WorldWideScience

Sample records for chitosan coated montmorillonite

  1. New polyelectrolyte complex from pectin/chitosan and montmorillonite clay.

    Science.gov (United States)

    da Costa, Marcia Parente Melo; de Mello Ferreira, Ivana Lourenço; de Macedo Cruz, Mauricio Tavares

    2016-08-01

    A new nanocomposite hydrogel was prepared by forming a crosslinked hybrid polymer network based on chitosan and pectin in the presence of montmorillonite clay. The influence of clay concentration (0.5 and 2% wt) as well as polymer ratios (1:1, 1:2 and 2:1) was investigated carefully. The samples were characterized by different techniques: transmission and scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, infrared spectroscopy, swelling degree and compression test. Most samples presented swelling degree above 1000%, which permits characterizing them as superabsorbent material. Images obtained by transmission electron microscopy showed the presence of clay nanoparticles into hydrogel. The hydrogels' morphological properties were evaluated by scanning electron microscope in high and low-vacuum. The micrographs showed that the samples presented porous. The incorporation of clay produced hydrogels with differentiated morphology. Thermogravimetric analysis results revealed that the incorporation of clay in the samples provided greater thermal stability to the hydrogels. The compression resistance also increased with addition of clay.

  2. New polyelectrolyte complex from pectin/chitosan and montmorillonite clay.

    Science.gov (United States)

    da Costa, Marcia Parente Melo; de Mello Ferreira, Ivana Lourenço; de Macedo Cruz, Mauricio Tavares

    2016-08-01

    A new nanocomposite hydrogel was prepared by forming a crosslinked hybrid polymer network based on chitosan and pectin in the presence of montmorillonite clay. The influence of clay concentration (0.5 and 2% wt) as well as polymer ratios (1:1, 1:2 and 2:1) was investigated carefully. The samples were characterized by different techniques: transmission and scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, infrared spectroscopy, swelling degree and compression test. Most samples presented swelling degree above 1000%, which permits characterizing them as superabsorbent material. Images obtained by transmission electron microscopy showed the presence of clay nanoparticles into hydrogel. The hydrogels' morphological properties were evaluated by scanning electron microscope in high and low-vacuum. The micrographs showed that the samples presented porous. The incorporation of clay produced hydrogels with differentiated morphology. Thermogravimetric analysis results revealed that the incorporation of clay in the samples provided greater thermal stability to the hydrogels. The compression resistance also increased with addition of clay. PMID:27112858

  3. Nano porous Adsorbent from Chitosan Interacted Montmorillonite for Dye-containing Wastewater Treatment

    International Nuclear Information System (INIS)

    Chitosan intercalated montmorillonite (Chi-MMT) was prepared by mixing 2 wt% of chitosan solution with sodium mont-morillonite (Na+-MMT) suspension at 60 degree Celsius for 24 hours. The Na+ ions in Na+-MMT were completely exchanged with -NH3+ ions of chitosan, resulting in the intercalation of chitosan into the MMT layer. The chitosan intercalation brought about the expansion of d001 of Na+-MMT from 1.23 nm to 1.42 - >2.21 nm of the Chi-MMT. The existence of the intercalated-chitosan and large pore size could significantly increase the adsorption capacity of Chi-MMT from those of the starting materials, for example Na+-MMT and chitosan. The adsorption capacity of Chi-MMT adsorbent was equal to 4.9 mg/ g for acid red 91 (AR91) with initial dye concentration of 50 mg/ L, 45.9 mg/ g for basic yellow 1 (BY1) and 15.0 mg/ g for reactive orange 16 (RO16) with initial dye concentration of 500 mg/ L. These results indicated the competency of Chi-MMT nano porous adsorbent for treatment of wastewater containing various kinds of dyestuffs. (author)

  4. Carboxymethyl Chitosan Modified Montmorillonite for Efficient Removal of Cationic Dye from Waste Water

    OpenAIRE

    Pritha Mitra; Kishor Sarkar; Kundu, P. P.

    2014-01-01

    The feasibility of carboxymethyl chitosan intercalated montmorillonite (CMCTS-MMT) clay used as a low-costand effective adsorbent for removal of cationic dye, crystal violet from the aqueous solution has been investigated.The synthesis of CMCTS-MMT was confirmed from the analytical information based on the characterization carried out by Fourier transformation infrared spectroscopy, x-ray diffraction data. During the removal process, batch technique was used and the effect of initial dye conc...

  5. Use of the montmorillonite as crosslink agents for chitosan; Uso da montmorilonita como agente de reticulacao para a quitosana

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Rossemberg C.; Lima, Rosemary S. Cunha; Braga, Carla R. Costa [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Programa de Pos-graduacao em Ciencia e Engenharia de Materiais; Fook, Marcus V. Lia; Silva, Suedina M. Lima [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Dept. de Engenharia de Materiais

    2009-07-01

    The montmorillonite (the main constituent of bentonite) has been the most commonly used inorganic load in the formation of nanocomposites chitosan / layered silicate. To evaluate its effect as an agent for the reticulation of chitosan, a sodium montmorillonite, Cloisite Na{sup +}, supplied by Southern Clay Products, Texas, USA, was used. For the reticulation of chitosan dispersions of chitosan / Cloisite Na{sup +} were prepared in different proportions and the obtained films characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TG). The results indicated that the Cloisite Na{sup +} was for efficient and the reticulation of the chitosan and can be used in place of sulfuric acid, which is one of the most common reticulants for chitosan. (author)

  6. Polyvinyl alcohol/chitosan/montmorillonite nanocomposites preparation by freeze/thaw cycles and characterization

    Directory of Open Access Journals (Sweden)

    Părpăriţă Elena

    2014-12-01

    Full Text Available Polyvinyl alcohol (PVA and chitosan (CS based hydrogels are often chosen to obtain hydrogels as being considered non-toxic for human body. The present study aims the preparation and physical chemical characterisation of hydrogels based PVA and CS by using an environmental friendly method i.e. freeze/thaw. In this method the only parameters affecting the hydrogels’ properties is the PVA concentration in solution, time and number of cycles of freezing / thawing. Repeated freezing and thawing cycles resulted in production of a highly elastic polyvinyl alcohol hydrogel with higher degree of crystallization. Adding chitosan in polyvinyl alcohol hydrogel is giving to the newly formed material, biocompatibility and antibacterial properties due to the free amino groups of chitosan. Higher mechanical and thermal characteristics of PVA/CS based hydrogels were obtained by addition of a small amount of inorganic nanoparticles (montmorillonite clay, C30B into the matrix (i.e. 1%. Scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FT-IR, near-infrared chemical imaging spectroscopy (NI-CI, X-ray diffraction (XRD, thermogravimetric analysis (TG, swelling and rheological measurements were used to characterize the polyvinyl alcohol/chitosan/montmorillonite properties. The swelling degree increased with decreasing chitosan content in hydrogels and the variation is opposite in nanocomposites, decreasing after introducing the nanoclay. The swelling behaviour was influenced by the presence of the nanoparticles. The plasticizer effect of the nanoparticles was reflected by obtaining a more compact hydrogel network with higher mechanical and thermal properties. The proposed materials can be a promising alternative in biomedical applications

  7. Polylactide/Montmorillonite Hybrid Latex as a Barrier Coating for Paper Applications

    OpenAIRE

    Davide Bandera; Meyer, Veronika R.; David Prevost; Tanja Zimmermann; Boesel, Luciano F.

    2016-01-01

    We developed a paper coating for the potential application in food packaging based on polylactide and montmorillonite. It is applied to the paper in the form of a stable, water-based latex with a solid content of 25–28 wt %. The latex is prepared from a commercially available polylactide, surfactants, montmorillonite, a plasticizer, chloroform (to be removed later) and water by an emulsion/solvent evaporation procedure. This coating formulation is applied to the paper substrate by bar-coating...

  8. PREPARATION OF CHITOSAN COATED METAL AFFINITY CHROMATOGRAPHY ADSORBENT

    Institute of Scientific and Technical Information of China (English)

    AanTianwei; XuWeijiang; 等

    1998-01-01

    A new and an inexpensive adsorbent of chitosan coated silica for immobilized metal affinity chromatography(IMAC) was studied.After a double coating,the chitosan coated on silica beads could be up to 53.4mg/g silica beads.When pH>3.8,the metal ligand Cu2+ was chelated on the coated chitosan with a bound capacity of 14.6mg/g chitosan without introducing iminodiacetic acid(IDA).

  9. Zwitterionic chitosan derivatives for pH-sensitive stealth coating

    OpenAIRE

    Xu, Peisheng; Bajaj, Gaurav; Shugg, Tyler; Van Alstine, William G.; Yeo, Yoon

    2010-01-01

    Zwitterionic chitosan, a chitosan derivative with a unique pH-dependent charge profile, was employed to create a stealth coating on the cationic surface of drug carriers. Zwitterionic chitosans were synthesized by amidation of chitosan with succinic anhydride. The succinic anhydride-conjugated chitosan had an isoelectric point, which could be easily tuned from pH 4.9 to 7.1, and showed opposite charges below and above the isoelectric point. The succinic anhydride-conjugated chitosan was able ...

  10. Biophysical studies on chitosan-coated liposomes.

    Science.gov (United States)

    Mady, Mohsen M; Darwish, Mirhane M; Khalil, Safaa; Khalil, Wafaa M

    2009-10-01

    Liposomes have been used as delivery vehicles for stabilizing drugs, overcoming barriers to cellular and tissue uptake, and for directing their contents toward specific sites in vivo. Chitosan is a biological macromolecule derived from crustacean shells and has several emerging applications in drug development, obesity control, and tissue engineering. In the present work, the interaction between chitosan and dipalmitoyl phosphatidylcholine (DPPC) liposomes was studied by transmission electron microscopy (TEM), zeta potential, solubilization using the nonionic detergent octylglucoside (OG), as well as Fourier transform infrared (FTIR) spectroscopy and viscosity measurements. The coating of DPPC liposomes by a chitosan layer was confirmed by electron microscope images and the zeta potential of liposomes. Coating of liposome by chitosan resulted in an increase in liposomal size by addition of a layer of 92 +/- 27.1 nm. The liposomal zeta potential became increasingly positive as chitosan concentration increased from 0.1 to 0.3% w/v, then it held at a relatively constant value. The amount of detergent needed to completely solubilize the liposomal membrane was increased after coating of liposomes with chitosan, indicating an increased membrane resistance to the detergent and hence a change in the natural membrane permeation properties. In the analysis of FTIR spectra of DPPC, the symmetric and antisymmetric CH(2) (at 2,800-3,000 cm(-1)) bands and the C=O (at 1,740 cm(-1)) stretching band were investigated in the absence and presence of the chitosan. It was concluded that appropriate combining of the liposomal and chitosan characteristics might be utilized for the improvement of the therapeutic efficacy of liposomes as a drug delivery system. PMID:19649627

  11. Development of chitosan/montmorillonite nanocomposites with encapsulated α-tocopherol.

    Science.gov (United States)

    Dias, Marali Vilela; Machado Azevedo, Viviane; Borges, Soraia Vilela; Soares, Nilda de Fátima Ferreira; de Barros Fernandes, Regiane Victória; Marques, João José; Medeiros, Eber Antonio Alves

    2014-12-15

    Nanocomposites of chitosan (CS) were developed and characterized in a full factorial design with varying levels of montmorillonite (MMTNa) and encapsulated tocopherol (toc-encap). The structural properties (XRD, FTIR), morphology (TEM), hygroscopic properties (water vapour permeability, hydrophobicity, sorption isotherms) and optical properties (haze, CIELab parameters) of the resulting materials were evaluated. Toc-encap contents up to 10% influenced the intercalation of MMTNa in the CS matrix, resulting in films with reduced water vapour permeability (3.48×10(-11)(g/msPa)), increased hydrophobicity (ΔGHydroph |7.93-59.54|mJm(-2)) and lower equilibrium moisture content (EMC), thus showing potential for active food packaging materials. At levels above 10%, toc-encap agglomerates occurred, which deteriorated the properties of the resulting films, as shown with the TEM. As the toc-encap content increased, the films became slightly more yellow, more irregular and less transparent, with a higher haze index. PMID:25038682

  12. Control of Montmorillonite Surface Coatings on Quartz Grains in Bentonite by Precursor Volcanic Glass

    Science.gov (United States)

    Wendlandt, R. F.; Harrison, W. J.

    2008-12-01

    The pathogenic tendencies of respirable-sized quartz grains may be dependent on inherent characteristics of the quartz as well as external factors. Surface coatings on quartz are of particular interest as they modify both physical and chemical properties of quartz grain surfaces and sequester the grain from contact with reactive lung fluids. Wendlandt et al. (Appl. Geochem. 22, 2007) investigated the surface properties of respirable-sized quartz grains in bentonites and recognized pervasive montmorillonite surface coatings on the quartz that resisted removal by repeated vigorous washings and reaction with HCl. To understand the persistence of montmorillonite coatings on quartz grains of igneous origin, volcanic ash deposits of varying age and degree of alteration to montmorillonite were sampled in Utah, including the distal Lava Creek (c. 0.64 Ma) and Bishop Tuffs (c. 0.74 Ma), and SW Colorado (Conejos Fm, San Juan Volcanic Field) for comparison with commercial grade Cretaceous-age "western" and "southern" bentonites. Quartz grains, hand-picked from these samples, were analyzed using FE-SEM and HRTEM. Continuous coatings of volcanic glass occur on quartz grains from the distal volcanic ash samples. As glass alteration to montmorillonite becomes more extensive, quartz grain surfaces start to display patches of montmorillonite. These patches become continuous in extent on quartz grains from the bentonites. Late precipitation of opal- CT lepispheres is consistent with the alteration reaction for volcanic glass: Volcanic glass + H2O = montmorillonite + SiO2(am) + ions(aq). HRTEM of quartz grains reveals an amorphous surface layer, consistent with a volcanic glass coating. Our results indicate that persistent montmorillonite coatings on quartz grains in bentonites are related to precursor volcanic glass coatings on these grains. The absence of glass coatings on other mineral grains in bentonite (feldspar, biotite) may be a consequence of the presence of strong cleavage

  13. Microwave-assisted synthesis of porous chitosan-modified montmorillonite-hydroxyapatite composite scaffolds.

    Science.gov (United States)

    Kar, Sumanta; Kaur, Tejinder; Thirugnanam, A

    2016-01-01

    In this study, a porous chitosan-organically modified montmorillonite-hydroxyapatite (CS-OM-HA) composite scaffold was developed by combining microwave irradiation and gas foaming method. Hydroxyapatite (HA) particles of size ∼ 65 nm were synthesized and characterized by X-ray diffraction (XRD) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. The prepared composite scaffolds were characterized using ATR-FTIR, XRD, mercury intrusion porosimeter (MIP) and scanning electron microscopy (SEM) studies. The synergistic effect of HA and OM on the mechanical and in vitro biological properties (swelling, degradation, protein adsorption and bioactivity) of the composite scaffolds were evaluated. Swelling, degradation, mechanical property, bioactivity and protein adsorption studies of CS-OM-HA composite scaffolds have shown desirable results in comparison with the pure CS and CS-OM composite scaffolds. CS-OM-HA composite scaffolds were also found to be non-cytotoxic to MG 63 osteoblast cell lines. From the study, it can be concluded that the novel CS-OM-HA composite scaffold with improved mechanical and in vitro biological properties has wide potential in non-load bearing bone tissue engineering applications.

  14. Characterization of Pullulan/Chitosan Oligosaccharide/Montmorillonite Nanofibers Prepared by Electrospinning Technique.

    Science.gov (United States)

    Rabbani, Mohammad Mahbub; Yang, Seong Baek; Park, Soo-Jin; Oh, Weontae; Yeum, Jeong Hyun

    2016-06-01

    Pullulan/Chitosan oligosaccharide (COS)/Montmorillonite (MMT) hybrid nanofibers were electrospun from their aqueous solution using different Pullulan/COS mass ratios and variable amounts of MMT. The effects of Pullulan/COS mass ratios and MMT contents on the morphologies and properties of PulluIan/COS/MMT hybrid nanofibers were investigated. The obtained nanofibers were characterized with field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermo gravimetric analysis (TGA), and tensile strength measurement. The Pullulan/COS mass ratio and MMT contents significantly influence the morphologies and properties of the Pullulan/COS/MMT hybrid nanofibers. Higher Pullulan contents than COS contents forms uniform and bead free nanofibers. The addition of COS to Pullulan improves the thermal stability of Pullulan/COS blend nanofibers. The incorporation of MMT to the Pullulan/COS/MMT hybrid nanofibers increase their fiber diameter, improves their thermal stability and tensile strength. These morphological changes and property enhancement depend on the amount of MMT added. The XRD and TEM results suggest the coexistence of Pullulan, COS and MMT within polymer matrix through intercalation of polymer chain between silicate layers forming well-ordered multiplayer morphology with alternating polymeric and silicate layers. PMID:27427741

  15. Carboxymethyl Chitosan Modified Montmorillonite for Efficient Removal of Cationic Dye from Waste Water

    Directory of Open Access Journals (Sweden)

    Pritha Mitra

    2014-05-01

    Full Text Available The feasibility of carboxymethyl chitosan intercalated montmorillonite (CMCTS-MMT clay used as a low-costand effective adsorbent for removal of cationic dye, crystal violet from the aqueous solution has been investigated.The synthesis of CMCTS-MMT was confirmed from the analytical information based on the characterization carried out by Fourier transformation infrared spectroscopy, x-ray diffraction data. During the removal process, batch technique was used and the effect of initial dye concentration, pH, temperature and weight ratio variation of sample composition were evaluated. Sorption process was analysed using pseudo-first order and pseudo-second order kinetic models. The data showed that the second order kinetic model was more appropriate for the absorption of thepresent dye. The equilibrium adsorption isotherms have been analyzed with the help of Langmuir, Freundlich and Redlich-Peterson analytical models. It was observed that the experimental data correlated reasonably well by the Redlich-Peterson and Langmuir isotherms. The desorbed CMCTS-MMT could be reused for adsorption of cationicdye. To investigate the changes in surface morphology of CMCTS-MMT after sorption, scanning electron microscopy analysis were done before and after adsorption of the cationic dye. Finally, the results in this study confirmed thatCMCTS-MMT may be an attractive contender for removal of cationic dyes from the waste water.Defence Science Journal, Vol. 64, No. 3, May 2014, pp. 198-208, DOI:http://dx.doi.org/10.14429/dsj.64.7318 

  16. Effect of chitosan coatings on postharvest green asparagus quality.

    Science.gov (United States)

    Qiu, Miao; Jiang, Hengjun; Ren, Gerui; Huang, Jianying; Wang, Xiangyang

    2013-02-15

    Fresh postharvest green asparagus rapidly deteriorate due to its high respiration rate. The main benefits of edible active coatings are their edible characteristics, biodegradability and increase in food safety. In this study, the quality of the edible coatings based on 0.50%, 0.25% high-molecular weight chitosan (H-chitosan), and 0.50%, 0.25% low-molecular weight chitosan (L-chitosan) on postharvest green asparagus was investigated. On the basis of the results obtained, 0.25% H-chitosan and 0.50% L-chitosan treatments ensured lower color variation, less weight loss and less ascorbic acid, decrease presenting better quality of asparagus than other concentrations of chitosan treatments and the control during the cold storage, and prolonging a shelf life of postharvest green asparagus.

  17. Effect of chitosan coating on the characteristics of DPPC liposomes

    Directory of Open Access Journals (Sweden)

    Mohsen M. Mady

    2010-07-01

    Full Text Available Because it is both biocompatible and biodegradable, chitosan has been used to provide a protective capsule in new drug formulations. The present work reports on investigations into some of the physicochemical properties of chitosan-coated liposomes, including drug release rate, transmission electron microscopy (TEM, zeta potential and turbidity measurement. It was found that chitosan increases liposome stability during drug release. The coating of DPPC liposomes with a chitosan layer was confirmed by electron microscopy and the zeta potential of liposomes. The coating of liposomes by chitosan resulted in a marginal increase in the size of the liposomes, adding a layer of (92 ± 27.1 nm. The liposomal zeta potential was found to be increasingly positive as chitosan concentration increased from 0.1% to 0.3% (w/v, before stabilising at a relatively constant value. Turbidity studies revealed that the coating of DPPC liposomes with chitosan did not significantly modify the main phase transition temperature of DPPC at examined chitosan concentrations. The appropriate combination of liposomal and chitosan characteristics may produce liposomes with specific, prolonged and controlled release.

  18. Chitosan-Coated Magnetic Nanoparticles with Low Chitosan Content Prepared in One-Step

    OpenAIRE

    Yolanda Osuna; Karla M. Gregorio-Jauregui; J. Gerardo Gaona-Lozano; de la Garza-Rodríguez, Iliana M.; Anna Ilyna; Enrique Díaz Barriga-Castro; Hened Saade; López, Raúl G.

    2012-01-01

    Chitosan-coated magnetic nanoparticles (CMNP) were obtained at 50°C in a one-step method comprising coprecipitation in the presence of low chitosan content. CMNP showed high magnetization and superparamagnetism. They were composed of a core of 9.5 nm in average diameter and a very thin chitosan layer in accordance with electron microscopy measurements. The results from Fourier transform infrared spectrometry demonstrated that CMNP were obtained and those from thermogravimetric analysis allowe...

  19. Water-conducting Characteristics and Micro-dynamic Self-adjusting Behavior of Polyacrylamide/Montmorillonite Coating

    Institute of Scientific and Technical Information of China (English)

    DU Hongmei; ZHANG Zengzhi; WU Miaomiao; ZHAO Jin

    2015-01-01

    A water-conducting polyacrylamide/montmorillonite coating was prepared by solution-blending. The coating was coated on fiber and then composited with polymer to form a composite film material that used for water saving and tree planting in arid and desert regions. The coating’s water-conducting characteristics and dynamic self-adjusting behavior were investigated by Fourier transform infrared (FTIR) spectroscopy, thermal analysis (TG-DTA), and environmental scanning electron microscopy (ESEM).The results showed that the coating’s water-conducting rate increased but water-retention capacity weakened with increasing montmorillonite content. The water-loss rate was positively related to temperature and negatively related to soil moisture. Water potential greatly influenced the water-conducting rate of the coating during its water conduction process. When the coating was at a low water potential, the montmorillonite particles interconnected and water was conducted quickly via montmorillonite layers, whereas when the coating was at a high potential, the montmorillonite particles disconnected and water was conducted slowly via the swelled polyacrylamide net structure. The rate can be regulated by changing the proportion of polyacrylamide and montmorillonite to guarantee a reasonable water supply for trees and make trees easier to survive. Thus, the survival rate of trees can be increased and the use of water resources can be signiifcantly reduced.

  20. Nanosilica-Chitosan Composite Coating on Cotton Fabrics

    Science.gov (United States)

    Maharani, Dina Kartika; Kartini, Indriana; Aprilita, Nurul Hidayat

    2010-10-01

    Nanosilica-chitosan composite coating on cotton fabrics has been prepared by sol-gel method. The sol-gel procedure allows coating of material on nanometer scale, which several commonly used coating procedure cannot achieve. In addition, sol-gel coating technique can be applied to system without disruption of their structure functionaly. The coating were produced via hidrolysis and condensation of TEOS and GPTMS and then mixed with chitosan. The composite coating on cotton fabrics were characterized with X-Ray Diffraction and Scanning Electron microscopy (SEM) method. The result showed that the coating not changed or disrupted the cotton stucture. The coating result in a clear transparent thin layer on cotton surface. The nanocomposite coating has new applications in daily used materials, especially those with low heat resistance, such as textiles and plastics, and as an environmentally friendly water-repellent substitute for fluorine compounds.

  1. Development of chitosan-based antimicrobial leather coatings.

    Science.gov (United States)

    Fernandes, Isabel P; Amaral, Joana S; Pinto, Vera; Ferreira, Maria José; Barreiro, Maria Filomena

    2013-10-15

    The development of antimicrobial coatings for footwear components is of great interest both from industry and consumer's point of view. In this work, antimicrobial leather materials were developed taking advantage of chitosan intrinsic antimicrobial activity and film forming capacity. Considering the specificities of the leather tanning industry, different coating technologies, namely drum, calender and spray, were tested, being the best results achieved with the drum. This last approach was further investigated to assess the effect of chitosan content, type of solubilizing acid, and impregnation time on the achieved antimicrobial capacity. Considering chitosan price (economic reasons) and the obtained results (antimicrobial activity and coating effectiveness, as inspected by SEM), the impregnation in the drum using a chitosan content of 1% (w/v) in a formic acid solution during 2h, is proposed as the best option for obtaining leather with antimicrobial capacity.

  2. Development of chitosan-based antimicrobial leather coatings.

    Science.gov (United States)

    Fernandes, Isabel P; Amaral, Joana S; Pinto, Vera; Ferreira, Maria José; Barreiro, Maria Filomena

    2013-10-15

    The development of antimicrobial coatings for footwear components is of great interest both from industry and consumer's point of view. In this work, antimicrobial leather materials were developed taking advantage of chitosan intrinsic antimicrobial activity and film forming capacity. Considering the specificities of the leather tanning industry, different coating technologies, namely drum, calender and spray, were tested, being the best results achieved with the drum. This last approach was further investigated to assess the effect of chitosan content, type of solubilizing acid, and impregnation time on the achieved antimicrobial capacity. Considering chitosan price (economic reasons) and the obtained results (antimicrobial activity and coating effectiveness, as inspected by SEM), the impregnation in the drum using a chitosan content of 1% (w/v) in a formic acid solution during 2h, is proposed as the best option for obtaining leather with antimicrobial capacity. PMID:23987468

  3. Synthesis and characterization of silver/montmorillonite/chitosan bionanocomposites by chemical reduction method and their antibacterial activity

    Directory of Open Access Journals (Sweden)

    Kamyar Shameli

    2011-01-01

    Full Text Available Kamyar Shameli1, Mansor Bin Ahmad1, Mohsen Zargar3, Wan Md Zin Wan Yunus1, Nor Azowa Ibrahim1, Parvaneh Shabanzadeh2, Mansour Ghaffari Moghaddam41Department of Chemistry, Faculty of Science, 2Institute for Mathematical Research, Universiti Putra Malaysia, Selangor, Malaysia; 3Department of Biology, Islamic Azad University, Qum, Iran; 4Department of Chemistry, Faculty of Science, University of Zabol, Zabol, IranAbstract: Silver nanoparticles (AgNPs of a small size were successfully synthesized using the wet chemical reduction method into the lamellar space layer of montmorillonite/chitosan (MMT/Cts as an organomodified mineral solid support in the absence of any heat treatment. AgNO3, MMT, Cts, and NaBH4 were used as the silver precursor, the solid support, the natural polymeric stabilizer, and the chemical reduction agent, respectively. MMT was suspended in aqueous AgNO3/Cts solution. The interlamellar space limits were changed (d-spacing = 1.24–1.54 nm; therefore, AgNPs formed on the interlayer and external surface of MMT/Cts with d-average = 6.28–9.84 nm diameter. Characterizations were done using different methods, ie, ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence spectrometry, and Fourier transform infrared spectroscopy. Silver/montmorillonite/chitosan bionanocomposite (Ag/MMT/Cts BNC systems were examined. The antibacterial activity of AgNPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria, ie, Escherichia coli, E. coli O157:H7, and Pseudomonas aeruginosa by the disc diffusion method using Mueller Hinton agar at different sizes of AgNPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biological research and biomedical

  4. Chitosan coating and films : evaluation of surface, permeation, mechanical and thermal propertiess

    OpenAIRE

    Casariego, A.; Souza, B. W. S.; L. De Cruz; Díaz, R; J.A. Teixeira; Vicente, A.A.

    2008-01-01

    The potentialities of chitosan (from lobster of the cuban coasts) coating to extend the shelf life of vegetables were evaluated. To do so, the surface properties of tomato and carrot were characterized and the wettability properties of chitosan coatings were studied. In such coatings, chitosan concentration and effects of type and concentration of plasticizer or surfactant on wettability of chitosan coatings were evaluated, as well as the respective barrier and mechanical properti...

  5. Chitosan-Coated Magnetic Nanoparticles with Low Chitosan Content Prepared in One-Step

    Directory of Open Access Journals (Sweden)

    Yolanda Osuna

    2012-01-01

    Full Text Available Chitosan-coated magnetic nanoparticles (CMNP were obtained at 50°C in a one-step method comprising coprecipitation in the presence of low chitosan content. CMNP showed high magnetization and superparamagnetism. They were composed of a core of 9.5 nm in average diameter and a very thin chitosan layer in accordance with electron microscopy measurements. The results from Fourier transform infrared spectrometry demonstrated that CMNP were obtained and those from thermogravimetric analysis allowed to determine that they were composed of 95 wt% of magnetic nanoparticles and 5 wt% of chitosan. 67% efficacy in the Pb+2 removal test indicated that only 60% of amino groups on CMNP surface bound to Pb, probably due to some degree of nanoparticle flocculation during the redispersion. The very low weight ratio chitosan to magnetic nanoparticles obtained in this study, 0.053, and the high yield of the precipitation reactions (≈97% are noticeable.

  6. Synthesis and characterization of silver/montmorillonite/chitosan bionanocomposites by chemical reduction method and their antibacterial activity.

    Science.gov (United States)

    Shameli, Kamyar; Bin Ahmad, Mansor; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa; Shabanzadeh, Parvaneh; Moghaddam, Mansour Ghaffari

    2011-01-01

    Silver nanoparticles (AgNPs) of a small size were successfully synthesized using the wet chemical reduction method into the lamellar space layer of montmorillonite/chitosan (MMT/Cts) as an organomodified mineral solid support in the absence of any heat treatment. AgNO3, MMT, Cts, and NaBH4 were used as the silver precursor, the solid support, the natural polymeric stabilizer, and the chemical reduction agent, respectively. MMT was suspended in aqueous AgNO3/Cts solution. The interlamellar space limits were changed (d-spacing = 1.24-1.54 nm); therefore, AgNPs formed on the interlayer and external surface of MMT/Cts with d-average = 6.28-9.84 nm diameter. Characterizations were done using different methods, ie, ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence spectrometry, and Fourier transform infrared spectroscopy. Silver/montmorillonite/chitosan bionanocomposite (Ag/MMT/Cts BNC) systems were examined. The antibacterial activity of AgNPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria, ie, Escherichia coli, E. coli O157:H7, and Pseudomonas aeruginosa by the disc diffusion method using Mueller Hinton agar at different sizes of AgNPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biological research and biomedical applications, including surgical devices and drug delivery vehicles.

  7. Green synthesis of silver/montmorillonite/chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity

    Directory of Open Access Journals (Sweden)

    Kamyar Shameli

    2010-10-01

    Full Text Available Kamyar Shameli1, Mansor Bin Ahmad1, Wan Md Zin Wan Yunus1, Abdolhossein Rustaiyan2, Nor Azowa Ibrahim1, Mohsen Zargar3, Yadollah Abdollahi41Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 2Department of Chemistry, Science and Research Campus, Islamic Azad University, Tehran, Iran; 3Faculty of Food Science and Biotechnology, 4Institute of Advanced Technology, Universiti Putra Malaysia, Serdang, Selangor, MalaysiaAbstract: In this study, silver nanoparticles (Ag-NPs were synthesized using a green physical synthetic route into the lamellar space of montmorillonite (MMT/chitosan (Cts utilizing the ultraviolet (UV irradiation reduction method in the absence of any reducing agent or heat treatment. Cts, MMT, and AgNO3 were used as the natural polymeric stabilizer, solid support, and silver precursor, respectively. The properties of Ag/MMT/Cts bionanocomposites (BNCs were studied as the function of UV irradiation times. UV irradiation disintegrated the Ag-NPs into smaller sizes until a relatively stable size and size distribution were achieved. Meanwhile, the crystalline structure and d-spacing of the MMT interlayer, average size and size distribution, surface morphology, elemental signal peaks, functional groups, and surface plasmon resonance of Ag/MMT/Cts BNCs were determined by powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, Fourier transform infrared, and UV-visible spectroscopy. The antibacterial activity of Ag-NPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria (ie, Escherichia coli by the disk diffusion method on Muller–Hinton Agar at different sizes of Ag-NPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different

  8. Effect of chitosan-based edible coating on preservation of white shrimp during partially frozen storage.

    Science.gov (United States)

    Wu, Shengjun

    2014-04-01

    Chitosan and chitooligosaccharides are preservatives with proven antibacterial activity, while glutathione has antioxidant activity. This study investigated the effects of chitosan coating combined with chitooligosaccharides and glutathione (0.8% glutathione+1% chitooligosaccharides+1% chitosan) on preservation of white shrimp (Penaeus vannamei) during partially frozen storage. Chitosan-based coating treatments effectively inhibited bacterial growth, reduced total volatile basic nitrogen and malondialdehyde, and basically maintained the sensory properties of white shrimp (P. vannamei) during partially frozen storage. Therefore, chitosan-based edible coating combined with chitooligosaccharides and glutathione could be a promising antimicrobial and oxidant method to prevent metamorphism of white shrimp with extended shelf life.

  9. Alginate Hydrogels Coated with Chitosan for Wound Dressing

    Directory of Open Access Journals (Sweden)

    Maria Cristina Straccia

    2015-05-01

    Full Text Available In this work, a coating of chitosan onto alginate hydrogels was realized using the water-soluble hydrochloride form of chitosan (CH-Cl, with the dual purpose of imparting antibacterial activity and delaying the release of hydrophilic molecules from the alginate matrix. Alginate hydrogels with different calcium contents were prepared by the internal setting method and coated by immersion in a CH-Cl solution. Structural analysis by cryo-scanning electron microscopy was carried out to highlight morphological alterations due to the coating layer. Tests in vitro with human mesenchymal stromal cells (MSC were assessed to check the absence of toxicity of CH-Cl. Swelling, stability in physiological solution and release characteristics using rhodamine B as the hydrophilic model drug were compared to those of relative uncoated hydrogels. Finally, antibacterial activity against Escherichia coli was tested. Results show that alginate hydrogels coated with chitosan hydrochloride described here can be proposed as a novel medicated dressing by associating intrinsic antimicrobial activity with improved sustained release characteristics.

  10. Alginate hydrogels coated with chitosan for wound dressing.

    Science.gov (United States)

    Straccia, Maria Cristina; d'Ayala, Giovanna Gomez; Romano, Ida; Oliva, Adriana; Laurienzo, Paola

    2015-05-11

    In this work, a coating of chitosan onto alginate hydrogels was realized using the water-soluble hydrochloride form of chitosan (CH-Cl), with the dual purpose of imparting antibacterial activity and delaying the release of hydrophilic molecules from the alginate matrix. Alginate hydrogels with different calcium contents were prepared by the internal setting method and coated by immersion in a CH-Cl solution. Structural analysis by cryo-scanning electron microscopy was carried out to highlight morphological alterations due to the coating layer. Tests in vitro with human mesenchymal stromal cells (MSC) were assessed to check the absence of toxicity of CH-Cl. Swelling, stability in physiological solution and release characteristics using rhodamine B as the hydrophilic model drug were compared to those of relative uncoated hydrogels. Finally, antibacterial activity against Escherichia coli was tested. Results show that alginate hydrogels coated with chitosan hydrochloride described here can be proposed as a novel medicated dressing by associating intrinsic antimicrobial activity with improved sustained release characteristics.

  11. Chitosan-based leather functional coatings with improved antimicrobial properties

    OpenAIRE

    Amaral, J.S.; Fernandes, I.P.; De Pinto, V; Ferreira, M. J.; Barreiro, M.F.

    2012-01-01

    Among the interesting biological activities that have been ascribed to chitosan, the antimicrobial activity is probably the one that generates the higher number of applications. Developing antimicrobial coatings for footwear components to be used in direct contact with the feet is of great interest; both at industrial level (reducing the possibility of material deterioration and quality loss) and from the consumer’s point of view (decreasing skin infections and minimizing...

  12. Chitosan-Coated Collagen Membranes Promote Chondrocyte Adhesion, Growth, and Interleukin-6 Secretion

    Directory of Open Access Journals (Sweden)

    Nabila Mighri

    2015-11-01

    Full Text Available Designing scaffolds made from natural polymers may be highly attractive for tissue engineering strategies. We sought to produce and characterize chitosan-coated collagen membranes and to assess their efficacy in promoting chondrocyte adhesion, growth, and cytokine secretion. Porous collagen membranes were placed in chitosan solutions then crosslinked with glutaraldehyde vapor. Fourier transform infrared (FTIR analyses showed elevated absorption at 1655 cm-1 of the carbon–nitrogen (N=C bonds formed by the reaction between the (NH2 of the chitosan and the (C=O of the glutaraldehyde. A significant peak in the amide II region revealed a significant deacetylation of the chitosan. Scanning electron microscopy (SEM images of the chitosan-coated membranes exhibited surface variations, with pore size ranging from 20 to 50 µm. X-ray photoelectron spectroscopy (XPS revealed a decreased C–C groups and an increased C–N/C–O groups due to the reaction between the carbon from the collagen and the NH2 from the chitosan. Increased rigidity of these membranes was also observed when comparing the chitosan-coated and uncoated membranes at dried conditions. However, under wet conditions, the chitosan coated collagen membranes showed lower rigidity as compared to dried conditions. Of great interest, the glutaraldehyde-crosslinked chitosan-coated collagen membranes promoted chondrocyte adhesion, growth, and interleukin (IL-6 secretion. Overall results confirm the feasibility of using designed chitosan-coated collagen membranes in future applications, such as cartilage repair.

  13. Hypoglycemic efficacy of chitosan-coated insulin liposomes after oral administration in mice

    Institute of Scientific and Technical Information of China (English)

    Zheng-hong WU; Qi-neng PING; Yi WEI; Jia-ming LAI

    2004-01-01

    AIM: To evaluate the hypoglycemic efficacy of insulin liposomes coated by chitosan with different molecular weights and concentrations after oral administration in mice. METHODS: Insulin-liposomes were prepared by reversed-phase evaporation. Chitosan coating was carried out by incubation of the liposomal suspensions with the chitosan solution. The hypoglycemic efficacies of chitosan-coated insulin liposomes were investigated by monitoring the blood glucose level using the glucose oxidase method after oral administration to healthy mice. RESULTS:In all the insulin liposomes, the insulin liposomes coated by 0.2 % chitosan (M. 1000 kDa) showed a better hypoglycemic efficacy as compared with the other liposomes coated by chitosan. The minimum blood glucose level was 15.1%±6.0 % of the initial (n=6). The hypoglycemic efficacy lasted for 4 h after oral administration to mice.CONCLUSION: Chitosan-coated liposomes could reduce tryptic digestion on insulin, and enhance enteral absorption of insulin. The molecular weights and concentrations of chitosan had significant effects on hypoglycemic efficacy of chitosan-coated insulin liposomes after oral administration to healthy mice.

  14. Improved postharvest quality in patagonian squash (Cucurbita moschata) coated with radiation depolymerized chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, Maria Alicia; Goitia, Maria Teresa [Laboratorio de Investigaciones Basicas Aplicadas en Quitina, Departamento de Quimica, Universidad Nacional del Sur. Avenida Alem 1253, B8000CPB Bahia Blanca (Argentina); Yossen, Mariana [Instituto de Desarrollo Tecnologico para la Industria Quimica (INTEC), CONICET-Universidad Nacional del Litoral, Ruta Nacional 168-Paraje ' El Pozo' , 3000 Santa Fe (Argentina); Cifone, Norma; Agullo, Enrique [Laboratorio de Investigaciones Basicas Aplicadas en Quitina, Departamento de Quimica, Universidad Nacional del Sur. Avenida Alem 1253, B8000CPB Bahia Blanca (Argentina); Andreucetti, Noemi, E-mail: andreuce@criba.edu.ar [Laboratorio de Radioisotopos, Departamento de Quimica, Universidad Nacional del Sur, Avenida Alem 1253, B8000CPB Bahia Blanca (Argentina)

    2011-12-15

    Different molecular weight chitosans were evaluated on the decay of coated Anquito squashes (Cucurbita moschata) as well as the maintenance of the fruit quality along five storage months. The original chitosan (Mw=391 kDa, 83% DD), was depolymerized by gamma radiation. Apart from chain scission, other chemical changes were not detected by FTIR or UV-vis analyses. The molecular weight characterization of chitosans was done by size exclusion chromatography with dual light scattering and concentration detection (SEC-MALLS-RI). The coating effectiveness was evaluated on the following parameters: fungal decay incidence, weight loss, firmness, total reducing sugar, soluble solid, flesh color, carotene content, pH and titratable acidity. No sign of fungal decay was observed in squashes coated with 122 and 56 kDa chitosans, which were also the most effective treatments in reducing the weight loss. The chitosan with Mw=122 kDa was also the best treatment considering firmness, internal aspect, sugar and carotene content. Then, radiation degraded chitosan was better in C. moschata preservation than the original chitosan. - Highlights: > Original Chitosan was radiation depolymerized producing chitosans with lower molecular weights. > Gamma-irradiated chitosans only exhibit chain scission. > SEC-MALLS-RI chromatography is a useful tool in molecular weight analysis. > Depolymerized chitosans were the best in maintaining the quality and the storage life of coated squashes.

  15. Bacterial growth on chitosan-coated polypropylene textile.

    Science.gov (United States)

    Erben, D; Hola, V; Jaros, J; Rahel, J

    2012-01-01

    Biofouling is a problem common in all systems where microorganisms and aqueous environment meet. Prevention of biofouling is therefore important in many industrial processes. The aim of this study was to develop a method to evaluate the ability of material coating to inhibit biofilm formation. Chitosan-coated polypropylene nonwoven textile was prepared using dielectric barrier discharge plasma activation. Resistance of the textile to biofouling was then tested. First, the textile was submerged into a growth medium inoculated with green fluorescein protein labelled Pseudomonas aeruginosa. After overnight incubation at 33°C, the textile was observed using confocal laser scanning microscopy for bacterial enumeration and biofilm structure characterisation. In the second stage, the textile was used as a filter medium for prefiltered river water, and the pressure development on the in-flow side was measured to quantify the overall level of biofouling. In both cases, nontreated textile samples were used as a control. The results indicate that the chitosan coating exhibits antibacterial properties. The developed method is applicable for the evaluation of the ability to inhibit biofilm formation. PMID:23724330

  16. Automated multisyringe stir bar sorptive extraction using robust montmorillonite/epoxy-coated stir bars.

    Science.gov (United States)

    Ghani, Milad; Saraji, Mohammad; Maya, Fernando; Cerdà, Víctor

    2016-05-01

    Herein we present a simple, rapid and low cost strategy for the preparation of robust stir bar coatings based on the combination of montmorillonite with epoxy resin. The composite stir bar was implemented in a novel automated multisyringe stir bar sorptive extraction system (MS-SBSE), and applied to the extraction of four chlorophenols (4-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol) as model compounds, followed by high performance liquid chromatography-diode array detection. The different experimental parameters of the MS-SBSE, such as sample volume, selection of the desorption solvent, desorption volume, desorption time, sample solution pH, salt effect and extraction time were studied. Under the optimum conditions, the detection limits were between 0.02 and 0.34μgL(-1). Relative standard deviations (RSD) of the method for the analytes at 10μgL(-1) concentration level ranged from 3.5% to 4.1% (as intra-day RSD) and from 3.9% to 4.3% (as inter-day RSD at 50μgL(-1) concentration level). Batch-to-batch reproducibility for three different stir bars was 4.6-5.1%. The enrichment factors were between 30 and 49. In order to investigate the capability of the developed technique for real sample analysis, well water, wastewater and leachates from a solid waste treatment plant were satisfactorily analyzed. PMID:27062720

  17. Automated multisyringe stir bar sorptive extraction using robust montmorillonite/epoxy-coated stir bars.

    Science.gov (United States)

    Ghani, Milad; Saraji, Mohammad; Maya, Fernando; Cerdà, Víctor

    2016-05-01

    Herein we present a simple, rapid and low cost strategy for the preparation of robust stir bar coatings based on the combination of montmorillonite with epoxy resin. The composite stir bar was implemented in a novel automated multisyringe stir bar sorptive extraction system (MS-SBSE), and applied to the extraction of four chlorophenols (4-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol) as model compounds, followed by high performance liquid chromatography-diode array detection. The different experimental parameters of the MS-SBSE, such as sample volume, selection of the desorption solvent, desorption volume, desorption time, sample solution pH, salt effect and extraction time were studied. Under the optimum conditions, the detection limits were between 0.02 and 0.34μgL(-1). Relative standard deviations (RSD) of the method for the analytes at 10μgL(-1) concentration level ranged from 3.5% to 4.1% (as intra-day RSD) and from 3.9% to 4.3% (as inter-day RSD at 50μgL(-1) concentration level). Batch-to-batch reproducibility for three different stir bars was 4.6-5.1%. The enrichment factors were between 30 and 49. In order to investigate the capability of the developed technique for real sample analysis, well water, wastewater and leachates from a solid waste treatment plant were satisfactorily analyzed.

  18. Electrolytic deposition of calcium phosphate/chitosan coating on titanium alloy: Growth kinetics and influence of current density, acetic acid, and chitosan

    NARCIS (Netherlands)

    Wang, Jiawei; Apeldoorn, van Aart; Groot, de Klaas

    2006-01-01

    Electrolytically deposited calcium phosphate/chitosan coating demonstrated good bone marrow stromal cell attachment. The aim of this study was to understand the coating's growth kinetics as well as the effects of current density, acetic acid, and chitosan on the coating's formation. The scanning ele

  19. Extending Shelf Life of Chilled Pork by Combination of Chitosan Coating With Spice Extracts

    Institute of Scientific and Technical Information of China (English)

    XIA Xiufang; KONG Baohua

    2008-01-01

    The effects of spices (cinnamon, rosemary, clove) extracts and chitosan on microbiological growth, drip loss, color, and lipid oxidation of fresh chilled meat stored for 28 days at 4"C were investigated. There were four treatments: control, coated with spices(cimmamon 1.5g·L-1+rosemary 1.5·L-1+colve 1.0 g·L-1),coated with 0.5% chitosan,coated with spices and chitosan.Chitosan coating resulted in significant inhibition of microbial growth (P<0.05), while the lowest microbial counts were obtained in the samples containing both chitosan and spices, indicating a possible synergistic effect. Chitosan and its combinations with spices also showed the most intense antioxidative effect when compared to the controls (P<0.05). Meanwhile, chitosan coating could decrease water loss and keep better color of chilled meat. The combined spice extracts and chitosan coating could effectively extend the shelf life of chilled meat.

  20. Effect of chitosan-lemon essential oil coatings on volatile profile of strawberries during storage.

    Science.gov (United States)

    Perdones, Ángela; Escriche, Isabel; Chiralt, Amparo; Vargas, Maria

    2016-04-15

    Chitosan coatings containing lemon essential oils were described as effective at controlling fruit fungal decay at 20°C during 7 days. In this work, GC-MS was used to characterise the volatile compounds of strawberries during cold storage in order to analyse the influence of fruit coatings with chitosan, containing or not containing lemon essential oil, on the volatile profile of the fruits. The coatings affected the metabolic pathways and volatile profile of the fruits. Pure chitosan promoted the formation of esters and dimethyl furfural in very short time after coating, while coatings containing lemon essential oil incorporated terpenes (limonene, γ-terpinene, p-cymene and α-citral) to the fruit volatiles and enhanced the fermentative process, modifying the typical fruit aroma composition. No effect of chitosan coatings was sensorially perceived, the changes induced by lemon essential oil were notably appreciated. PMID:26617043

  1. Chitosan-aprotinin coated liposomes for oral peptide delivery: Development, characterisation and in vivo evaluation.

    Science.gov (United States)

    Werle, Martin; Takeuchi, Hirofumi

    2009-03-31

    In order to improve the systemic uptake of therapeutic peptides/proteins after oral administration, the polymer-protease inhibitor conjugate chitosan-aprotinin was synthesised and polyelectrolyte complexes between negatively charged multilamellar vesicles (MLV) and positively charged chitosan-aprotinin conjugate were prepared. It could be demonstrated that chitosan-aprotinin was capable of significantly inhibiting Trypsin in vitro in concentrations of 0.05% and 0.1%, whereas no inhibition was observed in the presence of 0.1% chitosan. The size range of the prepared MLV was between 3 and 4.5microm and the initially negative zeta potential (ca. -90mV) of the core liposomes switched to a positive value after polymer coating (ca. +40mV). Confocal laser microscopy studies showed comparable mucoadhesive properties of chitosan-aprotinin coated MLV and chitosan coated MLV. In comparison to calcitonin in solution, the area above the blood calcium concentration-time curve (AAC) after oral administration of calcitonin loaded chitosan coated MLV to rats increased around 11-fold, and around 15-fold in the case of calcitonin loaded chitosan-aprotinin coated MLV. Data gained in the current study are believed to contribute to the development of novel polymer-protease inhibitor based delivery systems.

  2. A novel method for fabricating hybrid biobased nanocomposites film with stable fluorescence containing CdTe quantum dots and montmorillonite-chitosan nanosheets.

    Science.gov (United States)

    Guo, Yawen; Ge, Xuesong; Guan, Jing; Wu, Lin; Zhao, Fuhua; Li, Hui; Mu, Xindong; Jiang, Yijun; Chen, Aibing

    2016-07-10

    A method was presented for fabricating the fluorescent nanocomposites containing CdTe quantum dots (QDs) and montmorillonite (MMT)-chitosan (CS). MMT-CS/CdTe QDs nanocomposites were prepared via a simple, versatile and robust approach combination of covalent and electrostatic assembly methods (Scheme 1). The negatively charged MMT was initially modified with positively charged CS through electrostatic assembly, followed by incorporation of CdTe-QDs into the MMT-CS nanosheets by covalent connections between the amino groups of CS and the carboxylic acid groups of thioglycollic acid (TGA). The X-ray diffraction (XRD), High resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) and the FTIR were used to prove the QDs have intercalated into the MMT-CS matrix. The fluorescence emission spectra showed that the MMT-CS/CdTe QDs nanocomposites had the best fluorescence intensity compared with the bare CdTe QDs and CS-QDs. PMID:27106146

  3. Chitosan coating of copper nanoparticles reduces in vitro toxicity and increases inflammation in the lung

    International Nuclear Information System (INIS)

    Despite their potential for a variety of applications, copper nanoparticles induce very strong inflammatory responses and cellular toxicity following aerosolized delivery. Coating metallic nanoparticles with polysaccharides, such as biocompatible and antimicrobial chitosan, has the potential to reduce this toxicity. In this study, copper nanoparticles were coated with chitosan using a newly developed and facile method. The presence of coating was confirmed using x-ray photoelectron spectroscopy, rhodamine tagging of chitosan followed by confocal fluorescence imaging of coated particles and observed increases in particle size and zeta potential. Further physical and chemical characteristics were evaluated using dissolution and x-ray diffraction studies. The chitosan coating was shown to significantly reduce the toxicity of copper nanoparticles after 24 and 52 h and the generation of reactive oxygen species as assayed by DHE oxidation after 24 h in vitro. Conversely, inflammatory response, measured using the number of white blood cells, total protein, and cytokines/chemokines in the bronchoalveolar fluid of mice exposed to chitosan coated versus uncoated copper nanoparticles, was shown to increase, as was the concentration of copper ions. These results suggest that coating metal nanoparticles with mucoadhesive polysaccharides (e.g. chitosan) could increase their potential for use in controlled release of copper ions to cells, but will result in a higher inflammatory response if administered via the lung. (paper)

  4. CHITOSAN SOLUTIONS WITH DIFFERENT DEGREES OF ACETYLATION AS COATING ON CUT APPLE

    OpenAIRE

    Douglas de BRITTO; Maria Fernanda dos SANTOS; Odílio Benedito Garrido ASSIS

    2012-01-01

    In this study we analyzed the protective properties of different types of chitosan on minimally processed apples, concerning water loss, surface color changes and antifungal activity. Seven different chitosanbased formulations with variable molecular weight and degrees of acetylation were prepared and used to coat sliced apples which were stored in a greenhouse at 28o C and RH 80%. The coatings, with concentration of 2.0g/L, independent of chitosan type, had no sign...

  5. One-Step Method for Preparation of Magnetic Nanoparticles Coated with Chitosan

    Directory of Open Access Journals (Sweden)

    Karla M. Gregorio-Jauregui

    2012-01-01

    Full Text Available Preparation of magnetic nanoparticles coated with chitosan in one step by the coprecipitation method in the presence of different chitosan concentrations is reported here. Obtaining of magnetic superparamagnetic nanoparticles was confirmed by X-ray diffraction and magnetic measurements. Scanning transmission electron microscopy allowed to identify spheroidal nanoparticles with around 10-11 nm in average diameter. Characterization of the products by Fourier transform infrared spectroscopy demonstrated that composite chitosan-magnetic nanoparticles were obtained. Chitosan content in obtained nanocomposites was estimated by thermogravimetric analysis. The nanocomposites were tested in Pb2+ removal from a PbCl2 aqueous solution, showing a removal efficacy up to 53.6%. This work provides a simple method for chitosan-coated nanoparticles obtaining, which could be useful for heavy metal ions removal from water.

  6. Investigations of Self-Healing Property of Chitosan-Reinforced Epoxy Dye Composite Coatings

    Directory of Open Access Journals (Sweden)

    Hüsnügül Yılmaz Atay

    2013-01-01

    Full Text Available Chitosan has a very wide application range in different parts of life such as in biomedical and antimicrobial areas. In recent years the self-healing property of chitosan becomes more of an issue. In the study chitosan was used to obtain a self-healing composite material. An epoxy dye was converted to a self-healing coating. Different types of samples were prepared by coating the glass substrates with a polymer matrix reinforced with various amounts of chitosan. The samples were characterized by fourier transform Infrared (FTIR and scanning electron microscope-energy dispersive spectroscopy (SEM-EDS. In addition, self-healing test was applied as a primary objective of this research. In this respect, the samples were scratched with a very thin pin, and they were analyzed by SEM periodically. It was observed that chitosan-reinforced dyes showed self-healing property. Mechanism of the self-healing process was also scrutinized.

  7. In vitro corrosion behavior and cytotoxicity property of magnesium matrix composite with chitosan coating

    Institute of Scientific and Technical Information of China (English)

    戴翌龙; 余琨; 陈良建; 陈畅; 乔雪岩; 颜阳

    2015-01-01

    Mg-6%Zn-10%β-Ca3(PO4)2 composite was prepared through powder metallurgy methods with different chitosan coatings on its surface. The properties of the chitosan coatings on the surface of Mg-6%Zn-10%β-Ca3(PO4)2 composite, such as the adhesion ability, the corrosion behavior and the cytotoxicity properties, were investigated, and the microstructure of the chitosan coating was observed by scanning electron microscope (SEM). The results show that chitosan coating improves the corrosion resistance of the magnesium composite specimens significantly. Mg-6%Zn-10%β-Ca3(PO4)2 composite specimens exhibit good corrosion resistance and low pH values in simulated body fluid (SBF) at 37 °C in the immersion test with 7-layer chitosan coating whose relative molecular mass is 30×104 Da. The cytotoxicity tests indicate that Mg-6%Zn-10%β-Ca3(PO4)2 with chitosan coating is nontoxic with a cytotoxicity grade of zero against L-929 cells, which is better than that of uncoated composites.

  8. Modification of granular activated carbon surface by chitosan coating for geosmin removal: sorption performances.

    Science.gov (United States)

    Vinitnantharat, S; Rattanasirisophon, W; Ishibashi, Y

    2007-01-01

    This study presents the results of the sorption performances for geosmin removal by sorption onto granular activated carbons (GAC) manufactured from different raw materials of coconut shell and bituminous coal. The surface of GAC was modified by chitosan coating. The 90% deacetylated chitosan flakes were used for coating on GAC with the GAC: chitosan ratio of 5:1. The surface of GAC was characterised by scanning electron microscope (SEM) analysis, Fourier transform infrared spectroscopy and measurement of the pH solution of GAC samples. The sorption of geosmin onto the chitosan for both uncoated and coated GACs could be described by the Freundlich adsorption model. Data revealed that the sequence of Freundlich constant (K(F)) was chitosan coated bitominous coal (CB) > uncoated bituminous coal (UB) > chitos approximately equal to an coated coconut shell (CC) approximately equal to uncoated coconut shell (UC). The bituminous coal based GAC with chitosan coating had a maximum capacity of 23.57 microg/g which was approximately two-fold of uncoated bituminous coal based GAC. Two simplified kinetic models, pseudo-first order and pseudo-second order, were tested to investigate the sorption mechanisms. It was found that the intraparticle diffusion was a rate controlling step for the sorption and followed the pseudo-second order equation.

  9. Lipase entrapment in PVA/Chitosan biodegradable film for reactor coatings

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Karla A. [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil); Lopes, Flavio Marques [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil); Unidade Universitária de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, Anápolis, GO (Brazil); Yamashita, Fabio [Departamento de Tecnologia de Alimentos e Medicamentos, Laboratório de Tecnologia, Universidade Estadual de Londrina, Cx. Postal 6001, CEP 86051-990, Londrina, PR (Brazil); Fernandes, Kátia Flávia, E-mail: katia@icb.ufg.br [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil)

    2013-04-01

    This study reports the development and characterization of novel biodegradable film, based on chitosan and polyvinyl alcohol containing lipase entrapped. The films showed a thickness of 70.4 and 79 μm to PVA/Chitosan and PVA/Chitosan/Lipase, respectively. The entrapment of lipase in PVA/Chitosan film resulted in increasing of 69.4% tensile strength (TS), and 52.4% of elongation. SEM images showed the formation of a continuous film, without pores or cracks. The lipase entrapment efficiency was estimated in 92% and the films were repeatedly used for 25 hydrolytic cycles, maintaining 62% of initial activity. The PVA/Chitosan/Lipase film was used for olive oil hydrolysis of high performance. These results indicate that PVA/Chitosan/Lipase is a promising material for biotechnology applications such as triacylglycerol hydrolysis and biodiesel production. - Highlights: ► Development and characterization of PVA/Chitosan biodegradable film ► Lipase immobilization onto PVA/Chitosan film ► PVA/Chitosan/Lipase film for reactor coating ► Olive oil hydrolysis using PVA/Chitosan/Lipase film.

  10. Lipase entrapment in PVA/Chitosan biodegradable film for reactor coatings

    International Nuclear Information System (INIS)

    This study reports the development and characterization of novel biodegradable film, based on chitosan and polyvinyl alcohol containing lipase entrapped. The films showed a thickness of 70.4 and 79 μm to PVA/Chitosan and PVA/Chitosan/Lipase, respectively. The entrapment of lipase in PVA/Chitosan film resulted in increasing of 69.4% tensile strength (TS), and 52.4% of elongation. SEM images showed the formation of a continuous film, without pores or cracks. The lipase entrapment efficiency was estimated in 92% and the films were repeatedly used for 25 hydrolytic cycles, maintaining 62% of initial activity. The PVA/Chitosan/Lipase film was used for olive oil hydrolysis of high performance. These results indicate that PVA/Chitosan/Lipase is a promising material for biotechnology applications such as triacylglycerol hydrolysis and biodiesel production. - Highlights: ► Development and characterization of PVA/Chitosan biodegradable film ► Lipase immobilization onto PVA/Chitosan film ► PVA/Chitosan/Lipase film for reactor coating ► Olive oil hydrolysis using PVA/Chitosan/Lipase film

  11. New Concept of Polymethyl Methacrylate (PMMA and Polyethylene Terephthalate (PET Surface Coating by Chitosan

    Directory of Open Access Journals (Sweden)

    Mieszko Wieckiewicz

    2016-04-01

    Full Text Available Chitosan is known for its hemostatic and antimicrobial properties and might be useful for temporary coating of removable dentures or intraoral splints to control bleeding after oral surgery or as a supportive treatment in denture stomatitis. This study investigated a new method to adhere chitosan to polymethyl methacrylate (PMMA and polyethylene terephthalate (PET. There were 70 cylindrical specimens made from PMMA and 70 from PET (13 mm diameter, 6 mm thickness. The materials with ten specimens each were sandblasted at 2.8 or 4.0 bar with aluminum oxide 110 μm or/and aluminum oxide coated with silica. After sandblasting, all specimens were coated with a 2% or 4% acetic chitosan solution with a thickness of 1 mm. Then the specimens were dried for 120 min at 45 °C. The precipitated chitosan was neutralized with 1 mol NaOH. After neutralization, all specimens underwent abrasion tests using the tooth-brushing simulator with soft brushes (load 2N, 2 cycles/s, 32 °C, 3000 and 30,000 cycles. After each run, the specimen surfaces were analyzed for areas of remaining chitosan by digital planimetry under a light microscope. The best chitosan adhesion was found after sandblasting with aluminum oxide coated with silica (U-Test, p < 0.05 in both the PMMA and the PET groups. Hence, with relatively simple technology, a reliable bond of chitosan to PMMA and PET could be achieved.

  12. Electrodeposition of alginate/chitosan layer-by-layer composite coatings on titanium substrates.

    Science.gov (United States)

    Wang, Zhiliang; Zhang, Xueqin; Gu, Juming; Yang, Haitao; Nie, Jun; Ma, Guiping

    2014-03-15

    In this study, alginate/chitosan layer-by-layer composite coatings were prepared on titanium substrates via electrodeposition. The mechanism of anodic deposition of anionic alginate based on the pH decrease at the anode surface, while the pH increase at the cathode surface enabled the deposition of cationic chitosan coatings. The surface of coatings was characterized by using attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The properties of coatings were characterized by X-ray diffraction (XRD) and differential thermal analysis (DTA). Indirect in vitro cytotoxicity test showed that the extracts of coating had no significant effects on cell viability. Moreover, in vitro cytocompatibility test exhibited cell population and spreading tendency, suggesting that the coatings were non-toxic to L929 cells. However, the results revealed that alginate coating was more benefit for cells growing than chitosan coating. The results indicated that the proposed method could be used to fabricate alginate/chitosan layer-by-layer composite coatings on the titanium surface at room temperature and such composite coatings might have potential applications in tissue engineering scaffolds field. PMID:24528698

  13. Electrophoretic Deposition of Chitosan/h-BN and Chitosan/h-BN/TiO2 Composite Coatings on Stainless Steel (316L Substrates

    Directory of Open Access Journals (Sweden)

    Namir S. Raddaha

    2014-03-01

    Full Text Available This article presents the results of an experimental investigation designed to deposit chitosan/hexagonal boron nitride (h-BN and chitosan/h-BN/titania (TiO2 composites on SS316L substrates using electrophoretic deposition (EPD for potential antibacterial applications. The influence of EPD parameters (voltage and deposition time and relative concentrations of chitosan, h-BN and TiO2 in suspension on deposition yield was studied. The composition and structure of deposited coatings were investigated by FTIR, XRD and SEM. It was observed that h-BN and TiO2 particles were dispersed in the chitosan matrix through simultaneous deposition. The adhesion between the electrophoretic coatings and the stainless steel substrates was tested by using tape test technique, and the results showed that the adhesion strength corresponded to 3B and 4B classes. Corrosion resistance was evaluated by electrochemical polarization curves, indicating enhanced corrosion resistance of the chitosan/h-BN/TiO2 and chitosan/h-BN coatings compared to the bare stainless steel substrate. In order to investigate the in-vitro inorganic bioactivity, coatings were immersed in simulated body fluid (SBF for 28 days. FTIR and XRD results showed no formation of hydroxyapatite on the surface of chitosan/h-BN/TiO2 and chitosan/h-BN coatings, which are therefore non bioactive but potentially useful as antibacterial coatings.

  14. Antimicrobial activity of chitosan coatings and films against Listeria monocytogenes on black radish.

    Science.gov (United States)

    Jovanović, Gordana D; Klaus, Anita S; Nikšić, Miomir P

    2016-01-01

    The antibacterial activity of chitosan coatings prepared with acetic or lactic acid, as well as of composite chitosan-gelatin films prepared with essential oils, was evaluated in fresh shredded black radish samples inoculated with Listeria monocytogenes ATCC 19115 and L. monocytogenes ATCC 19112 during seven days of storage at 4°C. The chitosan coating prepared with acetic acid showed the most effective antibacterial activity. All tested formulations of chitosan films exhibited strong antimicrobial activity on the growth of L. monocytogenes on black radish, although a higher inhibition of pathogens was achieved at higher concentrations of chitosan. The antimicrobial effect of chitosan films was even more pronounced with the addition of essential oils. Chitosan-gelatin films with thyme essential oils showed the most effective antimicrobial activity. A reduction of 2.4log10CFU/g for L. monocytogenes ATCC 19115 and 2.1log10CFU/g for L. monocytogenes ATCC 19112 was achieved in the presence of 1% chitosan film containing 0.2% of thyme essential oil after 24h of storage. PMID:27237426

  15. Chitosan coated vancomycin hydrochloride liposomes: Characterizations and evaluation.

    Science.gov (United States)

    Yang, Zhenlei; Liu, Junli; Gao, Jinhua; Chen, Shilei; Huang, Guihua

    2015-11-10

    The present work evaluated the feasibility of chitosan coated liposomes (c-Lips) for the intravenous delivery of vancomycin hydrochloride (VANH), a water-soluble antibiotic for the treatment of gram-positive bacterial infections like osteomyelitis, arthritis, endocarditis, pneumonia, etc. The objective of this research was to develop a suitable drug delivery system in vivo which could improve therapeutic efficacy and decrease side effects especially nephrotoxicity. Firstly, the vancomycin hydrochloride liposomes (VANH-Lips) were prepared by modified reverse phase evaporation method, then the chitosan wrapped vancomycin hydrochloride liposomes (c-VANH-Lips) nanosuspension was formulated by the method of electrostatic deposition. Based on the optimized results of single-factor screening experiment, the c-VANH-Lips were found to be relatively uniform in size (220.40 ± 3.56 nm) with a narrow polydispersity index (PI) (0.21 ± 0.03) and a positive zeta potential (25.7 ± 1.12 mV). The average drug entrapment efficiency (EE) and drug loading (DL) were 32.65 ± 0.59% and 2.18 ± 0.04%, respectively. The in vitro release profile of c-VANH-Lips possessed a sustained release Characterization and the release behavior was in accordance with the Weibull equation. Hemolysis experiments showed that its intravenous injection had preliminary safety. In vivo, after intravenous injection to mice, c-VANH-Lips showed a longer retention time and higher AUC values compared with the VANH injection (VANH-Inj) and VANH-Lips. In addition, biodistribution results clearly demonstrated that c-VANH-Lips preferentially decreased the drug distribution in kidney of mice after intravenous injection. These results revealed that injectable c-VANH-Lips may serve as a promising carrier for VANH to increase therapeutic efficacy on gram-positive bacterial infections and reduce nephrotoxicity, which provides significantly clinical value for long-term use of VANH.

  16. Improved postharvest quality in patagonian squash ( Cucurbita moschata) coated with radiation depolymerized chitosan

    Science.gov (United States)

    Pugliese, Maria Alicia; Goitia, Maria Teresa; Yossen, Mariana; Cifone, Norma; Agulló, Enrique; Andreucetti, Noemi

    2011-12-01

    Different molecular weight chitosans were evaluated on the decay of coated Anquito squashes ( Cucurbita moschata) as well as the maintenance of the fruit quality along five storage months. The original chitosan (Mw=391 kDa, 83% DD), was depolymerized by gamma radiation. Apart from chain scission, other chemical changes were not detected by FTIR or UV-vis analyses. The molecular weight characterization of chitosans was done by size exclusion chromatography with dual light scattering and concentration detection (SEC-MALLS-RI). The coating effectiveness was evaluated on the following parameters: fungal decay incidence, weight loss, firmness, total reducing sugar, soluble solid, flesh color, carotene content, pH and titratable acidity. No sign of fungal decay was observed in squashes coated with 122 and 56 kDa chitosans, which were also the most effective treatments in reducing the weight loss. The chitosan with Mw=122 kDa was also the best treatment considering firmness, internal aspect, sugar and carotene content. Then, radiation degraded chitosan was better in C. moschata preservation than the original chitosan.

  17. Different preparation methods and characterization of magnetic maghemite coated with chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Hojnik Podrepsek, Gordana; Knez, Zeljko; Leitgeb, Maja, E-mail: maja.leitgeb@um.si [University of Maribor, Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering (Slovenia)

    2013-06-15

    The preparation of maghemite ({gamma}-Fe{sub 2}O{sub 3}) micro- and nanoparticles coated with chitosan, used as carriers for immobilized enzymes, was investigated. {gamma}-Fe{sub 2}O{sub 3} nanoparticles were synthesized by coprecipitation of Fe{sup 2+} and Fe{sup 3+} ions in the presence of ammonium. They were coated with chitosan by the microemulsion process, suspension cross-linking technique, and covalent binding of chitosan on the {gamma}-Fe{sub 2}O{sub 3} surface. The methods distinguished the concentration of chitosan, concentration of acetic acid solution, concentration of a cross-linking agent, temperature of synthesis, pH of the medium, and time of synthesis. {gamma}-Fe{sub 2}O{sub 3} micro- and nanoparticles coated with chitosan prepared after three preparation methods were evaluated by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy analysis, energy dispersive spectrometry, thermogravimetric analysis, differential scanning calorimetry analysis, vibrating sample magnetometry, dynamic light scattering, laser diffraction granulometry, and X-ray diffractometry. These positive attributes demonstrated that these magnetic micro- and nanoparticles coated with chitosan may be used as a promising carrier for further diverse biomedical applications.

  18. Chitosan-coated electrospun PLA fibers for rapid mineralization of calcium phosphate.

    Science.gov (United States)

    Lin, Chi-Chang; Fu, Shu-Juan; Lin, Yu-Ching; Yang, I-Kuan; Gu, Yesong

    2014-07-01

    In this work, hydroxyapatite (HA) mineralized on chitosan (CS)-coated poly(lactic acid) (PLA) nanofiber mat was prepared and compared in terms of mineralization characteristics. Significant calcium phosphate crystals formed on various concentrations of CS-coated PLA fiber mat with better uniformity after 2h of incubation in 10 times simulated body fluid (10× SBF). X-ray diffraction results further indicated that the composition of the deposited mineral was a mixture of dicalcium phosphate dehydrates and apatite. Chitosan, a cationic polysaccharide, can promote more nucleation and growth of calcium phosphate under conditions of 0.4% chitosan concentrations. These results indicated that HA-mineralized on CS-coated PLA fiber mat can be prepared directly via simply using CS coating followed by SBF immersion, and the results also suggest that this composite can mimic structural, compositional, and biological functions of native bone and can serve as a good candidate for bone tissue engineering (BTE). PMID:24768970

  19. Oleic acid-grafted chitosan/graphene oxide composite coating for corrosion protection of carbon steel.

    Science.gov (United States)

    Fayyad, Eman M; Sadasivuni, Kishor Kumar; Ponnamma, Deepalekshmi; Al-Maadeed, Mariam Al Ali

    2016-10-20

    An anticorrosion coating film based on the formation of nanocomposite coating is reported in this study. The composite consisted of chitosan (green matrix), oleic acid, and graphene oxide (nano filler). The nanocomposite coating was arranged on the surface of carbon steel, and the corrosion resistance was monitored using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PP). Compared to the pure chitosan (CS) coating, the corrosion resistance of oleic acid-modified chitosan/graphene oxide film (CS/GO-OA) is increased by 100 folds. Since the well-dispersed smart grafted nanolayers delayed the penetration rate of corrosive species and thus maintained long term anticorrosive stability which is correlated with hydrophobicity and permeability. PMID:27474635

  20. CHITOSAN SOLUTIONS WITH DIFFERENT DEGREES OF ACETYLATION AS COATING ON CUT APPLE

    Directory of Open Access Journals (Sweden)

    Douglas de BRITTO

    2012-01-01

    Full Text Available In this study we analyzed the protective properties of different types of chitosan on minimally processed apples, concerning water loss, surface color changes and antifungal activity. Seven different chitosanbased formulations with variable molecular weight and degrees of acetylation were prepared and used to coat sliced apples which were stored in a greenhouse at 28o C and RH 80%. The coatings, with concentration of 2.0g/L, independent of chitosan type, had no significant effect in protecting the samples against loss of mass by water vapor permeation. Along the storage time, all samples resulted in similar dehydration. Gradual browning was observed in cut fruit, whereas chitosan did not maintain natural color of the cut surfaces. Concerning antifungal activity, chitosans with low molecular weight and low degree of acetylation was the best formulation, reducing in around 50% the fungal incidence after 10 days of storage.

  1. Effects on Salmonella shell contamination and trans-shell penetration of coating hens' eggs with chitosan.

    Science.gov (United States)

    Leleu, S; Herman, L; Heyndrickx, M; De Reu, K; Michiels, C W; De Baerdemaeker, J; Messens, W

    2011-01-31

    Chitosan is a biopolymer with antimicrobial activity and film-forming properties. In this study, the effects on Salmonella shell contamination and trans-shell penetration of coating hens' eggs with chitosan was evaluated. A chitosan was selected from eight types (four non-commercial and four commercial) based on its antimicrobial activity against Salmonella enterica serovar Enteritidis (S. Enteritidis). For this purpose, a contact plate method was developed and chitosans were applied at a concentration of 0.25% (w/v). A commercial type with a molecular weight of 310-375 kDa and a deacetylation degree of 75% that reduced S. Enteritidis by 0.71 log(10) colony forming units compared to the control (without chitosan) was selected for further studies. The chitosan was shown to have antimicrobial activity against other egg borne bacteria, i.e., Acinetobacter baumannii, Alcaligenes sp., Carnobacterium sp., Pseudomonas sp., Serratia marcescens and Staphylococcus warneri, and against S. enterica serovar Typhimurium, Escherichia coli and Listeria monocytogenes. The effects of various concentrations of the selected chitosan (0.25%, 1% and 2%) on Salmonella shell contamination and trans-shell penetration were assessed using the agar molding technique. Effective reduction of eggshell contamination could not be demonstrated, but trans-shell penetration was significantly reduced in the presence of a 2% chitosan eggshell coating, with only 6.1% of the eggs being penetrated compared to 24.5% of the uncoated eggs. It was concluded that the 2% chitosan coating has the potential to reduce contamination of egg contents resulting from trans-shell penetration by S. Enteritidis. PMID:21146239

  2. Chitosan coated carbon fiber microelectrode for selective in vivo detection of neurotransmitters in live zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Ozel, Rifat Emrah [Department of Chemistry and Biomolecular Science, 8 Clarkson Ave, Potsdam, NY 136995810 (United States); Wallace, Kenneth N. [Department of Biology, Clarkson University, Potsdam, NY 136995810 (United States); Andreescu, Silvana, E-mail: eandrees@clarkson.edu [Department of Chemistry and Biomolecular Science, 8 Clarkson Ave, Potsdam, NY 136995810 (United States)

    2011-06-10

    Graphical abstract: Chitosan coated fiber electrodes are sensitive to serotonin detection while rejecting physiological levels of ascorbic acid interferences. - Abstract: We report the development of a chitosan modified carbon fiber microelectrode for in vivo detection of serotonin. We find that chitosan has the ability to reject physiological levels of ascorbic acid interferences and facilitate selective and sensitive detection of in vivo levels of serotonin, a common catecholamine neurotransmitter. Presence of chitosan on the microelectrode surface was investigated using scanning electron microscopy (SEM) and cyclic voltammetry (CV). The electrode was characterized using differential pulse voltammetry (DPV). A detection limit of 1.6 nM serotonin with a sensitivity of 5.12 nA/{mu}M, a linear range from 2 to 100 nM and a reproducibility of 6.5% for n = 6 electrodes were obtained. Chitosan modified microelectrodes selectively measure serotonin in presence of physiological levels of ascorbic acid. In vivo measurements were performed to measure concentration of serotonin in the live embryonic zebrafish intestine. The sensor quantifies in vivo intestinal levels of serotonin while successfully rejecting ascorbic acid interferences. We demonstrate that chitosan can be used as an effective coating to reject ascorbic acid interferences at carbon fiber microelectrodes, as an alternative to Nafion, and that chitosan modified microelectrodes are reliable tools for in vivo monitoring of changes in neurotransmitter levels.

  3. Chitosan coated carbon fiber microelectrode for selective in vivo detection of neurotransmitters in live zebrafish embryos

    International Nuclear Information System (INIS)

    Graphical abstract: Chitosan coated fiber electrodes are sensitive to serotonin detection while rejecting physiological levels of ascorbic acid interferences. - Abstract: We report the development of a chitosan modified carbon fiber microelectrode for in vivo detection of serotonin. We find that chitosan has the ability to reject physiological levels of ascorbic acid interferences and facilitate selective and sensitive detection of in vivo levels of serotonin, a common catecholamine neurotransmitter. Presence of chitosan on the microelectrode surface was investigated using scanning electron microscopy (SEM) and cyclic voltammetry (CV). The electrode was characterized using differential pulse voltammetry (DPV). A detection limit of 1.6 nM serotonin with a sensitivity of 5.12 nA/μM, a linear range from 2 to 100 nM and a reproducibility of 6.5% for n = 6 electrodes were obtained. Chitosan modified microelectrodes selectively measure serotonin in presence of physiological levels of ascorbic acid. In vivo measurements were performed to measure concentration of serotonin in the live embryonic zebrafish intestine. The sensor quantifies in vivo intestinal levels of serotonin while successfully rejecting ascorbic acid interferences. We demonstrate that chitosan can be used as an effective coating to reject ascorbic acid interferences at carbon fiber microelectrodes, as an alternative to Nafion, and that chitosan modified microelectrodes are reliable tools for in vivo monitoring of changes in neurotransmitter levels.

  4. Preparation of Chitosan-coated Nylon Membranes and their Application as Affinity Membranes

    Institute of Scientific and Technical Information of China (English)

    Wei SHI; Feng Bao ZHANG; Guo Liang ZHANG

    2005-01-01

    Chitosan-coated nylon membranes which possess a large number of reactive groups of-CH2OH and -NH2 were prepared by coupling chitosan onto the nylon membrane. Then polylysine as ligand was also immobilized onto the composite membranes by 1, l′-carbonyldiimidazole activation to prepare affinity membranes for bilirubin adsorption. The results showed that these membranes exhibited high binding affinity capacities for bilirubin and the adsorption isotherm fitted the Freundlich model well.

  5. Effects of chitosan-based coatings containing peppermint essential oil on the quality of post-harvest papaya fruit

    Science.gov (United States)

    Edible coatings comprised of antimicrobial polymers based on chitosan are promising technologies to preserve post-harvest fruit quality. In this study, we investigated the potential utility of a coating made from chitosan modified by N-acylation with fatty acid to preserve post-harvest papaya qualit...

