WorldWideScience

Sample records for chitosan based polyelectrolyte

  1. Design of Chitosan and Its Water Soluble Derivatives-Based Drug Carriers with Polyelectrolyte Complexes

    Directory of Open Access Journals (Sweden)

    Qing-Xi Wu

    2014-12-01

    Full Text Available Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have been considered well-suited as biomaterials for a number of vital drug carriers with targeted/controlled release profiles, e.g., films, capsules, microcapsules. In this work, an overview highlights not only the favorable properties of chitosan and its water soluble derivatives but also the good performance of the polyelectrolyte complexes produced based on chitosan. Their various types of applications as drug carriers are reviewed in detail.

  2. Design of chitosan and its water soluble derivatives-based drug carriers with polyelectrolyte complexes.

    Science.gov (United States)

    Wu, Qing-Xi; Lin, Dong-Qiang; Yao, Shan-Jing

    2014-12-19

    Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have been considered well-suited as biomaterials for a number of vital drug carriers with targeted/controlled release profiles, e.g., films, capsules, microcapsules. In this work, an overview highlights not only the favorable properties of chitosan and its water soluble derivatives but also the good performance of the polyelectrolyte complexes produced based on chitosan. Their various types of applications as drug carriers are reviewed in detail.

  3. Design of Chitosan and Its Water Soluble Derivatives-Based Drug Carriers with Polyelectrolyte Complexes

    Science.gov (United States)

    Wu, Qing-Xi; Lin, Dong-Qiang; Yao, Shan-Jing

    2014-01-01

    Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have been considered well-suited as biomaterials for a number of vital drug carriers with targeted/controlled release profiles, e.g., films, capsules, microcapsules. In this work, an overview highlights not only the favorable properties of chitosan and its water soluble derivatives but also the good performance of the polyelectrolyte complexes produced based on chitosan. Their various types of applications as drug carriers are reviewed in detail. PMID:25532565

  4. Design of Chitosan and Its Water Soluble Derivatives-Based Drug Carriers with Polyelectrolyte Complexes

    OpenAIRE

    Wu, Qing-Xi; Lin, Dong-Qiang; Yao, Shan-Jing

    2014-01-01

    Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have...

  5. Molecular interactions in self-assembled nano-structures of chitosan-sodium alginate based polyelectrolyte complexes.

    Science.gov (United States)

    Wasupalli, Geeta Kumari; Verma, Devendra

    2018-03-16

    We report here the self-assembled structures of polyelectrolyte complexes (PECs) of polyanionic sodium alginate with the polycationic chitosan at room temperature. The PECs prepared at different pH values exhibited two distinct morphologies. The chitosan-alginate PECs self-assembled into the fibrous structure in a low pH range of pH3 to 7. The PECs obtained at high pH series around pH8 and above resulted in the formation of colloidal nanoparticles in the range of 120±9.48nm to 46.02±16.66nm. The zeta potential measurement showed that PECs prepared at lower pH (pHPECs prepared at higher pH than 6 exhibited highly negative surface charge. The molecular interactions in nano-colloids and fibers were evaluated using FTIR analysis. The results attest that the ionic state of the chitosan and alginate plays an important role controlling the morphologies of the PECS. The present study has identified the enormous potential of the polyelectrolytes complexes to exploit shape by the alteration of ionic strength. These findings might be useful in the development of novel biomaterial. The produced fibers and nanocolloids could be applied as a biomaterial for tissue engineering and drug delivery. Copyright © 2017. Published by Elsevier B.V.

  6. Surface colonized silver nano particles over chitosan poly-electrolyte micro-spheres and their multi-functional behavior

    Science.gov (United States)

    Prakash, B.; Asha, S.; Nimrodh Ananth, A.; Vanithakumari, G.; Okram, G. S.; Jose, Sujin P.; Jothi Rajan, M. A.

    2018-02-01

    Chitosan/tripolyphosphate polyelectrolyte (TPP) microspheres, decorated and surface functionalized with silver nanoparticles (NPs) of average diameter of 15 nm, were synthesized following a simple two-step procedure. These Ag NP-functionalized polyelectrolyte microspheres (Ag-CSPMs) are found to be biocompatible and enhancing the reactive oxygen species in curcumin with excellent anti-bacterial activity for selected Gram-positive and negative bacterial strains, making them much attractive relative to bare surface counterparts; the well-stabilized silver NPs do not form any agglomerations on the surface of the chitosan microspheres. They also show excellent cytotoxic behavior towards MCF7 cell lines, showing a half-maximal inhibitory concentration (IC50) of 32 μg ml-1. Therefore, Ag-CSPMs exhibit multi-functional ability having potential towards theranostics applications.

  7. Preparation and analysis of multilayer composites based on polyelectrolyte complexes

    Energy Technology Data Exchange (ETDEWEB)

    Petrova, V. A. [Russian Academy of Sciences, Institute of Macromolecular Compounds (Russian Federation); Orekhov, A. S. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation); Chernyakov, D. D. [St. Petersburg State Chemical Pharmaceutical Academy (Russian Federation); Baklagina, Yu. G. [Russian Academy of Sciences, Institute of Macromolecular Compounds (Russian Federation); Romanov, D. P. [Russian Academy of Sciences, Grebenshchikov Institute of Silicate Chemistry (Russian Federation); Kononova, S. V. [Russian Academy of Sciences, Institute of Macromolecular Compounds (Russian Federation); Volod’ko, A. V.; Ermak, I. M. [Russian Academy of Sciences, Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch (Russian Federation); Klechkovskaya, V. V., E-mail: klechvv@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation); Skorik, Yu. A., E-mail: yury-skorik@mail.ru [Russian Academy of Sciences, Institute of Macromolecular Compounds (Russian Federation)

    2016-11-15

    A method for preparing multilayer film composites based on chitosan has been developed by the example of polymer pairs: chitosan–hyaluronic acid, chitosan–alginic acid, and chitosan–carrageenan. The structure of the composite films is characterized by X-ray diffractometry and scanning electron microscopy. It is shown that the deposition of a solution of hyaluronic acid, alginic acid, or carrageenan on a chitosan gel film leads to the formation of a polyelectrolyte complex layer at the interface, which is accompanied by the ordering of chitosan chains in the surface region; the microstructure of this layer depends on the nature of contacting polymer pairs.

  8. Influence of structural features of carrageenan on the formation of polyelectrolyte complexes with chitosan.

    Science.gov (United States)

    Volod'ko, A V; Davydova, V N; Glazunov, V P; Likhatskaya, G N; Yermak, I M

    2016-03-01

    The polyelectrolyte complexes (PEC) of carrageenans (CG)-κ-, κ/β-, λ-and x-CG with chitosan were obtained. The formation of PEC was detected by Fourier-transform infrared (FTIR) spectroscopy and by centrifugation in a Percoll gradient. The influence of the structural peculiarities of CG on its interaction with chitosan was studied. The results of centrifugation showed that x-CG with a high degree of sulphation (SD) was completely bound to chitosan, unlike low SD κ-CG and κ/β-CG. Binding constant values showed there was a high affinity of CG for chitosan. CG with flexible macromolecule conformation and high SD exhibited the greatest binding affinity for chitosan. The full-atomic 3D-structures of the PEC κ-CG: chitosan in solution have been obtained by the experiments in silico for the first time. The amino groups of chitosan make the largest contribution to the energy of the complex formation by means of hydrogen and ionic bonds. The most probable complexes have stoichiometries of 1:1 and 1:1.5. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Evaluation of polyelectrolyte complex-based scaffolds for mesenchymal stem cell therapy in cardiac ischemia treatment

    OpenAIRE

    Ceccaldi, Caroline; Bushkalova, Raya; Alfarano, Chiara; Lairez, Olivier; Calise, Denis; Bourin, Philippe; Frugier, Céline; Rouzaud-Laborde, Charlotte; Cussac, Daniel; Parini, Angelo; Sallerin, Brigitte; Girod Fullana, Sophie

    2014-01-01

    Three-dimensional (3D) scaffolds hold great potential for stem cell-based therapies. Indeed, recent results have shown that biomimetic scaffolds may enhance cell survival and promote an increase in the concentration of therapeutic cells at the injury site. The aim of this work was to engineer an original polymeric scaffold based on the respective beneficial effects of alginate and chitosan. Formulations were made from various alginate/chitosan ratios to form opposite-charge polyelectrolyte co...

  10. Chitosan-based nanocarriers for antimalarials

    Science.gov (United States)

    Dreve, Simina; Kacso, Iren; Popa, Adriana; Raita, Oana; Bende, A.; Borodi, Gh.; Bratu, I.

    2012-02-01

    The objective of this research was to synthesize and characterize chitosan-based liquid and solid materials with unique absorptive and mechanical properties as carriers for quinine - one of the most used antimalarial drug. The use of chitosan (CTS) as base in polyelectrolyte complex systems, to prepare solid release systems as sponges is presented. The preparation by double emulsification of CTS hydrogels carrying quinine as anti-malarial drug is reported. The concentration of quinine in the CTS hydrogel was 0.08 mmol. Chitosan - drug loaded hydrogel was used to generate solid sponges by freeze-drying at -610°C and 0.09 atm. Structural investigations of the solid formulations were done by Fourier-transformed infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-VIS), spectrofluorimetry, differential scanning calorimetry (DSC) and X-ray diffractometry. The results indicated that the drug molecule is forming temporary chelates in CTS hydrogels and sponges. Electron paramagnetic resonance (EPR) demonstrates the presence of free radicals in a wide range and the antioxidant activity for chitosan - drug supramolecular cross-linked assemblies.

  11. Physico-mechanical analysis data in support of compatibility of chitosan/κ-carrageenan polyelectrolyte films achieved by ascorbic acid, and the thermal degradation theory of κ-carrageenan influencing the properties of its blends

    Directory of Open Access Journals (Sweden)

    Mahdiyar Shahbazi

    2016-12-01

    Full Text Available This article presents the complementary data regarding compatibilization of chitosan/κ-carrageenan polyelectrolyte complex for synthesizing of a soft film using ascorbic acid. It includes the thermal-theory for estimating the degradation of κ-carrageenan, as reflected in alteration of the structural properties of the blend. The data has been provided to demonstrate that the blend solution based on chitosan, a polycation, and κ-carrageenan, a polyanion polymer, produces an incompatible polyelectrolyte composite, susceptible to coaservative phase separation. We present further data on water resistance, water barrier property, mechanical parameters, scanning electron micrograph, as well as contact angle image dataset of the chitosan/κ-carrageenan film. The physical data were collected by water solubility and water permeability assays, with a view to elucidate the role of ascorbic acid in the compatibility of polyelectrolyte blends. The mechanical data is obtained from a stress–strain curve for evaluation of tensile strength and elongation at break point of the chitosan/κ-carrageenan film. The microstructure observations were performed using scanning electron micrograph. These dataset confirm fabrication of a soft film in the presence of ascorbic acid, with reduced heterogeneities in the polyelectrolyte film structure. The κ-carrageenan was also treated by a thermal process, prior to inclusion into the chitosan solution, to investigate the impact of this on the mechanical and structural features of the resulting blend. We present the required data and the theoretical analysis supporting the thermal chain degradation of a polymer and its effects on behavior of the film. Additional information, characterizing the hydrophobicity of the surface of the blend layers is obtained by measuring water contact angles using a contact anglemeter.

  12. Formation of Polyelectrolyte Complex Colloid Particles between Chitosan and Pectin with Different Degree of Esterification

    Science.gov (United States)

    Wang, Hui; Sun, Hongyuan; He, Jieyu

    2017-12-01

    The effects of degree of esterification, pectin/chitosan ratio and pH on the formation of polyelectrolyte complex colloid particles between chitosan (CS) and pectin (PE) were investigated. Low methoxyl pectin (LPE) was achieved by de-esterifying high methoxyl pectin (HPE) with pectin methyl esterase. Turbidity titration and colorimetric method was used to determine the stability of complex colloid particles. The structure and morphology of complex particles were characterized by FTIR and TEM. When pectin solution was dropped into chitosan solution, complex colloidal dispersion was stable as PE/CS mass ratio was no more than 3:2. Colloidal particles of HPE-CS complex coagulated at larger ratio of PE/CS than LPE-CS. The maximum complex occurred at pH 6.1 for HPE-CS and pH 5.7 for LPE-CS, and decreasing pH leaded to the dissociation of complex particles. Electrostatic interactions between carboxyl groups on pectin and amino groups on chitosan were confirmed by FTIR. Colloidal particle sizes ranged from about 100 nm to 400 nm with spherical shape.

  13. Properties of aqueous dispersion of chitosan and chondroitin sulfate complex derived from aquatic organisms

    Directory of Open Access Journals (Sweden)

    Novikov V. Yu.

    2016-09-01

    Full Text Available Investigation of production of chondroitin sulfate, chitosan and polyelectrolyte complexes based on them received from the local marine raw materials is relevant from the point of view of developing a comprehensive waste-free technology for natural raw materials processing. The objects of study are chitosan derived from the shell of the Kamchatka crab Paralithodes camtschaticus and chondroitin sulfate derived from cartilage of salmon Salmon salar. To determine the surface tension of polyelectrolyte complex solutions and dispersions the Wilhelmy method has been used, the effective radius of particle dispersion has been calculated by light scattering, measurements of effective viscosity have been carried out under shear deformation. The conditions of formation, surface and rheological properties of the chitosan and chondroitin sulfate complex extracted from aquatic organisms in the Barents Sea have been studied. Obtaining conditions and molar ratios of these polyelectrolytes in which the aqueous dispersion of the complex remains stable for a long time have been established. It has been found that by addition of chondroitin sulfate solution to chitosan solution in molar ratios of 1 : 3; 1 : 6 the dispersion of the polyelectrolyte complex stable for 2 to 3 days has been formed. The polyelectrolyte complex dispersions behave as non-Newtonian pseudoplastic liquid. When the molar ratio of the mixed solution is 1 : 1 (regardless of the sequence of mixing suspension of the polyelectrolyte complex has been formed, then there is precipitation. Equilibrium surface tension of the aqueous dispersion of the polyelectrolyte complex is higher than that of solutions of chondroitin sulfate and chitosan. The effective radius of particles in the complex dispersion has been determined. The effective radius of the particles in the complex dispersion depends on the molar ratio of chondroitin sulfate : chitosan. A qualitative scheme of formation of polyelectrolyte

  14. Formation of nano-hydroxyapatite crystal in situ in chitosan-pectin polyelectrolyte complex network

    International Nuclear Information System (INIS)

    Li Junjie; Zhu Dunwan; Yin Jianwei; Liu Yuxi; Yao Fanglian; Yao Kangde

    2010-01-01

    Hydroxyapatite (HA)/polysaccharide composites have been widely used in bone tissue engineering due to their chemical similarity to natural bone. Polymer matrix-mediated synthesis of nano-hydroxyapatite is one of the simplest models for biomimetic. In this article, the nano-hydroxyapatite/chitosan-pectin (nHCP) composites were prepared through in situ mineralization of hydroxyapatite in chitosan-pectin polyelectrolyte complex (PEC) network. The formation processes of nHCP were investigated by X-ray diffraction (XRD) analysis. The interactions between nHA crystal and chitosan-pectin PEC networks were studied using Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). The morphology and structure of nHA crystal were characterized by XRD and Transmission Electron Microscope (TEM). Results suggested that the interfacial interactions between nano-hydroxyapatite crystal and chitosan-pectin PEC network assist the site specific nucleation and growth of nHA nanoparticles. The nHA crystals grow along the c-axis. In this process, pH value is the main factor to control the nucleation and growth of nHA crystal in chitosan-pectin PEC networks, because both the interactions' strength between nHA crystal and chitosan-pectin and diffusion rate of inorganic ions depend on the pH value of the reaction system. Apart from the pH value, the chitosan/pectin ratio and [Ca 2+ ] also take important effects on the formation of nHA crystal. An effective way to control the size of nHA crystal is to adjust the content of pectin and [Ca 2+ ]. It is interesting that the Zeta potential of nHCP composites is about - 30 mV when the chitosan/pectin ratio ≤ 1:1, and the dispersion solution of nHCP composites has higher stability, which provides the possibility to prepare 3D porous scaffolds with nHCP for bone tissue engineering.

  15. Formation of nano-hydroxyapatite crystal in situ in chitosan-pectin polyelectrolyte complex network

    Energy Technology Data Exchange (ETDEWEB)

    Li Junjie [Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 (China); Research Institute of Polymeric Materials, Tianjin University, Tianjin, 300072 (China); Zhu Dunwan [Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300072 (China); Yin Jianwei; Liu Yuxi [Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 (China); Yao Fanglian, E-mail: yaofanglian@tju.edu.cn [Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 (China); Yao Kangde [Research Institute of Polymeric Materials, Tianjin University, Tianjin, 300072 (China)

    2010-07-20

    Hydroxyapatite (HA)/polysaccharide composites have been widely used in bone tissue engineering due to their chemical similarity to natural bone. Polymer matrix-mediated synthesis of nano-hydroxyapatite is one of the simplest models for biomimetic. In this article, the nano-hydroxyapatite/chitosan-pectin (nHCP) composites were prepared through in situ mineralization of hydroxyapatite in chitosan-pectin polyelectrolyte complex (PEC) network. The formation processes of nHCP were investigated by X-ray diffraction (XRD) analysis. The interactions between nHA crystal and chitosan-pectin PEC networks were studied using Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). The morphology and structure of nHA crystal were characterized by XRD and Transmission Electron Microscope (TEM). Results suggested that the interfacial interactions between nano-hydroxyapatite crystal and chitosan-pectin PEC network assist the site specific nucleation and growth of nHA nanoparticles. The nHA crystals grow along the c-axis. In this process, pH value is the main factor to control the nucleation and growth of nHA crystal in chitosan-pectin PEC networks, because both the interactions' strength between nHA crystal and chitosan-pectin and diffusion rate of inorganic ions depend on the pH value of the reaction system. Apart from the pH value, the chitosan/pectin ratio and [Ca{sup 2+}] also take important effects on the formation of nHA crystal. An effective way to control the size of nHA crystal is to adjust the content of pectin and [Ca{sup 2+}]. It is interesting that the Zeta potential of nHCP composites is about - 30 mV when the chitosan/pectin ratio {<=} 1:1, and the dispersion solution of nHCP composites has higher stability, which provides the possibility to prepare 3D porous scaffolds with nHCP for bone tissue engineering.

  16. Mechanisms of polyelectrolyte enhanced surfactant adsorption at the air-water interface.

    Science.gov (United States)

    Stenger, Patrick C; Palazoglu, Omer A; Zasadzinski, Joseph A

    2009-05-01

    Chitosan, a naturally occurring cationic polyelectrolyte, restores the adsorption of the clinical lung surfactant Survanta to the air-water interface in the presence of albumin at much lower concentrations than uncharged polymers such as polyethylene glycol. This is consistent with the positively charged chitosan forming ion pairs with negative charges on the albumin and lung surfactant particles, reducing the net charge in the double-layer, and decreasing the electrostatic energy barrier to adsorption to the air-water interface. However, chitosan, like other polyelectrolytes, cannot perfectly match the charge distribution on the surfactant, which leads to patches of positive and negative charge at net neutrality. Increasing the chitosan concentration further leads to a reduction in the rate of surfactant adsorption consistent with an over-compensation of the negative charge on the surfactant and albumin surfaces, which creates a new repulsive electrostatic potential between the now cationic surfaces. This charge neutralization followed by charge inversion explains the window of polyelectrolyte concentration that enhances surfactant adsorption; the same physical mechanism is observed in flocculation and re-stabilization of anionic colloids by chitosan and in alternate layer deposition of anionic and cationic polyelectrolytes on charged colloids.

  17. Nanostructured natural-based polyelectrolyte multilayers to agglomerate chitosan particles into scaffolds for tissue engineering.

    Science.gov (United States)

    Miranda, Emanuel Sá; Silva, Tiago H; Reis, Rui L; Mano, João F

    2011-11-01

    The layer-by-layer (LbL) deposition technique is a self-assembly process that allows the coating of material's surface with nanostructured layers of polyelectrolytes, allowing to control several surface properties. This technique presents some advantages when compared with other thin film assembly techniques, like having the possibility to coat surfaces with complex geometries in mild conditions or to incorporate active compounds. Tissue engineering (TE) involves typically the use of porous biodegradable scaffolds for the temporary support of cells. Such structures can be produced by agglomeration of microspheres that needs to be fixed into a three-dimensional (3D) structure. In this work we suggest the use of LbL to promote such mechanical fixation in free-formed microspheres assemblies and simultaneously to control the properties of its surface. For the proof of concept the biological performance of chitosan/alginate multilayers is first investigated in two-dimensional (2D) models in which the attachment and proliferation of L929 and ATDC5 cells are studied in function of the number of layers and the nature of the final layer. Scaffolds prepared by agglomeration of chitosan particles using the same multilayered system were processed and characterized; it was found that they could support the attachment and proliferation of ATDC5 cells. This study suggests that LbL can be used as a versatile methodology to prepare scaffolds by particle agglomeration that could be suitable for TE applications.

  18. Characterization of surface charge and mechanical properties of chitosan/alginate based biomaterials

    International Nuclear Information System (INIS)

    Verma, Devendra; Desai, Malav S.; Kulkarni, Namrata; Langrana, Noshir

    2011-01-01

    This study aims to examine mechanical properties and surface charge characteristics of chitosan/alginate-based films for biomedical applications. By varying the concentrations of chitosan and alginate, we have developed films with varying surface charge densities and mechanical characteristics. The surface charge densities of these films were determined by applying an analytical model on force curves derived from an atomic force microscope (AFM). The average surface charge densities of films containing 60% chitosan and 80% chitosan were found to be - 0.46 mC/m 2 and - 0.32 mC/m 2 , respectively. The surface charge density of 90% chitosan containing films was found to be neutral. The elastic moduli and the water content were found to be decreasing with increasing chitosan concentration. The films with 60%, 80% and 90% chitosan gained 93.5 ± 6.6%, 217.1 ± 22.1% and 396.8 ± 67.5% of their initial weight, respectively. Their elastic moduli were found to be 2.6 ± 0.14 MPa, 1.9 ± 0.27 MPa and 0.93 ± 0.12 MPa, respectively. The trend observed in the mechanical response of these films has been attributed to the combined effect of the concentration of polyelectrolyte complexes (PEC) and the amount of water absorbed. The Fourier transform infrared spectroscopy experiments indicate the presence of higher alginate on the surface of the films compared to the bulk in all films. The presence of higher alginate on surface is consistent with negative surface charge densities of these films, determined from AFM experiments. Highlights: → Chitosan/alginate based fibrous polyelectrolyte complex films were developed. → The average surface charge density of the films was determined using AFM. → Elastic modulus of the films increased with increase in PEC content. → FTIR analysis indicated higher alginate content on surface compared to bulk.

  19. Polyelectrolyte multilayer assembly as a function of pH and ionic strength using the polysaccharides chitosan and heparin.

    Science.gov (United States)

    Boddohi, Soheil; Killingsworth, Christopher E; Kipper, Matt J

    2008-07-01

    The goal of this work is to explore the effects of solution ionic strength and pH on polyelectrolyte multilayer (PEM) assembly, using biologically derived polysaccharides as the polyelectrolytes. We used the layer-by-layer (LBL) technique to assemble PEM of the polysaccharides heparin (a strong polyanion) and chitosan (a weak polycation) and characterized the sensitivity of the PEM composition and layer thickness to changes in processing parameters. Fourier-transform surface plasmon resonance (FT-SPR) and spectroscopic ellipsometry provided in situ and ex situ measurements of the PEM thickness, respectively. Vibrational spectroscopy and X-ray photoelectron spectroscopy (XPS) provided details of the chemistry (i.e., composition, electrostatic interactions) of the PEM. We found that when PEM were assembled from 0.2 M buffer, the PEM thickness could be increased from less than 2 nm per bilayer to greater than 4 nm per bilayer by changing the solution pH; higher and lower ionic strength buffer solutions resulted in narrower ranges of accessible thickness. Molar composition of the PEM was not very sensitive to solution pH or ionic strength, but pH did affect the interactions between the sulfonates in heparin and amines in chitosan when PEM were assembled from 0.2 M buffer. Changes in the PEM thickness with pH and ionic strength can be interpreted through descriptions of the charge density and conformation of the polyelectrolyte chains in solution.

  20. Chitosan Based Self-Assembled Nanoparticles in Drug Delivery

    Directory of Open Access Journals (Sweden)

    Javier Pérez Quiñones

    2018-02-01

    Full Text Available Chitosan is a cationic polysaccharide that is usually obtained by alkaline deacetylation of chitin poly(N-acetylglucosamine. It is biocompatible, biodegradable, mucoadhesive, and non-toxic. These excellent biological properties make chitosan a good candidate for a platform in developing drug delivery systems having improved biodistribution, increased specificity and sensitivity, and reduced pharmacological toxicity. In particular, chitosan nanoparticles are found to be appropriate for non-invasive routes of drug administration: oral, nasal, pulmonary and ocular routes. These applications are facilitated by the absorption-enhancing effect of chitosan. Many procedures for obtaining chitosan nanoparticles have been proposed. Particularly, the introduction of hydrophobic moieties into chitosan molecules by grafting to generate a hydrophobic-hydrophilic balance promoting self-assembly is a current and appealing approach. The grafting agent can be a hydrophobic moiety forming micelles that can entrap lipophilic drugs or it can be the drug itself. Another suitable way to generate self-assembled chitosan nanoparticles is through the formation of polyelectrolyte complexes with polyanions. This paper reviews the main approaches for preparing chitosan nanoparticles by self-assembly through both procedures, and illustrates the state of the art of their application in drug delivery.

  1. Influence of processing parameters on pore structure of 3D porous chitosan-alginate polyelectrolyte complex scaffolds.

    Science.gov (United States)

    Florczyk, Stephen J; Kim, Dae-Joon; Wood, David L; Zhang, Miqin

    2011-09-15

    Fabrication of porous polymeric scaffolds with controlled structure can be challenging. In this study, we investigated the influence of key experimental parameters on the structures and mechanical properties of resultant porous chitosan-alginate (CA) polyelectrolyte complex (PEC) scaffolds, and on proliferation of MG-63 osteoblast-like cells, targeted at bone tissue engineering. We demonstrated that the porous structure is largely affected by the solution viscosity, which can be regulated by the acetic acid and alginate concentrations. We found that the CA PEC solutions with viscosity below 300 Pa.s yielded scaffolds of uniform pore structure and that more neutral pH promoted more complete complexation of chitosan and alginate, yielding stiffer scaffolds. CA PEC scaffolds produced from solutions with viscosities below 300 Pa.s also showed enhanced cell proliferation compared with other samples. By controlling the key experimental parameters identified in this study, CA PEC scaffolds of different structures can be made to suit various tissue engineering applications. Copyright © 2011 Wiley Periodicals, Inc.

  2. Two-Ply Composite Membranes with Separation Layers from Chitosan and Sulfoethylcellulose on a Microporous Support Based on Poly(diphenylsulfone-N-phenylphthalimide

    Directory of Open Access Journals (Sweden)

    Svetlana V. Kononova

    2017-12-01

    Full Text Available Two-ply composite membranes with separation layers from chitosan and sulfoethylcellulose were developed on a microporous support based on poly(diphenylsulfone-N-phenylphthalimide and investigated by use of X-ray diffraction and scanning electron microscopy methods. The pervaporation properties of the membranes were studied for the separation of aqueous alcohol (ethanol, propan-2-ol mixtures of different compositions. When the mixtures to be separated consist of less than 15 wt % water in propan-2-ol, the membranes composed of polyelectrolytes with the same molar fraction of ionogenic groups (-NH3+ for chitosan and -SO3− for sulfoethylcellulose show high permselectivity (the water content in the permeate was 100%. Factors affecting the structure of a non-porous layer of the polyelectrolyte complex formed on the substrate surface and the contribution of that complex to changes in the transport properties of membranes are discussed. The results indicate significant prospects for the use of chitosan and sulfoethylcellulose for the formation of highly selective pervaporation membranes.

  3. Comparative study on the effects of negatively-charged biopolymers on chitosan-based gels for the development of instantaneous gels

    International Nuclear Information System (INIS)

    Jimeno, Austin Ed B.; Chakraborty, Soma

    2015-01-01

    Polymeric electrolytic complexes are solutions of charged/ionized chains. These solutions of positive and negative charge can be combined to make instantaneous networks bonded by electrostatic interactions, a gel network. These electrostatic interaction allows for easy application in injectable gels as the network can be temporarily distributed with the application of force and reformed on the relief of it. Possible applications for these injectable gels include drug delivery and wound-healing. κ-Carrageenan, dextran sulfate, alginate, and chitosan are polyelectrolytic biocompatible polymers which are widely studied and used for a variety of biomedical applications. Gel networks are made by combining a negatively-charged (κ-Carrageenan, dextran sulfate, or alginate) and positively charged (chitosan) solutions. The strong electrostatic interaction between the opposite charges from the gel network and the inherent biocompatibility of the polymers allow future biomedical applications. Quat 188-modified chitosan has additional sites for electrostatic bonding, can be dissolved in neutral, basic, and acidic pH, and has shown inherent antibacterial activity. The objectives of this study are the following: to formulate chitosan-based gels mixing solutions of chitosan with solutions of either κ-Carrageenan, dextran sulfate, or alginate, study the gelation of the gels as function of time and pH (4, 7, and 9) using UV-Vis, characterize the chitosan-based gels through DSC and DMA, characterize the physiological degradation of the chitosan-based gels, and compare results with those from Quat 188-modified chitosan-based gels. Polyelectrolytic solutions of chitosan and negatively-charged biopolymer of similar viscosities were mixed. It was determined from the UV-Vis spectroscopy of the chitosan-carrageenan gels under pH7 buffer that the increase of concentration by a factor of 5 for 0.006M-0.0095M and 1.25 for 0.0095M-0.0150M Chitosan-Carrageenan gels improved gelation by the

  4. Investigation of Self-Assembly Processes for Chitosan-Based Coagulant-Flocculant Systems: A Mini-Review

    Directory of Open Access Journals (Sweden)

    Savi Bhalkaran

    2016-09-01

    Full Text Available The presence of contaminants in wastewater poses significant challenges to water treatment processes and environmental remediation. The use of coagulation-flocculation represents a facile and efficient way of removing charged particles from water. The formation of stable colloidal flocs is necessary for floc aggregation and, hence, their subsequent removal. Aggregation occurs when these flocs form extended networks through the self-assembly of polyelectrolytes, such as the amine-based polysaccharide (chitosan, which form polymer “bridges” in a floc network. The aim of this overview is to evaluate how the self-assembly process of chitosan and its derivatives is influenced by factors related to the morphology of chitosan (flocculant and the role of the solution conditions in the flocculation properties of chitosan and its modified forms. Chitosan has been used alone or in conjunction with a salt, such as aluminum sulphate, as an aid for the removal of various waterborne contaminants. Modified chitosan relates to grafted anionic or cationic groups onto the C-6 hydroxyl group or the amine group at C-2 on the glucosamine monomer of chitosan. By varying the parameters, such as molecular weight and the degree of deacetylation of chitosan, pH, reaction and settling time, dosage and temperature, self-assembly can be further investigated. This mini-review places an emphasis on the molecular-level details of the flocculation and the self-assembly processes for the marine-based biopolymer, chitosan.

  5. Metal removal from aqueous media by polymer-assisted ultrafiltration with chitosan

    Directory of Open Access Journals (Sweden)

    Grégorio Crini

    2017-05-01

    Full Text Available Polymer assisted ultrafiltration (PAUF is a relatively new process in water and wastewater treatment and the subject of an increasing number of papers in the field of membrane science. Among the commercial polymers used, poly(ethyleneimine and poly(acrylic acid are the most popular to complex numerous metal ions. Recently, there is an increasing interest in the use of chitosan, a natural linear polymer, as chelating agent for complexing metals. Chitosan has a high potential in wastewater treatment mainly due to its polyelectrolyte properties at acidic pH. The objectives of this review are to present the PAUF process and to highlight the advantages gained from the use of chitosan in the process of complexation–ultrafiltration. For this, a PAUF-based literature survey has been compiled and is discussed. From these data, chitosan, a biopolymer that is non-toxic to humans and the environment, is found to be effective in removing metal ions and exhibits high selectivity. It might be a promising polyelectrolyte for PAUF purposes.

  6. The Physico-Mechanical Properties and Release Kinetics of Eugenol in Chitosan-Alginate Polyelectrolyte Complex Films as Active Food Packaging

    Directory of Open Access Journals (Sweden)

    Baiq Amelia Riyandari

    2018-02-01

    Full Text Available A study of eugenol release and its kinetics model from chitosan-alginate polyelectrolyte complex (PEC films has been conducted. Some factors that affected the eugenol release were also studied, including the composition of chitosan-alginate PEC and the concentration of eugenol. The chitosan-alginate-eugenol PEC films were synthesized at pH ± 4.0, then the PEC films were characterized using a Fourier-transform infrared spectroscopy (FTIR spectrophotometer. An investigation of the films’ properties was also conducted, including morphology analysis using a scanning electron microscope (SEM, differential thermal analysis (DTA / thermogravimetric analysis (TGA, mechanical strength, transparency testing, water absorption, and water vapor permeability. The release of eugenol was investigated through in vitro assay in ethanol 96% (v/v for four days, and the concentration of eugenol was measured using an ultraviolet-visible (UV-Vis spectrophotometer. The characterization of the films using FTIR showed that the formation of PEC occurred through ionic interaction between the amine groups (–NH3+of the chitosan and the carboxylate groups (–COO– of the alginate. The result showed that the composition of chitosan-alginate PEC and the concentration of eugenol can affect the release of eugenol from PEC films. A higher concentration of alginate and eugenol could increase the concentration of eugenol that was released from the films. The mechanism for the release of eugenol from chitosan-alginate PEC films followed the Korsmeyer-Peppas model with an n value of < 0.5, which means the release mechanism for eugenol was controlled by a Fickian diffusion process. The antioxidant activity assay of the films using the 2,2-diphenyl-1-picrylhydrazyl (DPPH method resulted in a high radical scavenging activity (RSA value of 55.99% in four days.

  7. Nanostructured 3D Constructs Based on Chitosan and Chondroitin Sulphate Multilayers for Cartilage Tissue Engineering

    NARCIS (Netherlands)

    Silva, J.M.; Georgi, Nicole; Costa, R.; Sher, P.; Reis, R L; van Blitterswijk, Clemens; Karperien, Hermanus Bernardus Johannes; Mano, J.F.

    2013-01-01

    Nanostructured three-dimensional constructs combining layer-by-layer technology (LbL) and template leaching were processed and evaluated as possible support structures for cartilage tissue engineering. Multilayered constructs were formed by depositing the polyelectrolytes chitosan (CHT) and

  8. Preparation and evaluation of periodontal films based on polyelectrolyte complex formation.

    Science.gov (United States)

    Kassem, Abeer Ahmed; Ismail, Fatma Ahmed; Naggar, Viviane Fahim; Aboulmagd, Elsayed

    2015-05-01

    Local intra-pocket drug delivery devices can provide an effective concentration of the antimicrobial agent at the site of action with avoidance of undesirable side effects. This study explored the application of chitosan-alginate and chitosan-pectin polyelectrolyte complex (PEC) films as drug release regulators for tetracycline HCl (Tc) to treat periodontal pockets. Periodontal films with 1:1 Tc:PEC ratio were prepared using 1:1 chitosan (Ch) to sodium alginate (A) or 1:3 Ch to pectin (P). The scanning electron microscope showed acceptable film appearance and differential scanning calorimetry analysis confirmed complex formation. The in vitro release studies for both films showed a burst drug release, followed by prolonged release for 70 h. A prolonged antibacterial activity of both films against Staphylococcus aureus ATCC 6538 was observed over a period of 21 days. Aging studies indicated that the five months storage period in freezer did not significantly influence the drug release profile or the antibacterial activity of both films. Clinical evaluation showed a significant reduction in pocket depth (p < 0.0001) to their normal values (≤3 mm). PEC films could be exploited as a prolonged drug release devices for treatment of periodontal pockets.

  9. Insulin-chitosan polyelectrolyte _anocomplexes: preparation ...

    African Journals Online (AJOL)

    Objectives: To formulate chitosan nanoparticles with specific combinations of molecular weight and degree of deacetylation (DDA) that could be developed into an oral insulin delivery system. Methods: This study was conducted at Jordanian Pharmaceutical Manufacturing Company (JPM), Jordan in the period 2006-2009.

  10. Rheological study of chitosan in solution

    International Nuclear Information System (INIS)

    Silva, Italo Guimaraes Medeiros da; Alves, Keila dos Santos; Balaban, Rosangela de Carvalho

    2009-01-01

    Chitosan is an abundant biopolymer with remarkable physicochemical and biological properties, usually employed in a wide range of applications. It acts as a cationic polyelectrolyte in aqueous acid solutions, leading to unique characteristics. In this work, chitosan was characterized by 1 H NMR and its rheological behavior were studied as function of chitosan sample, shear rate, polymer concentration, ionic strength, time and temperature. In order to calculate rheological parameters and to understand the macromolecular dynamic in solution, the Otswald-de Waele model was fitted. (author)

  11. Surface grafted chitosan gels. Part II. Gel formation and characterization

    DEFF Research Database (Denmark)

    Liu, Chao; Thormann, Esben; Claesson, Per M.

    2014-01-01

    Responsive biomaterial hydrogels attract significant attention due to their biocompatibility and degradability. In order to make chitosan based gels, we first graft one layer of chitosan to silica, and then build a chitosan/poly(acrylic acid) multilayer using the layer-by-layer approach. After...... cross-linking the chitosan present in the polyelectrolyte multilayer, poly(acrylic acid) is partly removed by exposing the multilayer structure to a concentrated carbonate buffer solution at a high pH, leaving a surface-grafted cross-linked gel. Chemical cross-linking enhances the gel stability against...... detachment and decomposition. The chemical reaction between gluteraldehyde, the cross-linking agent, and chitosan was followed in situ using total internal reflection Raman (TIRR) spectroscopy, which provided a molecular insight into the complex reaction mechanism, as well as the means to quantify the cross...

  12. Auricularia auricular polysaccharide-low molecular weight chitosan polyelectrolyte complex nanoparticles: Preparation and characterization

    Directory of Open Access Journals (Sweden)

    Wei Xiong

    2016-06-01

    Full Text Available Novel polyelectrolyte complex nanoparticles (AAP/LCS NPs were prepared in this study and these were produced by mixing negatively charged auricularia auricular polysaccharide (AAP with positively charged low molecular weight chitosan (LCS in an aqueous medium. The AAP was extracted and purified from auricularia auricular, and then characterized by micrOTOF-Q mass spectrometry, UV/Vis spectrophotometry, moisture analyzer and SEM. The yield, moisture, and total sugar content of the AAP were 4.5%, 6.2% and 90.12% (w/w, respectively. The AAP sample was water-soluble and exhibited white flocculence. The characteristics of AAP/LCS NPs, such as the particle size, zeta potential, morphology, FT-IR spectra, DSC were investigated. The results obtained revealed that the AAP/LCS NPs had a spherical shape with a diameter of 223 nm and a smooth surface, and the results of the FT-IR spectra and DSC investigations indicated that there was an electrostatic interaction between the two polyelectrolyte polymers. Bovine serum albumin (BSA, pI = 4.8 and bovine hemoglobin (BHb, pI = 6.8 were used as model drugs to investigate the loading and release features of the AAP/LCS NPs. The results obtained showed that the AAP/LCS NPs had a higher entrapment efficiency (92.6% for BHb than for BSA (81.5%. The cumulative release of BSA and BHb from AAP/LCS NPs after 24 h in vitro was 95.4% and 91.9%, respectively. The in vitro release demonstrated that AAP/LCS NPs provided a sustained release matrix suitable for the delivery of protein drugs. These studies demonstrate that AAP/LCS NPs have a very promising potential as a delivery system for protein drugs.

  13. Preparation and Characterization of Polyelectrolyte Complexes of Hibiscus esculentus (Okra Gum and Chitosan

    Directory of Open Access Journals (Sweden)

    Vivekjot Brar

    2018-01-01

    Full Text Available Polyelectrolyte complexes (PECs of Okra gum (OKG extracted from fruits of Hibiscus esculentus (Malvaceae and chitosan (CH were prepared using ionic gelation technique. The PECs were insoluble and maximum yield was obtained at weight ratio of 7 : 3. The supernatant obtained after extracting PECs was clearly representing complete conversion of polysaccharides into PECs. Complexation was also evaluated by measuring the viscosity of supernatant after precipitation of PECs. The dried PECs were characterized using FTIR, DSC, zeta potential, water uptake, and SEM studies. Thermal analysis of PECs prepared at all ratios (10 : 90, 20 : 80, 30 : 70, 40 : 60, 50 : 50, 60 : 40, 70 : 30, 80 : 20, and 90 : 10; OKG : CH depicted an endothermic peak at approximately 240°C representing cleavage of electrostatic bond between OKG and CH. The optimized ratio (7 : 3 exhibited a zeta potential of −0.434 mV and displayed a porous structure in SEM analysis. These OKG-CH PECs can be further employed as promising carrier for drug delivery.

  14. Surface grafted chitosan gels. Part I. Molecular insight into the formation of chitosan and poly(acrylic acid) multilayers

    DEFF Research Database (Denmark)

    Liu, Chao; Thormann, Esben; Claesson, Per M.

    2014-01-01

    Composite polyelectrolyte multilayers of chitosan and low molecular weight poly(acrylic acid) (PAA) have been assembled by sequential adsorption as a first step toward building a surface anchored chitosan gel. Silane chemistry was used to graft the first chitosan layer to prevent film detachment...... and decomposition. The assembly process is characterized by nonlinear growth behavior, with different adsorption kinetics for chitosan and PAA. In situ analysis of the multilayer by means of surface sensitive total internal reflection Raman (TIRR) spectroscopy, combined with target factor analysis of the spectra...... molecular weight chitosan shows a similar behavior, although to a much lower extent. Our data demonstrate that the charged monomeric units of chitosan are mainly compensated by carboxylate ions from PAA. Furthermore, the morphology and mechanical properties of the multilayers were investigated in situ using...

  15. Cytotoxicity study of novel water-soluble chitosan derivatives applied as membrane material of alginate microcapsules

    NARCIS (Netherlands)

    Sobol, Marcin; Bartkowiak, Artur; de Haan, Bart; de Vos, Paul

    The majority of cell encapsulation systems applied so far are based on polyelectrolyte complexes of alginate and polyvalent metal cations. Although widely used, these systems suffer from the risk of disintegration. This can be partially solved by applying chitosan as additional outer membrane.

  16. Self-Assembled Polyelectrolyte Nanoparticles as Fluorophore-Free Contrast Agents for Multicolor Optical Imaging

    Directory of Open Access Journals (Sweden)

    Da Hye Shin

    2015-03-01

    Full Text Available In this work, we describe the fabrication of self-assembled polyelectrolyte nanoparticles that provide a multicolor optical imaging modality. Poly(γ-glutamic acid(γ-PGA formed self-assembled nanoparticles through electrostatic interactions with two different cationic polymers: poly(L-lysine(PLL and chitosan. The self-assembled γ-PGA/PLL and γ-PGA/chitosan nanoparticles were crosslinked by glutaraldehyde. Crosslinking of the ionic self-assembled nanoparticles with glutaraldehyde not only stabilized the nanoparticles but also generated a strong autofluorescence signal. Fluorescent Schiff base bonds (C=N and double bonds (C=C were generated simultaneously by crosslinking of the amine moiety of the cationic polyelectrolytes with monomeric glutaraldehyde or with polymeric glutaraldehyde. The unique optical properties of the nanoparticles that resulted from the crosslinking by glutaraldehyde were analyzed using UV/Vis and fluorescence spectroscopy. We observed that the fluorescence intensity of the nanoparticles could be regulated by adjusting the crosslinker concentration and the reaction time. The nanoparticles also exhibited high performance in the labeling and monitoring of therapeutic immune cells (macrophages and dendritic cells. These self-assembled nanoparticles are expected to be a promising multicolor optical imaging contrast agent for the labeling, detection, and monitoring of cells.

  17. Chitosan/lecithin liposomal nanovesicles as an oral insulin delivery system.

    Science.gov (United States)

    Al-Remawi, Mayyas; Elsayed, Amani; Maghrabi, Ibrahim; Hamaidi, Mohammad; Jaber, Nisrein

    2017-05-01

    In the present work, insulin-chitosan polyelectrolyte complexes associated to lecithin liposomes were investigated as a new carrier for oral delivery of insulin. The preparation was characterized in terms of particle size, zeta potential and encapsulation efficiency. Surface tension measurements revealed that insulin-chitosan polyelectrolyte complexes have some degree of hydrophobicity and should be added to lecithin liposomal dispersion and not the vice versa to prevent their adsorption on the surface. Stability of insulin was enhanced when it was associated to liposomes. Significant reduction of blood glucose levels was noticed after oral administration of liposomal preparation to streptozotocin diabetic rats compared to control. The hypoglycemic activity was more prolonged compared to subcutaneously administered insulin.

  18. Mesenchymal stem cell recruitment by stromal derived factor-1-delivery systems based on chitosan/poly(γ-glutamic acid) polyelectrolyte complexes.

    Science.gov (United States)

    Gonçalves, Raquel M; Antunes, Joana C; Barbosa, Mário A

    2012-04-10

    Human mesenchymal stem cells (hMSCs) have an enormous potential for tissue engineering and cell-based therapies. With a potential of differentiation into multiple lineages and immune-suppression, these cells play a key role in tissue remodelling and regeneration. Here a method of hMSC recruitment is described, based on the incorporation of a chemokine in Chitosan (Ch)/Poly(γ-glutamic acid) (γ-PGA) complexes. Ch is a non-toxic, cationic polysaccharide widely investigated. γ-PGA is a hydrophilic, non-toxic, biodegradable and negatively charged poly-amino acid. Ch and γ-PGA, being oppositely charged, can be combined through electrostatic interactions. These biocompatible structures can be used as carriers for active substances and can be easily modulated in order to control the delivery of drugs, proteins, DNA, etc. Using the layer-by-layer method, Ch and γ-PGA were assembled into polyelectrolyte multilayers films (PEMs) with thickness of 120 nm. The chemokine stromal-derived factor-1 (SDF-1) was incorporated in these complexes and was continuously released during 120 h. The method of SDF-1 incorporation is of crucial importance for polymers assembly into PEMs and for the release kinetics of this chemokine. The Ch/γ-PGA PEMs with SDF-1 were able to recruit hMSCs, increasing the cell migration up to 6 fold to a maximum of 16.2 ± 4.9 cells/mm2. The controlled release of SDF-1 would be of great therapeutic value in the process of hMSC homing to injured tissues. This is the first study suggesting Ch/γ-PGA PEMs as SDF-1 reservoirs to recruit hMSCs, describing an efficient method of chemokine incorporation that allows a sustained released up to 5 days and that can be easily scaled-up.

  19. Mesenchymal stem cell recruitment by stromal derived factor-1-delivery systems based on chitosan/poly(γ-glutamic acid polyelectrolyte complexes

    Directory of Open Access Journals (Sweden)

    RM Gonçalves

    2012-04-01

    Full Text Available Human mesenchymal stem cells (hMSCs have an enormous potential for tissue engineering and cell-based therapies. With a potential of differentiation into multiple lineages and immune-suppression, these cells play a key role in tissue remodelling and regeneration. Here a method of hMSC recruitment is described, based on the incorporation of a chemokine in Chitosan (Ch/Poly(γ-glutamic acid (γ-PGA complexes. Ch is a non-toxic, cationic polysaccharide widely investigated. γ-PGA is a hydrophilic, non-toxic, biodegradable and negatively charged poly-amino acid. Ch and γ-PGA, being oppositely charged, can be combined through electrostatic interactions. These biocompatible structures can be used as carriers for active substances and can be easily modulated in order to control the delivery of drugs, proteins, DNA, etc. Using the layer-by-layer method, Ch and γ-PGA were assembled into polyelectrolyte multilayers films (PEMs with thickness of 120 nm. The chemokine stromal-derived factor-1 (SDF-1 was incorporated in these complexes and was continuously released during 120 h. The method of SDF-1 incorporation is of crucial importance for polymers assembly into PEMs and for the release kinetics of this chemokine. The Ch/γ-PGA PEMs with SDF-1 were able to recruit hMSCs, increasing the cell migration up to 6 fold to a maximum of 16.2 ± 4.9 cells/mm2. The controlled release of SDF-1 would be of great therapeutic value in the process of hMSC homing to injured tissues. This is the first study suggesting Ch/γ-PGA PEMs as SDF-1 reservoirs to recruit hMSCs, describing an efficient method of chemokine incorporation that allows a sustained released up to 5 days and that can be easily scaled-up.

  20. Chitosan-based delivery systems for diclofenac delivery: preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Dreve, Simina; Kacso, Irina; Bratu, Ioan; Indrea, Emil, E-mail: simina.dreve@itim-cj.r [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania)

    2009-08-01

    The preparation and characterization of novel materials for drug delivery has rapidly gained importance in development of innovative medicine. The paper concerns the uses of chitosan as an excipient in oral formulations and as a drug delivery vehicle for burnt painful injuries. The use of chitosan (CTS) as base in polyelectrolyte complex systems, to prepare liquid release systems as hydrogels and solid release systems as sponges is presented. In this paper the preparation of CTS hydrogels and sponges carrying diclofenac (DCF), as anti-inflammatory drug is reported. The immobilization of DCF in CTS is done by mixing the CTS hydrogel with the anti-inflammatory drug solutions. The concentration of anti-inflammatory drug in the CTS hydrogel generating the sponges was of 57 mg/l, 72 mg/l and 114 mg/l. The CTS sponges with anti-inflammatory drugs were prepared by freeze-drying at -610{sup 0}C and 0,09 atm. The characterization of the hydrogels and sponges was done by infrared spectra (FTIR) and ultraviolet-visible spectroscopy (UV-VIS). The results indicated the formation of CTS-DCF intermediates. The DCF molecules are forming temporary chelates in CTS hydrogels and sponges and they are compatible with skin or some of biological fluids with satisfactory results.

  1. Chitosan-based delivery systems for diclofenac delivery: preparation and characterization

    International Nuclear Information System (INIS)

    Dreve, Simina; Kacso, Irina; Bratu, Ioan; Indrea, Emil

    2009-01-01

    The preparation and characterization of novel materials for drug delivery has rapidly gained importance in development of innovative medicine. The paper concerns the uses of chitosan as an excipient in oral formulations and as a drug delivery vehicle for burnt painful injuries. The use of chitosan (CTS) as base in polyelectrolyte complex systems, to prepare liquid release systems as hydrogels and solid release systems as sponges is presented. In this paper the preparation of CTS hydrogels and sponges carrying diclofenac (DCF), as anti-inflammatory drug is reported. The immobilization of DCF in CTS is done by mixing the CTS hydrogel with the anti-inflammatory drug solutions. The concentration of anti-inflammatory drug in the CTS hydrogel generating the sponges was of 57 mg/l, 72 mg/l and 114 mg/l. The CTS sponges with anti-inflammatory drugs were prepared by freeze-drying at -610 0 C and 0,09 atm. The characterization of the hydrogels and sponges was done by infrared spectra (FTIR) and ultraviolet-visible spectroscopy (UV-VIS). The results indicated the formation of CTS-DCF intermediates. The DCF molecules are forming temporary chelates in CTS hydrogels and sponges and they are compatible with skin or some of biological fluids with satisfactory results.

  2. Enhanced antiadhesive properties of chitosan/hyaluronic acid polyelectrolyte multilayers driven by thermal annealing: Low adherence for mammalian cells and selective decrease in adhesion for Gram-positive bacteria.

    Science.gov (United States)

    Muzzio, Nicolás E; Pasquale, Miguel A; Diamanti, Eleftheria; Gregurec, Danijela; Moro, Marta Martinez; Azzaroni, Omar; Moya, Sergio E

    2017-11-01

    The development of antifouling coatings with restricted cell and bacteria adherence is fundamental for many biomedical applications. A strategy for the fabrication of antifouling coatings based on the layer-by-layer assembly and thermal annealing is presented. Polyelectrolyte multilayers (PEMs) assembled from chitosan and hyaluronic acid were thermally annealed in an oven at 37°C for 72h. The effect of annealing on the PEM properties and topography was studied by atomic force microscopy, ζ-potential, circular dichroism and contact angle measurements. Cell adherence on PEMs before and after annealing was evaluated by measuring the cell spreading area and aspect ratio for the A549 epithelial, BHK kidney fibroblast, C2C12 myoblast and MC-3T3-E1 osteoblast cell lines. Chitosan/hyaluronic acid PEMs show a low cell adherence that decreases with the thermal annealing, as observed from the reduction in the average cell spreading area and more rounded cell morphology. The adhesion of S. aureus (Gram-positive) and E. coli (Gram-negative) bacteria strains was quantified by optical microscopy, counting the number of colony-forming units and measuring the light scattering of bacteria suspension after detachment from the PEM surface. A 20% decrease in bacteria adhesion was selectively observed in the S. aureus strain after annealing. The changes in mammalian cell and bacteria adhesion correlate with the changes in topography of the chitosan/hyaluronic PEMs from a rough fibrillar 3D structure to a smoother and planar surface after thermal annealing. Copyright © 2017. Published by Elsevier B.V.

  3. Low Molecular Weight Chitosan–Insulin Polyelectrolyte Complex: Characterization and Stability Studies

    Directory of Open Access Journals (Sweden)

    Zakieh I. Al-Kurdi

    2015-03-01

    Full Text Available The aim of the work reported herein was to investigate the effect of various low molecular weight chitosans (LMWCs on the stability of insulin using USP HPLC methods. Insulin was found to be stable in a polyelectrolyte complex (PEC consisting of insulin and LMWC in the presence of a Tris-buffer at pH 6.5. In the presence of LMWC, the stability of insulin increased with decreasing molecular weight of LMWC; 13 kDa LMWC was the most efficient molecular weight for enhancing the physical and chemical stability of insulin. Solubilization of insulin-LMWC polyelectrolyte complex (I-LMWC PEC in a reverse micelle (RM system, administered to diabetic rats, results in an oral delivery system for insulin with acceptable bioactivity.

  4. Use of marker ion and cationic surfactant plastic membrane electrode for potentiometric titration of cationic polyelectrolytes.

    Science.gov (United States)

    Masadome, Takashi; Imato, Toshihiko

    2003-07-04

    A plasticized poly (vinyl chloride) (PVC) membrane electrode sensitive to stearyltrimethylammonium (STA) ion is applied to the determination of cationic polyelectrolytes such as poly (diallyldimethylammonium chloride) (Cat-floc) by potentiometric titration, using a potassium poly (vinyl sulfate) (PVSK) solution as a titrant. The end-point of the titration is detected as the potential change of the plasticized PVC membrane electrode caused by decrease in the concentration of STA ion added to the sample solution as a marker ion due to the ion association reaction between the STA ion and PVSK. The effects of the concentration of STA ion, coexisting electrolytes in the sample solution and pH of the sample on the degree of the potential change at the end-point were examined. A linear relationship between the concentration of cationic polyelectrolyte and the end-point volume of the titrant exists in the concentration range from 2x10(-5) to 4x10(-4) N for Cat-floc, glycol chitosan, and methylglycol chitosan.

  5. Chitosan as flocculant agent for clarification of stevia extract

    Directory of Open Access Journals (Sweden)

    Silvia P. D. de Oliveira

    2012-01-01

    Full Text Available Stevia is used as a sweetener due to its low calorific value and its taste, which is very similar to that of sucrose. After extraction from dried leaves, stevia extract is dark in colour, and therefore needs to be whitened to increase acceptance by consumers. In this study we tested chitosan, a cationic polyelectrolyte, as flocculant agent for the whitening of the Stevia extract. Positive charges of chitosan can interact electrostatically with a counter-ion, sodium tripolyphosphate (TPP, and then chitosan precipitates. A factorial design was used to study the whitening process, in which Glycosides Removal, Colour Removal, Turbidity Removal and Soluble Solids Removal were evaluated. The studied factors were Chitosan Mass and pH of the TPP solution. The results showed that chitosan is a good flocculant agent, being able to flocculate both the glycosides and the pigments that make the extract coloured.

  6. Polyelectrolyte-complex nanostructured fibrous scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Verma, Devendra; Katti, Kalpana S.; Katti, Dinesh R.

    2009-01-01

    In the current work, polyelectrolyte complex (PEC) fibrous scaffolds for tissue engineering have been synthesized and a mechanism of their formation has been investigated. The scaffolds are synthesized using polygalacturonic acid and chitosan using the freeze drying methodology. Highly interconnected pores of sizes in the range of 5-20 μm are observed in the scaffolds. The thickness of the fibers was found to be in the range of 1-2 μm. Individual fibers have a nanogranular structure as observed using AFM imaging. In these scaffolds, PEC nanoparticles assemble together at the interface of ice crystals during freeze drying process. Further investigation shows that the freezing temperature and concentration have a remarkable effect on structure of scaffolds. Biocompatibility studies show that scaffold containing chitosan, polygalacturonic acid and hydroxyapatite promotes cell adhesion and proliferation. On the other hand, cells on scaffolds fabricated without hydroxyapatite nanoparticles showed poor adhesion.

  7. Polyelectrolyte Complex Nanoparticles from Chitosan and Acylated Rapeseed Cruciferin Protein for Curcumin Delivery.

    Science.gov (United States)

    Wang, Fengzhang; Yang, Yijie; Ju, Xingrong; Udenigwe, Chibuike C; He, Rong

    2018-03-21

    Curcumin is a polyphenol that exhibits several biological activities, but its low aqueous solubility results in low bioavailability. To improve curcumin bioavailability, this study has focused on developing a polyelectrolyte complexation method to form layer-by-layer assembled nanoparticles, for curcumin delivery, with positively charged chitosan (CS) and negatively charged acylated cruciferin (ACRU), a rapeseed globulin. Nanoparticles (NPs) were prepared from ACRU and CS (2:1) at pH 5.7. Three samples with weight of 5%, 10%, and 15% of curcumin, respectively, in ACRU/CS carrier were prepared. To verify the stability of the NPs, encapsulation efficiency and size of the 5% Cur-ACRU/CS NPs were determined at intervals of 5 days in a one month period. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, and differential scanning calorimetry confirmed the electrostatic interaction and hydrogen bond formation between the carrier and core. The result showed that hollow ACRU/CS nanocapsules (ACRU/CS NPs) and curcumin-loaded ACRU/CS nanoparticles (Cur-ACRU/CS NPs) were homogenized spherical with average sizes of 200-450 nm and zeta potential of +15 mV. Encapsulation and loading efficiencies were 72% and 5.4%, respectively. In vitro release study using simulated gastro (SGF) and intestinal fluids (SIF) showed controlled release of curcumin in 6 h of exposure. Additionally, the Cur-ACRU/CS NPs are nontoxic to cultured Caco-2 cells, and the permeability assay indicated that Cur-ACRU/CS NPs had improved permeability efficiency of free curcumin through the Caco-2 cell monolayer. The findings suggest that ACRU/CS NPs can be used for encapsulation and delivery of curcumin in functional foods.

  8. Elaboration of Stable and Antibody Functionalized Positively Charged Colloids by Polyelectrolyte Complexation between Chitosan and Hyaluronic Acid

    Directory of Open Access Journals (Sweden)

    Ramona C. Polexe

    2013-07-01

    Full Text Available In this study, we describe the elaboration of multifunctional positively charged polyelectrolyte complex (PEC nanoparticles, designed to be stable at physiological salt concentration and pH, for effective targeted delivery. These nanoparticles were obtained by charge neutralization between chitosan (CS as polycation and hyaluronic acid (HA as polyanion. We showed that the course of the complexation process and the physico-chemical properties of the resulting colloids were impacted by (i internal parameters such as the Degree of Acetylation (DA, i.e., the molar ration of acetyl glucosamine residues and molar mass of CS, the HA molar mass and (ii external parameters like the charge mixing ratio and the polymer concentrations. As a result, nonstoichiometric colloidal PECs were obtained in water or PBS (pH 7.4 and remained stable over one month. The polymer interactions were characterized by thermal analysis (DSC and TGA and the morphology was studied by scanning electron microscopy. A model antibody, anti-ovalbumine (OVA immunoglobulin A (IgA was sorbed on the particle surface in water and PBS quantitatively in 4 h. The CS-HA/IgA nanoparticles average size was between 425–665 nm with a positive zeta potential. These results pointed out that CS-HA can be effective carriers for use in targeted drug delivery.

  9. Emerging Chitosan-Based Films for Food Packaging Applications.

    Science.gov (United States)

    Wang, Hongxia; Qian, Jun; Ding, Fuyuan

    2018-01-17

    Recent years have witnessed great developments in biobased polymer packaging films for the serious environmental problems caused by the petroleum-based nonbiodegradable packaging materials. Chitosan is one of the most abundant biopolymers after cellulose. Chitosan-based materials have been widely applied in various fields for their biological and physical properties of biocompatibility, biodegradability, antimicrobial ability, and easy film forming ability. Different chitosan-based films have been fabricated and applied in the field of food packaging. Most of the review papers related to chitosan-based films are focusing on antibacterial food packaging films. Along with the advances in the nanotechnology and polymer science, numerous strategies, for instance direct casting, coating, dipping, layer-by-layer assembly, and extrusion, have been employed to prepare chitosan-based films with multiple functionalities. The emerging food packaging applications of chitosan-based films as antibacterial films, barrier films, and sensing films have achieved great developments. This article comprehensively reviews recent advances in the preparation and application of engineered chitosan-based films in food packaging fields.

  10. Chitosan-based nanocomplexes for simultaneous loading, burst reduction and controlled release of doxorubicin and 5-fluorouracil.

    Science.gov (United States)

    Di Martino, Antonio; Kucharczyk, Pavel; Capakova, Zdenka; Humpolicek, Petr; Sedlarik, Vladimir

    2017-09-01

    In this work, nanocomplexes based on chitosan grafted by carboxy-modified polylactic acid (SPLA) were prepared with the aim of loading simultaneously two anticancer drugs - doxorubicin and 5-fluorouracil, as well as to control their release, reduce the initial burst and boost cytotoxicity. The SPLA was prepared by a polycondensation reaction, using pentetic acid as the core molecule, and linked to the chitosan backbone through a coupling reaction. Nanocomplexes loaded with both drugs were formulated by the polyelectrolyte complexation method. The structure of the SPLA was characterized by 1 H NMR, while the product CS-SPLA was analyzed by FTIR-ATR to prove the occurrence of the reaction. Results showed that the diameters and ζ-potential of the nanocomplexes fall in the range 120-200nm and 20-37mV, respectively. SEM and TEM analysis confirmed the spherical shape and dimensions of the nanocomplexes. The presence of hydrophobic side chain SPLA did not influence the encapsulation efficiency of the drugs but strongly reduced the initial burst and prolonged release over time compared to unmodified chitosan. MS analysis showed that no degradation or interactions between the drugs and carrier were exhibited after loading or 24h of release had taken place, confirming the protective role of the nanocomplexes. In vitro tests demonstrated an increase in the cytotoxicity of the drugs when loaded in the prepared carriers. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. ENCAPSULATION OF ANTITUBERCULAR DRUGS BY BIOPOLYMERS AND POLYELECTROLYTE MULTILAYERS

    Directory of Open Access Journals (Sweden)

    B. H. Mussabayeva

    2017-01-01

    Full Text Available The problem of drug-resistant tuberculosis treatment is complex and urgent: the standardof treatment includes the oral administration of six names of antibiotics, i.e. up totwenty tablets a day by the patient. This causes severe side effects, including those appeareddue to the formation of toxic products of drug interactions in the body. Therefore, itis important that some drugs dissolve in a stomach, and others – in the intestine, which willlead to increased bioavailability, reduced dosage and toxicity. The development of targeteddelivery systems for drugs with controlled release, targeted delivery and minimization ofside effects are of interest. One of the promising methods is polyelectrolytic multilayersand the technology of creating such layers by a step-by-step adsorption of heterogeneouslycharged polyelectrolytes.The aim of this article is the microencapsulation of anti-tuberculousdrugs into biopolymers coated with polyelectrolytic multilayers, and the solubilitystudy of microcapsules at pH values simulating various parts of the gastrointestinal tract.Materials and methods. Drugs as isoniazide, pyrazinamide, moxifloxacin, and biopolymers:gellan, pectin and sodium alginate, chitosan and dextran sulfate, as well as EudragitS are used to prepare microcapsules. The obtained microcapsules are studied by a methodof scanning electron microscopy. Quantitative determination of the effectiveness of the inclusionof drugs in microcapsules was carried out using pharmacopoeial methods.Results and discussion. The inclusion efficiency rises with an increase of biopolymer concentration. The inclusion efficiency increases in the row isoniazide polyelectrolytic multilayers is shown.At pH = 7.4, the degree of release of the drugs from microcapsules without applied multilayersfor 12 hours was

  12. Development of antibacterial paper coated with sodium hyaluronate stabilized curcumin-Ag nanohybrid and chitosan via polyelectrolyte complexation for medical applications

    Science.gov (United States)

    Rao Kummara, Madhusudana; Kumar, Anuj; Soo, Han Sung

    2017-11-01

    Sodium hyaluronate (HA) stabilized curcumin-Ag (Cur-Ag) hybrid nanoparticles were prepared in the water-ethanol mixture under constant mechanical stirring condition. The obtained HA stabilized Cur-Ag hybrid nanoparticles were characterized by fourier transform infrared spectroscopy, UV-visible spectroscopy, and x-ray diffraction to confirm the formation and structural interactions. The obtained Cur-Ag hybrid nanoparticles showed spherical shape with their size range 5-12 nm that was increased with the increasing a amount of silver ions as confirmed by transmission electron microscopic analysis. Further, a fibrous cellulose filter paper was impregnated with these hybrid nanoparticles and chitosan (CS) as biopolymer via polyelectrolyte complexation. The morphological analysis confirmed the uniform distribution of hybrid nanoparticle system onto the cellulose fibers of the fibrous filter paper. As per disc diffusion method, the Cur-Ag hybrid nanoparticles impregnated CS-coated filter paper exhibited excellent antibacterial properties against gram-negative Escherichia coli (E.coli) bacteria compared to HA stabilized Cur only. Moreover, as prepared hybrid nanoparticles impregnated biocomposite system is eco-friendly with efficient antibacterial property and have good potential to be used in medical applications.

  13. Polyelectrolyte-Functionalized Nanofiber Mats Control the Collection and Inactivation of Escherichia coli

    Directory of Open Access Journals (Sweden)

    Katrina A. Rieger

    2016-04-01

    Full Text Available Quantifying the effect that nanofiber mat chemistry and hydrophilicity have on microorganism collection and inactivation is critical in biomedical applications. In this study, the collection and inactivation of Escherichia coli K12 was examined using cellulose nanofiber mats that were surface-functionalized using three polyelectrolytes: poly (acrylic acid (PAA, chitosan (CS, and polydiallyldimethylammonium chloride (pDADMAC. The polyelectrolyte functionalized nanofiber mats retained the cylindrical morphology and average fiber diameter (~0.84 µm of the underlying cellulose nanofibers. X-ray photoelectron spectroscopy (XPS and contact angle measurements confirmed the presence of polycations or polyanions on the surface of the nanofiber mats. Both the control cellulose and pDADMAC-functionalized nanofiber mats exhibited a high collection of E. coli K12, which suggests that mat hydrophilicity may play a larger role than surface charge on cell collection. While the minimum concentration of polycations needed to inhibit E. coli K12 was 800 µg/mL for both CS and pDADMAC, once immobilized, pDADMAC-functionalized nanofiber mats exhibited a higher inactivation of E. coli K12, (~97%. Here, we demonstrate that the collection and inactivation of microorganisms by electrospun cellulose nanofiber mats can be tailored through a facile polyelectrolyte functionalization process.

  14. Polyelectrolyte-Functionalized Nanofiber Mats Control the Collection and Inactivation of Escherichia coli

    Science.gov (United States)

    Rieger, Katrina A.; Porter, Michael; Schiffman, Jessica D.

    2016-01-01

    Quantifying the effect that nanofiber mat chemistry and hydrophilicity have on microorganism collection and inactivation is critical in biomedical applications. In this study, the collection and inactivation of Escherichia coli K12 was examined using cellulose nanofiber mats that were surface-functionalized using three polyelectrolytes: poly (acrylic acid) (PAA), chitosan (CS), and polydiallyldimethylammonium chloride (pDADMAC). The polyelectrolyte functionalized nanofiber mats retained the cylindrical morphology and average fiber diameter (~0.84 µm) of the underlying cellulose nanofibers. X-ray photoelectron spectroscopy (XPS) and contact angle measurements confirmed the presence of polycations or polyanions on the surface of the nanofiber mats. Both the control cellulose and pDADMAC-functionalized nanofiber mats exhibited a high collection of E. coli K12, which suggests that mat hydrophilicity may play a larger role than surface charge on cell collection. While the minimum concentration of polycations needed to inhibit E. coli K12 was 800 µg/mL for both CS and pDADMAC, once immobilized, pDADMAC-functionalized nanofiber mats exhibited a higher inactivation of E. coli K12, (~97%). Here, we demonstrate that the collection and inactivation of microorganisms by electrospun cellulose nanofiber mats can be tailored through a facile polyelectrolyte functionalization process. PMID:28773422

  15. Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings.

    Science.gov (United States)

    Mohandas, Annapoorna; Deepthi, S; Biswas, Raja; Jayakumar, R

    2018-09-01

    Chitosan based nanocomposite scaffolds have attracted wider applications in medicine, in the area of drug delivery, tissue engineering and wound healing. Chitosan matrix incorporated with nanometallic components has immense potential in the area of wound dressings due to its antimicrobial properties. This review focuses on the different combinations of Chitosan metal nanocomposites such as Chitosan/nAg, Chitosan/nAu, Chitosan/nCu, Chitosan/nZnO and Chitosan/nTiO 2 towards enhancement of healing or infection control with special reference to the antimicrobial mechanism of action and toxicity.

  16. Microencapsulation of Lactobacillus Acidophilus by Xanthan-Chitosan and Its Stability in Yoghurt

    Directory of Open Access Journals (Sweden)

    Guowei Shu

    2017-12-01

    Full Text Available Microencapsulations of Lactobacillus acidophilus in xanthan-chitosan (XC and xanthan-chitosan-xanthan (XCX polyelectrolyte complex (PEC gels were prepared in this study. The process of encapsulation was optimized with the aid of response surface methodology (RSM. The optimum condition was chitosan of 0.68%, xanthan of 0.76%, xanthan-L. acidophilus mixture (XLM/chitosan of 1:2.56 corresponding to a high viable count (1.31 ± 0.14 × 1010 CFU·g−1, and encapsulation yield 86 ± 0.99%, respectively. Additionally, the application of a new encapsulation system (XC and XCX in yoghurt achieved great success in bacterial survival during the storage of 21 d at 4 °C and 25 °C, respectively. Specially, pH and acidity in yogurt were significantly influenced by the new encapsulation system in comparison to free suspension during 21 d storage. Our study provided a potential encapsulation system for probiotic application in dairy product which paving a new way for functional food development.

  17. Chitosan microspheres in novel drug delivery systems.

    Science.gov (United States)

    Mitra, Analava; Dey, Baishakhi

    2011-07-01

    The main aim in the drug therapy of any disease is to attain the desired therapeutic concentration of the drug in plasma or at the site of action and maintain it for the entire duration of treatment. A drug on being used in conventional dosage forms leads to unavoidable fluctuations in the drug concentration leading to under medication or overmedication and increased frequency of dose administration as well as poor patient compliance. To minimize drug degradation and loss, to prevent harmful side effects and to increase drug bioavailability various drug delivery and drug targeting systems are currently under development. Handling the treatment of severe disease conditions has necessitated the development of innovative ideas to modify drug delivery techniques. Drug targeting means delivery of the drug-loaded system to the site of interest. Drug carrier systems include polymers, micelles, microcapsules, liposomes and lipoproteins to name some. Different polymer carriers exert different effects on drug delivery. Synthetic polymers are usually non-biocompatible, non-biodegradable and expensive. Natural polymers such as chitin and chitosan are devoid of such problems. Chitosan comes from the deacetylation of chitin, a natural biopolymer originating from crustacean shells. Chitosan is a biocompatible, biodegradable, and nontoxic natural polymer with excellent film-forming ability. Being of cationic character, chitosan is able to react with polyanions giving rise to polyelectrolyte complexes. Hence chitosan has become a promising natural polymer for the preparation of microspheres/nanospheres and microcapsules. The techniques employed to microencapsulate with chitosan include ionotropic gelation, spray drying, emulsion phase separation, simple and complex coacervation. This review focuses on the preparation, characterization of chitosan microspheres and their role in novel drug delivery systems.

  18. In vitro evaluation of chitosan coated- and uncoated-calcium alginate beads containing methyl salicylate-lactose physical mixture.

    Science.gov (United States)

    Tamilvanan, S; Karmegam, S

    2012-01-01

    Methyl salicylate-lactose physical mixture (1:1 and 1:1.5 ratios) was incorporated into calcium alginate beads by a coacervation method involving an ionotropic gelation/polyelectrolyte complexation approach. This study aims to determine the influence of chitosan coating over the beads on drug entrapment efficiency (DEE) and release characteristics in artificial saliva compared to that of the uncoated beads. Changes in formulation parameters (gelation time, concentrations of Ca(2+) and alginate) resulted in decrease in DEE of chitosan-uncoated beads (p methyl salicylate-lactose physical mixture.

  19. Chitosan coatings onto polyethylene terephthalate for the development of potential active packaging material

    Energy Technology Data Exchange (ETDEWEB)

    Zemljic, Lidija Fras, E-mail: lidija.fras@uni-mb.si [Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor (Slovenia); Tkavc, Tina [Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor (Slovenia); Vesel, Alenka [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Sauperl, Olivera [Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor (Slovenia)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer The adsorption/desorption of chitosan onto PET plastic film was studied. Black-Right-Pointing-Pointer Chitosan was reversible attached onto PET plastic films. Black-Right-Pointing-Pointer Antimicrobial functionalized PET may provide potential active packaging material. - Abstract: In this paper advanced surface treatment of PET plastic film is presented for introduction of antimicrobial properties as a potential application for food (as for example meat) packaging material. Adsorption/desorption of chitosan onto PET plastic film surface was studied using several analytical techniques such as: X-Ray Photoelectron Spectroscopy (XPS), ATR-FTIR spectroscopy and titrations. Kinetic desorption of chitosan from PET surface was analysed by polyelectrolyte titration and spectrophotometric Ninhydrine reaction. Standard antimicrobial test ASTM E2149-01 was performed for functionalised PET materials in order to determine their antimicrobial properties; i. e. to measure the reductions of some of the meat pathogens; such as bacteria Salmonella enterica, Campylobacter spp., Escherichia coli, Listeria monocytogenes and fungi Candida albicans.

  20. Chitosan coatings onto polyethylene terephthalate for the development of potential active packaging material

    International Nuclear Information System (INIS)

    Zemljič, Lidija Fras; Tkavc, Tina; Vesel, Alenka; Šauperl, Olivera

    2013-01-01

    Highlights: ► The adsorption/desorption of chitosan onto PET plastic film was studied. ► Chitosan was reversible attached onto PET plastic films. ► Antimicrobial functionalized PET may provide potential active packaging material. - Abstract: In this paper advanced surface treatment of PET plastic film is presented for introduction of antimicrobial properties as a potential application for food (as for example meat) packaging material. Adsorption/desorption of chitosan onto PET plastic film surface was studied using several analytical techniques such as: X-Ray Photoelectron Spectroscopy (XPS), ATR-FTIR spectroscopy and titrations. Kinetic desorption of chitosan from PET surface was analysed by polyelectrolyte titration and spectrophotometric Ninhydrine reaction. Standard antimicrobial test ASTM E2149-01 was performed for functionalised PET materials in order to determine their antimicrobial properties; i. e. to measure the reductions of some of the meat pathogens; such as bacteria Salmonella enterica, Campylobacter spp., Escherichia coli, Listeria monocytogenes and fungi Candida albicans.

  1. Physico-chemical/biological properties of tripolyphosphate cross-linked chitosan based nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Soumi Dey [School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur-721302 (India); Farrugia, Brooke L.; Dargaville, Tim R. [Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Groove, Queensland-4059 (Australia); Dhara, Santanu, E-mail: sdhara@smst.iitkgp.ernet.in [School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur-721302 (India)

    2013-04-01

    In this study, chitosan-PEO blend, prepared in a 15 M acetic acid, was electrospun into nanofibers (∼ 78 nm diameter) with bead free morphology. While investigating physico-chemical parameters of blend solutions, effect of yield stress on chitosan based nanofiber fabrication was clearly evidenced. Architectural stability of nanofiber mat in aqueous medium was achieved by ionotropic cross-linking of chitosan by tripolyphosphate (TPP) ions. The TPP cross-linked nanofiber mat showed swelling up to ∼ 300% in 1 h and ∼ 40% degradation during 30 day study period. 3T3 fibroblast cells showed good attachment, proliferation and viability on TPP treated chitosan based nanofiber mats. The results indicate non-toxic nature of TPP cross-linked chitosan based nanofibers and their potential to be explored as a tissue engineering matrix. - Highlights: ► Chitosan based nanofiber fabrication through electrospinning. ► Roles of solution viscosity and yield stress on spinnability of chitosan evidenced. ► Tripolyphosphate (TPP) cross-linking rendered structural stability to nanofibers. ► TPP cross-linking also improved cellular response on chitosan based nanofibers. ► Thus, chitosan based nanofibers are suitable for tissue engineering application.

