WorldWideScience

Sample records for chitinous cuticle form

  1. Resilin and chitinous cuticle form a composite structure for energy storage in jumping by froghopper insects

    Directory of Open Access Journals (Sweden)

    Shaw Stephen R

    2008-09-01

    Full Text Available Abstract Background Many insects jump by storing and releasing energy in elastic structures within their bodies. This allows them to release large amounts of energy in a very short time to jump at very high speeds. The fastest of the insect jumpers, the froghopper, uses a catapult-like elastic mechanism to achieve their jumping prowess in which energy, generated by the slow contraction of muscles, is released suddenly to power rapid and synchronous movements of the hind legs. How is this energy stored? Results The hind coxae of the froghopper are linked to the hinges of the ipsilateral hind wings by pleural arches, complex bow-shaped internal skeletal structures. They are built of chitinous cuticle and the rubber-like protein, resilin, which fluoresces bright blue when illuminated with ultra-violet light. The ventral and posterior end of this fluorescent region forms the thoracic part of the pivot with a hind coxa. No other structures in the thorax or hind legs show this blue fluorescence and it is not found in larvae which do not jump. Stimulating one trochanteral depressor muscle in a pattern that simulates its normal action, results in a distortion and forward movement of the posterior part of a pleural arch by 40 μm, but in natural jumping, the movement is at least 100 μm. Conclusion Calculations showed that the resilin itself could only store 1% to 2% of the energy required for jumping. The stiffer cuticular parts of the pleural arches could, however, easily meet all the energy storage needs. The composite structure therefore, combines the stiffness of the chitinous cuticle with the elasticity of resilin. Muscle contractions bend the chitinous cuticle with little deformation and therefore, store the energy needed for jumping, while the resilin rapidly returns its stored energy and thus restores the body to its original shape after a jump and allows repeated jumping.

  2. Applications of magnetic resonance spectroscopy to chitin from insect cuticles.

    Science.gov (United States)

    Gonil, Pattarapond; Sajomsang, Warayuth

    2012-11-01

    Chitin is the second most abundant polysaccharide in nature after cellulose. At the present time, the main commercial sources of chitin are the crab and shrimp shells which are major waste products from the seafood industry. However, current chitin resources have some inherent problems including seasonal availability, limited supplies, and environmental pollution. As an alternative, insect cuticle is proposed as an unconventional but viable source of chitin. This review focuses on the recent sources of insect chitin and the application of various magnetic resonance spectroscopic techniques to native insect cuticles, particularly cicada sloughs and chitin extracted from insect sloughs. In addition, the physicochemical properties, isolation process, and degree of N-acetylation (DA) is reviewed and discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Analysis of expression and chitin-binding activity of the wing disc cuticle protein BmWCP4 in the silkworm, Bombyx mori.

    Science.gov (United States)

    Deng, Hui-Min; Li, Yong; Zhang, Jia-Ling; Liu, Lin; Feng, Qi-Li

    2016-12-01

    The insect exoskeleton is mainly composed of chitin filaments linked by cuticle proteins. When insects molt, the cuticle of the exoskeleton is renewed by degrading the old chitin and cuticle proteins and synthesizing new ones. In this study, chitin-binding activity of the wing disc cuticle protein BmWCP4 in Bombyx mori was studied. Sequence analysis showed that the protein had a conservative hydrophilic "R&R" chitin-binding domain (CBD). Western blotting showed that BmWCP4 was predominately expressed in the wing disc-containing epidermis during the late wandering and early pupal stages. The immunohistochemistry result showed that the BmWCP4 was mainly present in the wing disc tissues containing wing bud and trachea blast during day 2 of wandering stage. Recombinant full-length BmWCP4 protein, "R&R" CBD peptide (CBD), non-CBD peptide (BmWCP4-CBD(-) ), four single site-directed mutated peptides (M1 , M2 , M3 and M4 ) and four-sites-mutated peptide (MF ) were generated and purified, respectively, for in vitro chitin-binding assay. The results indicated that both the full-length protein and the "R&R" CBD peptide could bind with chitin, whereas the BmWCP4-CBD(-) could not bind with chitin. The single residue mutants M1 , M2 , M3 and M4 reduced but did not completely abolish the chitin-binding activity, while four-sites-mutated protein MF completely lost the chitin-binding activity. These data indicate that BmWCP4 protein plays a critical role by binding to the chitin filaments in the wing during larva-to-pupa transformation. The conserved aromatic amino acids are critical in the interaction between chitin and the cuticle protein. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  4. Chitin-binding proteins of Artemia diapause cysts participate in formation of the embryonic cuticle layer of cyst shells.

    Science.gov (United States)

    Ma, Wen-Ming; Li, Hua-Wei; Dai, Zhong-Min; Yang, Jin-Shu; Yang, Fan; Yang, Wei-Jun

    2013-01-01

    The brine shrimp Artemia reproduces either ovoviviparously, producing free-swimming nauplii, or oviparously, producing encysted embryos (diapause cysts) able to cope with harsh and complex habitats. When the cysts enter diapause they are encased in a complex external shell that protects them from certain extreme environments. The genomic comparison of oviparous and ovoviviparous ovisacs has been described previously. We isolated three significantly up-regulated genes in oviparous oocytes and identified them as Arp-CBP (Artemia parthenogenetica chitin-binding protein) genes. Quantitative real-time PCR indicated that the expression of Arp-CBP genes gradually increases during diapause cyst formation and significant mRNA accumulation occurs during the ovisac stage of oviparous development. Moreover, in situ hybridization results demonstrated that Arp-CBP mRNAs are expressed in the embryo. Interestingly, the results of immune electron microscopy showed that all three Arp-CBPs are distributed throughout the cellular ECL (embryonic cuticle layer) of the cyst shell. Furthermore, knockdown of Arp-CBP by RNA interference resulted in marked changes in the composition of the embryonic cuticular layer. The fibrous layer of the cyst shell adopted a loose conformation and the inner and outer cuticular membranes exhibited marked irregularities when Arp-CBP expression was suppressed. Finally, an in vitro recombinant protein-binding assay showed that all three Arp-CBPs have carbohydrate-binding activities. These findings provide significant insight into the mechanisms by which the ECL of Artemia cyst shell is formed, and demonstrate that Arp-CBPs are involved in construction of the fibrous lattice and are required for formation of the ECL of the cyst shell.

  5. Dynamically-expressed prion-like proteins form a cuticle in the pharynx of Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Julia B. George-Raizen

    2014-10-01

    Full Text Available In molting animals, a cuticular extracellular matrix forms the first barrier to infection and other environmental insults. In the nematode Caenorhabditis elegans there are two types of cuticle: a well-studied collagenous cuticle lines the body, and a poorly-understood chitinous cuticle lines the pharynx. In the posterior end of the pharynx is the grinder, a tooth-like cuticular specialization that crushes food prior to transport to the intestine for digestion. We here show that the grinder increases in size only during the molt. To gain molecular insight into the structure of the grinder and pharyngeal cuticle, we performed a microarray analysis to identify mRNAs increased during the molt. We found strong transcriptional induction during the molt of 12 of 15 previously identified abu genes encoding Prion-like (P glutamine (Q and asparagine (N rich PQN proteins, as well as 15 additional genes encoding closely related PQN proteins. abu/pqn genes, which we name the abu/pqn paralog group (APPG genes, were expressed in pharyngeal cells and the proteins encoded by two APPG genes we tested localized to the pharyngeal cuticle. Deleting the APPG gene abu-14 caused abnormal pharyngeal cuticular structures and knocking down other APPG genes resulted in abnormal cuticular function. We propose that APPG proteins promote the assembly and function of a unique cuticular structure. The strong developmental regulation of the APPG genes raises the possibility that such genes would be identified in transcriptional profiling experiments in which the animals' developmental stage is not precisely staged.

  6. Chitin Deacetylases: Properties and Applications

    Directory of Open Access Journals (Sweden)

    Riccardo A.A. Muzzarelli

    2010-01-01

    Full Text Available Chitin deacetylases, occurring in marine bacteria, several fungi and a few insects, catalyze the deacetylation of chitin, a structural biopolymer found in countless forms of marine life, fungal cell and spore walls as well as insect cuticle and peritrophic matrices. The deacetylases recognize a sequence of four GlcNAc units in the substrate, one of which undergoes deacetylation: the resulting chitosan has a more regular deacetylation pattern than a chitosan treated with hot NaOH. Nevertheless plain chitin is a poor substrate, but glycolated, reprecipitated or depolymerized chitins are good ones. The marine Vibrio sp. colonize the chitin particles and decompose the chitin thanks to the concerted action of chitinases and deacetylases, otherwise they could not tolerate chitosan, a recognized antibacterial biopolymer. In fact, chitosan is used to prevent infections in fishes and crustaceans. Considering that chitin deacetylases play very important roles in the biological attack and defense systems, they may find applications for the biological control of fungal plant pathogens or insect pests in agriculture and for the biocontrol of opportunistic fungal human pathogens.

  7. Process for electrospinning chitin fibers from chitinous biomass solution

    Energy Technology Data Exchange (ETDEWEB)

    Swatloski, Richard P.; Barber, Patrick S.; Opichka, Terrance; Bonner, Jonathan R.; Gurau, Gabriela; Griggs, Christopher Scott; Rogers, Robin D.

    2017-06-20

    Disclosed are methods for electrospinning chitinous biomass solution to form chitin fibers, using ionic liquids or other ion-containing liquids as solvent. Chitin fibers produced thereby and articles containing such chitin fibers are also disclosed. The chitin fiber thus obtained has very high surface area and improved strength over currently commercially available chitin materials.

  8. Timed Knickkopf function is essential for wing cuticle formation in Drosophila melanogaster.

    Science.gov (United States)

    Li, Kaixia; Zhang, Xubo; Zuo, Ying; Liu, Weimin; Zhang, Jianzhen; Moussian, Bernard

    2017-10-01

    The insect cuticle is an extracellular matrix that consists of the polysaccharide chitin, proteins, lipids and organic molecules that are arranged in distinct horizontal layers. In Drosophila melanogaster, these layers are not formed sequentially, but, at least partially, at the same time. Timing of the underlying molecular mechanisms is conceivably crucial for cuticle formation. To study this issue, we determined the time period during which the function of Knickkopf (Knk), a key factor of chitin organization, is required for wing cuticle differentiation in D. melanogaster. Although knk is expressed throughout metamorphosis, we demonstrate that its expression 30 h prior and 48 h after pupariation is essential for correct wing cuticle formation. In other words, expression beyond this period is futile. Importantly, manipulation of Knk expression during this time causes wing bending suggesting an effect of Knk amounts on the physical properties of the wing cuticle. Manipulation of Knk expression also interferes with the structure and function of the cuticle surface. First, we show that the shape of surface nano-structures depends on the expression levels of knk. Second, we find that cuticle impermeability is compromised in wings with reduced knk expression. In summary, despite the extended supply of Knk during metamorphosis, controlled amounts of Knk are important for correct wing cuticle differentiation and function in a concise period of time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The Gene Expression Program for the Formation of Wing Cuticle in Drosophila.

    Directory of Open Access Journals (Sweden)

    Lukasz F Sobala

    2016-05-01

    Full Text Available The cuticular exoskeleton of insects and other arthropods is a remarkably versatile material with a complex multilayer structure. We made use of the ability to isolate cuticle synthesizing cells in relatively pure form by dissecting pupal wings and we used RNAseq to identify genes expressed during the formation of the adult wing cuticle. We observed dramatic changes in gene expression during cuticle deposition, and combined with transmission electron microscopy, we were able to identify candidate genes for the deposition of the different cuticular layers. Among genes of interest that dramatically change their expression during the cuticle deposition program are ones that encode cuticle proteins, ZP domain proteins, cuticle modifying proteins and transcription factors, as well as genes of unknown function. A striking finding is that mutations in a number of genes that are expressed almost exclusively during the deposition of the envelope (the thin outermost layer that is deposited first result in gross defects in the procuticle (the thick chitinous layer that is deposited last. An attractive hypothesis to explain this is that the deposition of the different cuticle layers is not independent with the envelope instructing the formation of later layers. Alternatively, some of the genes expressed during the deposition of the envelope could form a platform that is essential for the deposition of all cuticle layers.

  10. Proteomic and transcriptomic analyses of rigid and membranous cuticles and epidermis from the elytra and hindwings of the red flour beetle, Tribolium castaneum

    Science.gov (United States)

    The insect cuticle is a remarkable composite biomaterial made up primarily of chitin and proteins. The physical properties of the cuticle can vary greatly in different regions. Cuticle that is hard and rigid offers support for internal organs and protection from environmental stresses. Cuticle that ...

  11. Micro-CT imaging of denatured chitin by silver to explore honey bee and insect pathologies.

    Science.gov (United States)

    Butzloff, Peter R

    2011-01-01

    Chitin and cuticle coatings are important to the environmental and immune defense of honey bees and insect pollinators. Pesticides or environmental effects may target the biochemistry of insect chitin and cuticle coating. Denaturing of chitin involves a combination of deacetylation, intercalation, oxidation, Schweiger-peeling, and the formation of amine hydrochloride salt. The term "denatured chitin" calls attention to structural and property changes to the internal membranes and external carapace of organisms so that some properties affecting biological activities are diminished. A case study was performed on honey bees using silver staining and microscopic computer-tomographic x-ray radiography (micro-CT). Silver nitrate formed counter-ion complexes with labile ammonium cations and reacted with amine hydrochloride. Silver was concentrated in the peritrophic membrane, on the abdomen, in the glossa, at intersegmental joints (tarsi), at wing attachments, and in tracheal air sacs. Imaged mono-esters and fatty acids from cuticle coating on external surfaces were apparently reduced by an alcohol pretreatment. The technique provides 3-dimensional and sectional images of individual honey bees consistent with the chemistries of silver reaction and complex formation with denatured chitin. Environmental exposures and influences such as gaseous nitric oxide intercalant, trace oxidants such as ozone gas, oligosachharide salt conversion, exposure to acid rain, and chemical or biochemical denaturing by pesticides may be studied using this technique. Peritrophic membranes, which protect against food abrasion, microorganisms, and permit efficient digestion, were imaged. Apparent surface damage to the corneal lenses of compound eyes by dilute acid exposure consistent with chitin amine hydrochloride formation was imaged. The technique can contribute to existing insect pathology research, and may provide an additional tool for research on CCD.

