolds had surface pores < 10 and 2 μm, respectively. 2% nHA/chitosan LSD scaffolds exhibited UCS of 8.59 MPa compared to UCS of 2% nHA/chitosan lyophilized scaffolds at 3.93 MPa. Standardize UCS values were 79.98 MPa and 357 MPa for 2% nHA/chitosan lyophilized and LSD particles respectively. One-way ANOVA results showed a significant increase (p < 0.001) in UCS of 1% and 2% nHA/chitosan lyophilized scaffolds compared to 0% and 0.5% nHA/chitosan lyophilized scaffolds. Moreover, 2% nHA LSD scaffolds had significantly increased (p < 0.005) their mean UCS by 120% compared to 2% nHA lyophilized scaffolds. In a drawback, all scaffolds have lost their mechanical properties by 95% on the 2nd day when fully immersed in phosphate buffered saline. Additionally live and dead cell assay showed no cytotoxicity and excellent osteoblast attachment to both lyophilized and LSD scaffolds at the end of 14th day of in vitro

  15. Conjugation of Inulin Improves Anti-Biofilm Activity of Chitosan.

    Science.gov (United States)

    Zhang, Guiqiang; Liu, Jing; Li, Ruilian; Jiao, Siming; Feng, Cui; Wang, Zhuo A; Du, Yuguang

    2018-05-04

    Bacteria biofilm helps bacteria prevent phagocytosis during infection and increase resistance to antibiotics. Staphylococcus aureus is a Gram-positive pathogenic bacterium and is tightly associated with biofilm-related infections, which have led to great threat to human health. Chitosan, the only cationic polysaccharide in nature, has been demonstrated to have antimicrobial and anti-biofilm activities, which, however, require a relative high dosage of chitosan. Moreover, poor water solubility further restricts its applications on anti-infection therapy. Inulins are a group of polysaccharides produced by many types of plants, and are widely used in processed foods. Compared to chitosan, inulin is very soluble in water and possesses a mild antibacterial activity against certain pathogenic bacteria. In order to develop an effective strategy to treat biofilm-related infections, we introduce a method by covalent conjugation of inulin to chitosan. The physicochemical characterization of the inulin⁻chitosan conjugate was assayed, and the anti-biofilm activity was evaluated against S. aureus biofilm. The results indicated that, as compared to chitosan, this novel polysaccharide⁻polysaccharide conjugate significantly enhanced activities against S. aureus either in a biofilm or planktonic state. Of note, the conjugate also showed a broad spectrum anti-biofilm activity on different bacteria strains and low cellular toxicity to mammalian cells. These results suggested that chitosan conjugation of inulin was a viable strategy for treatment against biofilm-related infections. This finding may further spread the application of natural polysaccharides on treatments of infectious disease.

  16. Chitosan application in maize ( Zea mays ) to counteract the effects ...

    African Journals Online (AJOL)

    There are several strategies for managing the problem, but in the future, people will prefer the cleaner and cheaper technology. The use of elicitors for protection of corn can be considered a cheap and clean technology. Chitosan elicitor is a linear polysaccharide produced commercially by deacetylation of chitin. It has been ...

  17. Physical stability and moisture sorption of aqueous chitosan-amylose starch films plasticized with polyols

    DEFF Research Database (Denmark)

    Cervera, Mirna Fernández; Karjalainen, Milja; Airaksinen, Sari

    2004-01-01

    The short-term stability and the water sorption of films prepared from binary mixtures of chitosan and native amylose maize starch (Hylon VII) were evaluated using free films. The aqueous polymer solutions of the free films contained 2% (w/w) film formers, glycerol, or erythritol as a plasticizer...... in the crystallinity of the films are evident within a 3-month period of storage, and the changes in the solid state are dependent on the plasticizer and storage conditions. When stored at ambient conditions for 3 months, the aqueous chitosan-amylose starch films plasticized with erythritol exhibited a partly...

  18. Organic/inorganic nanocomposites of ZnO/CuO/chitosan with improved properties

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xingfa, E-mail: xingfamazju@aliyun.com [School of Environmental and Material Engineering, Center of Advanced Functional Materials, Yantai University, Yantai, 264005 (China); State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027 (China); Zhang, Bo; Cong, Qin; He, Xiaochun; Gao, Mingjun [School of Environmental and Material Engineering, Center of Advanced Functional Materials, Yantai University, Yantai, 264005 (China); Li, Guang [National Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou, 310027 (China)

    2016-08-01

    To extend the visible light response of ZnO, ZnO/CuO heterostructured nanocomposite was synthesized by a hydrothermal approach. At the same time, chitosan (Ch) is considered as a very promising natural polymer. It holds not only abundant resource and low cost, but also has excellent adsorption properties to a broad range of organic pollutants and some heavy metal ions. To improve the adsorption properties of ZnO/CuO nanocomposite, ZnO/CuO/chitosan organic-inorganic composites were prepared with precipitation method. The as-prepared nanocomposites were characterized by TEM (Transmission electron microscopy), SAED pattern (Selected Area Electron Diffraction), SEM (scanning electron microscopy), UV–Vis (Ultraviolet–visible spectroscopy), PL (Photoluminescence), XRD (X-ray diffraction), TGA (Thermo Gravimetric Analyzer), Fourier transform infrared spectroscopy spectra (FTIR) et al. To examine the surface and interface properties of nanocomposites, chemical prototype sensor arrays were constructed based on ZnO, ZnO/CuO, ZnO/Cu{sub 2}O, ZnO/CuO/chitosan, ZnO/Cu{sub 2}O/chitosan nanocomposites and QCM (quartz crystal microbalance) arrays devices. The adsorption response behaviors of the sensor arrays to some typical volatile compounds were examined under similar conditions. The results indicated that with comparison to ZnO nanostructure, the ZnO/CuO nanocomposite exhibited enhanced adsorption properties to some typical volatile compounds greatly, and the adsorption properties of ZnO/CuO/chitosan are much better than that of ZnO/CuO nanocomposite. The adsorption of ZnO/CuO system is super to that of ZnO/Cu{sub 2}O. Therefore, ZnO/CuO/chitosan nanocomposite not only showed broadening visible light response, but also possessed of excellent adsorption properties, and has good potential applications in photocatalysts, chemical sensors, biosensors, self-cleaning coating fields et al. - Highlights: • ZnO/CuO nanocomposites exhibited good response in near whole visible

  19. Application of gamma radiation and physicochemical treatment to improve the bioactive properties of chitosan extracted from shrimp shell

    Directory of Open Access Journals (Sweden)

    Aktar Jesmin

    2017-12-01

    Full Text Available The aim of this study is to exploit a suitable chitosan extraction method from the chitin of indigenous shrimp shells by employing different physicochemical treatments and to improve different bioactive properties of this extracted chitosan (CS by applying gamma radiation. Chitin was prepared from shrimp shell by pretreatment (deproteination, demineralization and oxidation. Chitosan was extracted from chitin by eight different methods varying different physicochemical parameters (reagent concentration, temperature and time and assessed with respect to the degree of deacetylation, requirement of time and reagents. The method where chitin was repeatedly treated with 121°C for 30 min with 20 M NaOH, produced the highest degree of deacetylation (DD value (92% as measured by potentiometric titration, with the least consumption of time and chemicals, and thus, selected as the best suitable extraction method. For further quality improvement, chitosan with highest DD value was irradiated with different doses (i.e., 5, 10, 15, 20 and 50 kGy of gamma radiation from cobalt-60 gamma irradiator. As the radiation dose was increased, the molecular weight of the wet irradiated chitosan, as measured by the viscosimetric method, decreased from 1.16 × 105 to 1.786 × 103, 1.518 × 103, 1.134 × 103, 1.046 × 103 and 8.23 × 102 dalton, respectively. The radiation treatment of chitosan samples increased the antimicrobial activity significantly in concentration dependent manner on both gram-positive (Staphylococcus aureus and gram-negative (Escherichia coli bacteria, as determined by the well-diffusion method. Four to five percent wet chitosan treated with a radiation dose range of 5.0–10.0 kGy rendered the highest antimicrobial activity with least energy and time consumption. Solubility, water binding capacity (WBC and fat binding capacity (FBC also improved due to irradiation of chitosan.

  20. Advances in Improving Ukiriguru Composite B Maize ( Zea mays L ...

    African Journals Online (AJOL)

    S1 recurrent selection was carried out to improve grain yield, plant height, ear placement, resistance to lodging and other desirable agronomic traits in Ukiriguru composite B (UCB) maize variety. This paper presents the genetic gain and progress made in improving these traits through two cycles of selection. Three hundred ...

  1. Development, applications and distribution of DNA markers for genetic information for sorghum and maize improvement

    International Nuclear Information System (INIS)

    Lee, M.

    2001-01-01

    This final report summarizes the progress made towards the enhancement and distribution of genetic resources (e.g. genetic stocks, seed and DNA clones) used for basic and applied aspects of the genetic improvement of maize and sorghum. The genetic maps of maize and sorghum were improved through comparative mapping of RFLP loci detected by 124 maize cDNA clones and through the development of a new mapping population of maize. Comparative mapping between maize and sorghum and maize and rice, using the set of 124 maize cDNA clones (and other clones) in each study, substantiated previous observations of extensive conservation of locus order but it also provided strong evidence of numerous large-scale chromosomal rearrangements. The new mapping population for maize (intermated B73xMo17, 'IBM') was created by random intermating during the first segregating generation. Intermating for four generations prior to the derivation of recombinant inbred lines (RILs) increased the frequency of recombinants at many regions of the maize genome and provided better genetic resolution of locus order. Expansion of the maize genetic map was not uniform along the length of a linkage group and was less than the theoretical expectation. The 350 IBM RILs were genotyped at 512 loci detected by DNA clones, including 76 of the 124 supported by this contract. The production of the sorghum mapping population of RILs from the cross CK60xPI229828 has been delayed by weather conditions that were not conducive to plant growth and seed development. Seed of the IBM RILs have been distributed (approximately 5000 RILs in total) to 16 research organizations in the public and private sector. The DNA clones have been distributed (1,206 in total) to nine research labs. Further distribution of the seed and clones will be managed by curators at stock centers in the public domain. (author)

  2. Improved lifetime of chitosan film in converting water vapor to electrical power by adding carboxymethyl cellulose

    Science.gov (United States)

    Nasution, T. I.; Balyan, M.; Nainggolan, I.

    2018-02-01

    A Water vapor cell based on chitosan film has been successfully fabricated in film form to convert water vapor to electrical power. In order to improve the lifetime of water vapor cell, Carboxymethyl Cellulose (CMC) was added into 1% chitosan solution within concentration variations of 0.01, 0.05, 0.1 and 0.5%. The result showed that the lifetime of water vapor cell increased higher by adding the higher concentration of Carboxymethyl cellulose. The highest lifetime was evidenced by adding 0.5%CMC which maintained for 48 weeks. However, the average electrical power became lower to 4.621 µW. This electrical power lower than the addition of 0.1%CMC which maintained for 5.167 µW. While, the lifetime of chitosan-0.1%CMC film of 44 weeks is shorter compared to chitosan-0.5%CMC film. Based on FTIR characterization, it was founded that the chitosan structure did not change until the addition of 0.1%CMC. This caused the electrical power of water vapor cell degenerated. Therefore, chitosan-0.5%CMC film has excellent lifetime in converting water vapor to electrical power.

  3. Transcriptome Analysis of Maize Immature Embryos Reveals the Roles of Cysteine in Improving Agrobacterium Infection Efficiency

    Science.gov (United States)

    Liu, Yan; Zhang, Zhiqiang; Fu, Junjie; Wang, Guoying; Wang, Jianhua; Liu, Yunjun

    2017-01-01

    Maize Agrobacterium-mediated transformation efficiency has been greatly improved in recent years. Antioxidants, such as, cysteine, can significantly improve maize transformation frequency through improving the Agrobacterium infection efficiency. However, the mechanism underlying the transformation improvement after cysteine exposure has not been elucidated. In this study, we showed that the addition of cysteine to the co-cultivation medium significantly increased the Agrobacterium infection efficiency of hybrid HiII and inbred line Z31 maize embryos. Reactive oxygen species contents were higher in embryos treated with cysteine than that without cysteine. We further investigated the mechanism behind cysteine-related infection efficiency increase using transcriptome analysis. The results showed that the cysteine treatment up-regulated 939 genes and down-regulated 549 genes in both Z31 and HiII. Additionally, more differentially expressed genes were found in HiII embryos than those in Z31 embryos, suggesting that HiII was more sensitive to the cysteine treatment than Z31. GO analysis showed that the up-regulated genes were mainly involved in the oxidation reduction process. The up-regulation of these genes could help maize embryos to cope with the oxidative stress stimulated by Agrobacterium infection. The down-regulated genes were mainly involved in the cell wall and membrane metabolism, such as, aquaporin and expansin genes. Decreased expression of these cell wall integrity genes could loosen the cell wall, thereby improving the entry of Agrobacterium into plant cells. This study offers insight into the role of cysteine in improving Agrobacterium-mediated transformation of maize immature embryos. PMID:29089955

  4. Chitosan-based nanoparticles for improved anticancer efficacy and bioavailability of mifepristone

    Directory of Open Access Journals (Sweden)

    Huijuan Zhang

    2016-11-01

    Full Text Available In addition to its well-known abortifacient effect, mifepristone (MIF has been used as an anticancer drug for various cancers in many studies with an in-depth understanding of the mechanism of action. However, application of MIF is limited by its poor water solubility and low oral bioavailability. In this work, we developed a drug delivery system based on chitosan nanoparticles (CNs to improve its bioavailability and anticancer activity. The MIF-loaded chitosan nanoparticles (MCNs were prepared by convenient ionic gelation techniques between chitosan (Cs and tripolyphosphate (TPP. The preparation conditions, including Cs concentration, TPP concentration, Cs/MIF mass ratio, and pH value of the TPP solution, were optimized to gain better encapsulation efficiency (EE and drug loading capacity (DL. MCNs prepared with the optimum conditions resulted in spherical particles with an average size of 200 nm. FTIR and XRD spectra verified that MIF was successfully encapsulated in CNs. The EE and DL of MCNs determined by HPLC were 86.6% and 43.3%, respectively. The in vitro release kinetics demonstrated that MIF was released from CNs in a sustained-release manner. Compared with free MIF, MCNs demonstrated increased anticancer activity in several cancer cell lines. Pharmacokinetic studies in male rats that were orally administered MCNs showed a 3.2-fold increase in the area under the curve from 0 to 24 h compared with free MIF. These results demonstrated that MCNs could be developed as a potential delivery system for MIF to improve its anticancer activity and bioavailability.

  5. Improved postharvest quality in patagonian squash (Cucurbita moschata) coated with radiation depolymerized chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, Maria Alicia; Goitia, Maria Teresa [Laboratorio de Investigaciones Basicas Aplicadas en Quitina, Departamento de Quimica, Universidad Nacional del Sur. Avenida Alem 1253, B8000CPB Bahia Blanca (Argentina); Yossen, Mariana [Instituto de Desarrollo Tecnologico para la Industria Quimica (INTEC), CONICET-Universidad Nacional del Litoral, Ruta Nacional 168-Paraje ' El Pozo' , 3000 Santa Fe (Argentina); Cifone, Norma; Agullo, Enrique [Laboratorio de Investigaciones Basicas Aplicadas en Quitina, Departamento de Quimica, Universidad Nacional del Sur. Avenida Alem 1253, B8000CPB Bahia Blanca (Argentina); Andreucetti, Noemi, E-mail: andreuce@criba.edu.ar [Laboratorio de Radioisotopos, Departamento de Quimica, Universidad Nacional del Sur, Avenida Alem 1253, B8000CPB Bahia Blanca (Argentina)

    2011-12-15

    Different molecular weight chitosans were evaluated on the decay of coated Anquito squashes (Cucurbita moschata) as well as the maintenance of the fruit quality along five storage months. The original chitosan (Mw=391 kDa, 83% DD), was depolymerized by gamma radiation. Apart from chain scission, other chemical changes were not detected by FTIR or UV-vis analyses. The molecular weight characterization of chitosans was done by size exclusion chromatography with dual light scattering and concentration detection (SEC-MALLS-RI). The coating effectiveness was evaluated on the following parameters: fungal decay incidence, weight loss, firmness, total reducing sugar, soluble solid, flesh color, carotene content, pH and titratable acidity. No sign of fungal decay was observed in squashes coated with 122 and 56 kDa chitosans, which were also the most effective treatments in reducing the weight loss. The chitosan with Mw=122 kDa was also the best treatment considering firmness, internal aspect, sugar and carotene content. Then, radiation degraded chitosan was better in C. moschata preservation than the original chitosan. - Highlights: > Original Chitosan was radiation depolymerized producing chitosans with lower molecular weights. > Gamma-irradiated chitosans only exhibit chain scission. > SEC-MALLS-RI chromatography is a useful tool in molecular weight analysis. > Depolymerized chitosans were the best in maintaining the quality and the storage life of coated squashes.

  6. Improved postharvest quality in patagonian squash (Cucurbita moschata) coated with radiation depolymerized chitosan

    International Nuclear Information System (INIS)

    Pugliese, Maria Alicia; Goitia, Maria Teresa; Yossen, Mariana; Cifone, Norma; Agullo, Enrique; Andreucetti, Noemi

    2011-01-01

    Different molecular weight chitosans were evaluated on the decay of coated Anquito squashes (Cucurbita moschata) as well as the maintenance of the fruit quality along five storage months. The original chitosan (Mw=391 kDa, 83% DD), was depolymerized by gamma radiation. Apart from chain scission, other chemical changes were not detected by FTIR or UV-vis analyses. The molecular weight characterization of chitosans was done by size exclusion chromatography with dual light scattering and concentration detection (SEC-MALLS-RI). The coating effectiveness was evaluated on the following parameters: fungal decay incidence, weight loss, firmness, total reducing sugar, soluble solid, flesh color, carotene content, pH and titratable acidity. No sign of fungal decay was observed in squashes coated with 122 and 56 kDa chitosans, which were also the most effective treatments in reducing the weight loss. The chitosan with Mw=122 kDa was also the best treatment considering firmness, internal aspect, sugar and carotene content. Then, radiation degraded chitosan was better in C. moschata preservation than the original chitosan. - Highlights: → Original Chitosan was radiation depolymerized producing chitosans with lower molecular weights. → Gamma-irradiated chitosans only exhibit chain scission. → SEC-MALLS-RI chromatography is a useful tool in molecular weight analysis. → Depolymerized chitosans were the best in maintaining the quality and the storage life of coated squashes.

  7. Socio-economic assessment on maize production and adoption of open pollinated improved varieties in Dang, Nepal

    OpenAIRE

    Sanjiv Subedi; Yuga Nath Ghimire; Deepa Devkota

    2017-01-01

    Research was conducted from February to May, 2017 for socioeconomic assessment on maize production and adoption of open pollinated improved maize varieties in Dang district of Nepal. Altogether, 100 samples were taken by simple random sampling from the major maize growing areas and relevant publications were reviewed. Focal Group Discussion and Key Informant Survey were also done. Descriptive statistics, unpaired t-test, probit regression and indexing were used for data analysis using statist...

  8. Decomposition and fertilizing effects of maize stover and chromolaena odorata on maize yield

    International Nuclear Information System (INIS)

    Tetteh, F.M.; Safo, E.Y.; Quansah, C.

    2008-01-01

    The quality, rates of decomposition and the fertilizing effect of chromolaena odorata, and maize stover were determined in field experiments as surface application or buried in litter bags. Studies on the effect of plant materials of contrasting qualities (maize stover and C. odorata) applied sole (10 Mg ha -1 ) and mixed, on maize grain and biomass yield were also conducted on the Asuansi (Ferric Acrisol) soil series. Total nitrogen content of the residues ranged from 0.85% in maize stover to 3.50% in C. odorata. Organic carbon ranged from 34.90% in C. odorata to 48.50% in maize stover. Phosphorus ranged from 0.10% in maize stover to 0.76% in C. odorata. In the wet season, the decomposition rate constants (k) were 0.0319 day -1 for C. odorata, and 0.0081 for maize stover. In the dry season, the k values were 0.0083 for C. odorata, and 0.0072 day -1 for maize stover. Burying of the plant materials reduced the half-life (t 50 ) periods from 18 to 10 days for C. odorata, and 45 to 20 days for maize stover. Maize grain yield of 2556 kg ha -1 was obtained in sole C. odorata (10 Mg ha -1 ) compared with 2167 kg ha -1 for maize stover. Mixing of maize stover and C. odorata residues improved the nutrient content as well as nutrient release by the mixtures resulting in greater maize grain yields in the mixtures than the sole maize stover treatment. It is recommended that C. odorata be used as green manure, mulching or composting material to improve fertility. (au)

  9. A novel ionic amphiphilic chitosan derivative as a stabilizer of nanoemulsions: Improvement of antimicrobial activity of Cymbopogon citratus essential oil.

    Science.gov (United States)

    Bonferoni, Maria Cristina; Sandri, Giuseppina; Rossi, Silvia; Usai, Donatella; Liakos, Ioannis; Garzoni, Alice; Fiamma, Maura; Zanetti, Stefania; Athanassiou, Athanassia; Caramella, Carla; Ferrari, Franca

    2017-04-01

    Amphiphilic chitosans have been recently proposed to improve delivery of poorly soluble drugs. In the present paper a derivative obtained by ionic interaction between chitosan and oleic acid was for the first time studied to physically stabilize o/w nanoemulsions of an antimicrobial essential oil, Cymbopogon citratus (Lemongrass), in a low energy and mild conditions emulsification process. The novel combination of spontaneous emulsification process with chitosan oleate amphiphilic properties resulted in a stable dispersion of a few hundred nanometer droplets. Positive zeta potential confirmed the presence of a chitosan shell around the oil droplets, which is responsible for the nanoemulsion physical stabilization and for the maintenance of chitosan bioactive properties, such as mucoadhesion. Cytotoxicity test was performed on four different cell lines (HEp-2, Caco-2, WKD and McCoy cells) showing biocompatibility of the system. The maintenance and in some cases even a clear improvement in the essential oil antimicrobial activity towards nine bacterial and ten fungal strains, all of clinical relevance was verified for Lemongrass nanoemulsion. Copyright © 2017. Published by Elsevier B.V.

  10. Storage of Maize in Purdue Improved Crop Storage (PICS) Bags.

    Science.gov (United States)

    Williams, Scott B; Murdock, Larry L; Baributsa, Dieudonne

    2017-01-01

    Interest in using hermetic technologies as a pest management solution for stored grain has risen in recent years. One hermetic approach, Purdue Improved Crop Storage (PICS) bags, has proven successful in controlling the postharvest pests of cowpea. This success encouraged farmers to use of PICS bags for storing other crops including maize. To assess whether maize can be safely stored in PICS bags without loss of quality, we carried out laboratory studies of maize grain infested with Sitophilus zeamais (Motshulsky) and stored in PICS triple bags or in woven polypropylene bags. Over an eight month observation period, temperatures in the bags correlated with ambient temperature for all treatments. Relative humidity inside PICS bags remained constant over this period despite the large changes that occurred in the surrounding environment. Relative humidity in the woven bags followed ambient humidity closely. PICS bags containing S. zeamais-infested grain saw a significant decline in oxygen compared to the other treatments. Grain moisture content declined in woven bags, but remained high in PICS bags. Seed germination was not significantly affected over the first six months in all treatments, but declined after eight months of storage when infested grain was held in woven bags. Relative damage was low across treatments and not significantly different between treatments. Overall, maize showed no signs of deterioration in PICS bags versus the woven bags and PICS bags were superior to woven bags in terms of specific metrics of grain quality.

  11. Stabilization of porous chitosan improves the performance of its association with platelet-rich plasma as a composite scaffold

    International Nuclear Information System (INIS)

    Shimojo, A.A.M.; Perez, A.G.M.; Galdames, S.E.M.; Brissac, I.C.S.; Santana, M.H.A.

    2016-01-01

    This study offers innovative perspectives for optimizing of scaffolds based on correlation structure–function aimed the regenerative medicine. Thus, we evaluated in vitro performance of stabilized porous chitosan (SPCHTs) associated with activated platelet-rich plasma (aP-PRP) as a composite scaffold for the proliferation and osteogenic differentiation of human adipose-derived mesenchymal stem cells (h-AdMSCs). The porous structure of chitosan (PCHT) was prepared similarly to solid sponges by controlled freezing (− 20 °C) and lyophilization of a 3% (w/v) chitosan solution. Stabilization was performed by treating the PCHT with sodium hydroxide (TNaOH), an ethanol series (TEtOH) or by crosslinking with tripolyphosphate (CTPP). The aP-PRP was obtained from the controlled centrifugation of whole blood and activated with autologous serum and calcium. Imaging of the structures showed fibrin networks inside and on the surface of SPCHTs as a consequence of electrostatic interactions. SPCHTs were non-cytotoxic, and the porosity, pore size and Young's modulus were approximately 96%, 145 μm and 1.5 MPa for TNaOH and TEtOH and 94%, 110 μm and 1.8 MPa for CTPP, respectively. Stabilization maintained the integrity of the SPCHTs for at least 10 days of cultivation. SPCHTs showed controlled release of the growth factors TGF-β1 and PDGF-AB. Although generating different patterns, all of the stabilization treatments improved the proliferation of seeded h-AdMSCs on the composite scaffold compared to aP-PRP alone, and differentiation of the composite scaffold treated with TEtOH was significantly higher than for non-stabilized PCHT. We conclude that the composite scaffolds improved the in vitro performance of PRP and have potential in regenerative medicine. - Highlights: • Stabilization maintains the integrity of the chitosan scaffolds for at least 10 days. • Fibrin networks on the chitosan scaffolds were referred to electrostatic interactions. • Stabilized chitosan

  12. Pseudo-thermosetting chitosan hydrogels for biomedical application.

    Science.gov (United States)

    Berger, J; Reist, M; Chenite, A; Felt-Baeyens, O; Mayer, J M; Gurny, R

    2005-01-06

    To prepare transparent chitosan/beta-glycerophosphate (betaGP) pseudo-thermosetting hydrogels, the deacetylation degree (DD) of chitosan has been modified by reacetylation with acetic anhydride. Two methods (I and II) of reacetylation have been compared and have shown that the use of previously filtered chitosan, dilution of acetic anhydride and reduction of temperature in method II improves efficiency and reproducibility. Chitosans with DD ranging from 35.0 to 83.2% have been prepared according to method II under homogeneous and non-homogeneous reacetylation conditions and the turbidity of chitosan/betaGP hydrogels containing homogeneously or non-homogeneously reacetylated chitosan has been investigated. Turbidity is shown to be modulated by the DD of chitosan and by the homogeneity of the medium during reacetylation, which influences the distribution mode of the chitosan monomers. The preparation of transparent chitosan/betaGP hydrogels requires a homogeneously reacetylated chitosan with a DD between 35 and 50%.

  13. The effects of improved maize technology on household welfare in Buruku, Benue State, Nigeria

    Directory of Open Access Journals (Sweden)

    Victoria I. Audu

    2014-12-01

    Full Text Available This study was carried out to determine the welfare effects of improved maize technology in Buruku Local Government Area of Benue State, Nigeria. The study also examined the determinants of the adoption of improved maize technology. Structured questionnaires were used in collecting the primary data for the study. A multi-stage random technique was used in selecting 125 farm households for the study. The Logit and ordinary least square (OLS models were used in analyzing the data. The OLS results show that adoption of improved maize varieties is positively and significantly related to household welfare and thus has contributed to moving farm households out of poverty. Other variables found to be statistically significant in explaining household welfare are education, household size, and landholding. The Logit results show that age, household size, off-farm income, and education were found to be significant in influencing farmers’ adoption decisions. Some robustness checks were performed with different specifications of the Logit and OLS models as well as re-estimation with propensity matching score approach. Overall, the results are robust to different specifications.

  14. Improved tolerance of maize (Zea mays L.) to heavy metals by colonization of a dark septate endophyte (DSE) Exophiala pisciphila

    International Nuclear Information System (INIS)

    Li, T.; Liu, M.J.; Zhang, X.T.; Zhang, H.B.; Sha, T.; Zhao, Z.W.

    2011-01-01

    Dark septate endophytes (DSE) are ubiquitous and abundant in stressful environments including heavy metal (HM) stress. However, our knowledge about the roles of DSE in improving HM tolerance of their host plants is poor. In this study, maize (Zea mays L.) was inoculated with a HM tolerant DSE strain Exophiala pisciphila H93 in lead (Pb), zinc (Zn), and cadmium (Cd) contaminated soils. E. pisciphila H93 successfully colonized and formed typical DSE structures in the inoculated maize roots. Colonization of E. pisciphila H93 alleviated the deleterious effects of excessive HM supplements and promoted the growth of maize (roots and shoots) under HM stress conditions, though it significantly decreased the biomass of inoculated maize under no HM stress. Further analysis showed that the colonization of E. pisciphila H93 improved the tolerance of maize to HM by restricting the translocation of HM ions from roots to shoots. This study demonstrated that under higher HM stress, such a mutual symbiosis between E. pisciphila and its host (maize) may be an efficient strategy to survive in the stressful environments. - Research Highlights: →Effect of DSE (E. pisciphila) on heavy metal tolerance of maize host was studied. →DSE alleviated the deleterious effect of excessive heavy metals on maize. →DSE restricted the transfer of heavy metals from the roots to shoots in maize. →DSE colonization improved the tolerance of their host plants to heavy metals.

  15. Improved tolerance of maize (Zea mays L.) to heavy metals by colonization of a dark septate endophyte (DSE) Exophiala pisciphila

    Energy Technology Data Exchange (ETDEWEB)

    Li, T.; Liu, M.J.; Zhang, X.T. [Key Laboratory of Conservation and Utilization for Bioresources, Yunnan University, Kunming, 650091 Yunnan (China); Zhang, H.B. [Key Laboratory of Conservation and Utilization for Bioresources, Yunnan University, Kunming, 650091 Yunnan (China); Department of Biology, Yunnan University, Kunming, 650091 Yunnan (China); Sha, T. [Key Laboratory of Conservation and Utilization for Bioresources, Yunnan University, Kunming, 650091 Yunnan (China); Zhao, Z.W., E-mail: zhaozhw@ynu.edu.cn [Key Laboratory of Conservation and Utilization for Bioresources, Yunnan University, Kunming, 650091 Yunnan (China)

    2011-02-15

    Dark septate endophytes (DSE) are ubiquitous and abundant in stressful environments including heavy metal (HM) stress. However, our knowledge about the roles of DSE in improving HM tolerance of their host plants is poor. In this study, maize (Zea mays L.) was inoculated with a HM tolerant DSE strain Exophiala pisciphila H93 in lead (Pb), zinc (Zn), and cadmium (Cd) contaminated soils. E. pisciphila H93 successfully colonized and formed typical DSE structures in the inoculated maize roots. Colonization of E. pisciphila H93 alleviated the deleterious effects of excessive HM supplements and promoted the growth of maize (roots and shoots) under HM stress conditions, though it significantly decreased the biomass of inoculated maize under no HM stress. Further analysis showed that the colonization of E. pisciphila H93 improved the tolerance of maize to HM by restricting the translocation of HM ions from roots to shoots. This study demonstrated that under higher HM stress, such a mutual symbiosis between E. pisciphila and its host (maize) may be an efficient strategy to survive in the stressful environments. - Research Highlights: {yields}Effect of DSE (E. pisciphila) on heavy metal tolerance of maize host was studied. {yields}DSE alleviated the deleterious effect of excessive heavy metals on maize. {yields}DSE restricted the transfer of heavy metals from the roots to shoots in maize. {yields}DSE colonization improved the tolerance of their host plants to heavy metals.

  16. Chitosan Coagulation to Improve Microbial and Turbidity Removal by Ceramic Water Filtration for Household Drinking Water Treatment.

    Science.gov (United States)

    Abebe, Lydia S; Chen, Xinyu; Sobsey, Mark D

    2016-02-27

    The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs) and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI) between 4.7 (± 1.56) and 7.5 (± 0.02) log10 for Escherichia coli, and between 2.8 (± 0.10) and 4.5 (± 1.04) log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities water treatment technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions.

  17. Preparation of aminated chitosan/alginate scaffold containing halloysite nanotubes with improved cell attachment.

    Science.gov (United States)

    Amir Afshar, Hamideh; Ghaee, Azadeh

    2016-10-20

    The chemical nature of biomaterials play important role in cell attachment, proliferation and migration in tissue engineering. Chitosan and alginate are biodegradable and biocompatible polymers used as scaffolds for various medical and clinical applications. Amine groups of chitosan scaffolds play an important role in cell attachment and water adsorption but also associate with alginate carboxyl groups via electrostatic interactions and hydrogen bonding, consequently the activity of amine groups in the scaffold decreases. In this study, chitosan/alginate/halloysite nanotube (HNTs) composite scaffolds were prepared using a freeze-drying method. Amine treatment on the scaffold occurred through chemical methods, which in turn caused the hydroxyl groups to be replaced with carboxyl groups in chitosan and alginate, after which a reaction between ethylenediamine, 1-ethyl-3,(3-dimethylaminopropyl) carbodiimide (EDC) and scaffold triggered the amine groups to connect to the carboxyl groups of chitosan and alginate. The chemical structure, morphology and mechanical properties of the composite scaffolds were investigated by FTIR, CHNS, SEM/EDS and compression tests. The electrostatic attraction and hydrogen bonding between chitosan, alginate and halloysite was confirmed by FTIR spectroscopy. Chitosan/alginate/halloysite scaffolds exhibit significant enhancement in compressive strength compared with chitosan/alginate scaffolds. CHNS and EDS perfectly illustrate that amine groups were effectively introduced in the aminated scaffold. The growth and cell attachment of L929 cells as well as the cytotoxicity of the scaffolds were investigated by SEM and Alamar Blue (AB). The results indicated that the aminated chitosan/alginate/halloysite scaffold has better cell growth and cell adherence in comparison to that of chitosan/alginate/halloysite samples. Aminated chitosan/alginate/halloysite composite scaffolds exhibit great potential for applications in tissue engineering, ideally in

  18. Conjugation of Inulin Improves Anti-Biofilm Activity of Chitosan

    OpenAIRE

    Guiqiang Zhang; Jing Liu; Ruilian Li; Siming Jiao; Cui Feng; Zhuo A. Wang; Yuguang Du

    2018-01-01

    Bacteria biofilm helps bacteria prevent phagocytosis during infection and increase resistance to antibiotics. Staphylococcus aureus is a Gram-positive pathogenic bacterium and is tightly associated with biofilm-related infections, which have led to great threat to human health. Chitosan, the only cationic polysaccharide in nature, has been demonstrated to have antimicrobial and anti-biofilm activities, which, however, require a relative high dosage of chitosan. Moreover, poor water solubility...

  19. Over-expression of zmarg encoding an arginase improves grain production in maize

    International Nuclear Information System (INIS)

    Hong, D.; Tian, Y.; Meng, X.; Zhang, P.

    2016-01-01

    Arginase, as one of the three key enzymes in nitrogen catabolism, the physiological role of Arg catabolism in cereal crops has not been fully clarified. Studies have shown that arginase-encoding genes play a key role in providing nitrogen to developing seedlings in many plant species.Yield is a primary trait in many crop breeding programs, which can be increased by modification of genes related to photosynthesis, nitrogen assimilation, carbon distribution, plant architecture, and transcriptional networks controlling plant development. In the present study, a maize arginase gene ZmARG was cloned and introduced into maize inbred lines by Agrobacterium tumefaciens- mediated transformation. Putative transgenic plants were confirmed by PCR, Southern blotting RT-PCR analysis. The expression of the ZmARG gene increased arginase activity in several tissues in transgenic lines. Transgenic maize plants had significantly higher ear weight and 100-seed weight as compared with wild-type control. Our results suggested that ZmARG was a potential target gene for crop yield improvement. (author)

  20. Thiolated chitosans: useful excipients for oral drug delivery.

    Science.gov (United States)

    Werle, Martin; Bernkop-Schnürch, Andreas

    2008-03-01

    To improve the bioavailability of orally administered drugs, formulations based on polymers are of great interest for pharmaceutical technologists. Thiolated chitosans are multifunctional polymers that exhibit improved mucoadhesive, cohesive and permeation-enhancing as well as efflux-pump-inhibitory properties. They can be synthesized by derivatization of the primary amino groups of chitosan with coupling reagents bearing thiol functions. Various data gained in-vitro as well as in-vivo studies clearly demonstrate the potential of thiolated chitosans for oral drug delivery. Within the current review, the synthesis and characterization of thiolated chitosans so far developed is summarized. Features of thiolated chitosans important for oral drug delivery are discussed as well. Moreover, different formulation approaches, such as matrix tablets and micro-/nanoparticles, as well as the applicability of thiolated chitosans for the oral delivery of various substance classes including peptides and efflux pump substrates, are highlighted.

  1. Conservation agriculture practices in rainfed uplands of India improve maize-based system productivity and profitability

    Directory of Open Access Journals (Sweden)

    Aliza Pradhan

    2016-07-01

    Full Text Available Traditional agriculture in rainfed uplands of India has been experiencing low agricultural productivity as the lands suffer from poor soil fertility, susceptibility to water erosion and other external pressures of development and climate change. A shift towards more sustainable cropping systems such as conservation agriculture production systems (CAPS may help in maintaining soil quality as well as improving crop production and farmer’s net economic benefit. This research assessed the effects over three years (2011-2014 of reduced tillage, intercropping, and cover cropping practices customized for maize-based production systems in upland areas of Odisha, India. The study focused on crop yield, system productivity and profitability through maize equivalent yield and dominance analysis. Results showed that maize grain yield did not differ significantly over time or among CAPS treatments while cowpea yield was considered as an additional yield in intercropping systems. Mustard and horsegram grown in plots after maize cowpea intercropping recorded higher grain yields of 25 and 37%, respectively, as compared to those without intercropping. Overall, the full CAPS implementation i.e. minimum tillage, maize-cowpea intercropping and mustard residue retention had significantly higher system productivity and net benefits than traditional farmer practices, i.e. conventional tillage, sole maize cropping, and no mustard residue retention. The dominance analysis demonstrated increasing benefits of combining conservation practices that exceeded thresholds for farmer adoption. Given the use of familiar crops and technologies and the magnitude of yield and income improvements, these types of CAPS should be acceptable and attractive for smallholder farmers in the area. This in turn should support a move toward sustainable intensification of crop production to meet future household income and nutritional needs.

  2. Conservation Agriculture Practices in Rainfed Uplands of India Improve Maize-Based System Productivity and Profitability.

    Science.gov (United States)

    Pradhan, Aliza; Idol, Travis; Roul, Pravat K

    2016-01-01

    Traditional agriculture in rainfed uplands of India has been experiencing low agricultural productivity as the lands suffer from poor soil fertility, susceptibility to water erosion and other external pressures of development and climate change. A shift toward more sustainable cropping systems such as conservation agriculture production systems (CAPSs) may help in maintaining soil quality as well as improving crop production and farmer's net economic benefit. This research assessed the effects over 3 years (2011-2014) of reduced tillage, intercropping, and cover cropping practices customized for maize-based production systems in upland areas of Odisha, India. The study focused on crop yield, system productivity and profitability through maize equivalent yield and dominance analysis. Results showed that maize grain yield did not differ significantly over time or among CAPS treatments while cowpea yield was considered as an additional yield in intercropping systems. Mustard and horsegram grown in plots after maize cowpea intercropping recorded higher grain yields of 25 and 37%, respectively, as compared to those without intercropping. Overall, the full CAPS implementation, i.e., minimum tillage, maize-cowpea intercropping and mustard residue retention had significantly higher system productivity and net benefits than traditional farmer practices, i.e., conventional tillage, sole maize cropping, and no mustard residue retention. The dominance analysis demonstrated increasing benefits of combining conservation practices that exceeded thresholds for farmer adoption. Given the use of familiar crops and technologies and the magnitude of yield and income improvements, these types of CAPS should be acceptable and attractive for smallholder farmers in the area. This in turn should support a move toward sustainable intensification of crop production to meet future household income and nutritional needs.

  3. Stabilization of porous chitosan improves the performance of its association with platelet-rich plasma as a composite scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Shimojo, A.A.M., E-mail: lshimojo51@gmail.com; Perez, A.G.M.; Galdames, S.E.M.; Brissac, I.C.S.; Santana, M.H.A.

    2016-03-01

    This study offers innovative perspectives for optimizing of scaffolds based on correlation structure–function aimed the regenerative medicine. Thus, we evaluated in vitro performance of stabilized porous chitosan (SPCHTs) associated with activated platelet-rich plasma (aP-PRP) as a composite scaffold for the proliferation and osteogenic differentiation of human adipose-derived mesenchymal stem cells (h-AdMSCs). The porous structure of chitosan (PCHT) was prepared similarly to solid sponges by controlled freezing (− 20 °C) and lyophilization of a 3% (w/v) chitosan solution. Stabilization was performed by treating the PCHT with sodium hydroxide (TNaOH), an ethanol series (TEtOH) or by crosslinking with tripolyphosphate (CTPP). The aP-PRP was obtained from the controlled centrifugation of whole blood and activated with autologous serum and calcium. Imaging of the structures showed fibrin networks inside and on the surface of SPCHTs as a consequence of electrostatic interactions. SPCHTs were non-cytotoxic, and the porosity, pore size and Young's modulus were approximately 96%, 145 μm and 1.5 MPa for TNaOH and TEtOH and 94%, 110 μm and 1.8 MPa for CTPP, respectively. Stabilization maintained the integrity of the SPCHTs for at least 10 days of cultivation. SPCHTs showed controlled release of the growth factors TGF-β1 and PDGF-AB. Although generating different patterns, all of the stabilization treatments improved the proliferation of seeded h-AdMSCs on the composite scaffold compared to aP-PRP alone, and differentiation of the composite scaffold treated with TEtOH was significantly higher than for non-stabilized PCHT. We conclude that the composite scaffolds improved the in vitro performance of PRP and have potential in regenerative medicine. - Highlights: • Stabilization maintains the integrity of the chitosan scaffolds for at least 10 days. • Fibrin networks on the chitosan scaffolds were referred to electrostatic interactions. • Stabilized chitosan

  4. Improved postharvest quality in patagonian squash ( Cucurbita moschata) coated with radiation depolymerized chitosan

    Science.gov (United States)

    Pugliese, Maria Alicia; Goitia, Maria Teresa; Yossen, Mariana; Cifone, Norma; Agulló, Enrique; Andreucetti, Noemi

    2011-12-01

    Different molecular weight chitosans were evaluated on the decay of coated Anquito squashes ( Cucurbita moschata) as well as the maintenance of the fruit quality along five storage months. The original chitosan (Mw=391 kDa, 83% DD), was depolymerized by gamma radiation. Apart from chain scission, other chemical changes were not detected by FTIR or UV-vis analyses. The molecular weight characterization of chitosans was done by size exclusion chromatography with dual light scattering and concentration detection (SEC-MALLS-RI). The coating effectiveness was evaluated on the following parameters: fungal decay incidence, weight loss, firmness, total reducing sugar, soluble solid, flesh color, carotene content, pH and titratable acidity. No sign of fungal decay was observed in squashes coated with 122 and 56 kDa chitosans, which were also the most effective treatments in reducing the weight loss. The chitosan with Mw=122 kDa was also the best treatment considering firmness, internal aspect, sugar and carotene content. Then, radiation degraded chitosan was better in C. moschata preservation than the original chitosan.

  5. Chitosan Coagulation to Improve Microbial and Turbidity Removal by Ceramic Water Filtration for Household Drinking Water Treatment

    Science.gov (United States)

    Abebe, Lydia S.; Chen, Xinyu; Sobsey, Mark D.

    2016-01-01

    The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs) and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI) between 4.7 (±1.56) and 7.5 (±0.02) log10 for Escherichia coli, and between 2.8 (±0.10) and 4.5 (±1.04) log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities turbidity standards of the US EPA and guidance by the World Health Organization (WHO). According to WHO health-based microbial removal targets for household water treatment technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions. PMID:26927152

  6. Chitosan Coagulation to Improve Microbial and Turbidity Removal by Ceramic Water Filtration for Household Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    Lydia S. Abebe

    2016-02-01

    Full Text Available The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI between 4.7 (±1.56 and 7.5 (±0.02 log10 for Escherichia coli, and between 2.8 (±0.10 and 4.5 (±1.04 log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities < 1 NTU, which meet turbidity standards of the US EPA and guidance by the World Health Organization (WHO. According to WHO health-based microbial removal targets for household water treatment technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions.

  7. Functional Comparison for Lipid Metabolism and Intestinal and Fecal Microflora Enzyme Activities between Low Molecular Weight Chitosan and Chitosan Oligosaccharide in High-Fat-Diet-Fed Rats.

    Science.gov (United States)

    Chiu, Chen-Yuan; Feng, Shih-An; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2017-07-24

    The present study investigated and compared the regulatory effects on the lipid-related metabolism and intestinal disaccharidase/fecal bacterial enzyme activities between low molecular weight chitosan and chitosan oligosaccharide in high-fat-diet-fed rats. Diet supplementation of low molecular weight chitosan showed greater efficiency than chitosan oligosaccharide in suppressing the increased weights in body and in liver and adipose tissues of high-fat-diet-fed rats. Supplementation of low molecular weight chitosan also showed a greater improvement than chitosan oligosaccharide in imbalance of plasma, hepatic, and fecal lipid profiles, and intestinal disaccharidase activities in high-fat-diet-fed rats. Moreover, both low molecular weight chitosan and chitosan oligosaccharide significantly decreased the fecal microflora mucinase and β-glucuronidase activities in high-fat-diet-fed rats. These results suggest that low molecular weight chitosan exerts a greater positive improvement than chitosan oligosaccharide in lipid metabolism and intestinal disaccharidase activity in high-fat-diet-induced obese rats.

  8. Managing dry spell risks to improve rainfed maize productivity in the ...

    African Journals Online (AJOL)

    This empirical research was conducted on-station during June to September main growing season over two years (2000 and 2001) to substantiate that, managing dry spell risks through development of compatible technologies can improve rainfed maize productivity in the semi-arid zones of Ethiopia. Firstly, two soil water ...

  9. Influence of DBD plasma pretreatment on the deposition of chitosan onto UHMWPE fiber surfaces for improvement of adhesion and dyeing properties

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yu, E-mail: ren.y@ntu.edu.cn [School of Textile and Clothing, Nantong University, Jiangsu 226019 (China); College of Textile and Clothing Engineering, Soochow University, Jiangsu 215021 (China); Kuangda Fibre Technology Co., Ltd., Jiangsu 213161 (China); Ding, Zhirong [School of Textile and Clothing, Nantong University, Jiangsu 226019 (China); Wang, Chunxia [School of Textile and Clothing, Nantong University, Jiangsu 226019 (China); College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Zang, Chuanfeng; Zhang, Yin; Xu, Lin [School of Textile and Clothing, Nantong University, Jiangsu 226019 (China)

    2017-02-28

    Highlights: • The DBD plasma and chitosan combined treatment were performed on UHMWPE fibers. • The SEM and XPS analysis confirmed that chitosan was adsorbed on the UHMWPE fiber surfaces after the combined treatment. • The IFSS between the UHMWPE fiber and the epoxy resin reached 2.25 MPa with 100 s plasma pretreatment. • The dyeability of the UHMWPE fibers after the combined treatment was significantly improved. - Abstract: The combination treatment of dielectric barrier discharge (DBD) plasma and chitosan coatings was performed on ultrahigh molecular weight polyethylene (UHMWPE) fibers in order to improve the wettability, dyeability and adhesion properties. The properties of UHMWPE fibers coated with chitosan, after being pretreated by DBD plasma, were evaluated through scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The interfacial shear strength (IFSS) between the fiber and the epoxy resin was determined using the single fiber pull-out test technique. The modified UHMWPE fibers were dyed with reactive dyes after the combined treatment. Surface wettability and dyeability were investigated by water contact angle and K/S measurement, respectively. SEM images confirmed that the chitosan was induced onto the surfaces of the UHMWPE fibers after the combined treatment. The XPS analysis showed that the oxygen and nitrogen contents of the UHMWPE fiber surfaces after the combined treatment were higher than that of the fiber modified by chitosan without DBD plasma pretreatment. Meanwhile, the UHMWPE fibers treated with combination of DBD plasma and chitosan treatment had better wettability, dyeability and adhesion property than those of the non-plasma pretreated surfaces, indicating that DBD plasma pretreatment facilitated the deposition of chitosan onto the UHMWPE surfaces.

  10. Silicon induced improvement in morpho-physiological traits of maize (zea mays l.) under water deficit

    International Nuclear Information System (INIS)

    Amin, M.; Ahmad, R.; Basra, S.M.A.; Murtaza, G.

    2014-01-01

    Current water scarcity is an emerging issue in semi-arid regions like Pakistan and cause of deterioration in productivity of crops to reduce crop yield all over the world. Silicon is known to be better against the deleterious effects of drought on plant growth and development. A pot study was conducted to evaluate the effect of Si nutrition (0, 50, 100 and 150 mg/kg) on the growth of a relatively drought tolerant (P-33H25) and sensitive (FH-810) maize hybrids. Two levels of soil water content were used viz. 100 and 60% of field capacity. Water deficit condition in soil significantly reduced morphological and physiological attributes of maize plants. Silicon application significantly improved the plant height, leaf area per plant, primary root length, dry matter of shoot and roots and plant dry matter, water relation and gas exchange characteristics of both maize cultivars under water deficit condition. Poor growth of drought stressed plants was significantly improved with Si application. The silicon fertilized (100 mg/kg) drought stressed plants of hybrid P-33H25 produced maximum (21.68% more) plant dry matter as compared to plants that were not provided with silicon nutrition. Nonetheless, silicon application (150 mg/kg) resulted in maximum increase (26.03%) in plant dry weight of hybrid FH-810 plants that were grown under limited moisture supply i.e., 60% FC. In conclusion silicon application to drought stressed maize plants was better to improve the growth and dry matter could be attributed to improved osmotic adjustment, photosynthetic rate and lowered transpiration. (author)

  11. Improvement in maize (zea mays l) growth and quality through integrated use of biochar

    International Nuclear Information System (INIS)

    Ali, K.; Shah, F.; Shehzad, A.; Munsif, F.; Mian, A.A.

    2017-01-01

    To evaluate the potential use of biochar in crop production, two years experiments were conducted in 2013 and 2014. The experiment consisted of three factors namely: (1) Biochar (0, 25 and 50 ton ha-1), (2) FYM (5 and 10 ton ha-1) and (3) nitrogen (75 and 150 kg ha-1). A control treatment (no application of either treatment) was included in the experiment for comparison. All the treatments were replicated three time in RCB design at New Developmental Farm of the University of Agriculture Peshawar Pakistan. Experimental evidence indicated that BC, FYM and N significantly delayed all growth stages of maize such as days to taseling, silking and maturity. Biochar application significantly improved maize oil content by 12 and 29% over no BC plots (plots receiving other treatments) and control plots respectively. An increase of 27% and decrease of 11% was observed in maize protein and starch content in BC treated plots over control. FYM application of 10 ton ha-1 improved maize protein content by 12% but reduced oil content by 15% over 5 ton FYM ha-1. Likewise, N application resulted in higher protein content and starch content but reduced oil content significantly. Overall, application of BC showed convincing results as sole application of N and FYM, however, problems associated with BC production in Pakistan are needed to be addressed in future research. (author)

  12. Plasticized chitosan/polyolefin films produced by extrusion.

    Science.gov (United States)

    Matet, Marie; Heuzey, Marie-Claude; Ajji, Abdellah; Sarazin, Pierre

    2015-03-06

    Plasticized chitosan and polyethylene blends were produced through a single-pass extrusion process. Using a twin-screw extruder, chitosan plasticization was achieved in the presence of an acetic acid solution and glycerol, and directly mixed with metallocene polyethylene, mPE, to produce a masterbatch. Different dilutions of the masterbatch (2, 5 and 10 wt% of plasticized chitosan), in the presence of ethylene vinyl acetate, EVA, were subsequently achieved in single screw film extrusion. Very small plasticized chitosan domains (number average diameter <5 μm) were visible in the polymeric matrix. The resulting films presented a brown color and increasing haze with chitosan plasticized content. Mechanical properties of the mPE films were affected by the presence of plasticized chitosan, but improvement was observed as a result of some compatibility between mPE and chitosan in the presence of EVA. Finally the incorporation of plasticized chitosan affected mPE water vapor permeability while oxygen permeability remained constant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Screening of promising maize genotypes against maize weevil (Sitophilus zeamais Motschulky in storage condition

    Directory of Open Access Journals (Sweden)

    Ram B Paneru

    2017-12-01

    Full Text Available The maize weevil (Sitophilus zeamais Motschulsky is a serious pest of economic importance in stored grains. It causes major damage to stored maize grain thereby reducing its weight, quality and germination. An experiment was conducted in randomized complete block design (RCBD with 3 replications to screen 32 maize genotypes against maize weevil in no-choice and free-choice conditions at Entomology Division, Khumaltar, Lalitpur (Room temperature: Maximum 24-32°C and Minimum 18-27°C. The findings showed that the maize genotypes had different response to maize weevil damage ranging from susceptible to tolerance. The genotypes Manakamana-3, Lumle White POP Corn and Ganesh-2 showed their tolerance to S. zeamais as evidenced by lower number of weevil emerged/attracted, lower amount of grain debris release and lower proportion of bored grains, while the genotype ZM-627 was the most susceptible to weevil damage in both tests. The other remaining genotypes were intermediate types. This information is useful to improve grain protection in storage and varietal improvement/release program.

  14. Ascorbic acid prevents cellular uptake and improves biocompatibility of chitosan nanoparticles.

    Science.gov (United States)

    Elshoky, Hisham A; Salaheldin, Taher A; Ali, Maha A; Gaber, Mohamed H

    2018-04-11

    Chitosan nanoparticles have many applications, such as gene and drug delivery, due to their biocompatibility. Chitosan nanoparticles are currently produced by dissolution in acetic acid that affects the biocompatibility at acidic pH. Here, we synthesized and characterized chitosan (CS) and ascorbate chitosan (AsCS) nanoparticles and investigated their cytotoxic effects, internalization, and distribution in the human colon carcinoma cell line using confocal laser scanning microscopy (CLSM). The CS and AsCS nanoparticles were spherical with average particle sizes of 44±8.4nm and 87±13.6nm, respectively. CS nanoparticles were taken up by the cells and showed dose-dependent cytotoxicity. By contrast, AsCS nanoparticles were not internalized and showed no cytotoxicity. Therefore, AsCS nanoparticles are more biocompatible than CS nanoparticles and may be more suitable for extracellular drug delivery. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Fragmentation of the radiation degraded chitosan by centrifugal filter and application of the fragmented chitosan in cotton fabrics finishing

    International Nuclear Information System (INIS)

    Luu Thi Tho; Nguyen Van Thong; Vu Thi Hong Khanh; Tran Minh Quynh

    2014-01-01

    Three kind of Vietnamese chitosans with the same deacetylation degrees of about 75% and viscosity average molecular weights are 69.000, 187.000 and 345.000 Da, respectively, were produced from shrimp shells and cuttle-bone at the MTV chitosan company (Kien Giang). These chitosans were irradiated at 25, 50, 75, 100, 200 and 500 kGy under Cobalt-60 gamma source at Hanoi Irradiation Center in order to prepare a series of chitosan segments with wide distribution of molecular weights. Different chitosan samples of the predetermined average molecular weight from 3,000 to 50,000 Da were separated from the irradiated chitosans by ultrafiltration with series of filter membranes (Centriprep devices). Molecular properties of the fragmented chitosans were analysed with gel permeation chromatography, Fourier transfer infra red spectrometry, and the results suggested that principal characteristics of chitosan were not affected by gamma irradiation, even its deacetylation degrees was increased. Solubility of the fragmented chitosans were much improved by radiation processing, and the chitosans having molecular weights below 5.000 Da were water-soluble polymers, which can easily apply as the auxiliary agent in textile. (author)

  16. Properties of Chitosan-Laminated Collagen Film

    Directory of Open Access Journals (Sweden)

    Vera Lazić

    2012-01-01

    Full Text Available The objective of this study is to determine physical, mechanical and barrier properties of chitosan-laminated collagen film. Commercial collagen film, which is used for making collagen casings for dry fermented sausage production, was laminated with chitosan film layer in order to improve the collagen film barrier properties. Different volumes of oregano essential oil per 100 mL of filmogenic solution were added to chitosan film layer: 0, 0.2, 0.4, 0.6 and 0.8 mL to optimize water vapour barrier properties. Chitosan layer with 0.6 or 0.8 % of oregano essential oil lowered the water vapour transmission rate to (1.85±0.10·10–6 and (1.78±0.03·10–6 g/(m2·s·Pa respectively, compared to collagen film ((2.51±0.05·10–6 g/(m2·s·Pa. However, chitosan-laminated collagen film did not show improved mechanical properties compared to the collagen one. Tensile strength decreased from (54.0±3.8 MPa of the uncoated collagen film to (36.3±4.0 MPa when the film was laminated with 0.8 % oregano essential oil chitosan layer. Elongation at break values of laminated films did not differ from those of collagen film ((18.4±2.7 %. Oxygen barrier properties were considerably improved by lamination. Oxygen permeability of collagen film was (1806.8±628.0·10–14 cm3/(m·s·Pa and values of laminated films were below 35·10–14 cm3/(m·s·Pa. Regarding film appearance and colour, lamination with chitosan reduced lightness (L and yellowness (+b of collagen film, while film redness (+a increased. These changes were not visible to the naked eye.

  17. Breeding of speciality maize for industrial purposes

    OpenAIRE

    Pajić Zorica; Radosavljević Milica; Filipović Milomir; Todorović Goran; Srdić Jelena; Pavlov Milovan

    2010-01-01

    The breeding programme on speciality maize with specific traits was established at the Maize Research Institute, Zemun Polje, several decades ago. The initial material was collected, new methods applying to breeding of speciality maize, i.e. popping maize, sweet maize and white-seeded maize, were introduced. The aim was to enhance and improve variability of the initial material for breeding these three types of maize. Then, inbred lines of good combining abilities were developed and used as c...

  18. In vivo evaluation of thiolated chitosan tablets for oral insulin delivery.

    Science.gov (United States)

    Millotti, Gioconda; Laffleur, Flavia; Perera, Glen; Vigl, Claudia; Pickl, Karin; Sinner, Frank; Bernkop-Schnürch, Andreas

    2014-10-01

    Chitosan-6-mercaptonicotinic acid (chitosan-6-MNA) is a thiolated chitosan with strong mucoadhesive properties and a pH-independent reactivity. This study aimed to evaluate the in vivo potential for the oral delivery of insulin. The comparison of the nonconjugated chitosan and chitosan-6-MNA was performed on several studies such as mucoadhesion, release, and in vivo studies. Thiolated chitosan formulations were both about 80-fold more mucoadhesive compared with unmodified ones. The thiolated chitosan tablets showed a sustained release for 5 h for the polymer of 20 kDa and 8 h for the polymer of 400 kDa. Human insulin was quantified in rats' plasma by means of ELISA specific for human insulin with no cross-reactivity with the endogenous insulin. In vivo results showed thiolation having a tremendous impact on the absorption of insulin. The absolute bioavailabilities were 0.73% for chitosan-6-MNA of 20 kDa and 0.62% for chitosan-6-MNA 400 kDa. The areas under the concentration-time curves (AUC) of chitosan-6-MNA formulations compared with unmodified chitosan were 4.8-fold improved for the polymer of 20 kDa and 21.02-fold improved for the polymer of 400 kDa. The improvement in the AUC with regard to the most promising aliphatic thiomer was up to 6.8-fold. Therefore, chitosan-6-MNA represents a promising excipient for the oral delivery of insulin. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  19. PLA/chitosan/keratin composites for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Tanase, Constantin Edi, E-mail: etanase@live.com [Faculty of Medical Bioengineering, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 9-13 Kogalniceanu Street, 700454 Iasi (Romania); Spiridon, Iuliana [“Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania)

    2014-07-01

    Novel composites based on PLA, chitosan and keratin was obtained via blend preparation. The goal of this contribution was to evaluate mechanical and in vitro behavior of the composites. The results point out composites with improved Young modulus and decreased tensile strength, significant increase in hardness (compared to PLA) and a good uptake of the surface properties. Biological assessments using human osteosarcoma cell line on these composites indicate a good viability/proliferation outcome. Hence preliminary results regarding mechanical behavior and in vitro osteoblast response suggest that these composites might have prospective application in medical field. - Highlights: • PLA, chitosan and keratin composites are prepared by blend preparation. • PLA, chitosan and keratin composites present improved mechanical properties and water uptake compare to PLA. • PLA, chitosan and keratin composites present good in vitro behavior.

  20. PLA/chitosan/keratin composites for biomedical applications

    International Nuclear Information System (INIS)

    Tanase, Constantin Edi; Spiridon, Iuliana

    2014-01-01

    Novel composites based on PLA, chitosan and keratin was obtained via blend preparation. The goal of this contribution was to evaluate mechanical and in vitro behavior of the composites. The results point out composites with improved Young modulus and decreased tensile strength, significant increase in hardness (compared to PLA) and a good uptake of the surface properties. Biological assessments using human osteosarcoma cell line on these composites indicate a good viability/proliferation outcome. Hence preliminary results regarding mechanical behavior and in vitro osteoblast response suggest that these composites might have prospective application in medical field. - Highlights: • PLA, chitosan and keratin composites are prepared by blend preparation. • PLA, chitosan and keratin composites present improved mechanical properties and water uptake compare to PLA. • PLA, chitosan and keratin composites present good in vitro behavior

  1. Amendment of Tephrosia Improved Fallows with Inorganic Fertilizers Improves Soil Chemical Properties, N Uptake, and Maize Yield in Malawi

    Directory of Open Access Journals (Sweden)

    Maggie G. Munthali

    2014-01-01

    Full Text Available Maize production in Malawi is limited mainly by low soil N and P. Improved fallows of N-fixing legumes such as Tephrosia and Sesbania offer options for improving soil fertility particularly N supply. The interactions of Tephrosia fallows and inorganic fertilizers on soil properties, N uptake, and maize yields were evaluated at Chitedze Research Station in Malawi. The results indicated that the level of organic matter and pH increased in all the treatments except for the control. Total N remained almost unchanged while available P decreased in all plots amended with T. vogelii but increased in T. candida plots where inorganic P was applied. Exchangeable K increased in all the plots irrespective of the type of amendment. The interaction of N and P fertilizers with T. vogelii fallows significantly increased the grain yield. The treatment that received 45 kg N ha−1 and 20 kg P ha−1 produced significantly higher grain yields (6.8 t ha−1 than all the other treatments except where 68 kg N ha−1 and 30 kg P ha−1 were applied which gave 6.5 t ha−1 of maize grain. T. candida fallows alone or in combination with N and P fertilizers did not significantly affect grain yield. However, T. candida fallows alone can raise maize grain yield by 300% over the no-input control. Based on these results we conclude that high quality residues such as T. candida and T. vogelii can be used as sources of nutrients to improve crop yields and soil fertility in N-limited soils. However, inorganic P fertilizer is needed due to the low soil available P levels.

  2. The use of chitosan as bioadhesive and its property improvement by radiation treatment for water-stable shrimp feed production

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Nguyen Duy; Hung, Nguyen Manh; Quynh, Tran Minh; Diep, Tran Bang; Binh, Nguen Van [Vietnam Atomic Energy Commission, Institute for Nuclear Science and Techniques, Caugiay, Hanoi (Viet Nam); Dung, Vu [Ministry of Fisheries, Research Institute of Marine Product, Haiphong (Viet Nam); Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2002-03-01

    Among marine polysaccharides, only chitosan with small content in feed (0.48-0.75%) could be selected to prepare shrimp feed-pellet having so high water-stability that meet the Standard of Vietnam Ministry of Fisheries 28-TCN 102/1997. Solid-state radiation treatment of chitosan with dose ranging from 10 to 200 kGy not only increased its solubility in solvents of dilute acid, but also improved the water-stability of feed-pellet product. Radiation treatment at sterilization doses (20-40 kGy) was evaluated as the most practical technology because irradiated chitosan with reduced content of 0.34% has capacity to be prepared feed-pellets stable as comparable to imported products. Results from feeding trials shown that chitosan containing feed did not affect the growth response and feed utilization efficiency such as weight gain (WG), feed conversion ratio (FCR) and productivity at harvest. (author)

  3. Suppression of Zn stress on barley by irradiated chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, N.; Mitomo, H. [Gunma Univ., Faculty of Engineering, Department of Biological and Chemical Engineering, Kiryu, Gunma (Japan); Ha, P.T.L. [Nuclear Research Institute, Dalat (Viet Nam); Watanabe, S.; Ito, T.; Takeshita, H.; Yoshii, F.; Kume, T. [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Chitosan was irradiated up to 1000 kGy in solid state. Irradiation of chitosan caused the reduction of molecular weight. The molecular weight of the chitosan reduced from ca. 4 x 10{sup 5} to ca. 6 x 10{sup 3} by irradiation at 1000 kGy. For the barley growth promotion, irradiated chitosan showed the significant effect and 1000 kGy irradiated chitosan improved 20% of growth. Using the positron emitting tracer imaging system (PETIS), the effect of chitosan on uptake and transportation of {sup 62}Zn in barley were investigated. It was found that the transportation of Zn from root to shoot and the damage of plant by Zn were suppressed with irradiated chitosan. (author)

  4. Suppression of Zn stress on barley by irradiated chitosan

    International Nuclear Information System (INIS)

    Nagasawa, N.; Mitomo, H.; Ha, P.T.L.; Watanabe, S.; Ito, T.; Takeshita, H.; Yoshii, F.; Kume, T.

    2001-01-01

    Chitosan was irradiated up to 1000 kGy in solid state. Irradiation of chitosan caused the reduction of molecular weight. The molecular weight of the chitosan reduced from ca. 4 x 10 5 to ca. 6 x 10 3 by irradiation at 1000 kGy. For the barley growth promotion, irradiated chitosan showed the significant effect and 1000 kGy irradiated chitosan improved 20% of growth. Using the positron emitting tracer imaging system (PETIS), the effect of chitosan on uptake and transportation of 62 Zn in barley were investigated. It was found that the transportation of Zn from root to shoot and the damage of plant by Zn were suppressed with irradiated chitosan. (author)

  5. Glycol chitosan

    DEFF Research Database (Denmark)

    Danielsen, E Thomas; Danielsen, E Michael

    2017-01-01

    Chitosan is a polycationic polysaccharide consisting of β-(1-4)-linked glucosamine units and due to its mucoadhesive properties, chemical derivatives of chitosan are potential candidates as enhancers for transmucosal drug delivery. Recently, glycol chitosan (GC), a soluble derivative of chitosan...

  6. TRACTION RESISTANCE IN CHITOSAN TREATED COTTON

    Directory of Open Access Journals (Sweden)

    LOX Wouter

    2015-05-01

    Full Text Available Nowadays natural products interest has increased. However, when some products are included on textile fibers, they have no affinity and need some binders or other kind of auxiliaries to improve the yeld of the process, and some of them are not so natural as the product which are binding and consequently the “bio” definition is missed as some of them can be considered as highly pollutant. Chitosan is a common used bonding agent for cotton. It improves the antimicrobial and antifungal activity, improves wound healing and is a non-toxic bonding agent. The biopolymer used in this work is chitosan, which is a deacetylated derivative of chitin. These properties depend on the amount of deacetylation (DD and the Molecular weight (MW. Along with these improving properties, as it requires some acid pH to ve solved the treatment with chitosan can have some decreasing mechanical properties. The aim of that paper is to evaluate the change in breaking force of the treated samples and a change in elongation of those samples. It compared different amounts of concentration of chitosan with non treated cotton. The traction resistance test were performed on a dynamometer. The test was conducted according to the UNE EN ISO 13934-1 standard.