  2. Physico-chemical/biological properties of tripolyphosphate cross-linked chitosan based nanofibers

    International Nuclear Information System (INIS)

    Sarkar, Soumi Dey; Farrugia, Brooke L.; Dargaville, Tim R.; Dhara, Santanu

    2013-01-01

    In this study, chitosan-PEO blend, prepared in a 15 M acetic acid, was electrospun into nanofibers (∼ 78 nm diameter) with bead free morphology. While investigating physico-chemical parameters of blend solutions, effect of yield stress on chitosan based nanofiber fabrication was clearly evidenced. Architectural stability of nanofiber mat in aqueous medium was achieved by ionotropic cross-linking of chitosan by tripolyphosphate (TPP) ions. The TPP cross-linked nanofiber mat showed swelling up to ∼ 300% in 1 h and ∼ 40% degradation during 30 day study period. 3T3 fibroblast cells showed good attachment, proliferation and viability on TPP treated chitosan based nanofiber mats. The results indicate non-toxic nature of TPP cross-linked chitosan based nanofibers and their potential to be explored as a tissue engineering matrix. - Highlights: ► Chitosan based nanofiber fabrication through electrospinning. ► Roles of solution viscosity and yield stress on spinnability of chitosan evidenced. ► Tripolyphosphate (TPP) cross-linking rendered structural stability to nanofibers. ► TPP cross-linking also improved cellular response on chitosan based nanofibers. ► Thus, chitosan based nanofibers are suitable for tissue engineering application

  3. Chitosan use in chemical conditioning for dewatering municipal-activated sludge.

    Science.gov (United States)

    Zemmouri, H; Mameri, N; Lounici, H

    2015-01-01

    This work aims to evaluate the potential use of chitosan as an eco-friendly flocculant in chemical conditioning of municipal-activated sludge. Chitosan effectiveness was compared with synthetic cationic polyelectrolyte Sedipur CF802 (Sed CF802) and ferric chloride (FeCl₃). In this context, raw sludge samples from Beni-Messous wastewater treatment plant (WWTP) were tested. The classic jar test method was used to condition sludge samples. Capillary suction time (CST), specific resistance to filtration (SRF), cakes dry solid content and filtrate turbidity were analyzed to determine filterability, dewatering capacity of conditioned sludge and the optimum dose of each conditioner. Data exhibit that chitosan, FeCl₃and Sed CF802 improve sludge dewatering. Optimum dosages of chitosan, Sed CF802 and FeCl₃allowing CST values of 6, 5 and 9 s, were found, respectively, between 2-3, 1.5-3 and 6 kg/t ds. Both polymers have shown faster water removal with more permeable sludge. SRF values were 0.634 × 10¹², 0.932 × 10¹² and 2 × 10¹² m/kg for Sed CF802, chitosan and FeCl₃respectively. A reduction of 94.68 and 87.85% of the filtrate turbidity was obtained with optimal dosage of chitosan and Sed CF802, respectively. In contrast, 54.18% of turbidity abatement has been obtained using optimal dosage of FeCl₃.

  4. Degradation of chitosan-based materials after different sterilization treatments

    International Nuclear Information System (INIS)

    San Juan, A; Montembault, A; Royaud, I; David, L; Gillet, D; Say, J P; Rouif, S; Bouet, T

    2012-01-01

    Biopolymers have received in recent years an increasing interest for their potential applications in the field of biomedical engineering. Among the natural polymers that have been experimented, chitosan is probably the most promising in view of its exceptional biological properties. Several techniques may be employed to sterilize chitosan-based materials. The aim of our study was to compare the effect of common sterilization treatments on the degradation of chitosan-based materials in various physical states: solutions, hydrogels and solid flakes. Four sterilization methods were compared: gamma irradiation, beta irradiation, exposure to ethylene oxide and saturated water steam sterilization (autoclaving). Exposure to gamma or beta irradiation was shown to induce an important degradation of chitosan, regardless of its physical state. The chemical structure of chitosan flakes was preserved after ethylene oxide sterilization, but this technique has a limited use for materials in the dry state. Saturated water steam sterilization of chitosan solutions led to an important depolymerization. Nevertheless, steam sterilization of chitosan flakes bagged or dispersed in water was found to preserve better the molecular weight of the polymer. Hence, the sterilization of chitosan flakes dispersed in water would represent an alternative step for the preparation of sterilized chitosan solutions. Alternatively, autoclaving chitosan physical hydrogels did not significantly modify the macromolecular structure of the polymer. Thus, this method is one of the most convenient procedures for the sterilization of physical chitosan hydrogels after their preparation.

  5. Engineering polyelectrolyte multilayer structure at the nanometer length scale by tuning polymer solution conformation.

    Science.gov (United States)

    Boddohi, Soheil; Killingsworth, Christopher; Kipper, Matt

    2008-03-01

    Chitosan (a weak polycation) and heparin (a strong polyanion) are used to make polyelectrolyte multilayers (PEM). PEM thickness and composition are determined as a function of solution pH (4.6 to 5.8) and ionic strength (0.1 to 0.5 M). Over this range, increasing pH increases the PEM thickness; however, the sensitivity to changes in pH is a strong function of ionic strength. The PEM thickness data are correlated to the polymer conformation in solution. Polyelectrolyte conformation in solution is characterized by gel permeation chromatography (GPC). The highest sensitivity of PEM structure to pH is obtained at intermediate ionic strength. Different interactions govern the conformation and adsorption phenomena at low and high ionic strength, leading to reduced sensitivity to solution pH at extreme ionic strengths. The correspondence between PEM thickness and polymer solution conformation offers opportunities to tune polymer thin film structure at the nanometer length scale by controlling simple, reproducible processing conditions.

  6. Chitosan Capped Silver Nanoparticles as Colorimetric Sensor for the Determination of Iron(III

    Directory of Open Access Journals (Sweden)

    Javad Tashkhourian

    2017-12-01

    Full Text Available A selective, simple and low-cost method for the colorimetric determination of Fe3+ ions based on chitosan capped silver nanoparticles (Chit-AgNPs was presented. Chitosan is a cationic polyelectrolyte and possesses amino and hydroxy groups which make it widely used as a capping agent for Ag NPs. The synthesized chitosan capped silver nanoparticles with excellent colloidal stability were characterized by UV–Visible spectrometry, transmission electron microscopy, Fourier transform infrared, X-ray diffraction. Chit-AgNPs exhibit a strong surface plasmon resonance band which disappears in the presence of increasing concentrations of Fe3+ ions. This system showed a visually detectable color change from brownish-yellow to colorless for the selective determination of Fe3+. The method can be applied for the determination of Fe3+ ions in the concentration range of 1.0×10-6 to 5.0×10-4 M. The detection limit was determined from three times the standard deviation of the blank signal (3σ/slope as 5.3 × 10−7 M. The developed method was successfully applied for the determination of Fe3+in real samples

  7. X-ray diffraction studies of chitosan acetate-based polymer electrolytes

    International Nuclear Information System (INIS)

    Osman, Z.; Ibrahim, Z.A.; Abdul Kariem Arof

    2002-01-01

    Chitosan is the product when partially deacetylated chitin dissolves in dilute acetic acid. This paper presents the x-ray diffraction patterns of chitosan acetate, plasticised chitosan acetate and plasticised-salted chitosan acetate films. The results show that the chitosan acetate based polymer electrolyte films are not completely amorphous but it is partially crystalline. X-ray diffraction study also confirms the occurrence of the complexation between chitosan and the salt and the interaction between salt and plasticizer. The salt-chitosan interaction is clearly justified by infrared spectroscopy. (Author)

  8. Chitosan and chitosan chlorhydrate based various approaches for enhancement of dissolution rate of carvedilol

    Directory of Open Access Journals (Sweden)

    Shete Amol S

    2012-12-01

    Full Text Available Abstract Background and the purpose of the study Carvedilol nonselective β-adrenoreceptor blocker, chemically (±-1-(Carbazol-4-yloxy-3-[[2-(o-methoxypHenoxy ethyl] amino]-2-propanol, slightly soluble in ethyl ether; and practically insoluble in water, gastric fluid (simulated, TS, pH 1.1, and intestinal fluid (simulated, TS without pancreatin, pH 7.5 Compounds with aqueous solubility less than 1% W/V often represents dissolution rate limited absorption. There is need to enhance the dissolution rate of carvedilol. The objective of our present investigation was to compare chitosan and chitosan chlorhydrate based various approaches for enhancement of dissolution rate of carvedilol. Methods The different formulations were prepared by different methods like solvent change approach to prepare hydrosols, solvent evaporation technique to form solid dispersions and cogrind mixtures. The prepared formulations were characterized in terms of saturation solubility, drug content, infrared spectroscopy (FTIR, differential scanning calorimetry (DSC, powder X-ray diffraction (PXRD, electron microscopy, in vitro dissolution studies and stability studies. Results The practical yield in case of hydrosols was ranged from 59.76 to 92.32%. The drug content was found to uniform among the different batches of hydrosols, cogrind mixture and solid dispersions ranged from 98.24 to 99.89%. There was significant improvement in dissolution rate of carvedilol with chitosan chlorhdyrate as compare to chitosan and explanation to this behavior was found in the differences in the wetting, solubilities and swelling capacity of the chitosan and chitosan salts, chitosan chlorhydrate rapidly wet and dissolve upon its incorporation into the dissolution medium, whereas the chitosan base, less water soluble, would take more time to dissolve. Conclusion This technique is scalable and valuable in manufacturing process in future for enhancement of dissolution of poorly water soluble

  9. Effect of chitosan-nanosilica self-assembly layers chitosan- on cotton linter fibers and the paper properties

    Directory of Open Access Journals (Sweden)

    Sabrineh M.Tavakoli

    2014-11-01

    Full Text Available Surface properties of cellulosic fibers can be modified by Layer-by-Layer (LbL technique. Cotton fibers are one of important non-wood and industrial cellulosic resources in the world. Cotton linters is produced as a by-product accompany with cotton fibers which is used as a significant cellulosic sources in paper industry for producing durable paper. In this research, the influence of alternate adsorption of cationic chitosan and anionic Nanosilica on modification of fiber surface of cotton linter was investigated. The adsorption of materials on cellulosic fibers was analyzed via electrolyte titration. Experiments were conducted at pH≈3-4 for formation of cationic layer and pH≈9-10 for formation of anionic layer applying stirring rate of about 750rpm, for15 minute deposition time to construct 1 to 3 layers. Hand sheets of about 60 g/ m2 basis weight were made form modified pulp fibers prepared by multilayering of chitosan and nanosilica, then their structural properties and bonding ability were evaluated. Bonding ability of fibers was improved by polyelectrolyte multilayering (PEM on the surface of cotton linter fibers which was visualized by Field Emission Scanning Electron Microscopy (FESEM.The results showed that apparent density and also bonding ability was improved in the treated fibers because of the increased electrostatic attraction between polycation and anion sites existed on the fiber surface. Apparant density of paper was improved remarkably compared to the untreated fibers. Tensile index of the sheet was increased about 16% with consecutive adsorption onto the cotton linter fibers compared to untreated fibers. Formation index of paper was slightly deteriorated after polyelectrolytes multilayering.

  10. Preparation of Acrylamide-based Anionic Polyelectrolytes for Soil Establishment

    Directory of Open Access Journals (Sweden)

    Ahmad Rabiee

    2012-12-01

    Full Text Available Synthetic water soluble acrylamide-based polymers have wide range of ap-plications  in  the  feld  of  soil  establishment  and  non-desertifcation.  In  this research, the acrylamide-based anionic polyelectrolytes were prepared by  solution polymerization. The polymerization was carried out using AIBN as a radical initiator and at different degrees of anionic charges ranging between 10% and 30% using sodium hydroxide as hydrolyzing agents. The chemical structure of the  synthetic polymers was studied and confrmed by FTIR technique. The charge density on polymer backbone was determined by titration method. The rheological behavior of polymer solutions was evaluated by Brookfeld viscometer. The results show that the viscosity decreases with increasing the shear rate of solutions. Molecular weights of samples were measured by laser light scattering analyzer. The morphology of the polymer was studied by SEM and the EDX was used for elemental analysis determination. The anionic polymers with 10-30% negative charges were mixed with clay in order to evaluate the soil establishment. The results show that an anionic polyelectro-lyte can make soil particles more cohesive and improve soil physical properties.

  11. Antimicrobial and anticancer activities of porous chitosan-alginate biosynthesized silver nanoparticles.

    Science.gov (United States)

    Venkatesan, Jayachandran; Lee, Jin-Young; Kang, Dong Seop; Anil, Sukumaran; Kim, Se-Kwon; Shim, Min Suk; Kim, Dong Gyu

    2017-05-01

    The main aim of this study was to obtain porous antimicrobial composites consisting of chitosan, alginate, and biosynthesized silver nanoparticles (AgNPs). Chitosan and alginate were used owing to their pore-forming capacity, while AgNPs were used for their antimicrobial property. The developed porous composites of chitosan-alginate-AgNPs were characterized using Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy, X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). The FT-IR results revealed the presence of a strong chemical interaction between chitosan and alginate due to polyelectrolyte complex; whereas, the XRD results confirmed the presence of AgNPs in the composites. The dispersion of AgNPs in the porous membrane was uniform with a pore size of 50-500μm. Antimicrobial activity of the composites was checked with Escherichia coli and Staphylococcus aureus. The developed composites resulted in the formation of a zone of inhibition of 11±1mm for the Escherichia coli, and 10±1mm for Staphylococcus aureus. The bacterial filtration efficiency of chitosan-alginate-AgNPs was 1.5-times higher than that of the chitosan-alginate composite. The breast cancer cell line MDA-MB-231 was used to test the anticancer activity of the composites. The IC 50 value of chitosan-alginate-AgNPs on MDA-MB-231 was 4.6mg. The developed chitosan-alginate-AgNPs composite showed a huge potential for its applications in antimicrobial filtration and cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Scaling Theory of Polyelectrolyte Nanogels

    International Nuclear Information System (INIS)

    Qu Li-Jian

    2017-01-01

    The present paper develops the scaling theory of polyelectrolyte nanogels in dilute and semidilute solutions. The dependencies of the nanogel dimension on branching topology, charge fraction, subchain length, segment number, solution concentration are obtained. For a single polyelectrolyte nanogel in salt free solution, the nanogel may be swelled by the Coulombic repulsion (the so-called polyelectrolyte regime) or the osmotic counterion pressure (the so-called osmotic regime). Characteristics and boundaries between different regimes of a single polyelectrolyte nanogel are summarized. In dilute solution, the nanogels in polyelectrolyte regime will distribute orderly with the increase of concentration. While the nanogels in osmotic regime will always distribute randomly. Different concentration dependencies of the size of a nanogel in polyelectrolyte regime and in osmotic regime are also explored. (paper)

  13. Chitosan-Based Polymer Blends: Current Status and applications

    International Nuclear Information System (INIS)

    Hefian, E.A.E.; Nasef, M.M.

    2014-01-01

    This paper reviews the latest developments in chitosan-based blends and their potential applications in various fields. Various blends together with other derivatives, such as composites and graft copolymers, have been developed to overcome chitosans disadvantages, including poor mechanical properties and to improve its functionality towards specific applications. The progress made in blending chitosan with synthetic and natural polymers is presented. The versatility and unique characteristics, such as hydrophilicity, film-forming ability, biodegradability, biocompatibility, antibacterial activity and non-toxicity of chitosan has contributed to the successful development of various blends for medical, pharmaceutical, agricultural and environmental applications. (author)

  14. Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning

    Directory of Open Access Journals (Sweden)

    2011-04-01

    Full Text Available Chitosan is soluble in most acids. The protonation of the amino groups on the chitosan backbone inhibits the electrospinnability of pure chitosan. Recently, electrospinning of nanofibers based on chitosan has been widely researched and numerous nanofibers containing chitosan have been prepared by decreasing the number of the free amino groups of chitosan as the nanofibiers have enormous possibilities for better utilization in various areas. This article reviews the preparations and properties of the nanofibers which were electrospun from pure chitosan, blends of chitosan and synthetic polymers, blends of chitosan and protein, chitosan derivatives, as well as blends of chitosan and inorganic nanoparticles, respectively. The applications of the nanofibers containing chitosan such as enzyme immobilization, filtration, wound dressing, tissue engineering, drug delivery and catalysis are also summarized in detail.

  15. Polyelectrolyte Complex Inclusive Biohybrid Microgels for Tailoring Delivery of Copigmented Anthocyanins.

    Science.gov (United States)

    Tan, Chen; B Celli, Giovana; Lee, Michelle; Licker, Jonathan; Abbaspourrad, Alireza

    2018-05-14

    This study fabricated a novel biohybrid microgel containing polysaccharide-based polyelectrolyte complexes (PECs) for anthocyanins. Herein, anthocyanins were encapsulated into PECs composed of chondroitin sulfate and chitosan, followed by incorporation into alginate microgels using emulsification/internal gelation method. We demonstrated that PECs incorporation strongly affected the properties of microgels, dependent on the polysaccharide concentration and pH in which they were fabricated. The dense internal network surrounded by an alginate shell was clearly visualized in cross-sectioned PECs-microgels. Stability studies carried out under varying ionic strength and pH conditions demonstrated the stimuli-responsiveness of the PECs-microgels. Additionally, the presence of PECs conferred microgels with high rigidity during freeze-drying and excellent reconstitution capacity upon rehydration. These observations were attributed to the modulation of electrostatic and hydrogen-bonding cross-linking between PECs and the alginate gel matrix and suggest the PECs inclusive microgels hold promise as delivery vehicles for the controlled release of hydrophilic bioactive compounds.

  16. Red blood cells and polyelectrolyte multilayer capsules: natural carriers versus polymer-based drug delivery vehicles.

    Science.gov (United States)

    Kolesnikova, Tatiana A; Skirtach, Andre G; Möhwald, Helmuth

    2013-01-01

    Red blood cells (RBCs) and lipid-based carriers on the one hand and polymeric capsules on the other hand represent two of the most widely used carriers in drug delivery. Each class of these carriers has its own set of properties, specificity and advantages. Thorough comparative studies of such systems are reported here for the first time. In this review, RBCs are described in comparison with synthetic polymeric drug delivery vehicles using polyelectrolyte multilayer capsules as an example. Lipid-based composition of the shell in the former case is particularly attractive due to their inherent biocompatibility and flexibility of the carriers. On the other hand, synthetic approaches to fabrication of polyelectrolyte multilayer capsules permit manipulation of the permeability of their shell as well as tuning their composition, mechanical properties, release methods and targeting. In conclusion, properties of RBCs and polyelectrolyte multilayer capsules are reported here highlighting similarities and differences in their preparation and applications. In addition, their advantages and disadvantages are discussed.

  17. Scaling Theory of Polyelectrolyte Nanogels

    Science.gov (United States)

    Qu, Li-Jian

    2017-08-01

    The present paper develops the scaling theory of polyelectrolyte nanogels in dilute and semidilute solutions. The dependencies of the nanogel dimension on branching topology, charge fraction, subchain length, segment number, solution concentration are obtained. For a single polyelectrolyte nanogel in salt free solution, the nanogel may be swelled by the Coulombic repulsion (the so-called polyelectrolyte regime) or the osmotic counterion pressure (the so-called osmotic regime). Characteristics and boundaries between different regimes of a single polyelectrolyte nanogel are summarized. In dilute solution, the nanogels in polyelectrolyte regime will distribute orderly with the increase of concentration. While the nanogels in osmotic regime will always distribute randomly. Different concentration dependencies of the size of a nanogel in polyelectrolyte regime and in osmotic regime are also explored. Supported by China Earthquake Administration under Grant No. 20150112 and National Natural Science Foundation of China under Grant No. 21504014

  18. Renewable urea sensor based on a self-assembled polyelectrolyte layer.

    Science.gov (United States)

    Wu, Zhaoyang; Guan, Lirui; Shen, Guoli; Yu, Ruqin

    2002-03-01

    A renewable urea sensor based on a carboxylic poly(vinyl chloride) (PVC-COOH) matrix pH-sensitive membrane has been proposed, in which a positively charged polyelectrolyte layer is first constructed by using a self-assembly technique on the surface of a PVC-COOH membrane, and urease, with negative charges, is then immobilized through electrostatic adsorption onto the PVC-COOH membrane, by controlling the pH of the urease solution below its isoelectric point. The response characteristics of the PVC-COOH pH-sensitive membrane and the effects of experimental conditions have been investigated in detail. Compared with conventional covalent immobilization, the urea sensor made with this self-assembly immobilization shows significant advantage in terms of sensitivity and ease of regeneration. The potential responses of the urea sensor with self-assembly immobilization increase with the urea concentration over the concentration range 10(-5) - 10(-1) mol l(-1), and the detection limit is 0.028 mmol(-1). Moreover, this type of urea sensor can be repeatedly regenerated by using a simple washing treatment with 0.01 mol l(-1) NaOH (containing 0.5 mol l(-1) NaCl) and 0.01 mol l(-1) HCl. The urease layers and the polyelectrolyte layers on the PVC-COOH membrane are removed, the potential response of the sensor to urea solutions of different concentrations returns nearly to zero, and another assembly cycle of urease and polyelectrolyte can then be carried out.

  19. Polyelectrolytes thermodynamics and rheology

    CERN Document Server

    P M, Visakh; Picó, Guillermo Alfredo

    2014-01-01

    This book discusses current development of theoretical models and experimental findings on the thermodynamics of polyelectrolytes. Particular emphasis is placed on the rheological description of polyelectrolyte solutions and hydrogels.

  20. Chitosan-based water-propelled micromotors with strong antibacterial activity.

    Science.gov (United States)

    Delezuk, Jorge A M; Ramírez-Herrera, Doris E; Esteban-Fernández de Ávila, Berta; Wang, Joseph

    2017-02-09

    A rapid and efficient micromotor-based bacteria killing strategy is described. The new antibacterial approach couples the attractive antibacterial properties of chitosan with the efficient water-powered propulsion of magnesium (Mg) micromotors. These Janus micromotors consist of Mg microparticles coated with the biodegradable and biocompatible polymers poly(lactic-co-glycolic acid) (PLGA), alginate (Alg) and chitosan (Chi), with the latter responsible for the antibacterial properties of the micromotor. The distinct speed and efficiency advantages of the new micromotor-based environmentally friendly antibacterial approach have been demonstrated in various control experiments by treating drinking water contaminated with model Escherichia coli (E. coli) bacteria. The new dynamic antibacterial strategy offers dramatic improvements in the antibacterial efficiency, compared to static chitosan-coated microparticles (e.g., 27-fold enhancement), with a 96% killing efficiency within 10 min. Potential real-life applications of these chitosan-based micromotors for environmental remediation have been demonstrated by the efficient treatment of seawater and fresh water samples contaminated with unknown bacteria. Coupling the efficient water-driven propulsion of such biodegradable and biocompatible micromotors with the antibacterial properties of chitosan holds great considerable promise for advanced antimicrobial water treatment operation.

  1. Reorganization of the 3D matrix of polyelectrolytes complexes of chitosan/chondroitin sulfate swollen in different conditions of pH and immersion time

    International Nuclear Information System (INIS)

    Fajardo, Andre R.; Piai, Juliana F.; Rubira, Adley F.; Muniz, Edvani C.

    2009-01-01

    The chitosan (CT), a polysaccharide that has excellent properties for use as biomaterials, shows cationic nature and properties of high charge density in acidic solutions, thus CT can form complex polyelectrolyte (PEC) with polyanionic moieties such as the chondroitin sulfate (CS), a key component of cartilage matrix. We studied the reorganization of chains on 3D matrix of CT/CS PEC at swollen state in different conditions of pH and immersion time. It was verified that this PEC (QT/CS) has the capacity to reorganize its 3D matrix but it depends of the pH of the medium in which it is swelled and the time that remains immersed. The reorganization of the 3D matrix is caused by the reordering of the chains forming the PEC after the release of the CS, that occurs mainly at pH values higher than or close to the pKa of CT (pKa CT) . Such reorganization was detected by X-ray diffraction profiles and allows an increase in crystallinity, thermal stability and pore size of the PEC. This shows that the PEC produced can be processed to suit its use as bio material, applied i.e. as drugs release devices. (author)

  2. Reorganization of the 3D matrix of polyelectrolytes complexes of chitosan/chondroitin sulfate swollen in different conditions of pH and immersion time

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, Andre R.; Piai, Juliana F.; Rubira, Adley F.; Muniz, Edvani C., E-mail: ecmuniz@uem.b [Universidade Estadual de Maringa (DG/UEM), PR (Brazil). Dept. de Quimica. Grupo de Materiais Polimericos e Compositos

    2009-07-01

    The chitosan (CT), a polysaccharide that has excellent properties for use as biomaterials, shows cationic nature and properties of high charge density in acidic solutions, thus CT can form complex polyelectrolyte (PEC) with polyanionic moieties such as the chondroitin sulfate (CS), a key component of cartilage matrix. We studied the reorganization of chains on 3D matrix of CT/CS PEC at swollen state in different conditions of pH and immersion time. It was verified that this PEC (QT/CS) has the capacity to reorganize its 3D matrix but it depends of the pH of the medium in which it is swelled and the time that remains immersed. The reorganization of the 3D matrix is caused by the reordering of the chains forming the PEC after the release of the CS, that occurs mainly at pH values higher than or close to the pKa of CT (pKa CT) . Such reorganization was detected by X-ray diffraction profiles and allows an increase in crystallinity, thermal stability and pore size of the PEC. This shows that the PEC produced can be processed to suit its use as bio material, applied i.e. as drugs release devices. (author)

  3. Tailoring Functional Chitosan-based Composites for Food Applications.

    Science.gov (United States)

    Nunes, Cláudia; Coimbra, Manuel A; Ferreira, Paula

    2018-03-08

    Chitosan-based functional materials are emerging for food applications. The covalent bonding of molecular entities demonstrates to enhance resistance to the typical acidity of food assigning mechanical and moisture/gas barrier properties. Moreover, the grafting to chitosan of some functional molecules, like phenolic compounds or essential oils, gives antioxidant, antimicrobial, among others properties to chitosan. The addition of nanofillers to chitosan and other biopolymers improves the already mentioned required properties for food applications and can attribute electrical conductivity and magnetic properties for active and intelligent packaging. Electrical conductivity is a required property for the processing of food at low temperature using electric fields or for sensors application. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Chitosan-Based Nano-Embedded Microparticles: Impact of Nanogel Composition on Physicochemical Properties

    DEFF Research Database (Denmark)

    Islam, Paromita; Water, Jorrit Jeroen; Bohr, Adam

    2016-01-01

    Chitosan-based nanogels have been widely applied as drug delivery vehicles. Spray-drying of said nanogels allows for the preparation of dry powder nano-embedded microparticles. In this work, chitosan-based nanogels composed of chitosan, alginate, and/or sodium tri-penta phosphate were investigated...

  5. Controlling chitosan-based encapsulation for protein and vaccine delivery

    Science.gov (United States)

    Koppolu, Bhanu prasanth; Smith, Sean G.; Ravindranathan, Sruthi; Jayanthi, Srinivas; Kumar, Thallapuranam K.S.; Zaharoff, David A.

    2014-01-01

    Chitosan-based nano/microencapsulation is under increasing investigation for the delivery of drugs, biologics and vaccines. Despite widespread interest, the literature lacks a defined methodology to control chitosan particle size and drug/protein release kinetics. In this study, the effects of precipitation-coacervation formulation parameters on chitosan particle size, protein encapsulation efficiency and protein release were investigated. Chitosan particle sizes, which ranged from 300 nm to 3 μm, were influenced by chitosan concentration, chitosan molecular weight and addition rate of precipitant salt. The composition of precipitant salt played a significant role in particle formation with upper Hofmeister series salts containing strongly hydrated anions yielding particles with a low polydispersity index (PDI) while weaker anions resulted in aggregated particles with high PDIs. Sonication power had minimal effect on mean particle size, however, it significantly reduced polydispersity. Protein loading efficiencies in chitosan nano/microparticles, which ranged from 14.3% to 99.2%, was inversely related to the hydration strength of precipitant salts, protein molecular weight and directly related to the concentration and molecular weight of chitosan. Protein release rates increased with particle size and were generally inversely related to protein molecular weight. This study demonstrates that chitosan nano/microparticles with high protein loading efficiencies can be engineered with well-defined sizes and controllable release kinetics through manipulation of specific formulation parameters. PMID:24560459

  6. Preparation and Characterization of Water-Soluble Chitosan Microparticles Loaded with Insulin Using the Polyelectrolyte Complexation Method

    International Nuclear Information System (INIS)

    Wu, S.; Tao, Y.; Zhang, H.; Su, Z.

    2011-01-01

    Polymeric delivery systems based on microparticles have emerged as a promising approach for peroral insulin delivery. The amount of insulin was quantified by the improved Bradford method. It was shown that water-soluble chitosan/insulin/tripolyphosphate (TPP) mass ratio played an important role in microparticles formation. Stable, uniform, and spherical water-soluble chitosan microparticles (WSC-MPs) with high insulin association efficiency were formed at or close to optimized WSC/insulin/TPP mass ratio. WSC-MPs had higher association efficiency in the ph 4.0 and ph 9.7 of TPP solution. The results showed that association efficiency and loading capacity of insulin-loaded WSC-MPs prepared in 0.01 mol/L HCl of insulin were 48.28 ± 0.90% and 9.52 ± 1.34%. The average size of insulin-loaded WSC-MPs was 292 nm. The presented WSC microparticulate system has promising properties towards the development of an oral delivery system for insulin

  7. Polysaccharides-based polyelectrolyte nanoparticles as protein drugs delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Shu Shujun; Sun Lei; Zhang Xinge, E-mail: zhangxinge@nankai.edu.cn [Nankai University, Key Laboratory of Functional Polymer Materials Ministry of Education, Institute of Polymer Chemistry (China); Wu Zhongming [Tianjin Medical University, Metabolic Diseases Hospital (China); Wang Zhen; Li Chaoxing, E-mail: lcx@nankai.edu.cn [Nankai University, Key Laboratory of Functional Polymer Materials Ministry of Education, Institute of Polymer Chemistry (China)

    2011-09-15

    Polysaccharides-based nanoparticles were prepared by synthesized quaternized chitosan and dextran sulfate through simple ionic-gelation self-assembled method. Introduction of quaternized groups was intended to increase water solubility of chitosan and make the nanoparticles have broader pH sensitive range which can remain more stable in physiological pH and decrease the loss of protein drugs caused by the gastric cavity. The load of BSA was affected by molecular parameter, i.e., degree of substitution, and average molecular weight of quaternized chitosan, as well as concentration of BSA. Fast release occurred in phosphate buffer solution (pH 7.4) while the release was slow in hydrochloric acid (pH 1.4). The drug release mechanism is Fickian diffusion through release kinetics analysis. Cell uptake demonstrated nanoparicles can internalize into Caco-2 cells, which suggested that nanoparticles had good biocompatibility. No significant conformation change was noted for the released BSA in comparison with native BSA using circular dichroism spectroscopy. This kind of novel composite nanoparticles may be a promising delivery system for oral protein and peptide drugs.

  8. Chitosan-based polyherbal toothpaste: As novel oral hygiene product

    Directory of Open Access Journals (Sweden)

    Mohire Nitin

    2010-01-01

    Full Text Available Objective: The objective of the present work was to develop chitosan-based polyherbal toothpaste and evaluate its plaque-reducing potential and efficacy in reduction of dental pathogens. Materials and Methods: Antimicrobial activity of herbal extracts against dental pathogens were performed by using disk diffusion method. The pharmaceutical evaluation of toothpaste was carried out as per the US Government Tooth Paste Specifications. A 4-week clinical study was conducted in patients with oro-dental problems to evaluate the plaque removing efficacy of chitosan-based polyherbal toothpaste with commercially available chlorhexidine gluconate (0.2% w/v mouthwash as positive control. Total microbial count was carried out to determine the percentage decrease in the oral bacterial count over the period of treatment. Result: Herbal extracts were found to possess satisfactory antimicrobial activity against most of the dental pathogens. Chitosan-containing polyherbal toothpaste significantly reduces the plaque index by 70.47% and bacterial count by 85.29%, and thus fulfills the majority of esthetic and medicinal requirements of oral hygiene products. Conclusion: Chitosan-based polyherbal toothpaste proves itself as a promising novel oral hygiene product as compared with currently available oral hygiene products. A further study to confirm the exact mechanism and active constituents behind antiplaque and antimicrobial activity of chitosan-based polyherbal toothpaste and its efficacy in large number of patient population is on high demand.

  9. Conductivity enhancement via chemical modification of chitosan based green polymer electrolyte

    International Nuclear Information System (INIS)

    Mobarak, N.N.; Ahmad, A.; Abdullah, M.P.; Ramli, N.; Rahman, M.Y.A.

    2013-01-01

    The potential of carboxymethyl chitosan as a green polymer electrolyte has been explored. Chitosan produced from partial deacetylation of chitin was reacted with monochloroacetic acid to form carboxymethyl chitosan. A green polymer electrolyte based chitosan and carboxymethyl chitosan was prepared by solution-casting technique. The powder and films were characterized by reflection Fourier transform infrared (ATR-FTIR) spectroscopy, 1 H nuclear magnetic resonance, elemental analysis and X-ray diffraction, electrochemical impedance spectroscopy, and scanning electron microscopy. The shift of wavenumber that represents hydroxyl and amine stretching confirmed the polymer solvent complex formation. The XRD spectra results show that chemical modification of chitosan has improved amorphous properties of chitosan. The ionic conductivity was found to increase by two magnitudes higher with the chemical modification of chitosan. The highest conductivity achieved was 3.6 × 10 −6 S cm −1 for carboxymethyl chitosan at room temperature and 3.7 × 10 −4 S cm −1 at 60 °C

  10. Hydrophobization and antimicrobial activity of chitosan and paper-based packaging material.

    Science.gov (United States)

    Bordenave, Nicolas; Grelier, Stephane; Coma, Veronique

    2010-01-11

    This study reports the elaboration of water-resistant, antimicrobial, chitosan and paper-based materials as environmentally friendly food packaging materials. Two types of papers were coated with chitosan-palmitic acid emulsions or with a blend of chitosan and O,O'-dipalmitoylchitosan (DPCT). Micromorphology studies showed that inclusion of hydrophobic compounds into the chitosan matrix was enhanced by grafting them onto chitosan and that this led to their penetration of the paper's core. Compared to chitosan-coated papers, the coating of chitosan-palmitic emulsion kept vapor-barrier properties unchanged (239 and 170 g.m(-2).d(-1) versus 241 and 161 g.m(-2).d(-1)), while the coating of chitosan-DPCT emulsion dramatically deteriorated them (441 and 442 g.m(-2).d(-1)). However, contact angle measurements (110-120 degrees after 1 min) and penetration dynamics analysis showed that both strategies improved liquid-water resistance of the materials. Kit-test showed that all hydrophobized chitosan-coated papers kept good grease barrier properties (degree of resistance 6-8/12). Finally, all chitosan-coated materials exhibited over 98% inhibition on Salmonella Typhimurium and Listeria monocytogenes .

  11. Synthesis and molecular characterization of chitosan based polyurethane elastomers using aromatic diisocyanate.

    Science.gov (United States)

    Zia, Khalid Mahmood; Anjum, Sohail; Zuber, Mohammad; Mujahid, Muhammad; Jamil, Tahir

    2014-05-01

    The present research work was performed to synthesize a new series of chitosan based polyurethane elastomers (PUEs) using poly(ɛ-caprolactone) (PCL). The chitosan based PUEs were prepared by step-growth polymerization technique using poly(ɛ-caprolactone) (PCL) and 2,4-toluene diisocyanate (TDI). In the second step the PU prepolymer was extended with different mole ratios of chitosan and 1,4-butane diol (BDO). Molecular engineering was carried out during the synthesis. The conventional spectroscopic characterization of the synthesized samples using FT-IR confirms the existence of the proposed chitosan based PUEs structure. Internal morphology of the prepared PUEs was studied using SEM analysis. The SEM images confirmed the incorporation of chitosan molecules into the PU backbone. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Synthesis, characterization and biological activity of C6-Schiff bases derivatives of chitosan.

    Science.gov (United States)

    Xu, Ruibo; Aotegen, Bayaer; Zhong, Zhimei

    2017-12-01

    C 6 -Schiff bases derivatives of chitosan were synthesized for the first time. C 2 -amino groups and C 3 -hydroxy groups were firstly protected by CuSO 4 ·5H 2 O, and the C 6 -hydroxy was then transformed into aldehyde, which then reacted with anilines through nucleophilic addition to introduce the CN group at C 6 -position in chitosan chain. Finally, C 6 -Schiff bases derivatives of chitosan were got by the deprotection of C 2 -NH 2 with cation exchange resin. The structures and properties of the new synthesized products were characterized by Fourier transform infrared spectroscopy, 13 C NMR, SEM image, and elemental analysis. The antibacterial activities of derivatives were tested in the experiment, and the results showed that the prepared chitosan derivatives had significantly improved antibacterial activity toward Staphylococcus aureus and Escherichia coli. The Cytotoxicity test showed that the prepared chitosan derivatives had low Cytotoxicity, compared with chitosan and C 2 -benzaldehyde Schiff bases of chitosan. This paper allowed a new method for the synthesis of Schiff bases of chitosan, which was enlightening. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. REVIEW: CHITOSAN BASED HYDROGEL POLYMERIC BEADS – AS DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Manjusha Rani

    2010-11-01

    Full Text Available Chitosan obtained by alkaline deacetylation of chitin is a non-toxic, biocompatible, and biodegradable natural polymer. Chitosan-based hydrogel polymeric beads have been extensively studied as micro- or nano-particulate carriers in the pharmaceutical and medical fields, where they have shown promise for drug delivery as a result of their controlled and sustained release properties, as well as biocompatibility with tissue and cells. To introduce desired properties and enlarge the scope of the potential applications of chitosan, graft copolymerization with natural or synthetic polymers on it has been carried out, and also, various chitosan derivatives have been utilized to form beads. The desired kinetics, duration, and rate of drug release up to therapeutical level from polymeric beads are limited by specific conditions such as beads material and their composition, bead preparation method, amount of drug loading, drug solubility, and drug polymer interaction. The present review summarizes most of the available reports about compositional and structural effects of chitosan-based hydrogel polymeric beads on swelling, drug loading, and releasing properties. From the studies reviewed it is concluded that chitosan-based hydrogel polymeric beads are promising drug delivery systems.

  14. Functional chitosan-based grapefruit seed extract composite films for applications in food packaging technology

    International Nuclear Information System (INIS)

    Tan, Y.M.; Lim, S.H.; Tay, B.Y.; Lee, M.W.; Thian, E.S.

    2015-01-01

    Highlights: • Chitosan-based grapefruit seed extract (GFSE) films were solution casted. • GFSE was uniformly dispersed within all chitosan film matrices. • All chitosan-based composite films showed remarkable transparency. • Increasing amounts of GFSE incorporated increased the elongation at break of films. • Chitosan-based GFSE composite films inhibited the proliferation of fungal growth. - Abstract: Chitosan-based composite films with different amounts of grapefruit seed extract (GFSE) (0.5, 1.0 and 1.5% v/v) were fabricated via solution casting technique. Experimental results showed that GFSE was uniformly dispersed within all chitosan film matrices. The presence of GFSE made the films more amorphous and tensile strength decreased, while elongation at break values increased as GFSE content increased. Results from the measurement of light transmission revealed that increasing amounts of GFSE (from 0.5 to 1.5% v/v) did not affect transparency of the films. Furthermore, packaging of bread samples with chitosan-based GFSE composite films inhibited the proliferation of fungal growth as compared to control samples. Hence, chitosan-based GFSE composite films have the potential to be a useful material in the area of food technology

  15. Functional chitosan-based grapefruit seed extract composite films for applications in food packaging technology

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Y.M. [Department of Mechanical Engineering, National University of Singapore (Singapore); Lim, S.H.; Tay, B.Y. [Forming Technology Group, Singapore Institute of Manufacturing Technology (Singapore); Lee, M.W. [Food Innovation and Resource Centre, Singapore Polytechnic (Singapore); Thian, E.S., E-mail: mpetes@nus.edu.sg [Department of Mechanical Engineering, National University of Singapore (Singapore)

    2015-09-15

    Highlights: • Chitosan-based grapefruit seed extract (GFSE) films were solution casted. • GFSE was uniformly dispersed within all chitosan film matrices. • All chitosan-based composite films showed remarkable transparency. • Increasing amounts of GFSE incorporated increased the elongation at break of films. • Chitosan-based GFSE composite films inhibited the proliferation of fungal growth. - Abstract: Chitosan-based composite films with different amounts of grapefruit seed extract (GFSE) (0.5, 1.0 and 1.5% v/v) were fabricated via solution casting technique. Experimental results showed that GFSE was uniformly dispersed within all chitosan film matrices. The presence of GFSE made the films more amorphous and tensile strength decreased, while elongation at break values increased as GFSE content increased. Results from the measurement of light transmission revealed that increasing amounts of GFSE (from 0.5 to 1.5% v/v) did not affect transparency of the films. Furthermore, packaging of bread samples with chitosan-based GFSE composite films inhibited the proliferation of fungal growth as compared to control samples. Hence, chitosan-based GFSE composite films have the potential to be a useful material in the area of food technology.

  16. Electrostatics and charge regulation in polyelectrolyte multilayered assembly.

    Science.gov (United States)

    Cherstvy, Andrey G

    2014-05-01

    We examine the implications of electrostatic interactions on formation of polyelectrolyte multilayers, in application to field-effect based biosensors for label-free detection of charged macromolecules. We present a quantitative model to describe the experimental potentiometric observations and discuss its possibilities and limitations for detection of polyelectrolyte adsorption. We examine the influence of the ionic strength and pH on the sensor response upon polyelectrolyte layer-by-layer formation. The magnitude of potential oscillations on the sensor-electrolyte interface predicted upon repetitive adsorption charge-alternating polymers agrees satisfactorily with experimental results. The model accounts for different screening by mobile ions in electrolyte and inside tightly interdigitated multilayered structure. In particular, we show that sensors' potential oscillations are larger and more persistent at lower salt conditions, while they decay faster with the number of layers at higher salt conditions, in agreement with experiments. The effects of polyelectrolyte layer thickness, substrate potential, and charge regulation on the sensor surface triggered by layer-by-layer deposition are also analyzed.

  17. Biological evaluation of silver nanoparticles incorporated into chitosan-based membranes

    NARCIS (Netherlands)

    Shao, J.; Yu, N.; Kolwijck, E.; Wang, B.; Tan, K.W.; Jansen, J.A.; Walboomers, X.F.; Yang, F.

    2017-01-01

    AIM: To evaluate the antibacterial potential and biological performance of silver nanoparticles in chitosan-based membranes. MATERIALS & METHODS: Electrospun chitosan/poly(ethylene oxide) membranes with different amounts of silver nanoparticles were evaluated for antibacterial properties and

  18. An investigation of chitosan and sodium dodecyl sulfate interactions in acetic media

    Directory of Open Access Journals (Sweden)

    Petrović Lidija B.

    2016-01-01

    Full Text Available Polymer/surfactant association is a cooperative phenomenon where surfactant binds to the polymer in the form of aggregates, usually through electrostatic or hydrophobic forces. As already known, polyelectrolytes may interact with oppositely charged surfactants through electrostatic attraction that results in polymer/surfactant complex formation. This behavior could be desirable in wide range of application of polymer/surfactant mixtures, such as improving colloid stability, gelling, emulsification and microencapsulation. In the present study surface tension, turbidity, viscosity and electrophoretic mobility measurements were used to investigate interactions of cationic polyelectrolyte chitosan (Ch and oppositely charged anionic surfactant, sodium dodecyl sulfate (SDS, in buffered water. Obtained results show the presence of interactions that lead to Ch/SDS complexes formation at all investigated pH and for all investigated polymer concentrations. Mechanisms of interaction, as well as characteristics of formed Ch/SDS complexes, are highly dependent on their mass ratio in the mixtures, while pH has no significant influence. [Projekat Ministarstva nauke Republike Srbije, br. II46010

  19. Chitosan-based nanosystems and their exploited antimicrobial activity.

    Science.gov (United States)

    Perinelli, Diego Romano; Fagioli, Laura; Campana, Raffaella; Lam, Jenny K W; Baffone, Wally; Palmieri, Giovanni Filippo; Casettari, Luca; Bonacucina, Giulia

    2018-05-30

    Chitosan is a biodegradable and biocompatible natural polysaccharide that has a wide range of applications in the field of pharmaceutics, biomedical, chemical, cosmetics, textile and food industry. One of the most interesting characteristics of chitosan is its antibacterial and antifungal activity, and together with its excellent safety profile in human, it has attracted considerable attention in various research disciplines. The antimicrobial activity of chitosan is dependent on a number of factors, including its molecular weight, degree of deacetylation, degree of substitution, physical form, as well as structural properties of the cell wall of the target microorganisms. While the sole use of chitosan may not be sufficient to produce an adequate antimicrobial effect to fulfil different purposes, the incorporation of this biopolymer with other active substances such as drugs, metals and natural compounds in nanosystems is a commonly employed strategy to enhance its antimicrobial potential. In this review, we aim to provide an overview on the different approaches that exploit the antimicrobial activity of chitosan-based nanosystems and their applications, and highlight the latest advances in this field. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Characterization for Soil Fixation by Polyelectrolyte Complex

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Suk; Kwon, Sang Woon; Yang, Heeman; Lee, Kune Woo; Seo, Bumkyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    According to report, the radioactivity bulk (approx. 95%) is localized within topsoil. Therefore soil surface on topsoil should be fixed to prevent the spreading of the contaminated soils with Cs-137 by wind and water erosion. Many methods have been developing for soil fixation to remove radioactive contaminants in soil and prevent to diffuse radioactive materials. Various materials have been also used as fixatives such as clays, molecular sieves, polymer, and petroleum based products. One of the methods is a soil fixation or solidification using polyelectrolyte. Polyelectrolytes have many ionic groups and make into the polyelectrolyte complex (PEC) due to electrostatic interaction of polyanion and polycation in an aqueous solution. It can be avoids using the chemical cross-linking agents, and reducing the possible toxicity and other undesirable effects of the reagents. PEC can fix soil particles by flocculation and formation of crust between soil. The method can also prevent a spread of radioactive material by floating on a soil surface. Recently, PEC used for the solidification of soil near the Fukushima nuclear power plant in Japan. The decontamination efficiency of the surface soils reached 90%, and dust release was effectively suppressed during the removal of surface soils. In this study, it was investigated the fixation of the soil by PEC to avoid the spread of the contamination in addition to the separation of soil and PEC. The physicochemical properties of polyelectrolyte complex solution and the stability of fixed soil by PEC were investigated. The mode of the addition is important to prepare the polyelectrolytes complex without PAA agglomerate. The concentration of salt in the polyelectrolyte complex solution is a very important parameter for the soil fixation.

  1. Characterization for Soil Fixation by Polyelectrolyte Complex

    International Nuclear Information System (INIS)

    Choi, Yong Suk; Kwon, Sang Woon; Yang, Heeman; Lee, Kune Woo; Seo, Bumkyoung; Moon, Jei Kwon

    2014-01-01

    According to report, the radioactivity bulk (approx. 95%) is localized within topsoil. Therefore soil surface on topsoil should be fixed to prevent the spreading of the contaminated soils with Cs-137 by wind and water erosion. Many methods have been developing for soil fixation to remove radioactive contaminants in soil and prevent to diffuse radioactive materials. Various materials have been also used as fixatives such as clays, molecular sieves, polymer, and petroleum based products. One of the methods is a soil fixation or solidification using polyelectrolyte. Polyelectrolytes have many ionic groups and make into the polyelectrolyte complex (PEC) due to electrostatic interaction of polyanion and polycation in an aqueous solution. It can be avoids using the chemical cross-linking agents, and reducing the possible toxicity and other undesirable effects of the reagents. PEC can fix soil particles by flocculation and formation of crust between soil. The method can also prevent a spread of radioactive material by floating on a soil surface. Recently, PEC used for the solidification of soil near the Fukushima nuclear power plant in Japan. The decontamination efficiency of the surface soils reached 90%, and dust release was effectively suppressed during the removal of surface soils. In this study, it was investigated the fixation of the soil by PEC to avoid the spread of the contamination in addition to the separation of soil and PEC. The physicochemical properties of polyelectrolyte complex solution and the stability of fixed soil by PEC were investigated. The mode of the addition is important to prepare the polyelectrolytes complex without PAA agglomerate. The concentration of salt in the polyelectrolyte complex solution is a very important parameter for the soil fixation

  2. Chitosan-based nanocomposites

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2012-08-01

    Full Text Available , and hygiene devices. They thus represent a strong and emerging answer for improved and eco-friendly materials. This chapter reviews the recent developments in the area of chitosan-based nanocomposites, with a special emphasis on clay-containing nanocomposites...-sized mineral fillers like silica, talc, and clay are added to reduce the cost and improve chitosan’s performance in some way. However, the mechanical properties such as elongation at break and tensile strength of these composites decrease with the incorporation...

  3. Bioresorbable polyelectrolytes for smuggling drugs into cells.

    Science.gov (United States)

    Jaganathan, Sripriya

    2016-06-01

    There is ample evidence that biodegradable polyelectrolyte nanocapsules are multifunctional vehicles which can smuggle drugs into cells, and release them upon endogenous activation. A large number of endogenous stimuli have already been tested in vitro, and in vivo research is escalating. Thus, the interest in the design of intelligent polyelectrolyte multilayer (PEM) drug delivery systems is clear. The need of the hour is a systematic translation of PEM-based drug delivery systems from the lab to clinical studies. Reviews on multifarious stimuli that can trigger the release of drugs from such systems already exist. This review summarizes the available literature, with emphasis on the recent progress in PEM-based drug delivery systems that are receptive in the presence of endogenous stimuli, including enzymes, glucose, glutathione, pH, and temperature, and addresses different active and passive drug targeting strategies. Insights into the current knowledge on the diversified endogenous approaches and methodological challenges may bring inspiration to resolve issues that currently bottleneck the successful implementation of polyelectrolytes into the catalog of third-generation drug delivery systems.

  4. Chitosan/o-carboxymethyl chitosan nanoparticles for efficient and safe oral anticancer drug delivery: in vitro and in vivo evaluation.

    Science.gov (United States)

    Feng, Chao; Wang, Zhiguo; Jiang, Changqing; Kong, Ming; Zhou, Xuan; Li, Yang; Cheng, Xiaojie; Chen, Xiguang

    2013-11-30

    The present study investigated the ability of a polyelectrolyte complex (CS/CMCS-NPs), composed of chitosan (CS) and o-carboxymeymethy chitosan (CMCS) as a pH responsive carrier for oral delivery of doxorubicin hydrochloride (DOX). The obtained CS/CMCS-NPs were characterized for various parameters including morphology, particle size, zeta potential, entrapment efficiency and stability under the simulated GI tract conditions. The pH responsive stability of the DOX-loaded CS/CMCS nanoparticles (DOX:CS/CMCS-NPs) determined the drug release rate, which was lower in acidic pH than the neutral. Ex vivo intestinal adhesion and permeation indicated DOX:CS/CMCS-NGs were able to enhance absorption of DOX throughout the entire small intestine, especially in jejunum and ileum. Oral administration of DOX:CS/CMCS-NPs was effective to deliver DOX into blood, giving an absolute bioavailability of 42%. The tissue distribution and toxicity of DOX:CS/CMCS-NPs in rats showed low level of DOX in heart and kidney, and obviously decreased cardiac and renal toxicities. These results indicated CS/CMCS-NPs were highly efficient and safe as an oral delivery system for DOX. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Sodium tripolyphosphate cross-linked chitosan based sensor for enhacing sensing properties towards acetone

    Science.gov (United States)

    Nasution, T. I.; Asrosa, R.; Nainggolan, I.; Balyan, M.; Indah, R.; Wahyudi, A.

    2018-02-01

    In this report, sensing properties of sodium tripolyphosphate (TPP) cross-linked chitosan based sensor has been successfully enhanced towards acetone. Chitosan solutions were cross-linked with sodium TPP in variation of 0.1%, 0.5%, 1% and 1.5% w/v, respectively. The sensors were fabricated in film form using an electrochemical deposition method. The sensing properties of the sensors were observed by exposing the pure chitosan and sodium TPP cross-linked chitosan sensors towards acetone concentrations of 5, 10, 50, 100 and 200 ppm. The measurement results revealed that the maximum response in output voltage value of pure chitosan sensor was 0.35 V while sodium TPP crosslinked chitosan sensors were above 0.35 V towards 5 ppm acetone concentration. When the sensors were exposed towards acetone concentration of 200 ppm, the maximum response of pure chitosan was 0.45 V while sodium TPP crosslinked chitosan sensors were above 0.45 V. Amongst the variation of sodium TPP, the maximum response of 1% sodium TPP was the highest since the maximum response was 0.4 V and 0.6 V towards 5 ppm and 200 ppm acetone concentration, respectively. While the maximum responses of other sodium TPP concentrations were under 0.4 V and 0.6 V towards 5 ppm and 200 ppm acetone concentration. Moreover, 1% sodium TPP cross-linked chitosan based sensor showed good reproducibility and outstanding lifetime. Therefore, 1% sodium TPP cross-linked chitosan based sensor has exhibited remarkable sensing properties as a novel acetone sensor.

  6. Synthesis and Characterization of Fe3O4 Magnetic Nanoparticles Coated with Carboxymethyl Chitosan Grafted Sodium Methacrylate

    Directory of Open Access Journals (Sweden)

    S. Asgari

    2014-01-01

    Full Text Available N-sodium acrylate-O-carboxymethyl chitosan [CMCH-g-PAA(Na] bound Fe3O4 nanoparticles were developed as a novel magnetic nanoparticles with an ionic structure that can be potentially used in many fields. CMCH-g-PAA (Na was obtained by grafting of sodium polyacrylate on O-carboxymethyl chitosan, which is an amphiphilic polyelectrolyte with the biocompatibility and biodegradability properties. According to the great interest for improving the stability of Fe3O4 nanoparticles, CMCH-g-PAA (Na was used as a stabilizer to prepare a well dispersed suspension of magnetic nanoparticle According to the results,the presence of CMCH-g-PAA(Na could eliminate agglomeration of magnetic nanoparticles without destroying the superparamagnetic  properties

  7. Chitosan-crosslinked gels prepared by a simultaneously occurring reaction of radiation-induced polymerization and self-bridging of acrylic acid in aqueous solutions

    International Nuclear Information System (INIS)

    Elhag Ali, Amr; Hegazy, Elsayed Ahmed; Hendri, John; Katakai, Ryoichi; Maekawa, Yasunari; Kume, Tamikazu; Yoshida, Masaru

    2001-01-01

    Chitosan is one of the most interesting natural polymers, in addition to its biodegradability it shows wide biological properties such as antifibrolastic and antimicrobial activities, which verify its biomedical application. Novel Acrylic acid/Chitosan hydrogel was prepared by means of γ-irradiation as a clean source for initiation, and crosslinking. The nature of the AAc/CS gel and the effect of the presence of chitosan on the behavior of AAc were characterized. The effect of pH on the degree of swelling of different gels and time course swelling studies show the effect of presence of chitosan and its molecular weight on the swelling of the gels. DSC and TGA were used to study the effect of the presence of chitosan on the thermal behavior of PAAc. It was found that chitosan change thermal behavior of AAc. These results support our assumption for the formation of crosslinking between PAAc and CS chains via polyelectrolyte complex formation, attributed to the high affinity between CS and AAc, accompanied by homopolymerization and self-bridging. This crosslinking increase with CS molecular weight increasing and affect the thermal behavior of PAAc. (author)

  8. Layer-by-Layer Alginate and Fungal Chitosan Based Edible Coatings Applied to Fruit Bars.

    Science.gov (United States)

    Bilbao-Sainz, Cristina; Chiou, Bor-Sen; Punotai, Kaylin; Olson, Donald; Williams, Tina; Wood, Delilah; Rodov, Victor; Poverenov, Elena; McHugh, Tara

    2018-05-30

    Food waste is currently being generated at an increasing rate. One proposed solution would be to convert it to biopolymers for industrial applications. We recovered chitin from mushroom waste and converted it to chitosan to produce edible coatings. We then used layer-by-layer (LbL) electrostatic deposition of the polycation chitosan and the polyanion alginate to coat fruit bars enriched with ascorbic acid. The performance of the LbL coatings was compared with those containing single layers of fungal chitosan, animal origin chitosan and alginate. Bars containing alginate-chitosan LbL coatings showed increased ascorbic acid content, antioxidant capacity, firmness and fungal growth prevention during storage. Also, the origin of the chitosan did not affect the properties of the coatings. Mushroom stalk bases could be an alternative source for isolating chitosan with similar properties to animal-based chitosan. Also, layer-by-layer assembly is a cheap, simple method that can improve the quality and safety of fruit bars. © 2018 Institute of Food Technologists®.

  9. Chitosan-Sodium Phytate Films with a Strong Water Barrier and Antimicrobial Properties Produced via One-Step-Consecutive-Stripping and Layer-by-Layer-Casting Technologies.

    Science.gov (United States)

    Yang, Jie; Xiong, Liu; Li, Man; Sun, Qingjie

    2018-06-20

    The pursuit of sustainable functional materials requires the development of materials based on renewable resources and efficient fabrication methods. Here, we first fabricated chitosan-sodium phytate films via one-step-stripping and layer-by-layer-casting technologies. The proposed film-fabrication methods are general, facile, environmentally benign, cost-effective, and easy to scale up. The resultant one-step-stripped film was thin (9 ± 1 μm), soft, transparent, and strong, whereas the thickness of the layer-by-layer-cast film was 70 ± 3 μm. FTIR analysis of the films indicated the formation of interactions between the phosphoric groups in sodium phytate and the amino groups in chitosan. More importantly, the water-vapor-permeability values of the one-step-stripped and cast films were 4-5 orders of magnitude lower than chitosan films reported before. Layer-by-layer-cast films in particular exhibited high tensile strength (49.21 ± 1.12 MPa) and were more than three times stronger than other polyelectrolyte multilayer films. Both types of films remained stable in an acidic environment. Furthermore, the layer-by-layer-assembled films presented greater antimicrobial activity than the stripped films. The developed chitosan-sodium phytate films can enhance several biomedical and environmental applications, such as packaging, drug delivery, diagnostics, microfluidics, and biosensing.

  10. Ionic Conductivity of Polyelectrolyte Hydrogels.

    Science.gov (United States)

    Lee, Chen-Jung; Wu, Haiyan; Hu, Yang; Young, Megan; Wang, Huifeng; Lynch, Dylan; Xu, Fujian; Cong, Hongbo; Cheng, Gang

    2018-02-14

    Polyelectrolytes have many important functions in both living organisms and man-made applications. One key property of polyelectrolytes is the ionic conductivity due to their porous networks that allow the transport of water and small molecular solutes. Among polyelectrolytes, zwitterionic polymers have attracted huge attention for applications that involve ion transport in a polyelectrolyte matrix; however, it is still unclear how the functional groups of zwitterionic polymer side chains affect their ion transport and swelling properties. In this study, zwitterionic poly(carboxybetaine acrylamide), poly(2-methacryloyloxyethyl phosphorylcholine), and poly(sulfobetaine methacrylate) hydrogels were synthesized and their ionic conductivity was studied and compared to cationic, anionic, and nonionic hydrogels. The change of the ionic conductivity of zwitterionic and nonionic hydrogels in different saline solutions was investigated in detail. Zwitterionic hydrogels showed much higher ionic conductivity than that of the widely used nonionic poly(ethylene glycol) methyl ether methacrylate hydrogel in all tested solutions. For both cationic and anionic hydrogels, the presence of mobile counterions led to high ionic conductivity in low salt solutions; however, the ionic conductivity of zwitterionic hydrogels surpassed that of cationic and ionic hydrogels in high salt solutions. Cationic and anionic hydrogels showed much higher water content than that of zwitterionic hydrogels in deionized water; however, the cationic hydrogels shrank significantly with increasing saline concentration. This work provides insight into the effects of polyelectrolyte side chains on ion transport. This can guide us in choosing better polyelectrolytes for a broad spectrum of applications, including bioelectronics, neural implants, battery, and so on.

  11. Biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres for controlled drug release.

    Science.gov (United States)

    Du, Pengcheng; Zeng, Jin; Mu, Bin; Liu, Peng

    2013-05-06

    Well-defined biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres have been accomplished via the layer-by-layer (LbL) self-assembly technique. The hybrid shell was fabricated by the electrostatic interaction between the polyelectrolyte cation, chitosan (CS), and the hybrid anion, citrate modified ferroferric oxide nanoparticles (Fe3O4-CA), onto the uniform polystyrene sulfonate microsphere templates. Then the magnetic hybrid core/shell composite particles were modified with a linear, functional poly(ethylene glycol) (PEG) monoterminated with a biotargeting molecule (folic acid (FA)). Afterward the dual targeting hybrid hollow microspheres were obtained after etching the templates by dialysis. The dual targeting hybrid hollow microspheres exhibit exciting pH response and stability in high salt-concentration media. Their pH-dependent controlled release of the drug molecule (anticancer drug, doxorubicin (DOX)) was also investigated in different human body fluids. As expected, the cell viability of the HepG2 cells which decreased more rapidly was treated by the FA modified hybrid hollow microspheres rather than the unmodified one in the in vitro study. The dual-targeting hybrid hollow microspheres demonstrate selective killing of the tumor cells. The precise magnetic and molecular targeting properties and pH-dependent controlled release offers promise for cancer treatment.

  12. Production of chitosan-based non-woven membranes using the electrospinning process

    Science.gov (United States)

    Pakravan Lonbani, Mehdi

    Chitosan is a modified natural polymer mainly produced from chitin, one of the most abundant organic materials in the world. Highly porous chitosan mats present the specific physicochemical properties of the base material and also benefit from the physical characteristics of nanoporous membranes. Electrospinning is a novel technique developed long time ago and revisited recently that can generate polymeric fibers with nanometric size. The ultimate purpose of this work is to fabricate microporous non-woven chitosan membranes for wound healing dressings and heavy metal ion removal from drinking water. In this dissertation, two approaches have been utilized to prepare chitosan-based nanofibers; blending and co-axial electrospinning of chitosan solution with a readily electrospinnable solution, i.e. an aqueous solution of polyethylene oxide (PEO). Consequently, understanding the phase behavior and miscibility of aqueous acidic solutions of chitosan and PEO and their blends is of crucial importance, as any phase separation occurring during the electrospinning process greatly changes the morphology and physico-mechanical properties of the final products. First we employed the rheological approach on a well-known aqueous PEO solution to develop the experimental protocol. By comparing these critical points with that obtained from other experimental techniques, we showed that rheological measurements can sensitively detect early stages of phase separation. Subsequently the method was applied to 50 wt% aqueous acetic acid solutions of PEO, chitosan and their blends at different ratios. These solutions showed a lower critical solution temperature (LCST) phase diagram that is attributed to the existence of hydrogen bonds between active groups on chitosan and PEO backbone and the solvent. Critical decomposition temperatures for binodal and spinodal points were estimated from isochronal temperature sweep experiments. The obtained binodal temperatures confirmed that chitosan

  13. Preparation of Drug-loaded Chitosan Microspheres and Its Application in Paper-based PVC Wallpaper

    Science.gov (United States)

    Lin, Hui; Chen, Lihui; Yan, Guiyang; Chen, Feng; Huang, Liulian

    2018-03-01

    By screening through test, it was found that the drug-loaded chitosan microspheres with the average particle size of 615 nm may be prepared with NaF as the mold-proof drug, chitosan as the drug carrier and sodium tripolyphosphate as the cross-linking agent; and they can improve the aspergillus niger-proof effect if loaded onto the base paper surface of the paper-based PVC wallpaper. The results show that NaF and chitosan have mold-proof synergistic effects; the mold-proof effect of the wallpaper may be improved by increasing the dose of chitosan; when the mass ratio of NaF, sodium tripolyphosphate and chitosan was 2:7:28, the paper-based PVC wallpaper with good mold-proof property can be prepared.

  14. Development and Characterization of Novel Films Based on Sulfonamide-Chitosan Derivatives for Potential Wound Dressing

    Directory of Open Access Journals (Sweden)

    Oana Maria Dragostin

    2015-12-01

    Full Text Available The objective of this study was to develop new films based on chitosan functionalized with sulfonamide drugs (sulfametoxydiazine, sulfadiazine, sulfadimetho-xine, sulfamethoxazol, sulfamerazine, sulfizoxazol in order to enhance the biological effects of chitosan. The morphology and physical properties of functionalized chitosan films as well the antioxidant effects of sulfonamide-chitosan derivatives were investigated. The chitosan-derivative films showed a rough surface and hydrophilic properties, which are very important features for their use as a wound dressing. The film based on chitosan-sulfisoxazol (CS-S6 showed the highest swelling ratio (197% and the highest biodegradation rate (63.04% in comparison to chitosan film for which the swelling ratio was 190% and biodegradation rate was only 10%. Referring to the antioxidant effects the most active was chitosan-sulfamerazine (CS-S5 which was 8.3 times more active than chitosan related to DPPH (1,1-diphenyl-2-picrylhydrazyl radical scavenging ability. This compound showed also a good ferric reducing power and improved total antioxidant capacity.

  15. A mechanistic based approach for enhancing buccal mucoadhesion of chitosan

    DEFF Research Database (Denmark)

    Meng-Lund, Emil; Muff-Westergaard, Christian; Sander, Camilla

    2014-01-01

    Mucoadhesive buccal drug delivery systems can enhance rapid drug absorption by providing an increased retention time at the site of absorption and a steep concentration gradient. An understanding of the mechanisms behind mucoadhesion of polymers, e.g. chitosan, is necessary for improving the muco......Mucoadhesive buccal drug delivery systems can enhance rapid drug absorption by providing an increased retention time at the site of absorption and a steep concentration gradient. An understanding of the mechanisms behind mucoadhesion of polymers, e.g. chitosan, is necessary for improving...... the mucoadhesiveness of buccal formulations. The interaction between chitosan of different chain lengths and porcine gastric mucin (PGM) was studied using a complex coacervation model (CCM), isothermal titration calorimetry (ITC) and a tensile detachment model (TDM). The effect of pH was assessed in all three models...... and the approach to add a buffer to chitosan based drug delivery systems is a means to optimize and enhance buccal drug absorption. The CCM demonstrated optimal interactions between chitosan and PGM at pH 5.2. The ITC experiments showed a significantly increase in affinity between chitosan and PGM at pH 5...

  16. Complexation Behavior of Polyelectrolytes and Polyampholytes

    KAUST Repository

    Nair, Arun Kumar Narayanan; Jimenez, Arturo Martinez; Sun, Shuyu

    2017-01-01

    We perform grand canonical Monte Carlo simulations to study the pH titrations of isolated polyampholytes and polyelectrolyte-polyampholyte complexes in dilute solutions. Our simulations indicate that the electrostatic interactions promote the coexistence of opposite charges along the polyampholyte chain during titration. The repulsion between excess charges typically dominates the electrostatic interaction and leads to polymer stretching. Salt ions can screen the repulsion between excess charges as well as the fluctuation-induced attraction between opposite charges, and therefore make the variation between titration curves of polyampholytes and the ideal (no electrostatic interactions) curves less significant. We observe that this screening of charge repulsion decreases the chain size. The presence of pearl-necklace configuration of polyampholytes is diminished by the addition of salt. Similar simulations for the polyelectrolyte-polyampholyte system show that the resulting complexes are generally stable in the low pH region. In comparison to ideal case, electrostatic interactions strongly influence the acid-base properties of polyampholyte chains in the adsorbed state by reducing the presence of the coexistence domain of both positive and negative charges in the titration curves. We attribute the complex formation between polyelectrolyte and polyampholyte chains in the high pH region to, e.g., the high salt content. The pH variation leads to abrupt transition between adsorbed and desorbed states. Independent of charge sequence, a polyampholyte chain in a complex is usually located at one of the ends of the polyelectrolyte chain.

  17. Complexation Behavior of Polyelectrolytes and Polyampholytes

    KAUST Repository

    Nair, Arun Kumar Narayanan

    2017-07-25

    We perform grand canonical Monte Carlo simulations to study the pH titrations of isolated polyampholytes and polyelectrolyte-polyampholyte complexes in dilute solutions. Our simulations indicate that the electrostatic interactions promote the coexistence of opposite charges along the polyampholyte chain during titration. The repulsion between excess charges typically dominates the electrostatic interaction and leads to polymer stretching. Salt ions can screen the repulsion between excess charges as well as the fluctuation-induced attraction between opposite charges, and therefore make the variation between titration curves of polyampholytes and the ideal (no electrostatic interactions) curves less significant. We observe that this screening of charge repulsion decreases the chain size. The presence of pearl-necklace configuration of polyampholytes is diminished by the addition of salt. Similar simulations for the polyelectrolyte-polyampholyte system show that the resulting complexes are generally stable in the low pH region. In comparison to ideal case, electrostatic interactions strongly influence the acid-base properties of polyampholyte chains in the adsorbed state by reducing the presence of the coexistence domain of both positive and negative charges in the titration curves. We attribute the complex formation between polyelectrolyte and polyampholyte chains in the high pH region to, e.g., the high salt content. The pH variation leads to abrupt transition between adsorbed and desorbed states. Independent of charge sequence, a polyampholyte chain in a complex is usually located at one of the ends of the polyelectrolyte chain.

  18. Eugenol-loaded chitosan nanoparticles: II. Application in bio-based plastics for active packaging.

    Science.gov (United States)

    Woranuch, Sarekha; Yoksan, Rangrong

    2013-07-25

    The aim of the present research was to study the possibility of using eugenol-loaded chitosan nanoparticles as antioxidants for active bio-based packaging material. Eugenol-loaded chitosan nanoparticles were incorporated into thermoplastic flour (TPF) - a model bio-based plastic - through an extrusion process at temperatures above 150°C. The influences of eugenol-loaded chitosan nanoparticles on crystallinity, morphology, thermal properties, radical scavenging activity, reducing power, tensile properties and barrier properties of TPF were investigated. Although the incorporation of 3% (w/w) of eugenol-loaded chitosan nanoparticles significantly reduced the extensibility and the oxygen barrier property of TPF, it provided antioxidant activity and improved the water vapor barrier property. In addition, TPF containing eugenol-loaded chitosan nanoparticles exhibited superior radical scavenging activity and stronger reducing power compared with TPF containing naked eugenol. The results suggest the applicability of TPF containing eugenol-loaded chitosan nanoparticles as an antioxidant active packaging material. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Dynamic force spectroscopy of oppositely charged polyelectrolyte brushes

    NARCIS (Netherlands)

    Spruijt, E.; Cohen Stuart, M.A.; Gucht, van der J.

    2010-01-01

    Ion pairing is the main driving force in the formation of polyelectrolyte complexes, which find widespread use in micellar assemblies, drug carriers, and coatings. In this paper we examine the actual ion pairing forces in a polyelectrolyte complex between two oppositely charged polyelectrolyte

  20. Humidity detection using chitosan film based sensor

    Science.gov (United States)

    Nasution, T. I.; Nainggolan, I.; Dalimunthe, D.; Balyan, M.; Cuana, R.; Khanifah, S.

    2018-02-01

    A humidity sensor made of the natural polymer chitosan has been successfully fabricated in the film form by a solution casting method. Humidity testing was performed by placing a chitosan film sensor in a cooling machine room, model KT-2000 Ahu. The testing results showed that the output voltage values of chitosan film sensor increased with the increase in humidity percentage. For the increase in humidity percentage from 30 to 90% showed that the output voltage of chitosan film sensor increased from 32.19 to 138.75 mV. It was also found that the sensor evidenced good repeatability and stability during the testing. Therefore, chitosan has a great potential to be used as new sensing material for the humidity detection of which was cheaper and environmentally friendly.

  1. Characterization​ and ​analysis of ​m​otion ​m​echanism​ of electroactive​ chitosan-based actuator.

    Science.gov (United States)

    Altınkaya, Emine; Seki, Yoldaş; Çetin, Levent; Gürses, Barış Oğuz; Özdemir, Okan; Sever, Kutlay; Sarıkanat, Mehmet

    2018-02-01

    In order to analyze the bending mechanism of the electroactive​ chitosan-based actuator, different amounts of poly(diallyldimethylammonium chloride) (PDAD) were incorporated in chitosan solution. The effects of PDAD concentration on electromechanical performance of chitosan actuator were investigated under various excitation voltages. With the incorporation of PDAD into chitosan solution, crosslinked chitosan film acts as an actuator showing a considerable displacement behavior. However it can be noted that higher incorporation of PDAD into chitosan solution decreased the performance of the actuators. Thermal, viscoelastic, and crystallographic properties of the chitosan films were examined by thermogravimetric analysis, dynamic mechanical analysis, and X-ray diffraction analysis, respectively. The effect of incorporation of PDAD in chitosan-based film on morphological properties of chitosan film was determined by scanning electron microscopy. It was observed that the films involving PDAD have larger pore size than the PDAD free film. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Polyelectrolyte brushes at the air/water interface

    International Nuclear Information System (INIS)

    Matsuoka, Hideki

    2005-01-01

    The nanostructure of amphiphilic diblock copolymer monolayer on water surface was investigated by in situ X-ray and neutron reflectivity. The diblock copolymers used have a long hydrophobic chain and a polyelectrolyte chain as a hydrophilic block. The monolayer was found not to have a simple double layer structure (hydrophobic layer / hydrophilic (carpet) layer) but to have a three layer structure consisting of hydrophobic layer, hydrophilic dense carpet layer, and polyelectrolyte brush layer when the polyelectrolyte block is long enough and the surface pressure (i.e. brush density) is high enough. The transition from carpet only to carpet/brush double layer structure in hydrophilic layer was observed as a function of polyelectrolyte chain length, the surface pressure. When the hydrophilic chain is a weak polyelectrolyte, the monolayer first expanded and then shrunk with increasing salt concentration in the subphase. For the strongly ionic polyelectrolyte, the monolayer structure was not affected by salt addition up to ∼0.2 M. These observations can be explained by a balance of the charged state of the brush chain, an electrostatic repulsion between brush chains and salt concentration in the brush layer

  3. Borax mediated layer-by-layer self-assembly of neutral poly(vinyl alcohol) and chitosan.

    Science.gov (United States)

    Manna, Uttam; Patil, Satish

    2009-07-09

    We report a multilayer film of poly(vinyl alcohol) (PVA)-borate complex and chitosan by using a layer-by-layer approach. PVA is an uncharged polymer, but hydroxyl functional groups of PVA can be cross-linked by using borax as a cross-linking agent. As a result electrostatic charges and intra- and interchain cross-links are introduced in the PVA chain and provide physically cross-linked networks. The PVA-borate was then deposited on a flat substrate as well as on colloidal particles with chitosan as an oppositely charged polyelectrolyte. Quartz crystal microbalance, scanning electron microscopy, and atomic force microscopy were used to follow the growth of thin film on flat substrate. Analogous experiments were performed on melamine formaldehyde colloidal particles (3-3.5 microm) to quantify the process for the preparation of hollow microcapsules. Removal of the core in 0.1 N HCl results in hollow microcapsules. Characterization of microcapsules by transmission electron microscopy revealed formation of stable microcapsules. Further, self-assembly of PVA-borate/chitosan was loaded with the anticancer drug doxorubicin, and release rates were determined at different pH values to highlight the drug delivery potential of this system.

  4. Colon-specific delivery of 5-aminosalicylic acid from chitosan-Ca-alginate microparticles.

    Science.gov (United States)

    Mladenovska, K; Raicki, R S; Janevik, E I; Ristoski, T; Pavlova, M J; Kavrakovski, Z; Dodov, M G; Goracinova, K

    2007-09-05

    Chitosan-Ca-alginate microparticles for colon-specific delivery and controlled release of 5-aminosalicylic acid after peroral administration were prepared using spray drying method followed by ionotropic gelation/polyelectrolyte complexation. Physicochemical characterization pointed to the negatively charged particles with spherical morphology having a mean diameter less than 9 microm. Chitosan was localized dominantly in the particle wall, while for alginate, a homogeneous distribution throughout the particles was observed. (1)H NMR, FTIR, X-ray and DSC studies indicated molecularly dispersed drug within the particles with preserved stability during microencapsulation and in simulated in vivo drug release conditions. In vitro drug release studies carried out in simulated in vivo conditions in respect to pH, enzymatic and salt content confirmed the potential of the particles to release the drug in a controlled manner. The diffusional exponents according to the general exponential release equation indicated anomalous (non-Fickian) transport in 5-ASA release controlled by a polymer relaxation, erosion and degradation. Biodistribution studies of [(131)I]-5-ASA loaded chitosan-Ca-alginate microparticles, carried out within 2 days after peroral administration to Wistar male rats in which TNBS colitis was induced, confirmed the dominant localization of 5-ASA in the colon with low systemic bioavailability.

  5. A highly performing electrochemiluminescent biosensor for glucose based on a polyelectrolyte-chitosan modified electrode

    International Nuclear Information System (INIS)

    Dai Hong; Wu Xiaoping; Xu Huifeng; Wang Youmei; Chi Yuwu; Chen Guonan

    2009-01-01

    A highly performing ECL glucose biosensor was developed by immobilizing glucose oxidase (GOD) onto a membrane modified glassy carbon electrode, which was prepared by using poly(diallyldimethylammonium chloride) (PDDA) doped with chitosan. In order to obtain the optimal performance of the ECL biosensor, the composition of modified membranes and a series of measurement conditions were investigated. Under the optimal conditions, this ECL biosensor was able to detect glucose in the range of 0.5-4.0 x 10 4 nM with a detection limit of 0.1 nM (defined as the concentration that could be detected at the signal-to-noise ratio of 3). The relative standard deviation was 0.99% for 5 x 10 -8 mol/L glucose in repetitive measurements in the primary 12 potential cycles. This ECL biosensor offered the effectively improved stability of the electron transfer mediator and exhibited excellent properties for the ultrasensitive and selective determination of glucose with good reproducibility and stability. The present biosensor has also been used to determine the glucose concentrations in real serum samples. The recovery value for the assay of glucose ranged from 96.2 to 107% in the serum samples. The present biosensor displayed both specificity for glucose and retention of signal response even in a complex environment. Therefore, it provided an approach to the sensitive determination of glucose.

  6. Chitosan-Based Coating with Antimicrobial Agents: Preparation, Property, Mechanism, and Application Effectiveness on Fruits and Vegetables

    Directory of Open Access Journals (Sweden)

    Yage Xing

    2016-01-01

    Full Text Available Chitosan coating is beneficial to maintaining the storage quality and prolonging the shelf life of postharvest fruits and vegetables, which is always used as the carrier film for the antimicrobial agents. This review focuses on the preparation, property, mechanism, and application effectiveness on the fruits and vegetables of chitosan-based coating with antimicrobial agents. Chitosan, derived by deacetylation of chitin, is a modified and natural biopolymer as the coating material. In this article, the safety and biocompatible and antimicrobial properties of chitosan were introduced because these attributes are very important for its application. The methods to prepare the chitosan-based coating with antimicrobial agents, such as essential oils, acid, and nanoparticles, were developed by other researchers. Meanwhile, the application of chitosan-based coating is mainly due to its antimicrobial activity and other functional properties, which were investigated, introduced, and analyzed in this review. Furthermore, the surface and mechanical properties were also investigated by researchers and concluded in this article. Finally, the effects of chitosan-based coating on the storage quality, microbial safety, and shelf life of fruits and vegetables were introduced. Their results indicated that chitosan-based coating with different antimicrobial agents would probably have wide prospect in the preservation of fruits and vegetables in the future.