  12. Micro-CT imaging of denatured chitin by silver to explore honey bee and insect pathologies.

    Directory of Open Access Journals (Sweden)

    Peter R Butzloff

    Full Text Available BACKGROUND: Chitin and cuticle coatings are important to the environmental and immune defense of honey bees and insect pollinators. Pesticides or environmental effects may target the biochemistry of insect chitin and cuticle coating. Denaturing of chitin involves a combination of deacetylation, intercalation, oxidation, Schweiger-peeling, and the formation of amine hydrochloride salt. The term "denatured chitin" calls attention to structural and property changes to the internal membranes and external carapace of organisms so that some properties affecting biological activities are diminished. METHODOLOGY/PRINCIPAL FINDINGS: A case study was performed on honey bees using silver staining and microscopic computer-tomographic x-ray radiography (micro-CT. Silver nitrate formed counter-ion complexes with labile ammonium cations and reacted with amine hydrochloride. Silver was concentrated in the peritrophic membrane, on the abdomen, in the glossa, at intersegmental joints (tarsi, at wing attachments, and in tracheal air sacs. Imaged mono-esters and fatty acids from cuticle coating on external surfaces were apparently reduced by an alcohol pretreatment. CONCLUSIONS/SIGNIFICANCE: The technique provides 3-dimensional and sectional images of individual honey bees consistent with the chemistries of silver reaction and complex formation with denatured chitin. Environmental exposures and influences such as gaseous nitric oxide intercalant, trace oxidants such as ozone gas, oligosachharide salt conversion, exposure to acid rain, and chemical or biochemical denaturing by pesticides may be studied using this technique. Peritrophic membranes, which protect against food abrasion, microorganisms, and permit efficient digestion, were imaged. Apparent surface damage to the corneal lenses of compound eyes by dilute acid exposure consistent with chitin amine hydrochloride formation was imaged. The technique can contribute to existing insect pathology research, and may

  13. Chitin in the silk gland ducts of the spider Nephila edulis and the silkworm Bombyx mori.

    Science.gov (United States)

    Davies, Gwilym J G; Knight, David P; Vollrath, Fritz

    2013-01-01

    Here we report the detection and localisation of chitin in the cuticle of the spinning ducts of both the spider Nephila edulis and the silkworm Bombyx mori. Our observations demonstrate that the duct walls of both animals contain chitin notwithstanding totally independent evolutionary pathways of the systems. We conclude that chitin may well be an essential component for the construction of spinning ducts; we further conclude that in both species chitin may indicate the evolutionary origin of the spinning ducts.

  14. Chitin in the Silk Gland Ducts of the Spider Nephila edulis and the Silkworm Bombyx mori

    OpenAIRE

    Davies, Gwilym J. G.; Knight, David P.; Vollrath, Fritz

    2013-01-01

    Here we report the detection and localisation of chitin in the cuticle of the spinning ducts of both the spider Nephila edulis and the silkworm Bombyx mori. Our observations demonstrate that the duct walls of both animals contain chitin notwithstanding totally independent evolutionary pathways of the systems. We conclude that chitin may well be an essential component for the construction of spinning ducts; we further conclude that in both species chitin may indicate the evolutionary origin of...

  15. Chitin in the silk gland ducts of the spider Nephila edulis and the silkworm Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Gwilym J G Davies

    Full Text Available Here we report the detection and localisation of chitin in the cuticle of the spinning ducts of both the spider Nephila edulis and the silkworm Bombyx mori. Our observations demonstrate that the duct walls of both animals contain chitin notwithstanding totally independent evolutionary pathways of the systems. We conclude that chitin may well be an essential component for the construction of spinning ducts; we further conclude that in both species chitin may indicate the evolutionary origin of the spinning ducts.

  16. Binary Gene Expression Patterning of the Molt Cycle: The Case of Chitin Metabolism

    Science.gov (United States)

    Abehsera, Shai; Glazer, Lilah; Tynyakov, Jenny; Plaschkes, Inbar; Chalifa-Caspi, Vered; Khalaila, Isam; Aflalo, Eliahu D.; Sagi, Amir

    2015-01-01

    In crustaceans, like all arthropods, growth is accompanied by a molting cycle. This cycle comprises major physiological events in which mineralized chitinous structures are built and degraded. These events are in turn governed by genes whose patterns of expression are presumably linked to the molting cycle. To study these genes we performed next generation sequencing and constructed a molt-related transcriptomic library from two exoskeletal-forming tissues of the crayfish Cherax quadricarinatus, namely the gastrolith and the mandible cuticle-forming epithelium. To simplify the study of such a complex process as molting, a novel approach, binary patterning of gene expression, was employed. This approach revealed that key genes involved in the synthesis and breakdown of chitin exhibit a molt-related pattern in the gastrolith-forming epithelium. On the other hand, the same genes in the mandible cuticle-forming epithelium showed a molt-independent pattern of expression. Genes related to the metabolism of glucosamine-6-phosphate, a chitin precursor synthesized from simple sugars, showed a molt-related pattern of expression in both tissues. The binary patterning approach unfolds typical patterns of gene expression during the molt cycle of a crustacean. The use of such a simplifying integrative tool for assessing gene patterning seems appropriate for the study of complex biological processes. PMID:25919476

  17. Binary gene expression patterning of the molt cycle: the case of chitin metabolism.

    Directory of Open Access Journals (Sweden)

    Shai Abehsera

    Full Text Available In crustaceans, like all arthropods, growth is accompanied by a molting cycle. This cycle comprises major physiological events in which mineralized chitinous structures are built and degraded. These events are in turn governed by genes whose patterns of expression are presumably linked to the molting cycle. To study these genes we performed next generation sequencing and constructed a molt-related transcriptomic library from two exoskeletal-forming tissues of the crayfish Cherax quadricarinatus, namely the gastrolith and the mandible cuticle-forming epithelium. To simplify the study of such a complex process as molting, a novel approach, binary patterning of gene expression, was employed. This approach revealed that key genes involved in the synthesis and breakdown of chitin exhibit a molt-related pattern in the gastrolith-forming epithelium. On the other hand, the same genes in the mandible cuticle-forming epithelium showed a molt-independent pattern of expression. Genes related to the metabolism of glucosamine-6-phosphate, a chitin precursor synthesized from simple sugars, showed a molt-related pattern of expression in both tissues. The binary patterning approach unfolds typical patterns of gene expression during the molt cycle of a crustacean. The use of such a simplifying integrative tool for assessing gene patterning seems appropriate for the study of complex biological processes.

  18. cuticleDB: a relational database of Arthropod cuticular proteins

    Directory of Open Access Journals (Sweden)

    Willis Judith H

    2004-09-01

    Full Text Available Abstract Background The insect exoskeleton or cuticle is a bi-partite composite of proteins and chitin that provides protective, skeletal and structural functions. Little information is available about the molecular structure of this important complex that exhibits a helicoidal architecture. Scores of sequences of cuticular proteins have been obtained from direct protein sequencing, from cDNAs, and from genomic analyses. Most of these cuticular protein sequences contain motifs found only in arthropod proteins. Description cuticleDB is a relational database containing all structural proteins of Arthropod cuticle identified to date. Many come from direct sequencing of proteins isolated from cuticle and from sequences from cDNAs that share common features with these authentic cuticular proteins. It also includes proteins from the Drosophila melanogaster and the Anopheles gambiae genomes, that have been predicted to be cuticular proteins, based on a Pfam motif (PF00379 responsible for chitin binding in Arthropod cuticle. The total number of the database entries is 445: 370 derive from insects, 60 from Crustacea and 15 from Chelicerata. The database can be accessed from our web server at http://bioinformatics.biol.uoa.gr/cuticleDB. Conclusions CuticleDB was primarily designed to contain correct and full annotation of cuticular protein data. The database will be of help to future genome annotators. Users will be able to test hypotheses for the existence of known and also of yet unknown motifs in cuticular proteins. An analysis of motifs may contribute to understanding how proteins contribute to the physical properties of cuticle as well as to the precise nature of their interaction with chitin.

  19. Cuticle morphogenesis in crustacean embryonic and postembryonic stages.

    Science.gov (United States)

    Mrak, Polona; Bogataj, Urban; Štrus, Jasna; Žnidaršič, Nada

    2017-01-01

    The crustacean cuticle is a chitin-based extracellular matrix, produced in general by epidermal cells and ectodermally derived epithelial cells of the digestive tract. Cuticle morphogenesis is an integrative part of embryonic and postembryonic development and it was studied in several groups of crustaceans, but mainly with a focus on one selected aspect of morphogenesis. Early studies were focused mainly on in vivo or histological observations of embryonic or larval molt cycles and more recently, some ultrastructural studies of the cuticle differentiation during development were performed. The aim of this paper is to review data on exoskeletal and gut cuticle formation during embryonic and postembryonic development in crustaceans, obtained in different developmental stages of different species and to bring together and discuss different aspects of cuticle morphogenesis, namely data on the morphology, ultrastructure, composition, connections to muscles and molt cycles in relation to cuticle differentiation. Based on the comparative evaluation of microscopic analyses of cuticle in crustacean embryonic and postembryonic stages, common principles of cuticle morphogenesis during development are discussed. Additional studies are suggested to further clarify this topic and to connect the new knowledge to related fields. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Selective preservation of chitin during the decay of shrimp

    Science.gov (United States)

    Baas, M.; Briggs, D. E. G.; Van Heemst, J. D. H.; Kear, A. J.; De Leeuw, J. W.

    1995-03-01

    The preservation potential of chitin in the marine environment is a matter of debate. To determine the relative survival of chitin and other organic components, the shrimp Crangon was decayed under different laboratory conditions. Solid state 13C NMR and Curie point pyrolysis-gas chromatography-high resolution mass spectrometry demonstrated that slightly transformed chitin represents the major component of the remaining biomass after only eight weeks. This selective preservation confirms that the resistance of chitin to decay may be a major factor in accounting for the extensive fossil record of arthropods lacking a biomineralized skeleton. It also suggests that chitin is likely to be an important contributor to the organic content of recent marine sediments. The pyrolysate of the preserved cuticle of fossil shrimps reveals a homologous series of alkanes and alkenes indicating a substitution of chitin by more resistant organic matter derived from other sources.

  1. Enhanced removal of hazardous dye form aqueous solutions and real textile wastewater using bifunctional chitin/lignin biosorbent.

    Science.gov (United States)

    Wawrzkiewicz, Monika; Bartczak, Przemysław; Jesionowski, Teofil

    2017-06-01

    A new biomaterial based on chitin and lignin was prepared and applied for the removal of hazardous dye C.I. Direct Blue 71 (DB71) from aqueous solutions and wastewaters. The dye sorption on the chitin/lignin biosorbent (Ch/L) was examined depending on the initial dye concentration (50-200mg/L), phase contact time (1-1440min), kind of auxiliaries (NaCl, Na2SO4, anionic surfactant SDS) and their concentrations (1-20g/L salts, 0.1-0.75g/L SDS), initial solution pH as well as temperature (20-50°C). The equilibrium and kinetic characteristics of C.I. Direct Blue 71 uptake by chitin/lignin followed by the Freundlich isotherm model and the pseudo-second order model rather than the Langmuir, Tempkin models, and pseudo-first order model. C.I. Direct Blue 71 adsorption on chitin/lignin was spontaneous (-2.86 to -8.14kJ/mol) and endothermic (60.1kJ/mol). The possibilities of dye elution and reuse by means of the batch method were investigated and as follows the chemical reaction is an inseparable sorption mechanism. Purification of wastewaters containing direct dyes was made with 91% efficiency after 1h of phase contact time. For comparison, data obtained or obtained results in the DB71-chitin (Ch) system were also presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Chitin Nanowhisker Aerogels

    Science.gov (United States)

    Heath, Lindy; Zhu, Lifan; Thielemans, Wim

    2013-01-01

    Chitin nanowhiskers are structured into mesoporous aerogels by using the same benign process used previously in our group to make cellulose nanowhisker aerogels. The nanowhiskers are sonicated in water to form a hydrogel before solvent-exchange with ethanol and drying under supercritical CO2 (scCO2). Aerogels are prepared with various densities and porosities, relating directly to the initial chitin nanowhisker content. scCO2 drying enables the mesoporous network structure to be retained as well as allowing the gel to retain its initial dimensions. The chitin aerogels have low densities (0.043–0.113 g cm−3), high porosities (up to 97 %), surface areas of up to 261 m2 g−1, and mechanical properties at the high end of other reported values (modulus between 7 and 9.3 MPa). The aerogels were further characterized by using X-ray diffraction, BET analysis, electron microscopy, FTIR, and thermogravimetric analysis. Characterization showed that the rod-like crystalline nature of the nanowhiskers was retained during the aerogel production process, making the aerogel truly an assembled structure of chitin nanocrystals. These aerogels also showed the lowest reported shrinkage during drying to date, with an average shrinkage of only 4 %. PMID:23335426

  3. Differentiations of chitin content and surface morphologies of chitins extracted from male and female grasshopper species.

    Directory of Open Access Journals (Sweden)

    Murat Kaya

    Full Text Available In this study, we used Fourier transform infrared spectroscopy (FT-IR, elemental analysis (EA, thermogravimetric analysis (TGA, X-ray diffractometry (XRD, and scanning electron microscopy (SEM to investigate chitin structure isolated from both sexes of four grasshopper species. FT-IR, EA, XRD, and TGA showed that the chitin was in the alpha form. With respect to gender, two main differences were observed. First, we observed that the quantity of chitin was greater in males than in females and the dry weight of chitin between species ranged from 4.71% to 11.84%. Second, using SEM, we observed that the male chitin surface structure contained 25-90 nm wide nanofibers and 90-250 nm nanopores, while no pores or nanofibers were observed in the chitin surface structure of the majority of females (nanofibers were observed only in M. desertus females. In contrast, the elemental analysis, thermal properties, and crystalline index values for chitin were similar in males and females. Also, we carried out enzymatic digestion of the isolated chitins using commercial chitinase from Streptomyces griseus. We observed that there were no big differences in digestion rate of the chitins from both sexes and commercial chitin. The digestion rates were for grasshoppers' chitins; 88.45-95.48% and for commercial chitin; 94.95%.