  7. Microencapsulation of norfloxacin in chitosan/chitosan oligosaccharides and its application in shrimp culture.

    Science.gov (United States)

    Lian, Ziru; Pan, Rong; Wang, Jiangtao

    2016-11-01

    Norfloxacin chitosan/chitosan oligosaccharide microcapsules (NCCM) were prepared by emulsion-chemical crosslinking method. The characteristics of obtained microcapsules were evaluated by scanning electron microscopy, Fourier transform infrared spectroscopy and release experiments. Cumulative release profile of norfloxacin from the chitosan microcapsules in natural seawater was measured and the controlled release of drugs was at a uniform rate in 48h. The chitosan microcapsules were applied onto the antibacterial study of the shrimp culture in natural seawater. It is observed that the seawater in the NCCM added groups was relatively clear and the biomass of Vibrio increased slowly in contrast to the control and norfloxacin groups. The inhibition rate of Vibrio in norfloxacin groups obvioursly decreased after the 5 th day, whereas, it remained high and stable during experiment period in NCCM groups. The results showed that the chitosan microcapsules as release materials have excellent antibacterial effects on Vibrio in the farming of Penaeus vannamei Boone. The controlled release could obviously reduce dosage of antibiotics and delivery times, and effectively improve the utilization rate of norfloxacin drugs for shrimps. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Conservation Agriculture Practices in Rainfed Uplands of India Improve Maize-Based System Productivity and Profitability

    Science.gov (United States)

    Pradhan, Aliza; Idol, Travis; Roul, Pravat K.

    2016-01-01

    Traditional agriculture in rainfed uplands of India has been experiencing low agricultural productivity as the lands suffer from poor soil fertility, susceptibility to water erosion and other external pressures of development and climate change. A shift toward more sustainable cropping systems such as conservation agriculture production systems (CAPSs) may help in maintaining soil quality as well as improving crop production and farmer’s net economic benefit. This research assessed the effects over 3 years (2011–2014) of reduced tillage, intercropping, and cover cropping practices customized for maize-based production systems in upland areas of Odisha, India. The study focused on crop yield, system productivity and profitability through maize equivalent yield and dominance analysis. Results showed that maize grain yield did not differ significantly over time or among CAPS treatments while cowpea yield was considered as an additional yield in intercropping systems. Mustard and horsegram grown in plots after maize cowpea intercropping recorded higher grain yields of 25 and 37%, respectively, as compared to those without intercropping. Overall, the full CAPS implementation, i.e., minimum tillage, maize–cowpea intercropping and mustard residue retention had significantly higher system productivity and net benefits than traditional farmer practices, i.e., conventional tillage, sole maize cropping, and no mustard residue retention. The dominance analysis demonstrated increasing benefits of combining conservation practices that exceeded thresholds for farmer adoption. Given the use of familiar crops and technologies and the magnitude of yield and income improvements, these types of CAPS should be acceptable and attractive for smallholder farmers in the area. This in turn should support a move toward sustainable intensification of crop production to meet future household income and nutritional needs. PMID:27471508

  9. Chitosan pretreatment for cotton dyeing with black tea

    Science.gov (United States)

    Campos, J.; Díaz-García, P.; Montava, I.; Bonet-Aracil, M.; Bou-Belda, E.

    2017-10-01

    Chitosan is used in a wide range of applications due to its intrinsic properties. Chitosan is a biopolymer obtained from chitin and among their most important aspects highlights its bonding with cotton and its antibacterial properties. In this study two different molecular weight chitosan are used in the dyeing process of cotton with black tea to evaluate its influence. In order to evaluate the effect of the pretreatment with chitosan, DSC and reflection spectrophotometer analysis are performed. The curing temperature is evaluated by the DSC analysis of cotton fabric treated with 15 g/L of chitosan, whilst the enhancement of the dyeing is evaluated by the colorimetric coordinates and the K/S value obtained spectrophotometrically. This study shows the extent of improvement of the pretreatment with chitosan in dyeing with natural products as black tea.

  10. Aging phenomena of chitosan and chitosan-diclofenac sodium system detected by low-frequency dielectric spectroscopy.

    Science.gov (United States)

    Bodek, K H; Bak, G W

    1999-09-01

    The use of natural polymers for design of dosage form has received considerable attention recently, especially from the safety point of view. Among these polymers, chitosan shows very interesting biological, chemical and physical properties which makes it possible to use chitosan for various pharmaceutical applications. Microcrystalline chitosan (MCCh) is a special multifunctional polymeric material existing in the form of either of gelatinous water dispersion or a powder. Thermal aging of chitosan and chitosan-diclofenac sodium mixture have been studied using low-frequency dielectric measurements. The aging was carried out by annealing in ambient atmosphere in the temperature range between 25 degrees C and 100 degrees C. The dielectric losses in the aged samples proved to decrease by about one order of magnitude. The additional measurements of molecular weight distribution and infrared absorption were also carried out for better understanding of nature of the ageing phenomena. Partial evacuation of water, cross-linking and improvement of structural order may be suggested to be a result of thermal aging of the investigated materials.

  11. Overexpression of Thellungiella halophila H+-pyrophosphatase Gene Improves Low Phosphate Tolerance in Maize

    Science.gov (United States)

    Pei, Laming; Wang, Jiemin; Li, Kunpeng; Li, Yongjun; Li, Bei; Gao, Feng; Yang, Aifang

    2012-01-01

    Low phosphate availability is a major constraint on plant growth and agricultural productivity. Engineering a crop with enhanced low phosphate tolerance by transgenic technique could be one way of alleviating agricultural losses due to phosphate deficiency. In this study, we reported that transgenic maize plants that overexpressed the Thellungiella halophila vacuolar H+-pyrophosphatase gene (TsVP) were more tolerant to phosphate deficit stress than the wild type. Under phosphate sufficient conditions, transgenic plants showed more vigorous root growth than the wild type. When phosphate deficit stress was imposed, they also developed more robust root systems than the wild type, this advantage facilitated phosphate uptake, which meant that transgenic plants accumulated more phosphorus. So the growth and development in the transgenic maize plants were not damaged as much as in the wild type plants under phosphate limitation. Overexpression of TsVP increased the expression of genes involved in auxin transport, which indicated that the development of larger root systems in transgenic plants might be due in part to enhanced auxin transport which controls developmental events in plants. Moreover, transgenic plants showed less reproductive development retardation and a higher grain yield per plant than the wild type plants when grown in a low phosphate soil. The phenotypes of transgenic maize plants suggested that the overexpression of TsVP led to larger root systems that allowed transgenic maize plants to take up more phosphate, which led to less injury and better performance than the wild type under phosphate deficiency conditions. This study describes a feasible strategy for improving low phosphate tolerance in maize and reducing agricultural losses caused by phosphate deficit stress. PMID:22952696

  12. "Bio-glues" to Enhance Slipperiness of Mucins: Improved Lubricity and Wear Resistance of Porcine Gastric Mucin (PGM) Layers Assisted by Mucoadhesion with Chitosan

    DEFF Research Database (Denmark)

    Nikogeorgos, Nikolaos; Efler, Petr; Lee, Seunghwan

    2015-01-01

    A synergetic lubricating effect between porcine gastric mucin (PGM) and chitosan based on their mucoadhesive interaction is reported at a hydrophobic interface comprised of self-mated polydimethylsiloxane (PDMS) surfaces. In acidic solution (pH 3.2) and low concentrations (0.1 mg mL- 1), the inte......A synergetic lubricating effect between porcine gastric mucin (PGM) and chitosan based on their mucoadhesive interaction is reported at a hydrophobic interface comprised of self-mated polydimethylsiloxane (PDMS) surfaces. In acidic solution (pH 3.2) and low concentrations (0.1 mg mL- 1......), the interaction of PGM with chitosan led to surface recharge and size shrinkage of their aggregates. This resulted in higher mass adsorption on the PDMS surface with increasing weight ratio of [chitosan]/[PGM + chitosan] up to 0.50. While neither PGM nor chitosan exhibited slippery characteristics, coefficient...... of friction being close to 1, their mixture improved considerably the lubricating efficiency (coefficient of friction 0.011 at optimum mixing ratio) and wear resistance of the adsorbed layers. These findings are explained by the role of chitosan as a physical crosslinker within the adsorbed PGM layers...

  13. 3D chitosan-gelatin-chondroitin porous scaffold improves osteogenic differentiation of mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Machado, C B [Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (Brazil); Ventura, J M G [Department of Ceramics and Glass Engineering, University of Aveiro (Portugal); Lemos, A F [Department of Ceramics and Glass Engineering, University of Aveiro (Portugal); Ferreira, J M F [Department of Ceramics and Glass Engineering, University of Aveiro (Portugal); Leite, M F [Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (Brazil); Goes, A M [Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (Brazil)

    2007-06-01

    A porous 3D scaffold was developed to support and enhance the differentiation process of mesenchymal stem cells (MSC) into osteoblasts in vitro. The 3D scaffold was made with chitosan, gelatin and chondroitin and it was crosslinked by EDAC. The scaffold physicochemical properties were evaluated. SEM revealed the high porosity and interconnection of pores in the scaffold; rheological measurements show that the scaffold exhibits a characteristic behavior of strong gels. The elastic modulus found in compressive tests of the crosslinked scaffold was about 50 times higher than the non-crosslinked one. After 21 days, the 3D matrix submitted to hydrolytic degradation loses above 40% of its weight. MSC were collected from rat bone marrow and seeded in chitosan-gelatin-chondroitin 3D scaffolds and in 2D culture plates as well. MSC were differentiated into osteoblasts for 21 days. Cell proliferation and alkaline phosphatase activity were followed weekly during the osteogenic process. The osteogenic differentiation of MSC was improved in 3D culture as shown by MTT assay and alkaline phosphatase activity. On the 21st day, bone markers, osteopontin and osteocalcin, were detected by the PCR analysis. This study shows that the chitosan-gelatin-chondroitin 3D structure provides a good environment for the osteogenic process and enhances cellular proliferation.

  14. 3D chitosan-gelatin-chondroitin porous scaffold improves osteogenic differentiation of mesenchymal stem cells.

    Science.gov (United States)

    Machado, C B; Ventura, J M G; Lemos, A F; Ferreira, J M F; Leite, M F; Goes, A M

    2007-06-01

    A porous 3D scaffold was developed to support and enhance the differentiation process of mesenchymal stem cells (MSC) into osteoblasts in vitro. The 3D scaffold was made with chitosan, gelatin and chondroitin and it was crosslinked by EDAC. The scaffold physicochemical properties were evaluated. SEM revealed the high porosity and interconnection of pores in the scaffold; rheological measurements show that the scaffold exhibits a characteristic behavior of strong gels. The elastic modulus found in compressive tests of the crosslinked scaffold was about 50 times higher than the non-crosslinked one. After 21 days, the 3D matrix submitted to hydrolytic degradation loses above 40% of its weight. MSC were collected from rat bone marrow and seeded in chitosan-gelatin-chondroitin 3D scaffolds and in 2D culture plates as well. MSC were differentiated into osteoblasts for 21 days. Cell proliferation and alkaline phosphatase activity were followed weekly during the osteogenic process. The osteogenic differentiation of MSC was improved in 3D culture as shown by MTT assay and alkaline phosphatase activity. On the 21st day, bone markers, osteopontin and osteocalcin, were detected by the PCR analysis. This study shows that the chitosan-gelatin-chondroitin 3D structure provides a good environment for the osteogenic process and enhances cellular proliferation.

  15. 3D chitosan-gelatin-chondroitin porous scaffold improves osteogenic differentiation of mesenchymal stem cells

    International Nuclear Information System (INIS)

    Machado, C B; Ventura, J M G; Lemos, A F; Ferreira, J M F; Leite, M F; Goes, A M

    2007-01-01

    A porous 3D scaffold was developed to support and enhance the differentiation process of mesenchymal stem cells (MSC) into osteoblasts in vitro. The 3D scaffold was made with chitosan, gelatin and chondroitin and it was crosslinked by EDAC. The scaffold physicochemical properties were evaluated. SEM revealed the high porosity and interconnection of pores in the scaffold; rheological measurements show that the scaffold exhibits a characteristic behavior of strong gels. The elastic modulus found in compressive tests of the crosslinked scaffold was about 50 times higher than the non-crosslinked one. After 21 days, the 3D matrix submitted to hydrolytic degradation loses above 40% of its weight. MSC were collected from rat bone marrow and seeded in chitosan-gelatin-chondroitin 3D scaffolds and in 2D culture plates as well. MSC were differentiated into osteoblasts for 21 days. Cell proliferation and alkaline phosphatase activity were followed weekly during the osteogenic process. The osteogenic differentiation of MSC was improved in 3D culture as shown by MTT assay and alkaline phosphatase activity. On the 21st day, bone markers, osteopontin and osteocalcin, were detected by the PCR analysis. This study shows that the chitosan-gelatin-chondroitin 3D structure provides a good environment for the osteogenic process and enhances cellular proliferation

  16. Chitosan and chitosan chlorhydrate based various approaches for enhancement of dissolution rate of carvedilol

    Directory of Open Access Journals (Sweden)

    Shete Amol S

    2012-12-01

    Full Text Available Abstract Background and the purpose of the study Carvedilol nonselective β-adrenoreceptor blocker, chemically (±-1-(Carbazol-4-yloxy-3-[[2-(o-methoxypHenoxy ethyl] amino]-2-propanol, slightly soluble in ethyl ether; and practically insoluble in water, gastric fluid (simulated, TS, pH 1.1, and intestinal fluid (simulated, TS without pancreatin, pH 7.5 Compounds with aqueous solubility less than 1% W/V often represents dissolution rate limited absorption. There is need to enhance the dissolution rate of carvedilol. The objective of our present investigation was to compare chitosan and chitosan chlorhydrate based various approaches for enhancement of dissolution rate of carvedilol. Methods The different formulations were prepared by different methods like solvent change approach to prepare hydrosols, solvent evaporation technique to form solid dispersions and cogrind mixtures. The prepared formulations were characterized in terms of saturation solubility, drug content, infrared spectroscopy (FTIR, differential scanning calorimetry (DSC, powder X-ray diffraction (PXRD, electron microscopy, in vitro dissolution studies and stability studies. Results The practical yield in case of hydrosols was ranged from 59.76 to 92.32%. The drug content was found to uniform among the different batches of hydrosols, cogrind mixture and solid dispersions ranged from 98.24 to 99.89%. There was significant improvement in dissolution rate of carvedilol with chitosan chlorhdyrate as compare to chitosan and explanation to this behavior was found in the differences in the wetting, solubilities and swelling capacity of the chitosan and chitosan salts, chitosan chlorhydrate rapidly wet and dissolve upon its incorporation into the dissolution medium, whereas the chitosan base, less water soluble, would take more time to dissolve. Conclusion This technique is scalable and valuable in manufacturing process in future for enhancement of dissolution of poorly water soluble

  17. Chitosan nanofiber scaffold improves bone healing via stimulating trabecular bone production due to upregulation of the Runx2/osteocalcin/alkaline phosphatase signaling pathway

    Science.gov (United States)

    Ho, Ming-Hua; Yao, Chih-Jung; Liao, Mei-Hsiu; Lin, Pei-I; Liu, Shing-Hwa; Chen, Ruei-Ming

    2015-01-01

    Osteoblasts play critical roles in bone formation. Our previous study showed that chitosan nanofibers can stimulate osteoblast proliferation and maturation. This translational study used an animal model of bone defects to evaluate the effects of chitosan nanofiber scaffolds on bone healing and the possible mechanisms. In this study, we produced uniform chitosan nanofibers with fiber diameters of approximately 200 nm. A bone defect was surgically created in the proximal femurs of male C57LB/6 mice, and then the left femur was implanted with chitosan nanofiber scaffolds for 21 days and compared with the right femur, which served as a control. Histological analyses revealed that implantation of chitosan nanofiber scaffolds did not lead to hepatotoxicity or nephrotoxicity. Instead, imaging analyses by X-ray transmission and microcomputed tomography showed that implantation of chitosan nanofiber scaffolds improved bone healing compared with the control group. In parallel, microcomputed tomography and bone histomorphometric assays further demonstrated augmentation of the production of new trabecular bone in the chitosan nanofiber-treated group. Furthermore, implantation of chitosan nanofiber scaffolds led to a significant increase in the trabecular bone thickness but a reduction in the trabecular parameter factor. As to the mechanisms, analysis by confocal microscopy showed that implantation of chitosan nanofiber scaffolds increased levels of Runt-related transcription factor 2 (Runx2), a key transcription factor that regulates osteogenesis, in the bone defect sites. Successively, amounts of alkaline phosphatase and osteocalcin, two typical biomarkers that can simulate bone maturation, were augmented following implantation of chitosan nanofiber scaffolds. Taken together, this translational study showed a beneficial effect of chitosan nanofiber scaffolds on bone healing through stimulating trabecular bone production due to upregulation of Runx2-mediated alkaline

  18. Nanoscale Zinc Oxide Particles for Improving the Physiological and Sanitary Quality of a Mexican Landrace of Red Maize

    Directory of Open Access Journals (Sweden)

    Juan Estrada-Urbina

    2018-04-01

    Full Text Available In this research, quasi-spherical-shaped zinc oxide nanoparticles (ZnO NPs were synthesized by a simple cost-competitive aqueous precipitation method. The engineered NPs were characterized using several validation methodologies: UV–Vis spectroscopy, diffuse reflection UV–Vis, spectrofluorometry, transmission electron microscopy (TEM, nanoparticle tracking analysis (NTA, and Fourier transform infrared (FTIR spectroscopy with attenuated total reflection (ATR. A procedure was established to coat a landrace of red maize using gelatinized maize starch. Each maize seed was treated with 0.16 mg ZnO NPs (~7.7 × 109 particles. The standard germination (SG and accelerated aging (AA tests indicated that ZnO NP-treated maize seeds presented better physiological quality (higher percentage of normal seedlings and sanitary quality (lower percentage of seeds contaminated by microorganisms as compared to controls. The application of ZnO NPs also improved seedling vigor, correlated to shoot length, shoot diameter, root length, and number of secondary roots. Furthermore, shoots and roots of the ZnO NP-treated maize seeds showed a marked increment in the main active FTIR band areas, most notably for the vibrations associated with peptide-protein, lipid, lignin, polysaccharide, hemicellulose, cellulose, and carbohydrate. From these results, it is concluded that ZnO NPs have potential for applications in peasant agriculture to improve the quality of small-scale farmers’ seeds and, as a result, preserve germplasm resources.

  19. Improving the AEATRI-motorized maize sheller to meet the market ...

    African Journals Online (AJOL)

    Mo

    which have low productivity and result into maize grain of low market value. Earlier studies ... The old model of the sheller has a feeding hopper, which rests on a .... the sheller, two people supply maize cobs to the person feeding and remove ...

  20. Chitosan-coupled solid lipid nanoparticles: Tuning nanostructure and mucoadhesion.

    Science.gov (United States)

    Sandri, Giuseppina; Motta, Simona; Bonferoni, Maria Cristina; Brocca, Paola; Rossi, Silvia; Ferrari, Franca; Rondelli, Valeria; Cantù, Laura; Caramella, Carla; Del Favero, Elena

    2017-01-01

    Solid Lipid Nanoparticles (SLNs) composed of biodegradable physiological lipids have been widely proposed as efficient drug delivery systems, also for ophthalmic administration. Recently, chitosan-associated-SLNs have been developed to further improve the residence time of these colloidal systems in the precorneal area by means of mucoadhesive interaction. In the present study, a one-step preparation protocol was used aiming both at scale-up ease and at stronger coupling between chitosan and SLNs. The resulting particles were chitosan associated-SLNs (CS-SLNs). These nanoparticles were characterized, as compared to both the chitosan-free and the usual chitosan-coated ones, by applying a multi-technique approach: light, neutron and X-ray scattering, Zeta-potential, AFM, calorimetry. It was assessed that, while keeping the features of nano-size and surface-charge required for an efficient vector, these new nanoparticles display a strong and intimate interaction between chitosan and SLNs, far more settled than the usual simple coverage. Moreover, this one-step preparation method allows to obtain a strong and intimate interaction between chitosan and SLNs, firmer than the usual simple coating. This confers to the CS-SLNs an improved mucoadhesion, opening the way for a high-performing ophthalmic formulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Adherence of paclitaxel drug in magnetite chitosan nanoparticles

    International Nuclear Information System (INIS)

    Escobar Zapata, Edna V.; Martínez Pérez, Carlos A.; Rodríguez González, Claudia A.; Castro Carmona, Javier S.; Quevedo Lopez, Manuel A.; García-Casillas, Perla E.

    2012-01-01

    Highlights: ► Chitosan silica magnetite adsorbs antineoplastic drug. ► Silica coating improve the drug adherence. - Abstract: Cancer treatment is a big challenge in medicine where chemotherapies and radiotherapies are aggressive and poorly effective having side effects as delirium, fatigue, insomnia, nausea and vomiting which are common problems for cancer patients. For this reason, during the last two decades, many researchers have developed several techniques to improve the current therapies; one of them is the functionalization of magnetic nanoparticles for drug delivery. In this work, magnetic nanoparticles with an average crystallite size 21.8 nm were covered in a core/shell type; magnetite/silica, magnetite/chitosan, and a double shell magnetite/silica/chitosan were developed for attaching an antineoplastic drug. The mechanism for the functionalization of the nanoparticles with a single and double shell was studied with Fourier transformed infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The adherence of an antineoplastic drug, paclitaxel, onto functionalized nanoparticles was analyzed with a UV–Visible spectroscopy at a wavelength of 253 nm. It was found that the adherence of the drug is improved up to 18% when magnetite nanoparticles are coated with a single chitosan shell, and when the nanoparticles are coated with a silica/chitosan shell the adherence increases up to 29%.

  2. Effect of moisture and chitosan layered silicate on morphology and properties of chitosan/layered silicates films

    International Nuclear Information System (INIS)

    Silva, J.R.M.B. da; Santos, B.F.F. dos; Leite, I.F.

    2014-01-01

    Thin chitosan films have been for some time an object of practical assessments. However, to obtain biopolymers capable of competing with common polymers a significant improvement in their properties is required. Currently, the technology of obtaining polymer/layered silicates nanocomposites has proven to be a good alternative. This work aims to evaluate the effect of chitosan content (CS) and layered silicates (AN) on the morphology and properties of chitosan/ layered silicate films. CS/AN bionanocomposites were prepared by the intercalation by solution in the proportion 1:1 and 5:1. Then were characterized by infrared spectroscopy (FTIR), diffraction (XRD) and X-ray thermogravimetry (TG). It is expected from the acquisition of films, based on different levels of chitosan and layered silicates, choose the best composition to serve as a matrix for packaging drugs and thus be used for future research. (author)

  3. Chitosan-Based Polymer Blends: Current Status and applications

    International Nuclear Information System (INIS)

    Hefian, E.A.E.; Nasef, M.M.

    2014-01-01

    This paper reviews the latest developments in chitosan-based blends and their potential applications in various fields. Various blends together with other derivatives, such as composites and graft copolymers, have been developed to overcome chitosans disadvantages, including poor mechanical properties and to improve its functionality towards specific applications. The progress made in blending chitosan with synthetic and natural polymers is presented. The versatility and unique characteristics, such as hydrophilicity, film-forming ability, biodegradability, biocompatibility, antibacterial activity and non-toxicity of chitosan has contributed to the successful development of various blends for medical, pharmaceutical, agricultural and environmental applications. (author)

  4. Antimicrobial Properties of Chitosan-Alumina/f-MWCNT Nano composites

    International Nuclear Information System (INIS)

    Masheane, M.; Nthunya, L.; Malinga, S.; Masheane, M.; Nthunya, L.; Nxumalo, E.; Mhlanga, S.; Barnard, T.

    2016-01-01

    Antimicrobial chitosan-alumina/functionalized-multi walled carbon nano tube (f-MWCNT) nano composites were prepared by a simple phase inversion method. Scanning electron microscopy (SEM) analyses showed the change in the internal morphology of the composites and energy dispersive spectroscopy (EDS) confirmed the presence of alumina and f-MWCNTs in the chitosan polymer matrix. Fourier transform infrared (FTIR) spectroscopy showed the appearance of new functional groups from both alumina and f-MWCNTs, and thermogravimetric analysis (TGA) revealed that the addition of alumina and f-MWCNTs improved the thermal stability of the chitosan polymer. The presence of alumina and f-MWCNTs in the polymer matrix was found to improve the thermal stability and reduced the solubility of chitosan polymer. The prepared chitosan-alumina/f-MWCNT nano composites showed inhibition of twelve strains of bacterial strains that were tested. Thus, the nano composites show a potential for use as a biocides in water treatment for the removal of bacteria at different environmental conditions.

  5. Potential of Using Manure to Improve Soil Fertility in A Maize/Bean Intercrop in the Drylands

    International Nuclear Information System (INIS)

    Buigutt, J.C.

    2002-01-01

    Low soil fertility as a limiting factor in maize and bean production in ASALS areas is a pertinent topic for investigation, owing to the importance of the crops as staple foods as well as sources of income and employment for the increasing population occasioned by high fertility rates and immigration from the congested high potential highlands. The use of readily available and cheaper sources of plant nutrients such as farm yard manure (FYM), under the common practice of intercropping is one way of sustaining agricultural production in the drylands. The objective of the study conducted in LM5 (under irrigation) and LM5 (under rainfed) Agro-ecological zones of Baringo district was to determine the potential of use FYM and bean intercropping to improve soil fertility for higher maize yields. The result showed that under maize pure stand the highest yields of 3.2 tons/ha were obtained under DAP though this was not significantly different with FYM, FYM+CAN and No Fertilizer treatments. Under intercrop the highest maize yields of 2.8 t/ha were obtained under FYM+CAN. Economic analysis showed that bean pure stand system gave the highest result net benefits followed by intercrop and lastly maize pure stand. The result further showed that the generally low crop yield coupled by low prices renders Katumani maize variety uneconomical to be grown under irrigation and that the higher yielding hybrids (eg H513 using FYM+CAN could be more profitable to farmers in both zones)

  6. Comparison of chitosan nanoparticles and chitosan hydrogels for vaccine delivery

    DEFF Research Database (Denmark)

    Gordon, Sarah; Saupe, Anne; McBurney, Warren

    2008-01-01

    In this work the potential of chitosan nanoparticles (CNP) and thermosensitive chitosan hydrogels as particulate and sustained release vaccine delivery systems was investigated. CNP and chitosan hydrogels were prepared, loaded with the model protein antigen ovalbumin (OVA) and characterised...... of the release of fluorescently-labelled OVA (FITC-OVA) from CNP and chitosan hydrogels in-vitro showed that approximately 50% of the total protein was released from CNP within a period of ten days; release of antigen from chitosan gel occurred in a more sustained manner, with ... released after 10 days. The slow release from gel formulations may be explained by the strong interactions of the protein with chitosan. While OVA-loaded CNP showed no significant immunogenicity, formulations of OVA in chitosan gel were able to stimulate both cell-mediated and humoral immunity in-vivo....

  7. Chitosan and chemically modified chitosan beads for acid dyes sorption

    Institute of Scientific and Technical Information of China (English)

    AZLAN Kamari; WAN SAIME Wan Ngah; LAI KEN Liew

    2009-01-01

    The capabilities of chitosan and chitosan-EGDE (ethylene glycol diglycidyl ether) beads for removing Acid Red 37 (AR 37) and Acid Blue 25 (AB 25) from aqueous solution were examined. Chitosan beads were cross-linked with EGDE to enhance its chemical resistance and mechanical strength. Experiments were performed as a function of pH, agitation period and concentration of AR 37 and AB 25. It was shown that the adsorption capacities of chitosan were comparatively higher than chitosan-EGDE for both acid dyes. This is mainly because cross-linking using EGDE reduces the major adsorption sites -NH3+ on chitosan. Langmuir isotherm model showed best conformity compared to Freundlich and BET. The kinetic experimental data agreed very well to the pseudo second-order kinetic model. The desorption study revealed that after three cycles of adsorption and desorption by NaOH and HCl, both adsorbents retained their promising adsorption abilities. FT-IR analysis proved that the adsorption of acid dyes onto chitosan-based adsorbents was a physical adsorption. Results also showed that chitosan and chitosan-EGDE beads were favourable adsorbers and could be employed as low-cost alternatives for the removal of acid dyes in wastewater treatment.

  8. Chitosan Based Self-Assembled Nanoparticles in Drug Delivery

    Directory of Open Access Journals (Sweden)

    Javier Pérez Quiñones

    2018-02-01

    Full Text Available Chitosan is a cationic polysaccharide that is usually obtained by alkaline deacetylation of chitin poly(N-acetylglucosamine. It is biocompatible, biodegradable, mucoadhesive, and non-toxic. These excellent biological properties make chitosan a good candidate for a platform in developing drug delivery systems having improved biodistribution, increased specificity and sensitivity, and reduced pharmacological toxicity. In particular, chitosan nanoparticles are found to be appropriate for non-invasive routes of drug administration: oral, nasal, pulmonary and ocular routes. These applications are facilitated by the absorption-enhancing effect of chitosan. Many procedures for obtaining chitosan nanoparticles have been proposed. Particularly, the introduction of hydrophobic moieties into chitosan molecules by grafting to generate a hydrophobic-hydrophilic balance promoting self-assembly is a current and appealing approach. The grafting agent can be a hydrophobic moiety forming micelles that can entrap lipophilic drugs or it can be the drug itself. Another suitable way to generate self-assembled chitosan nanoparticles is through the formation of polyelectrolyte complexes with polyanions. This paper reviews the main approaches for preparing chitosan nanoparticles by self-assembly through both procedures, and illustrates the state of the art of their application in drug delivery.

  9. Hydroxyapatite-chitosan based bioactive hybrid biomaterials with improved mechanical strength

    Science.gov (United States)

    Zima, A.

    2018-03-01

    Composites consisting of hydroxyapatite (HA) and chitosan (CTS) have recently been intensively studied. In this work, a novel inorganic-organic (I/O) HA/CTS materials in the form of granules were prepared through a simple solution-based chemical method. During the synthesis of these hybrids, the electrostatic complexes between positively charged, protonated amine groups of chitosan and the negative phosphate species (HPO42 - and H2PO4-) were formed. Our biocomposites belong to the class I of hybrids, which was confirmed by FTIR studies. XRD analysis revealed that the obtained materials consisted of hydroxyapatite as the only crystalline phase. Homogeneous dispersion of the components in HA/CTS composites was confirmed. The use of 17 wt% and 23 wt% of chitosan resulted in approximately 12-fold and 16-fold increase in the compressive strength of HA/CTS as compared to the non-modified HA material. During incubation of the studied materials in SBF, pH of the solution remained close to the physiological one. Formation of apatite layer on their surfaces indicated bioactive nature of the developed biomaterials.

  10. Chloroform-assisted phenol extraction improving proteome profiling of maize embryos through selective depletion of high-abundance storage proteins.

    Directory of Open Access Journals (Sweden)

    Erhui Xiong

    Full Text Available The presence of abundant storage proteins in plant embryos greatly impedes seed proteomics analysis. Vicilin (or globulin-1 is the most abundant storage protein in maize embryo. There is a need to deplete the vicilins from maize embryo extracts for enhanced proteomics analysis. We here reported a chloroform-assisted phenol extraction (CAPE method for vicilin depletion. By CAPE, maize embryo proteins were first extracted in an aqueous buffer, denatured by chloroform and then subjected to phenol extraction. We found that CAPE can effectively deplete the vicilins from maize embryo extract, allowing the detection of low-abundance proteins that were masked by vicilins in 2-DE gel. The novelty of CAPE is that it selectively depletes abundant storage proteins from embryo extracts of both monocot (maize and dicot (soybean and pea seeds, whereas other embryo proteins were not depleted. CAPE can significantly improve proteome profiling of embryos and extends the application of chloroform and phenol extraction in plant proteomics. In addition, the rationale behind CAPE depletion of abundant storage proteins was explored.

  11. Films, Buckypapers and Fibers from Clay, Chitosan and Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Marc in het Panhuis

    2011-04-01

    Full Text Available The mechanical and electrical characteristics of films, buckypapers and fiber materials from combinations of clay, carbon nanotubes (CNTs and chitosan are described. The rheological time-dependent characteristics of clay are maintained in clay–carbon nanotube–chitosan composite dispersions. It is demonstrated that the addition of chitosan improves their mechanical characteristics, but decreases electrical conductivity by three-orders of magnitude compared to clay–CNT materials. We show that the electrical response upon exposure to humid atmosphere is influenced by clay-chitosan interactions, i.e., the resistance of clay–CNT materials decreases, whereas that of clay–CNT–chitosan increases.

  12. Cytocompatibility of chitosan and collagen-chitosan scaffolds for tissue engineering

    Directory of Open Access Journals (Sweden)

    Ligia L. Fernandes

    2011-01-01

    Full Text Available In this work, chitosan and collagen-chitosan porous scaffolds were produced by the freeze drying method and characterized as potential skin substitutes. Their beneficial effects on soft tissues justify the choice of both collagen and chitosan. Samples were characterized using scanning electron microscope, Fourier Transform InfraRed Spectroscopy (FTIR and thermogravimetry (TG. The in vitro cytocompatibility of chitosan and collagen-chitosan scaffolds was evaluated with three different assays. Phenol and titanium powder were used as positive and negative controls, respectively. Scanning electron microscopy revealed the highly interconnected porous structure of the scaffolds. The addition of collagen to chitosan increased both pore diameter and porosity of the scaffolds. Results of FTIR and TG analysis indicate that the two polymers interact yielding a miscible blend with intermediate thermal degradation properties. The reduction of XTT ((2,3-bis[2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide and the uptake of Neutral Red (NR were not affected by the blend or by the chitosan scaffold extracts, but the blend and the titanium powder presented greater incorporation of Crystal Violet (CV than phenol and chitosan alone. In conclusion, collagen-chitosan scaffolds produced by freeze-drying methods were cytocompatible and presented mixed properties of each component with intermediate thermal degradation properties.

  13. Modification of mechanical and thermal property of chitosan-starch blend films

    Science.gov (United States)

    Tuhin, Mohammad O.; Rahman, Nazia; Haque, M. E.; Khan, Ruhul A.; Dafader, N. C.; Islam, Rafiqul; Nurnabi, Mohammad; Tonny, Wafa

    2012-10-01

    Chitosan-starch blend films (thickness 0.2 mm) of different composition were prepared by casting and their mechanical properties were studied. To improve the properties of chitosan-starch films, glycerol and mustard oil of different composition were used. Chitosan-starch films, incorporated with glycerol and mustard oil, were further modified with monomer 2-hydroxyethyl methacrylate (HEMA) using gamma radiation. The modified films showed improvement in both tensile strength and elongation at break than the pure chitosan-starch films. Water uptake of the films reduced significantly than the pure chitosan-starch film. Thermo gravimetric analysis (TGA) and dynamic mechanical analysis (DMA) showed that the modified films experience less thermal degradation than the pure films. Scanning electron microscopy (SEM) and FTIR were used to investigate the morphology and molecular interaction of the blend film, respectively.

  14. Use of improved inputs and its effect on maize yield and profit in ...

    African Journals Online (AJOL)

    Maize is an important crop, produced by nearly all households in Uganda. Yet, the yield of the crop is low, mainly blamed on low use of improved technologies. In a bid to understand why farmers are reluctant to adopt modern agricultural technologies, which are hailed for enhancing productivity, this study assessed the ...

  15. Adherence of paclitaxel drug in magnetite chitosan nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Escobar Zapata, Edna V.; Martinez Perez, Carlos A.; Rodriguez Gonzalez, Claudia A.; Castro Carmona, Javier S. [Instituto de Ingenieria y Tecnologia, Universidad Autonoma de Ciudad Juarez, Ave. Del Charro 610 norte, Col. Partido Romero, C.P. 32320, Cd. Juarez Chihuahua (Mexico); Quevedo Lopez, Manuel A. [Departamento de Polimeros y Materiales, Universidad de Sonora, Blvd. Luis Encinas y Rosales, Hermosillo, Sonora (Mexico); Garcia-Casillas, Perla E., E-mail: pegarcia@uacj.mx [Instituto de Ingenieria y Tecnologia, Universidad Autonoma de Ciudad Juarez, Ave. Del Charro 610 norte, Col. Partido Romero, C.P. 32320, Cd. Juarez Chihuahua (Mexico)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Chitosan silica magnetite adsorbs antineoplastic drug. Black-Right-Pointing-Pointer Silica coating improve the drug adherence. - Abstract: Cancer treatment is a big challenge in medicine where chemotherapies and radiotherapies are aggressive and poorly effective having side effects as delirium, fatigue, insomnia, nausea and vomiting which are common problems for cancer patients. For this reason, during the last two decades, many researchers have developed several techniques to improve the current therapies; one of them is the functionalization of magnetic nanoparticles for drug delivery. In this work, magnetic nanoparticles with an average crystallite size 21.8 nm were covered in a core/shell type; magnetite/silica, magnetite/chitosan, and a double shell magnetite/silica/chitosan were developed for attaching an antineoplastic drug. The mechanism for the functionalization of the nanoparticles with a single and double shell was studied with Fourier transformed infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The adherence of an antineoplastic drug, paclitaxel, onto functionalized nanoparticles was analyzed with a UV-Visible spectroscopy at a wavelength of 253 nm. It was found that the adherence of the drug is improved up to 18% when magnetite nanoparticles are coated with a single chitosan shell, and when the nanoparticles are coated with a silica/chitosan shell the adherence increases up to 29%.

  16. Recent advances in chitosan-based nanoparticulate pulmonary drug delivery

    Science.gov (United States)

    Islam, Nazrul; Ferro, Vito

    2016-07-01

    The advent of biodegradable polymer-encapsulated drug nanoparticles has made the pulmonary route of administration an exciting area of drug delivery research. Chitosan, a natural biodegradable and biocompatible polysaccharide has received enormous attention as a carrier for drug delivery. Recently, nanoparticles of chitosan (CS) and its synthetic derivatives have been investigated for the encapsulation and delivery of many drugs with improved targeting and controlled release. Herein, recent advances in the preparation and use of micro-/nanoparticles of chitosan and its derivatives for pulmonary delivery of various therapeutic agents (drugs, genes, vaccines) are reviewed. Although chitosan has wide applications in terms of formulations and routes of drug delivery, this review is focused on pulmonary delivery of drug-encapsulated nanoparticles of chitosan and its derivatives. In addition, the controversial toxicological effects of chitosan nanoparticles for lung delivery will also be discussed.

  17. Selection for drought tolerance in two tropical maize populations ...

    African Journals Online (AJOL)

    Drought is a major factor limiting maize (Zea mays L.) yield in much of the world. The need to breed maize cultivars with improved drought tolerance is apparent. This study compared two maize populations, ZM601 and ZM607 for drought tolerance during flowering, the most drought-vulnerable period for the maize plant.

  18. Conductivity enhancement via chemical modification of chitosan based green polymer electrolyte

    International Nuclear Information System (INIS)

    Mobarak, N.N.; Ahmad, A.; Abdullah, M.P.; Ramli, N.; Rahman, M.Y.A.

    2013-01-01

    The potential of carboxymethyl chitosan as a green polymer electrolyte has been explored. Chitosan produced from partial deacetylation of chitin was reacted with monochloroacetic acid to form carboxymethyl chitosan. A green polymer electrolyte based chitosan and carboxymethyl chitosan was prepared by solution-casting technique. The powder and films were characterized by reflection Fourier transform infrared (ATR-FTIR) spectroscopy, 1 H nuclear magnetic resonance, elemental analysis and X-ray diffraction, electrochemical impedance spectroscopy, and scanning electron microscopy. The shift of wavenumber that represents hydroxyl and amine stretching confirmed the polymer solvent complex formation. The XRD spectra results show that chemical modification of chitosan has improved amorphous properties of chitosan. The ionic conductivity was found to increase by two magnitudes higher with the chemical modification of chitosan. The highest conductivity achieved was 3.6 × 10 −6 S cm −1 for carboxymethyl chitosan at room temperature and 3.7 × 10 −4 S cm −1 at 60 °C

  19. Preparation and properties of chitosan nanocomposite films reinforced by poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) treated carbon nanotubes

    International Nuclear Information System (INIS)

    Wu Tongfei; Pan Yongzheng; Bao Hongqian; Li Lin

    2011-01-01

    Highlights: → Chitosan-based nanocomposites prepared from PEDOT-PSS treated MWCNTs. → PEDOT-PSS served as a bridge to improve the dispersion of MWCNTs and interfacial compatibility between MWCNTs and chitosan. → The mechanical properties of chitosan were significantly improved by PEDOT-PSS treated MWCNTs at a small loading. - Abstract: Carbon nanotube-based nanocomposites of chitosan were successfully prepared by a simple solution-evaporation method. Multiwalled carbon nanotubes (MWCNTs) were treated by poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT-PSS) in water before mixed with a chitosan solution to improve the dispersion of MWCNTs and interfacial compatibility between MWCNTs and chitosan. The morphological and mechanical properties of the prepared PEDOT-PSS/MWCNT/chitosan nanocomposites have been characterized with field emission scanning electron microscopy (FESEM) and tensile tests. MWCNTs were observed to be homogeneously dispersed throughout the chitosan matrix. As compared with the neat chitosan, the tensile strength and modulus of the nanocomposite were greatly improved by about 61% and 34%, respectively, with incorporation of only 0.5 wt.% of MWCNTs into the chitosan matrix. The comparison of mechanical properties for PEDOT-PSS/MWCNT/chitosan and pristine MWCNT/chitosan nanocomposites has been made. The hardness of the nanocomposites was also evaluated by nanoindentation.

  20. Antibacterial activity of irradiated and non-irradiated chitosan and chitosan derivatives against Escherichia coli growth

    International Nuclear Information System (INIS)

    Tg Ahbrizal Farizal Tg Ahmad; Norimah Yusof; Kamarudin Bahari; Kamaruddin Hashim

    2006-01-01

    Samples of chitosan and four chitosan derivatives [ionic chitosan, chitosan lactate, carboxymethyl chitosan (C) and carboxymethyl chitosan (L)] were studied for their antibacterial activities against Escherichia coli growth. Chitosan and chitosan derivatives were prepared at concentrations 20, 100, 1000, 10000 ppm and 250, 1000, 5000, 10000, 20000 ppm, respectively. Each of the samples was tested before and after irradiation with electron beam at 25 kGy. The turbidity of bacterial growth media was measured periodically at 0, 0.5, 1, 2, 4, 6 and 24 h after inoculation using the optical density method. The results indicated that non- irradiated chitosan inhibited E. coli growth at 20 and 100 ppm. Meanwhile, irradiated chitosan at 100 and 1000 ppm concentration inhibited E. coli growth. Both irradiated and non-irradiated ionic chitosan inhibited E. coli growth at all concentrations used. Chitosan lactate was found to inhibit E. coli at concentration as low as 5000 ppm for both irradiated and non-irradiated samples. E. coli growth was not inhibited by carboxymethyl chitosan (C) and carboxymethyl chitosan (L), before and after irradiation. The findings suggested that chitosan has greater antibacterial activity as compared to the chitosan derivative samples. (Author)

  1. A mechanistic based approach for enhancing buccal mucoadhesion of chitosan

    DEFF Research Database (Denmark)

    Meng-Lund, Emil; Muff-Westergaard, Christian; Sander, Camilla

    2014-01-01

    Mucoadhesive buccal drug delivery systems can enhance rapid drug absorption by providing an increased retention time at the site of absorption and a steep concentration gradient. An understanding of the mechanisms behind mucoadhesion of polymers, e.g. chitosan, is necessary for improving the muco......Mucoadhesive buccal drug delivery systems can enhance rapid drug absorption by providing an increased retention time at the site of absorption and a steep concentration gradient. An understanding of the mechanisms behind mucoadhesion of polymers, e.g. chitosan, is necessary for improving...... the mucoadhesiveness of buccal formulations. The interaction between chitosan of different chain lengths and porcine gastric mucin (PGM) was studied using a complex coacervation model (CCM), isothermal titration calorimetry (ITC) and a tensile detachment model (TDM). The effect of pH was assessed in all three models...... and the approach to add a buffer to chitosan based drug delivery systems is a means to optimize and enhance buccal drug absorption. The CCM demonstrated optimal interactions between chitosan and PGM at pH 5.2. The ITC experiments showed a significantly increase in affinity between chitosan and PGM at pH 5...

  2. The Multifunctional Role of Chitosan in Horticultural Crops; A Review

    Directory of Open Access Journals (Sweden)

    Rahat Sharif

    2018-04-01

    Full Text Available Chitosan is a naturally occurring compound and is commercially produced from seafood shells. It has been utilized in the induction of the defense system in both pre and post-harvest fruits and vegetables against fungi, bacteria, viruses, and other abiotic stresses. In addition to that, chitosan effectively improves the physiological properties of plants and also enhances the shelf life of post-harvest produces. Moreover, chitosan treatment regulates several genes in plants, particularly the activation of plant defense signaling pathways. That includes the elicitation of phytoalexins and pathogenesis-related (PR protein. Besides that, chitosan has been employed in soil as a plant nutrient and has shown great efficacy in combination with other industrial fertilizers without affecting the soil’s beneficial microbes. Furthermore, it is helpful in reducing the fertilizer losses due to its coating ability, which is important in keeping the environmental pollution under check. Based on exhibiting such excellent properties, there is a striking interest in using chitosan biopolymers in agriculture systems. Therefore, our current review has been centered upon the multiple roles of chitosan in horticultural crops that could be useful in future crop improvement programs.

  3. Hydrophobization and antimicrobial activity of chitosan and paper-based packaging material.

    Science.gov (United States)

    Bordenave, Nicolas; Grelier, Stephane; Coma, Veronique

    2010-01-11

    This study reports the elaboration of water-resistant, antimicrobial, chitosan and paper-based materials as environmentally friendly food packaging materials. Two types of papers were coated with chitosan-palmitic acid emulsions or with a blend of chitosan and O,O'-dipalmitoylchitosan (DPCT). Micromorphology studies showed that inclusion of hydrophobic compounds into the chitosan matrix was enhanced by grafting them onto chitosan and that this led to their penetration of the paper's core. Compared to chitosan-coated papers, the coating of chitosan-palmitic emulsion kept vapor-barrier properties unchanged (239 and 170 g.m(-2).d(-1) versus 241 and 161 g.m(-2).d(-1)), while the coating of chitosan-DPCT emulsion dramatically deteriorated them (441 and 442 g.m(-2).d(-1)). However, contact angle measurements (110-120 degrees after 1 min) and penetration dynamics analysis showed that both strategies improved liquid-water resistance of the materials. Kit-test showed that all hydrophobized chitosan-coated papers kept good grease barrier properties (degree of resistance 6-8/12). Finally, all chitosan-coated materials exhibited over 98% inhibition on Salmonella Typhimurium and Listeria monocytogenes .

  4. Sub-Saharan African maize-based foods

    NARCIS (Netherlands)

    Ekpa, Onu; Palacios-Rojas, Natalia; Kruseman, Gideon; Fogliano, Vincenzo; Linnemann, Anita R.

    2018-01-01

    The demand for maize in Sub-Saharan Africa will triple by 2050 due to rapid population growth, while challenges from climate change will threaten agricultural productivity. Most maize breeding programmes have focused on improving agronomic properties and have paid relatively little attention to

  5. Synthesis of conjugated chitosan and its effect on drug permeation from transdermal patches.

    Science.gov (United States)

    Satheeshababu, B K; Shivakumar, K L

    2013-03-01

    The aim of this study was to synthesis the conjugated chitosan by covalent attachment of thiol moieties to the cationic polymer, mediated by a carbodiimide to improve permeation properties of chitosan. Thioglycolic acid was covalently attached to chitosan by the formation of amide bonds between the primary amino groups of the polymer and the carboxylic acid groups of thioglycolic acid. Hence, these polymers are called as thiomers or thiolated polymers. Conjugation of chitosan was confirmed by Fourier transform-infrared and differential scanning calorimetric analysis. Matrix type transdermal patches of carvedilol were prepared using the different proportions of chitosan and chitosan-thioglycolic acid conjugates (2:0, 1.7:0.3, 1.4:0.6, 1:1, 0.6:1.4 and 0.3:1.7) by solvent casting technique. Prepared matrix type patches were evaluated for their physicochemical characterization followed by in vitro evaluation. Selected formulations were subjected for their ex vivo studies on Wistar albino rat skin and human cadaver skin using the modified Franz diffusion cell. As the proportion of conjugated chitosan increased, the transdermal patches showed increased drug permeation. The mechanism of drug release was found to be nonFickian profiles. The present study concludes that the transdermal patches of carvedilol using conjugated chitosan with different proportions of chitosan were successfully developed to provide improved drug permeation. The transdermal patches can be a good approach to improve drug bioavailability by bypassing the extensive hepatic first-pass metabolism of the drug.

  6. Tailoring Functional Chitosan-based Composites for Food Applications.

    Science.gov (United States)

    Nunes, Cláudia; Coimbra, Manuel A; Ferreira, Paula

    2018-03-08

    Chitosan-based functional materials are emerging for food applications. The covalent bonding of molecular entities demonstrates to enhance resistance to the typical acidity of food assigning mechanical and moisture/gas barrier properties. Moreover, the grafting to chitosan of some functional molecules, like phenolic compounds or essential oils, gives antioxidant, antimicrobial, among others properties to chitosan. The addition of nanofillers to chitosan and other biopolymers improves the already mentioned required properties for food applications and can attribute electrical conductivity and magnetic properties for active and intelligent packaging. Electrical conductivity is a required property for the processing of food at low temperature using electric fields or for sensors application. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Low molecular weight chitosan conjugated with folate for siRNA delivery in vitro: optimization studies

    Science.gov (United States)

    Fernandes, Julio C; Qiu, Xingping; Winnik, Francoise M; Benderdour, Mohamed; Zhang, Xiaoling; Dai, Kerong; Shi, Qin

    2012-01-01

    The low transfection efficiency of chitosan is one of its drawbacks as a gene delivery carrier. Low molecular weight chitosan may help to form small-sized polymer-DNA or small interfering RNA (siRNA) complexes. Folate conjugation may improve gene transfection efficiency because of the promoted uptake of folate receptor-bearing cells. In the present study, chitosan was conjugated with folate and investigated for its efficacy as a delivery vector for siRNA in vitro. We demonstrate that the molecular weight of chitosan has a major influence on its biological and physicochemical properties, and very low molecular weight chitosan (below 10 kDa) has difficulty in forming stable complexes with siRNA. In this study, chitosan 25 kDa and 50 kDa completely absorbed siRNA and formed nanoparticles (≤220 nm) at a chitosan to siRNA weight ratio of 50:1. The introduction of a folate ligand onto chitosan decreased nanoparticle toxicity. Compared with chitosan-siRNA, folate-chitosan-siRNA nanoparticles improved gene silencing transfection efficiency. Therefore, folate-chitosan shows potential as a viable candidate vector for safe and efficient siRNA delivery. PMID:23209368

  8. Chitosan in Mucoadhesive Drug Delivery: Focus on Local Vaginal Therapy

    Directory of Open Access Journals (Sweden)

    Toril Andersen

    2015-01-01

    Full Text Available Mucoadhesive drug therapy destined for localized drug treatment is gaining increasing importance in today’s drug development. Chitosan, due to its known biodegradability, bioadhesiveness and excellent safety profile offers means to improve mucosal drug therapy. We have used chitosan as mucoadhesive polymer to develop liposomes able to ensure prolonged residence time at vaginal site. Two types of mucoadhesive liposomes, namely the chitosan-coated liposomes and chitosan-containing liposomes, where chitosan is both embedded and surface-available, were made of soy phosphatidylcholine with entrapped fluorescence markers of two molecular weights, FITC-dextran 4000 and 20,000, respectively. Both liposomal types were characterized for their size distribution, zeta potential, entrapment efficiency and the in vitro release profile, and compared to plain liposomes. The proof of chitosan being both surface-available as well as embedded into the liposomes in the chitosan-containing liposomes was found. The capability of the surface-available chitosan to interact with the model porcine mucin was confirmed for both chitosan-containing and chitosan-coated liposomes implying potential mucoadhesive behavior. Chitosan-containing liposomes were shown to be superior in respect to the simplicity of preparation, FITC-dextran load, mucoadhesiveness and in vitro release and are expected to ensure prolonged residence time on the vaginal mucosa providing localized sustained release of entrapped model substances.

  9. Synthesis of PVA-Chitosan Hydrogels for Wound Dressing Using Gamma Irradiation. Part I: Radiation Degradation of Chitosan in Solid State and in Solution

    International Nuclear Information System (INIS)

    Mahlous, M.; Tahtat, D.; Benamer, S.; Nacer Khodja, A.; Larbi Youcef, S.

    2010-01-01

    Chitosan is a partially deacetylated product of chitin, a very abundant polysaccharide, existing in exoskeleton of crustaceans. It is a polymer consisting of glucosamine and N-acetylglucosamine units linked by β-1-4-glycosidic bonds. Chitosan, like others polysaccharides, such as cellulose derivatives, alginates and carrageenan is widely used in food, medicine and cosmetic fields. Chitosan presents a variety of distinctive properties, such as biocompatibility, biodegradability, nontoxicity and nonantigenicity. Chitosan obtained by the deacetylation of chitin has, generally, a high molecular weight, which limits its solubility in aqueous solvents. The reduction of its molecular weight by degradation is usually used in order to improve its water solubility. Water-soluble chitosan exhibit some specific properties, such as antifungal activity, antimicrobial activity and plant growth promotion. Among the methods that have been tried to produce low molecular weight chitosan, radiation processing is the most promising one, since the process is simple, it is carried out at room temperature and no purification of the product is required after processing

  10. Preparation and Comparison of Chitosan Nanoparticles with Different Degrees of Glutathione Thiolation

    Directory of Open Access Journals (Sweden)

    R Dinarvand

    2011-12-01

    Full Text Available Background: Chitosan has gained considerable attentions as a biocompatible carrier to improve delivery of active agents. Application of this vehicle in the form of nanoparticle could profit advantages of nanotechnology to increase efficacy of active agents. The purpose of this study was to provide detailed information about chitosan-glutathione (Cht-GSHnanoparticles which are gaining popularity because of their high mucoadhesive and extended drug release properties. Methods: Depolymerization of chitosan was carried out using sodium nitrite method.Glutathione was covalently attached to chitosan and the solubility of the resulting conjugates was evaluated. Nanoparticles were prepared by ionic gelation method and then the effect of glutathione immobilization on properties of nanoparticles was investigated. Results: Thiolation efficiency was higher in lower molecular weight chitosan polymers compared to unmodified chitosan nanoparticles. Cht-GSH conjugates of the same molecular weight but with different degrees of thiolation had the same hydrodynamic diameter (995± nm and surface charge (102± mV as unmodified chitosan, but comprised of a denser network structure and lower concentration. Cht-GSH nanoparticles also exhibited greater mucoadhesive strength which was less affected by ionic strength and pH of the environment. Conclusion:Thiolation improves the solubility of chitosan without any significant changes in size and charge of nanoparticles, but affects the nanogel structure.

  11. Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm

    Energy Technology Data Exchange (ETDEWEB)

    Seaver, Samuel M. D.; Bradbury, Louis M. T.; Frelin, Océane; Zarecki, Raphy; Ruppin, Eytan; Hanson, Andrew D.; Henry, Christopher S.

    2015-03-10

    There is a growing demand for genome-scale metabolic reconstructions for plants, fueled by the need to understand the metabolic basis of crop yield and by progress in genome and transcriptome sequencing. Methods are also required to enable the interpretation of plant transcriptome data to study how cellular metabolic activity varies under different growth conditions or even within different organs, tissues, and developmental stages. Such methods depend extensively on the accuracy with which genes have been mapped to the biochemical reactions in the plant metabolic pathways. Errors in these mappings lead to metabolic reconstructions with an inflated number of reactions and possible generation of unreliable metabolic phenotype predictions. Here we introduce a new evidence-based genome-scale metabolic reconstruction of maize, with significant improvements in the quality of the gene-reaction associations included within our model. We also present a new approach for applying our model to predict active metabolic genes based on transcriptome data. This method includes a minimal set of reactions associated with low expression genes to enable activity of a maximum number of reactions associated with high expression genes. We apply this method to construct an organ-specific model for the maize leaf, and tissue specific models for maize embryo and endosperm cells. We validate our models using fluxomics data for the endosperm and embryo, demonstrating an improved capacity of our models to fit the available fluxomics data. All models are publicly available via the DOE Systems Biology Knowledgebase and PlantSEED, and our new method is generally applicable for analysis transcript profiles from any plant, paving the way for further in silico studies with a wide variety of plant genomes.

  12. Exploring karyotype diversity of Argentinian Guaraní maize landraces: Relationship among South American maize.

    Directory of Open Access Journals (Sweden)

    María Florencia Realini

    Full Text Available In Argentina there are two different centers of maize diversity, the Northeastern (NEA and the Northwestern (NWA regions of the country. In NEA, morphological studies identified 15 landraces cultivated by the Guaraní communities in Misiones Province. In the present study we analyzed the karyotype diversity of 20 populations of Guaraní maize landraces through classical and molecular cytogenetic analyses. Our results demonstrate significant intra and inter-populational variation in the percentage, number, size, chromosome position and frequencies of the heterochromatic blocks, which are called knobs. Knob sequence analysis (180-bp and TR-1 did not show significant differences among Guaraní populations. B chromosomes were not detected, and abnormal 10 (AB10 chromosomes were found with low frequency (0.1≥f ≤0.40 in six populations. Our results allowed karyotypic characterization of each analyzed population, defining for the first time the chromosomal constitution of maize germplasm from NEA. The multivariate analysis (PCoA and UPGMA of karyotype parameters allowed the distinction between two populations groups: the Popcorn and the Floury maize populations. These results are in agreement with previously published microsatellite and morphological/phenological studies. Finally, we compared our karyotype results with those previously reported for NWA and Central Region of South America maize. Our data suggest that there are important differences between maize from NEA and NWA at the karyotype level, supporting the hypothesis that there are two pathways of input of South America maize. Our results also confirm the existence of two centers of diversification of Argentinian native maize, NWA and NEA. This work contributes new knowledge about maize diversity, which is relevant for future plans to improve commercial maize, and for conservation of agrobiodiversity.

  13. Surface modification of protein enhances encapsulation in chitosan nanoparticles

    Science.gov (United States)

    Koyani, Rina D.; Andrade, Mariana; Quester, Katrin; Gaytán, Paul; Huerta-Saquero, Alejandro; Vazquez-Duhalt, Rafael

    2018-04-01

    Chitosan nanoparticles have a huge potential as nanocarriers for environmental and biomedical purposes. Protein encapsulation in nano-sized chitosan provides protection against inactivation, proteolysis, and other alterations due to environmental conditions, as well as the possibility to be targeted to specific tissues by ligand functionalization. In this work, we demonstrate that the chemical modification of the protein surface enhances the protein loading in chitosan nanocarriers. Encapsulation of green fluorescent protein and the cytochrome P450 was studied. The increase of electrostatic interactions between the free amino groups of chitosan and the increased number of free carboxylic groups in the protein surface enhance the protein loading, protein retention, and, thus, the enzymatic activity of chitosan nanoparticles. The chemical modification of protein surface with malonic acid moieties reduced drastically the protein isoelectric point increasing the protein interaction with the polycationic biomaterial and chitosan. The chemical modification of protein does not alter the morphology of chitosan nanoparticles that showed an average diameter of 18 nm, spheroidal in shape, and smooth surfaced. The strategy of chemical modification of protein surface, shown here, is a simple and efficient technique to enhance the protein loading in chitosan nanoparticles. This technique could be used for other nanoparticles based on polycationic or polyanionic materials. The increase of protein loading improves, doubtless, the performance of protein-loaded chitosan nanoparticles for biotechnological and biomedical applications.

  14. Fortification of extruded snacks with chitosan: Effects on techno functional and sensory quality.

    Science.gov (United States)

    Kumar, Raushan; Xavier, K A Martin; Lekshmi, Manjusha; Balange, Amjad; Gudipati, Venkateshwarlu

    2018-08-15

    Chitosan is a dietary fibre that possesses numerous functional, technological and physiological properties useful in improving food quality. Owing to its fat absorbing ability, chitosan is widely consumed as a health supplement in the form of tablets and capsules. With a view to enhance it consumption and availability, the current work was taken up to evaluate techno-functional quality improvement of shrimp based extruded snacks fortified with chitosan. Chitosan powder at 1, 2 and 3% (w/w) level was added to the base material (corn flour and rice flour in the ratio of 70:30 and 15% Acetes powder) for extrusion. Addition of chitosan in acetes based snacks significantly reduced expansion ratio, porosity and crispiness and increased the hardness value of the product. Chitosan addition had a significant effect (p > 0.05) on the moisture retention and total protein contents of the products as well. Thiobarbituric acid reactive substances (TBARS) value of chitosan fortified extrudate showed a significantly lower value than the control sample. A higher level of chitosan also resulted in colour reduction of the final product. The FTIR spectra of extrudate confirmed the stability of chitosan during extrusion conditions. The sensory score revealed that extrudate fortified with 1% chitosan was comparable to control sample. From this study it is concluded that 1% chitosan can be incorporated in Acetes based extruded snacks for an increased level of functionality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Effectiveness of Gamma Irradiated Chitosan for Fresh Meat Preservation

    International Nuclear Information System (INIS)

    Zahran, D.A.

    2015-01-01

    Chitosan is a food preservative of natural origin that has drawn the attention of scientists working in the field of radiation processing and natural polymer products development. The effectiveness of 1% chitosan (CS) and chitosan oligosaccharides (COS) (chitosan subjected to γ irradiation, 50 or 100 kGy) dipping to preserve fresh beef slices during refrigerated storage was investigated. The microbiological quality, lipid and color stability were evaluated. The results revealed that dipping in 1% CS, COS 50 and COS 100 significantly (Ρ< 0.05) improved the microbiological quality and reduced lipid oxidation in beef samples compared to the control samples. On day 7, control samples were considered rejected from the microbiological and lipid oxidation point of view. Dipping in 1% COS 100 significantly (p< 0.05) influenced color properties compared with the other groups. It could be concluded that dipping in 1% COS improved quality parameters of fresh beef and could be used in preservation.

  16. Chitosan Based Regenerated Cellulose Fibers Functionalized with Plasma and Ultrasound

    Directory of Open Access Journals (Sweden)

    Urška Vrabič Brodnjak

    2018-04-01

    Full Text Available The great potential of regenerated cellulose fibers, which offer excellent possibilities as a matrix for the design of bioactive materials, was the lead for our research. We focused on the surface modification of fibers to improve the sorption properties of regenerated cellulose and biocomposite regenerated cellulose/chitosan fibers, which are on the market. The purpose of our investigation was also the modification of regenerated cellulose fibers with the functionalization by chitosan as a means of obtaining similar properties to biocomposite regenerated cellulose/chitosan fibers on the market. Argon gas plasma was used for fiber surface activation and chitosan adsorption. Ultrasound was also used as a treatment procedure for the surface activation of regenerated cellulose fibers and treatment with chitosan. Analyses have shown that ultrasonic energy or plasma change the accessibility of free functional groups, structure and reactivity, especially in regenerated cellulose fibers. Changes that occurred in the morphology and in the structure of fibers were also reflected in their physical and chemical properties. Consequently, moisture content, sorption properties and water retention improved.

  17. Exploring advantages/disadvantages and improvements in overcoming gene delivery barriers of amino acid modified trimethylated chitosan.

    Science.gov (United States)

    Zheng, Hao; Tang, Cui; Yin, Chunhua

    2015-06-01

    Present study aimed at exploring advantages/disadvantages of amino acid modified trimethylated chitosan in conquering multiple gene delivery obstacles and thus providing comprehensive understandings for improved transfection efficiency. Arginine, cysteine, and histidine modified trimethyl chitosan were synthesized and employed to self-assemble with plasmid DNA (pDNA) to form nanocomplexes, namely TRNC, TCNC, and THNC, respectively. They were assessed by structural stability, cellular uptake, endosomal escape, release behavior, nuclear localization, and in vitro and in vivo transfection efficiencies. Besides, sodium tripolyphosphate (TPP) was added into TRNC to compromise certain disadvantageous attributes for pDNA delivery. Optimal endosomal escape ability failed to bring in satisfactory transfection efficiency of THNC due to drawbacks in structural stability, cellular uptake, pDNA liberation, and nuclear distribution. TCNC evoked the most potent gene expression owing to multiple advantages including sufficient stability, preferable uptake, efficient pDNA release, and high nucleic accumulation. Undesirable stability and insufficient pDNA release adversely affected TRNC-mediated gene transfer. However, incorporation of TPP could improve such disadvantages and consequently resulted in enhanced transfection efficiencies. Coordination of multiple contributing effects to conquer all delivery obstacles was necessitated for improved transfection efficiency, which would provide insights into rational design of gene delivery vehicles.

  18. Radiation degradation of chitosan

    International Nuclear Information System (INIS)

    Norzita Yacob; Maznah Mahmud; Norhashidah Talip; Kamarudin Bahari; Kamaruddin Hashim; Khairul Zaman Dahlan

    2010-01-01

    In order to obtain an oligo chitosan, degradation of chitosan s were carried out in solid state and liquid state. The effects of an irradiation on the molecular weight and viscosity of the chitosan were investigated using Ubbelohde Capillary Viscometer and Brookfield Viscometer respectively. The molecular weight and viscosity of the chitosan s were decreased with an increase in the irradiation dose. In the presence of hydrogen peroxide, the molecular weight of chitosan can be further decreased. (author)

  19. Contributions of Zea mays subspecies mexicana haplotypes to modern maize.

    Science.gov (United States)

    Yang, Ning; Xu, Xi-Wen; Wang, Rui-Ru; Peng, Wen-Lei; Cai, Lichun; Song, Jia-Ming; Li, Wenqiang; Luo, Xin; Niu, Luyao; Wang, Yuebin; Jin, Min; Chen, Lu; Luo, Jingyun; Deng, Min; Wang, Long; Pan, Qingchun; Liu, Feng; Jackson, David; Yang, Xiaohong; Chen, Ling-Ling; Yan, Jianbing

    2017-11-30

    Maize was domesticated from lowland teosinte (Zea mays ssp. parviglumis), but the contribution of highland teosinte (Zea mays ssp. mexicana, hereafter mexicana) to modern maize is not clear. Here, two genomes for Mo17 (a modern maize inbred) and mexicana are assembled using a meta-assembly strategy after sequencing of 10 lines derived from a maize-teosinte cross. Comparative analyses reveal a high level of diversity between Mo17, B73, and mexicana, including three Mb-size structural rearrangements. The maize spontaneous mutation rate is estimated to be 2.17 × 10 -8 ~3.87 × 10 -8 per site per generation with a nonrandom distribution across the genome. A higher deleterious mutation rate is observed in the pericentromeric regions, and might be caused by differences in recombination frequency. Over 10% of the maize genome shows evidence of introgression from the mexicana genome, suggesting that mexicana contributed to maize adaptation and improvement. Our data offer a rich resource for constructing the pan-genome of Zea mays and genetic improvement of modern maize varieties.