  7. Advances in polyelectrolyte multilayer nanofilms as tunable drug delivery systems

    Science.gov (United States)

    Jiang, Bingbing; Barnett, John B; Li, Bingyun

    2009-01-01

    There has been considerable interest in polyelectrolyte multilayer nanofilms, which have a variety of applications ranging from optical and electrochemical materials to biomedical devices. Polyelectrolyte multilayer nanofilms are constructed from aqueous solutions using electrostatic layer-by-layer self-assembly of oppositely-charged polyelectrolytes on a solid substrate. Multifunctional polyelectrolyte multilayer nanofilms have been studied using charged dyes, metal and inorganic nanoparticles, DNA, proteins, and viruses. In the past few years, there has been increasing attention to developing polyelectrolyte multilayer nanofilms as drug delivery vehicles. In this mini-review, we present recent developments in polyelectrolyte multilayer nanofilms with tunable drug delivery properties, with particular emphasis on the strategies in tuning the loading and release of drugs in polyelectrolyte multilayer nanofilms as well as their applications. PMID:24198464

  8. Environmentally friendly cellulose-based polyelectrolytes in wastewater treatment.

    Science.gov (United States)

    Grenda, Kinga; Arnold, Julien; Gamelas, José A F; Rasteiro, Maria G

    2017-09-01

    Natural-based polyelectrolytes (PELs), with all the advantages coming from being produced from renewable and biodegradable sources, are a potential solution for the removal of dyes from wastewater. In this work, surplus Eucalyptus bleached cellulose fibres from a paper mill were modified to increase the charge and solubility of cellulose. First, reactive aldehyde groups were introduced in the cellulose backbone by periodate oxidation of cellulose. Further modification with alkylammonium produced positively charged cellulose-based PELs. The final products were characterized by several analytical techniques. The PEL with the highest substitution degree of cationic groups was evaluated for its performance in decolouration processes, bentonite being used as aid. This was found to be effective for colour removal of either anionic or cationic dyes. Bio-PELs can thus be considered as very favourable eco-friendly flocculation agents for decolouration of harsh effluents from several industries, considering their biodegradable nature and thus the ability to produce less sludge.

  9. Influence of molecular weight and pH on adsorption of chitosan at the surface of large and giant vesicles.

    Science.gov (United States)

    Quemeneur, Francois; Rinaudo, Marguerite; Pépin-Donat, Brigitte

    2008-01-01

    This paper describes the mechanisms of adsorption of chitosan, a positively charged polyelectrolyte, on the DOPC lipid membrane of large and giant unilamellar vesicles (respectively, LUVs and GUVs). We observe that the variation of the zeta potential of LUVs as a function of chitosan concentration is independent on the chitosan molecular weight (Mw). This result is interpreted in terms of electrostatic interactions, which induce a flat adsorption of the chitosan on the surface of the membrane. The role of electrostatic interactions is further studied by observing the variation of the zeta potential as a function of the chitosan concentration for two different charge densities tuned by the pH. Results show a stronger chitosan-membrane affinity at pH 6 (lipids are negatively charged, and 40% chitosan amino groups are protonated) than at pH 3.4 (100% of protonated amino groups but zwitterionic lipids are positively charged) which confirms that adsorption is of electrostatic origin. Then, we investigate the stability of decorated LUVs and GUVs in a large range of pH (6.0 pH variation of the zeta potential as a function of the pH (2.0 pH pH pH > 10.0, in the absence of chitosan, the vesicles present complex shapes, contrary to the chitosan-decorated vesicles which remain spherical, confirming thus that chitosan remains adsorbed on vesicles in basic conditions up to pH = 12.0. These results, in addition with our previous data, show that the chitosan-decorated vesicles are stable over a very broad range of pH (2.0 pH < 12.0), which holds promise for their in vivo applications. Finally, the quantification of the chitosan adsorption on a LUV membrane is performed by zeta potential and fluorescence measurements. The fraction of membrane surface covered by chitosan is estimated to be lower than 40 %, which corresponds to the formation of a flat layer of chitosan on the membrane surface on an electrostatic basis.

  10. Guided wave sensing of polyelectrolyte multilayers

    DEFF Research Database (Denmark)

    Horvath, R.; Pedersen, H.C.; Cuisinier, F.J.G.

    2006-01-01

    A planar optical waveguide configuration is proposed to monitor the buildup of thick polyelectrolyte multilayers on the surface of the waveguide in aqueous solutions. Instead of detecting the layer by the electromagnetic evanescent field the polyelectrolyte layer acts as an additional waveguiding...

  11. Chitosan and chemically modified chitosan beads for acid dyes sorption

    Institute of Scientific and Technical Information of China (English)

    AZLAN Kamari; WAN SAIME Wan Ngah; LAI KEN Liew

    2009-01-01

    The capabilities of chitosan and chitosan-EGDE (ethylene glycol diglycidyl ether) beads for removing Acid Red 37 (AR 37) and Acid Blue 25 (AB 25) from aqueous solution were examined. Chitosan beads were cross-linked with EGDE to enhance its chemical resistance and mechanical strength. Experiments were performed as a function of pH, agitation period and concentration of AR 37 and AB 25. It was shown that the adsorption capacities of chitosan were comparatively higher than chitosan-EGDE for both acid dyes. This is mainly because cross-linking using EGDE reduces the major adsorption sites -NH3+ on chitosan. Langmuir isotherm model showed best conformity compared to Freundlich and BET. The kinetic experimental data agreed very well to the pseudo second-order kinetic model. The desorption study revealed that after three cycles of adsorption and desorption by NaOH and HCl, both adsorbents retained their promising adsorption abilities. FT-IR analysis proved that the adsorption of acid dyes onto chitosan-based adsorbents was a physical adsorption. Results also showed that chitosan and chitosan-EGDE beads were favourable adsorbers and could be employed as low-cost alternatives for the removal of acid dyes in wastewater treatment.

  12. Engineered chitosan based nanomaterials: Bioactivities, mechanisms and perspectives in plant protection and growth.

    Science.gov (United States)

    Kumaraswamy, R V; Kumari, Sarita; Choudhary, Ram Chandra; Pal, Ajay; Raliya, Ramesh; Biswas, Pratim; Saharan, Vinod

    2018-07-01

    Excessive use of agrochemicals for enhancing crop production and its protection posed environmental and health concern. Integration of advanced technology is required to realize the concept of precision agriculture by minimizing the input of pesticides and fertilizers per unit while improving the crop productivity. Notably, chitosan based biodegradable nanomaterials (NMs) including nanoparticles, nanogels and nanocomposites have eventually proceeded as a key choice in agriculture due to their inimitable properties like antimicrobial and plant growth promoting activities. The foreseeable role of chitosan based NMs in plants might be in achieving sustainable plant growth through boosting the intrinsic potential of plants. In-spite of the fact that chitosan based NMs abode immense biological activities in plants, these materials have not yet been widely adopted in agriculture due to poor understanding of their bioactivity and modes of action towards pathogenic microbes and in plant protection and growth. To expedite the anticipated claims of chitosan based NMs, it is imperative to line up all the possible bioactivities which denote for sustainable agriculture. Herein, we have highlighted, in-depth, various chitosan based NMs which have been used in plant growth and protection mainly against fungi, bacteria and viruses and have also explained their modes of action. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Carbon-based sputtered coatings for enhanced chitosan-based films properties

    Science.gov (United States)

    Fernandes, C.; Calderon V., S.; Ballesteros, Lina F.; Cerqueira, Miguel A.; Pastrana, L. M.; Teixeira, José A.; Ferreira, P. J.; Carvalho, S.

    2018-03-01

    In order to make bio-based packaging materials competitive in comparison to petroleum-based one, some of their properties need to be improved, among which gas permeability is of crucial importance. Thus, in this work, carbon-based coatings were applied on chitosan-based films by radiofrequency reactive magnetron sputtering aiming to improve their barrier properties. Chemical and morphological properties were evaluated in order to determine the effect of the coatings on the chemical structure, surface hydrophobicity and barrier properties of the system. Chemical analysis, performed by electron energy loss spectroscopy and Fourier transform infrared spectroscopy, suggests similar chemical characteristics among all coatings although higher incorporation of hydrogen as the acetylene flux increases was observed. On the other hand, scanning transmission electron microscopy revealed that the porosity of the carbon layer can be tailored by the acetylene flux. More importantly, the chitosan oxygen permeability showed a monotonic reduction as a function of the acetylene flux. This study opens up new opportunities to apply nanostructured coatings on bio-based polymer for enhanced oxygen barrier properties.

  14. Poly-electrolyte fuel cell membrane based on crosslinked polytetrafluoroethylene by radiation-grafting

    International Nuclear Information System (INIS)

    Ichizuri, Shogo; Asano, Saneto; Li, Jingye

    2004-01-01

    Poly-electrolyte fuel cell (PEFC) membranes based on crosslinked Polytetrafluoroethylene (RX-PTFE) have been fabricated by radiation-grafting with reactive styrene monomers using γ-ray irradiation in air at room temperature / electron beam irradiation under N 2 gas atmosphere at room temperature. The characteristic properties of obtained materials have been measured by DSC, TGA and FT-IR spectroscopy, and so on. Ion exchange capacity of sulfonated crosslinked PTFE has been achieved 2.8meq/g. (author)

  15. Annealed star-branched polyelectrolytes in solution

    NARCIS (Netherlands)

    Klein Wolterink, J.; Male, van J.; Cohen Stuart, M.A.; Koopal, L.K.; Zhulina, E.B.; Borisov, O.V.

    2002-01-01

    Equilibrium conformations of annealed star-branched polyelectrolytes (polyacids) are calculated with a numerical self-consistent-field (SCF) model. From the calculations we obtain also the size and charge of annealed polyelectrolyte stars as a function of the number of arms, pH, and the ionic

  16. Development and Evaluation of Cefadroxil Drug Loaded Biopolymeric Films Based on Chitosan-Furfural Schiff Base

    Science.gov (United States)

    Dixit, Ritu B.; Uplana, Rahul A.; Patel, Vishnu A.; Dixit, Bharat C.; Patel, Tarosh S.

    2010-01-01

    Cefadroxil drug loaded biopolymeric films of chitosan-furfural schiff base were prepared by reacting chitosan with furfural in presence of acetic acid and perchloric acid respectively for the external use. Prepared films were evaluated for their strength, swelling index, thickness, drug content, uniformity, tensile strength, percent elongation, FTIR spectral analysis and SEM. The results of in vitro diffusion studies revealed that the films exhibited enhanced drug diffusion as compared to the films prepared using untreated chitosan. The films also demonstrated good to moderate antibacterial activities against selective gram positive and gram negative bacteria. PMID:21179325

  17. Development of chitosan-nanoparticle film based materials for controlled quality of minced beef during refrigerated storage

    Science.gov (United States)

    Erdawati

    2010-10-01

    Chitosan nanoparticles were prepared based on the ionic gelation of chitosan with tripolyphosphate anions. The physicochemical properties of the chitosan nanoparticles were determined by FTIR analysis, XRD pattern and TEM. The effects of chitosan nanoparticles treatment on the shelf-life extension of minced beef stored at 20±1° C were studied, including chemical and microbiological,. Results indicated that chitosan nanoparticle treatment reduced the total microbial load of fresh minced beef about 10-fold (from 3.2×104 CFU/g to 5.4×102 CFU/g) before storage and the microbial flora was different with that of raw samples. The wide-spectrum antibacterial property of chitosan against bacteria isolated from minced beef was confirmed, and chitosan concentration of 400 ppm was eventually determined for application in minced beef. Based on microbiological analysis, biochemical indices determination and sensory evaluation, shelf-lives of 2-3 days for control, 4-5 days for nanoparticle chitosan treatment samples, were observed, indicating that chitosan nanoparticle have a great potential for minced beef preservation.

  18. Investigation of the surface morphology of biocompatible chitosan-based hydrogels and xerogels

    Science.gov (United States)

    Zhuravleva, Yulia Yu.; Malinkina, Olga N.; Shipovskaya, Anna B.

    2018-04-01

    Our biocompatible hydrogel systems obtained by the sol-gel technqiue and based on chitosan and silicon polyolates are promising for medical and biological applications. The surface microrelief of these sol-gel materials (hydrogels and xerogels) based on chitosan and silicon tetraglycerolate was explored by AFM and SEM. A significant influence of the component ratio in the mixed system on the morphology and surface profile of the hydrogels and xerogels prepared therefrom was established. An increased content of the structure-forming component (chitosan) in the system was shown to increase the roughness scale of the hydrogel surface and to promote the porosity of the xerogel structure.

  19. Studies for improving and formulating of chitosan-based coatings by radiation treatment for fruit preservation

    International Nuclear Information System (INIS)

    Nguyen Duy Lam; Tran Bang Diep; Tran Minh Quynh; Le Thi Dinh; Nguyen Van Binh; Ho Minh Duc; Vo Van Thuan

    2003-01-01

    Presented are the investigations: effect of chitosan on fruit - spoiling microorganism and enhancement of antifungal activity by radiation treatment; improvement of antimicrobial activity of chitosan by its derivatives synthesis in combination with radiation treatment; dependence of chitosan antimicrobial activity on molecular weight and distribution of molecular weight; comparative study on the antifungal activity of chitosan of various origins tested in different conditions of radiation treatment and culture mediums; formulation of chitosan membranes and for their properties in mango coating; effectiveness of chitosan-based coatings on fresh fruit appearance and quality during storage; influence of irradiated chitosan on rice plant growing in media contaminated with salt and heavy metals; effect of chitosan solution varied in concentration and molecular weight on seed germination and seedling growth of groundnut, soybean and cabbage. (NHA)

  20. Comparison of chitosan and chitosan nanoparticles on the performance and charge recombination of water-based gel electrolyte in dye sensitized solar cells.

    Science.gov (United States)

    Khalili, Malihe; Abedi, Mohammad; Amoli, Hossein Salar; Mozaffari, Seyed Ahmad

    2017-11-01

    In commercialization of liquid dye-sensitized solar cells (DSSCs), whose leakage, evaporation and toxicity of organic solvents are limiting factors, replacement of organic solvents with water-based gel electrolyte is recommended. This work reports on utilizing and comparison of chitosan and chitosan nanoparticle as different gelling agents in preparation of water-based gel electrolyte in fabrication of dye sensitized solar cells. All photovoltaic parameters such as open circuit voltage (V oc ), fill factor (FF), short circuit current density (J sc ) and conversion efficiency (η) were measured. For further characterization, electrochemical impedance spectroscopy (EIS) was used to study the charge transfer at Pt/electrolyte interface and charge recombination and electron transport at TiO 2 /dye/electrolyte interface. Significant improvements in conversion efficiency and short circuit current density of DSSCs fabricated by chitosan nanoparticle were observed that can be attributed to the higher mobility of I 3 - due to the lower viscosity and smaller size of chitosan nanoparticles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Influence of the Hydrophobicity of Polyelectrolytes on Polyelectrolyte Complex Formation and Complex Particle Structure and Shape

    Directory of Open Access Journals (Sweden)

    Gudrun Petzold

    2011-08-01

    Full Text Available Polyelectrolyte complexes (PECs were prepared by structural uniform and strongly charged cationic and anionic modified alternating maleic anhydride copolymers. The hydrophobicity of the polyelectrolytes was changed by the comonomers (ethylene, isobutylene and styrene. Additionally, the n−/n+ ratio of the molar charges of the polyelectrolytes and the procedure of formation were varied. The colloidal stability of the systems and the size, shape, and structure of the PEC particles were investigated by turbidimetry, dynamic light scattering (DLS and atomic force microscopy (AFM. Dynamic light scattering indicates that beside large PEC particle aggregates distinct smaller particles were formed by the copolymers which have the highest hydrophobicity (styrene. These findings could be proved by AFM. Fractal dimension (D, root mean square (RMS roughness and the surface profiles of the PEC particles adsorbed on mica allow the following conclusions: the higher the hydrophobicity of the polyelectrolytes, the broader is the particle size distribution and the minor is the swelling of the PEC particles. Hence, the most compact particles are formed with the very hydrophobic copolymer.

  2. Wang-Landau Reaction Ensemble Method: Simulation of Weak Polyelectrolytes and General Acid-Base Reactions.

    Science.gov (United States)

    Landsgesell, Jonas; Holm, Christian; Smiatek, Jens

    2017-02-14

    We present a novel method for the study of weak polyelectrolytes and general acid-base reactions in molecular dynamics and Monte Carlo simulations. The approach combines the advantages of the reaction ensemble and the Wang-Landau sampling method. Deprotonation and protonation reactions are simulated explicitly with the help of the reaction ensemble method, while the accurate sampling of the corresponding phase space is achieved by the Wang-Landau approach. The combination of both techniques provides a sufficient statistical accuracy such that meaningful estimates for the density of states and the partition sum can be obtained. With regard to these estimates, several thermodynamic observables like the heat capacity or reaction free energies can be calculated. We demonstrate that the computation times for the calculation of titration curves with a high statistical accuracy can be significantly decreased when compared to the original reaction ensemble method. The applicability of our approach is validated by the study of weak polyelectrolytes and their thermodynamic properties.

  3. Formulation and Evaluation of Chitosan-Based Ampicillin Trihydrate ...

    African Journals Online (AJOL)

    Erah

    Parameters such as the zeta potential, polydispersity, particle size, entrapment ... variety of materials such as proteins, polysaccharides and ... formation is usually based on electrostatic interaction between the amine group of chitosan and a ...

  4. Doxorubicin-loaded poly (lactic-co-glycolic acid) nanoparticles coated with chitosan/alginate by layer by layer technology for antitumor applications.

    Science.gov (United States)

    Chai, Fujuan; Sun, Linlin; He, Xinyi; Li, Jieli; Liu, Yuanfen; Xiong, Fei; Ge, Liang; Webster, Thomas J; Zheng, Chunli

    2017-01-01

    Natural polyelectrolyte multilayers of chitosan (CHI) and alginate (ALG) were alternately deposited on doxorubicin (DOX)-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) with layer by layer self-assembly to control drug release for antitumor activity. Numerous factors which influenced the multilayer growth on nano-colloidal particles were studied: polyelectrolyte concentration, NaCl concentration and temperature. Then the growth regime of the CHI/ALG multilayers was elucidated. The coated NPs were characterized by transmission electron microscopy, atomic force microscopy, X-ray diffraction and a zeta potential analyzer. In vitro studies demonstrated an undesirable initial burst release of DOX-loaded PLGA NPs (DOX-PLGA NPs), which was relieved from 55.12% to 5.78% through the use of the layer by layer technique. The release of DOX increased more than 40% as the pH of media decreased from 7.4 to 5.0. More importantly, DOX-PLGA (CHI/ALG) 3 NPs had superior in vivo tumor inhibition rates at 83.17% and decreased toxicity, compared with DOX-PLGA NPs and DOX in solution. Thus, the presently formulated PLGA-polyelectrolyte NPs have strong potential applications for numerous controlled anticancer drug release applications.

  5. Chitosan-based delivery systems for protein therapeutics and antigens

    NARCIS (Netherlands)

    Amidi, M.; Mastrobattista, E.; Jiskoot, W.; Hennink, W.E.

    Therapeutic peptides/proteins and protein-based antigens are chemically and structurally labile compounds, which are almost exclusively administered by parenteral injections. Recently, non-invasive mucosal routes have attracted interest for administration of these biotherapeutics. Chitosan-based

  6. Application of original assemblies of polyelectrolytes, urease and electrodeposited polyaniline as sensitive films of potentiometric urea biosensors

    International Nuclear Information System (INIS)

    Buron, Cédric C.; Quinart, Mélanie; Vrlinic, Tjasa; Yunus, Sami; Glinel, Karine; Jonas, Alain M.; Lakard, Boris

    2014-01-01

    Highlights: • Elaboration of original polymer materials using self-assembly and electrochemistry. • In situ monitoring of the growth of the polymer materials. • Development of urea electrochemical sensors using a home-made mini-potentiostat. - Abstract: Original assemblies were prepared for use as sensitive films of potentiometric enzyme urea sensors, and compared to identify the more efficient structure with respect to stability. These films included electrodeposited polyaniline, used as transducer, urease, used as catalyst, and biocompatible polyelectrolytes, used as a matrix to preserve the integrity of the enzyme in the sensitive film. Two kinds of assemblies were done: the first one consisted in the adsorption of urease onto a polyaniline film followed by the adsorption of a chitosan-carboxymethylpullulan multilayer film, while the second one consisted in the adsorption of a urease-chitosan multilayer film onto an electrodeposited polyaniline film. The morphological features and growth of these assemblies were characterized by scanning electron microscopy and quartz crystal microbalance, respectively. This allowed us to demonstrate that the assemblies are successfully formed onto the electrodes of the sensors. The potentiometric responses of both assemblies were then measured as a function of urea concentration using a home-made portable potentiostat. The electrochemical response of resulting sensors was fast and sensitive for both types of assemblies, but the stability in time was much better for the films obtained from alternative adsorption of urease and chitosan onto a layer of urease adsorbed over electrodeposited polyaniline

  7. Obtaining and characterization of thin films polyelectrolyte with gold nanoparticles

    International Nuclear Information System (INIS)

    Popiolski, Tatiane M.; Crespo, Janaina S.; Silva, Renato B.

    2011-01-01

    Thin films of polyelectrolytes are manufactured via sequential adsorption of weak polyelectrolytes from aqueous solutions based on electrostatic interaction of oppositely charged polymers. Metal containing polymeric compounds are of particular interest to the production of materials with electrical interface and optical properties. In this sense, the objective of this study was to obtain thin films of weak polyelectrolytes and analyze the distribution of gold nanoparticles stabilized by sodium citrate and by poly (vinylpyrrolidone). The characterization was performed using UV-visible, X-ray diffraction and atomic force microscopy. The techniques of UV-visible and X-ray diffraction was confirmed the presence of gold in the films, the atomic force microscopy images were used to analyze the morphology of the films and check the behavior of the diffusion of gold nanoparticles. (author)

  8. Conformational effect on small angle neutron scattering behavior of interacting polyelectrolyte solutions: a perspective of integral equation theory.

    Science.gov (United States)

    Shew, Chwen-Yang; Do, Changwoo; Hong, Kunlun; Liu, Yun; Porcar, Lionel; Smith, Gregory S; Chen, Wei-Ren

    2012-07-14

    We present small angle neutron scattering (SANS) measurements of deuterium oxide (D(2)O) solutions of linear and star sodium poly(styrene sulfonate) (NaPSS) as a function of polyelectrolyte concentration. Emphasis is on understanding the dependence of their SANS coherent scattering cross section I(Q) on the molecular architecture of single polyelectrolyte. The key finding is that for a given concentration, star polyelectrolytes exhibit more pronounced characteristic peaks in I(Q), and the position of the first peak occurs at a smaller Q compared to their linear counterparts. Based on a model of integral equation theory, we first compare the SANS experimental I(Q) of salt-free polyelectrolyte solutions with that predicted theoretically. Having seen their satisfactory qualitative agreement, the dependence of counterion association behavior on polyelectrolyte geometry and concentration is further explored. Our predictions reveal that the ionic environment of polyelectrolyte exhibits a strong dependence on polyelectrolyte geometry at lower polyelectrolyte concentration. However, when both linear and star polyelectrolytes exceed their overlap concentrations, the spatial distribution of counterion is found to be essentially insensitive to polyelectrolyte geometry due to the steric effect.

  9. Biological and Biomimetic Comb Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Aristeidis Papagiannopoulos

    2010-05-01

    Full Text Available Some new phenomena involved in the physical properties of comb polyelectrolyte solutions are reviewed. Special emphasis is given to synthetic biomimetic materials, and the structures formed by these molecules are compared with those of naturally occurring glycoprotein and proteoglycan solutions. Developments in the determination of the structure and dynamics (viscoelasticity of comb polymers in solution are also covered. Specifically the appearance of multi-globular structures, helical instabilities, liquid crystalline phases, and the self-assembly of the materials to produce hierarchical comb morphologies is examined. Comb polyelectrolytes are surface active and a short review is made of some recent experiments in this area that relate to their morphology when suspended in solution. We hope to emphasize the wide variety of phenomena demonstrated by the vast range of naturally occurring comb polyelectrolytes and the challenges presented to synthetic chemists designing biomimetic materials.

  10. Matrix polyelectrolyte capsules based on polysaccharide/MnCO₃ hybrid microparticle templates.

    Science.gov (United States)

    Wei, Qingrong; Ai, Hua; Gu, Zhongwei

    2011-06-15

    An efficient strategy for biomacromolecule encapsulation based on spontaneous deposition into polysaccharide matrix-containing capsules is introduced in this study. First, hybrid microparticles composed of manganese carbonate and ionic polysaccharides including sodium hyaluronate (HA), sodium alginate (SA) and dextran sulfate sodium (DS) with narrow size distribution were synthesized to provide monodisperse templates. Incorporation of polysaccharide into the hybrid templates was successful as verified by thermogravimetric analysis (TGA) and confocal laser scanning microscopy (CLSM). Matrix polyelectrolyte microcapsules were fabricated through layer-by-layer (LbL) self-assembly of oppositely charged polyelectrolytes (PEs) onto the hybrid particles, followed by removal of the inorganic part of the cores, leaving polysaccharide matrix inside the capsules. The loading and release properties of the matrix microcapsules were investigated using myoglobin as a model biomacromolecule. Compared to matrix-free capsules, the matrix capsules had a much higher loading capacity up to four times; the driving force is mostly due to electrostatic interactions between myoglobin and the polysaccharide matrix. From our observations, for the same kind of polysaccharide, a higher amount of polysaccharide inside the capsules usually led to better loading capacity. The release behavior of the loaded myoglobin could be readily controlled by altering the environmental pH. These matrix microcapsules may be used as efficient delivery systems for various charged water-soluble macromolecules with applications in biomedical fields. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Chemosensors and biosensors based on polyelectrolyte microcapsules containing fluorescent dyes and enzymes.

    Science.gov (United States)

    Kazakova, Lyubov I; Shabarchina, Lyudmila I; Anastasova, Salzitsa; Pavlov, Anton M; Vadgama, Pankaj; Skirtach, Andre G; Sukhorukov, Gleb B

    2013-02-01

    The concept of enzyme-assisted substrate sensing based on use of fluorescent markers to detect the products of enzymatic reaction has been investigated by fabrication of micron-scale polyelectrolyte capsules containing enzymes and dyes in one entity. Microcapsules approximately 5 μm in size entrap glucose oxidase or lactate oxidase, with peroxidase, together with the corresponding markers Tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) dichloride (Ru(dpp)) complex and dihydrorhodamine 123 (DHR123), which are sensitive to oxygen and hydrogen peroxide, respectively. These capsules are produced by co-precipitation of calcium carbonate particles with the enzyme followed by layer-by-layer assembly of polyelectrolytes over the surface of the particles and incorporation of the dye in the capsule interior or in the multilayer shell. After dissolution of the calcium carbonate the enzymes and dyes remain in the multilayer capsules. In this study we produced enzyme-containing microcapsules sensitive to glucose and lactate. Calibration curves based on fluorescence intensity of Ru(dpp) and DHR123 were linearly dependent on substrate concentration, enabling reliable sensing in the millimolar range. The main advantages of using these capsules with optical recording is the possibility of building single capsule-based sensors. The response from individual capsules was observed by confocal microscopy as increasing fluorescence intensity of the capsule on addition of lactate at millimolar concentrations. Because internalization of the micron-sized multi-component capsules was feasible, they could be further optimized for in-situ intracellular sensing and metabolite monitoring on the basis of fluorescence reporting.

  12. Chitosan-based Schiff base-metal complexes (Mn, Cu, Co) as ...

    Indian Academy of Sciences (India)

    and A C PISE. Chemistry Research ... Data obtained by thermal analysis revealed that these complexes showed good thermal ... vents along with its inherent chirality makes chitosan .... resulting Schiff base IC was cooled, filtered and washed with ethanol ..... experiments with homogeneous Mn-salen catalyst at different ...

  13. CONJUGATED POLYMERS AND POLYELECTROLYTES IN SOLAR PHOTOCONVERSION, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Schanze, Kirk S [University of Florida

    2014-08-05

    This DOE-supported program investigated the fundamental properties of conjugated polyelectrolytes, with emphasis placed on studies of excited state energy transport, self-assembly into conjugated polyelectroyte (CPE) based films and colloids, and exciton transport and charge injection in CPE films constructed atop wide bandgap semiconductors. In the most recent grant period we have also extended efforts to examine the properties of low-bandgap donor-acceptor conjugated polyelectrolytes that feature strong visible light absorption and the ability to adsorb to metal-oxide interfaces.

  14. FTIR studies of chitosan acetate based polymer electrolytes

    International Nuclear Information System (INIS)

    Osman, Z.; Arof, A.K.

    2003-01-01

    Chitosan is the product when partially deacetylated chitin dissolves in dilute acetic acid. As such, depending on the degree of deacetylation, the carbonyl, C=O-NHR band can be observed at ∼1670 cm -1 and the amine, NH 2 band at 1590 cm -1 . When lithium triflate is added to chitosan to form a film of chitosan acetate-salt complex, the bands assigned to chitosan in the complex and the spectrum as a whole shift to lower wavenumbers. The carbonyl band is observed to shift to as low as 1645 cm -1 and the amine band to as low as 1560 cm -1 . These indicate chitosan-salt interactions. Also present are the bands due to lithium triflate i.e. ∼761, 1033, 1182 and 1263 cm -1 . When chitosan and ethylene carbonate (EC) are dissolved in acetic acid to form a film of plasticized chitosan acetate, the bands in the infrared spectrum of the films do not show any significant shift indicating that EC does not interact with chitosan. EC-LiCF 3 SO 3 interactions are indicated by the shifting of the C-O bending band from 718 cm -1 in the spectrum of EC to 725 cm -1 in the EC-salt spectrum. The Li + -EC is also evident in the ring breathing region at 893 cm -1 in the pure EC spectrum. This band has shifted to 898 cm -1 in the EC-salt spectrum. C=O stretching in the doublet observed at 1774 and 1803 cm -1 in the spectrum of pure EC has shifted to 1777 and 1808 cm -1 in the EC-salt spectrum

  15. Recent advances in chitosan-based nanoparticulate pulmonary drug delivery

    Science.gov (United States)

    Islam, Nazrul; Ferro, Vito

    2016-07-01

    The advent of biodegradable polymer-encapsulated drug nanoparticles has made the pulmonary route of administration an exciting area of drug delivery research. Chitosan, a natural biodegradable and biocompatible polysaccharide has received enormous attention as a carrier for drug delivery. Recently, nanoparticles of chitosan (CS) and its synthetic derivatives have been investigated for the encapsulation and delivery of many drugs with improved targeting and controlled release. Herein, recent advances in the preparation and use of micro-/nanoparticles of chitosan and its derivatives for pulmonary delivery of various therapeutic agents (drugs, genes, vaccines) are reviewed. Although chitosan has wide applications in terms of formulations and routes of drug delivery, this review is focused on pulmonary delivery of drug-encapsulated nanoparticles of chitosan and its derivatives. In addition, the controversial toxicological effects of chitosan nanoparticles for lung delivery will also be discussed.

  16. Composite carbohydrate interpenetrating polyelectrolyte nano-complexes (IPNC) as a controlled oral delivery system of citalopram HCl for pediatric use: in-vitro/in-vivo evaluation and histopathological examination.

    Science.gov (United States)

    Kamel, Rabab; Abbas, Haidy; El-Naa, Mona

    2018-06-01

    Citalopram HCl (CH) is one of the few drugs which can be used safely in childhood psychiatric disorders. This study was focused on the preparation of interpenetrating polyelectrolytes nano-complexes (IPNC) to transform the hydrophilic carbohydrate polymers into an insoluble form. The IPNCs were loaded with CH to sustain its effect. The IPNC2 (composed of chitosan:pectin in a 3:1 ratio) showed the most extended drug release pattern (P < 0.05) and followed a Higuchi-order kinetics model. It was characterized using SEM, X-rays diffractometry, and FTIR. In-vivo studies were performed using immature rats with induced depression, and were based on the investigation of behavioral, biochemical, and histopathological changes at different time intervals up to 24 h. Rats treated with IPNC2 showed a significant more rapid onset of action and more extended effect in the behavioral tests, in addition to a significantly higher serotonin brain level up to 24 h, compared to rats treated with the market product (P < 0.05). The histopathological examination showed a profound amelioration of the cerebral cortex features of the depressed rats after IPNC2 administration. This study proves the higher efficacy and more extended effect of the new polyelectrolytes nano-complexes compared to the market product.

  17. Polyelectrolyte Bundles: Finite size at thermodynamic equilibrium?

    Science.gov (United States)

    Sayar, Mehmet

    2005-03-01

    Experimental observation of finite size aggregates formed by polyelectrolytes such as DNA and F-actin, as well as synthetic polymers like poly(p-phenylene), has created a lot of attention in recent years. Here, bundle formation in rigid rod-like polyelectrolytes is studied via computer simulations. For the case of hydrophobically modified polyelectrolytes finite size bundles are observed even in the presence of only monovalent counterions. Furthermore, in the absence of a hydrophobic backbone, we have also observed formation of finite size aggregates via multivalent counterion condensation. The size distribution of such aggregates and the stability is analyzed in this study.

  18. Functionalized conjugated polyelectrolytes design and biomedical applications

    CERN Document Server

    Wang, Shu

    2014-01-01

    Functionalized Conjugated Polyelectrolytes presents a comprehensive review of these polyelectrolytes and their biomedical applications. Basic aspects like molecular design and optoelectronic properties are covered in the first chapter. Emphasis is placed on the various applications including sensing (chemical and biological), disease diagnosis, cell imaging, drug/gene delivery and disease treatment. This book explores a multi-disciplinary topic of interest to researchers working in the fields of chemistry, materials, biology and medicine. It also offers an integrated perspective on both basic research and application issues. Functionalized conjugated polyelectrolyte materials, which have already drawn considerable interest, will become a major new direction for biomedicine development.

  19. Implantable biodegradable sponges: effect of interpolymer complex formation of chitosan with gelatin on the release behavior of tramadol hydrochloride.

    Science.gov (United States)

    Foda, Nagwa H; El-laithy, Hanan M; Tadros, Mina I

    2007-01-01

    of both cross-linking and polyelectrolyte complexation between chitosan and gelatin. The analgesic activity of the implanted tramadol hydrochloride mixed chitosan-gelatin sponge showed reasonable analgesic effect that was maintained for more than 8 hr. Therefore, the use of chitosan and gelatin together appears to allow the formulator to manipulate both the drug release profiles and the mechanical properties of the sponge that could be effectively implanted.

  20. Formation and dielectric properties of polyelectrolyte multilayers studied by a silicon-on-insulator based thin film resistor.

    Science.gov (United States)

    Neff, Petra A; Wunderlich, Bernhard K; Klitzing, Regine V; Bausch, Andreas R

    2007-03-27

    The formation of polyelectrolyte multilayers (PEMs) is investigated using a silicon-on-insulator based thin film resistor which is sensitive to variations of the surface potential. The buildup of the PEMs at the silicon oxide surface of the device can be observed in real time as defined potential shifts. The influence of polymer charge density is studied using the strong polyanion poly(styrene sulfonate), PSS, combined with the statistical copolymer poly(diallyl-dimethyl-ammoniumchloride-stat-N-methyl-N-vinylacetamide), P(DADMAC-stat-NMVA), at various degrees of charge (DC). The multilayer formation stops after a few deposition steps for a DC below 75%. We show that the threshold of surface charge compensation corresponds to the threshold of multilayer formation. However, no reversion of the preceding surface charge was observed. Screening of polyelectrolyte charges by mobile ions within the polymer film leads to a decrease of the potential shifts with the number of layers deposited. This decrease is much slower for PEMs consisting of P(DADMAC-stat-NMVA) and PSS as compared to PEMs consisting of poly(allylamine-hydrochloride), PAH, and PSS. From this, significant differences in the dielectric constants of the polyelectrolyte films and in the concentration of mobile ions within the films can be derived.

  1. Influence of Hydrophobicity on Polyelectrolyte Complexation

    Energy Technology Data Exchange (ETDEWEB)

    Sadman, Kazi [Department; amp, Engineering, Northwestern University, Evanston, Illinois 60208, United States; Wang, Qifeng [Department; amp, Engineering, Northwestern University, Evanston, Illinois 60208, United States; Chen, Yaoyao [Department; amp, Engineering, Northwestern University, Evanston, Illinois 60208, United States; Keshavarz, Bavand [Department; Jiang, Zhang [X-ray; Shull, Kenneth R. [Department; amp, Engineering, Northwestern University, Evanston, Illinois 60208, United States

    2017-11-16

    Polyelectrolyte complexes are a fascinating class of soft materials that can span the full spectrum of mechanical properties from low viscosity fluids to glassy solids. This spectrum can be accessed by modulating the extent of electrostatic association in these complexes. However, to realize the full potential of polyelectrolyte complexes as functional materials their molecular level details need to be clearly correlated with their mechanical response. The present work demonstrates that by making simple amendments to the chain architecture it is possible to affect the salt responsiveness of polyelectrolyte complexes in a systematic manner. This is achieved by quaternizing poly(4-vinylpyridine) (QVP) with methyl, ethyl and propyl substituents– thereby increasing the hydrophobicity with increasing side chain length– and complexing them with a common anionic polyelectrolyte, poly(styrene sulfonate). The mechanical 1 ACS Paragon Plus Environment behavior of these complexes is compared to the more hydrophilic system of poly(styrene sulfonate) and poly(diallyldimethylammonium) by quantifying the swelling behavior in response to salt stimuli. More hydrophobic complexes are found to be more resistant to doping by salt, yet the mechanical properties of the complex remain contingent on the overall swelling ratio of the complex itself, following near universal swelling-modulus master curves that are quantified in this work. The rheological behavior of QVP complex coacervates are found to be approximately the same, only requiring higher salt concentrations to overcome strong hydrophobic interactions, demonstrating that hydrophobicity can be used as an important parameter for tuning the stability of polyelectrolyte complexes in general, while still preserving the ability to be processed “saloplastically”.

  2. Highly Response and Sensitivity Chitosan-Polyvinyl alcohol Based Hexanal Sensors

    Directory of Open Access Journals (Sweden)

    Abd Wahab Nur Zuraihan

    2016-01-01

    Full Text Available This work is to study the sensing properties of chitosanpolyvinyl alcohol film sensors upon hexanal gas exposure using vapour sensing technique. The sensor fabrication process was done using electrochemical deposition method by deposit the sensing materials on the gold patterned electrode with chitosan/PVA. The response value of chitosan-PVA film sensors towards hexanal was taken as an output voltage using electrical testing method. In this study, 1.75% of chitosan with 5% of PVA were mixed with the ratio of (95:5 was tested upon exposure to hexanal gas. The concentration of the hexanal was varied as 10 ppm, 20 ppm, 30 ppm. It was found that the chitosan-PVA film sensors showed fast response, stable, good stability, good recovery, repeatable and good sensitivity towards hexanal exposure. The morphology of the pure chitosan and chitosan-PVA was analyzed by scanning electron microscope (SEM and the interaction between chitosan and PVA was examined by Fourier Transform Infrared Spectroscopy (FTIR. The FTIR results indicate the changes in characteristics of the spectral peaks due to the formation of the intermolecular bonds between chitosan and PVA. The SEM morphology of the composites showed flat smooth surface that be a sign of uniform distribution of chitosan and PVA mixture throughout the films.

  3. In vivo evaluation of a nasal insulin delivery system based on thiolated chitosan.

    Science.gov (United States)

    Krauland, Alexander H; Leitner, Verena M; Grabovac, Vjera; Bernkop-Schnürch, Andreas

    2006-11-01

    The aim of this study was the preparation and in vivo evaluation of a nasal insulin delivery system based on thiolated chitosan. 2-Iminothiolane was covalently attached to chitosan. The resulting conjugate (chitosan-TBA) exhibited 304.9 +/- 63.5 micromol thiol groups per gram polymer. Microparticles were prepared via a new precipitation-micronization technique. The microparticulate delivery system comprised insulin, reduced glutathione and chitosan-TBA (Chito-TBA/Ins) or unmodified chitosan (Chito/Ins) and control microparticles were composed of insulin and mannitol (Mannitol/Ins). Due to a hydration process the size of Chito-TBA/Ins and Chito/Ins microparticles increased in phosphate buffer pH 6.8 2.6- and 2.2-fold, respectively. Fluorescent-labeled insulin-loaded chitosan-TBA microparticles showed a controlled release over 4 h. Chito-TBA/Ins administered nasally to rats led to an absolute bioavailability of 6.9 +/- 1.5%. The blood glucose level decreased for more than 2 h and the calculated absolute pharmacological efficacy was 4.9 +/- 1.4%. Chito/Ins, in comparison, displayed a bioavailability of 4.2 +/- 1.8% and a pharmacological efficacy of 0.7 +/- 0.6%. Mannitol/Ins showed a bioavailability of 1.6 +/- 0.4% and no reduction of the blood glucose level at all. According to these findings microparticles comprising chitosan-TBA seem to have substantial higher potential for nasal insulin administration than unmodified chitosan. Copyright 2006 Wiley-Liss, Inc. and the American Pharmacists Association

  4. In vivo evaluation of an oral delivery system for P-gp substrates based on thiolated chitosan.

    Science.gov (United States)

    Föger, Florian; Schmitz, Thierry; Bernkop-Schnürch, Andreas

    2006-08-01

    Recently, thiolated polymers, so called thiomers, have been reported to modulate drug absorption by inhibition of intestinal P-glycoprotein (P-gp). The aim of the present study was to provide a proof-of-principle for a delivery system based on thiolated chitosan in vivo in rats, using rhodamine-123 (Rho-123) as representative P-gp substrate. In vitro, the permeation enhancing effect of unmodified chitosan, chitosan-4 thiobutylamidine (Ch-TBA) and the combination of Ch-TBA with reduced glutathione (GSH) was evaluated by using freshly excised rat intestinal mucosa mounted in Ussing-type chambers. In comparison to buffer only, Rho-123 transport in presence of 0.5% (w/v) chitosan, 0.5% (w/v) Ch-TBA and the combination of 0.5% (w/v) Ch-TBA/0.5% (w/v) GSH, was 1.8-fold, 2.6-fold, 3.8-fold improved, respectively. Furthermore, enteric-coated tablets based on unmodified chitosan or Ch-TBA/GSH, were investigated in vivo. In rats, the Ch-TBA/GSH tablets increased the area under the plasma concentration time curve (AUC0-12) of Rho-123 by 217% in comparison to buffer control and by 58% in comparison to unmodified chitosan. This in vivo study showed that a delivery system based on thiolated chitosan significantly increased the oral bioavailability of P-gp substrate Rho-123.

  5. Charge correlation effects on ionization of weak polyelectrolytes

    International Nuclear Information System (INIS)

    Panagiotopoulos, A Z

    2009-01-01

    Ionization curves of weak polyelectrolytes were obtained as a function of the charge coupling strength from Monte Carlo simulations. In contrast to many earlier studies, the present work treats counterions explicitly, thus allowing the investigation of charge correlation effects at strong couplings. For conditions representing typical weak polyelectrolytes in water near room temperature, ionization is suppressed because of interactions between nearby dissociated groups, as also seen in prior work. A novel finding here is that, for stronger couplings, relevant for non-aqueous environments in the absence of added salt, the opposite behavior is observed-ionization is enhanced relative to the behavior of the isolated groups due to ion-counterion correlation effects. The fraction of dissociated groups as a function of position along the chain also behaves non-monotonically. Dissociation is highest near the ends of the chains for aqueous polyelectrolytes and highest at the chain middle segments for non-aqueous environments. At intermediate coupling strengths, dissociable groups appear to behave in a nearly ideal fashion, even though chain dimensions still show strong expansion effects due to ionization. These findings provide physical insights on the impact of competition between acid/base chemical equilibrium and electrostatic attractions in ionizable systems.

  6. Microencapsulation of citronella oil by complex coacervation using chitosan-gelatin (b system: operating design, preparation and characterization

    Directory of Open Access Journals (Sweden)

    Abdul Aziz Fitrah Rabani

    2016-01-01

    Full Text Available Citronella oil (CO can be an effective mosquito repellent, but due to its nature which having high volatility, oils rapidly evaporates causing loss of efficacy and shorten the repellent effect. Therefore, microencapsulation technology was implemented to ensure the encapsulated material being protected from immediate contact with environment and offers controlled release. In this study, microencapsulation of CO was done by employing complex coacervation using chitosan-gelatin (B system and utilized proanthocyanidins as the crosslinker. Remarkably, nearly all material involved in this study are from natural sources which are safe to human and environment. In designing operating process condition for CO encapsulation process, we found that wall ratio of 1:35 and pH 5 was the best operating condition based on zeta potential and turbidity analysis. FT-IR analysis found that gelatin-B had coated the CO droplet during emulsification stage, chitosan started to interact with gelatin-B to form a polyelectrolyte complex in adjust pH stage, CO capsules solidified at cooling process and were hardened during crosslinking process. Final product of CO capsules after settling process was identified at the top layer. Surface morphology of CO capsules obtained in this study were described having diameter varies from 81.63 µm to 156.74 µm with almost spherical in shape.

  7. Assessment of polyelectrolyte coating stability under dynamic buffer conditions in CE.

    Science.gov (United States)

    Swords, Kyleen E; Bartline, Peter B; Roguski, Katherine M; Bashaw, Sarah A; Frederick, Kimberley A

    2011-09-01

    Dynamic buffer conditions are present in many electrophoretically driven separations. Polyelectrolyte multilayer coatings have been employed in CE because of their chemical and physical stability as well as their ease of application. The goal of this study is to measure the effect of dynamic changes in buffer pH on flow using a real-time method for measuring EOF. Polyelectrolyte multilayers (PEMs) were composed of pairs of strong or completely ionized polyelectrolytes including poly(diallyldimethylammonium) chloride and poly(styrene sulfonate) and weak or ionizable polyelectrolytes including poly(allylamine) and poly(methacrylic acid). Polyelectrolyte multilayers of varying thicknesses (3, 4, 7, 8, 15, or 16 layers) were also studied. While the magnitude of the EOF was monitored every 2 s, the buffer pH was exchanged from a relatively basic pH (7.1) to increasingly acidic pHs (6.6, 6.1, 5.5, and 5.1). Strong polyelectrolytes responded minimally to changes in buffer pH (10%) and sometimes irreversible changes were measured with weak polyelectrolytes. Thicker coatings resulted in a similar magnitude of response but were more likely to degrade in response to buffer pH changes. The most stable coatings were formed from thinner layers of strong polyelectrolytes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Sustained, Controlled and Stimuli-Responsive Drug Release Systems Based on Nanoporous Anodic Alumina with Layer-by-Layer Polyelectrolyte

    Science.gov (United States)

    Porta-i-Batalla, Maria; Eckstein, Chris; Xifré-Pérez, Elisabet; Formentín, Pilar; Ferré-Borrull, J.; Marsal, Lluis F.

    2016-08-01

    Controlled drug delivery systems are an encouraging solution to some drug disadvantages such as reduced solubility, deprived biodistribution, tissue damage, fast breakdown of the drug, cytotoxicity, or side effects. Self-ordered nanoporous anodic alumina is an auspicious material for drug delivery due to its biocompatibility, stability, and controllable pore geometry. Its use in drug delivery applications has been explored in several fields, including therapeutic devices for bone and dental tissue engineering, coronary stent implants, and carriers for transplanted cells. In this work, we have created and analyzed a stimuli-responsive drug delivery system based on layer-by-layer pH-responsive polyelectrolyte and nanoporous anodic alumina. The results demonstrate that it is possible to control the drug release using a polyelectrolyte multilayer coating that will act as a gate.

  9. pH-sensitive chitosan/alginate core-shell nanoparticles for efficient and safe oral insulin delivery.

    Science.gov (United States)

    Mukhopadhyay, Piyasi; Chakraborty, Souma; Bhattacharya, Sourav; Mishra, Roshnara; Kundu, P P

    2015-01-01

    Chitosan-alginate (CS/ALG) nanoparticles were prepared by formation of an ionotropic pre-gelation of an alginate (ALG) core entrapping insulin, followed by chitosan (CS) polyelectrolyte complexation, for successful oral insulin administration. Mild preparation process without harsh chemicals is aimed at improving insulin bio-efficiency in in vivo model. The nanoparticles showed an average particle size of 100-200 nm in dynamic light scattering (DLS), with almost spherical or sub-spherical shape and ∼ 85% of insulin encapsulation. Again, retention of almost entire amount of encapsulated insulin in simulated gastric buffer followed by its sustained release in simulated intestinal condition proved its pH sensitivity in in vitro release studies. Significant hypoglycemic effects with improved insulin-relative bioavailability (∼ 8.11%) in in vivo model revealed the efficacy of these core-shell nanoparticles of CS/ALG as an oral insulin carrier. No systemic toxicity was found after its peroral treatment, suggesting these core-shell nanoparticles as a promising device for potential oral insulin delivery. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Nasal inserts containing ondansetron hydrochloride based on Chitosan–gellan gum polyelectrolyte complex: In vitro–in vivo studies

    Energy Technology Data Exchange (ETDEWEB)

    Sonje, Ashish G.; Mahajan, Hitendra S., E-mail: hsmahajan@rediffmail.com

    2016-07-01

    The aim of this study was the production of ondansetron hydrochloride loaded lyophilized insert for nasal delivery. The nasal insert was prepared by the lyophilisation technique using Chitosan–gellan gum polyelectrolyte complex as the polymer matrix. The ondansetron loaded inserts were evaluated with respect to water uptake, bioadhesion, drug release kinetic study, ex vivo permeation study, and in vivo study. Lyophilised nasal inserts were characterized by differential scanning calorimetry, scanning electron microscopy and X-ray diffraction study. Scanning electron microscopy confirmed the porous sponge like structure of inserts whereas release kinetic model revealed that drug release followed non-fickian case II diffusion. The nasal delivery showed improved bioavailability as compared to oral delivery. In conclusion, the ondansetron containing nasal inserts based on Chitosan–gellan gum complex with potential muco-adhesive potential is suitable for nasal delivery. - Highlights: • Chitosan–gellan gum polyelectrolyte complex based inserts have been prepared. • The synthesized polymer complex demonstrated important insert properties. • No toxicity was observed toward nasal mucosa. • In vivo study demonstrates the enhancement of bioavailability.

  11. Preparation and Characterization of Chitosan Binder-Based Electrode for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    En Mei Jin

    2013-01-01

    Full Text Available A chitosan binder-based TiO2 photoelectrode is used in dye-sensitized solar cells (DSSCs. Field-emission scanning electron microscope (FE-SEM images revealed that the grain size, thickness, and distribution of TiO2 films are affected by the chitosan content. With addition of 2.0 wt% chitosan to the TiO2 film (D2, the surface pore size became the smallest, and the pores were fairly evenly distributed. The electron transit time, electron recombination lifetime, diffusion coefficient, and diffusion length were analyzed by IMVS and IMPS. The best DSSC, with 2.0 wt% chitosan addition to the TiO2 film, had a shorter electron transit time, longer electron recombination lifetime, and larger diffusion coefficient and diffusion length than the other samples. The results of 2.0 wt% chitosan-added TiO2 DSSCs are an electron transit time of  s, electron recombination lifetime of  s, diffusion coefficient of  cm2 s−1, diffusion length of 14.81 μm, and a solar conversion efficiency of 4.18%.

  12. Polythiophene-based conjugated polyelectrolyte: Optical properties and association behavior in solution

    Czech Academy of Sciences Publication Activity Database

    Urbánek, P.; di Martino, A.; Gladyš, S.; Kuřitka, I.; Minařík, A.; Pavlova, Ewa; Bondarev, D.

    2015-01-01

    Roč. 202, April (2015), s. 16-24 ISSN 0379-6779 R&D Projects: GA TA ČR(CZ) TE01020118; GA ČR GAP108/12/1143 Institutional support: RVO:61389013 Keywords : polyelectrolyte * conjugated polymer * UV–vis spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.299, year: 2015

  13. Finite-size polyelectrolyte bundles at thermodynamic equilibrium

    Science.gov (United States)

    Sayar, M.; Holm, C.

    2007-01-01

    We present the results of extensive computer simulations performed on solutions of monodisperse charged rod-like polyelectrolytes in the presence of trivalent counterions. To overcome energy barriers we used a combination of parallel tempering and hybrid Monte Carlo techniques. Our results show that for small values of the electrostatic interaction the solution mostly consists of dispersed single rods. The potential of mean force between the polyelectrolyte monomers yields an attractive interaction at short distances. For a range of larger values of the Bjerrum length, we find finite-size polyelectrolyte bundles at thermodynamic equilibrium. Further increase of the Bjerrum length eventually leads to phase separation and precipitation. We discuss the origin of the observed thermodynamic stability of the finite-size aggregates.

  14. [Inclusion of proteins into polyelectrolyte microcapsules by coprecipitation and adsorption].

    Science.gov (United States)

    Kochetkova, O Iu; Kazakova, L I; Moshkov, D A; Vinokurov, M G; Shabarchina, L I

    2013-01-01

    In present study microcapsules composed of synthetic (PSS and PAA) and biodegradable (DS and PAr) polyelectrolytes on calcium carbonate microparticles were obtained. The ultrastructural organization of biodegradable microcapsules was studied using transmission electron microscopy. The envelope of such capsules consisting of six polyelectrolyte layers is already well-formed, having the average thickness of 44 ± 3.0 nm, and their internal polyelectrolyte matrix is sparser compared to the synthetic microcapsules. Spectroscopy was employed to evaluate the efficiency of incorporation of FITC-labeled BSA into synthetic microcapsules by adsorption, depending on the number of polyelectrolyte layers. It was shown that the maximal amount of protein incorporated into the capsules with 6 or 7 polyelectrolyte layers (4 and 2 pg/capsule, correspondingly). As a result we conclude that, in comparison with co-precipitation, the use of adsorption allows to completely avoid the loss of protein upon encapsulation.

  15. A novel pulsed drug-delivery system: polyelectrolyte layer-by-layer coating of chitosan–alginate microgels

    Directory of Open Access Journals (Sweden)

    Zhou GC

    2013-02-01

    Full Text Available Guichen Zhou,1,2,* Ying Lu,1,* He Zhang,1,* Yan Chen,1 Yuan Yu,1 Jing Gao,1 Duxin Sun,3 Guoqing Zhang,2 Hao Zou,1 Yanqiang Zhong1 1Department of Pharmaceutical Science, Second Military Medical University, Shanghai, People's Republic of China; 2Department of Pharmacy, East Hospital of Hepatobiliary Surgery, Shanghai, People's Republic of China; 3Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA*These authors contributed equally to this workPurpose: The aim of this report was to introduce a novel “core-membrane” microgel drug-delivery device for spontaneously pulsed release without any external trigger.Methods: The microgel core was prepared with alginate and chitosan. The semipermeable membrane outside the microgel was made of polyelectrolytes including polycation poly(allylamine hydrochloride and sodium polystyrene sulfonate. The drug release of this novel system was governed by the swelling pressure of the core and the rupture of the outer membrane.Results: The size of the core-membrane microgel drug-delivery device was 452.90 ± 2.71 µm. The surface charge depended on the layer-by-layer coating of polyelectrolytes, with zeta potential of 38.6 ± 1.4 mV. The confocal microscope exhibited the layer-by-layer outer membrane and inner core. The in vitro release profile showed that the content release remained low during the first 2.67 hours. After this lag time, the cumulative release increased to 80% in the next 0.95 hours, which suggested a pulsed drug release. The in vivo drug release in mice showed that the outer membrane was ruptured at approximately 3 to 4 hours, as drug was explosively released.Conclusion: These data suggest that the encapsulated substance in the core-membrane microgel delivery device can achieve a massive drug release after outer membrane rupture. This device was an effective system for pulsed drug delivery.Keywords: polyelectrolyte, chitosan–alginate, microgels, layer-by-layer, pulsed

  16. Temperature-induced changes in polyelectrolyte films at the solid-liquid interface

    International Nuclear Information System (INIS)

    Steitz, R.; Leiner, V.; Tauer, K.; Khrenov, V.; Klitzing, R. v.

    2002-01-01

    Polyelectrolyte multilayers (film thickness 30-60 nm) were built on top of silicon substrates by layer-by-layer deposition of oppositely charged polyelectrolytes from aqueous solutions. Three kinds of films were investigated: (A) films of a homo-polyelectrolyte and a diblock copolymer with a thermosensitive poly(N-isopropyl-acrylamide) block and (B) and (C) two reference systems built solely from homo-polyelectrolytes of opposite charges. Thermal behavior and subsequent structural changes of the functionalized films against D 2 O were investigated by neutron reflectometry. All films showed irreversible annealing effects upon heating. In addition, the thermosensitive films showed a decrease in thickness at elevated temperature (>30 C) while the reference samples, composed of thermo-insensitive polyelectrolytes only, did not. (orig.)

  17. Physical Characteristics of Chitosan Based Film Modified With Silica and Polyethylene Glycol

    Directory of Open Access Journals (Sweden)

    F. Widhi Mahatmanti

    2014-07-01

    Full Text Available Recently, development of film materials is focused on finding the films with high chemical and physical stabilities. Organic based material such as chitosan produces films with low physical stability, and hence addition of inorganic materials necessary. In this research, the effect of silica and polyethylene glycol (PEG addition on the properties of chitosan based films has been investigated. Precursors used to produce films included chitosan with the deacetylation degree of 83% and sodium silicate solution as the silica source. A simple synthesis in a one-pot process was carried out by mixing 1%(w of chitosan solution in 2%(v/v acetate acid and sodium silicate solution (27% SiO2 in various composition ratios and casting the solution on a glass dish. The tensile strength and percentage of elongation decrease with increasing the silica content. The tensile strength tends to decline with addition of PEG, but the elongation percentage of the film increases. Hydrophilicity of the film decreases with the addition of silica and increases with the addition of PEG. The addition of silica and PEG does not change significantly the morphology of the film and functional groups indicating the domination of physical interaction among active sites in the film components.

  18. Design and Evaluation of Chitosan-Based Novel pHSensitive Drug ...

    African Journals Online (AJOL)

    Design and Evaluation of Chitosan-Based Novel pHSensitive Drug Carrier for Sustained ... Scanning electron microscopy(SEM),Raman spectroscopy for particle size analysis. Swelling ratio, Effect of drug loading on encapsulation efficiency

  19. Chitosan-Based Nanoparticles for Mucosal Delivery of RNAi Therapeutics

    DEFF Research Database (Denmark)

    Martirosyan, Alina; Olesen, Morten Jarlstad; Howard, Kenneth A.

    2014-01-01

    of the polysaccharide chitosan have been used to facilitate delivery of siRNA across mucosal surfaces following local administration. This chapter describes the mucosal barriers that need to be addressed in order to design an effective mucosal delivery strategy and the utilization of the mucoadhesive properties...... of chitosan. Focus is given to preparation methods and the preclinical application of chitosan nanoparticles for respiratory and oral delivery of siRNA....

  20. Layer-by-layer buildup of polysaccharide-containing films: Physico-chemical properties and mesenchymal stem cells adhesion.

    Science.gov (United States)

    Kulikouskaya, Viktoryia I; Pinchuk, Sergei V; Hileuskaya, Kseniya S; Kraskouski, Aliaksandr N; Vasilevich, Irina B; Matievski, Kirill A; Agabekov, Vladimir E; Volotovski, Igor D

    2018-03-22

    Layer-by-Layer assembled polyelectrolyte films offer the opportunity to control cell attachment and behavior on solid surfaces. In the present study, multilayer films based on negatively charged biopolymers (pectin, dextran sulfate, carboxymethylcellulose) and positively charged polysaccharide chitosan or synthetic polyelectrolyte polyethyleneimine has been prepared and evaluated. Physico-chemical properties of the formed multilayer films, including their growth, morphology, wettability, stability, and mechanical properties, have been studied. We demonstrated that chitosan-containing films are characterized by the linear growth, the defect-free surface, and predominantly viscoelastic properties. When chitosan is substituted for the polyethyleneimine in the multilayer system, the properties of the formed films are significantly altered: the rigidity and surface roughness increases, the film growth acquires the exponential character. The multilayer films were subsequently used for culturing mesenchymal stem cells. It has been determined that stem cells effectively adhered to chitosan-containing films and formed on them the monolayer culture of fibroblast-like cells with high viability. Our results show that cell attachment is a complex process which is not only governed by the surface functionality because one of the key parameter effects on cell adhesion is the stiffness of polyelectrolyte multilayer films. We therefore propose our Layer-by-Layer films for applications in tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2018. © 2018 Wiley Periodicals, Inc.

  1. Chitosan-poly(lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: in vitro degradation and in vivo bone regeneration studies.

    Science.gov (United States)

    Jiang, Tao; Nukavarapu, Syam P; Deng, Meng; Jabbarzadeh, Ehsan; Kofron, Michelle D; Doty, Stephen B; Abdel-Fattah, Wafa I; Laurencin, Cato T

    2010-09-01

    Natural polymer chitosan and synthetic polymer poly(lactide-co-glycolide) (PLAGA) have been investigated for a variety of tissue engineering applications. We have previously reported the fabrication and in vitro evaluation of a novel chitosan/PLAGA sintered microsphere scaffold for load-bearing bone tissue engineering applications. In this study, the in vitro degradation characteristics of the chitosan/PLAGA scaffold and the in vivo bone formation capacity of the chitosan/PLAGA-based scaffolds in a rabbit ulnar critical-sized-defect model were investigated. The chitosan/PLAGA scaffold showed slower degradation than the PLAGA scaffold in vitro. Although chitosan/PLAGA scaffold showed a gradual decrease in compressive properties during the 12-week degradation period, the compressive strength and compressive modulus remained in the range of human trabecular bone. Chitosan/PLAGA-based scaffolds were able to guide bone formation in a rabbit ulnar critical-sized-defect model. Microcomputed tomography analysis demonstrated that successful bridging of the critical-sized defect on the sides both adjacent to and away from the radius occurred using chitosan/PLAGA-based scaffolds. Immobilization of heparin and recombinant human bone morphogenetic protein-2 on the chitosan/PLAGA scaffold surface promoted early bone formation as evidenced by complete bridging of the defect along the radius and significantly enhanced mechanical properties when compared to the chitosan/PLAGA scaffold. Furthermore, histological analysis suggested that chitosan/PLAGA-based scaffolds supported normal bone formation via intramembranous formation. 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Oxidation-mediated chitosan as additives for creation of chitosan aerogels with diverse three-dimensional interconnected skeletons

    International Nuclear Information System (INIS)

    Zhang, Sizhao; Feng, Jian; Feng, Junzong; Jiang, Yonggang

    2017-01-01

    Highlights: • A new synthetic method for controlling morphology of chitosan aerogels is proposed. • Chitosan aerogels with nanoflake-like and nanofiber-like were prepared. • Textures of chitosan aerogels are strongly dependent upon the oxidation pattern. - Abstract: Naturally occurring polymer-based aerogels have myriad practical utilizations due to environmentally benign and fruitful resources. However, engineering morphology-controllable biomass aerogels still represents a great challenge. Here we present a facile solution to synthesize chitosan aerogels having distinguished textures by reacting oxidized chitosan with formaldehyde and chitosan sol. In more detail, chitosan was chemically oxidized using two types of oxidation agents such as ammonium persulphate (SPD) and sodium periodate (APS) to obtain corresponding oxidized chitosan, subsequently cross-linked with chitosan solution containing formaldehyde to harvest SPD-oxidized chitosan aerogels (SCAs) and APS-SPD-oxidized ones (ASCAs) after aging, solvent exchange and supercritical drying processes. We found that the morphologies of as-prepared chitosan aerogels are strongly dependent upon the oxidation pattern towards chitosan. The structural textures of SCAs and ASCAs appear nanoflake-like and nanofiber-like structures, which may be related to spatial freedom of active groups located in chitosan. Selected area electron diffraction analysis reveals that the crystalline properties of chitosan aerogels generally appear the serious deterioration comparing to raw chitosan owing to their interconnected skeletal structure formation. The occurrence of characteristic groups displays cross-linked chain construction by using chemical state measurements such as FT-IR and XPS. Further, a plausible mechanism for controlling morphology of chitosan aerogels is also established. This new family of method for creation of chitosan aerogels may open up a perspective for biomass aerogels with controllable textures.

  3. Oxidation-mediated chitosan as additives for creation of chitosan aerogels with diverse three-dimensional interconnected skeletons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Sizhao, E-mail: bule-soul@hotmail.com; Feng, Jian, E-mail: fengj@nudt.edu.cn; Feng, Junzong; Jiang, Yonggang

    2017-02-28

    Highlights: • A new synthetic method for controlling morphology of chitosan aerogels is proposed. • Chitosan aerogels with nanoflake-like and nanofiber-like were prepared. • Textures of chitosan aerogels are strongly dependent upon the oxidation pattern. - Abstract: Naturally occurring polymer-based aerogels have myriad practical utilizations due to environmentally benign and fruitful resources. However, engineering morphology-controllable biomass aerogels still represents a great challenge. Here we present a facile solution to synthesize chitosan aerogels having distinguished textures by reacting oxidized chitosan with formaldehyde and chitosan sol. In more detail, chitosan was chemically oxidized using two types of oxidation agents such as ammonium persulphate (SPD) and sodium periodate (APS) to obtain corresponding oxidized chitosan, subsequently cross-linked with chitosan solution containing formaldehyde to harvest SPD-oxidized chitosan aerogels (SCAs) and APS-SPD-oxidized ones (ASCAs) after aging, solvent exchange and supercritical drying processes. We found that the morphologies of as-prepared chitosan aerogels are strongly dependent upon the oxidation pattern towards chitosan. The structural textures of SCAs and ASCAs appear nanoflake-like and nanofiber-like structures, which may be related to spatial freedom of active groups located in chitosan. Selected area electron diffraction analysis reveals that the crystalline properties of chitosan aerogels generally appear the serious deterioration comparing to raw chitosan owing to their interconnected skeletal structure formation. The occurrence of characteristic groups displays cross-linked chain construction by using chemical state measurements such as FT-IR and XPS. Further, a plausible mechanism for controlling morphology of chitosan aerogels is also established. This new family of method for creation of chitosan aerogels may open up a perspective for biomass aerogels with controllable textures.

  4. Influence of chitosan concentration on mechanical and barrier properties of corn starch/chitosan films.

    Science.gov (United States)

    Ren, Lili; Yan, Xiaoxia; Zhou, Jiang; Tong, Jin; Su, Xingguang

    2017-12-01

    The active packaging films based on corn starch and chitosan were prepared through mixing the starch solution and the chitosan solution (1:1) by casting. The aim of this work was to characterize and analyze the effects of the chitosan concentrations (0, 21, 41, 61 and 81wt% of starch) on physicochemical, mechanical and water vapor barrier properties as well as morphological characteristics of the corn starch/chitosan (CS/CH) films. Starch molecules and chitosan could interact through hydrogen bonding as confirmed from the shift of the main peaks to higher wavenumbers in FTIR and the reduction of crystallinity in XRD. Results showed that the incorporation of chitosan resulted in an increase in film solubility, total color differences, tensile strength and elongation at break and a decrease in Young's modulus and water vapor permeability (WVP). Elongation at break of the CS/CH films increased with increasing of chitosan concentration, and reached a maximum at 41 wt%, then declined at higher chitosan concentration. The WVP of CS/CH films increased with an increase of chitosan concentration and the same tendency observed for the moisture content. The results suggest that this biodegradable CS/CH films could potentially be used as active packaging films for food and pharmaceutical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Elasticity, biodegradability and cell adhesive properties of chitosan/hyaluronan multilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Aurore; Richert, Ludovic; Francius, Gregory; Voegel, Jean-Claude; Picart, Catherine [Present address: Universite de Montpellier II, CNRS-UMR 5539, cc107, Place Eugene Bataillon, 34 095 Montpellier Cedex 5 (France)

    2007-03-01

    In the bioengineering field, a recent and promising approach to modifying biomaterial surfaces is the layer-by-layer (LbL) technique used to build thin polyelectrolyte multilayer films. In this work, we focused on polyelectrolyte multilayer films made of two polysaccharides, chitosan (CHI) and hyaluronan (HA), and on the control of their physico-chemical and cell adhesive properties by chemical cross-linking. CHI/HA films were cross-linked using a water soluble carbodiimide and observed by confocal laser scanning microscopy (CLSM) with a fluorescently labeled CHI. Film thicknesses were similar for native and cross-linked films. The film nanometer roughness was measured by atomic force microscopy and was found to be higher for cross-linked films. Cross-linking the films also leads to a drastic change in film stiffness. The elastic modulus of the films (Young's modulus) as measured by AFM nano-indentation was about tenfold increased for cross-linked films as compared to native ones. From a biological point of view, cross-liked films are more resistant to enzymatic degradation by hyaluronidase. Furthermore, the increase in film stiffness has a favorable effect on the adhesion and spreading of chondrosarcoma cells. Thus, the CHI/HA cross-linked films could be used for various applications due to their adhesive properties and to their mechanical properties (including stability in enzymatic media)

  6. Colloid stabilization by polyelectrolytes. Application to decontamination processes of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, E.; Torok, J.

    1988-01-01

    Sodium salts of the following anionic polyelectrolytes were evaluated as particle stabilizers: polyacrylic acid, polymethacrylic acid, poly (methyl vinyl ethermaleic anhydride), sulfonated polymers. A cationic polyelectrolyte, a polyamine, was also evaluated. An active and an inactive oxidized carbon steel sample were treated in the same experimental set-up with the decontaminating reagent and with or without the polyelectrolyte. Activity pick-up by the inactive sample was measured. When no polyelectrolyte was added, 15% of the Co-60 activity was redeposited. With polyelectrolyte addition in the 5-450 mg kg/sup -1/ range, the Co60 activity redeposition ranged from 8.5 down to 0.8%. Polyacrylic acid was the most effective reagent. The transfer of the magnetite outer oxide crystals from the active to the inactive surfaces was identified on SEM micrographs.

  7. Chitosan nanoparticle-based neuronal membrane sealing and neuroprotection following acrolein-induced cell injury

    Directory of Open Access Journals (Sweden)

    Shi Riyi

    2010-01-01

    Full Text Available Abstract Background The highly reactive aldehyde acrolein is a very potent endogenous toxin with a long half-life. Acrolein is produced within cells after insult, and is a central player in slow and progressive "secondary injury" cascades. Indeed, acrolein-biomolecule complexes formed by cross-linking with proteins and DNA are associated with a number of pathologies, especially central nervous system (CNS trauma and neurodegenerative diseases. Hydralazine is capable of inhibiting or reducing acrolein-induced damage. However, since hydralazine's principle activity is to reduce blood pressure as a common anti-hypertension drug, the possible problems encountered when applied to hypotensive trauma victims have led us to explore alternative approaches. This study aims to evaluate such an alternative - a chitosan nanoparticle-based therapeutic system. Results Hydralazine-loaded chitosan nanoparticles were prepared using different types of polyanions and characterized for particle size, morphology, zeta potential value, and the efficiency of hydralazine entrapment and release. Hydralazine-loaded chitosan nanoparticles ranged in size from 300 nm to 350 nm in diameter, and with a tunable, or adjustable, surface charge. Conclusions We evaluated the utility of chitosan nanoparticles with an in-vitro model of acrolein-mediated cell injury using PC -12 cells. The particles effectively, and statistically, reduced damage to membrane integrity, secondary oxidative stress, and lipid peroxidation. This study suggests that a chitosan nanoparticle-based therapy to interfere with "secondary" injury may be possible.

  8. Genipin cross-linked electrospun chitosan-based nanofibrous mat as tissue engineering scaffold

    Directory of Open Access Journals (Sweden)

    Esmaeil Mirzaei

    2014-04-01

    Full Text Available   Objective(s: To improve water stability of electrospun chitosan/ Polyethylene oxide (PEO nanofibers, genipin, a biocompatible and nontoxic agent, was used to crosslink chitosan based nanofibers.   Materials and Methods: Different amounts of genipin were added to the chitosan/PEO solutions, chitosan/PEO weight ratio 90/10 in 80 % acetic acid, and the solutions were then electrospun to form nanofibers. The spun nanofibers were exposed to water vapor to complete crosslinking. The nanofibrous membranes were subjected to detailed analysis by scanning electron microscopy (SEM, Fourier transform infrared-attenuated total reflection (FTIR-ATR spectroscopy, swelling test, MTT cytotoxicity, and cell attachment. Results: SEM images of electrospun mats showed that genipin-crosslinked nanofibers retained their fibrous structure after immerging in PBS (pH=7.4 for 24 hours, while the uncrosslinked samples lost their fibrous structure, indicating the water stability of genipin-crosslinked nanofibers. The genipin-crosslinked mats also showed no significant change in swelling ratio in comparison with uncrosslinked ones. FTIR-ATR spectrum of uncrosslinked and genipin-crosslinked chitosan nanofibers revealed the reaction between genipin and amino groups of chitosan. Cytotoxicity of genipin-crosslinked nanofibers was examined by MTT assay on human fibroblast cells in the presence of nanofibers extraction media. The genipin-crosslinked nanofibers did not show any toxic effects on fibroblast cells at the lowest and moderate amount of genipin. The fibroblast cells also showed a good adhesion on genipin-crosslinked nanofibers. Conclusion: This electrospun matrix would be used for biomedical applications such as wound dressing and scaffold for tissue engineering without the concern of toxicity.

  9. Hydrophobically modified polyelectrolytes : synthesis, properties and interactions with surfactants

    NARCIS (Netherlands)

    Nieuwkerk, A.C.

    1998-01-01

    Hydrophobically modified polyelectrolytes can form micelle-like aggregates, so-called microdomains, in aqueous solution. The hydrophobic side chains constitute the apolar inner part of these microdomains and the hydrophilic groups on the polyelectrolyte backbone are at the surface of the

  10. Fabrication and In Vitro Evaluation of Nanosized Hydroxyapatite/Chitosan-Based Tissue Engineering Scaffolds

    Directory of Open Access Journals (Sweden)

    Tao Sun

    2014-01-01

    Full Text Available Composite scaffolds based on biodegradable natural polymer and osteoconductive hydroxyapatite (HA nanoparticles can be promising for a variety of tissue engineering (TE applications. This study addressed the fabrication of three-dimensional (3D porous composite scaffolds composed of HA and chitosan fabricated via thermally induced phase separation and freeze-drying technique. The scaffolds produced were subsequently characterized in terms of microstructure, porosity, and mechanical property. In vitro degradation and in vitro biological evaluation were also investigated. The scaffolds were highly porous and had interconnected pore structures. The pore sizes ranged from several microns to a few hundred microns. The incorporated HA nanoparticles were well mixed and physically coexisted with chitosan in composite scaffold structures. The addition of 10% (w/w HA nanoparticles to chitosan enhanced the compressive mechanical properties of composite scaffold compared to pure chitosan scaffold. In vitro degradation results in phosphate buffered saline (PBS showed slower uptake properties of composite scaffolds. Moreover, the scaffolds showed positive response to mouse fibroblast L929 cells attachment. Overall, the findings suggest that HA/chitosan composite scaffolds could be suitable for TE applications.

  11. Diffusion of Sites versus Polymers in Polyelectrolyte Complexes and Multilayers.

    Science.gov (United States)

    Fares, Hadi M; Schlenoff, Joseph B

    2017-10-18

    It has long been assumed that the spontaneous formation of materials such as complexes and multilayers from charged polymers depends on (inter)diffusion of these polyelectrolytes. Here, we separately examine the mass transport of polymer molecules and extrinsic sites-charged polyelectrolyte repeat units balanced by counterions-within thin films of polyelectrolyte complex, PEC, using sensitive isotopic labeling techniques. The apparent diffusion coefficients of these sites within PEC films of poly(diallyldimethylammonium), PDADMA, and poly(styrenesulfonate), PSS, are at least 2 orders of magnitude faster than the diffusion of polyelectrolytes themselves. This is because site diffusion requires only local rearrangements of polyelectrolyte repeat units, placing far fewer kinetic limitations on the assembly of polyelectrolyte complexes in all of their forms. Site diffusion strongly depends on the salt concentration (ionic strength) of the environment, and diffusion of PDADMA sites is faster than that of PSS sites, accounting for the asymmetric nature of multilayer growth. Site diffusion is responsible for multilayer growth in the linear and into the exponential regimes, which explains how PDADMA can mysteriously "pass through" layers of PSS. Using quantitative relationships between site diffusion coefficient and salt concentration, conditions were identified that allowed the diffusion length to always exceed the film thickness, leading to full exponential growth over 3 orders of magnitude thickness. Both site and polymer diffusion were independent of molecular weight, suggesting that ion pairing density is a limiting factor. Polyelectrolyte complexes are examples of a broader class of dynamic bulk polymeric materials that (self-) assemble via the transport of cross-links or defects rather than actual molecules.

  12. Antimicrobial Films Based on Chitosan and Methylcellulose Containing Natamycin for Active Packaging Applications

    Directory of Open Access Journals (Sweden)

    Serena Santonicola

    2017-10-01

    Full Text Available Biodegradable polymers are gaining interest as antimicrobial carriers in active packaging. In the present study, two active films based on chitosan (1.5% w/v and methylcellulose (3% w/v enriched with natamycin were prepared by casting. The antimicrobial’s release behavior was evaluated by immersion of the films in 95% ethanol (v/v at different temperatures. The natamycin content in the food simulant was determined by reversed-high performance liquid chromatography with diode-array detection (HPLC-DAD. The apparent diffusion (DP and partition (KP/S coefficients were calculated using a mathematical model based on Fick’s Second Law. Results showed that the release of natamycin from chitosan based film (DP = 3.61 × 10−13 cm2/s was slower, when compared with methylcellulose film (DP = 3.20 × 10−8 cm2/s at the same temperature (p < 0.05. To evaluate the antimicrobial efficiency of active films, cheese samples were completely covered with the films, stored at 20 °C for 7 days, and then analyzed for moulds and yeasts. Microbiological analyses showed a significant reduction in yeasts and moulds (7.91 log CFU/g in samples treated with chitosan active films (p < 0.05. The good compatibility of natamycin with chitosan, the low Dp, and antimicrobial properties suggested that the film could be favorably used in antimicrobial packagings.