  4. Apple cuticle: the perfect interface

    Science.gov (United States)

    Curry, Eric; Arey, Bruce

    2010-06-01

    The domestic apple might well be called an 'extreme' fruit. In the arid Northwest United States, the fruit often tolerates surface temperatures ranging from -2 °C in the early spring to 50 °C in the heat of summer, and again to -2 °C during controlled postharvest storage for up to 12 months. During its 18-month existence, the apple maintains a cuticle that is dynamic and environmentally responsive to protect against 1) cellular water loss during desiccation stress and 2) excessive uptake of standing surface moisture. Physiological disorders of the peel such as russeting, cracking, splitting, flecking and lenticel marking, develop as epidermal cells respond to rapid changes in ambient conditions at specific developmental stages during the growing season. Resultant market losses underlie research investigating the nature of apple cuticle growth and development. Ultrastructural analysis of the pro-cuticle using scanning electron microscopy indicates an overlapping network of lipid-based distally-elongating microtubules--produced by and connected to epidermal cells--which co-polymerize to form an organic solvent-insoluble semi-permeable cutin matrix. Microtubule elongation, aggregation, and polymerization function together as long as the fruit continues to enlarge. The nature of lipid transport from the epidermal cells through the cell wall to become part of the cuticular matrix was explored using an FEI Helios NanoLabTM DualBeamTM focused ion beam/scanning electron microscope on chemically- and cryo-fixed peel tissue from mature or freshly harvested apples. Based on microtubule dimensions, regular projections found at the cell/cuticle interface suggest an array of microtubule-like structures associated with the epidermal cell.

  5. Chitin nanofibers: preparations, modifications, and applications

    Science.gov (United States)

    Ifuku, Shinsuke; Saimoto, Hiroyuki

    2012-05-01

    Chitin nanofibers are prepared from the exoskeletons of crabs and prawns by a simple mechanical treatment after the removal of proteins and minerals. The obtained nanofibers have fine nanofiber networks with a uniform width of approximately 10-20 nm and a high aspect ratio. The method used for chitin-nanofiber isolation is also successfully applied to the cell walls of mushrooms. They form a complex with glucans on the fiber surface. A grinder, a Star Burst atomization system, and a high speed blender are all used in the mechanical treatment to convert chitin to nanofibers. Mechanical treatment under acidic conditions is the key to facilitate fibrillation. At pH 3-4, the cationization of amino groups on the fiber surface assists nano-fibrillation by electrostatic repulsive force. By applying this finding, we also prepared chitin nanofibers from dry chitin powder. Chitin nanofibers are acetylated to modify their surfaces. The acetyl DS can be controlled from 1 to 3 by changing the reaction time. An acetyl group is introduced heterogeneously from the surface to the core. Nanofiber morphology is maintained even in the case of high acetyl DS. Optically transparent chitin nanofiber composites are prepared with 11 different types of acrylic resins. Due to the nano-sized structure, all of the composites are highly transparent. Chitin nanofibers significantly increase the Young's moduli and the tensile strengths and decrease the thermal expansion of all acrylic resins due to the reinforcement effect of chitin nanofibers. Chitin nanofibers show chiral separation ability. The chitin nanofiber membrane transports the d-isomer of glutamic acid, phenylalanine, and lysine from the corresponding racemic amino acid mixtures faster than the corresponding l-isomer. The chitin nanofibers improve clinical symptoms and suppress ulcerative colitis in a DSS-induced mouse model of acute ulcerative colitis. Moreover, chitin nanofibers suppress myeloperoxidase activation in the colon and

  6. Chitin utilization by the insect-transmitted bacterium Xylella fastidiosa.

    Science.gov (United States)

    Killiny, Nabil; Prado, Simone S; Almeida, Rodrigo P P

    2010-09-01

    Xylella fastidiosa is an insect-borne bacterium that colonizes xylem vessels of a large number of host plants, including several crops of economic importance. Chitin is a polysaccharide present in the cuticle of leafhopper vectors of X. fastidiosa and may serve as a carbon source for this bacterium. Biological assays showed that X. fastidiosa reached larger populations in the presence of chitin. Additionally, chitin induced phenotypic changes in this bacterium, notably increasing adhesiveness. Quantitative PCR assays indicated transcriptional changes in the presence of chitin, and an enzymatic assay demonstrated chitinolytic activity by X. fastidiosa. An ortholog of the chitinase A gene (chiA) was identified in the X. fastidiosa genome. The in silico analysis revealed that the open reading frame of chiA encodes a protein of 351 amino acids with an estimated molecular mass of 40 kDa. chiA is in a locus that consists of genes implicated in polysaccharide degradation. Moreover, this locus was also found in the genomes of closely related bacteria in the genus Xanthomonas, which are plant but not insect associated. X. fastidiosa degraded chitin when grown on a solid chitin-yeast extract-agar medium and grew in liquid medium with chitin as the sole carbon source; ChiA was also determined to be secreted. The gene encoding ChiA was cloned into Escherichia coli, and endochitinase activity was detected in the transformant, showing that the gene is functional and involved in chitin degradation. The results suggest that X. fastidiosa may use its vectors' foregut surface as a carbon source. In addition, chitin may trigger X. fastidiosa's gene regulation and biofilm formation within vectors. Further work is necessary to characterize the role of chitin and its utilization in X. fastidiosa.

  7. Concurrent protein synthesis is required for in vivo chitin synthesis in postmolt blue crabs

    Energy Technology Data Exchange (ETDEWEB)

    Horst, M.N. (Mercer Univ., Macon, GA (USA))

    1990-12-01

    Chitin synthesis in crustaceans involves the deposition of a protein-polysaccharide complex at the apical surface of epithelial cells which secrete the cuticle or exoskeleton. The present study involves an examination of in vivo incorporation of radiolabeled amino acids and amino sugars into the cuticle of postmolt blue crabs, Callinectes sapidus. Rates of incorporation of both 3H leucine and 3H threonine were linear with respect to time of incubation. Incorporation of 3H threonine into the endocuticle was inhibited greater than 90% in the presence of the protein synthesis inhibitor, puromycin. Linear incorporation of 14C glucosamine into the cuticle was also demonstrated; a significant improvement of radiolabeling was achieved by using 14C-N-acetylglucosamine as the labeled precursor. Incorporation of 3H-N-acetylglucosamine into the cuticle of postmolt blue crabs was inhibited 89% by puromycin, indicating that concurrent protein synthesis is required for the deposition of chitin in the blue crab. Autoradiographic analysis of control vs. puromycin-treated crabs indicates that puromycin totally blocks labeling of the new endocuticle with 3H glucosamine. These results are consistent with the notion that crustacean chitin is synthesized as a protein-polysaccharide complex. Analysis of the postmolt and intermolt blue crab cuticle indicates that the exoskeleton contains about 60% protein and 40% chitin. The predominant amino acids are arginine, glutamic acid, alanine, aspartic acid, and threonine.

  8. Proteomic analysis of the crayfish gastrolith chitinous extracellular matrix reveals putative protein complexes and a central role for GAP 65.

    Science.gov (United States)

    Glazer, Lilah; Roth, Ziv; Weil, Simy; Aflalo, Eliahu D; Khalaila, Isam; Sagi, Amir

    2015-10-14

    Chitin is a major component of arthropod cuticles, where it forms a three-dimensional network that constitutes the scaffold upon which cuticles form. The chitin fibers that form this network are closely associated with specific structural proteins, while the cuticular matrix contains many additional structural, enzymatic and other proteins. We study the crayfish gastrolith as a simple model for the assembly of calcified cuticular structures, with particular focus on the proteins involved in this process. The present study integrates a gastrolith-forming epithelium transcriptomic library with data from mass spectrometry analysis of proteins extracted from the gastrolith matrix to obtain a near-complete picture of gastrolith protein content. Using native protein separation we identified 24 matrix proteins, of which 14 are novel. Further analysis led to discovery of three putative protein complexes, all containing GAP 65 the most abundant gastrolith structural protein. Using immunological methods we further studied the role of GAP 65 in the gastrolith matrix and forming epithelium, as well as in the newly identified protein complexes. We propose that gastrolith matrix construction is a sequential process in which protein complexes are dynamically assembled and disassembled around GAP 65, thus changing their functional properties to perform each step in the construction process. The scientific interest on which this study is based arises from three main features of gastroliths: (1) Gastroliths possess partial analogy to cuticles both in structural and molecular properties, and may be regarded, with the appropriate reservations (see Introduction), as simple models for cuticle assembly. At the same time, gastroliths are terminally assembled during a well-defined period, which can be controlled in the laboratory, making them significantly easier to study than cuticles. (2) Gastroliths, like the crayfish exoskeleton, contain stable amorphous calcium carbonate (ACC) rather

  9. Molecular Mechanics of Chitin-Protein Interface: Terminus and Side Chain

    CERN Document Server

    Yu, Zechuan

    2016-01-01

    Chitin and protein are two main building blocks for many natural biomaterials. The interaction between chitin and protein critically determines the properties of the composite biological materials. As living organisms usually encounter complex ambient conditions like water, pH and ions are critical factors towards the structural integrity of biomaterials. It is therefore essential to study the chitin-protein interface under different environmental conditions. Here, an atomistic model consisting of a chitin substrate and a protein filament is constructed, which is regarded as a representative of the chitin-protein interface existing in many chitin-based biomaterials. Based on this model, the mechanical properties of chitin-protein interface under different moisture and pH values are investigated through molecular dynamics simulations. The results reveal a weakening effect of water towards the chitin-protein interface, as well as acidity, i.e. the protonated protein forms a stronger adhesion to chitin than that...

  10. A Venom Gland Extracellular Chitin-Binding-Like Protein from Pupal Endoparasitoid Wasps, Pteromalus Puparum, Selectively Binds Chitin

    Directory of Open Access Journals (Sweden)

    Yu Zhu

    2015-11-01

    Full Text Available Chitin-binding proteins (CBPs are present in many species and they act in a variety of biological processes. We analyzed a Pteromalus puparum venom apparatus proteome and transcriptome and identified a partial gene encoding a possible CBP. Here, we report cloning a full-length cDNA of a sequence encoding a chitin-binding-like protein (PpCBP from P. puparum, a pupal endoparasitoid of Pieris rapae. The cDNA encoded a 96-amino-acid protein, including a secretory signal peptide and a chitin-binding peritrophin-A domain. Phylogenetic analysis of chitin binding domains (CBDs of cuticle proteins and peritrophic matrix proteins in selected insects revealed that the CBD of PpCBP clustered with the CBD of Nasonia vitripennis. The PpCBP is specifically expressed in the venom apparatus of P. puparum, mostly in the venom gland. PpCBP expression was highest at day one after adult eclosion and much lower for the following five days. We produced a recombinant PpCBP and binding assays showed the recombinant protein selectively binds chitin but not cellulose in vitro. We infer that PpCBP serves a structural role in the venom reservoir, or may be injected into the host to help wound healing of the host exoskeleton.

  11. Protein crosslinking by transglutaminase controls cuticle morphogenesis in Drosophila.

    Directory of Open Access Journals (Sweden)

    Toshio Shibata

    Full Text Available Transglutaminase (TG plays important and diverse roles in mammals, such as blood coagulation and formation of the skin barrier, by catalyzing protein crosslinking. In invertebrates, TG is known to be involved in immobilization of invading pathogens at sites of injury. Here we demonstrate that Drosophila TG is an important enzyme for cuticle morphogenesis. Although TG activity was undetectable before the second instar larval stage, it dramatically increased in the third instar larval stage. RNA interference (RNAi of the TG gene caused a pupal semi-lethal phenotype and abnormal morphology. Furthermore, TG-RNAi flies showed a significantly shorter life span than their counterparts, and approximately 90% of flies died within 30 days after eclosion. Stage-specific TG-RNAi before the third instar larval stage resulted in cuticle abnormality, but the TG-RNAi after the late pupal stage did not, indicating that TG plays a key role at or before the early pupal stage. Immediately following eclosion, acid-extractable protein from wild-type wings was nearly all converted to non-extractable protein due to wing maturation, whereas several proteins remained acid-extractable in the mature wings of TG-RNAi flies. We identified four proteins--two cuticular chitin-binding proteins, larval serum protein 2, and a putative C-type lectin-as TG substrates. RNAi of their corresponding genes caused a lethal phenotype or cuticle abnormality. Our results indicate that TG-dependent protein crosslinking in Drosophila plays a key role in cuticle morphogenesis and sclerotization.

  12. Chitin Degradation In Marine Bacteria

    DEFF Research Database (Denmark)

    Paulsen, Sara; Machado, Henrique; Gram, Lone

    2015-01-01

    Introduction: Chitin is the most abundant polymer in the marine environment and the second most abundant in nature. Chitin does not accumulate on the ocean floor, because of microbial breakdown. Chitin degrading bacteria could have potential in the utilization of chitin as a renewable carbon...... and nitrogen source in the fermentation industry.Methods: Here, whole genome sequenced marine bacteria were screened for chitin degradation using phenotypic and in silico analyses.Results: The in silico analyses revealed the presence of three to nine chitinases in each strain, however the number of chitinases...... chitin regulatory system.Conclusions: This study has provided insight into the ecology of chitin degradation in marine bacteria. It also served as a basis for choosing a more efficient chitin degrading production strain e.g. for the use of chitin waste for large-scale fermentations....