  6. Effects of chitosan-oil coating on blue mold disease and quality attributes of jujube fruits.

    Science.gov (United States)

    Xing, Yage; Xu, Qinglian; Che, Zhenming; Li, Xihong; Li, Wenting

    2011-08-01

    The effects of chitosan coating enriched with cinnamon oil on blue mold disease and quality attributes were investigated. In the in vitro experiment, the results demonstrated that the antifungal activity against P. citrinum improved with increasing concentration of chitosan or cinnamon oil. In the in vivo study, chitosan-oil treatments significantly reduced fungal decay caused by P. citrinum and all compounds with cinnamon oil at 2.0% showed complete control of the growth of P. citrinum on wound-inoculated fruits. High chitosan-oil concentrations correlated with low disease incidence regardless of storage temperature. Treatments of chitosan-oil coating also inhibited the activity of polyphenol oxidase and maintained vitamin C and phenolic compounds in wounded jujube fruits. Results suggested that the effect of chitosan coating (1.0%) enriched with cinnamon oil (0.75%) on blue mold in jujube fruits may be associated with fungitoxic properties against the pathogen and the elicitation of biochemical defense responses in fruits. PMID:21837310

  7. A construction of novel iron-foam-based calcium phosphate/chitosan coating biodegradable scaffold material.

    Science.gov (United States)

    Wen, Zhaohui; Zhang, Liming; Chen, Chao; Liu, Yibo; Wu, Changjun; Dai, Changsong

    2013-04-01

    Slow corrosion rate and poor bioactivity restrict iron-based implants in biomedical application. In this study, we design a new iron-foam-based calcium phosphate/chitosan coating biodegradable composites offering a priority mechanical and bioactive property for bone tissue engineering through electrophoretic deposition (EPD) followed by a conversion process into a phosphate buffer solution (PBS). Tensile test results showed that the mechanical property of iron foam could be regulated through altering the construction of polyurethane foam. The priority coatings were deposited from 40% nano hydroxyapatite (nHA)/ethanol suspension mixed with 60% nHA/chitosan-acetic acid aqueous solution. In vitro immersion test showed that oxidation-iron foam as the matrix decreased the amount of iron implanted and had not influence on the bioactivity of this implant, obviously. So, this method could also be a promising method for the preparation of a new calcium phosphate/chitosan coating on foam construction. PMID:23827538

  8. A construction of novel iron-foam-based calcium phosphate/chitosan coating biodegradable scaffold material.

    Science.gov (United States)

    Wen, Zhaohui; Zhang, Liming; Chen, Chao; Liu, Yibo; Wu, Changjun; Dai, Changsong

    2013-04-01

    Slow corrosion rate and poor bioactivity restrict iron-based implants in biomedical application. In this study, we design a new iron-foam-based calcium phosphate/chitosan coating biodegradable composites offering a priority mechanical and bioactive property for bone tissue engineering through electrophoretic deposition (EPD) followed by a conversion process into a phosphate buffer solution (PBS). Tensile test results showed that the mechanical property of iron foam could be regulated through altering the construction of polyurethane foam. The priority coatings were deposited from 40% nano hydroxyapatite (nHA)/ethanol suspension mixed with 60% nHA/chitosan-acetic acid aqueous solution. In vitro immersion test showed that oxidation-iron foam as the matrix decreased the amount of iron implanted and had not influence on the bioactivity of this implant, obviously. So, this method could also be a promising method for the preparation of a new calcium phosphate/chitosan coating on foam construction.

  9. Effect of Chitosan Coating on the Postharvest Quality and Antioxidant Enzyme System Response of Strawberry Fruit during Cold Storage

    Directory of Open Access Journals (Sweden)

    Milena Petriccione

    2015-09-01

    Full Text Available The effectiveness of chitosan fruit coating to delay the qualitative and nutraceutical traits of three strawberry cultivars, namely “Candonga”, “Jonica” and “Sabrina”, as well as the effects of chitosan on antioxidant enzymes were evaluated. The fruits were coated with 1% and 2% chitosan solution and stored at 2 °C for nine days. Samples were taken every three days. Physico-chemical (weight loss, soluble solid content and titratable acidity and nutraceutical (total polyphenol, anthocyanin, flavonoid, ascorbic acid content and antioxidant capacity properties along with the enzymatic activity (catalase (CAT, ascorbate peroxidase (APX, polyphenol oxidase (PPO, guaiacol peroxidase (GPX and lipoxygenase (LOX were evaluated. Chitosan treatment significantly reduced water loss and delayed the qualitative changes in color, titratable acidity and ascorbic acid content in dose- and cultivar-dependent manners. Additionally, changes in the total polyphenol, anthocyanin and flavonoid contents and the antioxidant capacity of chitosan-coated strawberry fruits were delayed. Chitosan coating enhanced the activity of some antioxidant enzymes, preventing flesh browning and reducing membrane damage. A global view of the responses of the three strawberry cultivars to chitosan coating and storage temperature was obtained using principal component analysis. Chitosan-coated fruit exhibited a slower rate of deterioration, compared to uncoated fruit in all tested cultivars.

  10. Biocompatibility of chitosan-coated iron oxide nanoparticles with osteoblast cells

    Directory of Open Access Journals (Sweden)

    Shi S

    2012-10-01

    Full Text Available Si-Feng Shi,1 Jing-Fu Jia,2 Xiao-Kui Guo,3 Ya-Ping Zhao,2 De-Sheng Chen,1 Yong-Yuan Guo,1 Tao Cheng,1 Xian-Long Zhang11Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital, School of Medicine, 2School of Chemistry and Chemical Technology, 3Department of Medical Microbiology and Parasitology, School of Medicine, Shanghai Jiao Tong University Shanghai, ChinaBackground: Bone disorders (including osteoporosis, loosening of a prosthesis, and bone infections are of great concern to the medical community and are difficult to cure. Therapies are available to treat such diseases, but all have drawbacks and are not specifically targeted to the site of disease. Chitosan is widely used in the biomedical community, including for orthopedic applications. The aim of the present study was to coat chitosan onto iron oxide nanoparticles and to determine its effect on the proliferation and differentiation of osteoblasts.Methods: Nanoparticles were characterized using transmission electron microscopy, dynamic light scattering, x-ray diffraction, zeta potential, and vibrating sample magnetometry. Uptake of nanoparticles by osteoblasts was studied by transmission electron microscopy and Prussian blue staining. Viability and proliferation of osteoblasts were measured in the presence of uncoated iron oxide magnetic nanoparticles or those coated with chitosan. Lactate dehydrogenase, alkaline phosphatase, total protein synthesis, and extracellular calcium deposition was studied in the presence of the nanoparticles.Results: Chitosan-coated iron oxide nanoparticles enhanced osteoblast proliferation, decreased cell membrane damage, and promoted cell differentiation, as indicated by an increase in alkaline phosphatase and extracellular calcium deposition. Chitosan-coated iron oxide nanoparticles showed good compatibility with osteoblasts.Conclusion: Further research is necessary to optimize magnetic nanoparticles for the treatment of bone disease

  11. Adsorption and photocatalyst assisted dye removal and bactericidal performance of ZnO/chitosan coating layer.

    Science.gov (United States)

    Kamal, Tahseen; Ul-Islam, Mazhar; Khan, Sher Bahadar; Asiri, Abdullah M

    2015-11-01

    Pure chitosan and its zinc oxide composite coatings were applied on microfibriller cellulose mat (MCM) to prepare chitosan coated microfibriller cellulose (Chi-MCM) and zinc oxide/chitosan coated microfibriller cellulose (ZnO/Chi-MCM), respectively. X-ray diffraction (XRD), and scanning electron microscopy (SEM), were used to characterize the samples in this study. SEM images showed that dense chitosan solutions (3 and 5wt%) made a thick layer over MCM while diluted solution (1wt%) resulted in wrapping of the chitosan over the individual microfibers and avoided the thick layer formation. Removal of an azo dye methyl orange (MO) from aqueous solution using adsorption and combined adsorption with photodegradation activity of the Chi-MCM and ZnO/Chi-MCM were evaluated, respectively. Compared in the absence of UV light, ZnO/Chi-MCM showed faster and higher degree of dye removal by photocatalytic dissociation and adsorption under ultraviolet irradiation. Various parameters including pH of MO solution and its initial concentration were tested for the removal of MO dye. ZnO/Chi-MCM showed maximum adsorption capacity of 42.8mg/g. Antibacterial activities were also evaluated where ZnO/Chi-MCM displayed a remarkable performance inhibiting the Escherichia coli growth.

  12. Effects of chitosan-glucose complex coating on postharvest quality and shelf life of table grapes.

    Science.gov (United States)

    Gao, Pisheng; Zhu, Zhiqiang; Zhang, Ping

    2013-06-01

    Surface coatings and films are prospective alternatives for extending the postharvest life of fresh fruits and vegetables. In this study, freshly harvested grapes were treated with chitosan, glucose, chitosan-glucose complex (CGC), or water (control) for up to 60 days at 0 °C in 95% relative humidity followed by 3 days in the air at 20 °C. The results showed that coated samples were effective in terms of senescence inhibition and postharvest diseases prevention. Chitosan-glucose complex showed better effects on delaying the declines of total soluble solids, ascorbic acid and titratable acidity, decreasing decay and weight loss, suppressing respiration rate, inducing POD and SOD activities, in comparison with pure chitosan or glucose. In addition, CGC coating treatment ensured better berry texture and higher sensory scores, compared with those treated with chitosan or glucose alone. The results indicated that CGC may be a promising strategy for improving the postharvest quality and extending the shelf life of table grapes. PMID:23618282

  13. Chitosan-Iron Oxide Coated Graphene Oxide Nanocomposite Hydrogel: A Robust and Soft Antimicrobial Biofilm.

    Science.gov (United States)

    Konwar, Achyut; Kalita, Sanjeeb; Kotoky, Jibon; Chowdhury, Devasish

    2016-08-17

    We report a robust biofilm with antimicrobial properties fabricated from chitosan-iron oxide coated graphene oxide nanocomposite hydrogel. For the first time, the coprecipitation method was used for the successful synthesis of iron oxide coated graphene oxide (GIO) nanomaterial. After this, films were fabricated by the gel-casting technique aided by the self-healing ability of the chitosan hydrogel network system. Both the nanomaterial and the nanocomposite films were characterized by techniques such as scanning electron microscopy, FT-IR spectroscopy, X-ray diffraction, and vibrating sample magnetometry. Measurements of the thermodynamic stability and mechanical properties of the films indictaed a significant improvement in their thermal and mechanical properties. Moreover, the stress-strain profile indicated the tough nature of the nanocomposite hydrogel films. These improvements, therefore, indicated an effective interaction and good compatibility of the GIO nanomaterial with the chitosan hydrogel matrix. In addition, it was also possible to fabricate films with tunable surface properties such as hydrophobicity simply by varying the loading percentage of GIO nanomaterial in the hydrogel matrix. Fascinatingly, the chitosan-iron oxide coated graphene oxide nanocomposite hydrogel films displayed significant antimicrobial activities against both Gram-positive and Gram-negative bacterial strains, such as methicillin-resistant Staphylococcus aureus, Staphylococcus aureus, and Escherichia coli, and also against the opportunistic dermatophyte Candida albicans. The antimicrobial activities of the films were tested by agar diffusion assay and antimicrobial testing based on direct contact. A comparison of the antimicrobial activity of the chitosan-GIO nanocomposite hydrogel films with those of individual chitosan-graphene oxide and chitosan-iron oxide nanocomposite films demonstrated a higher antimicrobial activity for the former in both types of tests. In vitro hemolysis

  14. Effect of chitosan and thiolated chitosan coating on the inhibition behaviour of PIBCA nanoparticles against intestinal metallopeptidases

    International Nuclear Information System (INIS)

    Surface modified nanoparticles composed of poly(isobutylcyanoacrylate) (PIBCA) cores surrounded by a chitosan and thiolated chitosan gel layer were prepared and characterized in previous works. The presence of such biopolymers on the nanoparticle surface conferred those nanosystems interesting characteristics that might partially overcome the gastrointestinal enzymatic barrier, improving the oral administration of pharmacologically active peptides. In the present work, the antiprotease behaviour of this family of core-shell nanoparticles was in vitro tested against two model metallopeptidases present in the gastrointestinal tract (GIT): Carboxypeptidase A -CP A- (luminal protease) and Leucine Aminopeptidase M -LAP M- (membrane protease). As previous step, the zinc-binding capacity of these nanoparticles was evaluated. Interestingly, an improvement of both the zinc-binding capacity and the antiprotease effect of chitosan was observed when the biopolymers (chitosan and thiolated chitosan) were used as coating component of the core-shell nanoparticles, in comparison with their behaviour in solution, thanks to the different biopolymer chains rearrangement. The presence of amino, hydroxyl and thiol groups on the nanoparticle surface promoted zinc binding and hence the inhibition of the metallopeptidases analysed. On the contrary, the occurrence of a cross-linked structure in the gel layer surrounding the PIBCA cores of thiolated formulations, due to the formation of interchain and intrachain disulphide bonds, partially limited the inhibition of the proteases. The low accessibility of cations to the active groups of the cross-linked polymeric shell was postulated as a possible explanation of this behaviour. Results obtained in this work make this family of surface-modified nanocarriers promising candidates for the successfull administration of pharmacologically active peptides and proteins by the oral route.

  15. Post-harvest conservation of organic strawberries coated with cassava starch and chitosan

    Directory of Open Access Journals (Sweden)

    Raquel P Campos

    2011-10-01

    Full Text Available The strawberry is as non-climacteric fruit, but has a high post-harvest respiration rate, which leads to a rapid deterioration at room temperature. This study aimed to evaluate the application of biodegradable coating on postharvest conservation of organic strawberries, cv. Camarosa, packed in plastic hinged boxes and stored at 10ºC. The treatments consisted of: a control; b 2% cassava starch; c 1% chitosan; and d 2% cassava starch + 1% chitosan. Physical and chemical characteristics of fruits were evaluated at 3, 6 and 9 days of storage, and microbiological and sensory analyses were carried out at the end of the storage period. The treatments influenced positively the post-harvest quality of organic strawberries. The coating cassava starch + chitosan provided the best results, with less than 6% of loss in fruit mass, lower counts of yeast and psychrophilic microorganisms and the best appearance according to the sensory analysis.

  16. Effects of Chitosan-Essential Oil Coatings on Safety and Quality of Fresh Blueberries

    Science.gov (United States)

    Chitosan coating plus different essential oils was developed and applied to fresh blueberries, in order to find environmentally friendly and healthy treatments to preserve fresh fruit quality and safety during postharvest storage. Studies were first performed in vitro where wild-type Escherichia col...

  17. Effects of Lactobacillus plantarum immobilization in alginate coated with chitosan and gelatin on antibacterial activity.

    Science.gov (United States)

    Trabelsi, Imen; Ayadi, Dorra; Bejar, Wacim; Bejar, Samir; Chouayekh, Hichem; Ben Salah, Riadh

    2014-03-01

    The present study aimed to investigate and evaluate the efficiency of immobilizing the Lactobacillus plantarum TN9 strain in alginate using chitosan and gelatin as coating materials, in terms of viability and antibacterial activity. The results indicate that maximum concentrations of L. plantarum TN9 strain were produced with 2% sodium alginate, 10(8)UFC/ml, and 1M calcium chloride. The viability and antibacterial activity of the L. plantarum TN9 cultures before and after immobilization in alginate, chitosan-coated alginate, and gelatin-coated alginate, were studied. The findings revealed that the viability of encapsulated L. plantarum could be preserved more than 5.8 log CFU/ml after 35 day of incubation at 4 °C, and no effects were observed when gelatin was used. The antibacterial activity of encapsulated L. plantarum TN9 against Gram-positive and Gram-negative pathogenic bacteria was enhanced in the presence of chitosan coating materials, and no activity was observed in the presence of gelatin. The effects of catalase and proteolytic enzymes on the culture supernatant of L. plantarum TN9 were also investigated, and the results suggested that the antibacterial activity observed was due to the production of organic acids. Taken together, the findings indicated that immobilization in chitosan enhanced the antibacterial activity of L. plantarum TN9 against several pathogenic bacteria. This encapsulated strain could be considered as a potential strong candidate for future application as an additive in the food and animal feed industries.

  18. Chitosan-coated nickel-ferrite nanoparticles as contrast agents in magnetic resonance imaging

    Science.gov (United States)

    Ahmad, Tanveer; Bae, Hongsub; Iqbal, Yousaf; Rhee, Ilsu; Hong, Sungwook; Chang, Yongmin; Lee, Jaejun; Sohn, Derac

    2015-05-01

    We report evidence for the possible application of chitosan-coated nickel-ferrite (NiFe2O4) nanoparticles as both T1 and T2 contrast agents in magnetic resonance imaging (MRI). The coating of nickel-ferrite nanoparticles with chitosan was performed simultaneously with the synthesis of the nickel-ferrite nanoparticles by a chemical co-precipitation method. The coated nanoparticles were cylindrical in shape with an average length of 17 nm and an average width of 4.4 nm. The bonding of chitosan onto the ferrite nanoparticles was confirmed by Fourier transform infrared spectroscopy. The T1 and T2 relaxivities were 0.858±0.04 and 1.71±0.03 mM-1 s-1, respectively. In animal experimentation, both a 25% signal enhancement in the T1-weighted mage and a 71% signal loss in the T2-weighted image were observed. This demonstrated that chitosan-coated nickel-ferrite nanoparticles are suitable as both T1 and T2 contrast agents in MRI. We note that the applicability of our nanoparticles as both T1 and T2 contrast agents is due to their cylindrical shape, which gives rise to both inner and outer sphere processes of nanoparticles.

  19. Kinetic of Adsorption of Urea Nitrogen onto Chitosan Coated Dialdehyde Cellulose under Catalysis of Immobilized Urease

    Institute of Scientific and Technical Information of China (English)

    Zu Pei LIANG; Ya Qing FENG; Zhi Yan LIANG; Shu Xian MENG

    2005-01-01

    The adsorption of urea nitrogen onto chitosan coated dialdehyde cellulose (CDAC)under catalysis of immobilized urease in gelatin membrane (IE) was studied in batch system. The pseudo first-order and second-order kinetic models were used to describe the kinetic data, and the rate constants were evaluated. The experimental data fitted well to the second-order kinetic model.

  20. Development and evaluation of chitosan and chitosan/Kollicoat® Smartseal 30 D film-coated tablets for colon targeting.

    Science.gov (United States)

    Drechsler, Michael; Garbacz, Grzegorz; Thomann, Ralf; Schubert, Rolf

    2014-11-01

    The aim of the present study was to develop film-coated tablets which release a minor amount of the active pharmaceutical ingredient (API) into the stomach and small intestine, yet show a sharp increase of drug release in the colon. Tablets containing the model drug Diclofenac-Na, microcrystalline cellulose as a filler (MT), as well as tablets consisting of Ludiflash® (LT), both were used as tablet cores, respectively. Either chitosan (CHI) alone or different ratios of chitosan and Kollicoat® Smartseal 30 D (KCSS) were applied onto these cores. The resulting film-coated tablets were analyzed for swelling, drug dissolution and stability. In order to clarify whether the colon release is mainly enzyme-driven or pressure-controlled, the coated tablets were both tested in the colon microflora test (CMT), which simulates the enzyme environment within the colon, and using a bio-relevant dissolution apparatus mimicking the intraluminal pressures and stress conditions present in the gastrointestinal tract (GIT). CHI/KCSS (25:75) coated LTs showed a pressure-controlled site-specific drug release in the large intestine, while remaining intact in the upper GIT. CHI as well as CHI/KCSS (25:75) applied onto MTs, remained stable during the entire simulated bio-relevant dissolution transit of the GIT, but showed enzymatically controlled colon targeting in the CMT. These results could be confirmed for CHI/KCSS (25:75) film-coated MTs top-coated with an additional hydroxypropylmethylcellulose (HPMC) layer and an Eudragit L 30 D-55 (EUL) layer to avoid the dissolution in the fasting stomach. PMID:25301294

  1. Fish gelatin combined with chitosan coating inhibits myofibril degradation of golden pomfret (Trachinotus blochii) fillet during cold storage.

    Science.gov (United States)

    Feng, Xiao; Bansal, Nidhi; Yang, Hongshun

    2016-06-01

    Coating of gelatin and chitosan can improve fish fillet's quality, but the mechanism is not clear. Chitosan/gelatin coatings significantly prevented deterioration of golden pomfret fillet at 4 °C. Chitosan with 7.2% gelatin group showed the best effect on preserving the length of myofibril, which remained greater than 15 μm at day 17 of storage, while for control, chitosan and chitosan combined with 3.6% gelatin group, it was 5.03, 10.04 and 9.02 μm, respectively. The MALDI-TOF MS result revealed that the coatings slowed down the protein deterioration of fillet. On days 13 and 17, the myosin light chain and myoglobin in control group degraded, while the two proteins still existed in chitosan/gelatin coated groups. Overall, the chitosan with 7.2% gelatin coating had the best effect on preserving fillet's quality during storage. The coating may exert its protective effect via inhibiting myofibril degradation within fillet. PMID:26830590

  2. Cellulose acetate/hydroxyapatite/chitosan coatings for improved corrosion resistance and bioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Zhenyu; Qin, Jinli [Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Ma, Jun, E-mail: caltary@gmail.com [Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-04-01

    Cellulose acetate (CA) nanofibers were deposited on stainless steel plates by electrospinning technique. The composite of hydroxyapatite (HAP) nanoparticles and chitosan (CHI) was coated subsequently by dip-coating. The structure and morphology of the obtained coatings were investigated by Fourier transform infrared spectroscopy and scanning electron microscopy. The stability of the coatings in physiological environment was studied using electrochemical polarization and impedance spectroscopy. The CA nanofibers were embedded in the HAP/CHI coating and the resulted composite film was densely packed and uniform on the substrate. The in vitro biomineralization study of the coated samples immersed in simulated body fluid (SBF) confirmed the formation ability of bone-like apatite layer on the surface of HAP-containing coatings. Furthermore, the coatings could provide corrosion resistance to the stainless steel substrate in SBF. The electrochemical results suggested that the incorporation of CA nanofibers could improve the corrosion resistance of the HAP/CHI coating. Thus, biocompatible CA/HAP/CHI coated metallic implants could be very useful in the long-term stability of the biomedical applications. - Highlights: • The composite coatings were prepared by electrospinning and dip-coating. • Good in vitro bioactivity of the CA/HAP/CHI coating was confirmed. • Electrochemical behaviors in SBF of the coatings have been studied. • The CA/HAP/CHI coating shows better resistance property than HAP/CHI.

  3. Electrophoretic Deposition of Chitosan Coatings Modified with Gelatin Nanospheres To Tune the Release of Antibiotics.

    Science.gov (United States)

    Song, Jiankang; Chen, Qiang; Zhang, Yang; Diba, Mani; Kolwijck, Eva; Shao, Jinlong; Jansen, John A; Yang, Fang; Boccaccini, Aldo R; Leeuwenburgh, Sander C G

    2016-06-01

    Orthopedic and dental implants are increasingly used in the medical field in view of their high success rates. Implant-associated infections, however, still occur and are difficult to treat. To combat these infections, the application of an active coating to the implant surface is advocated as an effective strategy to facilitate sustained release of antibacterial drugs from implant surfaces. Control over this release is, however, still a major challenge. To overcome this problem, we deposited composite coatings composed of a chitosan matrix containing gelatin nanospheres loaded with antibiotics onto stainless steel plates by means of the electrophoretic deposition technique. The gelatin nanospheres were distributed homogeneously throughout the coatings. The surface roughness and wettability of the coatings could be tuned by a simple adjustment of the weight ratio between the gelatin nanospheres and chitosan. Vancomycin and moxifloxacin were released in sustained and burst-type manners, respectively, while the coatings were highly cytocompatible. The antibacterial efficacy of the coatings containing different amounts of antibiotics was tested using a zone of inhibition test against Staphylococcus aureus, which showed that the coatings containing moxifloxacin exhibited an obvious inhibition zone. The coatings containing a high amount of vancomycin were able to kill bacteria in direct contact with the implant surface. These results suggest that the antibacterial capacity of metallic implants can be tuned by orthogonal control over the release of (multiple) antibiotics from electrophoretically deposited composite coatings, which offers a new strategy to prevent orthopedic implant-associated infections. PMID:27167424

  4. Surface characterization and corrosion behavior of micro-arc oxidized Ti surface modified with hydrothermal treatment and chitosan coating

    Energy Technology Data Exchange (ETDEWEB)

    Neupane, Madhav Prasad; Park, Il Song, E-mail: ilsong@jbnu.ac.kr; Lee, Min Ho, E-mail: mh@jbnu.ac.kr

    2014-01-01

    In the present work, we describe the surface modification of commercially pure titanium (CP-Ti) by a composite/multilayer coating approach for biomedical applications. CP-Ti samples were treated by micro-arc oxidation (MAO) and subsequently some of the samples were coated with chitosan (Chi) by dip coating method, while others were subjected to hydrothermal treatment (HT) followed by chitosan coating. The MAO, MAO/Chi, and MAO/HT/Chi coated Ti were characterized and their characteristics were compared with CP-Ti. X-ray diffraction and scanning electron microscopy were used to assess the structural and morphological characteristics. The average surface roughness was determined using a surface profilometer. The corrosion resistance of untreated and surface modified Ti in commercial saline at 298 K was evaluated by potentiodynamic polarization test. The results indicated that the chitosan coating is very well integrated with the MAO and MAO/HT coating by physically interlocking itself with the coated layer and almost sealed all the pores. The surface roughness of hydrothermally treated and chitosan coated MAO film was superior evidently to that with other sample groups. The corrosion studies demonstrated that the MAO, hydrothermally treated and chitosan coated sample enhanced the corrosion resistance of titanium. The result indicates that fabrication of hydrothermally treated MAO surface coatings with chitosan is a significant approach to protect the titanium from corrosion, hence enhancing the potential use of titanium as bio-implants. - Highlights: • Micro-arc oxidized (MAO) and hydrothermally treated (HT) Ti surfaces are coated with chitosan (Chi). • The MAO/HT/Chi surface exhibits pores sealing and enhanced the surface roughness. • The MAO/HT/Chi surface significantly increase the corrosion resistance. • The MAO/HT/Chi can be a potential surface of titanium for bio-implants.

  5. Surface characterization and corrosion behavior of micro-arc oxidized Ti surface modified with hydrothermal treatment and chitosan coating

    International Nuclear Information System (INIS)

    In the present work, we describe the surface modification of commercially pure titanium (CP-Ti) by a composite/multilayer coating approach for biomedical applications. CP-Ti samples were treated by micro-arc oxidation (MAO) and subsequently some of the samples were coated with chitosan (Chi) by dip coating method, while others were subjected to hydrothermal treatment (HT) followed by chitosan coating. The MAO, MAO/Chi, and MAO/HT/Chi coated Ti were characterized and their characteristics were compared with CP-Ti. X-ray diffraction and scanning electron microscopy were used to assess the structural and morphological characteristics. The average surface roughness was determined using a surface profilometer. The corrosion resistance of untreated and surface modified Ti in commercial saline at 298 K was evaluated by potentiodynamic polarization test. The results indicated that the chitosan coating is very well integrated with the MAO and MAO/HT coating by physically interlocking itself with the coated layer and almost sealed all the pores. The surface roughness of hydrothermally treated and chitosan coated MAO film was superior evidently to that with other sample groups. The corrosion studies demonstrated that the MAO, hydrothermally treated and chitosan coated sample enhanced the corrosion resistance of titanium. The result indicates that fabrication of hydrothermally treated MAO surface coatings with chitosan is a significant approach to protect the titanium from corrosion, hence enhancing the potential use of titanium as bio-implants. - Highlights: • Micro-arc oxidized (MAO) and hydrothermally treated (HT) Ti surfaces are coated with chitosan (Chi). • The MAO/HT/Chi surface exhibits pores sealing and enhanced the surface roughness. • The MAO/HT/Chi surface significantly increase the corrosion resistance. • The MAO/HT/Chi can be a potential surface of titanium for bio-implants

  6. Improvement of the microbiological quality of ready-to-eat peeled shrimps (Penaeus vannamei) by the use of chitosan coatings.

    Science.gov (United States)

    Carrión-Granda, Ximena; Fernández-Pan, Idoya; Jaime, Isabel; Rovira, Jordi; Maté, Juan I

    2016-09-01

    Chitosan coatings incorporated with 0.5% of oregano and thyme EO were applied onto ready-to-eat peeled shrimp tails and packed under MAP conditions. The growth of naturally present spoilage microorganisms was evaluated for 12days during chilled storage (4°C). Coatings containing thyme EO were more effective in inhibiting the microbial species studied, specially lactic acid and psychrotrophic bacteria. As carrier of EOs, chitosan was more effective in inhibiting the growth of bacteria present in peeled shrimps than the direct application of an oil-water (O/W) emulsion. Finally, results from sensory analysis showed that the sensorial quality was affected by the chitosan-thyme coatings despite characteristics like firmness and colour were kept. The present work demonstrates the effectiveness of chitosan enriched coatings, offering a promising alternative to control the growth of spoilage and pathogen microorganisms on peeled shrimps during refrigeration storage. PMID:27315588

  7. Chitosan-coated nickel-ferrite nanoparticles as contrast agents in magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Tanveer [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Department of Physics, Abdul Wali Khan University, Mardan (Pakistan); Bae, Hongsub; Iqbal, Yousaf [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Rhee, Ilsu, E-mail: ilrhee@knu.ac.kr [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Hong, Sungwook [Division of Science Education, Daegu University, Gyeongsan 712-714 (Korea, Republic of); Chang, Yongmin; Lee, Jaejun [Department of Diagnostic Radiology, College of Medicine, Kyungpook National University and Hospital, Daegu 700-721 (Korea, Republic of); Sohn, Derac [Department of Physics, Hannam University, Daejon (Korea, Republic of)

    2015-05-01

    We report evidence for the possible application of chitosan-coated nickel-ferrite (NiFe{sub 2}O{sub 4}) nanoparticles as both T{sub 1} and T{sub 2} contrast agents in magnetic resonance imaging (MRI). The coating of nickel-ferrite nanoparticles with chitosan was performed simultaneously with the synthesis of the nickel-ferrite nanoparticles by a chemical co-precipitation method. The coated nanoparticles were cylindrical in shape with an average length of 17 nm and an average width of 4.4 nm. The bonding of chitosan onto the ferrite nanoparticles was confirmed by Fourier transform infrared spectroscopy. The T{sub 1} and T{sub 2} relaxivities were 0.858±0.04 and 1.71±0.03 mM{sup −1} s{sup −1}, respectively. In animal experimentation, both a 25% signal enhancement in the T{sub 1}-weighted mage and a 71% signal loss in the T{sub 2}-weighted image were observed. This demonstrated that chitosan-coated nickel-ferrite nanoparticles are suitable as both T{sub 1} and T{sub 2} contrast agents in MRI. We note that the applicability of our nanoparticles as both T{sub 1} and T{sub 2} contrast agents is due to their cylindrical shape, which gives rise to both inner and outer sphere processes of nanoparticles. - Highlights: • Chitosan-coated nickel-ferrite (Ni-Fe{sub 2}O{sub 4}) nanoparticles were synthesized in an aqueous system by chemical co-precipitation. • The characterization of bare and chitosan-coated nanoparticles were performed using various analytical tools, such as TEM, FTIR, XRD, and VMS. • We evaluated the coated particles as potential T{sub 1} and T{sub 2} contrast agents for MRI by measuring T{sub 1} and T{sub 2} relaxation times as a function of iron concentration. • Both T{sub 1} and T{sub 2} effects were also observed in animal experimentation.

  8. Electrophoretic deposition of graphene oxide reinforced chitosan-hydroxyapatite nanocomposite coatings on Ti substrate.

    Science.gov (United States)

    Shi, Y Y; Li, M; Liu, Q; Jia, Z J; Xu, X C; Cheng, Y; Zheng, Y F

    2016-03-01

    Electrophoretic deposition (EPD) is a facile and feasible technique to prepare functional nanocomposite coatings for application in orthopedic-related implants. In this work, a ternary graphene oxide-chitosan-hydroxyapatite (GO-CS-HA) composite coating on Ti substrate was successfully fabricated by EPD. Coating microstructure and morphologies were investigated by scanning electron microscopy, contact angle test, Raman spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. It was found GO-CS surface were uniformly decorated by HA nanoparticles. The potentiodynamic polarization test in simulated body fluid indicated that the GO-CS-HA coatings could provide effective protection of Ti substrate from corrosion. This ternary composite coating also exhibited good biocompatibility during incubation with MG63 cells. In addition, the nanocomposite coatings could decrease the attachment of Staphylococcus aureus. PMID:26758895

  9. Edible Active Coatings Based on Pectin, Pullulan, and Chitosan Increase Quality and Shelf Life of Strawberries (Fragaria ananassa).

    Science.gov (United States)

    Treviño-Garza, Mayra Z; García, Santos; del Socorro Flores-González, Ma; Arévalo-Niño, Katiushka

    2015-08-01

    Edible active coatings (EACs) based on pectin, pullulan, and chitosan incorporated with sodium benzoate and potassium sorbate were employed to improve the quality and shelf life of strawberries. Fruits were washed, disinfected, coated by dipping, packed, and stored at 4 °C for 15 d. Application of EACs reduced (P 0.05) throughout storage, and ascorbic acid content was maintained in pectin-EAC coated strawberries. Microbiological analyses showed that application of EACs reduced (P < 0.05) microbial growth (total aerobic counts, molds, and yeasts) on strawberries. Chitosan-EAC coated strawberries presented the best results in microbial growth assays. Sensory quality (color, flavor, texture, and acceptance) improved and decay rate decreased (P < 0.05) in pectin-EAC, pullulan-EAC, and chitosan-EAC coated strawberries. In conclusion, EACs based on polysaccharides improved the physicochemical, microbiological, and sensory characteristics, increasing the shelf life of strawberries from 6 (control) to 15 d (coated fruits). PMID:26189365

  10. Preparation and characterization of chitosan-silver/hydroxyapatite composite coatings onTiO2 nanotube for biomedical applications

    Science.gov (United States)

    Yan, Yajing; Zhang, Xuejiao; Li, Caixia; Huang, Yong; Ding, Qiongqiong; Pang, Xiaofeng

    2015-03-01

    A biocomposite coating containing chitosan, silver, and hydroxyapatite was developed on anodized titanium substrate by electrochemical deposition. Coatings were characterized by field-emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and polarisation studies. Results showed that the prepared coatings had compact and dense morphology with a thickness of 6.2 ± 0.7 μm and that silver was evenly distributed. Testing the prepared coatings with Gram-positive and Gram-negative bacterial strains exhibited antibacterial activity because of the synergistic effect of silver and chitosan. The prepared coatings were also found to be nontoxic to MC3T3-E1 cells. These results suggested that chitosan/silver-hydroxyapatite biocomposite coatings can prevent the bacterial infection of implants.

  11. Effects of a chitosan membrane coated with polylactic and polyglycolic acid on bone regeneration in a rat calvarial defect

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ui-Won [Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, 134 Shinchon-Dong, Seodaemun-gu, Seoul 120-752l (Korea, Republic of); Song, Kun-Young [Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, 134 Shinchon-Dong, Seodaemun-gu, Seoul 120-752l (Korea, Republic of); Kim, Chang-Sung [Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, 134 Shinchon-Dong, Seodaemun-gu, Seoul 120-752l (Korea, Republic of); Lee, Yong-Keun [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 134 Shinchon-Dong, Seodaemun-gu, Seoul 120-750 (Korea, Republic of); Cho, Kyoo-Sung [Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, 134 Shinchon-Dong, Seodaemun-gu, Seoul 120-752l (Korea, Republic of); Kim, Chong-Kwan [Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, 134 Shinchon-Dong, Seodaemun-gu, Seoul 120-752l (Korea, Republic of); Choi, Seong-Ho [Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, 134 Shinchon-Dong, Seodaemun-gu, Seoul 120-752l (Korea, Republic of)

    2007-09-15

    The purpose of this study was to evaluate the effects of a chitosan membrane coated with polylactic and polyglycolic acid (PLGA) on bone regeneration in a rat calvarial defect. Surgical implantation of chitosan membranes resulted in enhanced local bone formation at both 2 and 8 weeks. In conclusion, the chitosan membrane coated with PLGA had a significant potential to induce bone formation in the rat calvarial defect model. Within the selected PLGA dose range and observation intervals, there appeared to be no meaningful differences in bone formation.

  12. Biodegradable Chitosan Nanoparticle Coatings on Titanium for the Delivery of BMP-2

    Directory of Open Access Journals (Sweden)

    Nils Poth

    2015-01-01

    Full Text Available A simple method for the functionalization of a common implant material (Ti6Al4V with biodegradable, drug loaded chitosan-tripolyphosphate (CS-TPP nanoparticles is developed in order to enhance the osseointegration of endoprostheses after revision operations. The chitosan used has a tailored degree of acetylation which allows for a fast biodegradation by lysozyme. The degradability of chitosan is proven via viscometry. Characteristics and degradation of nanoparticles formed with TPP are analyzed using dynamic light scattering. The particle degradation via lysozyme displays a decrease in particle diameter of 40% after 4 days. Drug loading and release is investigated for the nanoparticles with bone morphogenetic protein 2 (BMP-2, using ELISA and the BRE luciferase test for quantification and bioactivity evaluation. Furthermore, nanoparticle coatings on titanium substrates are created via spray-coating and analyzed by ellipsometry, scanning electron microscopy and X-ray photoelectron spectroscopy. Drug loaded nanoparticle coatings with biologically active BMP-2 are obtained in vitro within this work. Additionally, an in vivo study in mice indicates the dose dependent induction of ectopic bone growth through CS-TPP-BMP-2 nanoparticles. These results show that biodegradable CS-TPP coatings can be utilized to present biologically active BMP-2 on common implant materials like Ti6Al4V.

  13. Chemical, biochemical, and microbiological aspects of chitosan quaternary salt as active coating on sliced apples

    Directory of Open Access Journals (Sweden)

    Douglas de Britto

    2012-09-01

    Full Text Available The biocompatibility of chitosan and chitosan quaternary salt coatings was evaluated for use as edible coatings for sliced apple. Measurement of water loss, color change, and fungal growth appearance were monitored as a function of time. A significant brownish effect was observed on chitosan coated slices, varying greatly from L* = 76.5 and Hue angle = 95.9° (t = 0 to L* = 45.3 and Hue angle = 69.8° (t = 3 days, whilst for TMC coated samples the variation was considerable lower (L* = 74.1; Hue angle = 95.0° to (L* = 67.0; Hue angle = 83.8° within the same period. The hydrosoluble derivative N,N,N-trimethylchitosan demonstrated good antifungal activity against P. expansum although highly dependent on the polymer properties such as degree of quaternization. The most efficient formulation was that prepared from derivative having a degree of quaternization of 45%, high solubility, and high viscosity. This formulation restrained fungus spreading up to 30%, while for the control it reached almost 80% of the total assessed surfaces during 7 days of storage.

  14. Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Unsoy, Gozde, E-mail: gozdeunsoy@hotmail.com [Middle East Technical University, Department of Biotechnology (Turkey); Yalcin, Serap [Middle East Technical University, Department of Biological Sciences (Turkey); Khodadust, Rouhollah [Middle East Technical University, Department of Biotechnology (Turkey); Gunduz, Gungor [Middle East Technical University, Department of Chemical Engineering (Turkey); Gunduz, Ufuk, E-mail: ufukg@metu.edu.tr [Middle East Technical University, Department of Biological Sciences (Turkey)

    2012-11-15

    The chitosan-coated magnetic nanoparticles (CS MNPs) were in situ synthesized by cross-linking method. In this method; during the adsorption of cationic chitosan molecules onto the surface of anionic magnetic nanoparticles (MNPs) with electrostatic interactions, tripolyphosphate (TPP) is added for ionic cross-linking of the chitosan molecules with each other. The characterization of synthesized nanoparticles was performed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS/ESCA), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), dynamic light scattering (DLS), thermal gravimetric analysis (TGA), and vibrating sample magnetometry (VSM) analyses. The XRD and XPS analyses proved that the synthesized iron oxide was magnetite (Fe{sub 3}O{sub 4}). The layer of chitosan on the magnetite surface was confirmed by FTIR. TEM results demonstrated a spherical morphology. In the synthesis, at higher NH{sub 4}OH concentrations, smaller sized nanoparticles were obtained. The average diameters were generally between 2 and 8 nm for CS MNPs in TEM and between 58 and 103 nm in DLS. The average diameters of bare MNPs were found as around 18 nm both in TEM and DLS. TGA results indicated that the chitosan content of CS MNPs were between 15 and 23 % by weight. Bare and CS MNPs were superparamagnetic. These nanoparticles were found non-cytotoxic on cancer cell lines (SiHa, HeLa). The synthesized MNPs have many potential applications in biomedicine including targeted drug delivery, magnetic resonance imaging (MRI), and magnetic hyperthermia.

  15. Antimicrobial chitosan-lysozyme (CL) films and coatings for enhancing microbial safety of mozzarella cheese.

    Science.gov (United States)

    Duan, J; Park, S-I; Daeschel, M A; Zhao, Y

    2007-11-01

    This study investigated the antimicrobial activities of chitosan-lysozyme (CL) composite films and coatings against tested microorganisms inoculated onto the surface of Mozzarella cheese. CL film-forming solutions (FFS) with a pH of 4.4 to 4.5 were prepared by incorporating 0% or 60% lysozyme (per dry weight of chitosan) into chitosan FFS with or without a pH adjustment to 5.2. Sliced cheese was subjected to 3 CL package applications: film, lamination on a multilayer coextruded film, and coating. Cheese was inoculated with Listeria monocytogenes, Escherichia coli, or Pseudomonas fluorescens at 10(4) CFU/g, or with mold and yeast at 10(2) CFU/g. Inoculated cheese was individually vacuum packaged and stored at 10 degrees C for sampling at 1, 7, and 14 d for bacteria, and at 10, 20, and 30 d for fungi. Inoculated bacteria survived but failed to multiply in untreated cheese during storage. Treated cheese received 0.43- to 1.25-, 0.40- to 1.40-, and 0.32- to 1.35-log reductions in E. coli, P. fluorescens, and L. monocytogenes, respectively. Incorporation of 60% lysozyme in chitosan FFS showed greater antimicrobial effect than chitosan alone on P. fluorescens and L. monocytogenes. The pH adjustment only affected the antimicrobial activity on L. monocytogenes, with lower pH (unadjusted) showing greater antimicrobial effect than pH 5.2. Mold and yeast increased to 10(5) CFU/g in untreated cheese after 30 d storage. Growth of mold was completely inhibited in cheese packaged with CL films, while 0.24- to 1.90- and 0.06- to 0.50-log reductions in mold populations were observed in cheese packaged with CL-laminated films and coatings, respectively. All CL packaging applications resulted in 0.01- to 0.64-log reduction in yeast populations.

  16. Fabrication and characterization of Mg-doped chitosan-gelatin nanocompound coatings for titanium surface functionalization.

    Science.gov (United States)

    Cai, Xinjie; Cai, Jing; Ma, Kena; Huang, Pin; Gong, Lingling; Huang, Dan; Jiang, Tao; Wang, Yining

    2016-07-01

    Titanium and its alloys have been widely used in clinic and achieved great success. Due to the bio-inertness of titanium surface, challenges still exit in some compromised conditions. The present study aimed to functionalize titanium surface with magnesium (Mg)-doped chitosan/gelatin (CS/G) nanocompound coatings via electrophoretic deposition (EPD). CS/G coatings loaded with different amount of magnesium were successfully prepared on titanium substrate via EPD. Physicochemical characterization of the coatings confirmed that magnesium ions were loaded into the coatings in a dose-dependent manner. XRD results demonstrated that co-deposition of magnesium influenced the crystallinity of the coatings, and a new crystalline substance presented, namely hydrated basic magnesium carbonate. Mechanical tests showed improved tensile and shear bond strength of the magnesium-doped coatings, while the excessively high magnesium concentration could eventually decrease the bonding strength. Sustained release of magnesium ion was detected by ICP-OES within 28 days. TEM images also displayed that nanoparticles could be released from the coatings. In vitro cellular response assays demonstrated that the Mg-doped nanocompound coatings could enhance the proliferation and osteogenic differentiation of MC3T3-E1 cells compared to CS/G coatings. Therefore, it could be concluded that Mg-doped CS/G nanocompound coatings were successfully fabricated on titanium substrates via EPD. It would be a promising candidate to functionalize titanium surface with such organic-inorganic nanocompound coatings. PMID:27115206

  17. Preparation and characterization of chitosan-silver/hydroxyapatite composite coatings onTiO{sub 2} nanotube for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yajing [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhang, Xuejiao [Medical Informatics, Hebei North University, Zhangjiakou 075000 (China); Li, Caixia [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Huang, Yong [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); College of Lab Medicine, Hebei North University, Zhangjiakou 075000 (China); Ding, Qiongqiong [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Pang, Xiaofeng, E-mail: xfpang@aliyun.com [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2015-03-30

    Highlights: • Chitosan/silver-doped hydroxyapatite biocomposite coating was successfully deposited on anodized Ti by electrochemical deposition. • The chemical state of silver in the synthesized coatings was studied by XPS peak deconvolution. • The synthesized coatings have excellent antibacterial activity because of synergistic effect of the Ag and CS. • The CSAgHAp coatings showed good biocompatibility and no adverse effect in cell culture tests. - Abstract: A biocomposite coating containing chitosan, silver, and hydroxyapatite was developed on anodized titanium substrate by electrochemical deposition. Coatings were characterized by field-emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and polarisation studies. Results showed that the prepared coatings had compact and dense morphology with a thickness of 6.2 ± 0.7 μm and that silver was evenly distributed. Testing the prepared coatings with Gram-positive and Gram-negative bacterial strains exhibited antibacterial activity because of the synergistic effect of silver and chitosan. The prepared coatings were also found to be nontoxic to MC3T3-E1 cells. These results suggested that chitosan/silver-hydroxyapatite biocomposite coatings can prevent the bacterial infection of implants.

  18. Preparation and evaluation of lysozyme-loaded nanoparticles coated with poly-γ-glutamic acid and chitosan.

    Science.gov (United States)

    Liu, Yong; Sun, Yan; Xu, Yaoxing; Feng, Hai; Fu, Sida; Tang, Jiangwu; Liu, Wei; Sun, Dongchang; Jiang, Hua; Xu, Shaochun

    2013-08-01

    To improve the application of lysozymes, methods for coating lysozymes with poly-γ-glutamic acid and chitosan were studied. Several lysozyme-loaded chitosan/poly-γ-glutamic acid composite nanosystems for loading and controlling the release of lysozymes were established. The lysozyme loading content and efficiency of the different systems were examined. The antibacterial activity of the composite nanoparticles was also investigated. Results showed that when the lysozymes were coated with poly-γ-glutamic acid and further rewrapped with chitosan, smooth spherical composite nanoparticles were obtained; the loading efficiency and loading content reached 76% and 40%, respectively. The lysozyme release in vitro was slow and presented a two-stage programmed release. Antibacterial testing in vitro indicated that lysozyme-loaded nanoparticles coated with poly-γ-glutamic acid/chitosan had outstanding antibacterial activity. An obvious assembly of bacterial cells and composite nanoparticles was observed during co-incubation. Therefore, the poly-γ-glutamic acid/chitosan composite coating broadened the antibacterial spectrum of the composite lysozyme nanoreagent, and presented satisfactory antibacterial effect. The lysozyme-loaded chitosan/poly-γ-glutamic acid nanocoating system established in this research could provide reference for coating and controlled releasing of alkaline proteins. PMID:23628585

  19. Structure, apatite inducing ability, and corrosion behavior of chitosan/halloysite nanotube coatings prepared by electrophoretic deposition on titanium substrate.

    Science.gov (United States)

    Molaei, A; Amadeh, A; Yari, M; Reza Afshar, M

    2016-02-01

    In this study chitosan/halloysite nanotube composite (CS/HNT) coatings were deposited by electrophoretic deposition (EPD) on titanium substrate. Using HNT particles were investigated as new substituents for carbon nanotubes (CNTs) in chitosan matrix coatings. The ability of chitosan as a stabilizing, charging, and blending agent for HNT particles was exploited. Furthermore, the effects of pH, electrophoretic bath, and sonicating duration were studied on the deposition of suspensions containing HNT particles. Microstructure properties of coatings showed uniform distribution of HNT particles in chitosan matrix to form smooth nanocomposite coatings. The zeta potential results revealed that at pH around 3 there is an isoelectric point for HNT and it would have cathodic and anionic states at pH values less and more than 3, respectively. Therefore, CS/HNT composite deposits were produced in the pH range of 2.5 to 3. The apatite inducing ability of chitosan-HNT composite coating assigned that HNT particles were biocompatible because they formed carbonated hydroxyapatite particles on CS/HNT coating in corrected simulated body fluid (C-SBF). Finally, electrochemical corrosion characterizations determined that corrosion resistance in CS/HNT coating has been improved compared to bare titanium substrate. PMID:26652428

  20. Effects of chitosan coating on physical properties and pharmacokinetic behavior of mitoxantrone liposomes

    OpenAIRE

    Qi, J.

    2010-01-01

    Jie Zhuang1, Qineng Ping1, Yunmei Song2, Jianping Qi1, Zheng Cui31School of Pharmacy, China Pharmaceutical University, Nanjing, China; 2School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia; 3School of Pharmacy, Peking University, Beijing, ChinaAbstract: The objective of this work was to evaluate the physical properties and in vivo circulation of chitosan (CH)-coated liposomes of mitoxantrone (MTO). Changes in particle size and zeta potential confirmed th...

  1. Halofuginone- and Chitosan-Coated Amnion Membranes Demonstrate Improved Abdominal Adhesion Prevention

    Directory of Open Access Journals (Sweden)

    Scott Washburn

    2010-01-01

    Full Text Available Our objective was to determine whether coating the amniotic membrane with halofuginone, a type 1 collagen synthase inhibitor, with or without the hemostasis-inducing substance chitosan, reduced the number and severity of adhesions in the rat uterine horn injury model. Sixty retired breeder Sprague-Dawley rats underwent midline laparotomy and a zone of ischemia was created in the left uterine horn of each animal. Rats were randomized to one of six treatment groups: (1 untreated control, (2 oxidized regenerated cellulose (Interceed® (ORC, (3 plain amnion, (4 amnion coated on both sides with 0.5% solution of halofuginone (HAH, (5 amnion coated on one side with 0.5% halofuginone and on the other side with chitosan (CAH, or (6 amnion coated on both sides with chitosan (CAC. The zone of ischemia in each left uterine horn was wrapped in each treatment. Rats were sacrificed 2 weeks after laparotomy, and adhesions were counted and scored for severity. Data were analyzed using Chi square and a p <0.05 was considered significant. Our results showed that there were no differences in the percentage of animals with adhesions in the untreated, ORC, plain amnion, or CAC groups. No adhesions formed in any animal in the HAH group and only 14% of the animals developed adhesions to the uterine horn in the CAH group (p < 0.05. The percentage of animals with moderate and severe adhesions did not differ between untreated controls and the ORC groups, but were significantly reduced in all four of the amnion groups: plain amnion, HAH, CAH, and CAC (p < 0.05. Amnion coated with halofuginone alone or in combination with chitosan reduced the percentage of animals with adhesions, as well as the percentage of animals with moderate and severe adhesions compared to untreated controls and the ORC group in the rat uterine horn injury model. Amnion alone or coated with chitosan reduced the percentage of rats with moderate and severe adhesions, but not the percentage of rats with

  2. Effect of composition and properties of chitosan-based edible coatings on microflora of meat and meat products

    Directory of Open Access Journals (Sweden)

    Denis A. Baranenko

    2013-06-01

    Full Text Available Background. Analysis of the properties of various chitosan grades has resulted in a working hypothesis that chitosan can be used as part of protective film-forming coatings for meat and meat products. The aim of this study was the research of composition, properties and antibacterial activity of chitosan-based coatings used for cold storage of meat and meat products. Material and methods. Protective coatings, developed by the authors, based on organic acids and chi- tosan with food gelatin, or distarch glycerol, or wheat fiber, or sodium alginate, or guar gum have been used as research material. The coatings were applied on the surfaces of retail cuts of veal and rabbit meat, boiled sausages, smoked sausages and smoked-boiled pork brisket. Antimicrobial activity of the solutions was evaluated in vitro. Microbial indicators of the mixtures were also determined by the zone of inhibition assay. Dynamic viscosity, the activation energy of viscous flow and pH of mixtures of fluids were measured. During the storage of meat and meat products total viable count of microorganisms was determined. Results. Polymer solutions of chitosan:starch and chitosan:gelatin are technologicaly compatible, solutions of chitosan:fiber are two-phase colloidal systems. Coatings did not alter the samples inherent flavour char- acteristics. All coatings reduced total viable count of microorganisms compared to control samples without coating. Composition based on 2% solution of chitosan and organic acids and 2% gelatin solution in a ratio of 1:1 has the strongest bacteriostatic effect for meat and meat products. Including potassium sorbate and sodium benzoate in gelatin and chitosan solutions mixture for protective coating was not found reasonable, because of their lower bacteriostatic effect. Combined application of vacuum and protective coatings pro- vided the strongest suppressing effect on microflora in all samples. Conclusions.The chitosan-based edible coatings

  3. Soft Tissue Regeneration under the Effect of Wound Coating Based on Chitosan (Natural Biopolymer).

    Science.gov (United States)

    Gladkova, E V; Babushkina, I V; Norkin, I A; Mamonova, I A; Puchin'yan, D M; Konyuchenko, E A

    2016-03-01

    We developed wound coating based on natural biopolymer chitosan with additional components (ceruloplasmin, L-asparaginic acid, and glycerol). Experiments on albino male rats demonstrated its regeneratory, antioxidant, and antibacterial effects on wounds involving all layers of the skin. Due to chemical composition and buffer component, the biodegraded wound coating optimizes all phases of the wound process, accelerates by 22-28% the reparative regeneration, and leads to anatomic and functional restoration of injured sites. High absorption capacity recommends its use in the treatment of wounds with profuse exudation.

  4. Preparation of N,O-carboxymethyl chitosan coated alginate microcapsules and their application to Bifidobacterium longum BIOMA 5920

    International Nuclear Information System (INIS)

    In order to greatly improve vitality of probiotic bacteria within the application, a novel biocompatible vehicle, N,O-carboxymethyl chitosan (NOCs) with appropriate degrees of substitution coat alginate (ALg) microparticles, was prepared by electrostatic droplet generation. The amount of chitosan (Cs) and N,O-carboxymethyl chitosan (NOCs) coated on the ALg microparticles was determined by differential scanning calorimetry. The surface morphology of ALg microparticles, Cs coated ALg microparticles and NOCs coated ALg microparticles was determined using scanning electron microscopy. The coating thickness of Cs coated ALg microparticles and that of NOCs coated ALg microparticles was directly observed with confocal laser scanning microscopy. In order to assess pH sensitivity of microparticles, the bovine serum albumin release from the microspheres was tested in acid solution (pH 2.0) for 2 h and subsequently in alkaline solution (pH 7.0) for 2 h. The survival of Bifidobacterium longum BIOMA 5920 loaded in NOCs coated with ALg microparticle was improved in simulated gastric juice (pH 2.0, for 2 h) compared to that of B. longum BIOMA 5920 loaded in ALg microparticles and Cs coated ALg microparticles. After incubation in simulated intestinal juices (pH 7.0, 2 h), the release of microencapsulated B. longum BIOMA 5920 was investigated. - Highlights: • Synthesised N,O-carboxymethyl chitosan (NOCs) coated alginate (ALg) microspheres. • Their effect on intestinal microflora was investigated in simulated gastric juices. • NOCs A coated ALg microspheres improved Bifidobacterium longum survival in SGJ. • The modified chitosan layer improved the pH-response of alginate microspheres. • NOCs A coated microspheres could be used to deliver oral bioactive compounds

  5. Preparation of N,O-carboxymethyl chitosan coated alginate microcapsules and their application to Bifidobacterium longum BIOMA 5920

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Yu; Su, Ran [Shaanxi R and D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University (China); Fan, Dai-Di, E-mail: fandaidi@nwu.edu.cn [Shaanxi R and D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University (China); Zhu, Xiao-Li [Shaanxi R and D Center of Biomaterials and Fermentation Engineering, School of Urban and Environmental Science, Northwest University, Taibai North Road 229, Xi' an, Shaanxi 710069 (China); Zhang, Wen-Ni [Shaanxi R and D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University (China); Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University (China)

    2013-07-01

    In order to greatly improve vitality of probiotic bacteria within the application, a novel biocompatible vehicle, N,O-carboxymethyl chitosan (NOCs) with appropriate degrees of substitution coat alginate (ALg) microparticles, was prepared by electrostatic droplet generation. The amount of chitosan (Cs) and N,O-carboxymethyl chitosan (NOCs) coated on the ALg microparticles was determined by differential scanning calorimetry. The surface morphology of ALg microparticles, Cs coated ALg microparticles and NOCs coated ALg microparticles was determined using scanning electron microscopy. The coating thickness of Cs coated ALg microparticles and that of NOCs coated ALg microparticles was directly observed with confocal laser scanning microscopy. In order to assess pH sensitivity of microparticles, the bovine serum albumin release from the microspheres was tested in acid solution (pH 2.0) for 2 h and subsequently in alkaline solution (pH 7.0) for 2 h. The survival of Bifidobacterium longum BIOMA 5920 loaded in NOCs coated with ALg microparticle was improved in simulated gastric juice (pH 2.0, for 2 h) compared to that of B. longum BIOMA 5920 loaded in ALg microparticles and Cs coated ALg microparticles. After incubation in simulated intestinal juices (pH 7.0, 2 h), the release of microencapsulated B. longum BIOMA 5920 was investigated. - Highlights: • Synthesised N,O-carboxymethyl chitosan (NOCs) coated alginate (ALg) microspheres. • Their effect on intestinal microflora was investigated in simulated gastric juices. • NOCs A coated ALg microspheres improved Bifidobacterium longum survival in SGJ. • The modified chitosan layer improved the pH-response of alginate microspheres. • NOCs A coated microspheres could be used to deliver oral bioactive compounds.

  6. Preservation Mechanism of Chitosan-Based Coating with Cinnamon Oil for Fruits Storage Based on Sensor Data.

    Science.gov (United States)

    Xing, Yage; Xu, Qinglian; Yang, Simon X; Chen, Cunkun; Tang, Yong; Sun, Shumin; Zhang, Liang; Che, Zhenming; Li, Xihong

    2016-01-01

    The chitosan-based coating with antimicrobial agent has been developed recently to control the decay of fruits. However, its fresh keeping and antimicrobial mechanism is still not very clear. The preservation mechanism of chitosan coating with cinnamon oil for fruits storage is investigated in this paper. Results in the atomic force microscopy sensor images show that many micropores exist in the chitosan coating film. The roughness of coating film is affected by the concentration of chitosan. The antifungal activity of cinnamon oil should be mainly due to its main consistent trans-cinnamaldehyde, which is proportional to the trans-cinnamaldehyde concentration and improves with increasing the attachment time of oil. The exosmosis ratios of Penicillium citrinum and Aspergillus flavus could be enhanced by increasing the concentration of cinnamon oil. Morphological observation indicates that, compared to the normal cell, the wizened mycelium of A. flavus is observed around the inhibition zone, and the growth of spores is also inhibited. Moreover, the analysis of gas sensors indicate that the chitosan-oil coating could decrease the level of O₂ and increase the level of CO₂ in the package of cherry fruits, which also control the fruit decay. These results indicate that its preservation mechanism might be partly due to the micropores structure of coating film as a barrier for gas and a carrier for oil, and partly due to the activity of cinnamon oil on the cell disruption. PMID:27438841

  7. Preservation Mechanism of Chitosan-Based Coating with Cinnamon Oil for Fruits Storage Based on Sensor Data

    Science.gov (United States)

    Xing, Yage; Xu, Qinglian; Yang, Simon X.; Chen, Cunkun; Tang, Yong; Sun, Shumin; Zhang, Liang; Che, Zhenming; Li, Xihong

    2016-01-01

    The chitosan-based coating with antimicrobial agent has been developed recently to control the decay of fruits. However, its fresh keeping and antimicrobial mechanism is still not very clear. The preservation mechanism of chitosan coating with cinnamon oil for fruits storage is investigated in this paper. Results in the atomic force microscopy sensor images show that many micropores exist in the chitosan coating film. The roughness of coating film is affected by the concentration of chitosan. The antifungal activity of cinnamon oil should be mainly due to its main consistent trans-cinnamaldehyde, which is proportional to the trans-cinnamaldehyde concentration and improves with increasing the attachment time of oil. The exosmosis ratios of Penicillium citrinum and Aspergillus flavus could be enhanced by increasing the concentration of cinnamon oil. Morphological observation indicates that, compared to the normal cell, the wizened mycelium of A. flavus is observed around the inhibition zone, and the growth of spores is also inhibited. Moreover, the analysis of gas sensors indicate that the chitosan-oil coating could decrease the level of O2 and increase the level of CO2 in the package of cherry fruits, which also control the fruit decay. These results indicate that its preservation mechanism might be partly due to the micropores structure of coating film as a barrier for gas and a carrier for oil, and partly due to the activity of cinnamon oil on the cell disruption. PMID:27438841

  8. Chitosan/titanium dioxide nanocomposite coatings: Rheological behavior and surface application to cellulosic paper.

    Science.gov (United States)

    Tang, Yanjun; Hu, Xiulan; Zhang, Xinqi; Guo, Daliang; Zhang, Junhua; Kong, Fangong

    2016-10-20

    Incorporation of nanofillers into a polymeric matrix has received much attention as a route to reinforced polymer nanocomposites. In the present work, an environmentally friendly chitosan (CTS)/titanium dioxide (TiO2) nanocomposite coating was designed/prepared and subsequently employed for imparting antibacterium and improved mechanical properties to cellulosic paper via surface coating. Effect of TiO2 nanoparticle loadings on the rheological behavior of nanocomposite coatings was investigated. Surface application of CTS/TiO2 nanocomposite coatings to cellulosic paper was performed, and the antibacterial activity and mechanical properties of surface-coated cellulosic paper were examined. Results showed that the increased TiO2 nanoparticle loadings decreased the viscosity and dynamic viscoelasticity of the as-prepared coatings, and improved the antibacterial activity and mechanical properties of surface-coated cellulosic paper. The optimum loading of TiO2 nanoparticles was identified at 10%. This work suggested that CTS/TiO2 nanocomposite coatings may have the potential to be used as a promising antibacterial protective coating for paper packaging. PMID:27474622

  9. Sustained Release of Prindopril Erbumine from Its Chitosan-Coated Magnetic Nanoparticles for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Dena Dorniani

    2013-12-01

    Full Text Available The preparation of magnetic nanoparticles coated with chitosan-prindopril erbumine was accomplished and confirmed by X-ray diffraction, TEM, magnetic measurements, thermal analysis and infrared spectroscopic studies. X-ray diffraction and TEM results demonstrated that the magnetic nanoparticles were pure iron oxide phase, having a spherical shape with a mean diameter of 6 nm, compared to 15 nm after coating with chitosan-prindopril erbumine (FCPE. Fourier transform infrared spectroscopy study shows that the coating of iron oxide nanoparticles takes place due to the presence of some bands that were emerging after the coating process, which belong to the prindopril erbumine (PE. The thermal stability of the PE in an FCPE nanocomposite was remarkably enhanced. The release study showed that around 89% of PE could be released within about 93 hours by a phosphate buffer solution at pH 7.4, which was found to be of sustained manner governed by first order kinetic. Compared to the control (untreated, cell viability study in 3T3 cells at 72 h post exposure to both the nanoparticles and the pure drug was found to be sustained above 80% using different doses.

  10. Chitosan-based ultrathin films as antifouling, anticoagulant and antibacterial protective coatings.

    Science.gov (United States)

    Bulwan, Maria; Wójcik, Kinga; Zapotoczny, Szczepan; Nowakowska, Maria

    2012-01-01

    Ultrathin antifouling and antibacterial protective nanocoatings were prepared from ionic derivatives of chitosan using layer-by-layer deposition methodology. The surfaces of silicon, and glass protected by these nanocoatings were resistant to non-specific adsorption of proteins disregarding their net charges at physiological conditions (positively charged TGF-β1 growth factor and negatively charged bovine serum albumin) as well as human plasma components. The coatings also preserved surfaces from the formation of bacterial (Staphylococcus aureus) biofilm as shown using microscopic studies (SEM, AFM) and the MTT viability test. Moreover, the chitosan-based films adsorbed onto glass surface demonstrated the anticoagulant activity towards the human blood. The antifouling and antibacterial actions of the coatings were correlated with their physicochemical properties. The studied biologically relevant properties were also found to be dependent on the thickness of those nanocoatings. These materials are promising for biomedical applications, e.g., as protective coatings for medical devices, anticoagulant coatings and protective layers in membranes. PMID:21967904

  11. Immune cell impact of three differently coated lipid nanocapsules: pluronic, chitosan and polyethylene glycol.

    Science.gov (United States)

    Farace, Cristiano; Sánchez-Moreno, Paola; Orecchioni, Marco; Manetti, Roberto; Sgarrella, Francesco; Asara, Yolande; Peula-García, José M; Marchal, Juan A; Madeddu, Roberto; Delogu, Lucia G

    2016-01-01

    Lipid nanocapsules (NCs) represent promising tools in clinical practice for diagnosis and therapy applications. However, the NC appropriate functionalization is essential to guarantee high biocompatibility and molecule loading ability. In any medical application, the immune system-impact of differently functionalized NCs still remains to be fully understood. A comprehensive study on the action exerted on human peripheral blood mononuclear cells (PBMCs) and major immune subpopulations by three different NC coatings: pluronic, chitosan and polyethylene glycol-polylactic acid (PEG) is reported. After a deep particle characterization, the uptake was assessed by flow-cytometry and confocal microscopy, focusing then on apoptosis, necrosis and proliferation impact in T cells and monocytes. Cell functionality by cell diameter variations, different activation marker analysis and cytokine assays were performed. We demonstrated that the NCs impact on the immune cell response is strongly correlated to their coating. Pluronic-NCs were able to induce immunomodulation of innate immunity inducing monocyte activations. Immunomodulation was observed in monocytes and T lymphocytes treated with Chitosan-NCs. Conversely, PEG-NCs were completely inert. These findings are of particular value towards a pre-selection of specific NC coatings depending on biomedical purposes for pre-clinical investigations; i.e. the immune-specific action of particular NC coating can be excellent for immunotherapy applications. PMID:26728491

  12. Immune cell impact of three differently coated lipid nanocapsules: pluronic, chitosan and polyethylene glycol

    Science.gov (United States)

    Farace, Cristiano; Sánchez-Moreno, Paola; Orecchioni, Marco; Manetti, Roberto; Sgarrella, Francesco; Asara, Yolande; Peula-García, José M.; Marchal, Juan A.; Madeddu, Roberto; Delogu, Lucia G.

    2016-01-01

    Lipid nanocapsules (NCs) represent promising tools in clinical practice for diagnosis and therapy applications. However, the NC appropriate functionalization is essential to guarantee high biocompatibility and molecule loading ability. In any medical application, the immune system-impact of differently functionalized NCs still remains to be fully understood. A comprehensive study on the action exerted on human peripheral blood mononuclear cells (PBMCs) and major immune subpopulations by three different NC coatings: pluronic, chitosan and polyethylene glycol-polylactic acid (PEG) is reported. After a deep particle characterization, the uptake was assessed by flow-cytometry and confocal microscopy, focusing then on apoptosis, necrosis and proliferation impact in T cells and monocytes. Cell functionality by cell diameter variations, different activation marker analysis and cytokine assays were performed. We demonstrated that the NCs impact on the immune cell response is strongly correlated to their coating. Pluronic-NCs were able to induce immunomodulation of innate immunity inducing monocyte activations. Immunomodulation was observed in monocytes and T lymphocytes treated with Chitosan-NCs. Conversely, PEG-NCs were completely inert. These findings are of particular value towards a pre-selection of specific NC coatings depending on biomedical purposes for pre-clinical investigations; i.e. the immune-specific action of particular NC coating can be excellent for immunotherapy applications. PMID:26728491

  13. Quality attributes and microbial survival on whole cantaloupes with antimicrobial coatings containing chitosan, lauric arginate, cinnamon oil and ethylenediaminetetraacetic acid.

    Science.gov (United States)

    Ma, Qiumin; Zhang, Yue; Critzer, Faith; Davidson, P Michael; Zhong, Qixin

    2016-10-17

    Cantaloupes are susceptible to microbiological contamination in pre- or postharvest environments. Novel intervention strategies, such as antimicrobial coatings, are needed to improve the microbiological safety of cantaloupes. The objective of this study was to prepare whole cantaloupes coated with mixtures containing chitosan, lauric arginate (LAE), cinnamon oil (CO), and ethylenediaminetetraacetic acid (EDTA) and determine survival characteristics of inoculated foodborne pathogens during storage as well as cantaloupe quality attributes. Chitosan coating with 0.1% LAE, 0.1% EDTA, and 1% CO was the most effective for inactivating foodborne pathogens inoculated on cantaloupes. This coating caused a >3logCFU/cm(2) reduction of Escherichia coli O157:H7 and Listeria monocytogenes immediately after coating and reduced Salmonella enterica to below the detection limit during a 14-day storage. Total molds and yeasts also were reduced to the detection limit by the coating. The redness and yellowness of uncoated cantaloupes were significantly higher than coated ones from day 6. The firmness of uncoated cantaloupes and those coated with chitosan only was significantly lower than other treatments from day 10. No significant differences were found in total soluble solids content or weight loss between coated and uncoated cantaloupes. Results showed the potential benefits of applying the coating mixtures to improve the quality and microbiological safety of cantaloupes. PMID:27484251

  14. Dyeing and printing wastewater treatment using fly-ash coated with chitosan

    Institute of Scientific and Technical Information of China (English)

    CHEN Xin; SUN Huili

    2009-01-01

    Printing and dyeing industry is a considerable source of environmental contamination. In this study treatment of printing and dyeing wastewater with a new type of sewage treatment agent, fly-ash coated with chitosan particles (FCCP), was examined. The effects of pH, stirring time, sedimentation time and temperature on color, COD, turbidity and NH_3-N removal were determined. The optimum dosage of FCCP and the influence of individual factors on removal efficiency were tested. The optimum parameters determined using the L_(16)(4~5) orthogonal experiment were as follows: FCCP (weight ratio of chitosan to fly-ash 1:6) dosage, 4 g·L~(-1); temperature, 35°C; pH, 4. The stirring time and sedimentation time were 20 min and 5 h, respectively. Under these optimum conditions, the color, COD and NH_3-N removal ratios were 97%, 80% and 75%, respectively.

  15. Construction and Characterization of Coated Wire Oxalate Ion Selective Electrode Based on Chitosan

    Directory of Open Access Journals (Sweden)

    Zuri Rismiarti

    2013-10-01

    Full Text Available PVC (polyvinyl chloride membrane based coated wire oxalate ion selective electrode has been developed by using chitosan. The results showed the optimum composition of the membrane was chitosan: aliquat 336: PVC: DBP = 4:1:33:62 (% weight. The electrode showed Nernstian response, Nernst factor 29.90 mV/decade of concentration, linier concentration range of 1x10-5 - 1x10-1 M, detection limit of 2.56 x10-6 M, response time of 30 second, and life time of 42 days. ISE’s performance worked well in pH range of 5-7 and temperature of 25-50 oC. Validation test showed no significant difference (t test with the SSA method so that the potentiometric method could be used as an alternative method for determining urinary oxalate.

  16. Effects of chitosan coating on physical properties and pharmacokinetic behavior of mitoxantrone liposomes.

    Science.gov (United States)

    Zhuang, Jie; Ping, Qineng; Song, Yunmei; Qi, Jianping; Cui, Zheng

    2010-01-01

    The objective of this work was to evaluate the physical properties and in vivo circulation of chitosan (CH)-coated liposomes of mitoxantrone (MTO). Changes in particle size and zeta potential confirmed the existence of a coating layer on the surface of liposomes. The in vitro release of adsorbed CH from the liposomes was significantly slower than CH solution, indicating the stable interaction between CH and liposomes. The physical stability of the CH-coated liposomes was evaluated by measuring the change in particle size before and after freeze-drying and rehydration. The smallest change was observed when saturated adsorption of CH occurred (0.3%). The sustained release in vitro of MTO from CH-coated liposomes confirmed the increased stability of liposomes. Systemic circulation of CH-coated MTO liposomes was examined. The 0.3% CH-coated liposomes showed the longest circulation time. It could be concluded that the prolonged retention time of the liposomes was closely related with CH coating and its stability effect. PMID:20957162

  17. The Preparation of Capsaicin-Chitosan Microspheres (CCMS Enteric Coated Tablets

    Directory of Open Access Journals (Sweden)

    Jian Chen

    2013-12-01

    Full Text Available This study aimed to research the preparation and content determination of capsaicin-chitosan microspheres (CCMS enteric coated tablets. The core tablets were prepared with the method of wet granulation. Nine formulae were designed to determine the optimal formula of the core tablet. Eudragit L100 was used to prepare the CCMS enteric-coated tablets. The effect of enteric coated formulation variables such as content of talc (10%, 25% and 40%, plasticisers (TEC and DBS, dosage of plasticiser (10%, 20% and 30% and coating weight (2%, 3% and 5% were evaluated for drug release characteristics. The in vitro release was studied using 0.1 N HCl and pH 6.8 phosphate buffer. Enteric coated tablets without ruptures or swelling behaviour over 2 h in 0.1 N HCl indicated that these tablets showed acid resistance. The accumulated release rate in phosphate buffer (pH 6.8 revealed that the prepared tablets were able to sustain drug release into the intestine and a first-order release was obtained for capsaicin. This research is the first report of the preparation and content determination of CCMS enteric coated tablets. The sustained release behavior of enteric coated formulations in pH 6.8 phosphate buffer demonstrated that it would be a potential drug delivery platform for sustained delivery of gastric irritant drugs.

  18. Encapsulation of brewers yeast in chitosan coated carrageenan microspheres by emulsification/thermal gelation.

    Science.gov (United States)

    Raymond, Marie-Christine; Neufeld, Ronald J; Poncelet, Denis

    2004-05-01

    Brewers yeast was encapsulated in kappa-carrageenan microspheres using an emulsification-thermal gelation approach. Due to heat sensitivity of the yeast at temperatures in excess of 36 degrees C, mixtures of low and high gelation temperature carrageenans were tested to obtain a blend yielding a gelation temperature under 40 degrees C. A 20:80 dispersion of 2% carrageenan sol containing cells, in warm canola oil, produced microspheres upon cooling, with a mean diameter of 450 microm and narrow size dispersion (span of 1.2). Application of a chitosan membrane coat to minimize cell release, increased the mean microsphere diameter to 700 microm, due to the coat thickness and swelling of the microspheres. This diameter was designed so as to minimize mass transfer limitations. Batch fermentations were carried out in a 3 L reactor on a commercial wort medium. Cell loading was 10(7) cells mL(-1) microspheres, and cell "burst" release was observed upon inoculation into fresh medium, whether microspheres were coated or not. The kinetics of intra- and extracapsular cell growth were determined. Increased concentrations of extracapsular free cells could be accounted for by growth in the wort medium, and by ongoing release from the gel microspheres, whether coated or not. Cell release from chitosan-coated carrageenan microspheres was less than that from uncoated microspheres, likely due to retention by the membrane coat. Growth kinetics and alpha-amino nitrogen consumption of encapsulated yeast were higher than that of free cells, and differences in alcohol and ester profiles were also observed, likely due to modified metabolism of the encapsulated yeast.

  19. Preparation of silver-chitosan nanocomposites and coating on bandage for antibacterial wound dressing application

    Energy Technology Data Exchange (ETDEWEB)

    Susilowati, Endang, E-mail: endwati@yahoo.co.id; Ashadi [Chemistry Education Department, Faculty of Teacher Training and Education, Universitas Sebelas Maret Surakarta (Indonesia); Maryani [Medical Doctor Program, Faculty of Medicine, Universitas Sebelas Maret Surakarta, Indonesia Jl. Ir Sutami 36 A Surakarta Indonesia 53126 (Indonesia)

    2016-02-08

    Bandage is a medical device that is essential for wound dressing. To improve the performance of the bandage, it has been coated by silver-chitosan nanocomposites (Ag/Chit) with pad-dry-cure method. The nanocomposites were performed by chemical reduction method at room temperature using glucose as reducing agent, sodium hydroxide (NaOH) as accelerator reagent, silver nitrate (AgNO{sub 3}) as metal precursor and chitosan as stabilizing agent. Localized surface plasmon resonance (LSPR) absorption band of silver nanoparticles was investigated using UV-Vis spectrophotometer. The bandage coated Ag/Chit nanocomposites (B-Ag/Chit) were characterized by fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM). In addition, antibacterial activity of the bandage toward Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli) were also studied. The formation of silver nanoparticles was confirmed by the appearance of LSPR absorption peak at 412.2 – 423.2 nm. Coating of nanocomposite cause increasing rigidity of bandage and decreasing on crystallinity. The bandages of B-Ag/Chit demonstrated good activity against both Gram positive (S. aureus) and Gram negative (E.Coli). Thus the bandages have a potential to be used for antibacterial wound dressing application.

  20. Preparation of silver-chitosan nanocomposites and coating on bandage for antibacterial wound dressing application

    Science.gov (United States)

    Susilowati, Endang; Maryani, Ashadi

    2016-02-01

    Bandage is a medical device that is essential for wound dressing. To improve the performance of the bandage, it has been coated by silver-chitosan nanocomposites (Ag/Chit) with pad-dry-cure method. The nanocomposites were performed by chemical reduction method at room temperature using glucose as reducing agent, sodium hydroxide (NaOH) as accelerator reagent, silver nitrate (AgNO3) as metal precursor and chitosan as stabilizing agent. Localized surface plasmon resonance (LSPR) absorption band of silver nanoparticles was investigated using UV-Vis spectrophotometer. The bandage coated Ag/Chit nanocomposites (B-Ag/Chit) were characterized by fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM). In addition, antibacterial activity of the bandage toward Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli) were also studied. The formation of silver nanoparticles was confirmed by the appearance of LSPR absorption peak at 412.2 - 423.2 nm. Coating of nanocomposite cause increasing rigidity of bandage and decreasing on crystallinity. The bandages of B-Ag/Chit demonstrated good activity against both Gram positive (S. aureus) and Gram negative (E.Coli). Thus the bandages have a potential to be used for antibacterial wound dressing application.

  1. Novel chitosan/diclofenac coatings on medical grade stainless steel for hip replacement applications

    Science.gov (United States)

    Finšgar, Matjaž; Uzunalić, Amra Perva; Stergar, Janja; Gradišnik, Lidija; Maver, Uroš

    2016-05-01

    Corrosion resistance, biocompatibility, improved osteointegration, as well the prevention of inflammation and pain are the most desired characteristics of hip replacement implants. In this study we introduce a novel multi-layered coating on AISI 316LVM stainless steel that shows promise with regard to all mentioned characteristics. The coating is prepared from alternating layers of the biocompatible polysaccharide chitosan and the non-steroid anti-inflammatory drug (NSAID), diclofenac. Electrochemical methods were employed to characterize the corrosion behavior of coated and uncoated samples in physiological solution. It is shown that these coatings improve corrosion resistance. It was also found that these coatings release the incorporated drug in controlled, multi-mechanism manner. Adding additional layers on top of the as-prepared samples, has potential for further tailoring of the release profile and increasing the drug dose. Biocompatibility was proven on human-derived osteoblasts in several experiments. Only viable cells were found on the sample surface after incubation of the samples with the same cell line. This novel coating could prove important for prolongation of the application potential of steel-based hip replacements, which are these days often replaced by more expensive ceramic or other metal alloys.