  20. Effect of chitosan and thiolated chitosan coating on the inhibition behaviour of PIBCA nanoparticles against intestinal metallopeptidases

    Energy Technology Data Exchange (ETDEWEB)

    Bravo-Osuna, Irene; Vauthier, Christine; Farabollini, Alessandra; Millotti, Gioconda; Ponchel, Gilles, E-mail: gilles.ponchel@u-psud.f [UMR CNRS 8612, Universite Paris Sud, Laboratoire de Physicochimie, Faculte de Pharmacie, Pharmacotechnie et Biopharmacie (France)

    2008-12-15

    Surface modified nanoparticles composed of poly(isobutylcyanoacrylate) (PIBCA) cores surrounded by a chitosan and thiolated chitosan gel layer were prepared and characterized in previous works. The presence of such biopolymers on the nanoparticle surface conferred those nanosystems interesting characteristics that might partially overcome the gastrointestinal enzymatic barrier, improving the oral administration of pharmacologically active peptides. In the present work, the antiprotease behaviour of this family of core-shell nanoparticles was in vitro tested against two model metallopeptidases present in the gastrointestinal tract (GIT): Carboxypeptidase A -CP A- (luminal protease) and Leucine Aminopeptidase M -LAP M- (membrane protease). As previous step, the zinc-binding capacity of these nanoparticles was evaluated. Interestingly, an improvement of both the zinc-binding capacity and the antiprotease effect of chitosan was observed when the biopolymers (chitosan and thiolated chitosan) were used as coating component of the core-shell nanoparticles, in comparison with their behaviour in solution, thanks to the different biopolymer chains rearrangement. The presence of amino, hydroxyl and thiol groups on the nanoparticle surface promoted zinc binding and hence the inhibition of the metallopeptidases analysed. On the contrary, the occurrence of a cross-linked structure in the gel layer surrounding the PIBCA cores of thiolated formulations, due to the formation of interchain and intrachain disulphide bonds, partially limited the inhibition of the proteases. The low accessibility of cations to the active groups of the cross-linked polymeric shell was postulated as a possible explanation of this behaviour. Results obtained in this work make this family of surface-modified nanocarriers promising candidates for the successfull administration of pharmacologically active peptides and proteins by the oral route.

  1. Comparing different maize supplementation strategies to improve resilience and resistance against gastrointestinal nematode infections in browsing goats.

    Science.gov (United States)

    Gárate-Gallardo, Leslie; Torres-Acosta, Juan Felipe de Jesús; Aguilar-Caballero, Armando Jacinto; Sandoval-Castro, Carlos Alfredo; Cámara-Sarmiento, Ramón; Canul-Ku, Hilda Lorena

    2015-01-01

    The effect of maize grain supplementation on the resilience and resistance of browsing Criollo goat kids against gastrointestinal nematodes was evaluated. Five-month-old kids (n = 42), raised worm-free, were allocated to five groups: infected + not supplemented (I-NS; n = 10), infected + maize supplement at 108 g/d (I-S108; n = 8), maize supplement at 1% of body weight (BW) (I-S1%; n = 8), maize supplement at 1.5% BW (I-S1.5%; n = 8), or infected + supplemented (maize supplement 1.5% BW) + moxidectin (0.2 mg/kg BW subcutaneously every 28 d) (T-S1.5%; n = 8). Kids browsed daily (7 h) in a tropical forest for 112 days during the rainy season. Kids were weighed weekly to adjust supplementary feeding. Hematocrit (Ht), hemoglobin (Hb), and eggs per gram of feces were determined fortnightly. On day 112, five goat kids were slaughtered per group to determine worm burdens. Kids of the I-S1.5% group showed similar body-weight change, Ht and Hb, compared to kids without gastrointestinal nematodes (T-S1.5%), as well as lower eggs per gram of feces and Trichostrongylus colubriformis worm burden compared to the I-NS group (P > 0.05). Thus, among the supplement levels tested, increasing maize supplementation at 1.5% BW of kids was the best strategy to improve their resilience and resistance against natural gastrointestinal nematode infections under the conditions of forage from the tropical forest. © L. Gárate-Gallardo et al., published by EDP Sciences, 2015.

  2. Genetic resources in maize breeding

    Directory of Open Access Journals (Sweden)

    Anđelković Violeta

    2017-01-01

    Full Text Available Maize, wheat and rice are the most important cereals grown in the world. It is predicted that by 2025 maize is likely to become the crop with the greatest production globally. Conservation of maize germplasm provides the main resources for increased food and feed production. Conservation in gene banks (ex-situ is dominant strategy for maize conservation. More than 130 000 maize accessions, e.g. about 40% of total number, are stored in ten largest gene banks worldwide and Maize Research Institute Zemun Polje (MRIZP gene bank, with about 6000 accessions, is among them. Organized collecting missions started in 1961. in the former Yugoslavian territory, and up today, more than 2000 local maize landraces were stored. Pre-breeding activities that refer to identification of desirable traits from unadapted germplasm within genebank, result in materials expected to be included in breeding programs. Successful examples are LAMP, GEM and GENRES projects. At the end of XX century, at MRIZP genebank two pre-breeding activities were undertaken: eco-core and elite-core collections were created and landraces fulfilled particular criteria were chosen. In the last decade, MRIZP genebank collection was used for identification of sources for drought tolerance and improved grain quality. According to agronomic traits and general combining ability, two mini-core collections were created and included in commercial breeding programs.

  3. Physico-chemical/biological properties of tripolyphosphate cross-linked chitosan based nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Soumi Dey [School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur-721302 (India); Farrugia, Brooke L.; Dargaville, Tim R. [Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Groove, Queensland-4059 (Australia); Dhara, Santanu, E-mail: sdhara@smst.iitkgp.ernet.in [School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur-721302 (India)

    2013-04-01

    In this study, chitosan-PEO blend, prepared in a 15 M acetic acid, was electrospun into nanofibers (∼ 78 nm diameter) with bead free morphology. While investigating physico-chemical parameters of blend solutions, effect of yield stress on chitosan based nanofiber fabrication was clearly evidenced. Architectural stability of nanofiber mat in aqueous medium was achieved by ionotropic cross-linking of chitosan by tripolyphosphate (TPP) ions. The TPP cross-linked nanofiber mat showed swelling up to ∼ 300% in 1 h and ∼ 40% degradation during 30 day study period. 3T3 fibroblast cells showed good attachment, proliferation and viability on TPP treated chitosan based nanofiber mats. The results indicate non-toxic nature of TPP cross-linked chitosan based nanofibers and their potential to be explored as a tissue engineering matrix. - Highlights: ► Chitosan based nanofiber fabrication through electrospinning. ► Roles of solution viscosity and yield stress on spinnability of chitosan evidenced. ► Tripolyphosphate (TPP) cross-linking rendered structural stability to nanofibers. ► TPP cross-linking also improved cellular response on chitosan based nanofibers. ► Thus, chitosan based nanofibers are suitable for tissue engineering application.

  4. Physico-chemical/biological properties of tripolyphosphate cross-linked chitosan based nanofibers

    International Nuclear Information System (INIS)

    Sarkar, Soumi Dey; Farrugia, Brooke L.; Dargaville, Tim R.; Dhara, Santanu

    2013-01-01

    In this study, chitosan-PEO blend, prepared in a 15 M acetic acid, was electrospun into nanofibers (∼ 78 nm diameter) with bead free morphology. While investigating physico-chemical parameters of blend solutions, effect of yield stress on chitosan based nanofiber fabrication was clearly evidenced. Architectural stability of nanofiber mat in aqueous medium was achieved by ionotropic cross-linking of chitosan by tripolyphosphate (TPP) ions. The TPP cross-linked nanofiber mat showed swelling up to ∼ 300% in 1 h and ∼ 40% degradation during 30 day study period. 3T3 fibroblast cells showed good attachment, proliferation and viability on TPP treated chitosan based nanofiber mats. The results indicate non-toxic nature of TPP cross-linked chitosan based nanofibers and their potential to be explored as a tissue engineering matrix. - Highlights: ► Chitosan based nanofiber fabrication through electrospinning. ► Roles of solution viscosity and yield stress on spinnability of chitosan evidenced. ► Tripolyphosphate (TPP) cross-linking rendered structural stability to nanofibers. ► TPP cross-linking also improved cellular response on chitosan based nanofibers. ► Thus, chitosan based nanofibers are suitable for tissue engineering application

  5. Comparison of cadmium adsorption onto chitosan and epichlorohydrin crosslinked chitosan/eggshell composite

    Science.gov (United States)

    Rahmi; Marlina; Nisfayati

    2018-05-01

    The use of chitosan and epichlorohydrin crosslinked chitosan/eggshell composite for cadmium adsorption from water were investigated. The factors affecting adsorption such as pH and contact time were considered. The results showed that the optimum pH of adsorption was pH = 6.0 and the equilibrium time of adsorption was 40 min. The adsorption isotherm of Cd ions onto chitosan and composite were well fitted to Langmuir equation. The maximum adsorption capacity (fitting by Langmuir model) of chitosan and composite were 1.008 and 11.7647 mg/g, respectively. Adsorption performance of composite after regeneration was better than chitosan.

  6. Preparation of Drug-loaded Chitosan Microspheres and Its Application in Paper-based PVC Wallpaper

    Science.gov (United States)

    Lin, Hui; Chen, Lihui; Yan, Guiyang; Chen, Feng; Huang, Liulian

    2018-03-01

    By screening through test, it was found that the drug-loaded chitosan microspheres with the average particle size of 615 nm may be prepared with NaF as the mold-proof drug, chitosan as the drug carrier and sodium tripolyphosphate as the cross-linking agent; and they can improve the aspergillus niger-proof effect if loaded onto the base paper surface of the paper-based PVC wallpaper. The results show that NaF and chitosan have mold-proof synergistic effects; the mold-proof effect of the wallpaper may be improved by increasing the dose of chitosan; when the mass ratio of NaF, sodium tripolyphosphate and chitosan was 2:7:28, the paper-based PVC wallpaper with good mold-proof property can be prepared.

  7. Nerve growth factor loaded heparin/chitosan scaffolds for accelerating peripheral nerve regeneration.

    Science.gov (United States)

    Li, Guicai; Xiao, Qinzhi; Zhang, Luzhong; Zhao, Yahong; Yang, Yumin

    2017-09-01

    Artificial chitosan scaffolds have been widely investigated for peripheral nerve regeneration. However, the effect was not as good as that of autologous grafts and therefore could not meet the clinical requirement. In the present study, the nerve growth factor (NGF) loaded heparin/chitosan scaffolds were fabricated via electrostatic interaction for further improving nerve regeneration. The physicochemical properties including morphology, wettability and composition were measured. The heparin immobilization, NGF loading and release were quantitatively and qualitatively characterized, respectively. The effect of NGF loaded heparin/chitosan scaffolds on nerve regeneration was evaluated by Schwann cells culture for different periods. The results showed that the heparin immobilization and NGF loading did not cause the change of bulk properties of chitosan scaffolds except for morphology and wettability. The pre-immobilization of heparin in chitosan scaffolds could enhance the stability of subsequently loaded NGF. The NGF loaded heparin/chitosan scaffolds could obviously improve the attachment and proliferation of Schwann cells in vitro. More importantly, the NGF loaded heparin/chitosan scaffolds could effectively promote the morphology development of Schwann cells. The study may provide a useful experimental basis to design and develop artificial implants for peripheral nerve regeneration and other tissue regeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The molecular understanding of interfacial interactions of functionalized graphene and chitosan

    International Nuclear Information System (INIS)

    Zhang, Hong-ping; Luo, Xue-gang; Lin, Xiao-yan; Lu, Xiong; Tang, Youhong

    2016-01-01

    Graphical abstract: The type of the functional groups can be used to modulating interactions between graphene sheet and chitosan. - Highlights: • Investigate interfacial interactions between chitosan and functionalized graphene by DFT. • Observe covalent linkages between COOH-modified graphene and chitosan units. • Multi-functionalized graphene regulates the interfacial interactions with chitosan. • It is useful for guiding the preparation of graphene/chitosan composites. - Abstract: Graphene-reinforced chitosan scaffolds have been extensively studied for several years as promising hard tissue replacements. However, the interfacial interactions between graphene and chitosan are strongly related to the solubility, processability, and mechanical properties of graphene-reinforced chitosan (G–C) composites. The functionalization of graphene is regarded as the most effective way to improve the abovementioned properties of the G–C composite. In this study, the interfacial interactions between chitosan and functionalized graphene sheets with carboxylization (COOH-), amination (NH 2 -), and hydroxylation (OH-) groups were systematically studied at the electronic level using the method of ab initio simulations based on quantum mechanics theory and the observations were compared with reported experimental results. The covalent linkages between COOH-modified graphene and the chitosan units were demonstrated and the combination of multi-functionalization on graphene could regulate the interfacial interactions between graphene and the chitosan. The interfacial interactions between chitosan and properly functionalized graphene are critical for the preparation of G–C-based composites for tissue engineering scaffolds and other applications.

  9. Physico-mechanical properties of silanized-montmorillonite reinforced chitosan-co-poly(maleic anhydride) composites

    Science.gov (United States)

    Saputra, O. A.; Fajrin, A.; Nauqinida, M.; Suryanti, V.; Pramono, E.

    2017-07-01

    To solve the problems of dependence on petroleum as starting material in the manufacturing of plastics in Indonesia, green plastic from biopolymer like chitosan to be one of promising options and alternative to replace the conventional plastics. However, to overcome the mechanical and physical properties of chitosan, the addition of reinforcement agent was introduced. In this study, silanized-montmorillonite (sMMt) has been prepared as a reinforcement agent in the chitosan-co-poly(maleic anhydride) (referred as Cs-MAH) matrix. Silanizing of montmorillonite is one of strategy to improve the interaction between montmorillonite and chitosan, consequently, the mechanical properties, tensile strength of composites contained 6 phr of sMMt improved 56.5% to chitosan. Moreover, the presence both MAH and sMMt on the comosites also reduced swelling degree and swelling area by 20.6% and 26.7%.

  10. Aflatoxins and fumonisin contamination of marketed maize, maize ...

    African Journals Online (AJOL)

    Aflatoxins and fumonisin contamination of marketed maize, maize bran and maize used as animal feed in northern ... PROMOTING ACCESS TO AFRICAN RESEARCH ... African Journal of Food, Agriculture, Nutrition and Development.

  11. Oxidation-mediated chitosan as additives for creation of chitosan aerogels with diverse three-dimensional interconnected skeletons

    International Nuclear Information System (INIS)

    Zhang, Sizhao; Feng, Jian; Feng, Junzong; Jiang, Yonggang

    2017-01-01

    Highlights: • A new synthetic method for controlling morphology of chitosan aerogels is proposed. • Chitosan aerogels with nanoflake-like and nanofiber-like were prepared. • Textures of chitosan aerogels are strongly dependent upon the oxidation pattern. - Abstract: Naturally occurring polymer-based aerogels have myriad practical utilizations due to environmentally benign and fruitful resources. However, engineering morphology-controllable biomass aerogels still represents a great challenge. Here we present a facile solution to synthesize chitosan aerogels having distinguished textures by reacting oxidized chitosan with formaldehyde and chitosan sol. In more detail, chitosan was chemically oxidized using two types of oxidation agents such as ammonium persulphate (SPD) and sodium periodate (APS) to obtain corresponding oxidized chitosan, subsequently cross-linked with chitosan solution containing formaldehyde to harvest SPD-oxidized chitosan aerogels (SCAs) and APS-SPD-oxidized ones (ASCAs) after aging, solvent exchange and supercritical drying processes. We found that the morphologies of as-prepared chitosan aerogels are strongly dependent upon the oxidation pattern towards chitosan. The structural textures of SCAs and ASCAs appear nanoflake-like and nanofiber-like structures, which may be related to spatial freedom of active groups located in chitosan. Selected area electron diffraction analysis reveals that the crystalline properties of chitosan aerogels generally appear the serious deterioration comparing to raw chitosan owing to their interconnected skeletal structure formation. The occurrence of characteristic groups displays cross-linked chain construction by using chemical state measurements such as FT-IR and XPS. Further, a plausible mechanism for controlling morphology of chitosan aerogels is also established. This new family of method for creation of chitosan aerogels may open up a perspective for biomass aerogels with controllable textures.

  12. Oxidation-mediated chitosan as additives for creation of chitosan aerogels with diverse three-dimensional interconnected skeletons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Sizhao, E-mail: bule-soul@hotmail.com; Feng, Jian, E-mail: fengj@nudt.edu.cn; Feng, Junzong; Jiang, Yonggang

    2017-02-28

    Highlights: • A new synthetic method for controlling morphology of chitosan aerogels is proposed. • Chitosan aerogels with nanoflake-like and nanofiber-like were prepared. • Textures of chitosan aerogels are strongly dependent upon the oxidation pattern. - Abstract: Naturally occurring polymer-based aerogels have myriad practical utilizations due to environmentally benign and fruitful resources. However, engineering morphology-controllable biomass aerogels still represents a great challenge. Here we present a facile solution to synthesize chitosan aerogels having distinguished textures by reacting oxidized chitosan with formaldehyde and chitosan sol. In more detail, chitosan was chemically oxidized using two types of oxidation agents such as ammonium persulphate (SPD) and sodium periodate (APS) to obtain corresponding oxidized chitosan, subsequently cross-linked with chitosan solution containing formaldehyde to harvest SPD-oxidized chitosan aerogels (SCAs) and APS-SPD-oxidized ones (ASCAs) after aging, solvent exchange and supercritical drying processes. We found that the morphologies of as-prepared chitosan aerogels are strongly dependent upon the oxidation pattern towards chitosan. The structural textures of SCAs and ASCAs appear nanoflake-like and nanofiber-like structures, which may be related to spatial freedom of active groups located in chitosan. Selected area electron diffraction analysis reveals that the crystalline properties of chitosan aerogels generally appear the serious deterioration comparing to raw chitosan owing to their interconnected skeletal structure formation. The occurrence of characteristic groups displays cross-linked chain construction by using chemical state measurements such as FT-IR and XPS. Further, a plausible mechanism for controlling morphology of chitosan aerogels is also established. This new family of method for creation of chitosan aerogels may open up a perspective for biomass aerogels with controllable textures.

  13. Genetic Engineering of Maize (Zea mays L.) with Improved Grain Nutrients.

    Science.gov (United States)

    Guo, Xiaotong; Duan, Xiaoguang; Wu, Yongzhen; Cheng, Jieshan; Zhang, Juan; Zhang, Hongxia; Li, Bei

    2018-02-21

    Cell-wall invertase plays important roles in the grain filling of crop plants. However, its functions in the improvement of grain nutrients have not been investigated. In this work, the stable expression of cell-wall-invertase-encoding genes from different plant species and the contents of total starch, protein, amino acid, nitrogen, lipid, and phosphorus were examined in transgenic maize plants. High expressions of the cell-wall-invertase gene conferred enhanced invertase activity and sugar content in transgenic plants, leading to increased grain yield and improved grain nutrients. Transgenic plants with high expressions of the transgene produced more total starch, protein, nitrogen, and essential amino acids in the seeds. Overall, the results indicate that the cell-wall-invertase gene can be used as a potential candidate for the genetic breeding of grain crops with both improved grain yield and quality.

  14. Radiation synthesis of chitosan beads grafted with acrylic acid for metal ions sorption

    International Nuclear Information System (INIS)

    Benamer, S.; Mahlous, M.; Tahtat, D.; Nacer-Khodja, A.; Arabi, M.; Lounici, H.; Mameri, N.

    2011-01-01

    Radiation-induced grafting of acrylic acid onto chitosan beads was performed in solution at a dose rate of 20.6 Gy/min of cobalt-60 gamma rays. The effect of absorbed dose on grafting yield was investigated. The characterization of the grafted material was performed by FTIR spectroscopy and the swelling measurements at different pHs. The grafting yield increased with the increase in dose, it reached 80% at 40 kGy irradiation dose. The removal of Pb and Cd ions from aqueous solutions was investigated with both ungrafted and grafted chitosan beads. The sorption behavior of the sorbents was examined through pH, kinetics and equilibrium measurements. Grafted chitosan beads presented higher sorption capacity for both metal ions than unmodified chitosan beads. - Highlights: → Pb and Cd ions are removed from aqueous solution by adsorption on chitosan beads. → Crosslinking process improves chemical stability of chitosan beads. → Radiation grafting of acrylic acid onto chitosan improves its metal adsorption capacity. → Increase in grafting degree enhances the adsorption capacity of the material. → Gamma radiation is a powerful tool for an accurate control of the grafting yield.

  15. Preparation and Adsorption Ability of Polysulfone Microcapsules Containing Modified Chitosan Gel

    Institute of Scientific and Technical Information of China (English)

    CHEN Fei; LUO Guangsheng; YANG Weiwei; WANG Yujun

    2005-01-01

    Chemically modified chitosan beads containing polyethyleneimine (PEI) were prepared to improve the metal ion adsorption capacity of the chitosan beads and their mechanical stability and to limit their biodegradability. The modified beads were encapsulated with the polymer material polysulfone by a novel surface coating method named the emulsion phase inversion method. The adsorption properties of the modified beads and the microstructures of the polysulfone coating layer were then analyzed. The experimental results showed that the PEI was successfully linked onto the chitosan beads. The density of the -NH2 groups in the modified beads was significantly increased, while the water content was reduced. The coating layer thickness was about 200 (m. The modified chitosan gel beads had excellent Cu(II) adsorption capacity, with a maximum Cu(II) adsorption capacity 1.34 times higher than that of the unmodified beads. The results show that even with the polysulfone coating the adsorption kinetics of the modified beads is still better than those of the unmodified beads. The modifications improve the mass transfer performance of the chitosan beads as well as the bead stability.

  16. Review: Maize research and production in Nigeria | Iken | African ...

    African Journals Online (AJOL)

    Maize (Zea mays) is a major important cereal being cultivated in the rainforest and the derived Savannah zones of Nigeria. Land races, improved high yielding and pest and diseases resistant varieties of maize have been developed. Key words: Maize, Zea mays, Nigeria. African Journal of Biotechnology Vol.3(6) 2004: 302- ...

  17. Improvement of interaction between PVA and chitosan via magnetite nanoparticles for drug delivery application.

    Science.gov (United States)

    Shagholani, Hamidreza; Ghoreishi, Sayed Mehdi; Mousazadeh, Mohammad

    2015-01-01

    Magnetite nanoparticles were synthesized by coprecipitation under ultrasonication followed by coating with chitosan. Polyvinyl alcohol (PVA) is then combined with the chitosan that coated the magnetite nanoparticles. The combination occurs by hydrogen binding and ionic cross-linking of the amino and hydroxyl groups of chitosan and PVA respectively. The magnetite nanoparticles have an average size of 10.62 nm that was confirmed by TEM. The VSM measurements showed that nanoparticles were superparamagnetic. The coatings on the core nanoparticles were estimated by AAS and the attachments of coating to the nanoparticles were confirmed by FT-IR analysis. Physicochemical properties of nanoparticles were measured by DLS and zeta potential. Naked magnetite, chitosan and PVA coating have zeta potential of +36.4, +48.1 and -12.5 mV respectively. The unspecific adsorption and interaction between nanoparticles and bovine serum albumin (BSA) were investigated systematically by UV-vis spectroscopy method. The nanoparticles that were modified by PVA present low protein adsorption, which makes them a practical choice for preventing opsonization in clinical application and drug delivery. Copyright © 2015. Published by Elsevier B.V.

  18. Efficiency of mineral fertilizers and mucuna on the improvement of the yield of maize in zimbabwe

    International Nuclear Information System (INIS)

    Pieterse, P.J.; Agenbag, G.A.

    2014-01-01

    In Zimbabwe farmers use sub-optimal amounts of fertilizers due to cash limitations and poor access to fertilizer markets, hence the need to integrate legumes like mucuna (Mucuna pruriens) into their cropping systems. In this study, the effect of P and N along with different mucuna management options was investigated on the yield and yield components of maize. The experimental design was a split - split- plot with two P rates (0 and 40 kg P ha/sup -1/) applied to a preceding mucuna crop, four mucuna management options 1) fallow (F), 2) mucuna ploughed in at flowering (MF), 3) all mucuna above ground biomass removed at maturity and only roots were ploughed in (MAR) and 4) mucuna pods removed and the residues ploughed in (MPR 3 and four N treatments (N0 = 0, N1 =40, N2 = 80 and N3 = 120 kg N ha/sup -1/ respectively) applied to a subsequent maize crop. The various crop parameters like grain yield, cob length, number of grains per cob, cob diameter, 1000 dry grain weight, stalk weight and harvest index of maize were determined. Phosphorous application improved mean maize grain yield from 2.29 t ha/sup -1/ to 2.34 t ha/sup -1/. The MF and N3 treatment combination resulted in the highest maize grain yield. The MF and MPR and N0 treatment combinations resulted in similar grain yields when compared with F and MAR management options and N3. Other parameters followed similar trends. The MF and MPR management options could, therefore, save 80 and 120 kg N ha/sup -1/for smallholder farmers without sacrificing yield. (author)

  19. Chemical and nutritional values of maize and maize products ...

    African Journals Online (AJOL)

    Maize and maize products in selected grain markets within Kaduna, Nigeria, were obtained and investigated for proximate and mineral composition analysis using Atomic Absorption Spectrophotometer (AAS) and flame photometer. Proximate composition of maize and maize products were in the range of 11.6- 20 .0% ...

  20. Improved mucoadhesion and cell uptake of chitosan and chitosan oligosaccharide surface-modified polymer nanoparticles for mucosal delivery of proteins.

    Science.gov (United States)

    Dyawanapelly, Sathish; Koli, Uday; Dharamdasani, Vimisha; Jain, Ratnesh; Dandekar, Prajakta

    2016-08-01

    The main aim of the present study was to compare mucoadhesion and cellular uptake efficiency of chitosan (CS) and chitosan oligosaccharide (COS) surface-modified polymer nanoparticles (NPs) for mucosal delivery of proteins. We have developed poly (D, L-lactide-co-glycolide) (PLGA) NPs, surface-modified COS-PLGA NPs and CS-PLGA NPs, by using double emulsion solvent evaporation method, for encapsulating bovine serum albumin (BSA) as a model protein. Surface modification of NPs was confirmed using physicochemical characterization methods such as particle size and zeta potential, SEM, TEM and FTIR analysis. Both surface-modified PLGA NPs displayed a slow release of protein compared to PLGA NPs. Furthermore, we have explored the mucoadhesive property of COS as a material for modifying the surface of polymeric NPs. During in vitro mucoadhesion test, positively charged COS-PLGA NPs and CS-PLGA NPs exhibited enhanced mucoadhesion, compared to negatively charged PLGA NPs. This interaction was anticipated to improve the cell interaction and uptake of NPs, which is an important requirement for mucosal delivery of proteins. All nanoformulations were found to be safe for cellular delivery when evaluated in A549 cells. Moreover, intracellular uptake behaviour of FITC-BSA loaded NPs was extensively investigated by confocal laser scanning microscopy and flow cytometry. As we hypothesized, positively charged COS-PLGA NPs and CS-PLGA NPs displayed enhanced intracellular uptake compared to negatively charged PLGA NPs. Our results demonstrated that CS- and COS-modified polymer NPs could be promising carriers for proteins, drugs and nucleic acids via nasal, oral, buccal, ocular and vaginal mucosal routes.

  1. PERFORMANCE OF MAIZE (ZEA MAYS) CULTIVARS AS ...

    African Journals Online (AJOL)

    IBUKUN

    reported to have low remobilisation efficiency and reduced plasticity of seed weight to assimilate availability ... have indicated that the use of organo-mineral fertiliser in maize and melon gave high relative .... The soil physical and chemical characteristics of ..... yield in maize by examining genetic improvement and heterosis.

  2. Impedance spectroscopy study of dehydrated chitosan and chitosan containing LiClO4

    International Nuclear Information System (INIS)

    Costa, M.M.; Terezo, A.J.; Matos, A.L.; Moura, W.A.; Giacometti, Jose A.; Sombra, A.S.B.

    2010-01-01

    Cast films of chitosan and chitosan containing LiClO 4 were characterized using Fourier transform infrared spectroscopy and the thermogravimetric technique. The electric properties of hydrated and dehydrated films were investigated with impedance spectroscopy in the frequency range from 0.1 Hz to 1 MHz, at temperatures varying from 30 to 110 o C. The frequency dependence of the impedance for dehydrated chitosan and chitosan containing LiClO 4 films indicated ionic conduction. Two relaxation peaks were evident on the imaginary curve of the electric modulus, which were assigned to ionic conduction. The peak at higher frequency was found for chitosan and chitosan containing LiClO 4 films. The peak at lower frequency was attributed to Li + conduction since it appeared only for the chitosan containing LiClO 4 . The peak frequency varied with the temperature according to an Arrhenius process with activation energies of circa of 0.6 and 0.45 eV, for H + and Li + conduction, respectively.

  3. Novel Water Soluble Chitosan Derivatives with 1,2,3-Triazolium and Their Free Radical-Scavenging Activity.

    Science.gov (United States)

    Li, Qing; Sun, Xueqi; Gu, Guodong; Guo, Zhanyong

    2018-03-28

    Chitosan is an abundant and renewable polysaccharide, which exhibits attractive bioactivities and natural properties. Improvement such as chemical modification of chitosan is often performed for its potential of providing high bioactivity and good water solubility. A new class of chitosan derivatives possessing 1,2,3-triazolium charged units by associating "click reaction" with efficient 1,2,3-triazole quaternization were designed and synthesized. Their free radical-scavenging activity against three free radicals was tested. The inhibitory property and water solubility of the synthesized chitosan derivatives exhibited a remarkable improvement over chitosan. It is hypothesized that triazole or triazolium groups enable the synthesized chitosan to possess obviously better radical-scavenging activity. Moreover, the scavenging activity against superoxide radical of chitosan derivatives with triazolium (IC 50 radical-scavenging assay, the same pattern were observed, which should be related to the triazolium grafted at the periphery of molecular chains.

  4. Antimicrobial and physical properties of chitosan films incorporated with turmeric extract.

    Science.gov (United States)

    Kalaycıoğlu, Zeynep; Torlak, Emrah; Akın-Evingür, Gülşen; Özen, İlhan; Erim, F Bedia

    2017-08-01

    In this study, the effects of turmeric extract incorporation on the antibacterial and physical properties of the chitosan films were evaluated. Turmeric containing chitosan-based film was produced with casting procedure and cross-linked with sodium sulfate. Mechanical, optical, thermal properties, and water vapor permeability of the films were studied. The addition of turmeric to chitosan film significantly increased the tensile strength of the film and improved the ultraviolet-visible light barrier of the film. Infrared spectroscopy analysis suggested an interaction between the phenolic compounds of the extract and amin group of chitosan. Antimicrobial activity of the chitosan films was studied against Salmonella and Staphylococcus aureus by plate count agar technique and a better antimicrobial activity was observed with turmeric incorporation. Turmeric incorporated chitosan films with enhanced antimicrobial activity and film stiffness can be suggested as a promising application for food packaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects

    Science.gov (United States)

    Dai, Tianhong; Tanaka, Masamitsu; Huang, Ying-Ying; Hamblin, Michael R

    2011-01-01

    Since its discovery approximately 200 years ago, chitosan, as a cationic natural polymer, has been widely used as a topical dressing in wound management owing to its hemostatic, stimulation of healing, antimicrobial, nontoxic, biocompatible and biodegradable properties. This article covers the antimicrobial and wound-healing effects of chitosan, as well as its derivatives and complexes, and its use as a vehicle to deliver biopharmaceuticals, antimicrobials and growth factors into tissue. Studies covering applications of chitosan in wounds and burns can be classified into in vitro, animal and clinical studies. Chitosan preparations are classified into native chitosan, chitosan formulations, complexes and derivatives with other substances. Chitosan can be used to prevent or treat wound and burn infections not only because of its intrinsic antimicrobial properties, but also by virtue of its ability to deliver extrinsic antimicrobial agents to wounds and burns. It can also be used as a slow-release drug-delivery vehicle for growth factors to improve wound healing. The large number of publications in this area suggests that chitosan will continue to be an important agent in the management of wounds and burns. PMID:21810057

  6. Chemical coupling of thiolated chitosan to preformed liposomes improves mucoadhesive properties

    Directory of Open Access Journals (Sweden)

    Gradauer K

    2012-05-01

    Full Text Available Kerstin Gradauer,1 Caroline Vonach,1 Gerd Leitinger,2,3 Dagmar Kolb,2,3 Eleonore Fröhlich,3 Eva Roblegg,4 Andreas Bernkop-Schnürch,5 Ruth Prassl1,61Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, Graz, Austria; 2Institute of Cell Biology, Histology, and Embryology, Medical University of Graz, Graz, Austria; 3Center for Medical Research, Medical University of Graz, Graz, Austria; 4Institute of Pharmaceutical Sciences/Pharmaceutical Technology, Karl-Franzens University, Graz, Austria; 5Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria; 6Ludwig Boltzmann Institute for Lung Vascular Research, Graz, AustriaAim: To develop mucoadhesive liposomes by anchoring the polymer chitosan-thioglycolic acid (chitosan-TGA to the liposomal surface to target intestinal mucosal membranes.Methods: Liposomes consisting of phosphatidylcholine (POPC and a maleimide-functionalized lipid were incubated with chitosan-TGA, leading to the formation of a thioether bond between free SH-groups of the polymer and maleimide groups of the liposome. Uncoated and newly generated thiomer-coated liposomes were characterized according to their size, zeta potential, and morphology using photon correlation spectroscopy and transmission electron microscopy. The release behavior of calcitonin and the fluorophore/quencher-couple ANTS/DPX (8-aminonaphthalene-1,3,6-trisulfonic acid/p-xylene-bis- pyridinium bromide from coated and uncoated liposomes, was investigated over 24 hours in simulated gastric and intestinal fluids. To test the mucoadhesive properties of thiomer-coated and uncoated liposomes in-vitro, we used freshly excised porcine small intestine.Results: Liposomes showed a concentration-dependent increase in size – from approximately 167 nm for uncoated liposomes to 439 nm for the highest thiomer concentration used in this study. Likewise, their zeta potentials gradually increased from

  7. Synthesis of N-oleyl O-sulfate chitosan from methyl oleate with O-sulfate chitosan as edible film material

    Science.gov (United States)

    Daniel; Sihaloho, O.; Saleh, C.; Magdaleni, A. R.

    2018-04-01

    The research on the synthesis of N-oleyl O-sulfate chitosan through sulfonation reaction on chitosan with ammonium sulfate and followed by amidation reaction using methyl oleate has been done. In this study, chitosan was chemically modified into N-oleyl O-sulfatechitosan as an edible film making material. N-oleyl O-sulfate chitosan was synthesized by reaction between methyl oleate and O-sulfate chitosan. Wherein the depleted chitosan of O-sulfate chitosan into O-sulfate chitosan was obtained by reaction of sulfonation between ammonium sulfate and chitosan aldimine. While chitosan aldimine was obtained through reaction between chitosan with acetaldehyde. The structure of N-oleyl O-sulfate chitosan was characterized by FT-IR analysis which showed vibration uptake of C-H sp3 group, S=O group, and carbonyl group C=O of the ester. The resulting of N-oleyl O-sulfate chitosan yielded a percentage of 93.52%. Hydrophilic-Lipophilic Balance (HLB) test results gave a value of 6.68. In the toxicity test results of N-oleyl O-sulfate chitosan obtained LC50 value of 3738.4732 ppm. In WVTR (Water Vapor Transmission Rate) test results for chitosan film was 407.625 gram/m2/24 hours and N-oleylO-sulfate chitosan film was 201.125 gram/m2/24 hours.

  8. Developing a database for maize variety in Nigeria | Daniel | Moor ...

    African Journals Online (AJOL)

    Performance data of maize varieties at different locations needs to be accurate and accessible to stimulate the improvement of the Nigerian maize seed system. This paper describes a database model to implement a simple computerized information system for maize varieties and their performance at various locations in ...

  9. Chitosan-based nanocomposites

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2012-08-01

    Full Text Available , and hygiene devices. They thus represent a strong and emerging answer for improved and eco-friendly materials. This chapter reviews the recent developments in the area of chitosan-based nanocomposites, with a special emphasis on clay-containing nanocomposites...-sized mineral fillers like silica, talc, and clay are added to reduce the cost and improve chitosan’s performance in some way. However, the mechanical properties such as elongation at break and tensile strength of these composites decrease with the incorporation...

  10. Effect of organic fertilizers on maize production in Eastern Georgia

    Science.gov (United States)

    Jolokhava, Tamar; Kenchiashvili, Naira; Tarkhnishvili, Maia; Ghambashidze, Giorgi

    2016-04-01

    Maize remains to be the most important cereal crop in Georgia. Total area of arable land under cereal crops production equals to 184 thousands hectares (FAO statistical yearbook, 2014), from which maize takes the biggest share. Leading position of maize among other cereal crops is caused by its dual purpose as food and feed product. In Spite of a relatively high production of maize to other cereals there is still a high demand on it, especially as feed for animal husbandry. The same tendency is seen in organic production, where producers of livestock and poultry products require organically grown maize, the average yield of which is much less than those produced conventionally. Therefore, it is important to increase productivity of maize in organic farms. Current study aimed to improve maize yield using locally produced organic fertilizers and to compare them to the effect of mineral fertilizers. The study was carried out in Eastern Georgia under dry subtropical climate conditions on local hybrid of maize. This is the first attempt to use hybrid maize (developed with organic plant breeding method) in organic field trials in Georgia. The results shown, that grain yield from two different types of organic fertilizers reached 70% of the yields achieved with industrial mineral fertilizers. As on farm level differences between organic and conventional maize production are much severe, the results from the field trials seems to be promising for future improvement of organic cereal crop production.

  11. Controlling aflatoxins in maize in Africa: strategies, challenges and opportunities for improvement

    Science.gov (United States)

    Maize (Zea mays) is the most important food staple in sub-Saharan Africa (SSA), accounting for up to 70% of the total human calorific intake (Byerlee and Hiesey, 1996; Martin et al., 2000). In southern Africa, per capita annual consumption of maize remains well over 100 kg, with countries such as Ma...

  12. Development of thermoplastic starch blown film by incorporating plasticized chitosan.

    Science.gov (United States)

    Dang, Khanh Minh; Yoksan, Rangrong

    2015-01-22

    The objective of the present work was to improve blown film extrusion processability and properties of thermoplastic starch (TPS) film by incorporating plasticized chitosan, with a content of 0.37-1.45%. The effects of chitosan on extrusion processability and melt flow ability of TPS, as well as that on appearance, optical properties, thermal properties, viscoelastic properties and tensile properties of the films were investigated. The possible interactions between chitosan and starch molecules were evaluated by FTIR and XRD techniques. Chitosan and starch molecules could interact via hydrogen bonds, as confirmed from the blue shift of OH bands and the reduction of V-type crystal formation. Although the incorporation of chitosan caused decreased extensibility and melt flow ability, as well as increased yellowness and opacity, the films possessed better extrusion processability, increased tensile strength, rigidity, thermal stability and UV absorption, as well as reduced water absorption and surface stickiness. The obtained TPS/chitosan-based films offer real potential application in the food industry, e.g. as edible films. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Mussel-inspired chitosan-polyurethane coatings for improving the antifouling and antibacterial properties of polyethersulfone membranes.

    Science.gov (United States)

    Wang, Rui; Song, Xin; Xiang, Tao; Liu, Qiang; Su, Baihai; Zhao, Weifeng; Zhao, Changsheng

    2017-07-15

    A straightforward mussel-inspired approach was proposed to construct chitosan-polyurethane coatings and load Ag nanoparticles (AgNPs) to endow polyethersulfone (PES) membranes with dual-antibacterial and antifouling properties. The macromolecule O-carboxymethyl chitosan (CMC) was directly reacted with catechol in the absence of carbodiimide chemistry to form the coating and load AgNPs via in situ reduction; while lysine (Lys) was used as a representative small molecule for comparison. Then, PEG-based polyurethane (PU) was used for constructing Lys-Ag-PU and CMC-Ag-PU composite coatings, which substantially improved the protein antifouling property of the membranes. Furthermore, the CMC-Ag-PU coating exhibited superior broad-spectrum antibacterial property towards E. coli and S. aureus than Lys-Ag-PU coating. Meanwhile, the CMC-Ag-PU coating showed sustained antifouling property against bacteria and could reload AgNPs to be regenerated as antibacterial and antifouling coating. This approach is believed to have potential to fabricate reusable antifouling and antibacterial coatings on materials surfaces for aquatic industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Preparation and characterization of collagen/PLA, chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds for cartilage tissue engineering.

    Science.gov (United States)

    Haaparanta, Anne-Marie; Järvinen, Elina; Cengiz, Ibrahim Fatih; Ellä, Ville; Kokkonen, Harri T; Kiviranta, Ilkka; Kellomäki, Minna

    2014-04-01

    In this study, three-dimensional (3D) porous scaffolds were developed for the repair of articular cartilage defects. Novel collagen/polylactide (PLA), chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds were fabricated by combining freeze-dried natural components and synthetic PLA mesh, where the 3D PLA mesh gives mechanical strength, and the natural polymers, collagen and/or chitosan, mimic the natural cartilage tissue environment of chondrocytes. In total, eight scaffold types were studied: four hybrid structures containing collagen and/or chitosan with PLA, and four parallel plain scaffolds with only collagen and/or chitosan. The potential of these types of scaffolds for cartilage tissue engineering applications were determined by the analysis of the microstructure, water uptake, mechanical strength, and the viability and attachment of adult bovine chondrocytes to the scaffolds. The manufacturing method used was found to be applicable for the manufacturing of hybrid scaffolds with highly porous 3D structures. All the hybrid scaffolds showed a highly porous structure with open pores throughout the scaffold. Collagen was found to bind water inside the structure in all collagen-containing scaffolds better than the chitosan-containing scaffolds, and the plain collagen scaffolds had the highest water absorption. The stiffness of the scaffold was improved by the hybrid structure compared to plain scaffolds. The cell viability and attachment was good in all scaffolds, however, the collagen hybrid scaffolds showed the best penetration of cells into the scaffold. Our results show that from the studied scaffolds the collagen/PLA hybrids are the most promising scaffolds from this group for cartilage tissue engineering.

  15. Influence of chitosan concentration on mechanical and barrier properties of corn starch/chitosan films.

    Science.gov (United States)

    Ren, Lili; Yan, Xiaoxia; Zhou, Jiang; Tong, Jin; Su, Xingguang

    2017-12-01

    The active packaging films based on corn starch and chitosan were prepared through mixing the starch solution and the chitosan solution (1:1) by casting. The aim of this work was to characterize and analyze the effects of the chitosan concentrations (0, 21, 41, 61 and 81wt% of starch) on physicochemical, mechanical and water vapor barrier properties as well as morphological characteristics of the corn starch/chitosan (CS/CH) films. Starch molecules and chitosan could interact through hydrogen bonding as confirmed from the shift of the main peaks to higher wavenumbers in FTIR and the reduction of crystallinity in XRD. Results showed that the incorporation of chitosan resulted in an increase in film solubility, total color differences, tensile strength and elongation at break and a decrease in Young's modulus and water vapor permeability (WVP). Elongation at break of the CS/CH films increased with increasing of chitosan concentration, and reached a maximum at 41 wt%, then declined at higher chitosan concentration. The WVP of CS/CH films increased with an increase of chitosan concentration and the same tendency observed for the moisture content. The results suggest that this biodegradable CS/CH films could potentially be used as active packaging films for food and pharmaceutical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Scanning electron microscopy and swelling test of shrimp shell chitosan and chitosan-RGD scaffolds

    Science.gov (United States)

    Mandacan, M. C.; Yuniastuti, M.; Amir, L. R.; Idrus, E.; Suniarti, D. F.

    2017-08-01

    Shrimp shell chitosan and chitosan-RGD scaffold membranes are produced to be biocompatible with tissue engineering. Nonetheless, their architectural properties have not yet been studied. Analyze the architectural properties of chitosan and chitosan-RGD scaffolds. Analyze pore count and size, interpore distance, and porosity (using SEM testing and ImageJ analysis) and water absorption (using a swelling test). The properties of the chitosan and chitosan-RGD scaffolds were as follows, respectively. The pore counts were 225 and 153; pore size, 171.4 μam and 180.2 μam interpore distance, 105.7 μam and 101.4 μam porosity, 22% and 10.2%; and water absorption, 9.1 mgH2O/mgScaffold and 19.3 mgH2O/mgScaffold. The shrimp shell chitosan-RGD membrane scaffold was found to have architectural properties that make it more conducive to use in tissue engineering.

  17. Farmers' preferences and the factors affecting their decision to improve maize crops in Mexico

    OpenAIRE

    Sánchez Toledano, Blanca Isabel

    2017-01-01

    Mexico is one of the countries with the highest corn production in the world (24.6 million tons) (FAOSTAT, 2016). However, in some regions, the yields are very low (2.0 Tn.ha-1) compared to the national average (9.39 Tn.ha-1). Among the different strategies to improve productivity, the adoption of improved maize seeds can play an important role. However, the adoption of this type of seed in Mexico is still limited. The development of a seed sector that meets the needs of farmers is an opportu...

  18. Using manure as fertilizer for maize could improve sustainability of milk production

    Directory of Open Access Journals (Sweden)

    José D. Jiménez-Calderón

    2018-04-01

    Full Text Available This study evaluated the effect of organic or chemical fertilization of maize on cow performance, economic outcomes, and greenhouse gas emission. Each type of maize silage according its different fertilization was used in two rations offered to two different groups of nine Friesian-Holstein cows throughout 4 months. The production cost of the maize silage was 8.8% lower for organic than for chemical fertilization. Both silages had similar nutritive value, except a higher concentration of starch in maize with organic fertilization, which allowed a reduction in the proportion of concentrate in the ration, saving 25.3 eurocents per cow in the daily ration, generating a positive balance of 21.8 eurocents per cow and day. The milk yield and composition were unaffected depending on the type of fertilization, whereas the estimation of CH4 and N2O emissions with chemical fertilization was higher than emissions with organic fertilization. As a result, it is possible to increase the sustainability and profitability of dairy production with reuse and recycling of manure.

  19. Using manure as fertilizer for maize could improve sustainability of milk production

    International Nuclear Information System (INIS)

    Jiménez-Calderón, J.M.; Martínez-Fernández, A.; Prospero-Bernal, F.; Velarde-Guillén, J.; Arriaga-Jordán, C.M.; Vicente, F.

    2018-01-01

    This study evaluated the effect of organic or chemical fertilization of maize on cow performance, economic outcomes, and greenhouse gas emission. Each type of maize silage according its different fertilization was used in two rations offered to two different groups of nine Friesian-Holstein cows throughout 4 months. The production cost of the maize silage was 8.8% lower for organic than for chemical fertilization. Both silages had similar nutritive value, except a higher concentration of starch in maize with organic fertilization, which allowed a reduction in the proportion of concentrate in the ration, saving 25.3 eurocents per cow in the daily ration, generating a positive balance of 21.8 eurocents per cow and day. The milk yield and composition were unaffected depending on the type of fertilization, whereas the estimation of CH4 and N2O emissions with chemical fertilization was higher than emissions with organic fertilization. As a result, it is possible to increase the sustainability and profitability of dairy production with reuse and recycling of manure.

  20. Irradiation gamma on chitosan films

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Luana Miranda Lopes de; Souza, Adriana Regia Marques de; Arthur, Valter, E-mail: lumilopes@hotmail.com, E-mail: drilavras@yahoo.com.br, E-mail: arthur@cena.usp.br [Universidade Federal do Tocantins (UFT), Palmas,TO (Brazil). Departmento de Ciencia e Tecnologia de Alimentos; Universidade Federal de Goias (UFGO), Goiania (Brazil). Departmento de Ciencia e Tecnologia de Alimentos; Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)

    2017-11-01

    Films are preformed structures, independent, that are used to wrap food after processing, increasing their shelf life and enhancing its bright and attractive appearance. They are prepared from biological materials as an alternative to the plastic synthetic containers to improve the quality of the environment. Chitosan is a biodegradable polymer composed of β-(1-4) linked D-glucosamine (deacetylated unit) and N-acetyl-D- glucosamine (acetylated unit). It is produced commercially by deacetylation of chitin, which is a structural component of the exoskeleton of crustaceans. She is able to form films and edible and/or biodegradable coatings. With the objective to evaluate the effect of different doses of gamma radiation (0, 5, 10 and 15 kGy) and chitosan concentrations (1 and 2%) in film properties, it was evaluated its optical, mechanical and morphological properties. The films were produced by casting. Irradiation did not affect the thickness of the films, but influenced its colors, increasing the tone of the film for a stronger yellowish color. This fact can be attributed to the increased concentration of C = O bonds of chitosan due to the breakdown of the chain reaction and the Maillard reaction. Irradiated films showed smoother surface and less rough, due to the degradation of the chitosan molecule and poor mechanical properties, not showing good flexibility and stretching. (author)

  1. Irradiation gamma on chitosan films

    International Nuclear Information System (INIS)

    Mello, Luana Miranda Lopes de; Souza, Adriana Regia Marques de; Arthur, Valter

    2017-01-01

    Films are preformed structures, independent, that are used to wrap food after processing, increasing their shelf life and enhancing its bright and attractive appearance. They are prepared from biological materials as an alternative to the plastic synthetic containers to improve the quality of the environment. Chitosan is a biodegradable polymer composed of β-(1-4) linked D-glucosamine (deacetylated unit) and N-acetyl-D- glucosamine (acetylated unit). It is produced commercially by deacetylation of chitin, which is a structural component of the exoskeleton of crustaceans. She is able to form films and edible and/or biodegradable coatings. With the objective to evaluate the effect of different doses of gamma radiation (0, 5, 10 and 15 kGy) and chitosan concentrations (1 and 2%) in film properties, it was evaluated its optical, mechanical and morphological properties. The films were produced by casting. Irradiation did not affect the thickness of the films, but influenced its colors, increasing the tone of the film for a stronger yellowish color. This fact can be attributed to the increased concentration of C = O bonds of chitosan due to the breakdown of the chain reaction and the Maillard reaction. Irradiated films showed smoother surface and less rough, due to the degradation of the chitosan molecule and poor mechanical properties, not showing good flexibility and stretching. (author)

  2. Poly(ethylene glycol) and cyclodextrin-grafted chitosan: from methodologies to preparation and potential biotechnological applications

    Science.gov (United States)

    Campos, Estefânia V. R.; Oliveira, Jhones L.; Fraceto, Leonardo F.

    2017-11-01

    Chitosan, a polyaminosaccharide obtained by alkaline deacetylation of chitin, possesses useful properties including biodegradability, biocompatibility, low toxicity, and good miscibility with other polymers. It is extensively used in many applications in biology, medicine, agriculture, environmental protection, and the food and pharmaceutical industries. The amino and hydroxyl groups present in the chitosan backbone provide positions for modifications that are influenced by factors such as the molecular weight, viscosity, and type of chitosan, as well as the reaction conditions. The modification of chitosan by chemical methods is of interest because the basic chitosan skeleton is not modified and the process results in new or improved properties of the material. Among the chitosan derivatives, cyclodextrin-grafted chitosan and poly(ethylene glycol)-grafted chitosan are excellent candidates for a range of biomedical, environmental decontamination, and industrial purposes. This work discusses modifications including chitosan with attached cyclodextrin and poly(ethylene glycol), and the main applications of these chitosan derivatives in the biomedical field.

  3. Improvement of the soil nitrogen content and maize growth by earthworms and arbuscular mycorrhizal fungi in soils polluted by oxytetracycline.

    Science.gov (United States)

    Cao, Jia; Wang, Chong; Ji, Dingge

    2016-11-15

    Interactions between earthworms (Eisenia fetida) and arbuscular mycorrhizal fungi (Rhizophagus intraradices, AM fungi) have been suggested to improve the maize nitrogen (N) content and biomass and were studied in soils polluted by oxytetracycline (OTC). Maize was planted and amended with AMF and/or earthworms (E) in the soil with low (1mgkg(-1) soil DM) or high (100mgkg(-1) soil DM) amounts of OTC pollution in comparison to soil without OTC. The root colonization, shoot and root biomass, shoot and root N contents, soil nitrogen forms, ammonia-oxidizing bacteria (AOB) and archaea (AOA) were measured at harvest. The results indicated that OTC decreased maize shoot and root biomass (psoil urease activity and AOB and AOA abundance, which resulted in a lower N availability for maize roots and shoots. There was a significant interaction between earthworms and AM fungi on the urease activity in soil polluted by OTC (ppolluted soil by increasing the urease activity and relieving the stress from OTC on the soil N cycle. AM fungi and earthworms interactively increased maize shoot and root biomass (ppolluted soils through their regulation of the urease activity and the abundance of ammonia oxidizers, resulting in different soil NH4(+)-N and NO3(-)-N contents, which may contribute to the N content of maize shoots and roots. Earthworms and AM fungi could be used as an efficient method to relieve the OTC stress in agro-ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Intercropping Maize With Legumes for Sustainable Highland Maize Production

    Directory of Open Access Journals (Sweden)

    Adirek Punyalue

    2018-02-01

    Full Text Available Residue burning to prepare soil for maize growing deprives the soil of both protective cover and organic matter, and it exacerbates environmental issues such as Southeast Asia's haze problem. This paper reports on a study that evaluated the effectiveness of maize/legume intercropping as an alternative to maize cultivation with residue burning. Cowpea (Vigna unguiculata, mung bean (V. radiata, rice bean (V. umbellata, and lablab (Lablab purpureus were sown into a standing maize crop 30 days before harvest, and the results were compared with a maize crop grown using residue burning as the method for land preparation at Pang Da Agricultural Station in Chiang Mai, Thailand, in a replicated trial conducted over 3 growing seasons from 2012 to 2014. Intercropping increased maize grain yield by 31–53% and left 70–170% more residue containing 113–230% more nitrogen than the maize sown after residue burning, depending on the legume, and decreased weed dry weight by two-thirds after 2 seasons. Soil biodiversity was enriched by the intercrops, with a doubling in the spore density of arbuscular mycorrhizal fungi in the root-zone soil and increased abundance, diversity (Shannon index, and richness of the soil macrofauna. The abundance of soil animals increased with crop residue dry weight (r = 0.90, P < 0.05 and nitrogen content (r = 0.98, P < 0.01. The effect of intercropping on maize grain yield and accumulation of residue and nitrogen were then confirmed in a participatory experiment involving farmers in 2 highland villages in the Phrao and Chiang Dao districts of Chiang Mai Province with maize and rice bean in 2015. The effects of maize/legume intercropping—increased nitrogen accumulation and crop residue, enhanced soil biodiversity, suppression of weeds, and protection of the soil surface, which enabled the maize to be sown without land clearing with fire—should all contribute to sustainable highland maize production.

  5. Processing and characterization of 3D dense chitosan pieces, for orthopedic applications, by adding plasticizers

    OpenAIRE

    Figueiredo, Lígia; Moura, Carla; Pinto, Luís F. V.; Ferreira, Frederico Castelo; Rodrigues, Alexandra

    2015-01-01

    In this work, plasticizer agents were incorporated in a chitosan based formulation, as a strategy to improve the fragile structure of chitosan based-materials. Three different plasticizers: ethylene glycol, glycerol and sorbitol, were blended with chitosan to prepare 3D dense chitosan specimens. The properties of the obtained structures were assessed for mechanical, microstructural, physical and biocompatibility behavior. The results obtained revealed that from the different specimens prepare...

  6. Preparation and characterisation of irradiated crab chitosan and New Zealand Arrow squid pen chitosan

    International Nuclear Information System (INIS)

    Shavandi, Amin; Bekhit, Adnan A.; Bekhit, Alaa El-Din A.; Sun, Zhifa; Ali, M. Azam

    2015-01-01

    The properties of chitosan from Arrow squid (Nototodarus sloanii) pen (CHS) and commercial crab shell (CHC) were investigated using FTIR, DSC, SEM and XRD before and after irradiation at the dose of 28 kGy in the presence or absence of 5% water. Also, the viscosity, deacetylation degree, water and oil holding capacities, colour and antimicrobial activities of the chitosan samples were determined. Irradiation decreased (P < 0.05) the viscosity of CHC from 0.21 to 0.03 Pa s and of CHS from 1.71 to 0.23 Pa s. The inclusion of water had no effect on the viscosity of irradiated chitosan. Irradiation did not affect the degree of deacetylation of CHC, but increased the deacetylation degree of CHS from 72.78 to 82.29% in samples with 5% water. Water and oil holding capacities of CHS (1197.30% and 873.3%, respectively) were higher (P < 0.05) than those found in CHC (340.70% and 264.40%, respectively). The water and oil holding capacities were decreased for both types of chitosan irradiation, but were not affected by the addition of water. Squid pen chitosan was whiter in colour (White Index = 90.06%) compared to CHC (White Index = 83.70%). Generally, the CHC samples (control and irradiated) exhibited better antibacterial activity compared to CHS, but the opposite was observed with antifungal activity. - Highlights: • Chitosan prepared from Arrow squid pens (Nototodarus sloanii). • Chitosan samples were gamma irradiated at 28 kGy. • Squid pen chitosan showed high fat and water uptake capacities compared to crab shell chitosan. • Gamma irradiation enhanced the DDA of squid pen chitosan but not crab shell chitosan.

  7. Comparative evaluation of organic wastes for improving maize ...

    African Journals Online (AJOL)

    The potential of three agricultural waste composts, farmyard manure (FYM), banana waste (BW) and pressmud (PM) was tested in a pot experiment growing maize. The results of the experiment showed highly significant increase in plant height, dry matter yields and NPK contents with the application of fertilizers, particularly ...

  8. Properties of Chitosan-Genipin Films Grafted with Phenolic Compounds from Red Wine

    OpenAIRE

    Gonçalves, Fernando Jorge

    2015-01-01

    Chitosan has been studied as a renewable biopolymer to form edible films and coatings to improve the shelf life of food products. Chemical modification of chitosan is a strategy to prepare chitosan films with enhanced properties to be used as food preservatives. Wine, particularly red wine, is a rich natural source of phenolic compounds, namely anthocyanins, proanthocyanidins, monomeric catechins, and phenolic acids. Phenolic compounds, in general, present strong antioxidant properties. The a...

  9. Farmers Participatory Research in the Evaluation of Maize Crop Residues for Improved Dairy Cattle Production in Eastern Kenya

    International Nuclear Information System (INIS)

    Kiruiro, E.M.; Kariuki, I.W.; Kang'ara, J.; Ouma, O.

    1999-01-01

    Informal and formal surveys, and participatory rural appraisal conducted within the coffee land-use system of Embu District in Eastern Kenya identified feed shortage as a major constraint to increased dairy production on small holder farms. To address this constraint, a two-year (1996-1998) on-farm research project involving 20 farms in Manyatta division, Embu District was initiated with broad objectives of developing components technologies that would use maize crop residues. This was due to the recognition of the fact that the greatest potential for improving field availability would be in the exploitation of crop residues, especially those derived from maize, the main staple crop in the region. Based on these reality appropriate technologies that would offer viable offers for the use of crop residues were identified and discussed during workshops and meetings with farmers. Component technologies considered included drying of maize leaves after defoliation and post-harvest storage methods for dry maize stover. this paper discussed the results of the participatory research in context of farmers' involvement in the technology development, testing, evaluation and promotion. The study demonstrated that involving farmers in all stages of the research process, enhanced their interest and participation in the testing and subsequent adoption of appropriate technologies

  10. Effectiveness of Postharvest Treatment with Chitosan to Control Citrus Green Mold

    Directory of Open Access Journals (Sweden)

    Mohamed El Guilli

    2016-03-01

    Full Text Available Control of green mold, caused by Penicillium digitatum, by fungicides raises several problems, such as emergence of resistant pathogens, as well as concerns about the environment and consumers’ health. As potential alternatives, the effects of chitosan on green mold disease and the quality attributes of citrus fruits were investigated. Fruits were wounded then treated with different concentrations of chitosan 24 h before their inoculation with P. digitatum. The results of in vitro experiment demonstrated that the antifungal activity against P. digitatum was improved in concert to the increase of chitosan concentration. In an in vivo study, green mold was significantly reduced by chitosan treatments. In parallel, chitinase and glucanase activities were enhanced in coated fruits. Evidence suggested that effects of chitosan coating on green mold of mandarin fruits might be related to its fungitoxic properties against the pathogen and/or the elicitation of biochemical defense responses in coated fruits. Further, quality attributes including fruit firmness, surface color, juice content, and total soluble solids, were not affected by chitosan during storage. Moreover, the loss of weight was even less pronounced in chitosan-coated fruit.

  11. Thiolated chitosan nanoparticles: transfection study in the Caco-2 differentiated cell culture

    International Nuclear Information System (INIS)

    Martien, Ronny; Loretz, Brigitta; Sandbichler, Adolf Michael; Schnuerch, Andreas Bernkop

    2008-01-01

    The aim of this study was to monitor the expression of secreted protein in differentiated Caco-2 cells after transfection with nanoparticles, in order to improve gene delivery. Based on unmodified chitosan and thiolated chitosan conjugates, nanoparticles with the gene reporter pSEAP (recombinant Secreted Alkaline Phosphatase) were generated at pH 4.0. Transfection studies of thiolated chitosan in Caco-2 cells during the exponential growth phase and differentiation growth phase of the cells led to a 5.0-fold and 2.0-fold increase in protein expression when compared to unmodified chitosan nanoparticles. The mean particle size for both unmodified chitosan and cross-linked thiolated chitosan nanoparticles is 212.2 ± 86 and 113.6 ± 40 nm, respectively. The zeta potential of nanoparticles was determined to be 7.9 ± 0.38 mV for unmodified chitosan nanoparticles and 4.3 ± 0.74 mV for cross-linked thiolated chitosan nanoparticles. Red blood cell lysis evaluation was used to evaluate the membrane damaging properties of unmodified and thiolated chitosan nanoparticles and led to 4.61 ± 0.36% and 2.29 ± 0.25% lysis, respectively. Additionally, cross-linked thiolated chitosan nanoparticles were found to exhibit higher stability toward degradation in gastric juices. Furthermore the reversible effect of thiolated chitosan on barrier properties was monitored by measuring the transepithelial electrical resistance (TEER) and is supported by immunohistochemical staining for the tight junction protein claudin. According to these results cross-linked thiolated chitosan nanoparticles have the potential to be used as a non-viral vector system for gene therapy

  12. Significance of Glucose Addition on Chitosan-Glycerophosphate Hydrogel Properties

    Directory of Open Access Journals (Sweden)

    Dian Susanthy

    2016-03-01

    Full Text Available Chitosan-glycerophosphate hydrogel can be used as dental scaffold due to its thermosensitivity, gelation performance at body temperature, suitable acidity for body condition, biocompatibility, and ability to provide good environment for cell proliferation and differentiation. Previous study showed that glucose addition to the chitosan solution before steam sterilization improved its hydrogel mechanical strength. However, the effectiveness of glucose addition was still doubted because glucose might undergo Maillard reaction in that particular condition. The aims of this study are to confirm whether the glucose addition can increase the hydrogel mechanical strength and gelation rate effectively and also to compare their performance to be dental scaffold. This research was performed through several steps, namely preparation of chitosan-glycerophosphate solution, addition of glucose, gelation time test, gel mechanical strength measurement, functional group analysis, and physical properties measurements (pH, viscosity, and pore size. The result showed that glucose addition did not improve the hydrogel mechanical strength and gelation rate, neither when it was added before nor after steam sterilization. Glucose addition before steam sterilization seemed to trigger Maillard reaction or browning effect, while glucose addition after steam sterilization increased the amount of free water molecules in the hydrogel. Chitosan and glycerophosphate interact physically, but interaction between chitosan and glucose seems to occur chemically and followed by the formation of free water molecules. Glucose addition decreases the solution viscosity and hydrogel pore size so the hydrogel performance as dental scaffold is lowered.

  13. Production and characterization of chitosan/gelatin/β-TCP scaffolds for improved bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Serra, I.R.; Fradique, R.; Vallejo, M.C.S.; Correia, T.R.; Miguel, S.P.; Correia, I.J., E-mail: icorreia@ubi.pt

    2015-10-01

    Recently, bone tissue engineering emerged as a viable therapeutic alternative, comprising bone implants and new personalized scaffolds to be used in bone replacement and regeneration. In this study, biocompatible scaffolds were produced by freeze-drying, using different formulations (chitosan, chitosan/gelatin, chitosan/β-TCP and chitosan/gelatin/β-TCP) to be used as temporary templates during bone tissue regeneration. Sample characterization was performed through attenuated total reflectance-Fourier transform infrared spectroscopy, X-ray diffraction and energy dispersive spectroscopy analysis. Mechanical characterization and porosity analysis were performed through uniaxial compression test and liquid displacement method, respectively. In vitro studies were also done to evaluate the biomineralization activity and the cytotoxic profile of the scaffolds. Scanning electron and confocal microscopy analysis were used to study cell adhesion and proliferation at the scaffold surface and within their structure. Moreover, the antibacterial activity of the scaffolds was also evaluated through the agar diffusion method. Overall, the results obtained revealed that the produced scaffolds are bioactive and biocompatible, allow cell internalization and show antimicrobial activity against Staphylococcus aureus. Such, make these 3D structures as potential candidates for being used on the bone tissue regeneration, since they promote cell adhesion and proliferation and also prevent biofilm development at their surfaces, which is usually the main cause of implant failure. - Highlights: • Production of 3D scaffolds composed by chitosan/gelatin/β-TCP by freeze-drying for bone regeneration • Physicochemical characterization of the bone substitutes by SEM, FTIR, XRD and EDS • Evaluation of the cytotoxic profile and antibacterial activity of the 3D structures through in vitro assays.

  14. Production and characterization of chitosan/gelatin/β-TCP scaffolds for improved bone tissue regeneration

    International Nuclear Information System (INIS)

    Serra, I.R.; Fradique, R.; Vallejo, M.C.S.; Correia, T.R.; Miguel, S.P.; Correia, I.J.