  13. Chitin fulfilling a biomaterials promise

    CERN Document Server

    Khor, Eugene

    2001-01-01

    The second edition of Chitin underscores the important factors for standardizing chitin processing and characterization. It captures the essential interplay between chitin's assets and limitations as a biomaterial, placing the past promises of chitin in perspective, addressing its present realities and offering insight into what is required to realize chitin's destiny (including its derivative, chitosan) as a biomaterial of the twenty-first century. This book is an ideal guide for both industrialists and researchers with a vested interest in commercializing chitin.An upd

  14. The cuticle and plant defense to pathogens

    Directory of Open Access Journals (Sweden)

    Jean-Pierre eMetraux

    2014-06-01

    Full Text Available The cuticle provides a physical barrier against water loss and protects against irradiation, xenobiotics and pathogens. Components of the cuticle are perceived by invading fungi and activate developmental processes during pathogenesis. In addition, cuticle alterations of various types induce a syndrome of reactions that often results in resistance to necrotrophs. This article reviews the current knowledge on the role of the cuticle in relation to the perception of pathogens and activation of defenses.

  15. Crystallinity of chitin and carbonate mineral components independently record crustacean biomineralization

    Science.gov (United States)

    Mergelsberg, S. T.; Michel, F. M.; Mukhopadhyay, B.; Dove, P. M.

    2016-02-01

    Some of the earliest evidence for crustacean organisms is attributed to the discovery of Peytoia nathorsti, a predatory arthropod from 500 Ma (Cong, P. et al., 2014). These animals presumably began with a soft exoskeleton and evolved to fill diverse ecological niches while adopting a mineralized skeleton that is rarely preserved in its entirety (Klompmaker, A.A. et al., 2015). That is, one or more of the primary skeleton components (calcium carbonate minerals, the polysaccharide chitin, and minor proteins) were subject to decomposition during fossilization and preservation. These missing pieces present a significant obstacle to reconstructing ecosystem variability over long time periods. Our recent study of the exoskeletons from ten Malacostraca species suggests the physical and chemical structure of chitin holds promise as a secondary proxy for reconstructing skeleton reinforcement. Using high-energy X-ray diffraction and a novel Raman spectroscopy technique to enhance resolution, we determined the detailed nanostructures of chitin and the associated calcium carbonate minerals that comprise the cuticles of multiple body parts. Crab cuticles from the order Brachyura (Dungeness and Rock crabs) exhibit elevated crystallinities of the chitin and calcite in the more reinforced structures (such as the claw). In contrast, the cuticle of lobster body parts show a much greater variability of calcium carbonate crystallinity and a very consistent crystallinity of chitin. Calcite and chitin crystallinity exhibit a dependency within a species (body part to body part), but these dependencies can be different between taxa. Insights from this study suggest high resolution structural analyses hold promise for developing new proxies for the paleo-environment and paleo-ecology of specific Malacostraca animals, regardless of how well the specimen is preserved.

  16. Extraction and Characterization of Chitin from Nigerian Sources

    Directory of Open Access Journals (Sweden)

    Muhammed Tijani ISA

    2012-11-01

    Full Text Available The extraction and characterization of chitin from four sources of Nigerian origin was investigated. Chemical demineralization and deproteinization was done to obtain the chitin. Proximate analysis, XRD and SEM analysis were conducted on obtained chitins. The investigation revealed that the shrimp had the highest yield of chitin of 8.15%, crab, crayfish and periwinkle had yields of 7.8%, 2.88% and 0.44% respectively. The proximate analysis showed that chitin from shrimp had highest moisture and protein content of 8.70% and 4.16% respectively. Crayfish had the highest ash and fiber content of 7.20% and 6.98% respectively. Crab has the highest lipid content of 1.70%. The SEM analysis showed very uniform structure with a lamellar organization and less dense structure for chitin from shrimp and the surface of chitin from crayfish consists of fibers that form parallel thread networks. XRD analysis showed that chitin from shrimp was more crystalline than others.

  17. Reciprocal changes in calcification of the gastrolith and cuticle during the molt cycle of the red claw crayfish Cherax quadricarinatus.

    Science.gov (United States)

    Shechter, Assaf; Berman, Amir; Singer, Alon; Freiman, Aviad; Grinstein, Mor; Erez, Jonathan; Aflalo, Eliahu D; Sagi, Amir

    2008-04-01

    Mobilization of calcium during the molt cycle from the cuticle to transient calcium deposits is widely spread in crustaceans. The dynamics of calcium transport to transient calcium deposits called gastroliths and to the cuticle over the course of the molt cycle were studied in the crayfish Cherax quadricarinatus. In this species, calcium was deposited in the gastroliths during premolt and transported back to the cuticle during postmolt, shown by digital X-ray radiograph analysis. The predominant mineral in the crayfish is amorphous calcium carbonate embedded in an organic matrix composed mainly of chitin. Scanning electron micrographs of the cuticle during premolt showed that the endocuticle and parts of the exocuticle were the source of most of the labile calcium, while the epicuticle did not undergo degradation and remained mineralized throughout the molt cycle. The gastroliths are made of concentric layers of amorphous calcium carbonate intercalated between chitinous lamella. Measurements of pH and calcium levels during gastrolith deposition showed that calcium concentrations in the gastroliths, stomach, and muscle were about the same (10 to 11 mmol l(-1)). On the other hand, pH varied greatly, from 8.7+/-0.15 in the gastrolith cavity through 7.6+/-0.2 in muscle to 6.9+/-0.5 in the stomach.

  18. Pyrolysis of chitin biomass

    DEFF Research Database (Denmark)

    Qiao, Yan; Chen, Shuai; Liu, Ying

    2015-01-01

    The thermal degradation of chitin biomass with various molecular structures was investigated by thermogravimetric analysis (TG), and the gaseous products were analyzed by connected mass spectroscopy (MS). The chemical structure and morphology of char residues collected at 750°C using the model su......, and transformed into an aromatic structure with high carbon and nitrogen content, which was identified by XPS and solid state NMR....

  19. Chitin deacetylase family genes in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae).

    Science.gov (United States)

    Xi, Y; Pan, P-L; Ye, Y-X; Yu, B; Zhang, C-X

    2014-12-01

    Chitin deacetylases (CDAs) are enzymes required for one of the pathways of chitin degradation, in which chitosan is produced by the deacetylation of chitin. Bioinformatic investigations with genomic and transcriptomic databases identified four genes encoding CDAs in Nilaparvata lugens (NlCDAs). Phylogenetic analysis showed that insect CDAs were clustered into five major groups. Group I, III and IV CDAs are found in all insect species, whereas the pupa-specific group II and gut-specific group V CDAs are not found in the plant-sap/blood-sucking hemimetabolous species from Hemiptera and Anoplura. The developmental and tissue-specific expression patterns of four NlCDAs revealed that NlCDA3 was a gut-specific CDA, with high expression at all developmental stages; NlCDA1, NlCDA2 and NlCDA4 were highly expressed in the integument and peaked periodically during every moulting, which suggests their roles in chitin turnover of the insect old cuticle. Lethal phenotypes of cuticle shedding failure and high mortality after the injection of double-stranded RNAs (dsRNAs) for NlCDA1, NlCDA2 and NlCDA4 provide further evidence for their functions associated with moulting. No observable morphological and internal structural abnormality was obtained in insects treated with dsRNA for gut-specific NlCDA3. © 2014 The Royal Entomological Society.

  20. PROPERTIES OF CHITIN REINFORCES COMPOSITES: A REVIEW ...

    African Journals Online (AJOL)

    Despite the denaturing of chitin, the most widely used method of extractiong chitin from seashells is the chemical method. Chitin whiskers known by different name in literature can only be prepared by using hydrochloric acid. The rod-like particles of chitin whiskers have an average lengths and widths of 200 ± 20 nm and 8 ...

  1. Heterologous expression of an active chitin synthase from Rhizopus oryzae.

    Science.gov (United States)

    Salgado-Lugo, Holjes; Sánchez-Arreguín, Alejandro; Ruiz-Herrera, José

    2016-12-01

    Chitin synthases are highly important enzymes in nature, where they synthesize structural components in species belonging to different eukaryotic kingdoms, including kingdom Fungi. Unfortunately, their structure and the molecular mechanism of synthesis of their microfibrilar product remain largely unknown, probably because no fungal active chitin synthases have been isolated, possibly due to their extreme hydrophobicity. In this study we have turned to the heterologous expression of the transcript from a small chitin synthase of Rhizopus oryzae (RO3G_00942, Chs1) in Escherichia coli. The enzyme was active, but accumulated mostly in inclusion bodies. High concentrations of arginine or urea solubilized the enzyme, but their dilution led to its denaturation and precipitation. Nevertheless, use of urea permitted the purification of small amounts of the enzyme. The properties of Chs1 (Km, optimum temperature and pH, effect of GlcNAc) were abnormal, probably because it lacks the hydrophobic transmembrane regions characteristic of chitin synthases. The product of the enzyme showed that, contrasting with chitin made by membrane-bound Chs's and chitosomes, was only partially in the form of short microfibrils of low crystallinity. This approach may lead to future developments to obtain active chitin synthases that permit understanding their molecular mechanism of activity, and microfibril assembly. Copyright © 2016. Published by Elsevier Inc.

  2. The first report of the physicochemical structure of chitin isolated from Hermetia illucens.

    Science.gov (United States)

    Waśko, Adam; Bulak, Piotr; Polak-Berecka, Magdalena; Nowak, Katarzyna; Polakowski, Cezary; Bieganowski, Andrzej

    2016-11-01

    This is the first report on the physicochemical properties of chitin obtained from larvae and imagoes of black soldier flies (Hermetia illucens). Scanning electron microscopy revealed differences in surface morphologies of the two types of chitin. The crystalline index values of chitins from adult flies and larvae were 24.9% and 35%, respectively. This is a trait that differentiates these biopolymers from chitins extracted from other sources described so far. X-ray diffraction patterns and IR spectroscopy revealed that both types of samples of chitin were in an α crystalline form. Also, the results of elemental analysis, thermal stabilities and FTIR spectroscopy of the chitins from larvae and adults of H. illucens were similar, which points to a general similarity in their physicochemical structure. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Synthesis and Physicochemical Characterization of Chitin Derivatives

    Directory of Open Access Journals (Sweden)

    İlhan Uzun

    2013-01-01

    Full Text Available Firstly, chitin derivatives were synthesized. For this purpose, chitin was modified via ring-opening reaction with cyclic anhydrides in lithium chloride/N,N-dimethylacetamide. Then, chitin derivatives synthesized were characterized by FTIR, 1H NMR, 13C NMR, and U-Vis spectroscopies and scanning electron microscopy. Thermogravimetric analysis was performed to investigate the thermal stability of chitin derivatives. Thermogravimetric analysis results showed that chitin modified with trimellitic anhydride is thermally more stable than chitin modified with phthalic anhydride. In addition, the electrical conductivity of chitin modified with phthalic anhydride and trimellitic anhydride was also measured. Electrical conductivity measurement results showed that the electrical conductivity of chitin modified with trimellitic anhydride (1.2×10−4 S cm−1 is higher than that of chitin modified with phthalic anhydride (9.2×10−5 S cm−1.

  4. Phototransformation of imidacloprid on isolated tomato fruit cuticles and on tomato fruits.

    Science.gov (United States)

    Schippers, Nicole; Schwack, Wolfgang

    2010-01-21

    Imidacloprid, a neonicotinoid insecticide, is widely used in plant protection to prevent crop losses. The objective of this study was to show the photochemical fate of imidacloprid on plant surfaces by irradiation experiments on isolated tomato fruit cuticles and tomato fruits (Lycopersicon esculentum Mill.). Imidacloprid spiked samples were irradiated both under sunlight simulator and natural sunlight conditions for 24h, which resulted in recoveries of 23% and 24%, respectively, if isolated cuticles were studied. On whole tomato fruits, recoveries were 33% and 71%, respectively. Similar results were obtained on cuticles spiked with the formulation Confidor and irradiated under natural sunlight. However, on tomato fruits the application of Confidor resulted in a higher loss (56%) of imidacloprid. During all irradiation experiments both on cuticles and whole fruits, 1-[(6-chloropyridin-3-yl)methyl]imidazolidin-2-imine was generally formed at 10-14 mol%, but different other photoproducts were also detected in low amounts, whereas N-nitrosoimidacloprid was only detected under natural sunlight conditions. Rapid photodegradation of imidacloprid could be demonstrated in all experiments. The identified photoproducts, 1-[(6-chloropyridin-3-yl)methyl]imidazolidin-2-imine and N-nitrosoimidacloprid, are possible reaction partners for plant cuticle constituents to form cuticle bound residues. Copyright 2009 Elsevier B.V. All rights reserved.

  5. Natural porous and nano fiber chitin structure from Gammarus argaeus (Gammaridae Crustacea).

    Science.gov (United States)

    Kaya, Murat; Tozak, Kabil Özcan; Baran, Talat; Sezen, Göksal; Sargin, Idris

    2013-01-01

    Chitin and its derivatives are commercially important biopolymers due to their applications in medicine, agriculture, water treatment, cosmetics and various biotechnological areas. Since chitin and its derivatives exhibit different chemical and physical properties depending on the source and isolation method, there is a growing demand for new chitin sources other than crab and shrimp worldwide. In this study Gammarus, a Crustacea, was investigated as a novel chitin source. Gammarus, which belongs to the family Gammaridae Crustacea, lives in the bottom of aquatic ecosystems. More than 200 species are known worldwide. One of these species, G. argaeus was investigated for chitin isolation. The alpha chitin isolated from G. argaeus was characterized by using analysis techniques such as infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). All these analyses confirmed that the isolated chitin from G. argaeus was in the alpha form. Furthermore, we described that dry weight of this species contained 11-12 % chitin. SEM examination of the isolated α-chitin revealed that it was composed of nanofibrils (15-55 nm) and pores (about 150 nm).