  2. Effect of chitosan coating and bamboo FSC (fruit storage chamber) to expand banana shelf life

    Science.gov (United States)

    Pratiwi, Aksarani'Sa; Dwivany, Fenny M.; Larasati, Dwinita; Islamia, Hana Cahya; Martien, Ronny

    2015-09-01

    Chitosan has been widely used as fruit preserver and proven to extend the shelf life of many fruits, such as banana. However, banana producers and many industries in Indonesia still facing storage problems which may lead to mechanical damage of the fruits and ripening acceleration. Therefore, we have designed food storage chamber (FSC) based on bamboo material. Bamboo was selected because of material abundance in Indonesia, economically effective, and not causing an autocatalytic reaction to the ethylene gas produced by the banana. In this research, Cavendish banana that has reached the maturity level of mature green were coated with 1% chitosan and placed inside the FSC. As control treatments, uncoated banana was also placed inside the FSC as well as uncoated banana that were placed at open space. All of the treatments were placed at 25°C temperature and observed for 9 days. Water produced by respiration was reduced by the addition of charcoal inside a fabric pouch. The result showed that treatment using FSC and chitosan can delay ripening process.

  3. Functional recoveries of sciatic nerve regeneration by combining chitosan-coated conduit and neurosphere cells induced from adipose-derived stem cells.

    Science.gov (United States)

    Hsueh, Yuan-Yu; Chang, Ya-Ju; Huang, Tzu-Chieh; Fan, Shih-Chen; Wang, Duo-Hsiang; Chen, Jia-Jin Jason; Wu, Chia-Ching; Lin, Sheng-Che

    2014-02-01

    Suboptimal repair occurs in a peripheral nerve gap, which can be partially restored by bridging the gap with various biosynthetic conduits or cell-based therapy. In this study, we developed a combination of chitosan coating approach to induce neurosphere cells from human adipose-derived stem cells (ASCs) on chitosan-coated plate and then applied these cells to the interior of a chitosan-coated silicone tube to bridge a 10-mm gap in a rat sciatic nerve. Myelin sheath degeneration and glial scar formation were discovered in the nerve bridged by the silicone conduit. By using a single treatment of chitosan-coated conduit or neurosphere cell therapy, the nerve gap was partially recovered after 6 weeks of surgery. Substantial improvements in nerve regeneration were achieved by combining neurosphere cells and chitosan-coated conduit based on the increase of myelinated axons density and myelin thickness, gastrocnemius muscle weight and muscle fiber diameter, and step and stride lengths from gait analysis. High expressions of interleukin-1β and leukotriene B4 receptor 1 in the intra-neural scarring caused by using silicone conduits revealed that the inflammatory mechanism can be inhibited when the conduit is coated with chitosan. This study demonstrated that the chitosan-coated surface performs multiple functions that can be used to induce neurosphere cells from ASCs and to facilitate nerve regeneration in combination with a cells-assisted coated conduit. PMID:24360575

  4. Development of chitosan nanoparticles coated with hyaluronic acid for topical ocular delivery of dexamethasone.

    Science.gov (United States)

    Kalam, Mohd Abul

    2016-08-01

    The present study involved design of dexamethasone-sodium phosphate (DEX) loaded mucoadhesive chitosan nanoparticles for topical ocular delivery to improve its precorneal retention and corneal permeability. The chitosan-sodium tripolyphosphate nanoparticle (CS-NPs) was developed through ionotropic-gelation technique. The developed CS-NPs were coated with hyaluronic-acid (HA) to make discrete, free-flowing NPs and to improve their mucoadhesive characteristics. The particle-size, zeta-potential and polydispersity-index were determined by Malvern-Zetasizer. The average size of the CS-NPs ranged from 305.25±14.29nm (without HA-coating and before freeze-drying) to 400.57±15.23nm (HA-coated and after freeze-drying). Due to the polyanionic nature of HA, reversing of zeta-potentials from +32.55±4.15 to -33.74±3.45 was observed. Polydispersity-indices varied from 0.178±0.067 (before freeze-drying of HA-coated F2) to 0.427±0.028 (after freeze-drying of HA-coated F2). The encapsulation and loading capacity of around 72.95% and 14.51% respectively were found in optimized CS-NPs. In simulated tear fluid 75.84% cumulative amount of released drug was detected and the in-vitro release results suggested the mechanism of drug release was Fickian-diffusion type. The clarity, pH, refractive index, surface tension and viscosity of the suspensions of DEX-CS-NPs were found promising for ocular use. Stability study on nanoparticles revealed no significant changes were observed in particle-size, encapsulation, drug release and physicochemical characteristics at 25°C for 3-months storage. PMID:27126165

  5. Electrophoretic deposition of chitosan/45S5 bioactive glass composite coatings doped with Zn and Sr

    Directory of Open Access Journals (Sweden)

    Marta eMiola

    2015-10-01

    Full Text Available In this research work the original 45S5 bioactive glass (BG was modified by introducing zinc and/or strontium oxide (6% mol in place of calcium oxide. Sr was added for its ability to stimulate bone formation, Zn for its role in bone metabolism, antibacterial properties and anti-inflammatory effect. The glasses were produced by means of melting and quenching process. SEM and XRD analyses evidenced that Zr and Sr introduction did not modify the glass structure and morphology, while compositional analysis (EDS demonstrated the effective addition of these elements inside the glass network. Bioactivity test in simulated body fluid (SBF up to one month evidenced a reduced bioactivity kinetics for Zn-doped glasses. Doped glasses were combined with chitosan to produce organic/inorganic composite coatings on stainless steel AISI 316L by electrophoretic deposition (EPD. Two EPD processes were considered for coating development, namely direct current EPD (DC-EPD and alternating current EPD (AC-EPD. The stability of the suspension was analysed and the deposition parameters were optimized. Tape and bending tests demonstrated a good coating-substrate adhesion for coatings containing 45S5-Sr and 45S5-ZnSr glasses, while the adhesion to the substrate decreased by using 45S5-Zn glass. FTIR analyses demonstrated the composite nature of coatings and SEM observations indicated that glass particles were well integrated in the polymeric matrix, the coatings were fairly homogeneous and free of cracks; moreover the AC-EPD technique provided better results than DC-EPD in terms of coating quality. SEM, XRD analyses and Raman spectroscopy, performed after bioactivity test in SBF solution, confirmed the bioactive behaviour of 45S5-Sr containing coating, while coatings containing Zn exhibited no hydroxyapatite formation.

  6. Electrophoretic Deposition of Chitosan/45S5 Bioactive Glass Composite Coatings Doped with Zn and Sr.

    Science.gov (United States)

    Miola, Marta; Verné, Enrica; Ciraldo, Francesca Elisa; Cordero-Arias, Luis; Boccaccini, Aldo R

    2015-01-01

    In this research work, the original 45S5 bioactive glass was modified by introducing zinc and/or strontium oxide (6 mol%) in place of calcium oxide. Sr was added for its ability to stimulate bone formation and Zn for its role in bone metabolism, antibacterial properties, and anti-inflammatory effect. The glasses were produced by means of melting and quenching process. SEM and XRD analyses evidenced that Zr and Sr introduction did not modify the glass structure and morphology while compositional analysis (EDS) demonstrated the effective incorporation of these elements in the glass network. Bioactivity test in simulated body fluid (SBF) up to 1 month evidenced a reduced bioactivity kinetics for Zn-doped glasses. Doped glasses were combined with chitosan to produce organic/inorganic composite coatings on stainless steel AISI 316L by electrophoretic deposition (EPD). Two EPD processes were considered for coating development, namely direct current EPD (DC-EPD) and alternating current EPD (AC-EPD). The stability of the suspension was analyzed and the deposition parameters were optimized. Tape and bending tests demonstrated a good coating-substrate adhesion for coatings containing 45S5-Sr and 45S5-ZnSr glasses, whereas the adhesion to the substrate decreased by using 45S5-Zn glass. FTIR analyses demonstrated the composite nature of coatings and SEM observations indicated that glass particles were well integrated in the polymeric matrix, the coatings were fairly homogeneous and free of cracks; moreover, the AC-EPD technique provided better results than DC-EPD in terms of coating quality. SEM, XRD analyses, and Raman spectroscopy, performed after bioactivity test in SBF solution, confirmed the bioactive behavior of 45S5-Sr-containing coating while coatings containing Zn exhibited no hydroxyapatite formation. PMID:26539431

  7. Preparation and characterization of a novel pH-response dietary fiber: chitosan-coated konjac glucomannan.

    Science.gov (United States)

    Zhao, Xiaoguo; Li, Jing; Jin, Weiping; Geng, Xiaopeng; Xu, Wei; Ye, Ting; Lei, Jieqiong; Li, Bin; Wang, Ling

    2015-03-01

    The purpose of this study was to prepare a kind of novel pH-response dietary fiber from chitosan-coated konjac glucomannan (KGM) powders (KGM/Chitosan or K/C powders) by a physical grind method. The K/C powders were selectively soluble in aqueous solutions of different pH. Meanwhile, the coated chitosan could largely decrease the viscosity of KGM in neutral condition, which is the main limitation for KGM application in food industry. Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), swelling ability and rheological measurements were utilized to characterize the performance of K/C powders. K/C powders exhibited much higher viscosity and swelling ability in acidic condition than in neutral condition. Therefore, this study will extend the application of KGM in food industry and in other pH-specific applications as well. PMID:25498602

  8. Inhibition of Listeria monocytogenes ATCC 19115 on ham steak by tea bioactive compounds incorporated into chitosan-coated plastic films

    Directory of Open Access Journals (Sweden)

    Vodnar Dan C

    2012-07-01

    Full Text Available Abstract Background The consumer demands for better quality and safety of food products have given rise to the development and implementation of edible films. The use of antimicrobial films can be a promising tool for controlling L. monocytogenes on ready to eat products. The aim of this study was to develop effective antimicrobial films incorporating bioactive compounds from green and black teas into chitosan, for controlling L. monocytogenes ATCC 19115 on vacuum-packaged ham steak. The effectiveness of these antimicrobial films was evaluated at room temperature (20°C for 10 days and at refrigerated temperature (4°C for 8 weeks. Results The HPLC results clearly show that relative concentrations of catechins and caffeine in green tea ranked EGCG>EGC>CAF>ECG>EC>C while in black tea extracts ranked CAF>EGCG>ECG>EGC>EC>C. The chitosan-coated plastic films incorporating green tea and black tea extracts shows specific markers identified by FTIR. Incorporating natural extracts into chitosan showed that the growth of L monocytogenes ATCC 19115 was inhibited. The efficacy of antimicrobial effect of tea extracts incorporated into chitosan-coated plastic film was dose dependent. However, chitosan-coated films without addition of tea extracts did not inhibit the growth of L. monocytogenes ATCC 19115. Chitosan-coated plastic films incorporating 4% Green tea extract was the most effective antimicrobial, reducing the initial counts from 3.2 to 2.65 log CFU/cm2 during room temperature storage and from 3.2 to 1–1.5 log CFU/cm2 during refrigerated storage. Conclusions Incorporation of tea extracts into the chitosan-coated films considerably enhanced their effectiveness against L. monocytogenes ATCC 19115. 4% Green tea incorporated into chitosan-coated plastic film had a better antilisterial effect than 2% green tea or 2% and 4% black tea. Data from this study would provide new formulation options for developing antimicrobial packaging films using tea

  9. Characterization of antimicrobial properties on the growth of S. aureus of novel renewable blends of gliadins and chitosan of interest in food packaging and coating applications.

    Science.gov (United States)

    Fernandez-Saiz, P; Lagaron, J M; Hernandez-Muñoz, P; Ocio, M J

    2008-05-10

    The biocide properties of chitosan-based materials have been known for many years. However, typical antimicrobial formulations of chitosan, mostly chitosonium salts, are known to be very water sensitive materials which may impair their use in many application fields such as food packaging or food coating applications. This first work reports on the development and characterization of the antimicrobial properties of novel fully renewable blends of chitosan with more water-resistant gliadin proteins isolated from wheat gluten. Chitosan release to the nutrient broth from a wide range of blends was studied making use of the ninhydrin method. The results indicated that both pure chitosan and its blends with gliadins presented significant antimicrobial activity, which increased with increasing the amount of chitosan in the composite formulation as expected. The gliadins-chitosan blends showed good transparency and film-forming properties and better water resistance than pure chitosan. The release tests revealed that dissolution of the biocide glucosamine groups, i.e. the chitosan water soluble fractions, also increased with the amount of chitosan present in the formulation. The release of these groups was for the first time directly correlated with the antimicrobial properties exhibited by the blends. Thus, incorporation of chitosan into an insoluble biopolymer matrix was revealed as a very feasible strategy to generate novel chitosan-based antimicrobial materials with potential advantages, for instance active food packaging applications. PMID:18353476

  10. Chitosan-coated Silica Nanoparticles - A Potential Support for Metal Particles used as Heterogeneous Catalyst

    International Nuclear Information System (INIS)

    In this work a strategy to immobilize noble metal nanoparticles on silica microspheres is proposed. In order to achieve this, monodispersed silica nanoparticles of an average size of 63.5±6.7 nm were synthesized via sol-gel method. Then chitosan was coated onto the silica to create a core/ shell composite with the size range of 66.56±9.78 nm to 79.18±11.87 nm. The noble metal nanoparticles were then synthesized on the shell of the composite through coordination of the respective metal ions to the polymer followed by the subsequent reduction. In this way, the silver particles of average size 6.17±1.83 nm, 9.85±2.60 nm, and 11.80±4.26 nm have been synthesized on the shell successfully. The optimized supported metal particles can be used as a potential heterogeneous catalyst. (author)

  11. Fluorescence Modified Chitosan-Coated Magnetic Nanoparticles for High-Efficient Cellular Imaging

    Directory of Open Access Journals (Sweden)

    Nie Fang

    2009-01-01

    Full Text Available Abstract Labeling of cells with nanoparticles for living detection is of interest to various biomedical applications. In this study, novel fluorescent/magnetic nanoparticles were prepared and used in high-efficient cellular imaging. The nanoparticles coated with the modified chitosan possessed a magnetic oxide core and a covalently attached fluorescent dye. We evaluated the feasibility and efficiency in labeling cancer cells (SMMC-7721 with the nanoparticles. The nanoparticles exhibited a high affinity to cells, which was demonstrated by flow cytometry and magnetic resonance imaging. The results showed that cell-labeling efficiency of the nanoparticles was dependent on the incubation time and nanoparticles’ concentration. The minimum detected number of labeled cells was around 104by using a clinical 1.5-T MRI imager. Fluorescence and transmission electron microscopy instruments were used to monitor the localization patterns of the magnetic nanoparticles in cells. These new magneto-fluorescent nanoagents have demonstrated the potential for future medical use.

  12. The synthesis and characterization of monodispersed chitosan-coated Fe3O4 nanoparticles via a facile one-step solvothermal process for adsorption of bovine serum albumin

    OpenAIRE

    Shen, Mao; Yu, Yujing; Fan, Guodong; Chen, Guang; Jin, Ying min; Tang, Wenyuan; Jia, Wenping

    2014-01-01

    Preparation of magnetic nanoparticles coated with chitosan (CS-coated Fe3O4 NPs) in one step by the solvothermal method in the presence of different amounts of added chitosan is reported here. The magnetic property of the obtained magnetic composite nanoparticles was confirmed by X-ray diffraction (XRD) and magnetic measurements (VSM). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) allowed the identification of spherical nanoparticles with about 150 nm in averag...

  13. Fabrication of mucoadhesive chitosan coated polyvinylpyrrolidone/cyclodextrin/clotrimazole sandwich patches for oral candidiasis.

    Science.gov (United States)

    Tonglairoum, Prasopchai; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Panomsuk, Suwanee; Kaomongkolgit, Ruchadaporn; Opanasopit, Praneet

    2015-11-01

    This study aims to fabricate clotrimazole (CZ)-composite sandwich nanofibers using electrospinning. The CZ-loaded polyvinylpyrrolidone (PVP)/hydroxypropyl-β-cyclodextrin (HPβCD) fiber was coated with chitosan-cysteine (CS-SH)/polyvinyl alcohol (PVA) to increase the mucoadhesive properties and to achieve a sustained release of the drug from the nanofibers. The nanofibers were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and X-ray diffractometry (XRD). The nanofibers mechanical and mucoadhesive properties, drug release, antifungal activity and cytotoxicity were also assessed. The fibers were in the nanoscale with good mucoadhesive properties. The XRPD revealed a molecular dispersion of amorphous CZ in the nanofibers. The initial fast release of CZ from the nanofibers was achieved. Moreover, the sandwich nanofibers coated for longer times resulted in slower release rates compared with the shorter coating times. The CZ-loaded nanofibers killed the Candida significantly faster than the commercial CZ lozenges at 5, 15 and 30 min and were safe for a 2-h incubation. Therefore, these nanofibers may be promising candidates for the treatment of oral candidiasis. PMID:26256338

  14. Preparation and characterizations of naproxen-loaded magnetic nanoparticles coated with PLA-g-chitosan copolymer

    International Nuclear Information System (INIS)

    Naproxen (NPX) drug-loaded magnetic nanoparticles (MNPs) have been prepared in a one-step process utilizing a biocompatible polylactide-grafted-chitosan copolymer. The copolymer serves both as a NPX drug carrier as well as a polymeric surfactant for the synthesis of MNPs without the use of any additional surfactant. Highly stable MNPs with high magnetization in the form of maghemite (γ-Fe2O3) are prepared in aqueous media. Effects of preparation conditions on structures and properties of the copolymer-coated and drug-loaded MNPs are investigated by employing particle size and zeta potential measurements, transmission electron microscopy, vibrating sample magnetometer, X-ray diffraction, Fourier-transform infrared, nuclear magnetic resonance, and confocal Raman spectroscopy. The results show that average particle size (150–300 nm), coating efficiency, and coating structures of the resulting MNPs materials are strongly dependent on MNP/copolymer and MNP/NPX ratios in feed. It is also observed that NPX acts as co-surfactant in the drug-loading process, resulting in different encapsulating structures with the variation in the MNP/copolymer and MNP/NPX ratios. Properties of the MNPs materials can be further optimized for use in specific biomedical applications.

  15. Fabrication of mucoadhesive chitosan coated polyvinylpyrrolidone/cyclodextrin/clotrimazole sandwich patches for oral candidiasis.

    Science.gov (United States)

    Tonglairoum, Prasopchai; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Panomsuk, Suwanee; Kaomongkolgit, Ruchadaporn; Opanasopit, Praneet

    2015-11-01

    This study aims to fabricate clotrimazole (CZ)-composite sandwich nanofibers using electrospinning. The CZ-loaded polyvinylpyrrolidone (PVP)/hydroxypropyl-β-cyclodextrin (HPβCD) fiber was coated with chitosan-cysteine (CS-SH)/polyvinyl alcohol (PVA) to increase the mucoadhesive properties and to achieve a sustained release of the drug from the nanofibers. The nanofibers were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and X-ray diffractometry (XRD). The nanofibers mechanical and mucoadhesive properties, drug release, antifungal activity and cytotoxicity were also assessed. The fibers were in the nanoscale with good mucoadhesive properties. The XRPD revealed a molecular dispersion of amorphous CZ in the nanofibers. The initial fast release of CZ from the nanofibers was achieved. Moreover, the sandwich nanofibers coated for longer times resulted in slower release rates compared with the shorter coating times. The CZ-loaded nanofibers killed the Candida significantly faster than the commercial CZ lozenges at 5, 15 and 30 min and were safe for a 2-h incubation. Therefore, these nanofibers may be promising candidates for the treatment of oral candidiasis.

  16. Preparation and characterizations of naproxen-loaded magnetic nanoparticles coated with PLA-g-chitosan copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Thammawong, C.; Sreearunothai, P. [Thammasat University, School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology (SIIT) (Thailand); Petchsuk, A. [National Metal and Materials Technology Center (MTEC) (Thailand); Tangboriboonrat, P. [Mahidol University, Department of Chemistry, Faculty of Science (Thailand); Pimpha, N. [National Nanotechnology Center (NANOTEC) (Thailand); Opaprakasit, P., E-mail: pakorn@siit.tu.ac.th [Thammasat University, School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology (SIIT) (Thailand)

    2012-08-15

    Naproxen (NPX) drug-loaded magnetic nanoparticles (MNPs) have been prepared in a one-step process utilizing a biocompatible polylactide-grafted-chitosan copolymer. The copolymer serves both as a NPX drug carrier as well as a polymeric surfactant for the synthesis of MNPs without the use of any additional surfactant. Highly stable MNPs with high magnetization in the form of maghemite ({gamma}-Fe{sub 2}O{sub 3}) are prepared in aqueous media. Effects of preparation conditions on structures and properties of the copolymer-coated and drug-loaded MNPs are investigated by employing particle size and zeta potential measurements, transmission electron microscopy, vibrating sample magnetometer, X-ray diffraction, Fourier-transform infrared, nuclear magnetic resonance, and confocal Raman spectroscopy. The results show that average particle size (150-300 nm), coating efficiency, and coating structures of the resulting MNPs materials are strongly dependent on MNP/copolymer and MNP/NPX ratios in feed. It is also observed that NPX acts as co-surfactant in the drug-loading process, resulting in different encapsulating structures with the variation in the MNP/copolymer and MNP/NPX ratios. Properties of the MNPs materials can be further optimized for use in specific biomedical applications.

  17. Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: in vitro and in vivo assessment.

    Science.gov (United States)

    Bagre, Archana Pataskar; Jain, Keerti; Jain, Narendra K

    2013-11-01

    The objective of present research work was to develop alginate coated chitosan core shell nanoparticles (Alg-CS-NPs) for oral delivery of low molecular weight heparin, enoxaparin. Chitosan nanoparticles (CS-NPs) were synthesized by ionic gelation of chitosan using sodium tripolyphosphate. Core shell nanoparticles were prepared by coating CS-NPs with alginate solution under mild agitation. The Alg-CS-NPs were characterized for surface morphology, surface coating, particle size, polydispersity index, zeta potential, drug loading and entrapment efficiency using SEM, Zeta-sizer, FTIR and DSC techniques. Alginate coating increased the size of optimized chitosan nanoparticles from around 213 nm to about 335 nm as measured by dynamic light scattering in zeta sizer and further confirmed by SEM analysis. The performance of optimized enoxaparin loaded Alg-CS-NPs was evaluated by in vitro drug release studies, in vitro permeation study across intestinal epithelium, in vivo venous thrombosis model, particulate uptake by intestinal epithelium using fluorescence microscopy and pharmacokinetic studies in rats. Coating of alginate over the CS-NPs improved the release profile of enoxaparin from the nanoparticles for successful oral delivery. In vitro permeation studies elucidated that more than 75% enoxaparin permeated across the intestinal epithelium with Alg-CS-NPs. The Alg-CS-NPs significantly increased (p<0.05) the oral bioavailability of enoxaparin in comparison to plain enoxaparin solution as revealed by threefold increase in AUC of plasma drug concentration time curve and around 60% reduction in thrombus formation in rat venous thrombosis model. The core shell Alg-CS-NPs showed promising potential for oral delivery and significantly enhanced the in vivo oral absorption of enoxaparin.

  18. Vancomycin–chitosan composite deposited on post porous hydroxyapatite coated Ti6Al4V implant for drug controlled release

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chi-Chuan [Department of Materials Science and Engineering, National Chung Hsing, University 250, Kuo-Kuang Road, Taichung 40227, Taiwan (China); Lin, Chien-Chung [Department of Materials Science and Engineering, National Chung Hsing, University 250, Kuo-Kuang Road, Taichung 40227, Taiwan (China); Department of Orthopaedic Surgery, Taichung Armed Force General Hospital, 348, Sec. 2, Jhongshan Road, Taiping City, Taichung 411, Taiwan (China); Liao, Jiunn-Wang [Graduate Institute of Veterinary Pathobiology, National Chung Hsing, University 250, Kuo-Kuang Road, Taichung 40227, Taiwan (China); Yen, Shiow-Kang, E-mail: skyen@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing, University 250, Kuo-Kuang Road, Taichung 40227, Taiwan (China)

    2013-05-01

    Through the hydrogen bonds and the deprotonation, the vancomycin–chitosan composite has been originally deposited on Ti4Al4V by electrochemical technology. However, the rapid destruction of the hydrogen bonding between them by polar water molecules during immersion tests revealed 80% drug burst in a few hours. In this study, the post porous hydroxyapatite (HA) coated Ti4Al4V is prepared for the subsequent electrolytic deposition of vancomycin–chitosan composite to control the drug release. As expected, the initial burst is reduced to 55%, followed by a steady release about 20% from day 1 to day 5 and a slower release of the retained 25% after day 6, resulting in bacterial inhibition zone diameter of 30 mm which can last for more than a month in antibacterial tests, compared with the coated specimen without HA gradually loosing inhibition zone after 21 days. Besides, the cell culture indicates that the vancomycin–chitosan/HA composite coated has enhanced the proliferation, the differentiation and the mineralization of the osteoblast-like cell. In general, it is helpful for the osteointegration on permanent implants. Consistently, it effectively provides the prophylaxis and therapy of osteomyelitis according to the results of the rabbit infection animal model. - Highlights: ► The releasing curve of the vancomycin–chitosan/HA composite revealed three periods. ► The drug release sustained one month due to the effect of post porous HA coating. ► The composite coating could treat the osteomyelitis in the rabbit infection model.

  19. Haemostatic chitosan coated gauze: in vitro interaction with human blood and in-vivo effectiveness

    OpenAIRE

    Pogorielov, M.; Kalinkevich, O.; Deineka, V.; Garbuzova, V.; Solodovnik, A.; Kalinkevich, A.; Kalinichenko, T.; Gapchenko, A.; Sklyar, A.; Danilchenko, S.

    2015-01-01

    Background Chitosan and its derivates are widely used for biomedical application due to antioxidative, anti-inflammatory, antimicrobial and tissue repair induced properties. Chitosan-based materials also used as a haemostatic agent but influence of different molecular weight and concentration of chitosan on biological response of blood cells is still not clear. The aim of this research was to evaluate interaction between human blood cells and various forms of chitosan-based materials with dif...

  20. ANTIMICROBIAL PROPERTIES OF HYDROXYAPATITE COATINGS CONTAINING OF CHITOSAN AND SILVER ON TITANIUM SUBSTRATES IN RELATION TO MICROORGANISMS E.COLI ATCC 25922

    Directory of Open Access Journals (Sweden)

    Sukhodub LB

    2013-03-01

    Full Text Available In this work it was studied the antibacterial properties of coatings based on HA, with Chitosan and silver ions additions, produced by substrates termodeposition method from aqueous solutions with varying concentrations of Chitosan (0.025 and 0.1 g/l and silver (1 mg/l as the antimicrobial components as well as three-part cover, consisting of a film of Chitosan, HA and silver. Study on antibacterial properties of composite coatings on the pathogen E.coli ATCC 25922 was held by Spectrophotometric measurement and analysis of optical density of suspensions, containing samples. 3 series of measurements data were averaged. The results showed that the concentration of antimicrobial components have indicated a bacteriostatic effect of coatings on the culture of E. coli AS ATCC 25922 in physiological solution at a temperature of 37 °C. The most effective was the three-part cover consisting of a film of chitosan, HA and silver.

  1. Bovine Serum Albumin and Chitosan Coated Silver Nanoparticles and Its Antimicrobial Activity against Oral and Nonoral Bacteria

    Directory of Open Access Journals (Sweden)

    León Francisco Espinosa-Cristóbal

    2015-01-01

    Full Text Available Antimicrobial agents have been developed for drug-resistance infections, which have been rapidly increasing; however, the control of involved microorganisms is still a challenge. In this work, SNP with bovine serum albumin (BSA and chitosan (CS coatings were prepared with an aqueous reduction method, characterized using dispersion light scattering, transmission electron microscopy, and thermal analysis. Antibacterial activity was tested on seven oral and nonoral bacteria by microdilution test and scanning electron microscopy. Six different sizes and shapes of coated SNP were prepared and used. Characterization revealed narrow size and good distribution of particles, spherical and pseudospherical shapes, and the presence of coatings on the SNP surfaces. All samples showed antimicrobial activity, although smaller sizes and CS samples had the best inhibition effects. The highest microbial resistance was shown by Gram-positive bacteria. Although coated SNP action depends on particular bacterium, BSA and CS coated SNP could be used for drug-resistance infections.

  2. Evaluation of Chitosan-Starch-Based Edible Coating To Improve the Shelf Life of Bod Ljong Cheese.

    Science.gov (United States)

    Mei, Jun; Guo, Qizhen; Wu, Yan; Li, Yunfei

    2015-07-01

    The objective of this work was to evaluate the effectiveness of antimicrobial edible coatings to improve the quality of Bod ljong cheese throughout 25 days of storage. Coatings were prepared using chitosan, water chestnut starch, and glycerol as a base matrix, together with several combinations of antimicrobial substances: Cornus officinalis fruit extract (COFE), pine needle essential oil (PNEO), and nisin. Application of coating on cheese decreased water loss, lipid oxidation, changes in headspace gas composition, and color. Moreover, the edible coatings with COFE or PNEO had increased antimicrobial activity and did not permit growth of microorganisms. COFE and PNEO are manufactured from food-grade materials so they can be consumed as an integral part of the cheese, which represents a competitive advantage over nonedible coatings.

  3. A fiber optic biosensor for the detection of cholesterol levels based on chitosan coated long period grating

    Science.gov (United States)

    Mathews, C. Bobby; Libish, T. M.; Kaushalkumar, B.; Vivek, V.; Prabhu, Radhakrishna; Radhakrishnan, P.

    2016-01-01

    A fiber optic sensor for the measurement of total cholesterol is designed and developed. The developed chitosan coated long period grating (LPG) sensor shows a sensitivity of 5.025×106 pm·mL/g in the measurement range of the sensor. The sensor also shows a linear response in the measured range of cholesterol levels, which is highly desirable for exploitation as a commercial cholesterol sensor.

  4. Nanoemulsions coated with alginate/chitosan as oral insulin delivery systems: preparation, characterization, and hypoglycemic effect in rats

    OpenAIRE

    Li X; Qi J; Xie Y; Zhang X; Hu S; Xu Y; Lu Y; Wu W.

    2012-01-01

    Xiaoyang Li, Jianping Qi, Yunchang Xie, Xi Zhang, Shunwen Hu, Ying Xu, Yi Lu, Wei WuKey Laboratory of Smart Drug Delivery of Ministry of Education and People's Liberation Army (PLA), School of Pharmacy, Fudan University, Shanghai, ChinaAbstract: This study aimed to prepare nanoemulsions coated with alginate/chitosan for oral insulin delivery. Uncoated nanoemulsions were prepared by homogenization of a water in oil in water (w/o/w) multiple emulsion that was composed of Labrafac&re...

  5. Vancomycin-chitosan composite deposited on post porous hydroxyapatite coated Ti6Al4V implant for drug controlled release.

    Science.gov (United States)

    Yang, Chi-Chuan; Lin, Chien-Chung; Liao, Jiunn-Wang; Yen, Shiow-Kang

    2013-05-01

    Through the hydrogen bonds and the deprotonation, the vancomycin-chitosan composite has been originally deposited on Ti4Al4V by electrochemical technology. However, the rapid destruction of the hydrogen bonding between them by polar water molecules during immersion tests revealed 80% drug burst in a few hours. In this study, the post porous hydroxyapatite (HA) coated Ti4Al4V is prepared for the subsequent electrolytic deposition of vancomycin-chitosan composite to control the drug release. As expected, the initial burst is reduced to 55%, followed by a steady release about 20% from day 1 to day 5 and a slower release of the retained 25% after day 6, resulting in bacterial inhibition zone diameter of 30 mm which can last for more than a month in antibacterial tests, compared with the coated specimen without HA gradually loosing inhibition zone after 21 days. Besides, the cell culture indicates that the vancomycin-chitosan/HA composite coated has enhanced the proliferation, the differentiation and the mineralization of the osteoblast-like cell. In general, it is helpful for the osteointegration on permanent implants. Consistently, it effectively provides the prophylaxis and therapy of osteomyelitis according to the results of the rabbit infection animal model.

  6. Maize seed coatings and seedling sprayings with chitosan and hydrogen peroxide: their influence on some phenological and biochemical behaviors

    OpenAIRE

    Lizárraga-Paulín, Eva-Guadalupe; Miranda-Castro, Susana-Patricia; Moreno-Martínez, Ernesto; Lara-Sagahón, Alma-Virginia; Torres-Pacheco, Irineo

    2013-01-01

    Objective: To evaluate the effect of chitosan (CH) and hydrogen peroxide (H2O2) seed coatings and seedling sprinklings on two different maize varieties by measuring their phenology, the H2O2 presence, the catalase (CAT) activity, and the protein quantity. Methods: Seven groups of ten seeds for each maize variety were treated with CH (2% (20 g/L) and 0.2% (2 g/L)) or H2O2 (8 mmol/L) by coating, sprinkling, or both. Germination and seedling growth were measured. One month after germination, the...

  7. Effect of Chitosan Coating Treatments and Calcium Dips on Quality and Shelf-life of Strawberries

    International Nuclear Information System (INIS)

    Strawberries are a highly perishable fruit and storage life may be less than a week. In these investigations strawberries were treated with one of the following treatments: I) 1 % calcium chloride dips (1 % CaCl2), II) 2 % irradiated (150 kGy in the solid state) chitosan (CS) (2 % Irr. CS) and III) with a coating formulation containing 2 % Irr. CS + 1 % CaCl2. They were then stored at 6 degree C for up to 24 days. The effectiveness of the different treatments was assessed by evaluating the microbiological, physicochemical and sensory properties of strawberries during the storage period. Results indicated that no sign of strawberries decay were observed in the fruits treated with CS formulation containing 2 % Irr. CS + 1 % CaCl2 up to 20 days, where 6.1 % wt loss was detected. This treatment slowed the ripening of strawberries as shown by their retention of firmness and delayed changes in their external colour anthocyanin. To a lesser extent titratable acidity and ph were also affected by coatings. This treatment decreased the initial log counts of total aerobic bacteria, mould and yeast, coliform and E. coli. After 20 days of cold storage, the log counts of these micro organisms were lower than the log count of uncoated strawberries. Thus, CS can be used as a natural antimicrobial coating on fresh strawberries to improve microbiological quality and extend shelf-life. CS formulation contains 2 % Irr. CS + 1 % CaCl2 extended the shelf-life of strawberries to 20 days in cold storage at 6 degree C with acceptable appearance, firmness, flavour and colour, while uncoated strawberries only lasted for 4 days as a result of mould growth and loss of surface appearance

  8. Lipid oxidative changes in chitosan-oregano coated traditional dry fermented sausage Petrovská klobása.

    Science.gov (United States)

    Krkić, Nevena; Šojić, Branislav; Lazić, Vera; Petrović, Ljiljana; Mandić, Anamarija; Sedej, Ivana; Tomović, Vladimir

    2013-03-01

    The effect of a chitosan coating with added essential oil of oregano (Origanum vulgare) on lipid oxidation of dry fermented sausage (Petrovská klobása) was investigated. Fatty acid profile, aldehyde contents and sensory analysis of odor and flavor were determined after drying and during seven months of storage. Between coated and control sausage, a difference was observed after two months storage in fatty acid profiles (myristic, oleic and linoleic acids), but after seven months storage there was no difference. Decrease in polyunsaturated acid content was observed (from 17.25% to 15.70%), as well as an increase in total aldehydes (from 4.54 μg/g to 31.80 μg/g), due to lipid oxidation during storage. After seven months storage, the content of most aldehydes was significantly lower in coated sausage than in the control. Sensory characteristics of odor and flavor were better for coated sausage, after seven months of storage. Results suggest that chitosan-oregano coating can be successfully applied to protect dry fermented sausages from lipid oxidation.

  9. Adsorption of indium(III) ions from aqueous solution using chitosan-coated bentonite beads

    Energy Technology Data Exchange (ETDEWEB)

    Calagui, Mary Jane C. [College of Engineering, Cagayan State University, Cagayan Valley 3500 (Philippines); School of Graduate Studies, Mapua Institute of Technology, Manila 1800 (Philippines); Senoro, Delia B. [School of Graduate Studies, Mapua Institute of Technology, Manila 1800 (Philippines); Kan, Chi-Chuan [Institute of Hot Spring Industrial, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan (China); Salvacion, Jonathan W.L. [School of Graduate Studies, Mapua Institute of Technology, Manila 1800 (Philippines); Futalan, Cybelle Morales [Operations Department, Frontier Oil Corporation, Makati City 1229 (Philippines); Wan, Meng-Wei, E-mail: peterwan@mail.chna.edu.tw [Department of Environmental Engineering and Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan (China)

    2014-07-30

    Highlights: • A more acidic pH causes a decrease in adsorption capacity. • The kinetic data follow the pseudo-second order equation. • Equilibrium data correlated well with Langmuir isotherm. • Removal of indium is a spontaneous and endothermic process. - Abstract: Batch adsorption study was utilized in evaluating the potential suitability of chitosan-coated bentonite (CCB) as an adsorbent in the removal of indium ions from aqueous solution. The percentage (%) removal and adsorption capacity of indium(III) were examined as a function of solution pH, initial concentration, adsorbent dosage and temperature. The experimental data were fitted with several isotherm models, where the equilibrium data was best described by Langmuir isotherm. The mean energy (E) value was found in the range of 1–8 kJ/mol, indicating that the governing type of adsorption of indium(III) onto CCB is essentially physical. Thermodynamic parameters, including Gibbs free energy, enthalpy, and entropy indicated that the indium(III) ions adsorption onto CCB was feasible, spontaneous and endothermic in the temperature range of 278–318 K. The kinetics was evaluated utilizing the pseudo-first order and pseudo-second order model. The adsorption kinetics of indium(III) best fits the pseudo-second order (R{sup 2} > 0.99), which implies that chemical sorption as the rate-limiting step.

  10. Tight attachment of chitin-binding-domain-tagged proteins to surfaces coated with acetylated chitosan.

    Science.gov (United States)

    Bernard, Michael P; Cao, Donghui; Myers, Rebecca V; Moyle, William R

    2004-04-15

    Several excellent procedures for trapping tagged proteins have been devised, but many of these are expensive, cannot be used outside a limited pH range, fail to work in the presence of chaotropic agents, or are difficult to use. The chitin binding domain (CBD) of Bacillus circulans chitinase, which binds to chitin matrices prepared from inexpensive reagents isolated from crab shells, is an alternative tag that can be used under a variety of pH and denaturing conditions. Kits based on the interaction between the CBD and the chitin beads are available commercially. Here, we show that simultaneous treatment of microtiter plates with chitosan, a deacetylated form of chitin, and acetic anhydride produces a surface-bound film of chitin that also interacts tightly with the CBD. Chitin-coated microtiter well plates captured a CBD-tagged heterodimeric human glycoprotein hormone analog directly from mammalian cell culture media, even when present in trace amounts. Binding to the surface was stable in sodium dodecylsulfate and reversed only partially at low pH or in 8M urea at 37 degrees C. This technique appears well suited to surface attachment and permits biochemical or other analyses of molecules that can be tagged with a CBD.

  11. Combinatorial photothermal and immuno cancer therapy using chitosan-coated hollow copper sulfide nanoparticles.

    Science.gov (United States)

    Guo, Liangran; Yan, Daisy D; Yang, Dongfang; Li, Yajuan; Wang, Xiaodong; Zalewski, Olivia; Yan, Bingfang; Lu, Wei

    2014-06-24

    Near-infrared light-responsive inorganic nanoparticles have been shown to enhance the efficacy of cancer photothermal ablation therapy. However, current nanoparticle-mediated photothermal ablation is more effective in treating local cancer at the primary site than metastatic cancer. Here, we report the design of a near-infrared light-induced transformative nanoparticle platform that combines photothermal ablation with immunotherapy. The design is based on chitosan-coated hollow CuS nanoparticles that assemble the immunoadjuvants oligodeoxynucleotides containing the cytosine-guanine (CpG) motifs. Interestingly, these structures break down after laser excitation, reassemble, and transform into polymer complexes that improve tumor retention of the immunotherapy. In this "photothermal immunotherapy" approach, photothermal ablation-induced tumor cell death reduces tumor growth and releases tumor antigens into the surrounding milieu, while the immunoadjuvants potentiate host antitumor immunity. Our results indicated that combined photothermal immunotherapy is more effective than either immunotherapy or photothermal therapy alone against primary treated and distant untreated tumors in a mouse breast cancer model. These hollow CuS nanoparticles are biodegradable and can be eliminated from the body after laser excitation.

  12. Dye adsorption and bactericidal properties of TiO2/chitosan coating layer.

    Science.gov (United States)

    Kamal, Tahseen; Anwar, Yasir; Khan, Sher Bahadar; Chani, Muhammad Tariq Saeed; Asiri, Abdullah M

    2016-09-01

    A new kind of titanium oxide dispersed in chitosan (TiO2/CS) nanocomposite adsorbent was prepared and adhered to high surface area substrate, cellulose microfibers mat (CMM). CS-CMM and TiO2/CS-CMM were used for the thymol violet (TV) dye removal from wastewater. Characterization of materials was carried out by X-ray diffraction, scanning electron microscope and energy dispersive X-ray spectroscopy. The adsorption properties of both the CS-CMM and TiO2/CS-CMM were investigated as a function of adsorbent dosage, solution pH, and contact time. It was revealed that the composites pretreated in the solution with higher pH value exhibited larger adsorption capacities. Kinetic studies showed that the composites could adsorb TV dye rapidly and reached the equilibrium in 90min. The adsorption process followed pseudo-second order kinetics and involved particle diffusion mechanism. The calculated maximum adsorption capacities of CS-CMM and TiO2/CS-CMM were 84.32 and 97.51mgg(-1), respectively. Compare to CS, the TiO2/CS nanocomposite coated CMM showed higher antibacterial characteristics as tested against Escherichia coli. PMID:27185126

  13. Influence of Chitosan Coating on Mechanical Stability of Biopolymer Carriers with Probiotic Starter Culture in Fermented Whey Beverages

    Directory of Open Access Journals (Sweden)

    Nataša S. Obradović

    2015-01-01

    Full Text Available The aim of this study was to improve the mechanical stability of biopolymer carriers and cell viability with addition of chitosan coating during fermentation process and product storage. Dairy starter culture (1% (w/v was diluted in whey and mixed with sodium alginate solution and the beads were made using extrusion technique. The mechanical stability of coated and uncoated beads, the release behavior, and the viability of encapsulated probiotic dairy starter culture in fermented whey beverages were analyzed. The mechanical properties of the beads were determined according to force-displacement and engineering stress-strain curves obtained after compression testing. It was observed that addition of chitosan as a coating on the beads as well as the fermentation process increased the elastic modulus of the calcium alginate-whey beads and cell survival. The current study revealed that the coating did not significantly improve the viability of probiotics during the fermentation but had an important influence on preservation of the strength of the carrier during storage. Our results indicate that whey-based substrate has positive effect on the mechanical stability of biopolymer beads with encapsulated probiotics.

  14. The potential application of hyaluronic acid coated chitosan nanoparticles in ocular delivery of dexamethasone.

    Science.gov (United States)

    Kalam, Mohd Abul

    2016-08-01

    This study investigates in-vitro transcorneal permeation on excised-rabbit cornea and its effect on corneal hydration-level, in-vivo ocular irritation, tear and aqueous humor dexamethasone-sodium-phosphate (DEX) concentration after topical administration of chitosan-nanoparticles (CS-NPs), hyaluronan-coated-CS-NPs (HA-CS-NPs) and DEX-aqueous-solution in rabbit eyes. The permeation parameters and irritation results indicated the ocular safety of NPs. The developed UPLC-method was successfully applied for DEX quantification in tears and aqueous-humors. Tear samples were collected and DEX-concentration was analyzed by UPLC. A statistically significantly (p<0.05) high DEX-concentration in the inferior conjunctival-sulcus from NPs treated eyes was found as compared to DEX-solution treated eyes. Similarly, DEX-concentration in aqueous-humor was estimated. The drug was detected sufficiently high in aqueous-humor till 24h following topical administration of NPs. The NPs have shown significantly (p<0.05) higher bioavailability of DEX compared to DEX-solution. About 1.83- and 2.14-fold higher AUC0-24h was observed with the CS-NPs and HA-CS-NPs, respectively compared to DEX-solution. The reason for higher tear concentration and higher bioavailability of DEX from uncoated and HA-coated CS-NPs was assumed due to their prolonged precorneal-retention because of highly mucoadhesive characteristics of CS and HA. Moreover, presence of HA on CS-NPs, speed-up cellular-uptake by receptor-mediated-endocytosis could be another reason for enhanced bioavailability. PMID:27164496

  15. Dual chitosan/albumin-coated alginate/dextran sulfate nanoparticles for enhanced oral delivery of insulin.

    Science.gov (United States)

    Lopes, Marlene; Shrestha, Neha; Correia, Alexandra; Shahbazi, Mohammad-Ali; Sarmento, Bruno; Hirvonen, Jouni; Veiga, Francisco; Seiça, Raquel; Ribeiro, António; Santos, Hélder A

    2016-06-28

    The potential of nanoparticles (NPs) to overcome the barriers for oral delivery of protein drugs have led to the development of platforms capable of improving their bioavailability. However, despite the progresses in drug delivery technologies, the success of oral delivery of insulin remains elusive and the disclosure of insulin mechanisms of absorption remains to be clarified. To overcome multiple barriers faced by oral insulin and to enhance the insulin permeability across the intestinal epithelium, here insulin-loaded alginate/dextran sulfate (ADS)-NPs were formulated and dual-coated with chitosan (CS) and albumin (ALB). The nanosystem was characterized by its pH-sensitivity and mucoadhesivity, which enabled to prevent 70% of in vitro insulin release in simulated gastric conditions and allowed a sustained insulin release following the passage to simulated intestinal conditions. The pH and time-dependent morphology of the NPs was correlated to the release and permeation profile of insulin. Dual CS/ALB coating of the ADS-NPs demonstrated augmented intestinal interactions with the intestinal cells in comparison to the uncoated-NPs, resulting in a higher permeability of insulin across Caco-2/HT29-MTX/Raji B cell monolayers. The permeability of the insulin-loaded ALB-NPs was reduced after the temperature was decreased and after co-incubation with chlorpromazine, suggesting an active insulin transport by clathrin-mediated endocytosis. Moreover, the permeability inhibition with the pre-treatment with sodium chlorate suggested that the interaction between glycocalix and the NPs was critical for insulin permeation. Overall, the developed nanosystem has clinical potential for the oral delivery of insulin and therapy of type 1 diabetes mellitus. PMID:27074369

  16. Preparation of chitosan nanofiber tube by electrospinning.

    Science.gov (United States)

    Matsuda, Atsushi; Kagata, Go; Kino, Rikako; Tanaka, Junzo

    2007-03-01

    Water-insoluble chitosan nanofiber sheets and tubes coated with chitosan-cast film were prepared by electrospinning. When as-spun chitosan nanofiber sheets and tubes were immersed in 28% ammonium aqueous solution, they became insoluble in water and showed nanofiber structures confirmed by SEM micrography. Mechanical properties of chitosan nanofiber sheets and tubes were improved by coating with chitosan-cast film, which gave them a compressive strength higher than that of crab-tendon chitosan, demonstrating that chitosan nanofiber tubes coated with chitosan-cast film are usable as nerve-regenerative guide tubes.

  17. A chitosan-based coating with or without clove oil extends the shelf life of cooked pork sausages in refrigerated storage.

    Science.gov (United States)

    Lekjing, Somwang

    2016-01-01

    Chitosan coatings, with and without clove oil, were investigated for effects on quality and shelf life of cooked pork sausages stored at a refrigerated temperature (4±2°C). The various treatments of cooked pork sausages were: untreated (control), coating with 2% chitosan (CS), and coating with a mixture having 2% chitosan and 1.5% clove oil (CS+CO). Various microbiological, physical, chemical and sensory properties were monitored over 25 days of storage. The total viable count, the psychrotrophic bacteria count, the L* value, peroxide value and the thiobarbituric acid reactive substances increased, while the a* value, the b* value, the pH and the sensory scores decreased with storage time, across all treatments. However, these changes were slowest with the CS+CO treatment. Based on sensory evaluation and microbiological quality, the shelf lives were 14 days for control, 20 days for CS, and 20 days for CS+CO treated samples, under refrigerated storage.

  18. A chitosan-based coating with or without clove oil extends the shelf life of cooked pork sausages in refrigerated storage.

    Science.gov (United States)

    Lekjing, Somwang

    2016-01-01

    Chitosan coatings, with and without clove oil, were investigated for effects on quality and shelf life of cooked pork sausages stored at a refrigerated temperature (4±2°C). The various treatments of cooked pork sausages were: untreated (control), coating with 2% chitosan (CS), and coating with a mixture having 2% chitosan and 1.5% clove oil (CS+CO). Various microbiological, physical, chemical and sensory properties were monitored over 25 days of storage. The total viable count, the psychrotrophic bacteria count, the L* value, peroxide value and the thiobarbituric acid reactive substances increased, while the a* value, the b* value, the pH and the sensory scores decreased with storage time, across all treatments. However, these changes were slowest with the CS+CO treatment. Based on sensory evaluation and microbiological quality, the shelf lives were 14 days for control, 20 days for CS, and 20 days for CS+CO treated samples, under refrigerated storage. PMID:26473294

  19. Application of irradiated chitosan for fruit preservation

    Energy Technology Data Exchange (ETDEWEB)

    Lan, K.N. [Post-harvest Technology Institute, 4, Ngo Quyen-Ha Noi (Viet Nam); Lam, N.D. [Ha Noi Radiation Center, VAEC, 5T-160, Nghiado, Tuliem, Ha Noi (Viet Nam); Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-03-01

    Preliminary test of mango (Mangifera indica) preservation by irradiated chitosan coating has been investigated. The coating by using irradiated chitosan in 1.5% solution has extended the shelf life of mango from 7 to 15 days. At the 15th day mango coated by irradiated chitosan has been keeping good color, natural ripening, without spoilage, weight loss 10%, whereas the mango without coating was spoiled completely and the coating of fruit with unirradiated chitosan inhibited the ripening. (author)

  20. Study on the bonding strength between calcium phosphate/chitosan composite coatings and a Mg alloy substrate

    Science.gov (United States)

    Zhang, Jie; Dai, Chang-Song; Wei, Jie; Wen, Zhao-Hui

    2012-11-01

    In order to improve the bonding strength between calcium phosphate/chitosan composite coatings and a micro-arc oxidized (MAO)-AZ91D Mg alloy, different influencing parameters were investigated in the process of electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). Surface morphology and phase constituents of the as-prepared materials were investigated by using X-ray diffractometer (XRD), Fourier-transformed infrared spectrophotometer (FTIR), Raman spectrometer, scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS), and a thermo gravimetric and differential thermal analyzer (TG-DTA). Scratch tests were carried out to study the bonding properties between the coatings and the substrates. In vitro immersion tests were conducted to determine the corrosion behaviors of samples with and without deposit layers through electrochemical experiments. In the EPD process, the acetic acid content in the electrophoresis suspension and the electrophoretic voltage played important roles in improving the bonding properties, while the contents of chitosan (CS) and nano-hydroxyapatite (nHA, Ca10(PO4)6(OH)2) in the suspension had less significant influences on the mechanical bonding strength. It was observed that the coatings showed the excellent bonding property when an electrophoretic voltage was in a range of 40-110 V with other reagent amounts as follows: acetic acid: 4.5 vol.%, CS ≤ 0.25 g, nHA ≤ 2.0 g in 200 ml of a CS-acetic acid aqueous solution and nHA ≤ 2.5 g in 300 ml of absolute ethanol. The morphology of the composite coating obtained under the above optimal condition had a flake-like crystal structure. The EPD in the nHA/CS-acetic acid/ethanol suspension resulted in hydroxyapatite, chitosan, brushite (DCPD, CaHPO4·2H2O) and Ca(OH)2 in the coatings. After the as-prepared coating materials were immersed into PBS, Ca(OH)2 could be converted into HA and DCPD. The results of the electrochemical tests

  1. Characterization and antibacterial performance of electrodeposited chitosan-vancomycin composite coatings for prevention of implant-associated infections.

    Science.gov (United States)

    Ordikhani, F; Tamjid, E; Simchi, A

    2014-08-01

    Orthopaedic implant-associated infections are one of the most serious complications in orthopaedic surgery and a major cause of implant failure. In the present work, drug-eluting coatings based on chitosan containing various amounts of vancomycin were prepared by a cathodic electrophoretic deposition process on titanium foils. A three-step release mechanism of the antibiotic from the films in a phosphate-buffered saline solution was noticed. At the early stage, physical encapsulation of the drug in the hydrogel network controlled the release rate. At the late stage, however, in vitro degradation/deattachment of chitosan was responsible for the controlled release. Cytotoxicity evaluation of the drug-eluting coatings via culturing in human osteosarcoma cells (MG-63 osteoblast-like cell line) showed no adverse effect on the biocompatibility. Antibacterial tests against Gram-positive Staphylococcus aureus also demonstrated that the infection risk of titanium foils was significantly reduced due to the antibiotic release. Additionally, in vitro electrochemical corrosion studies by polarization technique revealed that the corrosion current density was significantly lower for the titanium foils with drug-eluting coatings compared to that of uncoated titanium. PMID:24907757

  2. Morphology characterization and biocompatibility study of PLLA (Poly-L-Llactid-Acid) coating chitosan as stent for coronary heart disease

    Science.gov (United States)

    Widiyanti, Prihartini; Paramadini, Adanti W.; Jabbar, Hajria; Fatimah, Inas; Nisak, Fadila N. K.; Puspitasari, Rahma A.

    2016-03-01

    Cardiovascular disease is a global disease with high urgency. In the severe case of coronary heart disease while a blockage in the coronary arteries reach 75% or more, the patient required stent implantation. Stents are made of metal which has many limitations that can lead to blood clots and stent incompatibility toward the size of the blood vessels. There is a metal stent replacement solution that made from polymer material which is biocompatible. PLLA also has biocompatibility and good mechanical strength. PLLA stent will be coated with chitosan as a candidate for drug-coated stents which is able to work as a drug carrier. The aim of this study is to know the morphology information and biocompability status of PLLA coating chitosan as candidate of heart stent. Morphological results using SEM showed a smooth surface structure which reinforced clinical standard of stent material. Results of cytotoxicity test by MTT Assay method showed that the result of four samples in this experiment living cells is reached 90% which is non toxic and safe to use in the human body. %). The conclusion of this study is PLLA is polymer has potency to be used as stent material.

  3. Synthesis and characterization of the superparamagnetic iron oxide nanoparticles modified with cationic chitosan and coated with silica shell

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowska-Łańcucka, Joanna, E-mail: lewandow@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Staszewska, Magdalena; Szuwarzyński, Michał; Kępczyński, Mariusz [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Romek, Marek [Department of Cytology and Histology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow (Poland); Tokarz, Waldemar [Department of Solid State Physics, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow (Poland); Szpak, Agnieszka; Kania, Gabriela; Nowakowska, Maria [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland)

    2014-02-15

    Highlights: • The new, facile methodology for synthesis of silica covered SPIONs is proposed. • The SPIONs was modified with cationic chitosan and coated with silica shell. • Negatively charged, rounded in shape particles of ca. 330 nm were obtained. • The product exhibits the superparamagnetic properties. • The product properties imply its potential applications in biomedicine areas. -- Abstract: Novel method for synthesis of superparamagnetic iron oxide nanoparticles (SPION) modified with a cationic chitosan (CCh) and coated with a silica shell, SPION-CCh-SiO{sub 2} was developed. The process was carried out in two steps. In the first step the chitosan coated SPIONs were obtained by co-precipitation of Fe{sup 2+} and Fe{sup 3+} with ammonium hydroxide in aqueous solution of CCh. In the second one, the silica shell is formed on their surfaces. The formation of SPION-CCh-SiO{sub 2} was achieved by direct decomposition of tetraethoxysilane (TEOS) adsorbed on a surface of SPION-CCh dispersed in aqueous phase under sonication and mechanical stirring at room temperature. The chemical composition and physicochemical properties of the materials were determined using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Dynamic Light Scattering (DLS) and zeta potential measurements. The morphology of the particles was evaluated by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). Magnetic properties were confirmed using Atomic Force Microscopy/Magnetic Force Microscopy (AFM/MFM) and magnetization measurements. The resulting products are negatively charged, rounded in shape and exhibit the superparamagnetic properties what implies their potential applications in engineering and biomedicine areas.

  4. One-step fabrication of biocompatible chitosan-coated ZnS and ZnS:Mn2+ quantum dots via a γ-radiation route

    OpenAIRE

    Chang, Shu-quan; Kang, Bin; Dai, Yao-dong; Zhang, Hong-xu; Chen, Da

    2011-01-01

    Biocompatible chitosan-coated ZnS quantum dots [CS-ZnS QDs] and chitosan-coated ZnS:Mn2+ quantum dots [CS-ZnS:Mn2+ QDs] were successfully fabricated via a convenient one-step γ-radiation route. The as-obtained QDs were around 5 nm in diameter with excellent water-solubility. These QDs emitting strong visible blue or orange light under UV excitation were successfully used as labels for PANC-1 cells. The cell experiments revealed that CS-ZnS and CS-ZnS:Mn2+ QDs showed low cytotoxicity and good ...

  5. Thermo-therapeutic applications of chitosan- and PEG-coated NiFe2O4 nanoparticles

    Science.gov (United States)

    Manjura Hoque, S.; Tariq, Mehrin; Liba, S. I.; Salehin, F.; Mahmood, Z. H.; Khan, M. N. I.; Chattopadhayay, K.; Islam, Rafiqul; Akhter, S.

    2016-07-01

    The paper reports the thermo-therapeutic applications of chitosan- and PEG-coated nickel ferrite (NiFe2O4) nanoparticles. In this study NiFe2O4 nanoparticles were synthesized by the co-precipitation method, tuning the particle size through heat treatment in the temperature range from 200-800 °C for 3 h. XRD and TEM analysis revealed that the the ultrafine nanoparticles were of size 2-58 nm. Crystallinity of the NiFe2O4 nanoparticles in the as-dried condition with the particle size ˜2-3 nm was confirmed from the presence of a lattice fringe in the HRTEM image. VSM measurements showed that a superparamagnetic/ferromagnetic transition occurs with increasing particle size, which was further confirmed by Mössbauer spectroscopy. The nickel ferrite nanoparticles with optimum particle size of 10 nm were then coated with materials commonly used for biomedical applications, i.e. chitosan and PEG, to form homogeneous suspensions. The hydrodynamic diameter and the polydispersity index (PDI) were analyzed by dynamic light scattering at the physiological temperature of 37 °C and found to be 187 nm and 0.21 for chitosan-coated nanoparticles and 285 nm and 0.32 for PEG-coated ones. The specific loss power of rf induction heating by the set-up for hyperthermia and r 2 relaxivity by the nuclear magnetic resonance were determined. The results of induction heating measurements showed that the temperature attained by the nanoparticles of size 10 nm and concentration of about 20 mg ml-1 was >70 °C (for chitosan) and >64 °C (for PEG). It has been demonstrated that the required temperature for hyperthermia heating could be tuned by tuning the particle size, shape and magnetization and the concentration of solution. For other potential biomedical applications of the NiFe2O4 nanoparticle solution, e.g. magnetic resonance imaging, the NMR studies yielded the T 1 and T 2 relaxivities as 0.348 and 89 mM-1 s-1 respectively. The fact that the T 2 relaxivity is orders of magnitude higher

  6. In vitro study on apoptotic cell death by effective magnetic hyperthermia with chitosan-coated MnFe2O4

    Science.gov (United States)

    Oh, Yunok; Lee, Nohyun; Kang, Hyun Wook; Oh, Junghwan

    2016-03-01

    Magnetic nanoparticles (MNPs) have been widely investigated as a hyperthermic agent for cancer treatment. In this study, thermally responsive Chitosan-coated MnFe2O4 (Chitosan-MnFe2O4) nanoparticles were developed to conduct localized magnetic hyperthermia for cancer treatment. Hydrophobic MnFe2O4 nanoparticles were synthesized via thermal decomposition and modified with 2,3-dimercaptosuccinic acid (DMSA) for further conjugation of chitosan. Chitosan-MnFe2O4 nanoparticles exhibited high magnetization and excellent biocompatibility along with low cell cytotoxicity. During magnetic hyperthermia treatment (MHT) with Chitosan-MnFe2O4 on MDA-MB 231 cancer cells, the targeted therapeutic temperature was achieved by directly controlling the strength of the external AC magnetic fields. In vitro Chitosan-MnFe2O4-assisted MHT at 42 °C led to drastic and irreversible changes in cell morphology and eventual cellular death in association with the induction of apoptosis through heat dissipation from the excited magnetic nanoparticles. Therefore, the Chitosan-MnFe2O4 nanoparticles with high biocompatibility and thermal capability can be an effective nano-mediated agent for MHT on cancer.

  7. The effect of a PEG versus a chitosan coating on the interaction of drug colloidal carriers with the ocular mucosa.

    Science.gov (United States)

    De Campos, Angela M; Sánchez, Alejandro; Gref, Ruxandra; Calvo, Pilar; Alonso, María J

    2003-09-01

    The influence of the surface characteristics of colloidal drug carriers in their interaction with different biological surfaces is becoming increasingly evident. In order to investigate the importance of these characteristics in their interaction with the ocular mucosa, we developed three types of nanocapsules that differ in their surface properties: poly- epsilon -caprolactone (PECL) nanocapsules, chitosan (CS)-coated PECL nanocapsules and poly(ethylene glycol) (PEG)-coated PECL nanocapsules. Two different approaches were used to form these polymer coated nanocapsules: (i) the electrostatic anchorage of the coating onto the PECL nanocapsules-in the case of CS-and (ii) the use of the previously synthesized copolymer PECL-PEG for the formation of the nanocapsules. In both cases, the systems, prepared by the interfacial deposition technique, were loaded with a fluorescent dye (rhodamine) in order to quantify and visualize their interaction with the ocular surface ex vivo and in vivo. An important conclusion from the ex vivo studies is that the developed systems, and specially the CS-coated ones, enhanced the penetration of the encapsulated dye through the cornea. This effect was not simple due to the physical presence of the nanocapsules but to their ability to carry the encapsulated compound. The second conclusion from the confocal laser scanning microscopy (CLSM) studies is that the systems were able to enter the corneal epithelium by a transcellular pathway and that the penetration rate was dependent on the coating composition. The images suggest that the PEG coating accelerates the transport of the nanocapsules across the whole epithelium, whereas the CS coating favours the retention of the nanocapsules in the superficial layers of the epithelium. The specific behaviour of CS-coated systems was also corroborated in vivo. These results indicate that the surface composition of colloidal drug carriers affects their biodistribution in the eye. Therefore, this surface

  8. Pembuatan Nanokomposit Poliuretan Berbasis Minyak Kelapa Sawit Dengan Nanopartikel Montmorillonit Organik Sebagai Bahan Cat

    OpenAIRE

    Zaimahwati

    2016-01-01

    This research reports the manufacture of palm oil-based polyurethane nanocomposite with organic montmorillonite nanoparticle as paint coating. This research consists of five stages namely the manufacture of polyol, organic montmorillonite nanoparticle, properties and application of polyurethane nanocomposite as paint coating. Polyols are formed by reacting epoxides with palm oil-based oleic acid hydroxyl. Organic montmorillonite nanoparticle was made through intercalation process of montmoril...

  9. Thermodynamic Insights and Conceptual Design of Skin-Sensitive Chitosan Coated Ceramide/PLGA Nanodrug for Regeneration of Stratum Corneum on Atopic Dermatitis

    Science.gov (United States)

    Jung, Sang-Myung; Yoon, Gwang Heum; Lee, Hoo Chul; Jung, Moon Hee; Yu, Sun Il; Yeon, Seung Ju; Min, Seul Ki; Kwon, Yeo Seon; Hwang, Jin Ha; Shin, Hwa Sung

    2015-01-01

    Atopic dermatitis (AD) is a complex skin disease primarily characterized by psoriasis of the stratum corneum. AD drugs have usually been used in acidic and hydrophilic solvents to supply moisture and prevent lipid defects. Ceramide is a typical treatment agent to regenerate the stratum corneum and relieve symptoms of AD. However, ceramide has limitation on direct use for skin because of its low dispersion properties in hydrophilic phase and side effects at excessive treatment. In this study, ceramide imbedded PLGA nanoparticles were developed with chitosan coating (Chi-PLGA/Cer) to overcome this problem. The chitosan coating enhanced initial adherence to the skin and prevented the initial burst of ceramide, but was degraded by the weakly acidic nature of skin, resulting in controlled release of ceramide with additional driving force of the squeezed PLGA nanoparticles. Additionally, the coating kinetics of chitosan were controlled by manipulating the reaction conditions and then mathematically modeled. The Chi-PLGA/Cer was not found to be cytotoxic and ceramide release was controlled by pH, temperature, and chitosan coating. Finally, Chi-PLGA/Cer was demonstrated to be effective at stratum corneum regeneration in a rat AD model. Overall, the results presented herein indicated that Chi-PLGA/Cer is a novel nanodrug for treatment of AD. PMID:26666701

  10. Influence of chitosan coatings with citric essential oil on the shelf-life of minimally processed mango (Mangifera indica L.

    Directory of Open Access Journals (Sweden)

    Fabián Rico Rodríguez

    2015-06-01

    Full Text Available Demand for minimally processed fruits have increaseddue to their nutritional value and an increasing change inconsumption habits. Physicochemical, microbiological, structuraland sensory changes were determined in minimally processedmangoes (MPM with chitosan (CH edible coatings and lemonand orange essential oils (EOL. The MPM was first dipped in citricacid and a texturizing solution and then dipped in CH and lemonor orange EOL coatings. Weight loss, sensory acceptance, totalsoluble solids, total acidity, ascorbic acid, color changes, firmnessand elasticity, and microbiological changes were quantified for11 days of refrigerated storage. The CH and lemon EOL coatinghad more acceptance than the other treatments. No differenceswere found (p>0.05 for weight loss, total acidity, ascorbic acid,firmness or elasticity. There was a high amount of total phenolsdue to the EOL composition, as well as a high antioxidant capacityin the early days of storage. This characteristic decreased in thefinal days of the study. There was a decrease in the microbialcharge for the lemon EOL treatment, as compared to the othersamples. The CH and lemon EOL coating helped to maintain theshelf-life of the MPM for 11 days of storage without affecting thesensory acceptance. The CH and Orange EOL coating did nothave an effect on the MPM physicochemical attributes; however,the sensory acceptance was negatively affected with off-flavorsconferred to the MPM.

  11. Maize seed coatings and seedling sprayings with chitosan and hydrogen peroxide: their influence on some phenological and biochemical behaviors

    Science.gov (United States)

    Lizárraga-Paulín, Eva-Guadalupe; Miranda-Castro, Susana-Patricia; Moreno-Martínez, Ernesto; Lara-Sagahón, Alma-Virginia; Torres-Pacheco, Irineo

    2013-01-01

    Objective: To evaluate the effect of chitosan (CH) and hydrogen peroxide (H2O2) seed coatings and seedling sprinklings on two different maize varieties by measuring their phenology, the H2O2 presence, the catalase (CAT) activity, and the protein quantity. Methods: Seven groups of ten seeds for each maize variety were treated with CH (2% (20 g/L) and 0.2% (2 g/L)) or H2O2 (8 mmol/L) by coating, sprinkling, or both. Germination and seedling growth were measured. One month after germination, the presence of H2O2 in seedlings in the coated seed treatments was evaluated. Protein content and CAT activity were determined under all treatments. Results: H2O2 seed coating enhanced the germination rate and increased seedling and stem length in the quality protein maize (QPM) variety. Seedlings had a higher emergence velocity under this treatment in both varieties. CH and H2O2 sprinklings did not have an effect on seedling phenology. Exogenous application of H2O2 promoted an increase of endogenous H2O2. CH and H2O2 seedling sprinkling increased the protein content in both maize varieties, while there was no significant effect on the CAT activity of treated seeds and seedlings. Conclusions: CH and H2O2 enhance some phenological and biochemical features of maize depending on their method of application. PMID:23365007

  12. Calcium phosphate/chitosan composite coating: Effect of different concentrations of Mg{sup 2+} in the m-SBF on its bioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Pharmacy College, Jiamusi University, Jiamusi 154007 (China); Dai, Changsong, E-mail: changsd@hit.edu.cn [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Wei, Jie [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); School of Chemistry and Bioengineering, Suzhou Science Technology University, Suzhou 215009 (China); Wen, Zhaohui, E-mail: wenzhaohui1968@163.com [Department of neuro intern, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Zhang, Shujuan; Lin, Lemin [Department of neuro intern, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China)

    2013-09-01

    The purpose of this study was to investigate the effect of different concentration of Mg{sup 2+} in a modified simulated body fluid (m-SBF) on the bioactivity of calcium phosphate/chitosan composite coating. Calcium phosphate/chitosan composite coating was prepared on graphite substrate via electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). The obtained samples were soaked in the m-SBF containing different concentration of Mg{sup 2+} for different times. And then, the composite coatings were assessed using X-ray diffractometer (XRD), Fourier-transformed infrared spectroscopy (FTIR), Raman spectra, and scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS). The soaking solution was evaluated by inductively coupled plasma optical emission spectrometer (ICP-OES) test. The analytical results showed that hydroxyapatite (HA) and bone-like apatite (HCA) grew on the surface of calcium phosphate/chitosan composite coating after incubation in different m-SBF. With Mg{sup 2+} concentration in m-SBF increased from 1× Mg to 10× Mg, HA in the composite coating first presented a dissolving process and then a precipitating one slowly, while HCA presented a growing trend, continuously. The increasing of Mg{sup 2+} concentration in the m-SBF inhibited the total growing process of HA and HCA as a whole. The structure of the composite coating changed from spherical into irregular morphology with the concentration of Mg{sup 2+} increasing from 1× Mg to 10× Mg. Over all, with the Mg{sup 2+} concentration increasing, the bioactivity of calcium phosphate/chitosan composite coating tended to decrease.

  13. Immune response by nasal delivery of hepatitis B surface antigen and codelivery of a CpG ODN in alginate coated chitosan nanoparticles

    OpenAIRE

    Borges, Olga; Cordeiro-Da-Silva, Anabela; Tavares, Joana; Santarém, Nuno; Sousa, Adriano de; Borchard, Gerrit; Junginger, Hans E.

    2008-01-01

    Alginate coated chitosan nanoparticles were previously developed with the aim of protecting the antigen, adsorbed on the surface of those chitosan nanoparticles, from enzymatic degradation at mucosal surfaces. In this work, this new delivery system was loaded with the recombinant hepatitis B surface antigen (HBsAg) and applied to mice by the intranasal route. Adjuvant effect of the delivery system was studied by measuring anti-HBsAg IgG in serum, anti-HBsAg sIgA in faeces extracts or nasal an...

  14. Contact time- and pH-dependent adhesion and cohesion of low molecular weight chitosan coated surfaces

    OpenAIRE

    Lim, C; Lee, DW; Israelachvili, JN; Jho, Y; Hwang, DS

    2015-01-01

    © 2014 Elsevier Ltd. All rights reserved. Low molecular weight chitosan (LMW chitosan, ∼5 kDa) potentially has many desirable biomedical applications such as anti-microbial, anti-tumor, and anti-diabetes. Unlike high molecular weight chitosan, LMW chitosan is easily dissolvable in aqueous solutions even at neutral and basic pH, but its dissolution mechanism is not well understood. Here, we measured adhesion and cohesion of molecularly thin LMW chitosan films in aqueous solutions in different ...

  15. The synthesis and characterization of monodispersed chitosan-coated Fe3O4 nanoparticles via a facile one-step solvothermal process for adsorption of bovine serum albumin.

    Science.gov (United States)

    Shen, Mao; Yu, Yujing; Fan, Guodong; Chen, Guang; Jin, Ying Min; Tang, Wenyuan; Jia, Wenping

    2014-01-01

    Preparation of magnetic nanoparticles coated with chitosan (CS-coated Fe3O4 NPs) in one step by the solvothermal method in the presence of different amounts of added chitosan is reported here. The magnetic property of the obtained magnetic composite nanoparticles was confirmed by X-ray diffraction (XRD) and magnetic measurements (VSM). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) allowed the identification of spherical nanoparticles with about 150 nm in average diameter. Characterization of the products by Fourier transform infrared spectroscopy (FTIR) demonstrated that CS-coated Fe3O4 NPs were obtained. Chitosan content in the obtained nanocomposites was estimated by thermogravimetric analysis (TGA). The adsorption properties of the CS-coated Fe3O4 NPs for bovine serum albumin (BSA) were investigated under different concentrations of BSA. Compared with naked Fe3O4 nanoparticles, the CS-coated Fe3O4 NPs showed a higher BSA adsorption capacity (96.5 mg/g) and a fast adsorption rate (45 min) in aqueous solutions. This work demonstrates that the prepared magnetic nanoparticles have promising applications in enzyme and protein immobilization. PMID:24994954

  16. Chitosan coatings onto polyethylene terephthalate for the development of potential active packaging material

    Energy Technology Data Exchange (ETDEWEB)

    Zemljic, Lidija Fras, E-mail: lidija.fras@uni-mb.si [Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor (Slovenia); Tkavc, Tina [Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor (Slovenia); Vesel, Alenka [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Sauperl, Olivera [Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor (Slovenia)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer The adsorption/desorption of chitosan onto PET plastic film was studied. Black-Right-Pointing-Pointer Chitosan was reversible attached onto PET plastic films. Black-Right-Pointing-Pointer Antimicrobial functionalized PET may provide potential active packaging material. - Abstract: In this paper advanced surface treatment of PET plastic film is presented for introduction of antimicrobial properties as a potential application for food (as for example meat) packaging material. Adsorption/desorption of chitosan onto PET plastic film surface was studied using several analytical techniques such as: X-Ray Photoelectron Spectroscopy (XPS), ATR-FTIR spectroscopy and titrations. Kinetic desorption of chitosan from PET surface was analysed by polyelectrolyte titration and spectrophotometric Ninhydrine reaction. Standard antimicrobial test ASTM E2149-01 was performed for functionalised PET materials in order to determine their antimicrobial properties; i. e. to measure the reductions of some of the meat pathogens; such as bacteria Salmonella enterica, Campylobacter spp., Escherichia coli, Listeria monocytogenes and fungi Candida albicans.

  17. Dual drug loaded chitosan nanoparticles-sugar--coated arsenal against pancreatic cancer.

    Science.gov (United States)

    David, Karolyn Infanta; Jaidev, Leela Raghav; Sethuraman, Swaminathan; Krishnan, Uma Maheswari

    2015-11-01

    Pancreatic cancer is an aggressive form of cancer with poor survival rates. The increased mortality due to pancreatic cancer arises due to many factors such as development of multidrug resistance, presence of cancer stem cells, development of a stromal barrier and a hypoxic environment due to hypo-perfusion. The present study aims to develop a nanocarrier for a combination of drugs that can address these multiple issues. Quercetin and 5-fluorouracil were loaded in chitosan nanoparticles, individually as well as in combination. The nanoparticles were characterized for morphology, size, zeta potential, percentage encapsulation of drugs as well as their release profiles in different media. The dual drug-loaded carrier exhibited good entrapment efficiency (quercetin 95% and 5-fluorouracil 75%) with chitosan: quercetin: 5-fluorouracil in the ratio 3:1:2. The release profiles suggest that 5-fluorouracil preferentially localized in the periphery while quercetin was located towards the core of chitosan nanoparticles. Both drugs exhibited considerable association with the chitosan matrix. The dual drug-loaded carrier system exhibited significant toxicity towards pancreatic cancer cells both in the 2D as well as in the 3D cultures. We believe that the results from these studies can open up interesting options in the treatment of pancreatic cancer. PMID:26340358

  18. Surface functionalization of chitosan-coated magnetic nanoparticles for covalent immobilization of yeast alcohol dehydrogenase from Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Li Guiyin [Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078 (China); Biomedical Engineering Research Centre of Guilin University of Electronic Technology, Guilin, Guangxi 541014 (China); Zhou Zhide [Biomedical Engineering Research Centre of Guilin University of Electronic Technology, Guilin, Guangxi 541014 (China); Li Yuanjian, E-mail: yuan_jianli@yahoo.co [Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078 (China); Huang Kelong, E-mail: klhuang@mail.csu.edu.c [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Zhong Ming [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China)

    2010-12-15

    A novel and efficient immobilization of yeast alcohol dehydrogenase (YADH, EC1.1.1.1) from Saccharomyces cerevisiae has been developed by using the surface functionalization of chitosan-coated magnetic nanoparticles (Fe{sub 3}O{sub 4}/KCTS) as support. The magnetic Fe{sub 3}O{sub 4}/KCTS nanoparticles were prepared by binding chitosan alpha-ketoglutaric acid (KCTS) onto the surface of magnetic Fe{sub 3}O{sub 4} nanoparticles. Later, covalent immobilization of YADH was attempted onto the Fe{sub 3}O{sub 4}/KCTS nanoparticles. The effect of various preparation conditions on the immobilized YADH process such as immobilization time, enzyme concentration and pH was investigated. The influence of pH and temperature on the activity of the free and immobilized YADH using phenylglyoxylic acid as substrate has also been studied. The optimum reaction temperature and pH value for the enzymatic conversion catalyzed by the immobilized YADH were 30 {sup o}C and 7.4, respectively. Compared to the free enzyme, the immobilized YADH retained 65% of its original activity and exhibited significant thermal stability and good durability.

  19. Surface functionalization of chitosan-coated magnetic nanoparticles for covalent immobilization of yeast alcohol dehydrogenase from Saccharomyces cerevisiae

    Science.gov (United States)

    Li, Gui-yin; Zhou, Zhi-de; Li, Yuan-jian; Huang, Ke-long; Zhong, Ming

    2010-12-01

    A novel and efficient immobilization of yeast alcohol dehydrogenase (YADH, EC1.1.1.1) from Saccharomyces cerevisiae has been developed by using the surface functionalization of chitosan-coated magnetic nanoparticles (Fe 3O 4/KCTS) as support. The magnetic Fe 3O 4/KCTS nanoparticles were prepared by binding chitosan alpha-ketoglutaric acid (KCTS) onto the surface of magnetic Fe 3O 4 nanoparticles. Later, covalent immobilization of YADH was attempted onto the Fe 3O 4/KCTS nanoparticles. The effect of various preparation conditions on the immobilized YADH process such as immobilization time, enzyme concentration and pH was investigated. The influence of pH and temperature on the activity of the free and immobilized YADH using phenylglyoxylic acid as substrate has also been studied. The optimum reaction temperature and pH value for the enzymatic conversion catalyzed by the immobilized YADH were 30 °C and 7.4, respectively. Compared to the free enzyme, the immobilized YADH retained 65% of its original activity and exhibited significant thermal stability and good durability.

  20. Surface functionalization of chitosan-coated magnetic nanoparticles for covalent immobilization of yeast alcohol dehydrogenase from Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    A novel and efficient immobilization of yeast alcohol dehydrogenase (YADH, EC1.1.1.1) from Saccharomyces cerevisiae has been developed by using the surface functionalization of chitosan-coated magnetic nanoparticles (Fe3O4/KCTS) as support. The magnetic Fe3O4/KCTS nanoparticles were prepared by binding chitosan alpha-ketoglutaric acid (KCTS) onto the surface of magnetic Fe3O4 nanoparticles. Later, covalent immobilization of YADH was attempted onto the Fe3O4/KCTS nanoparticles. The effect of various preparation conditions on the immobilized YADH process such as immobilization time, enzyme concentration and pH was investigated. The influence of pH and temperature on the activity of the free and immobilized YADH using phenylglyoxylic acid as substrate has also been studied. The optimum reaction temperature and pH value for the enzymatic conversion catalyzed by the immobilized YADH were 30 oC and 7.4, respectively. Compared to the free enzyme, the immobilized YADH retained 65% of its original activity and exhibited significant thermal stability and good durability.