    2015-01-01

    Recently, bone tissue engineering emerged as a viable therapeutic alternative, comprising bone implants and new personalized scaffolds to be used in bone replacement and regeneration. In this study, biocompatible scaffolds were produced by freeze-drying, using different formulations (chitosan, chitosan/gelatin, chitosan/β-TCP and chitosan/gelatin/β-TCP) to be used as temporary templates during bone tissue regeneration. Sample characterization was performed through attenuated total reflectance-Fourier transform infrared spectroscopy, X-ray diffraction and energy dispersive spectroscopy analysis. Mechanical characterization and porosity analysis were performed through uniaxial compression test and liquid displacement method, respectively. In vitro studies were also done to evaluate the biomineralization activity and the cytotoxic profile of the scaffolds. Scanning electron and confocal microscopy analysis were used to study cell adhesion and proliferation at the scaffold surface and within their structure. Moreover, the antibacterial activity of the scaffolds was also evaluated through the agar diffusion method. Overall, the results obtained revealed that the produced scaffolds are bioactive and biocompatible, allow cell internalization and show antimicrobial activity against Staphylococcus aureus. Such, make these 3D structures as potential candidates for being used on the bone tissue regeneration, since they promote cell adhesion and proliferation and also prevent biofilm development at their surfaces, which is usually the main cause of implant failure. - Highlights: • Production of 3D scaffolds composed by chitosan/gelatin/β-TCP by freeze-drying for bone regeneration • Physicochemical characterization of the bone substitutes by SEM, FTIR, XRD and EDS • Evaluation of the cytotoxic profile and antibacterial activity of the 3D structures through in vitro assays

  15. Gelatin/chitosan biofilm: preparation and characterization

    International Nuclear Information System (INIS)

    Trindade, Luciane da C.; Nunes, Raquel A.; Diniz, Nadie K.S.; Braga, Carla R.C.; Silva, Suedina M. de Lima

    2011-01-01

    In this study, gelatin, chitosan and gelatin/chitosan bio films using the ratio of gelatin/chitosan (50/50) were prepared by casting method. The bio films prepared were characterized by X-ray diffraction, scanning electron microscopy and dissolution ratio. According to the results, the incorporation of chitosan into gelatin indicate the decrease of crystallinity of chitosan, a compact structure without large pores and that the dissolution of gelatin/chitosan film is little influenced by hot water than gelatin films. (author)

  16. Utilization of maize cob biochar and rice husk charcoal as soil amendments for improving acid soil fertility and productivity

    Directory of Open Access Journals (Sweden)

    Nurhidayati

    2014-10-01

    Full Text Available The decline in soil fertility in agricultural land is a major problem that causes a decrease in the production of food crops. One of the causes of the decline in soil fertility is declining soil pH that caused the decline in the availability of nutrients in the soil. This study aimed to assess the influence of alternative liming materials derived from maize cob biochar and rice husk charcoal compared to conventional lime to improve soil pH, soil nutrient availability and maize production. The experiment used a factorial complete randomized design which consisting of two factors. The first factor is the type of soil amendment which consists of three levels (calcite lime, rice husk charcoal and cob maize biochar. The second factor is the application rates of the soil amendment consisted of three levels (3, 6 and 9 t/ha and one control treatment (without soil amendment. The results of this study showed that the application of various soil amendment increased soil pH, which the pH increase of the lime application was relatively more stable over time compared to biochar and husk charcoal. The average of the soil pH increased for each soil amendment by 23% (lime, 20% (rice husk charcoal and 23% (biochar as compared with control. The increase in soil pH can increase the availability of soil N, P and K. The greatest influence of soil pH on nutrient availability was shown by the relationship between soil pH and K nutrient availability with R2 = 0.712, while for the N by R2 = 0.462 and for the P by R2 = 0.245. The relationship between the availability of N and maize yield showed a linear equation. While the relationship between the availability of P and K with the maize yield showed a quadratic equation. The highest maize yield was found in the application of biochar and rice husk charcoal with a dose of 6-9 t/ha. The results of this study suggested that biochar and husk charcoal could be used as an alternative liming material in improving acid soil

  17. Fabrication of chitosan microparticles loaded in chitosan and poly

    Indian Academy of Sciences (India)

    In recent decades, the use of microparticle-mediated drug delivery is widely applied in the field of biomedicalapplication. Here, we report the new dressing material with ciprofloxacin-loaded chitosan microparticle (CMP) impregnatedin chitosan (CH) and poly(vinyl alcohol) (PVA) scaffold for effective delivery of drug in a ...

  18. Radiation-induced changes in carboxymethylated chitosan

    International Nuclear Information System (INIS)

    Huang Ling; Peng Jing; Zhai Maolin; Li Jiuqiang; Wei Genshuan

    2007-01-01

    This study focuses on the radiation effect of γ-ray on carboxymethylated chitosan (CM-chitosan) in solid state. The changes in molecular weight of CM-chitosan with absorbed dose were monitored by viscosity method. Experimental results indicated that random chain scissions took place under irradiation. Radiation chemical yield (G d ) of CM-chitosan in solid state with N 2 -saturated was 0.49, which showed CM-chitosan has high radiation stability. Biomaterials composed of CM-chitosan can be thought to sterilize with low absorbed dose. FTIR and UV spectra showed that main chain structures of CM-chitosan were retained, carbonyl/carboxyl groups were formed and partial amino groups were eliminated in high absorbed dose. XRD patterns identified that the degradation of CM-chitosan occurred mostly in amorphous region

  19. Layer-by-Layer Alginate and Fungal Chitosan Based Edible Coatings Applied to Fruit Bars.

    Science.gov (United States)

    Bilbao-Sainz, Cristina; Chiou, Bor-Sen; Punotai, Kaylin; Olson, Donald; Williams, Tina; Wood, Delilah; Rodov, Victor; Poverenov, Elena; McHugh, Tara

    2018-05-30

    Food waste is currently being generated at an increasing rate. One proposed solution would be to convert it to biopolymers for industrial applications. We recovered chitin from mushroom waste and converted it to chitosan to produce edible coatings. We then used layer-by-layer (LbL) electrostatic deposition of the polycation chitosan and the polyanion alginate to coat fruit bars enriched with ascorbic acid. The performance of the LbL coatings was compared with those containing single layers of fungal chitosan, animal origin chitosan and alginate. Bars containing alginate-chitosan LbL coatings showed increased ascorbic acid content, antioxidant capacity, firmness and fungal growth prevention during storage. Also, the origin of the chitosan did not affect the properties of the coatings. Mushroom stalk bases could be an alternative source for isolating chitosan with similar properties to animal-based chitosan. Also, layer-by-layer assembly is a cheap, simple method that can improve the quality and safety of fruit bars. © 2018 Institute of Food Technologists®.

  20. Flexible bactericidal graphene oxide–chitosan layers for stem cell proliferation

    International Nuclear Information System (INIS)

    Mazaheri, M.; Akhavan, O.; Simchi, A.

    2014-01-01

    Highlights: • Fabrication of flexible graphene oxide–chitosan nanocomposite layers was reported. • The flexibility of the chitosan layers were improved by adding graphene oxide sheets. • The nanocomposite layers with 1.5 wt% graphene oxide content showed yielded flexible and antibacterial surfaces for stem cell proliferation. - Abstract: Graphene oxide (GO)–chitosan composite layers with stacked layer structures were synthesized using chemically exfoliated GO sheets (with lateral dimensions of ∼1 μm and thickness of ∼1 nm), and applied as antibacterial and flexible nanostructured templates for stem cell proliferation. By increasing the GO content from zero to 6 wt%, the strength and elastic modulus of the layers increased ∼80% and 45%, respectively. Similar to the chitosan layer, the GO–chitosan composite layers showed significant antibacterial activity (>77% inactivation after only 3 h) against Staphylococcus aureus bacteria. Surface density of the actin cytoskeleton fibers of human mesenchymal stem cells (hMSCs) cultured on the chitosan and GO(1.5 wt%)–chitosan composite layers was found nearly the same, while it significantly decreased by increasing the GO content to 3 and 6 wt%. Our results indicated that although a high concentration of GO in the chitosan layer (here, 6 wt%) could decelerate the proliferation of the hMSCs on the flexible layer, a low concentration of GO (i.e., 1.5 wt%) not only resulted in biocompatibility but also kept the mechanical flexibility of the self-sterilized layers for high proliferation of hMSCs

  1. Flexible bactericidal graphene oxide–chitosan layers for stem cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Mazaheri, M. [Department of Materials Science and Engineering, Sharif University of Technology, PO Box 11365-9466, Tehran (Iran, Islamic Republic of); Akhavan, O., E-mail: oakhavan@sharif.edu [Department of Physics, Sharif University of Technology, PO Box 11155-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, PO Box 14588-89694, Tehran (Iran, Islamic Republic of); Simchi, A. [Department of Materials Science and Engineering, Sharif University of Technology, PO Box 11365-9466, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, PO Box 14588-89694, Tehran (Iran, Islamic Republic of)

    2014-05-01

    Highlights: • Fabrication of flexible graphene oxide–chitosan nanocomposite layers was reported. • The flexibility of the chitosan layers were improved by adding graphene oxide sheets. • The nanocomposite layers with 1.5 wt% graphene oxide content showed yielded flexible and antibacterial surfaces for stem cell proliferation. - Abstract: Graphene oxide (GO)–chitosan composite layers with stacked layer structures were synthesized using chemically exfoliated GO sheets (with lateral dimensions of ∼1 μm and thickness of ∼1 nm), and applied as antibacterial and flexible nanostructured templates for stem cell proliferation. By increasing the GO content from zero to 6 wt%, the strength and elastic modulus of the layers increased ∼80% and 45%, respectively. Similar to the chitosan layer, the GO–chitosan composite layers showed significant antibacterial activity (>77% inactivation after only 3 h) against Staphylococcus aureus bacteria. Surface density of the actin cytoskeleton fibers of human mesenchymal stem cells (hMSCs) cultured on the chitosan and GO(1.5 wt%)–chitosan composite layers was found nearly the same, while it significantly decreased by increasing the GO content to 3 and 6 wt%. Our results indicated that although a high concentration of GO in the chitosan layer (here, 6 wt%) could decelerate the proliferation of the hMSCs on the flexible layer, a low concentration of GO (i.e., 1.5 wt%) not only resulted in biocompatibility but also kept the mechanical flexibility of the self-sterilized layers for high proliferation of hMSCs.

  2. Novel Water Soluble Chitosan Derivatives with 1,2,3-Triazolium and Their Free Radical-Scavenging Activity

    Directory of Open Access Journals (Sweden)

    Qing Li

    2018-03-01

    Full Text Available Chitosan is an abundant and renewable polysaccharide, which exhibits attractive bioactivities and natural properties. Improvement such as chemical modification of chitosan is often performed for its potential of providing high bioactivity and good water solubility. A new class of chitosan derivatives possessing 1,2,3-triazolium charged units by associating “click reaction” with efficient 1,2,3-triazole quaternization were designed and synthesized. Their free radical-scavenging activity against three free radicals was tested. The inhibitory property and water solubility of the synthesized chitosan derivatives exhibited a remarkable improvement over chitosan. It is hypothesized that triazole or triazolium groups enable the synthesized chitosan to possess obviously better radical-scavenging activity. Moreover, the scavenging activity against superoxide radical of chitosan derivatives with triazolium (IC50 < 0.01 mg mL−1 was more efficient than that of derivatives with triazole and Vitamin C. In the 1,1-diphenyl-2-picrylhydrazyl (DPPH and hydroxyl radical-scavenging assay, the same pattern were observed, which should be related to the triazolium grafted at the periphery of molecular chains.

  3. Synthesis and optimization of chitosan nanoparticles: Potential applications in nanomedicine and biomedical engineering.

    Science.gov (United States)

    Ghadi, Arezou; Mahjoub, Soleiman; Tabandeh, Fatemeh; Talebnia, Farid

    2014-01-01

    Chitosan nanoparticles have become of great interest for nanomedicine, biomedical engineering and development of new therapeutic drug release systems with improved bioavailability, increased specificity and sensitivity, and reduced pharmacological toxicity. The aim of the present study was to synthesis and optimize of the chitosan nanoparticles for industrial and biomedical applications. Fe3O4 was synthesized and optimized as magnetic core nanoparticles and then chitosan covered this magnetic core. The size and morphology of the nano-magnetic chitosan was analyzed by scanning electron microscope (SEM). Topography and size distribution of the nanoparticles were shown with two-dimensional and three-dimensional images of atomic force microscopy (AFM). The nanoparticles were analyzed using transmission electron microscopy (TEM). The chitosan nanoparticles prepared in the experiment exhibited white powder shape. The SEM micrographs of the nano-magnetic chitosan showed that they were approximately uniform spheres. The unmodified chitosan nanoparticles composed of clusters of nanoparticles with sizes ranging from 10 nm to 80 nm. AFM provides a three-dimensional surface profile. The TEM image showed physical aggregation of the chitosan nanoparticles. The results show that a novel chitosan nanoparticle was successfully synthesized and characterized. It seems that this nanoparticle like the other chitosan nano particles has potential applications for nanomedicine, biomedical engineering, industrial and pharmaceutical fields.

  4. Comparison of Milk and Maize Based Diets in Kwashiorkor ...

    African Journals Online (AJOL)

    Permeability ratios (95% confidence interval) on the milk diet improved by a mean of 6.4 (1.7 to 11.1) compared with - 6.8 (-16.8 to 5.0) in the maize group. The improved permeability on milk occurred despite more diarrhoea, which constituted 34.8% of hospital days compared to 24.3% in the maize group. Case fatality rates ...

  5. Adhesive protein interactions with chitosan: consequences for valve endothelial cell growth on tissue-engineering materials.

    Science.gov (United States)

    Cuy, Janet L; Beckstead, Benjamin L; Brown, Chad D; Hoffman, Allan S; Giachelli, Cecilia M

    2003-11-01

    Stable endothelialization of a tissue-engineered heart valve is essential for proper valve function, although adhesive characteristics of the native valve endothelial cell (VEC) have rarely been explored. This research evaluated VEC adhesive qualities and attempted to enhance VEC growth on the biopolymer chitosan, a novel tissue-engineering scaffold material with promising biological and chemical properties. Aortic VEC cultures were isolated and found to preferentially adhere to fibronectin, collagen types IV and I over laminin and osteopontin in a dose-dependent manner. Seeding of VEC onto comparison substrates revealed VEC growth and morphology to be preferential in the order: tissue culture polystyrene > gelatin, poly(DL-lactide-co-glycolide), chitosan > poly(hydroxy alkanoate). Adhesive protein precoating of chitosan did not significantly enhance VEC growth, despite equivalent protein adsorption as to polystyrene. Initial cell adhesion to protein-precoated chitosan, however, was higher than for polystyrene. Composite chitosan/collagen type IV films were investigated as an alternative to simple protein precoatings, and were shown to improve VEC growth and morphology over chitosan alone. These findings suggest potential manipulation of chitosan properties to improve amenability to valve tissue-engineering applications. Copyright 2003 Wiley Periodicals, Inc.

  6. Combining Maize Base Germplasm for Cold Tolerance Breeding

    OpenAIRE

    Rodríguez Graña, Víctor Manuel; Butrón Gómez, Ana María; Sandoya Miranda, Germán; Ordás Pérez, Amando; Revilla Temiño, Pedro

    2007-01-01

    Early planting can contribute to increased grain yield of maize (Zea mays L.), but it requires cold tolerance. A limited number of cold-tolerant maize genotypes have been reported. The objectives of this study were to test a new strategy to improve cold tolerance in maize searching for broad x narrow genetic combinations that may be useful as base populations for breeding programs, to compare genotype performance under cold-controlled and field conditions, and to establish the major genetic e...

  7. Development and Characterization of Novel Films Based on Sulfonamide-Chitosan Derivatives for Potential Wound Dressing

    Directory of Open Access Journals (Sweden)

    Oana Maria Dragostin

    2015-12-01

    Full Text Available The objective of this study was to develop new films based on chitosan functionalized with sulfonamide drugs (sulfametoxydiazine, sulfadiazine, sulfadimetho-xine, sulfamethoxazol, sulfamerazine, sulfizoxazol in order to enhance the biological effects of chitosan. The morphology and physical properties of functionalized chitosan films as well the antioxidant effects of sulfonamide-chitosan derivatives were investigated. The chitosan-derivative films showed a rough surface and hydrophilic properties, which are very important features for their use as a wound dressing. The film based on chitosan-sulfisoxazol (CS-S6 showed the highest swelling ratio (197% and the highest biodegradation rate (63.04% in comparison to chitosan film for which the swelling ratio was 190% and biodegradation rate was only 10%. Referring to the antioxidant effects the most active was chitosan-sulfamerazine (CS-S5 which was 8.3 times more active than chitosan related to DPPH (1,1-diphenyl-2-picrylhydrazyl radical scavenging ability. This compound showed also a good ferric reducing power and improved total antioxidant capacity.

  8. Characterization of bioactive chitosan and sulfated chitosan from Doryteuthis singhalensis (Ortmann, 1891).

    Science.gov (United States)

    Ramasamy, Pasiyappazham; Subhapradha, Namasivayam; Thinesh, Thangadurai; Selvin, Joseph; Selvan, Kanagaraj Muthamizh; Shanmugam, Vairamani; Shanmugam, Annaian

    2017-06-01

    Chitosan was extracted from the pen of squid Doryteuthis singhalensis and characterized using FT-IR, NMR, CHN, SEM and DSC analysis. Purified chitosan was sulfated with chlorosulfonic acid in N,N-dimethylformamide and the added sulfate group was confirmed with FT-IR analysis. The molecular weight and degree of deacetylation (DDA) of chitosan was found 226.6kDa and 83.76% respectively. Chitosan exhibited potent antioxidant activity evidenced by reducing power, chelating ability on ferrous ions and scavenging activity on DPPH, superoxide and hydroxyl radicals. The anticoagulant assay using activated partial thromboplastin time (APTT) and prothrombin time (PT) showed chitosan as a strong anticoagulant. The results of this study showed possibility of using D. singhalensis pen as a non-conventional source of natural antioxidants and anticoagulant which can be incorporated in functional food formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Surface characterization of the chitosan membrane after oxygen plasma treatment and its aging effect

    International Nuclear Information System (INIS)

    Wang Yingjun; Yin Shiheng; Ren Li; Zhao Lianna

    2009-01-01

    Chitosan has received considerable attention for biomedical applications in recent years because of its biocompatibility and biodegradability. In this paper, angle-resolved x-ray photoelectron spectroscopy (ARXPS) was carried out to investigate the chemical groups' spatial orientation on the chitosan membrane surface. Oxygen plasma treatment was also employed to improve the surface hydrophilicity of the chitosan membrane. The results of ARXPS revealed the distribution of surface polar groups, such as-OH and O=CNH 2 toward the membrane bulk, which was the origin of the chitosan membrane surface hydrophobicity. The contact angle measurements and XPS results indicated that oxygen plasma treatment can markedly improve the surface hydrophilicity and surface energy of the chitosan membrane by incorporating oxygen-containing polar groups. With the existence of the aging process, the influence of plasma treatment was not permanent, it faded with storage time. The ARXPS result discovered that the reorientation of polar functional groups generated by plasma treatment toward the membrane bulk was primarily responsible for the aging effect.

  10. Comparison of chitosan and chitosan nanoparticles on the performance and charge recombination of water-based gel electrolyte in dye sensitized solar cells.

    Science.gov (United States)

    Khalili, Malihe; Abedi, Mohammad; Amoli, Hossein Salar; Mozaffari, Seyed Ahmad

    2017-11-01

    In commercialization of liquid dye-sensitized solar cells (DSSCs), whose leakage, evaporation and toxicity of organic solvents are limiting factors, replacement of organic solvents with water-based gel electrolyte is recommended. This work reports on utilizing and comparison of chitosan and chitosan nanoparticle as different gelling agents in preparation of water-based gel electrolyte in fabrication of dye sensitized solar cells. All photovoltaic parameters such as open circuit voltage (V oc ), fill factor (FF), short circuit current density (J sc ) and conversion efficiency (η) were measured. For further characterization, electrochemical impedance spectroscopy (EIS) was used to study the charge transfer at Pt/electrolyte interface and charge recombination and electron transport at TiO 2 /dye/electrolyte interface. Significant improvements in conversion efficiency and short circuit current density of DSSCs fabricated by chitosan nanoparticle were observed that can be attributed to the higher mobility of I 3 - due to the lower viscosity and smaller size of chitosan nanoparticles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effect of strontium addition and chitosan concentration variation on cytotoxicity of chitosan-alginate-carbonate apatite based bone scaffold

    Science.gov (United States)

    Perkasa, Rilis Eka; Umniati, B. Sri; Sunendar, Bambang

    2017-09-01

    Bone scaffold is one of the most important component in bone tissue engineering. Basically, bone scaffold is a biocompatible structure designed to replace broken bone tissue temporarily. Unlike conventional bone replacements, an advanced bone scaffold should be bioactive (e.g: supporting bone growth) and biodegradable as new bone tissue grow, while retain its mechanical properties similarity with bone. It is also possible to add more bioactive substrates to bone scaffold to further support its performance. One of the substrate is strontium, an element that could improve the ability of the bone to repair itself. However, it must be noted that excessive consumption of strontium could lead to toxicity and diseases, such as osteomalacia and hypocalcemia. This research aimed to investigate the effect of strontium addition to the cytotoxic property of chitosan-alginate-carbonate apatite bone scaffold. The amount of strontium added to the bone scaffold was 5% molar of the carbonate apatite content. As a control, bone scaffold without stronsium (0% molar) were also made. The effect of chitosan concentration variation on the cytotoxicity were also observed, where the concentration varies on 1% and 3% w/v of chitosan solution. The results showed an optimum result on bone scaffold sample with 5% molar of strontium and 3% chitosan, where 87.67% cells in the performed MTS-Assay cytotoxicity testing survived. This showed that the use of up to 5% molar addition of strontium and 3% chitosan could enhance the survivability of the cell.

  12. Encapsulation of testosterone by chitosan nanoparticles.

    Science.gov (United States)

    Chanphai, P; Tajmir-Riahi, H A

    2017-05-01

    The loading of testosterone by chitosan nanoparticles was investigated, using multiple spectroscopic methods, thermodynamic analysis, TEM images and modeling. Thermodynamic parameters showed testosterone-chitosan bindings occur mainly via H-bonding and van der Waals contacts. As polymer size increased more stable steroid-chitosan conjugates formed and hydrophobic contact was also observed. The loading efficacy of testosterone-nanocarrier was 40-55% and increased as chitosan size increased. Testosterone encapsulation markedly alters chitosan morphology. Chitosan nanoparticles are capable of transporting testosterone in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The effect of calcium and chitosan metabolism to the excretion of radiostrontium in mice

    International Nuclear Information System (INIS)

    Kim, Y. H.; Bom, H. S.; Kim, J. Y.; Roh, Y. B.

    1997-01-01

    Chitosan, a natural nontoxic chelator, was reported to reduce whole body retention of radiostrontium in mice. As calcium has a similar chemical properties to strontium both of which be easily bound with hydroxyapatite structure, calcium can be either a competitor or enhancer to chitosan on the removal of radiostrontium. We compared the effect of chitosan and calcium on the excretion of ingested radiostrontium ( 85 Sr). Chitosan or calcium(CaCl 2 ) and usual food was mixed as 1:99 by weight. The mixed food to chitosan(group 1) or calcium(group 2) were given orally for 30 days before 85 Sr administration. In other groups, mixed calcium and chitosan solution (group 3), 1% calcium (group 4), or 1% chitosan solution (group 5) was given for 7 days immediately after oral administration of 85 SrCl 2 (0.25μCi). In control group, no chitosan or calcium were given. Either chitosan or calcium was effective on the removal of 85 Sr from mouse body (Table 1). Addition of calcium on chitosan did not improve or deteriorate the effect of chitosan on the removal of 85 Sr from mouse body. In conclusion, calcium was similarly effective on the removal of 85 Sr from mouse body. (author)

  14. Breeding of maize types with specific traits at the Maize Research Institute, Zemun Polje

    Directory of Open Access Journals (Sweden)

    Pajić Zorica

    2007-01-01

    Full Text Available Maize is primarily grown as an energy crop, but the use of different specific versions, such as high-oil maize, high-lysine maize, waxy maize, white-seeded maize, popping maize and sweet maize, is quite extensive. Speciality maize, due to its traits and genetic control of these traits, requires a particular attention in handling breeding material during the processes of breeding. It is especially related to prevention of uncontrolled pollination. In order to provide successful selection for a certain trait, the following specific procedures in evaluation of the trait are necessary: the estimation of a popping volume and flake quality in popping maize; the determination of sugars and harvest maturity in sweet maize; the determination of oil in selected samples of high-oil maize types, and so forth. Breeding programmes for speciality maize, except high-amylose maize, have been implemented at the Maize Research Institute, Zemun Polje, Belgrade, for the last 45 years. A great number of high-yielding sweet maize hybrids, popping maize, high-oil and high-lysine, flint and white-seeded maize hybrids were developed during this 45-year period. Auspicious selection and breeding for these traits is facilitated by the abundant genetic variability and technical and technological possibilities necessary for successful selection.

  15. Enriched fluoride sorption using alumina/chitosan composite

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Natrayasamy, E-mail: natrayasamy_viswanathan@rediffmail.com [Department of Chemistry, Anna University Tiruchirappalli - Dindigul Campus, Dindigul 624 622, Tamil Nadu (India); Meenakshi, S., E-mail: drs_meena@rediffmail.com [Department of Chemistry, Gandhigram Rural University, Gandhigram 624 302, Tamil Nadu (India)

    2010-06-15

    Alumina possesses an appreciable defluoridation capacity (DC) of 1566 mg F{sup -}/kg. In order to improve its DC, it is aimed to prepare alumina polymeric composites using the chitosan. Alumina/chitosan (AlCs) composite was prepared by incorporating alumina particles in the chitosan polymeric matrix, which can be made into any desired form viz., beads, candles and membranes. AlCs composite displayed a maximum DC of 3809 mg F{sup -}/kg than the alumina and chitosan (52 mg F{sup -}/kg). The fluoride removal studies were carried out in batch mode to optimize the equilibrium parameters viz., contact time, pH, co-anions and temperature. The equilibrium data was fitted with Freundlich and Langmuir isotherms to find the best fit for the sorption process. The calculated values of thermodynamic parameters indicate the nature of sorption. The surface characterisation of the sorbent was performed by FTIR, AFM and SEM with EDAX analysis. A possible mechanism of fluoride sorption by AlCs composite has been proposed. Suitability of AlCs composite at field conditions was tested with a field sample taken from a nearby fluoride-endemic village. This work provides a potential platform for the development of defluoridation technology.

  16. Chitosan-Coated Magnetic Nanoparticles with Low Chitosan Content Prepared in One-Step

    Directory of Open Access Journals (Sweden)

    Yolanda Osuna

    2012-01-01

    Full Text Available Chitosan-coated magnetic nanoparticles (CMNP were obtained at 50°C in a one-step method comprising coprecipitation in the presence of low chitosan content. CMNP showed high magnetization and superparamagnetism. They were composed of a core of 9.5 nm in average diameter and a very thin chitosan layer in accordance with electron microscopy measurements. The results from Fourier transform infrared spectrometry demonstrated that CMNP were obtained and those from thermogravimetric analysis allowed to determine that they were composed of 95 wt% of magnetic nanoparticles and 5 wt% of chitosan. 67% efficacy in the Pb+2 removal test indicated that only 60% of amino groups on CMNP surface bound to Pb, probably due to some degree of nanoparticle flocculation during the redispersion. The very low weight ratio chitosan to magnetic nanoparticles obtained in this study, 0.053, and the high yield of the precipitation reactions (≈97% are noticeable.

  17. Development by extrusion of soyabari snack sticks: a nutritionally improved soya-maize product based on the Nigerian snack (kokoro).

    Science.gov (United States)

    Omueti, O; Morton, I D

    1996-01-01

    A nutritionally improved local snack compared to existing kokoro has been developed by extrusion cooking of different formulations of maize, soybean and condiments such as pepper, onion, salt, palm oil, plantain and banana. The improved snack was named as the 'soyabari snack stick'. The chemical composition of representative extruded products indicates a high level of crude protein, fat, energy, available lysine and improved in vitro digestibility compared to the usual maize-based products. The level of stachyose and raffinose were greatly reduced in the extruded products compared to raw soya. Formulations using various additives yielded products suitable for different consumers' preferences such as hot, sweet, bland, gritty or crispy and acceptable to taste assessors. Soyabari snack sticks were equally acceptable as Bombay mix, a product on the market in London. Sensory analysis showed no significant differences in the two products but the crude fibre content of Bombay mix was higher while the protein was slightly lower than for soyabari sticks. Local ingredients can produce acceptable extrudates.

  18. Structure and properties of microcrystalline chitosan

    International Nuclear Information System (INIS)

    Pighinelli, Luciano; Guimaraes, Fernando Machado; Paz, Luan Rios; Zanin, Gabrielle Brehm; Kmiec, Marzena; Tedesco, Felipe Melleu; Reis, Victoria Oliva dos; Silva, Matheus Machado; Becker, Cristiane Miotto; Zehetmeyer, Gislene; Rasia, Gisele

    2016-01-01

    Full text: The microcrystalline chitosan is a modified form of chitosan; it has been elaborated from obtaining method of chitosan salts. It is characterized by special properties of the initial chitosan such as biocompatibility, bioactivity, non-toxic, biodegradability [1]. The objective of this study is to develop a different method to obtain the microcrystalline chitosan and the following characterization of the initial chitosan and MCCh. The material was characterized by FTIR, scanning of electron microscopy, SEM, nuclear magnetic resonance, NMR, and x-ray diffraction. The results indicate that the process to obtain MCCh, did not change the structure of the initial chitosan. The MCCh shows the same functional groups of the initial chitosan. The NMR results shows the acetylated and deacetylated groups. The morphology shows a homogeneous structure of surface. The X-ray diffraction shows the reduction of the crystallinity in the MCCh, indicating a bigger amorphous structure of the MCCh. The chitosan and its derivatives are polymers with excellent properties to be used in regenerative medicine because of ensure efficiency in healing process. This polysaccharide has a great potential to develop a new generation of biomaterials that can be used in regenerative medicine and tissue engineering [2]. References: [1]. LI, Q. et al. Applications and properties of chitosan. In: GOOSEN, M. F. A. (Ed.). Applications of chitin and chitosan. Basel: Technomic, 1997. p. 3-29; [2]. Luciano Pighinelli, Magdalena Kucharska, Dariuz Wawro. Preparation of Microcrystalline chitosan: (MCCh0/tricalcium phosphate complex with Hydroxyapatite in sponge and fibre from for hard tissue regeneration. (author)

  19. Structure and properties of microcrystalline chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Pighinelli, Luciano; Guimaraes, Fernando Machado; Paz, Luan Rios; Zanin, Gabrielle Brehm; Kmiec, Marzena; Tedesco, Felipe Melleu; Reis, Victoria Oliva dos; Silva, Matheus Machado, E-mail: lpighinelli@hotmail.com [Universidade Luterana, Sao Paulo, SP (Brazil); Becker, Cristiane Miotto; Zehetmeyer, Gislene; Rasia, Gisele [Centro Universitario SENAI CIMATEC, Salvador, BA (Brazil). Instituto de Engenharia de Materiais Polimericos

    2016-07-01

    Full text: The microcrystalline chitosan is a modified form of chitosan; it has been elaborated from obtaining method of chitosan salts. It is characterized by special properties of the initial chitosan such as biocompatibility, bioactivity, non-toxic, biodegradability [1]. The objective of this study is to develop a different method to obtain the microcrystalline chitosan and the following characterization of the initial chitosan and MCCh. The material was characterized by FTIR, scanning of electron microscopy, SEM, nuclear magnetic resonance, NMR, and x-ray diffraction. The results indicate that the process to obtain MCCh, did not change the structure of the initial chitosan. The MCCh shows the same functional groups of the initial chitosan. The NMR results shows the acetylated and deacetylated groups. The morphology shows a homogeneous structure of surface. The X-ray diffraction shows the reduction of the crystallinity in the MCCh, indicating a bigger amorphous structure of the MCCh. The chitosan and its derivatives are polymers with excellent properties to be used in regenerative medicine because of ensure efficiency in healing process. This polysaccharide has a great potential to develop a new generation of biomaterials that can be used in regenerative medicine and tissue engineering [2]. References: [1]. LI, Q. et al. Applications and properties of chitosan. In: GOOSEN, M. F. A. (Ed.). Applications of chitin and chitosan. Basel: Technomic, 1997. p. 3-29; [2]. Luciano Pighinelli, Magdalena Kucharska, Dariuz Wawro. Preparation of Microcrystalline chitosan: (MCCh0/tricalcium phosphate complex with Hydroxyapatite in sponge and fibre from for hard tissue regeneration. (author)

  20. A bioprintable form of chitosan hydrogel for bone tissue engineering.

    Science.gov (United States)

    Demirtaş, Tuğrul Tolga; Irmak, Gülseren; Gümüşderelioğlu, Menemşe

    2017-07-13

    alginate and chitosan hydrogels improved cell viability, proliferation and osteogenic differentiation.

  1. Chitosan-based water-propelled micromotors with strong antibacterial activity.

    Science.gov (United States)

    Delezuk, Jorge A M; Ramírez-Herrera, Doris E; Esteban-Fernández de Ávila, Berta; Wang, Joseph

    2017-02-09

    A rapid and efficient micromotor-based bacteria killing strategy is described. The new antibacterial approach couples the attractive antibacterial properties of chitosan with the efficient water-powered propulsion of magnesium (Mg) micromotors. These Janus micromotors consist of Mg microparticles coated with the biodegradable and biocompatible polymers poly(lactic-co-glycolic acid) (PLGA), alginate (Alg) and chitosan (Chi), with the latter responsible for the antibacterial properties of the micromotor. The distinct speed and efficiency advantages of the new micromotor-based environmentally friendly antibacterial approach have been demonstrated in various control experiments by treating drinking water contaminated with model Escherichia coli (E. coli) bacteria. The new dynamic antibacterial strategy offers dramatic improvements in the antibacterial efficiency, compared to static chitosan-coated microparticles (e.g., 27-fold enhancement), with a 96% killing efficiency within 10 min. Potential real-life applications of these chitosan-based micromotors for environmental remediation have been demonstrated by the efficient treatment of seawater and fresh water samples contaminated with unknown bacteria. Coupling the efficient water-driven propulsion of such biodegradable and biocompatible micromotors with the antibacterial properties of chitosan holds great considerable promise for advanced antimicrobial water treatment operation.

  2. Preparation of Low Molecular Weight Chitosan by Radiation and its Application for Plant Growth Promoter. Chapter 10

    Energy Technology Data Exchange (ETDEWEB)

    Darwis, D.; Puspitasari, T.; Iramani, D.; Susilowati, Sri; Pangerteni, D.S., E-mail: darmawan_p3tir@batan.go.id [National Nuclear Energy Agency, Centre for Application of Isotopes and Radiation Technology (Indonesia)

    2014-07-15

    Chitosan was prepared through the alkaline deacetylation of chitin from shrimp shell waste. Chitosan with a degree of deacetylation of about 70% was produced by hot alkaline deacetylation (DDA) at 90°C for 8 hours or at room temperature deacetylation for 7 days. Through these processes, chitosan with an average molecular weight (Mw) of 141 k Dalton was obtained. Low molecular weight chitosan, Mw 14 k Dalton called “Fitosan” was prepared by irradiating chitosan using gamma rays at a dose of 75 kGy. The results showed that gamma irradiation is an effective method of degrading chitosan by cleavages of glycosidic bond. To improve crop yields and suppress diseases due to virus, bacteria, and fungi, Fitosan was successfully applied to chili, potato, and soybean. Socio-economic impacts of the use of Fitosan on the plants include increased income and improvement of the welfare of farmers. (author)

  3. Applying CSM-CERES-Maize to define a sowing window for irrigated maize crop - The Riacho´s Farm case study

    Directory of Open Access Journals (Sweden)

    Denise Freitas Silva

    2011-08-01

    Full Text Available Irrigation use constitutes an alternative to improve maize production in Central Minas Gerais State, Brazil. However, even under adequate water supply conditions, other environmental factors may influence maize crop growth and development and may, ultimately, affect grain yield. This study aimed to establish a sowing window for irrigated maize crop, based on simulation results obtained with the decision support model CSM-CERES-Maize. Simulations were made for crop management conditions of Riacho´s Farm, located in Matozinhos, Minas Gerais State, Brazil. It was employed the model´s seasonal tool, along with a data set containing 46 years of weather data records, to simulate maize yield for weekly sowing scenarios, starting on August 1st and ending on July 24th of each year. One defined an irrigated maize sowing window, taking into account the yield break risk that a farmer would be willing to take. The model proved to be an interesting tool to assist in decision making, regarding crop and irrigation management, for an irrigated maize production system. Assuming a 10% yield break in the expected average maximum maize yield, it was defined as sowing window, the period from January 23rd to March 6th, with February 20th as the best sowing date. Other sowing windows may be established according to the risk that the farmer would be willing to take.

  4. S-protected thiolated chitosan: synthesis and in vitro characterization.

    Science.gov (United States)

    Dünnhaupt, Sarah; Barthelmes, Jan; Thurner, Clemens C; Waldner, Claudia; Sakloetsakun, Duangkamon; Bernkop-Schnürch, Andreas

    2012-10-01

    Purpose of the present study was the generation and evaluation of novel thiolated chitosans, so-named S-protected thiolated chitosans as mucosal drug delivery systems. Stability of all conjugates concerning swelling and disintegration behavior as well as drug release was examined. Mucoadhesive properties were evaluated in vitro on intestinal mucosa. Different thiolated chitosans were generated displaying increasing amounts of attached free thiol groups on the polymer, whereby more than 50% of these thiol groups were linked with 6-mercaptonicotinamide. Based on the implementation of this hydrophobic residue, the swelling behavior was 2-fold decreased, whereas stability was essentially improved. Their mucoadhesive properties were 2- and 14-fold increased compared to corresponding thiolated and unmodified chitosans, respectively. Release studies out of matrix tablets comprising the novel conjugates revealed a controlled release of a model peptide. Accordingly, S-protected thiomers represent a promising type of mucoadhesive polymers for the development of various mucosal drug delivery systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Genetic diversity of Pakistani maize genotypes using chromosome ...

    African Journals Online (AJOL)

    For improvement of maize crop presence of genetic diversity in the germplasm is very important. This study was conducted to determine genetic diversity among 17 Pakistani maize genotypes using 10 simple sequence repeat (SSR) primer sets. All the amplification products were in the range of <250-750 bp. To estimate the ...

  6. Breeding of maize types with specific traits at the Maize Research Institute, Zemun Polje

    OpenAIRE

    Pajić Zorica

    2007-01-01

    Maize is primarily grown as an energy crop, but the use of different specific versions, such as high-oil maize, high-lysine maize, waxy maize, white-seeded maize, popping maize and sweet maize, is quite extensive. Speciality maize, due to its traits and genetic control of these traits, requires a particular attention in handling breeding material during the processes of breeding. It is especially related to prevention of uncontrolled pollination. In order to provide successful selection for a...

  7. Synthesis, characterization and biological activity of C6-Schiff bases derivatives of chitosan.

    Science.gov (United States)

    Xu, Ruibo; Aotegen, Bayaer; Zhong, Zhimei

    2017-12-01

    C 6 -Schiff bases derivatives of chitosan were synthesized for the first time. C 2 -amino groups and C 3 -hydroxy groups were firstly protected by CuSO 4 ·5H 2 O, and the C 6 -hydroxy was then transformed into aldehyde, which then reacted with anilines through nucleophilic addition to introduce the CN group at C 6 -position in chitosan chain. Finally, C 6 -Schiff bases derivatives of chitosan were got by the deprotection of C 2 -NH 2 with cation exchange resin. The structures and properties of the new synthesized products were characterized by Fourier transform infrared spectroscopy, 13 C NMR, SEM image, and elemental analysis. The antibacterial activities of derivatives were tested in the experiment, and the results showed that the prepared chitosan derivatives had significantly improved antibacterial activity toward Staphylococcus aureus and Escherichia coli. The Cytotoxicity test showed that the prepared chitosan derivatives had low Cytotoxicity, compared with chitosan and C 2 -benzaldehyde Schiff bases of chitosan. This paper allowed a new method for the synthesis of Schiff bases of chitosan, which was enlightening. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Farmers’ desired traits and selection criteria for maize varieties and their implications for maize breeding: A case study from KwaZulu-Natal Province, South Africa

    Directory of Open Access Journals (Sweden)

    Julia Sibiya

    2013-08-01

    Full Text Available Adoption of hybrids and improved varieties has remained low in the smallholder farming sector of South Africa, despite maize being the staple food crop for the majority of households. The objective of this study was to establish preferred maize characteristics by farmers which can be used as selection criteria by maize breeders in crop improvement. Data were collected from three villages of a selected smallholder farming area in South Africa using a survey covering 300 households and participatory rural appraisal methodology. Results indicated a limited selection of maize varieties grown by farmers in the area compared to other communities in Africa. More than 97% of the farmers grew a local landrace called Natal-8-row or IsiZulu. Hybrids and improved open pollinated varieties were planted by less than 40% of the farmers. The Natal-8-row landrace had characteristics similar to landraces from eastern and southern Africa and closely resembled Hickory King, a landrace still popular in Southern Africa. The local landrace was preferred for its taste, recycled seed, tolerance to abiotic stresses and yield stability. Preferred characteristics of maize varieties were high yield and prolificacy, disease resistance, early maturity, white grain colour, and drying and shelling qualities. Farmers were willing to grow hybrids if the cost of seed and other inputs were affordable and their preferences were considered. Our results show that breeding opportunities exist for improving the farmers’ local varieties and maize breeders can take advantage of these preferred traits and incorporate them into existing high yielding varieties.

  9. The effect of chitosan and whey proteins-chitosan films on the growth of Penicillium expansum in apples.

    Science.gov (United States)

    Simonaitiene, Dovile; Brink, Ieva; Sipailiene, Ausra; Leskauskaite, Daiva

    2015-05-01

    Penicillium expansum causes a major post-harvest disease of apples. The aim of this study was to investigate the inhibition effect of chitosan and whey proteins-chitosan films containing different amounts of quince and cranberry juice against P. expansum on the simulation medium and on apples. The mechanical properties of films were also evaluated. The presence of cranberry and quince juice in the composition of chitosan and whey proteins-chitosan films caused a significant (P ≤ 0.05) increase in elasticity and decrease in tensile strength of films. Chitosan and whey proteins-chitosan films with quince and cranberry juice demonstrated a significant (P ≤ 0.05) inhibition effect against P. expansum growth on the simulated medium and apples. The presence of cranberry juice in the composition of chitosan and whey proteins-chitosan films resulted in a longer lag phase and a lower P. expansum growth rate on the simulation medium in comparison with films made with the addition of quince juice. These differences were not evident when experiment was conducted with apples. Addition of quince and cranberry juice to the chitosan and whey proteins-chitosan films as natural antifungal agents has some potential for prolonging the shelf life of apples. © 2014 Society of Chemical Industry.

  10. Curcumin-Loaded Chitosan/Gelatin Composite Sponge for Wound Healing Application

    Directory of Open Access Journals (Sweden)

    Van Cuong Nguyen

    2013-01-01

    Full Text Available Three composite sponges were made with 10% of curcumin and by using polymers, namely, chitosan and gelatin with various ratios. The chemical structure and morphology were evaluated by FTIR and SEM. These sponges were evaluated for water absorption capacity, antibacterial activity, in vitro drug release, and in vivo wound healing studies by excision wound model using rabbits. The in vivo study presented a greater wound closure in wounds treated with curcumin-composite sponge than those with composite sponge without curcumin and untreated group. These obtained results showed that combination of curcumin, chitosan and gelatin could improve the wound healing activity in comparison to chitosan, and gelatin without curcumin.

  11. Alfalfa (Medicago sativa L.)/Maize (Zea mays L.) Intercropping Provides a Feasible Way to Improve Yield and Economic Incomes in Farming and Pastoral Areas of Northeast China

    Science.gov (United States)

    Sun, Baoru; Peng, Yi; Yang, Hongyu; Li, Zhijian; Gao, Yingzhi; Wang, Chao; Yan, Yuli; Liu, Yanmei

    2014-01-01

    Given the growing challenges to food and eco-environmental security as well as sustainable development of animal husbandry in the farming and pastoral areas of northeast China, it is crucial to identify advantageous intercropping modes and some constraints limiting its popularization. In order to assess the performance of various intercropping modes of maize and alfalfa, a field experiment was conducted in a completely randomized block design with five treatments: maize monoculture in even rows, maize monoculture in alternating wide and narrow rows, alfalfa monoculture, maize intercropped with one row of alfalfa in wide rows and maize intercropped with two rows of alfalfa in wide rows. Results demonstrate that maize monoculture in alternating wide and narrow rows performed best for light transmission, grain yield and output value, compared to in even rows. When intercropped, maize intercropped with one row of alfalfa in wide rows was identified as the optimal strategy and the largely complementary ecological niches of alfalfa and maize were shown to account for the intercropping advantages, optimizing resource utilization and improving yield and economic incomes. These findings suggest that alfalfa/maize intercropping has obvious advantages over monoculture and is applicable to the farming and pastoral areas of northeast China. PMID:25329376

  12. Alfalfa (Medicago sativa L./maize (Zea mays L. intercropping provides a feasible way to improve yield and economic incomes in farming and pastoral areas of northeast China.

    Directory of Open Access Journals (Sweden)

    Baoru Sun

    Full Text Available Given the growing challenges to food and eco-environmental security as well as sustainable development of animal husbandry in the farming and pastoral areas of northeast China, it is crucial to identify advantageous intercropping modes and some constraints limiting its popularization. In order to assess the performance of various intercropping modes of maize and alfalfa, a field experiment was conducted in a completely randomized block design with five treatments: maize monoculture in even rows, maize monoculture in alternating wide and narrow rows, alfalfa monoculture, maize intercropped with one row of alfalfa in wide rows and maize intercropped with two rows of alfalfa in wide rows. Results demonstrate that maize monoculture in alternating wide and narrow rows performed best for light transmission, grain yield and output value, compared to in even rows. When intercropped, maize intercropped with one row of alfalfa in wide rows was identified as the optimal strategy and the largely complementary ecological niches of alfalfa and maize were shown to account for the intercropping advantages, optimizing resource utilization and improving yield and economic incomes. These findings suggest that alfalfa/maize intercropping has obvious advantages over monoculture and is applicable to the farming and pastoral areas of northeast China.

  13. Alfalfa (Medicago sativa L.)/maize (Zea mays L.) intercropping provides a feasible way to improve yield and economic incomes in farming and pastoral areas of northeast China.

    Science.gov (United States)

    Sun, Baoru; Peng, Yi; Yang, Hongyu; Li, Zhijian; Gao, Yingzhi; Wang, Chao; Yan, Yuli; Liu, Yanmei

    2014-01-01

    Given the growing challenges to food and eco-environmental security as well as sustainable development of animal husbandry in the farming and pastoral areas of northeast China, it is crucial to identify advantageous intercropping modes and some constraints limiting its popularization. In order to assess the performance of various intercropping modes of maize and alfalfa, a field experiment was conducted in a completely randomized block design with five treatments: maize monoculture in even rows, maize monoculture in alternating wide and narrow rows, alfalfa monoculture, maize intercropped with one row of alfalfa in wide rows and maize intercropped with two rows of alfalfa in wide rows. Results demonstrate that maize monoculture in alternating wide and narrow rows performed best for light transmission, grain yield and output value, compared to in even rows. When intercropped, maize intercropped with one row of alfalfa in wide rows was identified as the optimal strategy and the largely complementary ecological niches of alfalfa and maize were shown to account for the intercropping advantages, optimizing resource utilization and improving yield and economic incomes. These findings suggest that alfalfa/maize intercropping has obvious advantages over monoculture and is applicable to the farming and pastoral areas of northeast China.

  14. Chitosan and carboxymethyl-chitosan capping ligands: Effects on the nucleation and growth of hydroxyapatite nanoparticles for producing biocomposite membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dumont, Vitor C.; Mansur, Alexandra A.P.; Carvalho, Sandhra M.; Medeiros Borsagli, Fernanda G.L.; Pereira, Marivalda M.; Mansur, Herman S., E-mail: hmansur@demet.ufmg.br

    2016-02-01

    predominant calcium phosphate phase produced during the co-precipitation aqueous process for both the chitosan and CMC biocomposites. These novel hybrid systems based on chitosan and chitosan-derivatives with nHA composites were non-cytotoxic to a human osteoblast-like model cell line (SAOS) according to MTT in vitro assays. Moreover, the CMC-nHA biocomposites revealed a striking improvement in the cell viability response compared to the CHI-nHA biocomposite, which was attributed to the much higher surface area caused by the refinement of the nanoparticles size. Thus, the results of this study demonstrate that these novel bionanocomposite membranes offer promising perspectives as biomaterials for potential repair and replacement of cartilage and bone tissues. - Highlights: • Nanohydroxyapatite particles prepared using chitosan-based ligands via aqueous route • Effects of chitosan and CMC on the nucleation and growth of hydroxyapatite particles • Biocomposites of HA nanoparticles in chitosan and O-carboxymethyl chitosan matrices • Nanocomposites were non-cytotoxic tested with SAOS cells using in vitro MTT assay • Chitosan bionanocomposites were produced for potential bone repair bioapplications.

  15. Surface modification of chitin and chitosan with poly(3-hexylthiophene) via oxidative polymerization

    Science.gov (United States)

    Hai, Thien An Phung; Sugimoto, Ryuichi

    2018-03-01

    In the present work, the modification of biomaterials such as chitin and chitosan were successfully prepared by directly grafting poly(3-hexylthiophene) (P3HT) to their surfaces using simple oxidative polymerization with FeCl3. The thermal stability and crystallinity of grafted chitin and chitosan changed upon grafting with P3HT. The build-up of π-π* structure from the P3HT on the surface of chitin and chitosan resulted in the appearance of UV-vis absorption and fluorescence emission peaks in the range from 500 to 600 nm. Introducing P3HT to the surface of chitin and chitosan improved significantly the electrical property of chitin and chitosan with the increase in conductivity from 10-9 to 10-7 S/cm. Furthermore, the usual behavior of hydrophilic surface of chitin and chitosan that turned to hydrophobic with water contact angle of 97.7° and 107.0°, respectively in the presence of P3HT. The mechanism for graft reaction of P3HT to chitin and chitosan was also proposed and discussed.

  16. Edible Coating Using a Chitosan-Based Colloid Incorporating Grapefruit Seed Extract for Cherry Tomato Safety and Preservation.

    Science.gov (United States)

    Won, Jin Sung; Lee, Seung Jo; Park, Hyeon Hwa; Song, Kyung Bin; Min, Sea C

    2018-01-01

    Grapefruit seed extract (GSE)-containing chitosan-based coating was developed and applied to cherry tomatoes to protect them from Salmonella invasion and improve their storability. The coating colloids were produced by mixing a chitosan colloid (1% [w/w] chitosan) with GSE at various concentrations (0.5%, 0.7%, 1.0%, and 1.2% [w/w]) using high-shear mixing (10000 rpm, 2 min). Coatings with chitosan colloids containing GSE at 0.0%, 0.5%, 0.7%, and 1.0% (w/w) inactivated Salmonella on cherry tomatoes by 1.0 ± 0.3, 1.2 ± 0.3, 1.6 ± 0.1, and 2.0 ± 0.3 log CFU/cherry tomato, respectively. Coatings both with and without GSE (1.0%) effectively inhibited the growth of Salmonella and total mesophilic aerobes, reduced CO 2 generation, and retarded titratable acidity decrease during storage at 10 and 25 °C. The advantage of incorporating GSE in the formulation was demonstrated by delayed microorganism growth and reduced weight loss at 25 °C. The chitosan-GSE coating did not affect lycopene concentration, color, and sensory properties (P > 0.05). Chitosan-GSE coating shows potential for improving the microbiological safety and storability of cherry tomatoes, with stronger efficacy at 25 °C than that of chitosan coating without GSE. A novel chitosan coating containing grape fruit seed extract (GSE) improved the microbiological safety against Salmonella and storability of cherry tomatoes without altering their flavor, demonstrating its strong potential as an effective postharvest technology. Chitosan coating containing GSE might be preferable over chitosan coating without GSE for application to tomatoes that are stored at room temperature in that it more effectively inhibits microbial growth and weight loss than the coating without GSE at 25 °C. © 2017 Institute of Food Technologists®.

  17. Eugenol-loaded chitosan nanoparticles: II. Application in bio-based plastics for active packaging.

    Science.gov (United States)

    Woranuch, Sarekha; Yoksan, Rangrong

    2013-07-25

    The aim of the present research was to study the possibility of using eugenol-loaded chitosan nanoparticles as antioxidants for active bio-based packaging material. Eugenol-loaded chitosan nanoparticles were incorporated into thermoplastic flour (TPF) - a model bio-based plastic - through an extrusion process at temperatures above 150°C. The influences of eugenol-loaded chitosan nanoparticles on crystallinity, morphology, thermal properties, radical scavenging activity, reducing power, tensile properties and barrier properties of TPF were investigated. Although the incorporation of 3% (w/w) of eugenol-loaded chitosan nanoparticles significantly reduced the extensibility and the oxygen barrier property of TPF, it provided antioxidant activity and improved the water vapor barrier property. In addition, TPF containing eugenol-loaded chitosan nanoparticles exhibited superior radical scavenging activity and stronger reducing power compared with TPF containing naked eugenol. The results suggest the applicability of TPF containing eugenol-loaded chitosan nanoparticles as an antioxidant active packaging material. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. The alginate layer for improving doxorubicin release and radiolabeling stability of chitosan hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jeong Il; Lee, Chang Moon; Jeong, Hwan Seok; Hwang, Hyo Sook; Lim, Seok Tae; Sohn, Myung Hee; Jeong, Hwan Jeong [Dept. of Nuclear Medicine and Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Science, Biomedical Research Institute, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Lee, Chang Moon [Dept. of Biomedical Engineering, Chonnam National University, Yeosu (Korea, Republic of)

    2015-12-15

    Chitosan hydrogels (CSH) formed through ionic interaction with an anionic molecule are suitable as a drug carrier and a tissue engineering scaffold. However, the initial burst release of drugs from the CSH due to rapid swelling after immersing in a biofluid limits their wide application as a drug delivery carrier. In this study, alginate layering on the surface of the doxorubicin (Dox)-loaded and I-131-labeled CSH (DI-CSH) was performed. The effect of the alginate layering on drug release behavior and radiolabeling stability was investigated. Chitosan was chemically modified using a chelator for I-131 labeling. After labeling of I-131 and mixing of Dox, the chitosan solution was dropped into tripolyphosphate (TPP) solution using an electrospinning system to prepare spherical microhydrogels. The DI-CSH were immersed into alginate solution for 30 min to form the crosslinking layer on their surface. The formation of alginate layer on the DI-CSH was confirmed by Fourier transform infrared spectroscopy (FT-IR) and zeta potential analysis. In order to investigate the effect of alginate layer, studies of in vitro Dox release from the hydrogels were performed in phosphate buffered in saline (PBS, pH 7.4) at 37 °C for 12 days. The radiolabeling stability of the hydrogels was evaluated using ITLC under different experimental condition (human serum, normal saline, and PBS) at 37 °C for 12 days. Formatting the alginate-crosslinked layer on the CSH surface did not change the spherical morphology and the mean diameter (150 ± 10 μm). FT-IR spectra and zeta potential values indicate that alginate layer was formed successfully on the surface of the DI-CSH. In in vitro Dox release studies, the total percentage of the released Dox from the DI-CSH for 12 days were 60.9 ± 0.8, 67.3 ± 1.4, and 71.8 ± 2.5 % for 0.25, 0.50, and 1.00 mg Dox used to load into the hydrogels, respectively. On the other hand, after formatting alginate layer, the percentage of the

  19. Chitosan-based dressings loaded with neurotensin--an efficient strategy to improve early diabetic wound healing.

    Science.gov (United States)

    Moura, Liane I F; Dias, Ana M A; Leal, Ermelindo C; Carvalho, Lina; de Sousa, Hermínio C; Carvalho, Eugénia

    2014-02-01

    One important complication of diabetes mellitus is chronic, non-healing diabetic foot ulcers (DFUs). This study aims to develop and use dressings based on chitosan derivatives for the sustained delivery of neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing. Three different derivatives, namely N-carboxymethyl chitosan, 5-methyl pyrrolidinone chitosan (MPC) and N-succinyl chitosan, are presented as potential biomaterials for wound healing applications. Our results show that MPC has the best fluid handling capacity and delivery profile, also being non-toxic to Raw 264.7 and HaCaT cells. NT-loaded and non-loaded MPC dressings were applied to control/diabetic wounds to evaluate their in vitro/in vivo performance. The results show that the former induced more rapid healing (50% wound area reduction) in the early phases of wound healing in diabetic mice. A NT-loaded MPC foam also reduced expression of the inflammatory cytokine TNF-α (Pdiabetic skin (P<0.001), significantly increasing fibroblast migration and collagen (COL1A1, COL1A2 and COL3A1) expression and deposition. These results suggest that MPC-based dressings may work as an effective support for sustained NT release to reduce DFUs. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Radiation processing of chitosan derivative and its characteristics

    International Nuclear Information System (INIS)

    Kamarudin Bahari; Kamarolzaman Hussein; Kamaruddin Hashim; Khairul Zaman Mohd Dahlan

    2002-01-01

    Chitosan is natural polymer derived from chitin, a polysaccharide found in the exoskeleton of shrimps, crabs, fungi and others. Chitosan is a naturally occurring substance that is chemically similar to cellulose. Chitosan possesses a positive ionic charge give ability to chemically bond with negatively charged fats. Chitosan is soluble in organic acid but insoluble in water. Carboxymethyl-chitosan (cm-chitosan) is a derivative of chitosan which is water-soluble was then prepared by a carboxymethylation process of chitosan produced from local shrimp shell. A simple method for synthesis of cm-chitosan has been developed at 55 degree C in aqueous sodium hydroxide / propanol with chloroacetic acid (CAA) or sodium chloroacetate salt (SCA). The modification of chitosan to water-soluble chitosan can be used in hydrogel as anti-bacterial agent and it overcome the problem of bad smell using acetic acid. (Author)

  1. Synthesis, characterization and radiation processing of carboxymethyl-chitosan

    International Nuclear Information System (INIS)

    Kamarudin Bahari; Kamarolzaman Hussein; Kamaruddin Hashim; Khairul Zaman Mohd Dahlan

    2002-01-01

    Chitosan is natural polymer derived from chitin, a polysaccharide found in the exoskeleton of shrimps, crabs, fungi and others. Chitosan is a naturally occurring substance that is chemically similar to cellulose. Chitosan possesses a positive ionic charge give ability to chemically bond with negatively charged fats. Chitosan is soluble in organic acid but insoluble in water. Carboxymethyl-chitosan (cm-chitosan) is a derivative of chitosan which is water-soluble was then prepared by carboxymethylation process of chitosan produced from local shrimp shell. A simple method for synthesis of cm-chitosan has been developed at 55 degree C in aqueous sodium hydroxide / propanol with chloroacetic acid (CAA) or sodium chloroacetate salt (SCA). The modification of chitosan to water-soluble chitosan can be used in hydrogel as anti-bacterial and anti-fungal agent, and it overcome the problem of bad smell using organic acid. (Author)

  2. Flow Cytometry Detection of Bacterial Cell Entrapment within the Chitosan Hydrogel and Antibacterial Property of Extracted Chitosan

    Directory of Open Access Journals (Sweden)

    Nafise Sadat Majidi

    2016-09-01

    Full Text Available Background:   Chitosan is unbranched polysaccharide composed of D-glucosamine and N-acetyl-D-glucosamine. Chitosan, derived from shrimp shell, has broad antimicrobial properties against Gram-negative, Gram-positive bacteria and fungi. Methods:  Chitosan was extracted from shrimp shell and studied for cell entrapment and anti-bacterial properties. The hydrogel chitosan was used as the beads for cell entrapment and chitosan beads were designed to deliver cells and nutrients. These data confirmed with flow cytometric analyses.                 Results:   Experimental results exhibited that internal diffusion through the chitosan matrix was the main mechanism for whole gelation by TPP (Tri-polyphosphate. The minimum inhibitory concentration (MIC for chitosan against Staphylococcus aureus and Escherichia coli was 16 and 32 μg/ml respectively. Conclusion:  Despite the antimicrobial properties of chitosan, trapped bacteria in the gel network were alive and were chelated indicating that their access to the outside was limited.

  3. Study of improvement of indices maize line to establish their position in hybrids

    Directory of Open Access Journals (Sweden)

    Oxana DIRZU-COCOS

    2015-12-01

    Full Text Available Corn (Zea mays L. crop that is grown on large areas - over 140 million hectares worldwide, and 400-500 thousand ha in Moldova due to production potential broad diversity of use as food for humans, animals, birds raw material for industrial processing. The upward trend in average yields achieved is largely attributed to the improvement of scientific programs. Select the line with the characters and traits that are transmitted hereditary hybrids and contribute to their performance, ensure progress in improvement. Therefore, the process of creating inbred lines associated with combining ability testing as a measure of productivity conferred hybrids, is significant research programs. Orientation purpose of improved maize hybrids to formulas and simple change to a superior capitalization heterosis effect and perfect uniformity of plant requires changes in methodology for the creation, evaluation and classification of inbred lines.

  4. Radiation Synthesis and Application of Carboxymethylated Chitosan Hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Young Chang

    2007-08-15

    This research proposal is to investigate radiation effect of carboxymethylated chitosan in order to obtain the crosslinked carboxymethylated chitosan. The application studies on CM-chitosan- based intelligent hydrogels will be tried too. Chitin is the most abundant natural amino polysaccharide and estimated to be produced annually almost as much as cellulose. Chitosan is the deacetylated product of chitin showing the enhanced solubility in dilute acids, further, carboxymethylated chitosan (CM-chitosan) can solve in both acidic and basic physiological media, which might be good candidates as a kind of biomedical materials. Radiation technique is an important method for modification of chitin derivatives. It includes radiation-induced degradation, grafting, and crosslinking. It was found that CM-chitosan degraded in solid state or dilute aqueous solution under irradiation, but crosslinked at paste-like sate when the concentration of CM-chitosan is more than 10%. Both degraded and crosslinked CM-chitosan have antibacterial activity, so it is essential to investigate in detail the radiation effect of CM-chitosan. Study on radiation effect of CM-chitosan in different condition is beneficial to modification of CM-chitosan by irradiation technique. However, little study was reported on radiation crosslinking and application of CM-chitosan. The radiation-closslinked CM-chitosan synthesized from chitosan was characterized by a Fourier transform infrared spectroscopy (FT-IR) analysis. A kinetic swelling in water and the mechanical properties such as a gelation, water absorptivity, and gel strength were also investigated. For the preparation of crosslinked CM-chitosan by using gamma irradiation, the concentration of an aqueous CM-chitosan is above 10wt%. We confirmed that the gel contents was in the range of 15-63%, and when the irradiation dose was increased, the degree of gelation was decreased by disintegration of the CM-chitosan. In conclusion, we developed a new

  5. Radiation Synthesis and Application of Carboxymethylated Chitosan Hydrogels

    International Nuclear Information System (INIS)

    Noh, Young Chang

    2007-08-01

    This research proposal is to investigate radiation effect of carboxymethylated chitosan in order to obtain the crosslinked carboxymethylated chitosan. The application studies on CM-chitosan- based intelligent hydrogels will be tried too. Chitin is the most abundant natural amino polysaccharide and estimated to be produced annually almost as much as cellulose. Chitosan is the deacetylated product of chitin showing the enhanced solubility in dilute acids, further, carboxymethylated chitosan (CM-chitosan) can solve in both acidic and basic physiological media, which might be good candidates as a kind of biomedical materials. Radiation technique is an important method for modification of chitin derivatives. It includes radiation-induced degradation, grafting, and crosslinking. It was found that CM-chitosan degraded in solid state or dilute aqueous solution under irradiation, but crosslinked at paste-like sate when the concentration of CM-chitosan is more than 10%. Both degraded and crosslinked CM-chitosan have antibacterial activity, so it is essential to investigate in detail the radiation effect of CM-chitosan. Study on radiation effect of CM-chitosan in different condition is beneficial to modification of CM-chitosan by irradiation technique. However, little study was reported on radiation crosslinking and application of CM-chitosan. The radiation-closslinked CM-chitosan synthesized from chitosan was characterized by a Fourier transform infrared spectroscopy (FT-IR) analysis. A kinetic swelling in water and the mechanical properties such as a gelation, water absorptivity, and gel strength were also investigated. For the preparation of crosslinked CM-chitosan by using gamma irradiation, the concentration of an aqueous CM-chitosan is above 10wt%. We confirmed that the gel contents was in the range of 15-63%, and when the irradiation dose was increased, the degree of gelation was decreased by disintegration of the CM-chitosan. In conclusion, we developed a new

  6. Covalently Bonded Chitosan on Graphene Oxide via Redox Reaction

    Directory of Open Access Journals (Sweden)

    Víctor M. Castaño

    2013-03-01

    Full Text Available Carbon nanostructures have played an important role in creating a new field of materials based on carbon. Chemical modification of carbon nanostructures through grafting has been a successful step to improve dispersion and compatibility in solvents, with biomolecules and polymers to form nanocomposites. In this sense carbohydrates such as chitosan are extremely valuable because their functional groups play an important role in diversifying the applications of carbon nanomaterials. This paper reports the covalent attachment of chitosan onto graphene oxide, taking advantage of this carbohydrate at the nanometric level. Grafting is an innovative route to modify properties of graphene, a two-dimensional nanometric arrangement, which is one of the most novel and promising nanostructures. Chitosan grafting was achieved by redox reaction using different temperature conditions that impact on the morphology and features of graphene oxide sheets. Transmission Electron Microscopy, Fourier Transform Infrared, Raman and Energy Dispersive spectroscopies were used to study the surface of chitosan-grafted-graphene oxide. Results show a successful modification indicated by the functional groups found in the grafted material. Dispersions of chitosan-grafted-graphene oxide samples in water and hexane revealed different behavior due to the chemical groups attached to the graphene oxide sheet.

  7. Functionalization of titanium with chitosan via silanation: evaluation of biological and mechanical performances.

    Directory of Open Access Journals (Sweden)

    Pauline Renoud

    Full Text Available Complications in dentistry and orthopaedic surgery are mainly induced by peri-implant bacterial infections and current implant devices do not prevent such infections. The coating of antibacterial molecules such as chitosan on its surface would give the implant bioactive properties. The major challenge of this type of coating is the attachment of chitosan to a metal substrate. In this study, we propose to investigate the functionalization of titanium with chitosan via a silanation. Firstly, the surface chemistry and mechanical properties of such coating were evaluated. We also verified if the coated chitosan retained its biocompatibility with the peri-implant cells, as well as its antibacterial properties. FTIR and Tof-SIMS analyses confirmed the presence of chitosan on the titanium surface. This coating showed great scratch resistance and was strongly adhesive to the substrate. These mechanical properties were consistent with an implantology application. The Chitosan-coated surfaces showed strong inhibition of Actinomyces naeslundii growth; they nonetheless showed a non significant inhibition against Porphyromonas gingivalis after 32 hours in liquid media. The chitosan-coating also demonstrated good biocompatibility to NIH3T3 fibroblasts. Thus this method of covalent coating provides a biocompatible material with improved bioactive properties. These results proved that covalent coating of chitosan has significant potential in biomedical device implantation.

  8. Chitosan Modification and Pharmaceutical/Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Jiali Zhang

    2010-06-01

    Full Text Available Chitosan has received much attention as a functional biopolymer for diverse applications, especially in pharmaceutics and medicine. Our recent efforts focused on the chemical and biological modification of chitosan in order to increase its solubility in aqueous solutions and absorbability in the in vivo system, thus for a better use of chitosan. This review summarizes chitosan modification and its pharmaceutical/biomedical applications based on our achievements as well as the domestic and overseas developments: (1 enzymatic preparation of low molecular weight chitosans/chitooligosaccharides with their hypocholesterolemic and immuno-modulating effects; (2 the effects of chitin, chitosan and their derivatives on blood hemostasis; and (3 synthesis of a non-toxic ion ligand—D-Glucosaminic acid from Oxidation of D-Glucosamine for cancer and diabetes therapy.