  13. Properties of gelatin-based films incorporated with chitosan-coated microparticles charged with rutin.

    Science.gov (United States)

    Dammak, Ilyes; Bittante, Ana Mônica Quinta Barbosa; Lourenço, Rodrigo Vinicius; do Amaral Sobral, Paulo José

    2017-08-01

    The aim of this study was development an active film based on gelatin incorporated with antioxidant, rutin carried into microparticles. The complexation between oppositely charged lecithin and chitosan was applied to prepare the chitosan-coated microparticles. The generated microparticles had an average size of 520±4nm and a span of 0.3 were formulated by a rotor-stator homogenize at the homogenization speed 10,000rpm. Composite films were prepared by incorporating chitosan-coated microparticles, at various concentrations (0.05, 0.1, 0.5, or 1% (based on the weight of the gelatin powder)) in the gelatin-based films. For the prepared films, the results showed that obtained physicochemical, water vapor barrier, and mechanical were compared with native gelatin film with a slight decrease for chitosan concentration higher than 0.5%. The microstructure studies done by scanning electron microscopes, revealed different micropores embedded with oil resulting from the incorporation of the microparticles into the gelatin matrix. Moreover, the calorimetric results were comparable to those of gelatin control film with T g value 45°C and increased crystallinity percentage with increasing incorporation of microparticles. This original concept of composite biodegradable films may thus be a good alternative to incorporate liposoluble active compounds to design an active packaging with good properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Superhydrophilic Polyelectrolyte Brush Layers with Imparted Anti-Icing Properties

    DEFF Research Database (Denmark)

    Chernyy, Sergey; Järn, Mikael; Shimizu, Kyoko

    2014-01-01

    . In general, superhydrophilic polyelectrolyte brushes exhibit better anti-icing property at -10 °C compared to partially hydrophobic brushes such as poly(methyl methacrylate) and surfactant exchanged polyelectrolyte brushes. The data are interpreted using the concept of a quasi liquid layer (QLL...

  15. Hydroxyapatite-chitosan based bioactive hybrid biomaterials with improved mechanical strength

    Science.gov (United States)

    Zima, A.

    2018-03-01

    Composites consisting of hydroxyapatite (HA) and chitosan (CTS) have recently been intensively studied. In this work, a novel inorganic-organic (I/O) HA/CTS materials in the form of granules were prepared through a simple solution-based chemical method. During the synthesis of these hybrids, the electrostatic complexes between positively charged, protonated amine groups of chitosan and the negative phosphate species (HPO42 - and H2PO4-) were formed. Our biocomposites belong to the class I of hybrids, which was confirmed by FTIR studies. XRD analysis revealed that the obtained materials consisted of hydroxyapatite as the only crystalline phase. Homogeneous dispersion of the components in HA/CTS composites was confirmed. The use of 17 wt% and 23 wt% of chitosan resulted in approximately 12-fold and 16-fold increase in the compressive strength of HA/CTS as compared to the non-modified HA material. During incubation of the studied materials in SBF, pH of the solution remained close to the physiological one. Formation of apatite layer on their surfaces indicated bioactive nature of the developed biomaterials.

  16. Preparation and characterization of polymer nanocomposites based on chitosan and clay minerals

    International Nuclear Information System (INIS)

    Fiori, Ana Paula Santos de Melo; Gabiraba, Victor Parizio; Praxedes, Ana Paula Perdigao; Nunes, Marcelo Ramon da Silva; Balliano, Tatiane L.; Silva, Rosanny Christhinny da; Tonholo, Josealdo; Ribeiro, Adriana Santos

    2014-01-01

    In this work nanocomposites based on chitosan and different clays were prepared using polyethyleneglycol (PEG) as plasticizer. The samples obtained were characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), thermogravimetric analysis (TGA/DTG) and by mechanical characterization (tensile test) with the aim of investigating the interactions between chitosan and clay. The nanocomposite films prepared using sodium bentonite (Ben) showed an increase of 81.2% in the maximum tensile stress values and a decrease of 16.0% in the Young’s modulus when compared to the chitosan with PEG (QuiPEG) films, evidencing that the introduction of the clay into the polymer matrix provided a more flexible and resistant film, whose elongation at break was 93.6% higher than for the QuiPEG film. (author)

  17. Versatile nature of hetero-chitosan based derivatives as biodegradable adsorbent for heavy metal ions; a review.

    Science.gov (United States)

    Ahmad, Mudasir; Manzoor, Kaiser; Ikram, Saiqa

    2017-12-01

    The polyfunctional chitosan can act as the biological macromolecule ligand not only for the adsorption and the recovery of metal ions from an aqueous media, but also for the fabrication of novel adsorbents which shows selectivity and better adsorption properties. The unmodified chitosan itself, a single cationic polysaccharide, has hydroxyl and amine groups carrying complex properties with the metal ions. In addition, the selectivity of metal ions, the adsorption efficiency and adsorption capacity of the adsorbent can be modified chemically. This review covers the synthetic strategies of chitosan towards the synthesis of hetero-chitosan based adsorbents via chemical modifications in past two decades. It also includes how chemical modification influences the metal adsorption with N, O, S and P containing chitosan derivatives. Hope this review article provides an opportunity for researchers in the future to explore the potential of chitosan as an adsorbent for removal of metal ions from wastewater. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. FT-IR studies on interactions among components in hexanoyl chitosan-based polymer electrolytes

    Science.gov (United States)

    Winie, Tan; Arof, A. K.

    2006-03-01

    Fourier transform infrared (FT-IR) spectroscopic studies have been undertaken to investigate the interactions among components in a system of hexanoyl chitosan-lithium trifluoromethanesulfonate (LiCF 3SO 3)-diethyl carbonate (DEC)/ethylene carbonate (EC). LiCF 3SO 3 interacts with the hexanoyl chitosan to form a hexanoyl chitosan-salt complex that results in the shifting of the N(COR) 2, C dbnd O sbnd NHR and OCOR bands to lower wavenumbers. Interactions between EC and DEC with LiCF 3SO 3 has been noted and discussed. Evidence of interaction between EC and DEC has been obtained experimentally. Studies on polymer-plasticizer spectra suggested that there is no interaction between the polymer host and plasticizers. Competition between plasticizer and polymer on associating with Li + ions was observed from the spectral data for gel polymer electrolytes. The obtained spectroscopic data has been correlated with the conductivity performance of hexanoyl chitosan-based polymer electrolytes.

  19. Impact of the self-assembly of multilayer polyelectrolyte functionalized gold nanorods and its application to biosensing

    International Nuclear Information System (INIS)

    Li Xin; Qian Jun; He Sailing

    2008-01-01

    Multilayered polyelectrolyte functionalized gold nanorods (GNRs) are reported for the conjugation of and sensitive detection of bio-molecules. Multilayered polyelectrolyte functionalized GNRs can significantly improve the biocompatibility of cetyltrimethylammonium bromide (CTAB) coated GNRs in a bio-environment and can diminish the toxicity induced by CTAB. Biotin, bovine serum albumin (BSA)-biotin and streptavidin are conjugated to polyelectrolyte functionalized GNRs, and the conjugates can serve as a platform for many biotin-streptavidin-based biological applications. Through the robust self-assembly effect of GNRs, biotin-conjugated GNRs are also utilized as a very sensitive probe for the detection of a small amount of streptavidin

  20. Glycol chitosan

    DEFF Research Database (Denmark)

    Danielsen, E Thomas; Danielsen, E Michael

    2017-01-01

    Chitosan is a polycationic polysaccharide consisting of β-(1-4)-linked glucosamine units and due to its mucoadhesive properties, chemical derivatives of chitosan are potential candidates as enhancers for transmucosal drug delivery. Recently, glycol chitosan (GC), a soluble derivative of chitosan...

  1. Polyelectrolyte surfactant aggregates and their deposition on macroscopic surfaces

    International Nuclear Information System (INIS)

    Voisin, David

    2002-01-01

    Oppositely charged surfactant and polyelectrolyte are present in hair shampoos and conditioners, together with particles (e.g. anti-dandruff agents for scalp) and droplets (e.g. silicone oil for the hair). These are normally formulated at high surfactant concentrations, beyond the flocculation region for the polyelectrolyte concentration used. However, on dilution with water, during application, flocs are formed which carry the particles and droplets to the scalp and hair. The addition of an anionic surfactant to an aqueous solution of cationic polyelectrolyte, at a given concentration, can lead to the formation of polyelectrolyte-surfactant 'particles', in which the surfactant 'binds' to the polyelectrolyte. This occurs from the critical association concentration (CAC), up to the surfactant concentration corresponding to maximum binding. Within this range of surfactant concentrations, the surfactant bound to the polyelectrolyte is thought to associate to form what might be termed 'internal micelles'. Each polyelectrolyte-surfactant particle in the region of the CAC, and just beyond, contains many polyelectrolyte chains, held together essentially by micelle bridges. These particles, however, remain net positively charged, and therefore stable. At the other end of the binding range of the surfactant, so many internal micelles are present that the polymer-surfactant particles are now net negatively charged. Indeed binding stops since no further micelles can be accommodated. Again, the particles are stable. However, there exists a range of surfactant concentrations, lying within the range referred to above, where the net charge is reduced sufficiently that the polymer-surfactant particles will flocculate to form much larger structures. The onset of this second range might be termed the 'critical flocculation concentration' (CFC), and the end, the 'critical stabilisation concentration' (CSC). In this work, the CFC and the CSC have been determined for mixtures of

  2. Chitosan-based scaffolds for the support of smooth muscle constructs in intestinal tissue engineering

    Science.gov (United States)

    Zakhem, Elie; Raghavan, Shreya; Gilmont, Robert R; Bitar, Khalil N

    2012-01-01

    Intestinal tissue engineering is an emerging field due to a growing demand for intestinal lengthening and replacement procedures secondary to massive resections of the bowel. Here, we demonstrate the potential use of a chitosan/collagen scaffold as a 3D matrix to support the bioengineered circular muscle constructs maintain their physiological functionality. We investigated the biocompatibility of chitosan by growing rabbit colonic circular smooth muscle cells (RCSMCs) on chitosan-coated plates. The cells maintained their spindle-like morphology and preserved their smooth muscle phenotypic markers. We manufactured tubular scaffolds with central openings composed of chitosan and collagen in a 1:1 ratio. Concentrically-aligned 3D circular muscle constructs were bioengineered using fibrin-based hydrogel seeded with RCSMCs. The constructs were placed around the scaffold for 2 weeks, after which they were taken off and tested for their physiological functionality. The muscle constructs contracted in response to Acetylcholine (Ach) and potassium chloride (KCl) and they relaxed in response to vasoactive intestinal peptide (VIP). These results demonstrate that chitosan is a biomaterial possibly suitable for intestinal tissue engineering applications. PMID:22483012

  3. Polysaccharides for stabilization of lipid particles; Polissacarideos na estabilizacao de particulas lipidicas

    Energy Technology Data Exchange (ETDEWEB)

    Lionzo, Maria I.Z.; Silveira, Nadya P. Da, E-mail: nadya@iq.ufrgs.br [Universidade Federal do Rio Grande do Sul - UFRGS, Campus do Vale, Porto Alegre, RS (Brazil); Muniz, Edvani Curti [Departamento de Quimica, Universidade Estadual de Maringa, PR (Brazil)

    2011-07-01

    The main goal of this paper was to investigate the impact of different amounts of polyelectrolytes on the size, surface charge and rigidity of the bilayers of multilamellar liposomes. For this purpose, composite liposomes were developed containing chitosan and chondroitin sulfate. The use of a second polyelectrolyte, chondroitin sulfate, for the coating of the liposomes was applied in order to modulate their surface charge, maintaining the stability given by the presence of chitosan. Light and X-rays small angle scattering were the main techniques applied. Zeta-potential values were used to determine the charge density and the amount of adsorbed polyelectrolytes on the liposomes. (author)

  4. Polysaccharides for stabilization of lipid particles

    International Nuclear Information System (INIS)

    Lionzo, Maria I.Z.; Silveira, Nadya P. Da; Muniz, Edvani Curti

    2011-01-01

    The main goal of this paper was to investigate the impact of different amounts of polyelectrolytes on the size, surface charge and rigidity of the bilayers of multilamellar liposomes. For this purpose, composite liposomes were developed containing chitosan and chondroitin sulfate. The use of a second polyelectrolyte, chondroitin sulfate, for the coating of the liposomes was applied in order to modulate their surface charge, maintaining the stability given by the presence of chitosan. Light and X-rays small angle scattering were the main techniques applied. Zeta-potential values were used to determine the charge density and the amount of adsorbed polyelectrolytes on the liposomes. (author)

  5. Influence of anionic and cationic polyelectrolytes on the conductivity and morphology of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films

    Energy Technology Data Exchange (ETDEWEB)

    Valtakari, Dimitar, E-mail: dimitar.valtakari@abo.fi [Abo Akademi University, Laboratory of Paper Coating and Converting, Center for Functional Materials at Biological Interfaces (FUNMAT), Porthansgatan 3, FI-20500 Åbo/Turku (Finland); Bollström, Roger [Omya International AG, CH 4665 Oftringen (Switzerland); Toivakka, Martti; Saarinen, Jarkko J. [Abo Akademi University, Laboratory of Paper Coating and Converting, Center for Functional Materials at Biological Interfaces (FUNMAT), Porthansgatan 3, FI-20500 Åbo/Turku (Finland)

    2015-09-01

    Conductivity of the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) strongly depends on the film morphology, which can be altered by the presence of polyelectrolytes. Aqueous dispersion of PEDOT:PSS was studied with anionic sodium polyacrylate (PA) and cationic poly(dimethyldiallylammonium chloride) (pDADMAC) polyelectrolytes that are typically used in papermaking as retention aids and dispersing agents in the paper pigment coating formulations. Spin-coated PEDOT:PSS films on a PA coated glass formed non-uniform layers with lowered conductivity compared to the reference PEDOT:PSS films on a clean glass substrate. On contrary, spin-coated PEDOT:PSS on a pDADMAC coated glass formed uniform layers with good conductivity. These results point out the importance of surface chemistry when using renewable and recyclable paper-based substrates with the PEDOT:PSS films. - Highlights: • PEDOT:PSS polymer was studied in the presence of polyelectrolytes. • Uniform layers of PEDOT:PSS and polyelectrolytes were spin-coated on glass. • Cationic polyelectrolyte was found to be more susceptible to humidity. • Cationic polyelectrolyte improves the conductivity of PEDOT:PSS. • PEDOT:PSS forms non-uniform layers on anionic polyelectrolyte coated glass.

  6. Influence of anionic and cationic polyelectrolytes on the conductivity and morphology of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films

    International Nuclear Information System (INIS)

    Valtakari, Dimitar; Bollström, Roger; Toivakka, Martti; Saarinen, Jarkko J.

    2015-01-01

    Conductivity of the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) strongly depends on the film morphology, which can be altered by the presence of polyelectrolytes. Aqueous dispersion of PEDOT:PSS was studied with anionic sodium polyacrylate (PA) and cationic poly(dimethyldiallylammonium chloride) (pDADMAC) polyelectrolytes that are typically used in papermaking as retention aids and dispersing agents in the paper pigment coating formulations. Spin-coated PEDOT:PSS films on a PA coated glass formed non-uniform layers with lowered conductivity compared to the reference PEDOT:PSS films on a clean glass substrate. On contrary, spin-coated PEDOT:PSS on a pDADMAC coated glass formed uniform layers with good conductivity. These results point out the importance of surface chemistry when using renewable and recyclable paper-based substrates with the PEDOT:PSS films. - Highlights: • PEDOT:PSS polymer was studied in the presence of polyelectrolytes. • Uniform layers of PEDOT:PSS and polyelectrolytes were spin-coated on glass. • Cationic polyelectrolyte was found to be more susceptible to humidity. • Cationic polyelectrolyte improves the conductivity of PEDOT:PSS. • PEDOT:PSS forms non-uniform layers on anionic polyelectrolyte coated glass

  7. Poly-electrolytes for fuel cells: tools and methods for characterization; Polyelectrolytes pour piles a combustible: outils et methodes de caracterisation

    Energy Technology Data Exchange (ETDEWEB)

    Marechal, M

    2004-12-15

    The research works reported in the manuscript are a contribution to the study of poly-electrolytes for Proton Exchange Membrane Fuel Cells (PEMFC). They are supported by two investigation tools, i.e. the study of model molecules and accurate conductivity measurements. With regard to the material science domain, the optimization of poly-sulfone sulfonation procedure allows chain breaking to be reduced and even eliminated while obtaining reproducible sulfonation degrees. It is thus possible to improve the mechanical properties of the dense membrane elaborated with these poly-electrolytes before performing the tests on the MEA (Membrane Electrode Assembly). In parallel, the functionalization of microporous silicon made it possible to prepare poly-electrolytes reinforced by the mechanical strength of the silicon separator. With regard to the physicochemical and electrochemical characterizations, the model molecules, with the same functions and groups than for associated polymers, make it possible to amplify the electrochemical or thermal phenomena vs. the corresponding polymers. Thus, they simulate an accelerated ageing of the poly-electrolytes. The development of a new conductivity measurement set allows conductivity to be obtained with a great accuracy, in a wide range of temperature and relative humidity. (author)

  8. Chitosan-iron oxide nanocomposite based electrochemical aptasensor for determination of malathion

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakar, Nirmal, E-mail: nirmalprabhakar@gmail.com; Thakur, Himkusha; Bharti, Anu; Kaur, Navpreet

    2016-10-05

    An electrochemical aptasensor based on chitosan-iron oxide nanocomposite (CHIT-IO) film deposited on fluorine tin Oxide (FTO) was developed for the detection of malathion. Iron oxide nanoparticles were prepared by co-precipitation method and characterized by Transmission electron microscopy and UV–Visible spectroscopy. The biotinylated DNA aptamer sequence specific to the malathion was immobilized onto the iron oxide doped-chitosan/FTO electrode by using streptavidin as linking molecule. Various characterization studies like Field Emission-Scanning Electron Microscopy (FE-SEM), Fourier Transform Infrared Spectroscopy (FT-IR), and Electrochemical studies were performed to attest the successful fabrication of bioelectrodes. Experimental parameters like aptamer concentration, response time, stability of electrode and reusability studies were optimized. Aptamer immobilized chitosan-iron oxide nanocomposite (APT/SA/CHIT-IO/FTO) bioelectrodes exhibited LOD of about 0.001 ng/mL within 15 min and spike-in studies revealed about 80–92% recovery of malathion from the lettuce leaves and soil sample. - Highlights: • An electrochemical aptasensor for the detection of Malathion has been developed. • Chitosan-iron oxide NP deposited FTO sheets provides platform for aptamer immobilization. • Aptasensor has efficiency to detect malathion upto 0.001 ng/mL within 15 min.

  9. Design and Evaluation of Chitosan-Based Novel pH- Sensitive Drug ...

    African Journals Online (AJOL)

    Method: pH sensitive interpenetrating network (IPN) cefixime microspheres based on chitosan, its grafted copolymer, and hydrolyzed grafted copolymer were prepared by precipitation and .... hydrochloric acid, glutaradehyde, acetic acid and.

  10. Chitosan Modification and Pharmaceutical/Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Jiali Zhang

    2010-06-01

    Full Text Available Chitosan has received much attention as a functional biopolymer for diverse applications, especially in pharmaceutics and medicine. Our recent efforts focused on the chemical and biological modification of chitosan in order to increase its solubility in aqueous solutions and absorbability in the in vivo system, thus for a better use of chitosan. This review summarizes chitosan modification and its pharmaceutical/biomedical applications based on our achievements as well as the domestic and overseas developments: (1 enzymatic preparation of low molecular weight chitosans/chitooligosaccharides with their hypocholesterolemic and immuno-modulating effects; (2 the effects of chitin, chitosan and their derivatives on blood hemostasis; and (3 synthesis of a non-toxic ion ligand—D-Glucosaminic acid from Oxidation of D-Glucosamine for cancer and diabetes therapy.

  11. Nanostructured 3D constructs based on chitosan and chondroitin sulphate multilayers for cartilage tissue engineering.

    Directory of Open Access Journals (Sweden)

    Joana M Silva

    Full Text Available Nanostructured three-dimensional constructs combining layer-by-layer technology (LbL and template leaching were processed and evaluated as possible support structures for cartilage tissue engineering. Multilayered constructs were formed by depositing the polyelectrolytes chitosan (CHT and chondroitin sulphate (CS on either bidimensional glass surfaces or 3D packet of paraffin spheres. 2D CHT/CS multi-layered constructs proved to support the attachment and proliferation of bovine chondrocytes (BCH. The technology was transposed to 3D level and CHT/CS multi-layered hierarchical scaffolds were retrieved after paraffin leaching. The obtained nanostructured 3D constructs had a high porosity and water uptake capacity of about 300%. Dynamical mechanical analysis (DMA showed the viscoelastic nature of the scaffolds. Cellular tests were performed with the culture of BCH and multipotent bone marrow derived stromal cells (hMSCs up to 21 days in chondrogenic differentiation media. Together with scanning electronic microscopy analysis, viability tests and DNA quantification, our results clearly showed that cells attached, proliferated and were metabolically active over the entire scaffold. Cartilaginous extracellular matrix (ECM formation was further assessed and results showed that GAG secretion occurred indicating the maintenance of the chondrogenic phenotype and the chondrogenic differentiation of hMSCs.

  12. Nanostructured 3D constructs based on chitosan and chondroitin sulphate multilayers for cartilage tissue engineering.

    Science.gov (United States)

    Silva, Joana M; Georgi, Nicole; Costa, Rui; Sher, Praveen; Reis, Rui L; Van Blitterswijk, Clemens A; Karperien, Marcel; Mano, João F

    2013-01-01

    Nanostructured three-dimensional constructs combining layer-by-layer technology (LbL) and template leaching were processed and evaluated as possible support structures for cartilage tissue engineering. Multilayered constructs were formed by depositing the polyelectrolytes chitosan (CHT) and chondroitin sulphate (CS) on either bidimensional glass surfaces or 3D packet of paraffin spheres. 2D CHT/CS multi-layered constructs proved to support the attachment and proliferation of bovine chondrocytes (BCH). The technology was transposed to 3D level and CHT/CS multi-layered hierarchical scaffolds were retrieved after paraffin leaching. The obtained nanostructured 3D constructs had a high porosity and water uptake capacity of about 300%. Dynamical mechanical analysis (DMA) showed the viscoelastic nature of the scaffolds. Cellular tests were performed with the culture of BCH and multipotent bone marrow derived stromal cells (hMSCs) up to 21 days in chondrogenic differentiation media. Together with scanning electronic microscopy analysis, viability tests and DNA quantification, our results clearly showed that cells attached, proliferated and were metabolically active over the entire scaffold. Cartilaginous extracellular matrix (ECM) formation was further assessed and results showed that GAG secretion occurred indicating the maintenance of the chondrogenic phenotype and the chondrogenic differentiation of hMSCs.

  13. Comparison of Hydrogels Based on Commercial Chitosan and Beetosan® Containing Nanosilver

    Directory of Open Access Journals (Sweden)

    Bożena Tyliszczak

    2016-12-01

    Full Text Available Two series of hydrogels on the basis of commercial chitosan and chitosan derived from naturally expired honeybees are presented in this article. Sorption capacity and behavior of both kind of materials in simulated body fluids such as Ringer’s liquid or artificial saliva have been determined and compared. Presence of functional groups in synthesized materials have been determined by means of FT-IR spectroscopy. Structure and homogeneity of their surface have been defined using Scanning Electron Microscopy. Based on the conducted research, it can be stated that both chitosan and Beetosan® hydrogels have very similar characteristics. It is worth noting that synthesis of such materials is environmentally friendly and leads to obtaining polymers that can be used for biomedical applications. Tested materials are characterized by low sorption capacity and do not have a negative impact on simulated body fluids. Moreover, based on the cell lines studies, it can be stated that Beetosan® hydrogels have a negative influence on cells of cancerous origin and, what is important, significantly less adverse effects on fibroblasts.

  14. Swelling characteristics of acrylic acid polyelectrolyte hydrogel in a dc electric field

    Science.gov (United States)

    Jabbari, Esmaiel; Tavakoli, Javad; Sarvestani, Alireza S.

    2007-10-01

    A novel application of environmentally sensitive polyelectrolytes is in the fabrication of BioMEMS devices as sensors and actuators. Poly(acrylic acid) (PAA) gels are anionic polyelectrolyte networks that exhibit volume expansion in aqueous physiological environments. When an electric field is applied to PAA polyelectrolyte gels, the fixed anionic polyelectrolyte charges and the requirement of electro-neutrality in the network generate an osmotic pressure, above that in the absence of the electric field, to expand the network. The objective of this research was to investigate the effect of an externally applied dc electric field on the volume expansion of the PAA polyelectrolyte gel in a simulated physiological solution of phosphate buffer saline (PBS). For swelling studies in the electric field, two platinum-coated plates, as electrodes, were wrapped in a polyethylene sheet to protect the plates from corrosion and placed vertically in a vessel filled with PBS. The plates were placed on a rail such that the distance between the two plates could be adjusted. The PAA gel was synthesized by free radical crosslinking of acrylic acid monomer with ethylene glycol dimethacrylate (EGDMA) crosslinker. Our results demonstrate that volume expansion depends on the intensity of the electric field, the PAA network density, network homogeneity, and the position of the gel in the field relative to positive/negative electrodes. Our model predictions for PAA volume expansion, based on the dilute electrolyte concentration in the gel network, is in excellent agreement with the experimental findings in the high-electric-field regime (250-300 Newton/Coulomb).

  15. 166Ho-chitosan as a radiation synovectomy agent - biocompatibility study of 166Ho-chitosan in rabbits

    International Nuclear Information System (INIS)

    Kim, Sug Jun; Lee, Soo Yong; Jeon, Dae Geun; Lee Jong Seok

    1997-01-01

    Radiation synovectomy is a noninvasive therapy that has been investigated as an alternative to surgical synovectomy. It is been successfully employed in the treatment of synovitis in rheumatoid arthrits and other inflammatory arthropathies. We developed the 166 Ho-chitosan complex for possible use as a radiation synovectomy agent. Holmium is the more practical isotope based on its higher radioactivity and logner half-life. And isotope based on its higher radioactivity and logner half-life. And chitosan is ideal and suitable particles based on its soluble and biodegradable characteristics. So we investigated the biocompatibility of the 166 Ho-chitosan complex to evaluated the suitability as a radiation synovectomy agent. In this study, we performed in vivo and in vitro stability test and biodistribution test. Our results indicate that 166 Ho-chitosan may be an effective radiopharmaceutical for radiation synovectomy. (author). 30 refs., 7 tabs

  16. Resistance of poly(ethylene oxide)-silane monolayers to the growth of polyelectrolyte multilayers.

    Science.gov (United States)

    Buron, Cédric C; Callegari, Vincent; Nysten, Bernard; Jonas, Alain M

    2007-09-11

    The ability of poly(ethylene oxide)-silane (PEO-silane) monolayers grafted onto silicon surfaces to resist the growth of polyelectrolyte multilayers under various pH conditions is assessed for different pairs of polyelectrolytes of varying molar mass. For acidic conditions (pH 3), the PEO-silane monolayers exhibit good polyelectrolyte repellency provided the polyelectrolytes bear no moieties that are able to form hydrogen bonds with the ether groups of the PEO chains. At basic pH, PEO-silane monolayers undergo substantial hydrolysis leading to the formation of negatively charged defects in the monolayers, which then play the role of adsorption sites for the polycation. Once the polycation is adsorbed, multilayer growth ensues. Because this is defect-driven growth, the multilayer is not continuous and is made of blobs or an open network of adsorbed strands. For such conditions, the molar mass of the polyelectrolyte plays a key role, with polyelectrolyte chains of larger molar mass adsorbing on a larger number of defects, resulting in stronger anchoring of the polyelectrolyte complex on the surfaces and faster subsequent growth of the multilayer. For polyelectrolytes of sufficiently low molar mass at pH 9, the growth of the multilayer can nevertheless be prevented for as much as five cycles of deposition.

  17. Fabrication and evaluation of a sustained-release chitosan-based scaffold embedded with PLGA microspheres.

    Science.gov (United States)

    Song, Kedong; Liu, Yingchao; Macedo, Hugo M; Jiang, Lili; Li, Chao; Mei, Guanyu; Liu, Tianqing

    2013-04-01

    Nutrient depletion within three-dimensional (3D) scaffolds is one of the major hurdles in the use of this technology to grow cells for applications in tissue engineering. In order to help in addressing it, we herein propose to use the controlled release of encapsulated nutrients within polymer microspheres into chitosan-based 3D scaffolds, wherein the microspheres are embedded. This method has allowed maintaining a stable concentration of nutrients within the scaffolds over the long term. The polymer microspheres were prepared using multiple emulsions (w/o/w), in which bovine serum albumin (BSA) and poly (lactic-co-glycolic) acid (PLGA) were regarded as the protein pattern and the exoperidium material, respectively. These were then mixed with a chitosan solution in order to form the scaffolds by cryo-desiccation. The release of BSA, entrapped within the embedded microspheres, was monitored with time using a BCA kit. The morphology and structure of the PLGA microspheres containing BSA before and after embedding within the scaffold were observed under a scanning electron microscope (SEM). These had a round shape with diameters in the range of 27-55 μm, whereas the chitosan-based scaffolds had a uniform porous structure with the microspheres uniformly dispersed within their 3D structure and without any morphological change. In addition, the porosity, water absorption and degradation rate at 37 °C in an aqueous environment of 1% chitosan-based scaffolds were (92.99±2.51) %, (89.66±0.66) % and (73.77±3.21) %, respectively. The studies of BSA release from the embedded microspheres have shown a sustained and cumulative tendency with little initial burst, with (20.24±0.83) % of the initial amount released after 168 h (an average rate of 0.12%/h). The protein concentration within the chitosan-based scaffolds after 168 h was found to be (11.44±1.81)×10(-2) mg/mL. This novel chitosan-based scaffold embedded with PLGA microspheres has proven to be a promising technique

  18. Electrostatic self-assembly in polyelectrolyte-neutral block copolymers and oppositely charged surfactant solutions

    International Nuclear Information System (INIS)

    Berret, J.-F.Jean-Francois; Oberdisse, Julian

    2004-01-01

    We report on small-angle neutron scattering (SANS) of colloidal complexes resulting from the electrostatic self-assembly of polyelectrolyte-neutral copolymers and oppositely charged surfactants. The polymers are double hydrophilic block copolymers of low molecular weight (between 5000 and 50 000 g/mol). One block is a polyelectrolyte chain, which can be either positively or negatively charged, whereas the second block is neutral and in good solvent conditions. In aqueous solutions, surfactants with an opposite charge to that of the polyelectrolyte interact strongly with these copolymers. The two species associate into stable 100 nm-colloidal complexes which exhibit a core-shell microstructure. For different polymer/surfactant couples, we have shown that the core is constituted from densely packed surfactant micelles connected by the polyelectrolyte chains. The outer part of the complex is a corona formed by the neutral soluble chains. Using a model of aggregation based on a Monte-Carlo algorithm, we have simulated the internal structure of the aggregates. The model assumes spherical cages containing one to several hundreds of micelles in a closely packed state. The agreement between the model and the data is remarkable

  19. Laccase-based biocathodes: Comparison of chitosan and Nafion.

    Science.gov (United States)

    El Ichi-Ribault, S; Zebda, A; Laaroussi, A; Reverdy-Bruas, N; Chaussy, D; Belgacem, M N; Suherman, A L; Cinquin, P; Martin, D K

    2016-09-21

    Chitosan and Nafion(®) are both reported as interesting polymers to be integrated into the structure of 3D electrodes for biofuel cells. Their advantage is mainly related to their chemical properties, which have a positive impact on the stability of electrodes such as the laccase-based biocathode. For optimal function in implantable applications the biocathode requires coating with a biocompatible semi-permeable membrane that is designed to prevent the loss of enzyme activity and to protect the structure of the biocathode. Since such membranes are integrated into the electrodes ultimately implanted, they must be fully characterized to demonstrate that there is no interference with the performance of the electrode. In the present study, we demonstrate that chitosan provides superior stability compared with Nafion(®) and should be considered as an optimum solution to enhance the biocompatibility and the stability of 3D bioelectrodes. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Polyelectrolyte coatings prevent interferences from charged nanoparticles in SPME speciation analysis

    International Nuclear Information System (INIS)

    Zielińska, Katarzyna; Leeuwen, Herman P. van

    2014-01-01

    Highlights: • For the first time SPME fiber is coated with polyelectrolyte layer. • Sorption of nanoparticles on the solid phase surface is prevented. • Polyelectrolyte-modified fiber enables extraction of free analyte in presence of sorbing nanoparticles. - Abstract: In this work we present a new approach for protection of the fiber in solid phase microextraction (SPME) from interfering charged particles present in the sample medium. It involves coating of commercial poly(dimethylsiloxane) extraction phase with polyelectrolyte layer composed of poly(diallyldimethylammonium chloride), and poly(sodium 4-styrenesulfonate). The modified fiber provides reproducible, convenient and fast extraction capabilities toward the model analyte, triclosan (TCS). A negatively charged polyelectrolyte coating prevents sorbing oxidic nanoparticles from both partitioning into the PDMS phase and aggregation at its surface. The results for the TCS/nanoparticle sample show that the polyelectrolyte layer-modified solid phase extracts just the free form of the organic compound and enables dynamic speciation analysis of the nanoparticulate target analyte complex

  1. Architecture, Assembly, and Emerging Applications of Branched Functional Polyelectrolytes and Poly(ionic liquid)s.

    Science.gov (United States)

    Xu, Weinan; Ledin, Petr A; Shevchenko, Valery V; Tsukruk, Vladimir V

    2015-06-17

    Branched polyelectrolytes with cylindrical brush, dendritic, hyperbranched, grafted, and star architectures bearing ionizable functional groups possess complex and unique assembly behavior in solution at surfaces and interfaces as compared to their linear counterparts. This review summarizes the recent developments in the introduction of various architectures and understanding of the assembly behavior of branched polyelectrolytes with a focus on functional polyelectrolytes and poly(ionic liquid)s with responsive properties. The branched polyelectrolytes and poly(ionic liquid)s interact electrostatically with small molecules, linear polyelectrolytes, or other branched polyelectrolytes to form assemblies of hybrid nanoparticles, multilayer thin films, responsive microcapsules, and ion-conductive membranes. The branched structures lead to unconventional assemblies and complex hierarchical structures with responsive properties as summarized in this review. Finally, we discuss prospectives for emerging applications of branched polyelectrolytes and poly(ionic liquid)s for energy harvesting and storage, controlled delivery, chemical microreactors, adaptive surfaces, and ion-exchange membranes.

  2. Physiochemical and optical properties of chitosan based graphene oxide bionanocomposite.

    Science.gov (United States)

    Kumar, Santosh; Koh, Joonseok

    2014-09-01

    In the present investigation an ecofriendly approach and a simple homogeneous solution casting method led to the development of biodegradable chitosan/graphene oxide bionanocomposites. The formation of bionanocomposite was confirmed by UV-vis, FT-IR, Raman spectroscopy, XRD, and further evaluated by thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The circular dichroism (CD) study of chitosan/graphene oxide revealed that the intensity of the negative transition band at wavelength of 200-222 nm decreased with the different pH of chitosan/graphene oxide solutions. It was also found that the pH conditions affect the interaction between chitosan and graphene oxide. Optical properties of chitosan/graphene oxide are evaluated by photoluminescence (PL) spectroscopy which showed blue shift at excitation wavelength of 255 nm compared to graphene oxide. These results strongly suggest that the bionanocomposite materials may open new vistas in biotechnological, biosensor and biomedical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Organic and Inorganic Dyes in Polyelectrolyte Multilayer Films

    Science.gov (United States)

    Ball, Vincent

    2012-01-01

    Polyelectrolyte multilayer films are a versatile functionalization method of surfaces and rely on the alternated adsorption of oppositely charged species. Among such species, charged dyes can also be alternated with oppositely charged polymers, which is challenging from a fundamental point of view, because polyelectrolytes require a minimal number of charges, whereas even monovalent dyes can be incorporated during the alternated adsorption process. We will not only focus on organic dyes but also on their inorganic counterparts and on metal complexes. Such films offer plenty of possible applications in dye sensitized solar cells. In addition, dyes are massively used in the textile industry and in histology to stain textile fibers or tissues. However, the excess of non bound dyes poses serious environmental problems. It is hence of the highest interest to design materials able to adsorb such dyes in an almost irreversible manner. Polyelectrolyte multilayer films, owing to their ion exchange behavior can be useful for such a task allowing for impressive overconcentration of dyes with respect to the dye in solution. The actual state of knowledge of the interactions between charged dyes and adsorbed polyelectrolytes is the focus of this review article.

  4. Light-Addressed Electrodeposition of Enzyme-Entrapped Chitosan Membranes for Multiplexed Enzyme-Based Bioassays Using a Digital Micromirror Device

    Directory of Open Access Journals (Sweden)

    Yeu-Long Jiang

    2013-08-01

    Full Text Available This paper describes a light-addressed electrolytic system used to perform an electrodeposition of enzyme-entrapped chitosan membranes for multiplexed enzyme-based bioassays using a digital micromirror device (DMD. In this system, a patterned light illumination is projected onto a photoconductive substrate serving as a photo-cathode to electrolytically produce hydroxide ions, which leads to an increased pH gradient. The high pH generated at the cathode can cause a local gelation of chitosan through sol-gel transition. By controlling the illumination pattern on the DMD, a light-addressed electrodeposition of chitosan membranes with different shapes and sizes, as well as multiplexed micropatterning, was performed. The effect of the illumination time of the light pattern on the dimensional resolution of chitosan membrane formation was examined experimentally. Moreover, multiplexed enzyme-based bioassay of enzyme-entrapped chitosan membranes was also successfully demonstrated through the electrodeposition of the chitosan membranes with various shapes/sizes and entrapping different enzymes. As a model experiment, glucose and ethanol were simultaneously detected in a single detection chamber without cross-talk using shape-coded chitosan membranes entrapped with glucose oxidase (GOX, peroxidase (POD, and Amplex Red (AmR or alcohol oxidase (AOX, POD, and AmR by using same fluorescence indicator (AmR.

  5. Polyelectrolyte surfactant aggregates and their deposition on macroscopic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Voisin, David

    2002-07-01

    Oppositely charged surfactant and polyelectrolyte are present in hair shampoos and conditioners, together with particles (e.g. anti-dandruff agents for scalp) and droplets (e.g. silicone oil for the hair). These are normally formulated at high surfactant concentrations, beyond the flocculation region for the polyelectrolyte concentration used. However, on dilution with water, during application, flocs are formed which carry the particles and droplets to the scalp and hair. The addition of an anionic surfactant to an aqueous solution of cationic polyelectrolyte, at a given concentration, can lead to the formation of polyelectrolyte-surfactant 'particles', in which the surfactant 'binds' to the polyelectrolyte. This occurs from the critical association concentration (CAC), up to the surfactant concentration corresponding to maximum binding. Within this range of surfactant concentrations, the surfactant bound to the polyelectrolyte is thought to associate to form what might be termed 'internal micelles'. Each polyelectrolyte-surfactant particle in the region of the CAC, and just beyond, contains many polyelectrolyte chains, held together essentially by micelle bridges. These particles, however, remain net positively charged, and therefore stable. At the other end of the binding range of the surfactant, so many internal micelles are present that the polymer-surfactant particles are now net negatively charged. Indeed binding stops since no further micelles can be accommodated. Again, the particles are stable. However, there exists a range of surfactant concentrations, lying within the range referred to above, where the net charge is reduced sufficiently that the polymer-surfactant particles will flocculate to form much larger structures. The onset of this second range might be termed the 'critical flocculation concentration' (CFC), and the end, the 'critical stabilisation concentration' (CSC). In this work, the CFC and

  6. Thermoresponsive behavior of chitosan-g-N-isopropylacrylamide copolymer solutions.

    Science.gov (United States)

    Recillas, Maricarmen; Silva, Luisa L; Peniche, Carlos; Goycoolea, Francisco M; Rinaudo, Marguerite; Argüelles-Monal, Waldo M

    2009-06-08

    Chitosan-g-N-isopropylacrylamide (NIPAm) water-soluble copolymers were synthesized and characterized by FTIR and (1)H NMR spectroscopies combined with conductometric and potentiometric titrations. Their thermoresponsive, fully reversible, behavior in aqueous solutions was characterized by means of microcalorimetry and rheology. During heating of copolymer solutions there is a well-known endothermic effect, which coincides with a marked increase in G' and a moderate decrement in G'' due to the formation of a hydrophobic network at the expense of the net amount of sol fraction. It was also found that a straight dependence between the values of G' above the LCST and the enthalpies associated with the transition reflecting that the connectivity in the gel network is governed by the net number of formed enthalpic-hydrophobic driven-junctions. Both the LCST and the enthalpy change vary with the ionic strength of copolymer solutions, but no dependence was found with the neutralization of the polyelectrolyte chain.

  7. Polyelectrolyte layer-by-layer deposition in cylindrical nanopores.

    Science.gov (United States)

    Lazzara, Thomas D; Lau, K H Aaron; Abou-Kandil, Ahmed I; Caminade, Anne-Marie; Majoral, Jean-Pierre; Knoll, Wolfgang

    2010-07-27

    Layer-by-layer (LbL) deposition of polyelectrolytes within nanopores in terms of the pore size and the ionic strength was experimentally studied. Anodic aluminum oxide (AAO) membranes, which have aligned, cylindrical, nonintersecting pores, were used as a model nanoporous system. Furthermore, the AAO membranes were also employed as planar optical waveguides to enable in situ monitoring of the LbL process within the nanopores by optical waveguide spectroscopy (OWS). Structurally well-defined N,N-disubstituted hydrazine phosphorus-containing dendrimers of the fourth generation, with peripherally charged groups and diameters of approximately 7 nm, were used as the model polyelectrolytes. The pore diameter of the AAO was varied between 30-116 nm and the ionic strength was varied over 3 orders of magnitude. The dependence of the deposited layer thickness on ionic strength within the nanopores is found to be significantly stronger than LbL deposition on a planar surface. Furthermore, deposition within the nanopores can become inhibited even if the pore diameter is much larger than the diameter of the G4-polyelectrolyte, or if the screening length is insignificant relative to the dendrimer diameter at high ionic strengths. Our results will aid in the template preparation of polyelectrolyte multilayer nanotubes, and our experimental approach may be useful for investigating theories regarding the partitioning of nano-objects within nanopores where electrostatic interactions are dominant. Furthermore, we show that the enhanced ionic strength dependence of polyelectrolyte transport within the nanopores can be used to selectively deposit a LbL multilayer atop a nanoporous substrate.

  8. Salt Effect on Osmotic Pressure of Polyelectrolyte Solutions: Simulation Study

    Directory of Open Access Journals (Sweden)

    Jan-Michael Y. Carrillo

    2014-07-01

    Full Text Available Abstract: We present results of the hybrid Monte Carlo/molecular dynamics simulations of the osmotic pressure of salt solutions of polyelectrolytes. In our simulations, we used a coarse-grained representation of polyelectrolyte chains, counterions and salt ions. During simulation runs, we alternate Monte Carlo and molecular dynamics simulation steps. Monte Carlo steps were used to perform small ion exchange between simulation box containing salt ions (salt reservoir and simulation box with polyelectrolyte chains, counterions and salt ions (polyelectrolyte solution. This allowed us to model Donnan equilibrium and partitioning of salt and counterions across membrane impermeable to polyelectrolyte chains. Our simulations have shown that the main contribution to the system osmotic pressure is due to salt ions and osmotically active counterions. The fraction of the condensed (osmotically inactive counterions first increases with decreases in the solution ionic strength then it saturates. The reduced value of the system osmotic coefficient is a universal function of the ratio of the concentration of osmotically active counterions and salt concentration in salt reservoir. Simulation results are in a very good agreement with osmotic pressure measurements in sodium polystyrene sulfonate, DNA, polyacrylic acid, sodium polyanetholesulfonic acid, polyvinylbenzoic acid, and polydiallyldimethylammonium chloride solutions.

  9. Surface and permeability properties of membranes from polyelectrolyte complexes and polyelectrolyte surfactant complexes

    Czech Academy of Sciences Publication Activity Database

    Schwarz, H. H.; Lukáš, Jaromír; Richau, K.

    2003-01-01

    Roč. 218, 1-2 (2003), s. 1-9 ISSN 0376-7388 R&D Projects: GA AV ČR KSK4050111 Keywords : polyelectrolyte complex membranes * pervaporation * dehydration of organics Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.081, year: 2003

  10. Formulation of chitosan-based ciprofloxacin and diclofenac film for ...

    African Journals Online (AJOL)

    Purpose: This study was designed to develop and evaluate chitosan films containing ciprofloxacin and diclofenac sodium for the topical treatment of periodontitis. Methods: Chitosan films containing ciprofloxacin alone and in combination with diclofenac sodium were prepared by solvent casting method. Some of the ...

  11. 3D composites based on the blends of chitosan and collagen with the addition of hyaluronic acid.

    Science.gov (United States)

    Sionkowska, Alina; Kaczmarek, Beata; Lewandowska, Katarzyna; Grabska, Sylwia; Pokrywczyńska, Marta; Kloskowski, Tomasz; Drewa, Tomasz

    2016-08-01

    3D porous composites based on blends of chitosan, collagen and hyaluronic acid were obtained through the lyophilization process. Mechanical properties, swelling behavior and thermal stability of the blends were studied. Moreover, SEM images were taken and the structure of the blends was studied. Biological properties of the materials obtained were investigated by analyzing of proliferation rate of fibroblast cells incubated with biomaterial extract using MTT assay (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide). The results showed that the properties of 3D composites based on the blends of chitosan and collagen were altered after the addition 1%, 2% and 5% of hyaluronic acid. Mechanical properties and thermal stability of chitosan/collagen blends were improved in the presence of hyaluronic acid in the composite. New 3D materials based on the blends of chitosan, collagen and hyaluronic acid were non-toxic and did not significantly affect cell morphology. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Carrier-inside-carrier: polyelectrolyte microcapsules as reservoir for drug-loaded liposomes.

    Science.gov (United States)

    Maniti, Ofelia; Rebaud, Samuel; Sarkis, Joe; Jia, Yi; Zhao, Jie; Marcillat, Olivier; Granjon, Thierry; Blum, Loïc; Li, Junbai; Girard-Egrot, Agnès

    2015-01-01

    Conventional liposomes have a short life-time in blood, unless they are protected by a polymer envelope, most often polyethylene glycol. However, these stabilizing polymers frequently interfere with cellular uptake, impede liposome-membrane fusion and inhibit escape of liposome content from endosomes. To overcome such drawbacks, polymer-based systems as carriers for liposomes are currently developed. Conforming to this approach, we propose a new and convenient method for embedding small size liposomes, 30-100 nm, inside porous calcium carbonate microparticles. These microparticles served as templates for deposition of various polyelectrolytes to form a protective shell. The carbonate particles were then dissolved to yield hollow polyelectrolyte microcapsules. The main advantage of using this method for liposome encapsulation is that carbonate particles can serve as a sacrificial template for deposition of virtually any polyelectrolyte. By carefully choosing the shell composition, bioavailability of the liposomes and of the encapsulated drug can be modulated to respond to biological requirements and to improve drug delivery to the cytoplasm and avoid endosomal escape.

  13. Chitosan-based coatings in the prevention of intravascular catheter-associated infections.

    Science.gov (United States)

    Mendoza, Gracia; Regiel-Futyra, Anna; Tamayo, Alejandra; Monzon, Marta; Irusta, Silvia; de Gregorio, Miguel Angel; Kyzioł, Agnieszka; Arruebo, Manuel

    2018-01-01

    Central venous access devices play an important role in patients with prolonged intravenous administration requirements. In the last years, the coating of these devices with bactericidal compounds has emerged as a potential tool to prevent bacterial colonization. Our study describes the modification of 3D-printed reservoirs and silicone-based catheters, mimicking central venous access devices, through different approaches including their coating with the well known biocompatible and bactericidal polymer chitosan, with the anionic polysaccharide alginate; also, plasma treated surfaces were included in the study to promote polymer adhesion. The evaluation of the antimicrobial action of those surface modifications compared to that exerted by a model antibiotic (ciprofloxacin) adsorbed on the surface of the devices was carried out. Surface characterization was developed by different methodologies and the bactericidal effects of the different coatings were assayed in an in vitro model of Staphylococcus aureus infection. Our results showed a significant reduction in the reservoir roughness (≤73%) after coating though no changes were observed for coated catheters which was also confirmed by scanning electron microscopy, pointing to the importance of the surface device topography for the successful attachment of the coating and for the subsequent development of bactericidal effects. Furthermore, the single presence of chitosan on the reservoirs was enough to fully inhibit bacterial growth exerting the same efficiency as that showed by the model antibiotic. Importantly, chitosan coating showed low cytotoxicity against human keratinocytes, human lung adenocarcinoma epithelial cells, and murine colon carcinoma cells displaying viability percentages in the range of the control samples (>95%). Chitosan-based coatings are proposed as an effective and promising solution in the prevention of microbial infections associated to medical devices.

  14. Chitosan/alginate based multilayers to control drug release from ophthalmic lens.

    Science.gov (United States)

    Silva, Diana; Pinto, Luís F V; Bozukova, Dimitriya; Santos, Luís F; Serro, Ana Paula; Saramago, Benilde

    2016-11-01

    In this study we investigated the possibility of using layer-by-layer deposition, based in natural polymers (chitosan and alginate), to control the release of different ophthalmic drugs from three types of lens materials: a silicone-based hydrogel recently proposed by our group as drug releasing soft contact lens (SCL) material and two commercially available materials: CI26Y for intraocular lens (IOLs) and Definitive 50 for SCLs. The optimised coating, consisting in one double layer of (alginate - CaCl2)/(chitosan+glyoxal) topped with a final alginate-CaCl2 layer to avoid chitosan degradation by tear fluid proteins, proved to have excellent features to control the release of the anti-inflammatory, diclofenac, while keeping or improving the physical properties of the lenses. The coating leads to a controlled release of diclofenac from SCL and IOL materials for, at least, one week. Due to its high hydrophilicity (water contact angle≈0) and biocompatibility, it should avoid the use of further surface treatments to enhance the useŕs comfort. However, the barrier effect of this coating is specific for diclofenac, giving evidence to the need of optimizing the chemical composition of the layers in view of the desired drug. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Characterizations of Chitosan-Based Polymer Electrolyte Photovoltaic Cells

    International Nuclear Information System (INIS)

    Buraidah, M.H.; Teo, L.P.; Majid, S.R.; Yahya, R.; Taha, R.M.; Arof, A.K.

    2010-01-01

    The membranes 55 wt.% chitosan-45 wt.% NH4I, 33 wt.% chitosan-27 wt.% NH4I-40 wt.% EC, and 27.5 wt.% chitosan-22.5 wt.%?NH4I-50 wt.% buthyl-methyl-imidazolium-iodide (BMII) exhibit conductivity of 3.73 x 10-7, 7.34x10-6, and 3.43x10-5 S cm -1 , respectively, at room temperature. These membranes have been used in the fabrication of solid-state solar cells with configuration ITO/TiO 2 /polymer electrolyte membrane/ITO. It is observed that the short-circuit current density increases with conductivity of the electrolyte. The use of anthocyanin pigment obtained by solvent extraction from black rice and betalain from the callus of Celosia plumosa also helps to increase the short-circuit current.

  16. Chitosan Based Regenerated Cellulose Fibers Functionalized with Plasma and Ultrasound

    Directory of Open Access Journals (Sweden)

    Urška Vrabič Brodnjak

    2018-04-01

    Full Text Available The great potential of regenerated cellulose fibers, which offer excellent possibilities as a matrix for the design of bioactive materials, was the lead for our research. We focused on the surface modification of fibers to improve the sorption properties of regenerated cellulose and biocomposite regenerated cellulose/chitosan fibers, which are on the market. The purpose of our investigation was also the modification of regenerated cellulose fibers with the functionalization by chitosan as a means of obtaining similar properties to biocomposite regenerated cellulose/chitosan fibers on the market. Argon gas plasma was used for fiber surface activation and chitosan adsorption. Ultrasound was also used as a treatment procedure for the surface activation of regenerated cellulose fibers and treatment with chitosan. Analyses have shown that ultrasonic energy or plasma change the accessibility of free functional groups, structure and reactivity, especially in regenerated cellulose fibers. Changes that occurred in the morphology and in the structure of fibers were also reflected in their physical and chemical properties. Consequently, moisture content, sorption properties and water retention improved.

  17. BINDING OF IONIC SURFACTANTS ON OPPOSITELY CHARGED POLYELECTROLYTES OBSERVED BY FLUORESCENCE METHODS

    Institute of Scientific and Technical Information of China (English)

    Zhen Tong; Chao-yang Wang; Bi-ye Ren; Xin-xing Liu; Fang Zeng

    2003-01-01

    Our recent studies concerning the binding of ionic surfactants on oppositely charged polyelectrolytes observed with fluorescence techniques are reviewed. The cationic surfactants cetyltrimethylammonium bromide (CTAB),dodecyltrimethylammonium chloride (DTAC), and nonionic surfactant octaethylene glycol monododecyl ether (C12E8) were allowed to bind on anionic poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS) and its pyrene and/or naphthalene labeled copolymers. The relative excimer emission intensity IE/IM of a cationic probe 1-pyrenemethylamine hydrochloride were chosen to monitor the binding process and the conformation change of surfactant-bound polyelectrolytes. The 1:1aggregation of polyelectrolyte-CTAB with respect to the charge was found as long as the CTAB concentration was slightly higher than its critical aggregation concentration (CAC). The intermolecular NRET indicated that the CTAB-bound polyelectrolytes aggregated together through the hydrophobic interaction between the CTAB tails. However, neither 1:1polyelectrolyte-DTAC aggregation nor intermolecular aggregation of DTAC-bound polyelectrolyte was observed owing to its weaker hydrophobicity of 12 carbon atoms in the tail, which is shorter than that of CTAB. As known from the fluorescence results, nonionic surfactant C12E8 did not bind on the anionic polyelectrolytes, but the presence of PAMPS promoted the micelle formation for C12E8 at the CAC slightly below its critical micelle concentration (CMC). The solid complex of dansyl labeled AMPS copolymer-surfactant exhibited a decrease in local polarity with increasing charge density of the polyelectrolyte or with alkane tail length of the surfactant. SAXS suggested a lamella structure for the AMPS copolymersurfactant solid complexes with a long period of 3.87 nm for CTAB and 3.04 nm for DTAC, respectively.

  18. Synthesis and characterization of poly (lactic acid)/chitosan nanocomposites based on renewable resources as biobased-material

    Science.gov (United States)

    Suryani; Agusnar, H.; Wirjosentono, B.; Rihayat, T.; Salisah, Z.

    2018-01-01

    Biobased becomes one of the new breakthrough in the smart engineering, especially in biomedical applications, such as tissue engineering that serves as a supporting physical structure to trigger the growth of skin tissue. From various studies which had been done, it was known that the optimal Biobased healed wounds or injuries in a relatively short time. In this study, a Biobased natural polymer based e.g Poly(Lactic Acid) (PLA)/Chitosan Nanocomposites was made. PLA was synthesized from saba banana (Musa acuminata) as raw material using Ring-Opening Polymerization (ROP) method. PLA was mixed with Chitosan with Chitosan concentration variations of 1%, 3%, and 5% to form a nanocomposites. The analysis result showed that Chitosan concentration in PLA/Chitosan Nanocomposites sample affected the value of tensile strength. The highest value of tensile strength was obtained on a sample of 100 ml volume with a concentration of 3%, which was 120.396 MPa. The highest percentage of elongation was obtained in 100 ml volume sample with 5% concentration, which was 26.3686%. In the hydrophilicity test, the highest percentage of water absorption was obtained in a 200 ml volume sample with 5% concentration, which was 44.615%. The addition of Chitosan to the sample affected the functional group bonding, where there was a functional group of NH2 at the wave number of 2923.92 cm-1. The sample characteristics based on water absorption indicated that the sample was potentially to be used as Biobased construction material.

  19. Effect of gamma radiation on the mechanical and barrier properties of HEMA grafted chitosan-based films

    International Nuclear Information System (INIS)

    Khan, Avik; Huq, Tanzina; Khan, Ruhul A.; Dussault, Dominic; Salmieri, Stephane; Lacroix, Monique

    2012-01-01

    Chitosan films were prepared by dissolving 1% (w/v) chitosan powder in 2% (w/v) aqueous acetic acid solution. Chitosan films were prepared by solution casting. The values of puncture strength (PS), viscoelasticity coefficient and water vapor permeability (WVP) of the films were found to be 565 N/mm, 35%, and 3.30 g mm/m 2 day kPa, respectively. Chitosan solution was exposed to gamma irradiation (0.1–5 kGy) and it was revealed that PS values were reduced significantly (p≤0.05) after 1 kGy dose and it was not possible to form films after 5 kGy. Monomer, 2-hydroxyethyl methacrylate (HEMA) solution (0.1–1%, w/v) was incorporated into the chitosan solution and the formulation was exposed to gamma irradiation (0.3 kGy). A 0.1% (w/v) HEMA concentration at 0.3 kGy dose was found optimal-based on PS values for chitosan grafting. Then radiation dose (0.1–5 kGy) was optimized for HEMA grafting. The highest PS values (672 N/mm) were found at 0.7 kGy. The WVP of the grafted films improved significantly (p≤0.05) with the rise of radiation dose. - highlights: ► HEMA and Silane monomer were incorporated into the MC-based formulation and films. ► Films were exposed to gamma radiation. ► HEMA containing films showed the highest PS values. ► Surface morphology of the grafted films suggested better appearance.

  20. Tribological behavior of in situ Ag nanoparticles/polyelectrolyte composite molecular deposition films

    International Nuclear Information System (INIS)

    Guo Yanbao; Wang Deguo; Liu Shuhai

    2010-01-01

    Multilayer polyelectrolyte films containing silver ions were obtained by molecular deposition method on a glass plate or a quartz substrate. The in situ Ag nanoparticles were synthesized in the multilayer polyelectrolyte films which were put into fresh NaBH 4 aqueous solution. The structure and surface morphology of composite molecular deposition films were observed by UV-vis spectrophotometer, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Tribological characteristic was investigated by AFM and micro-tribometer. It was found that the in situ Ag nanoparticles/polyelectrolyte composite molecular deposition films have lower coefficient of friction and higher anti-wear life than pure polyelectrolyte molecular deposition films.

  1. Solution dynamics of synthetic and natural polyelectrolytes

    Science.gov (United States)

    Krause, Wendy E.

    Polyelectrolytes are abundant in nature and essential to life, and used extensively in industry. This work discussed two polyelectrolytes: sodium poly(2-acrylamido-2-methylpropanesulfonate) (NaPAMS), synthetic polyelectrolyte, and sodium hyaluronate (NaHA), a glycosaminoglycan. Rheological data of NaPAMS solutions of variable chain length and concentration were reported. A strong dependence of viscosity eta on chain length: eta ˜ M2.4 was found. The comparison of the rheological data with two proposed scaling theories (Dobrynin 1995, Witten 1987) forces the conclusion that neither theory is correct. A possible interpretation of the viscosity data falling between the predictions of the two scaling theories is that some chain rigidity may persist beyond the correlation length. A sample model for the conductivity of semidilute polyelectrolytes with no added salt was presented. The model correctly describes the logarithmic decrease of specific conductance observed for many polyelectrolytes at low concentration (below ca. 10-2M), and is in good agreement with data from NaPAMS solutions. NaHA in phosphate buffered saline behaves as a typical polyelectrolyte in the high-salt limit, as Newtonian viscosities are observed over a wide range of shear rates. There is no evidence of intermolecular hydrogen bonding causing gel formation in NaHA solutions without protein present. The viscosity of 3 mg/mL NaHA was measured in the presence of the selected anti-inflammatory agents. Of the seven additives investigated only (D)-penicillamine significantly altered the rheology of HA. (D)-Penicillamine dramatically reduced the viscosity of HA, probably by disrupting intramolecular hydrogen bonding. The plasma proteins albumin and gamma-globulins bind to HA in solution to form a weak reversible gel. The rheology and osmotic pressure of the simple model for synovial fluid, consisting of 3mg/mL NaHA, 11 mg/mL albumin, and 7 mg/mL gamma-globulins in phosphate buffered saline, were studied

  2. Synthesis, physiochemical and optical properties of chitosan based dye containing naphthalimide group.

    Science.gov (United States)

    Kumar, Santosh; Koh, Joonseok

    2013-04-15

    A new biopolymer dye containing naphthalimide moiety was synthesized by reaction of N-naphthaloyl chitosan with 1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-piperazino-3-quinolinecarboxylic acid. N-naphthaloyl chitosan was synthesized by reaction of chitosan with 4-bromo-1,8-naphthalic anhydride in aqueous media by greener approach. The degree of substitution of chitosan biopolymer dye is 0.55 with a yield of 70%. The synthesized materials were characterized by using UV-vis, (1)H NMR, FTIR, and FT-Raman spectroscopy. Some physical properties and surface morphology were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Optical properties of chitosan biopolymer dye were evaluated by photoluminescence (PL) spectroscopy that showed red shift (λ(em)) peak at 442 nm and 551 nm at excitation wavelength 325 nm in comparison to chitosan. The solubility of chitosan biopolymer dye increased in most of the organic solvents. These results may provide new perspectives in biomedical applications as an optical and sensitive biosensor material. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Screening effects in a polyelectrolyte brush: self-consistent-field theory

    NARCIS (Netherlands)

    Zhulina, E.B.; Klein Wolterink, J.; Borisov, O.V.

    2000-01-01

    We have developed an analytical self-consistent-field (SCF) theory describing conformations of weakly charged polyelectrolyte chains tethered to the solid-liquid interface and immersed in a solution of low molecular weight salt. Depending on the density of grafting of the polyelectrolytes to the

  4. Polyelectrolyte-modified cowpea mosaic virus for the synthesis of gold nanoparticles.

    Science.gov (United States)

    Aljabali, Alaa A A; Evans, David J

    2014-01-01

    Polyelectrolyte surface-modified cowpea mosaic virus (CPMV) can be used for the templated synthesis of narrowly dispersed gold nanoparticles. Cationic polyelectrolyte, poly(allylamine) hydrochloride, is electrostatically bound to the external surface of the virus capsid. The polyelectrolyte-coated CPMV promotes adsorption of aqueous gold hydroxide anionic species, prepared from gold(III) chloride and potassium carbonate, that are easily reduced to form CPMV-templated gold nanoparticles. The process is simple and environmentally benign using only water as solvent at ambient temperature.

  5. Fabrication and evaluation of a sustained-release chitosan-based scaffold embedded with PLGA microspheres

    International Nuclear Information System (INIS)

    Song, Kedong; Liu, Yingchao; Macedo, Hugo M.; Jiang, Lili; Li, Chao; Mei, Guanyu; Liu, Tianqing

    2013-01-01

    Nutrient depletion within three-dimensional (3D) scaffolds is one of the major hurdles in the use of this technology to grow cells for applications in tissue engineering. In order to help in addressing it, we herein propose to use the controlled release of encapsulated nutrients within polymer microspheres into chitosan-based 3D scaffolds, wherein the microspheres are embedded. This method has allowed maintaining a stable concentration of nutrients within the scaffolds over the long term. The polymer microspheres were prepared using multiple emulsions (w/o/w), in which bovine serum albumin (BSA) and poly (lactic-co-glycolic) acid (PLGA) were regarded as the protein pattern and the exoperidium material, respectively. These were then mixed with a chitosan solution in order to form the scaffolds by cryo-desiccation. The release of BSA, entrapped within the embedded microspheres, was monitored with time using a BCA kit. The morphology and structure of the PLGA microspheres containing BSA before and after embedding within the scaffold were observed under a scanning electron microscope (SEM). These had a round shape with diameters in the range of 27–55 μm, whereas the chitosan-based scaffolds had a uniform porous structure with the microspheres uniformly dispersed within their 3D structure and without any morphological change. In addition, the porosity, water absorption and degradation rate at 37 °C in an aqueous environment of 1% chitosan-based scaffolds were (92.99 ± 2.51) %, (89.66 ± 0.66) % and (73.77 ± 3.21) %, respectively. The studies of BSA release from the embedded microspheres have shown a sustained and cumulative tendency with little initial burst, with (20.24 ± 0.83) % of the initial amount released after 168 h (an average rate of 0.12%/h). The protein concentration within the chitosan-based scaffolds after 168 h was found to be (11.44 ± 1.81) × 10 −2 mg/mL. This novel chitosan-based scaffold embedded with PLGA microspheres has proven to be a

  6. Fabrication and evaluation of a sustained-release chitosan-based scaffold embedded with PLGA microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kedong, E-mail: kedongsong@dlut.edu.cn [Dalian R and D Center for Stem Cell and Tissue Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Liu, Yingchao [Dalian R and D Center for Stem Cell and Tissue Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Macedo, Hugo M. [Biological Systems Engineering Laboratory, Department of Chemical Engineering, Department of Chemical Engineering, South Kensington Campus, London SW7 2AZ (United Kingdom); Jiang, Lili; Li, Chao; Mei, Guanyu [Dalian R and D Center for Stem Cell and Tissue Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Liu, Tianqing, E-mail: liutq@dlut.edu.cn [Dalian R and D Center for Stem Cell and Tissue Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)

    2013-04-01

    Nutrient depletion within three-dimensional (3D) scaffolds is one of the major hurdles in the use of this technology to grow cells for applications in tissue engineering. In order to help in addressing it, we herein propose to use the controlled release of encapsulated nutrients within polymer microspheres into chitosan-based 3D scaffolds, wherein the microspheres are embedded. This method has allowed maintaining a stable concentration of nutrients within the scaffolds over the long term. The polymer microspheres were prepared using multiple emulsions (w/o/w), in which bovine serum albumin (BSA) and poly (lactic-co-glycolic) acid (PLGA) were regarded as the protein pattern and the exoperidium material, respectively. These were then mixed with a chitosan solution in order to form the scaffolds by cryo-desiccation. The release of BSA, entrapped within the embedded microspheres, was monitored with time using a BCA kit. The morphology and structure of the PLGA microspheres containing BSA before and after embedding within the scaffold were observed under a scanning electron microscope (SEM). These had a round shape with diameters in the range of 27–55 μm, whereas the chitosan-based scaffolds had a uniform porous structure with the microspheres uniformly dispersed within their 3D structure and without any morphological change. In addition, the porosity, water absorption and degradation rate at 37 °C in an aqueous environment of 1% chitosan-based scaffolds were (92.99 ± 2.51) %, (89.66 ± 0.66) % and (73.77 ± 3.21) %, respectively. The studies of BSA release from the embedded microspheres have shown a sustained and cumulative tendency with little initial burst, with (20.24 ± 0.83) % of the initial amount released after 168 h (an average rate of 0.12%/h). The protein concentration within the chitosan-based scaffolds after 168 h was found to be (11.44 ± 1.81) × 10{sup −2} mg/mL. This novel chitosan-based scaffold embedded with PLGA microspheres has proven to be a

  7. Static and ultrafast optical properties of nanolayered composites. Gold nanoparticles embedded in polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Kiel, Mareike

    2012-08-16

    In the course of this thesis gold nanoparticle/polyelectrolyte multilayer structures were prepared, characterized, and investigated according to their static and ultrafast optical properties. Using the dip-coating or spin-coating layer-by-layer deposition method, gold-nanoparticle layers were embedded in a polyelectrolyte environment with high structural perfection. Typical structures exhibit four repetition units, each consisting of one gold-particle layer and ten double layers of polyelectrolyte (cationic+anionic polyelectrolyte). The structures were characterized by X-ray reflectivity measurements, which reveal Bragg peaks up to the seventh order, evidencing the high stratification of the particle layers. In the same measurements pronounced Kiessig fringes were observed, which indicate a low global roughness of the samples. Atomic force microscopy (AFM) images verified this low roughness, which results from the high smoothing capabilities of polyelectrolyte layers. This smoothing effect facilitates the fabrication of stratified nanoparticle/polyelectrolyte multilayer structures, which were nicely illustrated in a transmission electron microscopy image. The samples' optical properties were investigated by static spectroscopic measurements in the visible and UV range. The measurements revealed a frequency shift of the reflectance and of the plasmon absorption band, depending on the thickness of the polyelectrolyte layers that cover a nanoparticle layer. When the covering layer becomes thicker than the particle interaction range, the absorption spectrum becomes independent of the polymer thickness. However, the reflectance spectrum continues shifting to lower frequencies (even for large thicknesses). The range of plasmon interaction was determined to be in the order of the particle diameter for 10 nm, 20 nm, and 150 nm particles. The transient broadband complex dielectric function of a multilayer structure was determined experimentally by ultrafast pump

  8. Single step synthesis of chitin/chitosan-based graphene oxide–ZnO hybrid composites for better electrical conductivity and optical properties

    International Nuclear Information System (INIS)

    Anandhavelu, S.; Thambidurai, S.

    2013-01-01

    Highlights: ► UV absorption at 260–360 nm confirmed strong binding of ZnO with chitosan–GO sheets. ► Chitin-based GO–ZnO shows higher electrical conductivity than chitosan-based GO–ZnO. ► Chitin-based GO–ZnO will useful in sensing, catalysis and energy storage applications. -- Abstract: We synthesized two composites/hybrid composites with a graphene oxide (GO)/mixed GO–ZnO filler using either a chitin or a chitosan matrix. Fourier transform infrared spectroscopy analysis confirmed that chitin had been converted to chitosan during matrix fabrication because only chitosan, ZnO and GO were shown to be present in the composites/hybrid composites. Raman spectroscopy indicated the display of D and G bands at 1345 cm −1 and 1584 cm −1 , respectively. UV absorption peaks appeared at 260–360 nm and 201 nm in both hybrid composites, which indicate a strong binding of ZnO within the chitosan–GO sheets. High resolution scanning electron microscopy and atomic force microscopy studies demonstrated that on a molecular scale ZnO was well dispersed in the hybrid composites. Impedance spectroscopy and a four-probe resistivity method were used for room temperature electrical conductivity measurements. The electrical conductivity of the chitin-based GO–ZnO hybrid composites was estimated to be ∼5.94 × 10 6 S/cm and was greater than that of the chitosan-based GO–ZnO hybrid composite (∼4.13 × 10 6 S/cm). The chitin-based GO–ZnO hybrid composite had a higher optical band gap (3.4 eV) than the chitosan-based GO–ZnO hybrid composite (3.0 eV). The current–voltage measurement showed that electrical sheets resistance of the chitosan-based composites decreased with formation of ZnO

  9. Comparison of chitosan nanoparticles and chitosan hydrogels for vaccine delivery

    DEFF Research Database (Denmark)

    Gordon, Sarah; Saupe, Anne; McBurney, Warren

    2008-01-01

    In this work the potential of chitosan nanoparticles (CNP) and thermosensitive chitosan hydrogels as particulate and sustained release vaccine delivery systems was investigated. CNP and chitosan hydrogels were prepared, loaded with the model protein antigen ovalbumin (OVA) and characterised...... of the release of fluorescently-labelled OVA (FITC-OVA) from CNP and chitosan hydrogels in-vitro showed that approximately 50% of the total protein was released from CNP within a period of ten days; release of antigen from chitosan gel occurred in a more sustained manner, with ... released after 10 days. The slow release from gel formulations may be explained by the strong interactions of the protein with chitosan. While OVA-loaded CNP showed no significant immunogenicity, formulations of OVA in chitosan gel were able to stimulate both cell-mediated and humoral immunity in-vivo....

  10. Silver nanoparticle-loaded chitosan-starch based films: Fabrication and evaluation of tensile, barrier and antimicrobial properties

    International Nuclear Information System (INIS)

    Yoksan, Rangrong; Chirachanchai, Suwabun

    2010-01-01

    The fabrication of silver nanoparticles was accomplished by γ-ray irradiation reduction of silver nitrate in a chitosan solution. The obtained nanoparticles were stable in the solution for more than six months, and showed the characteristic surface plasmon band at 411 nm as well as a positively charged surface with 40.4 ± 2.0 mV. The silver nanoparticles presented a spherical shape with an average size of 20-25 nm, as observed by TEM. Minimum inhibitory concentration (MIC) against E. coli, S. aureus and B. cereus of the silver nanoparticles dispersed in the γ-ray irradiated chitosan solution was 5.64 μg/mL. The silver nanoparticle-loaded chitosan-starch based films were prepared by a solution casting method. The incorporation of silver nanoparticles led to a slight improvement of the tensile and oxygen gas barrier properties of the polysaccharide-based films, with diminished water vapor/moisture barrier properties. In addition, silver nanoparticle-loaded films exhibited enhanced antimicrobial activity against E. coli, S. aureus and B. cereus. The results suggest that silver nanoparticle-loaded chitosan-starch based films can be feasibly used as antimicrobial materials for food packaging and/or biomedical applications.

  11. Evaluation of Adsorption Capacity of Chitosan-Citral Schiff Base for Wastewater Pre-Treatment in Dairy Industries

    Directory of Open Access Journals (Sweden)

    Desislava K. Tsaneva

    2017-06-01

    Full Text Available In this study, we aimed to evaluate the adsorption capacity of the Schiff base chitosan-citral for its application in dairy wastewater pre-treatment. Chemical oxygen demand (COD reduction was the factor used to evaluate the adsorption efficiency. The maximum COD percentage reduction of 35.3% was obtained at 40.0 °C, pH 9.0, adsorbent dose 15 g L-1, contact time 180 min and agitation speed 100 rpm. It was found that the Langmuir isotherm fitted well the equilibrium data of COD uptake (R2 = 0.968, whereas the kinetic data were best fitted by the pseudo-second order model (R2=0.999. Enhancement of the adsorption efficiency up to 29.8% in dependence of the initial COD concentration of the dairy wastewater was observed by adsorption with the Schiff base chitosan-citral adsorbent compared to the non-modified chitosan at the same experimental conditions. The results indicated that the Schiff base chitosan-citral can be used for dairy wastewater physicochemical pretreatment by adsorption, which might be applied before the biological unit in the wastewater treatment plant to reduce the load.

  12. Heavy Metal Removal by Chitosan and Chitosan Composite

    International Nuclear Information System (INIS)

    Abdel-Mohdy, F.A.; El-Sawy, S.; Ibrahim, M.S.

    2005-01-01

    Radiation grafting of diethyl aminoethyl methacrylate (DEAEMA) on chitosan to impart ion exchange properties and to be used for the separation of metal ions from waste water, was carried out. The effect of experimental conditions such as monomer concentration and the radiation dose on grafting were studied. On using chitosan, grafted chitosan and some chitosan composites in metal ion removal they show high up-take capacity for Cu 2+ and lower uptake capacities for the other divalent metal ions used (Zn and Co). Competitive study, performed with solutions containing mixture of metal salts, showed high selectivity for Cu 2+ than the other metal ion. Limited grafting of DEAEMA polymer -containing specific functional groups-onto the chitosan backbone improves the sorption performance

  13. Preparation and optimization of submicron chitosan capsules by water-based electrospraying for food and bioactive packaging applications.

    Science.gov (United States)

    Sreekumar, Sruthi; Lemke, Philipp; Moerschbacher, Bruno M; Torres-Giner, Sergio; Lagaron, Jose M

    2017-10-01

    In the present study, a well-defined set of chitosans, with different degrees of acetylation (DA) and degrees of polymerization (DP), were processed by solution electrospraying from a water-based solvent. The solution properties, in terms of surface tension, conductivity, viscosity, and pH, were characterized and related to the physico-chemical properties of the chitosans. It was observed that both DA and DP values of a given chitosan, in combination with biopolymer concentration, mainly determined solution viscosity. This was, in turn, the major driving factor that defined the electrosprayability of chitosan. In addition, the physico-chemical properties of chitosans highly influenced solution conductivity and results indicated that the chitosan solutions with low or low-to-medium values of conductivity were the most optimal for electrospraying. The results obtained here also demonstrate that a good process control can be achieved by adjusting the working conditions, i.e. applied voltage, flow-rate, and tip-to-collector distance. Finally, it was also shown that electrosprayability of chitosan with inadequate physico-chemical properties can be improved by solution mixing of very different kinds of this polysaccharide. The resultant electrosprayed submicron chitosan capsules can be applied for encapsulation of food additives and to develop bioactive coatings of interest in food packaging, where these particles alone or containing functional ingredients can be released from the package into the food to promote a health benefit.

  14. Layer-by-layer polyelectrolyte films for contact electric energy harvesting

    International Nuclear Information System (INIS)

    Guo, X D; Helseth, L E

    2015-01-01

    We report how self-assembly of polyelectrolyte thin films alters the contact electrification of polyimide polymer films used in contact based triboelectric energy harvesting systems. Polyimide films of the same size do produce a very small current when brought into contact. However, by covering one of the polyimide films with a polyelectrolyte thin film terminated by positively charged poly(allylamine hydrochloride) (PAH), the current is reversed and a much larger current and voltage are generated upon contact with the other polyimide film. A similar increase in contact current is not seen for polyelectrolyte thin films terminated by the negatively charged poly(sodium 4-styrenesulfonate). The PAH-terminated Kapton films are used to create an energy harvesting system providing a voltage of about 60 V and a current of 10 μA. At an average power of 11 μW for a load resistance of 100 MΩ, the energy harvester is able to power several light emitting diodes. Further studies on the contact electrification of the polyelectrolyte demonstrate that nanostructuring of the polymer surface using reactive ion etching does not give rise to polarity reversal. This is explained as hidden pockets of charge not accessible to PAH molecules, but which become accessible when the polymer is put under stress. Although the current originating for a PAH-terminated multilayer film does initially have the opposite sign to that of bare polyimide, it is found that the polarity will switch after subjecting it to a periodical mechanical force. Characteristic changes in current signatures associated with the switch are found, and are interpreted as mechanical interpenetration of the charged layers. (paper)

  15. Pore size and LbL chitosan coating influence mesenchymal stem cell in vitro fibrosis and biomineralization in 3D porous poly(epsilon-caprolactone) scaffolds.

    Science.gov (United States)

    Mehr, Nima Ghavidel; Li, Xian; Chen, Gaoping; Favis, Basil D; Hoemann, Caroline D

    2015-07-01

    Poly(epsilon-caprolactone) (PCL) is a hydrophobic bioplastic under development for bone tissue engineering applications. Limited information is available on the role of internal geometry and cell-surface attachment on osseous integration potential. We tested the hypothesis that human bone marrow mesenchymal stem cells (MSCs) deposit more mineral inside porous 3D PCL scaffolds with fully interconnected 84 or 141 µm pores, when the surfaces are coated with chitosan via Layer-by-Layer (LbL)-deposited polyelectrolytes. Freshly trypsinized MSCs were seeded on PCL 3D cylinders using a novel static cold seeding method in 2% serum to optimally populate all depths of the scaffold discs, followed by 10 days of culture in proliferation medium and 21 additional days in osteogenic medium. MSCs were observed by SEM and histology to spread faster and to proliferate more on chitosan-coated pore surfaces. Most pores, with or without chitosan, became filled by collagen networks sparsely populated with fibroblast-like cells. After 21 days of culture in osteogenic medium, sporadic matrix mineralization was detected histologically and by micro-CT in highly cellular surface layers that enveloped all scaffolds and in cell aggregates in 141 µm pores near the edges. LbL-chitosan promoted punctate mineral deposition on the surfaces of 84 µm pores (p chitosan coatings are sufficient to promote MSC attachment to PCL but only enhance mineral formation in 84 µm pores, suggesting a potential inhibitory role for MSC-derived fibroblasts in osteoblast terminal differentiation. © 2014 Wiley Periodicals, Inc.