  1. Study on the Preservation of Fresh Chinese Wolfberry Fruit at Room Temperature by Chitosan Coating%壳聚糖涂膜对枸杞鲜果常温保鲜的研究

    Institute of Scientific and Technical Information of China (English)

    李晓莺; 何军; 葛玉萍; 曹有龙

    2009-01-01

    [Objective] The aim was to study the preservation of fresh Chinese wolfberry fruit via chitosan coating. [Method] Using Chinese wolfberry "Ningqi No. 1" as experimental material, the fresh fruits were coated by different concentrations of chitosan(0.75%, 1.00%, 1.25%, 1.50% and 1.75%) at room temperature to study the changes in weight loss rate, rate of rotten fruits rot, soluble solid content and vitamin C(Vc) content. [Result] Of all the treatments, the fruits coated with 1.25% chitosan showed lowest rate of rotten fruit and weight loss rate, and highest Vc and soluble solid content, presenting the optimal fresh-keeping effect. [Conclusion] Chitosan coating is helpful for the preservation of fresh Chinese wolfberry fruit at room temperature.

  2. Fuller's earth (montmorillonite) pneumoconiosis.

    OpenAIRE

    Gibbs, A R; Pooley, F D

    1994-01-01

    A fuller's earth worker developed signs of pneumoconiosis. Pathological examination of the lung tissues showed interstitial collections of dust laden macrophages associated with mild fibrosis. Mineralogical analysis showed a high content of montmorillonite. This study shows that a pneumoconiosis can result from prolonged heavy exposure to calcium montmorillonite (fuller's earth) in the absence of quartz. The disease is relatively mild and associated with little clinical disability.

  3. Immobilization of invertase on chitosan coated γ-Fe2O3 magnetic nanoparticles to facilitate magnetic separation.

    Science.gov (United States)

    Waifalkar, P P; Parit, S B; Chougale, A D; Sahoo, Subasa C; Patil, P S; Patil, P B

    2016-11-15

    Industrially important invertase enzyme was immobilized on chitosan coated sol gel derived γ-Fe2O3 magnetic nanoparticles (MNPs) to enable it for repetitive use by magnetic separation. MNPs were characterized by X-ray diffraction (XRD), dynamic light scattering (DLS), field emission scanning electron microscope (FE-SEM), Fourier transform infrared (FTIR) spectrometer and magnetic measurements. FTIR studies confirmed successful immobilization of invertase on MNPs. The ability to convert sucrose into invert syrup was enhanced in immobilized invertase compared to that of free enzyme. Further it was found that invertase immobilized on MNPs (IIMNPs) were more stable at varying pH and temperature conditions. Magnetic separation technique was successfully employed for reuse of the IIMNPs for 20 times without significant loss of activity. PMID:27501039

  4. Preparation and Characterization of Chitosan-Coated Poly(l-Lactic Acid Fibers and Their Braided Rope

    Directory of Open Access Journals (Sweden)

    Tetsuya Furuike

    2015-10-01

    Full Text Available Novel chitosan (CS-coated poly(l-lactic acid (PLA fibers (CS–PLA were prepared by reaction of an alkali and CS under heat treatment without a chemical binder. These treatments induced hydrolysis on the PLA surface, formation of ionic bonds between the carboxyl groups of the PLA surface and the amino groups of CS, and dehydration between the carboxyls and amines. The prepared fibers were characterized by scanning electron microscopy and mechanical strength tests. The presence of CS on the fiber surface was observed by the visual test of CS–PLA with amido black 10B and confirmed by the amine ratio obtained by X-ray photoelectron spectroscopy. The coating thickness of CS on the surface of the PLA fibers was approximately 28 nm, as determined from calculations based on the results of Kjeldahl nitrogen analysis and elemental analysis. The degradation properties of CS–PLA were also investigated. These properties were apparently enhanced by hydrophilicity resulting from the CS-coating treatment. Furthermore, braided ropes prepared using CS–PLA became tight with increasing number of core ropes. Results indicate that the objective tensile strength and flexibility of the braided rope could be controlled by adjusting the number of core fibers.

  5. Chitosan coatings onto polyethylene terephthalate for the development of potential active packaging material

    Science.gov (United States)

    Zemljič, Lidija Fras; Tkavc, Tina; Vesel, Alenka; Šauperl, Olivera

    2013-01-01

    In this paper advanced surface treatment of PET plastic film is presented for introduction of antimicrobial properties as a potential application for food (as for example meat) packaging material. Adsorption/desorption of chitosan onto PET plastic film surface was studied using several analytical techniques such as: X-Ray Photoelectron Spectroscopy (XPS), ATR-FTIR spectroscopy and titrations. Kinetic desorption of chitosan from PET surface was analysed by polyelectrolyte titration and spectrophotometric Ninhydrine reaction. Standard antimicrobial test ASTM E2149-01 was performed for functionalised PET materials in order to determine their antimicrobial properties; i. e. to measure the reductions of some of the meat pathogens; such as bacteria Salmonella enterica, Campylobacter spp., Escherichia coli, Listeria monocytogenes and fungi Candida albicans.

  6. Toxicity and antibacterial assessment of chitosan-coated silver nanoparticles on human pathogens and macrophage cells

    Directory of Open Access Journals (Sweden)

    Jena P

    2012-04-01

    Full Text Available Prajna Jena1, Soumitra Mohanty1, Rojee Mallick1, Biju Jacob2, Avinash Sonawane11School of Biotechnology, KIIT University, Bhubaneswar, Orissa, India; 2Center for Innovation, Technopark Technology Business Incubator, Bangalore, Karnataka, IndiaBackground: Pathogenic bacteria are able to develop various strategies to counteract the bactericidal action of antibiotics. Silver nanoparticles (AgNPs have emerged as a potential alternative to conventional antibiotics because of their potent antimicrobial properties. The purpose of this study was to synthesize chitosan-stabilized AgNPs (CS-AgNPs and test for their cytotoxic, genotoxic, macrophage cell uptake, antibacterial, and antibiofilm activities.Methods: AgNPs were synthesized using chitosan as both a stabilizing and a reducing agent. Antibacterial activity was determined by colony-forming unit assay and scanning electron microscopy. Genotoxic and cytotoxic activity were determined by DNA fragmentation, comet, and MTT [3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide] assays. Cellular uptake and intracellular antibacterial activity were tested on macrophages.Results: CS-AgNPs exhibited potent antibacterial activity against different human pathogens and also impeded bacterial biofilm formation. Scanning electron microscopy analysis indicated that CS-AgNPs kill bacteria by disrupting the cell membrane. CS-AgNPs showed no significant cytotoxic or DNA damage effect on macrophages at the bactericidal dose. Propidium iodide staining indicated active endocytosis of CS-AgNPs resulting in reduced intracellular bacterial survival in macrophages.Conclusion: The present study concludes that at a specific dose, chitosan-based AgNPs kill bacteria without harming the host cells, thus representing a potential template for the design of antibacterial agents to decrease bacterial colonization and to overcome the problem of drug resistance.Keywords: chitosan-silver nanoparticles, antibiofilm, cytotoxicity

  7. Maize seed coatings and seedling sprayings with chitosan and hydrogen peroxide:their influence on some phenological and biochemical behaviors

    Institute of Scientific and Technical Information of China (English)

    Eva-Guadalupe LIZ(A)RRAGA-PAUL(I)N; Susana-Patricia MIRANDA-CASTRO; Ernesto MORENO-MART(I)NEZ; Alma-Virginia LARA-SAGAH(O)N; Irineo TORRES-PACHECO

    2013-01-01

    Objective:To evaluate the effect of chitosan(CH)and hydrogen peroxide(H2O2)seed coatings and seedling sprinklings on two different maize varieties by measuring their phenology,the H2O2 presence,the catalase (CAT)activity,and the protein quantity.Methods:Seven groups of ten seeds for each maize variety were treated with CH(2%(20 g/L)and 0.2%(2 g/L))or H2O2(8 mmol/L)by coating,sprinkling,or both.Germination and seedling growth were measured.One month after germination,the presence of H2O2 in seedlings in the coated seed treatments was evaluated.Protein content and CAT activity were determined under all treatments.Results:H2O2 seed coating enhanced the germination rate and increased seedling and stem length in the quality protein maize(QPM)variety.Seedlings had a higher emergence velocity under this treatment in both varieties.CH and H2O2 sprinklings did not have an effect on seedling phenology.Exogenous application of H2O2 promoted an increase of endogenous H2O2.CH and H2O2 seedling sprinkling increased the protein content in both maize varieties,while there was no significant effect on the CAT activity of treated seeds and seedlings.Conclusions:CH and H2O2 enhance some phenological and biochemical features of maize depending on their method of application.

  8. Application in the Ethanol Fermentation of Immobilized Yeast Cells in Matrix of Alginate/Magnetic Nanoparticles, on Chitosan-Magnetite Microparticles and Cellulose-coated Magnetic Nanoparticles

    CERN Document Server

    Ivanova, Viara; Hristov, Jordan

    2011-01-01

    Saccharomyces cerevisiae cells were entrapped in matrix of alginate and magnetic nanoparticles and covalently immobilized on magnetite-containing chitosan and cellulose-coated magnetic nanoparticles. Cellulose-coated magnetic nanoparticles with covalently immobilized thermostable {\\alpha}-amylase and chitosan particles with immobilized glucoamylase were also prepared. The immobilized cells and enzymes were applied in column reactors - 1/for simultaneous corn starch saccharification with the immobilized glucoamylase and production of ethanol with the entrapped or covalently immobilized yeast cells, 2/ for separate ethanol fermentation of the starch hydrolysates with the fixed yeasts. Hydrolysis of corn starch with the immobilized {\\alpha}-amylase and glucoamylase, and separate hydrolysis with the immobilized {\\alpha}-amylase were also examined. In the first reactor the ethanol yield reached approx. 91% of the theoretical; the yield was approx. 86% in the second. The ethanol fermentation was affected by the typ...

  9. Fortification of dark chocolate with spray dried black mulberry (Morus nigra) waste extract encapsulated in chitosan-coated liposomes and bioaccessability studies.

    Science.gov (United States)

    Gültekin-Özgüven, Mine; Karadağ, Ayşe; Duman, Şeyma; Özkal, Burak; Özçelik, Beraat

    2016-06-15

    Fine-disperse anionic liposomes containing black mulberry (Morus nigra) extract (BME) were prepared by high pressure homogenization at 25,000 psi. Primary liposomes were coated with cationic chitosan (0.4, w/v%) using the layer-by-layer depositing method and mixed with maltodextrin (MD) (20, w/v%) prior to spray drying. After that, spray dried liposomal powders containing BME were added to chocolates with alkalization degrees (pH 4.5, 6, 7.5) at conching temperatures of 40 °C, 60 °C, and 80 °C. The results showed that, compared to spray dried extract, chitosan coated liposomal powders provided better protection of anthocyanin content in both increased temperature and pH. In addition, encapsulation in liposomes enhanced in vitro bioaccessability of anthocyanins. Chocolate was fortified with encapsulated anthocyanins maximum 76.8% depending on conching temperature and pH. PMID:26868567

  10. Development of silver/titanium dioxide/chitosan adipate nanocomposite as an antibacterial coating for fruit storage

    Science.gov (United States)

    A novel nanocomposite of silver/titanium dioxide/chitosan adipate (Ag/TiO2/CS) was developed through photochemical reduction using a chitosan adipate template. Chitosan served as a reducing agent for the metal ions, and anchored metal ions by forming Ag–N coordination bonds and electrostatic attract...

  11. Improved wettability and adhesion of polylactic acid/chitosan coating for bio-based multilayer film development

    Science.gov (United States)

    Gartner, Hunter; Li, Yana; Almenar, Eva

    2015-03-01

    The objective of this study was to investigate the effect of methyldiphenyl diisocyanate (MDI) concentration (0, 0.2, 1, 2, and 3%) on the wettability and adhesion of blend solutions of poly(lactic acid) (PLA) and chitosan (CS) when coated on PLA film for development of a bio-based multi-layer film suitable for food packaging and other applications. Characterization was carried out by attenuated total reflectance infrared spectrometry (ATR-FTIR), contact angle (θ), mechanical adhesion pull-off testing, and scanning electron microscopy (SEM). The θ of the PLA/CS blend shifted to a lower value (41-35°) with increasing MDI concentration showing that the surface tension was modified between the PLA/CS blend solution and PLA film and better wettability was achieved. The increase in MDI also resulted in an increased breaking strength (228-303 kPa) due to the increased H-bonding resulting from the more urethane groups formed within the PLA/CS blend as shown by ATR-FTIR. The improved adhesion was also shown by the increased number of physical entanglements observed by SEM. It can be concluded that MDI can be used to improve wettability and adhesion between PLA/CS coating and PLA film.

  12. Control of Salmonella on fresh chicken breasts by κ-carrageenan/chitosan-based coatings containing allyl isothiocyanate or deodorized Oriental mustard extract plus EDTA.

    Science.gov (United States)

    Olaimat, Amin N; Holley, Richard A

    2015-06-01

    Control of Salmonella in poultry is a public health concern as salmonellosis is one of the most common foodborne diseases worldwide. This study aimed to screen the ability of 5 Salmonella serovars to degrade the mustard glucosinolate, sinigrin (by bacterial myrosinase) in Mueller-Hinton broth at 25 °C for 21 d and to reduce Salmonella on fresh chicken breasts by developing an edible 0.2% (w/v) κ-carrageenan/2% (w/v) chitosan-based coating containing Oriental mustard extract, allyl isothiocyanate (AITC), EDTA or their combinations. Individual Salmonella serovars degraded 50.2%-55.9% of the sinigrin present in 21 d. κ-Carrageenan/chitosan-based coatings containing 250 mg Oriental mustard extract/g or 50 μl AITC/g reduced the numbers of Salmonella on chicken breasts 2.3 log10 CFU/g at 21 d at 4 °C. However, when either mustard extract or AITC was combined with 15 mg/g EDTA in κ-carrageenan/chitosan-based coatings, Salmonella numbers were reduced 2.3 log10 CFU/g at 5 d and 3.0 log10 CFU/g at 21 d. Moreover, these treatments reduced numbers of lactic acid bacteria and aerobic bacteria by 2.5-3.3 log10 CFU/g at 21 d. κ-Carrageenan/chitosan coatings containing either 50 μl AITC/g or 250 mg Oriental mustard extract/g plus 15 mg EDTA/g have the potential to reduce Salmonella on raw chicken.

  13. Design, Development, and Optimization of Sterculia Gum-Based Tablet Coated with Chitosan/Eudragit RLPO Mixed Blend Polymers for Possible Colonic Drug Delivery

    Directory of Open Access Journals (Sweden)

    Bipul Nath

    2013-01-01

    Full Text Available The purpose of this study is to explore the possible applicability of Sterculia urens gum as a novel carrier for colonic delivery system of a sparingly soluble drug, azathioprine. The study involves designing a microflora triggered colon-targeted drug delivery system (MCDDS which consists of a central polysaccharide core and is coated to different film thicknesses with blends of chitosan/Eudragit RLPO, and is overcoated with Eudragit L00 to provide acid and intestinal resistance. The microflora degradation property of gum was investigated in rat caecal medium. Drug release study in simulated colonic fluid revealed that swelling force of the gum could concurrently drive the drug out of the polysaccharide core due to the rupture of the chitosan/Eudargit coating in microflora-activated environment. Chitosan in the mixed film coat was found to be degraded by enzymatic action of the microflora in the colon. Release kinetic data revealed that the optimized MCDDS was fitted well into first-order model, and apparent lag time was found to be 6 hours, followed by Higuchi release kinetics. In vivo study in rabbits shows delayed , prolonged absorption time, decreased , and absorption rate constant (Ka, indicating a reduced systemic toxicity of the drug as compared to other dosage forms.

  14. Improved wettability and adhesion of polylactic acid/chitosan coating for bio-based multilayer film development

    Energy Technology Data Exchange (ETDEWEB)

    Gartner, Hunter [School of Packaging, Michigan State University, East Lansing, Michigan (United States); Li, Yana [Mechanical Engineering College, Wuhan Polytechnic University (China); Almenar, Eva, E-mail: ealmenar@msu.edu [School of Packaging, Michigan State University, East Lansing, Michigan (United States)

    2015-03-30

    Graphical abstract: - Highlights: • Surface tension between PLA/CS blend solution and PLA film modified by MDI. • Better wettability between PLA/CS blend solution and PLA film by increasing MDI. • Increased breaking strength by increasing MDI due to the increased H-bonding. • Increased number of physical entanglements between PLA/CS coating and PLA film. • Development of a suitable bio-based multilayer film for food packaging applications. - Abstract: The objective of this study was to investigate the effect of methyldiphenyl diisocyanate (MDI) concentration (0, 0.2, 1, 2, and 3%) on the wettability and adhesion of blend solutions of poly(lactic acid) (PLA) and chitosan (CS) when coated on PLA film for development of a bio-based multi-layer film suitable for food packaging and other applications. Characterization was carried out by attenuated total reflectance infrared spectrometry (ATR-FTIR), contact angle (θ), mechanical adhesion pull-off testing, and scanning electron microscopy (SEM). The θ of the PLA/CS blend shifted to a lower value (41–35°) with increasing MDI concentration showing that the surface tension was modified between the PLA/CS blend solution and PLA film and better wettability was achieved. The increase in MDI also resulted in an increased breaking strength (228–303 kPa) due to the increased H-bonding resulting from the more urethane groups formed within the PLA/CS blend as shown by ATR-FTIR. The improved adhesion was also shown by the increased number of physical entanglements observed by SEM. It can be concluded that MDI can be used to improve wettability and adhesion between PLA/CS coating and PLA film.

  15. 壳聚糖涂膜处理对红富士苹果贮藏品质和生理的影响%Effect of Chitosan Coating on Qualities and Physiology of Red Fuji Apples at Ambient Storage

    Institute of Scientific and Technical Information of China (English)

    梁婷; 任园园; 祁岩龙; 李学文

    2011-01-01

    以红富士苹果为试验材料,用不同浓度的壳聚糖涂膜处理,研究其对红富士苹果的贮藏品质的影响.结果表明,浓度为1.5%壳聚糖涂膜处理可以明显减少失重,抑制果肉胞膜渗透率的升高,维持较低的呼吸速率,同时抑制果实的可滴定酸、硬度下降、可溶性固形物含量下降.其中以1.5%壳聚糖涂膜处理效果较好.%Apple Red Fuji fruits were used to investigate the effect of chitosan coating on qualities and physiologies of postharvest fruit during storage with treatment of chitosan coating. The firmness, soluble solide content (SSC) ,weight loss and respiration rate of apple fruits coated with different concentration of chitosan solution were researched. The results showed that chitosan coating treatment could reduce weight loss,and inhibit the increasing of coating permeability of fruit kernel during storage and maintain lower respiration rate,at the same time,inhibit the reducing of titratable acid, fruit firmness and soluble solid content. Among them 1. 5% chitosan coating treatment was the most effective in maintaining qualities of fruit during storage.

  16. Adhesion and viability of two enterococcal strains on covalently grafted chitosan and chitosan/kappa-carrageenan multilayers

    NARCIS (Netherlands)

    Bratskaya, S.; Marinin, D.; Simon, F.; Synytska, A.; Zschoche, S.; Busscher, H. J.; Jager, D.; van der Mei, H. C.

    2007-01-01

    Chitosans are natural aminopolysaccharides, whose low cytotoxicity suggests their potential use for nonadhesive, antibacterial coatings on biomaterials implant surfaces. Here, the antiadhesive behavior and ability to kill bacteria upon adhesion ("contact killing") of chitosan coatings were evaluated

  17. Biological Evaluation (In Vitro and In Vivo) of Bilayered Collagenous Coated (Nano Electrospun and Solid Wall) Chitosan Membrane for Periodontal Guided Bone Regeneration.

    Science.gov (United States)

    Lotfi, Ghogha; Shokrgozar, Mohammad Ali; Mofid, Rasoul; Abbas, Fatemeh Mashhadi; Ghanavati, Farzin; Baghban, Alireza Akbarzadeh; Yavari, Seyedeh Kimia; Pajoumshariati, Seyedramin

    2016-07-01

    The application of barrier membranes in guided bone regeneration (GBR) has become a commonly used surgical technique in periodontal research. The objectives of this study were to evaluate the in vitro biocompatibility and osteogenic differentiation of mesenchymal stem cells (MSCs) on two different collagenous coatings (nano electrospun fibrous vs. solid wall) of bilayered collagen/chitosan membrane and their histological evaluation on bone regeneration in rabbit calvarial defects. It was found that chitosan-nano electrospun collagen (CNC) membranes had higher proliferation/metabolic activity compared to the chitosan-collagen (CC) and pristine chitosan membranes. The qRT-PCR analysis demonstrated the CNC membranes induced significant expression of osteogenic genes (Osteocalcin, RUNX2 and Col-α1) in MSCs. Moreover, higher calcium content and alkaline phosphatase activity of MSCs were observed compared to the other groups. Histologic and histomorphometric evaluations were performed on the uncovered (negative control) as well as covered calvarial defects of ten adult white rabbits with different membranes (CNC, CC, BioGide (BG, positive control)) at 1 and 2 months after surgery. More bone formation was detected in the defects covered with CNC and BG membranes than those covered by CC and the negative control. No inflammation and residual biomaterial particles were observed on the membrane surface or in the surrounding tissues in the surgical areas. These results suggest that bilayer CNC membrane can have the potential for use as a GBR membrane material facilitating bone formation. PMID:26586588

  18. Chitosan coated alginate-xanthan gum bead enhanced pH and thermotolerance of Lactobacillus plantarum LAB12.

    Science.gov (United States)

    Fareez, Ismail M; Lim, Siong Meng; Mishra, Rakesh K; Ramasamy, Kalavathy

    2015-01-01

    The vulnerability of probiotics at low pH and high temperature has limited their optimal use as nutraceuticals. This study addressed these issues by adopting a physicochemical driven approach of incorporating Lactobacillus plantarum LAB12 into chitosan (Ch) coated alginate-xanthan gum (Alg-XG) beads. Characterisation of Alg-XG-Ch, which elicited little effect on bead size and polydispersity, demonstrated good miscibility with improved bead surface smoothness and L. plantarum LAB12 entrapment when compared to Alg, Alg-Ch and Alg-XG. Sequential incubation of Alg-XG-Ch in simulated gastric juice and intestinal fluid yielded high survival rate of L. plantarum LAB12 (95%) at pH 1.8 which in turn facilitated sufficient release of probiotics (>7 log CFU/g) at pH 6.8 in both time- and pH-dependent manner. Whilst minimising viability loss at 75 and 90 °C, Alg-XG-Ch improved storage durability of L. plantarum LAB12 at 4 °C. The present results implied the possible use of L. plantarum LAB12 incorporated in Alg-XG-Ch as new functional food ingredient with health claims.

  19. Encapsulation in alginate and alginate coated-chitosan improved the survival of newly probiotic in oxgall and gastric juice.

    Science.gov (United States)

    Trabelsi, Imen; Bejar, Wacim; Ayadi, Dorra; Chouayekh, Hichem; Kammoun, Radhouane; Bejar, Samir; Ben Salah, Riadh

    2013-10-01

    This study was undertaken to develop an optimum composition model for the microencapsulation of a newly probiotic on sodium alginate using response surface methodology. The individual and interactive effects of three independent variables, namely sodium alginate concentration, biomass concentration, and hardening time, were investigated using Box-Behnken design experiments. A second ordered polynomial model was fitted and optimum conditions were estimated. The optimal conditions identified were 2% for sodium alginate, 10(10)UFC/ml for biomass, and 30 min for hardening time. The experimental value obtained for immobilized cells under these conditions was about 80.98%, which was in close agreement with the predicted value of 82.6%. Viability of microspheres (96%) was enhanced with chitosan as coating materials. The survival rates of free and microencapsulated Lactobacillus plantarum TN8 during exposure to artificial gastrointestinal conditions were compared. The results revealed that the encapsulated cells exhibited significantly higher resistances to artificial intestinal juice (AIJ) and artificial gastric juice (AGJ). Microencapsulation was also noted to effectively protect the strain from heating at 65 °C and refrigerating at 4 °C. Taken together, the findings indicated that microencapsulation conferred important protective effects to L. plantarum against the gastrointestinal conditions encountered during the transit of food.

  20. High-Performance Capacitive Deionization Disinfection of Water with Graphene Oxide-graft-Quaternized Chitosan Nanohybrid Electrode Coating.

    Science.gov (United States)

    Wang, Yilei; El-Deen, Ahmed G; Li, Peng; Oh, Bernice H L; Guo, Zanru; Khin, Mya Mya; Vikhe, Yogesh S; Wang, Jing; Hu, Rebecca G; Boom, Remko M; Kline, Kimberly A; Becker, David L; Duan, Hongwei; Chan-Park, Mary B

    2015-10-27

    Water disinfection materials should ideally be broad-spectrum-active, nonleachable, and noncontaminating to the liquid needing sterilization. Herein, we demonstrate a high-performance capacitive deionization disinfection (CDID) electrode made by coating an activated carbon (AC) electrode with cationic nanohybrids of graphene oxide-graft-quaternized chitosan (GO-QC). Our GO-QC/AC CDID electrode can achieve at least 99.9999% killing (i.e., 6 log reduction) of Escherichia coli in water flowing continuously through the CDID cell. Without the GO-QC coating, the AC electrode alone cannot kill the bacteria and adsorbs a much smaller fraction (<82.8 ± 1.8%) of E. coli from the same biocontaminated water. Our CDID process consists of alternating cycles of water disinfection followed by electrode regeneration, each a few minutes duration, so that this water disinfection process can be continuous and it only needs a small electrode voltage (2 V). With a typical brackish water biocontamination (with 10(4) CFU mL(-1) bacteria), the GO-QC/AC electrodes can kill 99.99% of the E. coli in water for 5 h. The disinfecting GO-QC is securely attached on the AC electrode surface, so that it is noncontaminating to water, unlike many other chemicals used today. The GO-QC nanohybrids have excellent intrinsic antimicrobial properties in suspension form. Further, the GO component contributes toward the needed surface conductivity of the CDID electrode. This CDID process offers an economical method toward ultrafast, contaminant-free, and continuous killing of bacteria in biocontaminated water. The proposed strategy introduces a green in situ disinfectant approach for water purification. PMID:26389519

  1. High-Performance Capacitive Deionization Disinfection of Water with Graphene Oxide-graft-Quaternized Chitosan Nanohybrid Electrode Coating.

    Science.gov (United States)

    Wang, Yilei; El-Deen, Ahmed G; Li, Peng; Oh, Bernice H L; Guo, Zanru; Khin, Mya Mya; Vikhe, Yogesh S; Wang, Jing; Hu, Rebecca G; Boom, Remko M; Kline, Kimberly A; Becker, David L; Duan, Hongwei; Chan-Park, Mary B

    2015-10-27

    Water disinfection materials should ideally be broad-spectrum-active, nonleachable, and noncontaminating to the liquid needing sterilization. Herein, we demonstrate a high-performance capacitive deionization disinfection (CDID) electrode made by coating an activated carbon (AC) electrode with cationic nanohybrids of graphene oxide-graft-quaternized chitosan (GO-QC). Our GO-QC/AC CDID electrode can achieve at least 99.9999% killing (i.e., 6 log reduction) of Escherichia coli in water flowing continuously through the CDID cell. Without the GO-QC coating, the AC electrode alone cannot kill the bacteria and adsorbs a much smaller fraction (<82.8 ± 1.8%) of E. coli from the same biocontaminated water. Our CDID process consists of alternating cycles of water disinfection followed by electrode regeneration, each a few minutes duration, so that this water disinfection process can be continuous and it only needs a small electrode voltage (2 V). With a typical brackish water biocontamination (with 10(4) CFU mL(-1) bacteria), the GO-QC/AC electrodes can kill 99.99% of the E. coli in water for 5 h. The disinfecting GO-QC is securely attached on the AC electrode surface, so that it is noncontaminating to water, unlike many other chemicals used today. The GO-QC nanohybrids have excellent intrinsic antimicrobial properties in suspension form. Further, the GO component contributes toward the needed surface conductivity of the CDID electrode. This CDID process offers an economical method toward ultrafast, contaminant-free, and continuous killing of bacteria in biocontaminated water. The proposed strategy introduces a green in situ disinfectant approach for water purification.

  2. Liposomes coated with N-trimethyl chitosan to improve the absorption of harmine in vivo and in vitro.

    Science.gov (United States)

    Chen, Wei-Liang; Yuan, Zhi-Qiang; Liu, Yang; Yang, Shu-di; Zhang, Chun-ge; Li, Ji-Zhao; Zhu, Wen-jing; Li, Fang; Zhou, Xiao-feng; Lin, Yi-mei; Zhang, Xue-nong

    2016-01-01

    In this study, harmine liposomes (HM-lip) were prepared through the thin-film hydration-pH-gradient method and then coated with N-trimethyl chitosan (TMC). Particle size, zeta potential, entrapment efficiency, and in vitro release of HM-lip and TMC-coated harmine liposomes (TMC-HM-lip) were also determined. Sprague Dawley rats were further used to investigate the pharmacokinetics in vivo. Retention behavior in mouse gastrointestinal tract (GIT) was studied through high-performance liquid chromatography and near-infrared imaging. Degradation was further evaluated through incubation with Caco-2 cell homogenates, and a Caco-2 monolayer cell model was used to investigate the uptake and transport of drugs. HM-lip and TMC-HM-lip with particle size of 150-170 nm, an entrapment efficiency of about 81%, and a zeta potential of negative and positive, respectively, were prepared. The release of HM from HM-lip and TMC-HM-lip was slower than that from HM solution and was sensitive to pH. TMC-HM-lip exhibited higher oral bioavailability and had prolonged retention time in GIT. HM-lip and TMC-HM-lip could also protect HM against degradation in Caco-2 cell homogenates. The uptake amount of TMC-HM-lip was higher than that of HM and HM-lip. TMC-HM-lip further demonstrated higher apparent permeability coefficient (P(app)) from the apical to the basolateral side than HM and HM-lip because of its higher uptake and capability to open tight junctions in the cell monolayers. TMC-HM-lip can prolong the retention time in the GIT, protect HM against enzyme degradation, and improve transport across Caco-2 cell monolayers, thus enhancing the oral bioavailability of HM. PMID:26855571

  3. Comparative study of chitosan- and PEG-coated lipid and PLGA nanoparticles as oral delivery systems for cannabinoids

    Energy Technology Data Exchange (ETDEWEB)

    Durán-Lobato, Matilde; Martín-Banderas, Lucía, E-mail: luciamartin@us.es [Universidad de Sevilla, Departmento Farmacia y Tecnología Farmacéutica, Facultad de Farmacia (España) (Spain); Gonçalves, Lídia M. D. [Universidade de Lisboa, Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculdade de Farmácia (Portugal); Fernández-Arévalo, Mercedes [Universidad de Sevilla, Departmento Farmacia y Tecnología Farmacéutica, Facultad de Farmacia (España) (Spain); Almeida, Antonio J. [Universidade de Lisboa, Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculdade de Farmácia (Portugal)

    2015-02-15

    The cannabinoid derivative 1-naphthalenyl[4-(pentyloxy)-1-naphthalenyl]methanone (CB13) has an important therapeutic potential as analgesic in chronic pain states that respond poorly to conventional drugs. However, the incidence of its mild-to-moderate and dose-dependent adverse effects, as well as its pharmacokinetic profile, actually holds back its use in humans. Thus, the use of a suitable carrier system for oral delivery of CB13 becomes an attractive strategy to develop a valuable therapy. Polymeric poly(lactic-co-glycolic) acid (PLGA) and lipid nanoparticles (LNPs) are widely studied delivery vehicles that improve the bioavailability of lipophilic compounds and present special interest in oral delivery. Their surface can be modified to improve the adhesion of particles to the oral mucosa and increase their circulation time in blood with additives such as chitosan (CS) and polyethylene glycol (PEG), which can be feasibly incorporated onto these particles in a post-production step. In this work, CS- and PEG-modified polymeric PLGA and LNPs were successfully obtained and comparatively evaluated under the same experimental conditions as oral carriers for CB13. All the formulations presented adequate blood compatibility and absence of cytotoxicity in Caco-2 cells. Coating with CS led to a higher interaction with Caco-2 cells and a limited uptake in THP1 cells, while coating with PEG led to a limited uptake in Caco-2 cells and strongly prevented THP1 cells uptake. The performance of each formulation is discussed as a comparison of the potential of these carriers as oral delivery systems of CB13.

  4. A Facile and Effective Approach to Fabricate Chitosan/Hydroxyapatite Nanocomposite Coating on the Surface of Wood from Chinese Glossy Privet.

    Science.gov (United States)

    Wang, Ning; Cai, Chuanjie; Cheng, Junjie; Li, Shengli; Cai, Dongqing; Wu, Zhengyan

    2016-06-01

    A chitosan/hydroxyapatite nanocomposite coating was fabricated on the surface of wood from Chinese Glossy Privet (CGP) and could adhere compactly to the wood surface. Fourier transform infrared spectra analysis indicated that the interaction between chitosan and hydroxyapatite might exist. In addition, sodium bicarbonate was added into the nanocomposite during the preparation process making the boating porous in acidic surrounding through effervescence effect. Field emission scanning electron microscope characterizations showed the nanocomposite (M(CS):M(HA) = 1:1, with 30% NaHCO3) was optimal and such composite was stable, which was verified by thermal analysis and in vitro degradation study. This work could provide a facile and effective fabricating approach of biocompatible material which may have some potential applications as bone-repairing material. PMID:27427648

  5. A study of chitosan hydrogel with embedded mesoporous silica nanoparticles loaded by ibuprofen as a dual stimuli-responsive drug release system for surface coating of titanium implants.

    Science.gov (United States)

    Zhao, Pengkun; Liu, Hongyu; Deng, Hongbing; Xiao, Ling; Qin, Caiqin; Du, Yumin; Shi, Xiaowen

    2014-11-01

    In this study, the complex pH and electro responsive system made of chitosan hydrogel with embedded mesoporous silica nanoparticles (MSNs) was evaluated as a tunable drug release system. As a model drug, ibuprofen (IB) was used; its adsorption in MSNs was evidenced by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermogravimetric analysis (TG). In order to prepare the complex drug release system, the loaded particles IB-MSNs were dispersed in chitosan solution and then the complex IB-MSNs/chitosan film of 2mm thickness was deposited as a hydrogel on the titanium electrode. The codeposition of components was performed under a negative biasing of the titanium electrode at -0.75 mA/cm2 current density during 30 min. The IB release from the IB-MSNs/chitosan hydrogel film was studied as dependent on pH of the release media and electrical conditions applied to the titanium plate. When incubating the complex hydrogel film in buffers with different pH, the IB release followed a near zero-order profile, though its kinetics varied. Compared to the spontaneous IB release from the hydrogel in 0.9% NaCl solution (at 0 V), the application of negative biases to the coated titanium plate had profound effluences on the release behavior. The release was retarded when -1.0 V was applied, but a faster kinetics was observed at -5.0 V. These results imply that a rapid, mild and facile electrical process for covering titanium implants by complex IB-MSNs/chitosan hydrogel films can be used for controlled drug delivery applications. PMID:25456989

  6. Magnetic removal of Entamoeba cysts from water using chitosan oligosaccharide-coated iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Shukla S

    2015-07-01

    Full Text Available Sudeep Shukla,1 Vikas Arora,2 Alka Jadaun,3 Jitender Kumar,1 Nishant Singh,1 Vinod Kumar Jain1 1School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India; 2Department of Chemistry, Indian Institute of Technology, New Delhi, Delhi, India; 3School of Biotechnology, Jawaharlal Nehru University, New Delhi, Delhi, India Abstract: Amebiasis, a major health problem in developing countries, is the second most common cause of death due to parasitic infection. Amebiasis is usually transmitted by the ingestion of Entamoeba histolytica cysts through oral–fecal route. Herein, we report on the use of chitosan oligosaccharide-functionalized iron oxide nanoparticles for efficient capture and removal of pathogenic protozoan cysts under the influence of an external magnetic field. These nanoparticles were synthesized through a chemical synthesis process. The synthesized particles were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and zeta potential analysis. The particles were found to be well dispersed and uniform in size. The capture and removal of pathogenic cysts were demonstrated by fluorescent microscopy, transmission electron microscopy, and scanning electron microscopy (SEM. Three-dimensional modeling of various biochemical components of cyst walls, and thereafter, flexible docking studies demonstrate the probable interaction mechanism of nanoparticles with various components of E. histolytica cyst walls. Results of the present study suggest that E. histolytica cysts can be efficiently captured and removed from contaminated aqueous systems through the application of synthesized nanoparticles. Keywords: amebiasis, water treatment, nanotechnology

  7. Magnetic removal of Entamoeba cysts from water using chitosan oligosaccharide-coated iron oxide nanoparticles.

    Science.gov (United States)

    Shukla, Sudeep; Arora, Vikas; Jadaun, Alka; Kumar, Jitender; Singh, Nishant; Jain, Vinod Kumar

    2015-01-01

    Amebiasis, a major health problem in developing countries, is the second most common cause of death due to parasitic infection. Amebiasis is usually transmitted by the ingestion of Entamoeba histolytica cysts through oral-fecal route. Herein, we report on the use of chitosan oligosaccharide-functionalized iron oxide nanoparticles for efficient capture and removal of pathogenic protozoan cysts under the influence of an external magnetic field. These nanoparticles were synthesized through a chemical synthesis process. The synthesized particles were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and zeta potential analysis. The particles were found to be well dispersed and uniform in size. The capture and removal of pathogenic cysts were demonstrated by fluorescent microscopy, transmission electron microscopy, and scanning electron microscopy (SEM). Three-dimensional modeling of various biochemical components of cyst walls, and thereafter, flexible docking studies demonstrate the probable interaction mechanism of nanoparticles with various components of E. histolytica cyst walls. Results of the present study suggest that E. histolytica cysts can be efficiently captured and removed from contaminated aqueous systems through the application of synthesized nanoparticles.

  8. Acidic Montmorillonite/Cordierite Monolithic Catalysts for Cleavage of Cumene Hydroperoxide

    Institute of Scientific and Technical Information of China (English)

    Li Han; Yanjun Wang; Jie Zhang; Zhigang Lei; Chongpin Huang; Biaohua Chen

    2014-01-01

    In this work, a series of acidic montmorillonite/cordierite monolithic catalysts were prepared by a coating method using silica sol as the binder. The morphology and structure of the acidic montmoril onite/cordierite samples were characterized by means of X-ray diffraction (XRD), N2 adsorption/desorption isotherms, and scanning electron microscope (SEM). The cleavage of cumene hydroperoxide (CHP) in a conventional fixed-bed reactor was chosen as a model reaction to evaluate the catalytic activity of the monolithic catalysts. The influences of acidic montmorillonite loading, reaction temperature, CHP concentration, and weight hourly space velocity (WHSV) on the catalytic activity and selectivity of phenol were studied. The results indicated that the obtained acidic montmorillonite/cordierite monolithic catalysts were firm and compact, and the loading of acidic montmorillonite was found to reach 40%(by mass) after three coating operations. The surface area of acidic montmorillonite/cordierite catalysts increases greatly as acidic montmorillonite loading increases due to higher surface area of acidic montmorillonite. Under the optimal reaction conditions (acidic montmorillonite loading of 32.5%(by mass), temperature of 80 °C, a mass ratio of CHP to acetone of 1:3, and WHSV of CHP of 90 h-1), the conversion of CHP can reach 100%, and the selectivity of phenol is up to 99.8%.

  9. In-vitro bioactivity, biocorrosion and antibacterial activity of silicon integrated hydroxyapatite/chitosan composite coating on 316 L stainless steel implants

    Energy Technology Data Exchange (ETDEWEB)

    Sutha, S.; Kavitha, K.; Karunakaran, G.; Rajendran, V., E-mail: veerajendran@gmail.com

    2013-10-15

    A simple and effective ultrasonication method was applied for the preparation of 0, 0.4, 0.8, 1.0 and 1.6 wt% silicon substituted hydroxyapatite (HAp) (SH). The Ca/P ratio of the synthesised SH nanoparticles were in the range of 1.58–1.70. Morphological changes were noticed in HAp with respect to the amount of Si from 0 to 1.6 wt%. The morphology of the particles changed from spherical shape to rod-like morphology with respect to the amount of Si which was confirmed using transmission electron microscopy. X-ray diffraction studies confirm the formation of phase pure SH nanoparticles without any secondary phase. Chitosan (CTS) blended SH nanocomposites coating on surgical grade 316 L stainless steel (316 L SS) implant was made by spin coating technique. The surface of the coated implant was characterised using scanning electron microscopy which confirms the uniform coating without cracks and pores. The increased corrosion resistance of the 1.6 wt% of SH/CTS-coated SS implant in the simulated body fluid (SBF) indicates the long-term biostability of SH composite-coated ceramics in vitro than the 0 wt% SH/CTS. The testing of SH/CTS nanocomposites with gram-positive and gram-negative bacterial strains confirms that the antibacterial ability improves with the higher substitution of Si. In addition, formation of bone-like apatite layer on the SH/CTS-coated implant in SBF was studied through SEM analysis and it confirms the ability to increase the HAp formation on the surface of 1.0 wt% SH/CTS-coated 316 L SS implant. Highlights: • Hydroxyapatite particles are prepared with various silicon concentration • Prepared composites are blended with chitosan and coated on the implant • Corrosion resistance in simulated body fluid improves its stability • Increase in silicon concentration improves the antibacterial activity • Coated plate exhibit high in-vitro bioactivity in simulated body fluid.

  10. Magnetic resonance imaging of mouse islet grafts labeled with novel chitosan-coated superparamagnetic iron oxide nanoparticles.

    Directory of Open Access Journals (Sweden)

    Jyuhn-Huarng Juang

    Full Text Available OBJECT: To better understand the fate of islet isografts and allografts, we utilized a magnetic resonance (MR imaging technique to monitor mouse islets labeled with a novel MR contrast agent, chitosan-coated superparamagnetic iron oxide (CSPIO nanoparticles. MATERIALS AND METHODS: After being incubated with and without CSPIO (10 µg/ml, C57BL/6 mouse islets were examined under transmission electron microscope (TEM and their insulin secretion was measured. Cytotoxicity was examined in α (αTC1 and β (NIT-1 and βTC cell lines as well as islets. C57BL/6 mice were used as donors and inbred C57BL/6 and Balb/c mice were used as recipients of islet transplantation. Three hundred islets were transplanted under the left kidney capsule of each mouse and then MR was performed in the recipients periodically. At the end of study, the islet graft was removed for histology and TEM studies. RESULTS: After incubation of mouse islets with CSPIO (10 µg/mL, TEM showed CSPIO in endocytotic vesicles of α- and β-cells at 8 h. Incubation with CSPIO did not affect insulin secretion from islets and death rates of αTC1, NIT-1 and βTC cell lines as well as islets. After syngeneic and allogeneic transplantation, grafts of CSPIO-labeled islets were visualized on MR scans as persistent hypointense areas. At 8 weeks after syngeneic transplantation and 31 days after allogeneic transplantation, histology of CSPIO-labeled islet grafts showed colocalized insulin and iron staining in the same areas but the size of allografts decreased with time. TEM with elementary iron mapping demonstrated CSPIO distributed in the cytoplasm of islet cells, which maintained intact ultrastructure. CONCLUSION: Our results indicate that after syngeneic and allogeneic transplantation, islets labeled with CSPIO nanoparticles can be effectively and safely imaged by MR.

  11. Chitosan-Coated Magnetic Nanoparticles Prepared in One-Step by Precipitation in a High-Aqueous Phase Content Reverse Microemulsion

    Directory of Open Access Journals (Sweden)

    María Guadalupe Pineda

    2014-07-01

    Full Text Available Chitosan-coated magnetic nanoparticles (CMNP were prepared in one-step by precipitation in a high-aqueous phase content reverse microemulsion in the presence of chitosan. The high-aqueous phase concentration led to productivities close to 0.49 g CMNP/100 g microemulsion; much higher than those characteristic of precipitation in reverse microemulsions for preparing magnetic nanoparticles. The obtained nanoparticles present a narrow particle size distribution with an average diameter of 4.5 nm; appearing to be formed of a single crystallite; furthermore they present superparamagnetism and high magnetization values; close to 49 emu/g. Characterization of CMNP suggests that chitosan is present as a non-homogeneous very thin layer; which explains the slight reduction in the magnetization value of CMNP in comparison with that of uncoated magnetic nanoparticles. The prepared nanoparticles show high heavy ion removal capability; as demonstrated by their use in the treatment of Pb2+ aqueous solutions; from which lead ions were completely removed within 10 min.

  12. 壳聚糖处理对辣椒保鲜效果的研究%Effect of Chitosan Coating on Freshness-keeping of Pepper

    Institute of Scientific and Technical Information of China (English)

    代小梅; 凌莉; 姜丽; 郁志芳

    2015-01-01

    以“苏椒5号”为试材,研究了(15±5)℃贮藏条件下0.5%,1%,1.5%低分子壳聚糖(CTS)溶液涂膜处理对辣椒保鲜效果的影响。结果表明:与对照辣椒果实相比,低分子壳聚糖处理能显著抑制贮藏期间辣椒的呼吸作用,降低辣椒的腐烂率和失重率,保持表皮绿色较高的叶绿素含量,减缓 Vc 的损失,维持较高POD活性。比较三种浓度的效果,以1.5%壳聚糖处理的效果最好。%The experiment is carried out to investigate the effect of chitosan on postharvest physiology and quality of pepper (Sujiao 5).Peppers are dipped into chitosan (0.5%,1%,1.5% respectively) and then stored at (1 5 ± 5 )℃,the results demonstrate that chitosan coating could slow down the respiratory rate effectively and inhibit the loss of decay and weight,maintain epidermal green,keep higher content of chlorophyll and Vc,and POD activity of peppers.Among all concentration,1 .5% is the best.

  13. In situ preparation of high relaxivity iron oxide nanoparticles by coating with chitosan: A potential MRI contrast agent useful for cell tracking

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Z.-T.; Wang, J.-F. [Molecular Imaging Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan (China); Kuo, H.-Y.; Shen, C.-R. [Molecular Imaging Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan (China); Graduate Institute and Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan (China); Wang, J.-J. [Molecular Imaging Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan (China); Yen, T.-C., E-mail: yen1110@adm.cgmh.org.t [Molecular Imaging Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan (China); Department of Nuclear Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan (China)

    2010-01-15

    Iron oxide nanocrystals are of considerable interest in nanoscience and nanotechnology because of their nanoscale dimensions, nontoxic nature, and superior magnetic properties. Colloidal solutions of magnetic nanoparticles (ferrofluids) with a high magnetite content are highly desirable for most molecular imaging applications. In this paper, we present a method for in situ coating of superparamagnetic iron oxide (SPIO) with chitosan in order to increase the content of magnetite. Iron chloride salts (Fe{sup 3+} and Fe{sup 2+}) were directly coprecipitated inside a porous matrix of chitosan by Co-60 gamma-ray irradiation in an aqueous solution of acetic acid. Following sonication, iron oxide nanoparticles were formed inside the chitosan matrix at a pH value of 9.5 and a temperature of 50 deg. C. The [Fe{sup 3+}]:[Fe{sup 2+}]:[NH{sub 4}OH] molar ratio was 1.6:1:15.8. The final ferrofluid was formed with a pH adjustment to approximately 2.0/3.0, alongside with the addition of mannitol and lactic acid. We subsequently characterized the particle size, the zeta potential, the iron concentration, the magnetic contrast, and the cellular uptake of our ferrofluid. Results showed a z-average diameter of 87.2 nm, a polydispersity index (PDI) of 0.251, a zeta potential of 47.9 mV, and an iron concentration of 10.4 mg Fe/mL. The MRI parameters included an R1 value of 22.0 mM{sup -1} s{sup -1}, an R2 value of 202.6 mM{sup -1} s{sup -1}, and a R2/R1 ratio of 9.2. An uptake of the ferrofluid by mouse macrophages was observed. Altogether, our data show that Co-60 gamma-ray radiation on solid chitosan may improve chitosan coating of iron oxide nanoparticles and tackle its aqueous solubility at pH 7. Additionally, our methodology allowed to obtain a ferrofluid with a higher content of magnetite and a fairly unimodal distribution of monodisperse clusters. Finally, MRI and cell experiments demonstrated the potential usefulness of this product as a potential MRI contrast agent that might

  14. In situ preparation of high relaxivity iron oxide nanoparticles by coating with chitosan: A potential MRI contrast agent useful for cell tracking

    Science.gov (United States)

    Tsai, Zei-Tsan; Wang, Jen-Fei; Kuo, Hsiao-Yun; Shen, Chia-Rui; Wang, Jiun-Jie; Yen, Tzu-Chen

    2010-01-01

    Iron oxide nanocrystals are of considerable interest in nanoscience and nanotechnology because of their nanoscale dimensions, nontoxic nature, and superior magnetic properties. Colloidal solutions of magnetic nanoparticles (ferrofluids) with a high magnetite content are highly desirable for most molecular imaging applications. In this paper, we present a method for in situ coating of superparamagnetic iron oxide (SPIO) with chitosan in order to increase the content of magnetite. Iron chloride salts (Fe 3+ and Fe 2+) were directly coprecipitated inside a porous matrix of chitosan by Co-60 γ-ray irradiation in an aqueous solution of acetic acid. Following sonication, iron oxide nanoparticles were formed inside the chitosan matrix at a pH value of 9.5 and a temperature of 50 °C. The [Fe 3+]:[Fe 2+]:[NH 4OH] molar ratio was 1.6:1:15.8. The final ferrofluid was formed with a pH adjustment to approximately 2.0/3.0, alongside with the addition of mannitol and lactic acid. We subsequently characterized the particle size, the zeta potential, the iron concentration, the magnetic contrast, and the cellular uptake of our ferrofluid. Results showed a z-average diameter of 87.2 nm, a polydispersity index (PDI) of 0.251, a zeta potential of 47.9 mV, and an iron concentration of 10.4 mg Fe/mL. The MRI parameters included an R1 value of 22.0 mM -1 s -1, an R2 value of 202.6 mM -1 s -1, and a R2/R1 ratio of 9.2. An uptake of the ferrofluid by mouse macrophages was observed. Altogether, our data show that Co-60 γ-ray radiation on solid chitosan may improve chitosan coating of iron oxide nanoparticles and tackle its aqueous solubility at pH 7. Additionally, our methodology allowed to obtain a ferrofluid with a higher content of magnetite and a fairly unimodal distribution of monodisperse clusters. Finally, MRI and cell experiments demonstrated the potential usefulness of this product as a potential MRI contrast agent that might be used for cell tracking.

  15. Liposomes coated with N-trimethyl chitosan to improve the absorption of harmine in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Chen WL

    2016-01-01

    Full Text Available Wei-liang Chen,1,* Zhi-Qiang Yuan,1,* Yang Liu,1 Shu-di Yang,1 Chun-ge Zhang,1 Ji-zhao Li,1 Wen-jing Zhu,1 Fang Li,1 Xiao-feng Zhou,2,3 Yi-mei Lin,4 Xue-nong Zhang1 1Department of Pharmaceutics, College of Pharmaceutical Sciences, 2Department of Radiobiology, College of Radiological Medicine and Protection, Soochow University, Suzhou, 3Changshu Hospital of Traditional Chinese Medicine, Changshu, 4The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China *These authors contributed equally to this work Abstract: In this study, harmine liposomes (HM-lip were prepared through the thin-film hydration–pH-gradient method and then coated with N-trimethyl chitosan (TMC. Particle size, zeta potential, entrapment efficiency, and in vitro release of HM-lip and TMC-coated harmine liposomes (TMC-HM-lip were also determined. Sprague Dawley rats were further used to investigate the pharmacokinetics in vivo. Retention behavior in mouse gastrointestinal tract (GIT was studied through high-performance liquid chromatography and near-infrared imaging. Degradation was further evaluated through incubation with Caco-2 cell homogenates, and a Caco-2 monolayer cell model was used to investigate the uptake and transport of drugs. HM-lip and TMC-HM-lip with particle size of 150–170 nm, an entrapment efficiency of about 81%, and a zeta potential of negative and positive, respectively, were prepared. The release of HM from HM-lip and TMC-HM-lip was slower than that from HM solution and was sensitive to pH. TMC-HM-lip exhibited higher oral bioavailability and had prolonged retention time in GIT. HM-lip and TMC-HM-lip could also protect HM against degradation in Caco-2 cell homogenates. The uptake amount of TMC-HM-lip was higher than that of HM and HM-lip. TMC-HM-lip further demonstrated higher apparent permeability coefficient (Papp from the apical to the basolateral side than HM and HM-lip because of its higher uptake and

  16. Effect of antioxidant and optimal antimicrobial mixtures of carvacrol, grape seed extract and chitosan on different spoilage microorganisms and their application as coatings on different food matrices

    Directory of Open Access Journals (Sweden)

    Javiera F. Rubilar

    2013-04-01

    Full Text Available There is growing interest in the use of natural agents with antimicrobial (AM and antioxidant (AOX properties. Optimization of the AM capacity for mixtures containing carvacrol, grape seed extract (GSE and chitosan, against gram-negative (Pseudomonas aeruginosa, gram-positive bacteria (Staphylococcus aureus, Listeria innocua and Enterococcus faecalis and yeast (Saccharomyces cerevisiae at 106 cfu mL-1 was studied. To observe the synergistic or antagonistic effect and find optimal combinations between the three agents, a simplex centroid mixture design was run for each microorganism, combining carvacrol (0-300 ppm, X1, GSE (0-2000 ppm, X2 and chitosan (0-2% w/v, X3. Results of the response surface analysis showed several synergistic effects for all microorganisms. Combinations of 60 ppm-400 ppm-1.2% w/v (carvacrol-GSE-chitosan; optimal AM combination 1, OAMC-1; 9.6 ppm-684 ppm-1.25% w/v (OAMC-2; 90 ppm-160 ppm-1.24% w/v (OAMC-3 were found to be the optimal mixtures for all microorganisms. Radical scavenging activity (RSA of the same agents was then compared with a standard AOX (butylated hydroxytoluene; BHT at different concentrations (25, 50 and 100 ppm; as well as the optimal AM concentrations by the 1,1-diphenyl-2-picrylhydrazyl (DPPH method. RSA increased in the following order: chitosan< carvacrol< BHT< GSE and for the OAMC: OAMC-2< OAMC-1< OAMC-3. The best RSA (OAMC-3 was applied as a coating in two different food matrices (strawberries and salmon. For strawberries, P. aeruginosa was more sensitive to the action of OAMC-3 than S. cerevisiae. For salmon, S. aureus was more resistant to the action of OAMC-3 than E. faecalis and L. innocua.

  17. Progress of research on the adsorption of chitosan and its derivatives to uranium

    International Nuclear Information System (INIS)

    This paper has summarized the study on the adsorption of chitosan and its derivatives to uranium in recent years at home and abroad. It was found that the derivatives can be serine-type chitosan, methyl phosphoric acid modified chitosan, 3,4-dihydroxy benzoic acid-type chitosan, chitosan with 3,4-dihydroxybenzoic acid moiety, chitosan resin possessing a phenylarsonic acid moiety, quadrol modified chitosan, chitosan modified with molecular imprinting technique, polyacrylamide hydrogel, chitosan-coated perlite and so on. The application vista of chitosan and its derivatives to Absorpt uranium in water has been prospected. (authors)

  18. Antibacterial and physical effects of modified chitosan based-coating containing nanoemulsion of mandarin essential oil and three non-thermal treatments against Listeria innocua in green beans.

    Science.gov (United States)

    Severino, Renato; Vu, Khanh Dang; Donsì, Francesco; Salmieri, Stephane; Ferrari, Giovanna; Lacroix, Monique

    2014-11-17

    The antimicrobial activity against Listeria innocua of three different combined non-thermal treatments, along with the impact on color and texture on green bean samples, was evaluated. In this study a bioactive coating formulation based on modified chitosan containing 0.05% nanoemulsion of mandarin essential oil was tested in combination with γ-irradiation, UV-C and ozonated water treatments, and the results in terms of antimicrobial activity, color and texture changes, were evaluated during 14 days storage. The combined coating and γ-irradiation treatment gave promising results, showing 3.3 log CFU/g initial microbial reduction, and exhibiting a strong synergistic antimicrobial effect. The treatment based on UV-C and coating formulation allowed a 3 log CFU/g reduction of initial L. innocua population on samples, showing a good residual antimicrobial activity and preventing loss of firmness and color changes during storage. The combined treatment of coating and ozonated water did not show any synergistic or additive antimicrobial effect, but they showed an impact on firmness and color. In conclusion UV-C and γ-irradiation treatments, in combination with the bioactive coating, represent an effective approach to control the growth of L. innocua on vegetable foods.

  19. Coatings comprising chitosan and Mentha piperita L. or Mentha × villosa Huds essential oils to prevent common postharvest mold infections and maintain the quality of cherry tomato fruit.

    Science.gov (United States)

    Guerra, Ingrid Conceição Dantas; de Oliveira, Priscila Dinah Lima; Pontes, Alline Lima de Souza; Lúcio, Ana Sílvia Suassuna Carneiro; Tavares, Josean Fechine; Barbosa-Filho, José Maria; Madruga, Marta Suely; de Souza, Evandro Leite

    2015-12-01

    In this study, we evaluated the efficacy of coatings comprising shrimp chitosan (CHI) and Mentha piperita L. (MPEO) or Mentha × villosa Huds (MVEO) essential oils to control mold infections caused by Aspergillus niger, Botrytis cinerea, Penicillium expansum and Rhizopus stolonifer in cherry tomato fruits (Solanum lycopersicum L.) during storage at room temperature (25°C for 12 days) and low temperature (12°C for 24 days). The effects of the coatings on the physicochemical and sensory characteristics of cherry tomato fruits during storage were also assessed. The minimum inhibitory concentration (MIC) of CHI against all test fungi was 8 mg/mL, whereas the MIC for both MPEO and MVEO was 5 μL/mL. Combinations of CHI at 4 mg/mL and MPEO or MVEO at 2.5 or 1.25 μL/mL strongly inhibited the mycelial growth and spore germination of target fungi. The coatings comprising CHI and MPEO or CHI and MVEO at the different tested concentrations delayed the growth of decay-causing fungi in artificially contaminated tomato fruit during storage at either room temperature or low temperature. The assayed coatings preserved the quality of cherry tomato fruit during storage, in terms of physicochemical and sensory attributes. These results indicate that coatings comprising CHI and MPEO or CHI and MVEO represent promising postharvest treatments to prevent common postharvest mold infections in cherry tomato fruit during storage without affecting the quality of the fruit.

  20. Coatings comprising chitosan and Mentha piperita L. or Mentha × villosa Huds essential oils to prevent common postharvest mold infections and maintain the quality of cherry tomato fruit.

    Science.gov (United States)

    Guerra, Ingrid Conceição Dantas; de Oliveira, Priscila Dinah Lima; Pontes, Alline Lima de Souza; Lúcio, Ana Sílvia Suassuna Carneiro; Tavares, Josean Fechine; Barbosa-Filho, José Maria; Madruga, Marta Suely; de Souza, Evandro Leite

    2015-12-01

    In this study, we evaluated the efficacy of coatings comprising shrimp chitosan (CHI) and Mentha piperita L. (MPEO) or Mentha × villosa Huds (MVEO) essential oils to control mold infections caused by Aspergillus niger, Botrytis cinerea, Penicillium expansum and Rhizopus stolonifer in cherry tomato fruits (Solanum lycopersicum L.) during storage at room temperature (25°C for 12 days) and low temperature (12°C for 24 days). The effects of the coatings on the physicochemical and sensory characteristics of cherry tomato fruits during storage were also assessed. The minimum inhibitory concentration (MIC) of CHI against all test fungi was 8 mg/mL, whereas the MIC for both MPEO and MVEO was 5 μL/mL. Combinations of CHI at 4 mg/mL and MPEO or MVEO at 2.5 or 1.25 μL/mL strongly inhibited the mycelial growth and spore germination of target fungi. The coatings comprising CHI and MPEO or CHI and MVEO at the different tested concentrations delayed the growth of decay-causing fungi in artificially contaminated tomato fruit during storage at either room temperature or low temperature. The assayed coatings preserved the quality of cherry tomato fruit during storage, in terms of physicochemical and sensory attributes. These results indicate that coatings comprising CHI and MPEO or CHI and MVEO represent promising postharvest treatments to prevent common postharvest mold infections in cherry tomato fruit during storage without affecting the quality of the fruit. PMID:26313246

  1. Competitive adsorption of Cu (II), Co (II) and Ni (II) from their binary and tertiary aqueous solutions using chitosan-coated perlite beads as biosorbent.

    Science.gov (United States)

    Swayampakula, Kalyani; Boddu, Veera M; Nadavala, Siva Kumar; Abburi, Krishnaiah

    2009-10-30

    A new composite chitosan-coated biosorbent was prepared and was used for the removal and recovery of heavy metals from aqueous solution. In the present investigation, equilibrium adsorption characteristics of Cu (II), Ni (II), and Co (II) from their binary and tertiary solution on newly developed biosorbent chitosan-coated perlite beads were evaluated through batch and column studies. These beads were characterized by using FTIR, EDXRF and surface area analysis techniques. The effect of various biosorption parameters like effect of pH, agitation time, concentration of adsorbate and amount of adsorbent on extent of adsorption was investigated. The adsorption follows Lagergren first order kinetic model. The equilibrium adsorption data were fitted to Freundlich and Langmuir adsorption isotherm models and the model parameters were evaluated. Both the models represent the experimental data satisfactorily. The sorbent loaded with metal was regenerated with 0.1N NaOH solution. Furthermore the column dynamic studies indicate the re-usage of the biosorbent.

  2. In-vitro bioactivity, biocorrosion and antibacterial activity of silicon integrated hydroxyapatite/chitosan composite coating on 316 L stainless steel implants.

    Science.gov (United States)

    Sutha, S; Kavitha, K; Karunakaran, G; Rajendran, V

    2013-10-01

    A simple and effective ultrasonication method was applied for the preparation of 0, 0.4, 0.8, 1.0 and 1.6 wt% silicon substituted hydroxyapatite (HAp) (SH). The Ca/P ratio of the synthesised SH nanoparticles were in the range of 1.58-1.70. Morphological changes were noticed in HAp with respect to the amount of Si from 0 to 1.6 wt%. The morphology of the particles changed from spherical shape to rod-like morphology with respect to the amount of Si which was confirmed using transmission electron microscopy. X-ray diffraction studies confirm the formation of phase pure SH nanoparticles without any secondary phase. Chitosan (CTS) blended SH nanocomposites coating on surgical grade 316 L stainless steel (316 L SS) implant was made by spin coating technique. The surface of the coated implant was characterised using scanning electron microscopy which confirms the uniform coating without cracks and pores. The increased corrosion resistance of the 1.6 wt% of SH/CTS-coated SS implant in the simulated body fluid (SBF) indicates the long-term biostability of SH composite-coated ceramics in vitro than the 0 wt% SH/CTS. The testing of SH/CTS nanocomposites with gram-positive and gram-negative bacterial strains confirms that the antibacterial ability improves with the higher substitution of Si. In addition, formation of bone-like apatite layer on the SH/CTS-coated implant in SBF was studied through SEM analysis and it confirms the ability to increase the HAp formation on the surface of 1.0 wt% SH/CTS-coated 316 L SS implant.

  3. In-vitro bioactivity, biocorrosion and antibacterial activity of silicon integrated hydroxyapatite/chitosan composite coating on 316 L stainless steel implants.

    Science.gov (United States)

    Sutha, S; Kavitha, K; Karunakaran, G; Rajendran, V

    2013-10-01

    A simple and effective ultrasonication method was applied for the preparation of 0, 0.4, 0.8, 1.0 and 1.6 wt% silicon substituted hydroxyapatite (HAp) (SH). The Ca/P ratio of the synthesised SH nanoparticles were in the range of 1.58-1.70. Morphological changes were noticed in HAp with respect to the amount of Si from 0 to 1.6 wt%. The morphology of the particles changed from spherical shape to rod-like morphology with respect to the amount of Si which was confirmed using transmission electron microscopy. X-ray diffraction studies confirm the formation of phase pure SH nanoparticles without any secondary phase. Chitosan (CTS) blended SH nanocomposites coating on surgical grade 316 L stainless steel (316 L SS) implant was made by spin coating technique. The surface of the coated implant was characterised using scanning electron microscopy which confirms the uniform coating without cracks and pores. The increased corrosion resistance of the 1.6 wt% of SH/CTS-coated SS implant in the simulated body fluid (SBF) indicates the long-term biostability of SH composite-coated ceramics in vitro than the 0 wt% SH/CTS. The testing of SH/CTS nanocomposites with gram-positive and gram-negative bacterial strains confirms that the antibacterial ability improves with the higher substitution of Si. In addition, formation of bone-like apatite layer on the SH/CTS-coated implant in SBF was studied through SEM analysis and it confirms the ability to increase the HAp formation on the surface of 1.0 wt% SH/CTS-coated 316 L SS implant. PMID:23910313

  4. Transcutaneous iontophoretic delivery of STAT3 siRNA using layer-by-layer chitosan coated gold nanoparticles to treat melanoma.

    Science.gov (United States)

    Labala, Suman; Jose, Anup; Venuganti, Venkata Vamsi Krishna

    2016-10-01

    Overexpression of signal transducer and activator of transcription 3 (STAT3) protein prevents apoptosis and enhances proliferation of melanocytes. The aim of this study was to investigate the feasibility of using layer-by-layer assembled gold nanoparticles (LbL-AuNP) as a carrier for iontophoretic delivery of STAT3 siRNA to treat melanoma. Chitosan coated AuNP (AuNP-CS) were prepared by direct reduction of HAuCl4 in the presence of chitosan. The AuNP-CS were then sequentially layered with siRNA and chitosan to form AuNP-CS/siRNA/CS. STAT3 siRNA replaced with scrambled siRNA or sodium alginate were used as controls. The average particle size and zeta-potential of the prepared LbL-AuNP were 150±10nm (PDI: 0.41±0.06) and 35±6mV, respectively. In vitro studies in B16F10 murine melanoma cells showed that AuNP-CS/siRNA/CS inhibited the cell growth by 49.0±0.6% and 66.0±0.2% at 0.25nM and 0.5nM STAT3 siRNA concentration, respectively. Fluorescence microscopy and flow cytometry studies showed a time dependent cell uptake of the LbL-AuNP up to 120min. Clathrin mediated endocytosis was found to be the predominant cell uptake mechanism for LbL-AuNP. STAT3 siRNA loaded LbL-AuNP reduced the STAT3 protein expression by 47.3% in B16F10 cells. Similarly, apoptosis assay showed 29% and 44% of early and late apoptotic events, respectively after treatment with STAT3 siRNA loaded LbL-AuNP. Confocal microscope and skin cryosections showed that application of 0.47mA/cm(2) of anodal iontophoresis enhanced the skin penetration of LbL-AuNP to reach viable epidermis. In conclusion, layer-by-layer chitosan coated AuNP can be developed as a carrier for iontophoretic delivery of STAT3 siRNA to treat melanoma. PMID:27318964

  5. Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues.

    Science.gov (United States)

    Ignjatović, Nenad; Wu, Victoria; Ajduković, Zorica; Mihajilov-Krstev, Tatjana; Uskoković, Vuk; Uskoković, Dragan

    2016-03-01

    Composite biomaterials comprising nanostructured hydroxyapatite (HAp) have an enormous potential for natural bone tissue reparation, filling and augmentation. Chitosan (Ch) as a naturally derived polymer has many physicochemical and biological properties that make it an attractive material for use in bone tissue engineering. On the other hand, poly-D,L-lactide-co-glycolide (PLGA) is a synthetic polymer with a long history of use in sustained drug delivery and tissue engineering. However, while chitosan can disrupt the cell membrane integrity and may induce blood thrombosis, PLGA releases acidic byproducts that may cause tissue inflammation and interfere with the healing process. One of the strategies to improve the biocompatibility of Ch and PLGA is to combine them with compounds that exhibit complementary properties. In this study we present the synthesis and characterization, as well as in vitro and in vivo analyses of a nanoparticulate form of HAp coated with two different polymeric systems: (a) Ch and (b) a Ch-PLGA polymer blend. Solvent/non-solvent precipitation and freeze-drying were used for synthesis and processing, respectively, whereas thermogravimetry coupled with mass spectrometry was used for phase identification purposes in the coating process. HAp/Ch composite particles exhibited the highest antimicrobial activity against all four microbial strains tested in this work, but after the reconstruction of the bone defect they also caused inflammatory reactions in the newly formed tissue where the defect had lain. Coating HAp with a polymeric blend composed of Ch and PLGA led to a decrease in the reactivity and antimicrobial activity of the composite particles, but also to an increase in the quality of the newly formed bone tissue in the reconstructed defect area.

  6. Effect of chitosan and its derivatives as antifungal and preservative agents on postharvest green asparagus.

    Science.gov (United States)

    Qiu, Miao; Wu, Chu; Ren, Gerui; Liang, Xinle; Wang, Xiangyang; Huang, Jianying

    2014-07-15

    The antifungal activity and effect of high-molecular weight chitosan (H-chitosan), low-molecular weight chitosan (L-chitosan) and carboxymethyl chitosan (C-chitosan) coatings on postharvest green asparagus were evaluated. L-chitosan and H-chitosan efficiently inhibited the radial growth of Fusarium concentricum separated from postharvest green asparagus at 4 mg/ml, which appeared to be more effective in inhibiting spore germination and germ tube elongation than that of C-chitosan. Notably, spore germination was totally inhibited by L-chitosan and H-chitosan at 0.05 mg/ml. Coated asparagus did not show any apparent sign of phytotoxicity and maintained good quality over 28 days of cold storage, according to the weight loss and general quality aspects. Present results inferred that chitosan could act as an attractive preservative agent for postharvest green asparagus owing to its antifungal activity and its ability to stimulate some defense responses during storage.

  7. Montmorillonite enhanced ciprofloxacin transport in saturated porous media with sorbed ciprofloxacin showing antibiotic activity

    Science.gov (United States)

    Chen, Hao; Gao, Bin; Yang, Liu-Yan; Ma, Lena Q.

    2015-02-01

    Antibiotic ciprofloxacin (CIP) is immobile in the subsurface but it has been frequently detected in the aquatic system. Therefore it is important to investigate the factors impacting CIP's mobilization in aquifer. Laboratory columns packed with sand were used to test colloid-facilitated CIP transport by 1) using kaolinite or montmorillonite to mobilize presorbed-CIP in a column or 2) co-transporting with CIP by pre-mixing them before transport. The Langmuir model showed that CIP sorption by montmorillonite (23 g kg- 1) was 100 times more effective than sand or kaolinite. Even with strong CIP complexation ability to Fe/Al coating on sand surface, montmorillonite promoted CIP transport, but not kaolinite. All presorbed-CIP by sand was mobilized by montmorillonite after 3 pore volumes through co-transporting of CIP with montmorillonite. The majority of CIP was fixed onto the montmorillonite interlayer but still showed inhibition of bacteria growth. Our results suggested that montmorillonite with high CIP sorption ability can act as a carrier to enhance CIP's mobility in aquifer.

  8. New multilayer coating using quaternary ammonium chitosan and κ-carrageenan in capillary electrophoresis: application in fast analysis of betaine and methionine.

    Science.gov (United States)

    Vitali, Luciano; Della Betta, Fabiana; Costa, Ana Carolina O; Vaz, Fernando Antonio Simas; Oliveira, Marcone Augusto Leal; Vistuba, Jacqueline Pereira; Fávere, Valfredo T; Micke, Gustavo A

    2014-06-01

    The aim of this study was to develop a new multilayer coating with crosslinked quaternary ammonium chitosan (hydroxypropyltrimethyl ammonium chloride chitosan; HACC) and κ-carrageenan for use in capillary electrophoresis. A new semi-permanent multilayer coating was formed using the procedure developed and the method does not require the presence of polymers in the background electrolyte (BGE). The new capillary multilayer coating showed a cathodic electroosmotic flow (EOF) of around 30×10(-9) m(2) V(-1) s(-1) which is pH-independent in the range of pH 2 to 10. The enhanced EOF at low pH obtained contributed significantly to the development of a fast method of separation. The multilayer coating was then applied in the development of a fast separation method to determine betaine and methionine in pharmaceutical formulations by capillary zone electrophoresis (CZE). The BGE used to determine the betaine and methionine concentrations was composed of 10 mmol L(-1) tris(hydroxymethyl) aminomethane, 40 mmol L(-1) phosphoric acid and 10% (v/v) ethanol, at pH 2.1. A fused-silica capillary of 32 cm (50 µm ID×375 µm OD) was used in the experiments and samples and standards were analyzed employing the short-end injection procedure (8.5 cm effective length). The instrumental analysis time of the optimized method was 1.53 min (approx. 39 runs per hour). The validation of the proposed method for the determination of betaine and methionine showed good linearity (R(2)>0.999), adequate limit of detection (LOD <8 mg L(-1)) for the concentration in the samples and inter-day precision values lower than 3.5% (peak area and time migration). The results for the quantification of the amino acids in the samples determined by the CZE-UV method developed were statistically equal to those obtained with the comparative LC-MS/MS method according to the paired t-test with a confidence level of 95%. PMID:24725863

  9. Effect of Chitosan Coating on Comprehensive Quality of Green Pepper During Storage%壳聚糖涂膜对贮藏青椒综合品质影响的研究

    Institute of Scientific and Technical Information of China (English)

    刘忆冬; 翟金兰; 杨艳彬; 常方

    2012-01-01

    以不同配方的壳聚糖保鲜剂对辣椒进行涂膜,贮藏于9℃,测定其失水率、腐烂率、Vc及叶绿素含量,根据正交试验确定最有利于保持辣椒综合品质的壳聚糖溶液配方.试验结果表明,当壳聚糖浓度1.5%,吐温20浓度0.005%,1,2-丙二醇浓度4%,pH值4.8时可最大程度地延缓辣椒综合品质的下降,延长贮藏时间.%The pepper was used as material and treated with the chitosan coating. The pepper was put into storage at 9℃. The effects of different chitosan coating formulas selected through orthogonal experiment on the weight-loss ratio, decay index, the content of Vitamin C and chlorophyl as well as senescence index and ratio of commodity in the fresh pepper were studied. The results showed that the optimal formula of chitosan complex film was 0.15% chitosan, 0.005% tween-20,4% 1,2-Propanediol and pH 4.8. They could maintain the quality and prolong the storage life of green pepper.

  10. Efficient mucus permeation and tight junction opening by dissociable "mucus-inert" agent coated trimethyl chitosan nanoparticles for oral insulin delivery.

    Science.gov (United States)

    Liu, Min; Zhang, Jian; Zhu, Xi; Shan, Wei; Li, Lian; Zhong, Jiaju; Zhang, Zhirong; Huang, Yuan

    2016-01-28

    Oral administration of protein drugs is greatly impeded by the lack of drug carriers that can efficiently overcome the absorption barriers of mucosa tissue, which consists of not only epithelium but also a blanket of mucus gel. We herein report a novel self-assembled nanoparticle (NP) platform for oral delivery of insulin by facilitating the efficient permeation through both of these two barriers. The NP possesses a core composed of insulin and trimethyl chitosan (TMC), and a dissociable "mucus-inert" hydrophilic coating of N-(2-hydroxypropyl) methacrylamide copolymer (pHPMA) derivative. The NPs exhibited free Brownian motion and excellent permeability in mucus, which enabled the access of the NP core to the epithelial cell surface underneath the mucus. Moreover, investigation of NP behavior showed that the pHPMA molecules started to dissociate as the NP permeates through mucus, and the TMC NP core was then exposed to facilitate transepithelial transport via paracellular pathway. The pHPMA coating significantly improved transepithelial transport of TMC-based NP and their ability to open tight junctions between the mucus-secreting epithelial cells. Moreover, in diabetic rats, pHPMA coated NPs generated a prominent hypoglycemic response following oral administration, and exhibited a relative bioavailability 2.8-fold higher than that of uncoated TMC-based NPs. Our study provided the evidence of using pHPMA as "mucus-inert" agent to enhance mucus permeation of TMC-based NPs, and validated a novel strategy to overcome the multiple absorption barriers using NP platform with dissociable hydrophilic coating and TMC-based core possessing tight junction-opening ability.

  11. Application of irradiated chitosan for fruit preservation

    International Nuclear Information System (INIS)

    Application of irradiated chitosan has been investigated for coating of fruit preservation. Anti-fungal activity of chitosan was induced by γ-ray irradiation in dry condition at 25 kGy. The irradiated chitosan can suppress the growth of Aspergillus. spp. and Fusarium. spp. isolated from Vietnam mango. Fusarium. spp. was sensitive for irradiated chitosan than the other strains. The coating from irradiated chitosan solution at dose 31 kGy has prolonged the storage life of mango from 7 to 15 days. At the 15th day mango keeps good colour, natural ripening, without spoilage, weight loss 10%, whereas the control is spoiled completely and the sample of fruit with unirradiated chitosan coating could not ripe. The effect is due to the anti-fungal activity and change in physico-chemical properties of chitosan by irradiation. Radiation causes the decrease in viscosity affecting the gas permeability of coating film. The irradiated chitosan coating has positive effect on mango that is susceptible to chilling injury at low storage temperature. (author)

  12. Development of novel cationic chitosan- and anionic alginate–coated poly(D,L-lactide-co-glycolide nanoparticles for controlled release and light protection of resveratrol

    Directory of Open Access Journals (Sweden)

    Sanna V

    2012-10-01

    Full Text Available Vanna Sanna,1 Anna Maria Roggio,1 Silvia Siliani,1 Massimo Piccinini,1 Salvatore Marceddu,2 Alberto Mariani,3 Mario Sechi31Porto Conte Ricerche, Alghero, Italy; 2Istituto di Scienze delle Produzioni Alimentari (ISPA, Consiglio Nazionale delle Ricerche (CNR, Sezione di Sassari, Italy; 3Department of Chemistry and Pharmacy, University of Sassari, Sassari, ItalyBackground: Resveratrol, like other natural polyphenols, is an extremely photosensitive compound with low chemical stability, which limits the therapeutic application of its beneficial effects. The development of innovative formulation strategies, able to overcome physicochemical and pharmacokinetic limitations of this compound, may be achieved via suitable carriers able to associate controlled release and protection. In this context, nanotechnology is proving to be a powerful strategy. In this study, we developed novel cationic chitosan (CS- and anionic alginate (Alg-coated poly(d,l-lactide-co-glycolide nanoparticles (NPs loaded with the bioactive polyphenolic trans-(E-resveratrol (RSV for biomedical applications.Methods: NPs were prepared by the nanoprecipitation method and characterized in terms of morphology, size and zeta potential, encapsulation efficiency, Raman spectroscopy, swelling properties, differential scanning calorimetry, and in vitro release studies. The protective effect of the nanosystems under the light-stressed RSV and long-term stability were investigated.Results: NPs turned out to be spherical in shape, with size ranging from 135 to about 580 nm, depending on the composition and the amount of polyelectrolytes, while the encapsulation efficiencies increased from 8% of uncoated poly(d,l-lactide-co-glycolide (PLGA to 23% and 32% of Alg- and CS-coated PLGA NPs, respectively. All nanocarriers are characterized by a biphasic release pattern, and more effective controlled release rates are obtained for NPs formulated with higher polyelectrolyte concentrations. Stability

  13. Surface modification of an Mg-1Ca alloy to slow down its biocorrosion by chitosan.

    Science.gov (United States)

    Gu, X N; Zheng, Y F; Lan, Q X; Cheng, Y; Zhang, Z X; Xi, T F; Zhang, D Y

    2009-08-01

    The surface morphologies before and after immersion corrosion test of various chitosan-coated Mg-1Ca alloy samples were studied to investigate the effect of chitosan dip coating on the slowdown of biocorrosion. It showed that the corrosion resistance of the Mg-Ca alloy increased after coating with chitosan, and depended on both the chitosan molecular weight and layer numbers of coating. The Mg-Ca alloy coated by chitosan with a molecular weight of 2.7 x 10(5) for six layers has smooth and intact surface morphology, and exhibits the highest corrosion resistance in a simulated body fluid.