  9. A sulfuric-lactic acid process for efficient purification of fungal chitosan with intact molecular weight.

    Science.gov (United States)

    Naghdi, Mitra; Zamani, Akram; Karimi, Keikhosro

    2014-02-01

    The most recent method of fungal chitosan purification, i.e., two steps of dilute sulfuric acid treatment, pretreatment of cell wall at room temperature for phosphate removal and extraction of chitosan from the phosphate free cell wall at high temperature, significantly reduces the chitosan molecular weight. This study was aimed at improvement of this method. In the pretreatment step, to choose the best conditions, cell wall of Rhizopus oryzae, containing 9% phosphate, 10% glucosamine, and 21% N-acetyl glucosamine, was treated with sulfuric, lactic, acetic, nitric, or hydrochloric acid, at room temperature. Sulfuric acid showed the best performance in phosphate removal (90%) and cell wall recovery (89%). To avoid depolymerisation of chitosan, hot sulfuric acid extraction was replaced with lactic acid treatment at room temperature, and a pure fungal chitosan was obtained (0.12 g/g cell wall). Similar pretreatment and extraction processes were conducted on pure shrimp chitosan and resulted in a chitosan recovery of higher than 87% while the reduction of chitosan viscosity was less than 15%. Therefore, the sulfuric-lactic acid method purified the fungal chitosan without significant molecular weight manipulation. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Biotechnology in maize breeding

    Directory of Open Access Journals (Sweden)

    Mladenović-Drinić Snežana

    2004-01-01

    Full Text Available Maize is one of the most important economic crops and the best studied and most tractable genetic system among monocots. The development of biotechnology has led to a great increase in our knowledge of maize genetics and understanding of the structure and behaviour of maize genomes. Conventional breeding practices can now be complemented by a number of new and powerful techniques. Some of these often referred to as molecular methods, enable scientists to see the layout of the entire genome of any organism and to select plants with preferred characteristics by "reading" at the molecular level, saving precious time and resources. DNA markers have provided valuable tools in various analyses ranging from phylogenetic analysis to the positional cloning of genes. Application of molecular markers for genetic studies of maize include: assessment of genetic variability and characterization of germ plasm, identification and fingerprinting of genotypes, estimation of genetic distance, detection of monogamic and quantitative trait loci, marker assisted selection, identification of sequence of useful candidate genes, etc. The development of high-density molecular maps which has been facilitated by PCR-based markers, have made the mapping and tagging of almost any trait possible and serve as bases for marker assisted selection. Sequencing of maize genomes would help to elucidate gene function, gene regulation and their expression. Modern biotechnology also includes an array of tools for introducing or deieting a particular gene or genes to produce plants with novel traits. Development of informatics and biotechnology are resulted in bioinformatic as well as in expansion of microarrey technique. Modern biotechnologies could complement and improve the efficiency of traditional selection and breeding techniques to enhance agricultural productivity.

  11. Chitosan use in chemical conditioning for dewatering municipal-activated sludge.

    Science.gov (United States)

    Zemmouri, H; Mameri, N; Lounici, H

    2015-01-01

    This work aims to evaluate the potential use of chitosan as an eco-friendly flocculant in chemical conditioning of municipal-activated sludge. Chitosan effectiveness was compared with synthetic cationic polyelectrolyte Sedipur CF802 (Sed CF802) and ferric chloride (FeCl₃). In this context, raw sludge samples from Beni-Messous wastewater treatment plant (WWTP) were tested. The classic jar test method was used to condition sludge samples. Capillary suction time (CST), specific resistance to filtration (SRF), cakes dry solid content and filtrate turbidity were analyzed to determine filterability, dewatering capacity of conditioned sludge and the optimum dose of each conditioner. Data exhibit that chitosan, FeCl₃and Sed CF802 improve sludge dewatering. Optimum dosages of chitosan, Sed CF802 and FeCl₃allowing CST values of 6, 5 and 9 s, were found, respectively, between 2-3, 1.5-3 and 6 kg/t ds. Both polymers have shown faster water removal with more permeable sludge. SRF values were 0.634 × 10¹², 0.932 × 10¹² and 2 × 10¹² m/kg for Sed CF802, chitosan and FeCl₃respectively. A reduction of 94.68 and 87.85% of the filtrate turbidity was obtained with optimal dosage of chitosan and Sed CF802, respectively. In contrast, 54.18% of turbidity abatement has been obtained using optimal dosage of FeCl₃.

  12. Effect of chitosan addition and gamma radiation on polymeric blends of PVP and PVAL

    International Nuclear Information System (INIS)

    Terence, M.C.; Castro, P.J.; Miranda, L.F.; Faldini, S.B.

    2010-01-01

    The objective of this project is the study of the effect of chitosan addition and the radiation with gamma rays. The polymeric blend usage is a recent development that expanded the applications of the polymers, due to the improvement of the properties of a single polymer. The PVP and PVAL were chosen because they present the main required characteristics to the formation of a hydrogel, such as water absorption and crosslinking, and the chitosan to improve the interaction between the hydrogel and the organism. The flexibility of the PVP was added with the mechanical resistance of the PVAL and the chitosan biocompatibility. With a defined concentration of PVP and PVAL, films of this blend was irradiated and also solutions with different concentrations of chitosan was prepared to obtain new films of this blend. After obtaining the films, some assays were realized to evaluate the mechanical properties. (author)

  13. Synthesis and characterization of Ag2S decorated chitosan nanocomposites and chitosan nanofibers for removal of lincosamides antibiotic.

    Science.gov (United States)

    Gupta, Vinod Kumar; Fakhri, Ali; Agarwal, Shilpi; Azad, Mona

    2017-10-01

    We report the synthesis of Ag 2 S-Chitosan nanocomposites and Ag 2 S-chitosan nanohybrids as performance adsorbents for Lincosamides such as Clindamycin antibiotic removal. Isotherms and kinetic studies were determined to understand the adsorption behavior both two adsorbent. At low adsorbent dose, removals are increased in the adsorption process, and performance is better with Ag 2 S-chitosan nanohybrids due to the special surface area increased. The average sizes and surface area of Ag 2 S-Chitosan nanocomposites and Ag 2 S-chitosan nanohybrids were found as 50nm, 70nm and 180.18, 238.24m 2 g -1 , respectively. In particular, Ag 2 S-Chitosan nanocomposites and Ag 2 S-chitosan nanohybrids show high maximum Clindamycin adsorption capacity (q max ) of 153.21, and 181.28mgg -1 , respectively. More strikingly, Ag 2 S-Chitosan nanocomposites and Ag 2 S-chitosan nanohybrids are also demonstrated to nearly completely remove Clindamycin from drinking water. The excellent adsorption performance along with their cost effective, convenient synthesis makes this range of adsorbents highly promising for commercial applications in drinking water and wastewater treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Chitosan microparticles for sustaining the topical delivery of minoxidil sulphate.

    Science.gov (United States)

    Gelfuso, Guilherme Martins; Gratieri, Taís; Simão, Patrícia Sper; de Freitas, Luís Alexandre Pedro; Lopez, Renata Fonseca Vianna

    2011-01-01

    Given the hypothesis that microparticles can penetrate the skin barrier along the transfollicular route, this work aimed to obtain and characterise chitosan microparticles loaded with minoxidil sulphate (MXS) and to study their ability to sustain the release of the drug, attempting a further application utilising them in a targeted delivery system for the topical treatment of alopecia. Chitosan microparticles, containing different proportions of MXS/polymer, were prepared by spray drying and were characterised by yield, encapsulation efficiency, size and morphology. Microparticles selected for further studies showed high encapsulation efficiency (∼82%), a mean diameter of 3.0 µm and a spherical morphology without porosities. When suspended in an ethanol/water solution, chitosan microparticles underwent instantaneous swelling, increasing their mean diameter by 90%. Release studies revealed that the chitosan microparticles were able to sustain about three times the release rate of MXS. This feature, combined with suitable size, confers to these microparticles the potential to target and improve topical therapy of alopecia with minoxidil.

  15. Core shell methyl methacrylate chitosan nanoparticles: In vitro mucoadhesion and complement activation

    Directory of Open Access Journals (Sweden)

    F Atyabi

    2011-10-01

    Full Text Available Background and the purpose of the study: Studies show that chitosan nanoparticles increase mucoadhesivity and penetration of large molecules across mucosal surface. The aim of the present study was to investigate the use of thiolated chitosan in the development of polysaccharide-coated nanoparticles in order to confer specific functionality to the system. Methods: Methyl methacrylate nanoparticles were coated with thiolated chitosan using a radical polymerization method. Thiolation was carried out using glutathione (GSH to improve mucoadhesivity and permeation enhancing properties of chitosan. Mucoadhesion studies were carried out by calculating the amount of mucin adsorbed on nanoparticles in a specific period of time. Complement consumption was assessed in human serum (HS by measurement of the hemolytic capacity of the complement system after contact with nanoparticles.   Results:   The FT-IR and 1HNMR spectra both confirmed the synthesis and showed the conjugation of thiolated chitosan to methyl methacrylate (MMA homopolymer. Nanoparticles were spherical having a mean diameter within the range of about 334-650 nm and their positive zeta potential values indicated the presence of the cationic polysaccharide at the nanoparticle surface. Increasing the amount of thiolated chitosan led to mucoadhesivity and complement activation. However there was not dose dependent correlation between these phenomenons and the absence of thiolated chitosan led to particles with larger size, and without ability to activate complement process. Major conclusion: It can be concluded that nanoparticles could be used for the mucosal delivery of peptides and proteins. Results show that the thiolated chitosan had higher mucoadhesion and complement activation than unmodified chitosan.

  16. Making better maize plants for sustainable grain production in a changing climate.

    Science.gov (United States)

    Gong, Fangping; Wu, Xiaolin; Zhang, Huiyong; Chen, Yanhui; Wang, Wei

    2015-01-01

    Achieving grain supply security with limited arable land is a major challenge in the twenty-first century, owing to the changing climate and increasing global population. Maize plays an increasingly vital role in global grain production. As a C4 plant, maize has a high yield potential. Maize is predicted to become the number one cereal in the world by 2020. However, maize production has plateaued in many countries, and hybrid and production technologies have been fully exploited. Thus, there is an urgent need to shape maize traits and architectures for increased stress tolerance and higher yield in a changing climate. Recent achievements in genomics, proteomics, and metabolomics have provided an unprecedented opportunity to make better maize. In this paper, we discuss the current challenges and potential of maize production, particularly in China. We also highlight the need for enhancing maize tolerance to drought and heat waves, summarize the elite shoot and root traits and phenotypes, and propose an ideotype for sustainable maize production in a changing climate. This will facilitate targeted maize improvement through a conventional breeding program combined with molecular techniques.

  17. Interactions between chitosan and cells measured by AFM

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Sheng-Wen; Thien, Doan Van Hong; Ho, Ming-Hua [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10617, Taiwan (China); Hsieh, Hsyue-Jen [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Li, Chung-Hsing [Division of Orthodontics and Pediatric Dentistry, Department of Dentistry, Tri-Service General Hospital, Taipei, Taiwan (China); Hung, Chang-Hsiang [Department of Dentistry, Kinmen Hospital Department of Health, Taiwan (China); Li, Hsi-Hsin, E-mail: mhho@mail.ntust.edu.t [Deputy Superintendent, Kinmen Hospital Department of Health, Taiwan (China)

    2010-10-01

    Chitosan, a biocompatible material that has been widely used in bone tissue engineering, is believed to have a high affinity to osteoblastic cells. This research is the first to prove this hypothesis. By using atomic force microscopy (AFM) with a chitosan-modified cantilever, quantitative evaluation of the interforce between chitosan and cells was carried out. A chitosan tip functionalized with Arg-Gly-Asp (RGD) was also used to measure the interforce between RGD-chitosan and osteoblastic cells. This research concluded by examining cell adhesion and spreading of chitosan substrates as further characterization of the interactions between cells and chitosan. The force measured by AFM showed that the interforce between chitosan and osteoblasts was the highest (209 nN). The smallest adhesion force (61.8 nN) appeared between chitosan and muscle fibroblasts, which did not demonstrate any osteoblastic properties. This result proved that there was a significant interaction between chitosan and bone cells, and correlated with the observations of cell attachment and spreading. The technique developed in this research directly quantified the adhesion between chitosan and cells. This is the first study to demonstrate that specific interaction exists between chitosan and osteoblasts.

  18. Interactions between chitosan and cells measured by AFM

    International Nuclear Information System (INIS)

    Hsiao, Sheng-Wen; Thien, Doan Van Hong; Ho, Ming-Hua; Hsieh, Hsyue-Jen; Li, Chung-Hsing; Hung, Chang-Hsiang; Li, Hsi-Hsin

    2010-01-01

    Chitosan, a biocompatible material that has been widely used in bone tissue engineering, is believed to have a high affinity to osteoblastic cells. This research is the first to prove this hypothesis. By using atomic force microscopy (AFM) with a chitosan-modified cantilever, quantitative evaluation of the interforce between chitosan and cells was carried out. A chitosan tip functionalized with Arg-Gly-Asp (RGD) was also used to measure the interforce between RGD-chitosan and osteoblastic cells. This research concluded by examining cell adhesion and spreading of chitosan substrates as further characterization of the interactions between cells and chitosan. The force measured by AFM showed that the interforce between chitosan and osteoblasts was the highest (209 nN). The smallest adhesion force (61.8 nN) appeared between chitosan and muscle fibroblasts, which did not demonstrate any osteoblastic properties. This result proved that there was a significant interaction between chitosan and bone cells, and correlated with the observations of cell attachment and spreading. The technique developed in this research directly quantified the adhesion between chitosan and cells. This is the first study to demonstrate that specific interaction exists between chitosan and osteoblasts.

  19. Reinforced chitosan-based heart valve scaffold and utility of bone marrow-derived mesenchymal stem cells for cardiovascular tissue engineering

    Science.gov (United States)

    Albanna, Mohammad Zaki

    Recent research has demonstrated a strong correlation between the differentiation profile of mesenchymal stem cells (MSCs) and scaffold stiffness. Chitosan is being widely studied for tissue engineering applications due to its biocompatibility and biodegradability. However, its use in load-bearing applications is limited due to moderate to low mechanical properties. In this study, we investigated the effectiveness of a fiber reinforcement method for enhancing the mechanical properties of chitosan scaffolds. Chitosan fibers were fabricated using a solution extrusion and neutralization method and incorporated into porous chitosan scaffolds. The effects of different fiber/scaffold mass ratios, fiber mechanical properties and fiber lengths on scaffold mechanical properties were studied. The results showed that incorporating fibers improved scaffold strength and stiffness in proportion to the fiber/scaffold mass ratio. A fiber-reinforced heart valve leaflet scaffold achieved strength values comparable to the radial values of human pulmonary and aortic valves. Additionally, the effects of shorter fibers (2 mm) were found to be up to 3-fold greater than longer fibers (10 mm). Despite this reduction in fiber mechanical properties caused by heparin crosslinking, the heparin-modified fibers still improved the mechanical properties of the reinforced scaffolds, but to a lesser extent than the unmodified fibers. The results demonstrate that chitosan fiber-reinforcement can be used to generate tissue-matching mechanical properties in porous chitosan scaffolds and that fiber length and mechanical properties are important parameters in defining the degree of mechanical improvement. We further studied various chemical and physical treatments to improve the mechanical properties of chitosan fibers. With combination of chemical and physical treatments, fiber stiffness improved 40fold compared to unmodified fibers. We also isolated ovine bone marrow-derived MSCs and evaluated their

  20. "Omics" of maize stress response for sustainable food production: opportunities and challenges.

    Science.gov (United States)

    Gong, Fangping; Yang, Le; Tai, Fuju; Hu, Xiuli; Wang, Wei

    2014-12-01

    Maize originated in the highlands of Mexico approximately 8700 years ago and is one of the most commonly grown cereal crops worldwide, followed by wheat and rice. Abiotic stresses (primarily drought, salinity, and high and low temperatures), together with biotic stresses (primarily fungi, viruses, and pests), negatively affect maize growth, development, and eventually production. To understand the response of maize to abiotic and biotic stresses and its mechanism of stress tolerance, high-throughput omics approaches have been used in maize stress studies. Integrated omics approaches are crucial for dissecting the temporal and spatial system-level changes that occur in maize under various stresses. In this comprehensive analysis, we review the primary types of stresses that threaten sustainable maize production; underscore the recent advances in maize stress omics, especially proteomics; and discuss the opportunities, challenges, and future directions of maize stress omics, with a view to sustainable food production. The knowledge gained from studying maize stress omics is instrumental for improving maize to cope with various stresses and to meet the food demands of the exponentially growing global population. Omics systems science offers actionable potential solutions for sustainable food production, and we present maize as a notable case study.

  1. Efficient gene delivery using chitosan-polyethylenimine hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hu-Lin; Kim, Tae-Hee; Kim, You-Kyoung; Park, In-Young; Cho, Chong-Su [Department of Agricultural Bioechnology, Seoul National University, Seoul 151-921 (Korea, Republic of); Cho, Myung-Haing [Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742 (Korea, Republic of)], E-mail: chocs@plaza.snu.ac.kr

    2008-06-01

    Chitosan and chitosan derivatives have been investigated as non-viral vectors because they have several advantages, such as biocompatibility, biodegradability, low cytotoxicity and low immunogenicity. However, low transfection efficiency and low cell specificity must be solved for their use in clinical trials. In this paper, chitosan-polyethylenimine (PEI) hybrid systems such as chitosan/PEI blend and chitosan-graft-PEI are described for efficient gene delivery because the PEI has high transfection efficiency owing to a proton sponge effect and chitosan has biocompatibility. Also, hepatocyte specificity of the galactosylated chitosan is explained after combination with PEI.

  2. Efficient gene delivery using chitosan-polyethylenimine hybrid systems

    International Nuclear Information System (INIS)

    Jiang, Hu-Lin; Kim, Tae-Hee; Kim, You-Kyoung; Park, In-Young; Cho, Chong-Su; Cho, Myung-Haing

    2008-01-01

    Chitosan and chitosan derivatives have been investigated as non-viral vectors because they have several advantages, such as biocompatibility, biodegradability, low cytotoxicity and low immunogenicity. However, low transfection efficiency and low cell specificity must be solved for their use in clinical trials. In this paper, chitosan-polyethylenimine (PEI) hybrid systems such as chitosan/PEI blend and chitosan-graft-PEI are described for efficient gene delivery because the PEI has high transfection efficiency owing to a proton sponge effect and chitosan has biocompatibility. Also, hepatocyte specificity of the galactosylated chitosan is explained after combination with PEI

  3. Application of irradiated chitosan for fruit preservation

    Energy Technology Data Exchange (ETDEWEB)

    Kieu N. Lan [Post Harvest Technology Inst. of Vietnam (Viet Nam)

    2000-09-01

    Application of irradiated chitosan has been investigated for coating of fruit preservation. Anti-fungal activity of chitosan was induced by {gamma}-ray irradiation in dry condition at 25 kGy. The irradiated chitosan can suppress the growth of Aspergillus. spp. and Fusarium. spp. isolated from Vietnam mango. Fusarium. spp. was sensitive for irradiated chitosan than the other strains. The coating from irradiated chitosan solution at dose 31 kGy has prolonged the storage life of mango from 7 to 15 days. At the 15th day mango keeps good colour, natural ripening, without spoilage, weight loss 10%, whereas the control is spoiled completely and the sample of fruit with unirradiated chitosan coating could not ripe. The effect is due to the anti-fungal activity and change in physico-chemical properties of chitosan by irradiation. Radiation causes the decrease in viscosity affecting the gas permeability of coating film. The irradiated chitosan coating has positive effect on mango that is susceptible to chilling injury at low storage temperature. (author)

  4. Application of irradiated chitosan for fruit preservation

    International Nuclear Information System (INIS)

    Kieu N, Lan; Nguyen D, Lam; Yoshii, Fumio; Kume, Tamikazu

    2000-01-01

    Application of irradiated chitosan has been investigated for coating of fruit preservation. Anti-fungal activity of chitosan was induced by γ-ray irradiation in dry condition at 25 kGy. The irradiated chitosan can suppress the growth of Aspergillus. spp. and Fusarium. spp. isolated from Vietnam mango. Fusarium. spp. was sensitive for irradiated chitosan than the other strains. The coating from irradiated chitosan solution at dose 31 kGy has prolonged the storage life of mango from 7 to 15 days. At the 15th day mango keeps good colour, natural ripening, without spoilage, weight loss 10%, whereas the control is spoiled completely and the sample of fruit with unirradiated chitosan coating could not ripe. The effect is due to the anti-fungal activity and change in physico-chemical properties of chitosan by irradiation. Radiation causes the decrease in viscosity affecting the gas permeability of coating film. The irradiated chitosan coating has positive effect on mango that is susceptible to chilling injury at low storage temperature. (author)

  5. Pengaruh Konsentrasi Antitranspiran Chitosan Terhadap Pembuahan dan Produksi Salak Gula Pasir di Luar Musim

    Directory of Open Access Journals (Sweden)

    I KETUT SUNARKA

    2016-01-01

    Full Text Available The Effect of Antitranspirant Chitosan Consentrantions to Fruit-Set and Production ff Salacca zalacca var. Gula Pasir on Off-Season. Salak Gula Pasir (Salacca zalacca var. Gula Pasir naturally flowering once every three months or four times a year. During the four times flowering, the best harvest or fruit production only once a year while the other three flowering are failed become a fruit-set. The failure was caused by rainfall and low rainy time. This research aimed to know the effect of several Antitranspirant Chitosan Consentrations to the success of flower to become a fruit (fruit-set on Salacca zalacca var. Gula Pasir. This research used random sampling where the area was divided into four Antitranspirant Chitosan Consentrations. The factor of Antitranspirant Chitosan Consentrations consists of four levels (0%, 15%, 30%, and 45%. The research was conducted at the central production of Salacca zalacca var. Gula Pasir in Sibetan Village, Bebandem District, Karangasem Regency. The result of giving Antitranspirant Chitosan Consentrations at 45% was effective improved the success of flower to become a fruit-set of 64,48% on Gadu Season while on Sela II Season it effective improved 84,38% at the 30% consentrations.

  6. Effects of Chitosan Alkali Pretreatment on the Preparation of Electrospun PCL/Chitosan Blend Nanofibrous Scaffolds for Tissue Engineering Application

    Directory of Open Access Journals (Sweden)

    Fatemeh Roozbahani

    2013-01-01

    Full Text Available Recently, nanofibrous scaffolds have been used in the field of biomedical engineering as wound dressings, tissue engineering scaffolds, and drug delivery applications. The electrospun nanofibrous scaffolds can be used as carriers for several types of drugs, genes, and growth factors. PCL is one of the most commonly applied synthetic polymers for medical use because of its biocompatibility and slow biodegradability. PCL is hydrophobic and has no cell recognition sites on its structure. Electrospinning of chitosan and PCL blend was investigated in formic acid/acetic acid as the solvent with different PCL/chitosan ratios. High viscosity of chitosan solutions makes difficulties in the electrospinning process. Strong hydrogen bonds in a 3D network in acidic condition prevent the movement of polymeric chains exposed to the electrical field. Consequently, the amount of chitosan in PCL/chitosan blend was limited and more challenging when the concentration of PCL increases. The treatment of chitosan in alkali condition under high temperature reduced its molecular weight. Longer treatment time further decreased the molecular weight of chitosan and hence its viscosity. Electrospinning of PCL/chitosan blend was possible at higher chitosan ratio, and SEM images showed a decrease in fiber diameter and narrower distribution with increase in the chitosan ratio.

  7. Diatomite as a novel composite ingredient for chitosan film with enhanced physicochemical properties.

    Science.gov (United States)

    Akyuz, Lalehan; Kaya, Murat; Koc, Behlul; Mujtaba, Muhammad; Ilk, Sedef; Labidi, Jalel; Salaberria, Asier M; Cakmak, Yavuz Selim; Yildiz, Aysegul

    2017-12-01

    Practical applications of biopolymers in different industries are gaining considerable increase day by day. But still, these biopolymers lack important properties in order to meet the industrial demands. In the same regard, in the current study, chitosan composite films are produced by incorporating diatomite soil at two different concentrations. In order to obtain a homogeneous film, glutaraldehyde was supplemented to chitosan solution as a cross-linker. Compositing diatomaceous earth to chitosan film resulted in improvement of various important physicochemical properties compared to control such as; enhanced film wettability, increase elongation at break and improved thermal stability (264-277°C). The microstructure of the film was observed to haveconsisted of homogeneously distributed blister-shaped structures arised due to the incorporation of diatomite. The incorporation of diatomite did not influence the overall antioxidant activity of the composite films, which can be ascribe to the difficulty radicals formation. Chitosan film incorporated with increasing fraction of diatomite revealed a notable enhancement in the antimicrobial activity. Additionally with the present study, for the first time possible interactions between chitosan/diatomite were determined via quantum chemical calculations. Current study will be helpful in giving a new biotechnological perspective to diatom in terms of its successful application in hydrophobic composite film production. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. MaizeGDB: The Maize Genetics and Genomics Database.

    Science.gov (United States)

    Harper, Lisa; Gardiner, Jack; Andorf, Carson; Lawrence, Carolyn J

    2016-01-01

    MaizeGDB is the community database for biological information about the crop plant Zea mays. Genomic, genetic, sequence, gene product, functional characterization, literature reference, and person/organization contact information are among the datatypes stored at MaizeGDB. At the project's website ( http://www.maizegdb.org ) are custom interfaces enabling researchers to browse data and to seek out specific information matching explicit search criteria. In addition, pre-compiled reports are made available for particular types of data and bulletin boards are provided to facilitate communication and coordination among members of the community of maize geneticists.

  9. Curcumin drug delivery by vanillin-chitosan coated with calcium ferrite hybrid nanoparticles as carrier.

    Science.gov (United States)

    Kamaraj, Sriram; Palanisamy, Uma Maheswari; Kadhar Mohamed, Meera Sheriffa Begum; Gangasalam, Arthanareeswaran; Maria, Gover Antoniraj; Kandasamy, Ruckmani

    2018-04-30

    The aim of the present investigation is the development, optimization and characterization of curcumin-loaded hybrid nanoparticles of vanillin-chitosan coated with super paramagnetic calcium ferrite. The functionally modified vanillin-chitosan was prepared by the Schiff base reaction to enhance the hydrophobic drug encapsulation efficiency. Calcium ferrite (CFNP) nano particles were added to the vanillin modified chitosan to improve the biocompatibility. The vanillin-chitosan-CFNP, hybrid nanoparticle carrier was obtained by ionic gelation method. Characterizations of the hybrid materials were performed by XRD, FTIR, 1 H NMR, TGA, AFM and SEM techniques to ensure the modifications on the chitosan material. Taguchi method was applied to optimize the drug (curcumin) encapsulation efficiency by varying the drug to chitosan-vanillin, CFNP to chitosan-vanillin and TPP (sodium tripolyphospate) to chitosan-vanillin ratios. The maximum encapsulation efficiency was obtained as 98.3% under the conditions of 0.1, 0.75 and 1.0 for the drug to chitosan-vanillin, CFNP to chitosan-vanillin and TPP to chitosan-vanillin ratios, respectively. The curcumin release was performed at various pH, initial drug loading concentrations and magnetic fields. The drug release mechanism was predicted by fitting the experimental kinetic data with various drug release models. The drug release profiles showed the best fit with Higuchi model under the most of conditions. The drug release mechanism followed both non-Fickian diffusion and case II transport mechanism for chitosan, however the non-Fickian diffusion mechanism was followed for the vanillin modified chitosan. The biocompatibility of the hybrid material was tested using L929 fibroblast cells. The cytotoxicity test was performed against MCF-7 breast cancer cell line to check the anticancer property of the hybrid nano carrier with the curcumin drug. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. STIFFNESS MODIFICATION OF COTTON IN CHITOSAN TREATMENT

    Directory of Open Access Journals (Sweden)

    CAMPOS Juan

    2017-05-01

    Full Text Available Chitosan is a biopolymer obtained from chitin, and among their most important aspects highlights its applications in a lot of industrial sectors due to its intrinsic properties, especially in the textile sector. In the last years, chitosan is widely used in the cotton and wool finishing processes due to its bond between them and its properties as an antifungical and antimicrobial properties. In this paper three different molecular weight chitosan are used in the finishing process of cotton to evaluate its influence in the surface properties modification. In order to evaluate the effect of the treatment with chitosan, flexural stiffness test is performed in warp and weft direction, and then the total value is calculated. The cotton fabric is treated with 5 g/L of different types of chitosan in an impregnation bath. This study shows the extent of surface properties modification of the cotton provided by three types of chitosan treatment. The results show that all types of chitosan modify the cotton flexural rigidity properties but the one which modifies it in a relevant manner is chitosan originated from shrimps. Chitosan, textile, flexural stiffnes, chitin, cotton.

  11. Genome-wide recombination dynamics are associated with phenotypic variation in maize.

    Science.gov (United States)

    Pan, Qingchun; Li, Lin; Yang, Xiaohong; Tong, Hao; Xu, Shutu; Li, Zhigang; Li, Weiya; Muehlbauer, Gary J; Li, Jiansheng; Yan, Jianbing

    2016-05-01

    Meiotic recombination is a major driver of genetic diversity, species evolution, and agricultural improvement. Thus, an understanding of the genetic recombination landscape across the maize (Zea mays) genome will provide insight and tools for further study of maize evolution and improvement. Here, we used c. 50 000 single nucleotide polymorphisms to precisely map recombination events in 12 artificial maize segregating populations. We observed substantial variation in the recombination frequency and distribution along the ten maize chromosomes among the 12 populations and identified 143 recombination hot regions. Recombination breakpoints were partitioned into intragenic and intergenic events. Interestingly, an increase in the number of genes containing recombination events was accompanied by a decrease in the number of recombination events per gene. This kept the overall number of intragenic recombination events nearly invariable in a given population, suggesting that the recombination variation observed among populations was largely attributed to intergenic recombination. However, significant associations between intragenic recombination events and variation in gene expression and agronomic traits were observed, suggesting potential roles for intragenic recombination in plant phenotypic diversity. Our results provide a comprehensive view of the maize recombination landscape, and show an association between recombination, gene expression and phenotypic variation, which may enhance crop genetic improvement. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  12. Effect of caraway essential oil on the antioxidant and antimicrobial activity of chitosan film

    Directory of Open Access Journals (Sweden)

    Hromiš Nevena M.

    2015-01-01

    Full Text Available The aim of this study was to evaluate bioactivity of chitosan film with incorporated caraway essential oil by measuring antioxidant and antimicrobial activity. A Fourier transform infrared spectroscopy was used to determine the potential interaction of functional groups of chitosan film and incorporated caraway essential oil. New detected peaks and main shifts in the peaks of chitosan spectra are attributed mainly to presence of s-(+-carvone and limonene, the main components of caraway essential oil. The antioxidant activity of chitosan film was analyzed by DPPH method. Chitosan film without incorporated caraway essential oil showed the lowest scavenging ability (29.95%, after 24 h. The addition of different concentrations of caraway essential oil into chitosan film significantly enhanced antioxidant activity of pure chitosan film, reaching the maximum of 95%. ASTM E 2149 - 01 method was performed to evaluate the antimicrobial activity of chitosan films. The reduction of bacteria cell number in contact with examined films was tested on Gram-positive bacteria Staphylococcus aureus and Listeria monocytogenes and Gram-negative bacteria Escherichia coli and Salmonella Typhimurium. The most sensitive bacteria was Staphylococcus aureus and the most resistant bacteria was Salmonella Typhimurium for all tested films. These results suggested that incorporation of caraway essential oil into chitosan film significantly improved its antioxidant and antimicrobial activity. The film showed a great potential to be used as an active packaging material.

  13. Evaluation of Inulin Replacing Chitosan in a Polyurethane/Polysaccharide Material for Pb2+ Removal.

    Science.gov (United States)

    Hernández-Martínez, Angel Ramon; Molina, Gustavo A; Jiménez-Hernández, Luis Fernando; Oskam, Adrian Hendrik; Fonseca, Gerardo; Estevez, Miriam

    2017-11-29

    Downstream waste from industry and other industrial processes could increase concentration of heavy metals in water. These pollutants are commonly removed by adsorption because it is an effective and economical method. Previously, we reported adsorption capacity of a chitosan/polyurethane/titanium dioxide (TiO₂) composite for three ions in a dynamic wastewater system. There, increasing the chitosan concentration in composite increased the cation removal as well; however, for ratios higher than 50% of chitosan/TiO₂, the manufacturing cost increased significantly. In this work, we address the manufacturing cost problem by proposing a new formulation of the composite. Our hypothesis is that inulin could replace chitosan in the composite formulation, either wholly or in part. In this exploratory research, three blends were prepared with a polyurethane matrix using inulin or/and chitosan. Adsorption was evaluated using a colorimetric method and the Langmuir and Freundlich models. Fourier-transform infrared spectroscopy (FTIR) spectra, scanning electron microscopy (SEM) micrographs, differential scanning calorimetry and thermogravimetric analysis curves were obtained to characterize blends. Results indicate that blends are suitable for toxic materials removal (specifically lead II, Pb 2+ ). Material characterization indicates that polysaccharides were distributed in polyurethane's external part, thus improving adsorption. Thermal degradation of materials was found above 200 °C. Comparing the blends data, inulin could replace chitosan in part and thereby improve the cost efficiency and scalability of the production process of the polyurethane based-adsorbent. Further research with different inulin/chitosan ratios in the adsorbent and experiments with a dynamic system are justified.

  14. Evaluation of Inulin Replacing Chitosan in a Polyurethane/Polysaccharide Material for Pb2+ Removal

    Directory of Open Access Journals (Sweden)

    Angel Ramon Hernández-Martínez

    2017-11-01

    Full Text Available Downstream waste from industry and other industrial processes could increase concentration of heavy metals in water. These pollutants are commonly removed by adsorption because it is an effective and economical method. Previously, we reported adsorption capacity of a chitosan/polyurethane/titanium dioxide (TiO2 composite for three ions in a dynamic wastewater system. There, increasing the chitosan concentration in composite increased the cation removal as well; however, for ratios higher than 50% of chitosan/TiO2, the manufacturing cost increased significantly. In this work, we address the manufacturing cost problem by proposing a new formulation of the composite. Our hypothesis is that inulin could replace chitosan in the composite formulation, either wholly or in part. In this exploratory research, three blends were prepared with a polyurethane matrix using inulin or/and chitosan. Adsorption was evaluated using a colorimetric method and the Langmuir and Freundlich models. Fourier-transform infrared spectroscopy (FTIR spectra, scanning electron microscopy (SEM micrographs, differential scanning calorimetry and thermogravimetric analysis curves were obtained to characterize blends. Results indicate that blends are suitable for toxic materials removal (specifically lead II, Pb2+. Material characterization indicates that polysaccharides were distributed in polyurethane’s external part, thus improving adsorption. Thermal degradation of materials was found above 200 °C. Comparing the blends data, inulin could replace chitosan in part and thereby improve the cost efficiency and scalability of the production process of the polyurethane based-adsorbent. Further research with different inulin/chitosan ratios in the adsorbent and experiments with a dynamic system are justified.

  15. Detennination Qf Optimuni on-fann Seed Pri~ing Time for Maize ...

    African Journals Online (AJOL)

    maize seed to on-far111 priming is an important development which can be used to improve ... Key words: semi-arid: crop establishment; sorghum; maize: on-farm seed priming; Zimbapwe. ... faster growth and higher yield after seed prim-, ing.

  16. Ion beam biotechnology and its application to maize breeding

    International Nuclear Information System (INIS)

    Yu Lixia; Li Wenjian; Dong Xicun; Zhou Libin; Ma Shuang

    2008-01-01

    Since the mid of 1980's, ion beam had been widely used in mutagenic breeding of various crops. Ion beam biotechnology had provided a new way for improving corn variety and creating new germplasm resources, and had promoted the development of maize breeding. The ion beam characteristics, the mutagenic mechanism and its application in maize breeding were described. (authors)

  17. Effect of Chitosan Properties on Immunoreactivity

    Science.gov (United States)

    Ravindranathan, Sruthi; Koppolu, Bhanu prasanth; Smith, Sean G.; Zaharoff, David A.

    2016-01-01

    Chitosan is a widely investigated biopolymer in drug and gene delivery, tissue engineering and vaccine development. However, the immune response to chitosan is not clearly understood due to contradicting results in literature regarding its immunoreactivity. Thus, in this study, we analyzed effects of various biochemical properties, namely degree of deacetylation (DDA), viscosity/polymer length and endotoxin levels, on immune responses by antigen presenting cells (APCs). Chitosan solutions from various sources were treated with mouse and human APCs (macrophages and/or dendritic cells) and the amount of tumor necrosis factor-α (TNF-α) released by the cells was used as an indicator of immunoreactivity. Our results indicate that only endotoxin content and not DDA or viscosity influenced chitosan-induced immune responses. Our data also indicate that low endotoxin chitosan (chitosan in preclinical studies in order for this valuable biomaterial to achieve widespread clinical application. PMID:27187416

  18. Effect of Spatial Arrangement on Growth and Yield of Cowpea in a Cowpea-maize Intercrop

    Directory of Open Access Journals (Sweden)

    Ocaya, CP.

    2001-01-01

    Full Text Available Cowpea growth and yield performance when intercropped with maize was studied for 3 consecutive seasons under three spatial arrangements, i. e., maize planted at 90 x 30, 100 x 27, and 120 x 22.5 cm, with 2 rows of cowpea between the maize rows. Growth and yield of cowpea was improved significantly by widening maize intra-row distances as compared to the 90 x 30 cm spacing. Hence, intercropped cowpea needs to be sown where maize rows are wide apart, but the maize rows should not be too wide as this would lower the grain yield of maize.

  19. Maize kernel evolution:From teosinte to maize

    Science.gov (United States)

    Maize is the most productive and highest value commodity in the US and around the world: over 1 billion tons were produced each year in 2013 and 2014. Together, maize, rice and wheat comprise over 60% of the world’s caloric intake, with wide regional variability in the importance of each crop. The i...

  20. Utilization of flax (Linum usitatissimum) cellulose nanocrystals as reinforcing material for chitosan films.

    Science.gov (United States)

    Mujtaba, Muhammad; Salaberria, Asier M; Andres, María A; Kaya, Murat; Gunyakti, Ayse; Labidi, Jalel

    2017-11-01

    Use of plastic based packaging tools is causing both health and economic problems. To overcome this situation, researchers are focusing on the use of different biomaterials such as chitosan and cellulose. The current study was conducted to check the effect of flax (Linum usitatissimum) cellulose nanocrystals (CNC) on mechanical and barrier properties of chitosan-based films. CNC was incorporated in different concentrations (5, 10, 20 and 30%). CNC was isolated from flax fiber using acid hydrolysis method. Tensile strength (TS) and young modulus (YM) values increased with the increase of CNC concentration. Chitosan film with 20% CNC revealed the highest YM value as 52.35MPa. No significant improvement was recorded in water vapor permeability due to overall lower film crystallinity. All the films were observed to be transparent up to an acceptable level. SEM and AFM analysis confirmed the homogeneity of films. A gradual enhancement was recorded in the antimicrobial activity of chitosan/CNC composite films. No significant improvement revealed in the thermal stability of composites. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Preparation and characterization of chitosan-heparin composite matrices for blood contacting tissue engineering

    International Nuclear Information System (INIS)

    He Qing; Gong Kai; Gong Yandao; Zhang Xiufang; Ao Qiang; Zhang Lihai; Hu Min

    2010-01-01

    Chitosan has been widely used for biomaterial scaffolds in tissue engineering because of its good mechanical properties and cytocompatibility. However, the poor blood compatibility of chitosan has greatly limited its biomedical utilization, especially for blood contacting tissue engineering. In this study, we exploited a polymer blending procedure to heparinize the chitosan material under simple and mild conditions to improve its antithrombogenic property. By an optimized procedure, a macroscopically homogeneous chitosan-heparin (Chi-Hep) blended suspension was obtained, with which Chi-Hep composite films and porous scaffolds were fabricated. X-ray photoelectron spectroscopy and sulfur elemental analysis confirmed the successful immobilization of heparin in the composite matrices (i.e. films and porous scaffolds). Toluidine blue staining indicated that heparin was distributed homogeneously in the composite matrices. Only a small amount of heparin was released from the matrices during incubation in normal saline for 10 days. The composite matrices showed improved blood compatibility, as well as good mechanical properties and endothelial cell compatibility. These results suggest that the Chi-Hep composite matrices are promising candidates for blood contacting tissue engineering.

  2. Effectiveness of chitosan against wine-related microorganisms.

    Science.gov (United States)

    Bağder Elmaci, Simel; Gülgör, Gökşen; Tokatli, Mehmet; Erten, Hüseyin; İşci, Asli; Özçelik, Filiz

    2015-03-01

    The antimicrobial action of chitosan against wine related microorganisms, including Lactobacillus plantarum, Saccharomyces cerevisiae, Oeonococcus oeni, Lactobacillus hilgardii, Brettanomyces bruxellensis, Hanseniaspora uvarum and Zygosaccharomyces bailii was examined in laboratory media. In order to assess the potential applicability of chitosan as a microbial control agent for wine, the effect of chitosan, applied individually and/or in combination with sulphur dioxide (SO2), on the growth of microorganisms involved in various stages of winemaking and on the fermentative performance of S. cerevisiae was investigated. Of the seven wine-related microorganisms studied, S. cerevisiae exhibited the strongest resistance to antimicrobial action of chitosan in laboratory media with a minimum inhibitory concentration (MIC) greater than 2 g/L. L. hilgardii, O. oeni and B. bruxellensis were the most susceptible to chitosan since they were completely inactivated by chitosan at 0.2 g/L. The MIC of chitosan for L. plantarum, H. uvarum and Z. bailii was 2, 0.4 and 0.4 g/L, respectively. In wine experiments, it was found that chitosan had a retarding effect on alcoholic fermentation without significantly altering the viability and the fermentative performance of S. cerevisiae. With regard to non-Saccharomyces yeasts (H. uvarum and Z. bailii) involved in winemaking, the early deaths of these yeasts in mixed cultures with S. cerevisiae were not probably due to the antimicrobial action of chitosan but rather due to ethanol produced by the yeasts. The complex interactions between chitosan and wine ingredients as well as microbial interactions during wine fermentation considerably affect the efficacy of chitosan. It was concluded that chitosan was worthy of further investigation as an alternative or complementary preservative to SO2 in wine industry.

  3. Antibacterial nanocomposites based on chitosan/Co-MCM as a selective and efficient adsorbent for organic dyes.

    Science.gov (United States)

    Khan, Shahid Ali; Khan, Sher Bahadar; Kamal, Tahseen; Yasir, Muhammad; Asiri, Abdullah M

    2016-10-01

    Chitosan/cobalt-silica (Co-MCM) nanocomposites were synthesized for the purification of effluent by adding 5, 15 and 25mL of Co-MCM solution to the aqueous chitosan solution for the formation of chitosan/Co-MCM-5, chitosan/Co-MCM-15 and chitosan/Co-MCM-25, respectively. These different nanocomposites were characterized by FESEM, EDS, X-ray crystallography and IR spectrophotometer and employed for the adsorption of various dyes (methyl orange, acridine orange, indigo carmine and congo red). The respective nanocomposites showed good adsorption toward methyl orange, indigo carmine and congo red while all nanocomposites were inactive for acridine orange dye. Among the nanocomposites, chitosan/Co-MCM-15 showed the highest adsorption performance which might be due to ideal dispersion of Co-MCM inside the chitosan polymer host. Chitosan/Co-MCM-15 exhibited high adsorption for methyl orange as compared to indigo carmine. We have further checked the biological potential of chitosan/Co-MCM nanocomposites against gram positive and negative bacteria as well as multi drug resistant bacteria. The results favor the strongest bioactivities of chitosan/Co-MCM-15 against various gram positive and gram negative bacteria as well as multi drug resistant bacteria, which further suggest the ideal dispersion of Co-MCM in chitosan polymer host and is responsible for the improvement of both adsorption as well as biological performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Alkyl chitosan film-high strength, functional biomaterials.

    Science.gov (United States)

    Lu, Li; Xing, Cao; Xin, Shen; Shitao, Yu; Feng, Su; Shiwei, Liu; Fusheng, Liu; Congxia, Xie

    2017-11-01

    Biofilm with strong tensile strength is a topic item in the area of tissue engineering, medicine engineering, and so forth. Here we introduced an alkyl chitosan film with strong tensile strength and its possibility for an absorbable anticoagulation material in vivo was tested in the series of blood test, such as dynamic coagulation time, plasma recalcification time and hemolysis. Alkyl chitosan film was a better biomaterial than traditional chitosan film in the anticoagulation, tissue compatibility and cell compatibility. The unique trait of alkyl chitosan film may be for its greater contact angle and hydrophobicity ability to reduce the adsorption capacity for the blood component and the activity of fibrinolytic enzymes, enhance the antibacterial capacity than chitosan film. Moreover, none of chitosan film or butyl chitosan film exhibited quick inflammation or other disadvantage and degraded quickly by implanted test. Therefore, Alkyl chitosan film is of prospective properties as an implantable, absorbable agent for tissue heals, and this material need further research. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3034-3041, 2017. © 2017 Wiley Periodicals, Inc.

  5. Removal of Arsenic (V) from Aqueous Solutions Using Chitosan-Red Scoria and Chitosan-Pumice Blends.

    Science.gov (United States)

    Asere, Tsegaye Girma; Mincke, Stein; De Clercq, Jeriffa; Verbeken, Kim; Tessema, Dejene A; Fufa, Fekadu; Stevens, Christian V; Du Laing, Gijs

    2017-08-09

    In different regions across the globe, elevated arsenic contents in the groundwater constitute a major health problem. In this work, a biopolymer chitosan has been blended with volcanic rocks (red scoria and pumice) for arsenic (V) removal. The effect of three blending ratios of chitosan and volcanic rocks (1:2, 1:5 and 1:10) on arsenic removal has been studied. The optimal blending ratio was 1:5 (chitosan: volcanic rocks) with maximum adsorption capacity of 0.72 mg/g and 0.71 mg/g for chitosan: red scoria (Ch-Rs) and chitosan: pumice (Ch-Pu), respectively. The experimental adsorption data fitted well a Langmuir isotherm ( R ² > 0.99) and followed pseudo-second-order kinetics. The high stability of the materials and their high arsenic (V) removal efficiency (~93%) in a wide pH range (4 to 10) are useful for real field applications. Moreover, the blends could be regenerated using 0.05 M NaOH and used for several cycles without losing their original arsenic removal efficiency. The results of the study demonstrate that chitosan-volcanic rock blends should be further explored as a potential sustainable solution for removal of arsenic (V) from water.

  6. A mediator-free glucose biosensor based on glucose oxidase/chitosan/α-zirconium phosphate ternary biocomposite.

    Science.gov (United States)

    Liu, Li-Min; Wen, Jiwu; Liu, Lijun; He, Deyong; Kuang, Ren-yun; Shi, Taqing

    2014-01-15

    A novel glucose oxidase/chitosan/α-zirconium phosphate (GOD/chitosan/α-ZrP) ternary biocomposite was prepared by co-intercalating glucose oxidase (GOD) and chitosan into the interlayers of α-zirconium phosphate (α-ZrP) via a delamination-reassembly procedure. The results of X-ray diffraction, infrared spectroscopy, circular dichroism, and ultraviolet spectrum characterizations indicated not only the layered and hybrid structure of the GOD/chitosan/α-ZrP ternary biocomposite but also the recovered activity of the intercalated GOD improved by the co-intercalated chitosan. By depositing the GOD/chitosan/α-ZrP biocomposite film onto a glassy carbon electrode, the direct electrochemistry of the intercalated GOD was achieved with a fast electron transfer rate constant, k(s), of 7.48±3.52 s(-1). Moreover, this GOD/chitosan/α-ZrP biocomposite modified electrode exhibited a sensitive response to glucose in the linear range of 0.25-8.0 mM (R=0.9994, n=14), with a determination limit of 0.076 mM. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings.

    Science.gov (United States)

    Mohandas, Annapoorna; Deepthi, S; Biswas, Raja; Jayakumar, R

    2018-09-01

    Chitosan based nanocomposite scaffolds have attracted wider applications in medicine, in the area of drug delivery, tissue engineering and wound healing. Chitosan matrix incorporated with nanometallic components has immense potential in the area of wound dressings due to its antimicrobial properties. This review focuses on the different combinations of Chitosan metal nanocomposites such as Chitosan/nAg, Chitosan/nAu, Chitosan/nCu, Chitosan/nZnO and Chitosan/nTiO 2 towards enhancement of healing or infection control with special reference to the antimicrobial mechanism of action and toxicity.

  8. Overexpression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize.

    Science.gov (United States)

    Shi, Jinrui; Habben, Jeffrey E; Archibald, Rayeann L; Drummond, Bruce J; Chamberlin, Mark A; Williams, Robert W; Lafitte, H Renee; Weers, Ben P

    2015-09-01

    Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions. © 2015 American Society of Plant Biologists. All Rights Reserved.

  9. Harnessing maize biodiversity

    Science.gov (United States)

    Maize is a remarkably diverse species, adapted to a wide range of climatic conditions and farming practices. The latitudinal range of maize is immense, ranging from 54°N in Alberta, Canada, to 45°S in the province of Chubut, Argentina. In terms of altitude, maize is cultivated from sea level to 4000...

  10. Radiolysis of chitosan derivatives exhibiting antimutagenic activity

    International Nuclear Information System (INIS)

    Aleksandrova, V.A.; Kuzina, S.I.; Shilova, I.A.; Mikhajlov, A.I.

    2006-01-01

    The radiolysis of antimutagens extracted from natural biopolymer chitosan was studied by the EPR. The radiolysis of test samples of biopolymers and gallic acid was performed in vacuum at 77 K using a 60 Co γ-radiation source, with radiation doses 50 kGy. It was shown that addition of gallic acid (2 mol %) to quaternized chitosan results in a 2.5-fold decrease in the radiation-chemical yield of radicals and a nearly complete inhibition of the formation of ion radicals. Gallic acid units likely play the role of a stabilizer that protects the polycation from radiation damage and, hence, the structure of the cationogenic units from changes, thereby improving the antimutagenic properties of the system [ru

  11. Surface grafted chitosan gels. Part I. Molecular insight into the formation of chitosan and poly(acrylic acid) multilayers

    DEFF Research Database (Denmark)

    Liu, Chao; Thormann, Esben; Claesson, Per M.

    2014-01-01

    Composite polyelectrolyte multilayers of chitosan and low molecular weight poly(acrylic acid) (PAA) have been assembled by sequential adsorption as a first step toward building a surface anchored chitosan gel. Silane chemistry was used to graft the first chitosan layer to prevent film detachment...... and decomposition. The assembly process is characterized by nonlinear growth behavior, with different adsorption kinetics for chitosan and PAA. In situ analysis of the multilayer by means of surface sensitive total internal reflection Raman (TIRR) spectroscopy, combined with target factor analysis of the spectra...... molecular weight chitosan shows a similar behavior, although to a much lower extent. Our data demonstrate that the charged monomeric units of chitosan are mainly compensated by carboxylate ions from PAA. Furthermore, the morphology and mechanical properties of the multilayers were investigated in situ using...

  12. Effect of Spatial Arrangement on Growth and Yield of Cowpea in a Cowpea-maize Intercrop

    OpenAIRE

    Ocaya, CP.; Adipala, E.; Osiru, DSO.

    2001-01-01

    Cowpea growth and yield performance when intercropped with maize was studied for 3 consecutive seasons under three spatial arrangements, i. e., maize planted at 90 x 30, 100 x 27, and 120 x 22.5 cm, with 2 rows of cowpea between the maize rows. Growth and yield of cowpea was improved significantly by widening maize intra-row distances as compared to the 90 x 30 cm spacing. Hence, intercropped cowpea needs to be sown where maize rows are wide apart, but the maize rows should not be too wide as...

  13. Chitosan Dermal Substitute and Chitosan Skin Substitute Contribute to Accelerated Full-Thickness Wound Healing in Irradiated Rats

    Directory of Open Access Journals (Sweden)

    Abu Bakar Mohd Hilmi

    2013-01-01

    Full Text Available Wounds with full-thickness skin loss are commonly managed by skin grafting. In the absence of a graft, reepithelialization is imperfect and leads to increased scar formation. Biomaterials can alter wound healing so that it produces more regenerative tissue and fewer scars. This current study use the new chitosan based biomaterial in full-thickness wound with impaired healing on rat model. Wounds were evaluated after being treated with a chitosan dermal substitute, a chitosan skin substitute, or duoderm CGF. Wounds treated with the chitosan skin substitute showed the most re-epithelialization (33.2 ± 2.8%, longest epithelial tongue (1.62 ± 0.13 mm, and shortest migratory tongue distance (7.11 ± 0.25 mm. The scar size of wounds treated with the chitosan dermal substitute (0.13 ± 0.02 cm and chitosan skin substitute (0.16 ± 0.05 cm were significantly decreased (P<0.05 compared with duoderm (0.45 ± 0.11 cm. Human leukocyte antigen (HLA expression on days 7, 14, and 21 revealed the presence of human hair follicle stem cells and fibroblasts that were incorporated into and surviving in the irradiated wound. We have proven that a chitosan dermal substitute and chitosan skin substitute are suitable for wound healing in full-thickness wounds that are impaired due to radiation.

  14. In vivo evaluation of an oral salmon calcitonin-delivery system based on a thiolated chitosan carrier matrix.

    Science.gov (United States)

    Guggi, Davide; Kast, Constantia E; Bernkop-Schnürch, Andreas

    2003-12-01

    To develop and evaluate an oral delivery system for salmon calcitonin. 2-Iminothiolane was covalently bound to chitosan in order to improve the mucoadhesive and cohesive properties of the polymer. The resulting chitosan-TBA conjugate (chitosan-4-thiobutylamidine conjugate) was homogenized with salmon calcitonin. mannitol, and a chitosan-Bowman-Birk inhibitor conjugate and a chitosan-elastatinal conjugate (6.75 + 0.25 + 1 + 1 + 1). Optionally 0.5% (m/m) reduced glutathione. used as permeation mediator, was added. Each mixture was compressed to 2 mg microtablets and enteric coated with a polymethacrylate. Biofeedback studies were performed in rats by oral administration of the delivery system and determination of the decrease in plasma calcium level as a function of time. Test formulations led to a significant (p thiolated chitosan, chitosan-enzyme-inhibitor conjugates and the permeation mediator glutathione seems to represent a promising strategy for the oral delivery of salmon calcitonin.

  15. Oxidized Xanthan Gum and Chitosan as Natural Adhesives for Cork

    Directory of Open Access Journals (Sweden)

    Diana Paiva

    2016-07-01

    Full Text Available Natural cork stopper manufacturing produces a significant amount of cork waste, which is granulated and combined with synthetic glues for use in a wide range of applications. There is a high demand for using biosourced polymers in these composite materials. In this study, xanthan gum (XG and chitosan (CS were investigated as possible natural binders for cork. Xanthan gum was oxidized at two different aldehyde contents as a strategy to improve its water resistance. This modification was studied in detail by 1H and 13C nuclear magnetic resonance (NMR, and the degree of oxidation was determined by the hydroxylamine hydrochloride titration method. The performance of the adhesives was studied by tensile tests and total soluble matter (TSM determinations. Xanthan gum showed no water resistance, contrary to oxidized xanthan gum and chitosan. It is hypothesized that the good performance of oxidized xanthan gum is due to the reaction of aldehyde groups—formed in the oxidation process—with hydroxyl groups on the cork surface during the high temperature drying. Combining oxidized xanthan gum with chitosan did not yield significant improvements.

  16. Physical Properties and Antibacterial Efficacy of Biodegradable Chitosan Films

    OpenAIRE

    中島, 照夫

    2009-01-01

    [Synopsis] Chitin, chitosan and quaternary chitosan films were prepared, and the physical properties and the antibacterial activities of chitosan and quaternary chitosan films were evaluated. The tensile strength of chitin films was 30~40% lower than that of chitosan films, but the crystallinity of chitin film was much higher than that of chitosan films. The crystallinity and orientation of crystallites were hardly affected by the four kinds of solvent chosen to cast chitosan films, but a de...

  17. Green synthesis approach: extraction of chitosan from fungus mycelia.

    Science.gov (United States)

    Dhillon, Gurpreet Singh; Kaur, Surinder; Brar, Satinder Kaur; Verma, Mausam

    2013-12-01

    Chitosan, copolymer of glucosamine and N-acetyl glucosamine is mainly derived from chitin, which is present in cell walls of crustaceans and some other microorganisms, such as fungi. Chitosan is emerging as an important biopolymer having a broad range of applications in different fields. On a commercial scale, chitosan is mainly obtained from crustacean shells rather than from the fungal sources. The methods used for extraction of chitosan are laden with many disadvantages. Alternative options of producing chitosan from fungal biomass exist, in fact with superior physico-chemical properties. Researchers around the globe are attempting to commercialize chitosan production and extraction from fungal sources. Chitosan extracted from fungal sources has the potential to completely replace crustacean-derived chitosan. In this context, the present review discusses the potential of fungal biomass resulting from various biotechnological industries or grown on negative/low cost agricultural and industrial wastes and their by-products as an inexpensive source of chitosan. Biologically derived fungal chitosan offers promising advantages over the chitosan obtained from crustacean shells with respect to different physico-chemical attributes. The different aspects of fungal chitosan extraction methods and various parameters having an effect on the yield of chitosan are discussed in detail. This review also deals with essential attributes of chitosan for high value-added applications in different fields.

  18. Inoculation of arbuscular mycorrhizal fungi and phosphate solubilizing bacteria in the presence of rock phosphate improves phosphorus uptake and growth of maize

    International Nuclear Information System (INIS)

    Wahid, F.; Sharif, M.; Khan, M. A.; Khan, S. A.

    2016-01-01

    The beneficial microbes like arbuscular mycorrhizal fungi (AMF) and phosphate solubilizing bacteria (PSB) are known to play an important role in phosphorous (P) supply to plants in a sustainable manner in P deficient soils. In this scenario, a pot experiment was conducted under greenhouse condition to assess the synergistic effect of AMF and PSB strains (Coccus DIM7 Streptococcus PIM6 and Bacillus sp. PIS7) on P solubility from RP and their successive uptake by maize (Zea-mays L. Azam) crop at alkaline soil. The experiment was completely randomized design with three replications having calcareous silty clay loam soil, low in organic matter, nitrogen and phosphorus contents. RP was used as a crude phosphate alone and/or in combination with the native AMF and PSB inoculum. The Results indicated that the rhizosphere interactions between AMF and PSB significantly promote RP mineralization in soil and improved all growth parameters including shoot (56 percent), root yield (52 percent), height (41 percent), N (80 percent) and P (91 percent) uptake by the maize plants as compared to control and single inoculation. A remarkable increase in soil spore density, PSB population and percent root colonization in maize plants were also recorded by the combined inoculation of AMF and PSB with RP. From this study, it is concluded that the combined application of AMF and PSB with RP has the potential to improve maize growth and nutrients uptake. Moreover, AMF and PSB inoculants are recommended as useful biofertilizers for enhancing P solubility and bioavailability in P deficient agricultural soils. (author)

  19. Effect of gallic acid/chitosan coating on fresh pork quality in modified atmosphere packaging.

    Science.gov (United States)

    Fang, Zhongxiang; Lin, Daniel; Warner, Robyn Dorothy; Ha, Minh

    2018-09-15

    Fresh meat safety and quality is a major concern of consumers in the current food market. The objective of this research was to investigate a newly developed gallic acid/chitosan edible coating on the preservation of fresh pork quality in modified atmosphere package (MAP) stored at 4 °C. The pork loins were coated with 2% chitosan (CHI), 0.2% gallic acid in 2% chitosan (CHI/0.2G), or 0.4% gallic acid in 2% chitosan (CHI/0.4G). Results showed that the antimicrobial activity of the chitosan coating was increased with the incorporation of gallic acid. The CHI/0.2G and CHI/0.4G pork loins also had lower lipid oxidation and myoglobin oxidation. However, the CHI/0.4G sample exhibited a pro-protein oxidation effect, suggesting an optimal concentration of gallic acid should be incorporated. This research provides a practical method in application of gallic acid/chitosan coatings on preservation of fresh pork to improve the safety and quality in MAP environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Green synthesis of magnetic chitosan nanocomposites by a new sol–gel auto-combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Fatemeh [Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box. 87317–51167, Kashan, Islamic Republic of Iran (Iran, Islamic Republic of); Sobhani, Azam [Department of Chemistry, Kosar University of Bojnord, Bojnord, Islamic Republic of Iran (Iran, Islamic Republic of); Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir [Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box. 87317–51167, Kashan, Islamic Republic of Iran (Iran, Islamic Republic of)

    2016-07-15

    The Fe{sub 2}O{sub 3}/CuFe{sub 2}O{sub 4}/chitosan nanocomposites have been successfully synthesized via a new sol–gel auto-combustion route. To prepare the nanocomposites, copper ferrite (CuFe{sub 2}O{sub 4}) and iron (II) oxide (Fe{sub 2}O{sub 3}) nanostructures were first prepared utilizing onion as a green reductant for the first time, and characterized by SEM, TEM, XRD, IR and VSM. Then chitosan was added into the nanostructures dispersed in water. Chitosan was used to functionalize and modify the nanostructures and also to improve surface properties. The nanocomposites were also characterized by several techniques including SEM, TEM, XRD, IR and VSM. The effects of amount of onion and chitosan on the morphology and particle size of nanocomposites were evaluated. - Highlights: • Fe{sub 2}O{sub 3}/CuFe{sub 2}O{sub 4}/chitosan nanocomposites were synthesized for the first time. • A simple, low-cost and friendly route was used to synthesize the nanocomposites. • Effects of amount of onion and chitosan were investigated.

  1. Efficacy of chitosan dressing on endoscopic sinus surgery: a systematic review and meta-analysis.

    Science.gov (United States)

    Zhou, Jing-Chun; Zhang, Jing-Jing; Zhang, Wei; Ke, Zhao-Yang; Zhang, Bo

    2017-09-01

    Chitosan dressing might be promising to promote the recovery following endoscopic sinus surgery (ESS). However, the results remain controversial. We conducted a systematic review and meta-analysis to explore the influence of chitosan dressing on ESS. PubMed, EMbase, Web of science, EBSCO, and Cochrane library databases were systematically searched. Randomized controlled trials (RCTs) assessing the effect of chitosan dressing on endoscopic sinus surgery were included. Two investigators independently searched articles, extracted data, and assessed the quality of included studies. The primary outcomes were synechia and hemostasis. Meta-analysis was performed using random-effect model. Four RCTs involving 268 patients were included in the meta-analysis. Overall following ESS, compared with control intervention, chitosan dressing significantly reduced synechia (RR = 0.25; 95% CI 0.13-0.49; P chitosan dressing could significantly decrease edema and improve hemostasis, but had no effect on granulations, mucosal edema, crusting and infection.

  2. Immobilization of catalase on chitosan and amino acid- modified chitosan beads.

    Science.gov (United States)

    Başak, Esra; Aydemir, Tülin

    2013-08-01

    Bovine liver catalase was covalently immobilized onto amino acid-modified chitosan beads. The beads were characterized with SEM, FTIR, TGA and the effects of immobilization on optimum pH and temperature, thermostability, reusability were evaluated. Immobilized catalase showed the maximal enzyme activity at pH 7.0 at 30°C. The kinetic parameters, Km and Vmax, for immobilized catalase on alanine-chitosan beads and lysine-chitosan beads were estimated to be 25.67 mM, 27 mM and 201.39 μmol H2O2/min, 197.50 μmol H2O2/min, respectively. The activity of the immobilized catalase on Ala-CB and Lys-CB retained 40% of its high initial activity after 100 times of reuse.

  3. Degradation of chitosan for rice crops application

    International Nuclear Information System (INIS)

    Norzita Yacob; Maznah Mahmud; Norhashidah Talip; Kamaruddin Hashim; Abdul Rahim Harun; Khairul Zaman; Hj Dahlan

    2013-01-01

    A variety of techniques including chemical and enzymatic hydrolysis, and radiation degradation processes can be used to prepare low molecular weight chitosan. Degradation of chitosan by radiation can be carried out in solid state and liquid state. Radiation degraded polysaccharides has been reported to exhibit growth-stimulating activity like phytohormones that induce the promotion in germination, shoot and root elongation in variety of plants. In this study, the chitosan was irradiated in solid state (powder form) by gamma rays within the dose range of 25-75 kGy. And the irradiated chitosan was then irradiated in solution form in the presence of hydrogen peroxide. The effects of irradiation on the molecular weight and viscosity of the chitosan were investigated using Ubbelohde Capillary Viscometer. The molecular weight and viscosity of the chitosan decreased with increment of absorbed doses. In the presence of hydrogen peroxide, the molecular weight of chitosan could be further decreased. The effect of radiation degraded chitosan on the growth promotion of rice was investigated and it was shown during seedling period of 15 days for transplanting whereby the growth is 15%-20% faster than using chemicals growth promoters. (authors)

  4. Development of maizeSNP3072, a high-throughput compatible SNP array, for DNA fingerprinting identification of Chinese maize varieties.

    Science.gov (United States)

    Tian, Hong-Li; Wang, Feng-Ge; Zhao, Jiu-Ran; Yi, Hong-Mei; Wang, Lu; Wang, Rui; Yang, Yang; Song, Wei

    2015-01-01

    Single nucleotide polymorphisms (SNPs) are abundant and evenly distributed throughout the maize ( Zea mays L.) genome. SNPs have several advantages over simple sequence repeats, such as ease of data comparison and integration, high-throughput processing of loci, and identification of associated phenotypes. SNPs are thus ideal for DNA fingerprinting, genetic diversity analysis, and marker-assisted breeding. Here, we developed a high-throughput and compatible SNP array, maizeSNP3072, containing 3072 SNPs developed from the maizeSNP50 array. To improve genotyping efficiency, a high-quality cluster file, maizeSNP3072_GT.egt, was constructed. All 3072 SNP loci were localized within different genes, where they were distributed in exons (43 %), promoters (21 %), 3' untranslated regions (UTRs; 22 %), 5' UTRs (9 %), and introns (5 %). The average genotyping failure rate using these SNPs was only 6 %, or 3 % using the cluster file to call genotypes. The genotype consistency of repeat sample analysis on Illumina GoldenGate versus Infinium platforms exceeded 96.4 %. The minor allele frequency (MAF) of the SNPs averaged 0.37 based on data from 309 inbred lines. The 3072 SNPs were highly effective for distinguishing among 276 examined hybrids. Comparative analysis using Chinese varieties revealed that the 3072SNP array showed a better marker success rate and higher average MAF values, evaluation scores, and variety-distinguishing efficiency than the maizeSNP50K array. The maizeSNP3072 array thus can be successfully used in DNA fingerprinting identification of Chinese maize varieties and shows potential as a useful tool for germplasm resource evaluation and molecular marker-assisted breeding.

  5. The Optical Absorption Coefficient of Maize Grains Investigated by Photoacoustic Spectroscopy

    Science.gov (United States)

    Rodríguez-Páez, C. L.; Carballo-Carballo, A.; Rico-Molina, R.; Hernández-Aguilar, C.; Domínguez-Pacheco, A.; Cruz-Orea, A.; Moreno-Martínez, E.

    2017-01-01

    In the maize and tortilla industry, it is important to characterize the color of maize ( Zea mays L.) grain, as it is one of the attributes that directly affect the quality of the tortillas consumed by the population. For this reason, the availability of alternative techniques for assessing and improving the quality of grain is valued. Photoacoustic spectroscopy has proven to be a useful tool for characterizing maize grain. So, the objective of the present study was to determine the optical absorption coefficient β of the maize grain used to make tortillas from two regions of Mexico: (a) Valles Altos, 2012-2013 production cycle and (b) Guasave, Sinaloa, 2013-2014 production cycle. Traditional reflectance measurements, physical characteristics of the grain and nutrient content were also calculated. The experimental results show different characteristics for maize grains.