  16. Novel pH responsive polymethacrylic acid-chitosan-polyethylene glycol nanoparticles for oral peptide delivery.

    Science.gov (United States)

    Sajeesh, S; Sharma, Chandra P

    2006-02-01

    In present study, novel pH sensitive polymethacrylic acid-chitosan-polyethylene glycol (PCP) nanoparticles were prepared under mild aqueous conditions via polyelectrolyte complexation. Free radical polymerization of methacrylic acid (MAA) was carried out in presence of chitosan (CS) and polyethylene glycol (PEG) using a water-soluble initiator and particles were obtained spontaneously during polymerization without using organic solvents or surfactants/steric stabilizers. Dried particles were analyzed by scanning electron microscopy (SEM) and particles dispersed in phosphate buffer (pH 7.0) were visualized under transmission electron microscope (TEM). SEM studies indicated that PCP particles have an aggregated and irregular morphology, however, TEM revealed that these aggregated particles were composed of smaller fragments with size less than 1 micron. Insulin and bovine serum albumin (BSA) as model proteins were incorporated into the nanoparticles by diffusion filling method and their in vitro release characteristics were evaluated at pH 1.2 and 7.4. PCP nanoparticles exhibited good protein encapsulation efficiency and pH responsive release profile was observed under in vitro conditions. Trypsin inhibitory effect of these PCP nanoparticles was studied using casein substrate and these particles displayed lesser inhibitory effect than reference polymer carbopol. Preliminary investigation suggests that these particles can serve as good candidate for oral peptide delivery. Copyright 2005 Wiley Periodicals, Inc.

  17. Use of a chitosan based natural coating materials to reduce spoilage and pathogenic bacteria on poultry products

    Science.gov (United States)

    Chitosan is a natural compound with proven antimicrobial activity having GRAS status (generally recognized as safe) as determined by the United States Food and Drug Administration (Smith et al., 2014). Efforts are underway to develop and improve the use of chitosan based films as packaging material...

  18. Cytocompatibility of chitosan and collagen-chitosan scaffolds for tissue engineering

    Directory of Open Access Journals (Sweden)

    Ligia L. Fernandes

    2011-01-01

    Full Text Available In this work, chitosan and collagen-chitosan porous scaffolds were produced by the freeze drying method and characterized as potential skin substitutes. Their beneficial effects on soft tissues justify the choice of both collagen and chitosan. Samples were characterized using scanning electron microscope, Fourier Transform InfraRed Spectroscopy (FTIR and thermogravimetry (TG. The in vitro cytocompatibility of chitosan and collagen-chitosan scaffolds was evaluated with three different assays. Phenol and titanium powder were used as positive and negative controls, respectively. Scanning electron microscopy revealed the highly interconnected porous structure of the scaffolds. The addition of collagen to chitosan increased both pore diameter and porosity of the scaffolds. Results of FTIR and TG analysis indicate that the two polymers interact yielding a miscible blend with intermediate thermal degradation properties. The reduction of XTT ((2,3-bis[2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide and the uptake of Neutral Red (NR were not affected by the blend or by the chitosan scaffold extracts, but the blend and the titanium powder presented greater incorporation of Crystal Violet (CV than phenol and chitosan alone. In conclusion, collagen-chitosan scaffolds produced by freeze-drying methods were cytocompatible and presented mixed properties of each component with intermediate thermal degradation properties.

  19. {sup 166}Ho-chitosan as a radiation synovectomy agent - biocompatibility study of {sup 166}Ho-chitosan in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sug Jun; Lee, Soo Yong; Jeon, Dae Geun; Seok, Lee Jong [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1997-01-01

    Radiation synovectomy is a noninvasive therapy that has been investigated as an alternative to surgical synovectomy. It is been successfully employed in the treatment of synovitis in rheumatoid arthrits and other inflammatory arthropathies. We developed the {sup 166}Ho-chitosan complex for possible use as a radiation synovectomy agent. Holmium is the more practical isotope based on its higher radioactivity and logner half-life. And isotope based on its higher radioactivity and logner half-life. And chitosan is ideal and suitable particles based on its soluble and biodegradable characteristics. So we investigated the biocompatibility of the {sup 166}Ho-chitosan complex to evaluated the suitability as a radiation synovectomy agent. In this study, we performed in vivo and in vitro stability test and biodistribution test. Our results indicate that {sup 166}Ho-chitosan may be an effective radiopharmaceutical for radiation synovectomy. (author). 30 refs., 7 tabs.

  20. Poly(acrylonitrile)chitosan composite membranes for urease immobilization.

    Science.gov (United States)

    Gabrovska, Katya; Georgieva, Aneliya; Godjevargova, Tzonka; Stoilova, Olya; Manolova, Nevena

    2007-05-10

    (Poly)acrylonitrile/chitosan (PANCHI) composite membranes were prepared. The chitosan layer was deposited on the surface as well as on the pore walls of the base membrane. This resulted in the reduction of the pore size of the membrane and in an increase of their hydrophilicity. The pore structure of PAN and PANCHI membranes were determined by TEM and SEM analyses. It was found that the average size of the pore under a selective layer base PAN membrane is 7 microm, while the membrane coated with 0.25% chitosan shows a reduced pore size--small or equal to 5 microm and with 0.35% chitosan--about 4 microm. The amounts of the functional groups, the degree of hydrophilicity and transport characteristics of PAN/Chitosan composite membranes were determined. Urease was covalently immobilized onto all kinds of PAN/chitosan composite membranes using glutaraldehyde. Both the amount of bound protein and relative activity of immobilized urease were measured. The highest activity (94%) was measured for urease bound to PANCHI2 membranes (0.25% chitosan). The basic characteristics (pH(opt), pH(stability), T(opt), T(stability), heat inactivation and storage stability) of immobilized urease were determined. The obtained results show that the poly(acrylonitrile)chitosan composite membranes are suitable for enzyme immobilization.

  1. Single-chain-in-mean-field simulations of weak polyelectrolyte brushes

    Science.gov (United States)

    Léonforte, F.; Welling, U.; Müller, M.

    2016-12-01

    Structural properties of brushes which are composed of weak acidic and basic polyelectrolytes are studied in the framework of a particle-based approach that implicitly accounts for the solvent quality. Using a semi-grandcanonical partition function in the framework of the Single-Chain-in-Mean-Field (SCMF) algorithm, the weak polyelectrolyte is conceived as a supramolecular mixture of polymers in different dissociation states, which are explicitly treated in the partition function and sampled by the SCMF procedure. One obtains a local expression for the equilibrium acid-base reaction responsible for the regulation of the charged groups that is also incorporated to the SCMF sampling. Coupled to a simultaneous treatment of the electrostatics, the approach is shown to capture the main features of weak polyelectrolyte brushes as a function of the bulk pH in the solution, the salt concentration, and the grafting density. Results are compared to experimental and theoretical works from the literature using coarse-grained representations of poly(acrylic acid) (PAA) and poly(2-vinyl pyridine) (P2VP) polymer-based brushes. As the Born self-energy of ions can be straightforwardly included in the numerical approach, we also study its effect on the local charge regulation mechanism of the brush. We find that its effect becomes significant when the brush is dense and exposed to high salt concentrations. The numerical methodology is then applied (1) to the study of the kinetics of collapse/swelling of a P2VP brush and (2) to the ability of an applied voltage to induce collapse/swelling of a PAA brush in a pH range close to the pKa value of the polymer.

  2. Edible Coating Using a Chitosan-Based Colloid Incorporating Grapefruit Seed Extract for Cherry Tomato Safety and Preservation.

    Science.gov (United States)

    Won, Jin Sung; Lee, Seung Jo; Park, Hyeon Hwa; Song, Kyung Bin; Min, Sea C

    2018-01-01

    Grapefruit seed extract (GSE)-containing chitosan-based coating was developed and applied to cherry tomatoes to protect them from Salmonella invasion and improve their storability. The coating colloids were produced by mixing a chitosan colloid (1% [w/w] chitosan) with GSE at various concentrations (0.5%, 0.7%, 1.0%, and 1.2% [w/w]) using high-shear mixing (10000 rpm, 2 min). Coatings with chitosan colloids containing GSE at 0.0%, 0.5%, 0.7%, and 1.0% (w/w) inactivated Salmonella on cherry tomatoes by 1.0 ± 0.3, 1.2 ± 0.3, 1.6 ± 0.1, and 2.0 ± 0.3 log CFU/cherry tomato, respectively. Coatings both with and without GSE (1.0%) effectively inhibited the growth of Salmonella and total mesophilic aerobes, reduced CO 2 generation, and retarded titratable acidity decrease during storage at 10 and 25 °C. The advantage of incorporating GSE in the formulation was demonstrated by delayed microorganism growth and reduced weight loss at 25 °C. The chitosan-GSE coating did not affect lycopene concentration, color, and sensory properties (P > 0.05). Chitosan-GSE coating shows potential for improving the microbiological safety and storability of cherry tomatoes, with stronger efficacy at 25 °C than that of chitosan coating without GSE. A novel chitosan coating containing grape fruit seed extract (GSE) improved the microbiological safety against Salmonella and storability of cherry tomatoes without altering their flavor, demonstrating its strong potential as an effective postharvest technology. Chitosan coating containing GSE might be preferable over chitosan coating without GSE for application to tomatoes that are stored at room temperature in that it more effectively inhibits microbial growth and weight loss than the coating without GSE at 25 °C. © 2017 Institute of Food Technologists®.

  3. Vitamin D-fortified chitosan films from mushroom waste

    Science.gov (United States)

    Brown mushroom (Agaricus bisporus) stalk bases from mushroom waste were treated with UV-B light to rapidly increase vitamin D2 content. Chitin was also recovered from this waste and converted into chitosan by N-deacetylation. FTIR spectra showed that the mushroom chitosan were similar to chitosan fr...

  4. Light-induced antibacterial activity of electrospun chitosan-based material containing photosensitizer

    Energy Technology Data Exchange (ETDEWEB)

    Severyukhina, A.N., E-mail: severyuhina_alexandra@mail.ru [Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov (Russian Federation); Petrova, N.V.; Yashchenok, A.M. [Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov (Russian Federation); Bratashov, D.N. [Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov (Russian Federation); Department of Nano- and Biomedical Technologies, Saratov State University, 410012 Saratov (Russian Federation); Smuda, K. [Institute of Transfusion Medicine, Charité-Universitätsmedizin, 10117 Berlin (Germany); Mamonova, I.A. [Institute of Traumatology and Orthopedics, 410002 Saratov (Russian Federation); Yurasov, N.A. [Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov (Russian Federation); Puchinyan, D.M. [Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov (Russian Federation); Institute of Traumatology and Orthopedics, 410002 Saratov (Russian Federation); Georgieva, R. [Institute of Transfusion Medicine, Charité-Universitätsmedizin, 10117 Berlin (Germany); Department of Medical Physics, Biophysics and Radiology, Medical Faculty, Trakia University, 6000 Stara Zagora (Bulgaria); Bäumler, H. [Institute of Transfusion Medicine, Charité-Universitätsmedizin, 10117 Berlin (Germany); Lapanje, A. [Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov (Russian Federation); Josef Stefan Institute, 1000 Ljubljana (Slovenia); Gorin, D.A. [Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov (Russian Federation); Department of Nano- and Biomedical Technologies, Saratov State University, 410012 Saratov (Russian Federation)

    2017-01-01

    Increasing antimicrobial resistance requires the development of novel materials and approaches for treatment of various infections. Utilization of photodynamic therapy represents an advanced alternative to antibiotics and metal-based agents. Here, we report the fabrication of electrospun material that possesses benefits of both topical antimicrobial and photodynamic therapies. This material combines chitosan, as a biocompatible polymer, and a second generation photosensitizer. The incorporation of photosensitizer doesn't affect the material morphology and its nearly uniform distribution in fibers structure was observed by confocal Raman microscopy. Owing to photosensitizer the prepared material exhibits the light-induced and spatially limited antimicrobial activity that was demonstrated against Staphylococcus aureus, an important etiological infectious agent. Such material can be potentially used in antibacterial therapy of chronic wounds, infections of diabetic ulcers, and burns, as well as rapidly spreading and intractable soft-tissue infections caused by resistant bacteria. - Highlights: • Chitosan with a phthalocyanine photosensitizer was electrospun into fibers. • Photosensitizer was uniformly distributed in the electrospun material. • The incorporation of photosensitizer does not affect the fiber morphology. • Chitosan/photosensitizer composites possess light-induced antibacterial activity. • The antibacterial activity of the material is limited to the area of irradiation.

  5. Biomedical Activity of Chitin/Chitosan Based Materials—Influence of Physicochemical Properties Apart from Molecular Weight and Degree of N-Acetylation

    Directory of Open Access Journals (Sweden)

    Mirko X. Weinhold

    2011-11-01

    Full Text Available The physicochemical nature of chitin and chitosan, which influences the biomedical activity of these compounds, is strongly related to the source of chitin and the conditions of the chitin/chitosan production process. Apart from widely described key factors such as weight-averaged molecular weight (MW and degree of N-acetylation (DA, other physicochemical parameters like polydispersity (MW/MN, crystallinity or the pattern of acetylation (PA have to be taken into consideration. From the biological point of view, these parameters affect a very important factor—the solubility of chitin and chitosan in water and organic solvents. The physicochemical properties of chitosan solutions can be controlled by manipulating solution conditions (temperature, pH, ionic strength, concentration, solvent. The degree of substitution of the hydroxyl and the amino groups or the degree of quaternization of the amino groups also influence the mechanical and biological properties of chitosan samples. Finally, a considerable research effort has been directed towards developing safe and efficient chitin/chitosan-based products because many factors, like the size of nanoparticles, can determine the biomedical characteristics of medicinal products. The influence of these factors on the biomedical activity of chitin/chitosan-based products is presented in this report in more detail.

  6. LASERS, ACTIVE MEDIA: The aqueous-polyelectrolyte dye solution as an active laser medium

    Science.gov (United States)

    Akimov, A. I.; Saletskii, A. M.

    2000-11-01

    The spectral, luminescent, and lasing properties of aqueous solutions of a cationic dye rhodamine 6G with additions of anion polyelectrolytes — polyacrylic and polymethacrylic acids — are studied. It is found that the energy and spectral properties of lasing of these solutions depend on the ratio of concentrations of polyelectrolyte and molecules. It is also found that the lasing parameters of aqueous-polyelectrolyte dye solutions can be controlled by changing the structure of the molecular system. The variation in the structure of aqueous-polyelectrolyte dye solutions of rhodamine 6G resulted in an almost five-fold increase in the lasing efficiency compared to that in aqueous dye solutions.

  7. Chitosan-carboxymethylcellulose based microcapsules formulation for controlled release of active ingredients from cosmeto textile

    Science.gov (United States)

    Roy, J. C.; Ferri, A.; Salaün, F.; Giraud, S.; Chen, G.; Jinping, G.

    2017-10-01

    Chitosan-based emulsions were prepared at pH from 4.0 to 6.0. The zeta potential and droplet size were monitored at different pH. Double emulsions (wateroil- water) were observed due to the stiff conformation of chitosan at pH 4.0. At pH 5.0, the emulsion droplets were the smallest (2.9 μm) of the experimental pH range. The emulsion droplets were well dispersed due to high surface charge of chitosan (for example, +50 mV at pH 5.5) in entire pH range. The emulsion was treated with carboxymethyl cellulose (CMC) for neutralizing the charged chitosan on the surface of emulsion droplets. Above 10×10-2 mg/ml of CMC, no change in zeta potential was observed indicating no more free chitosan existed after neutralization with CMC. The emulsion was then crosslinked with different amount of glutaraldehyde. Upon increasing the amount of glutaraldehyde, the amount of core content inside the microcapsule and encapsulation efficiency of shell materials decreased gradually. The Dynamic Scanning Calorimetry data confirmed no interaction between core and shell material in the microencapsulation process. The thermal degradation of the microcapsules was examined by thermogravimetric analysis and a gradual decrease in the degradation temperature upon increasing glutaraldehyde concentration was found. The tuning of CMC concentration can provide valuable information regarding stable emulsion and efficient microcapsule formulation via coacervation.

  8. Polyelectrolyte brushes in mixed ionic medium studied via intermolecular forces

    Science.gov (United States)

    Farina, Robert; Laugel, Nicolas; Pincus, Philip; Tirrell, Matthew

    2011-03-01

    The vast uses and applications of polyelectrolyte brushes make them an attractive field of research especially with the growing interest in responsive materials. Polymers which respond via changes in temperature, pH, and ionic strength are increasingly being used for applications in drug delivery, chemical gating, etc. When polyelectrolyte brushes are found in either nature (e.g., surfaces of cartilage and mammalian lung interiors) or commercially (e.g., skin care products, shampoo, and surfaces of medical devices) they are always surrounded by mixed ionic medium. This makes the study of these brushes in varying ionic environments extremely relevant for both current and future potential applications. The polyelectrolyte brushes in this work are diblock co-polymers of poly-styrene sulfonate (N=420) and poly-t-butyl styrene (N=20) which tethers to a hydrophobic surface allowing for a purely thermodynamic study of the polyelectrolyte chains. Intermolecular forces between two brushes are measured using the SFA. As multi-valent concentrations are increased, the brushes collapse internally and form strong adhesion between one another after contact (properties not seen in a purely mono-valent environment).

  9. Rapidly photo-cross-linkable chitosan hydrogel for peripheral neurosurgeries.

    Science.gov (United States)

    Rickett, Todd A; Amoozgar, Zohreh; Tuchek, Chad A; Park, Joonyoung; Yeo, Yoon; Shi, Riyi

    2011-01-10

    Restoring continuity to severed peripheral nerves is crucial to regeneration and enables functional recovery. However, the two most common agents for coaptation, sutures and fibrin glues, have drawbacks such as inflammation, pathogenesis, and dehiscence. Chitosan-based adhesives are a promising alternative, reported to have good cytocompatibility and favorable immunogenicity. A photo-cross-linkable hydrogel based on chitosan is proposed as a new adhesive for peripheral nerve anastomosis. Two Az-chitosans were synthesized by conjugating 4-azidobenzoic acid with low (LMW, 15 kDa) and high (HMW, 50-190 kDa) molecular weight chitosans. These solutions formed a hydrogel in less than 1 min under UV light. The LMW Az-chitosan was more tightly cross-linked than the HMW variant, undergoing significantly less swelling and possessing a higher rheological storage modulus, and both Az-chitosan gels were stiffer than commercial fibrin glue. Severed nerves repaired by Az-chitosan adhesives tolerated longitudinal forces comparable or superior to fibrin glue. Adhesive exposure to intact nerves and neural cell culture showed both Az-chitosans to be nontoxic in the acute (minutes) and chronic (days) time frames. These results demonstrate that Az-chitosan hydrogels are cytocompatible and mechanically suitable for use as bioadhesives in peripheral neurosurgeries.

  10. Polyelectrolyte-induced aggregation of liposomes: a new cluster phase with interesting applications

    International Nuclear Information System (INIS)

    Bordi, F; Sennato, S; Truzzolillo, D

    2009-01-01

    Different charged colloidal particles have been shown to be able to self-assemble, when mixed in an aqueous solvent with oppositely charged linear polyelectrolytes, forming long-lived finite-size mesoscopic aggregates. On increasing the polyelectrolyte content, with the progressive reduction of the net charge of the primary polyelectrolyte-decorated particles, larger and larger clusters are observed. Close to the isoelectric point, where the charge of the adsorbed polyelectrolytes neutralizes the original charge of the particles' surface, the aggregates reach their maximum size, while beyond this point any further increase of the polyelectrolyte-particle charge ratio causes the formation of aggregates whose size is progressively reduced. This re-entrant condensation behavior is accompanied by a significant overcharging. Overcharging, or charge inversion, occurs when more polyelectrolyte chains adsorb on a particle than are needed to neutralize its original charge so that, eventually, the sign of the net charge of the polymer-decorated particle is inverted. The stability of the finite-size long-lived clusters that this aggregation process yields results from a fine balance between long-range repulsive and short-range attractive interactions, both of electrostatic nature. For the latter, besides the ubiquitous dispersion forces, whose supply becomes relevant only at high ionic strength, the main contribution appears due to the non-uniform correlated distribution of the charge on the surface of the polyelectrolyte-decorated particles ('charge-patch' attraction). The interesting phenomenology shown by these system has a high potential for biotechnological applications, particularly when the primary colloidal particles are bio-compatible lipid vesicles. Possible applications of these systems as multi-compartment vectors for the simultaneous intra-cellular delivery of different pharmacologically active substances will be briefly discussed. (topical review)

  11. Effect of strontium addition and chitosan concentration variation on cytotoxicity of chitosan-alginate-carbonate apatite based bone scaffold

    Science.gov (United States)

    Perkasa, Rilis Eka; Umniati, B. Sri; Sunendar, Bambang

    2017-09-01

    Bone scaffold is one of the most important component in bone tissue engineering. Basically, bone scaffold is a biocompatible structure designed to replace broken bone tissue temporarily. Unlike conventional bone replacements, an advanced bone scaffold should be bioactive (e.g: supporting bone growth) and biodegradable as new bone tissue grow, while retain its mechanical properties similarity with bone. It is also possible to add more bioactive substrates to bone scaffold to further support its performance. One of the substrate is strontium, an element that could improve the ability of the bone to repair itself. However, it must be noted that excessive consumption of strontium could lead to toxicity and diseases, such as osteomalacia and hypocalcemia. This research aimed to investigate the effect of strontium addition to the cytotoxic property of chitosan-alginate-carbonate apatite bone scaffold. The amount of strontium added to the bone scaffold was 5% molar of the carbonate apatite content. As a control, bone scaffold without stronsium (0% molar) were also made. The effect of chitosan concentration variation on the cytotoxicity were also observed, where the concentration varies on 1% and 3% w/v of chitosan solution. The results showed an optimum result on bone scaffold sample with 5% molar of strontium and 3% chitosan, where 87.67% cells in the performed MTS-Assay cytotoxicity testing survived. This showed that the use of up to 5% molar addition of strontium and 3% chitosan could enhance the survivability of the cell.

  12. Radiation Synthesis and Application of Carboxymethylated Chitosan Hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Young Chang

    2007-08-15

    This research proposal is to investigate radiation effect of carboxymethylated chitosan in order to obtain the crosslinked carboxymethylated chitosan. The application studies on CM-chitosan- based intelligent hydrogels will be tried too. Chitin is the most abundant natural amino polysaccharide and estimated to be produced annually almost as much as cellulose. Chitosan is the deacetylated product of chitin showing the enhanced solubility in dilute acids, further, carboxymethylated chitosan (CM-chitosan) can solve in both acidic and basic physiological media, which might be good candidates as a kind of biomedical materials. Radiation technique is an important method for modification of chitin derivatives. It includes radiation-induced degradation, grafting, and crosslinking. It was found that CM-chitosan degraded in solid state or dilute aqueous solution under irradiation, but crosslinked at paste-like sate when the concentration of CM-chitosan is more than 10%. Both degraded and crosslinked CM-chitosan have antibacterial activity, so it is essential to investigate in detail the radiation effect of CM-chitosan. Study on radiation effect of CM-chitosan in different condition is beneficial to modification of CM-chitosan by irradiation technique. However, little study was reported on radiation crosslinking and application of CM-chitosan. The radiation-closslinked CM-chitosan synthesized from chitosan was characterized by a Fourier transform infrared spectroscopy (FT-IR) analysis. A kinetic swelling in water and the mechanical properties such as a gelation, water absorptivity, and gel strength were also investigated. For the preparation of crosslinked CM-chitosan by using gamma irradiation, the concentration of an aqueous CM-chitosan is above 10wt%. We confirmed that the gel contents was in the range of 15-63%, and when the irradiation dose was increased, the degree of gelation was decreased by disintegration of the CM-chitosan. In conclusion, we developed a new

  13. Radiation Synthesis and Application of Carboxymethylated Chitosan Hydrogels

    International Nuclear Information System (INIS)

    Noh, Young Chang

    2007-08-01

    This research proposal is to investigate radiation effect of carboxymethylated chitosan in order to obtain the crosslinked carboxymethylated chitosan. The application studies on CM-chitosan- based intelligent hydrogels will be tried too. Chitin is the most abundant natural amino polysaccharide and estimated to be produced annually almost as much as cellulose. Chitosan is the deacetylated product of chitin showing the enhanced solubility in dilute acids, further, carboxymethylated chitosan (CM-chitosan) can solve in both acidic and basic physiological media, which might be good candidates as a kind of biomedical materials. Radiation technique is an important method for modification of chitin derivatives. It includes radiation-induced degradation, grafting, and crosslinking. It was found that CM-chitosan degraded in solid state or dilute aqueous solution under irradiation, but crosslinked at paste-like sate when the concentration of CM-chitosan is more than 10%. Both degraded and crosslinked CM-chitosan have antibacterial activity, so it is essential to investigate in detail the radiation effect of CM-chitosan. Study on radiation effect of CM-chitosan in different condition is beneficial to modification of CM-chitosan by irradiation technique. However, little study was reported on radiation crosslinking and application of CM-chitosan. The radiation-closslinked CM-chitosan synthesized from chitosan was characterized by a Fourier transform infrared spectroscopy (FT-IR) analysis. A kinetic swelling in water and the mechanical properties such as a gelation, water absorptivity, and gel strength were also investigated. For the preparation of crosslinked CM-chitosan by using gamma irradiation, the concentration of an aqueous CM-chitosan is above 10wt%. We confirmed that the gel contents was in the range of 15-63%, and when the irradiation dose was increased, the degree of gelation was decreased by disintegration of the CM-chitosan. In conclusion, we developed a new

  14. Chitosan-based dressings loaded with neurotensin--an efficient strategy to improve early diabetic wound healing.

    Science.gov (United States)

    Moura, Liane I F; Dias, Ana M A; Leal, Ermelindo C; Carvalho, Lina; de Sousa, Hermínio C; Carvalho, Eugénia

    2014-02-01

    One important complication of diabetes mellitus is chronic, non-healing diabetic foot ulcers (DFUs). This study aims to develop and use dressings based on chitosan derivatives for the sustained delivery of neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing. Three different derivatives, namely N-carboxymethyl chitosan, 5-methyl pyrrolidinone chitosan (MPC) and N-succinyl chitosan, are presented as potential biomaterials for wound healing applications. Our results show that MPC has the best fluid handling capacity and delivery profile, also being non-toxic to Raw 264.7 and HaCaT cells. NT-loaded and non-loaded MPC dressings were applied to control/diabetic wounds to evaluate their in vitro/in vivo performance. The results show that the former induced more rapid healing (50% wound area reduction) in the early phases of wound healing in diabetic mice. A NT-loaded MPC foam also reduced expression of the inflammatory cytokine TNF-α (Pdiabetic skin (P<0.001), significantly increasing fibroblast migration and collagen (COL1A1, COL1A2 and COL3A1) expression and deposition. These results suggest that MPC-based dressings may work as an effective support for sustained NT release to reduce DFUs. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. An electrochemical aptasensor for chiral peptide detection using layer-by-layer assembly of polyelectrolyte-methylene blue/polyelectrolyte-graphene multilayer

    International Nuclear Information System (INIS)

    Qin Haixia; Liu Jiyang; Chen Chaogui; Wang Jiahi; Wang Erkang

    2012-01-01

    Highlights: ► An electrochemical aptasensor for selective detection of peptide is constructed. ► This aptasensor is based on grapheme multilayer via layer-by-layer assembly. ► Such multilayer facilitates electron transfer and provides more adsorption sites. - Abstract: Here we demonstrate for the first time that by physically adsorbing aptamer onto conductive film assembled via alternate adsorption of graphene/polyelectrolyte and methylene blue/polyelectrolyte, a label-free electrochemical aptasensor with high sensitivity and selectivity for peptide detection is constructed. Graphene multilayer derived from layer-by-layer assembly has played significant roles in this sensing strategy: allowing accumulation of methylene blue, facilitating electron transfer and providing much more adsorption site. As compared to previous electrochemical aptasensors, the current sensor based on graphene multilayer alternated with electroactive molecule layer offers extremely high capability for sensitive detection of target without interference of environmental surrounding. This electroactive probe-confined graphene multilayer confers great flexibility to combine with differential pulse voltammetry (DPV) together. In the presence of target D entiomer of arginine vasopressin (D-VP), the binding of peptide to aptamer block the electron transfer process of MB, leading to decreased current peak of DPV. By this way, this electrochemical aptasensor based on electroactive molecule-intercalated graphene multilayer provide highly sensitive and specific detection of D-VP with the lowest detectable concentration of 1 ng mL −1 and a wide detection range from 1 to 265 ng mL −1 .

  16. Synthesis and characterization of a biocompatible chitosan-based hydrogel cross-linked via 'click' chemistry for controlled drug release.

    Science.gov (United States)

    Guaresti, O; García-Astrain, C; Palomares, T; Alonso-Varona, A; Eceiza, A; Gabilondo, N

    2017-09-01

    A chemically cross-linked chitosan-based hydrogel was successfully synthesized through Diels-Alder (DA) reaction and characterized. The final product was obtained after different steps; on the one hand, furan-modified chitosan (Cs-Fu) was synthesized by the reaction of furfural with the free amino groups of chitosan. On the other hand, highlighting the novelty of the present research, maleimide-functionalized chitosan (Cs-AMI) was prepared by the reaction of a maleimide-modified aminoacid with the amino groups of chitosan through amide coupling. The two complementary chitosan derivatives were cross-linked to the final hydrogel network. Both modification reactions were confirmed by FTIR and 1 H NMR, obtaining a degree of substitution (DS) of 31% and 26% for Cs-Fu and Cs-AMI, respectively. The as-designed hydrogel was analyzed in terms of microstructure, swelling capacity and rheological behaviour. The hydrogel showed pH-sensitivity, biocompatibility and inhibitory bacterial activity, promising features for biomedical applications, particularly for targeted-drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effect of immobilization conditions on the properties of β-galactosidase immobilized in xanthan/chitosan multilayers

    International Nuclear Information System (INIS)

    Yovcheva, T; Viraneva, A; Bodurov, I; Marudova, M; Vasileva, T; Cholev, D; Bivolarski, V; Iliev, I

    2017-01-01

    The effect of lactose concentration on the activity of the immobilised enzyme β-galactosidase from Aspergillus niger has been evaluated, considering future applications for the production of galactooligosaccahrides with prebiotic potential. The following enzyme was immobilized in xanthan and chitosan polyelectrolyte multilayers (PEMs) deposited by dip coating method on polylactic acid positively corona charged pads. The pads were charged in a corona discharge system, consisting of a corona electrode (needle), a grounded plate, and a metal grid placed between them. Positive 5 kV voltage was applied to the corona electrode. 1 kV voltage of the same polarity as that of the corona electrode was applied to the grid. The chitosan layers were crosslinked with sodium tripolyphosphate (Na-TPP). The enzyme showed a temperature optimum at 50 °C and a pH optimum at 5.0. The immobilization was carried out over the different adsorption time and optimum conditions were determined. These results give insights for further optimization of transgalactosydase reactions in order to produce galactooligosaccharides with specific structure and having pronounced better prebiotic properties. For the determination of the surface morphology of the investigated samples an atomic force microscope was used and root mean square roughness was obtained. (paper)

  18. Penetration of mucoadhesive chitosan-dextran sulfate nanoparticles into the porcine cornea.

    Science.gov (United States)

    Chaiyasan, Wanachat; Praputbut, Sakonwun; Kompella, Uday B; Srinivas, Sangly P; Tiyaboonchai, Waree

    2017-01-01

    Topical application of drugs to the eyes suffers from poor bioavailability at the ocular surface and in the anterior chamber. This is due to rapid clearance of the drug because of tear secretion and outflow. This study has investigated mucoadhesive and penetration characteristics of chitosan-dextran sulfate nanoparticles (CDNs), prepared by polyelectrolyte complexation technique, following topical administration to the ocular surface. Topical FITC-labeled CDNs (FCDNs; mean size of 400nm and a surface charge of +48mV) were retained on the porcine ocular surface for more than 4h. Topical FCDNs were partially endocytosed into porcine corneal epithelial cells via a clathrin-dependent pathway. After 6h of topical FCDNs, particles accumulated in the corneal epithelium but not found in the corneal stroma. When epithelium was removed, FCDNs penetrated the stroma. Thus, CDNs are potentially useful for drug/gene delivery to the ocular surface and to stroma when epithelium is damaged. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs

    Energy Technology Data Exchange (ETDEWEB)

    Anandhakumar, S.; Debapriya, M. [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India); Nagaraja, V. [Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012 (India); Raichur, Ashok M., E-mail: amr@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India)

    2011-03-12

    Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO{sub 3} particles followed by core removal with ethylene-diaminetetraacetic acid (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications.

  20. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs

    International Nuclear Information System (INIS)

    Anandhakumar, S.; Debapriya, M.; Nagaraja, V.; Raichur, Ashok M.

    2011-01-01

    Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO 3 particles followed by core removal with ethylene-diaminetetraacetic acid (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications.

  1. Behaviour of human mesenchymal stem cells on a polyelectrolyte-modified HEMA hydrogel for silk-based ligament tissue engineering.

    Science.gov (United States)

    Bosetti, M; Boccafoschi, F; Calarco, A; Leigheb, M; Gatti, S; Piffanelli, V; Peluso, G; Cannas, M

    2008-01-01

    The aim of this study was to design a functional bio-engineered material to be used as scaffold for autologous mesenchymal stem cells in ligament tissue engineering. Polyelectrolyte modified HEMA hydrogel (HEMA-co-METAC), applied as coating on silk fibroin fibres, has been formulated in order to take advantage of the biocompatibility of the polyelectrolyte by increasing its mechanical properties with silk fibres. Human bone marrow mesenchymal stem cells behaviour on such reinforced polyelectrolyte has been studied by evaluating cell morphology, cell number, attachment, spreading and proliferation together with collagen matrix production and its mRNA expression. Silk fibroin fibres matrices with HEMA-co-METAC coating exhibited acceptable mechanical behaviour compared to the natural ligament, good human mesenchymal stem cell adhesion and with mRNA expression studies higher levels of collagen types I and III expression when compared to control cells on polystyrene. These data indicate high expression of mRNA for proteins responsible for the functional characteristics of the ligaments and suggest a potential for use of this biomaterial in ligament tissue-engineering applications.

  2. Chitosan-based microcapsules containing grapefruit seed extract grafted onto cellulose fibers by a non-toxic procedure.

    Science.gov (United States)

    Alonso, Diana; Gimeno, Miquel; Sepúlveda-Sánchez, José D; Shirai, Keiko

    2010-04-19

    A novel non-toxic procedure is described for the grafting of chitosan-based microcapsules containing grapefruit seed oil extract onto cellulose. The cellulose was previously UV-irradiated and then functionalized from an aqueous emulsion of the chitosan with the essential oil. The novel materials are readily attained with durable fragrance and enhanced antimicrobial properties. The incorporation of chitosan as determined from the elemental analyses data was 16.08+/-0.29 mg/g of sample. Scanning electron microscopy (SEM) and gas chromatography-mass spectroscopy (GC-MS) provided further evidence for the successful attachment of chitosan microcapsules containing the essential oil to the treated cellulose fibers. The materials thus produced displayed 100% inhibition of Escherichia coli and Staphylococcus epidermidis up to 48 h of incubation. Inhibition of bacteria by the essential oil was also evaluated at several concentrations. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  3. Chitosan-based films composites for wound healing purposes

    International Nuclear Information System (INIS)

    Alves, Natali de O.; Silva, Gabriela T. da; Schulz, Gracelie A.S.; Fajardo, Andre R.

    2015-01-01

    Chitosan has been extensively applied in the developing of biomaterials due to its desirable good physico-chemical and biological properties. According to this, here films composite of chitosan, poly(vinyl alcohol) and bovine bone powder were prepared by casting willing to be applied in wound healing purposes. Moreover, the first step was the developing of a suitable method to obtain bovine bone powder, which was utilized here as filler. All the materials and films were fully characterized by FTIR, DRX and thermal analysis. Water uptake capacity was measured by swelling assays. (author)

  4. Synthesize and Characterization of Hydroxypropyl-N-octanealkyl Chitosan Ramification

    Science.gov (United States)

    Tan, Fu-neng

    2018-03-01

    A new type of amphiphilic ramification, hydroxypropyl-N-octanealkyl chitosan was prepared from chitosan via hydrophilic group and hydrophobic group were introduced. We could protect the amino group of chitosan via the reaction of chitosan and benzaldehyde could get Schiff base structure. Structures of the products were characterized with FT-IR, elemental analysis, themogrammetry (TG) analysis and X-ray diffraction. The degree of substitution of hydrophobic group was studied by elemental analysis. The result showed this chitosan ramification was soluble, biocompatible, biodegradable and nontoxic.

  5. Electrospun chitosan-based nanocomposite mats reinforced with chitin nanocrystals for wound dressing

    CSIR Research Space (South Africa)

    Naseria, N

    2014-08-01

    Full Text Available The aim of this study was to develop electrospun chitosan/polyethylene oxide-based randomly oriented fiber mats reinforced with chitin nanocrystals (ChNC) for wound dressing. Microscopy studies showedporous mats of smooth and beadless fibers...

  6. Chitosan Dermal Substitute and Chitosan Skin Substitute Contribute to Accelerated Full-Thickness Wound Healing in Irradiated Rats

    Directory of Open Access Journals (Sweden)

    Abu Bakar Mohd Hilmi

    2013-01-01

    Full Text Available Wounds with full-thickness skin loss are commonly managed by skin grafting. In the absence of a graft, reepithelialization is imperfect and leads to increased scar formation. Biomaterials can alter wound healing so that it produces more regenerative tissue and fewer scars. This current study use the new chitosan based biomaterial in full-thickness wound with impaired healing on rat model. Wounds were evaluated after being treated with a chitosan dermal substitute, a chitosan skin substitute, or duoderm CGF. Wounds treated with the chitosan skin substitute showed the most re-epithelialization (33.2 ± 2.8%, longest epithelial tongue (1.62 ± 0.13 mm, and shortest migratory tongue distance (7.11 ± 0.25 mm. The scar size of wounds treated with the chitosan dermal substitute (0.13 ± 0.02 cm and chitosan skin substitute (0.16 ± 0.05 cm were significantly decreased (P<0.05 compared with duoderm (0.45 ± 0.11 cm. Human leukocyte antigen (HLA expression on days 7, 14, and 21 revealed the presence of human hair follicle stem cells and fibroblasts that were incorporated into and surviving in the irradiated wound. We have proven that a chitosan dermal substitute and chitosan skin substitute are suitable for wound healing in full-thickness wounds that are impaired due to radiation.

  7. Antibacterial activity of irradiated and non-irradiated chitosan and chitosan derivatives against Escherichia coli growth

    International Nuclear Information System (INIS)

    Tg Ahbrizal Farizal Tg Ahmad; Norimah Yusof; Kamarudin Bahari; Kamaruddin Hashim

    2006-01-01

    Samples of chitosan and four chitosan derivatives [ionic chitosan, chitosan lactate, carboxymethyl chitosan (C) and carboxymethyl chitosan (L)] were studied for their antibacterial activities against Escherichia coli growth. Chitosan and chitosan derivatives were prepared at concentrations 20, 100, 1000, 10000 ppm and 250, 1000, 5000, 10000, 20000 ppm, respectively. Each of the samples was tested before and after irradiation with electron beam at 25 kGy. The turbidity of bacterial growth media was measured periodically at 0, 0.5, 1, 2, 4, 6 and 24 h after inoculation using the optical density method. The results indicated that non- irradiated chitosan inhibited E. coli growth at 20 and 100 ppm. Meanwhile, irradiated chitosan at 100 and 1000 ppm concentration inhibited E. coli growth. Both irradiated and non-irradiated ionic chitosan inhibited E. coli growth at all concentrations used. Chitosan lactate was found to inhibit E. coli at concentration as low as 5000 ppm for both irradiated and non-irradiated samples. E. coli growth was not inhibited by carboxymethyl chitosan (C) and carboxymethyl chitosan (L), before and after irradiation. The findings suggested that chitosan has greater antibacterial activity as compared to the chitosan derivative samples. (Author)

  8. Effect of concentration of Curcuma longa L. on chitosan-starch based edible coating

    Science.gov (United States)

    Yusof, N. M.; Jai, J.; Hamzah, F.; Yahya, A.; Pinijsuwan, S.

    2017-08-01

    The ability of chitosan-starch based coating to extend shelf life of strawberry were studied. The main objectives of this paper is to study the effects of different concentrations (20, 15, 10 and 5 µL) of Curcuma longa L. (CUR) essential oil into chitosan-based edible coating on surface tension in order to increase the effectiveness of the coating. CUR or turmeric is one of the commercially planted herbs in Malaysia for its phytochemical benefits. Application of edible coating using dipping technique has been analysed and evaluated for their effectiveness in extending shelf life of fruits. Surface tension was analysed to investigate the adhesion properties. The best CUR concentration was 15 µL with the optimum surface tension was found to be 31.92 dynes/cm.

  9. Chitosan and carboxymethyl-chitosan capping ligands: Effects on the nucleation and growth of hydroxyapatite nanoparticles for producing biocomposite membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dumont, Vitor C.; Mansur, Alexandra A.P.; Carvalho, Sandhra M.; Medeiros Borsagli, Fernanda G.L.; Pereira, Marivalda M.; Mansur, Herman S., E-mail: hmansur@demet.ufmg.br

    2016-02-01

    Synthetic biomaterials based on calcium phosphates (CaP) have been widely studied for bone tissue reconstruction therapies, but no definitive solution that fulfills all of the required properties has been identified. Thus, this study reports the synthesis of composite membranes based on nanohydroxyapatite particles (nHA) embedded in chitosan (CHI) and O-carboxymethyl chitosan (CMC) matrices produced using a one-step co-precipitation method in water media. Biopolymers were used as capping ligands for simultaneously controlling the nucleation and growth of the nHA particles during the precipitation process and also to form the polymeric network of the biocomposites. The bionanocomposites were extensively characterized using light microscopy (LM), scanning and transmission electron microscopy (SEM/TEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), atomic force microscopy (AFM), X-ray micro-CT analysis (μCT), and MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) cell proliferation assays for cell cytotoxicity. The results demonstrated that the ligands used during the synthesis highly affected the composites produced, primarily due the changes in the mechanisms and kinetics of nucleation and growth of the HA particles at the nanoscale level. The SEM images revealed that the use of carboxyl-functionalized chitosan (CMC) ligands significantly reduced the average size of the HA nanoparticles and caused the formation of a narrower size distribution (90 ± 20 nm) compared to the HA nanoparticles produced with chitosan ligands (220 ± 50 nm). The same trend was verified by the AFM analysis, where the nHA particles were formed evenly dispersed in the polymer matrix. However, the CMC-based composites were more homogeneously distributed, which was endorsed by the images collected via X-ray micro-CT. The FTIR spectra and the XRD analysis indicated that nanosized hydroxyapatite was the

  10. Elucidation of release characteristics of highly soluble drug trimetazidine hydrochloride from chitosan-carrageenan matrix tablets.

    Science.gov (United States)

    Li, Liang; Wang, Linlin; Shao, Yang; Tian, Ye; Li, Conghao; Li, Ying; Mao, Shirui

    2013-08-01

    The aim of this study was to better understand the underlying drug release characteristics from matrix tablets based on the combination of chitosan (CS) and different types of carrageenans [kappa (κ)-CG, iota (ι)-CG, and lambda (λ)-CG]. Highly soluble trimetazidine hydrochloride (TH) was used as a model drug. First, characteristics of drug release from different formulations were investigated, and then in situ complexation capacity of CG with TH and CS was studied by differential scanning calorimetry and Fourier transform infrared spectroscopy. Erosion and swelling of matrix were also characterized to better understand the drug-release mechanisms. Effects of pH and ionic strength on drug release were also studied. It was found that not only ι-CG and λ-CG could reduce the burst release of TH by the effect of TH-CG interaction, CS-ι-CG- and CS-λ-CG-based polyelectrolyte film could further modify the controlled-release behavior, but not CS-κ-CG. High pH and high ionic strength resulted in faster drug release from CS-κ-CG- and CS-ι-CG-based matrix, but drug release from CS-λ-CG-based matrix was less sensitive to pH and ionic strength. In conclusion, CS-λ-CG-based matrix tablets are quite promising as controlled-release drug carrier based on multiple mechanisms. Copyright © 2013 Wiley Periodicals, Inc.

  11. Electrostatic Swelling and Conformational Variation Observed in High-Generation Polyelectrolyte Dendrimers

    International Nuclear Information System (INIS)

    Butler, Paul D.; Chen, Wei-Ren; Herwig, Kenneth W.; Hong, Kunlun; Liu, Yun; Porcar, L.; Shew, Chwen-Yang; Smith, Gregory Scott; Chen, Hsin-Lung; Chen, Chun-Yu; Li, Xin; Liu, Emily

    2010-01-01

    A coordinated study combining small angle neutron scattering (SANS) and small angle x-ray scattering (SAXS) measurements was conducted to investigate the structural characteristics of aqueous (D2O) generation 7 and 8 (G7 and G8) PAMAM dendrimer solutions as a function of molecular protonation at room temperature. The change in intra-molecular conformation was clearly exhibited in the data analysis by separating the variation in the inter-molecular correlation. Our results unambiguously demonstrate an increased molecular size and evolved intra-molecular density profile upon increasing the molecular protonation. This is contrary to the existing understanding that in higher generation polyelectrolyte dendrimers, steric crowding stiffens the local motion of dendrimer segments exploring additional available intra-dendrimer volume and therefore inhibits the electrostatic swelling. Our observation is relevant to elucidation of the general microscopic picture of polyelectrolyte dendrimer structure, as well as the development of dendrimer-based packages with based on the stimuli-responsive principle.

  12. Study of polyelectrolytes for Los Alamos National Laboratory. Final report

    International Nuclear Information System (INIS)

    Labonne, N.

    1994-11-01

    To assess the safety of a potential radioactive waste repository, analysis of the fluid solution containing low levels of activity need to be performed. In some cases, the radioactivity would be so weak (3--30 pCi/L) that the solution must be concentrated for measurement. For this purpose, Los Alamos National Laboratory scientists are synthesizing some water soluble polyelectrolytes, which, because they are strong complexing agents for inorganic cations, can concentrate the radioelements in solution. To assist in characterization of these polyelectrolytes, the author has performed experiments to determine physico-chemical constants, such as pKa values and stability constants. The complexation constants between both polyelectrolytes and europium were determined by two methods: solvent extraction and ion exchange. Results are presented

  13. Development of Interleukin-2 Loaded Chitosan-Based Nanogels Using Artificial Neural Networks and Investigating the Effects on Wound Healing in Rats.

    Science.gov (United States)

    Aslan, Canan; Çelebi, Nevin; Değim, I Tuncer; Atak, Ayşegül; Özer, Çiğdem

    2017-05-01

    The aim of this study was to develop and characterize rh- IL-2 loaded chitosan-based nanogels for the healing of wound incision in rats. Nanogels were prepared using chitosan and bovine serum albumin (BSA) by ionic gelation method and high temperature application, respectively. Particle size, zeta potential, and polydispersity index were measured for characterization of nanogels. The morphology of nanogels was examined by using SEM and AFM. The IL-2 loading capacity of nanogels was determined using ELISA method. In vitro release of IL-2 from nanogels was performed using Franz diffusion cells. Artificial neural network (ANN) models were developed using selected input parameters (stirring rate, chitosan%, BSA%, TPP%) where particle size was an output parameter for IL-2 free nanogels. Wound healing effect of IL-2 loaded chitosan-TPP nanogel was evaluated by determining the malondialdehyde (MDA) and glutathione (GSH) levels of wound tissues in rats. The particle size of IL-2 loaded chitosan-TPP nanogels was found to be larger than that of IL-2 loaded BSA-based chitosan nanogels. Drug loading capacity of nanogels was found 100% ± 0.010 for both nanogels. IL-2 was released slowly after the initial burst effect. According to SEM and AFM imaging, BSA-chitosan nanogel particles were of nanometer size and presented a swelling tendency, and chitosan-TPP nanogel particles were found to be spherical and homogenously dispersed. IL-2 loaded chitosan-TPP nanogel was found suitable for improving wound healing because it decreased the MDA levels and increased the GSH levels wound tissues comparing to control group.

  14. Adsorption of dispersing polyelectrolytes: stabilization of drilling fluids; Adsorption de polyelectrolytes dispersants: stabilisation des fluides de forage

    Energy Technology Data Exchange (ETDEWEB)

    Balastre, M.

    1999-11-10

    Instabilities of concentrated colloidal suspensions are a source of many industrial problems, as in drilling fluid formulations where aggregation and severe settling phenomena can occur. Low molecular weight polyelectrolyte dispersants are used to solve these problems, but their optimal use requires a better understanding of the phenomena that are involved. After materials characterization, adsorption mechanisms of two anionic polyelectrolytes (PANa, PSSNa) on a soluble substrate model, barium sulfate powder are studied. Barium sulfate is the principal additive used to adapt the density of drilling fluids. A simple model allows us to propose a distribution of the microscopic species at the interface. Presence of divalent ions induces the formation of a strong complex with the polyelectrolyte. Adsorption and electro-kinetic data are presented and exchange equilibrium are examined in relation with the surface uptake. The binding mechanism and the surface speciation of the polymer groups are deduced from the ion exchange analysis. The macroscopic behavior of suspensions on different conditions (volume fraction, ionic strength, dispersant concentration) is studied by settling and rheological measurements. The macroscopic properties are connected to structural aspects, and we show that dispersing effects are mostly related to electro-steric repulsion. The dispersion state depends on two principal factors adsorbed amounts and adsorbed layer properties, especially the excess charge, and the molecules conformation. (author)

  15. Chitosan-based hydrogel tissue scaffolds made by 3D plotting promotes osteoblast proliferation and mineralization.

    Science.gov (United States)

    Liu, I-Hsin; Chang, Shih-Hsin; Lin, Hsin-Yi

    2015-05-13

    A 3D plotting system was used to make chitosan-based tissue scaffolds with interconnected pores using pure chitosan (C) and chitosan cross-linked with pectin (CP) and genipin (CG). A freeze-dried chitosan scaffold (CF/D) was made to compare with C, to observe the effects of structural differences. The fiber size, pore size, porosity, compression strength, swelling ratio, drug release efficacy, and cumulative weight loss of the scaffolds were measured. Osteoblasts were cultured on the scaffolds and their proliferation, type I collagen production, alkaline phosphatase activity, calcium deposition, and morphology were observed. C had a lower swelling ratio, degradation, porosity and drug release efficacy and a higher compressional stiffness and cell proliferation compared to CF/D (p 3D-plotted samples, cells on CP exhibited the highest degree of mineralization after 21 d (p 3D-plotted scaffolds were stronger, less likely to degrade and better promoted osteoblast cell proliferation in vitro compared to the freeze-dried scaffolds. C, CP and CG were structurally similar, and the different crosslinking caused significant changes in their physical and biological performances.

  16. Highly structured and surface modified poly(epsilon-caprolactone) scaffolds derived from co-continuous polymer blends for bone tissue engineering

    Science.gov (United States)

    Mehr, Nima Ghavidel

    Chitosan, an important member of the polysaccharide family was used to alter the chemistry of PCL scaffolds and bring hydrophilicity to the surface. The deposition of a homogeneous chitosan layer on the surface of the PCL scaffolds was carried out using a Layer-by-Layer (LbL) selfassembly of poly(dialyldemethylammunium chloride) (PDADMAC) as cationic and poly(sodium 4-styrenesulfonate) (PSS) as anionic polyelectrolytes. The final negatively charged PSS layer allows for the addition of the positively charged chitosan as the outermost layer. Gravimetric measurements revealed that the addition of up to 3 layers leads to the formation of interdiffusing polyelectrolyte layers which do not allow for the formation of defined positive or negative charges. By increasing the number of polyelectrolyte layers with alternating charges, more welldefined layers are formed. Detailed analyses of O/C, N/C and S/C ratios by X-ray photoelectron spectroscopy (XPS) show that the PSS molecule dominates the surface as the last deposited polyelectrolyte layer at higher number of depositions (n=8), which can later be the surface for the deposition of chitosan. The LbL deposition of the chitosan layer on the LbL coating was then shown to be locally homogeneous at different depths within the scaffolds which also clarified that the LbL method is superior to the dip coating strategy. SEM analysis showed that there is a rough chitosan surface on the 2D solid PCL constructs whose thickness ranges from 550-700 nanometers. These results demonstrate that the application of LbL self-assembly of polyelectrolytes followed by the addition of chitosan as the outermost layer provides a route towards stable and homogeneous surface modification and has the potential to transform a classic fully interconnected porous synthetic polymer material to one with essentially complete chitosanlike surface characteristics. The osteogenic potential of PCL scaffolds with a chitosan coating using Layer-by-Layer (Lb

  17. Evaluation of carboxymethyl moringa gum as nanometric carrier.

    Science.gov (United States)

    Rimpy; Abhishek; Ahuja, Munish

    2017-10-15

    In the present study, carboxymethylation of Moringa oleifera gum was carried out by reacting with monochloroacetic acid. Modified gum was characterised employing Fourier-transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, and Rheology study. The carboxymethyl modification of moringa gum was found to increase its degree of crystallinity, reduce viscosity and swelling, increase the surface roughness and render its more anionic. The interaction between carboxymethyl moringa gum and chitosan was optimised by 2-factor, 3-level central composite experimental design to prepare polyelectrolyte nanoparticle using ofloxacin, as a model drug. The optimal calculated parameters were found to be carboxymethyl moringa gum- 0.016% (w/v), chitosan- 0.012% (w/v) which provided polyelectrolyte nanoparticle of average particle size 231nm and zeta potential 28mV. Carboxymethyl moringa gum-chitosan polyelectrolyte nanoparticles show sustained in vitro release of ofloxacin upto 6h which followed first order kinetics with mechanism of release being erosion of polymer matrix. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Effect of chitosan coatings on postharvest green asparagus quality.

    Science.gov (United States)

    Qiu, Miao; Jiang, Hengjun; Ren, Gerui; Huang, Jianying; Wang, Xiangyang

    2013-02-15

    Fresh postharvest green asparagus rapidly deteriorate due to its high respiration rate. The main benefits of edible active coatings are their edible characteristics, biodegradability and increase in food safety. In this study, the quality of the edible coatings based on 0.50%, 0.25% high-molecular weight chitosan (H-chitosan), and 0.50%, 0.25% low-molecular weight chitosan (L-chitosan) on postharvest green asparagus was investigated. On the basis of the results obtained, 0.25% H-chitosan and 0.50% L-chitosan treatments ensured lower color variation, less weight loss and less ascorbic acid, decrease presenting better quality of asparagus than other concentrations of chitosan treatments and the control during the cold storage, and prolonging a shelf life of postharvest green asparagus. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Chitosan/alginate based multilayers to control drug release fromophthalmic lens

    OpenAIRE

    Silva, Diana; Pinto, Luís F. V.; Bozukova, Dimitriya; Santos, Luís F.; Serro, Ana Paula; Saramago, Benilde

    2016-01-01

    In this study we investigated the possibility of using layer-by-layer deposition, based in natural polymers (chitosan and alginate), to control the release of different ophthalmic drugs from three types of lens materials: a silicone-based hydrogel recently proposed by our group as drug releasing soft contact lens (SCL) material and two commercially available materials: CI26Y for intraocular lens (IOLs) and Definitive 50 for SCLs. The optimised coating, consisting in one double layer of (algin...

  20. Mechanically Robust 3D Nanostructure Chitosan-Based Hydrogels with Autonomic Self-Healing Properties.

    Science.gov (United States)

    Karimi, Ali Reza; Khodadadi, Azam

    2016-10-12

    Fabrication of hydrogels based on chitosan (CS) with superb self-healing behavior and high mechanical and electrical properties has become a challenging and fascinating topic. Most of the conventional hydrogels lack these properties at the same time. Our objectives in this research were to synthesize, characterize, and evaluate the general properties of chitosan covalently cross-linked with zinc phthalocyanine tetra-aldehyde (ZnPcTa) framework. Our hope was to access an unprecedented self-healable three-dimensional (3D) nanostructure that would harvest the superior mechanical and electrical properties associated with chitosan. The properties of cross-linker such as the structure, steric effect, and rigidity of the molecule played important roles in determining the microstructure and properties of the resulting hydrogels. The tetra-functionalized phthalocyanines favor a dynamic Schiff-base linkage with chitosan to form a 3D porous nanostructure. Based on this strategy, the self-healing ability, as demonstrated by rheological recovery and macroscopic and microscopic observations, is introduced through dynamic covalent Schiff-base linkage between NH 2 groups in CS and benzaldehyde groups at cross-linker ends. The hydrogel was characterized using FT-IR, NMR, UV/vis, and rheological measurements. In addition, cryogenic scanning electron microscopy (cryo-SEM) was employed as a technique to visualize the internal morphology of the hydrogels. Study of the surface morphology of the hydrogel showed a 3D porous nanostructure with uniform morphology. Furthermore, incorporating the conductive nanofillers, such as carbon nanotubes (CNTs), into the structure can modulate the mechanical and electrical properties of the obtained hydrogels. Interestingly, these hydrogel nanocomposites proved to have very good film-forming properties, high modulus and strength, acceptable electrical conductivity, and excellent self-healing properties at neutral pH. Such properties can be finely tuned

  1. Anti-Oxidative and Antibacterial Self-Healing Edible Polyelectrolyte Multilayer Film in Fresh-Cut Fruits.

    Science.gov (United States)

    Liu, Xuefan; Han, Wei; Zhu, Yanxi; Xuan, Hongyun; Ren, Jiaoyu; Zhang, Jianhao; Ge, Liqin

    2018-04-01

    The consumption of fresh-cut fruits is limited because of the oxidation browning and pathogenic bacteria's growth on the fruit surface. Besides, crack of the fresh-keeping film may shorten the preservation time of fruit. In this work, polyelectrolyte multilayer (PEM) film was fabricated by layer-by-layer (LBL) electrostatic deposition method. The film was made by carboxy methylcellulose sodium (CMC) and chitosan (CS). The as-prepared PEM film had good anti-oxidative and antibacterial capability. It inhibited the growth of Gram-negative bacteria and the antibacterial rate was more than 95%. The stratified structure and linear increase of the absorbance in the film verified a linear increase of film thickness. The slight scratched film could self-heal rapidly after the stimulation of water whatever the layer number was. Moreover, the film could heal cracks whose width was far bigger than the thickness. The application of PEM film on fresh-cut apples showed that PEM film had good browning, weight loss and metabolic activity inhibition ability. These results showed that the PEM film is a good candidate as edible film in fresh-cut fruits applications.

  2. Adsorption of polyelectrolytes at liquid-liquid interfaces and its effect on emulsification

    NARCIS (Netherlands)

    Böhm, J.T.C.

    1974-01-01

    In this study we have investigated the adsorption behaviour of a number of synthetic polyelectrolytes at the paraffin oil-water interface and the properties of paraffin oil-in-water emulsions stabilized by these polyelectrolytes.

    Polyacrylic acid (PAA), polymethacrylic acid (PMA)

  3. Polyelectrolyte determination in drinking water

    African Journals Online (AJOL)

    try as there are no readily available methods for the determination of residual polyelectrolyte concentration. This study aims at ... quate, making the need to quantify them more critical (Fielding,. 1999). ... decisions and actions are sometimes required in the environ- ... were conducted on both distilled and real water systems.

  4. Polyelectrolytes-promoted Forward Osmosis Processes

    KAUST Repository

    Ge, Q.C.; Ling, M.M.; Amy, Gary L.; Chung, T.S.

    2012-01-01

    The development of the forward osmosis (FO) process has been constrained by the slow development of appropriate draw solutions. Two significant concerns related to draw solutions are the draw solute leakage and intensive-energy requirement in recycling draw solutes after the FO process. FO would be much attractive if there is no draw solute leakage and the recycle of draw solutes is easy and economic.In this study, polyelectrolytes of a series of polyacrylic acid sodium salts (PAA-Na), were explored as draw solutes in the FO process. The characteristics of high solubility in water and flexibility in structural configuration ensure the suitability of PAA-Na as draw solutes and their relative ease in recycle through pressure-driven ultrafiltration (UF) membrane processes. The high water flux with insignificant salt leakage in the FO process and the high salt rejection in UF recycle processes reveal the superiority of PAA-Na to conventional ionic salts, such as NaCl, when comparing their FO performance via the same membranes. The repeatable performance of PAA-Na after recycle indicates the absence of any aggregation problems. The overall performance demonstrates that polyelectrolytes of PAA-Na series are promising as draw solutes, and the new concept of using polyelectrolytes as draw solutes in FO processes is applicable. The magnetic nanoparticle draw solutes can generate reasonably high osmotic pressure in FO system due to the functional groups on the nanoparticles surface and they can be regenerated through magnetic field and reused as draw solutes. Thermo-responsive magnetic nanoparticles are able to be regenerated with high efficiency as the thermo-responsive property can assist the regeneration in a low-strength magnetic field.

  5. Polyelectrolytes-promoted Forward Osmosis Processes

    KAUST Repository

    Ge, Q.C.

    2012-11-07

    The development of the forward osmosis (FO) process has been constrained by the slow development of appropriate draw solutions. Two significant concerns related to draw solutions are the draw solute leakage and intensive-energy requirement in recycling draw solutes after the FO process. FO would be much attractive if there is no draw solute leakage and the recycle of draw solutes is easy and economic.In this study, polyelectrolytes of a series of polyacrylic acid sodium salts (PAA-Na), were explored as draw solutes in the FO process. The characteristics of high solubility in water and flexibility in structural configuration ensure the suitability of PAA-Na as draw solutes and their relative ease in recycle through pressure-driven ultrafiltration (UF) membrane processes. The high water flux with insignificant salt leakage in the FO process and the high salt rejection in UF recycle processes reveal the superiority of PAA-Na to conventional ionic salts, such as NaCl, when comparing their FO performance via the same membranes. The repeatable performance of PAA-Na after recycle indicates the absence of any aggregation problems. The overall performance demonstrates that polyelectrolytes of PAA-Na series are promising as draw solutes, and the new concept of using polyelectrolytes as draw solutes in FO processes is applicable. The magnetic nanoparticle draw solutes can generate reasonably high osmotic pressure in FO system due to the functional groups on the nanoparticles surface and they can be regenerated through magnetic field and reused as draw solutes. Thermo-responsive magnetic nanoparticles are able to be regenerated with high efficiency as the thermo-responsive property can assist the regeneration in a low-strength magnetic field.

  6. Effect of enzymatic degradation of chitosan in polyhydroxybutyrate/chitosan/calcium phosphate composites on in vitro osteoblast response.

    Science.gov (United States)

    Giretova, Maria; Medvecky, Lubomir; Stulajterova, Radoslava; Sopcak, Tibor; Briancin, Jaroslav; Tatarkova, Monika

    2016-12-01

    Polyhydroxybutyrate/chitosan/calcium phosphate composites are interesting biomaterials for utilization in regenerative medicine and they may by applied in reconstruction of deeper subchondral defects. Insufficient informations were found in recent papers about the influence of lysozyme degradation of chitosan in calcium phosphate/chitosan based composites on in vitro cytotoxicity and proliferation activity of osteoblasts. The effect of enzymatic chitosan degradation on osteoblasts proliferation was studied on composite films in which the porosity of origin 3D scaffolds was eliminated and the surface texture was modified. The significantly enhanced proliferation activity with faster population growth of osteoblasts were found on enzymatically degraded biopolymer composite films with α-tricalcium phosphate and nanohydroxyapatite. No cytotoxicity of composite films prepared from lysozyme degraded scaffolds containing a large fraction of low molecular weight chitosans (LMWC), was revealed after 10 days of cultivation. Contrary to above in the higher cytotoxicity origin untreated nanohydroxyapatite films and porous composite scaffolds. The results showed that the synergistic effect of surface distribution, morphology of nanohydroxyapatite particles, microtopography and the presence of LMWC due to chitosan degradation in composite films were responsible for compensation of the cytotoxicity of nanohydroxyapatite composite films or porous composite scaffolds.

  7. Sorbent application on the base of chitosan for radionuclides separation

    International Nuclear Information System (INIS)

    Pivarciova, L.

    2016-01-01

    Radioactive waste contains enormous amounts of radionuclides, which pollute the environment and can cause serious chemical and radiological toxicity threats to lower and higher living organism. Alternative process for the removal of heavy metal ions and radionuclides is sorption, which utilizes various certain natural materials of biological origin. Amino-polysaccharide-based sorbents e.g. chitosan represent suitable materials for binding of metal oxo-anion species because of numerous functional groups -OH and -NH_2 because of their suitable H-bond donor and acceptor sites. The sorbents on the base chitosan prepared through chemical modification were used for removal and separation certain radionuclides from aqueous media. The aim of this work was the study of physicochemical properties of prepared sorbents. The specific surface of sorbents was characterized with BET methods. Point of zero charge was identified with potentiometric titration. The size of particles and shape of sorbents were determined by scanning electron microscope. The sorption experiments for selected radionuclides were conducted under static and dynamic conditions. The effect of various parameters on the sorption "9"9"mTc, "6"0Co and the effect of pH on the separation of radionuclide mixture in the solution were studied. (author)

  8. In vitro assessment of three dimensional dense chitosan-based structures to be used as bioabsorbable implants.

    Science.gov (United States)

    Guitian Oliveira, Nuno; Sirgado, Tatiana; Reis, Luís; Pinto, Luís F V; da Silva, Cláudia Lobato; Ferreira, Frederico Castelo; Rodrigues, Alexandra

    2014-12-01

    Chitosan biocompatibility and biodegradability properties make this biopolymer promising for the development of advanced internal fixation devices for orthopedic applications. This work presents a detailed study on the production and characterization of three dimensional (3D) dense, non-porous, chitosan-based structures, with the ability to be processed in different shapes, and also with high strength and stiffness. Such features are crucial for the application of such 3D structures as bioabsorbable implantable devices. The influence of chitosan's molecular weight and the addition of one plasticizer (glycerol) on 3D dense chitosan-based products' biomechanical properties were explored. Several specimens were produced and in vitro studies were performed in order to assess the cytotoxicity of these specimens and their physical behavior throughout the enzymatic degradation experiments. The results point out that glycerol does not impact on cytotoxicity and has a high impact in improving mechanical properties, both elasticity and compressive strength. In addition, human mesenchymal stem/stromal cells (MSC) were used as an ex-vivo model to study cell adhesion and proliferation on these structures, showing promising results with fold increase values in total cell number similar to the ones obtained in standard cell culture flasks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Laccase-Based CLEAs: Chitosan as a Novel Cross-Linking Agent

    Directory of Open Access Journals (Sweden)

    Alexandre Arsenault

    2011-01-01

    Full Text Available Laccase from Coriolopsis Polyzona was insolubilized as cross-linked enzyme aggregates (CLEAs for the first time with chitosan as the cross-linking agent. Concentrations between 0.01 and 1.867 g/L of chitosan were used and between 0.05 and 600 mM of 1-ethyl-3-(3-dimethylaminopropylcarbodiimide hydrochloride. The laccase was precipitated using ammonium sulphate and cross-linked simultaneously. Specific activity and thermal stability of these biocatalysts were measured. Activities of up to 737 U/g were obtained when 2,2-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid (ABTS was used as a substrate. Moreover, the stability of these biocatalysts was improved with regards to thermal degradation compared to free laccase when exposed to denaturing conditions of high temperature and low pH. The CLEAs stability against chemical denaturants was also tested but no significant improvement was detected. The total amount of ABTS to be oxidized during thermal degradation by CLEAs and free laccase was calculated and the insolubilized enzymes were reported to oxidize more substrate than free laccase. The formation conditions were analyzed by response surface methodology in order to determine an optimal environment for the production of efficient laccase-based CLEAs using chitosan as the cross-linking agent. After 24 hours of formation at pH 3 and at 4°C without agitation, the CLEAs exhibit the best specific activity.

  10. Formulation and Evaluation of Glutaraldehyde-Crosslinked Chitosan ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research is indexed by Science Citation Index (Purpose: Toformulate glutaraldehyde-cross-linked chitosan-based microparticles and evaluate its suitability for the delivery of ibuprofen, a BCS class II drug. Methods: Ibuprofen-loaded chitosan microparticles were prepared by ...

  11. Effect of moisture and chitosan layered silicate on morphology and properties of chitosan/layered silicates films

    International Nuclear Information System (INIS)

    Silva, J.R.M.B. da; Santos, B.F.F. dos; Leite, I.F.

    2014-01-01

    Thin chitosan films have been for some time an object of practical assessments. However, to obtain biopolymers capable of competing with common polymers a significant improvement in their properties is required. Currently, the technology of obtaining polymer/layered silicates nanocomposites has proven to be a good alternative. This work aims to evaluate the effect of chitosan content (CS) and layered silicates (AN) on the morphology and properties of chitosan/ layered silicate films. CS/AN bionanocomposites were prepared by the intercalation by solution in the proportion 1:1 and 5:1. Then were characterized by infrared spectroscopy (FTIR), diffraction (XRD) and X-ray thermogravimetry (TG). It is expected from the acquisition of films, based on different levels of chitosan and layered silicates, choose the best composition to serve as a matrix for packaging drugs and thus be used for future research. (author)

  12. Oral Vaccination Based on DNA-Chitosan Nanoparticles against Schistosoma mansoni Infection

    Directory of Open Access Journals (Sweden)

    Carolina R. Oliveira

    2012-01-01

    Full Text Available The development of a vaccine would be essential for the control of schistosomiasis, which is recognized as the most important human helminth infection in terms of morbidity and mortality. A new approach of oral vaccination with DNA-chitosan nanoparticles appears interesting because of their great stability and the ease of target accessibility, besides chitosan immunostimulatory properties. Here we described that chitosan nanoparticles loaded with plasmid DNA encoding Rho1-GTPase protein of Schistosoma mansoni, prepared at different molar ratios of primary amines to DNA phosphate anion (N/P, were able to complex electrostatically with DNA and condense it into positively charged nanostructures. Nanoparticles were able to maintain zeta potential and size characteristics in media that simulate gastric (SGF and intestinal fluids (SIF. Further in vivo studies showed that oral immunization was not able to induce high levels of specific antibodies but induced high levels of the modulatory cytokine IL-10. This resulted in a significative reduce of liver pathology, although it could not protect mice of infection challenge with S. mansoni worms. Mice immunized only with chitosan nanoparticles presented 47% of protection against parasite infection, suggesting an important role of chitosan in inducing a protective immune response against schistosomiasis, which will be more explored in further studies.

  13. Management of External Hemorrhage in Tactical Combat Casualty Care: Chitosan-Based Hemostatic Gauze Dressings. TCCC Guidelines Change 13-05

    Science.gov (United States)

    2014-09-23

    control model of Grade IV liver injury was developed and used to test Celox granules (chitosan) and QuikClot ACS+ ( zeolite ) against standard liver...reports, a question about safety may still linger. Are these current FDA-approved third- generation dressings safe for human use ? Furthermore, do all...Successful outcomes are also reported using newer chitosan-based dressings in civilian hospital- based surgical case reports and prehospital (battlefield

  14. Salt-induced aggregation of stiff polyelectrolytes

    International Nuclear Information System (INIS)

    Fazli, Hossein; Mohammadinejad, Sarah; Golestanian, Ramin

    2009-01-01

    Molecular dynamics simulation techniques are used to study the process of aggregation of highly charged stiff polyelectrolytes due to the presence of multivalent salt. The dominant kinetic mode of aggregation is found to be the case of one end of one polyelectrolyte meeting others at right angles, and the kinetic pathway to bundle formation is found to be similar to that of flocculation dynamics of colloids as described by Smoluchowski. The aggregation process is found to favor the formation of finite bundles of 10-11 filaments at long times. Comparing the distribution of the cluster sizes with the Smoluchowski formula suggests that the energy barrier for the aggregation process is negligible. Also, the formation of long-lived metastable structures with similarities to the raft-like structures of actin filaments is observed within a range of salt concentration.

  15. Radiation degradation of chitosan

    International Nuclear Information System (INIS)

    Norzita Yacob; Maznah Mahmud; Norhashidah Talip; Kamarudin Bahari; Kamaruddin Hashim; Khairul Zaman Dahlan

    2010-01-01

    In order to obtain an oligo chitosan, degradation of chitosan s were carried out in solid state and liquid state. The effects of an irradiation on the molecular weight and viscosity of the chitosan were investigated using Ubbelohde Capillary Viscometer and Brookfield Viscometer respectively. The molecular weight and viscosity of the chitosan s were decreased with an increase in the irradiation dose. In the presence of hydrogen peroxide, the molecular weight of chitosan can be further decreased. (author)

  16. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery

    Directory of Open Access Journals (Sweden)

    Munawar A. Mohammed

    2017-11-01

    Full Text Available The focus of this review is to provide an overview of the chitosan based nanoparticles for various non-parenteral applications and also to put a spotlight on current research including sustained release and mucoadhesive chitosan dosage forms. Chitosan is a biodegradable, biocompatible polymer regarded as safe for human dietary use and approved for wound dressing applications. Chitosan has been used as a carrier in polymeric nanoparticles for drug delivery through various routes of administration. Chitosan has chemical functional groups that can be modified to achieve specific goals, making it a polymer with a tremendous range of potential applications. Nanoparticles (NP prepared with chitosan and chitosan derivatives typically possess a positive surface charge and mucoadhesive properties such that can adhere to mucus membranes and release the drug payload in a sustained release manner. Chitosan-based NP have various applications in non-parenteral drug delivery for the treatment of cancer, gastrointestinal diseases, pulmonary diseases, drug delivery to the brain and ocular infections which will be exemplified in this review. Chitosan shows low toxicity both in vitro and some in vivo models. This review explores recent research on chitosan based NP for non-parenteral drug delivery, chitosan properties, modification, toxicity, pharmacokinetics and preclinical studies.

  17. Electrochemical and Thermal Studies of Prepared Conducting Chitosan Biopolymer Film

    International Nuclear Information System (INIS)

    Hlaing Hlaing Oo; Kyaw Naing; Kyaw Myo Naing; Tin Tin Aye; Nyunt Wynn

    2005-09-01

    In this paper, chitosan based conducting bipolymer films were prepared by casting and solvent evaporating technique. All prepared chitosan films were of pale yellow colour, transparent, and smooth. Sulphuric acid was chosen as the cross-linking agent. It enhanced conduction pathway in cross-linked chitosan films. Mechanical properties, solid-state, and thermal behavior of prepared chitosan fimls were studied by means of a material testing machine, powder X-ray diffractometry (XRD), thermogravimetric analysis (TG-DTG), and differential scanning calorimetry (DSC). By the XRD diffraction pattern, high molecular weight of chitosan product indicates the semi-crystalline nature, but the prepared chitosan film and doped chitosan film indicate significantly lower in crystallinity prove which of the amorphous characteristics. In addition, DSC thermogram of pure chitosan film exhibited exothermic peak around at 300 C, indicating polymer decomposition of chitosan molecules in chitosan films. Furthermore, these DSC thermograms clearly showed that while pure chitosan film display exothermal decomposition, the doped chitosan films mainly endothermic characteristics. The ionic conductivity of doped chitosan films were in the order of 10 to 10 S cm , which is in the range of semi-conductor. These results showed that cross-linked chitoson films may be used as polymer electrolyte film to fabricate solid state electrochemical cells

  18. The molecular understanding of interfacial interactions of functionalized graphene and chitosan

    International Nuclear Information System (INIS)

    Zhang, Hong-ping; Luo, Xue-gang; Lin, Xiao-yan; Lu, Xiong; Tang, Youhong

    2016-01-01

    Graphical abstract: The type of the functional groups can be used to modulating interactions between graphene sheet and chitosan. - Highlights: • Investigate interfacial interactions between chitosan and functionalized graphene by DFT. • Observe covalent linkages between COOH-modified graphene and chitosan units. • Multi-functionalized graphene regulates the interfacial interactions with chitosan. • It is useful for guiding the preparation of graphene/chitosan composites. - Abstract: Graphene-reinforced chitosan scaffolds have been extensively studied for several years as promising hard tissue replacements. However, the interfacial interactions between graphene and chitosan are strongly related to the solubility, processability, and mechanical properties of graphene-reinforced chitosan (G–C) composites. The functionalization of graphene is regarded as the most effective way to improve the abovementioned properties of the G–C composite. In this study, the interfacial interactions between chitosan and functionalized graphene sheets with carboxylization (COOH-), amination (NH 2 -), and hydroxylation (OH-) groups were systematically studied at the electronic level using the method of ab initio simulations based on quantum mechanics theory and the observations were compared with reported experimental results. The covalent linkages between COOH-modified graphene and the chitosan units were demonstrated and the combination of multi-functionalization on graphene could regulate the interfacial interactions between graphene and the chitosan. The interfacial interactions between chitosan and properly functionalized graphene are critical for the preparation of G–C-based composites for tissue engineering scaffolds and other applications.

  19. Biomaterials Based on Electrospun Chitosan. Relation between Processing Conditions and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Christian Enrique Garcia Garcia

    2018-03-01

    Full Text Available In this paper, it is shown that pure chitosan nanofibers and films were prepared with success in 0.5 M acetic acid as solvent using poly (ethylene oxide (PEO at different yields, allowing electrospinning of the blends. After processing, a neutralization step of chitosan followed by water washing is performed, preserving the initial morphology of chitosan materials. The influence of the yield in PEO in the blend on the degree of swelling and hydrophilicity of films and nanofibers is demonstrated. Then, the mechanical behavior of blended nanofibers and films used as reference are determined for small stress applied in the linear domain by DMA and by uniaxial traction up to rupture. The dried and wet states are covered for the first time. It is shown that the mechanical properties are increased when electrospinning is performed in the presence of PEO up to a 70/30 chitosan/PEO weight ratio even after PEO extraction. This result can be explained by a better dispersion of the chitosan in the presence of PEO.