  14. Surface modification of an Mg-1Ca alloy to slow down its biocorrosion by chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Gu, X N; Zheng, Y F; Lan, Q X [State Key Laboratory for Turbulence and Complex System and College of Engineering, Peking University, Beijing 100871 (China); Cheng, Y; Xi, T F [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zhang, Z X [Biomedical Engineering Research Center, Research Institute of Peking University in Shenzhen, Shenzhen 518057 (China); Zhang, D Y, E-mail: gxn139888@pku.edu.c, E-mail: yfzheng@pku.edu.c, E-mail: 8lanqiuxiang@163.co, E-mail: chengyan@pku.edu.c, E-mail: top5460@163.co, E-mail: xitingfei@tom.co, E-mail: zhangdeyuan@lifetechmed.co [Lifetech Scientific (Shenzhen) Co. Ltd, Hi-Tech Park, Shenzhen 518000 (China)

    2009-08-15

    The surface morphologies before and after immersion corrosion test of various chitosan-coated Mg-1Ca alloy samples were studied to investigate the effect of chitosan dip coating on the slowdown of biocorrosion. It showed that the corrosion resistance of the Mg-Ca alloy increased after coating with chitosan, and depended on both the chitosan molecular weight and layer numbers of coating. The Mg-Ca alloy coated by chitosan with a molecular weight of 2.7 x 10{sup 5} for six layers has smooth and intact surface morphology, and exhibits the highest corrosion resistance in a simulated body fluid.

  15. Chlorophenol's ultra-trace analysis in environmental samples by chitosan-zinc oxide nanorod composite as a novel coating for solid phase micro-extraction combined with high performance liquid chromatography.

    Science.gov (United States)

    Alizadeh, Reza

    2016-01-01

    In this study, a simple, novel, and efficient preconcentration method has been developed for the determination of some chlorophenols (4-chlorophenol, 2,5-dichlorophenol, 2,3-dichlorophenol, and 2,4,6-trichlorophenol) using a direct solid phase microextraction (D-SPME) based on chitosan-ZnO nanorod composite combined with high performance liquid chromatography (HPLC). A one step-novel hydrothermal method was demonstrated on the fabrication of ZnO nanorods arrayed on the fused silica fiber in the chitosan hydrogel solution (CZNC) as a new coating of SPME fiber. The coating was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) instruments. The CZNC coating has combined the merits of both ZnO nanorods and chitosan hydrogel; it has several improvements such as increased extraction efficiency of chlorophenols and longer life time (over 80 cycles of D-SPME-HPLC operation). Experimental design method was used for optimization of extraction conditions and determination of four chlorophenols in water samples by SPME-HPLC-UV method. The calibration curves were linear from 5 to 1000 µg L(-1) for analytes, and the limits of detection were between 0.1 and 2 µg L(-1). Single fiber repeatability and fiber-to-fiber reproducibility were in the range of 5.8-10.2% and 8.8-14.5%, respectively. The spiked recoveries at 50 µg L(-1) for environmental water sample were in the range of 93-102%. PMID:26695336

  16. Moisture-Thermo-Resistant Properties of Starch-Based Composite Coating with Chitosan%壳聚糖涂布淀粉基复合材料的耐湿热性能

    Institute of Scientific and Technical Information of China (English)

    林宝凤; 黎演明; 周妤莲; 李磊; 杜予民

    2011-01-01

    Starch-based composite coating with chitosan was prepared through blend under hot-pressing and coating treatment. The Fourier transform infrared spectrum(FT-IR) and scanning electron microscope (SEM) results show that the blend has a good compatibility, strong hydrogen bond exists between chitosan and other components resulting to form compact coating on the surface of composition. The moisture-thermo-resistant properties of the composite have been researched by two different moisture heat treatment methods. It is indicated that the moisture-thermo-resistant properties obviously improves after coating with chitosan. Coating chitosan can decrease the water absorption from 72.5 % to 40.3 % and increase the rate of remaining tensile strength from 62.9 %to 95.7 % after the composites have been treatment in water vapor for 30 min; Coating chitosan also can increase the rate of remaining tensile strength from 15.9 % to 39.9 % after socked in water of 50 ℃ for 30 min.%采用热压共混、涂布的方法制备了壳聚糖涂布淀粉基复合材料.红外光谱和扫描电镜研究表明该复合材料有着良好的相容性,壳聚糖溶液与基材间通过氢键作用而形成致密涂层;用两种湿热处理方法研究了该复合材料的耐湿热性能,结果显示,壳聚糖涂布能显著提高材料的耐湿热性能.经水蒸汽熏蒸30 min后,壳聚糖涂布使材料的吸水率从72.5%降低至40.3%,拉伸强度保留率由62.9%提高至95.7%.经50℃水浸泡30 min后,壳聚糖涂布使材料的拉伸强度保留率由15.5%提高至39.9%.

  17. Blood protein adsorption onto chitosan

    OpenAIRE

    Benesch, Johan; Tengvall, P.

    2002-01-01

    Chitosan was recently indicated to enhance osteogenesis, improve wound healing but to activate the coagulation and the complement systems. In the present study approximately 10nm thick chitosan film were prepared on aminopropyltriethoxysilane (APTES) coated silicon. The surfaces were incubated in serum or plasma and subsequently in antibodies towards key complement and contact activation of coagulation proteins. The deposited amounts were compared with those on hydrophilic and hydrop...

  18. Chitosan as an edible invisible film for quality preservation of herring and atlantic cod.

    Science.gov (United States)

    Jeon, You-Jin; Kamil, Janak Y V A; Shahidi, Fereidoon

    2002-08-28

    The effect of chitosan with different molecular weights as coatings for shelf-life extension of fresh fillets of Atlantic cod (Gadus morhua) and herring (Clupea harengus) was evaluated over a 12-day storage at refrigerated temperature (4 +/- 1 degrees C). Three chitosan preparations from snow crab (Chinoecetes opilio) processing wastes, differing in viscosities and molecular weights, were prepared; their apparent viscosities (360, 57, and 14 cP) depended on the deacetylation time (4, 10, and 20 h, respectively) of the chitin precursor. Upon coating with chitosans, a significant (p chitosan after 4, 6, 8, 10, and 12 days of storage, respectively. Chitosan coating significantly (p chitosan were inter-related; the efficacy of chitosans with viscosities of 57 and 360 cP was superior to that of chitosan with a 14 cP viscosity. Thus, chitosan as edible coating would enhance the quality of seafoods during storage.

  19. Design and construction of polymerized-chitosan coated Fe3O4 magnetic nanoparticles and its application for hydrophobic drug delivery

    International Nuclear Information System (INIS)

    In this study, a novel hydrogel, chitosan (CS) crosslinked carboxymethyl-β-cyclodextrin (CM-β-CD) polymer modified Fe3O4 magnetic nanoparticles was synthesized for delivering hydrophobic anticancer drug 5-fluorouracil (CS-CDpoly-MNPs). Carboxymethyl-β-cyclodextrin being grafted on the Fe3O4 nanoparticles (CDpoly-MNPs) contributed to an enhancement of adsorption capacities because of the inclusion abilities of its hydrophobic cavity with insoluble anticancer drugs through host–guest interactions. Experimental results indicated that the amounts of crosslinking agent and bonding times played a crucial role in determining morphology features of the hybrid nanocarriers. The nanocarriers exhibited a high loading efficiency (44.7 ± 1.8%) with a high saturation magnetization of 43.8 emu/g. UV–Vis spectroscopy results showed that anticancer drug 5-fluorouracil (5-Fu) could be successfully included into the cavities of the covalently linked CDpoly-MNPs. Moreover, the free carboxymethyl groups could enhance the bonding interactions between the covalently linked CDpoly-MNPs and anticancer drugs. In vitro release studies revealed that the release behaviors of CS-CDpoly-MNPs carriers were pH dependent and demonstrated a swelling and diffusion controlled release. A lower pH value led to swelling effect and electrostatic repulsion contributing to the protonation amine impact of NH3+, and thus resulted in a higher release rate of 5-Fu. The mechanism of 5-Fu encapsulated into the magnetic chitosan nanoparticles was tentatively proposed. - Graphical abstract: A novel nanocarrier, chitosan-coated magnetic drug carrier nanoparticle (CS-CDpoly-MNPs) is fabricated for the delivery of insoluble anticancer drug by grafting CM-β-CD onto the magnetite surface. The grafting of CM-dextrins onto the surface of Fe3O4 nanocrystal clusters can markedly increase the loading capacity of 5-Fu by virtue of CM-dextrins/5-Fu inclusion complex formation. The release of 5-Fu from nanocomposite

  20. Design and construction of polymerized-chitosan coated Fe{sub 3}O{sub 4} magnetic nanoparticles and its application for hydrophobic drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yongling [Key Laboratory for Liquid–solid Structural Evolution and Processing of Materials (Ministry of Education), Engineering Ceramics Key Laboratory of Shandong Province, Shandong University, Jinan 250061 (China); School of Materials Science and Engineering, University of Jinan, Jinan 250022 (China); Shen, Shirley Z. [Materials Science and Engineering, CSIRO, Highett Vic 3190 (Australia); Sun, Huadong [College of Chemical Engineering, China University of Petroleum, Qing Dao 266555 (China); Sun, Kangning, E-mail: sunkangning@sdu.edu.cn [Key Laboratory for Liquid–solid Structural Evolution and Processing of Materials (Ministry of Education), Engineering Ceramics Key Laboratory of Shandong Province, Shandong University, Jinan 250061 (China); School of Materials Science and Engineering, University of Jinan, Jinan 250022 (China); Liu, Futian, E-mail: mse_liuft@ujn.edu.cn [Key Laboratory for Liquid–solid Structural Evolution and Processing of Materials (Ministry of Education), Engineering Ceramics Key Laboratory of Shandong Province, Shandong University, Jinan 250061 (China); School of Materials Science and Engineering, University of Jinan, Jinan 250022 (China); Qi, Yushi; Yan, Jun [School of Materials Science and Engineering, University of Jinan, Jinan 250022 (China)

    2015-03-01

    In this study, a novel hydrogel, chitosan (CS) crosslinked carboxymethyl-β-cyclodextrin (CM-β-CD) polymer modified Fe{sub 3}O{sub 4} magnetic nanoparticles was synthesized for delivering hydrophobic anticancer drug 5-fluorouracil (CS-CDpoly-MNPs). Carboxymethyl-β-cyclodextrin being grafted on the Fe{sub 3}O{sub 4} nanoparticles (CDpoly-MNPs) contributed to an enhancement of adsorption capacities because of the inclusion abilities of its hydrophobic cavity with insoluble anticancer drugs through host–guest interactions. Experimental results indicated that the amounts of crosslinking agent and bonding times played a crucial role in determining morphology features of the hybrid nanocarriers. The nanocarriers exhibited a high loading efficiency (44.7 ± 1.8%) with a high saturation magnetization of 43.8 emu/g. UV–Vis spectroscopy results showed that anticancer drug 5-fluorouracil (5-Fu) could be successfully included into the cavities of the covalently linked CDpoly-MNPs. Moreover, the free carboxymethyl groups could enhance the bonding interactions between the covalently linked CDpoly-MNPs and anticancer drugs. In vitro release studies revealed that the release behaviors of CS-CDpoly-MNPs carriers were pH dependent and demonstrated a swelling and diffusion controlled release. A lower pH value led to swelling effect and electrostatic repulsion contributing to the protonation amine impact of NH{sub 3}{sup +}, and thus resulted in a higher release rate of 5-Fu. The mechanism of 5-Fu encapsulated into the magnetic chitosan nanoparticles was tentatively proposed. - Graphical abstract: A novel nanocarrier, chitosan-coated magnetic drug carrier nanoparticle (CS-CDpoly-MNPs) is fabricated for the delivery of insoluble anticancer drug by grafting CM-β-CD onto the magnetite surface. The grafting of CM-dextrins onto the surface of Fe{sub 3}O{sub 4} nanocrystal clusters can markedly increase the loading capacity of 5-Fu by virtue of CM-dextrins/5-Fu inclusion complex

  1. Effects of Chitosan Coating on Factors Relating to Enzymatic Browning of Fresh-Cut Lotus Root Slices%壳聚糖对鲜切莲藕酶促褐变相关因子的影响

    Institute of Scientific and Technical Information of China (English)

    汪伟; 张伟; 孙莹; 高成; 朱丽琴

    2014-01-01

    The effects of chitosan coating of fresh-cut lotus root slices on the quality and relating factors in enzymatic browning were studied to explore the mechanism of chitosan in inhibition of enzymatic browning of fresh-cut lotus roots.Fresh-cut lotus root slices were coated with chitosan in different concentrations ( 1%, 2%) and then stored at 4℃.The results showed that chitosan treatment significantly inhibited the increase of browning degree and weight loss rate, and maintained higher vitamin C and total phenolic content.Chitosan coating significantly inhibited the production of superoxide free radicals ( O2 · -) and H2 O2 content,maintained high catalase activity,and significantly inhibited the activity of polyphenol oxidase and peroixdase during stor-age.Treatment with 2%chitosan showed better effect.%为探讨壳聚糖对鲜切莲藕的酶促褐变抑制机理,在4℃下对鲜切莲藕进行壳聚糖涂膜保鲜试验,研究了不同质量分数(1%、2%)壳聚糖对鲜切莲藕品质的影响和酶促褐变相关因子的影响。结果表明:壳聚糖处理显著抑制了鲜切莲藕贮藏过程中的褐变和水分损失,保持较高的维生素C和总酚含量,显著抑制了超氧阴离子(O2·-)和过氧化氢(H2O2)的积累,保持较高的过氧化氢酶(CAT)活性,并显著抑制了多酚氧化酶(PPO)和过氧化物酶(POD)活性。且2%的壳聚糖处理效果更好。

  2. Effect of chitosan edible coating incorporated with origanum essential oil on preservation of fresh-cut pineapple%壳聚糖涂膜与牛至精油复配对鲜切菠萝的保鲜作用

    Institute of Scientific and Technical Information of China (English)

    冯可; 胡文忠; 姜爱丽; 萨仁高娃; 徐永平

    2015-01-01

    Objective To study the influence of chitosan edible coating and incorporated with oregano essential oil on preservation of fresh-cut pineapple.Methods The values of the firmness, Vc content, peroxidase (POD), polyphenol oxidase (PPO), catalase (CAT) and lipoxygenase (LOX) activity of fresh-cut pineapple were analyzed by processed with chitosan edible coating incorporated with 0.1%, 0.3% and 0.5% of oregano essential, respectively, with water and chitosan edible coating processing as control.Results The processing of chitosan coating with 0.5% oregano essential oil could slow down softening of the tissue; the processing with 0.1% of oregano essential oil could maintain the decline of Vc content slowly; the POD and CAT activity of fresh cut pineapple were declined when it was processed with chitosan coating containing 0.3% and 0.5% oregano essential oil, and appeared increasing trend under other processing condition. The PPO and LOX activity with chitosan edible coating processing were lower than those of the control. Conclusions Chitosan edible coating incorporation with oregano essential oil would extend shelf-life of fresh-cut pineapple at the condition of keeping nutrition ingredient.%目的:研究壳聚糖涂膜及与牛至精油复配对鲜切菠萝的保鲜的影响。方法在低温环境中,按照0.1%、0.3%和0.5%不同浓度的牛至精油与壳聚糖复配,并分别以水、壳聚糖涂膜处理为对照,分析不同处理方式对鲜切菠萝硬度、Vc 含量、过氧化物酶(POD)、多酚氧化酶(PPO)、过氧化氢酶(CAT)和脂氧合酶(LOX)活性的影响。结果壳聚糖涂膜与0.5%的牛至精油复配后可减缓组织软化;与0.1%牛至精油复配可以维持Vc含量的缓慢降低。在不同处理组中,当含有0.3%和0.5%牛至精油时,鲜切菠萝的POD和CAT活性则呈下降趋势,而其他处理组则显著升高;当含有壳聚糖处理组时,其 PPO和LOX活性则低于对照组。结论壳聚糖与牛至

  3. Quality enhancement in the Japanese sea bass (Lateolabrax japonicas) fillets stored at 4°C by chitosan coating incorporated with citric acid or licorice extract.

    Science.gov (United States)

    Qiu, Xujian; Chen, Shengjun; Liu, Guangming; Yang, Qiuming

    2014-11-01

    The preserving effects of chitosan, chitosan and citric acid, chitosan and licorice extract on fresh Japanese sea bass fillets stored at 4 °C for 12 days were studied. Results showed that citric acid or licorice extract can enhance the preserving function of chitosan significantly by retarding lipid oxidation and inhibiting microbial growth as reflected in thiobarbituric acid reactive substances and total plate count, respectively. Both total volatile basic nitrogen values and sensory scores indicated chitosan and citric acid or licorice extract can significantly reduce the quality loss and extend the shelf life of Japanese sea bass fish fillets during refrigerated storage. Citric acid or licorice extract with chitosan could thus be applied in the seafood industry to enhance quality of fish fillets as natural preservatives.

  4. Effect of chitosan-carvacrol edible coatings on the quality and shelf life of tilapia (Oreochromis niloticus fillets stored in ice

    Directory of Open Access Journals (Sweden)

    Saraí CHAPARRO-HERNÁNDEZ

    2015-01-01

    Full Text Available Abstract Fish consumption has increased in recent years. However, fish meat is highly perishable, which demonstrates the need for technologies to preserve its quality. Edible coatings (EC might provide an alternative to extend the shelf life of fish. The goal of this study was to evaluate the effect of EC of chitosan (C in combination with carvacrol (CAR on the physical and microbiological changes of tilapia fillets. Fillets were submerged for two minutes in different treatments (T1: control; T2: C 2%; T3: C 2% + 0.125% CAR; T 4: C 2% + 0.25% CAR. At the end of storage, T1 and T2 showed the lowest values of total volatile bases (TVB. The color parameters L*, a* and b* varied from each treatment. The texture decreased and the different treatments reduced the microbial population in relation to the control; T3 and T4 were the most effective. These results show that the use of C with CAR might be an alternative method to preserve the quality and safety of tilapia fillets.

  5. Bifunctional coating based on carboxymethyl chitosan with stable conjugated alkaline phosphatase for inhibiting bacterial adhesion and promoting osteogenic differentiation on titanium

    Science.gov (United States)

    Zheng, Dong; Neoh, Koon Gee; Kang, En-Tang

    2016-01-01

    In this work, alkaline phosphatase (ALP) was covalently immobilized on carboxymethyl chitosan (CMCS)-coated polydopamine (PDA)-functionalized Ti to achieve a bifunctional surface. Our results showed ∼89% reduction in Staphylococcus epidermidis adhesion on this surface compared to that on pristine Ti. The ALP-modified Ti supported cell proliferation, and significantly enhanced cellular ALP activity and calcium deposition of osteoblasts, human mesenchymal stem cells (hMSCs) and human adipose-derived stem cells (hADSCs). The extent of enhancement in the functions of these cells is dependent on the surface density of immobilized ALP. The substrate prepared using an ALP solution of 50 μg/cm2 resulted in 44%, 54% and 129% increase in calcium deposited by osteoblasts, hMSCs and hADSCs, respectively, compared to those cultured on pristine Ti. The ALP-modified substrates also promoted the osteogenic differentiation of hMSCs and hADSCs by up-regulating gene expressions of runt-related transcription factor 2 (RUNX2), osterix (OSX), and osteocalcin (OC) in the two types of stem cells. The surface-immobilized ALP was stable after being subjected to 1 h immersion in 70% ethanol and autoclaving at 121 °C for 20 min. However, the enzymatic bioactivity of the surface-immobilized ALP was reduced by about 50% after these substrates were immersed in phosphate buffered saline (PBS) or PBS containing lysozyme for 14 days.

  6. Competitive Fixed-Bed Adsorption of Pb(II, Cu(II, and Ni(II from Aqueous Solution Using Chitosan-Coated Bentonite

    Directory of Open Access Journals (Sweden)

    Wan-Chi Tsai

    2016-01-01

    Full Text Available Fixed-bed adsorption studies using chitosan-coated bentonite (CCB as adsorbent media were investigated for the simultaneous adsorption of Pb(II, Cu(II, and Ni(II from a multimetal system. The effects of operational parameters such as bed height, flow rate, and initial concentration on the length of mass transfer zone, breakthrough time, exhaustion time, and adsorption capacity at breakthrough were evaluated. With increasing bed height and decreasing flow rate and initial concentration, the breakthrough and exhaustion time were observed to favorably increase. Moreover, the adsorption capacity at breakthrough was observed to increase with decreasing initial concentration and flow rate and increasing bed height. The maximum adsorption capacity at breakthrough of 13.49 mg/g for Pb(II, 12.14 mg/g for Cu(II, and 10.29 mg/g for Ni(II was attained at an initial influent concentration of 200 mg/L, bed height of 2.0 cm, and flow rate of 0.4 mL/min. Adsorption data were fitted with Adams-Bohart, Thomas, and Yoon-Nelson models. Experimental breakthrough curves were observed to be in good agreement (R2>0.85 and E%<50% with the predicted curves generated by the kinetic models. This study demonstrates the effectiveness of CCB in the removal of Pb(II, Cu(II, and Ni(II from a ternary metal solution.

  7. Analytical characteristics and application of novel chitosan coated magnetic nanoparticles as an efficient drug delivery system for ciprofloxacin. Enhanced drug release kinetics by low-frequency ultrasounds.

    Science.gov (United States)

    Kariminia, Samira; Shamsipur, Ali; Shamsipur, Mojtaba

    2016-09-10

    A pH-responsive drug carrier based on chitosan coated iron oxide nanoparticles (CS-Fe3O4) for prolonged antibiotic release in a controlled manner is reported. As an antibiotic drug model, ciprofloxacin was loaded onto the nanocarrier via H-bonding interactions. The nanoparticles were characterized using scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, photon correlation spectroscopy and Fourier transform infrared spectroscopy. The particle size of CS-Fe3O4 nanoparticles were found to lie in the range of 30-80nm. The analytical characteristics of the designed system were thoroughly investigated. The in vitro drug loading at pH 4.8 and release kinetics at pH 7.4 studies revealed that the drug delivery system can take 99% of ciprofloxacin load and quantitatively release the drug over a sustained period of 5 days. The release kinetics study indicated that the system follows a zero order kinetics via a diffusion-controlled mechanism. These results indicated that CS-Fe3O4 nanoparticles have the potential for use as controlled antibiotic delivery systems through oral administration by avoiding the drug release in the highly acidic gastric fluid region of the stomach. Furthermore, the ability of low-frequency ultrasound in fast release of the encapsulated drug in less than 60min from the CS-Fe3O4 nanoparticles in a controlled manner was confirmed. PMID:27497305

  8. Optimization of process parameters for removal of heavy metals by biomass of Cu and Co-doped alginate-coated chitosan nanoparticles.

    Science.gov (United States)

    Esmaeili, Akbar; Khoshnevisan, Najmeh

    2016-10-01

    In this study, the efficiency of alginate-coated chitosan nanoparticles (Alg-CS-NPs) for removal of heavy metals from industrial effluents was investigated. To this end, the researchers constructed a reactor containing biomass, using response surface methodology (RSM) for process optimization. Reactor tests were carried out with both synthetic and industrial effluents containing nickel. The optimum conditions to achieve maximum removal efficiency (RE) rates for both synthetic and industrial effluents were specified for contact time (0-120min), pH level (1-9), biomass dose (0.1-0.9g), and initial metal ion concentration (10-90mg/L). It was determined that 94.48% of the nickel could be removed at pH=3, 70mg/L initial nickel concentration, a dose of 0.3g biomass, and 30min contact time. The kinetic data fit well to a pseudo second-order model and the equilibrium data of the metal ions could be described well with Freundlich isotherm models.

  9. Optimization of process parameters for removal of heavy metals by biomass of Cu and Co-doped alginate-coated chitosan nanoparticles.

    Science.gov (United States)

    Esmaeili, Akbar; Khoshnevisan, Najmeh

    2016-10-01

    In this study, the efficiency of alginate-coated chitosan nanoparticles (Alg-CS-NPs) for removal of heavy metals from industrial effluents was investigated. To this end, the researchers constructed a reactor containing biomass, using response surface methodology (RSM) for process optimization. Reactor tests were carried out with both synthetic and industrial effluents containing nickel. The optimum conditions to achieve maximum removal efficiency (RE) rates for both synthetic and industrial effluents were specified for contact time (0-120min), pH level (1-9), biomass dose (0.1-0.9g), and initial metal ion concentration (10-90mg/L). It was determined that 94.48% of the nickel could be removed at pH=3, 70mg/L initial nickel concentration, a dose of 0.3g biomass, and 30min contact time. The kinetic data fit well to a pseudo second-order model and the equilibrium data of the metal ions could be described well with Freundlich isotherm models. PMID:27416515

  10. Polymer nanocomposites reinforced with montmorillonite

    OpenAIRE

    L.A. Dobrzański; M. Bilewicz; Viana, J. C.

    2012-01-01

    Purpose: Light microscope with polarized light has been used for observation layered zone, visible thanks to polarization of the light, inside polymer-polymer composites and nanocomposites Aim of work has been concentrated on investigation of nanocomposites as promising engineering materials, basing on composition of polypropylene and montmorillonite as reinforcement in the shape of nanoparticles of 2:1 silicate.Design/methodology/approach: Conventional and non-conventional injection molding ...

  11. Obtention, characterization and in vitro evaluation of polycaprolactone-chitosan coatings growth on chemically treated Ti6Al4V alloy; Obtencion, caracterizacion y evaluacion in vitro de recubrimientos de policaprolactona-quitosano sobre la aleacion Ti6Al4V tratada quimicamente

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Rodriguez, L. S.; Quintero Jaime, A. F.; Pena Ballesteros, D. Y.; Estupinan Duran, H. A.

    2014-07-01

    Polymeric coatings were obtained polycaprolactone-chitosan. The coatings were applied by dip-coating technique, on Ti6Al4V substrates chemically treated with NaOH solution. Based on SEM morphological analysis and infrared spectra, it was observed that the amount of polycaprolactone in the coating obtained had an effect in retaining the chitosan on the surface, associated with the emission of R-OH bond and the morphological characteristics. Impedance spectra performed on the polymeric films showed phenomena related processes adsorption of ionic species to monolayer formation on the surface. These spectra showed equally charge transfer phenomena generated by the morphological characteristics of the coatings, such as its porosity, density and homogeneity. The coated substrate was immersing in SBF solution for 8 days, allowed to observe its adsorption capacity of calcium through nucleation and precipitation of calcium phosphates, bioactive character displaying a front medium. (Author)

  12. Pharmacokinetics, tissue distribution, and metabolites of a polyvinylpyrrolidone-coated norcantharidin chitosan nanoparticle formulation in rats and mice, using LC-MS/MS

    Directory of Open Access Journals (Sweden)

    Ding XY

    2012-04-01

    Full Text Available Xin-Yuan Ding1, Cheng-Jiao Hong2, Yang Liu1, Zong-Lin Gu1, Kong-Lang Xing1, Ai-Jun Zhu1, Wei-Liang Chen1, Lin-Seng Shi1, Xue-Nong Zhang1, Qiang Zhang31Department of Pharmaceutics, College of Pharmaceutical science, Soochow University, Suzhou, 2Jiang Su Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 3Department of Pharmaceutics, School of Pharmaceutical Science, Peking University, Beijing, People’s Republic of ChinaAbstract: A novel formulation containing polyvinylpyrrolidone (PVP K30-coated norcantharidin (NCTD chitosan nanoparticles (PVP–NCTD–NPs was prepared by ionic gelation between chitosan and sodium tripolyphosphate. The average particle size of the PVP–NCTD–NPs produced was 140.03 ± 6.23 nm; entrapment efficiency was 56.33% ± 1.41%; and drug-loading efficiency was 8.38% ± 0.56%. The surface morphology of NCTD nanoparticles (NPs coated with PVP K30 was characterized using various analytical techniques, including X-ray diffraction and atomic force microscopy. NCTD and its metabolites were analyzed using a sensitive and specific liquid chromatography-tandem mass spectrometry method with samples from mice and rats. The results indicated the importance of the PVP coating in controlling the shape and improving the entrapment efficiency of the NPs. Pharmacokinetic profiles of the NCTD group and PVP–NCTD–NP group, after oral and intravenous administration in rats, revealed that relative bioavailabilities were 173.3% and 325.5%, respectively. The elimination half-life increased, and there was an obvious decrease in clearance. The tissue distribution of NCTD in mice after the intravenous administration of both formulations was investigated. The drug was not quantifiable at 6 hours in all tissues except for the liver and kidneys. The distribution of the drug in the liver and bile was notably improved in the PVP–NCTD–NP group. The metabolites and excretion properties of NCTD were investigated by analyzing

  13. High-Performance Capacitive Deionization Disinfection of Water with Graphene Oxide-graft-Quaternized Chitosan Nanohybrid Electrode Coating

    NARCIS (Netherlands)

    Wang, Yilei; El-Deen, A.G.; Li, Peng; Oh, B.H.L.; Guo, Zanru; Khin, Mya Mya; Vikhe, Y.S.; Wang, Jing; Hu, R.G.; Boom, R.M.; Kline, K.A.; Becker, D.L.; Duan, Hongwei; Chan-Park, M.B.

    2015-01-01

    Water disinfection materials should ideally be broad-spectrum-active, nonleachable, and noncontaminating to the liquid needing sterilization. Herein, we demonstrate a high-performance capacitive deionization disinfection (CDID) electrode made by coating an activated carbon (AC) electrode with cat

  14. Barrier Properties of Polylactic Acid in Cellulose Based Packages Using Montmorillonite as Filler

    OpenAIRE

    Daniela Sánchez Aldana; Eduardo Duarte Villa; Miguel De Dios Hernández; Guillermo González Sánchez; Quintín Rascón Cruz; Sergio Flores Gallardo; Hilda Piñon Castillo; Lourdes Ballinas Casarrubias

    2014-01-01

    Polylactic acid (PLA) and montmorillonite (CB) as filler were studied as coatings for cellulose based packages. Amorphous (AM) and semi crystalline (SC) PLA were used at different concentrations according to a 2 × 6 × 3 full factorial experimental design. CB loading was three concentrations and coating was performed by casting. Contact angle (CA), water vapor (WVP) and grease permeabilities were measured for each resultant package and were compared to commercial materials (Glassine Paper, Gre...

  15. Adsorption of Environmental Pollutants on Pillared Montmorillonite

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Both inorganic and organic pillared montmorillonites were used to adsorb phenol.Batch kinetics and isotherm studies were carried out to evaluate the effect of equilibrium time and pH on adsorption of phenol by montmorillouites and re-adsorbing characteristics of pillared montmorillonites.The adsorption of phenol increased with increasing solution pH values.The elimination ratio of phenol from the solution by the absorption of organic modified pillared montmorillonite (OrPMt) reached equilibrium quickly after vibrating for 5 minutes.Meanwhile for organic montmorillonite (OrMt),pillared montmorillouite (PMt) and montmorillonite (Mt),the time to reach phenol-absorption equilibrium were 20,30 and 90 minutes,respectively.The adsorbing capacity of the pillared montmorillonite modified with surfactant improved greatly.The phenol-adsorbing capacity of pillared montmorillonites mainly depended on microporous structure and surface component of the modified clays.After calcination at 500 ℃,the pillar structure and the basal spacing (1.83 nm) were still stable.So the pillared montmorillonite could be recycled,and it was a potential material for adsorbing environmental pollutants.

  16. Effect of Chitosan Coating on the Quality of Fresh-cut Pumpkin(Cucurbita Moschata) during Storage%壳聚糖涂膜对鲜切南瓜贮藏品质的影响

    Institute of Scientific and Technical Information of China (English)

    张丹丹; 杨绍兰; 吴昊; 张宏斌; 王成荣

    2012-01-01

    Fresh "MiBen" pumpkins were subjected to coating with chitosan at different concentrations (0.5%, 1.0%, 1.5%)and subsequent storage at 4 ℃ in order to examine the fresh-keeping effect of chitosan coating on fresh-cut pumpkin. During the storage, changes in polysaccharose, carotenoid and total phenol contents, ethylene production, weight loss rate, firmness and the activity of PAL and POD of fresh-cut pumpkin were measured. Results showed that chitosan coating could delay the reductions of firmness, polysaccharose, carotenoid and total phenol contents, and also could delay the increase of ethylene production, obviously enhance PAL and POD activities, reduce weight loss rate, and substantially extend the shelf life of fresh-cut pumpkin, especially at a concentration of 1.0%.%以新鲜的“蜜本”南瓜(Cucurbita moschata)为试验材料,探讨不同质量分数(0.5%、1.0%、1.5%)壳聚糖涂膜液处理对鲜切南瓜贮藏品质的影响.结果表明:采用壳聚糖涂膜液处理,不同程度地延缓了鲜切南瓜乙烯释放量的增加和硬度的下降,阻止了多糖和类胡萝卜素的减少,抑制了POD、PAL酶活性的下降和总酚含量的降低.其中以质量分数为1.0%壳聚糖涂膜液处理的效果最好,有效地保持了鲜切南瓜贮藏期间的品质.

  17. 存放方式对壳聚糖涂膜草莓保鲜效果的影响%Effects of preservation methods on keep-freshing of strawberry under chitosan coating

    Institute of Scientific and Technical Information of China (English)

    周青; 王纪忠; 陶书田; 张绍铃; Shahrokh Khanizadeh; 叶玉秀

    2011-01-01

    [Objective] The method to increase the function of chitosan coating on strawberry was studied.[Method] The effects of covered storage and uncovered storage on keep-freshing of strawberry under different content chitosan coating were researched.Weight loss rate,putridity rate,VC content,titratable acid content and total soluble solid were observed.[Result] Covered storage and 0.1% chitosan coating was beneficial to keep-freshing of strawberry.The rate of weight loss and rotten fruit were reduced,the declining rate of titration acid content,soluble solids content and VC content were delayed.[Conclusion] Chitosan coating and covered storage is a feasible method for fresh strawberries.%[目的]研究提高壳聚糖保鲜草莓的效果。[方法]以新鲜草莓为材料,用不同浓度的壳聚糖溶液涂膜并进行密封与未密封处理。通过测定不同存放时间后草莓腐烂率、失重率、可溶性固形物含量、可滴定酸含量、VC含量的变化来探讨不同浓度壳聚糖涂膜后存放方式对草莓保鲜效果的影响。[结果]1.0%壳聚糖涂膜密封存放最有利于草莓保鲜,其抑制草莓腐烂率、失重率的下降,延缓了可溶性固形物含量、可滴定酸含量、VC含量下降的效果明显好于其他处理。[结论]壳聚糖涂膜后采用密封存放可提高对草莓的保鲜效果。

  18. 壳聚糖包衣对油菜种子萌发及幼苗耐盐性影响%Effect of Chitosan Coating on Seed Germination and Salt-tolerance of Brassica napus L.

    Institute of Scientific and Technical Information of China (English)

    王艳君; 王美燕; 黄荣荣

    2012-01-01

    In this study, Brassica napus L. seeds was treated by different concentrations of chitosan coating and the effect on rape seed germination and seedling salinity tolerance at different concentrations of salt stress on seed germination was studied. The germination potential, germination rate, biomass (fresh weight, dry weight, root length, shoot length) were measured, and the chlorophyll content, contents of soluble protein and soluble sugar were analyzed. The results showed that chitosan coating could increase germination potential, germination rate, biomass, salt-tolerance index of rapeseed seedling, chlorophyll content, contents of soluble protein and soluble sugar. The promotion effect of 0. 25 g · L-1 chitosan coating on seed germination was better, and 0. 50 g · L-1 of chitosan coating could increase the salt tolerance of rape seedling better.%以不同浓度的壳聚糖对油菜种子进行包衣处理,考察其对油菜种子萌发及幼苗耐盐性的影响,并在不同盐浓度胁迫条件下对种子萌发时的发芽势、发芽率、生物量(鲜重、干重、根长、芽长)等指标进行测定,同时分析油菜幼苗叶绿素含量、可溶性蛋白及可溶性糖含量的变化.结果表明,一定浓度的壳聚糖包衣处理可提高油菜种子发芽率、发芽势、生物量、幼苗的耐盐指数、叶绿素含量、可溶性蛋白及可溶性糖的含量,其中浓度为0.25g·L-1壳聚糖包衣处理对油菜种子萌发的促进效果较好,而浓度为0.50g·L-1壳聚糖包衣处理对提高油菜幼苗耐盐性具有较好的促进作用.

  19. Electrical Signal Guided Ibuprofen Release from Electrodeposited Chitosan Hydrogel

    Directory of Open Access Journals (Sweden)

    Youyu Liu

    2014-01-01

    Full Text Available Electrical signal guided drug release from conductive surface provides a simple and straightforward way for advanced drug delivery. In this study, we investigated the ibuprofen release from electrodeposited chitosan hydrogel by applying electrical signals. Specifically, chitosan hydrogel was electrodeposited on titanium plate and used as a matrix for ibuprofen load and release. The release of ibuprofen from the chitosan hydrogel on titanium plate was pH sensitive. By applying a positive or negative electrical potential, the release rate of ibuprofen from the electrodeposited chitosan can be facilely controlled. Thus, coupling chitosan electrodeposition and electrical signal control spurs new possibilities for biopolymeric coating and drug elution on conductive implants.

  20. Combination coating of chitosan and anti-CD34 antibody applied on sirolimus-eluting stents can promote endothelialization while reducing neointimal formation

    Directory of Open Access Journals (Sweden)

    Yang Feng

    2012-10-01

    Full Text Available Abstract Background Circulating endothelial progenitor cells (EPCs capture technology improves endothelialization rates of sirolimus-eluting stents (SES, but the problem of delayed re-endothelialization, as well as endothelial dysfunction, has still not been overcome. Therefore, we investigated whether the combination coating of hyaluronan-chitosan (HC and anti-CD34 antibody applied on an SES (HCASES can promote endothelialization, while reducing neointimal formation and inflammation. Methods Sirolimus-eluting stents(SES, anti-CD34 antibody stents (GS and HC-anti-CD34 antibody combined with sirolimus-eluting stents (HCASES were deployed in 54 normal porcine arteries and harvested for scanning electron microscopy (SEM and histological analysis. The ratio of endothelial coverage above the stents was evaluated by SEM analysis at 7, 14 and 28 days. The percentage of in-stent stenosis was histologically analyzed at 14 and 28 days. Results SEM analysis at 7 days showed that endothelial strut coverage was increased in the HCASES group (68±7% compared with that in the SES group (31±4%, p=0.02. At 14 days, stent surface endothelialization, evaluated by SEM, showed a significantly higher extent of endothelial coverage above struts in the GS (95 ± 2% and the HCASES groups (87±4% compared with that in the SES group (51±6%, p=0.02. Histological examination showed that the percentage of stenosis in the HCASES group was not significantly different to that of the SES and GS groups (both p> 0.05. At 28 days, there was no difference in the rates of endothelial coverage between the HCASES and GS groups. The HCASES group showed less stenosis than that in the GS group (P Conclusions SEM and histology demonstrated that HCASESs can promote re-endothelialization while enhancing antiproliferative effects.

  1. Effects of irradiation-degradated chitosan coating on quality and shelf-life of the fruits of Shatang Mandarin, Fortunella Margariat (LOUR) swingle and Lycopersicon Esculentum MILL. var. cerasiforme alef

    International Nuclear Information System (INIS)

    Effects of irradiation-degradated chiotosan of different molecular weight on weight loss, rotting rate, total acid, soluble solid content, and ascorbic acid in Shatang mandarin, Fortunella margarita (lour) Swingle, and Lycopersicon esculentum Mill. var. cerasiforme Alef during storage were investigated. The result showed that, compared to control, all chitosan treatment could significantly reduce weight loss and rotting rate, and maintain the content of total acid, soluble solid, and ascorbic acid. After 18 days of storage, treatment of chitosan with molecular weight of 6.6 x 104 Da showed the highest capability of decreasing the rotting rate in S. mandarin, F. margarita, L. esculentum by 71.11%, 66.01% and 70.22%, respectively; increasing total acid by 55.60%, 36.75% and 36.68%, soluble solid content by 49.06%, 25.75% and 49.46%, and ascorbic acid by 42.80%, 41.65% and 51.70%, respectively. Accordingly, irradiation-degradated chitosan coating could effectively prevent the rotting rate and preserve the quality of the three kinds of fruit during storage and thus prolong their shelf life to 18 days. (authors)

  2. Transparent films based on PLA and montmorillonite with tunable oxygen barrier properties

    DEFF Research Database (Denmark)

    Svagan, Anna; Åkesson, Anna; Cárdenas, Marité;

    2012-01-01

    -sensitive foods, the oxygen permeability coefficient (OP) needs to be reduced by a factor of ∼10. To achieve this, a layer-by-layer (Lbl) approach was used to assemble alternating layers of montmorillonite clay and chitosan on extruded PLA film surfaces. When 70 bilayers were applied, the OP was reduced by 99......Polylactide (PLA) is viewed as a potential material to replace synthetic plastics (e.g., poly(ethylene terephthalate) (PET)) in food packaging, and there have been a number of developments in this direction. However, for PLA to be competitive in more demanding uses such as the packaging of oxygen...

  3. Coatings.

    Science.gov (United States)

    Anderson, Dennis G.

    1989-01-01

    This review covers analytical techniques applicable to the examination of coatings, raw materials, and substrates upon which coatings are placed. Techniques include chemical and electrochemical methods, chromatography, spectroscopy, thermal analysis, microscopy, and miscellaneous techniques. (MVL)

  4. Preservation Effect of Composite Chitosan Coating Treatment on Sea Asparagus%复合壳聚糖涂膜处理对海芦笋保鲜效果的影响

    Institute of Scientific and Technical Information of China (English)

    胡烨; 徐青; 辛建美; 滕宏飞; 罗红宇

    2012-01-01

    Composite chitosan preservative was prepared using chitosan, phytic acid, sodium chloride and orange peel extract according to a certain proportion and storage tests were made at room temperature after sea asparagus immersion and coating. And preservative formula with better preservation effect was selected through orthogonal design. The results showed that each test group of composite chitosan coating could significantly reduce the rot rate and water loss rate of sea asparagus during storage and could effectively delay the oxidation of VC and chlorophyll compared with the control group. The optimized formulation of composite chitosan preservative was chitosan 1.5%, phytic acid 1.5%, sodium chloride 0.2% and orange peel extract 10%. The preservation period of sea asparagus using this formulation could be prolonged for more than 10 days compared with that of the untreated sea asparagus and it can fully meet the requirements of current logistics rate and logistics technology for vegetable preservation period.%壳聚糖、植酸、氯化钠、桔皮提取液按一定比例配制成复合壳、聚糖保鲜剂,在常温下对海芦笋浸泡涂膜后做贮藏试验.采用正交设计筛选保鲜效果较佳的保鲜剂配方.试验结果表明:与空白对照组相比,经复合壳聚糖涂膜处理的各试验组,明显降低海芦笋贮藏期间的腐烂率和失水率,有效延缓VC和叶绿素的氧化.复合壳聚糖涂膜液的优化配方为壳聚糖1.5%,植酸1.5%,氧化钠0.2%,桔度提取液10%(质量分数).经该配方涂膜密封贮藏的海芦笋比未处理的海芦笋保鲜期延长10d以上,可以满足目前物流速率和物流技术对蔬菜保鲜期的要求.

  5. Chitosan-coated poly(lactic-co-glycolic acid nanoparticles as an efficient delivery system for Newcastle disease virus DNA vaccine

    Directory of Open Access Journals (Sweden)

    Zhao K

    2014-09-01

    Full Text Available Kai Zhao,1,* Yang Zhang,1,2,* Xiaoyan Zhang,1,* Ci Shi,1,2 Xin Wang,1 Xiaohua Wang,1 Zheng Jin,3 Shangjin Cui2 1Laboratory of Microbiology, School of Life Science, Heilongjiang University, 2Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, 3Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, Heilongjiang University, Harbin, People’s Republic of China *These authors contributed equally to this work Abstract: We determined the efficacy and safety of chitosan (CS-coated poly(lactic-co-glycolic acid (PLGA nanoparticles (NPs as a delivery system for a vaccine to protect chickens against Newcastle disease virus (NDV. The newly constructed vaccine contained DNA (the F gene of NDV. The Newcastle disease virus (NDV F gene deoxyribonucleic acid (DNA plasmid (pFDNA-CS/PLGA-NPs were spherical (diameter =699.1±5.21 nm [mean ± ­standard deviation] and smooth, with an encapsulation efficiency of 98.1% and a Zeta potential of +6.35 mV. An in vitro release assay indicated that CS controlled the burst release of plasmid DNA, such that up to 67.4% of the entire quantity of plasmid DNA was steadily released from the pFDNA-CS/PLGA-NPs. An in vitro expression assay indicated that the expression of nanoparticles (NPs was maintained in the NPs. In an immunization test with specific pathogen-free chickens, the pFDNA-CS/PLGA-NPs induced stronger cellular, humoral, and mucosal immune responses than the plasmid DNA vaccine alone. The pFDNA-CS/PLGA-NPs did not harm 293T cells in an in vitro assay and did not harm chickens in an in vivo assay. Overall, the results indicated that CS-coated PLGA NPs can serve as an efficient and safe mucosal immune delivery system for NDV DNA vaccine.Keywords: mucosal immune delivery system, immune effect

  6. Polymer nanocomposites reinforced with montmorillonite

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2012-01-01

    Full Text Available Purpose: Light microscope with polarized light has been used for observation layered zone, visible thanks to polarization of the light, inside polymer-polymer composites and nanocomposites Aim of work has been concentrated on investigation of nanocomposites as promising engineering materials, basing on composition of polypropylene and montmorillonite as reinforcement in the shape of nanoparticles of 2:1 silicate.Design/methodology/approach: Conventional and non-conventional injection molding process has been used for obtaining nanocomposites. In non-conventional process has been used the special mold for inducing the shear rates, additionally equipped with external computer to control melt manipulation of solidifying polymer inside mold cavityFindings: Highly developed structure consisted of multilayer zone between skin and core mainly responsible for reinforcement and improvement of fracture toughness of polymer composites and nanocompositesResearch limitations/implications: Nanocomposites of polymer blends and montmorillonite were moulded by direct injection moulding according to melt temperature and stroke time-number combination included in design of experiments.Practical implications: Application of special injection moulding technique provides to structure development and gives possibility to create multilayer zone, which strengthen material. Besides strengthening obtaining of such nanocomposites is cheap thanks to application of low cost injection moulding technique and not expensive polyolefines with developed structure, without using additional fillers (e.g. compatybilizers.Originality/value: Very wide application of polymer composites and nanocomposites as engineering materials used for various industries like building engineering, automotive and aerospace

  7. Chitosan in Mucoadhesive Drug Delivery: Focus on Local Vaginal Therapy

    Directory of Open Access Journals (Sweden)

    Toril Andersen

    2015-01-01

    Full Text Available Mucoadhesive drug therapy destined for localized drug treatment is gaining increasing importance in today’s drug development. Chitosan, due to its known biodegradability, bioadhesiveness and excellent safety profile offers means to improve mucosal drug therapy. We have used chitosan as mucoadhesive polymer to develop liposomes able to ensure prolonged residence time at vaginal site. Two types of mucoadhesive liposomes, namely the chitosan-coated liposomes and chitosan-containing liposomes, where chitosan is both embedded and surface-available, were made of soy phosphatidylcholine with entrapped fluorescence markers of two molecular weights, FITC-dextran 4000 and 20,000, respectively. Both liposomal types were characterized for their size distribution, zeta potential, entrapment efficiency and the in vitro release profile, and compared to plain liposomes. The proof of chitosan being both surface-available as well as embedded into the liposomes in the chitosan-containing liposomes was found. The capability of the surface-available chitosan to interact with the model porcine mucin was confirmed for both chitosan-containing and chitosan-coated liposomes implying potential mucoadhesive behavior. Chitosan-containing liposomes were shown to be superior in respect to the simplicity of preparation, FITC-dextran load, mucoadhesiveness and in vitro release and are expected to ensure prolonged residence time on the vaginal mucosa providing localized sustained release of entrapped model substances.

  8. Clay-chitosan nanobrick walls: completely renewable gas barrier and flame-retardant nanocoatings.

    Science.gov (United States)

    Laufer, Galina; Kirkland, Christopher; Cain, Amanda A; Grunlan, Jaime C

    2012-03-01

    Thin films prepared via a layer-by-layer (LbL) assembly of renewable materials exhibit exceptional oxygen barrier and flame-retardant properties. Positively charged chitosan (CH), at two different pH levels (pH 3 and pH 6), was paired with anionic montmorillonite (MMT) clay nanoplatelets. Thin-film assemblies prepared with CH at high pH are thicker, because if the low polymer charge density. A 30-bilayer (CH pH 6-MMT) nanocoating (~100 nm thick) reduces the oxygen permeability of a 0.5-mm-thick polylactic acid film by four orders of magnitude. This same coating system completely stops the melting of a flexible polyurethane foam, when exposed to direct flame from a butane torch, with just 10 bilayers (~30 nm thick). Cone calorimetry confirms that this coated foam exhibited a reduced peak heat-release rate, by as much as 52%, relative to the uncoated control. These environmentally benign nanocoatings could prove beneficial for new types of food packaging or a replacement for environmentally persistent antiflammable compounds. PMID:22339671

  9. The Effect of N-trimethyl Chitosan as Coating Materials on Corneal Permeability of Curcu-min%姜黄素眼用脂质体的角膜透过性研究

    Institute of Scientific and Technical Information of China (English)

    张婧; 李翔; 罗云; 梁新丽; 廖正根

    2015-01-01

    Objective:To study the effect of N-trimethyl chitosan as coating materials on corneal permeability of curcumin.Methods:Curcumin-loaded liposomes were prepared by ethanol injection method, and the vesicles were coated with trimethyl chitosan.Mem-brane filter, dynamic light scattering and electrophoretic light scattering were employed to study the physicochemical parameters.Cor-neal permeability of trimethyl chitosan-coated liposomes was carried out by transcorneal permeation study and confocal laser scanning microscopy ( CLSM) .Results:It was shown that the entrapment efficiency was not changed significantly with enlarged size and zeta po-tential with the coating of TMC.The TMC-coated liposomes produced the more pronounced corneal permeation, compared with the uncoated preparations.With the increased contact time, the fluorescence in rabbit corneal epithelium can be detected down to 60 μm below the surface via paracellular route.Conclusion:TMC has significant effect on the transport of curcumin through rabbit cornea in vitro.%目的:研究姜黄素眼用脂质体的角膜透过性。方法:采用乙醇注入法制备姜黄素脂质体,以三甲基壳聚糖对脂质体囊泡进行包覆;采用过膜法、粒径及电位测定仪对脂质体进行理化性质分析;采用离体兔角膜透过实验及共聚焦激光扫描显微镜成像技术,对三甲基壳聚糖包覆的脂质体的角膜透过作用进行研究。结果:三甲基壳聚糖对脂质体的包覆对脂质体的包封率无明显影响,但粒径、电位有所增大,同时角膜透过显著高于未包覆脂质体组,随着作用时间的延长,可促进脂质体囊泡渗透至角膜上皮深层60μm处,并主要以细胞旁路途径发生角膜透过。结论:该研究表明三甲基壳聚糖对脂质体囊泡具有明显的角膜促透作用。

  10. Preparation and Structural Analysis of Montmorillonite Composites

    Institute of Scientific and Technical Information of China (English)

    FU Guizhen; GONG Wenqi; LIU Gangwei

    2009-01-01

    Calcium montmorillonite from Liao-ning was organically intercalated by using cety1 trimethy1 ammonium bromide after it was treated with sodium carbonate.The optimal dosage of intercalating agent was tested.The organically intercalated montmorillonite composites were characterized by the methods of XRD,FTIR and DTA/TG.The results show that the intercalating ef-fect of the organically intercalated montmorillonite composite is the best when the amount of inter-calating agent reached 120%cation exchange capacity(CEC)

  11. 壳聚糖涂膜保藏技术在卤鹅加工中的应用%Application of Coating Storage Technology with Chitosan in Sauce and Pot-roast Goose Processing

    Institute of Scientific and Technical Information of China (English)

    张晓春; 葛良鹏; 欧秀琼; 景绍红; 杜金平

    2013-01-01

    Study of the composite preserving techniques of sauce and pot-roast gooses were carried out by the coating storage technology with chitosan, natural biologic preservatives, vacuum packaging technology and pasteurized repasteurization. The result showed that the shelf-life of sauce and pot-roast goose could extended to 4 weeks at 30℃-35℃by coating the surface of sauce and pot-roast goose with the solutions containing 1%chitosan,1%Nisin and 0.2%acetic acid, then combined with vacuum packaging, pasteurized repasteurization treatment(80℃-85℃,heating 5 min).%  采用壳聚糖涂膜保藏技术,结合天然生物防腐剂、真空包装及低温二次杀菌技术,对卤鹅综合保鲜技术进行了研究.结果表明:利用复配的壳聚糖涂膜液(含1%壳聚糖、1%Nisin和0.2%醋酸)对卤鹅表面作涂膜,然后真空包装,低温二次杀菌(80℃~85℃,5 min)处理,卤鹅在常温下(30℃~35℃)的货架期可达到4周.

  12. MMT-supported Ag nanoparticles for chitosan nanocomposites: structural properties and antibacterial activity.

    Science.gov (United States)

    Lavorgna, M; Attianese, I; Buonocore, G G; Conte, A; Del Nobile, M A; Tescione, F; Amendola, E

    2014-02-15

    Multifunctional bionanocomposites have been prepared by loading chitosan matrix with silver-montmorillonite antimicrobial nanoparticles obtained by replacing Na(+) ions of natural montmorillonite with silver ions. This filler has been chosen for its twofold advantage to serve as silver supporting material and to confer new and better performance to the obtained material. It has been proved that the achievement of the intercalation of chitosan into the silicate galleries of montomorillonite as well as the interaction between chitosan and Ag ions and silver particles lead to an enhancement of the thermal stability, to an improvement of mechanical strengths and to a reduction of the liquid water uptake of the obtained bionanocomposites. Results also show that silver ions are released in a steady and prolonged manner providing, after 24 h, a significant reduction in the microbial growth of Pseudomonas spp. PMID:24507295

  13. Structure, properties and application to water-soluble coatings of complex antimicrobial agent Ag-carboxymethyl chitosan-thiabendazole

    Institute of Scientific and Technical Information of China (English)

    XIA Jin-lan; WANG Chun; NIE Zhen-yuan; Peng An-an; Guan Xin

    2005-01-01

    The structure, properties and application to water-soluble coatings of a new complex antimicrobial agent Ag-carboxylmethyl citosan-thiabendazole (Ag-CMCTS-TBZ) prepared from different materiel ratios were reported. The silver ions were preferably coordinated with the free -NH2 groups and the -OH groups of secondary alcohol and carboxyl in CMCTS. TBZ preferably bonded to carboxyl group in CMCTS by electrostatic force and hydrogen bonding. Increase in silver ions content in the complex agent improved to some limited extent the antibacterial activity, but enhanced coloring and cost of the complex agent. Increase in TBZ content resulted in increase of antifungal activity, but decrease of water solubility of the complex agent. The antimicrobial MICs of the complex agent to Esherichia coli, Staphylococcus aureus, Candida albicans, Aspergillus niger, Mucor sp. were 20-80, 15-60, 20-55, 40-250, and 400-1 700 mg/kg, respectively. Addition of 0.1% of this complex agent to acrylic emulsion paint made the paint without substantial change in color, luster, viscosity, odor or pH value, but with an excellent and chronically persisting broad-spectra antimicrobial activity.

  14. Preparation of Epoxy/Montmorillonite Nanocomposite Coating and Investigation on Heat Resistance and Anticorrosion Properties in Oil- Gas Environment with H2S/CO2%环氧/蒙脱土复合涂层的制备及在H2S/CO2环境中的耐热防腐性能研究

    Institute of Scientific and Technical Information of China (English)

    胡银春; 马丽琴; 董玉华; 王献昉; 周琼

    2011-01-01

    The title anti -corrosive and heat resistant coating, which coud be used in oil -gas environment with H2S/CO2, has been developed by optimizing the curing process, clay content and resin component to improve heat - resistance and corrosion resistance of epoxy coating. The heat - resistant and anti - corrosive properties of the coating in oil - gas environment with H2S/CO2 was investigated with autoclave test.The results showed that heat pre treatment could significantly increase the Tg of the binder, and epoxy resin could be intercalated into the organic montmorillonite layers with mechanical stirring at 80 ℃. OMMT could be well dispersed in the binder when its content was 3% (m/m), and the nanocomposite showed an intercalation/stripping hybrid characteristic, which could ensure both the thermo -mechanical and barrier properties. When the Tg of the varnish coating was 153.7 ℃, its anti - corrosive property was good in oil - gas environment with H2S/CO2 at 150. 0 ℃, which meant the Tg could be used as the upper marging temperature for anti -corrosive coating.%通过优化固化工艺、有机蒙脱土含量及树脂组分改善环氧涂层的耐热性,制备应用于高温H2S/CO2腐蚀环境中的环氧耐热防腐涂层,采用高温高压釜试验测试了涂层的耐热防腐效果.结果表明:适当的高温处理能显著提高基体树脂的玻璃化转变温度;环氧树脂在80℃机械搅拌条件下插入有机蒙脱土的层间,质量分数为3%的有机蒙脱土在基体中分散均一,为插层/剥离混合型复合结构,兼顾材料的热机械性能和阻隔性能;清漆涂层的玻璃化转变温度为153.7℃,其防腐涂层在150℃以下含H2S/CO2的油气环境中的防腐效果良好,说明玻璃化转变温度作为防腐涂层的使用上限温度是可行的.

  15. Preparation and Characterization of Chitosan /Ethylcellulose Complex Microcapsule

    Institute of Scientific and Technical Information of China (English)

    史新元; 谭天伟

    2003-01-01

    In this work a system which consists of chitosan microcores entrapped in ethylcellulose is presented.Vitamin D2 was eficiently entrapped in chitosan microcores with spray-drying method and was microencapsulated by coating of ethylcellulose.The average size of chitosan microspheres was 6.06μm.The morphology and release properties of microcapsules were tested.The results of release in vitro showed that the microcapsule could realize sustained release for 12h in artificial intestinal juice.

  16. Effect of Edible Chitosan-gelatin Coating on Shelf Life of Fresh Green Peppers%明胶与壳聚糖复配对青椒贮藏保鲜的影响

    Institute of Scientific and Technical Information of China (English)

    许晅; 徐泽平; 马韵升; 曹清杰

    2015-01-01

    A composite chitosan-gelatin coating was applied on the green peppers to determine its effect on the shelf life of the fresh vegetable.A significantly extended shelf life of the green peppers treated with the coating was observed.In addition,the sensory evaluation indicated that the 1.0% chitosan +0.5% gelatin coating rendered the best results on appearance and taste with the lowest weight loss and MDA,as well as the highest ascorbic acid retention for the green peppers.%以青椒为试验材料,研究0.5%、1.0%明胶与1.0%壳聚糖复配果蔬保鲜的影响。结果表明,明胶与壳聚糖复配能够显著延长青椒的贮藏期。其中,1%壳聚糖+0.5%明胶效果最好,而且该复配涂膜处理的青椒感官评价最佳,失重率最少,丙二醛的积累最低,抗坏血酸含量最高。研究结果表明1%壳聚糖+0.5%明胶复配涂膜保鲜能够有效地延长青椒的货架期。

  17. Functionalization of titanium with chitosan via silanation: evaluation of biological and mechanical performances.

    Directory of Open Access Journals (Sweden)

    Pauline Renoud

    Full Text Available Complications in dentistry and orthopaedic surgery are mainly induced by peri-implant bacterial infections and current implant devices do not prevent such infections. The coating of antibacterial molecules such as chitosan on its surface would give the implant bioactive properties. The major challenge of this type of coating is the attachment of chitosan to a metal substrate. In this study, we propose to investigate the functionalization of titanium with chitosan via a silanation. Firstly, the surface chemistry and mechanical properties of such coating were evaluated. We also verified if the coated chitosan retained its biocompatibility with the peri-implant cells, as well as its antibacterial properties. FTIR and Tof-SIMS analyses confirmed the presence of chitosan on the titanium surface. This coating showed great scratch resistance and was strongly adhesive to the substrate. These mechanical properties were consistent with an implantology application. The Chitosan-coated surfaces showed strong inhibition of Actinomyces naeslundii growth; they nonetheless showed a non significant inhibition against Porphyromonas gingivalis after 32 hours in liquid media. The chitosan-coating also demonstrated good biocompatibility to NIH3T3 fibroblasts. Thus this method of covalent coating provides a biocompatible material with improved bioactive properties. These results proved that covalent coating of chitosan has significant potential in biomedical device implantation.

  18. Functionalization of titanium with chitosan via silanation: evaluation of biological and mechanical performances.

    Science.gov (United States)

    Renoud, Pauline; Toury, Bérangère; Benayoun, Stéphane; Attik, Ghania; Grosgogeat, Brigitte

    2012-01-01

    Complications in dentistry and orthopaedic surgery are mainly induced by peri-implant bacterial infections and current implant devices do not prevent such infections. The coating of antibacterial molecules such as chitosan on its surface would give the implant bioactive properties. The major challenge of this type of coating is the attachment of chitosan to a metal substrate. In this study, we propose to investigate the functionalization of titanium with chitosan via a silanation. Firstly, the surface chemistry and mechanical properties of such coating were evaluated. We also verified if the coated chitosan retained its biocompatibility with the peri-implant cells, as well as its antibacterial properties. FTIR and Tof-SIMS analyses confirmed the presence of chitosan on the titanium surface. This coating showed great scratch resistance and was strongly adhesive to the substrate. These mechanical properties were consistent with an implantology application. The Chitosan-coated surfaces showed strong inhibition of Actinomyces naeslundii growth; they nonetheless showed a non significant inhibition against Porphyromonas gingivalis after 32 hours in liquid media. The chitosan-coating also demonstrated good biocompatibility to NIH3T3 fibroblasts. Thus this method of covalent coating provides a biocompatible material with improved bioactive properties. These results proved that covalent coating of chitosan has significant potential in biomedical device implantation. PMID:22859940

  19. 氟硅丙烯酸酯/钠基蒙脱土复合乳胶涂层的制备及防腐蚀性能%Preparation and anticorrosion performance of fluorine-silicon-acrylate/sodium montmorillonite composite emulsion coating

    Institute of Scientific and Technical Information of China (English)

    高晓辉; 李玉峰; 祝晶晶; 张毅志

    2015-01-01

    以甲基丙烯酸十二氟庚酯和乙烯基三甲氧基硅烷为功能单体,采用种子乳液聚合法合成氟硅丙烯酸酯乳液(氟硅),然后将钠基蒙脱土(钠土)分散于其中,制成复合乳胶涂层并涂覆在Q235钢上。研究了乳液种类和钠土用量对涂层防腐性的影响。采用红外光谱(FT-IR)、透射电子显微镜(TEM)和扫描电子显微镜(SEM)表征了氟硅丙烯酸酯乳液和涂层。通过极化曲线、交流阻抗测量和中性盐雾试验探讨了复合涂层的耐腐蚀性。结果表明,乳胶粒子呈核壳结构,涂层连续、致密,钠土在涂层中分散均匀。当钠土用量为4%时,复合涂层的耐蚀性最好,水接触角达到102.4°,附着力为0级,电化学阻抗达到104.4Ω,腐蚀速率仅为4.3×10−5 mm/a,盐雾试验240 h后膜下金属未发生腐蚀扩散。%A fluorine-silicon-acrylate emulsion was synthesized by seed emulsion polymerization using dodecafluoroheptyl methacrylate and vinyltrimethoxysilane as monomers. Sodium montmorillonite (Na-MMT) was dispersed in the fluorine-silicon-acrylate emulsion for preparing a composite emulsion coating for Q235 steel. The influences of emulsion type and Na-MMT content on anticorrosion properties of the coating were studied. The fluorine-silicon-acrylate emulsion and coating were characterized by Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The corrosion resistance of the composite coating was examined by polarization curve measurement, electrochemical impedance spectroscopy, and neutral salt spray test. The results showed that the emulsion particles possess obvious core-shell structure and the composite coating is continuous and compact with well-dispersed Na-MMT. The composite emulsion coating obtained with 4%Na-MMT has optimal anticorrosion performance with a water contact angle of 102.4°, adhesion strength of 0 grade

  20. Study of the interactivity between mercury and cellular system labeled with carboxymethyl chitosan-coated quantum dots and its application in a real-time in-situ detection of mercury

    Science.gov (United States)

    He, Zhenyu; Zhou, Peijiang; Zhu, Honghao

    2015-03-01

    In this study, canine kidney cells (MDCK) are fluorescently labeled by carboxymethyl chitosan-coated CdTe quantum dots to obtain a stable fluorescence. Fluorescently labeled MDCK cells are incubated with Hg2+ and passed flow cytometer to measure the mean fluorescence intensity, which shows [Hg2+] has a prominent quenching ability on the cells' fluorescence. The dose-dependent relation can be described by Stern-Volmer equation at the concentration range of 5-70 μg/L [Hg2+]. This method can be employed to determine the concentration of Hg2+ in living cells by measuring the changes in fluorescence of the cellular system. The results show a relative standard deviation of 7.16% (n = 11) and a recovery rate ranging from 92% to 103%, indicating a promising prospect of application on real-time in-situ analysis of [Hg2+] and its cytotoxic effects.

  1. Preparation and properties of montmorillonite modified asphalts

    International Nuclear Information System (INIS)

    Modified asphalts were prepared by melt blending with different contents of montmorillonite (MMT) and organomodified montmorillonite (OMMT). The X-ray diffraction (XRD) results show that the MMT modified asphalt may form an intercalated structure, whereas the OMMT modified asphalt may form an exfoliated structure. The addition of MMT and OMMT to asphalt increases both the softening point and viscosity of the modified asphalts at high temperatures. Furthermore, the modified asphalts exhibited higher complex modulus, lower phase angle. As a consequence, the MMT and OMMT modified asphalts displays enhanced viscoelastic properties, which improve its resistance to rutting at high temperatures. Compared with MMT, OMMT showed better effect in improving softening point and rutting resistance of asphalt, which contributes to the formation of exfoliated structure in OMMT modified asphalt. Storage stability tests disclose that the asphalts modified with MMT or OMMT are very stable when montmorillonite content is less than 3 wt%

  2. Sorption and Fractionation of a Peat Derived Humic Acid by Kaolinite, Montmorillonite, and Goethite

    Institute of Scientific and Technical Information of China (English)

    S. GHOSH; WANG Zhen-Yu; S. KANG; P. C. BHOWMIK; B. S. XING

    2009-01-01

    Sorption of humic acid (HA) on mineral surfaces has a profound interest regarding the fate of hydrophobic organic contaminants (HOCs) and carbon sequestration in soils. The objective of our study is to determine the fractionation behavior of HA upon sorption on mineral surfaces with varying surface properties. HA was coated sequentially on kaolinite (1:1 clay), montmorillonite (2:1 clay), and goethite (iron oxide) for four times. The unadsorbed HA fractions were characterized by elemental analysis, diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), and solid state 13C nuclear magnetic resonance spectroscopy (NMR). The mineral-HA complexes were characterized by DRIFT. Polarity index [(N+O)/C] revealed higher polarity of the unadsorbed HA fractions after coating on kaolinite, reflecting that relatively higher polarity fractions of HA remain unadsorbed. Sorption of aiiphatic alcohol fraction along with carbohydrate was prominent on kaolinite surface. DRIFT results of the unadsorbed HA fractions indicated more sorption of aiiphatic moieties on both kaolinite and montmorillonite. DRIFT results of the unadsorbed HA fractions after sorption on kaolinite and goethite showed the sorption of the proteinaceous fractions of HA. The HA fractions obtained after coating on goethite showed significant sorption of carboxylic moieties. The results mentioned above comply reasonably well with the DRIFT spectra of the minerai-HA complexes. 13C NMR results showed higher sorption of anomeric C on kaolinite surface. Higher sorption of paraffinic fraction was observed on montmorillonite. NMR data inferred the sorption of carboxylic moieties on goethite surface. Overall, this study showed that aliphatic moieties of HA preferentially sorbed on kaolinite and montmorillonite, while carboxylic functional groups play a significant role in sorption of HA on goethite. The sorbed fractions of HA may modify the mineral surface properties, and thus, the interaction with organic

  3. Effect of antioxidant and optimal antimicrobial mixtures of carvacrol, grape seed extract and chitosan on different spoilage microorganisms and their application as coatings on different food matrices

    OpenAIRE

    Javiera F. Rubilar; Cruz, Rui M.S.; Igor Khmelinskii; Margarida Cortez Vieira

    2013-01-01

    There is growing interest in the use of natural agents with antimicrobial (AM) and antioxidant (AOX) properties. Optimization of the AM capacity for mixtures containing carvacrol, grape seed extract (GSE) and chitosan, against gram-negative (Pseudomonas aeruginosa), gram-positive bacteria (Staphylococcus aureus, Listeria innocua and Enterococcus faecalis) and yeast (Saccharomyces cerevisiae) at 106 cfu mL-1 was studied. To observe the synergistic or antagonistic effect and find optimal combin...

  4. 气管导管壳聚糖涂膜的制备与性能研究%Preparation and Characterization of Chitosan Plastics Coated on the Endotracheal Tube

    Institute of Scientific and Technical Information of China (English)

    王彦荣; 白锡波; 高敬华; 董爱琴; 胡金树; 顾吉顺

    2011-01-01

    Objective: To prepare chitosan film coated on the endotracheal tube which can inhibit formation of bacterial biofilm effectively.Methods: The chitosan plastics were prepared and coated on the endotracheal tube with molecular weight of 5 000 and 1 000 000(in ratio of 2∶1),the filming effect and adhesion to endotracheal tube were investigated by in vitro study.E.colibio films of 7 days were established adopting the blank tubes, tubes coated chitosans with molecular weigh 5000 and 1000000 respectively, which arranged as the first and second group.Each group was carried out on bacterial counting, biofilm ration and observation under SEM respectively.Results: The adhesion time was 18d of the chitosan plastics in physiological environment.The bacterial quantity of group 1,2,were 2.29×107 CFU/ml, 1.19×107 CFU/ml respectively.The absorbency value of group 1,2 were 0.137,0.050 respectively.Under the circumstance of SEM, there were uniform and intensive bacteria on photograph of group 1.The bacterias had smooth cell wall, the regular body.There were few bacteria showing gathering state on photograph of group 2.The bacteria had sinking or scarred body.Conclusion: Film prepared by this method had good film forming properties, adhesion and inhibition on formation of bacterial biofilm.%目的:制备能有效抑制细菌生物被膜(BF)生成的壳聚糖气管导管涂膜.方法:以分子量5000和100万的壳聚糖为原料制备在气管导管内壁制膜(按2:1比例混合后涂膜),考察壳聚糖膜的成膜性、与气管导管的黏附性.以空白导管(对照组)和涂膜后的导管为载体,依次设为第1、2实验组,构建形成7d的大肠埃希菌生物被膜,然后细菌计数、生物被膜定量、扫描电镜(SEM)观察.结果:涂膜可紧密贴台在气管导管内壁,生理条件下与气管导管黏附时间为18d.对照组和实验组的细菌计数分别是2.29×10CFU/ml、1.19×10CFU/ml;吸光度为0.137、0.050;扫描电镜下,对照组的细菌密

  5. Ice nucleation of ammonia gas exposed montmorillonite mineral dust particles

    Directory of Open Access Journals (Sweden)

    A. Salam

    2007-07-01

    Full Text Available The ice nucleation characteristics of montmorillonite mineral dust aerosols with and without exposure to ammonia gas were measured at different atmospheric temperatures and relative humidities with a continuous flow diffusion chamber. The montmorillonite particles were exposed to pure (100% and diluted ammonia gas (25 ppm at room temperature in a stainless steel chamber. There was no significant change in the mineral dust particle size distribution due to the ammonia gas exposure. 100% pure ammonia gas exposure enhanced the ice nucleating fraction of montmorillonite mineral dust particles 3 to 8 times at 90% relative humidity with respect to water (RHw and 5 to 8 times at 100% RHw for 120 min exposure time compared to unexposed montmorillonite within our experimental conditions. The percentages of active ice nuclei were 2 to 8 times higher at 90% RHw and 2 to 7 times higher at 100% RHw in 25 ppm ammonia exposed montmorillonite compared to unexposed montmorillonite. All montmorillonite particles are more efficient as ice nuclei with increasing relative humidities and decreasing temperatures. The activation temperature of montmorillonite exposed to 100% pure ammonia was 15°C higher than for unexposed montmorillonite particles at 90% RHw. In the 25 ppm ammonia exposed montmorillonite experiments, the activation temperature was 10°C warmer than unexposed montmorillonite at 90% RHw. Degassing does not reverse the ice nucleating ability of ammonia exposed montmorillonite mineral dust particles suggesting that the ammonia is chemically bound to the montmorillonite particle. This is the first experimental evidence that ammonia gas exposed montmorillonite mineral dust particles can enhance its activation as ice nuclei and that the activation can occur at temperatures warmer than –10°C where natural atmospheric ice nuclei are very scarce.

  6. Adsorption of ferrous ions onto montmorillonites

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Dawei, E-mail: qdw109@163.com [Qilu University of Technology, Jinan, 250353, Shandong (China); Niu, Xia [Qilu University of Technology, Jinan, 250353, Shandong (China); Qiao, Min; Liu, Gang; Li, Hongxin; Meng, Zhenxiao [Shandong SiBang pharmaceutical co., LTD, Jinan, Shandong, 250200 (China)

    2015-04-01

    Highlights: • Adsorption study of ferrous ions on montmorillonites. • Using ascorbic acid as antioxidants in adsorption process. • Fe (II)-MMT had good affinity for phosphate. - Abstract: The adsorption of Fe (II) onto montmorillonites was investigated through initial concentration, contact time, pH and temperature. During the whole adsorption process, the ascorbic acid (Vitamin C) was added as a kind of antioxidant, at the same time, deionized water (after boiling) and nitrogen protection were also used to avoid oxidation. The Fe{sup 2+}/Fe{sub total} ratio of the iron exists in the Fe-montmorillonites was found more than 95%. Two kinetic models, including pseudo-first-order and pseudo-second-order model, were used to analyze the adsorption process of Fe (II) on montmorillonites. The results of our study showed that adsorption process fitted with pseudo-second-order well. Adsorption isotherms showed that Langmuir model was better than Freundlich model. The thermodynamic parameters ΔG{sup 0} and ΔH{sup 0} were 3.696 kJ/mol and 6.689 kJ/mol (we just gave the values at 298 K), respectively. The positive values at different temperatures showed that the adsorption process was non-spontaneous and endothermic. The characteristics of materials were determined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Surface area and porosity analyzer, Thermogravimetric analysis (TGA), Differential scanning calorimeter (DSC) and Zeta potential distribution.

  7. Effects of Chitosan on the Shelf Life of Harbin Red-sausage

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Chitosan and Chitin can inhibit the growth of bacteria. The effect of different concentrations of chitosan solutions on the shelf life of Harbin Red-sausage was studied in this paper. Dipping the Red-sausage with chitosan could extend the shelf life significantly. The optimal composition of coating solution was 3% chitosan solution, whose deacetylated rate was 94%, which was dissolved in 2% acetic acid solution. The CFUs of the sausages with the chitosan deacetylated rate 94% treatment were significantly lower than control at the whole storage (P <0.05).

  8. Removal of Cadmium and Lead from Aqueous Solution by Hydroxyapatite/Chitosan Hybrid Fibrous Sorbent: Kinetics and Equilibrium Studies

    OpenAIRE

    Soyeon Park; Allan Gomez-Flores; Yong Sik Chung; Hyunjung Kim

    2015-01-01

    Hydroxyapatite (HAp)/chitosan composites were prepared by a coprecipitation method, dropping a mixture of chitosan solution and phosphoric acid solution into a calcium hydroxide solution. Using the HAp/chitosan composites prepared, HAp/chitosan hybrid fibers with various HAp contents were prepared by a wet spinning method. X-ray diffraction and scanning electron microscopy analyses revealed that HAp particles were coated onto the surface of the fiber, and the surface roughness increased with ...

  9. HYDROXYAPATITE/CHITOSAN COMPOSITE COATINGS ON TITANIUM SURFACES BY PULSED ELECTROCHEMICAL DEPOSITION%脉冲电化学沉积法制备羟基磷灰石/壳聚糖复合涂层的研究

    Institute of Scientific and Technical Information of China (English)

    王英波; 鲁雄; 李丹; 冯波; 屈树新; 翁杰

    2011-01-01

    A pulsed electrochemical deposition (ED) method was employed to produce hydroxyapatite ( HA )/ chitosan(CS) composite coatings on Ti substrates. HA dispersed uniformly in the CS network. There was nano-scale hybridization between HA and CS due to in situ co-precipitation. ED was conducted in the cell that had three electrodes: a Ti plate as the working electrode, a platinum plate as the counter electrode and a saturated calomel electrode ( SCE) as the reference electrode. Electrolytes were aqueous solution of 5 mmol/L Ca(NO3)2,3 mmol/L (NH4)2HPO4 and CS aqueous solutions with different concentrations (0. 17 g/L,0. 33 g/L,0. 67 g/L). The coatings were prepared under constant voltage and pulsed voltage modes. The experiment results indicated that the pulsed voltage mode can improve the CS content in the coatings and obtain uniform coatings, compared with the constant voltage mode. The pulsed voltage mode also promoted the interaction between Ca and CS according to XPS analysis. Pulsed voltage affected the morphology of the coatings and improved the efficiency of the deposition. The suitable pulsed voltage was -1.3 V. The concentration of CS in the electrolyte affected the CS content in the coatings and the efficiency of the deposition. The suitable concentration was 33. 1 g/L. The antibacterial test indicated that HA/CS coatings had good bactericidal ability. Osteoblasts were cultured on the coatings to evaluate the biocompatibility of coatings and the results indicated that the composite coatings favored the attachment and proliferation of the osteoblasts. The results of present study provided valuable references for the further research in developing composite coatings for biomedical applications.%采用脉冲电化学沉积法在钛金属表面制备出羟基磷灰石/壳聚糖(HA/CS)复合涂层,实现CS与HA在微观尺寸上的复合与杂化.比较了脉冲电位与恒电位模式下复合涂层的形成,研究了电位高低及壳聚糖浓度对复合涂层

  10. Chitosan functional properties.

    Science.gov (United States)

    Shepherd, R; Reader, S; Falshaw, A

    1997-06-01

    Chitosan is a partially deacetylated polymer of N-acetyl glucosamine. It is essentially a natural, water-soluble, derivative of cellulose with unique properties. Chitosan is usually prepared from chitin (2 acetamido-2-deoxy beta-1,4-D-glucan) and chitin has been found in a wide range of natural sources (crustaceans, fungi, insects, annelids, molluscs, coelenterata etc.) However chitosan is only manufactured from crustaceans (crab and crayfish) primarily because a large amount of the crustacean exoskeleton is available as a by product of food processing. Squid pens (a waste byproduct of New Zealand squid processing) are a novel, renewable source of chitin and chitosan. Squid pens are currently regarded as waste and so the raw material is relatively cheap. This study was intended to assess the functional properties of squid pen chitosan. Chitosan was extracted from squid pens and assessed for composition, rheology, flocculation, film formation and antimicrobial properties. Crustacean chitosans were also assessed for comparison. Squid chitosan was colourless, had a low ash content and had significantly improved thickening and suspending properties. The flocculation capacity of squid chitosan was low in comparison with the crustacean sourced chitosans. However it should be possible to increase the flocculation capacity of squid pen chitosan by decreasing the degree of acetylation. Films made with squid chitosan were more elastic than crustacean chitosan with improved functional properties. This high quality chitosan could prove particularly suitable for medical/analytical applications.