  6. Influence of Chitosan Treatment on Surrogate Serum Markers of Cholesterol Metabolism in Obese Subjects

    Directory of Open Access Journals (Sweden)

    Dieter Lütjohann

    2018-01-01

    Full Text Available Chitosan treatment results in significantly lower serum low density lipoprotein (LDL cholesterol concentrations. To assess the working mechanisms of chitosan, we measured serum surrogate markers of cholesterol absorption (campesterol, sitosterol, cholestanol, synthesis (lathosterol, lanosterol, desmosterol, and degradation to bile acids (7α-hydroxy-cholesterol, 27-hydroxy-cholesterol, corrected for cholesterol concentration (R_sterols. Over 12 weeks, 116 obese subjects (Body Mass Index, BMI 31.7, range 28.1–38.9 kg/m2 were studied under chitosan (n = 61 and placebo treatments (n = 55. The participants were briefly educated regarding improvement of nutrition quality and energy expenditure. Daily chitosan intake was 3200 mg. Serum LDL cholesterol concentration decreased significantly more (p = 0.0252 under chitosan (−8.67 ± 18.18 mg/dL, 5.6% than under placebo treatment (−1.00 ± 24.22 mg/dL, 0.9%. This reduction was not associated with the expected greater decreases in markers of cholesterol absorption under chitosan treatment. Also, increases in markers of cholesterol synthesis and bile acid synthesis under chitosan treatment were not any greater than under placebo treatment. In conclusion, a significant selective reduction of serum LDL cholesterol under chitosan treatment is neither associated with a reduction of serum surrogate markers of cholesterol absorption, nor with increases of markers for cholesterol and bile acid synthesis.

  7. Morphology and characterization of 3D micro-porous structured chitosan scaffolds for tissue engineering.

    Science.gov (United States)

    Hsieh, Wen-Chuan; Chang, Chih-Pong; Lin, Shang-Ming

    2007-06-15

    This research studies the morphology and characterization of three-dimensional (3D) micro-porous structures produced from biodegradable chitosan for use as scaffolds for cells culture. The chitosan 3D micro-porous structures were produced by a simple liquid hardening method, which includes the processes of foaming by mechanical stirring without any chemical foaming agent added, and hardening by NaOH cross linking. The pore size and porosity were controlled with mechanical stirring strength. This study includes the morphology of chitosan scaffolds, the characterization of mechanical properties, water absorption properties and in vitro enzymatic degradation of the 3D micro-porous structures. The results show that chitosan 3D micro-porous structures were successfully produced. Better formation samples were obtained when chitosan concentration is at 1-3%, and concentration of NaOH is at 5%. Faster stirring rate would produce samples of smaller pore diameter, but when rotation speed reaches 4000 rpm and higher the changes in pore size is minimal. Water absorption would reduce along with the decrease of chitosan scaffolds' pore diameter. From stress-strain analysis, chitosan scaffolds' mechanical properties are improved when it has smaller pore diameter. From in vitro enzymatic degradation results, it shows that the disintegration rate of chitosan scaffolds would increase along with the processing time increase, but approaching equilibrium when the disintegration rate reaches about 20%.

  8. Influence of Sulfonated-Kaolin On Cationic Exchange Capacity Swelling Degree and Morphology of Chitosan/Kaolin Composites

    Directory of Open Access Journals (Sweden)

    Ozi Adi Saputra

    2016-06-01

    Full Text Available Preparation of sulfonated-kaolin (sKao has been conducted and used as filler on chitosan matrix via solution casting method, namely chitosan/sKao (Cs/sKao. Swelling degree, cationic exchange capacity and thermal stability were evaluated to determine chitosan/sKao membranes performance as proton exchange membrane in fuel cell. Functional group analysis of chitosan, sKao and synthesized products were studied using Fourier Transform Infra-Red (FTIR spectroscopy. In this study, swelling degree and swelling area of Cs/sKao are also studied to determine of membrane ability to swelling which compare to unmodified chitosan/kaolin (Cs/Kao. The presence of sKao in chitosan matrix was able to improve cationic exchange capacity (CEC which proved by morphological study of membrane surface after CEC test. Moreover, Thermal stability of Cs/sKao showed the membrane has meet requirement for PEM application.

  9. Effect of water-soluble P-chitosan and S-chitosan on human primary osteoblasts and giant cell tumor of bone stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, T; Zhang, G; PY Lau, Carol; Zheng, L Z; Xie, X H; Wang, X L; Patrick, Y; Qin, L; Kumta, Shekhar M [Department of Orthopaedics and Traumatology, Chinese University of Hong Kong (Hong Kong); Wang, X H; He, K, E-mail: kumta@cuhk.edu.hk [Department of Mechanical Engineering, Institute of Bio-manufacturing Engineering, Tsinghua University, Beijing (China)

    2011-02-15

    Water-soluble phosphorylated chitosan (P-chitosan) and disodium (1 {yields} 4)-2-deoxy-2-sulfoamino-{beta}-D-glucopyranuronan (S-chitosan) are two chemically modified chitosans. In this study, we found that P-chitosan significantly promotes cell proliferation of both human primary osteoblasts (OBs) and the OB like stromal cell component of the giant cell tumor of bone (GCTB) cells at the concentration from 125 to 1000 {mu}g ml{sup -1} at all time points of 1, 3, 5 and 7 days after treatment. Further investigation of the osteogenic effect of the P-chitosan suggested that it regulates the levels of osteoclastogenic factors, receptor activator of nuclear factor kappa B ligand and osteoprotegerin expression. An interesting finding is that S-chitosan at lower concentration (100 {mu}g ml{sup -1}) stimulates cell proliferation while a higher dose (1000 {mu}g ml{sup -1}) of S-chitosan inhibits it. The inhibitory effect of S-chitosan on human primary GCT stromal cells was greater than that of OBs (p < 0.05). Taken together, our findings elucidated the osteogenic effect of P-chitosan and the varying effects of S-chitosan on the proliferation of human primary OBs and GCT stromal cells and provided us the rationale for the construction of novel bone repair biomaterials with the dual properties of bone induction and bone tumor inhibition.

  10. Studies on performance of some open-pollinated maize cultivars in ...

    African Journals Online (AJOL)

    Plant density and nitrogen (N) fertilizer responses of one local and three improved open-pollinated cultivars of maize (Zea mays L.) developed in different eras of maize breeding were studied on sandy-loam Alfisols in the Guinea savanna zone of Ghana in 1992 and 1993. A split-plot design was used in which plant ...

  11. Effects of laminin blended with chitosan on axon guidance on patterned substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, N; Guan, Y J; Chen, X B [Division of Biomedical Engineering, University of Saskatchewan, Saskatoon S7N 5A9 (Canada); Li, M G [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon S7N 5A9 (Canada); Schreyer, D J, E-mail: niz504@mail.usask.c [Department of Anatomy and Cell Biology, Cameco MS Neuroscience Research Center, University of Saskatchewan, Saskatoon, S7K 0M7 (Canada)

    2010-12-15

    Axon guidance is a crucial consideration in the design of tissue scaffolds used to promote nerve regeneration. Here we investigate the combined use of laminin (a putative axon adhesion and guidance molecule) and chitosan (a leading candidate base material for the construction of scaffolds) for promoting axon guidance in cultured adult dorsal root ganglion (DRG) neurons. Using a dispensing-based rapid prototyping (DBRP) technique, two-dimensional grid patterns were created by dispensing chitosan or laminin-blended chitosan substrate strands oriented in orthogonal directions. In vitro experiments illustrated DRG neurites on these patterns preferentially grew upon and followed the laminin-blended chitosan pathways. These results suggest that an orientation of neurite growth can be achieved in an artificially patterned substrate by creating selectively biofunctional pathways. The DBRP technique may provide improved strategies for the use of biofunctional pathways in the design of three-dimensional scaffolds for guidance of nerve repair.

  12. Effects of laminin blended with chitosan on axon guidance on patterned substrates

    International Nuclear Information System (INIS)

    Zhu, N; Guan, Y J; Chen, X B; Li, M G; Schreyer, D J

    2010-01-01

    Axon guidance is a crucial consideration in the design of tissue scaffolds used to promote nerve regeneration. Here we investigate the combined use of laminin (a putative axon adhesion and guidance molecule) and chitosan (a leading candidate base material for the construction of scaffolds) for promoting axon guidance in cultured adult dorsal root ganglion (DRG) neurons. Using a dispensing-based rapid prototyping (DBRP) technique, two-dimensional grid patterns were created by dispensing chitosan or laminin-blended chitosan substrate strands oriented in orthogonal directions. In vitro experiments illustrated DRG neurites on these patterns preferentially grew upon and followed the laminin-blended chitosan pathways. These results suggest that an orientation of neurite growth can be achieved in an artificially patterned substrate by creating selectively biofunctional pathways. The DBRP technique may provide improved strategies for the use of biofunctional pathways in the design of three-dimensional scaffolds for guidance of nerve repair.

  13. Potential of Using Maize Cobs in Pig Diets — A Review

    Directory of Open Access Journals (Sweden)

    A. T. Kanengoni

    2015-12-01

    Full Text Available The quest to broaden the narrow range of feed ingredients available to pig producers has prompted research on the use of low cost, unconventional feedstuffs, which are typically fibrous and abundant. Maize cobs, a by-product of a major cereal grown worldwide, have potential to be used as a pig feed ingredient. Presently, maize cobs are either dumped or burnt for fuel. The major challenge in using maize cobs in pig diets is their lignocellulosic nature (45% to 55% cellulose, 25% to 35% hemicellulose, and 20% to 30% lignin which is resistant to pigs’ digestive enzymes. The high fiber in maize cobs (930 g neutral detergent fiber/kg dry matter [DM]; 573 g acid detergent fiber/kg DM increases rate of passage and sequestration of nutrients in the fiber reducing their digestion. However, grinding, heating and fermentation can modify the structure of the fibrous components in the maize cobs and improve their utilization. Pigs can also extract up to 25% of energy maintenance requirements from fermentation products. In addition, dietary fiber improves pig intestinal health by promoting the growth of lactic acid bacteria, which suppress proliferation of pathogenic bacteria in the intestines. This paper reviews maize cob composition and the effect on digestibility of nutrients, intestinal microflora and growth performance and proposes the use of ensiling using exogenous enzymes to enhance utilization in diets of pigs.

  14. Utilization of chitosan as an antimicrobial agent for pasteurized palm sap (Borassus flabellifer Linn.) during storage.

    Science.gov (United States)

    Naknean, Phisut; Jutasukosol, Keawta; Mankit, Theerarat

    2015-02-01

    The objective of this research was to assess the potential of chitosan for improvement the quality of pasteurized palm sap during storage. First, the effect of chitosan content on sensory attributes was investigated to select suitable concentration of chitosan for further study. Fresh palm sap was enriched with chitosan at various concentrations (0-2 g/L) and pasteurized at 80 °C for 10 min, consequently evaluated by consumers. It was found that samples added chitosan in the range of 0-1.00 g/L were considered acceptable. Thus, the addition chitosan in the concentration of 0-1.00 g/L was chosen for further study. The sample without chitosan addition was used as a control sample. Each selected sample was determined for their qualities during storage at 1 week interval. It was found that lightness and transmittance values of all samples tended to increase during storage. Lower PPO and invertase activity were observed in all chitosan-treated samples compared to control sample. Chitosan could minimize the loss of sucrose and the increase in glucose and fructose content during storage. In addition, an increase in chitosan concentration resulted in the increase in DPPH radical scavenging activity. Furthermore, the addition of chitosan could retard the development of microorganism during storage as demonstrated by lower microbial loads compared to control sample. It can be concluded that a combination of pasteurization with chitosan addition (0.50 g/L) and low temperature storage could preserve palm sap for approximately 6 weeks. Thus, the incorporation of chitosan in palm sap could be used as an alternative way to extend shelf life of pasteurized palm sap.

  15. Review of antimicrobial and antioxidative activities of chitosans in food.

    Science.gov (United States)

    Friedman, Mendel; Juneja, Vijay K

    2010-09-01

    Interest in chitosan, a biodegradable, nontoxic, non-antigenic, and biocompatible biopolymer isolated from shellfish, arises from the fact that chitosans are reported to exhibit numerous health-related beneficial effects, including strong antimicrobial and antioxidative activities in foods. The extraordinary interest in the chemistry and application in agriculture, horticulture, environmental science, industry, microbiology, and medicine is attested by about 17,000 citations on this subject in the Scopus database. A special need exists to develop a better understanding of the role of chitosans in ameliorating foodborne illness. To contribute to this effort, this overview surveys and interprets our present knowledge of the chemistry and antimicrobial activities of chitosan in solution, as powders, and in edible films and coating against foodborne pathogens, spoilage bacteria, and pathogenic viruses and fungi in several food categories. These include produce, fruit juices, eggs and dairy, cereal, meat, and seafood products. Also covered are antimicrobial activities of chemically modified and nanochitosans, therapeutic properties, and possible mechanisms of the antimicrobial, antioxidative, and metal chelating effects. Further research is suggested in each of these categories. The widely scattered data on the multifaceted aspects of chitosan microbiology, summarized in the text and in 10 tables and 8 representative figures, suggest that low-molecular-weight chitosans at a pH below 6.0 presents optimal conditions for achieving desirable antimicrobial and antioxidative-preservative effects in liquid and solid foods. We are very hopeful that the described findings will be a valuable record and resource for further progress to improve microbial food safety and food quality.

  16. Chitosan-graphene oxide films and CO2-dried porous aerogel microspheres: Interfacial interplay and stability.

    Science.gov (United States)

    Frindy, Sana; Primo, Ana; Ennajih, Hamid; El Kacem Qaiss, Abou; Bouhfid, Rachid; Lahcini, Mohamed; Essassi, El Mokhtar; Garcia, Hermenegildo; El Kadib, Abdelkrim

    2017-07-01

    The intimate interplay of chitosan (CS) and graphene oxide (GO) in aqueous acidic solution has been explored to design upon casting, nanostructured "brick-and-mortar" films (CS-GO-f) and by acidic-to-basic pH inversion, porous CO 2 -dried aerogel microspheres (CS-GO-m). Owing to the presence of oxygenated functional groups in GO, good-quality crack-free hybrid films were obtained. Mechanical properties were improved independently of the GO content and it was found that a 20wt% loading affords hybrid film characterized with a Young modulus three times superior to that reached with the same loading of layered clay. The presence of graphene oxide was found to be detrimental for the thermal stability of the polysaccharide at T <350°C, a fact attributed to the well-established decomposition of the oxygenated functional groups of the graphene sheets. Irrespective to the graphene oxide loading, chitosan-graphene oxide mixture preserves the gelation memory of the polysaccharide. Supercritical drying of the resulting soft hydrogels provides macroporous network with surface areas ranging from 226m 2 g -1 to 554m 2 g -1 . XPS and RAMAN analyses evidenced the selective reduction of GO sheets inside of these microspheres, affording the hitherto unknown macroporous chitosan-entangled-reduced graphene oxide (CS-rGO-m) aerogels. Improvement in both hydrothermal stability (under water reflux) and chemical stability (under acidic conditions) have been noticed for chitosan-graphene oxide microspheres with respect to non-modified chitosan and chitosan-clay bio-hybrids, a result rooted in the substantial hydrophobic character imparted by the addition of graphenic material to the polysaccharide skeleton. In essence, this contribution demonstrates that graphene oxide loading do not disturb neither the filmogenicity of chitosan nor its gelation ability and constitutes a promising route for novel chitosan-based functional hybrid materials. Copyright © 2017 Elsevier Ltd. All rights

  17. Determination of physical properties for β-TCP + chitosan biomaterial obtained on metallic 316L substrates

    International Nuclear Information System (INIS)

    Mina, A.; Castaño, A.; Caicedo, J.C.; Caicedo, H.H.; Aguilar, Y.

    2015-01-01

    Material surface modification, particularly the deposition of special coatings on the surface of surgical implants, is extensively used in bone tissue engineering applications. β-Tricalcium phosphate/Chitosan (β-TCP/Ch) coatings were deposited on 316L stainless steel (316L SS) substrates by a cathodic electro-deposition technique at different coating compositions. The crystal lattice arrangements were analyzed by X-Ray diffraction (XRD), and the results indicated that the crystallographic structure of β-TCP was affected by the inclusion of the chitosan content. The changes in the surface morphology as a function of increasing chitosan in the coatings via scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that root-mean square values of the β-TCP/Ch coatings decreased by further increasing chitosan percentage. The elastic–plastic characteristics of the coatings were determined by conducting nanoindentation test, indicating that increase of chitosan percentage is directly related to increase of hardness and elastic modulus of the β-TCP/Ch coatings. Tribological characterization was performed by scratch test and pin-on-disk test to analyze the changes in the surface wear of β-TCP/Ch coatings. Finally, the results indicated an improvement in the mechanical and tribological properties of the β-TCP/Ch coatings as a function of increasing of the chitosan percentage. This new class of coatings, comprising the bioactive components, is expected not only to enhance the bioactivity and biocompatibility, but also to protect the surface of metallic implants against wear and corrosion. - Highlights: • Superficial phenomenon that occurs in tribological surface of β-tricalcium phosphate-chitosan coatings. • Improvement on surface mechanical properties of ceramic-polymeric and response to surface tribological damage. • β-tricalcium phosphate-chitosan coatings that offer highest performance in the biomedical devices

  18. Determination of physical properties for β-TCP + chitosan biomaterial obtained on metallic 316L substrates

    Energy Technology Data Exchange (ETDEWEB)

    Mina, A. [Tribology, Powder Metallurgy and Processing of Solid Recycled Research Group, Universidad del Valle, Cali (Colombia); Tecno-Academia ASTIN SENA Reginal Valle (Colombia); Castaño, A. [Tribology, Powder Metallurgy and Processing of Solid Recycled Research Group, Universidad del Valle, Cali (Colombia); Caicedo, J.C., E-mail: julio.cesar.caicedo@correo.univalle.edu.co [Tribology, Powder Metallurgy and Processing of Solid Recycled Research Group, Universidad del Valle, Cali (Colombia); Caicedo, H.H. [Biologics Research, Biotechnology Center of Excellence, Janssen R& D, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA 19477 (United States); National Biotechnology & Pharmaceutical Association, Chicago, IL 60606 (United States); Aguilar, Y. [Tribology, Powder Metallurgy and Processing of Solid Recycled Research Group, Universidad del Valle, Cali (Colombia)

    2015-06-15

    Material surface modification, particularly the deposition of special coatings on the surface of surgical implants, is extensively used in bone tissue engineering applications. β-Tricalcium phosphate/Chitosan (β-TCP/Ch) coatings were deposited on 316L stainless steel (316L SS) substrates by a cathodic electro-deposition technique at different coating compositions. The crystal lattice arrangements were analyzed by X-Ray diffraction (XRD), and the results indicated that the crystallographic structure of β-TCP was affected by the inclusion of the chitosan content. The changes in the surface morphology as a function of increasing chitosan in the coatings via scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that root-mean square values of the β-TCP/Ch coatings decreased by further increasing chitosan percentage. The elastic–plastic characteristics of the coatings were determined by conducting nanoindentation test, indicating that increase of chitosan percentage is directly related to increase of hardness and elastic modulus of the β-TCP/Ch coatings. Tribological characterization was performed by scratch test and pin-on-disk test to analyze the changes in the surface wear of β-TCP/Ch coatings. Finally, the results indicated an improvement in the mechanical and tribological properties of the β-TCP/Ch coatings as a function of increasing of the chitosan percentage. This new class of coatings, comprising the bioactive components, is expected not only to enhance the bioactivity and biocompatibility, but also to protect the surface of metallic implants against wear and corrosion. - Highlights: • Superficial phenomenon that occurs in tribological surface of β-tricalcium phosphate-chitosan coatings. • Improvement on surface mechanical properties of ceramic-polymeric and response to surface tribological damage. • β-tricalcium phosphate-chitosan coatings that offer highest performance in the biomedical devices.

  19. Effect of Chitosan Properties on Immunoreactivity

    Directory of Open Access Journals (Sweden)

    Sruthi Ravindranathan

    2016-05-01

    Full Text Available Chitosan is a widely investigated biopolymer in drug and gene delivery, tissue engineering and vaccine development. However, the immune response to chitosan is not clearly understood due to contradicting results in literature regarding its immunoreactivity. Thus, in this study, we analyzed effects of various biochemical properties, namely degree of deacetylation (DDA, viscosity/polymer length and endotoxin levels, on immune responses by antigen presenting cells (APCs. Chitosan solutions from various sources were treated with mouse and human APCs (macrophages and/or dendritic cells and the amount of tumor necrosis factor-α (TNF-α released by the cells was used as an indicator of immunoreactivity. Our results indicate that only endotoxin content and not DDA or viscosity influenced chitosan-induced immune responses. Our data also indicate that low endotoxin chitosan (<0.01 EU/mg ranging from 20 to 600 cP and 80% to 97% DDA is essentially inert. This study emphasizes the need for more complete characterization and purification of chitosan in preclinical studies in order for this valuable biomaterial to achieve widespread clinical application.

  20. A selfish gene governing pollen-pistil compatibility confers reproductive isolation between maize relatives.

    Science.gov (United States)

    Kermicle, Jerry L

    2006-01-01

    Some populations of maize's closest relatives, the annual teosintes of Mexico, are unreceptive to maize pollen. When present in the pistil (silk and ovary) a number of maize genes discriminate against or exclude pollen not carrying the same allele. An analogous gene Tcb1-s was found in some teosinte populations but not in sympatric or parapatric maize. It was polymorphic among populations of teosinte growing wild, but regularly present in populations growing in intimate association with maize as a weed. Introduction of Tcb1-s into maize substantially to fully restored compatibility with Tcb1-s carrying teosintes. Although Tcb1-s pollen can fertilize tcb1 tcb1 maize, it is at a competitive disadvantage relative to tcb1 pollen. Hence, the influence of Tcb1-s on crossability is bidirectional. In the absence of maize, Tcb1-s can increase in teosinte populations without improving their fitness. In the presence of maize, Tcb1-s appears to have been co-opted to provide reproductive isolation for adaptation to a cultivated habitat.

  1. The effect of andiroba oil and chitosan concentration on the physical properties of chitosan emulsion film

    Directory of Open Access Journals (Sweden)

    Vanessa Tiemi Kimura

    Full Text Available Abstract Chitosan film is used as a dressing to heal burns. The physical and biological properties of the film can be modified by the addition of phytotherapic compounds. This work used the casting -solvent evaporation technique to prepare chitosan film containing andiroba oil (Carapa guianensis which has anti-inflammatory, antibiotic, and healing properties. The objective of this study was to determine the effect of the concentrations of chitosan and andiroba oil on the physical properties of chitosan films. The emulsion films were evaluated concerning the mechanical properties and fluid handling capacity. Additionally, scanning electron microscopy and thermal analysis were performed. The results showed that the barrier and mechanical properties were affected by the addition of andiroba oil, and these may be modulated as a function of the concentration of oil added to the film. The thermal analysis showed no evidence of chemical interactions between the oil and chitosan.

  2. Enhancement of antimicrobial activity of chitosan by irradiation

    International Nuclear Information System (INIS)

    Matsuhashi, S.; Kume, T.

    1997-01-01

    Antimicrobial activity of irradiated chitosan was studied against Escherichia coli B/r. Irradiation of chitosan at 100 kGy under dry conditions was effective in increasing the activity, and inhibited the growth of E. coli completely. The molecular weight of chitosan significantly decreased with the increase in irradiation dose, whereas the relative surface charge of chitosan was decreased only 3% by 100 kGy irradiation. Antimicrobial activity assay of chitosan fractionated according to molecular weight showed that 1 x 10 5 -3 x 10 5 fraction was most effective in suppressing the growth of E coli. This fraction comprised only 8% of the 100 kGy irradiated chitosan. On the other hand, chitosan whose molecular weight was less than 1 x 10 5 had no activity. The results show that low dose irradiation, specifically 100 kGy, of chitosan gives enough degradation to increase its antimicrobial activity as a result of a change in molecular weight. (Author)

  3. Chitosan and Its Derivatives for Application in Mucoadhesive Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Twana Mohammed M. Ways

    2018-03-01

    Full Text Available Mucoadhesive drug delivery systems are desirable as they can increase the residence time of drugs at the site of absorption/action, provide sustained drug release and minimize the degradation of drugs in various body sites. Chitosan is a cationic polysaccharide that exhibits mucoadhesive properties and it has been widely used in the design of mucoadhesive dosage forms. However, its limited mucoadhesive strength and limited water-solubility at neutral and basic pHs are considered as two major drawbacks of its use. Chemical modification of chitosan has been exploited to tackle these two issues. In this review, we highlight the up-to-date studies involving the synthetic approaches and description of mucoadhesive properties of chitosan and chitosan derivatives. These derivatives include trimethyl chitosan, carboxymethyl chitosan, thiolated chitosan, chitosan-enzyme inhibitors, chitosan-ethylenediaminetetraacetic acid (chitosan-EDTA, half-acetylated chitosan, acrylated chitosan, glycol chitosan, chitosan-catechol, methyl pyrrolidinone-chitosan, cyclodextrin-chitosan and oleoyl-quaternised chitosan. We have particularly focused on the effect of chemical derivatization on the mucoadhesive properties of chitosan. Additionally, other important properties including water-solubility, stability, controlled release, permeation enhancing effect, and in vivo performance are also described.

  4. Synthesis and evaluation of PEG-O-chitosan nanoparticles for delivery of poor water soluble drugs: Ibuprofen

    Energy Technology Data Exchange (ETDEWEB)

    Hassani Najafabadi, Alireza [Department of Chemistry, Amirkabir University of Technology, P.O. Box 1587-4413, Tehran (Iran, Islamic Republic of); Abdouss, Majid, E-mail: phdabdouss44@aut.ac.ir [Department of Chemistry, Amirkabir University of Technology, P.O. Box 1587-4413, Tehran (Iran, Islamic Republic of); Faghihi, Shahab [Tissue Engineering and Biomaterials Division, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161 (Iran, Islamic Republic of)

    2014-08-01

    Current methods for preparation of PEGylated chitosan have limitations such as harsh de protecting step and several purification cycles. In the present study, a facile new method for conjugating methoxy polyethylene glycol (mPEG) to chitosan under mild condition is introduced to improve water solubility of chitosan and control the release of poor water soluble drugs. The method consists of chitosan modification by grafting the C6 position of chitosan to mPEG which is confirmed by Fourier transformed-infrared (FT-IR) and proton nuclear magnetic resonance ({sup 1}HNMR) analyses. The amine groups at the C2 position of chitosan are protected using sodium dodecylsulfate (SDS) which is removed by dialyzing the precipitation against Tris solution. The chemical structure of the prepared polymer is characterized by FTIR and {sup 1}HNMR. The synthesized polymer is then employed to prepare nanoparticles which are characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), scanning electron microscopy (SEM), and dynamic light scattering (DLS) for their size and morphology. The nanoparticles are used for encapsulation of ibuprofen followed by in vitro release investigation in gastrointestinal and simulated biological fluids. The chitosan nanoparticles are used as control. The PEGylated nanoparticles show a particle size of 80 nm with spherical morphology. The results clearly show that drug release from PEGylated chitosan nanoparticles is remarkably slower than chitosan. In addition, drug encapsulation and encapsulation efficiency in PEGylated nanoparticles are dependent on the amount of drug added to the formulation being significantly higher than chitosan nanoparticles. This study provides an efficient, novel, and facile method for preparing a nano carrier system for delivery of water insoluble drugs. - Highlights: • A facile novel method for conjugating methoxy polyethylene glycol (mPEG) to chitosan is introduced. • Fabricated PEG

  5. Synthesis and evaluation of PEG-O-chitosan nanoparticles for delivery of poor water soluble drugs: Ibuprofen

    International Nuclear Information System (INIS)

    Hassani Najafabadi, Alireza; Abdouss, Majid; Faghihi, Shahab

    2014-01-01

    Current methods for preparation of PEGylated chitosan have limitations such as harsh de protecting step and several purification cycles. In the present study, a facile new method for conjugating methoxy polyethylene glycol (mPEG) to chitosan under mild condition is introduced to improve water solubility of chitosan and control the release of poor water soluble drugs. The method consists of chitosan modification by grafting the C6 position of chitosan to mPEG which is confirmed by Fourier transformed-infrared (FT-IR) and proton nuclear magnetic resonance ( 1 HNMR) analyses. The amine groups at the C2 position of chitosan are protected using sodium dodecylsulfate (SDS) which is removed by dialyzing the precipitation against Tris solution. The chemical structure of the prepared polymer is characterized by FTIR and 1 HNMR. The synthesized polymer is then employed to prepare nanoparticles which are characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), scanning electron microscopy (SEM), and dynamic light scattering (DLS) for their size and morphology. The nanoparticles are used for encapsulation of ibuprofen followed by in vitro release investigation in gastrointestinal and simulated biological fluids. The chitosan nanoparticles are used as control. The PEGylated nanoparticles show a particle size of 80 nm with spherical morphology. The results clearly show that drug release from PEGylated chitosan nanoparticles is remarkably slower than chitosan. In addition, drug encapsulation and encapsulation efficiency in PEGylated nanoparticles are dependent on the amount of drug added to the formulation being significantly higher than chitosan nanoparticles. This study provides an efficient, novel, and facile method for preparing a nano carrier system for delivery of water insoluble drugs. - Highlights: • A facile novel method for conjugating methoxy polyethylene glycol (mPEG) to chitosan is introduced. • Fabricated PEG-grafted chitosan

  6. Radiation depolymerization of chitosan to prepare oligomers

    International Nuclear Information System (INIS)

    Hai, Le; Bang Diep, Tran; Nagasawa, Naotsugu; Yoshii, Fumio; Kume, Tamikazu

    2003-01-01

    Radiation depolymerization of chitosan was carried out by gamma irradiation in the solid state. The radiation-chemical depolymerization yield of chitosan in the solid state, Gd, determined by gel permeation chromatography, is 0.9 for chitosan 10B and 1.8 for chitosan 8B. Low molecular weight chitosan/or oligochitosans were separated from a chitosan depolymerized by gamma radiation, using mixtures of methanol-water and acetone as the solvents. Due to the differences in solubility revealed upon radiolysis, extracts became subdivided into precipitates and soluble fractions. The biological effect of oligochitosan in each fraction was evaluated; the preliminary results indicated that the oligochitosan with M w -bar=2x10 4 inhibited the growth of fungi at 100 ppm and that with M w -bar=800 only enhanced the growth of the same typical fungi

  7. Woody legume fallow productivity, biological N2-fixation and residual benefits to two successive maize crops in Zimbabwe

    NARCIS (Netherlands)

    Chikowo, R.; Mapfumo, P.; Nyamugafata, P.; Giller, K.E.

    2004-01-01

    Three woody legumes were planted as two-year 'improved fallows' to evaluate their residual nitrogen (N) effects on two subsequent maize crops under minimum and conventional tillage management. Maize monoculture and cowpea-maize-maize sequence treatments were included as controls. N-2-fixation was

  8. Extraction and Characterization of Chitin and Chitosan from Blue Crab and Synthesis of Chitosan Cryogel Scaffolds

    Directory of Open Access Journals (Sweden)

    Nimet Bölgen

    2016-08-01

    Full Text Available Polymeric scaffolds produced by cryogelation technique have attracted increasing attention for tissue engineering applications. Cryogelation is a technique which enables to produce interconnected porous matrices from the frozen reaction mixtures of polymers or monomeric precursors. Chitosan is a biocompatible, biodegradable, nontoxic, antibacterial, antioxidant and antifungal natural polymer that is obtained by deacetylation of chitin, which is mostly found in the exoskeleton of many crustacean. In this study, chitin was isolated from the exoskeleton of blue crap (Callinectes sapidus using a chemical method. Callinectes sapidus samples were collected from a market, as a waste material after it has been consumed as food. Demineralization, deproteinization and decolorization steps were applied to the samples to obtain chitin. Chitosan was prepared from isolated chitin by deacetylation at high temperatures. The chemical compositon of crab shell, extracted chitin and chitosan were characterized with FTIR analyses. And also to determine the physicochemical and functional properties of the produced chitosan; solubility, water binding and fat binding analysis were performed. Chitosan cryogel scaffolds were prepared by crosslinking reaction at cryogenic conditions at constant amount of chitosan (1%, w/v with different ratios of glutaraldehyde (1, 3, and 6%, v/v as crosslinker. The chemical structure of the scaffolds were examined by FTIR. Also, the water uptake capacity of scaffolds have been determined. Collectively, the results suggested that the characterized chitosan cryogels can be potential scaffolds to be used in tissue engineering applications.

  9. Effects of extraction parameters on physicochemical and functional characteristics of chitosan from Penaeus monodon shell

    Directory of Open Access Journals (Sweden)

    Jubril Olayinka Akolade

    2016-11-01

    Full Text Available Objective: To investigate the effect of extraction parameters with particular interest during the microwave deacetylation process on the characteristics of chitosan produced from Penaeus monodon (P. monodon sourced within the coastal region of Lagos, Nigeria for applications of controlled release systems for pharmaceutical industries. Methods: Chitosan was extracted from shrimp (P. monodon shell and evaluated as a controlled release system for curcumin. Effects of relevant processing parameters on physicochemical and functional characteristics of the extracted chitosan were assessed. The crude chitosan was purified and used to prepare controlled release formulations for curcumin via ionic gelation with tripolyphosphate. Results: Data from the study showed that increasing time and temperature during deproteinization significantly improved the removal of protein bound to the shell matrix. Also, the ratio of the weight of the deproteinized sample to the volume of HCl used for demineralization influenced the process. During microwave-assisted production of chitosan from chitin, increase in the concentration of the deacetylating medium significantly increased solubility, viscosity and degree of deacetylation, whereas increasing temperature and time during deacetylation of chitin degraded the biopolymer to give low molecular weight chitosan. Optimized extraction and purification process yielded absolutely soluble medium to low molecular weight chitosan. The encapsulation efficiency, loading capacity, percentage yield, release efficiencies in simulated gastric and intestinal fluids of curcumin loaded in the formulations of chitosan from P. monodon were compared favorably to encapsulation and release characteristics of the encapsulated curcumin in commercially available chitosan used as the reference. Conclusions: Valorization of shrimp waste into pharmaceutically graded medium molecular weight chitosan was achieved. The chitosan obtained can be used as

  10. Entirely S-protected chitosan: A promising mucoadhesive excipient for metronidazole vaginal tablets.

    Science.gov (United States)

    Lupo, Noemi; Fodor, Benjamin; Muhammad, Ijaz; Yaqoob, Muhammad; Matuszczak, Barbara; Bernkop-Schnürch, Andreas

    2017-12-01

    Synthesis and evaluation of an entirely S-protected chitosan as mucoadhesive excipient for vaginal drug delivery. N-acetyl-cysteine was linked to 6-mercaptonicotinamide via disulphide exchange reaction. The obtained ligand, NAC-6-MNA, was subsequently attached to chitosan by carbodiimide mediated amide bond formation in two concentrations. The synthesized S-protected chitosan was chemically characterized and mucoadhesive properties and stability against oxidation were investigated. Moreover, metronidazole tablets comprising the S-protected chitosan were evaluated regarding water uptake capacity, disintegration behaviour, residence time on vaginal mucosa, release of the encapsulated drug and antimicrobial activity. S-protected chitosan displayed 160±19 (CS-MNA-160) and 320±38 (CS-MNA-320)µmol of ligand per gram of polymer. At pH 4.2, CS-MNA-160 and CS-MNA-320 showed 5.2-fold and 6.2-fold increase in mucus viscosity in comparison to unmodified chitosan (One-way ANOVA, pchitosan remained stable against oxidation in presence of 0.5%v/v hydrogen peroxide. Metronidazole tablets consisting in S-protected chitosan showed prolonged residence time on vaginal mucosa and improved water uptake capacity and disintegration time in comparison to tablets consisting of unmodified chitosan. Moreover, CS-MNA-320 metronidazole tablets displayed prolonged drug release and antimicrobial activity. On the basis of the achieved results, entirely S-protected chitosan represents a promising excipient for the development of metronidazole vaginal tablets. S-protected thiomers are polymers modified with thiol groups protected by aromatic ligands and characterized by strong mucoadhesive properties and high stability against oxidation. Up to date, the entirely S-protection of thiol groups was achieved via the synthesis of the ligand 2-((2-amino-2-carboxyethyl)disulfanyl)nicotinic acid) which can be directly bound to the backbone of polymers bearing carboxylic moieties as pectin. However, this

  11. Overexpression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize[OPEN

    Science.gov (United States)

    Shi, Jinrui; Habben, Jeffrey E.; Archibald, Rayeann L.; Drummond, Bruce J.; Chamberlin, Mark A.; Williams, Robert W.; Lafitte, H. Renee; Weers, Ben P.

    2015-01-01

    Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions. PMID:26220950

  12. Impact of salt form and molecular weight of chitosan on swelling and drug release from chitosan matrix tablets.

    Science.gov (United States)

    Huanbutta, Kampanart; Cheewatanakornkool, Kamonrak; Terada, Katsuhide; Nunthanid, Jurairat; Sriamornsak, Pornsak

    2013-08-14

    Magnetic resonance imaging (MRI) and gravimetric techniques were used to assess swelling and erosion behaviors of hydrophilic matrix tablets made of chitosan. The impact of salt form, molecular weight (MW) and dissolution medium on swelling behavior and drug (theophylline) release was studied. The matrix tablets made of chitosan glycolate (CGY) showed the greatest swelling in both acid and neutral media, compared to chitosan aspartate, chitosan glutamate and chitosan lactate. MRI illustrated that swelling region of CGY in both media was not different in the first 100 min but glassy region (dry core) in 0.1N HCl was less than in pH 6.8 buffer. The tablets prepared from chitosan with high MW swelled greater than those of low MW. Moreover, CGY can delay drug release in the acid condition due to thick swollen gel and low erosion rate. Therefore, CGY may be suitably applied as sustained drug release polymer or enteric coating material. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Biocompatibility of chitosan/Mimosa tenuiflora scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Martel-Estrada, Santos Adriana [Instituto de arquitectura diseño y arte, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P. 32320 Cd. Juárez, Chihuahua (Mexico); Rodríguez-Espinoza, Brenda [Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente del PRONAF y Estocolmo, C.P. 32320 Cd. Juárez, Chihuahua (Mexico); Santos-Rodríguez, Elí [ICTP Meso-American Centre for Theoretical Physics (ICTP-MCTP)/Universidad Autónoma de Chiapas, Ciudad Universitaria, Carretera Zapata Km. 4, Real del Bosque (Terán), C.P. 29040 Tuxtla Gutiérrez, Chiapas (Mexico); Jiménez-Vega, Florinda [Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente del PRONAF y Estocolmo, C.P. 32320 Cd. Juárez, Chihuahua (Mexico); García-Casillas, Perla E.; Martínez-Pérez, Carlos A. [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P. 32320 Cd. Juárez, Chihuahua (Mexico); and others

    2015-09-15

    Highlights: • The porosity of the composites allow biological processes for the cell adaptation on the scaffolds. • The composites improve the viability and proliferation of cells. • Composition of the scaffold plays an important role in the biocompatibility. • The results indicate that Mimosa Tenuiflora can induce the differentiation of osteoblast cells. - Abstract: In search of a plant that exhibits osteogenic activity, Mimosa tenuiflora (M. tenuiflora) cortex represents the opportunity to create a biomaterial that, together with the chitosan, is osteoconductive and promote better and rapid regeneration of bone tissue. Thus, the composite of chitosan/M. tenuiflora cortex fabricated will have properties of biocompatibility and allow the osteoblast proliferation. Composites were developed with different concentrations of chitosan/M. tenuiflora cortex (w/w) using thermally induced phase separation technique (TIPS). To analyze the effects of composite on osteoblasts, primary cultures, each sample was collected on days 1, 3 and 7 after seeding. The evaluation of composites consisted of viability and proliferation tests in which we observed the metabolic activity of the cells using MTT reagent and determined the DNA concentration by means of fluorescence. The expression of the marker alkaline phosphatase (ALP) using p-nitrophenyl phosphate was examined, allowing the observation to the activity of proliferation and differentiation of osteoblastic cells. Moreover, an analysis of biomineralization was performed using scanning electron microscopy (SEM), energy dispersive spectroscopy, infrared spectroscopy and X-ray diffraction. The results showed that 80/20 chitosan/M. tenuiflora cortex biocomposite has the best performance with osteoblasts compared to biomaterials 100/0 and 70/30 chitosan/M. tenuiflora composites. Finally, it was determined that the composite of chitosan/M. tenuiflora cortex presents no cytotoxicity and increases the capacity of the osteoblasts

  14. Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid.

    Science.gov (United States)

    Falamarzpour, Pouria; Behzad, Tayebeh; Zamani, Akram

    2017-02-13

    Adipic acid, an abundant and nontoxic compound, was used to dissolve and cross-link chitosan. After the preparation of chitosan films through casting technique, the in situ amidation reaction was performed at 80-100 °C as verified by Fourier transform infrared (FT-IR). The reaction was accompanied by the release of water which was employed to investigate the reaction kinetics. Accordingly, the reaction rate followed the first-order model and Arrhenius equation, and the activation energy was calculated to be 18 kJ/mol. Furthermore, the mechanical properties of the chitosan films were comprehensively studied. First, optimal curing conditions (84 °C, 93 min) were introduced through a central composite design. In order to evaluate the effects of adipic acid, the mechanical properties of physically cross-linked (uncured), chemically cross-linked (cured), and uncross-linked (prepared by acetic acid) films were compared. The use of adipic acid improved the tensile strength of uncured and chemically cross-linked films more than 60% and 113%, respectively. Finally, the effect of cellulose nanofibrils (CNFs) on the mechanical performance of cured films, in the presence of glycerol as a plasticizer, was investigated. The plasticized chitosan films reinforced by 5 wt % CNFs showed superior properties as a promising material for the development of chitosan-based biomaterials.

  15. Optimization of Chitosan Drying Temperature on The Quality and Quantity of Edible Film

    Science.gov (United States)

    Sri Wahyuni, Endah; Arifan, Fahmi

    2018-02-01

    Edible film is a thin layer (biodegradable) used to coat food and can be eaten. In addition edible film serves as a vapor transfer inhibitor, inhibits gas exchange, prevents aroma loss, prevents fat transfer, improves physical characteristics, and as an additive carrier. Edible film made of cassava starch, glycerol and chitosan. Cassava starch is used as raw material because it contains 80% starch. Glycerol serves as a plasticizer and chitosan serves to form films and membranes well. The purpose of this research is to know the characteristic test of edible film by using ANOVA analysis, where the variable of drying of the oven is temperature (70°C, 80°C, 90°C) and time for 3 hours and variables change chitosan (2 gr, 3 gr, 4 gr). The result of this research was obtained the most optimum for water content and water resistance in temperature variable 80 °C and chitosan 4 gr. The best edible films and bubbles on temperature variables are 80 °C and chitosan 4 gr.

  16. yield and yield componemts of extra early maize (zea mays l.)

    African Journals Online (AJOL)

    SHARIFAI

    maize crop and improve the soil structures and chemical nutrients of the soil. The significant interaction between intra-row spacing and poultry manure on cob diameter, 100 grain weight and grain yield showed the importance of poultry manure on yield and yield components of maize crop. Poultry manure increases both ...

  17. Application of irradiated chitosan for fruit preservation

    Energy Technology Data Exchange (ETDEWEB)

    Lan, K.N. [Post-harvest Technology Institute, 4, Ngo Quyen-Ha Noi (Viet Nam); Lam, N.D. [Ha Noi Radiation Center, VAEC, 5T-160, Nghiado, Tuliem, Ha Noi (Viet Nam); Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-03-01

    Preliminary test of mango (Mangifera indica) preservation by irradiated chitosan coating has been investigated. The coating by using irradiated chitosan in 1.5% solution has extended the shelf life of mango from 7 to 15 days. At the 15th day mango coated by irradiated chitosan has been keeping good color, natural ripening, without spoilage, weight loss 10%, whereas the mango without coating was spoiled completely and the coating of fruit with unirradiated chitosan inhibited the ripening. (author)

  18. Application of irradiated chitosan for fruit preservation

    International Nuclear Information System (INIS)

    Lan, K.N.; Lam, N.D.; Kume, Tamikazu

    2000-01-01

    Preliminary test of mango (Mangifera indica) preservation by irradiated chitosan coating has been investigated. The coating by using irradiated chitosan in 1.5% solution has extended the shelf life of mango from 7 to 15 days. At the 15th day mango coated by irradiated chitosan has been keeping good color, natural ripening, without spoilage, weight loss 10%, whereas the mango without coating was spoiled completely and the coating of fruit with unirradiated chitosan inhibited the ripening. (author)

  19. Preparation of alginate coated chitosan microparticles for vaccine delivery

    Directory of Open Access Journals (Sweden)

    Wei YuQuan

    2008-11-01

    Full Text Available Abstract Background Absorption of antigens onto chitosan microparticles via electrostatic interaction is a common and relatively mild process suitable for mucosal vaccine. In order to increase the stability of antigens and prevent an immediate desorption of antigens from chitosan carriers in gastrointestinal tract, coating onto BSA loaded chitosan microparticles with sodium alginate was performed by layer-by-layer technology to meet the requirement of mucosal vaccine. Results The prepared alginate coated BSA loaded chitosan microparticles had loading efficiency (LE of 60% and loading capacity (LC of 6% with mean diameter of about 1 μm. When the weight ratio of alginate/chitosan microparticles was greater than 2, the stable system could be obtained. The rapid charge inversion of BSA loaded chitosan microparticles (from +27 mv to -27.8 mv was observed during the coating procedure which indicated the presence of alginate layer on the chitosan microparticles surfaces. According to the results obtained by scanning electron microscopy (SEM, the core-shell structure of BSA loaded chitosan microparticles was observed. Meanwhile, in vitro release study indicated that the initial burst release of BSA from alginate coated chitosan microparticles was lower than that observed from uncoated chitosan microparticles (40% in 8 h vs. about 84% in 0.5 h. SDS-polyacrylamide gel electrophoresis (SDS-PAGE assay showed that alginate coating onto chitosan microparticles could effectively protect the BSA from degradation or hydrolysis in acidic condition for at least 2 h. The structural integrity of alginate modified chitosan microparticles incubated in PBS for 24 h was investigated by FTIR. Conclusion The prepared alginate coated chitosan microparticles, with mean diameter of about 1 μm, was suitable for oral mucosal vaccine. Moreover, alginate coating onto the surface of chitosan microparticles could modulate the release behavior of BSA from alginate coated chitosan

  20. Chitosan-nanosilica hybrid materials: Preparation and properties

    International Nuclear Information System (INIS)

    Podust, T.V.; Kulik, T.V.; Palyanytsya, B.B.; Gun’ko, V.M.; Tóth, A.; Mikhalovska, L.; Menyhárd, A.; László, K.

    2014-01-01

    Highlights: • Hybrid chitosan-nanosilica materials were synthesized using an adsorption modification method. • The chitosan adsorption capacity is higher on the silica/titania and silica/alumina than on the fumed silica. • Nanosilicas undergo structural and textural alterations due to modification by chitosan. • The more severe chitosan thermodestruction occurs on the silica/titania and silica/alumina surfaces than on the plain silica surface. - Abstract: The research focuses on the synthesis of novel organic–inorganic hybrid materials based on polysaccharide chitosan and nanosilicas (SiO 2 , TiO 2 /SiO 2 and Al 2 O 3 /SiO 2 ). The chitosan modified nanooxides were obtained by the equilibrium adsorption method. The chitosan adsorption capacities of silica/titania and silica/alumina are higher than of the plain silica due to the additional active sites present on the surfaces of the mixed oxides. The hybrid materials were characterized by low-temperature nitrogen adsorption/desorption, photon correlation spectroscopy (PCS), scanning electron microscopy (SEM), thermogravimetry (TG/DTG) and temperature-programmed desorption with mass spectrometry control (TPD MS) methods. The chitosan treatment only modestly influences the surface area S BET of the nanooxides but the rearrangement of the secondary and tertiary structures (aggregates and agglomerates) results in an enhancement of the mesoporosity and affects the size of the aggregates. The more severe thermodestruction of the polysaccharide desorbing from the modified mixed silicas indicates a stronger interaction between the chitosan and the mixed oxides compared to the silanol groups of the plain silica surface

  1. Chitosan-nanosilica hybrid materials: Preparation and properties

    Energy Technology Data Exchange (ETDEWEB)

    Podust, T.V., E-mail: tania_list@yahoo.com [Chuiko Institute of Surface Chemistry, 17 General Naumov Street, Kyiv 03164 (Ukraine); Kulik, T.V., E-mail: tanyakulyk@i.ua [Chuiko Institute of Surface Chemistry, 17 General Naumov Street, Kyiv 03164 (Ukraine); Palyanytsya, B.B.; Gun’ko, V.M. [Chuiko Institute of Surface Chemistry, 17 General Naumov Street, Kyiv 03164 (Ukraine); Tóth, A. [Department of Physical Chemistry and Material Science, Budapest University of Technology and Economics, H-1521 Budapest (Hungary); Mikhalovska, L. [School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton BN2 4GJ (United Kingdom); Menyhárd, A. [Department of Physical Chemistry and Material Science, Budapest University of Technology and Economics, H-1521 Budapest (Hungary); Institute of Materials Science and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences (Hungary); László, K. [Department of Physical Chemistry and Material Science, Budapest University of Technology and Economics, H-1521 Budapest (Hungary)

    2014-11-30

    Highlights: • Hybrid chitosan-nanosilica materials were synthesized using an adsorption modification method. • The chitosan adsorption capacity is higher on the silica/titania and silica/alumina than on the fumed silica. • Nanosilicas undergo structural and textural alterations due to modification by chitosan. • The more severe chitosan thermodestruction occurs on the silica/titania and silica/alumina surfaces than on the plain silica surface. - Abstract: The research focuses on the synthesis of novel organic–inorganic hybrid materials based on polysaccharide chitosan and nanosilicas (SiO{sub 2}, TiO{sub 2}/SiO{sub 2} and Al{sub 2}O{sub 3}/SiO{sub 2}). The chitosan modified nanooxides were obtained by the equilibrium adsorption method. The chitosan adsorption capacities of silica/titania and silica/alumina are higher than of the plain silica due to the additional active sites present on the surfaces of the mixed oxides. The hybrid materials were characterized by low-temperature nitrogen adsorption/desorption, photon correlation spectroscopy (PCS), scanning electron microscopy (SEM), thermogravimetry (TG/DTG) and temperature-programmed desorption with mass spectrometry control (TPD MS) methods. The chitosan treatment only modestly influences the surface area S{sub BET} of the nanooxides but the rearrangement of the secondary and tertiary structures (aggregates and agglomerates) results in an enhancement of the mesoporosity and affects the size of the aggregates. The more severe thermodestruction of the polysaccharide desorbing from the modified mixed silicas indicates a stronger interaction between the chitosan and the mixed oxides compared to the silanol groups of the plain silica surface.

  2. Effect of chitosan on the heat stability of whey protein solution as a function of pH.

    Science.gov (United States)

    Zhao, Zhengtao; Xiao, Qian

    2017-03-01

    Chitosan was reported to interact with proteins through electrostatic interactions. Their interaction was influenced by pH, which was not fully characterized. Further research on the interactions between protein and chitosan at different pH and their influence on the thermal denaturation of proteins is necessary. In this research, the effect of chitosan on the heat stability of whey protein solution at pH 4.0-6.0 was studied. At pH 4.0, a small amount chitosan was able to prevent the heat-induced denaturation and aggregation of whey protein molecules. At higher pH values (5.5 and 6.0), whey proteins complexed with chitosan through electrostatic attraction. The formation of chitosan-whey protein complexes at pH 5.5 improved the heat stability of dispersions and no precipitation could be detected up to 20 days. The dispersion with a medium amount of chitosan (chitosan:whey protein 1:5) produced the most stable particles, which had an average radius of 135 ± 14 nm and a zeta potential value of 36 ± 1 mV. In contrast, at pH 6.0 only the dispersion with a high amount of chitosan (chitosan:whey protein 1:2) showed good shelf stability up to 20 days. It was possible to produce heat-stable whey protein beverages by regulating the interaction between chitosan and whey protein molecules. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. Fish gelatin combined with chitosan coating inhibits myofibril degradation of golden pomfret (Trachinotus blochii) fillet during cold storage.

    Science.gov (United States)

    Feng, Xiao; Bansal, Nidhi; Yang, Hongshun

    2016-06-01

    Coating of gelatin and chitosan can improve fish fillet's quality, but the mechanism is not clear. Chitosan/gelatin coatings significantly prevented deterioration of golden pomfret fillet at 4 °C. Chitosan with 7.2% gelatin group showed the best effect on preserving the length of myofibril, which remained greater than 15 μm at day 17 of storage, while for control, chitosan and chitosan combined with 3.6% gelatin group, it was 5.03, 10.04 and 9.02 μm, respectively. The MALDI-TOF MS result revealed that the coatings slowed down the protein deterioration of fillet. On days 13 and 17, the myosin light chain and myoglobin in control group degraded, while the two proteins still existed in chitosan/gelatin coated groups. Overall, the chitosan with 7.2% gelatin coating had the best effect on preserving fillet's quality during storage. The coating may exert its protective effect via inhibiting myofibril degradation within fillet. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Assessment of maize stem borer damage on hybrid maize varieties in Chitwan, Nepal

    OpenAIRE

    Buddhi Bahadur Achhami; Santa Bahadur BK; Ghana Shyam Bhandari

    2015-01-01

    Maize is the second most important cereal crop in Nepal. However, national figure of grain production still remains below than the world's average grain production per unit area. Thus, this experiment was designed to determine the suitable time of maize planting, and to assess the peak period of one of the major insects, maize stem borer, in Chitwan condition. The results showed that plant damage percentage as per the maize planting month varies significantly, and the average plant damage per...

  5. Maize Diversity, Market Access, and Poverty Reduction in the Western Highlands of Guatemala

    Directory of Open Access Journals (Sweden)

    Jon Hellin

    2017-05-01

    Full Text Available The western highlands of Guatemala lie within the area where maize was first domesticated, and maize remains central to farmers' livelihood security. Over 50% of the population in the region are in poverty, and over 48% suffer from chronic malnutrition. Development efforts have focused on improved land management, crop diversification, and improved access to markets, especially for high-value vegetable crops such as snow peas. As a result of successful initiatives worldwide, more attention is being directed at the extent to which farmers can benefit from market opportunities for indigenous crops by receiving a price premium for providing the environmental service of conserving agricultural biodiversity. Such an approach bridges the gap between poverty alleviation and in situ conservation. We explored this potential development pathway through both qualitative and quantitative research. Focus groups were conducted in 5 communities in the maize-growing highlands of Guatemala, followed by a survey of 989 farm households in 59 locations. Our results show that most farmers in the western highlands of Guatemala are severely maize deficient; on average, farm households produce enough maize for only 6.9 months of consumption a year and are forced to purchase maize to meet basic consumption needs. The results are in sharp contrast to research conducted in highland communities in neighboring Mexico, where many farmers are able to sell their maize in relatively lucrative specialty maize markets. In the context of renewed interest in reducing poverty in Central America, our research suggests that rather than focus on market development for local maize varieties, development efforts should target other types of interventions.

  6. Development and characterization of bioactive edible films from spider crab (Maja crispata) chitosan incorporated with Spirulina extract.

    Science.gov (United States)

    Balti, Rafik; Mansour, Mohamed Ben; Sayari, Nadhem; Yacoubi, Lamia; Rabaoui, Lotfi; Brodu, Nicolas; Massé, Anthony

    2017-12-01

    Active food packaging films based on crab chitosan and Spirulina extract (SE) were developed. The effects of the SE incorporation at different levels on physical (color, opacity water vapor and oxygen permeability) and mechanical (tensile strength and elongation at break) properties of chitosan films were investigated. FTIR was carried out to observe the potential modifications of the chitosan films when incorporated with SE. The obtained results suggested that incorporation of SE into chitosan films improved mechanical and barrier properties. The antioxidant activity of the chitosan/SE films was characterized by means of three different analytical assays (DPPH, FRAP and FIC). Crab chitosan edible films containing SE showed higher antioxidant activity, regardless concentrations and methods assayed. Furthermore, the antioxidant activity occurred in a concentration-dependent manner. The agar disc diffusion method was used to determine the antibacterial activities of chitosan edible films against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Listeria monocytogenes, Salmonella typhimurium, Bacillus subtilis and Bacillus cereus. The chitosan/SE films were more effective (pchitosan edible films incorporated with SE showed great potential to be used for active food packaging due to its excellent antioxidant and antibacterial activities. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Regioselective Sequential Modification of Chitosan via Azide-Alkyne Click Reaction: Synthesis, Characterization, and Antimicrobial Activity of Chitosan Derivatives and Nanoparticles

    Science.gov (United States)

    Sarwar, Atif; Katas, Haliza; Samsudin, Siti Noradila; Zin, Noraziah Mohamad

    2015-01-01

    Recently, the attention of researchers has been drawn toward the synthesis of chitosan derivatives and their nanoparticles with enhanced antimicrobial activities. In this study, chitosan derivatives with different azides and alkyne groups were synthesized using click chemistry, and these were further transformed into nanoparticles by using the ionotropic gelation method. A series of chitosan derivatives was successfully synthesized by regioselective modification of chitosan via an azide-alkyne click reaction. The amino moieties of chitosan were protected during derivatization by pthaloylation and subsequently unblocked at the end to restore their functionality. Nanoparticles of synthesized derivatives were fabricated by ionic gelation to form complexes of polyanionic penta-sodium tripolyphosphate (TPP) and cationic chitosan derivatives. Particle size analysis showed that nanoparticle size ranged from 181.03 ± 12.73 nm to 236.50 ± 14.32 nm and had narrow polydispersity index and positive surface charge. The derivatives and corresponding nanoparticles were evaluated in vitro for antibacterial and antifungal activities against three gram-positive and gram-negative bacteria and three fungal strains, respectively. The minimum inhibitory concentration (MIC) of all derivatives ranged from 31.3 to 250 µg/mL for bacteria and 188 to1500 µg/mL for fungi and was lower than that of native chitosan. The nanoparticles with MIC ranging from 1.56 to 25 µg/mLfor bacteria and 94 to 750 µg/mL for fungi exhibited higher activity than the chitosan derivatives. Chitosan O-(1-methylbenzene) triazolyl carbamate and chitosan O-(1-methyl phenyl sulfide) triazolyl carbamate were the most active against the tested bacterial and fungal strains. The hemolytic assay on erythrocytes and cell viability test on two different cell lines (Chinese hamster lung fibroblast cells V79 and Human hepatic cell line WRL68) demonstrated the safety; suggesting that these derivatives could be used in future

  8. Gadolinium-loaded chitosan nanoparticles for cancer neutron-capture therapy. Pharmaceutical characteristics and in vitro antitumor effect

    International Nuclear Information System (INIS)

    Fukumori, Yoshinobu; Ichikawa, Hideki; Nakatani, Yugo

    2006-01-01

    Preparation of Gd-nanoCPs was carried out based on the w/o emulsion-droplet coalescence technique. Chitosan with different molecular weight (Mw) (950, 50, 10 kDa) was applied a various concentrations (0.5, 1.5, 2.5%). B16F10 mouse melanoma cells were employed to evaluate the cell-association properties of Gd-nanoCPs and the antitumor effect with thermal neutron irradiation. In the formulation study, as the Mw of chitosan decreased, the mean particle diameter decreased to 155 nm with 10 kDa chitosan at the smallest. Then, decrease in the chitosan concentration in the chitosan solution contributed to a decrease in mean particle diameter and an increase in gadolinium content. The Gd content in the Gd-nanoCPs prepared with 0.5% chitosan reached 22% at the maximum. The amount of Gd associated with cell was also dependent on the Mw of chitosan. In the subsequent Gd-NCT study in vitro, the most highly Gd-containing (22%) and finest (155 nm) Gd-nanoCPs prepared at 0.5% of 10 kDa chitosan exhibited the strongest tumor cell growth suppression. It is expected that use of Gd-nanoCP prepared here may lead to improved performance in NCT. (author)

  9. New sizing agents and flocculants derived from chitosan

    International Nuclear Information System (INIS)

    Hebeish, A.; Higay, A.; El-Shafei, A.

    2005-01-01

    Novel approaches for development of new textile sizing agents and flocculants were undertaken. One of these approaches is based on acid hydrolysis of chitosan and the other involves its carboxy methylation. Characterization of the hydrolyzed chitosan was performed through monitoring nitrogen content and apparent viscosity, while carboxymethyl chitosan was analyzed for degree of substitution (DS) along with apparent viscosity. Factors affecting both hydrolysis and carboxy methylation were investigated. The nitrogen content and apparent viscosity of chitosan decrease variably by increasing HCl concentration as well as time and temperature of hydrolysis. On the other hand, the DS of carboxymethyl chitosan increases by increasing the concentration of both sodium hydroxide and monochloroacetic acid and similarly increases by prolonging the duration and raising the temperature of carboxy methylation; in contrast with apparent viscosity which is inversely related to these parameters. Aqueous solutions of hydrolyzed chitosan or carboxymethyl chitosan were applied to light cotton fabric with a view to envision the technical feasibility of such water soluble chitosan for textile sizing. The size add-on on the light fabric is directly related to the concentration of the hydrolyzed or carboxymethyl chitosan in the sizing solution and so does the apparent viscosity of the latter. Hundred percent size removals could be achieved with the hydrolyzed chitosan irrespective or the size solution concentration provided that the latter is not less than 8%. Different situation is encountered with carboxymethyl chitosan where the percent size removal increase from 81% to 95% by increasing its concentration in the sizing solution from 5 % to 15%. Drying the sized fabric at 80 degree C for 5 minutes or 120 degree C for 3 minutes has practically no effect on percent size removal. The same holds true for heat treatment of the sized fabric at higher temperatures (up to 160 degree C) for longer

  10. Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning

    Directory of Open Access Journals (Sweden)

    2011-04-01

    Full Text Available Chitosan is soluble in most acids. The protonation of the amino groups on the chitosan backbone inhibits the electrospinnability of pure chitosan. Recently, electrospinning of nanofibers based on chitosan has been widely researched and numerous nanofibers containing chitosan have been prepared by decreasing the number of the free amino groups of chitosan as the nanofibiers have enormous possibilities for better utilization in various areas. This article reviews the preparations and properties of the nanofibers which were electrospun from pure chitosan, blends of chitosan and synthetic polymers, blends of chitosan and protein, chitosan derivatives, as well as blends of chitosan and inorganic nanoparticles, respectively. The applications of the nanofibers containing chitosan such as enzyme immobilization, filtration, wound dressing, tissue engineering, drug delivery and catalysis are also summarized in detail.

  11. Effect of enzymatic degradation of chitosan in polyhydroxybutyrate/chitosan/calcium phosphate composites on in vitro osteoblast response.

    Science.gov (United States)

    Giretova, Maria; Medvecky, Lubomir; Stulajterova, Radoslava; Sopcak, Tibor; Briancin, Jaroslav; Tatarkova, Monika

    2016-12-01

    Polyhydroxybutyrate/chitosan/calcium phosphate composites are interesting biomaterials for utilization in regenerative medicine and they may by applied in reconstruction of deeper subchondral defects. Insufficient informations were found in recent papers about the influence of lysozyme degradation of chitosan in calcium phosphate/chitosan based composites on in vitro cytotoxicity and proliferation activity of osteoblasts. The effect of enzymatic chitosan degradation on osteoblasts proliferation was studied on composite films in which the porosity of origin 3D scaffolds was eliminated and the surface texture was modified. The significantly enhanced proliferation activity with faster population growth of osteoblasts were found on enzymatically degraded biopolymer composite films with α-tricalcium phosphate and nanohydroxyapatite. No cytotoxicity of composite films prepared from lysozyme degraded scaffolds containing a large fraction of low molecular weight chitosans (LMWC), was revealed after 10 days of cultivation. Contrary to above in the higher cytotoxicity origin untreated nanohydroxyapatite films and porous composite scaffolds. The results showed that the synergistic effect of surface distribution, morphology of nanohydroxyapatite particles, microtopography and the presence of LMWC due to chitosan degradation in composite films were responsible for compensation of the cytotoxicity of nanohydroxyapatite composite films or porous composite scaffolds.

  12. Performance improvements of the BNC tubes from unique double-silicone-tube bioreactors by introducing chitosan and heparin for application as small-diameter artificial blood vessels.

    Science.gov (United States)

    Li, Xue; Tang, Jingyu; Bao, Luhan; Chen, Lin; Hong, Feng F

    2017-12-15

    In order to improve property of bacterial nano-cellulose (BNC) to achieve the requirements of clinical application as small caliber vascular grafts, chitosan (CH) was deposited into the fibril network of the BNC tubes fabricated in unique Double-Silicone-Tube bioreactors. Heparin (Hep) was then chemically grafted into the BNC-based tubes using EDC/NHS crosslinking to improve performance of anticoagulation and endothelialization. Physicochemical and mechanical property, blood compatibility, and cytocompatibility were compared before and after compositing. The results indicated that strength at break was increased but burst pressure decreased slightly after compositing. Performance of the BNC tubes was improved remarkably after introducing chitosan and heparin. The EDC/NHS crosslinking catalyzed both amide bonds and ester bonds formation in the BNC/CH-Hep composites. Three-dimensional surface structure and roughness were firstly obtained and discussed in relation to the hemocompatibility of BNC-based tubes. This work demonstrates the heparinized BNC-based tubes have great potential in application as small-diameter vascular prosthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Thiolated polymers--thiomers: development and in vitro evaluation of chitosan-thioglycolic acid conjugates.

    Science.gov (United States)

    Kast, C E; Bernkop-Schnürch, A

    2001-09-01

    The aim of this study was to improve mucoadhesive properties of chitosan by the covalent attachment of thiol moieties to this cationic polymer. Mediated by a carbodiimide, thioglycolic acid (TGA) was covalently attached to chitosan. This was achieved by the formation of amide bonds between the primary amino groups of the polymer and the carboxylic acid group of TGA. Dependent on the pH-value and the weight ratio of polymer to TGA during the coupling reaction the resulting thiolated polymers, the so-called thiomers, displayed 6.58, 9.88, 27.44, and 38.23 micromole thiol groups per gram polymer. Tensile studies carried out with these chitosan-TGA conjugates on freshly excised porcine intestinal mucosa demonstrated a 6.3-, 8.6-, 8.9-, and 10.3-fold increase in the total work of adhesion (TWA) compared to the unmodified polymer, respectively. In contrast, the combination of chitosan and free unconjugated TGA showed almost no mucoadhesion. These data were in good correlation with further results obtained by another mucoadhesion test demonstrating a prolonged residence time of thiolated chitosan on porcine mucosa. The swelling behavior of all conjugates was thereby exactly in the same range as for an unmodified polymer pretreated in the same way. Furthermore, it could be shown that chitosan-TGA conjugates are still biodegradable by the glycosidase lysozyme. According to these results. chitosan-TGA conjugates represent a promising tool for the development of mucoadhesive drug delivery systems.

  14. Maillard reaction products from chitosan-xylan ionic liquid solution.

    Science.gov (United States)

    Luo, Yuqiong; Ling, Yunzhi; Wang, Xiaoying; Han, Yang; Zeng, Xianjie; Sun, Runcang

    2013-10-15

    A facile method is reported to prepare Maillard reaction products (MRPs) from chitosan and xylan in co-solvent ionic liquid. UV absorbance and fluorescence changes were regarded as indicators of the occurrence of Maillard reaction. FT-IR, NMR, XRD and TG were used to investigate the structure of chitosan-xylan conjugate. The results revealed that when chitosan reacted with xylan in ionic liquid, the hydrogen bonds in chitosan were destroyed, the facts resulted in the formation of chitosan-xylan MRPs. Moreover, when the mass ratio of chitosan to xylan was 1:1, the Maillard reaction proceeded easily. In addition, relatively high antioxidant property was also noted for the chitosan-xylan conjugate with mass ratio 1:1. So the obtained chitosan-xylan MRP is a promising antioxidant agent for food industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Chitosan: A potential biopolymer for wound management.