  20. Thiolated chitosans: useful excipients for oral drug delivery.

    Science.gov (United States)

    Werle, Martin; Bernkop-Schnürch, Andreas

    2008-03-01

    To improve the bioavailability of orally administered drugs, formulations based on polymers are of great interest for pharmaceutical technologists. Thiolated chitosans are multifunctional polymers that exhibit improved mucoadhesive, cohesive and permeation-enhancing as well as efflux-pump-inhibitory properties. They can be synthesized by derivatization of the primary amino groups of chitosan with coupling reagents bearing thiol functions. Various data gained in-vitro as well as in-vivo studies clearly demonstrate the potential of thiolated chitosans for oral drug delivery. Within the current review, the synthesis and characterization of thiolated chitosans so far developed is summarized. Features of thiolated chitosans important for oral drug delivery are discussed as well. Moreover, different formulation approaches, such as matrix tablets and micro-/nanoparticles, as well as the applicability of thiolated chitosans for the oral delivery of various substance classes including peptides and efflux pump substrates, are highlighted.

  1. Sulfonated chitosan and dopamine based coatings for metallic implants in contact with blood.

    Science.gov (United States)

    Campelo, Clayton S; Chevallier, Pascale; Vaz, Juliana M; Vieira, Rodrigo S; Mantovani, Diego

    2017-03-01

    Thrombosis and calcification constitute the main clinical problems when blood-interacting devices are implanted in the body. Coatings with thin polymer layers represent an acknowledged strategy to modulate interactions between the material surface and the blood environment. To ensure the implant success, at short-term the coating should limit platelets adhesion and delay the clot formation, and at long-term it should delay the calcification process. Sulfonated chitosan, if compared to native chitosan, shows the unique ability to reduce proteins adsorption, decrease thrombogenic properties and limit calcification. In this work, stainless steel surfaces, commonly used for cardiovascular applications, were coated with sulfonated chitosan, by using dopamine and PEG as anchors, and the effect of these grafted surfaces on platelet adhesion, clot formation as well as on calcification were investigated. Surface characterization techniques evidenced that the coating formation was successful, and the sulfonated chitosan grafted sample exhibited a higher roughness and hydrophilicity, if compared to native chitosan one. Moreover, sulfonated surface limited platelet activation and the process of clot formation, thus confirming its high biological performances in blood. Calcium deposits were also lower on the sulfonated chitosan sample compared to the chitosan one, thus showing that calcification was minimal in presence of sulfonate groups. In conclusion, this sulfonated-modified surface has potential to be as blood-interacting material. Copyright © 2016. Published by Elsevier B.V.

  2. Fortification of extruded snacks with chitosan: Effects on techno functional and sensory quality.

    Science.gov (United States)

    Kumar, Raushan; Xavier, K A Martin; Lekshmi, Manjusha; Balange, Amjad; Gudipati, Venkateshwarlu

    2018-08-15

    Chitosan is a dietary fibre that possesses numerous functional, technological and physiological properties useful in improving food quality. Owing to its fat absorbing ability, chitosan is widely consumed as a health supplement in the form of tablets and capsules. With a view to enhance it consumption and availability, the current work was taken up to evaluate techno-functional quality improvement of shrimp based extruded snacks fortified with chitosan. Chitosan powder at 1, 2 and 3% (w/w) level was added to the base material (corn flour and rice flour in the ratio of 70:30 and 15% Acetes powder) for extrusion. Addition of chitosan in acetes based snacks significantly reduced expansion ratio, porosity and crispiness and increased the hardness value of the product. Chitosan addition had a significant effect (p > 0.05) on the moisture retention and total protein contents of the products as well. Thiobarbituric acid reactive substances (TBARS) value of chitosan fortified extrudate showed a significantly lower value than the control sample. A higher level of chitosan also resulted in colour reduction of the final product. The FTIR spectra of extrudate confirmed the stability of chitosan during extrusion conditions. The sensory score revealed that extrudate fortified with 1% chitosan was comparable to control sample. From this study it is concluded that 1% chitosan can be incorporated in Acetes based extruded snacks for an increased level of functionality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Lipase entrapment in PVA/Chitosan biodegradable film for reactor coatings

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Karla A. [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil); Lopes, Flavio Marques [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil); Unidade Universitária de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, Anápolis, GO (Brazil); Yamashita, Fabio [Departamento de Tecnologia de Alimentos e Medicamentos, Laboratório de Tecnologia, Universidade Estadual de Londrina, Cx. Postal 6001, CEP 86051-990, Londrina, PR (Brazil); Fernandes, Kátia Flávia, E-mail: katia@icb.ufg.br [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil)

    2013-04-01

    This study reports the development and characterization of novel biodegradable film, based on chitosan and polyvinyl alcohol containing lipase entrapped. The films showed a thickness of 70.4 and 79 μm to PVA/Chitosan and PVA/Chitosan/Lipase, respectively. The entrapment of lipase in PVA/Chitosan film resulted in increasing of 69.4% tensile strength (TS), and 52.4% of elongation. SEM images showed the formation of a continuous film, without pores or cracks. The lipase entrapment efficiency was estimated in 92% and the films were repeatedly used for 25 hydrolytic cycles, maintaining 62% of initial activity. The PVA/Chitosan/Lipase film was used for olive oil hydrolysis of high performance. These results indicate that PVA/Chitosan/Lipase is a promising material for biotechnology applications such as triacylglycerol hydrolysis and biodiesel production. - Highlights: ► Development and characterization of PVA/Chitosan biodegradable film ► Lipase immobilization onto PVA/Chitosan film ► PVA/Chitosan/Lipase film for reactor coating ► Olive oil hydrolysis using PVA/Chitosan/Lipase film.

  4. Lipase entrapment in PVA/Chitosan biodegradable film for reactor coatings

    International Nuclear Information System (INIS)

    Batista, Karla A.; Lopes, Flavio Marques; Yamashita, Fabio; Fernandes, Kátia Flávia

    2013-01-01

    This study reports the development and characterization of novel biodegradable film, based on chitosan and polyvinyl alcohol containing lipase entrapped. The films showed a thickness of 70.4 and 79 μm to PVA/Chitosan and PVA/Chitosan/Lipase, respectively. The entrapment of lipase in PVA/Chitosan film resulted in increasing of 69.4% tensile strength (TS), and 52.4% of elongation. SEM images showed the formation of a continuous film, without pores or cracks. The lipase entrapment efficiency was estimated in 92% and the films were repeatedly used for 25 hydrolytic cycles, maintaining 62% of initial activity. The PVA/Chitosan/Lipase film was used for olive oil hydrolysis of high performance. These results indicate that PVA/Chitosan/Lipase is a promising material for biotechnology applications such as triacylglycerol hydrolysis and biodiesel production. - Highlights: ► Development and characterization of PVA/Chitosan biodegradable film ► Lipase immobilization onto PVA/Chitosan film ► PVA/Chitosan/Lipase film for reactor coating ► Olive oil hydrolysis using PVA/Chitosan/Lipase film

  5. Stability of polyelectrolyte-coated iron nanoparticles for T2-weighted magnetic resonance imaging

    Science.gov (United States)

    McGrath, Andrew J.; Dolan, Ciaran; Cheong, Soshan; Herman, David A. J.; Naysmith, Briar; Zong, Fangrong; Galvosas, Petrik; Farrand, Kathryn J.; Hermans, Ian F.; Brimble, Margaret; Williams, David E.; Jin, Jianyong; Tilley, Richard D.

    2017-10-01

    Iron nanoparticles are highly-effective magnetic nanoparticles for T2 magnetic resonance imaging (MRI). However, the stability of their magnetic properties is dependent on good protection of the iron core from oxidation in aqueous media. Here we report the synthesis of custom-synthesized phosphonate-grafted polyelectrolytes (PolyM3) of various chain lengths, for efficient coating of iron nanoparticles with a native iron oxide shell. The size of the nanoparticle-polyelectrolyte assemblies was investigated by transmission electron microscopy and dynamic light scattering, while surface attachment was confirmed by Fourier transform infrared spectroscopy. Low cytotoxicity was observed for each of the nanoparticle-polyelectrolyte ("Fe-PolyM3") assemblies, with good cell viability (>80%) remaining up to 100 μg mL-1 Fe in HeLa cells. When applied in T2-weighted MRI, corresponding T2 relaxivities (r2) of the Fe-PolyM3 assemblies were found to be dependent on the chain length of the polyelectrolyte. A significant increase in contrast was observed when polyelectrolyte chain length was increased from 6 to 65 repeating units, implying a critical chain length required for stabilization of the α-Fe nanoparticle core.

  6. Comparison of cadmium adsorption onto chitosan and epichlorohydrin crosslinked chitosan/eggshell composite

    Science.gov (United States)

    Rahmi; Marlina; Nisfayati

    2018-05-01

    The use of chitosan and epichlorohydrin crosslinked chitosan/eggshell composite for cadmium adsorption from water were investigated. The factors affecting adsorption such as pH and contact time were considered. The results showed that the optimum pH of adsorption was pH = 6.0 and the equilibrium time of adsorption was 40 min. The adsorption isotherm of Cd ions onto chitosan and composite were well fitted to Langmuir equation. The maximum adsorption capacity (fitting by Langmuir model) of chitosan and composite were 1.008 and 11.7647 mg/g, respectively. Adsorption performance of composite after regeneration was better than chitosan.

  7. Limiting law excess sum rule for polyelectrolytes.

    Science.gov (United States)

    Landy, Jonathan; Lee, YongJin; Jho, YongSeok

    2013-11-01

    We revisit the mean-field limiting law screening excess sum rule that holds for rodlike polyelectrolytes. We present an efficient derivation of this law that clarifies its region of applicability: The law holds in the limit of small polymer radius, measured relative to the Debye screening length. From the limiting law, we determine the individual ion excess values for single-salt electrolytes. We also consider the mean-field excess sum away from the limiting region, and we relate this quantity to the osmotic pressure of a dilute polyelectrolyte solution. Finally, we consider numerical simulations of many-body polymer-electrolyte solutions. We conclude that the limiting law often accurately describes the screening of physical charged polymers of interest, such as extended DNA.

  8. Preparation and characterisation of chitosan from Penicillium ...

    African Journals Online (AJOL)

    This work investigated the removal efficiency of Congo red dye (CRD) from aqueous solution using chitosan prepared from the biomass of Penicillium chrysogenum Thom. CRD is a benzidine - based anionic diazo dye known to be carcinogenic at low concentration. Chitosan was prepared from the mycelium of P.

  9. Chitosan-nanosilica hybrid materials: Preparation and properties

    International Nuclear Information System (INIS)

    Podust, T.V.; Kulik, T.V.; Palyanytsya, B.B.; Gun’ko, V.M.; Tóth, A.; Mikhalovska, L.; Menyhárd, A.; László, K.

    2014-01-01

    Highlights: • Hybrid chitosan-nanosilica materials were synthesized using an adsorption modification method. • The chitosan adsorption capacity is higher on the silica/titania and silica/alumina than on the fumed silica. • Nanosilicas undergo structural and textural alterations due to modification by chitosan. • The more severe chitosan thermodestruction occurs on the silica/titania and silica/alumina surfaces than on the plain silica surface. - Abstract: The research focuses on the synthesis of novel organic–inorganic hybrid materials based on polysaccharide chitosan and nanosilicas (SiO 2 , TiO 2 /SiO 2 and Al 2 O 3 /SiO 2 ). The chitosan modified nanooxides were obtained by the equilibrium adsorption method. The chitosan adsorption capacities of silica/titania and silica/alumina are higher than of the plain silica due to the additional active sites present on the surfaces of the mixed oxides. The hybrid materials were characterized by low-temperature nitrogen adsorption/desorption, photon correlation spectroscopy (PCS), scanning electron microscopy (SEM), thermogravimetry (TG/DTG) and temperature-programmed desorption with mass spectrometry control (TPD MS) methods. The chitosan treatment only modestly influences the surface area S BET of the nanooxides but the rearrangement of the secondary and tertiary structures (aggregates and agglomerates) results in an enhancement of the mesoporosity and affects the size of the aggregates. The more severe thermodestruction of the polysaccharide desorbing from the modified mixed silicas indicates a stronger interaction between the chitosan and the mixed oxides compared to the silanol groups of the plain silica surface

  10. Chitosan-nanosilica hybrid materials: Preparation and properties

    Energy Technology Data Exchange (ETDEWEB)

    Podust, T.V., E-mail: tania_list@yahoo.com [Chuiko Institute of Surface Chemistry, 17 General Naumov Street, Kyiv 03164 (Ukraine); Kulik, T.V., E-mail: tanyakulyk@i.ua [Chuiko Institute of Surface Chemistry, 17 General Naumov Street, Kyiv 03164 (Ukraine); Palyanytsya, B.B.; Gun’ko, V.M. [Chuiko Institute of Surface Chemistry, 17 General Naumov Street, Kyiv 03164 (Ukraine); Tóth, A. [Department of Physical Chemistry and Material Science, Budapest University of Technology and Economics, H-1521 Budapest (Hungary); Mikhalovska, L. [School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton BN2 4GJ (United Kingdom); Menyhárd, A. [Department of Physical Chemistry and Material Science, Budapest University of Technology and Economics, H-1521 Budapest (Hungary); Institute of Materials Science and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences (Hungary); László, K. [Department of Physical Chemistry and Material Science, Budapest University of Technology and Economics, H-1521 Budapest (Hungary)

    2014-11-30

    Highlights: • Hybrid chitosan-nanosilica materials were synthesized using an adsorption modification method. • The chitosan adsorption capacity is higher on the silica/titania and silica/alumina than on the fumed silica. • Nanosilicas undergo structural and textural alterations due to modification by chitosan. • The more severe chitosan thermodestruction occurs on the silica/titania and silica/alumina surfaces than on the plain silica surface. - Abstract: The research focuses on the synthesis of novel organic–inorganic hybrid materials based on polysaccharide chitosan and nanosilicas (SiO{sub 2}, TiO{sub 2}/SiO{sub 2} and Al{sub 2}O{sub 3}/SiO{sub 2}). The chitosan modified nanooxides were obtained by the equilibrium adsorption method. The chitosan adsorption capacities of silica/titania and silica/alumina are higher than of the plain silica due to the additional active sites present on the surfaces of the mixed oxides. The hybrid materials were characterized by low-temperature nitrogen adsorption/desorption, photon correlation spectroscopy (PCS), scanning electron microscopy (SEM), thermogravimetry (TG/DTG) and temperature-programmed desorption with mass spectrometry control (TPD MS) methods. The chitosan treatment only modestly influences the surface area S{sub BET} of the nanooxides but the rearrangement of the secondary and tertiary structures (aggregates and agglomerates) results in an enhancement of the mesoporosity and affects the size of the aggregates. The more severe thermodestruction of the polysaccharide desorbing from the modified mixed silicas indicates a stronger interaction between the chitosan and the mixed oxides compared to the silanol groups of the plain silica surface.

  11. Formulation and in vitro/in vivo evaluation of chitosan-based film forming gel containing ketoprofen.

    Science.gov (United States)

    Oh, Dong-Won; Kang, Ji-Hyun; Lee, Hyo-Jung; Han, Sang-Duk; Kang, Min-Hyung; Kwon, Yie-Hyuk; Jun, Joon-Ho; Kim, Dong-Wook; Rhee, Yun-Seok; Kim, Ju-Young; Park, Eun-Seok; Park, Chung-Woong

    2017-11-01

    The film forming gel, adhered to skin surfaces upon application and formed a film, has an advantage onto skin to provide protection and continuous drug release to the application site. This study aimed to prepare a chitosan-based film forming gel containing ketoprofen (CbFG) and to evaluate the CbFG and film from CbFG (CbFG-film). CbFG were prepared with chitosan, lactic acid and various skin permeation enhancers. The physicochemical characteristics were evaluated by texture analysis, viscometry, SEM, DSC, XRD and FT-IR. To identify the mechanism of skin permeation, in vitro skin permeation study was conducted with a Franz diffusion cell and excised SD-rat and hairless mouse dorsal skin. In vivo efficacy assessment in mono-iodoacetate (MIA)-induced rheumatoid arthritis animal model was also conducted. CbFG was successfully prepared and, after applying CbFG to the excised rat dorsal skin, the CbFG-film was also formed well. The physicochemical characteristics of CbFG and CbFG-film could be explained by the grafting of oleic acid onto chitosan in the absence of catalysts. In addition, CbFG containing oleic acid had a higher skin permeation rate in comparison with any other candidate enhancers. The in vivo efficacy study also confirmed significant anti-inflammatory and analgesic effects. Consequently, we report the successful preparation of chitosan-based film forming gel containing ketoprofen with excellent mechanical properties, skin permeation and anti-inflammatory and analgesic effects.

  12. Modification of Bacterial Cellulose Biofilms with Xylan Polyelectrolytes.

    Science.gov (United States)

    Santos, Sara M; Carbajo, José M; Gómez, Nuria; Ladero, Miguel; Villar, Juan C

    2017-11-28

    The effect of the addition of two [4-butyltrimethylammonium]-xylan chloride polyelectrolytes (BTMAXs) on bacterial cellulose (BC) was evaluated. The first strategy was to add the polyelectrolytes to the culture medium together with a cell suspension of the bacterium. After one week of cultivation, the films were collected and purified. The second approach consisted of obtaining a purified and homogenized BC, to which the polyelectrolytes were added subsequently. The films were characterized in terms of tear and burst indexes, optical properties, surface free energy, static contact angle, Gurley porosity, SEM, X-ray diffraction and AFM. Although there are small differences in mechanical and optical properties between the nanocomposites and control films, the films obtained by BC synthesis in the presence of BTMAXs were remarkably less opaque, rougher, and had a much lower specular gloss. The surface free energy depends on the BTMAXs addition method. The crystallinity of the composites is lower than that of the control material, with a higher reduction of this parameter in the composites obtained by adding the BTMAXs to the culture medium. In view of these results, it can be concluded that BC-BTMAX composites are a promising new material, for example, for paper restoration.

  13. Antibacterial nanocomposites based on chitosan/Co-MCM as a selective and efficient adsorbent for organic dyes.

    Science.gov (United States)

    Khan, Shahid Ali; Khan, Sher Bahadar; Kamal, Tahseen; Yasir, Muhammad; Asiri, Abdullah M

    2016-10-01

    Chitosan/cobalt-silica (Co-MCM) nanocomposites were synthesized for the purification of effluent by adding 5, 15 and 25mL of Co-MCM solution to the aqueous chitosan solution for the formation of chitosan/Co-MCM-5, chitosan/Co-MCM-15 and chitosan/Co-MCM-25, respectively. These different nanocomposites were characterized by FESEM, EDS, X-ray crystallography and IR spectrophotometer and employed for the adsorption of various dyes (methyl orange, acridine orange, indigo carmine and congo red). The respective nanocomposites showed good adsorption toward methyl orange, indigo carmine and congo red while all nanocomposites were inactive for acridine orange dye. Among the nanocomposites, chitosan/Co-MCM-15 showed the highest adsorption performance which might be due to ideal dispersion of Co-MCM inside the chitosan polymer host. Chitosan/Co-MCM-15 exhibited high adsorption for methyl orange as compared to indigo carmine. We have further checked the biological potential of chitosan/Co-MCM nanocomposites against gram positive and negative bacteria as well as multi drug resistant bacteria. The results favor the strongest bioactivities of chitosan/Co-MCM-15 against various gram positive and gram negative bacteria as well as multi drug resistant bacteria, which further suggest the ideal dispersion of Co-MCM in chitosan polymer host and is responsible for the improvement of both adsorption as well as biological performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Degradation of chitosan by gamma ray with presence of hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Mahmud, Maznah; Yacob, Norzita; Talip, Norhashidah; Abdullah, Zahid [Malaysian Nuclear Agency, Radiation Technology Division, Bangi, 43000 Kajang, Selangor (Malaysia); Naziri, Muhammad Ihsan [University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-02-12

    The radiation degraded chitosan samples were prepared by swelling the chitosan powder in water and exposed for gamma irradiation. The ratio chitosan to water was 1:6 with the presence of hydrogen peroxide (H{sub 2}O{sub 2}), 1%–5%. These chitosan-water mixtures were irradiated at 6kGy, which is the lowest irradiation dose that facility can offered. All samples were purified and proceed with characterization. The molecular weight (MW) study was monitored by size exclusion chromatography-multi angle laser light scattering (SEC-MALLS). Results showed that MW of chitosan reduced as the dose increased. Application of H{sub 2}O{sub 2} enhanced the degradation rate of chitosan even at very low irradiation dose. Homogenous degradation also occurred during treatment with H{sub 2}O{sub 2}based on the polydispersity index (PDI) derived from the calculation of weight average molecular weight over number average molecular weight (Mw/Mn). Mechanism of chitosan radiation degradation with and without hydrogen peroxide was also discussed in this paper. Structure of degraded products was characterized with Fourier-transform infrared spectra. The degree of deacetylation (DDA) values of the samples was determined by acid-base titration. Solubility test results showed that, chitosan powder even at low Mw was insoluble in water even at low pH water. Chitosan as well as irradiated chitosan powder are soluble in strong and weak acid solution. Further discussion on behaviours of radiation degraded chitosan will be elaborated more in this paper.

  15. Degradation of chitosan by gamma ray with presence of hydrogen peroxide

    Science.gov (United States)

    Mahmud, Maznah; Naziri, Muhammad Ihsan; Yacob, Norzita; Talip, Norhashidah; Abdullah, Zahid

    2014-02-01

    The radiation degraded chitosan samples were prepared by swelling the chitosan powder in water and exposed for gamma irradiation. The ratio chitosan to water was 1:6 with the presence of hydrogen peroxide (H2O2), 1%-5%. These chitosan-water mixtures were irradiated at 6kGy, which is the lowest irradiation dose that facility can offered. All samples were purified and proceed with characterization. The molecular weight (MW) study was monitored by size exclusion chromatography-multi angle laser light scattering (SEC-MALLS). Results showed that MW of chitosan reduced as the dose increased. Application of H2O2 enhanced the degradation rate of chitosan even at very low irradiation dose. Homogenous degradation also occurred during treatment with H2O2based on the polydispersity index (PDI) derived from the calculation of weight average molecular weight over number average molecular weight (Mw/Mn). Mechanism of chitosan radiation degradation with and without hydrogen peroxide was also discussed in this paper. Structure of degraded products was characterized with Fourier-transform infrared spectra. The degree of deacetylation (DDA) values of the samples was determined by acid-base titration. Solubility test results showed that, chitosan powder even at low Mw was insoluble in water even at low pH water. Chitosan as well as irradiated chitosan powder are soluble in strong and weak acid solution. Further discussion on behaviours of radiation degraded chitosan will be elaborated more in this paper.

  16. Glucose Oxidase Adsorption on Sequential Adsorbed Polyelectrolyte Films Studied by Spectroscopic Techniques

    Science.gov (United States)

    Tristán, Ferdinando; Solís, Araceli; Palestino, Gabriela; Gergely, Csilla; Cuisinier, Frédéric; Pérez, Elías

    2005-04-01

    The adsorption of Glucose Oxidase (GOX) on layers of poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) deposited on Sequentially Adsorbed Polyelectrolyte Films (SAPFs) were studied by three different spectroscopic techniques. These techniques are: Optical Wave Light Spectroscopy (OWLS) to measure surface density; Fluorescence Resonance Energy Transfer (FRET) to verify the adsorption of GOX on the surface; and Fourier Transform Infrared Spectroscopy in Attenuated Total Reflection mode (FTIR-HATR) to inspect local structure of polyelectrolytes and GOX. Two positive and two negative polyelectrolytes are used: Cationic poly(ethyleneimine) (PEI) and poly(allylamine hydrochloride) (PAH) and anionic poly(sodium 4-styrene sulfonate) (PSS) and poly(acrylic acid) (PAA). These spectroscopic techniques do not require any labeling for GOX or SAPFs, specifically GOX and PSS are naturally fluorescent and are used as a couple donor-acceptor for the FRET technique. The SAPFs are formed by a (PEI)-(PSS/PAH)2 film followed by (PAA/PAH)n bilayers. GOX is finally deposited on top of SAPFs at different values of n (n=1..5). Our results show that GOX is adsorbed on positive ended SAPFs forming a monolayer. Contrary, GOX adsorption is not observed on negative ended film polyelectrolyte. GOX stability was tested adding a positive and a negative polyelectrolyte after GOX adsorption. Protein is partially removed by PAH and PAA, with lesser force by PAA.

  17. Chitosan-Based Hyaluronic Acid Hybrid Polymer Fibers as a Scaffold Biomaterial for Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Shintarou Yamane

    2010-12-01

    Full Text Available An ideal scaffold material is one that closely mimics the natural environment in the tissue-specific extracellular matrix (ECM. Therefore, we have applied hyaluronic acid (HA, which is a main component of the cartilage ECM, to chitosan as a fundamental material for cartilage regeneration. To mimic the structural environment of cartilage ECM, the fundamental structure of a scaffold should be a three-dimensional (3D system with adequate mechanical strength. We structurally developed novel polymer chitosan-based HA hybrid fibers as a biomaterial to easily fabricate 3D scaffolds. This review presents the potential of a 3D fabricated scaffold based on these novel hybrid polymer fibers for cartilage tissue engineering.

  18. The role of chitosan on oral delivery of peptide-loaded nanoparticle formulation.

    Science.gov (United States)

    Wong, Chun Y; Al-Salami, Hani; Dass, Crispin R

    2017-12-01

    Therapeutic peptides are conventionally administered via subcutaneous injection. Chitosan-based nanoparticles are gaining increased attention for their ability to serve as a carrier for oral delivery of peptides and vaccination. They offered superior biocompatibiltiy, controlled drug release profile and facilitated gastrointestinal (GI) absorption. The encapsulated peptides can withstand enzymatic degradation and various pH. Chitosan-based nanoparticles can also be modified by ligand conjugation to the surface of nanoparticle for transcellular absorption and specific-targeted delivery of macromolecules to the tissue of interest. Current research suggests that chitosan-based nanoparticles can deliver therapeutic peptide for the treatment of several medical conditions such as diabetes, bacterial infection and cancer. This review summarises the role of chitosan in oral nanoparticle delivery and identifies the clinical application of peptide-loaded chitosan-based nanoparticles.

  19. Polyelectrolyte Properties in Mono and Multi-Valent Ionic Media: Brushes and Complex Coacervates

    Science.gov (United States)

    Farina, Robert M.

    Materials composed of polyelectrolytes have unique and interesting physical properties resulting primarily from their charged monomer segments. Polyelectrolytes, which exist in many different biological and industrial forms, have also been shown to be highly responsive to external environmental changes. Here, two specific polyelectrolyte systems, brushes and complex coacervates, are discussed in regards to how their properties can be tailored by adjusting the surrounding ionic environment with mono and multi-valent ions. End-tethered polyelectrolyte brushes, which constitute an interesting and substantial portion of polyelectrolyte applications, are well known for their ability to provide excellent lubrication and low friction when coated onto surfaces (e.g. articular cartilage and medical devices), as well as for their ability to stabilize colloidal particles in solution (e.g. paint and cosmetic materials). These properties have been extensively studied with brushes in pure mono-valent ionic media. However, polyelectrolyte brush interactions with multi-valent ions in solution are much less understood, although highly relevant considering mono and multi-valent counterions are present in most applications. Even at very low concentrations of multi-valent ions in solution, dramatic polyelectrolyte brush physical property changes can occur, resulting in collapsed chains which also adhere to one another via multi-valent bridging. Here, the strong polyelectrolyte poly(sodium styrene sulfonate) was studied using the Surface Forces Apparatus (SFA) and electrochemistry in order to investigate brush height and intermolecular interactions between two brushes as a function of multi-valent counterion population inside a brush. Complex coacervates are formed when polyanions and polycations are mixed together in proper conditions of an aqueous solution. This mixing results in a phase separation of a polymer-rich, coacervate phase composed of a chain network held together via

  20. pH-triggered chitosan nanogels via an ortho ester-based linkage for efficient chemotherapy.

    Science.gov (United States)

    Yang, Guanqing; Wang, Xin; Fu, Shengxiang; Tang, Rupei; Wang, Jun

    2017-09-15

    We report on new types of chitosan-based nanogels via an ortho ester-based linkage, used as drug carriers for efficient chemotherapy. First, we synthesized a novel diacrylamide containing ortho ester (OEAM) as an acid-labile cross-linker. Subsequently, methacrylated succinyl-chitosan (MASCS) was prepared and polymerized with OEAM at different molar ratios to give a series of pH-triggered MASCS nanogels. Doxorubicin (DOX) as a model anticancer drug was loaded into MASCS nanogels with a loading content of 16.5%. As expected, with the incorporation of ortho ester linkages, these nanogels showed pH-triggered degradation and drug release at acidic pH values. In vitro cellular uptake shows that the DOX-loaded nanogels could be preferentially internalized by two-dimensional (2D) cells and three-dimensional (3D) multicellular spheroids (MCs), resulting in higher inhibition of the proliferation of tumor cells. In vivo biodistribution and anti-tumor effect were determined in H22 tumor-bearing mice, and the results demonstrate that the acid-labile MASCS nanogels can significantly prolong the blood circulation time of DOX and improve the accumulation in tumor areas, leading to higher therapeutic efficacy. We designed new pH-triggered chitosan nanogels via an ortho ester-based cross-linker for efficient drug-loading and chemotherapy. These drug-loaded nanogels exhibit excellent pH-triggered drug release behavior due to the degradation of ortho ester linkages in mildly acidic environments. In vitro and in vivo results demonstrate that the nanogels could be efficiently internalized by 2D cells and 3D-MCs, improve drug concentration in solid tumors, and lead to higher therapeutic efficacy. To the best of our knowledge, this is the first report on using an ortho ester-based cross-linker to prepare pH-triggered chitosan nanogels as tumor carriers, which may provide a potential route for improved safety and to increase the therapeutic efficacy of anticancer therapy. Copyright © 2017

  1. Influence of network topology on the swelling of polyelectrolyte nanogels

    OpenAIRE

    Rizzi, Leandro G.; Levin, Yan

    2016-01-01

    It is well-known that the swelling behavior of ionic nanogels depends on their cross-link density, however it is unclear how different topologies should affect the response of the polyelectrolyte network. Here we perform Monte Carlo simulations to obtain the equilibrium properties of ionic nanogels as a function of salt concentration $C_s$ and the fraction $f$ of ionizable groups in a polyelectrolyte network formed by cross-links of functionality $z$. Our results indicate that the network wit...

  2. Chitosan as a bioactive polymer: Processing, properties and applications.

    Science.gov (United States)

    Muxika, A; Etxabide, A; Uranga, J; Guerrero, P; de la Caba, K

    2017-12-01

    Chitin is one of the most abundant natural polysaccharides in the world and it is mainly used for the production of chitosan by a deacetylation process. Chitosan is a bioactive polymer with a wide variety of applications due to its functional properties such as antibacterial activity, non-toxicity, ease of modification, and biodegradability. This review summarizes the most common chitosan processing methods and highlights some applications of chitosan in various industrial and biomedical fields. Finally, environmental concerns of chitosan-based films, considering the stages from raw materials extraction up to the end of life after disposal, are also discussed with the aim of finding more eco-friendly alternatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Ion binding by humic and fulvic acids: A computational procedure based on functional site heterogeneity and the physical chemistry of polyelectrolyte solutions

    International Nuclear Information System (INIS)

    Marinsky, J.A.; Reddy, M.M.; Ephraim, J.; Mathuthu, A.

    1988-04-01

    Ion binding equilibria for humic and fulvic acids are examined from the point of view of functional site heterogeneity and the physical chemistry of polyelectrolyte solutions. A detailed explanation of the potentiometric properties of synthetic polyelectrolytes and ion-exchange gels is presented first to provide the basis for a parallel consideration of the potentiometric properties exhibited by humic and fulvic acids. The treatment is then extended to account for functional site heterogeneity. Sample results are presented for analysis of the ion-binding reactions of a standard soil fulvic acid (Armadale Horizons Bh) with this approach to test its capability for anticipation of metal ion removal from solution. The ultimate refined model is shown to be adaptable, after appropriate consideration of the heterogeneity and polyelectrolyte factors, to programming already available for the consideration of ion binding by inorganics in natural waters. (orig.)

  4. Impedance spectroscopy study of dehydrated chitosan and chitosan containing LiClO4

    International Nuclear Information System (INIS)

    Costa, M.M.; Terezo, A.J.; Matos, A.L.; Moura, W.A.; Giacometti, Jose A.; Sombra, A.S.B.

    2010-01-01

    Cast films of chitosan and chitosan containing LiClO 4 were characterized using Fourier transform infrared spectroscopy and the thermogravimetric technique. The electric properties of hydrated and dehydrated films were investigated with impedance spectroscopy in the frequency range from 0.1 Hz to 1 MHz, at temperatures varying from 30 to 110 o C. The frequency dependence of the impedance for dehydrated chitosan and chitosan containing LiClO 4 films indicated ionic conduction. Two relaxation peaks were evident on the imaginary curve of the electric modulus, which were assigned to ionic conduction. The peak at higher frequency was found for chitosan and chitosan containing LiClO 4 films. The peak at lower frequency was attributed to Li + conduction since it appeared only for the chitosan containing LiClO 4 . The peak frequency varied with the temperature according to an Arrhenius process with activation energies of circa of 0.6 and 0.45 eV, for H + and Li + conduction, respectively.

  5. Chitosan nanofibers for transbuccal insulin delivery.

    Science.gov (United States)

    Lancina, Michael G; Shankar, Roopa Kanakatti; Yang, Hu

    2017-05-01

    In this work, they aimed at producing chitosan based nanofiber mats capable of delivering insulin via the buccal mucosa. Chitosan was electrospun into nanofibers using poly(ethylene oxide) (PEO) as a carrier molecule in various feed ratios. The mechanical properties and degradation kinetics of the fibers were measured. Insulin release rates were determined in vitro using an ELISA assay. The bioactivity of released insulin was measured in terms of Akt activation in pre-adipocytes. Insulin permeation across the buccal mucosa was measured in an ex-vivo porcine transbuccal model. Fiber morphology, mechanical properties, and in vitro stability were dependent on PEO feed ratio. Lower PEO content blends produced smaller diameter fibers with significantly faster insulin release kinetics. Insulin showed no reduction in bioactivity due to electrospinning. Buccal permeation of insulin facilitated by high chitosan content blends was significantly higher than that of free insulin. Taken together, the work demonstrates that chitosan-based nanofibers have the potential to serve as a transbuccal insulin delivery vehicle. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1252-1259, 2017. © 2017 Wiley Periodicals, Inc.

  6. Non-monotonic wetting behavior of chitosan films induced by silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Praxedes, A.P.P.; Webler, G.D.; Souza, S.T. [Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, AL (Brazil); Ribeiro, A.S. [Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, 57072-970 Maceió, AL (Brazil); Fonseca, E.J.S. [Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, AL (Brazil); Oliveira, I.N. de, E-mail: italo@fis.ufal.br [Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, AL (Brazil)

    2016-05-01

    Highlights: • The addition of silver nanoparticles modifies the morphology of chitosan films. • Metallic nanoparticles can be used to control wetting properties of chitosan films. • The contact angle shows a non-monotonic dependence on the silver concentration. - Abstract: The present work is devoted to the study of structural and wetting properties of chitosan-based films containing silver nanoparticles. In particular, the effects of silver concentration on the morphology of chitosan films are characterized by different techniques, such as atomic force microscopy (AFM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). By means of dynamic contact angle measurements, we study the modification on surface properties of chitosan-based films due to the addition of silver nanoparticles. The results are analyzed in the light of molecular-kinetic theory which describes the wetting phenomena in terms of statistical dynamics for the displacement of liquid molecules in a solid substrate. Our results show that the wetting properties of chitosan-based films are high sensitive to the fraction of silver nanoparticles, with the equilibrium contact angle exhibiting a non-monotonic behavior.

  7. A mediator-free glucose biosensor based on glucose oxidase/chitosan/α-zirconium phosphate ternary biocomposite.

    Science.gov (United States)

    Liu, Li-Min; Wen, Jiwu; Liu, Lijun; He, Deyong; Kuang, Ren-yun; Shi, Taqing

    2014-01-15

    A novel glucose oxidase/chitosan/α-zirconium phosphate (GOD/chitosan/α-ZrP) ternary biocomposite was prepared by co-intercalating glucose oxidase (GOD) and chitosan into the interlayers of α-zirconium phosphate (α-ZrP) via a delamination-reassembly procedure. The results of X-ray diffraction, infrared spectroscopy, circular dichroism, and ultraviolet spectrum characterizations indicated not only the layered and hybrid structure of the GOD/chitosan/α-ZrP ternary biocomposite but also the recovered activity of the intercalated GOD improved by the co-intercalated chitosan. By depositing the GOD/chitosan/α-ZrP biocomposite film onto a glassy carbon electrode, the direct electrochemistry of the intercalated GOD was achieved with a fast electron transfer rate constant, k(s), of 7.48±3.52 s(-1). Moreover, this GOD/chitosan/α-ZrP biocomposite modified electrode exhibited a sensitive response to glucose in the linear range of 0.25-8.0 mM (R=0.9994, n=14), with a determination limit of 0.076 mM. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Chain stiffness, salt valency, and concentration influences on titration curves of polyelectrolytes: Monte Carlo simulations

    Science.gov (United States)

    Carnal, Fabrice; Stoll, Serge

    2011-01-01

    Monte Carlo simulations have been used to study two different models of a weak linear polyelectrolyte surrounded by explicit counterions and salt particles: (i) a rigid rod and (ii) a flexible chain. We focused on the influence of the pH, chain stiffness, salt concentration, and valency on the polyelectrolyte titration process and conformational properties. It is shown that chain acid-base properties and conformational properties are strongly modified when multivalent salt concentration variation ranges below the charge equivalence. Increasing chain stiffness allows to minimize intramolecular electrostatic monomer interactions hence improving the deprotonation process. The presence of di and trivalent salt cations clearly promotes the chain degree of ionization but has only a limited effect at very low salt concentration ranges. Moreover, folded structures of fully charged chains are only observed when multivalent salt at a concentration equal or above charge equivalence is considered. Long-range electrostatic potential is found to influence the distribution of charges along and around the polyelectrolyte backbones hence resulting in a higher degree of ionization and a lower attraction of counterions and salt particles at the chain extremities.

  9. Coarse-Grained Modeling of Polyelectrolyte Solutions

    Science.gov (United States)

    Denton, Alan R.; May, Sylvio

    2014-03-01

    Ionic mixtures, such as electrolyte and polyelectrolyte solutions, have attracted much attention recently for their rich and challenging combination of electrostatic and non-electrostatic interparticle forces and their practical importance, from battery technologies to biological systems. Hydration of ions in aqueous solutions is known to entail ion-specific effects, including variable solubility of organic molecules, as manifested in the classic Hofmeister series for salting-in and salting-out of proteins. The physical mechanism by which the solvent (water) mediates effective interactions between ions, however, is still poorly understood. Starting from a microscopic model of a polyelectrolyte solution, we apply a perturbation theory to derive a coarse-grained model of ions interacting through both long-range electrostatic and short-range solvent-induced pair potentials. Taking these effective interactions as input to molecular dynamics simulations, we calculate structural and thermodynamic properties of aqueous ionic solutions. This work was supported by the National Science Foundation under Grant No. DMR-1106331.

  10. PLA/chitosan/keratin composites for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Tanase, Constantin Edi, E-mail: etanase@live.com [Faculty of Medical Bioengineering, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 9-13 Kogalniceanu Street, 700454 Iasi (Romania); Spiridon, Iuliana [“Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania)

    2014-07-01

    Novel composites based on PLA, chitosan and keratin was obtained via blend preparation. The goal of this contribution was to evaluate mechanical and in vitro behavior of the composites. The results point out composites with improved Young modulus and decreased tensile strength, significant increase in hardness (compared to PLA) and a good uptake of the surface properties. Biological assessments using human osteosarcoma cell line on these composites indicate a good viability/proliferation outcome. Hence preliminary results regarding mechanical behavior and in vitro osteoblast response suggest that these composites might have prospective application in medical field. - Highlights: • PLA, chitosan and keratin composites are prepared by blend preparation. • PLA, chitosan and keratin composites present improved mechanical properties and water uptake compare to PLA. • PLA, chitosan and keratin composites present good in vitro behavior.

  11. PLA/chitosan/keratin composites for biomedical applications

    International Nuclear Information System (INIS)

    Tanase, Constantin Edi; Spiridon, Iuliana

    2014-01-01

    Novel composites based on PLA, chitosan and keratin was obtained via blend preparation. The goal of this contribution was to evaluate mechanical and in vitro behavior of the composites. The results point out composites with improved Young modulus and decreased tensile strength, significant increase in hardness (compared to PLA) and a good uptake of the surface properties. Biological assessments using human osteosarcoma cell line on these composites indicate a good viability/proliferation outcome. Hence preliminary results regarding mechanical behavior and in vitro osteoblast response suggest that these composites might have prospective application in medical field. - Highlights: • PLA, chitosan and keratin composites are prepared by blend preparation. • PLA, chitosan and keratin composites present improved mechanical properties and water uptake compare to PLA. • PLA, chitosan and keratin composites present good in vitro behavior

  12. Synthesis of N-oleyl O-sulfate chitosan from methyl oleate with O-sulfate chitosan as edible film material

    Science.gov (United States)

    Daniel; Sihaloho, O.; Saleh, C.; Magdaleni, A. R.

    2018-04-01

    The research on the synthesis of N-oleyl O-sulfate chitosan through sulfonation reaction on chitosan with ammonium sulfate and followed by amidation reaction using methyl oleate has been done. In this study, chitosan was chemically modified into N-oleyl O-sulfatechitosan as an edible film making material. N-oleyl O-sulfate chitosan was synthesized by reaction between methyl oleate and O-sulfate chitosan. Wherein the depleted chitosan of O-sulfate chitosan into O-sulfate chitosan was obtained by reaction of sulfonation between ammonium sulfate and chitosan aldimine. While chitosan aldimine was obtained through reaction between chitosan with acetaldehyde. The structure of N-oleyl O-sulfate chitosan was characterized by FT-IR analysis which showed vibration uptake of C-H sp3 group, S=O group, and carbonyl group C=O of the ester. The resulting of N-oleyl O-sulfate chitosan yielded a percentage of 93.52%. Hydrophilic-Lipophilic Balance (HLB) test results gave a value of 6.68. In the toxicity test results of N-oleyl O-sulfate chitosan obtained LC50 value of 3738.4732 ppm. In WVTR (Water Vapor Transmission Rate) test results for chitosan film was 407.625 gram/m2/24 hours and N-oleylO-sulfate chitosan film was 201.125 gram/m2/24 hours.

  13. Development and Evaluation of Buccal Films Based on Chitosan for the Potential Treatment of Oral Candidiasis.

    Science.gov (United States)

    Tejada, G; Barrera, M G; Piccirilli, G N; Sortino, M; Frattini, A; Salomón, C J; Lamas, María C; Leonardi, Darío

    2017-05-01

    In this work, chitosan films were prepared by a casting/solvent evaporation methodology using pectin or hydroxypropylmethyl cellulose to form polymeric matrices. Miconazole nitrate, as a model drug, was loaded into such formulations. These polymeric films were characterized in terms of mechanical properties, adhesiveness, and swelling as well as drug release. Besides, the morphology of raw materials and films was investigated by scanning electron microscopy; interactions between polymers were analyzed by infrared spectroscopy and drug crystallinity studied by differential scanning calorimetry and X-ray diffraction. In addition, antifungal activity against cultures of the five most important fungal opportunistic pathogens belonging to Candida genus was investigated. Chitosan:hydroxypropylmethyl cellulose films were found to be the most appropriate formulations in terms of folding endurance, mechanical properties, and adhesiveness. Also, an improvement in the dissolution rate of miconazole nitrate from the films up to 90% compared to the non-loaded drug was observed. The in vitro antifungal activity showed a significant activity of the model drug when it is loaded into chitosan films. These findings suggest that chitosan-based films are a promising approach to deliver miconazole nitrate for the treatment of candidiasis.

  14. Aggregation of flexible polyelectrolytes: Phase diagram and dynamics.

    Science.gov (United States)

    Tom, Anvy Moly; Rajesh, R; Vemparala, Satyavani

    2017-10-14

    Similarly charged polymers in solution, known as polyelectrolytes, are known to form aggregated structures in the presence of oppositely charged counterions. Understanding the dependence of the equilibrium phases and the dynamics of the process of aggregation on parameters such as backbone flexibility and charge density of such polymers is crucial for insights into various biological processes which involve biological polyelectrolytes such as protein, DNA, etc. Here, we use large-scale coarse-grained molecular dynamics simulations to obtain the phase diagram of the aggregated structures of flexible charged polymers and characterize the morphology of the aggregates as well as the aggregation dynamics, in the presence of trivalent counterions. Three different phases are observed depending on the charge density: no aggregation, a finite bundle phase where multiple small aggregates coexist with a large aggregate and a fully phase separated phase. We show that the flexibility of the polymer backbone causes strong entanglement between charged polymers leading to additional time scales in the aggregation process. Such slowing down of the aggregation dynamics results in the exponent, characterizing the power law decay of the number of aggregates with time, to be dependent on the charge density of the polymers. These results are contrary to those obtained for rigid polyelectrolytes, emphasizing the role of backbone flexibility.

  15. Modification of Bacterial Cellulose Biofilms with Xylan Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Sara M. Santos

    2017-11-01

    Full Text Available The effect of the addition of two [4-butyltrimethylammonium]-xylan chloride polyelectrolytes (BTMAXs on bacterial cellulose (BC was evaluated. The first strategy was to add the polyelectrolytes to the culture medium together with a cell suspension of the bacterium. After one week of cultivation, the films were collected and purified. The second approach consisted of obtaining a purified and homogenized BC, to which the polyelectrolytes were added subsequently. The films were characterized in terms of tear and burst indexes, optical properties, surface free energy, static contact angle, Gurley porosity, SEM, X-ray diffraction and AFM. Although there are small differences in mechanical and optical properties between the nanocomposites and control films, the films obtained by BC synthesis in the presence of BTMAXs were remarkably less opaque, rougher, and had a much lower specular gloss. The surface free energy depends on the BTMAXs addition method. The crystallinity of the composites is lower than that of the control material, with a higher reduction of this parameter in the composites obtained by adding the BTMAXs to the culture medium. In view of these results, it can be concluded that BC–BTMAX composites are a promising new material, for example, for paper restoration.

  16. Effect of Maillard reaction products on the physical and antimicrobial properties of edible films based on ε-polylysine and chitosan.

    Science.gov (United States)

    Wang, Yingying; Liu, Fuguo; Liang, Chunxuan; Yuan, Fang; Gao, Yanxiang

    2014-11-01

    Edible films based on Maillard reaction products (MRPs) of ε-polylysine and chitosan, without the use of any plasticiser, were prepared by solution casting. The effect of Maillard reaction parameters (reaction time and the ratio of polylysine/chitosan) of ε-polylysine and chitosan on the structure, moisture content, water solubility, total colour difference and mechanical properties of edible films formed by MRPs were systematically evaluated. Scanning electron microscopy confirmed that edible films prepared by the MRPs of ε-polylysine and chitosan through the Maillard reaction exhibited a more compact and dense structure than those from the mixture of biopolymers without the presence of MRPs. The tensile strength and % elongation values of films from the mixture were decreased significantly with the rise of ε-polylysine (P Maillard reaction, whereas water solubility was decreased and total colour difference was increased significantly (P Maillard reaction time. In addition, antimicrobial activity of chitosan films against E. coli and S. aureus. could be achieved by incorporating ε-polylysine into chitosan. These films can ensure food quality and safety, especially for coating highly perishable foods, such as meat products. © 2014 Society of Chemical Industry. © 2014 Society of Chemical Industry.

  17. Structure of ordered polyelectrolyte films from atomic-force microscopy and X-ray reflectivity data

    International Nuclear Information System (INIS)

    Belyaev, V.V.; Tolstikhina, A.L.; Stepina, N.D.; Kayushina, R.L.

    1998-01-01

    The possible application of atomic-force microscopy and X-ray reflectometry methods to structural studies of polyelectrolyte films obtained due to alternating adsorption of oppositely charged polyanion [sodium polysterenesulfonate (PSS)] and polycation [poly(allylamine) hydrochloride (PAA)] layers on solid substrates has been considered. The atomic-force microscopy study has revealed the characteristic features of the surface topography of samples consisting of different numbers of polyelectrolyte layers deposited from solutions characterized by different ionic strength values. It is shown that the shape of the reflectivity curves obtained from thin polyelectrolyte films depends on their surface structure

  18. Surface analysis monitoring of polyelectrolyte deposition on Ba0.5Sr0.5TiO3 thin films

    International Nuclear Information System (INIS)

    Morales-Cruz, Angel L.; Fachini, Estevao R.; Miranda, Felix A.; Cabrera, Carlos R.

    2007-01-01

    Thin films are currently gaining interest in many areas such as integrated optics, sensors, friction, reducing coatings, surface orientation layers, and general industrial applications. Recently, molecular self-assembling techniques have been applied for thin film deposition of electrically conducting polymers, conjugated polymers for light-emitting devices, nanoparticles, and noncentrosymmetric-ordered second order nonlinear optical (NOL) devices. Polyelectrolytes self-assemblies have been used to prepare thin films. The alternate immersion of a charged surface in polyannion and a polycation solution leads usually to the formation of films known as polyelectrolyte multilayers. These polyanion and polycation structures are not neutral. However, charge compensation appears on the surface. This constitutes the building driving force of the polyelectrolyte multilayer films. The present approach consists of two parts: (a) the chemisorption of 11-mercaptoundecylamine (MUA) to construct a self-assembled monolayer with the consequent protonation of the amine, and (b) the deposition of opposite charged polyelectrolytes in a sandwich fashion. The approach has the advantage that ionic attraction between opposite charges is the driving force for the multilayer buildup. For our purposes, the multilayer of polyelectrolytes depends on the quality of the surface needed for the application. In many cases, this approach will be used in a way that the roughness factor defects will be diminished. The polyelectrolytes selected for the study were: polystyrene sulfonate sodium salt (PSS), poly vinylsulfate potassium salt (PVS), and polyallylamine hydrochloride (PAH), as shown in . The deposition of polyelectrolytes was carried out by a dipping procedure with the corresponding polyelectrolyte. Monitoring of the alternate deposition of polyelectrolyte bilayers was done by surface analysis techniques such as X-ray photoelectron spectroscopy (XPS), specular reflectance infrared (IR), and

  19. Brominated Tyrosine and Polyelectrolyte Multilayer Analysis by Laser Desorption VUV Postionization and Secondary Ion Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    University of Illinois at Chicago; Blaze, Melvin M. T.; Takahashi, Lynelle; Zhou, Jia; Ahmed, Musahid; Gasper, Gerald; Pleticha, F. Douglas; Hanley, Luke

    2011-03-14

    The small molecular analyte 3,5-dibromotyrosine (Br2Y) and chitosan-alginate polyelectrolyte multilayers (PEM) with and without adsorbed Br2Y were analyzed by laser desorption postionization mass spectrometry (LDPI-MS). LDPI-MS using 7.87 eV laser and tunable 8 ? 12.5 eV synchrotron vacuum ultraviolet (VUV) radiation found that desorption of clusters from Br2Y films allowed detection by≤8 eV single photon ionization. Thermal desorption and electronic structure calculations determined the ionization energy of Br2Y to be ~;;8.3?0.1 eV and further indicated that the lower ionization energies of clusters permitted their detection at≤8 eV photon energies. However, single photon ionization could only detect Br2Y adsorbed within PEMs when using either higher photon energies or matrix addition to the sample. All samples were also analyzed by 25 keV Bi3 + secondary ion mass spectrometry (SIMS), with the negative ion spectra showing strong parent ion signal which complemented that observed by LDPI-MS. The negative ion SIMS depended strongly on the high electron affinity of this specific analyte and the analyte?s condensed phase environment.

  20. Scanning electron microscopy and swelling test of shrimp shell chitosan and chitosan-RGD scaffolds

    Science.gov (United States)

    Mandacan, M. C.; Yuniastuti, M.; Amir, L. R.; Idrus, E.; Suniarti, D. F.

    2017-08-01

    Shrimp shell chitosan and chitosan-RGD scaffold membranes are produced to be biocompatible with tissue engineering. Nonetheless, their architectural properties have not yet been studied. Analyze the architectural properties of chitosan and chitosan-RGD scaffolds. Analyze pore count and size, interpore distance, and porosity (using SEM testing and ImageJ analysis) and water absorption (using a swelling test). The properties of the chitosan and chitosan-RGD scaffolds were as follows, respectively. The pore counts were 225 and 153; pore size, 171.4 μam and 180.2 μam interpore distance, 105.7 μam and 101.4 μam porosity, 22% and 10.2%; and water absorption, 9.1 mgH2O/mgScaffold and 19.3 mgH2O/mgScaffold. The shrimp shell chitosan-RGD membrane scaffold was found to have architectural properties that make it more conducive to use in tissue engineering.

  1. Transfection efficiency of chitosan and thiolated chitosan in retinal pigment epithelium cells: A comparative study

    Directory of Open Access Journals (Sweden)

    Ana V Oliveira

    2013-01-01

    Full Text Available Objective: Gene therapy relies on efficient vector for a therapeutic effect. Efficient non-viral vectors are sought as an alternative to viral vectors. Chitosan, a cationic polymer, has been studied for its gene delivery potential. In this work, disulfide bond containing groups were covalently added to chitosan to improve the transfection efficiency. These bonds can be cleaved by cytoplasmic glutathione, thus, releasing the DNA load more efficiently. Materials and Methods: Chitosan and thiolated chitosan nanoparticles (NPs were prepared in order to obtain a NH3 + :PO4− ratio of 5:1 and characterized for plasmid DNA complexation and release efficiency. Cytotoxicity and gene delivery studies were carried out on retinal pigment epithelial cells. Results: In this work, we show that chitosan was effectively modified to incorporate a disulfide bond. The transfection efficiency of chitosan and thiolated chitosan varied according to the cell line used, however, thiolation did not seem to significantly improve transfection efficiency. Conclusion: The apparent lack of improvement in transfection efficiency of the thiolated chitosan NPs is most likely due to its size increase and charge inversion relatively to chitosan. Therefore, for retinal cells, thiolated chitosan does not seem to constitute an efficient strategy for gene delivery.

  2. Multiscale patterning of nanocomposite polyelectrolyte/nanoparticle films using inkjet printing and AFM scratching

    International Nuclear Information System (INIS)

    Leigh, S J; Bowen, J; Preece, J A

    2015-01-01

    The fabrication of structured polymer/nanoparticle composite films through a combination of additive, subtractive and self-assembly methodologies is investigated. Consumer grade inkjet printing hardware is employed to deposit cationic polyelectrolytes on (i) hydrophilic and (ii) hydrophobised glass substrates. The hydrophobisation process controls the spreading of the droplets and hence the lateral size of printed features. The printed cationic polyelectrolyte regions are used as a template to direct the self-assembly of negatively charged gold nanoparticles onto the surface. Micro-scale features are created in the polyelectrolyte/nanoparticle films using AFM scratching to selectively displace material. The effect of substrate wettability on film morphology is discussed. (paper)

  3. In Situ Swelling Behavior of Chitosan-Polygalacturonic Acid/Hydroxyapatite Nanocomposites in Cell Culture Media

    Directory of Open Access Journals (Sweden)

    Rohit Khanna

    2010-01-01

    Full Text Available The molecular and mechanical characteristics of in situ degradation behavior of chitosan-polygalacturonic acid/hydroxyapatite (Chi-PgA-HAP nanocomposite films is investigated using Fourier Transform Infrared spectroscopy (FTIR, Atomic Force Microscopy (AFM, and modulus mapping techniques for up to 48 days of soaking in cell culture media. The surface molecular structure of media-soaked samples changes over the course of 48 days of soaking, as indicated by significant changes in phosphate vibrations (1200–900 cm−1 indicating apatite formation. Chitosan-Polygalacturonic acid polyelectrolyte complexes (PECs govern structural integrity of Chi-PgA-HAP nanocomposites and FTIR spectra indicate that PECs remain intact until 48 days of soaking. In situ AFM experiments on media-soaked samples indicate that soaking results in a change in topography and swelling proceeds differently at the initial soaking periods of about 8 days than for longer soaking. In situ modulus mapping experiments are done on soaked samples by probing ∼1–3 nm of surface indicating elastic moduli of ∼4 GPa resulting from proteins adsorbed on Chi-PgA-HAP nanocomposites. The elastic modulus decreases by ∼2 GPa over a long exposure to cell culture media (48 days. Thus, as water enters the Chi-PgA-HAP sample, surface molecular interactions in Chi-PgA-HAP structure occur that result in swelling, causing small changes in nanoscale mechanical properties.

  4. New sizing agents and flocculants derived from chitosan

    International Nuclear Information System (INIS)

    Hebeish, A.; Higay, A.; El-Shafei, A.

    2005-01-01

    Novel approaches for development of new textile sizing agents and flocculants were undertaken. One of these approaches is based on acid hydrolysis of chitosan and the other involves its carboxy methylation. Characterization of the hydrolyzed chitosan was performed through monitoring nitrogen content and apparent viscosity, while carboxymethyl chitosan was analyzed for degree of substitution (DS) along with apparent viscosity. Factors affecting both hydrolysis and carboxy methylation were investigated. The nitrogen content and apparent viscosity of chitosan decrease variably by increasing HCl concentration as well as time and temperature of hydrolysis. On the other hand, the DS of carboxymethyl chitosan increases by increasing the concentration of both sodium hydroxide and monochloroacetic acid and similarly increases by prolonging the duration and raising the temperature of carboxy methylation; in contrast with apparent viscosity which is inversely related to these parameters. Aqueous solutions of hydrolyzed chitosan or carboxymethyl chitosan were applied to light cotton fabric with a view to envision the technical feasibility of such water soluble chitosan for textile sizing. The size add-on on the light fabric is directly related to the concentration of the hydrolyzed or carboxymethyl chitosan in the sizing solution and so does the apparent viscosity of the latter. Hundred percent size removals could be achieved with the hydrolyzed chitosan irrespective or the size solution concentration provided that the latter is not less than 8%. Different situation is encountered with carboxymethyl chitosan where the percent size removal increase from 81% to 95% by increasing its concentration in the sizing solution from 5 % to 15%. Drying the sized fabric at 80 degree C for 5 minutes or 120 degree C for 3 minutes has practically no effect on percent size removal. The same holds true for heat treatment of the sized fabric at higher temperatures (up to 160 degree C) for longer

  5. Surface modification of protein enhances encapsulation in chitosan nanoparticles

    Science.gov (United States)

    Koyani, Rina D.; Andrade, Mariana; Quester, Katrin; Gaytán, Paul; Huerta-Saquero, Alejandro; Vazquez-Duhalt, Rafael

    2018-04-01

    Chitosan nanoparticles have a huge potential as nanocarriers for environmental and biomedical purposes. Protein encapsulation in nano-sized chitosan provides protection against inactivation, proteolysis, and other alterations due to environmental conditions, as well as the possibility to be targeted to specific tissues by ligand functionalization. In this work, we demonstrate that the chemical modification of the protein surface enhances the protein loading in chitosan nanocarriers. Encapsulation of green fluorescent protein and the cytochrome P450 was studied. The increase of electrostatic interactions between the free amino groups of chitosan and the increased number of free carboxylic groups in the protein surface enhance the protein loading, protein retention, and, thus, the enzymatic activity of chitosan nanoparticles. The chemical modification of protein surface with malonic acid moieties reduced drastically the protein isoelectric point increasing the protein interaction with the polycationic biomaterial and chitosan. The chemical modification of protein does not alter the morphology of chitosan nanoparticles that showed an average diameter of 18 nm, spheroidal in shape, and smooth surfaced. The strategy of chemical modification of protein surface, shown here, is a simple and efficient technique to enhance the protein loading in chitosan nanoparticles. This technique could be used for other nanoparticles based on polycationic or polyanionic materials. The increase of protein loading improves, doubtless, the performance of protein-loaded chitosan nanoparticles for biotechnological and biomedical applications.

  6. Responsive block copolymer photonics triggered by protein-polyelectrolyte coacervation.

    Science.gov (United States)

    Fan, Yin; Tang, Shengchang; Thomas, Edwin L; Olsen, Bradley D

    2014-11-25

    Ionic interactions between proteins and polyelectrolytes are demonstrated as a method to trigger responsive transitions in block copolymer (BCP) photonic gels containing one neutral hydrophobic block and one cationic hydrophilic block. Poly(2-vinylpyridine) (P2VP) blocks in lamellar poly(styrene-b-2-vinylpyridine) block copolymer thin films are quaternized with primary bromides to yield swollen gels that show strong reflectivity peaks in the visible range; exposure to aqueous solutions of various proteins alters the swelling ratios of the quaternized P2VP (QP2VP) gel layers in the PS-QP2VP materials due to the ionic interactions between proteins and the polyelectrolyte. Parameters such as charge density, hydrophobicity, and cross-link density of the QP2VP gel layers as well as the charge and size of the proteins play significant roles on the photonic responses of the BCP gels. Differences in the size and pH-dependent charge of proteins provide a basis for fingerprinting proteins based on their temporal and equilibrium photonic response. The results demonstrate that the BCP gels and their photonic effect provide a robust and visually interpretable method to differentiate different proteins.

  7. Investigation of polyelectrolytes by total reflection x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Varga, I.; Nagy, M.

    2000-01-01

    Water soluble polyelectrolyte samples containing mono-, bi- and trivalent metal ions were investigated without any pretreatment. Acid digestion of linear polymers may lead to a product insoluble in water so the digestion has to be avoided. The aim of this paper was the determination of analytical characteristics and limitations of the total reflection x-ray fluorescence (TXRF) analysis for poly (vinylalcohol-vinylsulphate) salts and poly (acrylic acid, acrylamide) copolymers containing the following cations: K + , Cs + , Ba 2+ , Cu 2+ and La 3+ . On the basis of our results efficiency of ion-exchange during preparation of polyelectrolytes and stoichiometry of the end-product were determined. TXRF results were compared with data gained by inductively coupled plasma atomic emission spectrometry (ICP-AES) measurements except in the case of Cs + which has poor sensitivity in ICP-AES. Good agreement was found between the results of the two techniques and calculations from titrimetric data. Concentration of Li + and Mg 2+ in polymer samples was measured by ICP-AES. In majority of cases film-like dry residues of aqueous solutions of polyelectrolytes can be characterized by homogeneous spatial distribution of metal ions within the organic matrix. This is because the migration of the ions is hindered during drying process. Determination of metals in polyelectrolyte films by TXRF is quite ideal as model for analysis of plant, animal or human tissues which is a frequent task in environmental and inorganic biomedical analytical chemistry. (author)

  8. Carbon Papers and Aerogels Based on Graphene Layers and Chitosan: Direct Preparation from High Surface Area Graphite.

    Science.gov (United States)

    Barbera, Vincenzina; Guerra, Silvia; Brambilla, Luigi; Maggio, Mario; Serafini, Andrea; Conzatti, Lucia; Vitale, Alessandra; Galimberti, Maurizio

    2017-12-11

    In this work, carbon papers and aerogels based on graphene layers and chitosan were prepared. They were obtained by mixing chitosan (CS) and a high surface area nanosized graphite (HSAG) in water in the presence of acetic acid. HSAG/CS water dispersions were stable for months. High resolution transmission electron microscopy revealed the presence of few graphene layers in water suspensions. Casting or lyophilization of such suspensions led to the preparation of carbon paper and aerogel, respectively. In X-ray spectra of both aerogels and carbon paper, peaks due to regular stacks of graphene layers were not detected: graphene with unaltered sp 2 structure was obtained directly from graphite without the use of any chemical reaction. The composites were demonstrated to be electrically conductive thanks to the graphene. Chitosan thus makes it possible to obtain monolithic carbon aerogels and flexible and free-standing graphene papers directly from a nanosized graphite by avoiding oxidation to graphite oxide and successive reduction. Strong interaction between polycationic chitosan and the aromatic substrate appears to be at the origin of the stability of HSAG/CS adducts. Cation-π interaction is hypothesized, also on the basis of X-ray photoelectron spectroscopy findings. This work paves the way for the easy large-scale preparation of carbon papers through a method that has a low environmental impact and is based on a biosourced polymer, graphene, and water.

  9. Responsive polyelectrolyte hydrogels and soft matter micromanipulation

    NARCIS (Netherlands)

    Glazer, P.J.

    2013-01-01

    This dissertation describes experimental studies on the mechanisms underlying the dynamic response of polyelectrolyte hydrogels when submitted to an external electric potential. In addition, we explore the possibilities of miniaturization and manipulation of responsive gels and other soft matter

  10. Probing cellular behaviors through nanopatterned chitosan membranes

    International Nuclear Information System (INIS)

    Yang, Chung-Yao; Sung, Chun-Yen; Shuai, Hung-Hsun; Cheng, Chao-Min; Yeh, J Andrew

    2013-01-01

    This paper describes a high-throughput method for developing physically modified chitosan membranes to probe the cellular behavior of MDCK epithelial cells and HIG-82 fibroblasts adhered onto these modified membranes. To prepare chitosan membranes with micro/nanoscaled features, we have demonstrated an easy-to-handle, facile approach that could be easily integrated with IC-based manufacturing processes with mass production potential. These physically modified chitosan membranes were observed by scanning electron microscopy to gain a better understanding of chitosan membrane surface morphology. After MDCK cells and HIG-82 fibroblasts were cultured on these modified chitosan membranes for various culture durations (i.e. 1, 2, 4, 12 and 24 h), they were investigated to decipher cellular behavior. We found that both cells preferred to adhere onto a flat surface rather than on a nanopatterned surface. However, most (> 80%) of the MDCK cells showed rounded morphology and would suspend in the cultured medium instead of adhering onto the planar surface of negatively nanopatterned chitosan membranes. This means different cell types (e.g. fibroblasts versus epithelia) showed distinct capabilities/preferences of adherence for materials of varying surface roughness. We also showed that chitosan membranes could be re-used at least nine times without significant contamination and would provide us consistency for probing cell–material interactions by permitting reuse of the same substrate. We believe these results would provide us better insight into cellular behavior, specifically, microscopic properties and characteristics of cells grown under unique, nanopatterned cell-interface conditions. (paper)

  11. Tuning cell adhesion and growth on biomimetic polyelectrolyte multilayers by variation of pH during layer-by-layer assembly.

    Science.gov (United States)

    Aggarwal, Neha; Altgärde, Noomi; Svedhem, Sofia; Michanetzis, Georgios; Missirlis, Yannis; Groth, Thomas

    2013-10-01

    Polyelectrolyte multilayers of chitosan and heparin are assembled on glass where heparin is applied at pH = 4, 9 and 4 during the formation of the first layers followed by pH = 9 at the last steps (denoted pH 4 + 9). Measurements of wetting properties, layer mass, and topography show that multilayers formed at pH = 4 are thicker, contain more water and have a smoother surface compared to those prepared at pH = 9 while the pH = 4 + 9 multilayers expressed intermediate properties. pH = 9 multilayers are more cell adhesive and support growth of C2C12 cells better than pH = 4 ones. However, pH 4 + 9 conditions improve the bioactivity to a similar level of pH = 9 layers. Multilayers prepared using pH 4 + 9 conditions form thick enough layers that may allow efficient loading of bioactive molecules. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Synthesis and characterization of magnetite/PLGA/chitosan nanoparticles

    Science.gov (United States)

    Ibarra, Jaime; Melendres, Julio; Almada, Mario; Burboa, María G.; Taboada, Pablo; Juárez, Josué; Valdez, Miguel A.

    2015-09-01

    In this work, we report the synthesis and characterization of a new hybrid nanoparticles system performed by magnetite nanoparticles, loaded in a PLGA matrix, and stabilized by different concentrations of chitosan. Magnetite nanoparticles were hydrophobized with oleic acid and entrapped in a PLGA matrix by the emulsion solvent evaporation method, after that, magnetite/PLGA/chitosan nanoparticles were obtained by adding dropwise magnetite/PLGA nanoparticles in chitosan solutions. Magnetite/PLGA nanoparticles produced with different molar ratios did not show significant differences in size and the 3:1 molar ratio showed best spherical shapes as well as uniform particle size. Isothermal titration calorimetry studies demonstrated that the first stage of PLGA-chitosan interaction is mostly regulated by electrostatic forces. Based on a single set of identical sites model, we obtained for the average number of binding sites a value of 3.4, which can be considered as the number of chitosan chains per nanoparticle. This value was confirmed by using a model based on the DLVO theory and fitting zeta potential measurements of magnetite/PLGA/chitosan nanoparticles. From the adjusted parameters, we found that an average number of chitosan molecules of 3.6 per nanoparticle are attached onto the surface of the PLGA matrix. Finally, we evaluated the effect of surface charge of nanoparticles on a membrane model of endothelial cells performed by a mixture of three phospholipids at the air-water interface. Different isotherms and adsorption curves show that cationic surface of charged nanoparticles strongly interact with the phospholipids mixture and these results can be the basis of future experiments to understand the nanoparticles- cell membrane interaction.

  13. Synthesis and characterization of magnetite/PLGA/chitosan nanoparticles

    International Nuclear Information System (INIS)

    Ibarra, Jaime; Melendres, Julio; Almada, Mario; Juárez, Josué; Valdez, Miguel A; Burboa, María G; Taboada, Pablo

    2015-01-01

    In this work, we report the synthesis and characterization of a new hybrid nanoparticles system performed by magnetite nanoparticles, loaded in a PLGA matrix, and stabilized by different concentrations of chitosan. Magnetite nanoparticles were hydrophobized with oleic acid and entrapped in a PLGA matrix by the emulsion solvent evaporation method, after that, magnetite/PLGA/chitosan nanoparticles were obtained by adding dropwise magnetite/PLGA nanoparticles in chitosan solutions. Magnetite/PLGA nanoparticles produced with different molar ratios did not show significant differences in size and the 3:1 molar ratio showed best spherical shapes as well as uniform particle size. Isothermal titration calorimetry studies demonstrated that the first stage of PLGA-chitosan interaction is mostly regulated by electrostatic forces. Based on a single set of identical sites model, we obtained for the average number of binding sites a value of 3.4, which can be considered as the number of chitosan chains per nanoparticle. This value was confirmed by using a model based on the DLVO theory and fitting zeta potential measurements of magnetite/PLGA/chitosan nanoparticles. From the adjusted parameters, we found that an average number of chitosan molecules of 3.6 per nanoparticle are attached onto the surface of the PLGA matrix. Finally, we evaluated the effect of surface charge of nanoparticles on a membrane model of endothelial cells performed by a mixture of three phospholipids at the air–water interface. Different isotherms and adsorption curves show that cationic surface of charged nanoparticles strongly interact with the phospholipids mixture and these results can be the basis of future experiments to understand the nanoparticles- cell membrane interaction. (paper)

  14. QM/MM-MD simulations of conjugated polyelectrolytes

    DEFF Research Database (Denmark)

    Sjöqvist, Jonas; Linares, Mathieu; Mikkelsen, Kurt Valentin

    2014-01-01

    A methodological development is reported for the study of luminescence properties of conjugated polyelectrolytes, encompassing systems in which dihedral rotational barriers are easily overcome at room temperature. The components of the model include (i) a molecular mechanics (MM) force field desc...

  15. Preparation and characterisation of irradiated crab chitosan and New Zealand Arrow squid pen chitosan

    International Nuclear Information System (INIS)

    Shavandi, Amin; Bekhit, Adnan A.; Bekhit, Alaa El-Din A.; Sun, Zhifa; Ali, M. Azam

    2015-01-01

    The properties of chitosan from Arrow squid (Nototodarus sloanii) pen (CHS) and commercial crab shell (CHC) were investigated using FTIR, DSC, SEM and XRD before and after irradiation at the dose of 28 kGy in the presence or absence of 5% water. Also, the viscosity, deacetylation degree, water and oil holding capacities, colour and antimicrobial activities of the chitosan samples were determined. Irradiation decreased (P < 0.05) the viscosity of CHC from 0.21 to 0.03 Pa s and of CHS from 1.71 to 0.23 Pa s. The inclusion of water had no effect on the viscosity of irradiated chitosan. Irradiation did not affect the degree of deacetylation of CHC, but increased the deacetylation degree of CHS from 72.78 to 82.29% in samples with 5% water. Water and oil holding capacities of CHS (1197.30% and 873.3%, respectively) were higher (P < 0.05) than those found in CHC (340.70% and 264.40%, respectively). The water and oil holding capacities were decreased for both types of chitosan irradiation, but were not affected by the addition of water. Squid pen chitosan was whiter in colour (White Index = 90.06%) compared to CHC (White Index = 83.70%). Generally, the CHC samples (control and irradiated) exhibited better antibacterial activity compared to CHS, but the opposite was observed with antifungal activity. - Highlights: • Chitosan prepared from Arrow squid pens (Nototodarus sloanii). • Chitosan samples were gamma irradiated at 28 kGy. • Squid pen chitosan showed high fat and water uptake capacities compared to crab shell chitosan. • Gamma irradiation enhanced the DDA of squid pen chitosan but not crab shell chitosan.

  16. Preparation and characterization of composites based on the blends of collagen, chitosan and hyaluronic acid with nano-hydroxyapatite.

    Science.gov (United States)

    Sionkowska, Alina; Kaczmarek, Beata

    2017-09-01

    3D porous composites based on the blend of chitosan, collagen and hyaluronic acid with the addition of nano-hydroxyapatite were prepared. SEM images for the composites were made and the structure was assessed. Mechanical properties were studied using a Zwick&Roell Testing Mashine. In addition, the porosity and density of composites were measured. The concentration of calcium ions released from the material was detected by the complexometric titration method. The results showed that in 3D porous sponge based on the blend of chitosan, collagen and hyaluronic acid, inorganic particles of nanohydroxyapatite can be incorporated, as well as that the properties of 3D composites depend on the material composition. Mechanical parameters and thermal stability of ternary biopolymeric blends were improved by the addition of hydroxyapatite. Moreover, the porosity of ternary materials was higher than in materials based on pure chitosan or collagen. All composites were characterized by a porous structure with interconnected pores. Calcium ions can be released from the composite during its degradation in water. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Self-assembled nanoparticles based on PEGylated conjugated polyelectrolyte and drug molecules for image-guided drug delivery and photodynamic therapy.

    Science.gov (United States)

    Yuan, Youyong; Liu, Bin

    2014-09-10

    A drug delivery system based on poly(ethylene glycol) (PEG) grafted conjugated polyelectrolyte (CPE) has been developed to serve as a polymeric photosensitizer and drug carrier for combined photodynamic and chemotherapy. The amphiphilic brush copolymer can self-assemble into micellar nanopaticles (NPs) in aqueous media with hydrophobic conjugated polyelectrolyte backbone as the core and hydrophilic PEG as the shell. The NPs have an average diameter of about 100 nm, with the absorption and emission maxima at 502 and 598 nm, respectively, making them suitable for bioimaging applications. Moreover, the CPE itself can serve as a photosensitizer, which makes the NPs not only a carrier for drug but also a photosensitizing unit for photodynamic therapy, resulting in the combination of chemo- and photodynamic therapy for cancer. The half-maximal inhibitory concentration (IC50) value for the combination therapy to U87-MG cells is 12.7 μg mL(-1), which is much lower than that for the solely photodynamic therapy (25.5 μg mL(-1)) or chemotherapy (132.8 μg mL(-1)). To improve the tumor specificity of the system, cyclic arginine-glycine-aspartic acid (cRGD) tripeptide as the receptor to integrin αvβ3 overexpressed cancer cells was further incorporated to the surface of the NPs. The delivery system based on PEGylated CPE is easy to fabricate, which integrates the merits of targeted cancer cell image, chemotherapeutic drug delivery, and photodynamic therapy, making it promising for cancer treatment.

  18. Polyelectrolyte bundles

    Energy Technology Data Exchange (ETDEWEB)

    Limbach, H J; Sayar, M; Holm, C [Max-Planck-Institut fuer Polymerforschung, Ackermannweg 10, 55128 Mainz (Germany)

    2004-06-09

    Using extensive molecular dynamics simulations we study the behaviour of polyelectrolytes with hydrophobic side chains, which are known to form cylindrical micelles in aqueous solution. We investigate the stability of such bundles with respect to hydrophobicity, the strength of the electrostatic interaction and the bundle size. We show that for the parameter range relevant for sulfonated poly(para-phenylenes) (PPP) one finds a stable finite bundle size. In a more generic model we also show the influence of the length of the precursor oligomer on the stability of the bundles. We also point out that our model has close similarities to DNA solutions with added condensing agents, hinting at the possibility that the size of DNA aggregates is, under certain circumstances, thermodynamically limited.

  19. Polyelectrolyte bundles

    International Nuclear Information System (INIS)

    Limbach, H J; Sayar, M; Holm, C

    2004-01-01

    Using extensive molecular dynamics simulations we study the behaviour of polyelectrolytes with hydrophobic side chains, which are known to form cylindrical micelles in aqueous solution. We investigate the stability of such bundles with respect to hydrophobicity, the strength of the electrostatic interaction and the bundle size. We show that for the parameter range relevant for sulfonated poly(para-phenylenes) (PPP) one finds a stable finite bundle size. In a more generic model we also show the influence of the length of the precursor oligomer on the stability of the bundles. We also point out that our model has close similarities to DNA solutions with added condensing agents, hinting at the possibility that the size of DNA aggregates is, under certain circumstances, thermodynamically limited

  20. Polyelectrolyte bundles

    Science.gov (United States)

    Limbach, H. J.; Sayar, M.; Holm, C.

    2004-06-01

    Using extensive Molecular Dynamics simulations we study the behavior of polyelectrolytes with hydrophobic side chains, which are known to form cylindrical micelles in aqueous solution. We investigate the stability of such bundles with respect to hydrophobicity, the strength of the electrostatic interaction, and the bundle size. We show that for the parameter range relevant for sulfonated poly-para-phenylenes (PPP) one finds a stable finite bundle size. In a more generic model we also show the influence of the length of the precursor oligomer on the stability of the bundles. We also point out that our model has close similarities to DNA solutions with added condensing agents, hinting to the possibility that the size of DNA aggregates is under certain circumstances thermodynamically limited.