  6. Natural porous and nano fiber chitin structure from Gammarus argaeus (Gammaridae Crustacea)

    Science.gov (United States)

    Kaya, Murat; Tozak, Kabil Özcan; Baran, Talat; Sezen, Göksal; Sargin, Idris

    2013-01-01

    Chitin and its derivatives are commercially important biopolymers due to their applications in medicine, agriculture, water treatment, cosmetics and various biotechnological areas. Since chitin and its derivatives exhibit different chemical and physical properties depending on the source and isolation method, there is a growing demand for new chitin sources other than crab and shrimp worldwide. In this study Gammarus, a Crustacea, was investigated as a novel chitin source. Gammarus, which belongs to the family Gammaridae Crustacea, lives in the bottom of aquatic ecosystems. More than 200 species are known worldwide. One of these species, G. argaeus was investigated for chitin isolation. The alpha chitin isolated from G. argaeus was characterized by using analysis techniques such as infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). All these analyses confirmed that the isolated chitin from G. argaeus was in the alpha form. Furthermore, we described that dry weight of this species contained 11-12 % chitin. SEM examination of the isolated α-chitin revealed that it was composed of nanofibrils (15-55 nm) and pores (about 150 nm). PMID:26966425

  7. Different functions of the insect soluble and membrane-bound trehalase genes in chitin biosynthesis revealed by RNA interference.

    Directory of Open Access Journals (Sweden)

    Jie Chen

    Full Text Available BACKGROUND: Trehalase, an enzyme that hydrolyzes trehalose to yield two glucose molecules, plays a pivotal role in various physiological processes. In recent years, trehalase proteins have been purified from several insect species and are divided into soluble (Tre-1 and membrane-bound (Tre-2 trehalases. However, no functions of the two trehalases in chitin biosynthesis in insects have yet been reported. PRINCIPAL FINDINGS: The membrane-bound trehalase of Spodoptera exigua (SeTre-2 was characterized in our laboratory previously. In this study, we cloned the soluble trehalase gene (SeTre-1 and investigated the tissue distribution and developmental expression pattern of the two trehalase genes. SeTre-1 was expressed highly in cuticle and Malpighian tubules, while SeTre-2 was expressed in tracheae and fat body. In the midgut, the two trehalase genes were expressed in different locations. Additionally, the expression profiles of both trehalase mRNAs and their enzyme activities suggest that they may play different roles in chitin biosynthesis. The RNA interference (RNAi of either SeTre-1 or SeTre-2 was gene-specific and effective, with efficiency rates up to 83% at 72 h post injection. After RNAi of SeTre-1 and SeTre-2, significant higher mortality rates were observed during the larva-pupa stage and pupa-adult stage, and the lethal phenotypes were classified and analyzed. Additionally, the change trends of concentration of trehalose and glucose appeared reciprocally in RNAi-mutants. Moreover, knockdown of SeTre-1 gene largely inhibited the expression of chitin synthase gene A (CHSA and reduced the chitin content in the cuticle to two-thirds relative to the control insects. The chitin synthase gene B (CHSB expression, however, was inhibited more by the injection of dsRNA for SeTre-2, and the chitin content in the midgut decreased by about 25%. CONCLUSIONS: SeTre-1 plays a major role in CHSA expression and chitin synthesis in the cuticle, and SeTre-2

  8. Short-Chain Chitin Oligomers: Promoters of Plant Growth.

    Science.gov (United States)

    Winkler, Alexander J; Dominguez-Nuñez, Jose Alfonso; Aranaz, Inmaculada; Poza-Carrión, César; Ramonell, Katrina; Somerville, Shauna; Berrocal-Lobo, Marta

    2017-02-15

    Chitin is the second most abundant biopolymer in nature after cellulose, and it forms an integral part of insect exoskeletons, crustacean shells, krill and the cell walls of fungal spores, where it is present as a high-molecular-weight molecule. In this study, we showed that a chitin oligosaccharide of lower molecular weight (tetramer) induced genes in Arabidopsis that are principally related to vegetative growth, development and carbon and nitrogen metabolism. Based on plant responses to this chitin tetramer, a low-molecular-weight chitin mix (CHL) enriched to 92% with dimers (2mer), trimers (3mer) and tetramers (4mer) was produced for potential use in biotechnological processes. Compared with untreated plants, CHL-treated plants had increased in vitro fresh weight (10%), radicle length (25%) and total carbon and nitrogen content (6% and 8%, respectively). Our data show that low-molecular-weight forms of chitin might play a role in nature as bio-stimulators of plant growth, and they are also a known direct source of carbon and nitrogen for soil biomass. The biochemical properties of the CHL mix might make it useful as a non-contaminating bio-stimulant of plant growth and a soil restorer for greenhouses and fields.

  9. Short-Chain Chitin Oligomers: Promoters of Plant Growth

    Directory of Open Access Journals (Sweden)

    Alexander J. Winkler

    2017-02-01

    Full Text Available Chitin is the second most abundant biopolymer in nature after cellulose, and it forms an integral part of insect exoskeletons, crustacean shells, krill and the cell walls of fungal spores, where it is present as a high-molecular-weight molecule. In this study, we showed that a chitin oligosaccharide of lower molecular weight (tetramer induced genes in Arabidopsis that are principally related to vegetative growth, development and carbon and nitrogen metabolism. Based on plant responses to this chitin tetramer, a low-molecular-weight chitin mix (CHL enriched to 92% with dimers (2mer, trimers (3mer and tetramers (4mer was produced for potential use in biotechnological processes. Compared with untreated plants, CHL-treated plants had increased in vitro fresh weight (10%, radicle length (25% and total carbon and nitrogen content (6% and 8%, respectively. Our data show that low-molecular-weight forms of chitin might play a role in nature as bio-stimulators of plant growth, and they are also a known direct source of carbon and nitrogen for soil biomass. The biochemical properties of the CHL mix might make it useful as a non-contaminating bio-stimulant of plant growth and a soil restorer for greenhouses and fields.

  10. Synthesis and characterization of polypyrrole grafted chitin

    Science.gov (United States)

    Ramaprasad, A. T.; Latha, D.; Rao, Vijayalakshmi

    2017-05-01

    Synthesis and characterization of chitin grafted with polypyrrole (PPy) is reported in this paper. Chitin is soaked in pyrrole solution of various concentrations for different time intervals and polymerized using ammonium peroxy disulphate (APS) as an initiator. Grafting percentage of polypyrrole onto chitin is calculated from weight of chitin before and after grafting. Grafting of polymer is further verified by dissolution studies. The grafted polymer samples are characterized by FTIR, UV-Vis absorption spectrum, XRD, DSC, TGA, AFM, SEM and conductivity studies.

  11. Elastomer Reinforced with Regenerated Chitin from Alkaline/Urea Aqueous System.

    Science.gov (United States)

    Yu, Peng; He, Hui; Luo, Yuanfang; Jia, Demin; Dufresne, Alain

    2017-08-09

    Novel hybrid elastomer/regenerated chitin (R-chitin) composites were developed, for the first time, by introducing chitin solution (dissolved in alkaline/urea aqueous solution at low temperature) into rubber latex, and then cocoagulating using ethanol as the cocoagulant. During the rapid coprecipitation process, the chitin solution showed rapid coagulant-induced gelation and a porous chitin phase was generated, and the rubber latex particles were synchronously demulsificated to form the rubbery phase. The two phases interlaced and interpenetrated simultaneously to form an interpenetrating polymer network (IPN) structure, which was evidenced by SEM observation. The ensuing compound was also characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), and swelling experiments. The unique porous structure of R-chitin could result in strong physical entanglements and interlocks between filler and matrix, thus a highly efficient load transfer between the filler and the matrix was achieved. Accordingly, R-chitin endows the elastomer with a remarkable reinforcement. We envisage that this work may contribute new insights on novel design of chitin-based elastomer hybrids with IPN structure.

  12. Aqueous foams stabilized by chitin nanocrystals

    NARCIS (Netherlands)

    Tzoumaki, M.; Karefyllakis, D.; Moschakis, T.; Biliaderis, C.G.; Scholten, E.

    2015-01-01

    The aim of the present study was to explore the potential use of chitin nanocrystals, as colloidal rod-like particles, to stabilize aqueous foams. Chitin nanocrystals (ChN) were prepared by acid hydrolysis of crude chitin and foams were generated mainly by sonicating the respective dispersions. The

  13. Production, properties, and some new applications of chitin and its derivatives.

    Science.gov (United States)

    Synowiecki, Józef; Al-Khateeb, Nadia Ali

    2003-01-01

    Chitin is a polysaccharide composed from N-acetyl-D-glucosamine units. It is the second most abundant biopolymer on Earth and found mainly in invertebrates, insects, marine diatoms, algae, fungi, and yeasts. Recent investigations confirm the suitability of chitin and its derivatives in chemistry, biotechnology, medicine, veterinary, dentistry, agriculture, food processing, environmental protection, and textile production. The development of technologies based on the utilization of chitin derivatives is caused by their polyelectrolite properties, the presence of reactive functional groups, gel-forming ability, high adsorption capacity, biodegradability and bacteriostatic, and fungistatic and antitumour influence. Resources of chitin for industrial processing are crustacean shells and fungal mycelia. Fungi contain also chitosan, the product of N-deacetylation of chitin. Traditionally, chitin is isolated from crustacean shells by demineralization with diluted acid and deproteinization in a hot base solution. Furthermore, chitin is converted to chitosan by deacetylation in concentrated NaOH solution. It causes changes in molecular weight and a degree of deacetylation of the product and degradation of nutritionally valuable proteins. Thus, enzymatic procedures for deproteinization of the shells or mold mycelia and for chitin deacetylation were investigated. These studies show that chitin is resistant to enzymatic deacetylation. However, chitin deacetylated partially by chemical treatment can be processed further by deacetylase. Efficiency of enzymatic deproteinization depends on the source of crustacean offal and the process conditions. Mild enzymatic treatment removes about 90% of the protein and carotenoids from shrimp-processing waste, and the carotenoprotein produced is useful for feed supplementation. In contrast, deproteinization of shrimp shells by Alcalase led to the isolation of chitin containing about 4.5% of protein impurities and recovery of protein

  14. Chlorinated tyrosine derivatives in insect cuticle

    DEFF Research Database (Denmark)

    Andersen, Svend Olav

    2004-01-01

    A method for quantitative measurement of 3-monochlorotyrosine and 3,5-dichlorotyrosine in insect cuticles is described, and it is used for determination of their distribution in various cuticular regions in nymphs and adults of the desert locust, Schistocerca gregaria. The two chlorinated tyrosine...... during sample hydrolysis. Mono- and dichlorotyrosine are also present in cuticular samples from other insect species, such as the beetle, Tenebrio molitor, the moth Hyalophora cecropia, the cockroach Blaberus craniifer, and the bug Rhodnius prolixus, but not in the sclerotized puparial cuticle...

  15. Hornets yellow cuticle microstructure : A photovoltaic system

    NARCIS (Netherlands)

    Ishay, JS; Goldstein, O; Rosenzweig, E; Kalicharan, D; Jongebloed, WL

    1997-01-01

    This paper describes cuticular structures on the abdomen of the Oriental hornet (Vespa orientalis, Vespinae, Hymenoptera) in the region of the yellow stripes. A cross section in this region reveals the cuticle to resemble a notebook with more than 30 pages, the topmost pages (analogous to layers)

  16. Cuticle microstructure as a new tool in systematic paleontology

    NARCIS (Netherlands)

    Waugh, David A.; Feldmann, Rodney M.

    2003-01-01

    Fossil decapod cuticle has received little systematic study. The purpose of the present note is to survey the cuticle architecture of eleven extant decapod crabs arrayed within ten families, and to develop a classification scheme of cuticle types suitable for describing fossil and Recent decapod

  17. Cooperative Degradation of Chitin by Extracellular and Cell Surface-Expressed Chitinases from Paenibacillus sp. Strain FPU-7

    Science.gov (United States)

    Itoh, Takafumi; Hibi, Takao; Fujii, Yutaka; Sugimoto, Ikumi; Fujiwara, Akihiro; Suzuki, Fumiko; Iwasaki, Yukimoto; Kim, Jin-Kyung; Taketo, Akira

    2013-01-01

    Chitin, a major component of fungal cell walls and invertebrate cuticles, is an exceedingly abundant polysaccharide, ranking next to cellulose. Industrial demand for chitin and its degradation products as raw materials for fine chemical products is increasing. A bacterium with high chitin-decomposing activity, Paenibacillus sp. strain FPU-7, was isolated from soil by using a screening medium containing α-chitin powder. Although FPU-7 secreted several extracellular chitinases and thoroughly digested the powder, the extracellular fluid alone broke them down incompletely. Based on expression cloning and phylogenetic analysis, at least seven family 18 chitinase genes were found in the FPU-7 genome. Interestingly, the product of only one gene (chiW) was identified as possessing three S-layer homology (SLH) domains and two glycosyl hydrolase family 18 catalytic domains. Since SLH domains are known to function as anchors to the Gram-positive bacterial cell surface, ChiW was suggested to be a novel multimodular surface-expressed enzyme and to play an important role in the complete degradation of chitin. Indeed, the ChiW protein was localized on the cell surface. Each of the seven chitinase genes (chiA to chiF and chiW) was cloned and expressed in Escherichia coli cells for biochemical characterization of their products. In particular, ChiE and ChiW showed high activity for insoluble chitin. The high chitinolytic activity of strain FPU-7 and the chitinases may be useful for environmentally friendly processing of chitin in the manufacture of food and/or medicine. PMID:24077704

  18. Geochemical characteristics of fossil Solenites murrayana cuticles from the Jurassic in Lanzhou, northwest China

    Energy Technology Data Exchange (ETDEWEB)

    Sun, B.N.; Yan, D.F.; Xie, S.P.; Shi, Y.J.; Zhang, C.J.; Lin, Z.C. [Lanzhou University, Lanzhou (China)

    2006-07-01

    Through geochemical analysis on cuticles of the Jurassic fossil Solenites murrayuna L. et H. from the Yaojie Coalfield in Lanzhou, northwest China, and by comparison of geochemical features with its nearest living equivalent, Ginkgo biloba, we show that the characteristics of organic matter of the fossil plant cuticles accord with evolutionary features of asphalt in oil formation. The content analysis of organic matter indicates that the geochemistry is equivalent to rotten mud-sapropel humus types from Mesozoic and Cenozoic source rock in China. Some analysis data of organic matter indicate that Solenites murrayana cuticles are in a low mature stage, which coincides with the hydrocarbon generation model of cutinite in coal. Moreover, distribution features of soluble organic matter of cuticles show that fossil plant cuticles have a definite action in forming terrestrial high-wax oil, which has testified the contribution of high plants to waxness. The present study proves that Ginkgophytes abundant in the Jurassic were a high potential plant in the formation of coal-bed hydrocarbon.