    Science.gov (United States)

    Bano, Ijaz; Arshad, Muhammad; Yasin, Tariq; Ghauri, Muhammad Afzal; Younus, Muhammad

    2017-09-01

    It has been seen that slow healing and non-healing wounds conditions are treatable but still challenging to humans. Wound dressing usually seeks for biocompatible and biodegradable recipe. Natural polysaccharides like chitosan have been examined for its antimicrobial and healing properties on the basis of its variation in molecular weight and degree of deacetylation. Chitosan adopts some vital characteristics for treatment of various kinds of wounds which include its bonding nature, antifungal, bactericidal and permeability to oxygen. Chitosan therefore has been modified into various forms for the treatment of wounds and burns. The purpose of this review article is to understand the exploitation of chitosan and its derivatives as wound dressings. This article will also provide a concise insight on the properties of chitosan necessary for skin healing and regeneration, particularly highlighting the emerging role of chitosan films as next generation skin substitutes for the treatment of full thickness wounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Molecular interactions in gelatin/chitosan composite films.

    Science.gov (United States)

    Qiao, Congde; Ma, Xianguang; Zhang, Jianlong; Yao, Jinshui

    2017-11-15

    Gelatin and chitosan were mixed at different mass ratios in solution forms, and the rheological properties of these film-forming solutions, upon cooling, were studied. The results indicate that the significant interactions between gelatin and chitosan promote the formation of multiple complexes, reflected by an increase in the storage modulus of gelatin solution. Furthermore, these molecular interactions hinder the formation of gelatin networks, consequently decreasing the storage modulus of polymer gels. Both hydrogen bonds and electrostatic interactions are formed between gelatin and chitosan, as evidenced by the shift of the amide-II bands of polymers. X-ray patterns of composite films indicate that the contents of triple helices decrease with increasing chitosan content. Only one glass transition temperature (T g ) was observed in composite films with different composition ratios, and it decreases gradually with an increase in chitosan proportion, indicating that gelatin and chitosan have good miscibility and form a wide range of blends. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Chitosan Fibers Modified with HAp/β–TCP Nanoparticles

    Directory of Open Access Journals (Sweden)

    Dariusz Wawro

    2011-10-01

    Full Text Available This paper describes a method for preparing chitosan fibers modified with hydroxyapatite (HAp, tricalcium phosphate (β-TCP, and HAp/β-TCP nanoparticles. Fiber-grade chitosan derived from the northern shrimp (Pandalus borealis and nanoparticles of tricalcium phosphate (β-TCP and hydroxyapatite (HAp suspended in a diluted chitosan solution were used in the investigation. Diluted chitosan solution containing nanoparticles of Hap/β-TCP was introduced to a 5.16 wt% solution of chitosan in 3.0 wt% acetic acid. The properties of the spinning solutions were examined. Chitosan fibers modified with nanoparticles of HAp/β-TCP were characterized by a level of tenacity and calcium content one hundred times higher than that of regular chitosan fibers.

  18. Electrochemical and Thermal Studies of Prepared Conducting Chitosan Biopolymer Film

    International Nuclear Information System (INIS)

    Hlaing Hlaing Oo; Kyaw Naing; Kyaw Myo Naing; Tin Tin Aye; Nyunt Wynn

    2005-09-01

    In this paper, chitosan based conducting bipolymer films were prepared by casting and solvent evaporating technique. All prepared chitosan films were of pale yellow colour, transparent, and smooth. Sulphuric acid was chosen as the cross-linking agent. It enhanced conduction pathway in cross-linked chitosan films. Mechanical properties, solid-state, and thermal behavior of prepared chitosan fimls were studied by means of a material testing machine, powder X-ray diffractometry (XRD), thermogravimetric analysis (TG-DTG), and differential scanning calorimetry (DSC). By the XRD diffraction pattern, high molecular weight of chitosan product indicates the semi-crystalline nature, but the prepared chitosan film and doped chitosan film indicate significantly lower in crystallinity prove which of the amorphous characteristics. In addition, DSC thermogram of pure chitosan film exhibited exothermic peak around at 300 C, indicating polymer decomposition of chitosan molecules in chitosan films. Furthermore, these DSC thermograms clearly showed that while pure chitosan film display exothermal decomposition, the doped chitosan films mainly endothermic characteristics. The ionic conductivity of doped chitosan films were in the order of 10 to 10 S cm , which is in the range of semi-conductor. These results showed that cross-linked chitoson films may be used as polymer electrolyte film to fabricate solid state electrochemical cells

  19. Some features of irradiated chitosan and its biological effect

    International Nuclear Information System (INIS)

    Hai, Le; Hien, Nguyen Quoc; Luan, Le Quang; Hanh, Truong Thi; Man, Nguyen Tan; Ha, Pham Thi Le; Thuy, Tran Thi; Yoshii, Fumio; Kume, Tamikazu

    2001-01-01

    Preparation of chitosan oligomer by radiation degradation was carried out on the gamma Co-60 source. The radiation degradation yield (G d ) of the chitosan was found to be of 1.03. The oligochitosan with 50% of dp>8 fraction was obtained by irradiating the 10% (w/v) chitosan solution in 5% acetic acid at 45 kGy for the chitosan having the initial viscometric average molecular weight, Mv=60,000. Irradiated chitosan showed higher antifungal effect than that of unirradiated one. Furthermore, the irradiated chitosan also showed the growth-promotion effect for plants. (author)

  20. Selenium Supplementation Affects Physiological and Biochemical Processes to Improve Fodder Yield and Quality of Maize (Zea mays L. under Water Deficit Conditions

    Directory of Open Access Journals (Sweden)

    Fahim Nawaz

    2016-09-01

    Full Text Available Climate change is one of the most complex challenges that pose serious threats to livelihoods of poor people who rely heavily on agriculture and livestock particularly in climate-sensitive developing countries of the world. The negative effects of water scarcity, due to climate change, are not limited to productivity food crops but have far-reaching consequences on livestock feed production systems. Selenium (Se is considered essential for animal health and has also been reported to counteract various abiotic stresses in plants however, understanding of Se regulated mechanisms for improving nutritional status of fodder crops remains elusive. We report the effects of exogenous selenium (Se supply on physiological and biochemical processes that may influence green fodder yield and quality of maize (Zea mays L. under drought stress conditions. The plants were grown in lysimeter tanks under natural conditions and were subjected to normal (100% field capacity and water stress (60% field capacity conditions. Foliar spray of Se was carried out before the start of tasseling stage (65 days after sowing and was repeated after one week, whereas water spray was used as a control. Drought stress markedly reduced the water status, pigments and green fodder yield and resulted in low forage quality in water stressed maize plants. Nevertheless, exogenous Se application at 40 mg L-1 resulted in less negative leaf water potential (41% and enhanced relative water contents (30%, total chlorophyll (53%, carotenoid contents (60%, accumulation of total free amino acids (40% and activities of superoxide dismutase (53%, catalase (30%, peroxidase (27% and ascorbate peroxidase (27% with respect to control under water deficit conditions. Consequently, Se regulated processes improved fodder yield (15% and increased crude protein (47%, fibre (10%, nitrogen free extract (10% and Se content (36% but did not affect crude ash content in water stressed maize plants. We propose

  1. Selenium Supplementation Affects Physiological and Biochemical Processes to Improve Fodder Yield and Quality of Maize (Zea mays L.) under Water Deficit Conditions

    Science.gov (United States)

    Nawaz, Fahim; Naeem, Muhammad; Ashraf, Muhammad Y.; Tahir, Muhammad N.; Zulfiqar, Bilal; Salahuddin, Muhammad; Shabbir, Rana N.; Aslam, Muhammad

    2016-01-01

    Climate change is one of the most complex challenges that pose serious threats to livelihoods of poor people who rely heavily on agriculture and livestock particularly in climate-sensitive developing countries of the world. The negative effects of water scarcity, due to climate change, are not limited to productivity food crops but have far-reaching consequences on livestock feed production systems. Selenium (Se) is considered essential for animal health and has also been reported to counteract various abiotic stresses in plants, however, understanding of Se regulated mechanisms for improving nutritional status of fodder crops remains elusive. We report the effects of exogenous selenium supply on physiological and biochemical processes that may influence green fodder yield and quality of maize (Zea mays L.) under drought stress conditions. The plants were grown in lysimeter tanks under natural conditions and were subjected to normal (100% field capacity) and water stress (60% field capacity) conditions. Foliar spray of Se was carried out before the start of tasseling stage (65 days after sowing) and was repeated after 1 week, whereas, water spray was used as a control. Drought stress markedly reduced the water status, pigments and green fodder yield and resulted in low forage quality in water stressed maize plants. Nevertheless, exogenous Se application at 40 mg L-1 resulted in less negative leaf water potential (41%) and enhanced relative water contents (30%), total chlorophyll (53%), carotenoid contents (60%), accumulation of total free amino acids (40%) and activities of superoxide dismutase (53%), catalase (30%), peroxidase (27%), and ascorbate peroxidase (27%) with respect to control under water deficit conditions. Consequently, Se regulated processes improved fodder yield (15%) and increased crude protein (47%), fiber (10%), nitrogen free extract (10%) and Se content (36%) but did not affect crude ash content in water stressed maize plants. We propose that Se

  2. Selenium Supplementation Affects Physiological and Biochemical Processes to Improve Fodder Yield and Quality of Maize (Zea mays L.) under Water Deficit Conditions.

    Science.gov (United States)

    Nawaz, Fahim; Naeem, Muhammad; Ashraf, Muhammad Y; Tahir, Muhammad N; Zulfiqar, Bilal; Salahuddin, Muhammad; Shabbir, Rana N; Aslam, Muhammad

    2016-01-01

    Climate change is one of the most complex challenges that pose serious threats to livelihoods of poor people who rely heavily on agriculture and livestock particularly in climate-sensitive developing countries of the world. The negative effects of water scarcity, due to climate change, are not limited to productivity food crops but have far-reaching consequences on livestock feed production systems. Selenium (Se) is considered essential for animal health and has also been reported to counteract various abiotic stresses in plants, however, understanding of Se regulated mechanisms for improving nutritional status of fodder crops remains elusive. We report the effects of exogenous selenium supply on physiological and biochemical processes that may influence green fodder yield and quality of maize ( Zea mays L.) under drought stress conditions. The plants were grown in lysimeter tanks under natural conditions and were subjected to normal (100% field capacity) and water stress (60% field capacity) conditions. Foliar spray of Se was carried out before the start of tasseling stage (65 days after sowing) and was repeated after 1 week, whereas, water spray was used as a control. Drought stress markedly reduced the water status, pigments and green fodder yield and resulted in low forage quality in water stressed maize plants. Nevertheless, exogenous Se application at 40 mg L -1 resulted in less negative leaf water potential (41%) and enhanced relative water contents (30%), total chlorophyll (53%), carotenoid contents (60%), accumulation of total free amino acids (40%) and activities of superoxide dismutase (53%), catalase (30%), peroxidase (27%), and ascorbate peroxidase (27%) with respect to control under water deficit conditions. Consequently, Se regulated processes improved fodder yield (15%) and increased crude protein (47%), fiber (10%), nitrogen free extract (10%) and Se content (36%) but did not affect crude ash content in water stressed maize plants. We propose that

  3. Effects of a Chitosan Coating Layer on the Surface Properties and Barrier Properties of Kraft Paper

    Directory of Open Access Journals (Sweden)

    Shanhui Wang

    2016-01-01

    Full Text Available Biodegradable chitosan can be applied as a coating on the surface of kraft paper in order to improve its barrier properties against water vapor and air. The food packaging industry can benefit from the addition of chitosan to its current packaging, and in turn reduce pollution from plastic packaging plants. This paper discusses the film formation of chitosan, the permeability of paper coated with a chitosan layer, and the influence on the paper’s surface and barrier properties under different process conditions. SEM (scanning electron microscope, AFM (atomic force microscope, ATR-FTIR (Fourier transmission infrared spectroscope with attenuated total reflection, and PDA (penetration dynamics analysis were used to analyze the properties of chitosan’s film formation and permeability. A controlled experiment showed that the chitosan layer was smoother than the surface of the uncoated kraft paper, had better film formation, and that there was no chitosan penetration through the kraft paper. The barrier properties against water vapor were strongest when there was a higher concentration of chitosan solution at the optimum pH, stirring speed, and those with a thicker coating on the kraft paper.

  4. Chitosan dan Aplikasi Klinisnya Sebagai Biomaterial

    Directory of Open Access Journals (Sweden)

    Bambang Irawan

    2015-10-01

    Full Text Available The development of new materials with both organic and inorganic structures is of great interest to obtain special material properties. Chitosan [2-amino-2-deoxy-D-glucan] can be obtained by N-deacetylation of chitin. Chitin is the second most abundant biopolymer in nature and the supporting material of crustaceans, insects, fungi etc. Chitosan is unique polysaccharide and has been widely used in various biomedical application due to its biocompatibility, low toxicity, biodegradability, non-immunogenic and non-carcinogenic character. In the past few years, chitosan and some of its modifications have been reported for use in biomedical applications such as artificial skin, wound dressing, anticoagulant, suture, drug delivery, vaccine carrier and dietary fibers. Recently, the use of chitosan and its derivatives has received much attention as temporary scaffolding to promotie mineralization or stimulate endochodral ossification. This article aims to give a broad overview of chitosan and its clinical applications as biomaterial.

  5. Flavone-rich maize: An opportunity to improve the nutritional value of an important commodity crop

    Directory of Open Access Journals (Sweden)

    Maria Isabel Casas

    2014-09-01

    Full Text Available Agricultural outputs have resulted in food production continuously expanding. Satisfying the needs of a fast growing human population, higher yields, more efficient food processing, and food esthetic value, resulted in crop varieties with higher caloric intake but lacking many phytochemicals important for plant protection and adequate human nutrition. The increasing incidence of chronic diseases such as obesity, diabetes and cardiovascular diseases, combined with social disparity worldwide prompted the interest in developing enhanced crops that can simultaneously address the two sides of the current malnutrition sword, increasing yield while providing added nutritional value. Flavones, phytochemicals associated with the beneficial effects of the Mediterranean diet, have potent anti-inflammatory and anti-carcinogenic activities. However, many Mediterranean diet-associated vegetables are inaccessible, or lowly consumed, in many parts of the world. Maize is the most widely grown cereal crop, yet most lines used for hybrid maize production lack flavones. As a first step towards a sustainable strategy to increasing the nutritional value of maize-based diets, we investigated the accumulation and chemical properties of flavones in maize seeds of defined genotypes. We show that the pericarps of the P1-rr genotype accumulate flavones at levels comparable to those present in some flavone-rich vegetables, and are mostly present in their C- and O-glycosylated forms. Some of these glycosides can be readily converted into the corresponding more active health beneficial aglycones during food processing. Our results provide evidence that nutritionally beneficial flavones could be re-introduced into elite lines to increase the dietary benefits of maize.

  6. X-ray diffraction studies of chitosan acetate-based polymer electrolytes

    International Nuclear Information System (INIS)

    Osman, Z.; Ibrahim, Z.A.; Abdul Kariem Arof

    2002-01-01

    Chitosan is the product when partially deacetylated chitin dissolves in dilute acetic acid. This paper presents the x-ray diffraction patterns of chitosan acetate, plasticised chitosan acetate and plasticised-salted chitosan acetate films. The results show that the chitosan acetate based polymer electrolyte films are not completely amorphous but it is partially crystalline. X-ray diffraction study also confirms the occurrence of the complexation between chitosan and the salt and the interaction between salt and plasticizer. The salt-chitosan interaction is clearly justified by infrared spectroscopy. (Author)

  7. Improving weed management and crop productivity in maize systems in Zimbabwe

    NARCIS (Netherlands)

    Mashingaidze, A.B.

    2004-01-01

    Keywords: Intercropping, narrow planting, precise fertilizer placement, radiation interception, leaf stripping, detasselling, Land Equivalent Ratio, maize, pumpkin, dry beans, reduced herbicide dosagesIn the tropics, weeds cause more

  8. Determination of the Optimum Conditions for Production of Chitosan Nanoparticles

    Directory of Open Access Journals (Sweden)

    A. Dustgani

    2007-12-01

    Full Text Available Bioedegradable nanoparticles are intensively investigated for their potential applications in drug delivery systems. Being a biocompatible and biodegradable polymer, chitosan holds great promise for use in this area. This investigation was concerned with determination and optimization of the effective parameters involved in the production of chitosan nanoparticles using ionic gelation method. Studied variables were concentration and pH of the chitosan solution, the ratio of chitosan to sodium tripolyphosphate therein and the molecular weight of chitosan. For this purpose, Taguchistatistical method was used for design of experiments in three levels. The size of chitosan nanoparticle was determined using laser light scattering. The experimental results showed that concentration of chitosan solution was the most important parameter and chitosan molecular weight the least effective parameter. The optimum conditions for preparation of nanoparticles were found to be 1 mg/mL chitosan solution with pH=5, chitosan to sodium tripolyphosphate ratio of 3 and chitosan molecular weight of 200,000 daltons. The average nanoparticle size at optimum conditions was found to be about 150 nm.

  9. Fabrication, nanomechanical characterization, and cytocompatibility of gold-reinforced chitosan bio-nanocomposites

    International Nuclear Information System (INIS)

    Patel, Nimitt G.; Kumar, Ajeet; Jayawardana, Veroni N.; Woodworth, Craig D.; Yuya, Philip A.

    2014-01-01

    Chitosan, a naturally derived polymer represents one of the most technologically important classes of active materials with applications in a variety of industrial and biomedical fields. Gold nanoparticles (∼ 32 nm) were synthesized via a citrate reduction method from chloroauric acid and incorporated in Chitosan matrix. Bio-nanocomposite films with varying concentrations of gold nanoparticles were prepared through solution casting process. Uniform distribution of gold nanoparticles was achieved throughout the chitosan matrix and was confirmed with SEM. Synthesis outcomes and prepared nanocomposites were characterized using SEM, TEM, EDX, SAED, UV–vis, XRD, DLS, and Zeta potential for their physical, morphological and structural properties. Nanoscale properties of materials under the influence of temperature were characterized through nanoindentation techniques. From quasi-static nanoindentation, it was observed that hardness and reduced modulus of the nanocomposites were increased significantly in direct proportion to the gold nanoparticle concentration. Gold nanoparticle concentration also showed positive impact on storage modulus and thermal stability of the material. The obtained films were confirmed to be biocompatible by their ability to support growth of human cells in vitro. In summary, the results show enhanced mechanical properties with increasing gold nanoparticle concentration, and provide better understanding of the structure–property relationships of such biocompatible materials for potential biomedical applications. - Highlights: • We fabricated gold reinforced chitosan nanocomposite for biomedical applications. • Gold nanoparticles significantly enhanced nanomechanical properties of chitosan. • Nanocomposite films supported growth of human cells in vitro. • Gold nanoparticles significantly improved cell proliferation on chitosan films

  10. Chitosan Coating: A Postharvest Treatment to Delay Oxidative Stress in Loquat Fruits during Cold Storage

    Directory of Open Access Journals (Sweden)

    Giuseppina Adiletta

    2018-04-01

    Full Text Available Loquat is a non-climacteric fruit consumed fresh for its essential nutrients and phytochemical compounds. In this study, the effects of chitosan coating (1% w/v on changes in the enzymatic antioxidant and membrane damage in three loquat selections (CREAFRC-S18; CREAFRC-S35 and CREAFRC-S36 and three loquat cultivars (Golden Nugget, Algerie and Nespolone rosso di Trabia stored at 7 °C over 21 days were evaluated. Chitosan treatment enhanced the activities of superoxide dismutase, catalase and ascorbate peroxidase. Moreover, this treatment inhibited polyphenol oxidase and guaiacol peroxidase activities, extending the storage life of loquat. Chitosan also preserved membrane integrity by inhibiting lipoxygenase activity and malondialdehyde accumulation. Principal component analysis provided a global view of the responses of both loquat selections and cultivars to the postharvest chitosan coating and storage temperature. These findings suggest that chitosan treatment could be a valid tool for improving the activity of antioxidant enzymes, preserving the enzymatic browning of loquat fruits.

  11. Genetic diversity among yellow maize with pro-vitamin A content

    Directory of Open Access Journals (Sweden)

    Mercy Oluremi Olowolafe

    2016-06-01

    Full Text Available An improvement in the concentration of vitamin A in adapted yellow maize varieties grown in Africa can have a positive impact on the dietary intakes in regions where maize is a staple food. The present study was designed to identify heterotic groups and divergent parents for developing new pro-vitamin A enriched maize lines. Ten Simple Sequence Repeats (SSR markers were used to generate DNA profiles among thirteen commonly grown yellow maize lines across south western Nigeria and three high pro-vitamin A lines from International Institute of Tropical Agriculture (IITA, Ibadan. The result obtained estimated 100% polymorphism among the ten SSR markers with polymorphic information content that ranged from 0.28 to 0.71 on an average of 0.50. Genetic similarity coefficients among the 16 maize lines varied from 0.28 to 0.92 GS with an average of 0.63 GS. Four well defined groups were identified at 0.65 GS with an IITA line, PVA8, solely, formed a group. The study identified PVA8 and its most three distant relatives as potential divergent parents that could serve as important genetic resources for broadening the genetic base of the presently assessed IAR&T maize collections and also to develop new maize lines with higher level of pro-vitamin A content.

  12. The Inclusion of Chitosan in Poly-ε-caprolactone Nanoparticles: Impact on the Delivery System Characteristics and on the Adsorbed Ovalbumin Secondary Structure.

    Science.gov (United States)

    Jesus, Sandra; Fragal, Elizangela H; Rubira, Adley F; Muniz, Edvani C; Valente, Artur J M; Borges, Olga

    2018-01-01

    This report extensively explores the benefits of including chitosan into poly-ε-caprolactone (PCL) nanoparticles (NPs) to obtain an improved protein/antigen delivery system. Blend NPs (PCL/chitosan NPs) showed improved protein adsorption efficacy (84%) in low shear stress and aqueous environment, suggesting that a synergistic effect between PCL hydrophobic nature and the positive charges of chitosan present at the particle surface was responsible for protein interaction. Additionally, thermal analysis suggested the blend NPs were more stable than the isolated polymers and cytotoxicity assays in a primary cell culture revealed chitosan inclusion in PCL NPs reduced the toxicity of the delivery system. A quantitative 6-month stability study showed that the inclusion of chitosan in PCL NPs did not induce a change in adsorbed ovalbumin (OVA) secondary structure characterized by the increase in the unordered conformation (random coil), as it was observed for OVA adsorbed to chitosan NPs. Additionally, the slight conformational changes occurred, are not expected to compromise ovalbumin secondary structure and activity, during a 6-month storage even at high temperatures (45°C). In simulated biological fluids, PCL/chitosan NPs showed an advantageous release profile for oral delivery. Overall, the combination of PCL and chitosan characteristics provide PCL/chitosan NPs valuable features particularly important to the development of vaccines for developing countries, where it is difficult to ensure cold chain transportation and non-parenteral formulations would be preferred.

  13. From many, one: genetic control of prolificacy during maize domestication.

    Directory of Open Access Journals (Sweden)

    David M Wills

    2013-06-01

    Full Text Available A reduction in number and an increase in size of inflorescences is a common aspect of plant domestication. When maize was domesticated from teosinte, the number and arrangement of ears changed dramatically. Teosinte has long lateral branches that bear multiple small ears at their nodes and tassels at their tips. Maize has much shorter lateral branches that are tipped by a single large ear with no additional ears at the branch nodes. To investigate the genetic basis of this difference in prolificacy (the number of ears on a plant, we performed a genome-wide QTL scan. A large effect QTL for prolificacy (prol1.1 was detected on the short arm of chromosome 1 in a location that has previously been shown to influence multiple domestication traits. We fine-mapped prol1.1 to a 2.7 kb "causative region" upstream of the grassy tillers1 (gt1 gene, which encodes a homeodomain leucine zipper transcription factor. Tissue in situ hybridizations reveal that the maize allele of prol1.1 is associated with up-regulation of gt1 expression in the nodal plexus. Given that maize does not initiate secondary ear buds, the expression of gt1 in the nodal plexus in maize may suppress their initiation. Population genetic analyses indicate positive selection on the maize allele of prol1.1, causing a partial sweep that fixed the maize allele throughout most of domesticated maize. This work shows how a subtle cis-regulatory change in tissue specific gene expression altered plant architecture in a way that improved the harvestability of maize.

  14. Some features of irradiated chitosan and its biological effect

    Energy Technology Data Exchange (ETDEWEB)

    Hai, Le; Hien, Nguyen Quoc; Luan, Le Quang; Hanh, Truong Thi; Man, Nguyen Tan; Ha, Pham Thi Le; Thuy, Tran Thi [Nuclear Research Institute, VAEC, Dalat (Viet Nam); Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Preparation of chitosan oligomer by radiation degradation was carried out on the gamma Co-60 source. The radiation degradation yield (G{sub d}) of the chitosan was found to be of 1.03. The oligochitosan with 50% of dp>8 fraction was obtained by irradiating the 10% (w/v) chitosan solution in 5% acetic acid at 45 kGy for the chitosan having the initial viscometric average molecular weight, Mv=60,000. Irradiated chitosan showed higher antifungal effect than that of unirradiated one. Furthermore, the irradiated chitosan also showed the growth-promotion effect for plants. (author)

  15. Thiolated chitosan nanoparticles enhance anti-inflammatory effects of intranasally delivered theophylline.

    Science.gov (United States)

    Lee, Dong-Won; Shirley, Shawna A; Lockey, Richard F; Mohapatra, Shyam S

    2006-08-24

    Chitosan, a polymer derived from chitin, has been used for nasal drug delivery because of its biocompatibility, biodegradability and bioadhesiveness. Theophylline is a drug that reduces the inflammatory effects of allergic asthma but is difficult to administer at an appropriate dosage without causing adverse side effects. It was hypothesized that adsorption of theophylline to chitosan nanoparticles modified by the addition of thiol groups would improve theophylline absorption by the bronchial epithelium and enhance its anti-inflammatory effects. We sought to develop an improved drug-delivery matrix for theophylline based on thiolated chitosan, and to investigate whether thiolated chitosan nanoparticles (TCNs) can enhance theophylline's capacity to alleviate allergic asthma. A mouse model of allergic asthma was used to test the effects of theophylline in vivo. BALB/c mice were sensitized to ovalbumin (OVA) and OVA-challenged to produce an inflammatory allergic condition. They were then treated intranasally with theophylline alone, chitosan nanoparticles alone or theophylline adsorbed to TCNs. The effects of theophylline on cellular infiltration in bronchoalveolar lavage (BAL) fluid, histopathology of lung sections, and apoptosis of lung cells were investigated to determine the effectiveness of TCNs as a drug-delivery vehicle for theophylline. Theophylline alone exerts a moderate anti-inflammatory effect, as evidenced by the decrease in eosinophils in BAL fluid, the reduction of bronchial damage, inhibition of mucus hypersecretion and increased apoptosis of lung cells. The effects of theophylline were significantly enhanced when the drug was delivered by TCNs. Intranasal delivery of theophylline complexed with TCNs augmented the anti-inflammatory effects of the drug compared to theophylline administered alone in a mouse model of allergic asthma. The beneficial effects of theophylline in treating asthma may be enhanced through the use of this novel drug delivery

  16. Beeswax–chitosan emulsion coated paper with enhanced water vapor barrier efficiency

    International Nuclear Information System (INIS)

    Zhang, Weiwei; Xiao, Huining; Qian, Liying

    2014-01-01

    Graphical abstract: - Highlights: • The water vapor barrier efficiency of paper was enhanced via green-based emulsion coating. • Extremely high lipid content in the emulsion coating layer was firstly utilized to reduce WVTR in emulsion-based film. • A controlled WVTR of beeswax–chitosan emulsion coating could be obtained by dying at specific temperature. - Abstract: For lipid–hydrocolloid emulsion based film, the increase of lipid amount would improve its water vapor barrier property, but also reduce the mechanical strength of the film in the meantime thus leading to a compromised lipid content in the film. However, when the emulsion is coated on paper surface, more lipid could be used for emulsion preparation to enhance the moisture resistance without considering the weakened strength of the film induced by lipid, because the mechanical properties of emulsion coated paper is mainly governed by the strength of base paper instead of the coating layer. In this study, beeswax–chitosan emulsion was first prepared and then coated on paper surface to improve paper's water vapor barrier and water resistance properties. The range and variance analysis of orthogonal test design showed that the order of priorities of the factors accordingly was beeswax solid content, drying temperature and chitosan concentration. The effect of drying temperature on water vapor transmission rate (WVTR) and water contact angle of coated paper was further investigated using 1.2 wt% chitosan and 96% beeswax solid content in the coating layer. The results indicated that water vapor barrier property was in accordance with the density of the coating layer. Atomic force microscope (AFM) was also used to characterize the surface morphology and explain the hydrophobicity of beeswax–chitosan coated paper. It was found that surface beeswax particles melted to wrinkle at high drying temperatures, while roughness values maintained at micro-scale over the temperature range investigated

  17. Thiolated chitosan nanoparticles enhance anti-inflammatory effects of intranasally delivered theophylline

    Directory of Open Access Journals (Sweden)

    Mohapatra Shyam S

    2006-08-01

    Full Text Available Abstract Background Chitosan, a polymer derived from chitin, has been used for nasal drug delivery because of its biocompatibility, biodegradability and bioadhesiveness. Theophylline is a drug that reduces the inflammatory effects of allergic asthma but is difficult to administer at an appropriate dosage without causing adverse side effects. It was hypothesized that adsorption of theophylline to chitosan nanoparticles modified by the addition of thiol groups would improve theophylline absorption by the bronchial epithelium and enhance its anti-inflammatory effects. Objectives We sought to develop an improved drug-delivery matrix for theophylline based on thiolated chitosan, and to investigate whether thiolated chitosan nanoparticles (TCNs can enhance theophylline's capacity to alleviate allergic asthma. Methods A mouse model of allergic asthma was used to test the effects of theophylline in vivo. BALB/c mice were sensitized to ovalbumin (OVA and OVA-challenged to produce an inflammatory allergic condition. They were then treated intranasally with theophylline alone, chitosan nanoparticles alone or theophylline adsorbed to TCNs. The effects of theophylline on cellular infiltration in bronchoalveolar lavage (BAL fluid, histopathology of lung sections, and apoptosis of lung cells were investigated to determine the effectiveness of TCNs as a drug-delivery vehicle for theophylline. Results Theophylline alone exerts a moderate anti-inflammatory effect, as evidenced by the decrease in eosinophils in BAL fluid, the reduction of bronchial damage, inhibition of mucus hypersecretion and increased apoptosis of lung cells. The effects of theophylline were significantly enhanced when the drug was delivered by TCNs. Conclusion Intranasal delivery of theophylline complexed with TCNs augmented the anti-inflammatory effects of the drug compared to theophylline administered alone in a mouse model of allergic asthma. The beneficial effects of theophylline in

  18. Degree of Acetylization Chitosan Gonggong Snail Shells

    Science.gov (United States)

    Horiza, H.; Iskandar, I.; Aldo, N.

    2018-04-01

    Chitosan is a polysaccharide obtained from the deacetylation of chitin, which is generally derived from crustacean animal waste and animal skins other sea. One marine animals that have compounds that can be processed chitin chitosan is derived from the snail Gonggong marine waters of Riau Islands province. The purpose of this study was to determine the degree of chitosan from the shells of snails asetilisasi Gonggong. This research is an experimental research laboratory. The results of this study indicate that the degree of chitosan shell snail deasetilisasi Gonggong is 70.27%.

  19. Progress in antimicrobial activities of chitin, chitosan and its oligosaccharides: a systematic study needs for food applications.

    Science.gov (United States)

    Dutta, J; Tripathi, S; Dutta, P K

    2012-02-01

    In recent years, active biomolecules such as chitosan and its derivatives are undergoing a significant and very fast development in food application area. Due to recent outbreaks of contaminations associated with food products, there have been growing concerns regarding the negative environmental impact of packaging materials of antimicrobial biofilms, which have been studied. Chitosan has a great potential for a wide range of applications due to its biodegradability, biocompatibility, antimicrobial activity, nontoxicity and versatile chemical and physical properties. It can be formed into fibers, films, gels, sponges, beads or nanoparticles. Chitosan films have been used as a packaging material for the quality preservation of a variety of foods. Chitosan has high antimicrobial activities against a wide variety of pathogenic and spoilage microorganisms, including fungi, and Gram-positive and Gram-negative bacteria. A tremendous effort has been made over the past decade to develop and test films with antimicrobial properties to improve food safety and shelf-life. This review highlights the preparation, mechanism, antimicrobial activity, optimization of biocide properties of chitosan films and applications including biocatalysts for the improvement of quality and shelf-life of foods.

  20. Inhibition of Listeria monocytogenes in Fresh Cheese Using Chitosan-Grafted Lactic Acid Packaging

    Directory of Open Access Journals (Sweden)

    Laura N. Sandoval

    2016-04-01

    Full Text Available A chitosan from biologically obtained chitin was successfully grafted with d,l-lactic acid (LA in aqueous media using p-toluenesulfonic acid as catalyst to obtain a non-toxic, biodegradable packaging material that was characterized using scanning electron microscopy, water vapor permeability, and relative humidity (RH losses. Additionally, the grafting in chitosan with LA produced films with improved mechanical properties. This material successfully extended the shelf life of fresh cheese and inhibited the growth of Listeria monocytogenes during 14 days at 4 °C and 22% RH, whereby inoculated samples with chitosan-g-LA packaging presented full bacterial inhibition. The results were compared to control samples and commercial low-density polyethylene packaging.

  1. Physical and Oxidative Stability of Uncoated and Chitosan-Coated Liposomes Containing Grape Seed Extract

    Directory of Open Access Journals (Sweden)

    Jochen Weiss

    2013-08-01

    Full Text Available Polyphenol-rich grape seed extract (0.1 w/w% was incorporated in liposomes (1 w/w% soy lecithin by high pressure homogenization (22,500 psi and coated with chitosan (0.1 w/w%. Primary liposomes and chitosan-coated secondary liposomes containing grape seed extract showed good physical stability during 98 days of storage. Most of the polyphenols were incorporated in the shell of the liposomes (85.4%, whereas only 7.6% of the polyphenols of grape seed extract were located in the interior of the liposomes. Coating with chitosan did not change the polyphenol content in the liposomes (86.6%. The uncoated liposomes without grape seed extract were highly prone to lipid oxidation. The cationic chitosan coating, however, improved the oxidative stability to some extent, due to its ability to repel pro-oxidant metals. Encapsulated grape seed extract showed high antioxidant activity in both primary and secondary liposomes, which may be attributed to its polyphenol content. In conclusion, the best chemical stability of liposomes can be achieved using a combination of grape seed extract and chitosan.

  2. Chitosan and carboxymethyl-chitosan capping ligands: Effects on the nucleation and growth of hydroxyapatite nanoparticles for producing biocomposite membranes.

    Science.gov (United States)

    Dumont, Vitor C; Mansur, Alexandra A P; Carvalho, Sandhra M; Medeiros Borsagli, Fernanda G L; Pereira, Marivalda M; Mansur, Herman S

    2016-02-01

    phosphate phase produced during the co-precipitation aqueous process for both the chitosan and CMC biocomposites. These novel hybrid systems based on chitosan and chitosan-derivatives with nHA composites were non-cytotoxic to a human osteoblast-like model cell line (SAOS) according to MTT in vitro assays. Moreover, the CMC-nHA biocomposites revealed a striking improvement in the cell viability response compared to the CHI-nHA biocomposite, which was attributed to the much higher surface area caused by the refinement of the nanoparticles size. Thus, the results of this study demonstrate that these novel bionanocomposite membranes offer promising perspectives as biomaterials for potential repair and replacement of cartilage and bone tissues.

  3. Screening of promising maize genotypes against maize weevil (Sitophilus zeamais Motschulky) in storage condition

    OpenAIRE

    Ram B Paneru; Resham B Thapa

    2017-01-01

    The maize weevil (Sitophilus zeamais Motschulsky) is a serious pest of economic importance in stored grains. It causes major damage to stored maize grain thereby reducing its weight, quality and germination. An experiment was conducted in randomized complete block design (RCBD) with 3 replications to screen 32 maize genotypes against maize weevil in no-choice and free-choice conditions at Entomology Division, Khumaltar, Lalitpur (Room temperature: Maximum 24-32°C and Minimum 18-27°C). The fin...

  4. Strategies for narrowing the maize yield gap of household farms through precision fertigation under irrigated conditions using CERES-Maize model.

    Science.gov (United States)

    Liu, Jiangang; Wang, Guangyao; Chu, Qingquan; Chen, Fu

    2017-07-01

    Nitrogen (N) application significantly increases maize yield; however, the unreasonable use of N fertilizer is common in China. The analysis of crop yield gaps can reveal the limiting factors for yield improvement, but there is a lack of practical strategies for narrowing yield gaps of household farms. The objectives of this study were to assess the yield gap of summer maize using an integrative method and to develop strategies for narrowing the maize yield gap through precise N fertilization. The results indicated that there was a significant difference in maize yield among fields, with a low level of variation. Additionally, significant differences in N application rate were observed among fields, with high variability. Based on long-term simulation results, the optimal N application rate was 193 kg ha -1 , with a corresponding maximum attainable yield (AY max ) of 10 318 kg ha -1 . A considerable difference between farmers' yields and AY max was observed. Low agronomic efficiency of applied N fertilizer (AE N ) in farmers' fields was exhibited. The integrative method lays a foundation for exploring the specific factors constraining crop yield gaps at the field scale and for developing strategies for rapid site-specific N management. Optimization strategies to narrow the maize yield gap include increasing N application rates and adjusting the N application schedule. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Chitosan-58S bioactive glass nanocomposite coatings on TiO2 nanotube: Structural and biological properties

    Science.gov (United States)

    Mokhtari, H.; Ghasemi, Z.; Kharaziha, M.; Karimzadeh, F.; Alihosseini, F.

    2018-05-01

    Bacterial infection and insignificant osseointegration have been recognized as the main reasons of the failures of titanium based implants. The aim of this study was to apply titanium oxide nanotube (TNT) array on titanium using electrochemical anodization process as a more appropriate substrate for chitosan and chitosan-58S bioactive glass (BG) (58S-BG-Chitosan) nanocomposite coatings covered TNTs (TNT/Chiosan, TNT/58S-BG-Chitosan, respectively) through a conventional dip-coating process. Results showed that a TNT layer with average inner diameter of 82 ± 19 nm and wall's thickness of 23 ± 9 nm was developed on titanium surface using electrochemical anodization process. Roughness and contact angle measurement showed that TNT with Ra = 449 nm had highest roughness and hydrophilicity which then reduced to 86 nm and 143 nm for TNT/Chitosan and TNT/58S-BG-Chitosan, respectively. In vitro bioactivity evaluation in simulated buffer fluid (SBF) solution and antibacterial activity assay predicted that TNT/58S-BG-Chitosan was superior in bone like apatite formation and antibacterial activity against both gram-positive and gram-negative bacteria compared to Ti, TNT and TNT/Chitosan samples, respectively. Results revealed the noticeable MG63 cell attachment and proliferation on TNT/58S-BG-Chitosan coating compared to those of uncoated TNTs. These results confirmed the positive effect of using TNT substrate for natural polymer coating on improved bioactivity of implant.

  6. Effect of Chitosan Coating Containing Active Agents on Microbial Growth, Rancidity and Moisture Loss of Meatball During Storage

    OpenAIRE

    Pranoto, Yudi; Rakshit, Sudip Kumar

    2008-01-01

    Edible coatings based on chitosan were applied on meatball product in order to preserve quality during storages atambient and refrigeration temperatures. To improve its efficacy, chitosan coatings were incorporated with garlic oil0.2%, potassium sorbate 0.1 % and nisin 51,000 IU. The qualities of meatball assessed were total microbial growth, TBA value and percentage of moisture loss. All chitosan coatings suppressed microbial growth in meatball and strong- ly revealed when stored at refriger...

  7. Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid

    Directory of Open Access Journals (Sweden)

    Pouria Falamarzpour

    2017-02-01

    Full Text Available Adipic acid, an abundant and nontoxic compound, was used to dissolve and cross-link chitosan. After the preparation of chitosan films through casting technique, the in situ amidation reaction was performed at 80–100 °C as verified by Fourier transform infrared (FT-IR. The reaction was accompanied by the release of water which was employed to investigate the reaction kinetics. Accordingly, the reaction rate followed the first-order model and Arrhenius equation, and the activation energy was calculated to be 18 kJ/mol. Furthermore, the mechanical properties of the chitosan films were comprehensively studied. First, optimal curing conditions (84 °C, 93 min were introduced through a central composite design. In order to evaluate the effects of adipic acid, the mechanical properties of physically cross-linked (uncured, chemically cross-linked (cured, and uncross-linked (prepared by acetic acid films were compared. The use of adipic acid improved the tensile strength of uncured and chemically cross-linked films more than 60% and 113%, respectively. Finally, the effect of cellulose nanofibrils (CNFs on the mechanical performance of cured films, in the presence of glycerol as a plasticizer, was investigated. The plasticized chitosan films reinforced by 5 wt % CNFs showed superior properties as a promising material for the development of chitosan-based biomaterials.

  8. Biocompatibility behavior of β–tricalcium phosphate-chitosan coatings obtained on 316L stainless steel

    International Nuclear Information System (INIS)

    Mina, A.; Caicedo, H.H.; Uquillas, J.A.; Aperador, W.; Gutiérrez, O.; Caicedo, J.C.

    2016-01-01

    Biological interfaces involve the interaction of complex macromolecular systems and other biomolecules or biomaterials. Researchers have used a combination of cell, material sciences and engineering approaches to create functional biointerfaces to help improve biological functions. Materials such as hydroxyapatite (HA), β-tricalcium phosphate (β-TCP) and chitosan are important biomaterials to be used in biomedical applications such as bone-prosthesis interfaces. In this work, it was evaluated the effect of different concentrations of chitosan on the structural, electrochemical and biocompatible properties of β-tricalcium phosphate-chitosan ((β-Ca 3 (PO 4 ) 2 )-(C 6 H 11 NO 4 )n) hybrid coatings. β–tricalcium phosphate-chitosan coatings were deposited on 316L stainless steel substrates applying 260 mA AC, an agitation velocity of 250 rpm, and temperature deposition of 60 °C. It was possible to obtain coatings of 600 μm of thickness. Structure and surface properties were analyzed by X-ray diffraction (XRD) and dispersive X-ray analysis (EDX). It was found that the arrangement of the β-TCP crystal lattice changed with increasing chitosan weight concentration, showing that the orthorhombic structure of β-TCP is under tensile stress. The electrochemical properties of β–tricalcium phosphate/chitosan (β-TCP–Ch) coatings were analyzed by electrochemical impedance spectroscopy (EIS). Cellular biocompatibility was determined by lactate dehydrogenase (LDH) cytotoxicity assay using primary chinese hamster ovary (CHO) cells. β-TCP–Ch coatings with chitosan concentrations up to 25% caused cytotoxic effects to only 5–10% of CHO cells. Obtained results showed the influence of chitosan in the structural, electrochemical, and biocompatible properties of AISI 316L Stainless Steel. Consequently, the electrochemical and cytotoxic behavior of β-TCP–Ch on 316L Stainless Steel indicated that the coatings might be a promising material in biomedical applications

  9. Effects of chitosan on the shelf life of marinated sardine (Sardina pilchardus fillets during refrigerated storage

    Directory of Open Access Journals (Sweden)

    Aygül Küçükgülmez

    2012-07-01

    Full Text Available This study was carried out to evaluate the effect of chitosan on chemical, colour, sensory and microbial changes of marinated sardine (Sardina pilchardus fillets. Marination solution consisted of 10% sodium chloride + 1% chitosan (dissolved in 3% acetic acid for the chitosan group, and 10% sodium chloride + 3% acetic acid solution for the control group. After the marination process, sardine fillets were packed and stored at 4ºC for 60 days. Thiobarbituric acid (TBA values were found to be lower in the chitosan group than the control group (PL*, a*, or b* values of marinated sardine fillets. According to sensory analysis, shelf life of the chitosan group was found to be ten days longer than that of the control group. Total bacteria count of two marinated groups was found to be less than 1 log CFU/g. This study concluded that sardine marination with the addition of chitosan can delay undesirable chemical changes, retard lipid oxidation, improve sensory attributes and extend the shelf life of the product during refrigerated storage.

  10. Electrodeposition to construct free-standing chitosan/layered double hydroxides hydro-membrane for electrically triggered protein release.

    Science.gov (United States)

    Zhao, Pengkun; Zhao, Yanan; Xiao, Ling; Deng, Hongbing; Du, Yumin; Chen, Yun; Shi, Xiaowen

    2017-10-01

    In this study, we report the electrodeposition of a chitosan/layered double hydroxides (LDHs) hydro-membrane for protein release triggered by an electrical signal. The electrodeposition was performed in a chitosan and insulin loaded LDHs suspension in the absence of salt. A free-standing chitosan/LDHs hydro-membrane was generated on the electrode with improved mechanical properties, which is dramatically different from the weak hydrogel deposited in the presence of salt. The amount of LDHs in the hydro-membrane affects the optical transmittance and multilayered structure of the hybrid membrane. Compared to the weak chitosan/LDHs hydrogel, the hydro-membrane has a higher insulin loading capacity and the release of insulin is relatively slow. By biasing electrical potentials to the hydro-membrane, the release behavior of insulin can be adjusted accordingly. In addition, the chitosan/LDHs hydro-membrane showed no toxicity to cells. Our results provide a facile method to construct a chitosan/LDHs hybrid multilayered hydro-membrane and suggest the great potential of the hydro-membrane in controlled protein release. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A water-soluble, mucoadhesive quaternary ammonium chitosan-methyl-β-cyclodextrin conjugate forming inclusion complexes with dexamethasone.

    Science.gov (United States)

    Piras, Anna Maria; Zambito, Ylenia; Burgalassi, Susi; Monti, Daniela; Tampucci, Silvia; Terreni, Eleonora; Fabiano, Angela; Balzano, Federica; Uccello-Barretta, Gloria; Chetoni, Patrizia

    2018-03-30

    The ocular bioavailability of lipophilic drugs, such as dexamethasone, depends on both drug water solubility and mucoadhesion/permeation. Cyclodextrins and chitosan are frequently employed to either improve drug solubility or prolong drug contact onto mucosae, respectively. Although the covalent conjugation of cyclodextrin and chitosan brings to mucoadhesive drug complexes, their water solubility is restricted to acidic pHs. This paper describes a straightforward grafting of methyl-β-cyclodextrin (MCD) on quaternary ammonium chitosan (QA-Ch60), mediated by hexamethylene diisocyanate. The resulting product is a water-soluble chitosan derivative, having a 10-atom long spacer between the quaternized chitosan and the cyclodextrin. The derivative is capable of complexing the model drug dexamethasone and stable complexes were also observed for the lyophilized products. Furthermore, the conjugate preserves the mucoadhesive properties typical of quaternized chitosan and its safety as solubilizing excipient for ophthalmic applications was preliminary assessed by in vitro cytotoxicity evaluations. Taken as a whole, the observed features appear promising for future processing of the developed product into 3D solid forms, such as controlled drug delivery systems, films or drug eluting medical devices.

  12. Use of a chitosan based natural coating materials to reduce spoilage and pathogenic bacteria on poultry products

    Science.gov (United States)

    Chitosan is a natural compound with proven antimicrobial activity having GRAS status (generally recognized as safe) as determined by the United States Food and Drug Administration (Smith et al., 2014). Efforts are underway to develop and improve the use of chitosan based films as packaging material...

  13. Mucoadhesive properties and interaction with P-glycoprotein (P-gp) of thiolated-chitosans and -glycol chitosans and corresponding parent polymers: a comparative study.

    Science.gov (United States)

    Trapani, Adriana; Palazzo, Claudio; Contino, Marialessandra; Perrone, Maria Grazia; Cioffi, Nicola; Ditaranto, Nicoletta; Colabufo, Nicola Antonio; Conese, Massimo; Trapani, Giuseppe; Puglisi, Giovanni

    2014-03-10

    The aim of the present work was to compare the mucoadhesive and efflux pump P-glycoprotein (P-gp) interacting properties of chitosan (CS)- and glycolchitosan (GCS)-based thiomers and corresponding unmodified parent polymers. For this purpose, the glycol chitosan-N-acetyl-cysteine (GCS-NAC) and glycol chitosan-glutathione (GCS-GSH) thiomers were prepared under simple and mild conditions. Their mucoadhesive characteristics were studied by turbidimetric and zeta potential measurements. The P-gp interacting properties were evaluated measuring the effects of thiolated- and unmodified-polymers on the bidirectional transport (BA/AB) of rhodamine-123 across Caco-2 cells as well as in the calcein-AM and ATPase activity assays. Although all the thiomers and unmodified polymers showed optimal-excellent mucoadhesive properties, the best mucoadhesive performances have been obtained by CS and CS-based thiomers. Moreover, it was found that the pretreatment of Caco-2 cell monolayer with GCS-NAC or GCS restores Rho-123 cell entrance by inhibiting P-gp activity. Hence, GCS-NAC and GCS may constitute new biomaterials useful for improving the bioavailability of P-gp substrates.

  14. Degradation of chitosan-based materials after different sterilization treatments

    International Nuclear Information System (INIS)

    San Juan, A; Montembault, A; Royaud, I; David, L; Gillet, D; Say, J P; Rouif, S; Bouet, T

    2012-01-01

    Biopolymers have received in recent years an increasing interest for their potential applications in the field of biomedical engineering. Among the natural polymers that have been experimented, chitosan is probably the most promising in view of its exceptional biological properties. Several techniques may be employed to sterilize chitosan-based materials. The aim of our study was to compare the effect of common sterilization treatments on the degradation of chitosan-based materials in various physical states: solutions, hydrogels and solid flakes. Four sterilization methods were compared: gamma irradiation, beta irradiation, exposure to ethylene oxide and saturated water steam sterilization (autoclaving). Exposure to gamma or beta irradiation was shown to induce an important degradation of chitosan, regardless of its physical state. The chemical structure of chitosan flakes was preserved after ethylene oxide sterilization, but this technique has a limited use for materials in the dry state. Saturated water steam sterilization of chitosan solutions led to an important depolymerization. Nevertheless, steam sterilization of chitosan flakes bagged or dispersed in water was found to preserve better the molecular weight of the polymer. Hence, the sterilization of chitosan flakes dispersed in water would represent an alternative step for the preparation of sterilized chitosan solutions. Alternatively, autoclaving chitosan physical hydrogels did not significantly modify the macromolecular structure of the polymer. Thus, this method is one of the most convenient procedures for the sterilization of physical chitosan hydrogels after their preparation.

  15. Humidity detection using chitosan film based sensor

    Science.gov (United States)

    Nasution, T. I.; Nainggolan, I.; Dalimunthe, D.; Balyan, M.; Cuana, R.; Khanifah, S.

    2018-02-01

    A humidity sensor made of the natural polymer chitosan has been successfully fabricated in the film form by a solution casting method. Humidity testing was performed by placing a chitosan film sensor in a cooling machine room, model KT-2000 Ahu. The testing results showed that the output voltage values of chitosan film sensor increased with the increase in humidity percentage. For the increase in humidity percentage from 30 to 90% showed that the output voltage of chitosan film sensor increased from 32.19 to 138.75 mV. It was also found that the sensor evidenced good repeatability and stability during the testing. Therefore, chitosan has a great potential to be used as new sensing material for the humidity detection of which was cheaper and environmentally friendly.

  16. Preparation and properties of chitosan-metal complex: Some factors influencing the adsorption capacity for dyes in aqueous solution.

    Science.gov (United States)

    Rashid, Sadia; Shen, Chensi; Yang, Jing; Liu, Jianshe; Li, Jing

    2018-04-01

    Chitosan-metal complexes have been widely studied in wastewater treatment, but there are still various factors in complex preparation which are collectively responsible for improving the adsorption capacity need to be further studied. Thus, this study investigates the factors affecting the adsorption ability of chitosan-metal complex adsorbents, including various kinds of metal centers, different metal salts and crosslinking degree. The results show that the chitosan-Fe(III) complex prepared by sulfate salts exhibited the best adsorption efficiency (100%) for various dyes in very short time duration (10min), and its maximum adsorption capacity achieved 349.22mg/g. The anion of the metal salt which was used in preparation played an important role to enhance the adsorption ability of chitosan-metal complex. SO 4 2- ions not only had the effect of crosslinking through electrostatic interaction with amine group of chitosan polymer, but also could facilitate the chelation of metal ions with chitosan polymer during the synthesis process. Additionally, the pH sensitivity and the sensitivity of ionic environment for chitosan-metal complex were analyzed. We hope that these factors affecting the adsorption of the chitosan-metal complex can help not only in optimizing its use but also in designing new chitosan-metal based complexes. Copyright © 2017. Published by Elsevier B.V.

  17. Chitosan, a new and environmental benign electrode binder for use with graphite anode in lithium-ion batteries

    International Nuclear Information System (INIS)

    Chai, Lili; Qu, Qunting; Zhang, Longfei; Shen, Ming; Zhang, Li; Zheng, Honghe

    2013-01-01

    Highlights: • Chitosan is used as a new electrode binder for graphite anode. • Electrochemical properties of the chitosan-based electrode are compared with that of PVDF-based one. • Electrochemical performances of the graphite anode are improved by using chitosan binder. • Chitosan binder facilitates the formation of a thin, homogenous and stable SEI film of the electrode. -- Abstract: Chitosan was applied as the electrode binder material for a spherical graphite anode in lithium-ion batteries. Compared to using poly (vinylidene fluoride) (PVDF) binder, the graphite anode using chitosan exhibited enhanced electrochemical performances in terms of the first Columbic efficiency, rate capability and cycling behavior. With similar specific capacity, the first Columbic efficiency of the chitosan-based anode is 95.4% compared to 89.3% of the PVDF-based anode. After 200 charge–discharge cycles at 0.5C, the capacity retention of the chitosan-based electrode showed to be significantly higher than that of the PVDF-based electrode. Electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) measurements were carried out to investigate the formation and evolution of the solid electrolyte interphase (SEI) formed on the graphite electrodes. The results show that a thin, homogenous and stable SEI layer is formed on the graphite electrode surface with chitosan binder compared with that using the conventional PVDF binder

  18. Early phosphorus nutrition, mycorrhizae development, dry matter partitioning and yield of maize

    DEFF Research Database (Denmark)

    Gavito, M.E.; Miller, M.H.

    1998-01-01

    to a mycorrhizal mycelium network (no-tillage treatments). Maize yield and harvest index were lower after cropping With canola. The yield for conventional tillage was higher than that for no-tillage but the harvest index was lower. The hypothesis was supported at early stages of maize growth by the effect...... was used with previous crop (Zea mays L.-maize and Brassica napus L.-canola), tillage practices (no-tillage or conventional tillage) and P fertilization (5 levels) as factors chosen to modify mycorrhizae development at early developmental stages of maize. Previous cropping with canola resulted in decreased......We conducted a field experiment to test the hypothesis that improved phosphorus nutrition occurs in maize plants with rapid arbuscular (AM) mycorrhizae development at early developmental stages and that this also is reflected in dry matter allocation and final yield. A split-split plot design...

  19. An Investigation of Chitosan for Sorption of Radionuclides

    Science.gov (United States)

    2012-06-05

    Valenta et al. found that hydrogels made of EDTA-chitsoan were resistant to bacterial growth [88]. Nishi et al. found that alka- line earth metals...reviews of chitosan deriva- tives have been recently published [8, 21, 75, 89]. 10 Table 2.1: Select applications of chitosan. From [72, 75]. Agriculture ...pharmaceuticals 2.1.3 Chitosan applications Chitosan has found applications in a wide range of fields, including agriculture , water treatment, biomedical

  20. Occurrence of toxigenic fungi in maize and maize-gluten meal from Pakistan

    Directory of Open Access Journals (Sweden)

    Muhammad Kashif SALEEMI

    2012-05-01

    Full Text Available The present study was designed to isolate and identify toxigenic mycoflora of maize and maize-gluten meal. A total of 82 samples of maize and 8 samples of maize-gluten meal were collected from Faisalabad district of Pakistan over a period of two years. These samples were inoculated on different culture media. Fungal contamination of maize and maize-gluten was 56% and 75% of samples, respectively. Isolation frequencies of different genera isolated from maize were Aspergillus 33%; Penicillium 28%; Fusarium 10%; and Alternaria 1%. Isolation frequency among species was maximum for P. verrucosum, followed by A. niger aggregates, A. ochraceous, A. flavus, P. chrysogenum, A. parasiticus, A. carbonarius, Fusarium spp. and Alternaria spp. Relative density of Aspergillus isolates was maximum for A. niger aggregates and A. ochraceous (30% each followed by A. flavus (26%, A. parasiticus (11% and A. carbonarius (3%. Percentage of toxigenic fungi among Aspergillus isolates was 52%. Aflatoxigenic isolates of A. flavus and A. parasiticus were 43 and 67% and ochratoxigenic isolates of A. carbonarius, A. ochraceous and A. niger aggregates were 100, 63 and 38%, respectively. Aspergillus parasiticus produced higher concentrations of AFB1 (maximum 1374.23 ng g-1 than A. flavus (maximum 635.50 ng g-1. Ochratoxin A production potential of A. ochraceous ranged from 1.81 to 9523.1 ng g-1, while in A. niger aggregates it was 1.30 to 1758.6 ng g-1. Isolation frequencies of fungal genera from maize-gluten meal were Aspergillus (63% and Penicillium (50%. A. flavus was the most frequently isolated species. Percentage of toxigenic fungi among Aspergillus isolates was 40%. Aflatoxigenic isolates of A. flavus were 33% and ochratoxigenic isolates of A. ochraceous were 100%.

  1. Effects of sulfate chitosan derivatives on nonalcoholic fatty liver disease

    Science.gov (United States)

    Yu, Mingming; Wang, Yuanhong; Jiang, Tingfu; Lv, Zhihua

    2014-06-01

    Sulfate chitosan derivatives have good solubility and therapeutic effect on the cell model of NAFLD. The aim of this study was to examine the therapeutic effect of sulfate chitosan derivatives on NAFLD. The male Wistar rats were orally fed high fat emulsion and received sulfate chitosan derivatives for 5 weeks to determine the pre-treatment effect of sulfate chitosan derivatives on NAFLD. To evaluate the therapeutic effect of sulfate chitosan derivatives on NAFLD, the rats were orally fed with high concentration emulsion for 5 weeks, followed by sulfate chitosan derivatives for 3 weeks. Histological analysis and biomedical assays showed that sulfate chitosan derivatives can dramatically prevent the development of hepatic steatosis in hepatocyte cells. In animal studies, pre-treatment and treatment with sulfate chitosan derivatives significantly protected against hepatic steatohepatitis induced by high fat diet according to histological analysis. Furthermore, increased TC, ALT, MDA, and LEP in NAFLD were significantly ameliorated by pre-treatment and treatment with sulfate chitosan derivatives. Furthermore, increased TG, AST, and TNF-α in NAFLD were significantly ameliorated by treatment with sulfate chitosan derivatives. Sulfate chitosan derivatives have good pre-treatment and therapeutic effect on NAFLD.

  2. Effect of chitosan coatings on postharvest green asparagus quality.

    Science.gov (United States)

    Qiu, Miao; Jiang, Hengjun; Ren, Gerui; Huang, Jianying; Wang, Xiangyang

    2013-02-15

    Fresh postharvest green asparagus rapidly deteriorate due to its high respiration rate. The main benefits of edible active coatings are their edible characteristics, biodegradability and increase in food safety. In this study, the quality of the edible coatings based on 0.50%, 0.25% high-molecular weight chitosan (H-chitosan), and 0.50%, 0.25% low-molecular weight chitosan (L-chitosan) on postharvest green asparagus was investigated. On the basis of the results obtained, 0.25% H-chitosan and 0.50% L-chitosan treatments ensured lower color variation, less weight loss and less ascorbic acid, decrease presenting better quality of asparagus than other concentrations of chitosan treatments and the control during the cold storage, and prolonging a shelf life of postharvest green asparagus. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Sodium bicarbonate-gelled chitosan beads as mechanically stable carriers for the covalent immobilization of enzymes.

    Science.gov (United States)

    Wahba, Marwa I

    2018-03-01

    The poor mechanical stability of chitosan has long impeded its industrial utilization as an immobilization carrier. In this study, the mechanical properties of chitosan beads were greatly improved through utilizing the slow rate of the sodium bicarbonate-induced chitosan gelation and combining it with the chemical cross-linking action of glutaraldehyde (GA). The GA-treated sodium bicarbonate-gelled chitosan beads exhibited much better mechanical properties and up to 2.45-fold higher observed activity of the immobilized enzyme (β-D-galactosidase (β-gal)) when compared to the GA-treated sodium tripolyphosphate (TPP)-gelled chitosan beads. The differences between the sodium bicarbonate-gelled and the TPP-gelled chitosan beads were proven visually and also via scanning electron microscopy, elemental analysis, and differential scanning calorimetry. Moreover, the optimum pH, the optimum temperature, the apparent K m , and the apparent V max of the β-gals immobilized onto the two aforementioned types of chitosan beads were determined and compared. A reusability study was also performed. This study proved the superiority of the sodium bicarbonate-gelled chitosan beads as they retained 72.22 ± 4.57% of their initial observed activity during the 13 th reusability cycle whereas the TPP-gelled beads lost their activity during the first four reusability cycles, owing to their fragmentation. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:347-361, 2018. © 2017 American Institute of Chemical Engineers.

  4. Global maize production, utilization, and consumption.

    Science.gov (United States)

    Ranum, Peter; Peña-Rosas, Juan Pablo; Garcia-Casal, Maria Nieves

    2014-04-01

    Maize (Zea mays), also called corn, is believed to have originated in central Mexico 7000 years ago from a wild grass, and Native Americans transformed maize into a better source of food. Maize contains approximately 72% starch, 10% protein, and 4% fat, supplying an energy density of 365 Kcal/100 g and is grown throughout the world, with the United States, China, and Brazil being the top three maize-producing countries in the world, producing approximately 563 of the 717 million metric tons/year. Maize can be processed into a variety of food and industrial products, including starch, sweeteners, oil, beverages, glue, industrial alcohol, and fuel ethanol. In the last 10 years, the use of maize for fuel production significantly increased, accounting for approximately 40% of the maize production in the United States. As the ethanol industry absorbs a larger share of the maize crop, higher prices for maize will intensify demand competition and could affect maize prices for animal and human consumption. Low production costs, along with the high consumption of maize flour and cornmeal, especially where micronutrient deficiencies are common public health problems, make this food staple an ideal food vehicle for fortification. © 2014 New York Academy of Sciences. The World Health Organization retains copyright and all other rights in the manuscript of this article as submitted for publication.

  5. (CultiAF) Reducing maize-based aflatoxin contamination

    International Development Research Centre (IDRC) Digital Library (Canada)

    In Zimbabwe, testing of harvested maize has revealed high levels of contamination by aflatoxins, ... and other private sector partners will increase the availability of improved grain storage containers. Researchers will work with the Ministry of ...

  6. Interaction between chitosan and its related enzymes: A review.

    Science.gov (United States)

    Shinya, Shoko; Fukamizo, Tamo

    2017-11-01

    Chitosan-related enzymes including chitosanases, exo-β-glucosaminidases, and enzymes having chitosan-binding modules recognize ligands through electrostatic interactions between the acidic amino acids in proteins and amino groups of chitosan polysaccharides. However, in GH8 chitosanases, several aromatic residues are also involved in substrate recognition through stacking interactions, and these enzymes consequently hydrolyze β-1,4-glucan as well as chitosan. The binding grooves of these chitosanases are extended and opened at both ends of the grooves, so that the enzymes can clamp a long chitosan polysaccharide. The association/dissociation of positively charged glucosamine residues to/from the binding pocket of a GH2 exo-β-glucosaminidase controls the p K a of the catalytic acid, thereby maintaining the high catalytic potency of the enzyme. In contrast to chitosanases, chitosan-binding modules only accommodate a couple of glucosamine residues, predominantly recognizing the non-reducing end glucosamine residue of chitosan by electrostatic interactions and a hydrogen-bonding network. These structural findings on chitosan-related enzymes may contribute to future applications for the efficient conversion of the chitin/chitosan biomass. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. β-Chitin and chitosan from squid gladius: Biological activities of chitosan and its application as clarifying agent for apple juice.

    Science.gov (United States)

    Abdelmalek, Baha Eddine; Sila, Assaâd; Haddar, Anissa; Bougatef, Ali; Ayadi, Mohamed Ali

    2017-11-01

    Chitin is the second most abundant polysaccharide in biomass after cellulose and the term chitosan usually refers to a family of polymers obtained after chitin deacetylation. The aim of this work was the preparation and the characterization of chitin and chitosan from the gladius (pen) of the European squid (Loligo vulgaris). A high level of deproteinization (more than 80%) was recorded using Alcalase ® with an enzyme/protein ratio of 10U/mg. The demineralization of the gladius was completely achieved within 8h at room temperature in HCl. 13 C NMR, FTIR, and XRD diffractograms of prepared chitin and chitosan were taken and then degree of deacetylation of chitosan was calculated using 13 C CP/MAS-NMR Spectroscopic. Further, in vitro antioxidant capacity of chitosan was evaluated on 1,1-diphenyl-2-picrylhydrazyl method (IC 50 =3.2mgmL -1 ) and the β-carotene bleaching assay (IC 50 =3.3mgmL -1 ). Antimicrobial activity was also investigated and assays indicated that prepared chitosan exhibited marked inhibitory activity against all microbial strains tested. Additionally, chitosan was tested such as clarifying agent for apple juice and showed powerful clarification capability, without affecting nutritional value. Furthermore, the results suggested that prepared chitosan could be used as alternative additive in pharmaceutical preparations and food industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Aflatoxin levels in maize and maize products during the 2004 food ...

    African Journals Online (AJOL)

    Aflatoxin levels in maize and maize products during the 2004 food poisoning ... district were received at the National Public Health Laboratory Services (NPHLS). On analysis, they were found to be highly contaminated with aflatoxin B1.

  9. Poly(acrylonitrile)chitosan composite membranes for urease immobilization.

    Science.gov (United States)

    Gabrovska, Katya; Georgieva, Aneliya; Godjevargova, Tzonka; Stoilova, Olya; Manolova, Nevena

    2007-05-10

    (Poly)acrylonitrile/chitosan (PANCHI) composite membranes were prepared. The chitosan layer was deposited on the surface as well as on the pore walls of the base membrane. This resulted in the reduction of the pore size of the membrane and in an increase of their hydrophilicity. The pore structure of PAN and PANCHI membranes were determined by TEM and SEM analyses. It was found that the average size of the pore under a selective layer base PAN membrane is 7 microm, while the membrane coated with 0.25% chitosan shows a reduced pore size--small or equal to 5 microm and with 0.35% chitosan--about 4 microm. The amounts of the functional groups, the degree of hydrophilicity and transport characteristics of PAN/Chitosan composite membranes were determined. Urease was covalently immobilized onto all kinds of PAN/chitosan composite membranes using glutaraldehyde. Both the amount of bound protein and relative activity of immobilized urease were measured. The highest activity (94%) was measured for urease bound to PANCHI2 membranes (0.25% chitosan). The basic characteristics (pH(opt), pH(stability), T(opt), T(stability), heat inactivation and storage stability) of immobilized urease were determined. The obtained results show that the poly(acrylonitrile)chitosan composite membranes are suitable for enzyme immobilization.