  11. Montmorillonite, oligonucleotides, RNA and origin of life

    Science.gov (United States)

    Ertem, Gozen

    2004-01-01

    Na-montmorillonite prepared from Volclay by the titration method facilitates the self-condensation of ImpA, the 5'-phosphorimidazolide derivative of adenosine. As was shown by AE-HPLC analysis and selective enzymatic hydrolysis of products, oligo(A)s formed in this reaction are 10 monomer units long and contain 67% 3',5'-phosphodiester bonds (Ferris and Ertem, 1992a). Under the same reaction conditions, 5'-phosphorimidazolide derivatives of cytidine, uridine and guanosine also undergo self-condensation producing oligomers containing up to 12-14 monomer units for oligo(C)s to 6 monomer units for oligo(G)s. In oligo(C)s and oligo(U)s, 75-80% of the monomers are linked by 2',5'-phosphodiester bonds. Hexamer and higher oligomers isolated from synthetic oligo(C)s formed by montmorillonite catalysis, which contain both 3',5'- and 2',5'-linkages, serve as catalysts for the non-enzymatic template directed synthesis of oligo(G)s from activated monomer 2-MeImpG, guanosine 5'-phospho-2-methylimidazolide (Ertem and Ferris, 1996). Pentamer and higher oligomers containing exclusively 2',5'-linkages, which were isolated from the synthetic oligo(C)s, also serve as templates and produce oligo(G)s with both 2',5'- and 3',5'-phosphodiester bonds. Kinetic studies on montmorillonite catalyzed elongation rates of oligomers using the computer program SIMFIT demonstrated that the rate constants for the formation of oligo(A)s increased in the order of 2-mer < 3-mer < 4-mer ... < 7-mer (Kawamura and Ferris, 1994). A decameric primer, dA(pdA)8pA bound to montmorillonite was elongated to contain up to 50 monomer units by daily addition of activated monomer ImpA to the reaction mixture (Ferris, Hill and Orgel, 1996). Analysis of dimer fractions formed in the montmorillonite catalyzed reaction of binary and quaternary mixtures of ImpA, ImpC, 2-MeImpG and ImpU suggested that only a limited number of oligomers could have formed on the primitive Earth rather than equal amounts of all possible

  12. 壳聚糖双胍盐酸盐涂膜保鲜龙眼及其抑菌活性的研究%Study on chitosan diguanidinylated coating preservation of longan and its antifungal activities

    Institute of Scientific and Technical Information of China (English)

    陈佳阳; 黄山华; 陆旺金; 陈实; 付银莲; 乐学义

    2012-01-01

    以龙眼为试材,对比壳聚糖(CTS)与其衍生物壳聚糖双胍盐酸盐(CSG)对龙眼在常温下的涂膜保鲜效果及两者对龙眼焦腐病菌和龙眼炭疽菌生长的抑制作用。将龙眼分别浸泡于质量分数为1.0%的CTS与0.2%、0.5%、1.0%的CSG溶液中,取出晾干,分装于聚乙烯篮中,于(28±2)℃的室内存放5d。测定果实的细胞膜渗透率、丙二醛(MDA)、失重率、VC、可溶性固形物(TSS)、可滴定酸(TA)含量的变化和烂果率。结果表明,用质量分数为1.0%CSG处理后的龙眼的各项生理指标均优于其他各组,说明1.0%CSG的保鲜效果优于其他几种涂膜处理。当CSG浓度为4.0mg/mL时,可完全抑制龙眼焦腐病菌菌丝的生长,当浓度大于1.0mg/mL时对龙眼炭疽菌菌丝的生长有明显的抑制作用。%The objective of this study was to contrast the effect of chitosan diguanidinylated(CSG) which derived from chitosan coating on Dimocarpus longan Lour.with chitosan(CTS).Effect of CSG coating in extending shelf life of longan fruits,maintaining their quality and the antifungal activity of Lasiodiplodia theobromae and Colletotrichum gloeosporioides Penz.were investigated.The longan were dipped in aqueous solutions of 1% chitosan,0.2%,0.5%,and 1% CSG,respectively,and followed by draining,and packaged in commercial perforated plastic baskets and stored at(28±2)℃ for 5d.Changes in ion leakage,malonaldehyde(MDA),mass loss,ascorbic acid,total soluble solids(TSS),titratable acid(TA),and decay rate were measured.The result showed that coating with 1% CSG had a significant effect on maintaining fruit quality and decreasing fruit decay.CSG could completely inhibit the growth of Lasiodiplodia theobromae at 4mg/mL and had a good antifungal activity against Colletotrichum gloeosporioides Penz.at concentrations of more than 1mg/mL.

  13. Design and construction of polymerized-chitosan coated Fe3O4 magnetic nanoparticles and its application for hydrophobic drug delivery.

    Science.gov (United States)

    Ding, Yongling; Shen, Shirley Z; Sun, Huadong; Sun, Kangning; Liu, Futian; Qi, Yushi; Yan, Jun

    2015-03-01

    In this study, a novel hydrogel, chitosan (CS) crosslinked carboxymethyl-β-cyclodextrin (CM-β-CD) polymer modified Fe3O4 magnetic nanoparticles was synthesized for delivering hydrophobic anticancer drug 5-fluorouracil (CS-CDpoly-MNPs). Carboxymethyl-β-cyclodextrin being grafted on the Fe3O4 nanoparticles (CDpoly-MNPs) contributed to an enhancement of adsorption capacities because of the inclusion abilities of its hydrophobic cavity with insoluble anticancer drugs through host-guest interactions. Experimental results indicated that the amounts of crosslinking agent and bonding times played a crucial role in determining morphology features of the hybrid nanocarriers. The nanocarriers exhibited a high loading efficiency (44.7±1.8%) with a high saturation magnetization of 43.8emu/g. UV-Vis spectroscopy results showed that anticancer drug 5-fluorouracil (5-Fu) could be successfully included into the cavities of the covalently linked CDpoly-MNPs. Moreover, the free carboxymethyl groups could enhance the bonding interactions between the covalently linked CDpoly-MNPs and anticancer drugs. In vitro release studies revealed that the release behaviors of CS-CDpoly-MNPs carriers were pH dependent and demonstrated a swelling and diffusion controlled release. A lower pH value led to swelling effect and electrostatic repulsion contributing to the protonation amine impact of NH3(+), and thus resulted in a higher release rate of 5-Fu. The mechanism of 5-Fu encapsulated into the magnetic chitosan nanoparticles was tentatively proposed.

  14. Cytotoxicity and intracellular fate of PLGA and chitosan-coated PLGA nanoparticles in Madin-Darby bovine kidney (MDBK) and human colorectal adenocarcinoma (Colo 205) cells.

    Science.gov (United States)

    Trif, Mihaela; Florian, Paula E; Roseanu, Anca; Moisei, Magdalena; Craciunescu, Oana; Astete, Carlos E; Sabliov, Cristina M

    2015-11-01

    Polymeric nanoparticles (NPs) are known to facilitate intracellular uptake of drugs to improve their efficacy, with minimum bioreactivity. The goal of this study was to assess cellular uptake and trafficking of PLGA NPs and chitosan (Chi)-covered PLGA NPs in Madin-Darby bovine kidney (MDBK) and human colorectal adenocarcinoma (Colo 205) cells. Both PLGA and Chi-PLGA NPs were not cytotoxic to the studied cells at concentrations up to 2500 μg/mL. The positive charge conferred by the chitosan deposition on the PLGA NPs improved NPs uptake by MDBK cells. In this cell line, Chi-PLGA NPs colocalized partially with early endosomes compartment and showed a more consistent perinuclear localization than PLGA NPs. Kinetic uptake of PLGA NPs by Colo 205 was slower than that by MDBK cells, detected only at 24 h, exceeding that of Chi-PLGA NPs. This study offers new insights on NP interaction with target cells supporting the use of NPs as novel nutraceuticals/drug delivery systems in metabolic disorders or cancer therapy. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 3599-3611, 2015.

  15. Montmorillonite-levan nanocomposites with improved thermal and mechanical properties.

    Science.gov (United States)

    Chen, Xiaoming; Gao, Hongsheng; Ploehn, Harry J

    2014-01-30

    This work reports on the structure and properties of novel nanocomposites composed of exfoliated montmorillonite clay blended with levan, a polysaccharide produced by Bacillus sp. Dry levan is very brittle, making it difficult to obtain stand-alone films. MMT-levan composites were prepared by solution blending in water, coating on plastic surfaces, partial drying at 50°C, and conditioning in air at 50-60% relative humidity. This process results in freestanding, transparent, and flexible films of pure levan and MMT-levan composites plasticized by 10-15 wt% water. XRD patterns from levan-MMT composites indicate an MMT interlayer spacing 0.62 nm greater than that of the starting MMT, suggesting re-stacking of MMT platelets coated by adsorbed, uncoiled levan molecules. FTIR results suggest that levan adheres to MMT via water-mediated hydrogen bonding between the levan's hydroxyl groups and MMT surface oxygens. MMT-levan composites have improved thermal stability and a well-defined glass transition temperature that increases with MMT loading. The tensile moduli of levan-MMT composites increase by as much as 480% relative to pure levan. The XRD and mechanical property results suggest that MMT reinforces levan through a filler network structure composed of MMT platelets bridged by adsorbed levan molecules, enhanced when the MMT loading becomes high enough (5-10wt% MMT) to induce an isotropic-nematic transition in MMT platelet orientation. PMID:24299812

  16. Preparation of Organic Montmorillonite and Mechanical Properties of Montmorillonite/Unsaturated Polyester Composites

    Institute of Scientific and Technical Information of China (English)

    XU Fang; SHEN Shangyue; ZHANG Suxin; XIE Jing

    2005-01-01

    The synthesis process of organic montmorillonite was designed and some kinds of montmorillonite/ unsaturated polyester composites using different interlayer spacing montmorillonite were prepared. The interlayer spacing of montmorillonite was investigated by XRD and was increased to 3.98 nm. The relationship between the four influential factors and the interlayer spacing were regressively analyzed and the mathematical model was established, and the result shows when the content of organic reagent was less than 70% , the relationship between the interlayer spacing and the content was linear as follows : interlayer spacing = 1. 771 + 2. 828 × concentration,the effect of the other factors was not significant. Additionally, the testing of mechanical properties of the composites showed the impact strength was improved by 217% , and the bending strength was improved by 355% , when using the montmorillonite (MMT) of the largest interlayer spacing (3.98 nm). The result of ESEM shows the interface is bonded well when the composite specimen contains the 3.98 nm MMT.

  17. Determination of physical properties for β-TCP + chitosan biomaterial obtained on metallic 316L substrates

    Energy Technology Data Exchange (ETDEWEB)

    Mina, A. [Tribology, Powder Metallurgy and Processing of Solid Recycled Research Group, Universidad del Valle, Cali (Colombia); Tecno-Academia ASTIN SENA Reginal Valle (Colombia); Castaño, A. [Tribology, Powder Metallurgy and Processing of Solid Recycled Research Group, Universidad del Valle, Cali (Colombia); Caicedo, J.C., E-mail: julio.cesar.caicedo@correo.univalle.edu.co [Tribology, Powder Metallurgy and Processing of Solid Recycled Research Group, Universidad del Valle, Cali (Colombia); Caicedo, H.H. [Biologics Research, Biotechnology Center of Excellence, Janssen R& D, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA 19477 (United States); National Biotechnology & Pharmaceutical Association, Chicago, IL 60606 (United States); Aguilar, Y. [Tribology, Powder Metallurgy and Processing of Solid Recycled Research Group, Universidad del Valle, Cali (Colombia)

    2015-06-15

    Material surface modification, particularly the deposition of special coatings on the surface of surgical implants, is extensively used in bone tissue engineering applications. β-Tricalcium phosphate/Chitosan (β-TCP/Ch) coatings were deposited on 316L stainless steel (316L SS) substrates by a cathodic electro-deposition technique at different coating compositions. The crystal lattice arrangements were analyzed by X-Ray diffraction (XRD), and the results indicated that the crystallographic structure of β-TCP was affected by the inclusion of the chitosan content. The changes in the surface morphology as a function of increasing chitosan in the coatings via scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that root-mean square values of the β-TCP/Ch coatings decreased by further increasing chitosan percentage. The elastic–plastic characteristics of the coatings were determined by conducting nanoindentation test, indicating that increase of chitosan percentage is directly related to increase of hardness and elastic modulus of the β-TCP/Ch coatings. Tribological characterization was performed by scratch test and pin-on-disk test to analyze the changes in the surface wear of β-TCP/Ch coatings. Finally, the results indicated an improvement in the mechanical and tribological properties of the β-TCP/Ch coatings as a function of increasing of the chitosan percentage. This new class of coatings, comprising the bioactive components, is expected not only to enhance the bioactivity and biocompatibility, but also to protect the surface of metallic implants against wear and corrosion. - Highlights: • Superficial phenomenon that occurs in tribological surface of β-tricalcium phosphate-chitosan coatings. • Improvement on surface mechanical properties of ceramic-polymeric and response to surface tribological damage. • β-tricalcium phosphate-chitosan coatings that offer highest performance in the biomedical devices.

  18. Determination of physical properties for β-TCP + chitosan biomaterial obtained on metallic 316L substrates

    International Nuclear Information System (INIS)

    Material surface modification, particularly the deposition of special coatings on the surface of surgical implants, is extensively used in bone tissue engineering applications. β-Tricalcium phosphate/Chitosan (β-TCP/Ch) coatings were deposited on 316L stainless steel (316L SS) substrates by a cathodic electro-deposition technique at different coating compositions. The crystal lattice arrangements were analyzed by X-Ray diffraction (XRD), and the results indicated that the crystallographic structure of β-TCP was affected by the inclusion of the chitosan content. The changes in the surface morphology as a function of increasing chitosan in the coatings via scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that root-mean square values of the β-TCP/Ch coatings decreased by further increasing chitosan percentage. The elastic–plastic characteristics of the coatings were determined by conducting nanoindentation test, indicating that increase of chitosan percentage is directly related to increase of hardness and elastic modulus of the β-TCP/Ch coatings. Tribological characterization was performed by scratch test and pin-on-disk test to analyze the changes in the surface wear of β-TCP/Ch coatings. Finally, the results indicated an improvement in the mechanical and tribological properties of the β-TCP/Ch coatings as a function of increasing of the chitosan percentage. This new class of coatings, comprising the bioactive components, is expected not only to enhance the bioactivity and biocompatibility, but also to protect the surface of metallic implants against wear and corrosion. - Highlights: • Superficial phenomenon that occurs in tribological surface of β-tricalcium phosphate-chitosan coatings. • Improvement on surface mechanical properties of ceramic-polymeric and response to surface tribological damage. • β-tricalcium phosphate-chitosan coatings that offer highest performance in the biomedical devices

  19. Ice nucleation of ammonia gas exposed montmorillonite mineral dust particles

    Directory of Open Access Journals (Sweden)

    A. Salam

    2007-01-01

    Full Text Available The ice nucleation characteristics of montmorillonite mineral dust aerosols with and without exposure to ammonia gas were measured at different atmospheric temperatures and relative humidities with a continuous flow diffusion chamber. The montmorillonite particles were exposed to pure (100% and diluted ammonia gas (25 ppm at room temperature in a stainless steel chamber. There was no significant change in the mineral dust particle size distribution due to the ammonia gas exposure. 100% pure ammonia gas exposure enhanced the ice nucleating fraction of montmorillonite mineral dust particles 3 to 8 times at 90% relative humidity with respect to water (RHw and 5 to 8 times at 100% RHw for 120 min exposure time within our experimental conditions. The percentages of active ice nuclei were 2 to 9 times higher at 90% RHw and 2 to 13 times higher at 100% RHw in 25 ppm ammonia exposed montmorillonite compared to unexposed montmorillonite. All montmorillonite particles are more efficient as ice nuclei with increasing relative humidities and decreasing temperatures. The activation temperature of montmorillonite exposed to 100% pure ammonia was 12°C higher than for unexposed montmorillonite particles at 90% RHw and 10°C higher at 100% RHw. In the 25 ppm ammonia exposed montmorillonite experiments, the activation temperature was 7°C warmer than unexposed montmorillonite at 100% RHw. Degassing does not reverse the ice nucleating ability of ammonia exposed montmorillonite mineral dust particles. This is the first experimental evidence that ammonia gas exposed montmorillonite mineral dust particles can enhance its activation as ice nuclei and that the activation can occur at temperatures warmer than –10°C where natural atmospheric ice nuclei are very scarce.

  20. Prebiotic RNA Synthesis by Montmorillonite Catalysis

    OpenAIRE

    2014-01-01

    This review summarizes our recent findings on the role of mineral salts in prebiotic RNA synthesis, which is catalyzed by montmorillonite clay minerals. The clay minerals not only catalyze the synthesis of RNA but also facilitate homochiral selection. Preliminary data of these findings have been presented at the “Horizontal Gene Transfer and the Last Universal Common Ancestor (LUCA)” conference at the Open University, Milton Keynes, UK, 5–6 September 2013. The objective of this meeting was to...

  1. Photoelectrochemical Solar Cells Based on Chitosan Electroylte

    Institute of Scientific and Technical Information of China (English)

    M.H.A.Buraidah; A.K.Arof

    2007-01-01

    1 Results ITO-ZnTe/Chitosan-NH4I-I2/ITO photoelectrochemical solar cells have been fabricated and characterized by current-voltage characteristics.In this work,the ZnTe thin film was prepared by electrodeposition on indium-tin-oxide coated glass.The chitosan electrolyte consists of NH4I salt and iodine.Iodine was added to provide the I3-/I- redox couple.The PEC solar cell was fabricated by sandwiching an electrolyte film between the ZnTe semiconductor and ITO conducting glass.The area of the solar cell...

  2. Modification of Nanocomposites by Melting Intercalation of Polypropylene in Montmorillonite

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The polypropylene was modified by ultraviolet irradiation.The polypropylene-montmorillonite nanocomposites were prepared by direct melting intercalation of polypropylene powders.The structure of polypropylene,the polyproprlene irradiated, montmorillinote and polypropylene-montmorillonite composites were studied by XRD, IR and DSC. The results show that the PP molecules can are oxidized during ultraviolet irradiation,melt polypropylene can intercalate into montmorillonite layer.As a result,the layered distance (d001) of montmorillonite increases, and the melt absorption peak of polypropylene in layer is eliminated.

  3. Characterization and bacterial adhesion of chitosan-perfluorinated acid films.

    Science.gov (United States)

    Bierbrauer, Karina L; Alasino, Roxana V; Muñoz, Adrián; Beltramo, Dante M; Strumia, Miriam C

    2014-02-01

    We reported herein the study and characterization of films obtained by casting of chitosan solutions in perfluorinated acids, trifluoroacetic (TFA), perfluoropropionic (PFPA), and perfluorooctanoic (PFOA). The films were characterized by FTIR, solid state (13)C NMR, X-ray, AFM, contact angle, thermogravimetric effluent analysis by mass spectrometry, and rheology. The results showed a marked influence of chain length of the perfluorinated acids on the hydrophobic/hydrophilic ratio of the modified chitosan films which was evidenced by the different characteristics observed. The material that showed greater surface stability was chitosan-PFOA. Chitosan film with the addition of PFOA modifier became more hydrophobic, thus water vapor permeability diminished compared to chitosan films alone, this new material also depicted bacterial adhesion which, together with the features already described, proves its potential in applications for bioreactor coating. PMID:24189195

  4. Modeling the Adsorption of Oxalate onto Montmorillonite.

    Science.gov (United States)

    Ramos, M Elena; Emiroglu, Caglayan; García, David; Sainz-Díaz, C Ignacio; Huertas, F Javier

    2015-11-01

    In this work, a multiscale modeling of the interaction of oxalate with clay mineral surfaces from macroscale thermodynamic equilibria simulations to atomistic calculations is presented. Previous results from macroscopic adsorption data of oxalate on montmorillonite in 0.01 M KNO3 media at 25 °C within the pH range from 2.5 to 9 have been used to develop a surface complexation model. The experimental adsorption edge data were fitted using the triple-layer model (TLM) with the aid of the FITEQL 4.0 computer program. Surface complexation of oxalate is described by two reactions: >AlOH + Ox(2-) + 2H(+) = >AlOxH + H2O (log K = 14.39) and >AlOH + Ox(2-) + H(+) = >AlOx(-) + H2O (log K = 10.39). The monodentate complex >AlOxH dominated adsorption below pH 4, and the bidentate complex >AlOx(-) was predominant at higher pH values. Both of the proposed inner-sphere oxalate species are qualitatively consistent with previously published diffuse reflectance FTIR spectroscopic results for oxalate on montmorillonite edge surface (Chem. Geol. 2014, 363, 283-292). Atomistic computational studies have been performed to understand the interactions at the molecular level between adsorbates and mineral surface, showing the atomic structures and IR frequency shifts of the adsorption complexes of oxalate with the edge surface of a periodic montmorillonite model. PMID:26444928

  5. Gold/Chitosan Nanocomposites with Specific Near Infrared Absorption for Photothermal Therapy Applications

    OpenAIRE

    Guandong Zhang; Xinghua Sun; Jacek Jasinski; Dhruvin Patel; Gobin, Andre M

    2012-01-01

    Gold/chitosan nanocomposites were synthesized and evaluated as a therapeutic agent for the photothermal therapy. Gold nanoparticles (Au NPs) with controllable optical absorption in the near infrared (NIR) region were prepared by the reaction of chloroauric acid and sodium thiosulfate. To apply these particles to cancer therapy, the bare Au NPs were coated with chitosan (CS), O-carboxymethyl chitosan (CMCS), and a blend of CS and CMCS for utilizations in physiologic conditions. The surface pro...

  6. The Importance of Chitosan Films in Food Industry

    Directory of Open Access Journals (Sweden)

    Filiz Uçan

    2013-12-01

    Full Text Available Requirement simple technology, low production costs, lack of polluting effects and reliability in terms of health of it is the most important advantages of edible films. Chitosan that extend the shelf life of food and increase the economic efficiency of packaging materials is one of the new materials used for edible films. Chitosan was obtained by deacetylation of chitin which is the most commonly occurred polymer after cellulose in nature, in shells of arthropods such as crab, shrimp, lobster and in cell walls of some bacteria and fungi. Chitosan has the important bioactive properties such as hemostatic, bacteriostatic, fungistatic, spermicidal, anticarcinogenic, anticholesteremic, antacids, antiulcer, wound and bone healing accelerator and stimulating the immune system. As well as these features, the film forming and barrier properties of its, chitosan is made the ideal material for edible films and coatings in antimicrobial characters. Especially, in the protection of qualities and the improving storage times of fruits and vegetables, have been revealed the potential use of chitosan. The coating food with chitosan films reduces the oxygen partial pressure in the package, maintains temperature with moisture transfer between food and its environment, declines dehydration, delays enzymatic browning in fruits and controls respiration. In addition to, chitosan are also used on issues such as the increasing the natural flavour, setting texture, increasing of the emulsifying effect, stabilization of color and deacidification.

  7. Thermal and magnetic properties of chitosan-iron oxide nanoparticles.

    Science.gov (United States)

    Soares, Paula I P; Machado, Diana; Laia, César; Pereira, Laura C J; Coutinho, Joana T; Ferreira, Isabel M M; Novo, Carlos M M; Borges, João Paulo

    2016-09-20

    Chitosan is a biopolymer widely used for biomedical applications such as drug delivery systems, wound healing, and tissue engineering. Chitosan can be used as coating for other types of materials such as iron oxide nanoparticles, improving its biocompatibility while extending its range of applications. In this work iron oxide nanoparticles (Fe3O4 NPs) produced by chemical precipitation and thermal decomposition and coated with chitosan with different molecular weights were studied. Basic characterization on bare and chitosan-Fe3O4 NPs was performed demonstrating that chitosan does not affect the crystallinity, chemical composition, and superparamagnetic properties of the Fe3O4 NPs, and also the incorporation of Fe3O4 NPs into chitosan nanoparticles increases the later hydrodynamic diameter without compromising its physical and chemical properties. The nano-composite was tested for magnetic hyperthermia by applying an alternating current magnetic field to the samples demonstrating that the heating ability of the Fe3O4 NPs was not significantly affected by chitosan.

  8. Thermal and magnetic properties of chitosan-iron oxide nanoparticles.

    Science.gov (United States)

    Soares, Paula I P; Machado, Diana; Laia, César; Pereira, Laura C J; Coutinho, Joana T; Ferreira, Isabel M M; Novo, Carlos M M; Borges, João Paulo

    2016-09-20

    Chitosan is a biopolymer widely used for biomedical applications such as drug delivery systems, wound healing, and tissue engineering. Chitosan can be used as coating for other types of materials such as iron oxide nanoparticles, improving its biocompatibility while extending its range of applications. In this work iron oxide nanoparticles (Fe3O4 NPs) produced by chemical precipitation and thermal decomposition and coated with chitosan with different molecular weights were studied. Basic characterization on bare and chitosan-Fe3O4 NPs was performed demonstrating that chitosan does not affect the crystallinity, chemical composition, and superparamagnetic properties of the Fe3O4 NPs, and also the incorporation of Fe3O4 NPs into chitosan nanoparticles increases the later hydrodynamic diameter without compromising its physical and chemical properties. The nano-composite was tested for magnetic hyperthermia by applying an alternating current magnetic field to the samples demonstrating that the heating ability of the Fe3O4 NPs was not significantly affected by chitosan. PMID:27261762

  9. ELECTROLESS NICKEL PLATING ON CHITOSAN-MODIFIED WOOD VENEER

    OpenAIRE

    Lijuan Wang; Haibing Liu

    2011-01-01

    An activation process involving chitosan was conducted to prepare electroless nickel plated wood veneers for electromagnetic interference (EMI) shielding. In this process Pd(Ⅱ) ions were chemically adsorbed on wood surface modified with chitosan. Then they were reduced and dipped into a plating bath in which Ni-P co-deposition was successfully initiated. The coatings were characterized by SEM-EDS and XRD. The metal deposition, surface resistivity, and electromagnetic shielding effectiveness w...

  10. Characterization of chitosan composites with synthetic polymers and inorganic additives.

    Science.gov (United States)

    Lewandowska, Katarzyna

    2015-11-01

    In the present study, the results from thermogravimetric analysis (TGA), contact angle measurements, tensile tests, scanning electron microscopy (SEM) and atomic force microscopy (AFM) of polymer composites containing chitosan (Ch) and montmorillonite (MMT) with and without poly(vinyl alcohol) (PVA) are presented. Measurements of the contact angles for diiodomethane (D) and glycerol (G) on the surfaces of chitosan films, Ch/MMT and Ch/PVA/MMT, were made and surface free energies were calculated. It was found that the wettability of the chitosan/MMT or Ch/PVA/MMT composite films decreased relative to the wettability of chitosan. The microstructure of unmodified polymers and their composites, as observed by SEM and AFM, showed particles that are relatively well dispersed in the polymer matrix. The TGA thermograms and mass loss percentages at different decomposition temperatures showed that the thermal stability of the binary composite slightly decreases upon the addition of PVA. The film mechanical properties such as tensile strength, Young's modulus and tensile strain at break depend on the composition and varied non-uniformly. Both composites possessed a tensile strength and Young's modulus of 27.6-94.3MPa and 1.5-3.5GPa, respectively. The addition of PVA to the composite led to a reduction in tensile strength by approximately 40%. PMID:26253510

  11. Novel procedure to enhance PLA surface properties by chitosan irreversible immobilization

    Science.gov (United States)

    Stoleru, Elena; Dumitriu, Raluca Petronela; Munteanu, Bogdanel Silvestru; Zaharescu, Traian; Tănase, Elisabeta Elena; Mitelut, Amalia; Ailiesei, Gabriela-Liliana; Vasile, Cornelia

    2016-03-01

    A novel two step procedure was applied for poly(lactic acid) (PLA) functionalization consisting in the exposure to cold radiofrequency plasma in nitrogen atmosphere or to gamma irradiation followed by "grafting to" of a chitosan layer using carbodiimide chemistry. The adhesion and stability of the deposited surface layer was assured by plasma/gamma irradiation treatment while the chitosan layer offers antifungal/antibacterial/antioxidant activities. Chitosan with different viscosities/deacetylation degree was deposited by electrospinning or immersion methods. Correlations between rheological behavior of chitosan solutions and chitosan layer deposition conditions are made. The PLA surface properties were investigated by water contact angle measurements, ATR-FTIR spectroscopy, AFM, chemiluminiscence, etc. It has been established that the surface roughness increases direct proportional with cold plasma duration and gamma irradiation dose and further increases by chitosan coating which at its turn depends on chitosan characteristics (viscosity and deacetylation degree) and method of deposition. Nano-fibers with relatively homogeneous and reproducible features are obtained by electrospinning of highly viscous chitosan while with the other two types of chitosan both microparticles and nano-fibers are formed. The chitosan coating obtained by immersion is more homogenous and compact and has a better antibacterial activity than the electrospun layer as fiber meshes.

  12. STRESS-INDUCED CRYSTALLIZATION OF POLYURETHANE/MONTMORILLONITE NANOCOMPOSITE

    Institute of Scientific and Technical Information of China (English)

    Xin-hua Dai; Xiang-dong Luo; Qun Gu; Xiao-li Zhang; De-yah Shen; Liang-he Shi; Jian Xu

    2002-01-01

    Exfoliated polyurethane/montmorillonite nanocomposites with both high elongation at break and high tensile strength were studied by dynamic-infrared spectroscopy (dynamic-IR). The results show that crystallization induced by additional stress is impeded by the nano-layered organo montmorillonite.

  13. Aqueous Behaviour of Chitosan

    Directory of Open Access Journals (Sweden)

    D. P. Chattopadhyay

    2010-01-01

    Full Text Available Chitosan, a versatile biopolymer, finds numerous applications in textile processing unit operations such as preparation, dyeing, printing, and finishing. However, the accessibility of this biopolymer by the textile material depends on the viscosity of its solution which in turn is a function of its molecular weight. In this work, therefore, the effect of molecular weight, storage life, presence of electrolyte, and particle size of chitosan on its viscosity was investigated. Chitosan of different molecular weights was synthesized by nitrous acid hydrolysis of parent chitosan solution. The synthesized low molecular weight products were analysed by FTIR spectroscopy. Chitosan of nanoconfiguration was prepared by Ionotropic gelation method and characterized by particle size analyzer. The viscosity of different chitosan solutions was determined using Ubbelohde capillary viscometer. As an extension to this study, the chelation property of chitosan was also evaluated.

  14. Chitosan and radiation chemistry

    Science.gov (United States)

    Chmielewski, Andrzej G.

    2010-03-01

    Chitosan as a raw material with special properties has drawn attention of scientists working in the field of radiation processing and natural polymer products development, and also of specialists working in the field of radiation protection and oncologists. Especially the applications concern reduced molecular weight chitosan which still retain its chemical structure; such form of the compound is fostering biological, physical and chemical reactivity of the product. Chitosan degrades into fragments under γ-ray or electron beam irradiation. Antibacterial properties of the product are applied in manufacturing hydrogel for wound dressing and additional healing properties can be achieved by incorporating in the hydrogel matrix chitosan bonded silver clusters. Another possible application of chitosan is in reducing radiation damage to the radiation workers or radiation cured patients. In the case of radioisotopes oral or respiratory chitosan-based materials can be applied as chelators. Applications of chitosan in oncology are also reported.

  15. Chitosan and radiation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Chmielewski, Andrzej G., E-mail: a.chmielewski@ichtj.waw.p [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    2010-03-15

    Chitosan as a raw material with special properties has drawn attention of scientists working in the field of radiation processing and natural polymer products development, and also of specialists working in the field of radiation protection and oncologists. Especially the applications concern reduced molecular weight chitosan which still retain its chemical structure; such form of the compound is fostering biological, physical and chemical reactivity of the product. Chitosan degrades into fragments under gamma-ray or electron beam irradiation. Antibacterial properties of the product are applied in manufacturing hydrogel for wound dressing and additional healing properties can be achieved by incorporating in the hydrogel matrix chitosan bonded silver clusters. Another possible application of chitosan is in reducing radiation damage to the radiation workers or radiation cured patients. In the case of radioisotopes oral or respiratory chitosan-based materials can be applied as chelators. Applications of chitosan in oncology are also reported.

  16. Chitosan and radiation chemistry

    International Nuclear Information System (INIS)

    Chitosan as a raw material with special properties has drawn attention of scientists working in the field of radiation processing and natural polymer products development, and also of specialists working in the field of radiation protection and oncologists. Especially the applications concern reduced molecular weight chitosan which still retain its chemical structure; such form of the compound is fostering biological, physical and chemical reactivity of the product. Chitosan degrades into fragments under γ-ray or electron beam irradiation. Antibacterial properties of the product are applied in manufacturing hydrogel for wound dressing and additional healing properties can be achieved by incorporating in the hydrogel matrix chitosan bonded silver clusters. Another possible application of chitosan is in reducing radiation damage to the radiation workers or radiation cured patients. In the case of radioisotopes oral or respiratory chitosan-based materials can be applied as chelators. Applications of chitosan in oncology are also reported.

  17. 水溶性壳聚糖涂膜处理对采后绿芦笋贮藏品质的影响%Effect of water-soluble chitosan coatings on postharvest green asparagus quality

    Institute of Scientific and Technical Information of China (English)

    邱苗; 杨成; 蒋珩珺; 陈群超; 黄建颖

    2013-01-01

    研究了0.50%的水溶性壳聚糖(WSC)和羧甲基壳聚糖(CMC)分别对在2℃贮藏条件下采后绿芦笋的涂膜保鲜.通过感官品质、失重率、抗坏血酸含量、叶绿素含量、丙二醛(MDA)含量、总酚含量、多酚氧化酶(PPO)等生理生化指标的测定,以未经处理的绿芦笋为对照.结果表明:经0.50%的CMC和WSC进行涂膜处理,均可有效地降低芦笋的失重率,维持其硬度,延缓其抗坏血酸和叶绿素营养物质的消耗.而且CMC处理可以明显抑制绿芦笋总酚含量的下降及其PPO、POD和SOD活性的变化,其感官品质也明显优于对照组,使绿芦笋的贮藏时间延长至35 d.%The quality of 0.50% water-soluble chitosan (WSC) and carboxymethyl chitosan (CMC) coatings on postharvest green asparagus which were stored at 2℃ was investigated.Base on the data of sensory evaluation, weight loss percentage, the contents of ascorbic acid, chlorophyll, malonaldehyde ( MDA) , total phenolic and polyphenolox-idase (PPO) , peroxidase (POD) , super oxygen dehydrogenises (SOD) activity testing, both 0.50% WSC and CMC treatments could dramatically retard the decrease of weight loss, firmness, the loss of chlorophyll and ascorbic acid during the storage.Moreover, 0.50% CMC treatment not only could keep the total phenolics content, but restrain the changes of PPO, POD, and SOD activity, presenting better quality of asparagus than the control during the cold storage , and prolong the shelf life of postharvest green asparagus to 35 days.

  18. POLYMER/MONTMORILLONITE COMPLEXES: PREPARATION AND INTERACTIONS WITH ROSIN ACID

    Institute of Scientific and Technical Information of China (English)

    LihongZhao; WenxiaLiu

    2004-01-01

    Polymer/montmorillonite complexes were preparedvia intercalating polymers of low molecular weightinto layers of montmorillonite and evaluated for theirinteractions with rosin acid. Three polymers fromvarious amines modified by epichlorohydrin and anacidified diethylenetriamine were separatelyintercalated into montmorillonite via direct solutionintercalation. X-ray diffraction patterns areperformed to obtain information about theintercalation of these agents. The examinationrevealed that it was feasible for the directintercalation of polymers, while hard for theunmodified diethylenetriamine. Adsorption isothermcurves were established to assess the efficiency of thevarious montmorillonites including the intercalatedmontmorillonites, the simple mixtures of thecorresponding intercalation agents and ordinarymontmorillonite in removing pitch from watersolution. From the adsorption behavior of varioussamples, it was found that the interaction of themontmorillonite with pitch was not only through vander Waals attraction, but also through electrostaticinteractions. Both the organo-philic and the surfaceelectrostatic properties of the montmorillonites areimportant for successful pitch control.

  19. Prebiotic RNA Synthesis by Montmorillonite Catalysis

    Directory of Open Access Journals (Sweden)

    Sohan Jheeta

    2014-08-01

    Full Text Available This review summarizes our recent findings on the role of mineral salts in prebiotic RNA synthesis, which is catalyzed by montmorillonite clay minerals. The clay minerals not only catalyze the synthesis of RNA but also facilitate homochiral selection. Preliminary data of these findings have been presented at the “Horizontal Gene Transfer and the Last Universal Common Ancestor (LUCA” conference at the Open University, Milton Keynes, UK, 5–6 September 2013. The objective of this meeting was to recognize the significance of RNA in LUCA. We believe that the prebiotic RNA synthesis from its monomers must have been a simple process. As a first step, it may have required activation of the 5'-end of the mononucleotide with a leaving group, e.g., imidazole in our model reaction (Figure 1. Wide ranges of activating groups are produced from HCN under plausible prebiotic Earth conditions. The final step is clay mineral catalysis in the presence of mineral salts to facilitate selective production of functional RNA. Both the clay minerals and mineral salts would have been abundant on early Earth. We have demonstrated that while montmorillonite (pH 7 produced only dimers from its monomers in water, addition of sodium chloride (1 M enhanced the chain length multifold, as detected by HPLC. The effect of monovalent cations on RNA synthesis was of the following order: Li+ > Na+ > K+. A similar effect was observed with the anions, enhancing catalysis in the following order: Cl− > Br− > I−. The montmorillonite-catalyzed RNA synthesis was not affected by hydrophobic or hydrophilic interactions. We thus show that prebiotic synthesis of RNA from its monomers was a simple process requiring only clay minerals and a small amount of salt.

  20. Prebiotic RNA Synthesis by Montmorillonite Catalysis

    Science.gov (United States)

    Jheeta, Sohan; Joshi, Prakash C.

    2014-08-01

    This review summarizes our recent findings on the role of mineral salts in prebiotic RNA synthesis, which is catalyzed by montmorillonite clay minerals. The clay minerals not only catalyze the synthesis of RNA but also facilitate homochiral selection. Preliminary data of these findings have been presented at the "Horizontal Gene Transfer and the Last Universal Common Ancestor (LUCA)" conference at the Open University, Milton Keynes, UK, 5-6 September 2013. The objective of this meeting was to recognize the significance of RNA in LUCA. We believe that the prebiotic RNA synthesis from its monomers must have been a simple process. As a first step, it may have required activation of the 5'-end of the mononucleotide with a leaving group, e.g., imidazole in our model reaction (Figure 1). Wide ranges of activating groups are produced from HCN under plausible prebiotic Earth conditions. The final step is clay mineral catalysis in the presence of mineral salts to facilitate selective production of functional RNA. Both the clay minerals and mineral salts would have been abundant on early Earth. We have demonstrated that while montmorillonite (pH 7) produced only dimers from its monomers in water, addition of sodium chloride (1 M) enhanced the chain length multifold, as detected by HPLC. The effect of monovalent cations on RNA synthesis was of the following order: Li+ > Na+ > K+. A similar effect was observed with the anions, enhancing catalysis in the following order: Cl- > Br- > I-. The montmorillonite-catalyzed RNA synthesis was not affected by hydrophobic or hydrophilic interactions. We thus show that prebiotic synthesis of RNA from its monomers was a simple process requiring only clay minerals and a small amount of salt.

  1. Synergism between sodium chloride, sucrose and tricalcium phosphate in the osmotic dehydration of oca (Oxalis tuberosa with and without chitosan coating

    Directory of Open Access Journals (Sweden)

    José Arroyo Portal

    2010-12-01

    Full Text Available We investigated the synergistic effect of three solutes (sodium chloride, sucrose, tricalcium phosphate in different combinations of concentration, on the moisture, solid gain and calcium gain in oca (Oxalis tuberosa with and without chitosan (CR and SR. In both cases applied the Simplex with Extended Centroid mixture design. Were used cylinders of oca of 0.9 cm of diameter and 3.4 cm of length. The kinetics of moisture, solid gain and calcium gain for 48 hours was evaluated. The effective diffusivity of water, solids and calcium was determined. We found that in samples CR is greater loss of water and less solid gain compared with SR samples mainly as sodium chloride or sucrose participate independently, while for the gain of calcium, in all cases, the CR samples gain more of calcium than SR samples. The effective diffusivities found are: water, 1.19E-09 m2 /s in samples CR and 1.34E-09 m2 /s in SR samples; for solid, 3.67E-09 m2 /s in samples CR and 5.43E-09 m2 /s in SR samples; and, for calcium 3.32E-11 m2 /s in samples CR and 1.57E-09 m2 /s in SR samples.

  2. Intercalation of Amido Cationic Drug with Montmorillonite

    Institute of Scientific and Technical Information of China (English)

    ZHENG Junping; WANG Hongyan; ZHUANG Hong; XI Lifei; YAO Kangde

    2007-01-01

    The intercalation of drug molecules with montmorillonit (MMT) using Acyclovir (ACV) as the model drug was focused on. The optimum conditions were studied based on orthogonal design, such as intercalation time and temperature. The intercalation composites were characterized by X-ray diffraction (XRD), Fourier transformed infrared (FT-IR), and thermogravimetric analysis (TGA). The experimental results reveal that ACV is successfully intercalated into the interlayers of MMT. The in vitro release experiments reveal that ACV is released from MMT steadily and pH dependent

  3. Monomers of cutin biopolymer: sorption and esterification on montmorillonite surfaces

    Science.gov (United States)

    Olshansky, Yaniv; Polubesova, Tamara; Chefetz, Benny

    2013-04-01

    One of the important precursors for soil organic matter is plant cuticle, a thin layer of predominantly lipids that cover all primary aerial surfaces of vascular plants. In most plant species cutin biopolymer is the major component of the cuticle (30-85% weight). Therefore cutin is the third most abundant plant biopolymer (after lignin and cellulose). Cutin is an insoluble, high molecular weight bio-polyester, which is constructed of inter-esterified cross linked hydroxy-fatty acids and hydroxyepoxy-fatty acids. The most common building blocks of the cutin are derivatives of palmitic acid, among them 9(10),16 dihydroxy palmitic acid (diHPA) is the main component. These fatty acids and their esters are commonly found in major organo-mineral soil fraction-humin. Hence, the complexes of cutin monomers with minerals may serve as model of humin. Both cutin and humin act as adsorption efficient domains for organic contaminants. However, only scarce information is available about the interactions of cutin with soil mineral surfaces, in particular with common soil mineral montmorillonite. The main hypothesize of the study is that adsorbed cutin monomers will be reconstituted on montmorillonite surface due to esterification and oligomerization, and that interactions of cutin monomers with montmorillonite will be affected by the type of exchangeable cation. Cutin monomers were obtained from the fruits of tomato (Lycopersicon esculentum). Adsorption of monomers was measured for crude Wyoming montmorillonites and montmorillonites saturated with Fe3+ and Ca2+. To understand the mechanism of monomer-clay interactions and to evaluate esterification on the clay surface, XRD and FTIR analyses of the montmorillonite-monomers complexes were performed. Our results demonstrated that the interactions of cutin monomers with montmorillonite are affected by the type of exchangeable cation. Isotherms of adsorption of cutin monomers on montmorillonites were fitted by a dual mode model of

  4. Modification of Cellulose Products by the Use of Chitosan and Chitosan-Alginate Nano-Particles

    Directory of Open Access Journals (Sweden)

    Brzoza-Malczewska Kinga

    2016-03-01

    Full Text Available Aim of the presented research was the improvement of fibrous cellulosic products for uses in hygiene and medical sectors. Nano-particles of bioactive polysaccharides were imparted to cellulosic fibrous products to modify their properties: physical–chemical like absorption, biological like antibacterial and antifungal activity, and mechanical. Fibrous materials like dressing gauze, wood-wool, and hygiene tissues were modified by the addition of chitosan and chitosan-alginate nano-particles. Padding and freeze-drying was applied in the coating of the fibrous materials with the nano-sized polymers.

  5. Mechanisms of chitosan-coated poly(lactic-co-glycolic acid) nanoparticles for improving oral absorption of 7-ethyl-10-hydroxycamptothecin

    Science.gov (United States)

    Guo, Miao; Rong, Wen-Ting; Hou, Jie; Wang, Dong-Fang; Lu, Yu; Wang, Ying; Yu, Shu-Qin; Xu, Qian

    2013-06-01

    Chitosan-modified poly(lactic-co-glycolic acid) nanoparticles (CHI/PLGA NPs) loaded with 7-ethyl-10-hydroxycamptothecin (SN-38), named CHI/PLGA/SN-38 NPs, were successfully prepared using an oil-in-water (O/W) solvent evaporation method. The physicochemical properties of the novel NPs were characterized by DLS, Zeta potential, SEM, DSC, XRD, and FTIR. The encapsulation efficiency and drug loading content were 71.83 (±2.77)% and 6.79 (±0.26)%, respectively. In vitro drug release in the simulated gastric juice was lower than that in the intestinal juice. In situ single-pass intestinal perfusion (SPIP) studies indicated a dramatic improvement of drug absorption as a result of the synergistic effect between CHI and PLGA on P-glycoprotein (Pgp) inhibition. CHI/PLGA NPs showed high cellular uptake and low efflux for drugs in Caco-2 cells. The cytotoxicity studies revealed that CHI/PLGA NPs had a transient effect on the membrane integrity, but did not have an influence on cell viability. Based on the in vitro release studies, SPIP, and intracellular drug accumulation and transport investigations, we speculate rationally that CHI/PLGA NPs were mainly internalized in the form of intact NPs, thus escaping the recognition of enterocyte Pgp and avoiding efflux into the apical part of the enterocytes. After partial release of drugs inside the enterocytes, CHI/PLGA interfered with the microenvironment of Pgp and further weakened the Pgp-mediated efflux. Then, the drug-loaded NPs exited via the exocytose effect from the basal part of the enterocytes and entered the blood circulation. These results showed that CHI/PLGA NPs would be smart oral delivery carriers for antineoplastic agents that are also Pgp substrates.

  6. Layered chitosan-collagen hydrogel/aligned PLLA nanofiber construct for flexor tendon regeneration.

    Science.gov (United States)

    Deepthi, S; Nivedhitha Sundaram, M; Deepti Kadavan, J; Jayakumar, R

    2016-11-20

    The aim of our study was to develop a tendon construct of electrospun aligned poly (l-lactic acid) (PLLA) nanofibers, to mimic the aligned collagen fiber bundles and layering PLLA fibers with chitosan-collagen hydrogel, to mimic the glycosaminoglycans of sheath ECM for tendon regeneration. The hydrogel coated electrospun membrane was rolled and an outer coating of alginate gel was given to prevent peritendinous adhesion. The developed constructs were characterized by SEM, FT-IR and tensile testing. Protein adsorption studies showed lower protein adsorption on coated scaffolds compared to uncoated scaffolds. The samples were proven to be non-toxic to tenocytes. The chitosan-collagen/PLLA uncoated scaffolds and alginate gel coated chitosan-collagen/PLLA scaffolds showed good cell proliferation. The tenocytes showed good attachment and spreading on the scaffolds. This study indicated that the developed chitosan-collagen/PLLA/alginate scaffold would be suitable for flexor tendon regeneration. PMID:27561521

  7. Polydopamine/dialdehyde starch/chitosan composite coating for in-tube solid-phase microextraction and in-situ derivation to analysis of two liver cancer biomarkers in human blood.

    Science.gov (United States)

    Wu, Shiju; Cai, Cuicui; Cheng, Jing; Cheng, Min; Zhou, Hongbin; Deng, Jiali

    2016-09-01

    In order to highly enrich two liver cancer biomarkers (hexanal and 2-butanone) in human blood, in this study, natural nontoxic polydopamine/dialdehyde starch/chitosan (PD/DAS/CHI) coating material was synthesized and immobilized on the inner wall of polytetrafluoro-ethlyene (PTFE) tube. It was used to develop the method based on in-tube solid-phase microextraction (IT-SPME) with in-situ derivatization (ISD) coupled to high performance liquid chromatography for the determination of the above mentioned two liver cancer biomarkers in human blood. The simple, rapid and sensitive IT-SPME-ISD method can be finished within 11 min. Under optimum conditions, the limits of detection (LODs) were 1.4 and 1.6 nmol L(-1) for hexanal and 2-butanone, respectively. The relative recoveries from real human blood samples were in the range from 70% to 91% with the intra- and inter-day precisions less than 7.2%. Furthermore, this method was successfully applied for the analysis of hexanal and 2-butanone in blood samples from healthy people with 0.42 ± 0.05 and 0.34 ± 0.04 μmol L(-1), while liver cancer patients with 1.90 ± 0.07  μmol L(-1) and 0.91 ± 0.07 μmol L(-1), respectively. The t-test's results showed there is a statistically significant difference between the data from healthy persons and liver cancer patients. Hence, the developed method might be applied in the screening of suspected liver cancer patients.

  8. Effect of Sulfate and Chitosan Coating to Germination Rate of Chinese Cabbage%硫酸盐与壳聚糖包衣大白菜种子对出苗率的影响

    Institute of Scientific and Technical Information of China (English)

    程季珍; 武峻新; 程伯瑛

    2013-01-01

    The result of two-year experiments showed: after B class seeds of Taiyuan Erqing (or Jincai 3 )coated using two methods with manganese sulfate, zinc sulfate, copper sulfate, ferrous sulfate and chitosan of acetic acid, sowing of normal or above one storage year of aluminum foil bag which used manganese sulfate 5 ~ 10 mg for 10 g seeds or 60 ~ 120 mg for 10 g seeds, zinc sulfate 5-60 mg for 10 g seeds or 5 ~ 100 mg for 10 g seeds, copper sulphate 4-12 mg for 10 g seeds or 10 ~ 16 mg for 10 g seeds, ferrous sulfate 2-16 mg for 10 g seeds, stress resistance of seeds increased to a certain extent, seedling appeared normal growth and no phytotoxicity.%2a的试验结果表明,分别用硫酸锰、硫酸锌、硫酸铜、硫酸亚铁与壳聚糖乙酸溶液,采用2次法包衣太原二青(或晋菜三号)B粒径等级种子后,当年播种或用铝箔袋贮存1a后播种,每10 g种子硫酸锰用量分别为5 ~ 10 mg或60~120 mg,硫酸锌用量分别为5~60 mg或5~100 mg,硫酸铜用量分别为4~12 mg或10~16 mg,硫酸亚铁用量为2~16mg,在一定程度上可提高种子的抗逆性,出土幼苗生长正常,无药害.

  9. Preparation of chitosan gel

    Directory of Open Access Journals (Sweden)

    Lagerge S.

    2012-06-01

    Full Text Available Aerogel conditioning of the chitosan makes it possible to prepare porous solids of significant specific surface. The increase in the chitosan concentration or the degree of acetylation decreases the specific surface of the synthesized chitosan gel. Whereas drying with supercritical CO2 more effectively makes it possible to preserve the volume of the spheres of gel and to have a more significant specific surface in comparison with evaporative drying.

  10. In vitro osteoclastogenesis on textile chitosan scaffold

    Directory of Open Access Journals (Sweden)

    C Heinemann

    2010-02-01

    Full Text Available Textile chitosan fibre scaffolds were evaluated in terms of interaction with osteoclast-like cells, derived from human primary monocytes. Part of the scaffolds was further modified by coating with fibrillar collagen type I in order to make the surface biocompatible. Monocytes were cultured directly on the scaffolds in the presence of macrophage colony stimulating factor (M-CSF and receptor activator of nuclear factor kappaB ligand (RANKL for up to 18 days. Confocal laser scanning microscopy (CLSM as well as scanning electron microscopy (SEM revealed the formation of multinuclear osteoclast-like cells on both the raw chitosan fibres and the collagen-coated scaffolds. The modified surface supported the osteoclastogenesis. Differentiation towards the osteoclastic lineage was confirmed by the microscopic detection of cathepsin K, tartrate resistant acid phosphatase (TRAP, acidic compartments using 3-(2,4-dinitroanillino-3’-amino-N-methyldipropylamine (DAMP, immunological detection of TRAP isoform 5b, and analysis of gene expression of the osteoclastic markers TRAP, cathepsin K, vitronectin receptor, and calcitonin receptor using reverse transcription-polymerase chain reaction (RT-PCR. The feature of the collagen-coated but also of the raw chitosan fibre scaffolds to support attachment and differentiation of human monocytes facilitates cell-induced material resorption – one main requirement for successful bone tissue engineering.

  11. Application of radiation degraded CM-chitosan for preservation of fresh fruits

    International Nuclear Information System (INIS)

    CM-chitosan was irradiated with various doses in powder state and solution using Co60 gamma source. The changes of viscosity in solution as well as molecular weight were also measured. The molecular weight reduced with increasing of radiation dose. The antimicrobial activity of CM-chitosan and irradiated CM-chitosan in solution against E.coli was investigated. In this studies, the sensitivity of E.coli depended on the concentration of CM-chitosan supplemented into medium and the antimicrobial activity of irradiated CM-chitosan was found to increase with radiation dose and reached to maximum with dose of 100 kGy. The 2% aqueous solutions prepared from CM-chitosan and 100 kGy irradiated CM-chitosan as mentioned above were applied for apple preservation. All coating fruits have significantly reduced the weight loss, spoilage ratio compared with control. Chemical and sensory quality of coated fruits were evaluated and compared, the best results were achieved with fruit coated using irradiated CM-chitosan. (author)

  12. Postharvest chitosan-g-salicylic acid application alleviates chilling injury and preserves cucumber fruit quality during cold storage.

    Science.gov (United States)

    Zhang, Youzuo; Zhang, Meiling; Yang, Huqing

    2015-05-01

    The effect of salicylic acid with and without chitosan, or a chitosan-g-salicylic acid complex, on chilling injury and post-harvest quality of cucumber stored at 2 °C for 12 days plus 2 days at 20 °C was investigated. The results showed the chitosan-g-salicylic acid coating inhibited chilling injury better than salicylic acid alone or with chitosan. Chitosan-g-salicylic acid also reduced weight loss and respiration rate, limited increases in malondialdehyde content and electrolyte leakage, and maintained higher total soluble solids, chlorophyll and ascorbic acid content. Furthermore, this coating increased the endogenous salicylic acid concentrations and antioxidant enzyme activities including superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase in cucumber during storage. Our study suggests that chitosan-g-salicylic acid alleviated chilling injury in cucumber through sustained-release of salicylic acid and the higher antioxidant enzymes concentrations.

  13. The Effect of Chitosan and Sodium Alginate on the Growth and Photosynthesis of Soybean

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Seeu coating can make soybean seedling grow more strongly and reinforce the resistance of soybean plant. Sodium alginate and chitosan are high-molecular compound of two different kind,have the characteristic of promoting the crop growth. Using Sodium alginate and chitosan as coating materials under different concentration can improve the growth and photosynthesis obviously and can decrease pollution because of their characteristics. The analysis show that the effects of Sodium Alginate on soybean plant are better than chitosan and the best concentration is 0.50 g @ kg-1

  14. Binding Cellulose and Chitosan via Intermolecular Inclusion Interaction: Synthesis and Characterisation of Gel

    Directory of Open Access Journals (Sweden)

    Jiufang Duan

    2015-01-01

    Full Text Available A novel cellulose-chitosan gel was successfully prepared in three steps: (1 ferrocene- (Fc- cellulose with degrees of substitution (DS of 0.5 wt% was synthesised by ferrocenecarboxylic acid and cellulose within dimethylacetamide/lithium chloride (DMAc/LiCl; (2 the β-cyclodextrin (β-CD groups were introduced onto the chitosan chains by reacting chitosan with epichlorohydrin in dimethyl sulphoxide and a DS of 0.35 wt%; (3 thus, the cellulose-chitosan gel was obtained via an intermolecular inclusion interaction of Fc-cellulose and β-CD-chitosan in DMA/LiCl, that is, by an intermolecular inclusion interaction, between the Fc groups of cellulose and the β-CD groups on the chitosan backbone at room temperature. The successful synthesis of Fc-cellulose and β-CD-chitosan was characterised by 13C-NMR spectroscopy. The gel based on β-CD-chitosan and Fc-cellulose was formed under mild conditions which can engender autonomous healing between cut surfaces after 24 hours: the gel cannot self-heal while the cut surfaces were coated with a solution of a competitive guest (adamantane acid. The cellulose-chitosan complex made by this method underwent self-healing. Therefore, this study provided a novel method of expanding the application of chitosan by binding it with another polymer.

  15. Adherence of paclitaxel drug in magnetite chitosan nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Escobar Zapata, Edna V.; Martinez Perez, Carlos A.; Rodriguez Gonzalez, Claudia A.; Castro Carmona, Javier S. [Instituto de Ingenieria y Tecnologia, Universidad Autonoma de Ciudad Juarez, Ave. Del Charro 610 norte, Col. Partido Romero, C.P. 32320, Cd. Juarez Chihuahua (Mexico); Quevedo Lopez, Manuel A. [Departamento de Polimeros y Materiales, Universidad de Sonora, Blvd. Luis Encinas y Rosales, Hermosillo, Sonora (Mexico); Garcia-Casillas, Perla E., E-mail: pegarcia@uacj.mx [Instituto de Ingenieria y Tecnologia, Universidad Autonoma de Ciudad Juarez, Ave. Del Charro 610 norte, Col. Partido Romero, C.P. 32320, Cd. Juarez Chihuahua (Mexico)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Chitosan silica magnetite adsorbs antineoplastic drug. Black-Right-Pointing-Pointer Silica coating improve the drug adherence. - Abstract: Cancer treatment is a big challenge in medicine where chemotherapies and radiotherapies are aggressive and poorly effective having side effects as delirium, fatigue, insomnia, nausea and vomiting which are common problems for cancer patients. For this reason, during the last two decades, many researchers have developed several techniques to improve the current therapies; one of them is the functionalization of magnetic nanoparticles for drug delivery. In this work, magnetic nanoparticles with an average crystallite size 21.8 nm were covered in a core/shell type; magnetite/silica, magnetite/chitosan, and a double shell magnetite/silica/chitosan were developed for attaching an antineoplastic drug. The mechanism for the functionalization of the nanoparticles with a single and double shell was studied with Fourier transformed infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The adherence of an antineoplastic drug, paclitaxel, onto functionalized nanoparticles was analyzed with a UV-Visible spectroscopy at a wavelength of 253 nm. It was found that the adherence of the drug is improved up to 18% when magnetite nanoparticles are coated with a single chitosan shell, and when the nanoparticles are coated with a silica/chitosan shell the adherence increases up to 29%.

  16. Dual coated microparticles for intestinal delivery of nimesulide

    OpenAIRE

    Khan, Shujaat A.; Ahmad, Mahmood; Murtaza, Ghulam; Aamir, Muhammad N.; Akhtar, Naveed

    2010-01-01

    Nimesulide was formulated as novel dual coated microparticles using chitosan (CTN) and ethyl cellulose (EC) as encapsulating materials for its improved delivery to the intestine and to prevent gastric irritation and increase patient compliance. The first coating was applied by chitosan using pH change method followed by second coating of ethyl cellulose using thermal change method. This process was analysed for its capability to produce microparticles of uniform size, good flowability, unifor...

  17. Effectiveness of Postharvest Treatment with Chitosan to Control Citrus Green Mold

    Directory of Open Access Journals (Sweden)

    Mohamed El Guilli

    2016-03-01

    Full Text Available Control of green mold, caused by Penicillium digitatum, by fungicides raises several problems, such as emergence of resistant pathogens, as well as concerns about the environment and consumers’ health. As potential alternatives, the effects of chitosan on green mold disease and the quality attributes of citrus fruits were investigated. Fruits were wounded then treated with different concentrations of chitosan 24 h before their inoculation with P. digitatum. The results of in vitro experiment demonstrated that the antifungal activity against P. digitatum was improved in concert to the increase of chitosan concentration. In an in vivo study, green mold was significantly reduced by chitosan treatments. In parallel, chitinase and glucanase activities were enhanced in coated fruits. Evidence suggested that effects of chitosan coating on green mold of mandarin fruits might be related to its fungitoxic properties against the pathogen and/or the elicitation of biochemical defense responses in coated fruits. Further, quality attributes including fruit firmness, surface color, juice content, and total soluble solids, were not affected by chitosan during storage. Moreover, the loss of weight was even less pronounced in chitosan-coated fruit.

  18. ANALYSIS DEGRADATION OF POLYSTYRENE WITH MONTMORILLONITE NANOFILLERS

    Directory of Open Access Journals (Sweden)

    Maria Mihalikova

    2014-01-01

    Full Text Available The paper is focused on the experimental investigation of the montmorillonite nanofillers effect on deformation properties of polystyrene KRASTEN 171. In some cases, combination of a low amount of clay with dispersed polymeric phase may cause synergistic effects leading to very fair balance of mechanical behaviour. This seems to be a consequence of complex influencing the multiphase system by clay such as modification of components (reinforcement and parameters of the interface accompanied by influencing the dynamic phase behaviour, i.e., the compactibilizing effect. The paper analyses the effect of nanocomposites and type of the material on the individual measured parameters, relations between them, strength and deformation behaviour. Deformation was evaluated by non-contact videoextensometry method

  19. Properties of Wood/Montmorillonite Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    LV Wenhua; ZHAO Guangjie

    2006-01-01

    With montmorillonite (MMT) organically modified as organophilic-MMT (OMMT) and water-soluble phenol formaldehyde resin (PF) as intermediate, the nanocomposites of Chinese fir (Cunninghamia lanceolata) wood and MMT, i.e. WMNC, were prepared via nano intercalation compounding, some properties of WMNC were analyzed. Results show that, compared with Chinese fir wood and its PF-impreg, WMNC has lower humidity and water absorption, better dimension stability, higher longitudinal compressive strength, abrasive resistance, fire-resistance, and water-leaching resistance with a very low mass ratio about 3% of MMT. The nano intercalation compounding of wood and exfoliated MMT nanolamellae is very promising. More studies should be carried out to fully reveal the nanosize effects and the special properties of WMNC.

  20. Sorption of tetracycline on organo-montmorillonites

    International Nuclear Information System (INIS)

    Highlights: ► The sorption capacity of tetracycline on Mont. modified with QACs was highly promoted. ► Tetracycline adsorbed on organoclay was affected by the amount and the length of QACs. ► Tetracycline adsorption on organoclay exhibited high pH-dependence below 5. - Abstract: Tetracycline (TC) is a veterinary antibiotic that is frequently detected as pollutant in the environment. Powerful adsorbents are required for removing TC. The present paper compares the TC adsorption capacity of Na-montmorillonite (Na-mont) with six organo-montmorillonites (organo-monts). Three quaternary ammonium cations (QACs) with different alkyl-chain lengths were used as modifiers. Powder X-ray diffraction indicated that the d001 values of organo-monts increased with increasing the QACs loading and alkyl-chain length. The CECs of the organo-monts were substantially lower than that of Na-mont and decreased with QACs chain length and increased loading. The modeling of the adsorption kinetics revealed that the processes of TC adsorption on the tested samples could be well fitted by the pseudo-second-order equation. The maximum adsorption capacities of TC on the organo-monts (1000–2000 mmol/kg) were considerably higher than that on Na-mont (769 mmol/kg). Both the Langmuir and Freundlich model could fit the adsorption isotherms. The TC adsorption to the organo-monts increase significantly with decreasing the pH below 5.5 because of the electrostatic interaction, and a high QACs loading performed better than a low loading at around pH 3.

  1. Sorption of tetracycline on organo-montmorillonites

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Niu; Wang, Ming-xia; Liu, Ming-ming; Liu, Fan [College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China); Weng, Liping [Department of Soil Quality, Wageningen University, P.O. Box 8005, 6700 EC, Wagneningen (Netherlands); Koopal, Luuk K. [Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen (Netherlands); Tan, Wen-feng, E-mail: wenfeng.tan@hotmail.com [College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China); State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shanxi 712100 (China)

    2012-07-30

    Highlights: Black-Right-Pointing-Pointer The sorption capacity of tetracycline on Mont. modified with QACs was highly promoted. Black-Right-Pointing-Pointer Tetracycline adsorbed on organoclay was affected by the amount and the length of QACs. Black-Right-Pointing-Pointer Tetracycline adsorption on organoclay exhibited high pH-dependence below 5. - Abstract: Tetracycline (TC) is a veterinary antibiotic that is frequently detected as pollutant in the environment. Powerful adsorbents are required for removing TC. The present paper compares the TC adsorption capacity of Na-montmorillonite (Na-mont) with six organo-montmorillonites (organo-monts). Three quaternary ammonium cations (QACs) with different alkyl-chain lengths were used as modifiers. Powder X-ray diffraction indicated that the d{sub 001} values of organo-monts increased with increasing the QACs loading and alkyl-chain length. The CECs of the organo-monts were substantially lower than that of Na-mont and decreased with QACs chain length and increased loading. The modeling of the adsorption kinetics revealed that the processes of TC adsorption on the tested samples could be well fitted by the pseudo-second-order equation. The maximum adsorption capacities of TC on the organo-monts (1000-2000 mmol/kg) were considerably higher than that on Na-mont (769 mmol/kg). Both the Langmuir and Freundlich model could fit the adsorption isotherms. The TC adsorption to the organo-monts increase significantly with decreasing the pH below 5.5 because of the electrostatic interaction, and a high QACs loading performed better than a low loading at around pH 3.

  2. Montmorillonite-induced Bacteriophage φ6 Disassembly

    Science.gov (United States)

    Trusiak, A.; Gottlieb, P.; Katz, A.; Alimova, A.; Steiner, J. C.; Block, K. A.

    2012-12-01

    It is estimated that there are 1031 virus particles on Earth making viruses an order of magnitude more prevalent in number than prokaryotes with the vast majority of viruses being bacteriophages. Clays are a major component of soils and aquatic sediments and can react with RNA, proteins and bacterial biofilms. The clays in soils serve as an important moderator between phage and their host bacteria, helping to preserve the evolutionary balance. Studies on the effects of clays on viral infectivity have given somewhat contradictory results; possibly a consequence of clay-virus interactions being dependent on the unique structure of particular viruses. In this work, the interaction between montmorillonite and the bacteriophage φ6 is investigated. φ6 is a member of the cystovirus family that infects Pseudomonas syringe, a common plant pathogen. As a member of the cystovirus family with an enveloped structure, φ6 serves as a model for reoviruses, a human pathogen. Experiments were conducted with φ6 suspended in dilute, purified homoionic commercial-grade montmorillonite over a range of virus:clay ratios. At a 1:100000 virus:clay ratio, the clay reduced viral infectivity by 99%. The minimum clay to virus ratio which results in a measurable reduction of P. syringae infection is 1:1. Electron microscopy demonstrates that mixed suspensions of smectite and virus co-aggregate to form flocs encompassing virions within the smectite. Both free viral particles as well as those imbedded in the flocs are seen in the micrographs to be missing the envelope- leaving only the nucleocapsid (NC) intact; indicating that smectite inactivates the virus by envelope disassembly. These results have strong implications in the evolution of both the φ6 virus and its P. syringae host cells. TEM of aggregate showing several disassembled NCs.

  3. Cadmium adsorption in montmorillonite as affected by glyphosate

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-jun; ZHOU Dong-mei; LUO Xiao-san; SUN Rui-juan; CHEN Huai-man

    2004-01-01

    Behaviors of soil heavy metals are often affected by coexisting herbicides due to their physical and chemical interaction. Effect of glyphosate, an herbicide containing -PO32- and -COOH groups, on cadmium adsorption in montmorillonite was studied in detail. The results showed that cadmium adsorption quantity in montmorillonite increased with increasing soil solution pH and cadmium concentration as usual, but decreased with glyphosate, which is due to the formation of a low affinity complex of Cd and glyphosate and decreasing solution pH induced by glyphosate addition. When the equilibrium solution pH was below 6.7, glyphosate has little effect on cadmium adsorption, but when the equilibrium solution pH was above 6.7, glyphosate significantly decreased cadmium adsorption quantity in montmorillonite. In addition, the adding order of Cd and glyphosate also influenced Cd adsorption quantity in montmorillonite.

  4. Synthesis and characterization of montmorillonite-epoxy nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, J.G.; Park, G.R.; Lyu, S.G. [Yeungnam University, Kyungsan (Korea, Republic of); Rhew, J.H. [Yeungnam Junior College, Taegu (Korea, Republic of); Sur, G.S. [Yeungnam University, Kyungsan (Korea, Republic of)

    1998-03-01

    A montmorillonite-epoxy nanocomposite has been prepared by dispersing organically modified montmorillonite in an epoxy resin (diglycidyl ether of bisphenol A (DGEBA)) at elevated temperatures. Molecular dispersion of montmorillonite within the crosslinked epoxy matrix was verified using X-ray diffraction and transmission electron microscopy indicated that the final product contains a uniform dispersion of exfoliated 1 A {sup o} thin clay layers separated by 100{approx}150 A {sup o} of polyether polymer, thus verifying the nanocomposite structure. Differential scanning calorimetry studies of a nanocomposite containing 5 wt% stearylammonium-montmorillonite indicated the heat of reaction and activation energy for the polymerization reaction to be 462 J/g and 98.2 kJ/mol, respectively.

  5. Nontronite and Montmorillonite as Nutrient Sources for Life on Mars

    Science.gov (United States)

    Mickol, R. L.; Craig, P. I.; Kral, T. A.

    2016-05-01

    Methanogens were grown in media containing bicarbonate buffer, nontronite or montmorillonite clay, and hydrogen gas. No other nutrients were added. These results suggest that martian clays may provide adequate nutrients to support organism growth.

  6. Chitosan coated polylactic acid nanoparticle-mediated combinatorial delivery of cisplatin and siRNA/Plasmid DNA chemosensitizes cisplatin-resistant human ovarian cancer cells.

    Science.gov (United States)

    Babu, Anish; Wang, Qi; Muralidharan, Ranganayaki; Shanker, Manish; Munshi, Anupama; Ramesh, Rajagopal

    2014-08-01

    Development of resistance toward anticancer drugs results in ineffective therapy leading to increased mortality. Therefore, overriding resistance and restoring sensitivity to anticancer drugs will improve treatment efficacy and reduce mortality. While numerous mechanisms for drug resistance in cancer have previously been demonstrated, recent studies implicate a role for proteasome and the autophagy regulatory protein P62/SQSTM1 (P62) in contributing to drug resistance. Specifically, reduction in the expression of the β5 subunit of the proteasome and/or enhanced P62 protein expression is known to contribute to cancer drug resistance such as cisplatin (CDDP) in ovarian cancer cells. Therefore, we hypothesized that restoration of β5 expression and/or suppression of P62 protein expression in CDDP-resistant ovarian cancer cells will lead to restoration of sensitivity to CDDP and enhanced cell killing. To test our hypothesis we developed a biodegradable multifunctional nanoparticle (MNP) system that codelivered P62siRNA, β5 plasmid DNA, and CDDP and tested its efficacy in CDDP resistant 2008/C13 ovarian cancer cells. MNP consisted of CDDP loaded polylactic acid nanoparticle as inner core and cationic chitosan (CS) consisting of ionically linked P62siRNA (siP62) and/or β5 expressing plasmid DNA (pβ5) as the outer layer. The MNPs were spherical in shape with a hydrodynamic diameter in the range of 280-350 nm, and demonstrated encapsulation efficiencies of 82% and 78.5% for CDDP and siRNA respectively. MNPs efficiently protected the siRNA and showed superior serum stability compared to naked siRNA as measured by gel retardation and spectrophotometry assays. The MNPs successfully delivered siP62 and pβ5 to cause P62 knockdown and restoration of β5 expression in 2008/C13 cells. Combined delivery of siP62, pβ5, and CDDP using the MNPs resulted in a marked reduction in the IC50 value of CDDP in 2008/C13 cells from 125 ± 1.3 μM to 98 ± 0.6 μM (P < 0.05; 21

  7. Chitosan coated polylactic acid nanoparticle-mediated combinatorial delivery of cisplatin and siRNA/Plasmid DNA chemosensitizes cisplatin-resistant human ovarian cancer cells.

    Science.gov (United States)

    Babu, Anish; Wang, Qi; Muralidharan, Ranganayaki; Shanker, Manish; Munshi, Anupama; Ramesh, Rajagopal

    2014-08-01

    Development of resistance toward anticancer drugs results in ineffective therapy leading to increased mortality. Therefore, overriding resistance and restoring sensitivity to anticancer drugs will improve treatment efficacy and reduce mortality. While numerous mechanisms for drug resistance in cancer have previously been demonstrated, recent studies implicate a role for proteasome and the autophagy regulatory protein P62/SQSTM1 (P62) in contributing to drug resistance. Specifically, reduction in the expression of the β5 subunit of the proteasome and/or enhanced P62 protein expression is known to contribute to cancer drug resistance such as cisplatin (CDDP) in ovarian cancer cells. Therefore, we hypothesized that restoration of β5 expression and/or suppression of P62 protein expression in CDDP-resistant ovarian cancer cells will lead to restoration of sensitivity to CDDP and enhanced cell killing. To test our hypothesis we developed a biodegradable multifunctional nanoparticle (MNP) system that codelivered P62siRNA, β5 plasmid DNA, and CDDP and tested its efficacy in CDDP resistant 2008/C13 ovarian cancer cells. MNP consisted of CDDP loaded polylactic acid nanoparticle as inner core and cationic chitosan (CS) consisting of ionically linked P62siRNA (siP62) and/or β5 expressing plasmid DNA (pβ5) as the outer layer. The MNPs were spherical in shape with a hydrodynamic diameter in the range of 280-350 nm, and demonstrated encapsulation efficiencies of 82% and 78.5% for CDDP and siRNA respectively. MNPs efficiently protected the siRNA and showed superior serum stability compared to naked siRNA as measured by gel retardation and spectrophotometry assays. The MNPs successfully delivered siP62 and pβ5 to cause P62 knockdown and restoration of β5 expression in 2008/C13 cells. Combined delivery of siP62, pβ5, and CDDP using the MNPs resulted in a marked reduction in the IC50 value of CDDP in 2008/C13 cells from 125 ± 1.3 μM to 98 ± 0.6 μM (P < 0.05; 21

  8. A Sensitive Simultaneous Determination of Adrenalin and Paracetamol on a Glassy Carbon Electrode Coated with a Film of Chitosan/Room Temperature Ionic Liquid/Single-Walled Carbon Nanotubes Nanocomposite%A Sensitive Simultaneous Determination of Adrenalin and Paracetamol on a Glassy Carbon Electrode Coated with a Film of Chitosan/Room Temperature Ionic Liquid/Single-Walled Carbon Nanotubes Nanocomposite

    Institute of Scientific and Technical Information of China (English)

    Babaei, Ali; Babazadeh, Mitra; Afrasiabi, Mohammad

    2011-01-01

    The present work demonstrates that simultaneous determination of adrenalin (AD) and paracetamol (PAR) can be performed on single-walled carbon nanotube/chitosan/ionic liquid modified glassy carbon electrode (SWCNT-CHIT-IL/GCE). The electro-oxidations of AD and PAR were investigated with cyclic voltammetry (CV), differential pulse voltammetry (DPV) and also chronoamperometry (CA) methods. DPV experiments showed that the oxidation peak currents of AD and PAR are proportional to the corresponding concentrations over the 1-580 μmol/L and 0.5-400 μmol/L ranges, respectively. The RSD at a concentration level of 15 μmol/L AD and 15 μmol/L PAR were 1.69% and 1.82%, respectively. Finally the modified electrode was used for simultaneous determination of AD and PAR in real samples with satisfactory results.

  9. A New Strategy Based on Smrho Protein Loaded Chitosan Nanoparticles as a Candidate Oral Vaccine against Schistosomiasis

    OpenAIRE

    Oliveira, Carolina R.; Rezende, Cíntia M. F.; Silva, Marina R.; Ana Paula Pêgo; Olga Borges; Alfredo M. Goes

    2012-01-01

    BACKGROUND: Schistosomiasis is one of the most important neglected tropical diseases and an effective control is unlikely in the absence of improved sanitation and vaccination. A new approach of oral vaccination with alginate coated chitosan nanoparticles appears interesting because their great stability and the ease of target accessibility, besides of chitosan and alginate immunostimulatory properties. Here we propose a candidate vaccine based on the combination of chitosan-based nanoparticl...

  10. 鱼肉酶解物及壳聚糖对鲤鱼涂膜保鲜效果的研究%Effect of hydrolysate of fish flesh and chitosan on coating preservation of common carp (Cyprinus carpio ) with shelf life

    Institute of Scientific and Technical Information of China (English)

    王航; 罗永康; 胡素梅; 陆伟

    2012-01-01

    以感官评分、挥发性盐基氮、菌落总数、K值为指标,研究比较了鱼肉酶解物和壳聚糖为原料的涂膜液对鲤(Cyprinus carpio)(4℃)冷藏过程中品质变化的影响.结果显示:贮藏期间,对照组的感官评分显著低于各涂膜组(P<0.05).贮藏前8d,涂膜组能够显著抑制K值的升高(P<0.05).鱼肉酶解物和壳聚糖涂膜组均能够显著抑制细菌的生长,而贮藏2~6d内鱼肉酶解物涂膜鲤鱼的菌落总数显著低于壳聚糖涂膜组(P<0.05).贮藏后期,鱼肉酶解物组能延缓TVB-N值的升高,壳聚糖涂膜组能够显著抑制TVB-N值的升高(P<0.05).鱼肉酶解物可作为一种新的可食性涂膜材料,用于延长鲤鱼的贮藏期.%The sensory scores, total bacteria count, total volatile base nitrogen (TVB-N) and the K value were used to e-valuate the quality of common carp during cold storage (4 ℃ ) , and the different effects were compared between the groups which were coated with hydrolysate of fish flesh and chitosan. During storage, sensory scores of the control group was significantly lower than the film groups ( P < 0. 05 ). In the first eight days, the film groups restrained the growing K value significantly ( P < 0. 05 ) . Coating could effectively inhibited the increase of total bacteria count, and during 2 to 6 days, the common carp which were coated with hydrolysate of fish flesh gave lower bacteria count than chitosan ones (P < 0. 05 ) . In the post-storage, the common carp coated with hydrolysate of fish flesh could effectively slow down the increase of TVB-N, and the group coated with chitosan restrained the growing of TBV-N value significantly. The hydrolysate of fish flesh can be used as a new material of edible film to extend the shelf life.