  19. Bio-inspired production of chitosan/chitin films from liquid crystalline suspensions.

    Science.gov (United States)

    João, Carlos F C; Echeverria, Coro; Velhinho, Alexandre; Silva, Jorge C; Godinho, Maria H; Borges, João P

    2017-01-02

    Inspired by chitin based hierarchical structures observed in arthropods exoskeleton, this work reports the capturing of chitin nanowhiskers' chiral nematic order into a chitosan matrix. For this purpose, highly crystalline chitin nanowhiskers (CTNW) with spindle-like morphology and average aspect ratio of 24.9 were produced by acid hydrolysis of chitin. CTNW were uniformly dispersed at different concentrations in aqueous suspensions. The suspensions liquid crystalline phase domain was determined by rheological measurements and polarized optical microscopy (POM). Chitosan (CS) was added to the CTNW isotropic, biphasic and anisotropic suspensions and the solvent was evaporated to allow films formation. The Films' morphologies as well as the mechanical properties were explored. A correlation between experimental results and a theoretical model, for layered matrix' structures with fibers acting as a reinforcement agent, was established. The results evidence the existence of two different layered structures, one formed by chitosan layers induced by the presence of chitin and another formed by chitin nanowhiskers layers. By playing on the ratio chitin/chitosan one layered structure or the other can be obtained allowing the tunning of materials' mechanical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The role of chitin, chitinases, and chitinase-like proteins in pediatric lung diseases.

    Science.gov (United States)

    Mack, Ines; Hector, Andreas; Ballbach, Marlene; Kohlhäufl, Julius; Fuchs, Katharina J; Weber, Alexander; Mall, Marcus A; Hartl, Dominik

    2015-12-01

    Chitin, after cellulose, the second most abundant biopolymer on earth, is a key component of insects, fungi, and house-dust mites. Lower life forms are endowed with chitinases to defend themselves against chitin-bearing pathogens. Unexpectedly, humans were also found to express chitinases as well as chitinase-like proteins that modulate immune responses. Particularly, increased levels of the chitinase-like protein YKL-40 have been associated with severe asthma, cystic fibrosis, and other inflammatory disease conditions. Here, we summarize and discuss the potential role of chitin, chitinases, and chitinase-like proteins in pediatric lung diseases.

  1. Chitin purification from shrimp wastes by microbial deproteination and decalcification.

    Science.gov (United States)

    Xu, Y; Gallert, C; Winter, J

    2008-06-01

    Chitin was purified from Penaeus monodon and Crangon crangon shells using a two-stage fermentation process with anaerobic deproteination followed by decalcification through homofermentative lactic acid fermentation. Deproteinating enrichment cultures from sewage sludge and ground meat (GM) were used with a proteolytic activity of 59 and 61 mg N l(-1) h(-1) with dried and 26 and 35 mg N l(-1) h(-1) with wet P. monodon shells. With 100 g wet cells of proteolytic bacteria per liter, protein removal was obtained in 42 h. An anaerobic spore-forming bacterium HP1 was isolated from enrichment GM. Its proteolytic activity was 76 U ml(-1) compared to 44 U ml(-1) of the consortium. Glucose was fermented with Lactobacillus casei MRS1 to lactic acid. At a pH of 3.6, calcium carbonate of the shells was solubilised. After deproteination and decalcification of P. monodon or C. crangon shells, the protein content was 5.8% or 6.7%, and the calcium content was 0.3% or 0.4%, respectively. The viscosity of the chitin from P. monodon and C. crangon was 45 and 135 mPa s, respectively, whereas purchased crab shell chitin (practical grade) had a viscosity of 21 mPa s, indicating a higher quality of biologically purified chitin.

  2. Salmonella biofilm formation on Aspergillus niger involves cellulose--chitin interactions.

    Directory of Open Access Journals (Sweden)

    Maria T Brandl

    Full Text Available Salmonella cycles between host and nonhost environments, where it can become an active member of complex microbial communities. The role of fungi in the environmental adaptation of enteric pathogens remains relatively unexplored. We have discovered that S. enterica Typhimurium rapidly attaches to and forms biofilms on the hyphae of the common fungus, Aspergillus niger. Several Salmonella enterica serovars displayed a similar interaction, whereas other bacterial species were unable to bind to the fungus. Bacterial attachment to chitin, a major constituent of fungal cell walls, mirrored this specificity. Pre-incubation of S. Typhimurium with N-acetylglucosamine, the monomeric component of chitin, reduced binding to chitin beads by as much as 727-fold and inhibited attachment to A. niger hyphae considerably. A cellulose-deficient mutant of S. Typhimurium failed to attach to chitin beads and to the fungus. Complementation of this mutant with the cellulose operon restored binding to chitin beads to 79% of that of the parental strain and allowed for attachment and biofilm formation on A. niger, indicating that cellulose is involved in bacterial attachment to the fungus via the chitin component of its cell wall. In contrast to cellulose, S. Typhimurium curli fimbriae were not required for attachment and biofilm development on the hyphae but were critical for its stability. Our results suggest that cellulose-chitin interactions are required for the production of mixed Salmonella-A. niger biofilms, and support the hypothesis that encounters with chitinaceous alternate hosts may contribute to the ecological success of human pathogens.

  3. Comparative studies on effects of three chitin synthesis inhibitors on common malaria mosquito (Diptera: Culicidae).

    Science.gov (United States)

    Zhu, Kun Yan; Heise, Stephanie; Zhang, Jianzhen; Anderson, Troy D; Starkey, Sharon R

    2007-11-01

    Toxicities of three chitin synthesis inhibitors (diflubenzuron, nikkomycin Z and polyoxin D) were evaluated using second instars of the common malaria mosquito, Anopheles quadrimaculatus Say (Diptera: Culicidae). Neither nikkomycin Z nor polyoxin D at 50 microg/liter caused significant larval mortality, although they reduced the body weight of the survivors by 20.5 and 33.8%, respectively, in 48 h. In contrast, exposures of the larvae to diflubenzuron at 12.5 microg/liter for 48 h resulted in 86.7% larval mortality and reduced the body weight of the survivors by 29.1%. Exposure of the pupae (affect chitin contents in the guts. Our results indicated that diflubenzuron was highly toxic to second instars by not only causing high larval mortality but also by affecting their growth. Diflubenzuron was also fairly toxic to pupae by not only causing pupal mortality but also affecting the adult emergence. Our results suggest that diflubenzuron might affect only chitin synthesis in the cuticle but not in the peritrophic matrix, which is probably due to diflubenzuron's direct contact to mosquito larvae in water, slow distribution in insect body, rapid degradation in the insect gut, or a combination.

  4. Apatite formation on non-woven fabric of carboxymethylated chitin in SBF.

    Science.gov (United States)

    Kokubo, Tadashi; Hanakawa, Masayuki; Kawashita, Masakazu; Minoda, Masahiko; Beppu, Toshiyuki; Miyamoto, Takeaki; Nakamura, Takashi

    2004-08-01

    Chitin fibres constituting a non-woven fabric were carboxymethylated in monochloro acetic acid and treated with saturated Ca(OH)(2) aqueous solution. Within 3 days in a simulated body fluid with pH value and ion concentrations nearly equal to those of human blood plasma, a bonelike apatite layer formed on the surface of fibres of the treated fabric. The apatite-chitin fibre composite thus prepared is expected to be useful as a flexible bioactive bone-repairing material.

  5. PROPERTIES OF CHITIN REINFORCES COMPOSITES: A REVIEW

    African Journals Online (AJOL)

    user

    time maintain high environmentally friendly physical, chemical and mechanical properties of materials, attention is focused on the properties of these exoskeleton sometimes refer to as seashells. One of the striking features of the seashells is the presence of a biodegradable polymer called chitin. Chitin, being a.

  6. Fruit cuticle lipid composition and fruit post-harvest water loss in an advanced backcross generation of pepper (Capsicum sp.)

    KAUST Repository

    Parsons, Eugene P.

    2012-03-05

    To understand the role of fruit cuticle lipid composition in fruit water loss, an advanced backcross population, the BC2F2, was created between the Capsicum annuum (PI1154) and the Capsicum chinense (USDA162), which have high and low post-harvest water loss rates, respectively. Besides dramatic differences in fruit water loss, preliminary studies also revealed that these parents exhibited significant differences in both the amount and composition of their fruit cuticle. Cuticle analysis of the BC2F2 fruit revealed that although water loss rate was not strongly associated with the total surface wax amount, there were significant correlations between water loss rate and cuticle composition. We found a positive correlation between water loss rate and the amount of total triterpenoid plus sterol compounds, and negative correlations between water loss and the alkane to triterpenoid plus sterol ratio. We also report negative correlations between water loss rate and the proportion of both alkanes and aliphatics to total surface wax amount. For the first time, we report significant correlations between water loss and cutin monomer composition. We found positive associations of water loss rate with the total cutin, total C16 monomers and 16-dihydroxy hexadecanoic acid. Our results support the hypothesis that simple straight-chain aliphatic cuticle constituents form more impermeable cuticular barriers than more complex isoprenoid-based compounds. These results shed new light on the biochemical basis for cuticle involvement in fruit water loss. © 2012 Physiologia Plantarum.

  7. Chitin and chitosan: biopolymers for wound management.

    Science.gov (United States)

    Singh, Rita; Shitiz, Kirti; Singh, Antaryami

    2017-12-01

    Chitin and chitosan are biopolymers with excellent bioactive properties, such as biodegradability, non-toxicity, biocompatibility, haemostatic activity and antimicrobial activity. A wide variety of biomedical applications for chitin and chitin derivatives have been reported, including wound-healing applications. They are reported to promote rapid dermal regeneration and accelerate wound healing. A number of dressing materials based on chitin and chitosan have been developed for the treatment of wounds. Chitin and chitosan with beneficial intrinsic properties and high potential for wound healing are attractive biopolymers for wound management. This review presents an overview of properties, biomedical applications and the role of these biopolymers in wound care. © 2017 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  8. Cuticle hydrocarbons in saline aquatic beetles

    Directory of Open Access Journals (Sweden)

    María Botella-Cruz

    2017-07-01

    Full Text Available Hydrocarbons are the principal component of insect cuticle and play an important role in maintaining water balance. Cuticular impermeability could be an adaptative response to salinity and desiccation in aquatic insects; however, cuticular hydrocarbons have been poorly explored in this group and there are no previous data on saline species. We characterized cuticular hydrocarbons of adults and larvae of two saline aquatic beetles, namely Nebrioporus baeticus (Dytiscidae and Enochrus jesusarribasi (Hydrophilidae, using a gas chromatograph coupled to a mass spectrometer. The CHC profile of adults of both species, characterized by a high abundance of branched alkanes and low of unsaturated alkenes, seems to be more similar to that of some terrestrial beetles (e.g., desert Tenebrionidae compared with other aquatic Coleoptera (freshwater Dytiscidae. Adults of E. jesusarribasi had longer chain compounds than N. baeticus, in agreement with their higher resistance to salinity and desiccation. The more permeable cuticle of larvae was characterized by a lower diversity in compounds, shorter carbon chain length and a higher proportion of unsaturated hydrocarbons compared with that of the adults. These results suggest that osmotic stress on aquatic insects could exert a selection pressure on CHC profile similar to aridity in terrestrial species.

  9. Cuticle hydrocarbons in saline aquatic beetles.

    Science.gov (United States)

    Botella-Cruz, María; Villastrigo, Adrián; Pallarés, Susana; López-Gallego, Elena; Millán, Andrés; Velasco, Josefa

    2017-01-01

    Hydrocarbons are the principal component of insect cuticle and play an important role in maintaining water balance. Cuticular impermeability could be an adaptative response to salinity and desiccation in aquatic insects; however, cuticular hydrocarbons have been poorly explored in this group and there are no previous data on saline species. We characterized cuticular hydrocarbons of adults and larvae of two saline aquatic beetles, namely Nebrioporus baeticus (Dytiscidae) and Enochrus jesusarribasi (Hydrophilidae), using a gas chromatograph coupled to a mass spectrometer. The CHC profile of adults of both species, characterized by a high abundance of branched alkanes and low of unsaturated alkenes, seems to be more similar to that of some terrestrial beetles (e.g., desert Tenebrionidae) compared with other aquatic Coleoptera (freshwater Dytiscidae). Adults of E. jesusarribasi had longer chain compounds than N. baeticus, in agreement with their higher resistance to salinity and desiccation. The more permeable cuticle of larvae was characterized by a lower diversity in compounds, shorter carbon chain length and a higher proportion of unsaturated hydrocarbons compared with that of the adults. These results suggest that osmotic stress on aquatic insects could exert a selection pressure on CHC profile similar to aridity in terrestrial species.

  10. Modification of chitin as substrates for chitinase | Herdyastuti ...

    African Journals Online (AJOL)

    Chitin from shrimp shell was modified into colloidal, bead, amorphous and superfine chitin. The results of the IR spectra of colloidal and bead chitin showed a similar pattern with chitin powder; they peaked at 3447 and 3113 cm-1 (OH and NH2 groups), 1645 cm-1 (amide groups N-H) and 1071 cm-1 (group C-O). Superfine ...