  10. Emerging Chitosan-Based Films for Food Packaging Applications.

    Science.gov (United States)

    Wang, Hongxia; Qian, Jun; Ding, Fuyuan

    2018-01-17

    Recent years have witnessed great developments in biobased polymer packaging films for the serious environmental problems caused by the petroleum-based nonbiodegradable packaging materials. Chitosan is one of the most abundant biopolymers after cellulose. Chitosan-based materials have been widely applied in various fields for their biological and physical properties of biocompatibility, biodegradability, antimicrobial ability, and easy film forming ability. Different chitosan-based films have been fabricated and applied in the field of food packaging. Most of the review papers related to chitosan-based films are focusing on antibacterial food packaging films. Along with the advances in the nanotechnology and polymer science, numerous strategies, for instance direct casting, coating, dipping, layer-by-layer assembly, and extrusion, have been employed to prepare chitosan-based films with multiple functionalities. The emerging food packaging applications of chitosan-based films as antibacterial films, barrier films, and sensing films have achieved great developments. This article comprehensively reviews recent advances in the preparation and application of engineered chitosan-based films in food packaging fields.

  11. Lipase entrapment in PVA/Chitosan biodegradable film for reactor coatings

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Karla A. [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil); Lopes, Flavio Marques [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil); Unidade Universitária de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, Anápolis, GO (Brazil); Yamashita, Fabio [Departamento de Tecnologia de Alimentos e Medicamentos, Laboratório de Tecnologia, Universidade Estadual de Londrina, Cx. Postal 6001, CEP 86051-990, Londrina, PR (Brazil); Fernandes, Kátia Flávia, E-mail: katia@icb.ufg.br [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil)

    2013-04-01

    This study reports the development and characterization of novel biodegradable film, based on chitosan and polyvinyl alcohol containing lipase entrapped. The films showed a thickness of 70.4 and 79 μm to PVA/Chitosan and PVA/Chitosan/Lipase, respectively. The entrapment of lipase in PVA/Chitosan film resulted in increasing of 69.4% tensile strength (TS), and 52.4% of elongation. SEM images showed the formation of a continuous film, without pores or cracks. The lipase entrapment efficiency was estimated in 92% and the films were repeatedly used for 25 hydrolytic cycles, maintaining 62% of initial activity. The PVA/Chitosan/Lipase film was used for olive oil hydrolysis of high performance. These results indicate that PVA/Chitosan/Lipase is a promising material for biotechnology applications such as triacylglycerol hydrolysis and biodiesel production. - Highlights: ► Development and characterization of PVA/Chitosan biodegradable film ► Lipase immobilization onto PVA/Chitosan film ► PVA/Chitosan/Lipase film for reactor coating ► Olive oil hydrolysis using PVA/Chitosan/Lipase film.

  12. Lipase entrapment in PVA/Chitosan biodegradable film for reactor coatings

    International Nuclear Information System (INIS)

    Batista, Karla A.; Lopes, Flavio Marques; Yamashita, Fabio; Fernandes, Kátia Flávia

    2013-01-01

    This study reports the development and characterization of novel biodegradable film, based on chitosan and polyvinyl alcohol containing lipase entrapped. The films showed a thickness of 70.4 and 79 μm to PVA/Chitosan and PVA/Chitosan/Lipase, respectively. The entrapment of lipase in PVA/Chitosan film resulted in increasing of 69.4% tensile strength (TS), and 52.4% of elongation. SEM images showed the formation of a continuous film, without pores or cracks. The lipase entrapment efficiency was estimated in 92% and the films were repeatedly used for 25 hydrolytic cycles, maintaining 62% of initial activity. The PVA/Chitosan/Lipase film was used for olive oil hydrolysis of high performance. These results indicate that PVA/Chitosan/Lipase is a promising material for biotechnology applications such as triacylglycerol hydrolysis and biodiesel production. - Highlights: ► Development and characterization of PVA/Chitosan biodegradable film ► Lipase immobilization onto PVA/Chitosan film ► PVA/Chitosan/Lipase film for reactor coating ► Olive oil hydrolysis using PVA/Chitosan/Lipase film

  13. Grape Preservation Using Chitosan Combined with β-Cyclodextrin

    Directory of Open Access Journals (Sweden)

    Yu Youwei

    2013-01-01

    Full Text Available The effect of 1% chitosan combined with 2% β-cyclodextrin to the preservation of fresh grapes under ambient temperature was investigated. The results indicated that the hydrogen bond formed between the hydroxyl group of β-cyclodextrin and the amidogen or hydroxyl group of chitosan and the crystal form of chitosan was also changed when cyclodextrin was doped into chitosan coating. The compound coating could prolong the shelf life of grapes, maintain lower respiration rate and higher activities of superoxide dismutase, peroxidase, and catalase during storage time, and restrain weight loss and malonaldehyde content increase. Coating grapes with chitosan + β-cyclodextrin was a good method in postharvested grape preservation.

  14. Adhesion and viability of two enterococcal strains on covalently grafted chitosan and chitosan/kappa-carrageenan multilayers

    NARCIS (Netherlands)

    Bratskaya, S.; Marinin, D.; Simon, F.; Synytska, A.; Zschoche, S.; Busscher, H. J.; Jager, D.; van der Mei, H. C.

    Chitosans are natural aminopolysaccharides, whose low cytotoxicity suggests their potential use for nonadhesive, antibacterial coatings on biomaterials implant surfaces. Here, the antiadhesive behavior and ability to kill bacteria upon adhesion ("contact killing") of chitosan coatings were evaluated

  15. Synthesis and Characterization of Nanodiamond Reinforced Chitosan for Bone Tissue Engineering.

    Science.gov (United States)

    Sun, Yu; Yang, Qiaoqin; Wang, Haidong

    2016-09-15

    Multifunctional tissue scaffold material nanodiamond (ND)/chitosan (CS) composites with different diamond concentrations from 1 wt % to 5 wt % were synthesized through a solution casting method. The microstructure and mechanical properties of the composites were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and nanoindentation. Compared with pristine CS, the addition of ND resulted in a significant improvement of mechanical properties, including a 239%, 276%, 321%, 333%, and 343% increase in Young's modulus and a 68%, 96%, 114%, 118%, and 127% increase in hardness when the ND amount was 1 wt %, 2 wt %, 3 wt %, 4 wt %, and 5 wt %, respectively. The strong interaction between ND surface groups and the chitosan matrix plays an important role in improving mechanical properties.

  16. Effects of electrospun chitosan wrapping for dry-ageing of beef, as studied by microbiological, physicochemical and low-field nuclear magnetic resonance analysis

    DEFF Research Database (Denmark)

    Guðjónsdóttir, María; Gacutan, Manuel D.; Mendes, Ana Carina Loureiro

    2015-01-01

    The effects of using electrospun chitosan fibres as a wrapping material for dry-ageing beef was studied and compared to traditional dry-ageing and wet-ageing of beef for up to 21 days. The chitosan treatment showed improved results in terms of yield, reduction of microbial counts, yeasts and moulds......, and lighter appearance compared to traditional dry-ageing. Weight and trimming losses were minimal in the wet-ageing beef. However, significant growth of lactic acid bacteria was observed in this group. Transverse relaxation times indicated a lower degree of muscle denaturation during ageing in the chitosan...... chitosan fibre mats have potential as a wrapping material for improved quality during dry-ageing of beef....

  17. Co-assembly in chitosan-surfactant mixtures: thermodynamics, structures, interfacial properties and applications.

    Science.gov (United States)

    Chiappisi, Leonardo; Gradzielski, Michael

    2015-06-01

    In this review, different aspects characterizing chitosan-surfactant mixtures are summarized and compared. Chitosan is a bioderived cationic polysaccharide that finds wide-ranged applications in various field, e.g., medical or food industry, in which synergistic effects with surfactant can play a fundamental role. In particular, the behavior of chitosan interacting with strong and weak anionic, nonionic as well as cationic surfactants is reviewed. We put a focus on oppositely charged systems, as they exhibit the most interesting features. In that context, we discuss the thermodynamic description of the interaction and in particular the structural changes as they occur as a function of the mixed systems and external parameters. Moreover, peculiar properties of chitosan coated phospholipid vesicles are summarized. Finally, their co-assembly at interfaces is briefly reviewed. Despite the behavior of the mentioned systems might strongly differ, resulting in a high variety of properties, few general rules can be pointed out which improve the understanding of such complex systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Effect of degree of deacetylation of chitosan on adsorption capacity and reusability of chitosan/polyvinyl alcohol/TiO2 nano composite.

    Science.gov (United States)

    Habiba, Umma; Joo, Tan Chin; Siddique, Tawsif A; Salleh, Areisman; Ang, Bee Chin; Afifi, Amalina M

    2017-11-01

    The chitosan/polyvinyl alcohol/TiO 2 composite was synthesized. Two different degrees of deacetylation of chitosan were prepared by hydrolysis to compare the effectiveness of them. The composite was analyzed via field emission scanning electron microscopy, Fourier transform infrared, X-ray diffraction, thermal gravimetric analysis, weight loss test and adsorption study. The FTIR and XRD results proved the interaction among chitosan, PVA and TiO 2 without any chemical reaction. It was found that, chitosan with higher degree of deacetylation has better stability. Furthermore, it also showed that higher DD of chitosan required less time to reach equilibrium for methyl orange. The adsorption followed the pseudo-second-order kinetic model. The Langmuir and Freundlich isotherm models were fitted well for isotherm study. Adsorption capacity was higher for the composite containing chitosan with higher DD. The dye removal rate was independent of the dye's initial concentration. The adsorption capacity was increased with temperature and it was found from reusability test that the composite containing chitosan with higher DD is more reusable. It was notable that adsorption capacity was even after 15 runs. Therefore, chitosan/PVA/TiO 2 composite can be a very useful material for dye removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Field-Evolved Resistance to Bt Maize by Western Corn Rootworm

    Science.gov (United States)

    Gassmann, Aaron J.; Petzold-Maxwell, Jennifer L.; Keweshan, Ryan S.; Dunbar, Mike W.

    2011-01-01

    Background Crops engineered to produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are planted on millions of hectares annually, reducing the use of conventional insecticides and suppressing pests. However, the evolution of resistance could cut short these benefits. A primary pest targeted by Bt maize in the United States is the western corn rootworm Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). Methodology/Principal Findings We report that fields identified by farmers as having severe rootworm feeding injury to Bt maize contained populations of western corn rootworm that displayed significantly higher survival on Cry3Bb1 maize in laboratory bioassays than did western corn rootworm from fields not associated with such feeding injury. In all cases, fields experiencing severe rootworm feeding contained Cry3Bb1 maize. Interviews with farmers indicated that Cry3Bb1 maize had been grown in those fields for at least three consecutive years. There was a significant positive correlation between the number of years Cry3Bb1 maize had been grown in a field and the survival of rootworm populations on Cry3Bb1 maize in bioassays. However, there was no significant correlation among populations for survival on Cry34/35Ab1 maize and Cry3Bb1 maize, suggesting a lack of cross resistance between these Bt toxins. Conclusions/Significance This is the first report of field-evolved resistance to a Bt toxin by the western corn rootworm and by any species of Coleoptera. Insufficient planting of refuges and non-recessive inheritance of resistance may have contributed to resistance. These results suggest that improvements in resistance management and a more integrated approach to the use of Bt crops may be necessary. PMID:21829470

  20. Chitosan nanocomposite films: enhanced electrical conductivity, thermal stability, and mechanical properties.

    Science.gov (United States)

    Marroquin, Jason B; Rhee, K Y; Park, S J

    2013-02-15

    A novel, high-performance Fe(3)O(4)/MWNT/Chitosan nanocomposite has been prepared by a simple solution evaporation method. A significant synergistic effect of Fe(3)O(4) and MWNT provided enhanced electrical conductivity, mechanical properties, and thermal stability on the nanocomposites. A 5% (wt) loading of Fe(3)O(4)/MWNT in the nanocomposite increased conductivity from 5.34×10(-5) S/m to 1.49×10(-2) S/m compared to 5% (wt) MWNT loadings. The Fe(3)O(4)/MWNT/Chitosan films also exhibited increases in tensile strength and modulus of 70% and 155%, respectively. The integral procedure decomposition temperature (IPDT) was enhanced from 501 °C to 568 °C. These effects resulted from a number of factors: generation of a greater number of conductive channels through interactions between MWNT and Fe(3)O(4) surfaces, a higher relative crystallinity, the antiplasticizing effects of Fe(3)O(4), a restricted mobility and hindrance of depolymerization of the Chitosan chain segments, as well as uniform distribution, improved dispersion, and strong interfacial adhesion between the MWNT and Chitosan matrix. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. 166Ho-chitosan as a radiation synovectomy agent - biocompatibility study of 166Ho-chitosan in rabbits

    International Nuclear Information System (INIS)

    Kim, Sug Jun; Lee, Soo Yong; Jeon, Dae Geun; Lee Jong Seok

    1997-01-01

    Radiation synovectomy is a noninvasive therapy that has been investigated as an alternative to surgical synovectomy. It is been successfully employed in the treatment of synovitis in rheumatoid arthrits and other inflammatory arthropathies. We developed the 166 Ho-chitosan complex for possible use as a radiation synovectomy agent. Holmium is the more practical isotope based on its higher radioactivity and logner half-life. And isotope based on its higher radioactivity and logner half-life. And chitosan is ideal and suitable particles based on its soluble and biodegradable characteristics. So we investigated the biocompatibility of the 166 Ho-chitosan complex to evaluated the suitability as a radiation synovectomy agent. In this study, we performed in vivo and in vitro stability test and biodistribution test. Our results indicate that 166 Ho-chitosan may be an effective radiopharmaceutical for radiation synovectomy. (author). 30 refs., 7 tabs

  2. Synthesis and evaluation of PEG-O-chitosan nanoparticles for delivery of poor water soluble drugs: ibuprofen.

    Science.gov (United States)

    Hassani Najafabadi, Alireza; Abdouss, Majid; Faghihi, Shahab

    2014-08-01

    Current methods for preparation of PEGylated chitosan have limitations such as harsh de protecting step and several purification cycles. In the present study, a facile new method for conjugating methoxy polyethylene glycol (mPEG) to chitosan under mild condition is introduced to improve water solubility of chitosan and control the release of poor water soluble drugs. The method consists of chitosan modification by grafting the C6 position of chitosan to mPEG which is confirmed by Fourier transformed-infrared (FT-IR) and proton nuclear magnetic resonance ((1)HNMR) analyses. The amine groups at the C2 position of chitosan are protected using sodium dodecylsulfate (SDS) which is removed by dialyzing the precipitation against Tris solution. The chemical structure of the prepared polymer is characterized by FTIR and (1)HNMR. The synthesized polymer is then employed to prepare nanoparticles which are characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), scanning electron microscopy (SEM), and dynamic light scattering (DLS) for their size and morphology. The nanoparticles are used for encapsulation of ibuprofen followed by in vitro release investigation in gastrointestinal and simulated biological fluids. The chitosan nanoparticles are used as control. The PEGylated nanoparticles show a particle size of 80 nm with spherical morphology. The results clearly show that drug release from PEGylated chitosan nanoparticles is remarkably slower than chitosan. In addition, drug encapsulation and encapsulation efficiency in PEGylated nanoparticles are dependent on the amount of drug added to the formulation being significantly higher than chitosan nanoparticles. This study provides an efficient, novel, and facile method for preparing a nano carrier system for delivery of water insoluble drugs. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Influence of Process Control Agent on Characterization and Structure of Micron Chitosan Powders Prepared by Ball Milling Method

    Directory of Open Access Journals (Sweden)

    ZHANG Chuan-jie

    2016-12-01

    Full Text Available With ethyl alcohol or distilled water as process control agent (PCA, micron chitosan powder was prepared by ball milling method. The yield rate, particle size distribution, micro morphology, viscosity average molecular mass, chemical and crystal structures, and thermal properties of these different micron chitosan powders were measured. The results indicate that the yield rate of micron chitosan powders prepared with ethyl alcohol as PCA increases significantly, and improves to 94.7% from 25% while the amount of ethyl alcohol is 0.75mL/g. The particle size distribution of micron chitosan powder prepared with ethyl alcohol as PCA is concentrated, while the D50 and D90 in size are 824nm and 1629nm respectively. Chitosan do not react with ethyl alcohol used as PCA, but the viscosity average molecular mass of prepared micron chitosan powder decreases by 23%, the crystal structures are destroyed slightly, and its thermal stability is slightly weakened.

  4. nanocomposites chitosan /clay for electrochemical sensors

    International Nuclear Information System (INIS)

    Braga, Carla R. Costa; Melo, Frank M. Araujo de; Costa, Gilmara M. Silva; Silva, Suedina M. Lima

    2009-01-01

    This study was performed to obtain films of nanocomposites chitosan/bentonite and chitosan/montmorillonite intercalation by the technique of solution in the proportions of 5:1 and 10:1. The nanocomposites were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD) and the nanocomposites Chitosan/montmorillonite also were characterized by thermogravimetric analysis (TG). The results indicated that the feasibility of obtaining films of nanocomposites exfoliate. Among the suggested applications for films developed in this study includes them use for electrochemical sensors. (author)

  5. Use of the montmorillonite as crosslink agents for chitosan

    International Nuclear Information System (INIS)

    Barbosa, Rossemberg C.; Lima, Rosemary S. Cunha; Braga, Carla R. Costa; Fook, Marcus V. Lia; Silva, Suedina M. Lima

    2009-01-01

    The montmorillonite (the main constituent of bentonite) has been the most commonly used inorganic load in the formation of nanocomposites chitosan / layered silicate. To evaluate its effect as an agent for the reticulation of chitosan, a sodium montmorillonite, Cloisite Na + , supplied by Southern Clay Products, Texas, USA, was used. For the reticulation of chitosan dispersions of chitosan / Cloisite Na + were prepared in different proportions and the obtained films characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TG). The results indicated that the Cloisite Na + was for efficient and the reticulation of the chitosan and can be used in place of sulfuric acid, which is one of the most common reticulants for chitosan. (author)

  6. Enhancement of Antibacterial activity of Chitosan by gamma irradiation

    International Nuclear Information System (INIS)

    Bashandy, A.S.; Ibrahim, H.M.M.

    2006-01-01

    The antibacterial activity of irradiated and non-irradiated chitosan against E.coli, S.aureus, Salmonella, Strep. fecalis,Closteridium and P. aerugenosa was studied. Up to 1.25 mg/l, chitosan hardly suppressed the growth of all the strains while 3 mg/l of chitosan clearly inhibited the growth of all the studied strains. Therefore, the concentration of 3 mg/l of chitosan in the medium was adopted in this study. Irradiation at 100 KGy under dry conditions was effective in increasing the activity of chitosan and the growth of bacterial strains which was completely inhibited. It was also found that the addition of chitosan to dressing membranes present good barrier properties against microbes especially that irradiated at 100 KGy

  7. Synthesize and Characterization of Hydroxypropyl-N-octanealkyl Chitosan Ramification

    Science.gov (United States)

    Tan, Fu-neng

    2018-03-01

    A new type of amphiphilic ramification, hydroxypropyl-N-octanealkyl chitosan was prepared from chitosan via hydrophilic group and hydrophobic group were introduced. We could protect the amino group of chitosan via the reaction of chitosan and benzaldehyde could get Schiff base structure. Structures of the products were characterized with FT-IR, elemental analysis, themogrammetry (TG) analysis and X-ray diffraction. The degree of substitution of hydrophobic group was studied by elemental analysis. The result showed this chitosan ramification was soluble, biocompatible, biodegradable and nontoxic.

  8. Rapidly photo-cross-linkable chitosan hydrogel for peripheral neurosurgeries.

    Science.gov (United States)

    Rickett, Todd A; Amoozgar, Zohreh; Tuchek, Chad A; Park, Joonyoung; Yeo, Yoon; Shi, Riyi

    2011-01-10

    Restoring continuity to severed peripheral nerves is crucial to regeneration and enables functional recovery. However, the two most common agents for coaptation, sutures and fibrin glues, have drawbacks such as inflammation, pathogenesis, and dehiscence. Chitosan-based adhesives are a promising alternative, reported to have good cytocompatibility and favorable immunogenicity. A photo-cross-linkable hydrogel based on chitosan is proposed as a new adhesive for peripheral nerve anastomosis. Two Az-chitosans were synthesized by conjugating 4-azidobenzoic acid with low (LMW, 15 kDa) and high (HMW, 50-190 kDa) molecular weight chitosans. These solutions formed a hydrogel in less than 1 min under UV light. The LMW Az-chitosan was more tightly cross-linked than the HMW variant, undergoing significantly less swelling and possessing a higher rheological storage modulus, and both Az-chitosan gels were stiffer than commercial fibrin glue. Severed nerves repaired by Az-chitosan adhesives tolerated longitudinal forces comparable or superior to fibrin glue. Adhesive exposure to intact nerves and neural cell culture showed both Az-chitosans to be nontoxic in the acute (minutes) and chronic (days) time frames. These results demonstrate that Az-chitosan hydrogels are cytocompatible and mechanically suitable for use as bioadhesives in peripheral neurosurgeries.

  9. Poly(D,L-Lactide-Co-Glycolide) Tubes With Multifilament Chitosan Yarn or Chitosan Sponge Core in Nerve Regeneration.

    Science.gov (United States)

    Wlaszczuk, Adam; Marcol, Wiesław; Kucharska, Magdalena; Wawro, Dariusz; Palen, Piotr; Lewin-Kowalik, Joanna

    2016-11-01

    The influence of different kinds of nerve guidance conduits on regeneration of totally transected rat sciatic nerves through a 7-mm gap was examined. Five different types of conduits made of chitosan and poly(D,L-lactide-co-glycolide) (PLGA) were constructed and tested in vivo. We divided 50 animals into equal groups of 10, with a different type of conduit implanted in each group: chitosan sponge core with an average molecular mass of polymer (Mv) of 287 kDa with 7 channels in a PLGA sleeve, chitosan sponge core with an Mv of 423 kDa with 7 channels in a PLGA sleeve, chitosan sponge core (Mv, 423 kDa) with 13 channels in a PLGA sleeve, chitosan multifilament yarn in a PLGA sleeve, and a PLGA sleeve only. Seven weeks after the operation, we examined the distance covered by regenerating nerve fibers, growing of nerves into the conduit's core, and intensity and type of inflammatory reaction in the conduit, as well as autotomy behavior (reflecting neuropathic pain intensity) in the animals. Two types of conduits were allowing nerve outgrowth through the gap with minor autotomy and minor inflammatory reactions. These were the conduits with chitosan multifilament yarn in a PLGA sleeve and the conduits with 13-channel microcrystalline chitosan sponge in a PLGA sleeve. The type of chitosan used to build the nerve guidance conduit influences the intensity and character of inflammatory reaction present during nerve regeneration, which in turn affects the distance crossed by regenerating nerve fibers, growing of the nerve fibers into the conduit's core, and the intensity of autotomy in the animals. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  10. Chitosan derivatives with antimicrobial, antitumour and antioxidant activities--a review.

    Science.gov (United States)

    Jarmila, Vinsová; Vavríková, Eva

    2011-01-01

    Chitosan is a linear polysaccharide with a good biodegradability, biocompatibility, and no toxicity, which provide it with huge potential for future development. The chitosan molecule appears to be a suitable polymeric complex for many biomedical applications. This review gathers current findings on the antibacterial, antifungal, antitumour and antioxidant activities of chitosan derivatives and concurs with our previous review presenting data collected up to 2008. Antibacterial activity is based on molecular weight, the degree of deacetylation, the type of substitutents, which can be cationic or easily form cations, and the type of bacterium. In general, high molecular weight chitosan cannot pass through cell membranes and forms a film that protects cells against nutrient transport through the microbial cell membrane. Low molecular weight chitosan derivatives are water soluble and can better incorporate the active molecule into the cell. Gram-negative bacteria, often represented by Escherichia coli, have an anionic bacterial surface on which cationic chitosan derivatives interact electrostatically. Thus, many chitosan conjugates have cationic components such as ammonium, pyridinium or piperazinium substituents introduced into their molecules to increase their positive charge. Gram-positive bacteria like Staphylococcus aureus are inhibited by the binding of lower molecular weight chitosan derivatives to DNA or RNA. Chitosan nanoparticles exhibit an increase in loading capacity and efficacy. Antitumour active compounds such as doxorubicin, paclitaxel, docetaxel and norcantharidin are used as drug carriers. It is evident that chitosan, with its low molecular weight, is a useful carrier for molecular drugs requiring targeted delivery. The antioxidant scavenging activity of chitosan has been established by the strong hydrogen-donating ability of chitosan. The low molecular weight and greater degree of quarternization have a positive influence on the antioxidant activity

  11. Phytase-mediated enzymatic mineralization of chitosan-enriched hydrogels

    DEFF Research Database (Denmark)

    Lišková, Jana; Douglas, Timothy E.L.; Wijnants, Robbe

    2018-01-01

    Hydrogels mineralized with calcium phosphate (CaP) are increasingly popular bone regeneration biomaterials. Mineralization can be achieved by phosphatase enzyme incorporation and incubation in calcium glycerophosphate (CaGP). Gellan gum (GG) hydrogels containing the enzyme phytase and chitosan...... oligomer were mineralized in CaGP solution and characterized with human osteoblast-like MG63 cells and adipose tissue-derived stem cells (ADSC). Phytase induced CaP formation. Chitosan concentration determined mineralization extent and hydrogel mechanical reinforcement. Phytase-induced mineralization...... promoted MG63 adhesion and proliferation, especially in the presence of chitosan, and was non-toxic to MG63 cells (with and without chitosan). ADSC adhesion and proliferation were poor without mineralization. Chitosan did not affect ADSC osteogenic differentiation....

  12. Preparation and characterization of biocomposite film based on chitosan and kombucha tea as active food packaging.

    Science.gov (United States)

    Ashrafi, Azam; Jokar, Maryam; Mohammadi Nafchi, Abdorreza

    2018-03-01

    An active film composed of chitosan and kombucha tea (KT) was successfully prepared using the solvent casting technique. The effect of incorporation of KT at the levels 1%-3% w/w on the physical and functional properties of chitosan film was investigated. The antimicrobial activity of chitosan/KT film against Escherichia coli and Staphylococcus aureus was evaluated using agar diffusion test, and its antioxidant activity was determined using DPpH assay. The results revealed that incorporation of KT into chitosan films improved the water vapor permeability (from 256.7 to 132.1gcm -2 h -1 KPa -1 mm) and enhanced the antioxidant activity of the latter up to 59% DPpH scavenging activity. Moreover, the incorporation of KT into the chitosan film increased the protective effect of the film against ultra violet (UV). Fourier transform infrared spectroscopic analysis revealed the chemical interactions between chitosan and the polyphenol groups of KT. In a minced beef model, chitosan/KT film effectively served as an active packaging and extended the shelf life of the minced beef as manifested in the retardation of lipid oxidation and microbial growth from 5.36 to 2.11logcfugr -1 in 4days storage. The present work demonstrates that the chitosan/KT film not only maintains the quality of the minced beef but also, retards microbial growth significantly, extending the shelf life of the minced beef meat up to 3days; thus, chitosan/KT film is a potential material for active food packaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Physico-mechanical and structural properties of eggshell membrane gelatin- chitosan blend edible films

    DEFF Research Database (Denmark)

    Mohammadi, Reza; Mohammadifar, Mohammad Amin; Rouhi, Milad

    2018-01-01

    This study investigated the physico-mechanical and structural properties of composite edible films based on eggshell membrane gelatin (G) and chitosan (Ch) (75G:25Ch, 50G:50Ch, 25G:75Ch). The results demonstrated that the addition of Ch increased elongation at break significantly (p< 0.05), but r......This study investigated the physico-mechanical and structural properties of composite edible films based on eggshell membrane gelatin (G) and chitosan (Ch) (75G:25Ch, 50G:50Ch, 25G:75Ch). The results demonstrated that the addition of Ch increased elongation at break significantly (p... interactions introduced by the addition of chitosan to eggshell membrane gelatin as new resources could improve the films’ functional properties....

  14. Synthesis of (2-pyridyl)-Acetyl Chitosan and Its Antioxidant Activity

    International Nuclear Information System (INIS)

    Li, Rongchun

    2011-01-01

    In this paper, chloracetyl chitosan (CACTS) was prepared at first. In the molecules of CACTS, there are active chlorine groups, which can take part in other reactions. Thus, number of chitosan derivatives will be obtained after chlorine is substituted. Choosing pyridine as the active group, a novel water-soluble chitosan derivative, (2-pyridyl)-acetyl chitosan (PACTS) was obtained and its antioxidant activity against hydroxyl radicals and superoxide radicals was assessed. The results indicated that PACTS had better antioxidant activity than that of chitosan, carboxymethyl chitosan (CMCTS), hydroxypropyl chitosan (HPCTS), and Vitamin C. And the IC 50 values against hydroxyl radicals and superoxide radicals were 0.31 mg/mL and 0.21 mg/mL, respectively

  15. Utility of RNA Sequencing for Analysis of Maize Reproductive Transcriptomes

    Directory of Open Access Journals (Sweden)

    Rebecca M. Davidson

    2011-11-01

    Full Text Available Transcriptome sequencing is a powerful method for studying global expression patterns in large, complex genomes. Evaluation of sequence-based expression profiles during reproductive development would provide functional annotation to genes underlying agronomic traits. We generated transcriptome profiles for 12 diverse maize ( L. reproductive tissues representing male, female, developing seed, and leaf tissues using high throughput transcriptome sequencing. Overall, ∼80% of annotated genes were expressed. Comparative analysis between sequence and hybridization-based methods demonstrated the utility of ribonucleic acid sequencing (RNA-seq for expression determination and differentiation of paralagous genes (∼85% of maize genes. Analysis of 4975 gene families across reproductive tissues revealed expression divergence is proportional to family size. In all pairwise comparisons between tissues, 7 (pre- vs. postemergence cobs to 48% (pollen vs. ovule of genes were differentially expressed. Genes with expression restricted to a single tissue within this study were identified with the highest numbers observed in leaves, endosperm, and pollen. Coexpression network analysis identified 17 gene modules with complex and shared expression patterns containing many previously described maize genes. The data and analyses in this study provide valuable tools through improved gene annotation, gene family characterization, and a core set of candidate genes to further characterize maize reproductive development and improve grain yield potential.

  16. Towards improved nitrogen management in silage maize production on sandy soils

    NARCIS (Netherlands)

    Schroeder, J.

    1998-01-01

    Maize has become a highly appreciated crop in Dutch dairy farming during the last 25 years. The current cropping technique, however, is associated with a low recovery of soil mineral nitrogen (N) and serious losses of N to the environment. This gave rise to the research described in this

  17. FACTORS INFLUENCING ADOPTION DECISIONS OF MAIZE FARMERS IN NIGERIA

    Directory of Open Access Journals (Sweden)

    Olusegun Ayodeji Fadare

    2014-07-01

    Full Text Available The needs to develop improved varieties of maize have been in the heart of various researchers and institutions in Nigeria because of its strategic role in tackling food insecurity and poverty. Despite substantial efforts to improve maize varieties, the level of adoption of improved maize varieties (IMV in Nigeria in still very low. Although previous adoption studies have indicated a number of socioeconomic and institutional/organizational variables as important factors influencing adoption of improved maize (crop varieties in the country, whether these factors are the main issues of concern, and whether the inclusion of regional/agro-ecological variables in adoption model are also important in explaining what could drive farmers’ adoption behaviour requires investigation. This study therefore examined factors influencing adoption of IMV among farmers in Nigeria using a selected portion of the Nigeria Living Standard Measurement Survey data collected by the National Bureau of Statistics and the World Bank for 2010/2011 cropping season with descriptive statistics and probit model as tools for data analysis. The results suggest, in line with some previous studies, that farm size, education level of farmers and access to extension services would significantly influence adoption of IMV. The results also indicate that farmers across the entire agro-ecological regions of country share some negative sentiments regarding adoption of IMV. Renewed emphasis on interventions that would enable farmers gain more access to farmland, and promote formal education and extension service are advocated. An attempt to incorporate variables that capture farmers’ perception/experience on agroclimatic/ ecologically related concerns in adoption study could aid better understand of what drives farmers’ adoption decisions across the country especially in the light of the emerging climate change issues and its implication on food production.

  18. Preparation and characterization of magnetic chitosan particles for hyperthermia application

    International Nuclear Information System (INIS)

    Park, Ji-Ho; Im, Ki-Hyeong; Lee, Se-Ho; Kim, Dong-Hyun; Lee, Doug-Youn; Lee, Yong-Keun; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2005-01-01

    The size and shape of magnetic chitosan particles were found to be dependent on both the barium ferrite/chitosan (BF/C) ratio and viscosity of a chitosan solution. The saturation magnetization of magnetic chitosan particles varied directly with the BF/C ratio, while coercivity remained almost constant. Notably, incorporated chitosan was shown to exert substantial activity with regard to low cytotoxicity and high heating rate

  19. Natural-Synthetic Hybrid Polymers Developed via Electrospinning: The Effect of PET in Chitosan/Starch System

    Science.gov (United States)

    Espíndola-González, Adolfo; Martínez-Hernández, Ana Laura; Fernández-Escobar, Francisco; Castaño, Victor Manuel; Brostow, Witold; Datashvili, Tea; Velasco-Santos, Carlos

    2011-01-01

    Chitosan is an amino polysaccharide found in nature, which is biodegradable, nontoxic and biocompatible. It has versatile features and can be used in a variety of applications including films, packaging, and also in medical surgery. Recently a possibility to diversify chitosan properties has emerged by combining it with synthetic materials to produce novel natural-synthetic hybrid polymers. We have studied structural and thermophysical properties of chitosan + starch + poly(ethylene terephthalate) (Ch + S + PET) fibers developed via electrospinning. Properties of these hybrids polymers are compared with extant chitosan containing hybrids synthesized by electrospinning. Molecular interactions and orientation in the fibers are analyzed by infrared and Raman spectroscopies respectively, morphology by scanning electron microscopy and thermophysical properties by thermogravimetric analysis and differential scanning calorimetry. Addition of PET to Ch + S systems results in improved thermal stability at elevated temperatures. PMID:21673930

  20. Effects of dietary chitosan on growth, lipid metabolism, immune response and antioxidant-related gene expression in Misgurnus anguillicaudatus.

    Science.gov (United States)

    Yan, J; Guo, C; Dawood, M A O; Gao, J

    2017-05-30

    This study was performed to evaluate the effects of dietary chitosan supplementation on growth performance, lipid metabolism, gut microbial, antioxidant status and immune responses of juvenile loach (Misgurnus anguillicaudatus). Five experimental diets were formulated to contain graded levels of chitosan (0 (control), 0.5, 1, 2 and 5% CHI) for 50 days. Results of the present study showed that body weight gain was significantly higher in fish fed chitosan supplemented diets in dose dependent manner than control group. Increasing dietary chitosan levels reduced gut lipid content. Meanwhile the mRNA expression levels of intestine lipoprotein lipase and fatty acid binding protein 2 were significantly reduced with incremental dietary chitosan level. The percentages of total monounsaturated fatty acid decreased, while polyunsaturated fatty acid increased with dietary chitosan. The fish fed 0.5% CHI had higher mucus lysozyme activity (LZM) than those fed 0% CHI, but the LZM activity was significantly decreased with advancing chitosan supplement. The expression levels of superoxide dismutase, catalase and glutathione peroxidase revealed a similar trend, where the highest expressions were found in fish fed 5% CHI diet. In the term of intestine microbiota between 0 and 1% CHI groups, the proportion of bacteria in the phylum Bacteroidetes increased, whereas the proportion of bacteria in the phylum Firmicutes decreased as the fish supplemented chitosan. In conclusion, supplementation of chitosan improved growth performance, antioxidant status and immunological responses in loach.

  1. Genipin cross-linked electrospun chitosan-based nanofibrous mat as tissue engineering scaffold

    Directory of Open Access Journals (Sweden)

    Esmaeil Mirzaei

    2014-04-01

    Full Text Available   Objective(s: To improve water stability of electrospun chitosan/ Polyethylene oxide (PEO nanofibers, genipin, a biocompatible and nontoxic agent, was used to crosslink chitosan based nanofibers.   Materials and Methods: Different amounts of genipin were added to the chitosan/PEO solutions, chitosan/PEO weight ratio 90/10 in 80 % acetic acid, and the solutions were then electrospun to form nanofibers. The spun nanofibers were exposed to water vapor to complete crosslinking. The nanofibrous membranes were subjected to detailed analysis by scanning electron microscopy (SEM, Fourier transform infrared-attenuated total reflection (FTIR-ATR spectroscopy, swelling test, MTT cytotoxicity, and cell attachment. Results: SEM images of electrospun mats showed that genipin-crosslinked nanofibers retained their fibrous structure after immerging in PBS (pH=7.4 for 24 hours, while the uncrosslinked samples lost their fibrous structure, indicating the water stability of genipin-crosslinked nanofibers. The genipin-crosslinked mats also showed no significant change in swelling ratio in comparison with uncrosslinked ones. FTIR-ATR spectrum of uncrosslinked and genipin-crosslinked chitosan nanofibers revealed the reaction between genipin and amino groups of chitosan. Cytotoxicity of genipin-crosslinked nanofibers was examined by MTT assay on human fibroblast cells in the presence of nanofibers extraction media. The genipin-crosslinked nanofibers did not show any toxic effects on fibroblast cells at the lowest and moderate amount of genipin. The fibroblast cells also showed a good adhesion on genipin-crosslinked nanofibers. Conclusion: This electrospun matrix would be used for biomedical applications such as wound dressing and scaffold for tissue engineering without the concern of toxicity.

  2. Rheological study of chitosan in solution

    International Nuclear Information System (INIS)

    Silva, Italo Guimaraes Medeiros da; Alves, Keila dos Santos; Balaban, Rosangela de Carvalho

    2009-01-01

    Chitosan is an abundant biopolymer with remarkable physicochemical and biological properties, usually employed in a wide range of applications. It acts as a cationic polyelectrolyte in aqueous acid solutions, leading to unique characteristics. In this work, chitosan was characterized by 1 H NMR and its rheological behavior were studied as function of chitosan sample, shear rate, polymer concentration, ionic strength, time and temperature. In order to calculate rheological parameters and to understand the macromolecular dynamic in solution, the Otswald-de Waele model was fitted. (author)

  3. Maize Diversity, Market Access, and Poverty Reduction in the Western Highlands of Guatemala

    OpenAIRE

    Jon Hellin; Rachael Cox; Santiago López-Ridaura

    2017-01-01

    The western highlands of Guatemala lie within the area where maize was first domesticated, and maize remains central to farmers' livelihood security. Over 50% of the population in the region are in poverty, and over 48% suffer from chronic malnutrition. Development efforts have focused on improved land management, crop diversification, and improved access to markets, especially for high-value vegetable crops such as snow peas. As a result of successful initiatives worldwide, more attention is...

  4. Optimization and Evaluation of a Chitosan/Hydroxypropyl Methylcellulose Hydrogel Containing Toluidine Blue O for Antimicrobial Photodynamic Inactivation

    Directory of Open Access Journals (Sweden)

    Chueh-Pin Chen

    2015-09-01

    Full Text Available Photodynamic inactivation (PDI combined with chitosan has been shown as a promising antimicrobial approach. The purpose of this study was to develop a chitosan hydrogel containing hydroxypropyl methylcellulose (HPMC, chitosan and toluidine blue O (TBO to improve the bactericidal efficacy for topical application in clinics. The PDI efficacy of hydrogel was examined in vitro against the biofilms of Staphylococcus aureus (S. aureus and Pseudomonas aeruginosa (P. aeruginosa. Confocal scanning laser microscopy (CSLM was performed to investigate the penetration level of TBO into viable S. aureus biofilms. Incorporation of HMPC could increase the physicochemical properties of chitosan hydrogel including the hardness, viscosity as well as bioadhesion; however, higher HMPC concentration also resulted in reduced antimicrobial effect. CSLM analysis further demonstrated that higher HPMC concentration constrained TBO diffusion into the biofilm. The incubation of biofilm and hydrogel was further performed at an angle of 90 degrees. After light irradiation, compared to the mixture of TBO and chitosan, the hydrogel treated sample showed increased PDI efficacy indicated that incorporation of HPMC did improve antimicrobial effect. Finally, the bactericidal efficacy could be significantly augmented by prolonged retention of hydrogel in the biofilm as well as in the animal model of rat skin burn wounds after light irradiation.

  5. Solid matrix priming with chitosan enhances seed germination and seedling invigoration in mung bean under salinity stress

    Directory of Open Access Journals (Sweden)

    Sujoy SEN

    2016-09-01

    Full Text Available The objective of present study was to evaluate the response of the mung bean seeds of ‘Sonali B1’ variety primed with chitosan in four different concentrations (0, 0.1%, 0.2% and 0.5% under salinity stress of five different concentrations (i.e., 0, 4, 6, 8 and 12 dS*mm-1 and halotolerance pattern by applying Celite as matrix at three different moisture levels (5%, 10% and 20%. Improved germination percentage, germination index, mean germination time, coefficient of velocity of germination along with root and shoot length was observed comparing with control. Germination stress tolerance index (GSI, plant height stress tolerance index (PHSI and root length stress tolerance index (RLSI were used to evaluate the tolerance of the mung bean seeds against salinity stress induced by chitosan. Results of GSI, PHSI, RLSI showing noteworthy inhibitory effect of salinity stress in control set was significantly less pronounced in chitosan treated seedlings. Chitosan can remarkably alleviate the detrimental effect of salinity up to the level of 6 dS*m-1, beyond which no improvement was noticed. In conclusion present investigation revealed that chitosan is an ideal elicitor for enhancing the speed of germination and seedling invigoration that synchronize with emergence of radicle and salinity stress tolerance.

  6. Chitosan-thioglycolic acid as a versatile antimicrobial agent.

    Science.gov (United States)

    Geisberger, Georg; Gyenge, Emina Besic; Hinger, Doris; Käch, Andres; Maake, Caroline; Patzke, Greta R

    2013-04-08

    As functionalized chitosans hold great potential for the development of effective and broad-spectrum antibiotics, representative chitosan derivatives were tested for antimicrobial activity in neutral media: trimethyl chitosan (TMC), carboxy-methyl chitosan (CMC), and chitosan-thioglycolic acid (TGA; medium molecular weight: MMW-TGA; low molecular weight: LMW-TGA). Colony forming assays indicated that LMW-TGA displayed superior antimicrobial activity over the other derivatives tested: a 30 min incubation killed 100% Streptococcus sobrinus (Gram-positive bacteria) and reduced colony counts by 99.99% in Neisseria subflava (Gram-negative bacteria) and 99.97% in Candida albicans (fungi). To elucidate LMW-TGA effects at the cellular level, microscopic studies were performed. Use of fluorescein isothiocyanate (FITC)-labeled chitosan derivates in confocal microscopy showed that LMW-TGA attaches to microbial cell walls, while transmission electron microscopy indicated that this derivative severely affects cell wall integrity and intracellular ultrastructure in all species tested. We therefore propose LMW-TGA as a promising and effective broad-band antimicrobial compound.

  7. Mechanical property, degradation rate, and bone cell growth of chitosan coated titanium influenced by degree of deacetylation of chitosan.

    Science.gov (United States)

    Yuan, Youling; Chesnutt, Betsy M; Wright, Lee; Haggard, Warren O; Bumgardner, Joel D

    2008-07-01

    Chitosan has shown promise as a coating for dental/craniofacial and orthopaedic implants. However, the effects of degree of deacetylation (DDA) of chitosan on coating bond strength, degradation, and biological performance is not known. The aim of this project was to evaluate bonding, degradation, and bone cell growth on titanium coated with chitosans of different DDA and from different manufacturers. Three different chitosans, 80.6%, 81.7%, and 92.3% DDA were covalently bonded to titanium coupons via silane-glutaraldehyde molecules. Bond strengths were evaluated in mechanical tensile tests, and degradation, over 5 weeks, was conducted in cell culture medium with and without 100 microg/mL lysozyme. Cytocompatibility was evaluated for 10 days using UMR 106 osteoblastic cells. Results showed that mean chitosan coating bond strengths ranged from 2.2-3.8 MPa, and that there was minimal affect of DDA on coating bond strengths. The coatings exhibited little dissolution over 5 weeks in medium with or without lysozyme. However, the molecular weight (MW) of the chitosan coatings remaining on the titanium samples after 5 weeks decreased by 69-85% with the higher DDA chitosan coatings exhibiting less percent change in MW than the lower DDA materials. The growth of the UMR 106 osteoblast cells on the 81.7% DDA chitosan coating was lower on days 3 and 5, as compared with the other two coatings, but by day 10, there were no differences in growth among three coatings or to the uncoated titanium controls. Differences in growth were attributed to differences in manufacturer source material, though all coatings were judged to be osteocompatible in vitro. 2007 Wiley Periodicals, Inc.

  8. Mechanical response and multilevel structure of biomimetic hydroxyapatite/polygalacturonic/chitosan nanocomposites

    International Nuclear Information System (INIS)

    Verma, Devendra; Katti, Kalpana S.; Katti, Dinesh R.; Mohanty, Bedabibhas

    2008-01-01

    Using an in situ mineralization process that is biomimetic we have synthesized new nanocomposites of chitosan/hydroxyapatite in 50-50 ratio(ChiHAP50), polygalacturonic acid/hydroxyapatite in 50-50 ratio (PgAHAP50) and Chitosan/hydroxyapatite/Polygalacturonic acid (ChiPgAHAP50). Polygalacturonic acid (PgA) is electrostatically complementary to chitosan, and thus is expected to provide stronger interfacial interactions and improve mechanical response. Atomic force imaging of fractured and polished surfaces suggests a multilevel organization in the hydroxyapatite/biopolymer nanocomposite. The AFM images of ChiPgAHAP50 nanocomposite display presence of chitosan rich and polygalacturonic rich domains. These chitosan rich and PgA rich domains are made of smaller globular shaped particles in which, hydroxyapatite nano-particles are embedded in the biopolymer matrix. The average size of the hydroxyapatite particles in PgAHAP50, ChiHAP50 and ChiPgAHAP50 were found to be 25, 42 and 34 nm respectively. The elastic moduli determined from nanoindentation of PgAHAP50, ChiHAP50 and ChiPgAHAP50 composites are 29.81, 17.56 and 23.62 GPa respectively. Hardness values of the three composites in the same order were found to be 1.56, 0.65 and 1.14 GPa respectively. Macro-mechanical tests showed significant enhancement in elastic moduli, strain to failure and compressive strength of ChiPgAHAP50 composites over ChiHAP50 and PgAHAP50

  9. Controlled local drug delivery strategies from chitosan hydrogels for wound healing.

    Science.gov (United States)

    Elviri, Lisa; Bianchera, Annalisa; Bergonzi, Carlo; Bettini, Ruggero

    2017-07-01

    The main target of tissue engineering is the preparation and application of adequate materials for the design and production of scaffolds, that possess properties promoting cell adhesion, proliferation and differentiation. The use of natural polysaccharides, such as chitosan, to prepare hydrogels for wound healing and controlled drug delivery is a research topic of wide and increasing interest. Areas covered: This review presents the latest results and challenges in the preparation of chitosan and chitosan-based scaffold/hydrogel for wound healing applications. A detailed overview of their behavior in terms of controlled drug delivery, divided by drug categories, and efficacy was provided and critically discussed. Expert opinion: The need to establish and exploit the advantages of natural biomaterials in combination with active compounds is playing a pivotal role in the regenerative medicine fields. The challenges posed by the many variables affecting tissue repair and regeneration need to be standardized and adhere to recognized guidelines to improve the quality of evidence in the wound healing process. Currently, different methodologies are followed to prepare innovative scaffold formulations and structures. Innovative technologies such as 3D printing or bio-electrospray are promising to create chitosan-based scaffolds with finely controlled structures with customizable shape porosity and thickness. Chitosan scaffolds could be designed in combination with a variety of polysaccharides or active compounds with selected and reproducible spacial distribution, providing active wound dressing with highly tunable controlled drug delivery.

  10. Omics for Investigating Chitosan as an Antifungal and Gene Modulator

    Directory of Open Access Journals (Sweden)

    Federico Lopez-Moya

    2016-03-01

    Full Text Available Chitosan is a biopolymer with a wide range of applications. The use of chitosan in clinical medicine to control infections by fungal pathogens such as Candida spp. is one of its most promising applications in view of the reduced number of antifungals available. Chitosan increases intracellular oxidative stress, then permeabilizes the plasma membrane of sensitive filamentous fungus Neurospora crassa and yeast. Transcriptomics reveals plasma membrane homeostasis and oxidative metabolism genes as key players in the response of fungi to chitosan. A lipase and a monosaccharide transporter, both inner plasma membrane proteins, and a glutathione transferase are main chitosan targets in N. crassa. Biocontrol fungi such as Pochonia chlamydosporia have a low content of polyunsaturated free fatty acids in their plasma membranes and are resistant to chitosan. Genome sequencing of P. chlamydosporia reveals a wide gene machinery to degrade and assimilate chitosan. Chitosan increases P. chlamydosporia sporulation and enhances parasitism of plant parasitic nematodes by the fungus. Omics studies allow understanding the mode of action of chitosan and help its development as an antifungal and gene modulator.

  11. Improvement of antioxidant activities and yield of spring maize through seed priming and foliar application of plant growth regulators under heat stress conditions

    Directory of Open Access Journals (Sweden)

    Ijaz Ahmad

    2017-03-01

    Full Text Available Heat stress during reproductive and grain filling phases adversely affects the growth of cereals through reduction in grain’s number and size. However, exogenous application of antioxidants, plant growth regulators and osmoprotectants may be helpful to minimize these heat induced yield losses in cereals. This two year study was conducted to evaluate the role of exogenous application of ascorbic acid (AsA, salicylic acid (SA and hydrogen peroxide (H2O2 applied through seed priming or foliar spray on biochemical, physiological, morphological and yield related traits, grain yield and quality of late spring sown hybrid maize. The experiment was conducted in the spring season of 2007 and 2008. We observed that application of AsA, SA and H2O2 applied through seed priming or foliar spray improved the physiological, biochemical, morphological and yield related traits, grain yield and grain quality of late spring sown maize in both years. In both years, we observed higher superoxide dismutase (SOD, catalase (CAT and peroxidase (POD activity in the plants where AsA, SA and H2O2were applied through seed priming or foliar spray than control. Membrane stability index (MSI, relative water contents (RWC, chlorophyll contents, grain yield and grain oil contents were also improved by exogenous application of AsA, SA and H2O2 in both years. Seed priming of AsA, SA and H2O2was equally effective as the foliar application. In conclusion, seed priming with AsA, SA and H2O2 may be opted to lessen the heat induced yield losses in late sown spring hybrid maize. Heat tolerance induced by ASA, SA and H2O2 may be attributed to increase in antioxidant activities and MSI which maintained RWC and chlorophyll contents in maize resulting in better grain yield in heat stress conditions.

  12. Molecular breeding for developing drought tolerant and disease resistant maize in sub Saharan Africa

    Science.gov (United States)

    The International Maize and Wheat Improvement Center (CIMMYT), in collaboration with public and private partners, is working on developing and disseminating drought tolerant maize for sub Saharan Africa (SSA) using pedigree selection and molecular breeding. In this paper, we provide an overview of ...

  13. Preparation and optimization of submicron chitosan capsules by water-based electrospraying for food and bioactive packaging applications.

    Science.gov (United States)

    Sreekumar, Sruthi; Lemke, Philipp; Moerschbacher, Bruno M; Torres-Giner, Sergio; Lagaron, Jose M

    2017-10-01

    In the present study, a well-defined set of chitosans, with different degrees of acetylation (DA) and degrees of polymerization (DP), were processed by solution electrospraying from a water-based solvent. The solution properties, in terms of surface tension, conductivity, viscosity, and pH, were characterized and related to the physico-chemical properties of the chitosans. It was observed that both DA and DP values of a given chitosan, in combination with biopolymer concentration, mainly determined solution viscosity. This was, in turn, the major driving factor that defined the electrosprayability of chitosan. In addition, the physico-chemical properties of chitosans highly influenced solution conductivity and results indicated that the chitosan solutions with low or low-to-medium values of conductivity were the most optimal for electrospraying. The results obtained here also demonstrate that a good process control can be achieved by adjusting the working conditions, i.e. applied voltage, flow-rate, and tip-to-collector distance. Finally, it was also shown that electrosprayability of chitosan with inadequate physico-chemical properties can be improved by solution mixing of very different kinds of this polysaccharide. The resultant electrosprayed submicron chitosan capsules can be applied for encapsulation of food additives and to develop bioactive coatings of interest in food packaging, where these particles alone or containing functional ingredients can be released from the package into the food to promote a health benefit.

  14. Probing cellular behaviors through nanopatterned chitosan membranes

    International Nuclear Information System (INIS)

    Yang, Chung-Yao; Sung, Chun-Yen; Shuai, Hung-Hsun; Cheng, Chao-Min; Yeh, J Andrew

    2013-01-01

    This paper describes a high-throughput method for developing physically modified chitosan membranes to probe the cellular behavior of MDCK epithelial cells and HIG-82 fibroblasts adhered onto these modified membranes. To prepare chitosan membranes with micro/nanoscaled features, we have demonstrated an easy-to-handle, facile approach that could be easily integrated with IC-based manufacturing processes with mass production potential. These physically modified chitosan membranes were observed by scanning electron microscopy to gain a better understanding of chitosan membrane surface morphology. After MDCK cells and HIG-82 fibroblasts were cultured on these modified chitosan membranes for various culture durations (i.e. 1, 2, 4, 12 and 24 h), they were investigated to decipher cellular behavior. We found that both cells preferred to adhere onto a flat surface rather than on a nanopatterned surface. However, most (> 80%) of the MDCK cells showed rounded morphology and would suspend in the cultured medium instead of adhering onto the planar surface of negatively nanopatterned chitosan membranes. This means different cell types (e.g. fibroblasts versus epithelia) showed distinct capabilities/preferences of adherence for materials of varying surface roughness. We also showed that chitosan membranes could be re-used at least nine times without significant contamination and would provide us consistency for probing cell–material interactions by permitting reuse of the same substrate. We believe these results would provide us better insight into cellular behavior, specifically, microscopic properties and characteristics of cells grown under unique, nanopatterned cell-interface conditions. (paper)

  15. Exploration of agro-ecological options for improving maize-based farming systems in Costa Chica, Guerrero, Mexico

    OpenAIRE

    Flores Sanchez, D.

    2013-01-01

    Keywords: farm diagnosis, farming systems, soil degradation, intercropping, maize, roselle, legumes, nutrient management, vermicompost, crop residues, decomposition, explorations. In the Costa Chica, a region of Southwest Mexico, farming systems are organized in smallholder units. The dominant cropping systems are based on maize (Zea mays L.), either as monocrop or intercropped with roselle (Hibiscus sabdariffa L.). Continuous cropping, and unbalanced fertilizer management systems with an...

  16. Photocrosslinkable chitosan as a biological adhesive.

    Science.gov (United States)

    Ono, K; Saito, Y; Yura, H; Ishikawa, K; Kurita, A; Akaike, T; Ishihara, M

    2000-02-01

    A photocrosslinkable chitosan to which both azide and lactose moieties were introduced (Az-CH-LA) was prepared as a biological adhesive for soft tissues and its effectiveness was compared with that of fibrin glue. Introduction of the lactose moieties resulted in a much more water-soluble chitosan at neutral pH. Application of ultraviolet light (UV) irradiation to photocrosslinkable Az-CH-LA produced an insoluble hydrogel within 60 s. This hydrogel firmly adhered two pieces of sliced ham with each other, depending upon the Az-CH-LA concentration. The binding strength of the chitosan hydrogel prepared from 30-50 mg/mL of Az-CH-LA was similar to that of fibrin glue. Compared to the fibrin glue, the chitosan hydrogel more effectively sealed air leakage from pinholes on isolated small intestine and aorta and from incisions on isolated trachea. Neither Az-CH-LA nor its hydrogel showed any cytotoxicity in cell culture tests of human skin fibroblasts, coronary endothelial cells, and smooth muscle cells. Furthermore, all mice studied survived for at least 1 month after implantation of 200 microL of photocrosslinked chitosan gel and intraperitoneal administration of up to 1 mL of 30 mg/mL of Az-CH-LA solution. These results suggest that the photocrosslinkable chitosan developed here has the potential of serving as a new tissue adhesive in medical use. Copyright 2000 John Wiley & Sons, Inc.

  17. Vitamin D-fortified chitosan films from mushroom waste

    Science.gov (United States)

    Brown mushroom (Agaricus bisporus) stalk bases from mushroom waste were treated with UV-B light to rapidly increase vitamin D2 content. Chitin was also recovered from this waste and converted into chitosan by N-deacetylation. FTIR spectra showed that the mushroom chitosan were similar to chitosan fr...

  18. Synthesis of fish scales gelatin-chitosan crosslinked films by gamma irradiation techniques

    International Nuclear Information System (INIS)

    Erizal; Perkasa, D.P.; Abbas, B.; Sulistioso, G.S.

    2013-01-01

    Gelatin is an important component of fish scales. Nowadays, attention has increased concerning the application of gelatin.The aim of this research was to improve the mechanical properties of gelatin produced from fish scales, which concurrently could increase the usefulness of fish scales. Gelatin (G) is prone to degrade or dissolve in water at room temperature, therefore to enhance its lifetime, it has to be modified with other compound such as chitosan. Chitosan (Cs) is a biodegradable polymer, which has biocompatibility and antibacterial properties. In this study, gelatin solution was mixed with chitosan solution in various ratios (G/Cs: 100/0, 75/25, 50/50, 25/75, 0/100), casted at room temperature to make composite films, then tested for the effectiveness of various gamma irradiation doses (10-40 kGy) for crosslinking of the two polymers. Chemical changes of the films were measured by FT-IR, gel fractions were determined by gravimetry, and mechanical properties were determined by tensile strength and elongation at break using universal testing machine. At optimum conditions ( 30 kGy and 75% Cs), the gel fraction, tensile strength, and elongation at break were higher leading to a stronger composite films as compared to the gelatin film. FTIR spectral analysis showed that gelatin and chitosan formed a crosslinked network. It was concluded that G-Cs films prepared by gamma irradiation have improved their mechanical properties than the gelatin itself. (author)

  19. Presentation of a novel model of chitosan- polyethylene oxide-nanohydroxyapatite nanofibers together with bone marrow stromal cells to repair and improve minor bone defects

    Directory of Open Access Journals (Sweden)

    Asgar Emamgholi

    2015-09-01

    Full Text Available Objective(s:Various methods for repairing bone defects are presented. Cell therapy is one of these methods. Bone marrow stromal cells (BMSCs seem to be suitable for this purpose. On the other hand, lots of biomaterials are used to improve and repair the defect in the body, so in this study we tried to produce a similar structure to the bone by the chitosan and hydroxyapatite. Materials and Methods: In this study, the solution of chitosan-nanohydroxyapatite-polyethylene oxide (PEO Nanofibers was produced by electrospinning method, and then the BMSCs were cultured on this solution. A piece of chitosan-nanohydroxyapatite Nanofibers with BMSCs was placed in a hole with the diameter of 1 mm at the distal epiphysis of the rat femur. Then the biomechanical and radiographic studies were performed. Results: Biomechanical testing results showed that bone strength was significantly higher in the Nanofiber/BMSCs group in comparison with control group. Also the bone strength in nanofiber/BMSCs group was significant, but in nanofiber group was nearly significant. Radiographic studies also showed that the average amount of callus formation (radio opacity in nanofiber and control group was not significantly different. The callus formation in nanofiber/BMSCs group was increased compared to the control group, and it was not significant in the nanofiber group. Conclusion: Since chitosan-nanohydroxyapatite nanofibers with BMSCs increases the rate of bone repair, the obtained cell-nanoscaffold shell can be used in tissue engineering and cell therapy, especially for bone defects.

  20. C4 photosynthetic machinery: insights from maize chloroplast proteomics

    Directory of Open Access Journals (Sweden)

    Qi eZhao

    2013-04-01

    Full Text Available C4 plants exhibit much higher CO2 assimilation rates than C3 plants. The specialized differentiation of mesophyll cell (M and bundle sheath cell (BS type chloroplasts is unique to C4 plants and improves photosynthesis efficiency. Maize (Zea mays is an important crop and model with C4 photosynthetic machinery. Current high-throughput quantitative proteomics approaches (e.g., 2DE, iTRAQ, and shotgun proteomics have been employed to investigate maize chloroplast structure and function. These proteomic studies have provided valuable information on C4 chloroplast protein components, photosynthesis, and other metabolic mechanisms underlying chloroplast biogenesis, stromal and membrane differentiation, as well as response to salinity, high/low temperature, and light stress. This review presents an overview of proteomics advances in maize chloroplast biology.

  1. Effects of Plant Growth Hormones on Mucor indicus Growth and Chitosan and Ethanol Production.

    Science.gov (United States)

    Safaei, Zahra; Karimi, Keikhosro; Golkar, Poorandokht; Zamani, Akram

    2015-07-22

    The objective of this study was to investigate the effects of indole-3-acetic acid (IAA) and kinetin (KIN) on Mucor indicus growth, cell wall composition, and ethanol production. A semi-synthetic medium, supplemented with 0-5 mg/L hormones, was used for the cultivations (at 32 °C for 48 h). By addition of 1 mg/L of each hormone, the biomass and ethanol yields were increased and decreased, respectively. At higher levels, however, an inverse trend was observed. The glucosamine fraction of the cell wall, as a representative for chitosan, followed similar but sharper changes, compared to the biomass. The highest level was 221% higher than that obtained without hormones. The sum of glucosamine and N-acetyl glucosamine (chitin and chitosan) was noticeably enhanced in the presence of the hormones. Increase of chitosan was accompanied by a decrease in the phosphate content, with the lowest phosphate (0.01 g/g cell wall) being obtained when the chitosan was at the maximum (0.45 g/g cell wall). In conclusion, IAA and KIN significantly enhanced the M. indicus growth and chitosan production, while at the same time decreasing the ethanol yield to some extent. This study shows that plant growth hormones have a high potential for the improvement of fungal chitosan production by M. indicus.

  2. Controlling chitosan-based encapsulation for protein and vaccine delivery

    Science.gov (United States)

    Koppolu, Bhanu prasanth; Smith, Sean G.; Ravindranathan, Sruthi; Jayanthi, Srinivas; Kumar, Thallapuranam K.S.; Zaharoff, David A.

    2014-01-01

    Chitosan-based nano/microencapsulation is under increasing investigation for the delivery of drugs, biologics and vaccines. Despite widespread interest, the literature lacks a defined methodology to control chitosan particle size and drug/protein release kinetics. In this study, the effects of precipitation-coacervation formulation parameters on chitosan particle size, protein encapsulation efficiency and protein release were investigated. Chitosan particle sizes, which ranged from 300 nm to 3 μm, were influenced by chitosan concentration, chitosan molecular weight and addition rate of precipitant salt. The composition of precipitant salt played a significant role in particle formation with upper Hofmeister series salts containing strongly hydrated anions yielding particles with a low polydispersity index (PDI) while weaker anions resulted in aggregated particles with high PDIs. Sonication power had minimal effect on mean particle size, however, it significantly reduced polydispersity. Protein loading efficiencies in chitosan nano/microparticles, which ranged from 14.3% to 99.2%, was inversely related to the hydration strength of precipitant salts, protein molecular weight and directly related to the concentration and molecular weight of chitosan. Protein release rates increased with particle size and were generally inversely related to protein molecular weight. This study demonstrates that chitosan nano/microparticles with high protein loading efficiencies can be engineered with well-defined sizes and controllable release kinetics through manipulation of specific formulation parameters. PMID:24560459

  3. Chitosan: collagen sponges. In vitro mineralization

    International Nuclear Information System (INIS)

    Martins, Virginia da C.A.; Silva, Gustavo M.; Plepis, Ana Maria G.

    2011-01-01

    The regeneration of bone tissue is a problem that affects many people and scaffolds for bone tissue growth has been widely studied. The aim of this study was the in vitro mineralization of chitosan, chitosan:native collagen and chitosan:anionic collagen sponges. The sponges were obtained by lyophilization and mineralization was made by soaking the sponges in alternating solutions containing Ca 2+ and PO 4 3- . The mineralization was confirmed by infrared spectroscopy, energy dispersive X-ray and X-ray diffraction observing the formation of phosphate salts, possibly a carbonated hydroxyapatite since Ca/P=1.80. The degree of mineralization was obtained by thermogravimetry calculating the amount of residue at 750 deg C. The chitosan:anionic collagen sponge showed the highest degree of mineralization probably due to the fact that anionic collagen provides additional sites for interaction with the inorganic phase. (author)

  4. Engineered chitosan based nanomaterials: Bioactivities, mechanisms and perspectives in plant protection and growth.

    Science.gov (United States)

    Kumaraswamy, R V; Kumari, Sarita; Choudhary, Ram Chandra; Pal, Ajay; Raliya, Ramesh; Biswas, Pratim; Saharan, Vinod

    2018-07-01

    Excessive use of agrochemicals for enhancing crop production and its protection posed environmental and health concern. Integration of advanced technology is required to realize the concept of precision agriculture by minimizing the input of pesticides and fertilizers per unit while improving the crop productivity. Notably, chitosan based biodegradable nanomaterials (NMs) including nanoparticles, nanogels and nanocomposites have eventually proceeded as a key choice in agriculture due to their inimitable properties like antimicrobial and plant growth promoting activities. The foreseeable role of chitosan based NMs in plants might be in achieving sustainable plant growth through boosting the intrinsic potential of plants. In-spite of the fact that chitosan based NMs abode immense biological activities in plants, these materials have not yet been widely adopted in agriculture due to poor understanding of their bioactivity and modes of action towards pathogenic microbes and in plant protection and growth. To expedite the anticipated claims of chitosan based NMs, it is imperative to line up all the possible bioactivities which denote for sustainable agriculture. Herein, we have highlighted, in-depth, various chitosan based NMs which have been used in plant growth and protection mainly against fungi, bacteria and viruses and have also explained their modes of action. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. SOLID-STATE FERMENTATIVE PRODUCTION AND BIOACTIVITY OF FUNGAL CHITOSAN

    Directory of Open Access Journals (Sweden)

    Barry Aigbodion Omogbai

    2013-10-01

    Full Text Available Chitosan production was investigated using a laboratory-scale solid substrate fermentation (SSF technique with four species of fungi: Penicillium expansum, Aspergillus niger, Rhizopus oryzae and Fusarium moniliforme.The peak growth for the organisms was after 16 days. Aspergillus niger had the highest growth with a maximal dry cell biomass of 15.8g/kg after 16 days cultivation on corn straw under solid substrate fermentation. This was closely followed by Rhizopus oryzae (14.6g/kg, Penicillium expansum (13.8g/kg and Fusarium moniliforme (10.6g/kg respectively. The fungus Rhizopus oryzae had the highest chitosan production with a maximum of 8.57g/kg in 16 days under solid substrate fermentation (SSF with a medium containing corn straw. Aspergillus niger showed a modest chitosan yield of 6.8g/kg. Penicillium expansum and Fusarium moniliforme had low chitosan yields of 4.31g/kg and 3.1g/kg respectively. The degree of deacetylation of fungal chitosans ranged between 75.3-91.5% with a viscosity of 3.6-7.2 centipoises (Cp.Chitosan extracted from Rhizopus oryzae was found to have antibacterial activity on some bacterial isolates. At a concentration of 50mg/L, Rhizopus oryzae chitosan paralleled crab chitosan in susceptibility testing against some food-borne bacterial pathogens. Escherichia coli, Salmonella typhi, Pseudomonas aeruginosa and Bacillus subtilis showed inhibition rates of 83.2%, 67.9%, 63.8% and 62.4% respectively in response to 50mg/l Rhizopus oryzae chitosan in 24 h. The rate of inhibition (% increased with increase in chitosan concentration.