  1. Amphiphilic chitosan derivatives as carrier agents for rotenone

    Science.gov (United States)

    Kamari, Azlan; Aljafree, Nurul Farhana Ahmad

    2017-08-01

    In the present study, the feasibility of amphiphilic chitosan derivatives, namely oleoyl carboxymethyl chitosan (OCMCs), N,N-dimethylhexadecyl carboxymethyl chitosan (DCMCs) and deoxycholic acid carboxymethyl chitosan (DACMCs) as carrier agents for rotenone in water-insoluble pesticide formulations was investigated. Fourier Transform Infrared (FTIR) Spectrometer, CHN-O Elemental Analyser (CHN-O) and Transmission Electron Microscope (TEM) were used to characterise amphiphilic chitosan derivatives. The critical micelle concentration (CMC) of amphiphilic chitosan derivatives was determined using a Fluorescence Spectrometer. A High Performance Liquid Chromatography (HPLC) was used to determine the ability of OCMCs, DCMCs and DACMCs to load and release rotenone in an in vitro system. Based on TEM analysis, results have shown that amphiphilic chitosan derivatives formed self-assembly and exhibited spherical shape. The CMC values determined for OCMCs, DCMCs and DACMCs were 0.093, 0.098 and 0.468 mg/mL, respectively. The encapsulation efficiency (EE) values for the materials were more than 97.0%, meanwhile the loading capacity (LC) values were greater than 0.90%. OCMCs, DCMCs and DACMCs micelles exhibited an excellent ability to control the release of rotenone, of which 90.0% of rotenone was released within 40 to 52 h. In conclusion, OCMCs, DCMCs and DACMCs possess several key features to act as effective carrier agents for rotenone. Overall, amphiphilic chitosan derivatives produced in this study were successfully increased the solubility of rotenone by 49.0 times higher than free rotenone.

  2. Chitosan derivatives with antimicrobial, antitumour and antioxidant activities--a review.

    Science.gov (United States)

    Jarmila, Vinsová; Vavríková, Eva

    2011-01-01

    Chitosan is a linear polysaccharide with a good biodegradability, biocompatibility, and no toxicity, which provide it with huge potential for future development. The chitosan molecule appears to be a suitable polymeric complex for many biomedical applications. This review gathers current findings on the antibacterial, antifungal, antitumour and antioxidant activities of chitosan derivatives and concurs with our previous review presenting data collected up to 2008. Antibacterial activity is based on molecular weight, the degree of deacetylation, the type of substitutents, which can be cationic or easily form cations, and the type of bacterium. In general, high molecular weight chitosan cannot pass through cell membranes and forms a film that protects cells against nutrient transport through the microbial cell membrane. Low molecular weight chitosan derivatives are water soluble and can better incorporate the active molecule into the cell. Gram-negative bacteria, often represented by Escherichia coli, have an anionic bacterial surface on which cationic chitosan derivatives interact electrostatically. Thus, many chitosan conjugates have cationic components such as ammonium, pyridinium or piperazinium substituents introduced into their molecules to increase their positive charge. Gram-positive bacteria like Staphylococcus aureus are inhibited by the binding of lower molecular weight chitosan derivatives to DNA or RNA. Chitosan nanoparticles exhibit an increase in loading capacity and efficacy. Antitumour active compounds such as doxorubicin, paclitaxel, docetaxel and norcantharidin are used as drug carriers. It is evident that chitosan, with its low molecular weight, is a useful carrier for molecular drugs requiring targeted delivery. The antioxidant scavenging activity of chitosan has been established by the strong hydrogen-donating ability of chitosan. The low molecular weight and greater degree of quarternization have a positive influence on the antioxidant activity

  3. A bioprintable form of chitosan hydrogel for bone tissue engineering.

    Science.gov (United States)

    Demirtaş, Tuğrul Tolga; Irmak, Gülseren; Gümüşderelioğlu, Menemşe

    2017-07-13

    Bioprinting can be defined as 3D patterning of living cells and other biologics by filling and assembling them using a computer-aided layer-by-layer deposition approach to fabricate living tissue and organ analogs for tissue engineering. The presence of cells within the ink to use a 'bio-ink' presents the potential to print 3D structures that can be implanted or printed into damaged/diseased bone tissue to promote highly controlled cell-based regeneration and remineralization of bone. In this study, it was shown for the first time that chitosan solution and its composite with nanostructured bone-like hydroxyapatite (HA) can be mixed with cells and printed successfully. MC3T3-E1 pre-osteoblast cell laden chitosan and chitosan-HA hydrogels, which were printed with the use of an extruder-based bioprinter, were characterized by comparing these hydrogels to alginate and alginate-HA hydrogels. Rheological analysis showed that all groups had viscoelastic properties. It was also shown that under simulated physiological conditions, chitosan and chitosan-HA hydrogels were stable. Also, the viscosity values of the bio-solutions were in an applicable range to be used in 3D bio-printers. Cell viability and proliferation analyses documented that after printing with bio-solutions, cells continued to be viable in all groups. It was observed that cells printed within chitosan-HA composite hydrogel had peak expression levels for early and late stages osteogenic markers. It was concluded that cells within chitosan and chitosan-HA hydrogels had mineralized and differentiated osteogenically after 21 days of culture. It was also discovered that chitosan is superior to alginate, which is the most widely used solution preferred in bioprinting systems, in terms of cell proliferation and differentiation. Thus, applicability and printability of chitosan as a bio-printing solution were clearly demonstrated. Furthermore, it was proven that the presence of bone-like nanostructured HA in

  4. Cell Adhesion and Proliferation on Sulfonated and Non-Modified Chitosan Films.

    Science.gov (United States)

    Martínez-Campos, Enrique; Civantos, Ana; Redondo, Juan Alfonso; Guzmán, Rodrigo; Pérez-Perrino, Mónica; Gallardo, Alberto; Ramos, Viviana; Aranaz, Inmaculada

    2017-05-01

    Three types of chitosan-based films have been prepared and evaluated: a non-modified chitosan film bearing cationizable aliphatic amines and two films made of N-sulfopropyl chitosan derivatives bearing both aliphatic amines and negative sulfonate groups at different ratios. Cell adhesion and proliferation on chitosan films of C2C12 pre-myoblastic cells and B16 cells as tumoral model have been tested. A differential cell behavior has been observed on chitosan films due to their different surface modification. B16 cells have shown lower vinculin expression when cultured on sulfonated chitosan films. This study shows how the interaction among cells and material surface can be modulated by physicochemical characteristics of the biomaterial surface, altering tumoral cell adhesion and proliferation processes.

  5. Simulation of weak polyelectrolytes: a comparison between the constant pH and the reaction ensemble method

    Science.gov (United States)

    Landsgesell, Jonas; Holm, Christian; Smiatek, Jens

    2017-03-01

    The reaction ensemble and the constant pH method are well-known chemical equilibrium approaches to simulate protonation and deprotonation reactions in classical molecular dynamics and Monte Carlo simulations. In this article, we demonstrate the similarity between both methods under certain conditions. We perform molecular dynamics simulations of a weak polyelectrolyte in order to compare the titration curves obtained by both approaches. Our findings reveal a good agreement between the methods when the reaction ensemble is used to sweep the reaction constant. Pronounced differences between the reaction ensemble and the constant pH method can be observed for stronger acids and bases in terms of adaptive pH values. These deviations are due to the presence of explicit protons in the reaction ensemble method which induce a screening of electrostatic interactions between the charged titrable groups of the polyelectrolyte. The outcomes of our simulation hint to a better applicability of the reaction ensemble method for systems in confined geometries and titrable groups in polyelectrolytes with different pKa values.

  6. Study on a hydrogen peroxide biosensor based on horseradish peroxidase/GNPs-thionine/chitosan

    International Nuclear Information System (INIS)

    Kang Xiaobin; Pang Guangchang; Liang Xinyi; Wang Meng; Liu Jing; Zhu Weiming

    2012-01-01

    Highlights: ► Glutaraldehyde was used as the bridge linking agent to covalently bonded thionine in chitosan, which is more stable and could effectively prevalent leakage of the electronic mediator. ► The effect of GNPs adsorbed HRP was first accurately characterized by bio-layer interferometry using the ForteBio Octer system. ► The application of self-assembly technology increases the biosensor stability. - Abstract: A novel hydrogen peroxide biosensor based on horseradish peroxidase/GNPs-thionine/chitosan has been developed. Gold nanoparticles fixed with horseradish peroxidase were adsorbed on glassy carbon electrode by the chitosan which cross-linked with the electron mediator of horseradish peroxidase as the bridge linking agent. The assembly procedures were monitored by UV–visible spectral scanning, bio-layer interferometry, cyclic voltammetric and alternating current impedance. The chronoamperometry was used to measure hydrogen peroxide. The hydrogen peroxide biosensor linear range of detection is 1 × 10 −7 –1 × 10 −4 mol/L, detection limit up to 5.0 × 10 −8 mol/L. Moreover the stability, reproducibility and selectivity of the biosensor were also studied and the results confirmed that the biosensor exhibit fast response to hydrogen peroxide and possess high sensitivity, good reproducibility and long-term stability.

  7. Toxicity tests, antioxidant activity, and antimicrobial activity of chitosan

    Science.gov (United States)

    Kurniasih, M.; Purwati; Dewi, R. S.

    2018-04-01

    Chitosan is a naturally occurring cationic biopolymer, obtained by alkaline deacetylation of chitin. This research aims to investigate the toxicity, antioxidant activity and antibacterial activity of chitosan from shrimp chitin. In this study, chitin extracted from shrimp waste material. Chitin is then deacetylation with 60% NaOH so that chitosan produced. Degrees of deacetylation, molecular weight, toxicity test, antioxidant activity and antimicrobial activity of chitosan then evaluated. Toxicity test using Brine Shrimp Lethality Test. The antioxidant analysis was performed using DPPH method (2, 2-diphenyl-1-picrylhydrazyl) and FTC method (ferric thiocyanate) in which the radical formed will reduce Ferro to Ferri resulting in a complex with thiocyanate. To determine the antibacterial activity of Staphylococcus aureus, antifungal in Candida albicans and Aspergillus niger by measuring antimicrobial effects and minimum inhibitory concentrations (MIC). Based on the result of research, the value of degrees of deacetylation, molecular weight, and LC50 values of chitosan synthesis was 94,32, 1052.93 g/mol and 1364.41 ppm, respectively. In general, the antioxidative activities increased as the concentration of chitosan increased. MIC value of chitosan against S. aureus, C. albicans, and A. niger was 10 ppm, 15.6 ppm, and 5 ppm, respectively.

  8. Gelatin/chitosan biofilm: preparation and characterization

    International Nuclear Information System (INIS)

    Trindade, Luciane da C.; Nunes, Raquel A.; Diniz, Nadie K.S.; Braga, Carla R.C.; Silva, Suedina M. de Lima

    2011-01-01

    In this study, gelatin, chitosan and gelatin/chitosan bio films using the ratio of gelatin/chitosan (50/50) were prepared by casting method. The bio films prepared were characterized by X-ray diffraction, scanning electron microscopy and dissolution ratio. According to the results, the incorporation of chitosan into gelatin indicate the decrease of crystallinity of chitosan, a compact structure without large pores and that the dissolution of gelatin/chitosan film is little influenced by hot water than gelatin films. (author)

  9. Bio-active nanocomposite films based on nanocrystalline cellulose reinforced styrylquinoxalin-grafted-chitosan: Antibacterial and mechanical properties.

    Science.gov (United States)

    Fardioui, Meriem; Meftah Kadmiri, Issam; Qaiss, Abou El Kacem; Bouhfid, Rachid

    2018-07-15

    In this study, active nanocomposite films based on cellulose nanocrystalline (NCC) reinforced styrylquinoxalin-grafted-chitosan are prepared by solvent-casting process. The structures of the two styrylquinoxaline derivatives were confirmed by FT-IR, 1 H, 13 C NMR spectral data and the study of the antibacterial activity against Escherichia coli (EC), Staphylococcus aureus (SA), Bacillus subtilis (BS) and Pseudomonas Aeruginosa (PA) exhibits that they have a good antibacterial activity against (PA). On their side, the styrylquinoxalin-g-chitosan films are able to inhibit the growth of (PA) through their contact area without being damaged by the antibacterial test conditions. The addition of 5wt% of NCCs as nano-reinforcements revealed no change at the level of antibacterial activity but led to an important improvement of the mechanical properties (more than 60% and 90% improvement in Young's modulus and tensile strength, respectively) of the modified-chitosan films. Thereby, the present nanocomposite films are prepared by a simple way and featured by good mechanical and antibacterial properties which enhance the possibility to use them as bio-based products for biomedical and food packaging. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Chitosan-based nanoparticles for improved anticancer efficacy and bioavailability of mifepristone

    Directory of Open Access Journals (Sweden)

    Huijuan Zhang

    2016-11-01

    Full Text Available In addition to its well-known abortifacient effect, mifepristone (MIF has been used as an anticancer drug for various cancers in many studies with an in-depth understanding of the mechanism of action. However, application of MIF is limited by its poor water solubility and low oral bioavailability. In this work, we developed a drug delivery system based on chitosan nanoparticles (CNs to improve its bioavailability and anticancer activity. The MIF-loaded chitosan nanoparticles (MCNs were prepared by convenient ionic gelation techniques between chitosan (Cs and tripolyphosphate (TPP. The preparation conditions, including Cs concentration, TPP concentration, Cs/MIF mass ratio, and pH value of the TPP solution, were optimized to gain better encapsulation efficiency (EE and drug loading capacity (DL. MCNs prepared with the optimum conditions resulted in spherical particles with an average size of 200 nm. FTIR and XRD spectra verified that MIF was successfully encapsulated in CNs. The EE and DL of MCNs determined by HPLC were 86.6% and 43.3%, respectively. The in vitro release kinetics demonstrated that MIF was released from CNs in a sustained-release manner. Compared with free MIF, MCNs demonstrated increased anticancer activity in several cancer cell lines. Pharmacokinetic studies in male rats that were orally administered MCNs showed a 3.2-fold increase in the area under the curve from 0 to 24 h compared with free MIF. These results demonstrated that MCNs could be developed as a potential delivery system for MIF to improve its anticancer activity and bioavailability.

  11. Fabrication of chitosan microparticles loaded in chitosan and poly

    Indian Academy of Sciences (India)

    In recent decades, the use of microparticle-mediated drug delivery is widely applied in the field of biomedicalapplication. Here, we report the new dressing material with ciprofloxacin-loaded chitosan microparticle (CMP) impregnatedin chitosan (CH) and poly(vinyl alcohol) (PVA) scaffold for effective delivery of drug in a ...

  12. Electrochemical determination of the glass transition temperature of thin polyelectrolyte brushes at solid-liquid interfaces by impedance spectroscopy.

    Science.gov (United States)

    Alonso-García, Teodoro; Rodríguez-Presa, María José; Gervasi, Claudio; Moya, Sergio; Azzaroni, Omar

    2013-07-16

    Devising strategies to assess the glass transition temperature (Tg) of polyelectrolyte assemblies at solid-electrolyte interfaces is very important to understand and rationalize the temperature-dependent behavior of polyelectrolyte films in a wide range of settings. Despite the evolving perception of the importance of measuring Tg under aqueous conditions in thin film configurations, its straightforward measurement poses a challenging situation that still remains elusive in polymer and materials science. Here, we describe a new method based on electrochemical impedance spectroscopy (EIS) to estimate the glass transition temperature of planar polyelectrolyte brushes at solid-liquid interfaces. To measure Tg, the charge transfer resistance (Rct) of a redox probe diffusing through the polyelectrolyte brush was measured, and the temperature corresponding to the discontinuous change in Rct was identified as Tg. Furthermore, we demonstrate that impedance measurements not only facilitate the estimation of Tg but also enable a reliable evaluation of the transport properties of the polymeric interface, i.e., determination of diffusion coefficients, close to the thermal transition. We consider that this approach bridges the gap between electrochemistry and the traditional tools used in polymer science and offers new opportunities to characterize the thermal behavior of complex polymeric interfaces and macromolecular assemblies.

  13. Radiation-induced changes in carboxymethylated chitosan

    International Nuclear Information System (INIS)

    Huang Ling; Peng Jing; Zhai Maolin; Li Jiuqiang; Wei Genshuan

    2007-01-01

    This study focuses on the radiation effect of γ-ray on carboxymethylated chitosan (CM-chitosan) in solid state. The changes in molecular weight of CM-chitosan with absorbed dose were monitored by viscosity method. Experimental results indicated that random chain scissions took place under irradiation. Radiation chemical yield (G d ) of CM-chitosan in solid state with N 2 -saturated was 0.49, which showed CM-chitosan has high radiation stability. Biomaterials composed of CM-chitosan can be thought to sterilize with low absorbed dose. FTIR and UV spectra showed that main chain structures of CM-chitosan were retained, carbonyl/carboxyl groups were formed and partial amino groups were eliminated in high absorbed dose. XRD patterns identified that the degradation of CM-chitosan occurred mostly in amorphous region

  14. Salt dependence of compression normal forces of quenched polyelectrolyte brushes

    Science.gov (United States)

    Hernandez-Zapata, Ernesto; Tamashiro, Mario N.; Pincus, Philip A.

    2001-03-01

    We obtained mean-field expressions for the compression normal forces between two identical opposing quenched polyelectrolyte brushes in the presence of monovalent salt. The brush elasticity is modeled using the entropy of ideal Gaussian chains, while the entropy of the microions and the electrostatic contribution to the grand potential is obtained by solving the non-linear Poisson-Boltzmann equation for the system in contact with a salt reservoir. For the polyelectrolyte brush we considered both a uniformly charged slab as well as an inhomogeneous charge profile obtained using a self-consistent field theory. Using the Derjaguin approximation, we related the planar-geometry results to the realistic two-crossed cylinders experimental set up. Theoretical predictions are compared to experimental measurements(Marc Balastre's abstract, APS March 2001 Meeting.) of the salt dependence of the compression normal forces between two quenched polyelectrolyte brushes formed by the adsorption of diblock copolymers poly(tert-butyl styrene)-sodium poly(styrene sulfonate) [PtBs/NaPSS] onto an octadecyltriethoxysilane (OTE) hydrophobically modified mica, as well as onto bare mica.

  15. Chitosan magnetic microspheres for technological applications: Preparation and characterization

    International Nuclear Information System (INIS)

    Podzus, P.E.; Daraio, M.E.; Jacobo, S.E.

    2009-01-01

    One of the major applications of chitosan and its many derivatives are based on its ability to bind strongly heavy and toxic metal ions. In this study chitosan magnetic microspheres have been synthesized. Acetic acid (1%w/v) solution was used as solvent for the chitosan polymer solution (2%w/v) where magnetite nanoparticles were suspended in order to obtain a stable ferrofluid. Glutaraldehyde was used as cross-linker. The magnetic characteristic of these materials allows an easy removal after use if is necessary. The morphological characterization of the microspheres shows that they can be produced in the size range 800-1100 μm. The adsorption of Cu(II) onto chitosan-magnetite nanoparticles was studied in batch system. A second-order kinetic model was used to fit the kinetic data, leading to an equilibrium adsorption capacity of 19 mg Cu/g chitosan.

  16. A molecular-thermodynamic model for polyelectrolyte solutions

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, J.; Liu, H.; Hu, Y. [Thermodynamics Research Laboratory, East China University of Science and Technology, Shanghai 200237 (China); Prausnitz, J.M. [Department of Chemical Engineering, University of California, Berkeley, and Chemical Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (United States)

    1998-01-01

    Polyelectrolyte solutions are modeled as freely tangent-jointed, charged hard-sphere chains and corresponding counterions in a continuum medium with permitivity {var_epsilon}. By adopting the sticky-point model, the Helmholtz function for polyelectrolyte solutions is derived through the r-particle cavity-correlation function (CCF) for chains of sticky, charged hard spheres. The r-CCF is approximated by a product of effective nearest-neighbor two-particle CCFs; these are determined from the hypernetted-chain and mean-spherical closures (HNC/MSA) inside and outside the hard core, respectively, for the integral equation theory for electrolytes. The colligative properties are given as explicit functions of a scaling parameter {Gamma} that can be estimated by a simple iteration procedure. Osmotic pressures, osmotic coefficients, and activity coefficients are calculated for model solutions with various chain lengths. They are in good agreement with molecular simulation and experimental results. {copyright} {ital 1998 American Institute of Physics.}

  17. Salt Effects on Surface Structures of Polyelectrolyte Multilayers (PEMs) Investigated by Vibrational Sum Frequency Generation (SFG) Spectroscopy.

    Science.gov (United States)

    Ge, Aimin; Matsusaki, Michiya; Qiao, Lin; Akashi, Mitsuru; Ye, Shen

    2016-04-26

    Sum frequency generation (SFG) vibrational spectroscopy was employed to investigate the surface structures of polyelectrolyte multilayers (PEMs) constructed by sequentially alternating adsorption of poly(diallyldimethylammonium chloride) (PDDA) and poly(styrenesulfonate) (PSS). It was found that the surface structures and surface charge density of the as-deposited PEMs of PDDA/PSS significantly depend on the concentration of sodium chloride (NaCl) present in the polyelectrolyte solutions. Furthermore, it was found that the surface structure of the as-deposited PEMs is in a metastable state and will reach the equilibrium state by diffusion of the polyelectrolyte chain after an aging process, resulting in a polyelectrolyte mixture on the PEM surfaces.

  18. Lipophilic polyelectrolyte gel derived from phosphonium borate can absorb a wide range of organic solvents.

    Science.gov (United States)

    Sunaga, Sokuro; Kokado, Kenta; Sada, Kazuki

    2018-01-24

    Herein, we demonstrate a polyelectrolyte gel which can absorb a wide range of organic solvents from dimethylsulfoxide (DMSO, permittivity: ε = 47.0) to tetrahydrofuran (ε = 5.6). The gel consists of polystyrene chains with small amounts (∼5 mol%) of lipophilic electrolytes derived from triphenylphosphonium tetraaryl borate. The swelling ability of the polyelectrolyte gel was higher than that of the alkyl ammonium tetraaryl borate previously reported by us, and this is attributed to the higher compatibility with organic solvents, as well as the higher dissociating ability, of the triphenyl phosphonium salt. The role of the ionic moieties was additionally confirmed by post modification of the polyelectrolyte gel via a conventional Wittig reaction, resulting in a nonionic gel. Our findings introduced here will lead to a clear-cut molecular design for polyelectrolyte gels which absorb all solvents.

  19. From single Debye-Hückel chains to polyelectrolyte solutions: Simulation results

    Science.gov (United States)

    Kremer, Kurt

    1996-03-01

    This lecture will present results from simulations of single weakly charged flexible chains, where the electrostatic part of the interaction is modeled by a Debye-Hückel potential,( with U. Micka, IFF, Forschungszentrum Jülich, 52425 Jülich, Germany) as well as simulations of polyelectrolyte solutions, where the counterions are explicitly taken into account( with M. J. Stevens, Sandia Nat. Lab., Albuquerque, NM 87185-1111) ( M. J. Stevens, K. Kremer, JCP 103), 1669 (1995). The first set of the simulations is meant to clear a recent contoversy on the dependency of the persistence length LP on the screening length Γ. While the analytic theories give Lp ~ Γ^x with either x=1 or x=2, the simulations find for all experimentally accessible chain lengths a varying exponent, which is significantly smaller than 1. This causes serious doubts on the applicability of this model for weakly charged polyelectrolytes in general. The second part deals with strongly charged flexible polyelectrolytes in salt free solution. These simulations are performed for multichain systems. The full Coulomb interactions of the monomers and counterions are treated explicitly. Experimental measurements of the osmotic pressure and the structure factor are reproduced and extended. The simulations reveal a new picture of the chain structure based on calculations of the structure factor, persistence length, end-to-end distance, etc. Even at very low density, the chains show significant bending. Furthermore, the chains contract significantly before they start to overlap. We also show that counterion condensation dramatically alters the chain structure, even for a good solvent backbone.

  20. Water-resistive humidity sensor prepared by printing process using polyelectrolyte ink derived from new monomer.

    Science.gov (United States)

    Kim, Min-Ji; Gong, Myoung-Seon

    2012-03-21

    A simple strategy was developed based on a new monomer containing both photocurable function and ammonium salt, N-(2-cinnamoyloxy)ethyl-N-(2-(methacryloyloxy)ethyl)-N,N-dimethyl ammonium bromide (CMDAB) to obtain photocurable polyelectrolyte ink and stable humidity-sensitive membranes by printing process. Humidity-sensitive membranes are photocrosslinked polyelectrolytes obtained from copolymers of [2-(methacryloyloxy)ethyl] dimethyl propyl ammonium bromide (MEPAB), CMDAB and MMA. A flexible gold electrode/polyimide was pretreated with 2-(mercaptoethyl) cinnamamide (MEC) containing a thiol-coupling agent for the purpose of anchoring the humidity-sensitive polyelectrolyte to the gold electrode. The sensors using screen printing methods reduced the deflection of sensor characteristics showing humidity precision ±1%RH. The photocured copolymer MEPAB/CMDAB/MMA = 63/7/30 show good sensitivity (0.0586 logΩ/%RH) changing resistance approximately four orders of magnitude with relative humidity varying from 20% to 95% and fast response and recovery time. The resultant sensors showed acceptable linearity (Y = -0.04X + 7.0, R(2) = -0.9900) and small hysteresis. The reliability including water resistance and a long-term stability were estimated for the application of the flexible humidity sensor prepared by screen printing process.

  1. Characterization of bioactive chitosan and sulfated chitosan from Doryteuthis singhalensis (Ortmann, 1891).

    Science.gov (United States)

    Ramasamy, Pasiyappazham; Subhapradha, Namasivayam; Thinesh, Thangadurai; Selvin, Joseph; Selvan, Kanagaraj Muthamizh; Shanmugam, Vairamani; Shanmugam, Annaian

    2017-06-01

    Chitosan was extracted from the pen of squid Doryteuthis singhalensis and characterized using FT-IR, NMR, CHN, SEM and DSC analysis. Purified chitosan was sulfated with chlorosulfonic acid in N,N-dimethylformamide and the added sulfate group was confirmed with FT-IR analysis. The molecular weight and degree of deacetylation (DDA) of chitosan was found 226.6kDa and 83.76% respectively. Chitosan exhibited potent antioxidant activity evidenced by reducing power, chelating ability on ferrous ions and scavenging activity on DPPH, superoxide and hydroxyl radicals. The anticoagulant assay using activated partial thromboplastin time (APTT) and prothrombin time (PT) showed chitosan as a strong anticoagulant. The results of this study showed possibility of using D. singhalensis pen as a non-conventional source of natural antioxidants and anticoagulant which can be incorporated in functional food formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Synthesis, characterization of novel chitosan based water dispersible polyurethanes and their potential deployment as antibacterial textile finish.

    Science.gov (United States)

    Arshad, Noureen; Zia, Khalid Mahmood; Jabeen, Farukh; Anjum, Muhammad Naveed; Akram, Nadia; Zuber, Mohammad

    2018-05-01

    Our current research work comprised of synthesis of a series of novel chitosan based water dispersible polyurethanes. The synthesis was carried out in three steps, in first step, the NCO end capped PU-prepolymer was formed through the reaction between Polyethylene glycol (PEG) (Mn = 600), Dimethylolpropionic acid (DMPA) and Isophorone diisocyanate (IPDI). In second step, the neutralization step was carried out by using Triethylamine (TEA) which resulted the formation of neutralized NCO terminated PU-prepolymer, after that the last step chain extension was performed by the addition of chitosan and followed the formation of dispersion by adding calculated amount of water. The proposed structure of CS-WDPUs was confirmed by using FTIR technique. The antimicrobial activities of the plain weave poly-cotton printed and dyed textile swatches after application of CS-WDPUs were also evaluated. The results showed that the chitosan incorporation in to PU backbone has markedly enhanced the antibacterial activity of WDPUs. These synthesized CS-WDPUs are eco-friendly antimicrobial finishes (using natural bioactive agents such as chitosan) with potential applications on polyester/cotton textiles. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Polyelectrolyte-mediated bridging interactions: columnar macromolecular phases

    International Nuclear Information System (INIS)

    Licer, Matjaz; Podgornik, Rudolf

    2010-01-01

    We present a mean-field theory for charged polymer chains in an external electrostatic field in the weak and strong coupling limits. We apply the theory to describe the statistical mechanics of flexible polyelectrolyte chains in a hexagonal columnar lattice of stiff cylindrical macroions, such as DNA, in a bathing solution of a uni-univalent salt (e.g. NaCl). The salt effects are first described in the Debye-Hueckel framework. This yields the macroion electrostatic field in the screened Coulomb form, which we take to represent the mean field into which the chains are immersed. We introduce the Green's function for the polyelectrolyte chains and derive the corresponding Edwards equation which we solve numerically in the Wigner-Seitz cylindrical cell using the ground state dominance ansatz. The solutions indicate the presence of polyelectrolyte bridging, which results in a like-charge attraction between stiff macroions. Then we reformulate the Edwards theory for the strong coupling case and use the standard Poisson-Boltzmann picture to describe the salt solution. We begin with the free energy which we minimize to obtain the Euler-Lagrange equations. The solutions yield self-consistently determined monomer density and electrostatic fields. We furthermore calculate the free energy density as well as the total osmotic pressure in the system. We again show that bridging implicates like-charge attractions of entropic origin between stiff cylindrical macroions. By analyzing the osmotic pressure we demonstrate that, in certain parts of the parameter space, a phase transition occurs between two phases of the same hexagonal symmetry.

  4. Encapsulation of testosterone by chitosan nanoparticles.

    Science.gov (United States)

    Chanphai, P; Tajmir-Riahi, H A

    2017-05-01

    The loading of testosterone by chitosan nanoparticles was investigated, using multiple spectroscopic methods, thermodynamic analysis, TEM images and modeling. Thermodynamic parameters showed testosterone-chitosan bindings occur mainly via H-bonding and van der Waals contacts. As polymer size increased more stable steroid-chitosan conjugates formed and hydrophobic contact was also observed. The loading efficacy of testosterone-nanocarrier was 40-55% and increased as chitosan size increased. Testosterone encapsulation markedly alters chitosan morphology. Chitosan nanoparticles are capable of transporting testosterone in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. In vivo evaluation of an oral salmon calcitonin-delivery system based on a thiolated chitosan carrier matrix.

    Science.gov (United States)

    Guggi, Davide; Kast, Constantia E; Bernkop-Schnürch, Andreas

    2003-12-01

    To develop and evaluate an oral delivery system for salmon calcitonin. 2-Iminothiolane was covalently bound to chitosan in order to improve the mucoadhesive and cohesive properties of the polymer. The resulting chitosan-TBA conjugate (chitosan-4-thiobutylamidine conjugate) was homogenized with salmon calcitonin. mannitol, and a chitosan-Bowman-Birk inhibitor conjugate and a chitosan-elastatinal conjugate (6.75 + 0.25 + 1 + 1 + 1). Optionally 0.5% (m/m) reduced glutathione. used as permeation mediator, was added. Each mixture was compressed to 2 mg microtablets and enteric coated with a polymethacrylate. Biofeedback studies were performed in rats by oral administration of the delivery system and determination of the decrease in plasma calcium level as a function of time. Test formulations led to a significant (p thiolated chitosan, chitosan-enzyme-inhibitor conjugates and the permeation mediator glutathione seems to represent a promising strategy for the oral delivery of salmon calcitonin.

  6. Recent Progress and Perspectives in the Electrokinetic Characterization of Polyelectrolyte Films

    Directory of Open Access Journals (Sweden)

    Ralf Zimmermann

    2015-12-01

    Full Text Available The analysis of the charge, structure and molecular interactions of/within polymeric substrates defines an important analytical challenge in materials science. Accordingly, advanced electrokinetic methods and theories have been developed to investigate the charging mechanisms and structure of soft material coatings. In particular, there has been significant progress in the quantitative interpretation of streaming current and surface conductivity data of polymeric films from the application of recent theories developed for the electrohydrodynamics of diffuse soft planar interfaces. Here, we review the theory and experimental strategies to analyze the interrelations of the charge and structure of polyelectrolyte layers supported by planar carriers under electrokinetic conditions. To illustrate the options arising from these developments, we discuss experimental and simulation data for plasma-immobilized poly(acrylic acid films and for a polyelectrolyte bilayer consisting of poly(ethylene imine and poly(acrylic acid. Finally, we briefly outline potential future developments in the field of the electrokinetics of polyelectrolyte layers.

  7. The effect of guanidinium functionalization on the structural properties and anion affinity of polyelectrolyte multilayers

    NARCIS (Netherlands)

    Cao, Zheng; Gordiichuk, Pavlo; Loos, Katja; Sudhölter, Ernst Jan Robert; Smet, Louis

    2015-01-01

    Poly(allylamine hydrochloride) (PAH) is chemically functionalized with guanidinium (Gu) moieties in water at room temperature. The resulting PAH-Gu is used to prepare polyelectrolyte multilayers (PEMs) with poly(sodium 4-styrene sulfonate) (PSS) via layer-by-layer deposition. The polyelectrolyte

  8. Novel procedure to enhance PLA surface properties by chitosan irreversible immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Stoleru, Elena; Dumitriu, Raluca Petronela [Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487 Iasi (Romania); Munteanu, Bogdanel Silvestru [“Al. I. Cuza” University, Faculty of Physics, 11 Carol I Blvd., 700506 Iasi (Romania); Zaharescu, Traian [INCDIE ICPE CA, Bucharest (Romania); Tănase, Elisabeta Elena; Mitelut, Amalia [Industrial Biotechnology Department, Faculty of Biotechnology – USAMV Bucharest (Romania); Ailiesei, Gabriela-Liliana [Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487 Iasi (Romania); Vasile, Cornelia, E-mail: cvasile@icmpp.ro [Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487 Iasi (Romania)

    2016-03-30

    Graphical abstract: - Highlights: • PLA requires functionalization prior to surface attaching chitosan. • Chitosan with different molecular weights was grafted onto PLA surface. • Antibacterial, antifungal, antioxidant PLA-based materials are obtained. • Nano-fibers coatings obtained by electrospinning of high molecular weight chitosan. - Abstract: A novel two step procedure was applied for poly(lactic acid) (PLA) functionalization consisting in the exposure to cold radiofrequency plasma in nitrogen atmosphere or to gamma irradiation followed by “grafting to” of a chitosan layer using carbodiimide chemistry. The adhesion and stability of the deposited surface layer was assured by plasma/gamma irradiation treatment while the chitosan layer offers antifungal/antibacterial/antioxidant activities. Chitosan with different viscosities/deacetylation degree was deposited by electrospinning or immersion methods. Correlations between rheological behavior of chitosan solutions and chitosan layer deposition conditions are made. The PLA surface properties were investigated by water contact angle measurements, ATR-FTIR spectroscopy, AFM, chemiluminiscence, etc. It has been established that the surface roughness increases direct proportional with cold plasma duration and gamma irradiation dose and further increases by chitosan coating which at its turn depends on chitosan characteristics (viscosity and deacetylation degree) and method of deposition. Nano-fibers with relatively homogeneous and reproducible features are obtained by electrospinning of highly viscous chitosan while with the other two types of chitosan both microparticles and nano-fibers are formed. The chitosan coating obtained by immersion is more homogenous and compact and has a better antibacterial activity than the electrospun layer as fiber meshes.

  9. In Situ Mineralization of Magnetite Nanoparticles in Chitosan Hydrogel

    Science.gov (United States)

    Wang, Yongliang; Li, Baoqiang; Zhou, Yu; Jia, Dechang

    2009-09-01

    Based on chelation effect between iron ions and amino groups of chitosan, in situ mineralization of magnetite nanoparticles in chitosan hydrogel under ambient conditions was proposed. The chelation effect between iron ions and amino groups in CS-Fe complex, which led to that chitosan hydrogel exerted a crucial control on the magnetite mineralization, was proved by X-ray photoelectron spectrum. The composition, morphology and size of the mineralized magnetite nanoparticles were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy and thermal gravity. The mineralized nanoparticles were nonstoichiometric magnetite with a unit formula of Fe2.85O4 and coated by a thin layer of chitosan. The mineralized magnetite nanoparticles with mean diameter of 13 nm dispersed in chitosan hydrogel uniformly. Magnetization measurement indicated that superparamagnetism behavior was exhibited. These magnetite nanoparticles mineralized in chitosan hydrogel have potential applications in the field of biotechnology. Moreover, this method can also be used to synthesize other kinds of inorganic nanoparticles, such as ZnO, Fe2O3 and hydroxyapatite.

  10. In Situ Mineralization of Magnetite Nanoparticles in Chitosan Hydrogel

    Directory of Open Access Journals (Sweden)

    Wang Yongliang

    2009-01-01

    Full Text Available Abstract Based on chelation effect between iron ions and amino groups of chitosan, in situ mineralization of magnetite nanoparticles in chitosan hydrogel under ambient conditions was proposed. The chelation effect between iron ions and amino groups in CS–Fe complex, which led to that chitosan hydrogel exerted a crucial control on the magnetite mineralization, was proved by X-ray photoelectron spectrum. The composition, morphology and size of the mineralized magnetite nanoparticles were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy and thermal gravity. The mineralized nanoparticles were nonstoichiometric magnetite with a unit formula of Fe2.85O4and coated by a thin layer of chitosan. The mineralized magnetite nanoparticles with mean diameter of 13 nm dispersed in chitosan hydrogel uniformly. Magnetization measurement indicated that superparamagnetism behavior was exhibited. These magnetite nanoparticles mineralized in chitosan hydrogel have potential applications in the field of biotechnology. Moreover, this method can also be used to synthesize other kinds of inorganic nanoparticles, such as ZnO, Fe2O3and hydroxyapatite.

  11. Preparation and characterization of biocomposite film based on chitosan and kombucha tea as active food packaging.

    Science.gov (United States)

    Ashrafi, Azam; Jokar, Maryam; Mohammadi Nafchi, Abdorreza

    2018-03-01

    An active film composed of chitosan and kombucha tea (KT) was successfully prepared using the solvent casting technique. The effect of incorporation of KT at the levels 1%-3% w/w on the physical and functional properties of chitosan film was investigated. The antimicrobial activity of chitosan/KT film against Escherichia coli and Staphylococcus aureus was evaluated using agar diffusion test, and its antioxidant activity was determined using DPpH assay. The results revealed that incorporation of KT into chitosan films improved the water vapor permeability (from 256.7 to 132.1gcm -2 h -1 KPa -1 mm) and enhanced the antioxidant activity of the latter up to 59% DPpH scavenging activity. Moreover, the incorporation of KT into the chitosan film increased the protective effect of the film against ultra violet (UV). Fourier transform infrared spectroscopic analysis revealed the chemical interactions between chitosan and the polyphenol groups of KT. In a minced beef model, chitosan/KT film effectively served as an active packaging and extended the shelf life of the minced beef as manifested in the retardation of lipid oxidation and microbial growth from 5.36 to 2.11logcfugr -1 in 4days storage. The present work demonstrates that the chitosan/KT film not only maintains the quality of the minced beef but also, retards microbial growth significantly, extending the shelf life of the minced beef meat up to 3days; thus, chitosan/KT film is a potential material for active food packaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Influence of network topology on the swelling of polyelectrolyte nanogels.

    Science.gov (United States)

    Rizzi, L G; Levin, Y

    2016-03-21

    It is well-known that the swelling behavior of ionic nanogels depends on their cross-link density; however, it is unclear how different topologies should affect the response of the polyelectrolyte network. Here we perform Monte Carlo simulations to obtain the equilibrium properties of ionic nanogels as a function of salt concentration Cs and the fraction f of ionizable groups in a polyelectrolyte network formed by cross-links of functionality z. Our results indicate that the network with cross-links of low connectivity result in nanogel particles with higher swelling ratios. We also confirm a de-swelling effect of salt on nanogel particles.

  13. Multilayer films of cationic graphene-polyelectrolytes and anionic graphene-polyelectrolytes fabricated using layer-by-layer self-assembly

    International Nuclear Information System (INIS)

    Rani, Adila; Oh, Kyoung Ah; Koo, Hyeyoung; Lee, Hyung jung; Park, Min

    2011-01-01

    Extremely thin sheets of carbon atoms called graphene have been predicted to possess excellent thermal properties, electrical conductivity, and mechanical stiffness. To harness such properties in composite materials for multifunctional applications, one would require the incorporation of graphene. In this study, new thin film composites were created using layer-by-layer (LBL) assembly of polymer-coated graphitic nanoplatelets. The positive and negative polyelectrolytes used to cover graphene sheets were poly allylamine hydrochloride (PAH) and poly sodium 4-styrenesulfonate (PSS). The synthesized poly allylamine hydrochloride-graphene (PAH-G) and poly sodium 4-styrenesulfonate-gaphene (PSS-G) were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and thermo gravimetric analysis (TGA). The multilayer films created by spontaneous sequential adsorption of PAH-G and PSS-G were characterized by ultra violet spectroscopy (UV-vis), scanning electron microscopy (SEM), and AFM. The electrical conductivity of the graphene/polyelectrolyte multilayer film composites measured by the four-point probe method was 0.2 S cm -1 , which was sufficient for the construction of advanced electro-optical devices and sensors.

  14. Chitosan-Coated Magnetic Nanoparticles with Low Chitosan Content Prepared in One-Step

    Directory of Open Access Journals (Sweden)

    Yolanda Osuna

    2012-01-01

    Full Text Available Chitosan-coated magnetic nanoparticles (CMNP were obtained at 50°C in a one-step method comprising coprecipitation in the presence of low chitosan content. CMNP showed high magnetization and superparamagnetism. They were composed of a core of 9.5 nm in average diameter and a very thin chitosan layer in accordance with electron microscopy measurements. The results from Fourier transform infrared spectrometry demonstrated that CMNP were obtained and those from thermogravimetric analysis allowed to determine that they were composed of 95 wt% of magnetic nanoparticles and 5 wt% of chitosan. 67% efficacy in the Pb+2 removal test indicated that only 60% of amino groups on CMNP surface bound to Pb, probably due to some degree of nanoparticle flocculation during the redispersion. The very low weight ratio chitosan to magnetic nanoparticles obtained in this study, 0.053, and the high yield of the precipitation reactions (≈97% are noticeable.

  15. Versatile Chemical Derivatizations to Design Glycol Chitosan-Based Drug Carriers

    Directory of Open Access Journals (Sweden)

    Sung Eun Kim

    2017-10-01

    Full Text Available Glycol chitosan (GC and its derivatives have been extensively investigated as safe and effective drug delivery carriers because of their unique physiochemical and biological properties. The reactive functional groups such as the amine and hydroxyl groups on the GC backbone allow for easy chemical modification with various chemical compounds (e.g., hydrophobic molecules, crosslinkers, and acid-sensitive and labile molecules, and the versatility in chemical modifications enables production of a wide range of GC-based drug carriers. This review summarizes the versatile chemical modification methods that can be used to design GC-based drug carriers and describes their recent applications in disease therapy.

  16. Processing and characterization of 3D dense chitosan pieces, for orthopedic applications, by adding plasticizers

    OpenAIRE

    Figueiredo, Lígia; Moura, Carla; Pinto, Luís F. V.; Ferreira, Frederico Castelo; Rodrigues, Alexandra

    2015-01-01

    In this work, plasticizer agents were incorporated in a chitosan based formulation, as a strategy to improve the fragile structure of chitosan based-materials. Three different plasticizers: ethylene glycol, glycerol and sorbitol, were blended with chitosan to prepare 3D dense chitosan specimens. The properties of the obtained structures were assessed for mechanical, microstructural, physical and biocompatibility behavior. The results obtained revealed that from the different specimens prepare...

  17. Structure and properties of microcrystalline chitosan

    International Nuclear Information System (INIS)

    Pighinelli, Luciano; Guimaraes, Fernando Machado; Paz, Luan Rios; Zanin, Gabrielle Brehm; Kmiec, Marzena; Tedesco, Felipe Melleu; Reis, Victoria Oliva dos; Silva, Matheus Machado; Becker, Cristiane Miotto; Zehetmeyer, Gislene; Rasia, Gisele

    2016-01-01

    Full text: The microcrystalline chitosan is a modified form of chitosan; it has been elaborated from obtaining method of chitosan salts. It is characterized by special properties of the initial chitosan such as biocompatibility, bioactivity, non-toxic, biodegradability [1]. The objective of this study is to develop a different method to obtain the microcrystalline chitosan and the following characterization of the initial chitosan and MCCh. The material was characterized by FTIR, scanning of electron microscopy, SEM, nuclear magnetic resonance, NMR, and x-ray diffraction. The results indicate that the process to obtain MCCh, did not change the structure of the initial chitosan. The MCCh shows the same functional groups of the initial chitosan. The NMR results shows the acetylated and deacetylated groups. The morphology shows a homogeneous structure of surface. The X-ray diffraction shows the reduction of the crystallinity in the MCCh, indicating a bigger amorphous structure of the MCCh. The chitosan and its derivatives are polymers with excellent properties to be used in regenerative medicine because of ensure efficiency in healing process. This polysaccharide has a great potential to develop a new generation of biomaterials that can be used in regenerative medicine and tissue engineering [2]. References: [1]. LI, Q. et al. Applications and properties of chitosan. In: GOOSEN, M. F. A. (Ed.). Applications of chitin and chitosan. Basel: Technomic, 1997. p. 3-29; [2]. Luciano Pighinelli, Magdalena Kucharska, Dariuz Wawro. Preparation of Microcrystalline chitosan: (MCCh0/tricalcium phosphate complex with Hydroxyapatite in sponge and fibre from for hard tissue regeneration. (author)

  18. Structure and properties of microcrystalline chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Pighinelli, Luciano; Guimaraes, Fernando Machado; Paz, Luan Rios; Zanin, Gabrielle Brehm; Kmiec, Marzena; Tedesco, Felipe Melleu; Reis, Victoria Oliva dos; Silva, Matheus Machado, E-mail: lpighinelli@hotmail.com [Universidade Luterana, Sao Paulo, SP (Brazil); Becker, Cristiane Miotto; Zehetmeyer, Gislene; Rasia, Gisele [Centro Universitario SENAI CIMATEC, Salvador, BA (Brazil). Instituto de Engenharia de Materiais Polimericos

    2016-07-01

    Full text: The microcrystalline chitosan is a modified form of chitosan; it has been elaborated from obtaining method of chitosan salts. It is characterized by special properties of the initial chitosan such as biocompatibility, bioactivity, non-toxic, biodegradability [1]. The objective of this study is to develop a different method to obtain the microcrystalline chitosan and the following characterization of the initial chitosan and MCCh. The material was characterized by FTIR, scanning of electron microscopy, SEM, nuclear magnetic resonance, NMR, and x-ray diffraction. The results indicate that the process to obtain MCCh, did not change the structure of the initial chitosan. The MCCh shows the same functional groups of the initial chitosan. The NMR results shows the acetylated and deacetylated groups. The morphology shows a homogeneous structure of surface. The X-ray diffraction shows the reduction of the crystallinity in the MCCh, indicating a bigger amorphous structure of the MCCh. The chitosan and its derivatives are polymers with excellent properties to be used in regenerative medicine because of ensure efficiency in healing process. This polysaccharide has a great potential to develop a new generation of biomaterials that can be used in regenerative medicine and tissue engineering [2]. References: [1]. LI, Q. et al. Applications and properties of chitosan. In: GOOSEN, M. F. A. (Ed.). Applications of chitin and chitosan. Basel: Technomic, 1997. p. 3-29; [2]. Luciano Pighinelli, Magdalena Kucharska, Dariuz Wawro. Preparation of Microcrystalline chitosan: (MCCh0/tricalcium phosphate complex with Hydroxyapatite in sponge and fibre from for hard tissue regeneration. (author)

  19. Preparation and characterization of three-dimensional scaffolds based on hydroxypropyl chitosan-graft-graphene oxide.

    Science.gov (United States)

    Sivashankari, P R; Moorthi, A; Abudhahir, K Mohamed; Prabaharan, M

    2018-04-15

    Hydroxypropyl chitosan (HPCH), a water soluble derivative of chitosan, is widely considered for tissue engineering and wound healing applications due to its biocompatibility and biodegradability. Graphene oxide (GO) is a carbon-based nanomaterial which is capable of imparting desired properties to the scaffolds. Hence, the integration of GO into HPCH could allow for the production of HPCH-based scaffolds with improved swelling character, mechanical strength, and stability aimed at being used in tissue engineering. In this study, hydroxypropyl chitosan-graft-graphene oxide (HPCH-g-GO) with varying GO content (0.5, 1, 3 and 4wt.%) was prepared using HPCH and GO as a tissue engineering scaffold material. The formation of HPCH-g-GO was confirmed by FTIR and XRD analysis. Using the HPCH-g-GO as a matrix material and glutaraldehyde as a crosslinking agent, the three dimensional (3D) porous scaffolds were fabricated by the freeze-drying method. The HPCH-g-GO scaffolds exhibited uniform porosity as observed in SEM analysis. The pore size and porosity reduced as the content of GO was increased. These scaffolds presented good swelling capacity, water retention ability, mechanical strength and in vitro degradation properties. The HPCH-g-GO scaffolds irrespective of their GO content demonstrated good cell viability when compared to control. Altogether, these results suggest that HPCH-g-GO scaffolds can be used as potential tissue engineering material. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Simulations of free-solution electrophoresis of polyelectrolytes with a finite Debye length using the Debye-Hückel approximation.

    Science.gov (United States)

    Hickey, Owen A; Shendruk, Tyler N; Harden, James L; Slater, Gary W

    2012-08-31

    We introduce a mesoscale simulation method based on multiparticle collision dynamics (MPCD) for the electrohydrodynamics of polyelectrolytes with finite Debye lengths. By applying the Debye-Hückel approximation to assign an effective charge to MPCD particles near charged monomers, our simulations are able to reproduce the rapid rise in the electrophoretic mobility with respect to the degree of polymerization for the shortest polymer lengths followed by a small decrease for longer polymers due to charge condensation. Moreover, these simulations demonstrate the importance of a finite Debye length in accurately determining the mobility of uniformly charged polyelectrolytes and net neutral polyampholytes.

  1. Pseudo-thermosetting chitosan hydrogels for biomedical application.

    Science.gov (United States)

    Berger, J; Reist, M; Chenite, A; Felt-Baeyens, O; Mayer, J M; Gurny, R

    2005-01-06

    To prepare transparent chitosan/beta-glycerophosphate (betaGP) pseudo-thermosetting hydrogels, the deacetylation degree (DD) of chitosan has been modified by reacetylation with acetic anhydride. Two methods (I and II) of reacetylation have been compared and have shown that the use of previously filtered chitosan, dilution of acetic anhydride and reduction of temperature in method II improves efficiency and reproducibility. Chitosans with DD ranging from 35.0 to 83.2% have been prepared according to method II under homogeneous and non-homogeneous reacetylation conditions and the turbidity of chitosan/betaGP hydrogels containing homogeneously or non-homogeneously reacetylated chitosan has been investigated. Turbidity is shown to be modulated by the DD of chitosan and by the homogeneity of the medium during reacetylation, which influences the distribution mode of the chitosan monomers. The preparation of transparent chitosan/betaGP hydrogels requires a homogeneously reacetylated chitosan with a DD between 35 and 50%.

  2. Functional gene silencing mediated by chitosan/siRNA nanocomplexes

    Energy Technology Data Exchange (ETDEWEB)

    Ji, A M; Su, D; Che, O; Li, W S; Sun, L; Zhang, Z Y; Xu, F [Department of Pharmaceutical Science, Zhujiang Hospital, Southern Medical University, Guangzhou 510282 (China); Yang, B, E-mail: andrewfxu1998@gmail.co [Department of Chemistry, Indiana University-Bloomington, Bloomington, IN 47405 (United States)

    2009-10-07

    Chitosan/siRNA nanoparticles to knock down FHL2 gene expression were reported in this work. The physicochemical properties such as particle size, surface charge, morphology and complex stability of chitosan nanoparticle-incorporated siRNA were evaluated. Nanoparticles which were formulated with chitosan/siRNA exhibited irregular, lamellar and dendritic structures with a hydrodynamic radius size of about 148 nm and net positive charges with zeta-potential value of 58.5 mV. The knockdown effect of the chitosan/siRNA nanoparticles on gene expression in FHL2 over-expressed human colorectal cancer Lovo cells was investigated. The result showed that FHL2 siRNA formulated within chitosan nanoparticles could knock down about 69.6% FHL2 gene expression, which is very similar to the 68.8% reduced gene expression when siRNA was transfected with liposome Lipofectamine. Western analysis further showed significant FHL-2 protein expression reduced by the chitosan/siRNA nanoparticles. The results also showed that blocking FHL2 expression by siRNA could also inhibit the growth and proliferation of human colorectal cancer Lovo cells. The current results demonstrated that chitosan-based siRNA nanoparticles were a very efficient delivery system for siRNA in vivo as previously reported.

  3. Functional gene silencing mediated by chitosan/siRNA nanocomplexes

    International Nuclear Information System (INIS)

    Ji, A M; Su, D; Che, O; Li, W S; Sun, L; Zhang, Z Y; Xu, F; Yang, B

    2009-01-01

    Chitosan/siRNA nanoparticles to knock down FHL2 gene expression were reported in this work. The physicochemical properties such as particle size, surface charge, morphology and complex stability of chitosan nanoparticle-incorporated siRNA were evaluated. Nanoparticles which were formulated with chitosan/siRNA exhibited irregular, lamellar and dendritic structures with a hydrodynamic radius size of about 148 nm and net positive charges with zeta-potential value of 58.5 mV. The knockdown effect of the chitosan/siRNA nanoparticles on gene expression in FHL2 over-expressed human colorectal cancer Lovo cells was investigated. The result showed that FHL2 siRNA formulated within chitosan nanoparticles could knock down about 69.6% FHL2 gene expression, which is very similar to the 68.8% reduced gene expression when siRNA was transfected with liposome Lipofectamine. Western analysis further showed significant FHL-2 protein expression reduced by the chitosan/siRNA nanoparticles. The results also showed that blocking FHL2 expression by siRNA could also inhibit the growth and proliferation of human colorectal cancer Lovo cells. The current results demonstrated that chitosan-based siRNA nanoparticles were a very efficient delivery system for siRNA in vivo as previously reported.

  4. Modeling competitive substitution in a polyelectrolyte complex

    International Nuclear Information System (INIS)

    Peng, B.; Muthukumar, M.

    2015-01-01

    We have simulated the invasion of a polyelectrolyte complex made of a polycation chain and a polyanion chain, by another longer polyanion chain, using the coarse-grained united atom model for the chains and the Langevin dynamics methodology. Our simulations reveal many intricate details of the substitution reaction in terms of conformational changes of the chains and competition between the invading chain and the chain being displaced for the common complementary chain. We show that the invading chain is required to be sufficiently longer than the chain being displaced for effecting the substitution. Yet, having the invading chain to be longer than a certain threshold value does not reduce the substitution time much further. While most of the simulations were carried out in salt-free conditions, we show that presence of salt facilitates the substitution reaction and reduces the substitution time. Analysis of our data shows that the dominant driving force for the substitution process involving polyelectrolytes lies in the release of counterions during the substitution

  5. Modified Chitosan Nanoparticle by Radiation Synthesis: An Approach to Drug Delivery and Bio-Based Additive for Biomedical Applications

    International Nuclear Information System (INIS)

    Pasanphan, W.; Rimdusit, P.; Rattanawongwiboon, T.; Choofong, S.

    2010-01-01

    Self-assembly chitosan nanoparticle (CsNP) has been synthesized via radiolytic methodology using gamma irradiation. The systematic condition in preparation was studied. Chitosan nanoparticle was modified using hydrophobic core of deoxycholic acid (DC) and stearyl methacrylate (SMA) and the hydrophilic shell of polyethylene glycol monomethacrylate (PEG). The hydrophobic/hydrophilic CsNP was prepared for drug carrier molecule. The SMA-CsNP was also conjugated with pyperidine, hindered amine light stabilizer function, to achieve a bio-based additive for biomedical plastic. (author)

  6. Modified Chitosan Nanoparticle by Radiation Synthesis: An Approach to Drug Delivery and Bio-Based Additive for Biomedical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Pasanphan, W.; Rimdusit, P.; Rattanawongwiboon, T.; Choofong, S., E-mail: sciwvm@ku.ac.th, E-mail: pwanvimol@yahoo.com [Kasetsart University, Faculty of Science, Department of Applied Radiation and Isotopes, 50 Phahonyothin Road, Chatuchak, Bangkok 1090 (Thailand)

    2010-07-01

    Self-assembly chitosan nanoparticle (CsNP) has been synthesized via radiolytic methodology using gamma irradiation. The systematic condition in preparation was studied. Chitosan nanoparticle was modified using hydrophobic core of deoxycholic acid (DC) and stearyl methacrylate (SMA) and the hydrophilic shell of polyethylene glycol monomethacrylate (PEG). The hydrophobic/hydrophilic CsNP was prepared for drug carrier molecule. The SMA-CsNP was also conjugated with pyperidine, hindered amine light stabilizer function, to achieve a bio-based additive for biomedical plastic. (author)

  7. Chitosan-based nanoparticles for rosmarinic acid ocular delivery--In vitro tests.

    Science.gov (United States)

    da Silva, Sara Baptista; Ferreira, Domingos; Pintado, Manuela; Sarmento, Bruno

    2016-03-01

    In this study, chitosan nanoparticles were used to encapsulate antioxidant rosmarinic acid, Salvia officinalis (sage) and Satureja montana (savory) extracts as rosmarinic acid natural vehicles. The nanoparticles were prepared by ionic gelation using chitosan and sodium tripolyphosphate (TPP) in a mass ratio of 7:1, at pH 5.8. Particle size distribution analysis and transmission electron microscopy (TEM) confirmed the size ranging from 200 to 300 nm, while surface charge of nanoparticles ranged from 20 to 30 mV. Nanoparticles demonstrate to be safe without relevant cytotoxicity against retina pigment epithelium (ARPE-19) and human cornea cell line (HCE-T). The permeability study in HCE monolayer cell line showed an apparent permeability coefficient Papp of 3.41±0.99×10(-5) and 3.24±0.79×10(-5) cm/s for rosmarinic acid loaded chitosan nanoparticles and free in solution, respectively. In ARPE-19 monolayer cell line the Papp was 3.39±0.18×10(-5) and 3.60±0.05×10(-5) cm/s for rosmarinic acid loaded chitosan nanoparticles and free in solution, respectively. Considering the mucin interaction method, nanoparticles indicate mucoadhesive proprieties suggesting an increased retention time over the ocular mucosa after instillation. These nanoparticles may be promising drug delivery systems for ocular application in oxidative eye conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Modulating release of ranibizumab and aflibercept from thiolated chitosan-based hydrogels for potential treatment of ocular neovascularization.

    Science.gov (United States)

    Moreno, Miguel; Pow, Poh Yih; Tabitha, Tan Su Teng; Nirmal, Sonali; Larsson, Andreas; Radhakrishnan, Krishna; Nirmal, Jayabalan; Quah, Soo Tng; Geifman Shochat, Susana; Agrawal, Rupesh; Venkatraman, Subbu

    2017-08-01

    This paper describes the synthesis of thiolated chitosan-based hydrogels with varying degrees of crosslinking that has been utilized to modulate release kinetics of two clinically relevant FDA-approved anti-VEGF protein drugs, ranibizumab and aflibercept. These hydrogels have been fabricated into disc shaped structures for potential use as patches on ocular surface. Protein conformational changes and aggregation after loading and release was evaluated by circular dichroism (CD), steady-state tryptophan fluorescence spectroscopy, electrophoresis and size-exclusion chromatography (SEC). Finally, the capacity of both released proteins to bind to VEGF was tested by ELISA and surface plasmon resonance (SPR) technology. The study demonstrates the versatility of thiolated chitosan-based hydrogels for delivering proteins. The effect of various parameters of the hydrogel on protein release kinetics and mechanism of protein release was studied using the Korsmeyer-Peppas release model. Furthermore, we have studied the stability of released proteins in detail while comparing it with non-entrapped proteins under physiological conditions to understand the effect of formulation conditions on protein stability. The disc-shaped thiolated chitosan-based hydrogels provide a potentially useful platform to deliver ranibizumab and aflibercept for the treatments of ocular diseases such as wet AMD, DME and corneal neovascularization.

  9. Design of polyelectrolyte multilayer membranes for ion rejection and wastewater effluent treatment

    Science.gov (United States)

    Sanyal, Oishi

    Polyelectrolyte multilayer (PEM) membranes present a special class of nanostructured membranes which have potential applications in a variety of water treatment operations. These membranes are fabricated by the layer-by-layer (LbL) assembly of alternately charged polyelectrolytes on commercial membrane surfaces. A large variety of polyelectrolytes and their varied deposition conditions (pH, number of bilayers etc.) allow very fine tuning of the membrane performance in terms of permeability and rejection. The first part of this thesis is about the application of PEM membranes to the removal of perchlorate ion from water. Being a monovalent ion, it is most effectively removed by a reverse osmosis (RO) membrane. However, these membranes inherently have very low fluxes which lead to high pressure requirements. In our work, we modified the surface of a nanofiltration (NF) membrane by the LbL assembly of oppositely charged polyelectrolytes. The appropriate tuning of the LbL conditions led to the development of a membrane with significantly higher flux than RO membranes but with equivalent perchlorate rejection. This was one of the best trade-offs offered by PEM membranes for monovalent ion rejection as has been reported in literature so far. While PEM membranes have mostly shown great potential in ion-rejection studies, they have seldom been tested for real wastewater effluents. The second part of this thesis, therefore, deals with evaluating the applicability of PEM membranes to treating an electrocoagulation (EC)-treated high strength wastewater. Two types of very commonly used polyelectrolyte combinations were tried out -- one of which was an ionically crosslinked system and the other one was covalently crosslinked. Both the types of PEM membranes showed a high level of COD reduction from the feed stream with higher fluxes than commercial RO membranes. One major challenge in using membranes for wastewater treatment is their fouling propensity. Like many other

  10. Preparation and characterization of biocomposite film based on chitosan and kombucha tea as active food packaging

    DEFF Research Database (Denmark)

    Ashrafi, Azam; Jokar, Maryam

    2018-01-01

    An active film composed of chitosan and kombucha tea (KT) was successfully prepared using the solvent casting technique. The effect of incorporation of KT at the levels 1%–3% w/w on the physical and functional properties of chitosan film was investigated. The antimicrobial activity of chitosan...

  11. A soft tissue adhesive based on aldehyde-sodium alginate and amino-carboxymethyl chitosan preparation through the Schiff reaction

    Science.gov (United States)

    Wu, Yu; Yuan, Liu; Sheng, Nai-an; Gu, Zi-qi; Feng, Wen-hao; Yin, Hai-yue; Morsi, Yosry; Mo, Xiu-mei

    2017-09-01

    Sodium alginate and carboxymethyl chitosan have been extensively applied in tissue engineering and other relative fields due to their low price and excellent biocompatibility. In this paper, we oxidized sodium alginate with sodium periodate to convert 1,2-hydroxyl groups into aldehyde groups to get aldehyde-sodium alginate (ASA). Carboxymethyl chitosan was modified with ethylenediamine (ED) in the presence of water-soluble N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) to introduce additional amino groups to get amino-carboxymethyl chitosan (A-CS). Upon mixing the A-SA and A-CS aqueous solutions together, a gel rapidly formed based on the Schiff's base reaction between aldehyde groups in A-SA and amino groups in A-CS. FTIR analysis confirmed the characteristic peak of Schiff's base group in the hydrogel. It was confirmed that the gelation time be dependent on the aldehyde group content in A-SA and amino group content in A-CS. The fasted hydrogel formation takes place within 10 min. The data of bonding strength and cytotoxicity measurement also showed that the hydrogel had good adhesion and biocompatibility. All these results support that this gel has the potential as soft tissue adhesive.

  12. Colloidal micro- and nano-particles as templates for polyelectrolyte multilayer capsules.

    Science.gov (United States)

    Parakhonskiy, Bogdan V; Yashchenok, Alexey M; Konrad, Manfred; Skirtach, Andre G

    2014-05-01

    Colloidal particles play an important role in various areas of material and pharmaceutical sciences, biotechnology, and biomedicine. In this overview we describe micro- and nano-particles used for the preparation of polyelectrolyte multilayer capsules and as drug delivery vehicles. An essential feature of polyelectrolyte multilayer capsule preparations is the ability to adsorb polymeric layers onto colloidal particles or templates followed by dissolution of these templates. The choice of the template is determined by various physico-chemical conditions: solvent needed for dissolution, porosity, aggregation tendency, as well as release of materials from capsules. Historically, the first templates were based on melamine formaldehyde, later evolving towards more elaborate materials such as silica and calcium carbonate. Their advantages and disadvantages are discussed here in comparison to non-particulate templates such as red blood cells. Further steps in this area include development of anisotropic particles, which themselves can serve as delivery carriers. We provide insights into application of particles as drug delivery carriers in comparison to microcapsules templated on them. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Molecular Dynamics Simulation of Salt Diffusion in Polyelectrolyte Assemblies.

    Science.gov (United States)

    Zhang, Ran; Duan, Xiaozheng; Ding, Mingming; Shi, Tongfei

    2018-06-05

    The diffusion of salt ions and charged probe molecules in polyelectrolyte assemblies is often assumed to follow a theoretical hopping model, in which the diffusing ion is hopping between charged sites of chains based on electroneutrality. However, experimental verification of diffusing pathway at such microscales is difficult, and the corresponding molecular mechanisms remain elusive. In this study, we perform all-atom molecular dynamics (MD) simulations of salt diffusion in polyelectrolyte (PE) assembly of poly (sodium 4-styrenesulfonate) (PSS) and poly (diallyldimethylammonium chloride) (PDAC). Besides the ion hopping mode, the diffusing trajectories are found presenting common features of a jump process, i.e., subjecting to PE relaxation, water pockets in the structure open and close, thus the ion can move from one pocket to another. Anomalous subdiffusion of ions and water is observed due to the trapping scenarios in these water pockets. The jump events are much rarer compared with ion hopping but significantly increases salt diffusion with increasing temperature. Our result strongly indicates that salt diffusion in hydrated PDAC/PSS is a combined process of ion hopping and jump motion. This provides new molecular explanation for the coupling of salt motion with chain motion and the nonlinear increase of salt diffusion at glass transition temperature.

  14. The effect of chitosan and whey proteins-chitosan films on the growth of Penicillium expansum in apples.

    Science.gov (United States)

    Simonaitiene, Dovile; Brink, Ieva; Sipailiene, Ausra; Leskauskaite, Daiva

    2015-05-01

    Penicillium expansum causes a major post-harvest disease of apples. The aim of this study was to investigate the inhibition effect of chitosan and whey proteins-chitosan films containing different amounts of quince and cranberry juice against P. expansum on the simulation medium and on apples. The mechanical properties of films were also evaluated. The presence of cranberry and quince juice in the composition of chitosan and whey proteins-chitosan films caused a significant (P ≤ 0.05) increase in elasticity and decrease in tensile strength of films. Chitosan and whey proteins-chitosan films with quince and cranberry juice demonstrated a significant (P ≤ 0.05) inhibition effect against P. expansum growth on the simulated medium and apples. The presence of cranberry juice in the composition of chitosan and whey proteins-chitosan films resulted in a longer lag phase and a lower P. expansum growth rate on the simulation medium in comparison with films made with the addition of quince juice. These differences were not evident when experiment was conducted with apples. Addition of quince and cranberry juice to the chitosan and whey proteins-chitosan films as natural antifungal agents has some potential for prolonging the shelf life of apples. © 2014 Society of Chemical Industry.

  15. Targeting experimental orthotopic glioblastoma with chitosan-based superparamagnetic iron oxide nanoparticles (CS-DX-SPIONs).

    Science.gov (United States)

    Shevtsov, Maxim; Nikolaev, Boris; Marchenko, Yaroslav; Yakovleva, Ludmila; Skvortsov, Nikita; Mazur, Anton; Tolstoy, Peter; Ryzhov, Vyacheslav; Multhoff, Gabriele

    2018-01-01

    Glioblastoma is the most devastating primary brain tumor of the central nervous system in adults. Magnetic nanocarriers may help not only for a targeted delivery of chemotherapeutic agents into the tumor site but also provide contrast enhancing properties for diagnostics using magnetic resonance imaging (MRI). Synthesized hybrid chitosan-dextran superparamagnetic nanoparticles (CS-DX-SPIONs) were characterized using transmission electron microscopy (TEM) and relaxometry studies. Nonlinear magnetic response measurements were employed for confirming the superparamagnetic state of particles. Following in vitro analysis of nanoparticles cellular uptake tumor targeting was assessed in the model of the orthotopic glioma in rodents. CS-DX-SPIONs nanoparticles showed a uniform diameter of 55 nm under TEM and superparamagentic characteristics as determined by T 1 (spin-lattice relaxation time) and T 2 (spin-spin relaxation time) proton relaxation times. Application of the chitosan increased the charge from +8.9 to +19.3 mV of the dextran-based SPIONs. The nonlinear magnetic response at second harmonic of CS-DX-SPIONs following the slow change of stationary magnetic fields with very low hysteresis evidenced superparamagnetic state of particles at ambient temperatures. Confocal microscopy and flow cytometry studies showed an enhanced internalization of the chitosan-based nanoparticles in U87, C6 glioma and HeLa cells as compared to dextran-coated particles. Cytotoxicity assay demonstrated acceptable toxicity profile of the synthesized nanoparticles up to a concentration of 10 μg/ml. Intravenously administered CS-DX-SPIONs in orthotopic C6 gliomas in rats accumulated in the tumor site as shown by high-resolution MRI (11.0 T). Retention of nanoparticles resulted in a significant contrast enhancement of the tumor image that was accompanied with a dramatic drop in T 2 values ( P chitosan-dextran magnetic particles demonstrated high MR contrast enhancing properties for the

  16. Hydrothermally treated chitosan hydrogel loaded with copper and zinc particles as a potential micro-nutrient based antimicrobial feed additive

    Directory of Open Access Journals (Sweden)

    Parthiban eRajasekaran

    2015-11-01

    Full Text Available Large-scale use of antibiotics in food animal farms as growth promoters is considered as one of the driving factors behind increasing incidence of microbial resistance. Several alternatives are under investigation to reduce the amount of total antibiotics used in order to avoid any potential transmission of drug resistant microbes to humans through food chain. Copper sulfate and zinc oxide salts are used as feed supplement as they exhibit antimicrobial properties in addition to being micronutrients. However, higher dosage of copper and zinc (often needed for growth promoting effect to animals is not advisable because of potential environmental toxicity arising from excreta. Innovative strategies are needed to utilize the complete potential of trace minerals as growth promoting feed supplements. To this end, we describe here the development and preliminary characterization of hydrothermally treated chitosan as a delivery vehicle for copper and zinc nanoparticles that could act as a micronutrient based antimicrobial feed supplement. Material characterization studies showed that hydrothermal treatment makes a chitosan hydrogel that re-arranged to capture the copper and zinc metal particles. Systemic antimicrobial assays showed that this chitosan biopolymer matrix embedded with copper (57.6 μg/ml and zinc (800 μg/ml reduced the load of model gut-bacteria (target organisms of growth promoting antibiotics such as Escherichia coli, Enterococcus faecalis, Staphylococcus aureus and Lactobacillus fermentum under in vitro conditions. Particularly, the chitosan/copper/zinc hydrogel exhibited significantly higher antimicrobial effect against L. fermentum, one of the primary targets of antibiotic growth promoters. Additionally, the chitosan matrix ameliorated the cytotoxicity levels of metal supplements when screened against a murine macrophage cell line RAW 264.7 and in TE-71, a murine thymic epithelial cell line. In this proof of concept study, we show

  17. Bulk heterojunction organic photovoltaic based on polythiophene-polyelectrolyte carbon nanotube composites

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Reyes, M. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, San Luis Potosi (Mexico); Lopez-Sandoval, R. [Advanced Materials Department, IPICYT, Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi 78216 (Mexico); Liu, J.; Carroll, D.L. [Center for Nanotechnology and Molecular Materials, Wake Forest University, Winston-Salem, NC (United States)

    2007-09-22

    It is shown that carbon nanotubes can be used to enhance carrier mobility for efficient removal of the charges in thin film polymer-conjugated/fullerene photovoltaic devices. The fabricated photovoltaic devices consist of poly(3-octylthiophene) (P3OT) polymer blended with undoped multiwalled carbon nanotubes (MWNTs) and carbon nanotubes doped with nitrogen (CNx-MWNTs). Nanophase formation and dispersion problems associated with the use of carbon nanotubes in polymer devices were addressed through the generation of functional groups and electrostatic attaching of the polyelectrolyte poly(dimethyldiallylamine) chloride (PDDA) in both MWNTs and CNx-MWNT systems. The resultant nanophase was highly dispersed allowing for excellent bulk heterojunction formation. Our results indicate that CNx-MWNTs enhance the efficiency of P3OT solar cells in comparison with MWNTs. (author)

  18. Conformations and solution properties of star-branched polyelectrolytes

    NARCIS (Netherlands)

    Borisov, O.V.; Zhulina, E.B.; Leermakers, F.A.M.; Ballauff, M.; Muller, A.H.E.

    2011-01-01

    Aqueous solutions of star-like polyelectrolytes (PEs) exhibit distinctive features that originate from the topological complexity of branched macromolecules. In a salt-free solution of branched PEs, mobile counterions preferentially localize in the intramolecular volume of branched macroions.

  19. Chitosan, a new and environmental benign electrode binder for use with graphite anode in lithium-ion batteries

    International Nuclear Information System (INIS)

    Chai, Lili; Qu, Qunting; Zhang, Longfei; Shen, Ming; Zhang, Li; Zheng, Honghe

    2013-01-01

    Highlights: • Chitosan is used as a new electrode binder for graphite anode. • Electrochemical properties of the chitosan-based electrode are compared with that of PVDF-based one. • Electrochemical performances of the graphite anode are improved by using chitosan binder. • Chitosan binder facilitates the formation of a thin, homogenous and stable SEI film of the electrode. -- Abstract: Chitosan was applied as the electrode binder material for a spherical graphite anode in lithium-ion batteries. Compared to using poly (vinylidene fluoride) (PVDF) binder, the graphite anode using chitosan exhibited enhanced electrochemical performances in terms of the first Columbic efficiency, rate capability and cycling behavior. With similar specific capacity, the first Columbic efficiency of the chitosan-based anode is 95.4% compared to 89.3% of the PVDF-based anode. After 200 charge–discharge cycles at 0.5C, the capacity retention of the chitosan-based electrode showed to be significantly higher than that of the PVDF-based electrode. Electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) measurements were carried out to investigate the formation and evolution of the solid electrolyte interphase (SEI) formed on the graphite electrodes. The results show that a thin, homogenous and stable SEI layer is formed on the graphite electrode surface with chitosan binder compared with that using the conventional PVDF binder

  20. Synthesis, characterization, bioactivity and potential application of phenolic acid grafted chitosan: A review.

    Science.gov (United States)

    Liu, Jun; Pu, Huimin; Liu, Shuang; Kan, Juan; Jin, Changhai

    2017-10-15

    In recent years, increasing attention has been paid to the grafting of phenolic acid onto chitosan in order to enhance the bioactivity and widen the application of chitosan. Here, we present a comprehensive overview on the recent advances of phenolic acid grafted chitosan (phenolic acid-g-chitosan) in many aspects, including the synthetic method, structural characterization, biological activity, physicochemical property and potential application. In general, four kinds of techniques including carbodiimide based coupling, enzyme catalyzed grafting, free radical mediated grafting and electrochemical methods are frequently used for the synthesis of phenolic acid-g-chitosan. The structural characterization of phenolic acid-g-chitosan can be determined by several instrumental methods. The physicochemical properties of chitosan are greatly altered after grafting. As compared with chitosan, phenolic acid-g-chitosan exhibits enhanced antioxidant, antimicrobial, antitumor, anti-allergic, anti-inflammatory, anti-diabetic and acetylcholinesterase inhibitory activities. Notably, phenolic acid-g-chitosan shows potential applications in many fields as coating agent, packing material, encapsulation agent and bioadsorbent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Kinetics of swelling of polyelectrolyte gels: Fixed degree of ionization

    Science.gov (United States)

    Sen, Swati; Kundagrami, Arindam

    2015-12-01

    The swelling kinetics of uncharged and charged polymer (polyelectrolyte) gels in salt-free conditions is studied in one dimension by solving the constitutive equation of motion (Newton's law for the elementary gel volume) of the displacement variable by two theoretical methods: one in which the classical definition of stress is used with the bulk modulus taken as a parameter, and the other in which a phenomenological expression of the osmotic stress as a function of polymer density and degree of ionization is taken as an input to the dynamics. The time-evolution profiles for spatially varying polymer density and stress, along with the location of the gel-solvent interface, are obtained from the two methods. We show that both the polymer density (volume fraction) and stress inside the gel follow expected behaviours of being maximum for the uniformly shrunken gel, and relaxing slowly to the lowest values as the gel approaches equilibrium. We further show that, by comparing the temporal profiles of the gel-solvent interface and other variables between the two methods, one may attempt to assign an effective bulk modulus to the polyelectrolyte gel as a function of the degree of ionization and other parameters of the gel such as hydrophobicity, cross-link density, and the temperature. The major result we get is that the effective bulk modulus of a polyelectrolyte gel increases monotonically with its degree of ionization. In the process of identifying the parameters for a monotonic swelling, we calculated using a well-known expression of the free energy the equilibrium results of two-phase co-existence and the critical point of a polyelectrolyte gel with a fixed degree of ionization.

  2. Ultramicroelectrode studies of oxygen reduction in polyelectrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Holdcroft, S.; Abdou, M.S.; Beattie, P.; Basura, V. [Simon Fraser Univ., Burnaby, BC (Canada). Dept. of Chemistry

    1997-12-31

    A study on the oxygen reduction reaction in a solid state electrochemical cell was presented. The oxygen reduction reaction is a rate limiting reaction in the operation of solid polymer electrolyte fuel cells which use H{sub 2} and O{sub 2}. Interest in the oxygen reduction reaction of platinum electrodes in contact with Nafion electrolytes stems from its role in fuel cell technology. The kinetics of the oxygen reduction reaction in different polyelectrolyte membranes, such as Nafion and non-Nafion membranes, were compared. The electrode kinetics and mass transport parameters of the oxygen reduction reaction in polyelectrolyte membranes were measured by ultramicroelectrode techniques. The major difference found between these two classes of membrane was the percentage of water, which is suggestive of superior electrochemical mass transport properties of the non-Nafion membranes. 2 refs. 1 fig.

  3. Weak polyelectrolyte complexation driven by associative charging

    Science.gov (United States)

    Rathee, Vikramjit S.; Zervoudakis, Aristotle J.; Sidky, Hythem; Sikora, Benjamin J.; Whitmer, Jonathan K.