  11. The glabra1 mutation affects cuticle formation and plant responses to microbes.

    Science.gov (United States)

    Xia, Ye; Yu, Keshun; Navarre, Duroy; Seebold, Kenneth; Kachroo, Aardra; Kachroo, Pradeep

    2010-10-01

    Systemic acquired resistance (SAR) is a form of defense that provides resistance against a broad spectrum of pathogens in plants. Previous work indicates a role for plastidial glycerolipid biosynthesis in SAR. Specifically, mutations in FATTY ACID DESATURASE7 (FAD7), which lead to reduced trienoic fatty acid levels and compromised plastidial lipid biosynthesis, have been associated with defective SAR. We show that the defective SAR in Arabidopsis (Arabidopsis thaliana) fad7-1 plants is not associated with a mutation in FAD7 but rather with a second-site mutation in GLABRA1 (GL1), a gene well known for its role in trichome formation. The compromised SAR in gl1 plants is associated with impairment in their cuticles. Furthermore, mutations in two other components of trichome development, GL3 and TRANSPARENT TESTA GLABRA1, also impaired cuticle development and SAR. This suggests an overlap in the biochemical pathways leading to cuticle and trichome development. Interestingly, exogenous application of gibberellic acid (GA) not only enhanced SAR in wild-type plants but also restored SAR in gl1 plants. In contrast to GA, the defense phytohoromes salicylic acid and jasmonic acid were unable to restore SAR in gl1 plants. GA application increased levels of cuticular components but not trichome formation on gl1 plants, thus implicating cuticle, but not trichomes, as an important component of SAR. Our findings question the prudence of using mutant backgrounds for genetic screens and underscore a need to reevaluate phenotypes previously studied in the gl1 background.

  12. Fabrication of optically transparent chitin nanocomposites

    Science.gov (United States)

    Shams, M. Iftekhar; Ifuku, Shinsuke; Nogi, Masaya; Oku, Takeshi; Yano, Hiroyuki

    2011-02-01

    This paper demonstrates the preparation of chitin nanofibers from crab shells using a simple mechanical treatment. The nanofibers are small enough to retain the transparency of neat acrylic resin. Possessing hydroxyl and amine/ N-acetyl functionalities, water suspension of chitin nanofibers was vacuum-filtered 9 times faster than cellulose nanofibers to prepare a nanofiber sheet of 90 mm in diameter. This is a prominent advantage of chitin nanofibers over cellulose nanofibers in terms of commercial application. Interestingly, chitin acrylic resin films exhibited much higher transparency than cellulose acrylic resin films owing to the close affinity between less hydrophilic chitin and hydrophobic resin. Furthermore, the incorporation of chitin nanofibers contributes to the significant improvement of the thermal expansion and mechanical properties of the neat acrylic resin. The properties of high light transmittance and low thermal expansion make chitin nanocomposites promising candidates for the substrate in a continuous roll-to-roll process in the manufacturing of various optoelectronic devices such as flat panel displays, bendable displays, and solar cells.

  13. Pathogenicity of Beauveria bassiana and production of cuticle ...

    African Journals Online (AJOL)

    Pathogenicity of Beauveria bassiana and production of cuticle-degrading enzymes in the presence of Diatraea saccharalis cuticle. Virgínia Michelle Svedese, Patricia Vieira Tiago, Jadson Diogo Pereira Bezerra, Laura Mesquita Paiva, Elza Áurea de Luna Alves Lima, Ana Lúcia Figueiredo Porto ...

  14. Removal of Petroleum Spill in Water by Chitin and Chitosan

    Directory of Open Access Journals (Sweden)

    Francisco Cláudio de Freitas Barros

    2014-05-01

    Full Text Available The present study was undertaken to evaluate the capacity of adsorption of crude oil spilled in seawater by chitin flakes, chitin powder, chitosan flakes, chitosan powder, and chitosan solution. The results showed that, although chitosan flakes had a better adsorption capacity by oil (0.379 ± 0.030 grams oil per gram of adsorbent, the biopolymer was sinking after adsorbing oil. Chitosan solution did not present such inconvenience, despite its lower adsorption capacity (0.013 ± 0.001 grams oil per gram of adsorbent. It was able to form a polymeric film on the oil slick, which allowed to restrain and to remove the oil from the samples of sea water. The study also suggests that chitosan solution 0.5% has greater efficiency against oil spills in alkaline medium than acidic medium.

  15. Production of High Viscosity Chitosan from Biologically Purified Chitin Isolated by Microbial Fermentation and Deproteinization

    Directory of Open Access Journals (Sweden)

    Ekkalak Ploydee

    2014-01-01

    Full Text Available The objective of this study was to produce high viscosity chitosan from shrimp chitin prepared by using a two-step biological treatment process: decalcification and deproteinization. Glucose was fermented with Lactobacillus pentosus L7 to lactic acid. At a pH of 3.9±0.1, the calcium carbonate of the shells was solubilized in 48 hours. The amounts of residual calcium in the form of ash (1.4±0.5% and crude protein (23.2±2.5% were further eliminated by the activity of proteolytic Bacillus thuringiensis SA. After decalcification and deproteinization of the shrimp shells, residual calcium and crude protein of shrimp chitin flakes were 1.7±0.4% and 3.8±1.3%, respectively. Chitin was deacetylated with 50% NaOH at 121°C for 5 hours. After deacetylation, the chitosan had residual calcium, crude protein content, and degree of acetylation of 1.6±0.6%, 0.4±0.3%, and 83.2±1.5%, respectively. The viscosity of chitosan prepared from chitin extracted by this two-step biological process was 1,007±14.7 mPa·s, whereas chitosan prepared from chemically processed chitin had a viscosity of 323±15.6   mPa·s, indicating that biologically purified chitin gave chitosan with a high quality.

  16. Proteomic analysis of chicken eggshell cuticle membrane layer.

    Science.gov (United States)

    Mikšík, Ivan; Ergang, Petr; Pácha, Jiri

    2014-11-01

    The eggshell is a barrier that plays an important role in the defense of the egg against microbial and other infections; it protects the developing bird against unfavorable impacts of the environment and is essential for the reproduction of birds. The avian eggshell is a complex structure that is formed during movement along the oviduct by producing a multilayered mineral-organic composite. The extractable proteins of avian eggshells have been studied extensively and many of them identified, however, the insoluble (non-extractable) proteins have been sparsely studied. We studied the EDTA-insoluble proteinaceous film from the cuticle layer of eggshell. This film consists of three main areas: spots (cca 300 μm diameter), blotches (small spots with diameter only tens of μm), and the surroundings (i.e., the area without spots and blotches) where spots contain a visible accumulation of pigment. These areas were cut out of the membrane by laser microdissection, proteins were cleavaged by trypsin, and the peptides were analyzed by nLC/MS (Q-TOF). This study has identified 29 proteins and a further eight were determined by less specific "cleavage" with semitrypsin. The relative abundances of these proteins were determined using the exponentially modified protein abundance index (emPAI) where the most dominant proteins were eggshell-specific ones, such as ovocleidin-17 and ovocleidin-116. Individual areas of the cuticle membrane differ in their relative proportions of 14 proteins, where significant differences between the three quantification criteria (direct, after normalization to ovocledin-17, or to ovocledin-116) were observed in four proteins.

  17. Cuticle lipids on heteromorphic leaves of Populus euphratica Oliv. growing in riparian habitats differing in available soil moisture.

    Science.gov (United States)

    Xu, Xiaojing; Xiao, Lei; Feng, Jinchao; Chen, Ningmei; Chen, Yue; Song, Buerbatu; Xue, Kun; Shi, Sha; Zhou, Yijun; Jenks, Matthew A

    2016-11-01

    Populus euphratica is an important native tree found in arid regions from North Africa and South Europe to China, and is known to tolerate many forms of environmental stress, including drought. We describe cuticle waxes, cutin and cuticle permeability for the heteromorphic leaves of P. euphratica growing in two riparian habitats that differ in available soil moisture. Scanning electron microscopy revealed variation in epicuticular wax crystallization associated with leaf type and site. P. euphratica leaves are dominated by cuticular wax alkanes, primary-alcohols and fatty acids. The major cutin monomers were 10,16-diOH C16:0 acids. Broad-ovate leaves (associated with adult phase growth) produced 1.3- and 1.6-fold more waxes, and 2.1- and 0.9-fold more cutin monomers, than lanceolate leaves (associated with juvenile phase growth) at the wetter site and drier site, respectively. The alkane-synthesis-associated ECERIFERUM1 (CER1), as well as ABC transporter- and elongase-associated genes, were expressed at much higher levels at the drier than wetter sites, indicating their potential function in elevating leaf cuticle lipids in the dry site conditions. Higher cuticle lipid amounts were closely associated with lower cuticle permeability (both chlorophyll efflux and water loss). Our results implicate cuticle lipids as among the xeromorphic traits associated with P. euphratica adult-phase broad-ovate leaves. Results here provide useful information for protecting natural populations of P. euphratica and their associated ecosystems, and shed new light on the functional interaction of cuticle and leaf heterophylly in adaptation to more arid, limited-moisture environments. © 2016 Scandinavian Plant Physiology Society.

  18. Solution properties of chitin in alkali.

    Science.gov (United States)

    Einbu, Aslak; Naess, Stine Nalum; Elgsaeter, Arnljot; Vårum, Kjell M

    2004-01-01

    The solution properties of alpha-chitin dissolved in 2.77 M NaOH are discussed. Chitin samples in the weight-average molecular weight range 0.1 x 10(6) g/mol to 1.2 x 10(6) g/mol were prepared by heterogeneous acid hydrolysis of chitin. Dilute solution properties were measured by viscometry and light scattering. From dynamic light scattering data, relative similar size distributions of the chitin samples were obtained, except for the most degraded sample, which contained aggregates. Second virial coefficients in the range 1 to 2 x 10(-3) mL.mol.g(-2) indicated that 2.77 M NaOH is a good solvent to chitin. The Mark-Houwink-Sakurada equation and the relationship between the z-average radius of gyration (Rg) and the weight-average molecular weight (Mw) were determined to be [eta] = 0.10Mw0.68 (mL.g(-1)) and Rg = 0.17Mw0.46 (nm), respectively, suggesting a random-coil structure for the chitin molecules in alkali conditions. These random-coil structures have Kuhn lengths in the range 23-26 nm.

  19. Deletion of a Chitin Synthase Gene in a Citric Acid Producing Strain of Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Rinker, Torri E.; Baker, Scott E.

    2007-01-29

    Citric acid production by the filamentous fungus Aspergillus niger is carried out in a process that causes the organism to drastically alter its morphology. This altered morphology includes hyphal swelling and highly limited polar growth resulting in clumps of swollen cells that eventually aggregate into pellets of approximately 100 microns in diameter. In this pelleted form, A. niger has increased citric acid production as compared to growth in filamentous form. Chitin is a crucial component of the cell wall of filamentous fungi. Alterations in the deposition or production of chitin may have profound effects on the morphology of the organism. In order to study the role of chitin synthesis in pellet formation we have deleted a chitin synthase gene (csmA) in Aspergillus niger strain ATCC 11414 using a PCR based deletion construct. This class of chitin synthases is only found in filamentous fungi and is not present in yeasts. The csmA genes contain a myosin motor domain at the N-terminus and a chitin synthesis domain at the C-terminus. They are believed to contribute to the specialized polar growth observed in filamentous fungi that is lacking in yeasts. The csmA deletion strain (csmAΔ) was subjected to minimal media with and without osmotic stabilizers as well as tested in citric acid production media. Without osmotic stabilizers, the mutant germlings were abnormally swollen, primarily in the subapical regions, and contained large vacuoles. However, this swelling is ultimately not inhibitory to growth as the germlings are able to recover and undergo polar growth. Colony formation was largely unaffected in the absence of osmotic stabilizers. In citric acid production media csmAΔ was observed to have a 2.5 fold increase in citric acid production. The controlled expression of this class of chitin synthases may be useful for improving production of organic acids in filamentous fungi.

  20. Eggshell chitin and chitin-interacting proteins prevent polyspermy in C. elegans.

    Science.gov (United States)

    Johnston, Wendy L; Krizus, Aldis; Dennis, James W

    2010-11-09

    Development requires fertilization by a single sperm. In Caenorhabditis elegans, fertilization occurs in a sperm-filled spermatheca, implying the barrier to polyspermy is generated in this compartment. Eggshell chitin synthesis is initiated at fertilization, and chitin is deposited before the zygote exits the spermatheca. Whereas polyspermy is very rare in wild-type, here we report an incidence of 14%-51% in zygotes made chitin deficient by loss of chitin synthase-1 (CHS-1), the CHS-1 substrate UDP-N-acetylglucosamine, the CHS-1-interacting protein EGG-3, or the sperm-provided protein SPE-11. The spe-11(hc90) mutant deposits chitin at the male end but fails to complete a continuous layer. The polyspermy barrier is also compromised by loss of the chitin-binding protein CBD-1 or the GLD-1-regulated LDL receptor-like EGG-1, together with its homolog, EGG-2. Loss of CBD-1 or EGG-1/2 disrupts oocyte cortical distribution of CHS-1, as well as MBK-2 and EGG-3. In CBD-1 or EGG-1/2 deficiency, chitin is synthesized but the eggshell is fractured, suggesting aberrantly clustered CHS-1/MBK-2/EGG-3 may fail to support construction of a continuous eggshell. Together, our results show that eggshell chitin is required to prevent polyspermy in C. elegans, in addition to its previously reported requirement in polar body extrusion and polarization of the zygote. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Infrared and Raman spectroscopic features of plant cuticles: a review

    Science.gov (United States)

    Heredia-Guerrero, José A.; Benítez, José J.; Domínguez, Eva; Bayer, Ilker S.; Cingolani, Roberto; Athanassiou, Athanassia; Heredia, Antonio

    2014-01-01

    The cuticle is one of the most important plant barriers. It is an external and continuous lipid membrane that covers the surface of epidermal cells and whose main function is to prevent the massive loss of water. The spectroscopic characterization of the plant cuticle and its components (cutin, cutan, waxes, polysaccharides and phenolics) by infrared and Raman spectroscopies has provided significant advances in the knowledge of the functional groups present in the cuticular matrix and on their structural role, interaction and macromolecular arrangement. Additionally, these spectroscopies have been used in the study of cuticle interaction with exogenous molecules, degradation, distribution of components within the cuticle matrix, changes during growth and development and characterization of fossil plants. PMID:25009549

  2. INFRARED AND RAMAN SPECTROSCOPIC FEATURES OF PLANT CUTICLES: A REVIEW

    Directory of Open Access Journals (Sweden)

    José Alejandro Heredia-Guerrero

    2014-06-01

    Full Text Available The cuticle is one of the most important plant barriers. It is an external and continuous lipid membrane that covers the surface of epidermal cells and whose main function is to prevent the massive loss of water. The spectroscopic characterization of the plant cuticle and its components (cutin, cutan, waxes, polysaccharides and phenolics by infrared and Raman spectroscopies has provided significant advances in the knowledge of the functional groups present in the cuticular matrix and on their structural role, interaction and macromolecular arrangement. Additionally, these spectroscopies have been used in the study of cuticle interaction with exogenous molecules, degradation, distribution of components within the cuticle matrix, changes during growth and development and characterization of fossil plants.