  11. Determination of coating efficiency of N-trimethyl chitosan coated multivesicular liposomes with conductivity%电导率法测定N-三甲基壳聚糖包覆多囊脂质体的包覆效率

    Institute of Scientific and Technical Information of China (English)

    曹金娜; 孙聚魁; 邓英杰; 董晓东

    2010-01-01

    目的 建立N-三甲基壳聚糖(N-trimethyl chitosan,TMC)含量测定方法,考察TMC包覆多囊脂质体(multivesicular liposomes,MVLs)的包覆效率.方法 利用电导率法测定TMC的质量浓度,并对该方法进行线性、精密度和回收率的考察.采用离心法分离游离的TMC与多囊脂质体,计算TMC包覆多囊脂质体的包覆效率,优化TMC包覆质量浓度及孵育时间.结果 TMC质量浓度在0.01~1.00 g·L-1内线性关系良好(r=0.999 7),日内和日间相对标准偏差小于3%(n=5),回收率为98.93%~102.8%(n=5).TMC包覆质量浓度为5 g·L-1时,孵育12 h,用此方法测定TMC包覆多囊脂质体的包覆效率为23.15%,RSD为4.33%.优化后,最佳TMC包覆质量浓度为5 g·L-1,孵育时间为4 h.结论 电导率法可用于测定TMC包覆多囊脂质体的包覆效率.

  12. Influence of montmorillonite on antimicrobial activity of tetracycline and ciprofloxacin

    Science.gov (United States)

    Lv, Guocheng; Pearce, Cody W.; Gleason, Andrea; Liao, Libing; MacWilliams, Maria P.; Li, Zhaohui

    2013-11-01

    Antibiotics are used not only to fight infections and inhibit bacterial growth, but also as growth promotants in farm livestock. Farm runoff and other farm-linked waste have led to increased antibiotic levels present in the environment, the impact of which is not completely understood. Soil, more specifically clays, that the antibiotic contacts may alter its effectiveness against bacteria. In this study a swelling clay mineral montmorillonite was preloaded with antibiotics tetracycline and ciprofloxacin at varying concentrations and bioassays were conducted to examine whether the antibiotics still inhibited bacterial growth in the presence of montmorillonite. Escherichia coli was incubated with montmorillonite or antibiotic-adsorbed montmorillonite, and then the number of viable bacteria per mL was determined. The antimicrobial activity of tetracycline was affected in the presence of montmorillonite, as the growth of non-resistant bacteria was still found even when extremely high TC doses were used. Conversely, in the presence of montmorillonite, ciprofloxacin did inhibit E. coli bacterial growth at high concentrations. These results suggest that the effectiveness of antimicrobial agents in clayey soils depends on the amount of antibiotic substance present, and on the interactions between the antibiotic and the clays in the soil, as well.

  13. Modified chitosans for biomedical applications

    OpenAIRE

    Yalınca, Zülal

    2013-01-01

    ABSTRACT: The subject of this thesis is the exploration of the suitability of chitosan and some of its derivatives for some chosen biomedical applications. Chitosan-graft-poly (N-vinyl imidazole), Chitosan-tripolyphosphate and ascorbyl chitosan were synthesized and characterized for specific biomedical applications in line with their chemical functionalities. Chitosan-graft-poly (N-vinyl imidazole), Chi-graft-PNVI, was synthesized by two methods; via an N-protection route and without N-pr...

  14. Preparation, characterization, mechanical, barrier and antimicrobial properties of chitosan/PVOH/clay nanocomposites.

    Science.gov (United States)

    Giannakas, Aris; Vlacha, Maria; Salmas, Constantinos; Leontiou, Areti; Katapodis, Petros; Stamatis, Haralambos; Barkoula, Nektaria-Marianthi; Ladavos, Athanasios

    2016-04-20

    In the current study low molecular weight poly(vinylalcohol) (PVOH) was used to prepare chitosan/PVOH blends and chitosan/PVOH/montmorillonite nanocomposites via a reflux - solution - heat pressing method. The effect of PVOH content and montmorillonite type (hydrophylic vs. organically modified) on the morphology, mechanical, thermomechanical, barrier and antimicrobial properties of the obtained polymer blends and nanocomposite films was studied. Higher amounts of PVOH (20 and 30%) resulted in plasticization of the films, with an increase in the elongation at break and decrease of the stiffness and the strength while effective blending between chitosan and PVOH chains was observed based on the XRD and DMA findings. Addition of PVOH was beneficial for water and oxygen barrier properties of the obtained films while it did not influence the antimicrobial activity of films against the growth of Escherichia coli. Intercalated structures were obtained after the addition of hydrophilic and organo-modified clays leading into stiffening of the nano-modified films and enhancement of their barrier and antimicrobial properties. PMID:26876868

  15. Use of Chitosan-modified Bentonite for Removal of Cu2+, Cl- and 2,4-Dichlorophenoxyacetic Acid (2,4-D from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Ba, K.

    2014-07-01

    Full Text Available Batch experiments were performed to investigate the removal of Cu2+ , Cl- , and 2,4-dichlorophe- noxyacetic acid (2,4-D from aqueous solution using chitosan-modified bentonite. When the chi-tosan was loaded on the bentonite, the inter-layer space of the montmorillonite increased and the adsorption efficiency enhanced, as chitosan contains large numbers of -NH2 and -OH functional groups that could serve as coordination sites to bind heavy metals. In this study, the bentonite that was prepared through three procedures: Na2CO3 treatment, thermal treatment and compound treatment, was modified by chitosan. Experimental results demonstrated that the average removal rates of Cu2+ , Cl-, and 2,4-D effectively were 94.87 %, 86.19 % and 91.06 %, respectively.

  16. In Vitro Biomineralization of Glutaraldehyde Crosslinked Chitosan/Glutamic Acid Films

    Institute of Scientific and Technical Information of China (English)

    FENG Fang; LIU Yu; ZHAO Binyuan; HU Keao

    2009-01-01

    In vitrobiomineralization ofglutaraldehyde crosslinked chitosan/glutamicacid films were studied. IR and ESCA (electron spectroscopy for chemical analysis) determinations confirm that chitosan and glutamic acid are successfully crosslinked by glutaraldehyde to form chitosan-glutamic acid surfaces. Composite films were soaked in saturated Ca(OH)2 solution for 8 d and then immersed in simulated body fluid (SBF) for more than 20 d. Morphological characterizations and structure of cal-cium phosphate coatings deposited on the films were studied by SEM, XRD, and EDAX (energy dispersive X-ray analysis). Initially, the treatment in SBF results in the formation of single-layer cal-cium phosphate particles over the film surface. As immersion time increases, further nucleation and growth produce the simulated calcium-carbonate hydroxyapatite coating. ICP results show Ca/P ratio of calcium phosphate coating is a function of SBF immersion time. The inducing of glutamic acid improves the biomineralization property of chitosan films.

  17. Fabrication of monodispersive nanoscale alginate–chitosan core–shell particulate systems for controlled release studies

    Energy Technology Data Exchange (ETDEWEB)

    Körpe, Didem Aksoy; Malekghasemi, Soheil; Aydın, Uğur; Duman, Memed, E-mail: memedduman@gmail.com [Hacettepe University, Institute of Science, Nanotechnology and Nanomedicine Division (Turkey)

    2014-12-15

    Biopolymers such as chitosan and alginate are widely used for controlled drug delivery systems. The present work aimed to develop a new protocol for preparation of monodisperse alginate-coated chitosan nanoparticles at nanoscale. Modifications of preparation protocol contain changing the pH of polymer solutions and adding extra centrifugation steps into the procedure. While chitosan nanoparticles were synthesized by ionic gelation method, they were coated with alginate by electrostatic interaction. The size, morphology, charge, and structural characterization of prepared core–shell nanoparticulated system were performed by AFM, Zeta sizer, and FTIR. BSA and DOX were loaded as test biomolecules to core and shell part of the nanoparticle, respectively. Release profiles of BSA and DOX were determined by spectrophotometry. The sizes of both chitosan and alginate-coated chitosan nanoparticles which were prepared by modified protocol were measured to be 50 ± 10 and 60 ± 3 nm, respectively. After loading BSA and DOX, the average size of the particles increased to 80 ± 7 nm. Moreover, while the zeta potential of chitosan nanoparticles was positive value, the value was inverted to negative after alginate coating. Release profile measurements of BSA and DOX were determined during 57 and 2 days, respectively. Our results demonstrated that monodisperse alginate-coated nanoparticles were synthesized and loaded successfully using our modified protocol.

  18. Herstellung von Chitosan und einige Anwendungen

    Science.gov (United States)

    Struszczyk, Marcin Henryk

    2001-05-01

    determined at low relative humidity. However, the mechanical strength measured at high relative humidity differ less than for paper sheet containing only MCChB. 5. Direct introduction of MCChB to a paper pulp forms the "web-like" structure of cellulose fibres and MCChB. The "web-like" structure of MCChB enables the faster biodecomposition of formed paper sheets. The precipitation of MCChB as wells as introduction of MCChB with proteins causes the "coat-like" structure. MCChB creates a thin layers coated the cellulose fibres lowering a biodecomposition rate. 6. The properties of paper sheets modified by MCChB such as: similar to cellulose biodegradation, excellent mechanical properties at rel. high humidity and the decrease in swelling properties as well as various possibilities to introduce MCChB allow to apple microcrystalline chitosan with or without proteins as the modificator of the fibre-water interactions in paper.

  19. Montmorillonite stability. With special respect to KBS-3 conditions

    Energy Technology Data Exchange (ETDEWEB)

    Karnland, Ola; Birgersson, Martin [Clay Technology AB, Lund (Sweden)

    2006-08-15

    The basic advantageous properties, e.g. low hydraulic conductivity and high swelling pressure, of the bentonite buffer in a KBS- repository stem from a strong interaction between water and the montmorillonite mineral in the bentonite. Minerals similar in structure but with substantially lower mineral-water interaction exist in nature. Transformations from montmorillonite to such minerals are observed e.g. in burial diagenesis and in contact metamorphism. A thermodynamic consideration confirms that medium and low charged montmorillonite is not in chemical equilibrium with quartz. From a safety assessment perspective it is therefore of vital importance to quantify the montmorillonite transformation under KBS- conditions. Silica release from the montmorillonite tetrahedral layers is the initial process for several possible transformations. Replacement of silica by aluminum increases the layer charge but maintains the basic atomic structure. A sufficiently high layer charge results in an irreversible collapse of the clay-water structure, i.e. a non-swelling mineral is formed. Compared to other cations, potassium as counter ion leads to a collapse at lower layer charge and the produced phase is generally termed illite. Montmorillonite-to-illite transformation is the most frequently found alteration process in nature. Three different kinetic illitization models are reviewed and the model proposed by Huang et al. is considered the most suitable for quantification in a KBS- repository, since the kinetic rate expression and its associated parameters are systematically determined by laboratory work. The model takes into account temperature, montmorillonite fraction and potassium concentration, but do not include relevant parameters such as pH, temperature gradients and water content. Calculations by use of the Huang illitization model applied for repository conditions yield insignificant montmorillonite transformation also under very pessimistic assumptions. Other non

  20. Antibacterial and Antibiofilm Effect of Low Viscosity Chitosan against Staphylococcus epidermidis.

    Science.gov (United States)

    Dragland, Inger Sofie; Rukke, Håkon Valen; Stenhagen, Ida S R; Lönn-Stensrud, Jessica; Kopperud, Hilde M

    2016-01-01

    Aim. The aim of this study was to investigate the antibacterial and antibiofilm properties of low viscosity chitosan on S. epidermidis growth and biofilm formation. Methods and Results. The antibacterial and antibiofilm properties were investigated, during both planktonic growth and biofilm formation. This was performed using different concentrations in media and by coating on polystyrene surfaces. In addition, the bactericidal effect was investigated using a modified direct contact test. The results showed that low viscosity chitosan in media had both a bacteriostatic and bactericidal effect on planktonic growth and biofilm formation of S. epidermidis in a concentration dependent manner. Polystyrene discs coated with chitosan reduced both early biofilm formation (6 h) and late biofilm formation (18 h), as confirmed by scanning electron microscopy. The modified direct contact test showed a bactericidal effect. Conclusion. This study demonstrated that low viscosity chitosan has a bacteriostatic and bactericidal activity against S. epidermidis and that the activity is dependent on the amount of chitosan added. In addition, low viscosity chitosan reduced biofilm formation both when added to media and when coated on polystyrene surfaces. Significance and Impact of Study. Low viscosity chitosan could be a contribution to new treatment approaches of biofilm-related infections of S. epidermidis. PMID:27635144

  1. Dispersion of chitosan on perlite for enhancement of copper(II) adsorption capacity.

    Science.gov (United States)

    Hasan, Shameem; Ghosh, Tushar K; Viswanath, Dabir S; Boddu, Veera M

    2008-04-01

    Chitosan coated perlite beads were prepared by drop-wise addition of slurry, made of chitosan dissolved in oxalic acid and perlite, to an alkaline bath (0.7 M NaOH). The beads that contained 32% chitosan enhanced the accessibility of OH and amine groups present in chitosan for adsorption of copper ions. The experiments using Cu(II) ions were carried out in the concentration range of 50-4100 mg/L (0.78-64.1 mmol/L). Adsorption capacity for Cu(II) was pH dependent and a maximum uptake of 104 mg/g of beads (325 mg/g of chitosan) was obtained at pH 4.5 when its equilibrium concentration in the solution was 812.5 mg/L at 298 K. The XPS and TEM data suggested that copper was mainly adsorbed as Cu(II) and was attached to amine groups. The adsorption data could be fitted to one-site Langmuir adsorption model. Anions in the solution had minimal effect on Cu(II) adsorption by chitosan coated perlite beads. EDTA was used effectively for the regeneration of the bed. The diffusion coefficient of Cu(II) onto chitosan coated beads was calculated from the breakthrough curve and was found to be 2.02 x 10(-8) cm(2)/s.

  2. Antibacterial and Antibiofilm Effect of Low Viscosity Chitosan against Staphylococcus epidermidis

    Directory of Open Access Journals (Sweden)

    Inger Sofie Dragland

    2016-01-01

    Full Text Available Aim. The aim of this study was to investigate the antibacterial and antibiofilm properties of low viscosity chitosan on S. epidermidis growth and biofilm formation. Methods and Results. The antibacterial and antibiofilm properties were investigated, during both planktonic growth and biofilm formation. This was performed using different concentrations in media and by coating on polystyrene surfaces. In addition, the bactericidal effect was investigated using a modified direct contact test. The results showed that low viscosity chitosan in media had both a bacteriostatic and bactericidal effect on planktonic growth and biofilm formation of S. epidermidis in a concentration dependent manner. Polystyrene discs coated with chitosan reduced both early biofilm formation (6 h and late biofilm formation (18 h, as confirmed by scanning electron microscopy. The modified direct contact test showed a bactericidal effect. Conclusion. This study demonstrated that low viscosity chitosan has a bacteriostatic and bactericidal activity against S. epidermidis and that the activity is dependent on the amount of chitosan added. In addition, low viscosity chitosan reduced biofilm formation both when added to media and when coated on polystyrene surfaces. Significance and Impact of Study. Low viscosity chitosan could be a contribution to new treatment approaches of biofilm-related infections of S. epidermidis.

  3. Dehydration transformation in Ca-montmorillonite

    Indian Academy of Sciences (India)

    P Bala; B K Samantaray; S K Srivastava

    2000-02-01

    The present work deals with the dehydration transformation of Ca-montmorillonite in the temperature range 30°–500°C. Thermal, infrared (IR), and X-ray diffraction (XRD) analyses were used to describe the thermal transformation. The microstructural and layer disorder parameters like crystallite size, r.m.s. strain ($\\langle e^2\\rangle^{1/2}$), variation of interlayer spacing (), and proportion of planes which were affected by the defect (), have all been calculated from the (001) basal reflection using the method of variance and Fourier line shape analysis. These investigations revealed that sample underwent transformation from hydrated phase to dehydrated phase at 200°C, and as a consequence, its basal spacing collapsed from 16.02 Å (30°C) to around 10 Å (200°C). This transformation occurred through a wide range of temperature, i.e. within the range 120°–200°C. The crystallite size was maximum at room temperature (30°C), however, the size decreased with increasing temperature in the hydrated phase, whereas the size increased with increasing temperature for the dehydrated phase. The , and $\\langle e^2\\rangle^{1/2}$ of the hydrated and the dehydrated phase increased and decreased, respectively with increase of heating temperature.

  4. Effect of compound organification of montmorillonite on the structure and properties of polypropylene/montmorillonite nanocomposites

    Institute of Scientific and Technical Information of China (English)

    HONG Haoqun; JIA Demin; HE Hui

    2007-01-01

    In this paper,reactive organic montmorillonite (RMMT),prepared with compound alkylammoniums,were used in ternary-monomer solid phase graft copolymerization in order to enhance the melting intercalation of montmoril-lonite (MMT),stabilize the intercalated structure,and prepare the exfoliated polypropylene/montrnorillonite (PP/MMT) nanocomposites (PPMN).The structure and properties of PPMN were studied by X-ray diffraction (XRD),Fourier transform infrared spectroscopy (FTIR),transmission elec-tron microscope (TEM),etc.Results show that the compound organification,solid phase graft copolymerization really favored the melting intercalation.The compound organifica- tion and exothermic process of the solid phase copolymeriza-tion promoted the melting intercalation.The mechanical properties,melt flow rate and Vicat softening point of PPMN significantly had a preferable reinforced state at 6-8 phr PP/MMT graft copolymers (PPGM).The increase of the mechanical properties and thermal properties was owed to the reinforcement of the exfoliated MMT and the compatibiliza-tion of the oligomers built by the polar monomers during the solid phase graft copolymerization.The improvement of the fluidity of PPMN derived from the plasticization of the exfoliated MMT and oligomers.

  5. Peptide Formation Mechanism on Montmorillonite Under Thermal Conditions

    Science.gov (United States)

    Fuchida, Shigeshi; Masuda, Harue; Shinoda, Keiji

    2014-02-01

    The oligomerization of amino acids is an essential process in the chemical evolution of proteins, which are precursors to life on Earth. Although some researchers have observed peptide formation on clay mineral surfaces, the mechanism of peptide bond formation on the clay mineral surface has not been clarified. In this study, the thermal behavior of glycine (Gly) adsorbed on montmorillonite was observed during heating experiments conducted at 150 °C for 336 h under dry, wet, and dry-wet conditions to clarify the mechanism. Approximately 13.9 % of the Gly monomers became peptides on montmorillonite under dry conditions, with diketopiperazine (cyclic dimer) being the main product. On the other hand, peptides were not synthesized in the absence of montmorillonite. Results of IR analysis showed that the Gly monomer was mainly adsorbed via hydrogen bonding between the positively charged amino groups and negatively charged surface sites (i.e., Lewis base sites) on the montmorillonite surface, indicating that the Lewis base site acts as a catalyst for peptide formation. In contrast, peptides were not detected on montmorillonite heated under wet conditions, since excess water shifted the equilibrium towards hydrolysis of the peptides. The presence of water is likely to control thermodynamic peptide production, and clay minerals, especially those with electrophilic defect sites, seem to act as a kinetic catalyst for the peptide formation reaction.

  6. Chitosan-collagen/organomontmorillonite scaffold for bone tissue engineering

    Science.gov (United States)

    Cao, Xianshuo; Wang, Jun; Liu, Min; Chen, Yong; Cao, Yang; Yu, Xiaolong

    2015-12-01

    A novel composite scaffold based on chitosan-collagen/organomontmorillonite (CS-COL/OMMT) was prepared to improve swelling ratio, biodegradation ratio, biomineralization and mechanical properties for use in tissue engineering applications. In order to expend the basal spacing, montmorillonite (MMT) was modified with sodium dodecyl sulfate (SDS) and was characterized by XRD, TGA and FTIR. The results indicated that the anionic surfactants entered into interlayer of MMT and the basal spacing of MMT was expanded to 3.85 nm. The prepared composite scaffolds were characterized by FTIR, XRD and SEM. The swelling ratio, biodegradation ratio and mechanical properties of composite scaffolds were also studied. The results demonstrated that the scaffold decreased swelling ratio, degradation ratio and improved mechanical and biomineralization properties because of OMMT.

  7. 季铵化程度对N-三甲基壳聚糖包衣的司帕沙星脂质体体外性质的影响%Effect of degree of quaternization on the in vitro properties of N-trimethyl chitosan-coated sparfloxacin liposomes

    Institute of Scientific and Technical Information of China (English)

    彭爱华; 郭咸希; 何文

    2012-01-01

    目的 研究不同季铵化程度(DQ)N-三甲基壳聚糖(TMC)包衣后,对司帕沙星脂质体(SFL)体外性质的影响.方法 制备未包衣及TMC包衣的SFL,对其形态、粒径、Zeta电位、包封率(EE)及体外释药特性进行考察.结果 与未包衣SFL相比,TMC包衣SFL的粒径增大,Zeta电位由负转正,体外释药速率明显降低,而EE无明显变化.随着DQ的增大,呈现粒径、Zeta电位逐渐增加,而体外释药速率逐渐降低的趋势.结论 DQ对TMC包衣SFL的体外性质有一定的影响.%Objective To explore the effect of degree of quaternization( DQ ) on the in vitro properties of N-trimethyl chitosan ( TMC )-coated sparfloxacin liposomes( SFL ). Methods The morphology, size, Zeta potential, entrapment efficacy( EE ) and the in vitro drug release of SFL with and without TMC-coating were compared. Results Compared with un-coated SFL, the size of TMC-coated SFL was increased,Zeta potential changed from negative charge to positive charge, the drug release rate was decreased, while EE kept stable. With the increase of DQ,both the size and the Zeta potential of TMC-coated SFL were increased,and the drug release rate was reduced gradually. Conclusion DQ of TMC may have effect on the in vitro properties of TMC-coated SFL to some extent.

  8. Chitosan in Plant Protection

    OpenAIRE

    Abdelbasset El Hadrami; Adam, Lorne R.; Ismail El Hadrami; Fouad Daayf

    2010-01-01

    Chitin and chitosan are naturally-occurring compounds that have potential in agriculture with regard to controlling plant diseases. These molecules were shown to display toxicity and inhibit fungal growth and development. They were reported to be active against viruses, bacteria and other pests. Fragments from chitin and chitosan are known to have eliciting activities leading to a variety of defense responses in host plants in response to microbial infections, including the accumulation of ph...

  9. Chitosan against cutaneous pathogens

    OpenAIRE

    Champer, Jackson; Patel, Julie; Fernando, Nathalie; Salehi, Elaheh; Wong, Victoria; Kim, Jenny

    2013-01-01

    Propionibacterium acnes and Staphylococcus aureus are cutaneous pathogens that have become increasingly resistant to antibiotics. We sought to determine if chitosan, a polymer of deacetylated chitin, could be used as a potential treatment against these bacteria. We found that higher molecular weight chitosan had superior antimicrobial properties compared to lower molecular weights, and that this activity occurred in a pH dependent manner. Electron and fluorescence microscopy revealed that chi...

  10. Research on the Effect of Chitosan Coating Enriched with Clove Oil on the Quality of Cherry Tomatoes%壳聚糖丁香精油生物涂膜保鲜剂对圣女果品质的影响

    Institute of Scientific and Technical Information of China (English)

    芮光伟; 邢亚阁; 许青莲; 张丽珠

    2014-01-01

    将壳聚糖丁香精油涂膜保鲜剂用于圣女果贮藏保鲜,果实在8℃条件下贮藏12 d,对照组果实失重率、腐烂率、可滴定酸含量、Vc含量、PPO活性和感官评价分别为6.45%、17.3%、0.33%、4.36 mg/100g、9.87 U/g和3.80分,而经壳聚糖丁香精油涂膜保鲜剂处理的样品分别为3.12%、4.7%、0.53%、5.93mg/100g、14.87U/g 和6.7分。结果表明,壳聚糖丁香生物保鲜剂可有效抑制鲜圣女果果实的腐烂,较好地保持果实品质,一定程度上可延长货架期。%The application of chitosan coating enriched clove oil in the quality of cherry tomato was investigated .After stored at 8° C for 15 days, the weight loss ratio, decay ratio, vitamin C content, tritatable acidity content, PPO activity and sensory acceptability scores for control samples were 36.45%、17.3%、0.33%,4.36mg/100g、9.87U/g and 3.80 scores,respectively, which were 3.12%, 4.7%、0.53%、5.93mg/100g、14.87U/g and 6.7 scores for the samples treated by chitosan -oil coating respectively .The combined treatment of chitosan coating and clove oil showed lowest microbial growth and could keep the quality of cherry tomato .The shelf life of cherry tomato was extended .

  11. The Effect of Chitosan and Sodium Alginate on the Root Growth and Enzyme Activity of Soybean

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The resaerch examined the effect of the two oceanic materials as coating materials on the soybean growth. The results showed chitosan and sodium alginate seed coating can enhance the growth of seedling root,increase the nodule mumber,root activity and the growth of underground. The suggested coating ratios were 0. 5~ 1.0g/kgseed,the same as chitosan. The two materials could increase the contents of CAT and NR in soybean leaves ,decrease the contents of POD in soybean leaves.

  12. Targeted chitosan-based bionanocomposites for controlled oral mucosal delivery of chlorhexidine.

    Science.gov (United States)

    Onnainty, Renée; Onida, Barbara; Páez, Paulina; Longhi, Marcela; Barresi, Antonello; Granero, Gladys

    2016-07-25

    The purpose of this study was to develop sustained release systems based on chitosan (CS) and montmorillonite (MMT) for chlorhexidine (CLX). Nanocomposites were prepared by ion-exchange. CLX systems were characterized by X-ray powder diffraction (XRD), thermal analysis (TGA), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray fluorescence analysis (XRF). The mucoadhesion properties of CLX nanocomposites were evaluated by SEM. The release behavior of these systems was also studied by the dialysis technique. The antibacterial activity was investigated in vitro by the disk diffusion test. Results showed long-term sustained release of CLX from the hybrid carriers without initial burst release. The release profiles of CLX from the carriers suggested the diffusion through a swollen matrix and water filled pores as the controlled drug release mechanism. The CLX hybrid nanosystem containing the positively-charged chitosan exhibited good mucoadhesion properties maintaining the CLX antimicrobial properties. PMID:27282538

  13. Characterization of chitosan-nanoclay bionanocomposite active films containing milk thistle extract.

    Science.gov (United States)

    Beigzadeh Ghelejlu, Sara; Esmaiili, Mohsen; Almasi, Hadi

    2016-05-01

    Nowadays, bio-based and antioxidant active packaging is attracting significant attention as one of the preferred emerging technologies to prevent sensitive oxidation of foods. In this study, chitosan/nanoclay nanocomposite active films containing three different levels of sodium montmorillonite (MMT) (1, 3 and 5% w/w based on chitosan) and Silybum marianum L. extract (SME) (0.5, 1 and 1.5% v/v) were prepared. The obtained films were characterized in terms of structural, thermal, mechanical, and barrier properties as well as antioxidant behavior. X-ray diffraction patterns confirmed the exfoliated dispersion form of MMT nanolayers. Scanning electron microscopy images showed an increase in films' surface roughness by the addition of MMT. The results indicated that water vapor permeability and solubility of films reduced significantly (ppackaging material. PMID:26853823

  14. Influence of interlayer cations on organic intercalation of montmorillonite.

    Science.gov (United States)

    Wu, Limei; Liao, Libing; Lv, Guocheng

    2015-09-15

    The influence of the types of interlayer cations on organic intercalation of montmorillonite (Mt) was studied in this paper. The distribution of Na(+), K(+), Mg(2+), Ca(2+) and Fe(3+) in montmorillonite interlayer, their interaction with structure layers and the effect of interlayer cations on the basal spacing of Mt, the amount of binding water for different interlayer cations and the binding force between them were investigated systematically. 1-Hexadecy1-3-methylimidazolium chloride monohydrate (C16mimCl) was intercalated into montmorillonites with different interlayer cations. The influence of interlayer cations on organic intercalation was investigated. Molecular dynamics (MD) modeling was used to speculate the interlayer microstructures of the organically intercalated Mt with different interlayer cations. These simulations help to predict the microstructure of organo-Mt and guide their relevant engineering applications. PMID:26001131

  15. In Vitro Biomineralization of Glutaraldehyde Crosslinked Chitosan Films

    Institute of Scientific and Technical Information of China (English)

    FENG Fang; LIU Yu; ZHAO Binyuan; HU Ke'ao

    2005-01-01

    The biomimetic approach was applied to study the in vitro biomineralization of series of the chitosan films crosslinked by glutaraldehyde. The deposited calcium phosphate coatings were studied using scanning electron microscopy and energy dispersive X-ray analysis. Initially, the treatment in simulated body fluid (SBF) results in the formation of single layer of calcium phosphate particles over the film surface. As immersion time in SBF increases, further nucleation and growth produce a simulated calcium phosphate coating. The Ca/P molar ratio of the calcium phosphate increases with the immersion time, showing a rapid formation of calcium-deficient phosphate material from the phase of octac1alcium phosphate. The different glutaraldehyde crosslinking degree influences the morphology and magnitude of the calcium phosphate coatings on the surface of the chitosan films.

  16. A comparative study on the efficiency of chitosan-N-acetylcysteine, chitosan oligosaccharides or carboxymethyl chitosan surface modified nanostructured lipid carrier for ophthalmic delivery of curcumin.

    Science.gov (United States)

    Li, Jinyu; Liu, Dandan; Tan, Guoxin; Zhao, Zhinan; Yang, Xinggang; Pan, Weisan

    2016-08-01

    To develop a potential nanocarrier for the topical ocular administration of curcumin (CUR), a novel thiolated chitosan was synthesized by the covalent binding between N-acetyl-l-cysteine (NAC) and chitosan (CS) to surface modify the nanostructured lipid carrier loaded CUR (CUR-NLC). And the superiorities of the CS-NAC co polymer coated CUR-NLC over chitosan oligosaccharides (COS) or carboxymethyl chitosan (CMCS) modification were also verified in detail. As expected, the increment in particle size and the reversal of zeta potential occurred after surface decorating, and the most prominent electropositivity was obtained for the CS-NAC-CUR-NLC group. Additionally, the utilization of the CS-NAC coating demonstrated an effectively controlled release over 72h and attained a 6.4 and 18.8 fold increase in apparent permeability coefficients (Papp) compared with the CUR-NLC and the self-made eye drops, respectively. Meanwhile, the clearance rate of the NLC labeled with Rhodamine B was significantly delayed in the presence of CS-NAC. By contrast, CS-NAC-CUR-NLC was superior to the COS and CMCS coated ones in view of in vitro release, drug permeability and corneal retention. Moreover, the results of the in-vivo and in-vitro characteristics demonstrated that the promoting effect of CMCS coating was relatively weaker than COS coated ones. Ocular irritation test was executed on the CS-NAC-CUR-NLC, neither a sign of toxicity nor irritation to the external ocular tissues was observed. In conclusion, CS-NAC-CUR-NLC possesses a greater potential as an ocular drug-delivery system comparing with the COS-CUR-NLC and CMCS-CUR-NLC. PMID:27112894

  17. Possible selective adsorption of enantiomers by Na-montmorillonite

    Science.gov (United States)

    Friebele, E.; Shimoyama, A.; Ponnamperuma, C.

    1981-01-01

    Racemic amino acids including (D,L) alpha-alamine, (D,L) alpha-aminobutyric acid, (D,L) valine, and (D,L) norvaline were incubated with Na-montmorillonite at 100% CEC at three hydrogen ion concentrations, and amino acid adsorption was determined by ion exchange chromatography. Enantiomers were analyzed by gas chromatography. Differences in the quantities of D and L enantiomers in any of the fractions was no larger than a few percent. Although a large difference in the adsorption of the amino acid enantiomers was not observed, the analysis may indicate a small preferential adsorption (0.5-2%) of L-amino acids by Na-montmorillonite.

  18. The Dynamic Viscoelasticity of Polyethylene Based Montmorillonite Intercalated Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    Hong Mei YANG; Qiang ZHENG

    2004-01-01

    The viscoelastic behavior of melts for two systems composed of intercalated nanocomposites based on low density polyethylene and 3 wt% loading of cetyltrimethyl-ammonium bromide modified montmorillonite was studied. The results obtained through examining the dynamic storage module G'and dynamic loss module G" values of the composite revealed that the dynamic viscoelastic properties of composite strongly depended on intercalation of polymer, and exhibited dramatically change with altering intercalation conditions. Only when modified montmorillonite content was about 3 wt%, the composite showed a trend of pseudo-solidlike at lower frequencies.

  19. Composite polysaccharide fibers prepared by electrospinning and coating

    OpenAIRE

    Maeda, N; Miao, J; Simmons, T.J.; Dordick, J S; Linhardt, R.J.

    2013-01-01

    Composite polysaccharide fibers composed two oppositely charged natural polysaccharides, chitosan and hyaluronic acid, were prepared by electrospinning and subsequent coating The fiber size distribution was characterized by scanning electron microscopy. Chitosan/hyaluronic acid composite fibers were stable in water but showed controlled release of hyaluronic acid into phosphate buffered saline, and the presence of 3-wt% hyaluronic acid coating improved the swelling ratio to 30%. The resulting...

  20. Two-step preparation of nano-scaled magnetic chitosan particles using Triton X-100 reversed-phase water-in-oil microemulsion system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhengkun; Jiang, Feihong [College of Food Science and Engineering, Northwest A and F University, Yangling, Shaanxi 712100 (China); Lee, Tung-Ching, E-mail: lee@aesop.rutgers.edu [Department of Food Science, Rutgers, the State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901 (United States); Yue, Tianli, E-mail: yuetl305@nwsuaf.edu.cn [College of Food Science and Engineering, Northwest A and F University, Yangling, Shaanxi 712100 (China)

    2013-12-25

    Highlights: •A new two-step route for nano-scaled magnetic chitosan particles preparation. •Triton X-100 reversed-phase microemulsion system was used for chitosan coating. •Narrow size distribution of magnetic chitosan nanoparticles was achieved. •Quantitative evaluation of recoverability for the magnetic chitosan nanoparticles. -- Abstract: A new two-step route for the preparation of nano-scaled magnetic chitosan particles has been developed, different from reported one-step in situ preparation and two-step preparation method of reversed-phase suspension, Triton X-100 reversed-phase water-in-oil microemulsion encapsulation method was employed in coating the pre-prepared Fe{sub 3}O{sub 4} nanoparticles with chitosan. The resultant magnetic chitosan particles owned a narrow size distribution ranging from 50 to 92 nm. X-ray diffraction patterns (XRD) indicated that the chitosan coating procedure did not change the spinal structure of Fe{sub 3}O{sub 4} magnetic nanoparticles. The results of Fourier transform infrared (FTIR) analysis and thermogravimetric analysis (TGA) demonstrated that the chitosan was coated on Fe{sub 3}O{sub 4} nanoparticles and its average mass content was ∼50%. The saturated magnetization of the magnetic Fe{sub 3}O{sub 4}/chitosan nanoparticles reached 18.62 emu/g, meanwhile, the nanoparticles showed the characteristics of superparamagnetism. The magnetic chitosan nanoparticles showed a high recoverability of 99.99% in 10 min when pH exceeded 4. The results suggested that the as-prepared magnetic chitosan particles were nano-scaled with a narrow size distribution and a high recoverability.

  1. Two-step preparation of nano-scaled magnetic chitosan particles using Triton X-100 reversed-phase water-in-oil microemulsion system

    International Nuclear Information System (INIS)

    Highlights: •A new two-step route for nano-scaled magnetic chitosan particles preparation. •Triton X-100 reversed-phase microemulsion system was used for chitosan coating. •Narrow size distribution of magnetic chitosan nanoparticles was achieved. •Quantitative evaluation of recoverability for the magnetic chitosan nanoparticles. -- Abstract: A new two-step route for the preparation of nano-scaled magnetic chitosan particles has been developed, different from reported one-step in situ preparation and two-step preparation method of reversed-phase suspension, Triton X-100 reversed-phase water-in-oil microemulsion encapsulation method was employed in coating the pre-prepared Fe3O4 nanoparticles with chitosan. The resultant magnetic chitosan particles owned a narrow size distribution ranging from 50 to 92 nm. X-ray diffraction patterns (XRD) indicated that the chitosan coating procedure did not change the spinal structure of Fe3O4 magnetic nanoparticles. The results of Fourier transform infrared (FTIR) analysis and thermogravimetric analysis (TGA) demonstrated that the chitosan was coated on Fe3O4 nanoparticles and its average mass content was ∼50%. The saturated magnetization of the magnetic Fe3O4/chitosan nanoparticles reached 18.62 emu/g, meanwhile, the nanoparticles showed the characteristics of superparamagnetism. The magnetic chitosan nanoparticles showed a high recoverability of 99.99% in 10 min when pH exceeded 4. The results suggested that the as-prepared magnetic chitosan particles were nano-scaled with a narrow size distribution and a high recoverability

  2. Preparation and Characterization of Ferrofluid Stabilized with Biocompatible Chitosan and Dextran Sulfate Hybrid Biopolymer as a Potential Magnetic Resonance Imaging (MRI) T2 Contrast Agent

    OpenAIRE

    Tzu-Chen Yen; Chia-Rui Shen; Wei-Cheng Yang; Chao-Lin Liu; Jen-Fei Wang; Fu-Yuan Tsai; Zei-Tsan Tsai

    2012-01-01

    Chitosan is the deacetylated form of chitin and used in numerous applications. Because it is a good dispersant for metal and/or oxide nanoparticle synthesis, chitosan and its derivatives have been utilized as coating agents for magnetic nanoparticles synthesis, including superparamagnetic iron oxide nanoparticles (SPIONs). Herein, we demonstrate the water-soluble SPIONs encapsulated with a hybrid polymer composed of polyelectrolyte complexes (PECs) from chitosan, the positively charged polyme...

  3. Preparation and Characterization of Chitosan/Ethylcellulose Complex Microcapsule%壳聚糖/乙基纤维素微胶囊的制备及特性

    Institute of Scientific and Technical Information of China (English)

    史新元; 谭天伟

    2003-01-01

    In this work a system which consists of chitosan microcores entrapped in ethylcellulose is presented.Vitamin D2 was efficiently entrapped in chitosan microcores with spray-drying method and was microencapsulatedby coating of ethylcellulose. The average size of chitosan microspheres was 6.06 μm. The morphology and releaseproperties of microcapsules were tested. The results of release in vitro showed that the microcapsule could realizesustained release for 12 h in artificial intestinal juice.

  4. Behaviour of bentonite/montmorillonite gel at low ionic strength

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. In the Swedish KBS-3 concept for a geological deep storage of spent nuclear fuel, bentonite of high montmorillonite content is proposed to serve as a buffer surrounding copper canisters containing the spent fuel. Montmorillonite has an exceptional affinity for water which results in the build-up of a swelling pressure when bentonite is placed in a confined volume. There may be fractures intersecting the deposition hole and at those fractures the bentonite is not restricted but can continue to swell until a steady state is reached. Under present day Swedish groundwater conditions the swelling into fractures will be limited because the montmorillonite at the swelling front will coagulate. However, at the end of a glaciation one cannot exclude that glacial meltwater of low ionic strength will permeate the bedrock. This could cause erosion of the bentonite, due to colloidal sol formation at the swelling front. A homo-ionic Ca-montmorillonite would not pose any problem because it has limited swelling due to attraction forces caused by ion correlations. In homo-ionic Na-montmorillonite, on the other hand, the correlation interactions are weak and cannot prevent the sol formation in case the montmorillonite is contacted with water of low ionic strength. Under repository conditions the montmorillonite is not homo-ionic, but contains a variety of counterions, both mono- and divalent. It was demonstrated earlier that for mixed Ca/Na-montmorillonite the sol-formation ability is much more sensitive to the ionic strength of the electrolyte than homo-ionic Na-montmorillonite. In deionized water sol formation occurs unless the equivalent charge fraction of Ca2+ is 90% or higher. However in electrolyte solution it was found that the sol is unstable if the ionic strength is above 4 mM. The investigated cases indicate that this condition holds even if the charge fraction of Ca2+ in the interlayer is as low as 20%. In this work it is

  5. Study on Preservation Effect of Compound Coating Antistaling Agent of Chitosan on Crataegus P/nnat/fida at Room Temperature%壳聚糖多糖涂膜保鲜剂对山楂常温贮藏效果的影响

    Institute of Scientific and Technical Information of China (English)

    石磊

    2012-01-01

    In this study,the preservation effects of compound coating antistaling agent of polysaccharide on Crataegus pinnatifida with temperature 28-32℃ and relative humidity 68%~86% were investigated.The antistaling agent was composed of chitosan for the coating matrix,and glycerin as film-forming additives.The results showed that compared with the control group ,the rotten fruit rate and weightloss rates of the Crataegus pinnatifida preserved by the compound coating antistaling agent of edible polysaceharide were lower, the conversion of content of total Vc was inhibited, and the senescence process was restrained, the storage and the shelf life was extended.%以壳聚糖为涂膜基质,以甘油为成膜助剂,配制成多糖涂膜保鲜剂,研究了温度28—32℃,相对湿度68%-86%下该多糖涂膜保鲜剂对山楂品质的影响。结果表明,常温下经壳聚糖涂膜保鲜剂涂膜保鲜的山楂与对照组相比,果实的霉烂率、失重率明显降低,Vc转化、流失的速度减慢,延缓了果实的衰老,从而延长了其常温贮藏期。

  6. Barrier Properties of Polylactic Acid in Cellulose Based Packages Using Montmorillonite as Filler

    Directory of Open Access Journals (Sweden)

    Daniela Sánchez Aldana

    2014-09-01

    Full Text Available Polylactic acid (PLA and montmorillonite (CB as filler were studied as coatings for cellulose based packages. Amorphous (AM and semi crystalline (SC PLA were used at different concentrations according to a 2 × 6 × 3 full factorial experimental design. CB loading was three concentrations and coating was performed by casting. Contact angle (CA, water vapor (WVP and grease permeabilities were measured for each resultant package and were compared to commercial materials (Glassine Paper, Grease Proof Papers 1 and 2 produced commercially. Significant differences were found and the main factors were the type and concentration of PLA. The best values were: for grease penetration, +1800 s; WVP from 161.36 to 237.8 g·µm·kPa−1·m−2·d−1 and CA from 69° to 73° for PLA–AM 0.5% and CB variable. These parameters are comparable to commercial packages used in the food industry. DSC revealed three different thermal events for PLA–SC and just Tg for PLA–AM. Crystallinity was also verified, obtaining a ΔHcrys of 3.7 J·g−1 for PLA–SC and 14 J·g−1 for PLA–SC–BC, evidencing clay interaction as a crystal nucleating agent. Differences found were explained on terms of the properties measured, where structural and chemical arrays of the coatings play a fundamental role for the barrier properties.

  7. Applications of chitosan nanoparticles in drug delivery.

    Science.gov (United States)

    Tajmir-Riahi, H A; Nafisi, Sh; Sanyakamdhorn, S; Agudelo, D; Chanphai, P

    2014-01-01

    We have reviewed the binding affinities of several antitumor drugs doxorubicin (Dox), N-(trifluoroacetyl) doxorubicin (FDox), tamoxifen (Tam), 4-hydroxytamoxifen (4-Hydroxytam), and endoxifen (Endox) with chitosan nanoparticles of different sizes (chitosan-15, chitosan-100, and chitosan-200 KD) in order to evaluate the efficacy of chitosan nanocarriers in drug delivery systems. Spectroscopic and molecular modeling studies showed the binding sites and the stability of drug-polymer complexes. Drug-chitosan complexation occurred via hydrophobic and hydrophilic contacts as well as H-bonding network. Chitosan-100 KD was the more effective drug carrier than the chitosan-15 and chitosan-200 KD. PMID:24567139

  8. Effects of Heat Shock Treatment and Chitosan Coating on Preservation of Water Bamboo Without Shell at Room Tempreature%热激处理和壳聚糖涂膜对去壳茭白常温保鲜的影响

    Institute of Scientific and Technical Information of China (English)

    冯寅洁; 应铁进

    2009-01-01

    研究了热激处理、壳聚糖涂膜、热激处理后涂膜对常温贮藏去壳茭白品质的影响.结果表明:与对照相比,38℃热水浸泡15 min后用1.5%壳聚糖溶液涂膜处理可以显著降低茭自在贮藏期的失重率、色差、呼吸强度、丙二醛(MDA)含量、总酚含量、苯丙氨酸酶(PAL)活力、多酚氧化酶(PPO)活力和过氧化物酶(POD)活力,并使茭白保持较高的硬度、V_c含量、可溶性还原糖含量.%Effects of heat shock treatment,chitosan coating or combined treatments on qualities of water bamboo (Zizania latifolia) without shell preserved at Room temperature were studied. Results showed that compared with the control group,the combined treatments with hot water at 38℃ for 15min and 1.5% chitosan coating reduced the rate of weight loss,color difference,respiration intensity,the content of MDA,the content of total phenols,the activity of enzymes ( such as PAL,PPO and POD ) significantly during the storage period. Besides,hardness,V_c and soluble reducing sugar content of the treated group were remained relatively high.

  9. Synthesis of PVA-Chitosan Hydrogels for Wound Dressing Using Gamma Irradiation. Part II: Antibacterial Activity of PVA/Chitosan Hydrogel Synthesized by Gamma Irradiation

    International Nuclear Information System (INIS)

    Poly(vinyl alcohol) (PVA) is a synthetic polymer used in a large range of medical, commercial, industrial and food applications, manufacture of paper products, surgical threads, wound care, and food-contact applications. It was recently used as a coating for dietary supplements and pharmaceutical capsules. Cross-linked PVA microspheres are also used for controlled release of oral drugs. Chitin, a polysaccharide from which chitosan is derived, is the second most abundant natural polysaccharide after cellulose. Chitin is obtained from the exoskeletons (crab, shrimps and squid pen) fungi, insects, and some algae. Chitosan, a non toxic and biocompatible cationic polysaccharide, is produced by partial deacetylation of chitin; these properties of chitosan provide high potential for many applications. Chitosan has been widely used in vastly diverse fields, such as in biomedical applications drug delivery in agriculture metal ion sorption. The most important characteristic of chitosan is the deacetylation degree (DD) which influences its physical and chemical behaviors. Evaluation of DD can be carried out by FT-IR spectroscopy potentiometric titration, first derivative UV spectrophotometry, 1H-NMR and X-ray diffraction. Chitosan extracted from squid pen chitin is inherently purer than crustacean chitosans, it does not contain large amounts of calcium carbonate, and it does contain large amounts of protein. The purity of squid pen chitosan makes it particularly suitable for medical and cosmetic application. Application of radiation for the formation of hydrogels for medical use offers a unique possibility to combine the formation and sterilization of the product in a single technological step. The main aim of this study is to synthesis poly(vinyl alcohol) hydrogels containing different moieties of chitosan by gamma irradiation at a dose of 25 kGy, and investigate the antibacterial effect of chitosan contained in the hydrogel

  10. Electric birefringence spectroscopy of montmorillonite particles.

    Science.gov (United States)

    Arenas-Guerrero, Paloma; Iglesias, Guillermo R; Delgado, Ángel V; Jiménez, María L

    2016-06-14

    Electric birefringence (EB) of suspensions of anisotropic particles can be considered an electrokinetic phenomenon in a wide sense, as both liquid motions and polarization of the electrical double layer (EDL) of the particles participate in the process of particle orientation under the applied field. The EB spectrum can be exploited for obtaining information on the dimensions, average value and anisotropy of the surface conductivity of the particles, and the concentration and Maxwell-Wagner polarization of the EDLs. It is thus a highly informative technique, applicable to non-spherical particles. In this paper, we investigate the birefringent response of plate-like montmorillonite particles as a function of the frequency and amplitude of the applied AC electric field, for different compositions (pH, ionic strength, particle concentration) of the suspensions. The transient electric birefringence (i.e., the decay of the refractive index anisotropy with time when the field is switched off) is used for estimating the average dimensions of the particle axes, by modeling it as an oblate spheroid. The obtained values are very similar to those deduced from electron microscopy determinations. The frequency spectra show a very distinct behaviour at low (on the order of a few Hz) and high (up to several MHz) frequencies: the α and Maxwell-Wagner-O'Konski relaxations, characteristic of EDLs, are detected at frequencies above 10 kHz, and they can be well explained using electrokinetic models for the polarization of EDLs. At low frequencies, in contrast, the birefringence changes to negative, an anomalous response meaning that the particles tend to orient with their symmetry axis parallel to the field. This anomaly is weaker at basic pH values, high ionic strengths and low concentrations. The results can be explained by considering the polydispersity of real samples: the fastest particles redistribute around the slowest ones, inducing a hydrodynamic torque opposite to that of

  11. Improving the controlled delivery formulations of caffeine in alginate hydrogel beads combined with pectin, carrageenan, chitosan and psyllium.

    Science.gov (United States)

    Belščak-Cvitanović, Ana; Komes, Draženka; Karlović, Sven; Djaković, Senka; Spoljarić, Igor; Mršić, Gordan; Ježek, Damir

    2015-01-15

    Alginate-based blends consisting of carrageenan, pectin, chitosan or psyllium husk powder were prepared for assessment of the best formulation aimed at encapsulation of caffeine. Alginate-pectin blend exhibited the lowest viscosity and provided the smallest beads. Alginate-psyllium husk blend was characterised with higher viscosity, yielding the largest bead size and the highest caffeine encapsulation efficiency (83.6%). The release kinetics of caffeine indicated that the porosity of alginate hydrogel was not reduced sufficiently to retard the diffusion of caffeine from the beads. Chitosan coated alginate beads provided the most retarded release of caffeine in water. Morphological characteristics of beads encapsulating caffeine were adversely affected by freeze drying. Bitterness intensity of caffeine-containing beads in water was the lowest for alginate-psyllium beads and chitosan coated alginate beads. Higher sodium alginate concentration (3%) for production of hydrogel beads in combination with psyllium or chitosan coating would present the most favourable carrier systems for immobilization of caffeine.

  12. Chemical composition and surface charge properties of montmorillonite

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-wen; HU Min; HU Yue-hua

    2008-01-01

    The effects of the cell parameter and chemical composition on the surface charge properties of five kinds of different colour montmorillonites were studied. The results indicate that the surface isoelectric point(IEP) of the montmorillonite shows positive correlation with the mass fractions of Fe2O3 and K20, but it has little relation to the mass fractions of other chemical compositions. At around pH=6.8, the surface zeta potential of the montmorillonite shows the negative relationship with the mass fractions of Fe2O3 and MgO, but it does not linearly correlate to the mass fractions of other chemical compositions. Cell parameter(b0) of the montmofillonite expresses negative linear relationship with mass fractions of K2O and Na2O, so does c0sinβ with mass fractions of SiO2 and Fe2O3. And there is no specific relationship between bo and IEP of different montmori Uonites, but there is positive correlation between c0sinβ and IEP of different montmorillonite samples.

  13. Polynaphthoxazines-Montmorillonite Nanocomposites:Synthesis and Characterization

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Polynaphthoxazines-clay nanocomposites were prepared from 1, 5-dihydroxynaphthalene, aniline, formaldehyde and different proportion montmorillonite(MMT) by in-situ reaction in ethanol. Dynamic TGA showed that nanocomposites have delayed decomposition temperatures when compared with pristine polynaphthoxazine indicating the enhancement in the thermal stability.

  14. Generation, stability and migration of montmorillonite colloids in aqueous systems

    International Nuclear Information System (INIS)

    In Sweden the encapsulated nuclear waste will be surrounded by compacted bentonite in the granitic host rock. In contact with water-bearing fractures the bentonite barrier may release montmorillonite colloids that may be further transported in groundwater. If large amounts of material are eroded from the barrier, the buffer functionality can be compromised. Furthermore, in the scenario of a leaking canister, strongly sorbing radionuclides, can be transported by montmorillonite colloids towards the biosphere. This thesis addresses the effects of groundwater chemistry on the generation, stability, sorption and transport of montmorillonite colloids in water bearing rock fractures. To be able to predict quantities of montmorillonite colloids released from the bentonite barrier in contact with groundwater of varying salinity, generation and sedimentation test were performed. The aim is first to gain understanding on the processes involved in colloid generation from the bentonite barrier. Secondly it is to test if concentration gradients of montmorillonite colloids outside the barrier determined by simple sedimentation experiments are comparable to generation tests. Identical final concentrations and colloid size distributions were achieved in both types of tests. Colloid stability is strongly correlated to the groundwater chemistry. The impact of pH, ionic strength and temperature was studied. Aggregation kinetics experiments revealed that for colloid aggregation rate increased with increasing ionic strength. The aggregation rate decreased with increasing pH. The temperature effect on montmorillonite colloid stability is pH-dependent. At pH≤4, the rate constant for colloid aggregation increased with increasing temperature, regardless of ionic strength. At pH≥10, the aggregation rate constant decreased with increasing temperature. In the intermediate pH interval, the aggregation rate constant decreased with increasing temperature except at the highest ionic strength

  15. Chitosan in Plant Protection

    Directory of Open Access Journals (Sweden)

    Abdelbasset El Hadrami

    2010-03-01

    Full Text Available Chitin and chitosan are naturally-occurring compounds that have potential in agriculture with regard to controlling plant diseases. These molecules were shown to display toxicity and inhibit fungal growth and development. They were reported to be active against viruses, bacteria and other pests. Fragments from chitin and chitosan are known to have eliciting activities leading to a variety of defense responses in host plants in response to microbial infections, including the accumulation of phytoalexins, pathogen-related (PR proteins and proteinase inhibitors, lignin synthesis, and callose formation. Based on these and other proprieties that help strengthen host plant defenses, interest has been growing in using them in agricultural systems to reduce the negative impact of diseases on yield and quality of crops. This review recapitulates the properties and uses of chitin, chitosan, and their derivatives, and will focus on their applications and mechanisms of action during plant-pathogen interactions.

  16. BARK-MIMETIC LAYER-BY-LAYER ASSEMBLED MONTMORILLONITE/POLY(p-AMINOSTYRENE) FLEXIBLE NANOCOMPOSITES SHIELDING ATOMIC OXYGEN EROSION

    Institute of Scientific and Technical Information of China (English)

    Min Gao; Bing-jun Liu; Long-cheng Gao; Peng-gang Yin; Lei Jiang

    2013-01-01

    Inspired by the birch bark,which has multilayered structures,we fabricated layer-by-layer (LbL) assembled montmorillonite (MMT) and poly(p-aminostyrene) (PPAS) nanocomposites on cotton fiber curved surfaces to provide protection from atomic oxygen (AO) erosion.The multilayer coated fibers had high flexibility,uniformity,defect free,ease of preparation and low cost.The AO erosion durability has been dramatically enhanced which was evidenced by testing in the ground-based AO effects simulation facility.And the dimension and surface morphologies of the fibers observed by SEM had few changes,indicating excellent AO erosion resistant ability of the coatings.These results provide us a new method to design fibrous materials exposed directly in low earth orbit environment.

  17. Protein adsorption behaviors on chitosan/poly(ε-caprolactone)blend films studied by quartz crystal microbalance with dissipation monitoring (QCM-D)

    Institute of Scientific and Technical Information of China (English)

    ZENG Rong; ZHANG Yi; LIANG ZhiHong; TU Mei; ZHOU ChangRen

    2009-01-01

    Chitosan/poly(ε-caprolactone)(PCL)blend films in different mass ratios were prepared using the chitosan/PCL mixture solutions in 80 vol.-% acetic acid by spin coating.Their surface micromorphologies were assessed by atomic force microscopy(AFM).It was found that the micromorphology of chitosan/PCL blend films was in large extent related to the mass ratio of chitosan.25 wt% chitosan/PCL blend film presented microphase separation.The protein adsorption of bovine serum albumin(BSA)onto chitosan/PCL blend films was investigated by using quartz crystal microbalance with dissipation monitoring(QCM-D)in real time.The results suggested that the amount of adsorbed BSA on the chitosan/PCL blend films decreased with the addition of chitosan,but the structure and viscoelastic properties of the adsorbed BSA layers were greatly affected by the surface micromorphology of chitosan/PCL blend films.BSA absorbed on the 25 wt% chitosan/PCL blend film with microphase separation showed larger adsorption reversibility,and preferred to form a loose,dissipative layer in comparison with those on other chitosan/PCL blend films without microphase separation.

  18. Protein adsorption behaviors on chitosan/poly(ε-caprolactone) blend films studied by quartz crystal microbalance with dissipation monitoring(QCM-D)

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Chitosan/poly(ε-caprolactone) (PCL) blend films in different mass ratios were prepared using the chitosan/PCL mixture solutions in 80 vol.-% acetic acid by spin coating. Their surface micromorphologies were assessed by atomic force microscopy (AFM). It was found that the micromorphology of chitosan/PCL blend films was in large extent related to the mass ratio of chitosan. 25 wt% chitosan/PCL blend film presented microphase separation. The protein adsorption of bovine serum albumin (BSA) onto chitosan/PCL blend films was investigated by using quartz crystal microbalance with dissipation monitoring (QCM-D) in real time. The results suggested that the amount of adsorbed BSA on the chitosan/PCL blend films decreased with the addition of chitosan, but the structure and viscoelastic properties of the adsorbed BSA layers were greatly affected by the surface micromorphology of chitosan/PCL blend films. BSA absorbed on the 25 wt% chitosan/PCL blend film with microphase separa- tion showed larger adsorption reversibility, and preferred to form a loose, dissipative layer in comparison with those on other chitosan/PCL blend films without microphase separation.

  19. Antitumour Acitivty of Chitosan Hydrogen Selenites

    Institute of Scientific and Technical Information of China (English)

    CaiQinQIN; XiaoHaiGAO; 等

    2002-01-01

    Chitosans reacted with selenious acid to prepare chitosan hydrogen selenites, which were found to be growth-inhibitory against sarcoma 180 solid tumor. The results indicated that the activity also depended on the molecular weight of chitosan supports.

  20. Antitumour Activity of Chitosan Hydrogen Selenites

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Chitosans reacted with selenious acid to prepare chitosan hydrogen selenites, which were found to be growth-inhibitory against sarcoma 180 solid tumor. The results indicated that the activity also depended on the molecular weight of chitosan supports.

  1. Controlling Properties and Cytotoxicity of Chitosan Nanocapsules by Chemical Grafting

    Science.gov (United States)

    De Matteis, Laura; Alleva, Maria; Serrano-Sevilla, Inés; García-Embid, Sonia; Stepien, Grazyna; Moros, María; de la Fuente, Jesús M.

    2016-01-01

    The tunability of the properties of chitosan-based carriers opens new ways for the application of drugs with low water-stability or high adverse effects. In this work, the combination of a nanoemulsion with a chitosan hydrogel coating and the following poly (ethylene glycol) (PEG) grafting is proven to be a promising strategy to obtain a flexible and versatile nanocarrier with an improved stability. Thanks to chitosan amino groups, a new easy and reproducible method to obtain nanocapsule grafting with PEG has been developed in this work, allowing a very good control and tunability of the properties of nanocapsule surface. Two different PEG densities of coverage are studied and the nanocapsule systems obtained are characterized at all steps of the optimization in terms of diameter, Z potential and surface charge (amino group analysis). Results obtained are compatible with a conformation of PEG molecules laying adsorbed on nanoparticle surface after covalent linking through their amino terminal moiety. An improvement in nanocapsule stability in physiological medium is observed with the highest PEG coverage density obtained. Cytotoxicity tests also demonstrate that grafting with PEG is an effective strategy to modulate the cytotoxicity of developed nanocapsules. Such results indicate the suitability of chitosan as protective coating for future studies oriented toward drug delivery. PMID:27706041

  2. Characterization of polyelectrolyte behavior of the polysaccharides chitosan, heparin, and hyaluronan, by light scattering and viscometry.

    Science.gov (United States)

    Boddohi, Soheil; Yonemura, Susan; Kipper, Matt

    2008-03-01

    This study on the polyelectrolyte behavior of polysaccharides in solution is motivated by our recent work in development of nanostructured polysaccharide-based surface coatings. Chitosan behaves as a weak polycation, and hyaluronan behaves as a weak polyanion, while heparin behaves as a strong polyanion. The ability to control the conformation of these polysaccharides in solution, by changing the solution ionic strength and pH may offer the opportunity to further tune the nanoscale features of polysaccharide-based surface coatings assembled from solution. In the work reported here, the solution conformation of these polymers is determined from gel permeation chromatography coupled to differential refractive index, light scattering, and viscometry detection. These results are related to the nanostructure of chitosan-heparin and chitosan-hyaluronan surface coatings based on polyelectrolyte multilayers.

  3. Preparation and Adsorption Ability of Polysulfone Microcapsules Containing Modified Chitosan Gel

    Institute of Scientific and Technical Information of China (English)

    CHEN Fei; LUO Guangsheng; YANG Weiwei; WANG Yujun

    2005-01-01

    Chemically modified chitosan beads containing polyethyleneimine (PEI) were prepared to improve the metal ion adsorption capacity of the chitosan beads and their mechanical stability and to limit their biodegradability. The modified beads were encapsulated with the polymer material polysulfone by a novel surface coating method named the emulsion phase inversion method. The adsorption properties of the modified beads and the microstructures of the polysulfone coating layer were then analyzed. The experimental results showed that the PEI was successfully linked onto the chitosan beads. The density of the -NH2 groups in the modified beads was significantly increased, while the water content was reduced. The coating layer thickness was about 200 (m. The modified chitosan gel beads had excellent Cu(II) adsorption capacity, with a maximum Cu(II) adsorption capacity 1.34 times higher than that of the unmodified beads. The results show that even with the polysulfone coating the adsorption kinetics of the modified beads is still better than those of the unmodified beads. The modifications improve the mass transfer performance of the chitosan beads as well as the bead stability.

  4. Magnetic chitosan for removal of uranium (VI)

    International Nuclear Information System (INIS)

    The chitosan, an aminopolysaccharide formed for repeated units of D-glucosamine, is a deacetylation product of chitin. It presents favorable ionic properties acting as chelant, being considered a removing ionic of contaminants from water effluents. It has ample bioactivity, that is, is biocompatible, biodegradable, bioadhesive and biosorbent. The chitosan interacts for crosslinked by means of its active groups with other substances, can still coat superparamagnetic materials as magnetite nanoparticles producing one conjugated polymer-magnetite. Superparamagnetic materials are susceptible for the magnetic field, thus these particles can be attracted and grouped by a magnetic field and as they do not hold back the magnetization, they can be disagrouped and reused in processes for removal of contaminants from industrial effluents and waste water. The present work consisted of preparing coated magnetic magnetite particles with chitosan (PMQ). The PMQ powder has showed a magnetic response of intense attraction in the presence of a magnetic field without however becoming magnetic, a typical behavior of superparamagnetic material. It was characterized by Fourier transform infrared spectrometry and measurements of magnetization. Its performance of Uranium (VI) adsorption as uranyl species, U022+, was evaluated with regard to the influence of adsorbent dose, speed of agitation, pH, the contact time and had studied the isotherms of adsorption as well as the behavior of desorption using ions of carbonate and oxalate. The optimal pH to the best removal occurred in pH 5 and that the increase of the dose increases the removal, becoming constant above of 20 g.L-1. In the kinetic study the equilibrium was achieved after 20 minutes. The results of equilibrium isotherm agreed well with the Langmuir model, being the maximum adsorption capacity equal 41.7 mg.g-1. In the desorption studies were verified 94% of U022+ recovered with carbonate ion and 49.9% with oxalate ion. (author)

  5. Removal of Cadmium and Lead from Aqueous Solution by Hydroxyapatite/Chitosan Hybrid Fibrous Sorbent: Kinetics and Equilibrium Studies

    Directory of Open Access Journals (Sweden)

    Soyeon Park

    2015-01-01

    Full Text Available Hydroxyapatite (HAp/chitosan composites were prepared by a coprecipitation method, dropping a mixture of chitosan solution and phosphoric acid solution into a calcium hydroxide solution. Using the HAp/chitosan composites prepared, HAp/chitosan hybrid fibers with various HAp contents were prepared by a wet spinning method. X-ray diffraction and scanning electron microscopy analyses revealed that HAp particles were coated onto the surface of the fiber, and the surface roughness increased with increasing the HAp contents in the fiber. In order to evaluate the heavy metal removal characteristics of the HAp/chitosan hybrid fiber, adsorption tests were conducted and the results were compared with those of bare chitosan fibers. The results showed better performance in heavy metal ion removal for the HAp/chitosan hybrid fiber than the chitosan fiber. As the HAp content in the hybrid fiber increased, the removal efficiency of heavy metal ions also increased due to the increase of the specific surface area of the HAp/chitosan hybrid fiber. Adsorption kinetic and isotherm tests revealed that Pb2+ and Cd2+ adsorption to the hybrid fiber follows pseudo-second-order kinetic and Langmuir-type adsorption, respectively.

  6. Comparison of chitosan nanoparticles and chitosan hydrogels for vaccine delivery

    DEFF Research Database (Denmark)

    Gordon, Sarah; Saupe, Anne; McBurney, Warren;

    2008-01-01

    . The immunostimulatory capacity of these vaccine delivery systems was assessed in-vitro and in-vivo. Particle sizing measurements and SEM images showed that optimised OVA-loaded CNP had a size of approximately 200 nm, a polydispersity index ...In this work the potential of chitosan nanoparticles (CNP) and thermosensitive chitosan hydrogels as particulate and sustained release vaccine delivery systems was investigated. CNP and chitosan hydrogels were prepared, loaded with the model protein antigen ovalbumin (OVA) and characterised...

  7. Silver bromide in montmorillonite as visible light-driven photocatalyst and the role of montmorillonite

    Science.gov (United States)

    Sohrabnezhad, Sh.; Pourahmad, A.; Razavi, M.

    2016-09-01

    In this study, novel plasmonic photocatalyst, Ag/AgBr-montmorillonite (MMT) nanocomposite, was prepared by dispersion method and light irradiation. The structure, composition and optical properties of such material was investigated by transmission electron microscopy, UV-visible diffuse reflectance spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The powder X-ray diffraction showed intercalation of Ag/AgBr nanoparticles into the clay interlayer space. The results showed that the prepared sample has a similar phase composition. However, their photocatalytic activity varied significantly. The photocatalytic testing result showed that the Ag/AgBr-MMT nanocomposite was more efficient photocatalyst in the discoloration of methylene blue under visible light illumination. The Ag/AgBr-MMT nanocomposite in pH = 2 and under visible light degraded 92 % of dye at the irradiation time of 20 min. MMT as matrix showed excellent role in separation efficiency of electron-hole pairs. The mechanism of separation of the photogenerated electrons and holes at the Ag/AgBr-MMT nanocomposite was discussed.

  8. Chemical, biochemical, and microbiological aspects of chitosan quaternary salt as active coating on sliced apples Aspectos químicos, bioquímicos e microbiológicos de sais quaternários de quitosana para revestimento ativo de maçãs fatiadas

    Directory of Open Access Journals (Sweden)

    Douglas de Britto

    2012-09-01

    Full Text Available The biocompatibility of chitosan and chitosan quaternary salt coatings was evaluated for use as edible coatings for sliced apple. Measurement of water loss, color change, and fungal growth appearance were monitored as a function of time. A significant brownish effect was observed on chitosan coated slices, varying greatly from L* = 76.5 and Hue angle = 95.9° (t = 0 to L* = 45.3 and Hue angle = 69.8° (t = 3 days, whilst for TMC coated samples the variation was considerable lower (L* = 74.1; Hue angle = 95.0° to (L* = 67.0; Hue angle = 83.8° within the same period. The hydrosoluble derivative N,N,N-trimethylchitosan demonstrated good antifungal activity against P. expansum although highly dependent on the polymer properties such as degree of quaternization. The most efficient formulation was that prepared from derivative having a degree of quaternization of 45%, high solubility, and high viscosity. This formulation restrained fungus spreading up to 30%, while for the control it reached almost 80% of the total assessed surfaces during 7 days of storage.A biocompatibilidade de revestimentos baseados em quitosana e seus sais quaternários foi estudada visando seu emprego como revestimentos comestíveis de maçãs fatiadas. Medidas de perda de água, mudança de coloração e desenvolvimento de fungos foram monitoradas em função do tempo de estocagem. O efeito de escurecimento enzimático para fatias de maçãs recobertas com solução de quitosana foi bastante pronunciado, variando de L* = 76,5 e Ângulo de Hue = 95,9° (t = 0 a L* = 45,3 e Ângulo de Hue = 69,8° (t = 3 dias, ao passo que, para as amostras revestidas com TMC, a variação foi bem menor no mesmo período (L* = 74,1; Ângulo de Hue = 95,0° a (L* = 67,0; Ângulo de Hue = 83,8°. O derivado hidrossolúvel N,N,N-trimetilquitosana apresentou ótima atividade antifúngica contra P. expansum, mas muito dependente das propriedades do polímero como o grau de quaternização. A formula

  9. Chitosan and chemically modified chitosan beads for acid dyes sorption

    Institute of Scientific and Technical Information of China (English)

    AZLAN Kamari; WAN SAIME Wan Ngah; LAI KEN Liew

    2009-01-01

    The capabilities of chitosan and chitosan-EGDE (ethylene glycol diglycidyl ether) beads for removing Acid Red 37 (AR 37) and Acid Blue 25 (AB 25) from aqueous solution were examined. Chitosan beads were cross-linked with EGDE to enhance its chemical resistance and mechanical strength. Experiments were performed as a function of pH, agitation period and concentration of AR 37 and AB 25. It was shown that the adsorption capacities of chitosan were comparatively higher than chitosan-EGDE for both acid dyes. This is mainly because cross-linking using EGDE reduces the major adsorption sites -NH3+ on chitosan. Langmuir isotherm model showed best conformity compared to Freundlich and BET. The kinetic experimental data agreed very well to the pseudo second-order kinetic model. The desorption study revealed that after three cycles of adsorption and desorption by NaOH and HCl, both adsorbents retained their promising adsorption abilities. FT-IR analysis proved that the adsorption of acid dyes onto chitosan-based adsorbents was a physical adsorption. Results also showed that chitosan and chitosan-EGDE beads were favourable adsorbers and could be employed as low-cost alternatives for the removal of acid dyes in wastewater treatment.

  10. Hybrid materials: Magnetite-Polyethylenimine-Montmorillonite, as magnetic adsorbents for Cr(VI) water treatment.

    Science.gov (United States)

    Larraza, Iñigo; López-Gónzalez, Mar; Corrales, Teresa; Marcelo, Gema

    2012-11-01

    Hybrid materials formed by the combination of a sodium rich Montmorillonite (MMT), with magnetite nanoparticles (40 nm, Fe(3)O(4) NPs) coated with Polyethylenimine polymer (PEI 800 g/mol or PEI 25000 g/mol) were prepared. The intercalation of the magnetite nanoparticles coated with PEI among MMT platelets was achieved by cationic exchange. The resulting materials presented a high degree of exfoliation of the MMT sheets and a good dispersion of Fe(3)O(4) NPs on both the surface and among the layers of MMT. The presence of amine groups in the PEI structure not only aids the exfoliation of the MMT layers, but also gives to the hybrid material the necessary functionality to interact with heavy metals. These hybrid materials were used as magnetic sorbent for the removal of hexavalent chromium from water. The effect that pH, Cr(VI) concentration, and adsorbent material composition have on the Cr(VI) removal efficiency was studied. A complete characterization of the materials was performed. The hybrid materials showed a slight dependence of the removal efficiency with the pH in a wide range (1-9). A maximum amount of adsorption capacity of 8.8 mg/g was determined by the Langmuir isotherm. Results show that these hybrid materials can be considered as potential magnetic adsorbent for the Cr(VI) removal from water in a wide range of pH.

  11. Application of Ferriferous Oxide Modified by Chitosan in Gene Delivery

    OpenAIRE

    Yu Kuang; Tun Yuan; Zhongwei Zhang; Mingyuan Li; Yuan Yang

    2012-01-01

    New approaches to improve the traditional gene carriers are still required. Here we explore Fe3O4 modified with degradable polymers that enhances gene delivery and target delivery using permanent magnetic field. Two magnetic Fe3O4 nanoparticles coated with chitosan (CTS) and polyethylene glycol (PEG) were synthesized by means of controlled chemical coprecipitation. Plasmid pEGFP was encapsulated as a reported gene. The ferriferous oxide complexes were approximately spherical; surface charge o...

  12. Chitosan: Gels and Interfacial Properties

    Directory of Open Access Journals (Sweden)

    Julie Nilsen-Nygaard

    2015-03-01

    Full Text Available Chitosan is a unique biopolymer in the respect that it is abundant, cationic, low-toxic, non-immunogenic and biodegradable. The relative occurrence of the two monomeric building units (N-acetyl-glucosamine and d-glucosamine is crucial to whether chitosan is predominantly an ampholyte or predominantly a polyelectrolyte at acidic pH-values. The chemical composition is not only crucial to its surface activity properties, but also to whether and why chitosan can undergo a sol–gel transition. This review gives an overview of chitosan hydrogels and their biomedical applications, e.g., in tissue engineering and drug delivery, as well as the chitosan’s surface activity and its role in emulsion formation, stabilization and destabilization. Previously unpublished original data where chitosan acts as an emulsifier and flocculant are presented and discussed, showing that highly-acetylated chitosans can act both as an emulsifier and as a flocculant.

  13. Preparation and Properties of Phenolic Resin/Montmorillonite Intercalation Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    YU Jian-ying; WEI Lian-qi; CAO Xian-kun

    2003-01-01

    Phenolic resin/ montmorillonite intercalation composites were prepared by using the methods of pressing intercalation and melt intercalation. Properties and structure of the composites were investigated by using XRD , TG and test of softening point. It is indicated that both the pressing intercalation and melt intercalation can be used to prepare the phenolic resin/organo-montmorillonite intercalation nanocomposites. Compared with phenolic resin, the intercalation nanocomposites have better heat-resistance, higher decomposition temperatures and less thermal weight-loss. However , these two intercalation methods have different effects on the softening point of the intercalation nanocomposites . Pressing intercalation almost does not affect the softening point of the intercalation nanocomposites, while melt intercalation signifwantly increases the softening point of the intercalation nanocomposites ,probably due to the chemical actions happening in the process of melt intercalation.

  14. Flame Retardant and Pyrolytic Behaviors of Polyamide 6/Montmorillonite Nanocomposite

    Institute of Scientific and Technical Information of China (English)

    LIU Zhi-guo; OU Yu-xiang; WU Jun-hao

    2005-01-01

    Na+-montmorillonite(Na+-MMT) was converted to organic montmorillonite(OMMT) using modifier which was synthesized at authors' laboratory. PA6/OMMT nanocomposite was prepared via in situ intercalative polymerization. The limiting oxygen index (LOI), UL 94V flame retardancy and thermal stability of PA6/OMMT using thermal gravity analysis (TGA) were measured. The Fourier transform infrared (FTIR) technique was used to analyze the pyrolytic residuum and the cone calorimeter (CONE) was applied to determine a number of combustion parameters which were closely related to fire safety, including heat release rate, mass loss rate, effective combustion heat, total heat release, specific extinction area and the time of ignition. In addition, the elemental composition of the surface pyrolytic residuum and the corresponding X-ray photoelectron spectroscopy (XPS) data were obtained, and the morphology of the residuum from CONE measurement was examined by scanning electron microscope (SEM).

  15. Adsorption of Congo Red onto Lignocellulose/Montmorillonite Nanocomposite

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yahong; XUE Zhenhua; WANG Ximing; WANG Li; WANG Aiqin

    2012-01-01

    Lignocellulose/montmorillonite (LNC/MMT) nanocomposites were prepared and characterized by FTIR and XRD.The adsorption of congo red (CR) on LNC/MMT nanocomposite was studied in detail.The effects of contact temperature,pH value of the dye solutions,contact time and concentration of dye solutions on the adsorption capacities of lignocellulose (LNC),montmorillonite (MMT) and the nanocomposite were investigated.The adsorption kinetics and isotherms and adsorption thermodynamics of the nanocomposite for CR were also studied.The results show that the adsorption capacity of LNC/MMT nanocomosite is higher than that of LNC and MMT.All the adsorption processes fit very well with the pseudo-second-order and the Langmuir equation.From thermodynamic studies,it is seen that the adsorption is spontaneous and endothermic.

  16. 壳聚糖精油生物涂膜剂对苹果保鲜效果的研究%Effect of Chitosan Oil Biological Coating Agent on Apple Preservation

    Institute of Scientific and Technical Information of China (English)

    刘香军

    2015-01-01

    以苹果为试材,在8ºC、相对湿度95%的贮藏条件下,考察1.5%壳聚糖处理、0.25%精油处理以及1.5%壳聚糖+0.25%精油处理对苹果失重率、可滴定酸度、多酚氧化酶(PPO)活性、总酚含量、细胞质膜透性以及感官品质的影响。结果表明:三种处理均对苹果的变质有抑制作用,其中1.5%壳聚糖+0.25%精油处理的效果最优,贮藏期达150d时,色泽、质地均正常,无腐烂果实,失重率为8%,可滴定酸度为0.25%,PPO活性为13%,总酚含量为26%,细胞质膜透性为35%,均优于对照组和1.5%壳聚糖、0.25%精油单独处理组。%In this study, apples were stored under the conditions of relative humidity of 95% and 8℃, to investigate the effect of chitosan (1.5%), oil processing (0.25%) and chitosan (1.5%)+oil processing (0.25%) on the apple weight loss rate, titratable acid, polyphenol oxidase (PPO), total phenols, cell membrane permeability and the quality of sensory. Results indicated that, three treatments had inhibitory effect on apple. Especially, 1.5% chitosan + 0.25% essential oil treatment had the best effect. After 150 days storage, the color and texture of apples were all normal, and there were no rotten fruits. What's more, weight loss rate reached a value of 8%, titratable acid was 0.25%, the PPO was 13%, the total phenol was 26% and membrane permeability was 35%, which are all better than the control group, 1.5% chitosan treated group and 0.25%essential oil treated group.