    2018-03-01

    Weak polyelectrolytes are relevant for a wide range of fields; in particular, they have been investigated as "smart" materials for chemical separations and drug delivery. The charges on weak polyelectrolytes are dynamic, causing polymer chains to adopt different equilibrium conformations even with relatively small changes to the surrounding environment. Currently, there exists no comprehensive picture of this behavior, particularly where polymer-polymer interactions have the potential to affect charging properties significantly. In this study, we elucidate the novel interplay between weak polyelectrolyte charging and complexation behavior through coupled molecular dynamics and Monte Carlo simulations. Specifically, we investigate a model of two equal-length and oppositely charging polymer chains in an implicit salt solution represented through Debye-Hückel interactions. The charging tendency of each chain, along with the salt concentration, is varied to determine the existence and extent of cooperativity in charging and complexation. Strong cooperation in the charging of these chains is observed at large Debye lengths, corresponding to low salt concentrations, while at lower Debye lengths (higher salt concentrations), the chains behave in apparent isolation. When the electrostatic coupling is long-ranged, we find that a highly charged chain strongly promotes the charging of its partner chain, even if the environment is unfavorable for an isolated version of that partner chain. Evidence of this phenomenon is supported by a drop in the potential energy of the system, which does not occur at the lower Debye lengths where both potential energies and charge fractions converge for all partner chain charging tendencies. The discovery of this cooperation will be helpful in developing "smart" drug delivery mechanisms by allowing for better predictions for the dissociation point of delivery complexes.

  4. Poisson-Boltzmann theory of the charge-induced adsorption of semi-flexible polyelectrolytes.

    Science.gov (United States)

    Ubbink, Job; Khokhlov, Alexei R

    2004-03-15

    A model is suggested for the structure of an adsorbed layer of a highly charged semi-flexible polyelectrolyte on a weakly charged surface of opposite charge sign. The adsorbed phase is thin, owing to the effective reversal of the charge sign of the surface upon adsorption, and ordered, owing to the high surface density of polyelectrolyte strands caused by the generally strong binding between polyelectrolyte and surface. The Poisson-Boltzmann equation for the electrostatic interaction between the array of adsorbed polyelectrolytes and the charged surface is solved for a cylindrical geometry, both numerically, using a finite element method, and analytically within the weak curvature limit under the assumption of excess monovalent salt. For small separations, repulsive surface polarization and counterion osmotic pressure effects dominate over the electrostatic attraction and the resulting electrostatic interaction curve shows a minimum at nonzero separations on the Angstrom scale. The equilibrium density of the adsorbed phase is obtained by minimizing the total free energy under the condition of equality of chemical potential and osmotic pressure of the polyelectrolyte in solution and in the adsorbed phase. For a wide range of ionic conditions and charge densities of the charged surface, the interstrand separation as predicted by the Poisson-Boltzmann model and the analytical theory closely agree. For low to moderate charge densities of the adsorbing surface, the interstrand spacing decreases as a function of the charge density of the charged surface. Above about 0.1 M excess monovalent salt, it is only weakly dependent on the ionic strength. At high charge densities of the adsorbing surface, the interstrand spacing increases with increasing ionic strength, in line with the experiments by Fang and Yang [J. Phys. Chem. B 101, 441 (1997)]. (c) 2004 American Institute of Physics.

  5. Influence of Functionalization Degree on the Rheological Properties of Isocyanate-Functionalized Chitin- and Chitosan-Based Chemical Oleogels for Lubricant Applications

    Directory of Open Access Journals (Sweden)

    Rocío Gallego

    2014-07-01

    Full Text Available This work deals with the influence of functionalization degree on the thermogravimetric and rheological behaviour of NCO-functionalized chitosan- and chitin-based oleogels. Chitosan and chitin were functionalized using different proportions of 1,6-hexamethylene diisocyanate (HMDI and subsequently dispersed in castor oil to promote the chemical reaction between the –NCO group of the modified biopolymer and the –OH group located in the ricinoleic fatty acid chain of castor oil, thus resulting in different oleogels with specific thermogravimetric and rheological characteristics. Biopolymers and oleogels were characterized through Fourier transform infrared spectroscopy (FTIR and thermogravimetric analysis (TGA. Small-amplitude oscillatory shear (SAOS measurements were performed on the oleogels. Oleogels presented suitable thermal resistance, despite the fact that the inclusion of HMDI moieties in the polymer structure led to a reduction in the onset temperature of thermal degradation. The insertion of low amounts of HMDI in both chitin and chitosan produces a drastic reduction in the values of oleogel viscoelastic functions but, above a critical threshold, they increase with the functionalization degree so that isocyanate functionalization results in a chemical tool to modulate oleogel rheological response. Several NCO-functionalized chitosan- and chitin-based oleogel formulations present suitable thermal resistance and rheological characteristics to be proposed as bio-based alternatives to traditional lubricating greases.

  6. Preparation of metal adsorbents from chitin/chitosan by radiation technology

    International Nuclear Information System (INIS)

    Nguyen Van Suc; Nguyen Quoc Hien; Ngo Quang Huy; Thai My Phe; Dao Van Hoang; Nguyen Van Hung

    2004-01-01

    The methods of preparation of metal adsorbents basing on chitin/chitosan were developed. That include the adsorbent from chitin grafted with acrylic acid by different irradiation doses; the clinging chitosan gel beads; the coagulable solution and the chitosan composite filter. The process of metal adsorption for each adsorbent was studied as adsorption kinetic, isothermal adsorption. The results have been applied for removal of some elements as Hg, Pb, Cd, U, Cu, ect. in the wastewater. (NHA)

  7. A new strategy based on SmRho protein loaded chitosan nanoparticles as a candidate oral vaccine against schistosomiasis.

    Directory of Open Access Journals (Sweden)

    Carolina R Oliveira

    Full Text Available BACKGROUND: Schistosomiasis is one of the most important neglected tropical diseases and an effective control is unlikely in the absence of improved sanitation and vaccination. A new approach of oral vaccination with alginate coated chitosan nanoparticles appears interesting because their great stability and the ease of target accessibility, besides of chitosan and alginate immunostimulatory properties. Here we propose a candidate vaccine based on the combination of chitosan-based nanoparticles containing the antigen SmRho and coated with sodium alginate. METHODS AND FINDINGS: Our results showed an efficient performance of protein loading of nanoparticles before and after coating with alginate. Characterization of the resulting nanoparticles reported a size around 430 nm and a negative zeta potential. In vitro release studies of protein showed great stability of coated nanoparticles in simulated gastric fluid (SGF and simulated intestinal fluid (SIF. Further in vivo studies was performed with different formulations of chitosan nanoparticles and it showed that oral immunization was not able to induce high levels of antibodies, otherwise intramuscular immunization induced high levels of both subtypes IgG1 and IgG2a SmRho specific antibodies. Mice immunized with nanoparticles associated to CpG showed significant modulation of granuloma reaction. Mice from all groups immunized orally with nanoparticles presented significant levels of protection against infection challenge with S. mansoni worms, suggesting an important role of chitosan in inducing a protective immune response. Finally, mice immunized with nanoparticles associated with the antigen SmRho plus CpG had 38% of the granuloma area reduced and also presented 48% of protection against of S. mansoni infection. CONCLUSIONS: Taken together, this results support this new strategy as an efficient delivery system and a potential vaccine against schistosomiasis.

  8. Effect of MWCNT Filler on Properties and Flux of Chitosan/ PEG based Nanocomposites Membranes

    Directory of Open Access Journals (Sweden)

    Khoerunnisa Fitri

    2018-01-01

    Full Text Available Biopolymer are expected to be environmentally compatible and to have great potential application as membranes material. The chitosan-poly (ethylene glycol/PEG based composite membranes was successfully synthesized via inversed phase method. The effect of multiwalled carbon nanotubes (MWCNT as nanofiller on properties and performances of composite membranes were intensively evaluated. The membrane was prepared by mixing of chitosan and PEG solutions at the same composition ratio while MWCNT amount in the mixture was varied. The synthesized membrane was characterized by means of FTIR spectroscopy, scanning electron microscopy (SEM, contact angle, and tensile strength measurement. The performance of composite membrane on filtration was evaluated in term of flux (permeability and rejection (rejection tests. The results showed that the optimum volume ratio of composite membrane solution was found at 30:10:7.5 for chitosan/ PEG/ MWCNT, respectively, as indicated by the largest flux. Insertion of MWCNT nanofiller notably enhanced hydrophilicity, porosity, and mechanical properties of composites membranes that are confirmed by contact angle, SEM images and elongation forces value, respectively. The MWCNT nanofiller remarkably increased both of flux and rejection of composite membranes up to 60 Lm2h-1 and 96%, respectively. The remarkable enhancement of composite membrane performance is attributed to the effective interaction of MWCNT with polymeric matrix.

  9. Chitosan and carboxymethyl-chitosan capping ligands: Effects on the nucleation and growth of hydroxyapatite nanoparticles for producing biocomposite membranes.

    Science.gov (United States)

    Dumont, Vitor C; Mansur, Alexandra A P; Carvalho, Sandhra M; Medeiros Borsagli, Fernanda G L; Pereira, Marivalda M; Mansur, Herman S

    2016-02-01

    Synthetic biomaterials based on calcium phosphates (CaP) have been widely studied for bone tissue reconstruction therapies, but no definitive solution that fulfills all of the required properties has been identified. Thus, this study reports the synthesis of composite membranes based on nanohydroxyapatite particles (nHA) embedded in chitosan (CHI) and O-carboxymethyl chitosan (CMC) matrices produced using a one-step co-precipitation method in water media. Biopolymers were used as capping ligands for simultaneously controlling the nucleation and growth of the nHA particles during the precipitation process and also to form the polymeric network of the biocomposites. The bionanocomposites were extensively characterized using light microscopy (LM), scanning and transmission electron microscopy (SEM/TEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), atomic force microscopy (AFM), X-ray micro-CT analysis (μCT), andMTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazoliumbromide) cell proliferation assays for cell cytotoxicity. The results demonstrated that the ligands used during the synthesis highly affected the composites produced, primarily due the changes in the mechanisms and kinetics of nucleation and growth of the HA particles at the nanoscale level. The SEMimages revealed that the use of carboxyl-functionalized chitosan (CMC) ligands significantly reduced the average size of theHA nanoparticles and caused the formation of a narrower size distribution (90±20nm) compared to theHAnanoparticles producedwith chitosan ligands (220±50nm). The same trend was verified by the AFM analysis,where the nHA particles were formed evenly dispersed in the polymer matrix. However, the CMC-based composites were more homogeneously distributed, which was endorsed by the images collected via X-ray micro-CT. The FTIR spectra and the XRD analysis indicated that nanosized hydroxyapatite was the predominant calcium

  10. Antimicrobial and physical properties of chitosan films incorporated with turmeric extract.

    Science.gov (United States)

    Kalaycıoğlu, Zeynep; Torlak, Emrah; Akın-Evingür, Gülşen; Özen, İlhan; Erim, F Bedia

    2017-08-01

    In this study, the effects of turmeric extract incorporation on the antibacterial and physical properties of the chitosan films were evaluated. Turmeric containing chitosan-based film was produced with casting procedure and cross-linked with sodium sulfate. Mechanical, optical, thermal properties, and water vapor permeability of the films were studied. The addition of turmeric to chitosan film significantly increased the tensile strength of the film and improved the ultraviolet-visible light barrier of the film. Infrared spectroscopy analysis suggested an interaction between the phenolic compounds of the extract and amin group of chitosan. Antimicrobial activity of the chitosan films was studied against Salmonella and Staphylococcus aureus by plate count agar technique and a better antimicrobial activity was observed with turmeric incorporation. Turmeric incorporated chitosan films with enhanced antimicrobial activity and film stiffness can be suggested as a promising application for food packaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Radiation processing of chitosan derivative and its characteristics

    International Nuclear Information System (INIS)

    Kamarudin Bahari; Kamarolzaman Hussein; Kamaruddin Hashim; Khairul Zaman Mohd Dahlan

    2002-01-01

    Chitosan is natural polymer derived from chitin, a polysaccharide found in the exoskeleton of shrimps, crabs, fungi and others. Chitosan is a naturally occurring substance that is chemically similar to cellulose. Chitosan possesses a positive ionic charge give ability to chemically bond with negatively charged fats. Chitosan is soluble in organic acid but insoluble in water. Carboxymethyl-chitosan (cm-chitosan) is a derivative of chitosan which is water-soluble was then prepared by a carboxymethylation process of chitosan produced from local shrimp shell. A simple method for synthesis of cm-chitosan has been developed at 55 degree C in aqueous sodium hydroxide / propanol with chloroacetic acid (CAA) or sodium chloroacetate salt (SCA). The modification of chitosan to water-soluble chitosan can be used in hydrogel as anti-bacterial agent and it overcome the problem of bad smell using acetic acid. (Author)

  12. Synthesis, characterization and radiation processing of carboxymethyl-chitosan

    International Nuclear Information System (INIS)

    Kamarudin Bahari; Kamarolzaman Hussein; Kamaruddin Hashim; Khairul Zaman Mohd Dahlan

    2002-01-01

    Chitosan is natural polymer derived from chitin, a polysaccharide found in the exoskeleton of shrimps, crabs, fungi and others. Chitosan is a naturally occurring substance that is chemically similar to cellulose. Chitosan possesses a positive ionic charge give ability to chemically bond with negatively charged fats. Chitosan is soluble in organic acid but insoluble in water. Carboxymethyl-chitosan (cm-chitosan) is a derivative of chitosan which is water-soluble was then prepared by carboxymethylation process of chitosan produced from local shrimp shell. A simple method for synthesis of cm-chitosan has been developed at 55 degree C in aqueous sodium hydroxide / propanol with chloroacetic acid (CAA) or sodium chloroacetate salt (SCA). The modification of chitosan to water-soluble chitosan can be used in hydrogel as anti-bacterial and anti-fungal agent, and it overcome the problem of bad smell using organic acid. (Author)

  13. The sustained-release behavior and in vitro and in vivo transfection of pEGFP-loaded core-shell-structured chitosan-based composite particles

    Science.gov (United States)

    Wang, Yun; Lin, Fu-xing; Zhao, Yu; Wang, Mo-zhen; Ge, Xue-wu; Gong, Zheng-xing; Bao, Dan-dan; Gu, Yu-fang

    2014-01-01

    Novel submicron core-shell-structured chitosan-based composite particles encapsulated with enhanced green fluorescent protein plasmids (pEGFP) were prepared by complex coacervation method. The core was pEGFP-loaded thiolated N-alkylated chitosan (TACS) and the shell was pH- and temperature-responsive hydroxybutyl chitosan (HBC). pEGFP-loaded TACS-HBC composite particles were spherical, and had a mean diameter of approximately 120 nm, as measured by transmission electron microscopy and particle size analyzer. pEGFP showed sustained release in vitro for >15 days. Furthermore, in vitro transfection in human embryonic kidney 293T and human cervix epithelial cells, and in vivo transfection in mice skeletal muscle of loaded pEGFP, were investigated. Results showed that the expression of loaded pEGFP, both in vitro and in vivo, was slow but could be sustained over a long period. pEGFP expression in mice skeletal muscle was sustained for >60 days. This work indicates that these submicron core-shell-structured chitosan-based composite particles could potentially be used as a gene vector for in vivo controlled gene transfection. PMID:25364253

  14. Multilayer sodium alginate beads with porous core containing chitosan based nanoparticles for oral delivery of anticancer drug.

    Science.gov (United States)

    Li, Jing; Jiang, Changqing; Lang, Xuqian; Kong, Ming; Cheng, Xiaojie; Liu, Ya; Feng, Chao; Chen, Xiguang

    2016-04-01

    To develop efficient and safe anticancer drug doxorubicin hydrochloride (DOX) delivery system for oral chemotherapy, chitosan based nanoparticles (CS/CMCS-NPs) composed of chitosan (CS) and o-carboxymeymethy chitosan (CMCS) were immobilized in multilayer sodium alginate beads (NPs-M-Beads). Two kinds of NPs-M-Beads, with or without porous core, were respectively prepared by internal or external ionic gelation method. In the small intestine, the intact CS/CMCS-NPs were able to escape from porous-beads and sustained release the loading DOX. In vivo results showed that the DOX could be efficiently absorbed by small intestine of SD rat and the higher concentration of the DOX in major organs of rats were found after oral administration of Porous-Beads, which were about 2-4 folds higher than that of non-porous-beads. These results suggested that the NPs-M-Beads with porous core to be exciting and promising for oral delivery of DOX. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Chitosan-based DNA delivery vector targeted to gonadotropin-releasing hormone (GnRH) receptor.

    Science.gov (United States)

    Boonthum, Chatwalee; Namdee, Katawut; Boonrungsiman, Suwimon; Chatdarong, Kaywalee; Saengkrit, Nattika; Sajomsang, Warayuth; Ponglowhapan, Suppawiwat; Yata, Teerapong

    2017-02-10

    The main purpose of this study was to investigate the application of modified chitosan as a potential vector for gene delivery to gonadotropin-releasing hormone receptor (GnRHR)-expressing cells. Such design of gene carrier could be useful in particular for gene therapy for cancers related to the reproductive system, gene disorders of sexual development, and contraception and fertility control. In this study, a decapeptide GnRH was successfully conjugated to chitosan (CS) as confirmed by proton nuclear magnetic resonance spectroscopy ( 1 H NMR) and Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The synthesized GnRH-conjugated chitosan (GnRH-CS) was able to condense DNA to form positively charged nanoparticles and specifically deliver plasmid DNA to targeted cells in both two-dimensional (2D) and three-dimensional (3D) cell cultures systems. Importantly, GnRH-CS exhibited higher transfection activity compared to unmodified CS. In conclusion, GnRH-conjugated chitosan can be a promising carrier for targeted DNA delivery to GnRHR-expressing cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Flow Cytometry Detection of Bacterial Cell Entrapment within the Chitosan Hydrogel and Antibacterial Property of Extracted Chitosan

    Directory of Open Access Journals (Sweden)

    Nafise Sadat Majidi

    2016-09-01

    Full Text Available Background:   Chitosan is unbranched polysaccharide composed of D-glucosamine and N-acetyl-D-glucosamine. Chitosan, derived from shrimp shell, has broad antimicrobial properties against Gram-negative, Gram-positive bacteria and fungi. Methods:  Chitosan was extracted from shrimp shell and studied for cell entrapment and anti-bacterial properties. The hydrogel chitosan was used as the beads for cell entrapment and chitosan beads were designed to deliver cells and nutrients. These data confirmed with flow cytometric analyses.                 Results:   Experimental results exhibited that internal diffusion through the chitosan matrix was the main mechanism for whole gelation by TPP (Tri-polyphosphate. The minimum inhibitory concentration (MIC for chitosan against Staphylococcus aureus and Escherichia coli was 16 and 32 μg/ml respectively. Conclusion:  Despite the antimicrobial properties of chitosan, trapped bacteria in the gel network were alive and were chelated indicating that their access to the outside was limited.

  17. Single molecule atomic force microscopy and force spectroscopy of chitosan.

    Science.gov (United States)

    Kocun, Marta; Grandbois, Michel; Cuccia, Louis A

    2011-02-01

    Atomic force microscopy (AFM) and AFM-based force spectroscopy was used to study the desorption of individual chitosan polymer chains from substrates with varying chemical composition. AFM images of chitosan adsorbed onto a flat mica substrate show elongated single strands or aggregated bundles. The aggregated state of the polymer is consistent with the high level of flexibility and mobility expected for a highly positively charged polymer strand. Conversely, the visualization of elongated strands indicated the presence of stabilizing interactions with the substrate. Surfaces with varying chemical composition (glass, self-assembled monolayer of mercaptoundecanoic acid/decanethiol and polytetrafluoroethylene (PTFE)) were probed with chitosan modified AFM tips and the corresponding desorption energies, calculated from plateau-like features, were attributed to the desorption of individual polymer strands. Desorption energies of 2.0±0.3×10(-20)J, 1.8±0.3×10(-20)J and 3.5±0.3×10(-20)J were obtained for glass, SAM of mercaptoundecanoic/dodecanethiol and PTFE, respectively. These single molecule level results can be used as a basis for investigating chitosan and chitosan-based materials for biomaterial applications. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Chitosan encapsulation of essential oil "cocktails" with well-defined binary Zn(II)-Schiff base species targeting antibacterial medicinal nanotechnology.

    Science.gov (United States)

    Halevas, Eleftherios; Nday, Christiane M; Chatzigeorgiou, Evanthia; Varsamis, Vasileios; Eleftheriadou, Despoina; Jackson, Graham E; Litsardakis, Georgios; Lazari, Diamanto; Ypsilantis, Konstantinos; Salifoglou, Athanasios

    2017-11-01

    The advent of biodegradable nanomaterials with enhanced antibacterial activity stands as a challenge to the global research community. In an attempt to pursue the development of novel antibacterial medicinal nanotechnology, we herein a) synthesized ionic-gelated chitosan nanoparticles, b) compared and evaluated the antibacterial activity of essential oils extracted from nine different herbs (Greek origin) and their combinations with a well-defined antibacterial Zn(II)-Schiff base compound, and c) encapsulated the most effective hybrid combination of Zn(II)-essential oils inside the chitosan matrix, thereby targeting well-formulated nanoparticles of distinct biological impact. The empty and loaded chitosan nanoparticles were physicochemically characterized by FT-IR, Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), with the entrapment and drug release studies being conducted through UV-Visible and atomic absorption techniques. The antimicrobial properties of the novel hybrid materials were demonstrated against Gram positive (S. aureus, B. subtilis, and B. cereus) and Gram negative (E. coli and X. campestris) bacteria using modified agar diffusion methods. The collective physicochemical profile of the hybrid Zn(II)-essential oil cocktails, formulated so as to achieve optimal activity when loaded to chitosan nanoparticles, signifies the importance of design in the development of efficient nanomedicinal pharmaceuticals a) based on both natural products and biogenic metal ionic cofactors, and b) targeting bacterial infections and drug resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. In vivo evaluation of an oral drug delivery system for peptides based on S-protected thiolated chitosan.

    Science.gov (United States)

    Dünnhaupt, Sarah; Barthelmes, Jan; Iqbal, Javed; Perera, Glen; Thurner, Clemens C; Friedl, Heike; Bernkop-Schnürch, Andreas

    2012-06-28

    The aim of the present study was the development and evaluation in vitro as well as in vivo of an oral delivery system based on a novel type of thiolated chitosan, so-called S-protected thiolated chitosan, for the peptide drug antide. The sulfhydryl ligand thioglycolic acid (TGA) was covalently attached to chitosan (CS) in the first step of modification. In the second step, these thiol groups of thiolated chitosan were protected by disulfide bond formation with the thiolated aromatic residue 6-mercaptonicotinamide (6-MNA). Absorptive transport studies of antide were evaluated ex vivo using rat intestinal mucosa. Matrix tablets of each polymer sample were prepared and their effect on the absorption of antide evaluated in vivo in male Sprague-Dawley rats. In addition, tablets were examined in terms of their disintegration, swelling and drug release behavior. The resulting S-protected thiomer (TGA-MNA) exhibited 840μmol of covalently linked 6-MNA per gram thiomer. Based on the implementation of this hydrophobic ligand on the thiolated backbone, the disintegration behavior was reduced greatly and a controlled release of the peptide could be achieved. Furthermore, permeation studies with TGA-MNA on rat intestine revealed a 4.5-fold enhanced absorptive transport of the peptide in comparison to antide in solution. Additional in vivo studies confirmed the potential of this novel conjugate. Oral administration of antide in solution led to only very small detectable quantities in plasma with an absolute and relative bioavailability (BA) of 0.003 and 0.03%, only. In contrast, with antide incorporated in TGA-MNA matrix tablets an absolute and relative BA of 1.4 and 10.9% could be reached, resulting in a 421-fold increased area under the plasma concentration time curve (AUC) compared to the antide solution. According to these results, S-protected thiolated chitosan as oral drug delivery system might be a valuable tool for improving the bioavailability of peptides. Copyright

  20. Development of thermoplastic starch blown film by incorporating plasticized chitosan.

    Science.gov (United States)

    Dang, Khanh Minh; Yoksan, Rangrong

    2015-01-22

    The objective of the present work was to improve blown film extrusion processability and properties of thermoplastic starch (TPS) film by incorporating plasticized chitosan, with a content of 0.37-1.45%. The effects of chitosan on extrusion processability and melt flow ability of TPS, as well as that on appearance, optical properties, thermal properties, viscoelastic properties and tensile properties of the films were investigated. The possible interactions between chitosan and starch molecules were evaluated by FTIR and XRD techniques. Chitosan and starch molecules could interact via hydrogen bonds, as confirmed from the blue shift of OH bands and the reduction of V-type crystal formation. Although the incorporation of chitosan caused decreased extensibility and melt flow ability, as well as increased yellowness and opacity, the films possessed better extrusion processability, increased tensile strength, rigidity, thermal stability and UV absorption, as well as reduced water absorption and surface stickiness. The obtained TPS/chitosan-based films offer real potential application in the food industry, e.g. as edible films. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. A NOVEL APPROACH TO SYNTHESIZE CHITOSAN BEADS CROSSLINKED BY EPICHLOROHYDRIN

    Institute of Scientific and Technical Information of China (English)

    WANG Yongjian; BAI Shu; SUN Yan

    2001-01-01

    The present investigation describes a novel method for preparing spherical chitosan particles based on crosslinking with epichlorohydrin. Certain amount of pre-crosslinking agent was added to form chitosan gels by traditional inverse phase suspension polymerization. Then the gels were crosslinked by epichlorohydrin at basic condition to obtain chitosan beads. The effects of reaction conditions, such as crosslinking time, the amount of crosslinking agent and the NaOtt concentration,on the physical properties of the chitosan beads were investigated. The beads were found to have more amino groups in the polymer chains than the beads crosslinked by glutaraldehyde. The capacity for copper ions is as high as 40mg/g. The beads have good mechanical strength and can be reused.

  2. A NOVEL APPROACH TO SYNTHESIZE CHITOSAN BEADS CROSSLINKED BY EPICHLOROHYDRIN

    Institute of Scientific and Technical Information of China (English)

    WANGYongjina; BAIShu; 等

    2001-01-01

    The present investigation describes a novel method for preparing spherical chitosan particles based on crosslinking with epichlorohydrin.Certain amount of pre-crosslinking agent was added to form chitosan gels by traditional inverse phase suspension polymerization.Then the gels were crosslinked by epichlorohydrin at basic condition to obtain chitosan beads.The effects of reaction conditions,such as crosslinking time,the amount of crosslinking agent and the NaOH concentration,on the physical properties of the chitosan beads were investigated.The beads were found to have more amino groups in the polymer chains than the beads crosslinked by glutaraldehyde.The capacity for copper ions in as high as 40mg/g,The beads have good mechanical strength and can be reused.

  3. Polyelectrolyte hydrogels and methods of their preparation

    International Nuclear Information System (INIS)

    Ward, J.A.

    1981-01-01

    This invention relates to polyelectrolyte polymers which are water insoluble but water swellable, and methods for producing them. More particularly, it relates to cross-linked, random copolymers comprised of an acrylate salt and acrylamide and methods of producing them by means of a controlled dose and controlled intensity of ionizing radiation. (author)

  4. Comparative Study of One-Step Cross-Linked Electrospun Chitosan-Based Membranes

    Directory of Open Access Journals (Sweden)

    Yanet E. Aguirre-Chagala

    2017-01-01

    Full Text Available Chitosan membranes are widely applied for tissue engineering; however, a major drawback is their low resistance in aqueous phases and therefore the structure collapses impeding their long-term use. Although there is extensive research, because of chitosan’s importance as a biomaterial, studies involving chitosan-based membranes are still needed. Herein, a detailed investigation of diverse chemical routes to cross-link fibers in situ by electrospinning process is described. In case of using genipin as cross-linker, a close relationship with the content and the mean diameter values is reported, suggesting a crucial effect over the design of nanostructures. Also, the physical resistance is enhanced for the combination of two types of methods, such as chemical and physical methods. Cross-linked fibers upon exposure to long wave ultraviolet A (UVA light change their morphology, but not their chemical composition. When they are incubated in aqueous phase for 70 days, they show an extensive improvement of their macrostructural integrity which makes them attractive candidates for tissue engineering application. As a result, the thermal properties of these materials reveal less crystallinity and higher temperature of degradation.

  5. Next-Generation Theranostic Agents Based on Polyelectrolyte Microcapsules Encoded with Semiconductor Nanocrystals: Development and Functional Characterization

    Science.gov (United States)

    Nifontova, Galina; Zvaigzne, Maria; Baryshnikova, Maria; Korostylev, Evgeny; Ramos-Gomes, Fernanda; Alves, Frauke; Nabiev, Igor; Sukhanova, Alyona

    2018-01-01

    Fabrication of polyelectrolyte microcapsules and their use as carriers of drugs, fluorescent labels, and metal nanoparticles is a promising approach to designing theranostic agents. Semiconductor quantum dots (QDs) are characterized by extremely high brightness and photostability that make them attractive fluorescent labels for visualization of intracellular penetration and delivery of such microcapsules. Here, we describe an approach to design, fabricate, and characterize physico-chemical and functional properties of polyelectrolyte microcapsules encoded with water-solubilized and stabilized with three-functional polyethylene glycol derivatives core/shell QDs. Developed microcapsules were characterized by dynamic light scattering, electrophoretic mobility, scanning electronic microscopy, and fluorescence and confocal microscopy approaches, providing exact data on their size distribution, surface charge, morphological, and optical characteristics. The fluorescence lifetimes of the QD-encoded microcapsules were also measured, and their dependence on time after preparation of the microcapsules was evaluated. The optimal content of QDs used for encoding procedure providing the optimal fluorescence properties of the encoded microcapsules was determined. Finally, the intracellular microcapsule uptake by murine macrophages was demonstrated, thus confirming the possibility of efficient use of developed system for live cell imaging and visualization of microcapsule transportation and delivery within the living cells.

  6. Gallic Acid Grafted Chitosan Has Enhanced Oxidative Stability in Bulk Oils.

    Science.gov (United States)

    Gim, Seo Yeong; Hong, Seungmi; Kim, Mi-Ja; Lee, JaeHwan

    2017-07-01

    Gallic acid (GA) was grafted in chitosan and the effects of GA grafted chitosan (GA-g-CS) on the oxidative stability in bulk oil was tested at 60 and 140 °C. To text oxidative stability in oils, headspace oxygen content, conjugated dienoic acid (CDA) value, p-anisidine value (p-AV), and acid value were determined. Chitosan itself did not show antioxidative or prooxidative effects in oils at 60 °C. However, GA-g-CS and GA acted as antioxidants at 60 °C. At 140 °C heating with moisture supplied condition, different results were observed. GA-g-CS acted as antioxidants based on the results of CDA and p-AV. However, chitosan showed the highest oxidative stability based on results of acid value and brown color formation at 140 °C. This could be due to reduction of moisture content by chitosan. GA was continuously released from GA-g-CS in bulk oil. This might have provided extra antioxidant activities to oils. © 2017 Institute of Food Technologists®.

  7. Monte Carlo simulation and equation of state for flexible charged hard-sphere chain fluids: Polyampholyte and polyelectrolyte solutions

    International Nuclear Information System (INIS)

    Jiang, Hao; Adidharma, Hertanto

    2014-01-01

    The thermodynamic modeling of flexible charged hard-sphere chains representing polyampholyte or polyelectrolyte molecules in solution is considered. The excess Helmholtz energy and osmotic coefficients of solutions containing short polyampholyte and the osmotic coefficients of solutions containing short polyelectrolytes are determined by performing canonical and isobaric-isothermal Monte Carlo simulations. A new equation of state based on the thermodynamic perturbation theory is also proposed for flexible charged hard-sphere chains. For the modeling of such chains, the use of solely the structure information of monomer fluid for calculating the chain contribution is found to be insufficient and more detailed structure information must therefore be considered. Two approaches, i.e., the dimer and dimer-monomer approaches, are explored to obtain the contribution of the chain formation to the Helmholtz energy. By comparing with the simulation results, the equation of state with either the dimer or dimer-monomer approach accurately predicts the excess Helmholtz energy and osmotic coefficients of polyampholyte and polyelectrolyte solutions except at very low density. It also well captures the effect of temperature on the thermodynamic properties of these solutions

  8. An investigation of electrospun Henna leaves extract-loaded chitosan based nanofibrous mats for skin tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, Iman, E-mail: iman_yousefi@ut.ac.ir [School of Chemical Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Pakravan, Mehdi [Department of Chemical Engineering, Ecole Polytechnique de Montreal, Montreal, Quebec (Canada); Rahimi, Hoda [Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Bahador, Abbas; Farshadzadeh, Zahra [Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Haririan, Ismael, E-mail: haririan@tums.ac.ir [Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Pharmaceutical Biomaterial, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2017-06-01

    Wound healing characteristics of some plant extracts have been well known for many years, and they have been utilized for such applications in traditional way. Recently electrospun nanofibrous mats showed promising properties for tissue engineering and especially for skin repair. It is expected that incorporation of plant extracts into such structures could provide higher performance and synergistic effect for biomedical and wound healing applications. The final purpose of this study is to fabricate chitosan based nanofiber mats loaded with a traditional plant extract of Lawsonia inermis (Henna) leaves to enhance the antibacterial efficacy and wound healing of the precursor nanofibers. The morphology, structure, mechanical properties and swelling and weight loss degree of the electrospun nanofibers have been investigated in this study. Antibacterial activity, cell biocompatibility evaluations and in vivo wound healing activity of the abovementioned mats were also studied. The FESEM images of Henna leaves extract-loaded nanofibers proved that homogeneous, smooth and defect free nanofibers of 64–87 nm in diameter have been prepared. Presence of Henna extract in the electrospun fibers was approved by Fourier Transform Infrared spectroscopy. Incorporation of Henna extract into the nanofiber mats exhibited significant synergistic antibacterial activity against bacterial cells. It was well supported by the results of cell viability and proliferation of human foreskin fibroblast cells on the prepared scaffolds. Therefore, the results of this work showed that Henna leaves extract incorporated chitosan nonwoven mats have a great potential to be used as the biodegradable, biobased and antibacterial wound healing dressings. - Highlights: • Henna leaves extract were successfully loaded into chitosan based nanofiber mats. • These mats demonstrated significant synergistic antibacterial activity. • Combined properties of chitosan nanofibers and Henna promoted cell

  9. An investigation of electrospun Henna leaves extract-loaded chitosan based nanofibrous mats for skin tissue engineering

    International Nuclear Information System (INIS)

    Yousefi, Iman; Pakravan, Mehdi; Rahimi, Hoda; Bahador, Abbas; Farshadzadeh, Zahra; Haririan, Ismael

    2017-01-01

    Wound healing characteristics of some plant extracts have been well known for many years, and they have been utilized for such applications in traditional way. Recently electrospun nanofibrous mats showed promising properties for tissue engineering and especially for skin repair. It is expected that incorporation of plant extracts into such structures could provide higher performance and synergistic effect for biomedical and wound healing applications. The final purpose of this study is to fabricate chitosan based nanofiber mats loaded with a traditional plant extract of Lawsonia inermis (Henna) leaves to enhance the antibacterial efficacy and wound healing of the precursor nanofibers. The morphology, structure, mechanical properties and swelling and weight loss degree of the electrospun nanofibers have been investigated in this study. Antibacterial activity, cell biocompatibility evaluations and in vivo wound healing activity of the abovementioned mats were also studied. The FESEM images of Henna leaves extract-loaded nanofibers proved that homogeneous, smooth and defect free nanofibers of 64–87 nm in diameter have been prepared. Presence of Henna extract in the electrospun fibers was approved by Fourier Transform Infrared spectroscopy. Incorporation of Henna extract into the nanofiber mats exhibited significant synergistic antibacterial activity against bacterial cells. It was well supported by the results of cell viability and proliferation of human foreskin fibroblast cells on the prepared scaffolds. Therefore, the results of this work showed that Henna leaves extract incorporated chitosan nonwoven mats have a great potential to be used as the biodegradable, biobased and antibacterial wound healing dressings. - Highlights: • Henna leaves extract were successfully loaded into chitosan based nanofiber mats. • These mats demonstrated significant synergistic antibacterial activity. • Combined properties of chitosan nanofibers and Henna promoted cell

  10. Degradation Of α-Chitosan By Combined Treatment With Hydroperoxide And Gamma 60Co Radiation

    International Nuclear Information System (INIS)

    Nguyen Quoc Hien; Dang Van Phu; Bui Phuoc Phuc; Ha Thuc Huy

    2008-01-01

    Chitosan samples prepared from shrimp shell (α-chitosan) with degree of deacetylation (DD) of 70, 84 and 94% were treated with H 2 O 2 1.5% at room temperature for degradation. The oxidative chitosan was irradiated by gamma 60 Co radiation for further reduction of molecular weight. Viscosity-average molecular weight of chitosan was measured by capillary viscometer. Results showed that H 2 O 2 was an effective reagent for chitosan degradation. Radiation degradation yield (G s ) increased for chitosan with higher DD. Interestingly Gs-values for oxidative degraded chitosan were found out of 0.96, 5.73 and 7.80 scissions/100 eV that were remarkably higher compared to 0.20, 1.05 and 1.69 scissions/100 eV for initial chitosan with DD 70, 84 and 94%, respectively. Based on results obtained it can be concluded that combined treatment with hydroperoxide and gamma 60 Co radiation was remarkably effective for degradation of chitosan. (author)

  11. Synthesis and characterization of Ag2S decorated chitosan nanocomposites and chitosan nanofibers for removal of lincosamides antibiotic.

    Science.gov (United States)

    Gupta, Vinod Kumar; Fakhri, Ali; Agarwal, Shilpi; Azad, Mona

    2017-10-01

    We report the synthesis of Ag 2 S-Chitosan nanocomposites and Ag 2 S-chitosan nanohybrids as performance adsorbents for Lincosamides such as Clindamycin antibiotic removal. Isotherms and kinetic studies were determined to understand the adsorption behavior both two adsorbent. At low adsorbent dose, removals are increased in the adsorption process, and performance is better with Ag 2 S-chitosan nanohybrids due to the special surface area increased. The average sizes and surface area of Ag 2 S-Chitosan nanocomposites and Ag 2 S-chitosan nanohybrids were found as 50nm, 70nm and 180.18, 238.24m 2 g -1 , respectively. In particular, Ag 2 S-Chitosan nanocomposites and Ag 2 S-chitosan nanohybrids show high maximum Clindamycin adsorption capacity (q max ) of 153.21, and 181.28mgg -1 , respectively. More strikingly, Ag 2 S-Chitosan nanocomposites and Ag 2 S-chitosan nanohybrids are also demonstrated to nearly completely remove Clindamycin from drinking water. The excellent adsorption performance along with their cost effective, convenient synthesis makes this range of adsorbents highly promising for commercial applications in drinking water and wastewater treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Fragmentation of the radiation degraded chitosan by centrifugal filter and application of the fragmented chitosan in cotton fabrics finishing

    International Nuclear Information System (INIS)

    Luu Thi Tho; Nguyen Van Thong; Vu Thi Hong Khanh; Tran Minh Quynh

    2014-01-01

    Three kind of Vietnamese chitosans with the same deacetylation degrees of about 75% and viscosity average molecular weights are 69.000, 187.000 and 345.000 Da, respectively, were produced from shrimp shells and cuttle-bone at the MTV chitosan company (Kien Giang). These chitosans were irradiated at 25, 50, 75, 100, 200 and 500 kGy under Cobalt-60 gamma source at Hanoi Irradiation Center in order to prepare a series of chitosan segments with wide distribution of molecular weights. Different chitosan samples of the predetermined average molecular weight from 3,000 to 50,000 Da were separated from the irradiated chitosans by ultrafiltration with series of filter membranes (Centriprep devices). Molecular properties of the fragmented chitosans were analysed with gel permeation chromatography, Fourier transfer infra red spectrometry, and the results suggested that principal characteristics of chitosan were not affected by gamma irradiation, even its deacetylation degrees was increased. Solubility of the fragmented chitosans were much improved by radiation processing, and the chitosans having molecular weights below 5.000 Da were water-soluble polymers, which can easily apply as the auxiliary agent in textile. (author)

  13. Evaluation of Hemagglutination Activity of Chitosan Nanoparticles Using Human Erythrocytes

    Directory of Open Access Journals (Sweden)

    Jefferson Muniz de Lima

    2015-01-01

    Full Text Available Chitosan is a polysaccharide composed of randomly distributed chains of β-(1-4 D-glucosamine and N-acetyl-D-glucosamine. This compound is obtained by partial or total deacetylation of chitin in acidic solution. The chitosan-based hemostatic agents have been gaining much attention in the management of bleeding. The aim of this study was to evaluate in vitro hemagglutination activity of chitosan nanoparticles using human erythrocytes. The preparation of nanoparticles was achieved by ionotropic gelification technique followed by neutralization with NaOH 1 mol/L−1. The hemagglutination activity was performed on a solution of 2% erythrocytes (pH 7.4 on PBS collected from five healthy volunteers. The hemolysis determination was made by spectrophotometric analysis. Chitosan nanoparticle solutions without NaOH addition changed the reddish colour of the wells into brown, suggesting an oxidative reaction of hemoglobin and possible cell lysis. All neutralized solutions of chitosan nanoparticles presented positive haemagglutination, without any change in reaction color. Chitosan nanoparticles presented hemolytic activity ranging from 186.20 to 223.12%, while neutralized solutions ranged from 2.56 to 72.54%, comparing to distilled water. Results highlight the need for development of new routes of synthesis of chitosan nanoparticles within human physiologic pH.

  14. Optical and Electrical Characteristics of Silver Ion Conducting Nanocomposite Solid Polymer Electrolytes Based on Chitosan

    Science.gov (United States)

    Aziz, Shujahadeen B.; Rasheed, Mariwan A.; Abidin, Zul H. Z.

    2017-10-01

    Optical and electrical properties of nanocomposite solid polymer electrolytes based on chitosan have been investigated. Incorporation of alumina nanoparticles into the chitosan:silver triflate (AgTf) system broadened the surface plasmon resonance peaks of the silver nanoparticles and shifted the absorption edge to lower photon energy. A clear decrease of the optical bandgap in nanocomposite samples containing alumina nanoparticles was observed. The variation of the direct-current (DC) conductivity and dielectric constant followed the same trend with alumina concentration. The DC conductivity increased by two orders of magnitude, which can be attributed to hindrance of silver ion reduction. Transmission electron microscopy was used to interpret the space-charge and blocking effects of alumina nanoparticles on the DC conductivity and dielectric constant. The ion conduction mechanism was interpreted based on the dependences of the electrical and dielectric parameters. The dependence of the DC conductivity on the dielectric constant is explained empirically. Relaxation processes associated with conductivity and viscoelasticity were distinguished based on the incomplete semicircular arcs in plots of the real and imaginary parts of the electric modulus.

  15. Thiolated chitosan nanoparticles: transfection study in the Caco-2 differentiated cell culture

    International Nuclear Information System (INIS)

    Martien, Ronny; Loretz, Brigitta; Sandbichler, Adolf Michael; Schnuerch, Andreas Bernkop

    2008-01-01

    The aim of this study was to monitor the expression of secreted protein in differentiated Caco-2 cells after transfection with nanoparticles, in order to improve gene delivery. Based on unmodified chitosan and thiolated chitosan conjugates, nanoparticles with the gene reporter pSEAP (recombinant Secreted Alkaline Phosphatase) were generated at pH 4.0. Transfection studies of thiolated chitosan in Caco-2 cells during the exponential growth phase and differentiation growth phase of the cells led to a 5.0-fold and 2.0-fold increase in protein expression when compared to unmodified chitosan nanoparticles. The mean particle size for both unmodified chitosan and cross-linked thiolated chitosan nanoparticles is 212.2 ± 86 and 113.6 ± 40 nm, respectively. The zeta potential of nanoparticles was determined to be 7.9 ± 0.38 mV for unmodified chitosan nanoparticles and 4.3 ± 0.74 mV for cross-linked thiolated chitosan nanoparticles. Red blood cell lysis evaluation was used to evaluate the membrane damaging properties of unmodified and thiolated chitosan nanoparticles and led to 4.61 ± 0.36% and 2.29 ± 0.25% lysis, respectively. Additionally, cross-linked thiolated chitosan nanoparticles were found to exhibit higher stability toward degradation in gastric juices. Furthermore the reversible effect of thiolated chitosan on barrier properties was monitored by measuring the transepithelial electrical resistance (TEER) and is supported by immunohistochemical staining for the tight junction protein claudin. According to these results cross-linked thiolated chitosan nanoparticles have the potential to be used as a non-viral vector system for gene therapy

  16. Long-term antibiotic delivery by chitosan-based composite coatings with bone regenerative potential

    Science.gov (United States)

    Ordikhani, F.; Simchi, A.

    2014-10-01

    Composite coatings with bone-bioactivity and drug-eluting capacity are considered as promising materials for titanium bone implants. In this work, drug-eluting chitosan-bioactive glass coatings were fabricated by a single-step electrophoretic deposition technique. Drug-loading and -releasing capacity of the composite coatings were carried out using the vancomycin antibiotic. Uniform coatings with a thickness of ∼55 μm containing 23.7 wt% bioactive glass particles and various amounts of the antibiotic (380-630 μg/cm2) were produced. The coatings were bioactive in terms of apatite-forming ability in simulated body fluid and showed favorable cell adhesion and growth. In vitro biological tests also indicated that the composite coatings had better cellular affinity than pristine chitosan coatings. The in vitro elution kinetics of the composite coating revealed an initial burst release of around 40% of the drug within the first elution step of 1 h and following by a continuous eluting over 4 weeks, revealing long-term drug-delivering potential. Antibacterial tests using survival assay against Gram-positive Staphylococcus aureus bacteria determined the effect of vancomycin release on reduction of infection risk. Almost no bacteria were survived on the coatings prepared from the EPD suspension containing ≥0.5 g/l vancomycin. The developed chitosan-based composite coatings with bone bioactivity and long-term drug-delivery ability may be potentially useful for metallic implants to reduce infection risk.

  17. Alcohol--Induced Polyelectrolyte-Surfactant Complex Coacervate Systems: Characterization and Applications in Enzyme and Protein Extraction

    Science.gov (United States)

    Nejati Moshtaghin, Mahboubeh

    The focus of this thesis is to achieve a better understanding of the newly discovered surfactant-polyelectrolyte complex coacervate (SPCC) systems induced by fluoroalcohol/acid as well as short chain aliphatic alcohol; and to elucidate their applications in extraction and enrichment of proteins and enzyme. We have discovered that fluoroalcohols and --acids induce complex coacervation and phase separation in the aqueous mixtures of oppositely charged anionic polyelectrolytes; specifically, sodium salts of polyacrylic acid and polymethacrylic acid and cationic surfactant (cetyltrimethylammonium bromide, CTAB) over a broad range of concentrations of mole fractions of the oppositely charged amphiphiles. Accordingly, these new classes of coacervators will significantly broaden the scope and facilitate engineering of new coacervate phases. Toward these goals, we have inspected the formation of surfactant-polyelectrolyte complex coacervates in the presence of fluoroalcohols namely hexafluoroisopropanol (HFIP) and Trifluoroethanol (TFE). Furthermore, the extent of coacervation as a function of concentrations the system components, and charge ratios of the oppositely charged amphiphiles has been investigated. Polyelectrolytes are considered to be milder reagents, as compared to surfactants, regarding proteins denaturation. This highlights the importance of a detailed investigation of the efficiency of our coacervate systems for extraction and preconcentration of proteins and enzymes, especially, when the biological activity of the extracted proteins needs to be maintained based on the objectives mentioned above, the results of the investigations have been organized in four chapters. In Chapter II, the phase behavior of the FA-SPCC will be investigated. The objective is to examine the phase behavior and phase properties with respect to the extent of coacervation in different solution conditions. In particular, the effects of different solution variables such as concentration

  18. Interactions between chitosan and cells measured by AFM

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Sheng-Wen; Thien, Doan Van Hong; Ho, Ming-Hua [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10617, Taiwan (China); Hsieh, Hsyue-Jen [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Li, Chung-Hsing [Division of Orthodontics and Pediatric Dentistry, Department of Dentistry, Tri-Service General Hospital, Taipei, Taiwan (China); Hung, Chang-Hsiang [Department of Dentistry, Kinmen Hospital Department of Health, Taiwan (China); Li, Hsi-Hsin, E-mail: mhho@mail.ntust.edu.t [Deputy Superintendent, Kinmen Hospital Department of Health, Taiwan (China)

    2010-10-01

    Chitosan, a biocompatible material that has been widely used in bone tissue engineering, is believed to have a high affinity to osteoblastic cells. This research is the first to prove this hypothesis. By using atomic force microscopy (AFM) with a chitosan-modified cantilever, quantitative evaluation of the interforce between chitosan and cells was carried out. A chitosan tip functionalized with Arg-Gly-Asp (RGD) was also used to measure the interforce between RGD-chitosan and osteoblastic cells. This research concluded by examining cell adhesion and spreading of chitosan substrates as further characterization of the interactions between cells and chitosan. The force measured by AFM showed that the interforce between chitosan and osteoblasts was the highest (209 nN). The smallest adhesion force (61.8 nN) appeared between chitosan and muscle fibroblasts, which did not demonstrate any osteoblastic properties. This result proved that there was a significant interaction between chitosan and bone cells, and correlated with the observations of cell attachment and spreading. The technique developed in this research directly quantified the adhesion between chitosan and cells. This is the first study to demonstrate that specific interaction exists between chitosan and osteoblasts.

  19. Interactions between chitosan and cells measured by AFM

    International Nuclear Information System (INIS)

    Hsiao, Sheng-Wen; Thien, Doan Van Hong; Ho, Ming-Hua; Hsieh, Hsyue-Jen; Li, Chung-Hsing; Hung, Chang-Hsiang; Li, Hsi-Hsin

    2010-01-01

    Chitosan, a biocompatible material that has been widely used in bone tissue engineering, is believed to have a high affinity to osteoblastic cells. This research is the first to prove this hypothesis. By using atomic force microscopy (AFM) with a chitosan-modified cantilever, quantitative evaluation of the interforce between chitosan and cells was carried out. A chitosan tip functionalized with Arg-Gly-Asp (RGD) was also used to measure the interforce between RGD-chitosan and osteoblastic cells. This research concluded by examining cell adhesion and spreading of chitosan substrates as further characterization of the interactions between cells and chitosan. The force measured by AFM showed that the interforce between chitosan and osteoblasts was the highest (209 nN). The smallest adhesion force (61.8 nN) appeared between chitosan and muscle fibroblasts, which did not demonstrate any osteoblastic properties. This result proved that there was a significant interaction between chitosan and bone cells, and correlated with the observations of cell attachment and spreading. The technique developed in this research directly quantified the adhesion between chitosan and cells. This is the first study to demonstrate that specific interaction exists between chitosan and osteoblasts.

  20. Preparation, characterization and biological test of 3D-scaffolds based on chitosan, fibroin and hydroxyapatite for bone tissue engineering.

    Science.gov (United States)

    Lima, Paulo Autran Leite; Resende, Cristiane Xavier; Soares, Glória Dulce de Almeida; Anselme, Karine; Almeida, Luís Eduardo

    2013-08-01

    This work describes the preparation and characterization of porous 3D-scaffolds based on chitosan (CHI), chitosan/silk fibroin (CHI/SF) and chitosan/silk fibroin/hydroxyapatite (CHI/SF/HA) by freeze drying. The biomaterials were characterized by X-ray diffraction, attenuated total reflection Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy and energy dispersive spectroscopy. In addition, studies of porosity, pore size, contact angle and biological response of SaOs-2osteoblastic cells were performed. The CHI scaffolds have a porosity of 94.2±0.9%, which is statistically higher than the one presented by CHI/SF/HA scaffolds, 89.7±2.6%. Although all scaffolds were able to promote adhesion, growth and maintenance of osteogenic differentiation of SaOs-2 cells, the new 3D-scaffold based on CHI/SF/HA showed a significantly higher cell growth at 7 days and 21 days and the level of alkaline phosphatase at 14 and 21 days was statistically superior compared to other tested materials. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Aptamer Recognition Induced Target-Bridged Strategy for Proteins Detection Based on Magnetic Chitosan and Silver/Chitosan Nanoparticles Using Surface-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    He, Jincan; Li, Gongke; Hu, Yuling

    2015-11-03

    Poor selectivity and biocompability remain problems in applying surface-enhanced Raman spectroscopy (SERS) for direct detection of proteins due to similar spectra of most proteins and overlapping Raman bands in complex mixtures. To solve these problems, an aptamer recognition induced target-bridged strategy based on magnetic chitosan (MCS) and silver/chitosan nanoparticles (Ag@CS NPs) using SERS was developed for detection of protein benefiting from specific affinity of aptamers and biocompatibility of chitosan (CS). In this process, one aptamer (or antibody) modified MCS worked as capture probes through the affinity binding site of protein. The other aptamer modified Raman report molecules encapsulated Ag@CS NPs were used as SERS sensing probes based on the other binding site of protein. The sandwich complexes of aptamer (antibody)/protein/aptamer were separated easily with a magnet from biological samples, and the concentration of protein was indirectly reflected by the intensity variation of SERS signal of Raman report molecules. To explore the universality of the strategy, three different kinds of proteins including thrombin, platelet derived growth factor BB (PDGF BB) and immunoglobulin E (lgE) were investigated. The major advantages of this aptamer recognition induced target-bridged strategy are convenient operation with a magnet, stable signal expressing resulting from preventing loss of report molecules with the help of CS shell, and the avoidance of slow diffusion-limited kinetics problems occurring on a solid substrate. To demonstrate the feasibility of the proposed strategy, the method was applied to detection of PDGF BB in clinical samples. The limit of detection (LOD) of PDGF BB was estimated to be 3.2 pg/mL. The results obtained from human serum of healthy persons and cancer patients using the proposed strategy showed good agreement with that of the ELISA method but with wider linear range, more convenient operation, and lower cost. The proposed

  2. Exploration of polyelectrolytes as draw solutes in forward osmosis processes

    KAUST Repository

    Ge, Qingchun

    2012-03-01

    The development of the forward osmosis (FO) process has been constrained by the slow development of appropriate draw solutions. Two significant concerns related to draw solutions are the draw solute leakage and intensiveenergy requirement in recycling draw solutes after the FO process. FO would be much attractive if there is no draw solute leakage and the recycle of draw solutes is easy and economic. In this study, polyelectrolytes of a series of polyacrylic acid sodium salts (PAA-Na), were explored as draw solutes in the FO process. The characteristics of high solubility in water and flexibility in structural configuration ensure the suitability of PAA-Na as draw solutes and their relative ease in recycle through pressure-driven membrane processes. The high water flux with insignificant salt leakage in the FO process and the high salt rejection in recycle processes reveal the superiority of PAA-Na to conventional ionic salts, such as NaCl, when comparing their FO performance via the same membranes. The repeatable performance of PAA-Na after recycle indicates the absence of any aggregation problems. The overall performance demonstrates that polyelectrolytes of PAA-Na series are promising as draw solutes, and the new concept of using polyelectrolytes as draw solutes in FO processes is applicable. © 2011 Elsevier Ltd.

  3. The sustained-release behavior and in vitro and in vivo transfection of pEGFP-loaded core-shell-structured chitosan-based composite particles

    Directory of Open Access Journals (Sweden)

    Wang Y

    2014-10-01

    Full Text Available Yun Wang,1 Fu-xing Lin,2 Yu Zhao,1 Mo-zhen Wang,2 Xue-wu Ge,2 Zheng-xing Gong,1 Dan-dan Bao,1 Yu-fang Gu1 1Department of Plastic Surgery, First Affiliated Hospital of Anhui Medical University, 2CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China Abstract: Novel submicron core-shell-structured chitosan-based composite particles ­encapsulated with enhanced green fluorescent protein plasmids (pEGFP were prepared by complex coacervation method. The core was pEGFP-loaded thiolated N-alkylated chitosan (TACS and the shell was pH- and temperature-responsive hydroxybutyl chitosan (HBC. pEGFP-loaded TACS-HBC composite particles were spherical, and had a mean diameter of approximately 120 nm, as measured by transmission electron microscopy and particle size analyzer. pEGFP showed sustained release in vitro for >15 days. Furthermore, in vitro transfection in human embryonic kidney 293T and human cervix epithelial cells, and in vivo transfection in mice skeletal muscle of loaded pEGFP, were investigated. Results showed that the expression of loaded pEGFP, both in vitro and in vivo, was slow but could be sustained over a long period. pEGFP expression in mice skeletal muscle was sustained for >60 days. This work indicates that these submicron core-shell-structured chitosan-based composite particles could potentially be used as a gene vector for in vivo controlled gene transfection. Keywords: gene therapy, gene transfection, hydroxybutyl chitosan, thiolated N-alkylated chitosan, pEGFP, complex coacervation

  4. Efficient gene delivery using chitosan-polyethylenimine hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hu-Lin; Kim, Tae-Hee; Kim, You-Kyoung; Park, In-Young; Cho, Chong-Su [Department of Agricultural Bioechnology, Seoul National University, Seoul 151-921 (Korea, Republic of); Cho, Myung-Haing [Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742 (Korea, Republic of)], E-mail: chocs@plaza.snu.ac.kr

    2008-06-01

    Chitosan and chitosan derivatives have been investigated as non-viral vectors because they have several advantages, such as biocompatibility, biodegradability, low cytotoxicity and low immunogenicity. However, low transfection efficiency and low cell specificity must be solved for their use in clinical trials. In this paper, chitosan-polyethylenimine (PEI) hybrid systems such as chitosan/PEI blend and chitosan-graft-PEI are described for efficient gene delivery because the PEI has high transfection efficiency owing to a proton sponge effect and chitosan has biocompatibility. Also, hepatocyte specificity of the galactosylated chitosan is explained after combination with PEI.

  5. Efficient gene delivery using chitosan-polyethylenimine hybrid systems

    International Nuclear Information System (INIS)

    Jiang, Hu-Lin; Kim, Tae-Hee; Kim, You-Kyoung; Park, In-Young; Cho, Chong-Su; Cho, Myung-Haing

    2008-01-01

    Chitosan and chitosan derivatives have been investigated as non-viral vectors because they have several advantages, such as biocompatibility, biodegradability, low cytotoxicity and low immunogenicity. However, low transfection efficiency and low cell specificity must be solved for their use in clinical trials. In this paper, chitosan-polyethylenimine (PEI) hybrid systems such as chitosan/PEI blend and chitosan-graft-PEI are described for efficient gene delivery because the PEI has high transfection efficiency owing to a proton sponge effect and chitosan has biocompatibility. Also, hepatocyte specificity of the galactosylated chitosan is explained after combination with PEI

  6. Tolerance to chitosan by Trichoderma species is associated with low membrane fluidity.

    Science.gov (United States)

    Zavala-González, Ernesto A; Lopez-Moya, Federico; Aranda-Martinez, Almudena; Cruz-Valerio, Mayra; Lopez-Llorca, Luis Vicente; Ramírez-Lepe, Mario

    2016-07-01

    The effect of chitosan on growth of Trichoderma spp., a cosmopolitan genus widely exploited for their biocontrol properties was evaluated. Based on genotypic (ITS of 18S rDNA) characters, four isolates of Trichoderma were identified as T. pseudokoningii FLM16, T. citrinoviride FLM17, T. harzianum EZG47, and T. koningiopsis VSL185. Chitosan reduces radial growth of Trichoderma isolates in concentration-wise manner. T. koningiopsis VSL185 was the most chitosan tolerant isolate in all culture media amended with chitosan (0.5-2.0 mg ml(-1) ). Minimal Inhibitory Concentration (MIC) and Minimal Fungicidal Concentration (MFC) were determined showing that T. koningiopsis VSL185 displays higher chitosan tolerance with MIC value >2000 μg ml(-1) while for other Trichoderma isolates MIC values were around 10 μg ml(-1) . Finally, free fatty acid composition reveals that T. koningiopsis VSL185, chitosan tolerant isolate, displays lower linolenic acid (C18:3) content than chitosan sensitive Trichoderma isolates. Our findings suggest that low membrane fluidity is associated with chitosan tolerance in Trichoderma spp. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Application of irradiated chitosan for fruit preservation

    Energy Technology Data Exchange (ETDEWEB)

    Kieu N. Lan [Post Harvest Technology Inst. of Vietnam (Viet Nam)

    2000-09-01

    Application of irradiated chitosan has been investigated for coating of fruit preservation. Anti-fungal activity of chitosan was induced by {gamma}-ray irradiation in dry condition at 25 kGy. The irradiated chitosan can suppress the growth of Aspergillus. spp. and Fusarium. spp. isolated from Vietnam mango. Fusarium. spp. was sensitive for irradiated chitosan than the other strains. The coating from irradiated chitosan solution at dose 31 kGy has prolonged the storage life of mango from 7 to 15 days. At the 15th day mango keeps good colour, natural ripening, without spoilage, weight loss 10%, whereas the control is spoiled completely and the sample of fruit with unirradiated chitosan coating could not ripe. The effect is due to the anti-fungal activity and change in physico-chemical properties of chitosan by irradiation. Radiation causes the decrease in viscosity affecting the gas permeability of coating film. The irradiated chitosan coating has positive effect on mango that is susceptible to chilling injury at low storage temperature. (author)

  8. Plasticized chitosan/polyolefin films produced by extrusion.

    Science.gov (United States)

    Matet, Marie; Heuzey, Marie-Claude; Ajji, Abdellah; Sarazin, Pierre

    2015-03-06

    Plasticized chitosan and polyethylene blends were produced through a single-pass extrusion process. Using a twin-screw extruder, chitosan plasticization was achieved in the presence of an acetic acid solution and glycerol, and directly mixed with metallocene polyethylene, mPE, to produce a masterbatch. Different dilutions of the masterbatch (2, 5 and 10 wt% of plasticized chitosan), in the presence of ethylene vinyl acetate, EVA, were subsequently achieved in single screw film extrusion. Very small plasticized chitosan domains (number average diameter <5 μm) were visible in the polymeric matrix. The resulting films presented a brown color and increasing haze with chitosan plasticized content. Mechanical properties of the mPE films were affected by the presence of plasticized chitosan, but improvement was observed as a result of some compatibility between mPE and chitosan in the presence of EVA. Finally the incorporation of plasticized chitosan affected mPE water vapor permeability while oxygen permeability remained constant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Application of irradiated chitosan for fruit preservation

    International Nuclear Information System (INIS)

    Kieu N, Lan; Nguyen D, Lam; Yoshii, Fumio; Kume, Tamikazu

    2000-01-01

    Application of irradiated chitosan has been investigated for coating of fruit preservation. Anti-fungal activity of chitosan was induced by γ-ray irradiation in dry condition at 25 kGy. The irradiated chitosan can suppress the growth of Aspergillus. spp. and Fusarium. spp. isolated from Vietnam mango. Fusarium. spp. was sensitive for irradiated chitosan than the other strains. The coating from irradiated chitosan solution at dose 31 kGy has prolonged the storage life of mango from 7 to 15 days. At the 15th day mango keeps good colour, natural ripening, without spoilage, weight loss 10%, whereas the control is spoiled completely and the sample of fruit with unirradiated chitosan coating could not ripe. The effect is due to the anti-fungal activity and change in physico-chemical properties of chitosan by irradiation. Radiation causes the decrease in viscosity affecting the gas permeability of coating film. The irradiated chitosan coating has positive effect on mango that is susceptible to chilling injury at low storage temperature. (author)

  10. Polyelectrolyte Complex Based Interfacial Drug Delivery System with Controlled Loading and Improved Release Performance for Bone Therapeutics

    Directory of Open Access Journals (Sweden)

    David Vehlow

    2016-03-01

    Full Text Available An improved interfacial drug delivery system (DDS based on polyelectrolyte complex (PEC coatings with controlled drug loading and improved release performance was elaborated. The cationic homopolypeptide poly(l-lysine (PLL was complexed with a mixture of two cellulose sulfates (CS of low and high degree of substitution, so that the CS and PLL solution have around equal molar charged units. As drugs the antibiotic rifampicin (RIF and the bisphosphonate risedronate (RIS were integrated. As an important advantage over previous PEC systems this one can be centrifuged, the supernatant discarded, the dense pellet phase (coacervate separated, and again redispersed in fresh water phase. This behavior has three benefits: (i Access to the loading capacity of the drug, since the concentration of the free drug can be measured by spectroscopy; (ii lower initial burst and higher residual amount of drug due to removal of unbound drug and (iii complete adhesive stability due to the removal of polyelectrolytes (PEL excess component. It was found that the pH value and ionic strength strongly affected drug content and release of RIS and RIF. At the clinically relevant implant material (Ti40Nb similar PEC adhesive and drug release properties compared to the model substrate were found. Unloaded PEC coatings at Ti40Nb showed a similar number and morphology of above cultivated human mesenchymal stem cells (hMSC compared to uncoated Ti40Nb and resulted in considerable production of bone mineral. RIS loaded PEC coatings showed similar effects after 24 h but resulted in reduced number and unhealthy appearance of hMSC after 48 h due to cell toxicity of RIS.

  11. tRNA conjugation with chitosan nanoparticles: An AFM imaging study.

    Science.gov (United States)

    Agudelo, D; Kreplak, L; Tajmir-Riahi, H A

    2016-04-01

    The conjugation of tRNA with chitosan nanoparticles of different sizes 15,100 and 200 kDa was investigated in aqueous solution using multiple spectroscopic methods and atomic force microscopy (AFM). Structural analysis showed that chitosan binds tRNA via G-C and A-U base pairs as well as backbone PO2 group, through electrostatic, hydrophilic and H-bonding contacts with overall binding constants of KCh-15-tRNA=4.1 (±0.60)×10(3)M(-1), KCh-100-tRNA=5.7 (±0.8)×10(3)M(-1) and KCh-200-tRNA=1.2 (±0.3)×10(4)M(-1). As chitosan size increases more stable polymer-tRNA conjugate is formed. AFM images showed major tRNA aggregation and particle formation occurred as chitosan concentration increased. Even though chitosan induced major biopolymer structural changes, tRNA remains in A-family structure. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Smaller Counter Cation for Higher Transconductance in Anionic Conjugated Polyelectrolytes

    KAUST Repository

    Schmidt, Martina M.

    2017-12-11

    Conjugated polyelectrolytes (CPEs) are a focus of research because combine their inherent electrical conductivity and the ability to interact with ions in aqueous solutions or biological systems. However, it is still not understood to what degree the counter ion in CPEs influences the properties of the CPE itself and the performance of electronic transducers. In order to investigate this, three different conjugated polyelectrolytes, poly(6-(thiophen-3-yl)hexane-1-sulfonate)s (PTHS−X+), are synthesized, which have the same polythiophene backbone but different X+ counter ions: the bulky tetrabutylammonium (TBA+), tetraethylammonium (TEA+), and the smallest tetramethylammonium (TMA+). At the interface with biological systems, thin CPE films have to be stable in an aqueous environment and should allow the inward and outward flow of ions from the electrolyte. Since the studied PTHS−X+ have different solubilities in water, the optical properties of pristine PTHS−X+ as well as of crosslinked PTHS−X+ via UV–vis absorption spectroscopy are investigated additionally. PTHS−TMA+ exhibits better aggregation, fast interdiffusion of ions, and fast recovery from the oxidized state. Additionally, spectroelectrochemical and cyclic voltammetric as well as electrochemical capacitance investigations show that PTHS−TMA+ can be oxidized to a higher degree. This leads to a better performance of PTHS−TMA+-based organic electrochemical transistors.

  13. Effects of Chitosan Alkali Pretreatment on the Preparation of Electrospun PCL/Chitosan Blend Nanofibrous Scaffolds for Tissue Engineering Application

    Directory of Open Access Journals (Sweden)

    Fatemeh Roozbahani

    2013-01-01

    Full Text Available Recently, nanofibrous scaffolds have been used in the field of biomedical engineering as wound dressings, tissue engineering scaffolds, and drug delivery applications. The electrospun nanofibrous scaffolds can be used as carriers for several types of drugs, genes, and growth factors. PCL is one of the most commonly applied synthetic polymers for medical use because of its biocompatibility and slow biodegradability. PCL is hydrophobic and has no cell recognition sites on its structure. Electrospinning of chitosan and PCL blend was investigated in formic acid/acetic acid as the solvent with different PCL/chitosan ratios. High viscosity of chitosan solutions makes difficulties in the electrospinning process. Strong hydrogen bonds in a 3D network in acidic condition prevent the movement of polymeric chains exposed to the electrical field. Consequently, the amount of chitosan in PCL/chitosan blend was limited and more challenging when the concentration of PCL increases. The treatment of chitosan in alkali condition under high temperature reduced its molecular weight. Longer treatment time further decreased the molecular weight of chitosan and hence its viscosity. Electrospinning of PCL/chitosan blend was possible at higher chitosan ratio, and SEM images showed a decrease in fiber diameter and narrower distribution with increase in the chitosan ratio.

  14. Preparation of Chitosan-based Injectable Hydrogels and Its Application in 3D Cell Culture.

    Science.gov (United States)

    Li, Yongsan; Zhang, Yaling; Wei, Yen; Tao, Lei

    2017-09-29

    The protocol presents a facile, efficient, and versatile method to prepare chitosan-based hydrogels using dynamic imine chemistry. The hydrogel is prepared by mixing solutions of glycol chitosan with a synthesized benzaldehyde terminated polymer gelator, and hydrogels are efficiently obtained in several minutes at room temperature. By varying ratios between glycol chitosan, polymer gelator, and water contents, versatile hydrogels with different gelation times and stiffness are obtained. When damaged, the hydrogel can recover its appearances and modulus, due to the reversibility of the dynamic imine bonds as crosslinkages. This self-healable property enables the hydrogel to be injectable since it can be self-healed from squeezed pieces to an integral bulk hydrogel after the injection process. The hydrogel is also multi-responsive to many bio-active stimuli due to different equilibration statuses of the dynamic imine bonds. This hydrogel was confirmed as bio-compatible, and L929 mouse fibroblast cells were embedded following standard procedures and the cell proliferation was easily assessed by a 3D cell cultivation process. The hydrogel can offer an adjustable platform for different research where a physiological mimic of a 3D environment for cells is profited. Along with its multi-responsive, self-healable, and injectable properties, the hydrogels can potentially be applied as multiple carriers for drugs and cells in future bio-medical applications.

  15. Binding Cellulose and Chitosan via Intermolecular Inclusion Interaction: Synthesis and Characterisation of Gel

    Directory of Open Access Journals (Sweden)

    Jiufang Duan

    2015-01-01

    Full Text Available A novel cellulose-chitosan gel was successfully prepared in three steps: (1 ferrocene- (Fc- cellulose with degrees of substitution (DS of 0.5 wt% was synthesised by ferrocenecarboxylic acid and cellulose within dimethylacetamide/lithium chloride (DMAc/LiCl; (2 the β-cyclodextrin (β-CD groups were introduced onto the chitosan chains by reacting chitosan with epichlorohydrin in dimethyl sulphoxide and a DS of 0.35 wt%; (3 thus, the cellulose-chitosan gel was obtained via an intermolecular inclusion interaction of Fc-cellulose and β-CD-chitosan in DMA/LiCl, that is, by an intermolecular inclusion interaction, between the Fc groups of cellulose and the β-CD groups on the chitosan backbone at room temperature. The successful synthesis of Fc-cellulose and β-CD-chitosan was characterised by 13C-NMR spectroscopy. The gel based on β-CD-chitosan and Fc-cellulose was formed under mild conditions which can engender autonomous healing between cut surfaces after 24 hours: the gel cannot self-heal while the cut surfaces were coated with a solution of a competitive guest (adamantane acid. The cellulose-chitosan complex made by this method underwent self-healing. Therefore, this study provided a novel method of expanding the application of chitosan by binding it with another polymer.

  16. Chitosan-functionalized gold nanoparticles for colorimetric detection of mercury ions based on chelation-induced aggregation

    International Nuclear Information System (INIS)

    Chen, Zhengbo; Zhang, Chenmeng; Tan, Yuan; Zhou, Tianhui; Ma, He; Wan, Chongqing; Lin, Yuqing; Li, Kai

    2015-01-01

    We are presenting a colorimetric assay for mercury (II) ions. It is based on citosan-functionalized gold nanoparticles (AuNPs) that act as a signaling probe. Hg (II) induces the aggregation of the chitosan-AuNPs through a chelation reaction that occurs between chitosan and Hg (II). This results in a strong decrease of the absorbance of the modified AuNPs and a color change from red to blue. This sensing system displays excellent selectivity over other metal ions and a detection limit as low as 1.35 μM which is lower than the allowed level of Hg (II) in drinking water (30 μM) as defined by World Health Organization. The method is inexpensive, facile, sensitive, and does not require the addition of other reagents in order to improving sensitivity. (author)

  17. STIFFNESS MODIFICATION OF COTTON IN CHITOSAN TREATMENT

    Directory of Open Access Journals (Sweden)

    CAMPOS Juan

    2017-05-01

    Full Text Available Chitosan is a biopolymer obtained from chitin, and among their most important aspects highlights its applications in a lot of industrial sectors due to its intrinsic properties, especially in the textile sector. In the last years, chitosan is widely used in the cotton and wool finishing processes due to its bond between them and its properties as an antifungical and antimicrobial properties. In this paper three different molecular weight chitosan are used in the finishing process of cotton to evaluate its influence in the surface properties modification. In order to evaluate the effect of the treatment with chitosan, flexural stiffness test is performed in warp and weft direction, and then the total value is calculated. The cotton fabric is treated with 5 g/L of different types of chitosan in an impregnation bath. This study shows the extent of surface properties modification of the cotton provided by three types of chitosan treatment. The results show that all types of chitosan modify the cotton flexural rigidity properties but the one which modifies it in a relevant manner is chitosan originated from shrimps. Chitosan, textile, flexural stiffnes, chitin, cotton.

  18. Porphyrin Diacid-Polyelectrolyte Assemblies: Effective Photocatalysts in Solution

    Directory of Open Access Journals (Sweden)

    Sabine Frühbeißer

    2016-05-01

    Full Text Available Developing effective and versatile photocatalytic systems is of great potential in solar energy conversion. Here we investigate the formation of supramolecular catalysts by electrostatic self-assembly in aqueous solution: Combining positively charged porphyrins with negatively charged polyelectrolytes leads to nanoscale assemblies where, next to electrostatic interactions, π–π interactions also play an important role. Porphyrin diacid-polyelectrolyte assemblies exhibit a substantially enhanced catalytic activity for the light-driven oxidation of iodide. Aggregates with the hexavalent cationic porphyrin diacids show up to 22 times higher catalytic activity than the corresponding aggregates under neutral conditions. The catalytic activity can be increased by increasing the valency of the porphyrin and by choice of the loading ratio. The structural investigation of the supramolecular catalysts took place via atomic force microscopy and small angle neutron scattering. Hence, a new facile concept for the design of efficient and tunable self-assembled photocatalysts is presented.

  19. The Multifunctional Role of Chitosan in Horticultural Crops; A Review

    Directory of Open Access Journals (Sweden)

    Rahat Sharif

    2018-04-01

    Full Text Available Chitosan is a naturally occurring compound and is commercially produced from seafood shells. It has been utilized in the induction of the defense system in both pre and post-harvest fruits and vegetables against fungi, bacteria, viruses, and other abiotic stresses. In addition to that, chitosan effectively improves the physiological properties of plants and also enhances the shelf life of post-harvest produces. Moreover, chitosan treatment regulates several genes in plants, particularly the activation of plant defense signaling pathways. That includes the elicitation of phytoalexins and pathogenesis-related (PR protein. Besides that, chitosan has been employed in soil as a plant nutrient and has shown great efficacy in combination with other industrial fertilizers without affecting the soil’s beneficial microbes. Furthermore, it is helpful in reducing the fertilizer losses due to its coating ability, which is important in keeping the environmental pollution under check. Based on exhibiting such excellent properties, there is a striking interest in using chitosan biopolymers in agriculture systems. Therefore, our current review has been centered upon the multiple roles of chitosan in horticultural crops that could be useful in future crop improvement programs.

  20. Water-soluble nanoconjugates of quantum dot-chitosan-antibody for in vitro detection of cancer cells based on “enzyme-free” fluoroimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, Herman S., E-mail: hmansur@demet.ufmg.br [Center of Nanoscience, Nanotechnology, and Innovation-CeNano" 2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627, Belo Horizonte, MG 31.270-901 (Brazil); Mansur, Alexandra A.P. [Center of Nanoscience, Nanotechnology, and Innovation-CeNano" 2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627, Belo Horizonte, MG 31.270-901 (Brazil); Soriano-Araújo, Amanda [Center of Nanoscience, Nanotechnology, and Innovation-CeNano" 2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627, Belo Horizonte, MG 31.270-901 (Brazil); Department of Preventive Veterinary Medicine, Veterinary School, UFMG (Brazil); Lobato, Zélia I.P. [Department of Preventive Veterinary Medicine, Veterinary School, UFMG (Brazil); Carvalho, Sandhra M. de [Center of Nanoscience, Nanotechnology, and Innovation-CeNano" 2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627, Belo Horizonte, MG 31.270-901 (Brazil); Department of Physiology and Biophysics, ICB, UFMG (Brazil); Leite, Maria de Fatima [Department of Physiology and Biophysics, ICB, UFMG (Brazil)

    2015-07-01

    Cancer remains one of the world's most devastating diseases with millions of fatalities and new cases every year. In this work, we attempted to develop a facile “enzyme-free” fluoroimmunoassay based on the novel nanoconjugates composed of CdS quantum dots (QDs) as the fluorescent inorganic core and an antibody-modified polysaccharide as the organic shell, modeling their possible application for the in vitro diagnosis of non-Hodgkin lymphoma (NHL) cancer. Chitosan was conjugated with an anti-CD20 polyclonal antibody (pAbCD20) by the formation of covalent amide bonds. In the sequence, these chitosan-antibody conjugates were utilized as direct ligands for the surface biofunctionalization of CdS QDs (CdS/chitosan-pAbCD20) using a single-step colloidal process in aqueous medium at room temperature. The most relevant physico-chemical properties of these nanoconjugates were assessed by morphological and spectroscopic techniques. The results indicated that CdS nanocrystals were produced with an average diameter of 2.5 nm and with cubic zinc blende crystalline nanostructure. The CdS-immunoconjugates (CdS/chitosan-pAbCD20) presented colloidal hydrodynamic diameter (H{sub D}) of 15.0 ± 1.2 nm. In addition, the results evidenced that the “enzyme-free” QD-linked immunosorbent assay (QLISA) was effective for the in vitro detection against the antigen CD20 (aCD20) based on fluorescent behavior of the CdS nanoconjugates. Moreover, the CdS-immunoconjugates were successfully used for fluorescence bioimaging of NHL cancer cells. Finally, the cell viability results using different cell cultures based on LDH, MTT and Resazurin bio-assays have demonstrated no cytotoxicity of the new CdS-chitosan bioconjugates relative to the standard controls. Thus, CdS conjugates may offer a promising platform for the future development of in vitro and in vivo applications for the detection and diagnosis of NHL cancer cells. - Highlights: • CdS quantum dots (QDs) were prepared using