  17. Peptide-decorated chitosan derivatives enhance fibroblast adhesion and proliferation in wound healing.

    Science.gov (United States)

    Patrulea, V; Hirt-Burri, N; Jeannerat, A; Applegate, L A; Ostafe, V; Jordan, O; Borchard, G

    2016-05-20

    RGD peptide sequences are known to regulate cellular activities by interacting with α5β1, αvβ5 and αvβ3 integrin, which contributes to the wound healing process. In this study, RGDC peptide was immobilized onto chitosan derivative 1,6-diaminohexane-O-carboxymethyl-N,N,N-trimethyl chitosan (DAH-CMTMC) to display RGDC-promoting adhesion for enhanced wound healing. The efficiency of N-methylation, O-carboxymethylation and spacer grafting was quantitatively and qualitatively analyzed by (1)H NMR and FTIR, yielding 0.38 degree of substitution for N-methylation and >0.85 for O-carboxymethylation. The glass transition temperatures for chitosan derivatives were also studied. Peptide immobilization was achieved through sulfhydryl groups using sulfosuccinimidyl (4-iodoacetyl)amino-benzoate (sulfo-SIAB method). RGDC immobilized peptide onto DAH-CMTMC was found to be about 15.3 μg/mg of chitosan derivative by amino acid analysis (AAA). The significant increase of human dermal fibroblast (HDF) viability in vitro over 7 days suggests that RGDC-functionalized chitosan may lead to enhanced wound healing (viability >140%). Moreover, bio-adhesion and proliferation assays confirmed that coatings of RGDC-functionalized chitosan derivatives exhibit in vitro wound healing properties by enhancing fibroblast proliferation and adhesion. These results showed that RGDC peptide-functionalized chitosan provides an optimal environment for fibroblast adhesion and proliferation. PMID:26917381

  18. The modulation of platelet adhesion and activation by chitosan through plasma and extracellular matrix proteins.

    Science.gov (United States)

    Lord, Megan S; Cheng, Bill; McCarthy, Simon J; Jung, MoonSun; Whitelock, John M

    2011-10-01

    Chitosan has been shown to promote initial wound closure events to prevent blood loss. Platelet adhesion and activation are crucial early events in these processes after traumatic bleeding leading to thrombus formation. Platelet adhesion to chitosan was found to be enhanced in the presence of adsorbed plasma and extracellular matrix proteins and was found to be primarily mediated by α(IIb)β(3) integrins, while α(2)β(1) integrins were found to be involved in platelet adhesion to collagen and perlecan. Platelets were found to be activated by chitosan, as shown by an increase in the expression of α(IIb)β(3) integrins and P-selectin, while the extent of activation was modulated by the presence of proteins including perlecan and fibrinogen. Collagen-coated chitosan was found to activate platelets to the same extent as either chitosan or collagen alone. These data support the role of plasma and extracellular matrix proteins in promoting chitosan mediated platelet adhesion and activation supporting the hypothesis that chitosan promotes wound healing via these interactions.

  19. Antibacterial activity and mechanism of chitosan with ultra high molecular weight.

    Science.gov (United States)

    Li, Jianhui; Wu, Yiguang; Zhao, Liqing

    2016-09-01

    Chitosan with different degree of deacetylation (DD) and ultra high molecular weight (MW >10(6)) was prepared from β-chitin by mild deacetylation. The effects of DD of chitosan and pH value of its solution/suspension on its antibacterial activity were investigated. The results showed that the optimal pH value was 6.0 for the highest bactericidal activity. The antibacterial activity against Escherichia coli and Staphylococcus aureus of chitosan solution at pH 6.0 enhanced as the DD of chitosan increased. Same as chitosan with low MW, the antibacterial activity of chitosan with high MW in acidic solution was also due to the amino protonation and subsequently cationic formation. Its ultra long molecular chain was propitious to coat and bind the E. coli and S. aureus, and highly enhanced its antibacterial activity. E. coli and S. aureus were at first restrained and then killed by chitosan and the cells were ruptured and decomposed gradually. PMID:27185132

  20. Sulfometuron incorporation in cationic micelles adsorbed on montmorillonite

    OpenAIRE

    Mishael, Y. G.; Undabeytia López, Tomás; Rytwo, Giora; Papahadjopoulos Sternberg, B.; Rubin, Baruch; Nir, Shlomo

    2002-01-01

    The aim of this study was to understand the interactions between alkylammonium cations present as monomers and micelles and a clay mineral, montmorillonite, to develop slow release formulations of anionic herbicides, such as sulfometuron (SFM) whose leaching in soils is an environmental and economic problem. In the proposed formulation the herbicide is incorporated in positively charged micelles of quaternary amine cations, which in turn adsorb on the negatively charged clay. The adsorption o...

  1. Potential bioavailability of mercury in humus-coated clay minerals.

    Science.gov (United States)

    Zhu, Daiwen; Zhong, Huan

    2015-10-01

    It is well-known that both clay and organic matter in soils play a key role in mercury biogeochemistry, while their combined effect is less studied. In this study, kaolinite, vermiculite, and montmorillonite were coated or not with humus, and spiked with inorganic mercury (IHg) or methylmercury (MeHg). The potential bioavailability of mercury to plants or deposit-feeders was assessed by CaCl2 or bovine serum albumin (BSA) extraction. For uncoated clay, IHg or MeHg extraction was generally lower in montmorillonite, due to its greater number of functional groups. Humus coating increased partitioning of IHg (0.5%-13.7%) and MeHg (0.8%-52.9%) in clay, because clay-sorbed humus provided more strong binding sites for mercury. Furthermore, humus coating led to a decrease in IHg (3.0%-59.8% for CaCl2 and 2.1%-5.0% for BSA) and MeHg (8.9%-74.6% for CaCl2 and 0.5%-8.2% for BSA) extraction, due to strong binding between mercury and clay-sorbed humus. Among various humus-coated clay particles, mercury extraction by CaCl2 (mainly through cation exchange) was lowest in humus-coated vermiculite, explained by the strong binding between humus and vermiculite. The inhibitory effect of humus on mercury bioavailability was also evidenced by the negative relationship between mercury extraction by CaCl2 and mercury in the organo-complexed fraction. In contrast, extraction of mercury by BSA (principally through complexation) was lowest in humus-coated montmorillonite. This was because BSA itself could be extensively sorbed onto montmorillonite. Results suggested that humus-coated clay could substantially decrease the potential bioavailability of mercury in soils, which should be considered when assessing risk in mercury-contaminated soils.

  2. Preparation and characterization of mixed hydroxy-Fe-Al pillared montmorillonite with large basal spacing

    Institute of Scientific and Technical Information of China (English)

    ZENG Xiu-qiong; LIU Wei-ping

    2004-01-01

    Mixed hydroxy-Al-Fe pillared montmorillonites with large basal spacing were successfully prepared through cation-exchanging of Na+ - montmorillonite with mixed hydroxy-Al and hydroxy-Fe pillaring solutions made from hydrolysis of corresponding metal salts, followed by calcination to convert hydroxy-Al and hydroxy-Fe into intercalated polycations. According to XRD analysis, the basal spacing d(001 ) of pillared products dramatically enlarged from 12.7 A in the Na-montmorillonite to 81 A in the hydroxy-Fe -montmorillonite and 77.5 A in mixed hydroxy-Al-Fe-montmorillonite. The N2 BET surface areas of the pillared montmorillonites also greatly increased to more than 200m2/g as compared to about 27 m2/g for the Na-montmorillonite. IR analysis of hydroxy-Fe, and mixed hydroxy-Al-Fe pillared montmorillonites revealed a new absorption vibration at 1384 cm-1 wavelength. XRF elemental analysis data also showed a high content of Fe2 O3 in the hydroxy-Fe pillared montmorillonite.

  3. Synthesis of a Biglucoside and Its Application as Montmorillonite Hydration Inhibitor

    Directory of Open Access Journals (Sweden)

    Xin-chun Zhang

    2014-01-01

    Full Text Available A biglucoside (BG was synthesized with glucose and epichlorohydrin as raw materials. The inhibition of BG against montmorillonite swelling was investigated by various methods including montmorillonite linear expansion test, mud ball immersing test, thermogravimetric analysis, and scanning electron microscopy. The results show that the BG has good inhibition ability to the hydration swelling and dispersion of montmorillonite. Under the same condition, the linear expansion ratio of montmorillonite in BG solution is much lower than that of MEG. The particle distribution measurement, thermogravimetric analysis, FT-IR, and scanning electron microscopy results all prove the efficient inhibition of BG.

  4. Structural identification of europium(3) adsorption complexes on montmorillonite

    International Nuclear Information System (INIS)

    A study of trivalent europium retention onto Na-montmorillonite is presented, combining both macroscopic and microscopic points of view. In order to investigate the metal sorption mechanisms at a molecular level and therefore experimentally identify both clay reactive sites and sorption equilibria, laser-induced fluorescence spectroscopy (LIF) and X-ray photoelectron spectroscopy (XPS) on europium ion loaded montmorillonite have been performed. Moreover, since this clay is an alumino-silicated mineral, we have interpreted our experimental results in terms of interactions between a metal ion and a cation exchange site, and distinct 'aluminol' and 'silanol' edge sites. Therefore, identical structural investigations have been carried out on both Eu/alumina and Eu/silica systems. These comparisons have allowed us to determine the nature of the europium surface complexes and thus led to an experimental definition of the sorption equilibria involved in the retention process. The obtained lifetime values and the Eu 3d XPS spectra of europium sorbed on the three solids have shown that this metal is sorbed, on the montmorillonite clay, on exchange sites as an outer-sphere complex and onto both 'aluminol' and 'silanol' edge sites as inner-sphere surface complexes, depending on the pH value and the ionic strength of the suspension. (authors)

  5. Structural identification of europium(3) adsorption complexes on montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Kowal-Fouchard, A.; Drot, R.; Simoni, E. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Marmier, N. [Universite de Nice-Sophia Antipolis, Lab. de Radiochimie et de Radioecologie, 06 (France); Fromage, F. [Reims Univ. Champagne Ardennes, Groupe de Chimie des Surfaces (GRECI), 51 (France); Ehrhardt, J.J. [Nancy-1 Univ. Henri Poincare, Lab. de Chimie Physique et Microbiologie pour l' Environnement (CNRS UMR 7564), 54 (France)

    2004-07-01

    A study of trivalent europium retention onto Na-montmorillonite is presented, combining both macroscopic and microscopic points of view. In order to investigate the metal sorption mechanisms at a molecular level and therefore experimentally identify both clay reactive sites and sorption equilibria, laser-induced fluorescence spectroscopy (LIF) and X-ray photoelectron spectroscopy (XPS) on europium ion loaded montmorillonite have been performed. Moreover, since this clay is an alumino-silicated mineral, we have interpreted our experimental results in terms of interactions between a metal ion and a cation exchange site, and distinct 'aluminol' and 'silanol' edge sites. Therefore, identical structural investigations have been carried out on both Eu/alumina and Eu/silica systems. These comparisons have allowed us to determine the nature of the europium surface complexes and thus led to an experimental definition of the sorption equilibria involved in the retention process. The obtained lifetime values and the Eu 3d XPS spectra of europium sorbed on the three solids have shown that this metal is sorbed, on the montmorillonite clay, on exchange sites as an outer-sphere complex and onto both 'aluminol' and 'silanol' edge sites as inner-sphere surface complexes, depending on the pH value and the ionic strength of the suspension. (authors)

  6. Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chih-Jen [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan (China); Li, Zhaohui, E-mail: li@uwp.edu [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Department of Geosciences, University of Wisconsin - Parkside, Kenosha, WI 53144 (United States); Jiang, Wei-Teh, E-mail: atwtj@mail.ncku.edu.tw [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Jean, Jiin-Shuh; Liu, Chia-Chuan [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)

    2010-11-15

    Exploring the interactions between antibiotics and soils/minerals is of great importance in resolving their fate, transport, and elimination in the environment due to their frequent detection in wastewater, river water, sewage sludge and soils. This study focused on determining the adsorption properties and mechanisms of interaction between antibiotic ciprofloxacin and montmorillonite (SAz-1), a swelling dioctahedral mineral with Ca{sup 2+} as the main interlayer cation. In acidic and neutral aqueous solutions, a stoichiometric exchange between ciprofloxacin and interlayer cations yielded an adsorption capacity as high as 330 mg/g, corresponding to 1.0 mmol/g. When solution pH was above its pK{sub a2} (8.7), adsorption of ciprofloxacin was greatly reduced due to the net repulsion between the negatively charged clay surfaces and the ciprofloxacin anion. The uptake of ciprofloxacin expanded the basal spacing (d{sub 001}) of montmorillonite from 15.04 to 17.23 A near its adsorption capacity, confirming cation exchange within the interlayers in addition to surface adsorption. Fourier transform infrared results further suggested that the protonated amine group of ciprofloxacin in its cationic form was electrostatically attracted to negatively charged sites of clay surfaces, and that the carboxylic acid group was hydrogen bonded to the basal oxygen atoms of the silicate layers. The results indicate that montmorillonite is an effective sorbent to remove ciprofloxacin from water.

  7. Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite

    International Nuclear Information System (INIS)

    Exploring the interactions between antibiotics and soils/minerals is of great importance in resolving their fate, transport, and elimination in the environment due to their frequent detection in wastewater, river water, sewage sludge and soils. This study focused on determining the adsorption properties and mechanisms of interaction between antibiotic ciprofloxacin and montmorillonite (SAz-1), a swelling dioctahedral mineral with Ca2+ as the main interlayer cation. In acidic and neutral aqueous solutions, a stoichiometric exchange between ciprofloxacin and interlayer cations yielded an adsorption capacity as high as 330 mg/g, corresponding to 1.0 mmol/g. When solution pH was above its pKa2 (8.7), adsorption of ciprofloxacin was greatly reduced due to the net repulsion between the negatively charged clay surfaces and the ciprofloxacin anion. The uptake of ciprofloxacin expanded the basal spacing (d001) of montmorillonite from 15.04 to 17.23 A near its adsorption capacity, confirming cation exchange within the interlayers in addition to surface adsorption. Fourier transform infrared results further suggested that the protonated amine group of ciprofloxacin in its cationic form was electrostatically attracted to negatively charged sites of clay surfaces, and that the carboxylic acid group was hydrogen bonded to the basal oxygen atoms of the silicate layers. The results indicate that montmorillonite is an effective sorbent to remove ciprofloxacin from water.

  8. Morphological structures of poly(vinylidene fluoride)/ montmorillonite nanocomposites

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Poly(vinylidene fluoride) (PVDF)/montmorillonite (MMT) nanocomposites were prepared by melt blen- ding a kind of organically modified montmorillonite with PVDF. The morphological structures of the nanocomposites were studied using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and differential scanning calorimetry (DSC). The results indicate that organically modified montmorillonites are in the form of intercalation, exfoliation, and fragments in the PVDF matrix. For the composites, the (001) peak position of MMT was found to shift to a lower angle in XRD patterns, and some MMT fragments could be observed under TEM. MMT loading was favorable to producing the piezoelectricβphase in the PVDF matrix and caused internal stress in α crystals. At the same time, the crystallinity and spherulite size of PVDF decreased with the MMT content. MMT induced β phase is stable even at high temperatures (160℃). For these changes in morphological structures, some possible explanations were proposed based on the experimental results.

  9. Thermodynamics of selenium sorption on alumina and montmorillonite

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Morel

    2015-12-01

    Full Text Available The effect of pH and temperature on the thermodynamics of selenium sorption on alumina and montmorillonite was investigated. The equilibrium constants were obtained from batch experiments carried out at 25 and 40°C, under acidic and near to neutral conditions. Microcalorimetry was used to measure directly the enthalpy change upon sorption. These data were analysed by taking into account the different reactions that occur during the sorption process (the acid–base equilibria in the bulk solution on the one hand and the complexation equilibria between surface sites of the solid and solution species on the other hand. This was done using a simple surface model which assumes that the thermodynamic properties of the aluminol surface sites of both alumina and montmorillonite are identical. Two of the considered reactions were found to predominate, one under acidic conditions and one at near neutral pH. The microcalorimetric data allowed to check that the temperature effect on selenium sorption on alumina and montmorillonite can be correctly predicted simply using the above assumption concerning the sorption sites and by applying van’t Hoff relation both to the homogeneous and heterogeneous reactions.

  10. Preparation and Microstructure of Al-pillared Interlayered Montmorillonite

    Institute of Scientific and Technical Information of China (English)

    CAO Ming-li; ZHU Ying-bo; YU Yong-fu

    2002-01-01

    Al-pillared interlayered montmorillonite ( Al-PILM) was prepared using the artificial Na-montmorillonite from the Qingfengshan bentonite mine as a starting material mixed with Al-pillaring solutions. The microstructure of the materials was stndied by an X-ray powder diffractometer and a Fourier transform infrared ( FTIR ) spectrometer. The results indicated that the basal spacing [ d (001) value ] of the materials was increased significantly to 1.9194 nm relative to Na-montmorillonite (1.2182 nm). After calcined for 2 h at 300℃, the basal spacing was stabilized at 1. 8394 nm and the layered structure of the materials was not destroyed. Thermal analysis was conducted by a thermal gravimetry and differential thermal analysis ( TG - DTA ) instrument, it showed that Al - PILM lost physically adsorbed water below 230.6℃ and water formed by dehydroxylation of the pillars at around 497.1℃, with a peak of the phase transformation at 903.0℃.

  11. Controlled Release of Agrochemicals Intercalated into Montmorillonite Interlayer Space

    Directory of Open Access Journals (Sweden)

    Harrison Wanyika

    2014-01-01

    Full Text Available Periodic application of agrochemicals has led to high cost of production and serious environmental pollution. In this study, the ability of montmorillonite (MMT clay to act as a controlled release carrier for model agrochemical molecules has been investigated. Urea was loaded into MMT by a simple immersion technique while loading of metalaxyl was achieved by a rotary evaporation method. The successful incorporation of the agrochemicals into the interlayer space of MMT was confirmed by several techniques, such as, significant expansion of the interlayer space, reduction of Barrett-Joyner-Halenda (BJH pore volumes and Brunauer-Emmett-Teller (BET surface areas, and appearance of urea and metalaxyl characteristic bands on the Fourier-transform infrared spectra of the urea loaded montmorillonite (UMMT and metalaxyl loaded montmorillonite (RMMT complexes. Controlled release of the trapped molecules from the matrix was done in water and in the soil. The results reveal slow and sustained release behaviour for UMMT for a period of 10 days in soil. For a period of 30 days, MMT delayed the release of metalaxyl in soil by more than 6 times. It is evident that MMT could be used to improve the efficiency of urea and metalaxyl delivery in the soil.

  12. Synthesis and Characterization of Multifunctional Chitosan- MnFe2O4 Nanoparticles for Magnetic Hyperthermia and Drug Delivery

    Directory of Open Access Journals (Sweden)

    David E. Nikles

    2010-07-01

    Full Text Available Multifunctional nanoparticles composed of MnFe2O4 were encapsulated in chitosan for investigation of system to combine magnetically-triggered drug delivery and localized hyperthermia for cancer treatment with the previously published capacity of MnFe2O4 to be used as an efficient MRI contrast agent for cancer diagnosis. This paper focuses on the synthesis and characterization of magnetic MnFe2O4 nanoparticles, their dispersion in water and their incorporation in chitosan, which serves as a drug carrier. The surface of the MnFe2O4 nanoparticles was modified with meso-2,3-di-mercaptosuccinic acid (DMSA to develop stable aqueous dispersions. The nanoparticles were coated with chitosan, and the magnetic properties, heat generation and hydrodynamic size of chitosan-coated MnFe2O4 were evaluated for various linker concentrations and in a range of pH conditions.

  13. XPS study on the use of 3-aminopropyltriethoxysilane to bond chitosan to a titanium surface.

    Science.gov (United States)

    Martin, Holly J; Schulz, Kirk H; Bumgardner, Joel D; Walters, Keisha B

    2007-06-01

    Chitosan, a biopolymer found in the exoskeletons of shellfish, has been shown to be antibacterial, biodegradable, osteoconductive, and has the ability to promote organized bone formation. These properties make chitosan an ideal material for use as a bioactive coating on medical implant materials. In this study, coatings made from 86.4% de-acetylated chitosan were bound to implant-quality titanium. The chitosan films were bound through a three-step process that involved the deposition of 3-aminopropyltriethoxysilane (APTES) in toluene, followed by a reaction between the amine end of APTES with gluteraldehyde, and finally, a reaction between the aldehyde end of gluteraldehyde and chitosan. Two different metal treatments were examined to determine if major differences in the ability to bind chitosan could be seen. X-ray photoelectron spectroscopy (XPS) was used to examine the surface of the titanium metal and to study the individual reaction steps. The changes to the titanium surface were consistent with the anticipated reaction steps, with significant changes in the amounts of nitrogen, silicon, and titanium that were present. It was demonstrated that more APTES was bound to the piranha-treated titanium surface as compared to the passivated titanium surface, based on the amounts of titanium, carbon, nitrogen, and silicon that were present. The metal treatments did not affect the chemistry of the chitosan films. Using toluene to bond APTES on titanium surfaces, rather than aqueous solutions, prevented the formation of unwanted polysiloxanes and increased the amount of silane on the surface for forming bonds to the chitosan films. Qualitatively, the films were more strongly attached to the titanium surfaces after using toluene, which could withstand the ultrahigh vacuum environment of XPS, as compared to the aqueous solutions, which were removed from the titanium surface when exposed to the ultrahigh vacuum environment of XPS.

  14. Dielectric properties: A gateway to antibacterial assay-A case study of low-density polyethylene/chitosan composite films.

    Digital Repository Service at National Institute of Oceanography (India)

    Sunilkumar, M.; Gafoor, A.A.; Anas, A.; Haseena, A.P.; Sujith, A.

    properties. 9, 10 It does not require a carrier, and can also be used as a coating or can be cast into polymer films with good strength, barrier properties and biocompatibility. The poly cationic nature of chitosan interferes with the negatively charged...-composite films for food packaging because of its good mechanical, oxygen barrier properties and antimicrobial activities. The antibacterial and antifungal activity of chitosan, arising from its polycationic nature, is well known for a variety of bacteria...

  15. Flocculation Kinetics of Chitosan

    Institute of Scientific and Technical Information of China (English)

    陈亮; 林志艳; 陈东辉

    2003-01-01

    Under the various conditions, the experiments of flocculation of bentonite solution with chitosan were carried out. And the flocculation kinetics was studied by the changes of floc size along with time. The results show that hydraulic gradient G (s-1) plays a key role in growing up of floc size and both of molecular weight and initial turbidity of bentonite solution influence the floc size in steady state and the time needed for steady floc size.

  16. [Adsorption of aflatoxin on montmorillonite modified by low-molecular-weight humic acids].

    Science.gov (United States)

    Yao, Jia-Jia; Kang, Fu-Xing; Gao, Yan-Zheng

    2012-03-01

    The adsorption of a typical biogenic toxin aflatoxin B1 on montmorillonite modified by low-molecular-weight humic acids (M(r) aflatoxin B1 until amounting to the maximal capacity, and then the adsorbed aflatoxin B1 slowly released into solution and reached the sorption equilibrium state after 12 h. The sorption isotherm of aflatoxin B1 by montmorillonite could be well described by Langmiur model, while the sorption isotherm by humic acid-modified montmorillonite was well fitted by using the Freundlich model. The modification of the montmorillonite with humic acids obviously enhanced its adsorption capacity for aflatoxin B1, and the amounts of aflatoxin adsorbed by modified montmorillonite were obviously higher than those by montmorillonite. The sorption enhancement by humic acid modification was attributed to (1) the enlarged adsorption sites which owed to the surface collapse of crystal layers induced by organic acids, and (2) the binding of aflatoxin with the humic acid sorbed on mineral surface. In addition, the adsorption amounts of aflatoxin by montmorillonite and modified montmorillonite increased with the increase of pH values in solution, and more significant enhancement was observed for the latter than the former, which attributed to the release of humic acids from the modified montmorillonite with the high pH values in solution. This indicates that increasing the pH values resulted in the enhanced hydrophilic property and the release of the organic acids presented in modified montmorillonite, and more sorption sites were available for aflatoxin on the modified montmorillonite. Results of this work would strengthen our understanding of the behavior and fate of biological contaminants in the environment.

  17. Evaluation of Protein Adsorption on Chitosan Surfaces with Reflectometry Interference Spectroscopy

    Directory of Open Access Journals (Sweden)

    Chao Qun Ma

    2001-10-01

    Full Text Available Using a biomedical sensor setup RIfS we have investigated the kinetic behavior of human albumin (Alb, human fibrinogen (Fib, and human immunoglobulin G (IgG adsorbed onto surfaces of chitosan. Polystyrene (PS was used as the control material in this study. The optical thickness of three kinds of proteins measured by RIfS was related to their molecular dimensions and potential orientations on a film surface. According to the operation principle of RIfS and the molecular dimensions of three kinds of proteins, the adsorbed layers of proteins onto the surface of chitosan and PS was calculated by using a newly introduced equation. The microstructure of the chitosan and polystyrene film and the surfaces with adsorbed proteins were imaged by atomic force microscopy (AFM. With AFM analyses the lateral distribution of the protein molecules on surfaces have been recognized. The results show that the number of adsorbed layers of the three proteins on the surface of chitosan are 0.635 for Alb, 0.158 for Fib and 0.0967 for IgG, and of polystyrene are: 0.577 for IgG, 0.399 for Fib, 0.336 for Alb. This study confirmed that RIfS is a useful tool for the analysis of plasma proteins adsorbed on a surface of biomaterials. Results show that at first on the surface of chitosan film much more Alb than Fib was adsorbed which demonstrated that chitosan has a antithrombus function. Secondly, on the surface of chitosan film more Alb and less Fib were adsorbed than on the surface of PS film, which demonstrated that chitosan has a better blood compatibility than polystyrene. Thirdly, the calculated layer number of the three proteins indicated that on both chitosan and PS substrates monolayer coatings form.

  18. Antimicrobial activity of novel chitosan/cloisite 10A nanocomposite: Preparation, optimization, characterization and drug delivery behavior.

    Science.gov (United States)

    Rou, Jyotiranjan; Mohapatra, Ranjit; Sahoo, Sunit Kumar

    2016-07-01

    The objectives of the present research project were to formulate, evaluate and perform antimicrobial study and drug delivery behavior of nanocomposite material based on biopolymer chitosan and organically modified montmorillonite clay; i.e. cloisite 10A. In the present study, chitosan / cloisite 10A nanocomposite material was formulated by solution mixing and optimized. The nanocomposite material was characterized by FTIR, zeta sizer, XRD, and SEM. Polymer/clay nanocomposite material is evaluated for its antimicrobial activity against both gram- negative and gram- positive bacteria. It was also studied for potential drug carrier system using diclofenac sodium as a model drug. Drug incorporation efficiency and drug content were also determined. SEM provided the composite shape and its surface topography. XRD data revealed the nanocrystalline composition and crystallite size. The average diameters of particles in the nanocomposite were found to be around 80 nm from both XRD report, calculated by applying Scherrer equation and zeta sizer. The antimicrobial activity report revealed that nanocomposite exhibited stronger inhibition against the microorganisms as compared to that of pure chitosan. From the in vitro drug-release study, it is observed that biopolymer/clay nanocomposite exhibited extended release period of drug as compared to the pristine chitosan. This research work provides a platform for further research on the polymer/clay nanocomposites for biomedical and drug delivery applications. PMID:27393427

  19. Effect of modified montmorillonites on the biodegradation and adsorption of biomarkers such as hopanes, steranes and diasteranes.

    Science.gov (United States)

    Ugochukwu, Uzochukwu C; Head, Ian M; Manning, David A C

    2013-12-01

    The effect of modified montmorillonites on the biodegradation and adsorption of selected steranes, diasteranes and hopanes was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. The unmodified montmorillonite was treated with didecyldimethylammonium bromide, hydrochloric acid and the relevant metallic chloride to produce organomontmorillonite, acid activated montmorillonite and homoionic montmorillonite respectively which were used in this study. The study indicated that organomontmorillonite, acid activated montmorillonite and potassium montmorillonite did not support the biodegradation of the selected steranes, diasteranes and hopanes as alteration of the biomarkers via biodegradation varied from a paltry 2-6 %. The adsorption of the selected biomarkers on acid activated montmorillonite and organomontmorillonite was also poor. However, adsorption of the biomarkers on potassium montmorillonite was relatively high. Sodium montmorillonite and unmodified montmorillonite appear to stimulate the biodegradation of the selected biomarkers moderately (30-35 %) with adsorption occurring at low level. Calcium montmorillonite and ferric montmorillonite effected significant biodegradation (51-60 %) of the selected biomarkers.

  20. POLYMER/MONTMORILLONITE COMPLEXES:PREPARATION AND INTERACTIONS WITH ROSIN ACID

    Institute of Scientific and Technical Information of China (English)

    Lihong Zhao; Wenxia Liu

    2004-01-01

    Polymer/montmorillonite complexes were prepared via intercalating polymers of low molecular weight into layers of montmorillonite and evaluated for their interactions with rosin acid. Three polymers from various amines modified by epichlorohydrin and an acidified diethylenetriamine were separately intercalated into montmorillonite via direct solution intercalation. X-ray diffraction patterns are performed to obtain information about the intercalation of these agents. The examination revealed that it was feasible for the direct intercalation of polymers, while hard for the unmodified diethylenetriamine. Adsorption isotherm curves were established to assess the efficiency of the various montmorillonites including the intercalated montmorillonites, the simple mixtures of the corresponding intercalation agents and ordinary montmorillonite in removing pitch from water solution. From the adsorption behavior of various samples, it was found that the interaction of the montmorillonite with pitch was not only through van der Waals attraction, but also through electrostatic interactions. Both the organo-philic and the surface electrostatic properties of the montmorillonites are important for successful pitch control.

  1. The application of modified montmorillonite in the processes of baromembrane purification of water from U (VI)

    International Nuclear Information System (INIS)

    The processes of uranium-containing water purification by ultra- and nanofiltration methods combined with the use of montmorillonite modified by polyethyleneimine are studied. It is shown that the application of montmorillonite allows one to obtain the high indices of the uranium-containing water purification by baromembrane methods.

  2. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    International Nuclear Information System (INIS)

    Highlights: • Multifunctional knit polyester fabric was facile fabricated by the combination of pad-dry-cure process and in situ chemical polymerization route. • High electrical conductivity and efficient water-repellent properties were endowed to the polymer nanocomposite coated fabric. • The polymer nanocomposite coated fabric also performed efficient and durable photocatalytic activities under the illumination of ultraviolet light. - Abstract: Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric

  3. Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content

    Science.gov (United States)

    Chitosan is a biopolymer obtained by N-deacetylation of chitin, produced from shellfish waste, which may be employed to elaborate edible films or coatings to enhance shelf life of food products. This study was conducted to evaluate the effect of different concentrations of nanofiller (cellulose nan...

  4. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaoning [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Tian, Mingwei [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Qu, Lijun, E-mail: lijunqu@126.com [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Zhu, Shifeng [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Guo, Xiaoqing [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Han, Guangting [Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); and others

    2014-10-30

    Highlights: • Multifunctional knit polyester fabric was facile fabricated by the combination of pad-dry-cure process and in situ chemical polymerization route. • High electrical conductivity and efficient water-repellent properties were endowed to the polymer nanocomposite coated fabric. • The polymer nanocomposite coated fabric also performed efficient and durable photocatalytic activities under the illumination of ultraviolet light. - Abstract: Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric.

  5. Biotinylated chitosan-based SPIONs with potential in blood-contacting applications

    Energy Technology Data Exchange (ETDEWEB)

    Balan, Vera [Technical University ' Gh.Asachi' , Faculty of Chemical Engineering and Environmental Protection (Romania); Petrache, Ivona Andreea [' Gr.T.Popa' University of Medicine and Pharmacy, Department of Biomedical Sciences, Faculty of Medical Bioengineering (Romania); Popa, Marcel Ionel [Technical University ' Gh.Asachi' , Faculty of Chemical Engineering and Environmental Protection (Romania); Butnaru, Maria [' Gr.T.Popa' University of Medicine and Pharmacy, Department of Biomedical Sciences, Faculty of Medical Bioengineering (Romania); Barbu, Eugen; Tsibouklis, John [University of Portsmouth, School of Pharmacy and Biomedical Sciences (United Kingdom); Verestiuc, Liliana, E-mail: liliana.verestiuc@bioinginerie.ro [' Gr.T.Popa' University of Medicine and Pharmacy, Department of Biomedical Sciences, Faculty of Medical Bioengineering (Romania)

    2012-02-15

    Haemocompatible biotinylated superparamagnetic nanoparticles (size range 300-700 nm) have been obtained by coating magnetite through ionic gelation with a mixture of chitosan and sodium tripolyphosphate, followed by subsequent functionalisation with biotin. The evaluations of their magnetic properties together with haemocompatibility tests have shown that these nanoparticles exhibit the prerequisite behaviour for use in magnetic field-assisted separations within biological systems.

  6. Preparation and In vitro Investigation of Chitosan Compressed Tablets for Colon Targeting

    Directory of Open Access Journals (Sweden)

    Negar Bashardoust

    2011-12-01

    Full Text Available Purpose: The aim of the present study was minimizing the drug release in upper gastro intestinal tract and targeting to colon by using the principles of compression coat. Methods: Compression coated tablets of Ibuprofen were prepared by direct compression method using chitosan (300, 250, 200 & 175 mg. Tablets were evaluated for their physicochemical properties and in vitro drug release studies. In vitro drug release studies were performed with and without rat caecal contents. Results: In the rat caecal contents tablets showed enhanced drug release due to degradation of chitosan coat by colonic colonic enzymes. The in vitro release studies in pH-6.8 phosphate buffer containing 2% w/v of rat caecal contents showed the cumulative percentage release of Ibuprofen after 26h as 31.94% ±0.59, 67.89% ± 0.45 and 55.87 % ± 0.45 and 82.52 % ± 0.92 respectively. Coatthickness and amount of chitosan controls the release rate. Formulations are best fitted with Korsmeyer-Peppas kinetics and mechanism of drug release was non-Fickian. FTIR studies reveals there is no drug-polysaccharide interaction. F1 formulation was a promising system for drug targeting to colon. Conclusion: Based on the obtained results chitosan as a press coat could target ibuprofen to the colon.

  7. Role of cation mixing in the sol formation of Ca/Na-montmorillonite

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. In the Swedish KBS-3 concept for a geological deep storage of spent nuclear fuel, bentonite of high montmorillonite content is proposed to serve as a buffer surrounding copper canisters containing the spent fuel. Montmorillonite has an exceptional affinity for water which results in the build-up of a swelling pressure when bentonite is placed in a confined volume. There may be fractures intersecting the deposition hole and at those fractures the bentonite is not restricted but can continue to swell until a steady state is reached. Under present day Swedish ground water conditions the swelling into fractures will be limited because the montmorillonite at the swelling front will coagulate. However, at the end of a glaciation one cannot exclude that glacial melt water of low ionic strength will permeate the bedrock. This could cause significant erosion of the bentonite, due to colloidal sol formation at the swelling front. A homo-ionic Ca-montmorillonite would not pose any problem because it has limited swelling due to attraction forces caused by ion correlations. In homo-ionic Na-montmorillonite, on the other hand, the correlation interactions are weak and cannot prevent the sol formation in case the montmorillonite is contacted with water of low ionic strength. The first question we would like to address concerns the critical amount of Ca-montmorillonite in the buffer. Could a small amount of Ca2+ in the interlayer actually prevent sol formation? To answer this question, compound Ca/Na montmorillonites were prepared by mixing given amounts of pure Ca-montmorillonite with given amounts of pure Na-montmorillonite in deionized water. The clay suspension was sonicated for 15 minutes and then mixed with a magnetic stirrer for 12 h, after which the water was removed in 60 deg. C oven. Note that by dispersing the clay in deionized water, no additional ions are introduced. Initially Ca/Na montmorillonites were made at mass

  8. Preparation and In vitro Investigation of Chitosan Compressed Tablets for Colon Targeting

    OpenAIRE

    Negar Bashardoust; Josephine Leno Jenita; Parvin Zakeri-Milani

    2011-01-01

    Purpose: The aim of the present study was minimizing the drug release in upper gastro intestinal tract and targeting to colon by using the principles of compression coat. Methods: Compression coated tablets of Ibuprofen were prepared by direct compression method using chitosan (300, 250, 200 & 175 mg). Tablets were evaluated for their physicochemical properties and in vitro drug release studies. In vitro drug release studies were performed with and without rat caecal contents. Results: In the...

  9. Preparation of Polypropylene/Montmorillonite Nanocomposites Using Ionizing Radiation

    International Nuclear Information System (INIS)

    Polymer/clay nanocomposites are new generation materials that bring significant changes in mechanical, thermal and permeation properties of base polymers by low clay loading. In this study, polypropylene/montmorillonite nanocomposites were prepared by melt intercalation method by using batch type mixer. Two polypropylene samples with different melt flow indexes are used as the matrix, maleic anhydride grafted polypropylene (PP-g-MAH), and polypropylene granules oxidized by radiation/ozone are used as compatibilizer and unmodified clay (Na+ montmorillonite, MMT) as the filler. Aim of this study is to examine the effect of different compatibilizers in the mechanical properties of polypropylene composite. Firstly, PP/clay samples were prepared and the effect of clay was examined, then 5, 10, 20kGy oxidized/degraded polypropylenes were used as compatibilizer and, 10 kGy was determined to be the most suitable irradiation dose for the best compatibilizing effect. Polypropylene granules were ozonated until they contained carbonyl groups equivalent to 10kGy oxidized PP, which was checked by FTIR-ATR spectroscopy. UV-visible reflectance measurements were also made on film samples and no significant changes were observed in visible region. Nano structures of some nanocomposites were characterized by PALS (Positron Annihilation Lifetime Spectroscopy) where it was observed that the addition of clay decreased the number of free volume holes and free volume hole radia. The dispersion state of MMT within polymer matrix was analyzed by XRD (X-ray diffraction). Tensile tests were made and the effect of the addition of clay and compatibilizers investigated. At low melt flow index PP, 1% MMT of PP/10kGyPP/MMT nanocomposite showed an increase in E-modulus 26% and in tensile strength 8% as compared to those of pristine PP. In conclusion radiation degraded (chain scissioned and oxidized) PP has been found to show very good compatibilizing effect for the natural montmorillonite

  10. Evaluation of Anti-Fungal Activity of Chitosan and Its Effect on the Moisture Absorption and Organoleptic Characteristics of Pistachio Nuts

    Directory of Open Access Journals (Sweden)

    Atefe Maghsoudlou

    2012-01-01

    Full Text Available Pistachio is one of the main export products of Iran and Iran is one of the largest producer and exporter of pistachio in the world. Unfavourable environmental conditions during storage, causes a sharp drop in quality of product through musty and toxin production, especially aflatoxin by Aspergillus flavus and Aspergillus parasiticus, Absorption of foreign odors and moisture, Tissue destruction of undesirable flavour. The aim of this study was to study the anti-fungal activity of chitosan and its effect on the organoleptic characteristics of pistachio nuts.  Therefore, using acetic acid 1% V / V, chitosan concentrations of 0.5%, 1% and 1.5 % V/W was prepared and pistachios were coated by these solutions. Also acetic acid at concentration 1% without chitosan was used as a treatment for coating to determine the antimicrobial effect of acetic acid. The results showed that chitosan significantly (p <0.05 inhibited the growth of the Aspergillus and its effect was increased with increased concentration. Chitosan also prevented moisture absorption and weight change in pistachio nuts, while chitosan concentration showed no significant effect on moisture absorption and weight change of pistachio nuts. Chitosan 1.5% had a significant effect (p <0.05 on the flavour of pistachio, but other concentrations had no effect. However, chitosan in general had no significant effect (p <0.05 on color, texture and acceptability of pistachio nuts.

  11. Heavy Metal Removal from Water by Adsorption Using Pillared Montmorillonite

    Institute of Scientific and Technical Information of China (English)

    LIU Yun; WU Pingxiao; DANG Zhi; YE Daiqi

    2006-01-01

    Removal of Cu2+, Cr3+ and Cd2+ from aqueous solutions by adsorption on montmorillonite modified by sodium dodecylsulfate (SDS) and hydroxy-alumino-silicate (HAS) was investigated.Experiments were carried out as a function of solution pH, solute concentration, and time. The Langmuir model was adopted to describe the single-solute adsorption isotherm, in which the Langmuir parameters were directly taken from those obtained in single-solute systems. The kinetics of metal ions adsorption was examined and the pseudo-first-order rate constant was finally evaluated.

  12. Structures and Mechanical Properties of PVC/Na+- Montmorillonite Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Poly (vinyl chloride)/Na+-montmorillonite (PVC/MMT) nanocomposites with different MMT contents were prepared via melt blending. Wide-angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM) were used to characterize the structures. Effects of MMT content on the mechanical properties were also studied. It is found that PVC molecular chains can intercalate into the gallery of MMT layers during melt blending process, the stiffness and toughness of the composites are improved simultaneously within 0.5~7wt% MMT content, and the transparency and mechanical properties decrease as MMT content further increases.

  13. Hemicelluloses/montmorillonite hybrid films with improved mechanical and barrier properties

    Science.gov (United States)

    Chen, Ge-Gu; Qi, Xian-Ming; Li, Ming-Peng; Guan, Ying; Bian, Jing; Peng, Feng; Yao, Chun-Li; Sun, Run-Cang

    2015-11-01

    A facile and environmentally friendly method was introduced to incorporate montmorillonite (MMT) as an inorganic phase into quaternized hemicelluloses (QH) for forming hemicellulose-based films. Two fillers, polyvinyl alcohol (PVA) and chitin nanowhiskers (NCH), were added into the hemicelluloses/MMT hybrid matrices to prepare hybrid films, respectively. The hybrid films were nanocomposites with nacre-like structure and multifunctional characteristics including higher strength and good oxygen barrier properties via the electrostatic and hydrogen bonding interactions. The addition of PVA and NCH could induce changes in surface topography, and effectively enhance mechanical strength, thermal stability, transparency, and oxygen barrier properties. The tensile strengths of the composite films FPVA(0.3), FPVA(0.5), and FNCH(0.8) were 53.7, 46.3, and 50.1 MPa, respectively, which were 171%, 134%, and 153% larger than the FQH-MMT film (19.8 MPa). The tensile strength, and oxygen transmission rate of QH-MMT-PVA film were better than those of quaternized hemicelluloses/MMT films. Thus, the proper filler is very important for the strength of the hybrid film. These results provide insights into the understanding of the structural relationships of hemicellulose-based composite films in coating and packaging application for the future.

  14. Oligomerization reactions of deoxyribonucleotides on montmorillonite clay - The effect of mononucleotide structure, phosphate activation and montmorillonite composition on phosphodiester bond formation

    Science.gov (United States)

    Ferris, James P.; KAMALUDDIN; Ertem, Gozen

    1990-01-01

    The 2(prime)-d-5(prime)-GMP and 2(prime)-d-5(prime)-AMP bind 2 times more strongly to montmorillonite 22A than do 2(prime)-d-5(prime)-CMP and 5(prime)-TMP. The dinucleotide d(pG)2 forms in 9.2 percent yield and the cyclic dinucleotide c(dpG)2 in 5.4 percent yield in the reaction of 2(prime)-d-5(prime)-GMP with EDAC in the presence of montmorillonite 22A. The yield of dimers which contain the phosphodiester bond decreases as the reaction medium is changed from 0.2 M NaCl to a mixture of 0.2 M NaCl and 0.075 M MgCl2. A low yield of d(pA)2 was observed in the condensation reaction of 5(prime)-ImdpA on montmorillonite 22A. The yield of d(pA)2 obtained when EDAC is used as the condensing agent increases with increasing iron content of the Na(+)-montmorillonite used as catalyst. Evidence is presented which shows that the acidity of the Na(+)-montmorillonite is a necessary but not sufficient factor for the montmorillonite catalysis of phosphodiester bond formation.

  15. ELECTROLESS NICKEL PLATING ON CHITOSAN-MODIFIED WOOD VENEER

    Directory of Open Access Journals (Sweden)

    Lijuan Wang

    2011-04-01

    Full Text Available An activation process involving chitosan was conducted to prepare electroless nickel plated wood veneers for electromagnetic interference (EMI shielding. In this process Pd(Ⅱ ions were chemically adsorbed on wood surface modified with chitosan. Then they were reduced and dipped into a plating bath in which Ni-P co-deposition was successfully initiated. The coatings were characterized by SEM-EDS and XRD. The metal deposition, surface resistivity, and electromagnetic shielding effectiveness were measured. The morphology of the coating observed by SEM was uniform, compact, and continuous. EDS results showed that the coating consists of 1.8 wt.% phosphorus and 98.2 wt.% nickel. XRD analysis indicated that the coating was crystalline, which is supposed to be related to the low phosphorus content. The plated birch veneers exhibited electro-conductivity with surface resistivity of 0.24 Ω•cm-2 and good electromagnetic shielding effectiveness of over 50 dB in frequency range from10 MHz to 1.5 GHz.

  16. Chitosan composite films. Biomedical applications.

    Science.gov (United States)

    Cárdenas, Galo; Anaya, Paola; von Plessing, Carlos; Rojas, Carlos; Sepúlveda, Jackeline

    2008-06-01

    Chitosan acetate films have been prepared using chitosans from shrimps (Pleuroncodes monodon) of low and high molecular weight (LMv = 68,000 g/mol and HMv = 232,000 g/mol) and deacetylation degree of 80 and 100%, respectively. The chitosan films were obtained by addition of several additives to acetic acid chitosan solutions, such as: glycerol, oleic acid and linoleic acid in different proportions. The pH of the solutions before casting ranged from 5.0 to 6.0. The composite film thickness are reported. The films have been analyzed by FTIR showing characteristic bands corresponding to the additives. The scanning electron microscopy (SEM) studies reveals the different morphology of the composite films. The films exhibit different physical properties depending upon the additives and/or mixture of them. The addition of glycerol to composite improves the elasticity of the films. The swelling in glucose and saline solutions for several films was evaluated, being higher in the glucose solution. The bactericide test against Staphylococcus aureus, Pseudomona aeruginosa and Acinetobacter baumanii in plates with either blood and or agar tripticase showed that the molecular weight influences on the bactericidal properties of the chitosan composite films and over its effect against gram positive and gram negative bacteria. Medical applications of the composite films were done in patients with burns, ulcers and injuries, the films containing glycerol showed good adhesion in comparison with those without it. The composite films tested were mainly three (1) chitosan acetate with glycerol, (2) chitosan acetate with oleic acid and (3) chitosan acetate with glycerol and oleic acid. Excellent results in the skin recovery were obtained after 7-10 days. Since the chitosan is biodegradable by the body enzymes it does not need to be removed and increases the gradual grows of the damage tissues. PMID:18165888

  17. Hollow latex particles functionalized with chitosan for the removal of formaldehyde from indoor air.

    Science.gov (United States)

    Nuasaen, Sukanya; Opaprakasit, Pakorn; Tangboriboonrat, Pramuan

    2014-01-30

    Chitosan and polyethyleneimine (PEI) functionalized hollow latex (HL) particles were conveniently fabricated by coating poly(methyl methacrylate-co-divinyl benzene-co-acrylic acid) (P(MMA/DVB/AA)) HL particles with 5 wt% chitosan or 14 wt% PEI. The materials were used as formaldehyde adsorbent, where their adsorbent activity was examined by Fourier Transform Infrared (FTIR) spectroscopy. The nucleophilic addition of amines to carbonyls generated a carbinolamine intermediate with a characteristic band at 1,020 cm(-1) and Schiff base product at 1650 cm(-1), whose intensity increased with prolonged formaldehyde exposure times. The major products observed in HL-chitosan were carbinolamine and Schiff base, whereas a small amount of Schiff base was obtained in HL-PEI particles, confirming a chemical bond formation without re-emission of formaldehyde. Compared to HL-PEI, HL-chitosan possesses higher formaldehyde adsorption efficiency. Besides providing opacity and whiteness, the multilayer HL-chitosan particles can effectively remove indoor air pollutants, i.e., formaldehyde gas, and, hence, would be useful in special coating applications.

  18. Modification of montmorillonite with alkyltrimethylammonium bromides. Effect of thermal and ultrasonic treatment upon the structure of montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez M, F.J.; Galotto Lopez, M.J.; Guarda M, A., E-mail: francisco.rodriguez.m@usach.c [Universidad de Santiago de Chile (CEDENNA/USACH), Santiago (Chile). Dept. de Ciencia y Tecnologia en Alimentos. Centro para el Desarrollo de la Nanociencia y Nanotecnologia

    2009-07-01

    The aim of this work was synthesized organo clays using different methodologies oriented to improve the cationic interchange between montmorillonite and organic salts. Thermal and thermal-ultrasonic methods were studied. According to obtained results, the ultrasonic application improved the interchange between organic ammonium and sodium ion of the clay. On the other hand, an important effect of molecular weight of organic surfactant was observed. Formation of organo clays was evidenced through ray-X diffraction (RXD), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR). (author)

  19. Preparation and Characterization of Acylated Chitosan

    Institute of Scientific and Technical Information of China (English)

    LI Ming-chun; LIU Chao; XIN Mei-hua; ZHAO Huang; WANG Min; FENG Zhen; SUN Xiao-li

    2005-01-01

    Fully acylated chitosan and N, N-diacyl chitosan were prepared. The products were characterized by elemental analysis, FTIR and 1H NMR. The experimental results indicate that the average degree of acylation depends on the volume ratio of pyridine to chloroform in the reaction medium, the chain length of the acylation agent used, and the molecular weight of chitosan raw materials. The XRD measurements were carried out for pure chitosan, fully acylated chitosan and N, N-diacyl chitosan to verify the crystallinity change caused by the acylation.

  20. Controlled swelling and adsorption properties of polyacrylate/montmorillonite composites

    Energy Technology Data Exchange (ETDEWEB)

    Natkanski, Piotr [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Kustrowski, Piotr, E-mail: kustrows@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Bialas, Anna; Piwowarska, Zofia [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Michalik, Marek [Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, 30-063 Krakow (Poland)

    2012-10-15

    A series of novel polyacrylate/montmorillonite composites was synthesized by in situ polymerization in aqueous slurry of clay. Dissociated (obtained by adding ammonium or sodium hydroxide) and undissociated forms of acrylic acid were used as monomers in the hydrogel synthesis. The structure and composition of the samples were studied by powder X-ray diffraction, diffuse reflectance infra-red Fourier transform spectroscopy, thermogravimetry and elemental analysis. It has been found that the kind of monomer influences strongly the location of a polymer chain in the formed composite. Complete intercalation of hydrogel into the interlayer space of montmorillonite was observed for sodium polyacrylate, whereas polyacrylic acid and ammonium polyacrylate mainly occupied the outer surface of the clay. The position of hydrogel determined the swelling and adsorption properties of the studied composites. The important factor influencing the kinetics of Fe(III) cation adsorption was pH. The analysis of adsorption isotherms allowed to propose the mechanism of Fe(III) cation adsorption. Highlights: Black-Right-Pointing-Pointer Polyacrylate hydrogels can be introduced into the interlayers of clay. Black-Right-Pointing-Pointer The position of hydrogel in the composite depends on the polymer type. Black-Right-Pointing-Pointer Ammonium polyacrylate places outside the clay, sodium one is intercalated into it. Black-Right-Pointing-Pointer Swelling and adsorption capacities can be controlled by the polymer position. Black-Right-Pointing-Pointer High adsorption efficiency in Fe(III) removal was observed.

  1. SYNTHESIS AND CHARACTERIZATION OF ORGANOMONTMORILLONITE AND POLYAMIDE 66/MONTMORILLONITE NANOCOMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Cheng-shen Zhu; Xin Kang; Su-qin He; Liu-yang Wang; Li-yun Lu

    2002-01-01

    The montmorillonites (MMTs), layered, smectite-type silicates, were premodified by two different methods priorto the polymer melt intercalation. In one case MMTs were modified with cetyltrimethylammonium bromide (CTAB), andtermed as organomontmorillonites (OMMTs); in the other case MMTs were modified by nylon, and the products were calledmodified montmorillonites (MMMTs). The effects of CTAB and nylon on the MMTs were investigated by using TG andWAXD. The results show that interlayer spacings of CTAB and nylon modified MMTs are larger than that of sodium MMTs.Then, polyamide 66 (PA 66)/MMT nanocomposites were obtained through the method of melt intercalation of polymers. Thenanocomposites were characterized by WAXD, TEM and Molau experiments. The results indicate that the MMTs dispersehomogeneously in the PA 66 matrix. The mechanical properties of nanocomposites, such as tensile properties and flexuralproperties, were also measured and show a tendency to increase with increase of MMT content and reach the maximumvalues at 5phr MMT content. The heat distortion temperature (HDT) of the nanocomposites (7 phr) is about 32 K higher thanthat of pure PA 66.

  2. Insightful understanding of the role of clay topology on the stability of biomimetic hybrid chitosan-clay thin films and CO2-dried porous aerogel microspheres.

    Science.gov (United States)

    Frindy, Sana; Primo, Ana; Qaiss, Abou El Kacem; Bouhfid, Rachid; Lahcini, Mohamed; Garcia, Hermenegildo; Bousmina, Mosto; El Kadib, Abdelkrim

    2016-08-01

    Three natural clay-based microstructures, namely layered montmorillonite (MMT), nanotubular halloysite (HNT) and micro-fibrillar sepiolite (SP) were used for the synthesis of hybrid chitosan-clay thin films and porous aerogel microspheres. At a first glance, a decrease in the viscosity of the three gel-forming solutions was noticed as a result of breaking the mutual polymeric chains interaction by the clay microstructure. Upon casting, chitosan-clay films displayed enhanced hydrophilicity in the order CSchitosan-clay films has been substantiated with CS-SP reaching the highest value at 5% clay loading. While clay addition provides a way to resist the shrinkage occurring for native chitosan, the enhanced hydrophilicity associated to the water content affects the efficacy of the CO2 super-critical drying as the most hydrophilic CS-SP microspheres face the highest shrinkage, resulting in a lowest specific surface area compared to CS-HNT and CS-MMT. Chitosan-clay exhibits enhanced thermal properties with the degradation delayed in the order CSchitosan-clay compared to native chitosan, evidencing the beneficial protective effect of the clay particulates for the biopolymer. However, under hydrothermal treatment, the presence of clay was found to be detrimental to the material stability as a significant shrinkage occurs in hybrid CS-clay microspheres, which is attributed again to their increased hydrophilicity compared to the native polymeric microspheres. In this framework, a peculiar behavior was observed for CS-MMT, with the microspheres standing both against contraction during CO2 gel drying and under hydrothermal conditions. The knowledge gained from this rational design will constitute a guideline toward the preparation of ultra-stable, practically-optimized food

  3. The morphogenesis features of burn wounds by applying chitosan membranes in different age periods

    Directory of Open Access Journals (Sweden)

    Kornienko V.V.

    2014-05-01

    Full Text Available Background. The number of research devoted to chitosan application for burn defects treatment has increased during the last decades. However, the age-related features of skin regeneration with chitosan application are still uninvestigated Objective. The aim of our research was to evaluate effectiveness of chitosan coatings application to treat burns in different age periods. Methods. We studied the tissue morphogenesis features of the thermal damaged skin. We modeled the burn wounds of IIIb degree on the rats of experimental and control groups. And then we applied chitosan coatings on the animals of the experimental group to analyze the effectiveness of topical treatment. We analyzed the healing of burn wounds by the following morphological criteria: types of the epidermis and dermis damage; terms and features of wound cleaning; presence and degree of inflammation intensity and blood circulation disorders; quantity and quality of cellular infiltration. Other criteria were terms and degree of connective and epithelial tissue formation and levels of their differentiation and distribution; presence or absence of synchrony regenerative processes in the epithelium and connective tissue (especially features of vessel formation; presence or absence of morphological manifestations of pathological regeneration in the epithelium and connective tissue. Results. We found that the rate of burn healing applying chitosan coatings speeded up as they stimulated both macrophage reaction (with further inflammation reduction; cellular proliferation of fibroblasts and vessel formation. Moreover, granulation tissue and collagen fibers formed faster. Besides, epithelium regeneration and scar formation enhanced. As a result, epithelial cell migration and tissue contraction covered the wound. Conclusion. Application of chitosan membranes to treat thermal burns enhanced wound cleaning from dead tissue and reduced eschar, decreased the intensity of inflammatory reactions

  4. Plutonium(IV) sorption to montmorillonite in the presence of organic matter.

    Science.gov (United States)

    Boggs, Mark A; Dai, Zurong; Kersting, Annie B; Zavarin, Mavrik

    2015-03-01

    The effect of altering the order of addition in a ternary system of plutonium(IV), organic matter (fulvic acid, humic acid and desferrioxamine B), and montmorillonite was investigated. A decrease in Pu(IV) sorption to montmorillonite in the presence of fulvic and humic acid relative to the binary Pu-montmorillonite system, is attributed to strong organic aqueous complex formation with aqueous Pu(IV). No dependence on the order of addition was observed. In contrast, in the system where Pu(IV) was equilibrated with desferrioxamine B (DFOB) prior to addition of montmorillonite, an increase in Pu(IV) sorption was observed relative to the binary system. When DFOB was equilibrated with montmorillonite prior to addition of Pu(IV), Pu(IV) sorption was equivalent to the binary system. X-ray diffraction and transmission electron microscopy revealed that DFOB accumulated in the interlayer of montmorillonite. The order of DFOB addition plays an important role in the observed sorption/desorption behavior of Pu. The irreversible nature of DFOB accumulation in the montmorillonite interlayer leads to an apparent dependence of Pu sorption on the order of addition in the ternary system. This work demonstrates that the order of addition will be relevant in ternary systems in which at least one component exhibits irreversible sorption behavior.

  5. Transcrystallization at the surface of graphene-modified chitosan fibers

    Science.gov (United States)

    Liu, Mingxian; He, Rui; Yang, Jing; Zhao, Wei; Zhou, Changren

    2016-07-01

    Incompatibility between hydrophilic chitosan (CS) fiber and hydrophobic polymer matrices leads to unsatisfactory properties of the composites. The crystallization of polymer on the fiber surface is a promising way to increase interfacial interactions. Here, we coated CS fiber surfaces with graphene oxide via electrostatic self-assembly to improve interfacial interactions between the polymer and the CS fiber. Structures of the CS fiber before and after graphene coating were characterized by various methods. The formation of a polypropylene (PP) transcrystalline (TC) layer on the CS fiber surface was investigated. It is suggested that at low crystallization temperatures the fiber induced TC phase forms faster than at high temperature. There exist α and β crystal of PP in the TC phase formation process as demonstrated by x-ray diffraction. The polarized light optical microscope results demonstrate that graphene coated CS fiber can also enhance the TC phase nucleation ability of poly(l-lactide).

  6. In vitro Corneal Permeation and Antibacterial Activity of N-Trimethyl Chitosan-coated Sparfloxacin Lac-tate Nanoliposomes%N-三甲基壳聚糖包覆乳酸司帕沙星纳米脂质体体外角膜渗透性及抗菌性

    Institute of Scientific and Technical Information of China (English)

    宋玲; 何文

    2016-01-01

    目的:考察 N-三甲基壳聚糖(TMC)包覆司帕沙星(SL)纳米脂质体的离体角膜渗透性及体外抗菌性。方法:采用Franz 扩散池,以兔离体角膜为屏障,分别考察 TMC 包覆 SL 纳米脂质体、SL 纳米脂质体及 SL 滴眼液的角膜渗透性,并计算角膜渗透参数。以大肠埃希菌、金黄色葡萄球菌、铜绿假单胞菌和枯草芽孢杆菌为菌种,分别考察以上3种 SL 制剂的体外抑菌性,得到最小抑菌浓度(MIC)、最低杀菌浓度(MBC)及抑菌率与时间的关系。结果:3种 SL 制剂的稳态渗透速率 J、角膜渗透系数 P 及角膜滞留率大小顺序为:TMC 包覆 SL 纳米脂质体> SL 纳米脂质体> SL 滴眼液。时滞τ及角膜扩散系数 D 的大小顺序为:SL 纳米脂质体> SL 滴眼液> TMC 包覆 SL 纳米脂质体。对4种细菌的抑菌活性大小顺序为:TMC 包覆 SL 纳米脂质体> SL 纳米脂质体> SL 滴眼液。结论:脂质体可增强 SL 的角膜渗透作用及储库作用,体外抑菌活性也较滴眼液增强,而TMC 包覆后效果更佳,且作用迅速,值得进一步研究。%Objective:To study the in vitro corneal permeation and antibacterial activity of N-trimethyl chitosan(TMC)-coated sparfloxacin lactate(SL)nanoliposomes. Methods:Franz diffusion cells were used with rabbit cornea as the barrier to study the in vitro corneal permeation of TMC-coated SL nanoliposomes,and the permeation parameters were calculated. Eseheriehia eoli,staphylo-eoeeus aureus,pseudomonas aeruginosa and baeillus subtilis were used as the tested bacterial strains and the in vitro antibacterial activity of the SL preparations was investigated to obtain the minimum inhibitory concentration(MIC),the minimum bactericidal concentration (MBC)and the relationship of bacterial inhibitory rate and time. Results:The order of steady permeation rate(J),corneal perme-ation coefficient(P)and corneal retention rate was TMC-coated

  7. Radiation-induced enhancement of antifungal activity of chitosan on fruit-spoiling fungi during postharvest storage

    Energy Technology Data Exchange (ETDEWEB)

    Diep, Tran Bang; Lam, Nguyen Duy; Quynh, Tran Minh [Institute for Nuclear Science and Technique-VAEC, Hanoi (Viet Nam); Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Experiment conducted four fruit-spoiling fungal strains that were isolated from spoilt fruits (mango and dragon fruit) and were identified as follows: Fusarium dimerum Penzig, Aspergillus nidulans Wint, Aspergillus fumigatus Fresenius and Aspergillus japonicus Saito. Chitosan samples with various deacetylation degree (70-99%) were irradiated at doses ranging from 20 to 200kGy, then were supplemented to liquid medium for growth of fungi. We have found that chitosan possesses not only well known antibacterial activity but also the antifungal one on fruit-spoiling fungi. Method of fungal cultivation using liquid medium showed that it has higher sensitivity compared with the cultivation on agar plate, so we recommend this method should be used for evaluation of antimicrobial activity of chitosan. Our study also indicated that deacetylation degree of chitosan clearly affects its antifungal activity, the higher the deacetylation of chitosan, stronger antifungal activity can be observed. This finding recommends the use of chitosan with higher deacetylation for fruit coating and other pharmacology utilization. Results from the minimal inhibitory concentrations (MIC) on fungal growth showed that radiation treatment increased antifungal activity of chitosan and dose of 60kGy gave highest activity. (author)

  8. Controllable degradation of medical magnesium by electrodeposited composite films of mussel adhesive protein (Mefp-1) and chitosan.

    Science.gov (United States)

    Jiang, Ping-Li; Hou, Rui-Qing; Chen, Cheng-Dong; Sun, Lan; Dong, Shi-Gang; Pan, Jin-Shan; Lin, Chang-Jian

    2016-09-15

    To control the degradation rate of medical magnesium in body fluid environment, biocompatible films composed of Mussel Adhesive Protein (Mefp-1) and chitosan were electrodeposited on magnesium surface in cathodic constant current mode. The compositions and structures of the films were characterized by atomic force microscope (AFM), scanning electron microscope (SEM) and infrared reflection absorption spectroscopy (IRAS). And the corrosion protection performance was investigated using electrochemical measurements and immersion tests in simulated body fluid (Hanks' solution). The results revealed that Mefp-1 and chitosan successfully adhered on the magnesium surface and formed a protective film. Compared with either single Mefp-1 or single chitosan film, the composite film of chitosan/Mefp-1/chitosan (CPC (chitosan/Mefp-1/chitosan)) exhibited lower corrosion current density, higher polarization resistance and more homogenous corrosion morphology and thus was able to effectively control the degradation rate of magnesium in simulated body environment. In addition, the active attachment and spreading of MC3T3-E1 cells on the CPC film coated magnesium indicated that the CPC film was significantly able to improve the biocompatibility of the medical magnesium. PMID:27309944

  9. Radiation-induced enhancement of antifungal activity of chitosan on fruit-spoiling fungi during postharvest storage

    International Nuclear Information System (INIS)

    Experiment conducted four fruit-spoiling fungal strains that were isolated from spoilt fruits (mango and dragon fruit) and were identified as follows: Fusarium dimerum Penzig, Aspergillus nidulans Wint, Aspergillus fumigatus Fresenius and Aspergillus japonicus Saito. Chitosan samples with various deacetylation degree (70-99%) were irradiated at doses ranging from 20 to 200kGy, then were supplemented to liquid medium for growth of fungi. We have found that chitosan possesses not only well known antibacterial activity but also the antifungal one on fruit-spoiling fungi. Method of fungal cultivation using liquid medium showed that it has higher sensitivity compared with the cultivation on agar plate, so we recommend this method should be used for evaluation of antimicrobial activity of chitosan. Our study also indicated that deacetylation degree of chitosan clearly affects its antifungal activity, the higher the deacetylation of chitosan, stronger antifungal activity can be observed. This finding recommends the use of chitosan with higher deacetylation for fruit coating and other pharmacology utilization. Results from the minimal inhibitory concentrations (MIC) on fungal growth showed that radiation treatment increased antifungal activity of chitosan and dose of 60kGy gave highest activity. (author)

  10. Determining the cation exchange capacity of montmorillonite by simultaneous thermal analysis method

    Science.gov (United States)

    Boeva, N. M.; Bocharnikova, Yu. I.; Belousov, P. E.; Zhigarev, V. V.

    2016-08-01

    A way of determining the cation exchange capacity of montmorillonite by simultaneous thermal analysis is developed using as an example the bentonites of the 10th Khutor deposit (Republic of Khakassia) and the Vodopadnyi area (Sakhalin Island). A correlation is established between the cation exchange capacity of smectite and its weight loss upon heating in the range of dehydration; the enthalpy of dehydration of montmorillonite; and the weight loss and the enthalpy of thermal dissociation of ethylene glycol contained in the interlayer space of the mineral's crystal structure. These data open up new possibilities for determining the cation exchange capacity of montmorillonite, the most important technological indicator of the natural clay nanomineral.

  11. Chitosan and lactic acid-grafted chitosan nanoparticles as carriers for prolonged drug delivery

    OpenAIRE

    Bhattarai, Narayan; Ramay, Hassna R; Chou, Shinn-Huey; Zhang, Miqin

    2006-01-01

    Nanoparticles of ~10 nm in diameter made with chitosan or lactic acid-grafted chitosan were developed for high drug loading and prolonged drug release. A drug encapsulation efficiency of 92% and a release rate of 28% from chitosan nanoparticles over a 4-week period were demonstrated with bovine serum protein. To further increase drug encapsulation, prolong drug release, and increase chitosan solubility in solution of neutral pH, chitosan was modified with lactic acid by grafting D,L-lactic ac...

  12. Modeling and optimization of degree of folate grafted on chitosan and carboxymethyl-chitosan

    OpenAIRE

    Esfandiarpour-Boroujeni, S.; Bagheri-Khoulenjani, S.; Mirzadeh, H.

    2015-01-01

    Chitosan is a cationic polysaccharide with great properties and so is considered as an attractive biopolymer. However, chitosan shows its antibacterial activity only in acidic environment and this restricts its uses. So water-soluble chitosan derivatives such as carboxymethyl chitosan could be good candidates for such biomedical applications. Modified chitosan with hydrophobic functional groups such as folate (FA) is able to make self-assembled nanoparticles in aqueous media. One of the most ...

  13. Characterization of Chitosan Nanofiber Sheets for Antifungal Application

    OpenAIRE

    Mayumi Egusa; Ryo Iwamoto; Hironori Izawa; Minoru Morimoto; Hiroyuki Saimoto; Hironori Kaminaka; Shinsuke Ifuku

    2015-01-01

    Chitosan produced by the deacetylation of chitin is a cationic polymer with antimicrobial properties. In this study, we demonstrate the improvement of chitosan properties by nanofibrillation. Nanofiber sheets were prepared from nanofibrillated chitosan under neutral conditions. The Young’s modulus and tensile strength of the chitosan NF sheets were higher than those of the chitosan sheets prepared from dissolving chitosan in acetic acid. The chitosan NF sheets showed strong mycelial growth in...

  14. Characterization and cytocompatibility of an antibiotic/chitosan/cyclodextrins nanocoating on titanium implants.

    Science.gov (United States)

    Mattioli-Belmonte, Monica; Cometa, Stefania; Ferretti, Concetta; Iatta, Roberta; Trapani, Adriana; Ceci, Edmondo; Falconi, Mirella; De Giglio, Elvira

    2014-09-22

    A novel ciprofloxacin loaded chitosan nanoparticle-based coating onto titanium substrates has been developed and characterized to obtain an orthopaedic implant surface able to in situ release the antibiotic for the prevention of post-operative infections. Ciprofloxacin loaded chitosan nanoparticles were obtained using the combination of sulfobutyl ether-beta-cyclodextrin and gamma-cyclodextrin. The resulting nanoparticulate system was characterized by TEM, HPLC and XPS. Particle size was in the range 426-552 nm and zeta potential values were around +30 mV. This antibacterial coating was able to in vitro inhibit two nosocomial Staphylococcus aureus strains growth, with a reduction of about 20 times compared to controls. No impairment in MG63 osteoblast-like cells viability, adhesion and gene expression were detected at 48 h, 7 and 14 days of culture. Overall, the investigated coating represents a promising candidate for the development of a new antibiotic carrier for titanium implants. PMID:24906744

  15. Enhancing Biological Wastewater Treatment with Chitosan

    Institute of Scientific and Technical Information of China (English)

    陈亮; 陈东辉; 朱珺

    2003-01-01

    Chitin and chitosan have been applied to biological wastewater treatment.From a number of parallel comparison experiments,it can be concluded that the application of chitin and chitosan can both enhance the biological treatment,besides which chitosan is more efficient than chitin.The study on the enhancement mechanism reveals the difference between the two additives:chitosan improves the sludge structure and settlibility,while chitin acts as a kind of carrier for microorganism in the biological treatment system.

  16. Synthesis of Chitosan Quaternary Ammonium Salts

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A series of N-alkyl or N-aryl chitosan quaternary ammonium salts were prepared via Schiffs base intermediates. Quaternization of N-substituted chitosan derivatives was carried out using methyl iodide to produce water-soluble cationic chitosan quaternary ammonium salt. The products were characterized by IR, 1HNMR and elemental analysis. The degree of substitution of chitosan quaternary ammonium salt was calculated by elemental analysis.

  17. Antimicrobial films and coatings for inactivation of Listeria innocua on ready-to-eat deli turkey meat

    Science.gov (United States)

    Edible antimicrobial coating solutions incorporating chitosan, lauric arginate (LAE) and nisin were developed to reduce foodborne pathogen contamination on ready-to-eat (RTE) meats. RTE deli meat samples were directly coated with the solutions, or treated with solution-coated polylactic acid (PLA) f...

  18. Composite polysaccharide fibers prepared by electrospinning and coating.

    Science.gov (United States)

    Maeda, N; Miao, J; Simmons, T J; Dordick, J S; Linhardt, R J

    2014-02-15

    Composite polysaccharide fibers composed two oppositely charged natural polysaccharides, chitosan and hyaluronic acid, were prepared by electrospinning and subsequent coating. The fiber size distribution was characterized by scanning electron microscopy. Chitosan/hyaluronic acid composite fibers were stable in water but showed controlled release of hyaluronic acid into phosphate buffered saline, and the presence of 3-wt% hyaluronic acid coating improved the swelling ratio to 30%. The resulting composite polysaccharide fibers have a number of potential biomedical applications in wound healing applications and in drug delivery systems. PMID:24507368

  19. Chiral stationary phases based on chitosan bis(methylphenylcarbamate)-(isobutyrylamide) for high-performance liquid chromatography.

    Science.gov (United States)

    Tang, Sheng; Bin, Qin; Chen, Wei; Bai, Zheng-Wu; Huang, Shao-Hua

    2016-04-01

    A series of chitosan bis(methylphenylcarbamate)-(isobutyrylamide) derivatives were synthesized by carbamylating chitosan isobutyrylamide with different methylphenyl isocyanates. Then the prepared chitosan derivatives were coated onto 3-aminopropyl silica particles, resulting in a series of new chiral stationary phases (CSPs) for high-performance liquid chromatography. It was observed that the chiral recognition abilities of these coated-type CSPs depended very much on the substituents on the phenyl moieties of the chitosan derivatives, the eluent composition, as well as the structure of racemates. As a typical example, the eluent tolerance of the prepared CSP with the best enantioseparation ability was investigated in detail, and the results revealed that the CSP exhibited extraordinary solvent tolerance and could still work without significant loss in enantioseparation capability after being flushed with chloroform (100%), ethyl acetate (100%) and even THF/n-hexane (70/30, v/v), while the traditional coated-type CSPs based on the cellulose and amylose derivatives, such as cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC) and amylose tris(3,5-dimethylphenylcarbamate) (ADMPC), might be dissolved or highly swollen in these eluents. Therefore, the application of the resultant CSPs could address the problem of the dissolution and high swelling of traditional coated-type CSPs in some unusual eluents, broadening the possibility of eluent choice. In addition, a comparison of the prepared CSPs with the well known CDMPC- and ADMPC- based CSPs concerning the chiral recognition ability was also made. Separation performances achieved on the as-prepared CSPs in different eluents were found to be even superior to CDMPC- and ADMPC-based CSPs for the tested chiral compounds. In summary, we could safely draw the conclusion that the CSPs derived from chitosan isobutyrylamide derivatives were capable of excellent chiral recognition ability, and meanwhile possessed satisfactory

  20. Antimicrobial properties of N-carboxybutyl chitosan.

    OpenAIRE

    Muzzarelli, R; Tarsi, R; Filippini, O; Giovanetti, E; G. Biagini; Varaldo, P E

    1990-01-01

    N-Carboxybutyl chitosan, a modified chitin of crustacean origin, displayed inhibitory, bactericidal, and candidacidal activities when tested against 298 cultures of various pathogens. Examination by electron microscopy showed that microbial cells exposed to N-carboxybutyl chitosan underwent marked morphological alterations. The data are of importance in defining the suitability of N-carboxybutyl chitosan as a wound dressing.

  1. Chitosan-supported Borohydride Reducing Agent

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new chitosan-supported borohydride reducing reagent (CBER) was prepared by treatment of KBH4 with the resin of chitosan derivative, which was first synthesized fiom the reaction of cross-linked chitosan microsphere with glycidyl trimethylammonium chloride. CBER could reduce aromatic carbonyl compound to corresponding alcohol.

  2. CHITOSAN: ANTIBACTERIAL ACTIVITY AND PERSPECTIVES OF THE BIOMEDICAL APPLICATION

    Directory of Open Access Journals (Sweden)

    Sukhodub L.B.

    2014-10-01

    in the Gram-negative bacteria outer membrane are held together by electrostatic interactions with divalent metals. This cations may compete with CS, that also disturb the cell functions. Some authors reported that CS binds to DNA and inhibits RNA synthesis. Significant role in antibacterial activity belongs to the physical and chemical properties of Chitosan, including its cationic structure, molecular weight, degree of the deacetylation, concentration. Owing to the high content of amino and carboxyl groups, Chitosan can form chelate complexes with metals. Silver (Ag ion antimicrobial activity against Gram-negative and Gram-positive bacteria is well known. Complexes Chitosan-Silver are used in medicine for example as part of the protective coatings on metal implants in dentistry and orthopedics in order to reduce the risk of postoperative infection. The antibacterial activity of the Silver-Chitosan-doped hydroxyapatite (HA coating was examined using spectrophotometry by measuring the optical density of the culture medium E.coli АТСС 25922 containing the experimental samples. After 48 hours immersion of the substrate in medium, concentration of microbial cells (C, CFU/ml was decreased from log 7 to log 4,8, what is evidence of the coating antibacterial activity.It was studied the ability of the biomaterials based on HA with Chitosan and Silver content to influence the adhesive properties of E. coli АТСС 25922 and S. aureus АТСС 25923. It was proved that under Ag+ ions action, added to the coating material, the adhesive index for E.coli decreases in relation to formalinized ram erythrocytes on 17 % as compared to control sample (pure HA and the adhesive index for S. aureus – on 13 %. Also was found that chitosan as a component of bioactive coating decreases the adhesive index E. coli on 29 %, and those for S. aureus on 22 %.Thus, from this short overview follows the conclusion that CS can be used in medicine as a very perspective antimicrobial agent. Also

  3. Pomegranate peel pectin films as affected by montmorillonite.

    Science.gov (United States)

    Oliveira, Túlio Ítalo S; Zea-Redondo, Luna; Moates, Graham K; Wellner, Nikolaus; Cross, Kathryn; Waldron, Keith W; Azeredo, Henriette M C

    2016-05-01

    The industrial production of pomegranate juice has been favored by its alleged health benefits derived from its antioxidant properties. The processing of pomegranate juice involves squeezing juice from the fruit with the seeds and the peels together, leaving a pomace consisting of approximately 73 wt% peels. In this study, pectin was extracted from pomegranate peels, and used to produce films with different contents of montmorillonite (MMT) as a nanoreinforcement material. The nanoreinforcement improved the tensile strength and modulus of films when added at up to 6 wt%, while the further addition of MMT (to 8 wt%) reduced the reinforcement effect, probably because of dispersion problems. The elongation was decreased with increasing MMT concentrations. The water vapor permeability decreased with increasing MMT contents up to 8 wt% MMT, indicating that the increased tortuosity of the permeant path was effective on barrier properties of the film. PMID:26769511

  4. Steady-state droplet size in montmorillonite stabilised emulsions.

    Science.gov (United States)

    Ganley, William J; van Duijneveldt, Jeroen S

    2016-08-14

    The formation of hexadecane-in-water emulsions stabilised by montmorillonite platelets was studied. In this system the platelets form a monolayer around the droplets and the droplet size decreases with increasing platelet volume fraction. However, the number of platelets present exceeds that required for monolayer coverage. The kinetics of emulsification were investigated and coalescence of droplets during turbulent mixing was found to continue even after the droplets had reached their ultimate size. Non-spherical droplets, resulting from arrested coalescence, were not observed suggesting that particles may be desorbing from the interface during the turbulent flow. A kinetic model based on a competition between droplet break-up and coalescence, mediated by particle adsorption and desorption, reproduces experimental trends in droplet diameter. The model can be used to predict the most efficient formulation to minimise droplet diameters for given materials and mixing conditions and sheds light on the processes occurring during emulsification in this system. PMID:27407026

  5. Nanocomposite materials based on polyurethane intercalated into montmorillonite clay

    International Nuclear Information System (INIS)

    Polyurethane organoclay nanocomposites have been synthesized via in situ polymerization method. The organoclay has been prepared by intercalation of diethanolamine or triethanolamine into montmorillonite clay (MMT) through ion exchange process. The syntheses of polyurethane-organoclay hybrids were carried out by swelling the organoclay into different kinds of diols followed by addition of diisocyanate. The nanocomposites with dispersed structure of MMT was obtained as evidence by scanning electron microscope and X-ray diffraction (XRD). The results shows broaden with low intense and shift of the peak characteristic to d001 spacing to smaller 2θ and the MMT is dispersed homogeneously in the polymer matrix. Also, the TGA showed that the nanocomposites have higher decomposition temperature in comparison with the pristine polyurethane

  6. Effect of Montmorillonite Clay upon the polycondensation of Lactic Acid

    Science.gov (United States)

    El Amine, Belaouedj Mohammed; Mohammed, Belbachir

    2008-08-01

    The development of synthetic biodegradable polymers, such as poly(α-hydroxy acid), is particularly important for constructing medical devices, drug delivery systems, including scaffolds and sutures, and has attracted growing interest in the biomedical field. Here, we report a novel approach to preparing poly(D, L-lactic acid) (PDLA) as a biodegradable polymer. We investigated in detail the reaction conditions for the simple direct polycondensation of lactic acid, including the reaction times, temperatures, and catalyst. The molecular weight of synthesized PLA is dependent on both the reaction temperature and time. The optimum reaction condition to obtain PDLA by direct polycondensation using Maghnite-H+, a proton exchanged Montmorillonite clay, as catalyst was thus determined to be 120 °C for 28h with a molecular weight of 7970. The method for PDLA synthesis established here will facilitate production of PDLA of various molecular weights, which may have a potential utility as biomaterials.

  7. An Acid Exchanged Montmorillonite Clay-Catalyzed Synthesis of Polyepichlorhydrin

    OpenAIRE

    Ahmed Yahiaoui; Mohammed Belbachir; Aïcha Hachemaoui

    2003-01-01

    “Maghniteâ€Â, a montmorillonite sheet silicate clay, exchanged