  3. Topographical and Tribological Characteristics of Asian Human Hair Cuticles

    Directory of Open Access Journals (Sweden)

    Chia-Ling Chang

    2015-01-01

    Full Text Available The topography and frictional force of Asian black male and female hair cuticles at different locations are determined using atomic force microscopy (AFM and friction force microscopy (FFM. The frictional values, mapped for comparison with surface morphology, corresponded qualitatively with the structures’ plane surface characteristics. The results indicate that the hair surface was damaged and modified at different temperatures and heating times. The height of the female hair at a blowing temperature of 60°C after a duration of 2 min between the cuticle edge and cuticle surface was approximately 440–556 nm. The adhesion phenomenon occurs on the hair surface and interface. The cuticles do not vary after the heating; however, the hair damage sustained increases with serious deterioration.

  4. Extreme biomimetic approach for synthesis of nanocrystalline chitin-(Ti,Zr)O{sub 2} multiphase composites

    Energy Technology Data Exchange (ETDEWEB)

    Wysokowski, Marcin, E-mail: Marcin.Wysokowski@put.poznan.pl [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60965, Poznan (Poland); Motylenko, Mykhaylo; Rafaja, David [TU Bergakademie Freiberg, Institute of Materials Science, Gustav-Zeuner-Str. 5, 09596, Freiberg (Germany); Koltsov, Iwona [Laboratory of Nanostructures, Institute of High Pressure Physics of The Polish Academy of Sciences, Sokołowska 29/37, 01-142, Warsaw (Poland); Stöcker, Hartmut [TU Bergakademie Freiberg, Institute of Experimental Physics, Leipziger str. 23, 09596, Freiberg (Germany); Szalaty, Tadeusz J. [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60965, Poznan (Poland); Bazhenov, Vasilii V., E-mail: vasily.bazhenov@gmail.com [TU Bergakademie Freiberg, Institute of Experimental Physics, Leipziger str. 23, 09596, Freiberg (Germany); Stelling, Allison L. [Duke University, Department of Biochemistry, Durham, NC, 27708 (United States); Beyer, Jan; Heitmann, Johannes [TU Bergakademie Freiberg, Institute of Applied Physics, Leipziger str. 23, 09596, Freiberg (Germany); Jesionowski, Teofil [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60965, Poznan (Poland); Petovic, Slavica; Đurović, Mirko [Institute of Marine Biology, Dobrota, 85330, Kotor (Montenegro); Ehrlich, Hermann [TU Bergakademie Freiberg, Institute of Experimental Physics, Leipziger str. 23, 09596, Freiberg (Germany)

    2017-02-15

    This work presents an extreme biomimetics route for the modification of the surface of fibre-based scaffolds of poriferan origin by the creation of novel nanostructured multiphase biocomposites. The exceptional thermal stability of the nanostructured sponge chitin allowed for the formation of a novel nanocrystalline chitin-(Ti,Zr)O{sub 2} composite with a well-defined nanoscale structure under hydrothermal conditions (160 °C). Using a combination of experimental techniques, including X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy, EDX mapping and near-edge electron loss spectroscopy (ELNES) in TEM and thermogravimetry/differential scanning calorimetry coupled with mass spectrometry; we showed that this bioorganic scaffold facilitates selective crystallization of TiO{sub 2}, predominantly in form of anatase, over the monoclinic zirconium dioxide (baddeleyite). The control of the crystal morphology through the chitin templates is also demonstrated. Obtained samples were characterized in terms of their photoluminescent properties and photocatalytic performance. These data confirm the high potential of the extreme biomimetics approach for developing a new generation of multiphase biopolymer-based nanostructured materials. - Highlights: • Extreme biomimetically prepared chitin-(Ti,Zr)O{sub 2} and (Ti,Zr)O{sub 2} composites. • Chitin-(Ti,Zr)O{sub 2} composite contains anatase as the most inorganic component. • The mean crystallite size is (31.7 ± 0.3) nm for chitin-(Ti,Zr)O{sub 2} composite. • The mean crystallite size is (2.4 ± 0.5) nm for (Ti,Zr)O{sub 2} composite. • (Ti,Zr)O{sub 2} composite is 2 times more effective photocatalyst than chitin-(Ti,Zr)O{sub 2}.

  5. A modular chitin-binding protease associated with hemocytes and hemolymph in the mosquito Anopheles gambiae.

    Science.gov (United States)

    Danielli, A; Loukeris, T G; Lagueux, M; Müller, H M; Richman, A; Kafatos, F C

    2000-06-20

    Sp22D, a modular serine protease encompassing chitin binding, low density lipoprotein receptor, and scavenger receptor cysteine-rich domains, was identified by molecular cloning in the malaria vector, Anopheles gambiae. It is expressed in multiple body parts and during much of development, most intensely in hemocytes. The protein appears to be posttranslationally modified. Its integral, putatively glycosylated form is secreted in the hemolymph, whereas a smaller form potentially generated by proteolytic processing is associated with the tissues. Bacterial challenge or wounding result in low-level RNA induction, but the protein does not bind to bacteria, nor is its processing affected by infection. However, Sp22D binds to chitin with high affinity and undergoes transient changes in processing during pupal to adult metamorphosis; it may respond to exposure to naked chitin during tissue remodeling or damage.

  6. Patterns of effective permeability of leaf cuticles to acids

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, H.D.; Walters, K.D.; Berg, V.S. (Univ. of Northern Iowa, Cedar Falls (United States))

    1993-01-01

    Plants in the field are frequently exposed to anthropogenic acid precipitation with pH values of 4 and below. For the acid to directly affect leaf tissues, it must pass through the leaf cuticle, but little is known about the permeability of cuticles to protons, of about the effect of different anions on this permeability. We investigated the movement of protons through isolated astomatous leaf cuticles of grapefruit (Citrus x paradisi Macfady.), rough lemon (Citrus limon [L.] Burm. fils cv Ponderosa), and pear (Pyrus communis L.) using hydrochloric, sulfuric, and nitric acids. Cuticles were enzymically isolated from leaves and placed in a diffusion apparatus with pH 4 acid on the morphological outer surface of the cuticle and degassed distilled water on the inner surface. Changes in pH of the solution on the inner surface were used to determine rates of effective permeability of the cuticles to the protons of these acids. Most cuticles exhibited an initial low permeability, lasting hours to days, then after a short transition displayed a significant higher permeability, which persisted until equilibrium was approached. The change in effective permeability appears to be reversible. Effective permeabilities were higher for sulfuric acid than for the others. A model of the movement of protons through the cuticle is presented, proposing that dissociated acid groups in channels within the cutin are first protonated by the acid, accounting for the low initial effective permeability; then protons pass freely through the channels, resulting in a higher effective permeability. 26 refs., 6 figs., 2 tabs.

  7. The chitin biosynthesis pathway in Entamoeba and the role of glucosamine-6-P isomerase by RNA interference.

    Science.gov (United States)

    Samanta, Sintu Kumar; Ghosh, Sudip K

    2012-11-01

    Entamoeba histolytica, the causative agent of amoebiasis, infects through its cyst form. A thick chitin wall protects the cyst from the harsh environment outside of the body. It is known that chitin is synthesized only during encystation, but the chitin synthesis pathway (CSP) of Entamoeba is not well characterized. In this report, we have identified the genes involved in chitin biosynthesis from the Entamoeba genome database and verified their expression profile at the transcriptional level in encysting Entamoeba invadens. Semi-quantitative RT-PCR (sqRT-PCR) analysis showed that all the chitin pathway genes are entirely absent or transcribed at low levels in trophozoites. The mRNA expression of most of the CSP genes reached their maximum level between 9 and 12h after the in vitro initiation of encystation. Double-stranded RNA-mediated silencing of glucosamine-6-P isomerase (Gln6Pi) reduced chitin synthesis to 62-64%, which indicates that Gln6Pi might be a key enzyme for regulating chitin synthesis in Entamoeba. The study of different enzymes involved in glycogen metabolism revealed that stored glycogen is converted to glucose during encystation. It is clear from the sqRT-PCR analysis that the rate of glycolysis decreases as encystation proceeds. Encystation up-regulates the expression of glycogen phosphorylase, which is responsible for glycogen degradation. The significant decrease in chitin synthesis in encysting cells treated with a specific inhibitor of glycogen phosphorylase indicates that the glucose obtained from the degradation of stored glycogen in trophozoites might be one of the major sources of glucose for chitin synthesis. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. A Selective Assay to Detect Chitin and Biologically Active Nano-Machineries for Chitin-Biosynthesis with Their Intrinsic Chitin-Synthase Molecules

    Directory of Open Access Journals (Sweden)

    Hildgund Schrempf

    2010-09-01

    Full Text Available A new assay system for chitin has been developed. It comprises the chitin-binding protein ChbB in fusion with a His-tag as well as with a Strep-tag, the latter of which was chemically coupled to horseradish peroxidase. With the resulting complex, minimal quantities of chitin are photometrically detectable. In addition, the assay allows rapid scoring of the activity of chitin-synthases. As a result, a refined procedure for the rapid purification of yeast chitosomes (nano-machineries for chitin biosynthesis has been established. Immuno-electronmicroscopical studies of purified chitosomes, gained from a yeast strain carrying a chitin-synthase gene fused to that for GFP (green-fluorescence protein, has led to the in situ localization of chitin-synthase-GFP molecules within chitosomes.

  9. Bacterial chitin degradation – mechanisms and ecophysiological strategies

    Directory of Open Access Journals (Sweden)

    Sara eBeier

    2013-06-01

    Full Text Available Chitin is one the most abundant polymers in nature and interacts with both carbon and nitrogen cycles. Processes controlling chitin degradation are summarized in reviews published some 20 years ago, but the recent use of culture-independent molecular methods has led to a revised understanding of the ecology and biochemistry of this process and the organisms involved. This review summarizes different mechanisms and the principal steps involved in chitin degradation at a molecular level while also discussing the coupling of community composition to measured chitin hydrolysis activities and substrate uptake. Ecological consequences are then highlighted and discussed with a focus on the cross feeding associated with the different habitats that arise because of the need for extracellular hydrolysis of the chitin polymer prior to metabolic use. Principal environmental drivers of chitin degradation are identified which are likely to influence both community composition of chitin degrading bacteria and measured chitin hydrolysis activities.

  10. Viscoelastic behavior of mineralized (CaCO3) chitin based PVP-CMC hydrogel scaffolds

    Science.gov (United States)

    Čadež, Vida; Saha, Nabanita; Sikirić, Maja Dutour; Saha, Petr

    2017-05-01

    Enhancement of the mechanical as well as functional properties of the perspective mineralized PVP-CMC-CaCO3 hydrogel scaffold applicable for bone tissue engineering is quite essential. Therefore, the incorporation feasibility of chitin, a bioactive, antibacterial and biodegradable material, was examined in order to test its ability to enchance mechanical properties of the PVP-CMC-CaCO3 hydrogel scaffold. Chitin based PVP-CMC hydrogels were prepared and characterized both as non-mineralized and mineralized (CaCO3) form of hydrogel scaffolds. Both α-chitin (commercially bought) and β-chitin (isolated from the cuttlebone) were individually tested. It was observed that at 1% strain all hydrogel scaffolds have linear trend, with highly pronounced elastic properties in comparison to viscous ones. The complex viscosity has directly proportional behavior with negative slope against angular frequency within the range of ω = 0.1 - 100 rad.s-1. Incorporation of β-chitin increased storage modulus of all mineralized samples, making it interesting for further research.

  11. Chitin synthase homologs in three ectomycorrhizal truffles.

    Science.gov (United States)

    Lanfranco, L; Garnero, L; Delpero, M; Bonfante, P

    1995-12-01

    Degenerate PCR primers were used to amplify a conserved gene portion coding chitin synthase from genomic DNA of six species of ectomycorrhizal truffles. DNA was extracted from both hypogeous fruitbodies and in vitro growing mycelium of Tuber borchii. A single fragment of about 600 bp was amplified for each species. The amplification products from Tuber magnatum, T. borchii and T. ferrugineum were cloned and sequenced, revealing a high degree of identity (91.5%) at the nucleotide level. On the basis of the deduced amino acid sequences these clones were assigned to class II chitin synthase. Southern blot experiments performed on genomic DNA showed that the amplification products derive from a single copy gene. Phylogenetic analysis of the nucleotide sequences of class II chitin synthase genes confirmed the current taxonomic position of the genus Tuber, and suggested a close relationship between T. magnatum and T. uncinatum.

  12. Chitin Adsorbents for Toxic Metals: A Review

    Directory of Open Access Journals (Sweden)

    Ioannis Anastopoulos

    2017-01-01

    Full Text Available Wastewater treatment is still a critical issue all over the world. Among examined methods for the decontamination of wastewaters, adsorption is a promising, cheap, environmentally friendly and efficient procedure. There are various types of adsorbents that have been used to remove different pollutants such as agricultural waste, compost, nanomaterials, algae, etc., Chitin (poly-β-(1,4-N-acetyl-d-glucosamine is the second most abundant natural biopolymer and it has attracted scientific attention as an inexpensive adsorbent for toxic metals. This review article provides information about the use of chitin as an adsorbent. A list of chitin adsorbents with maximum adsorption capacity and the best isotherm and kinetic fitting models are provided. Moreover, thermodynamic studies, regeneration studies, the mechanism of adsorption and the experimental conditions are also discussed in depth.

  13. Melanin externalization in Candida albicans depends on cell wall chitin structures.

    Science.gov (United States)

    Walker, Claire A; Gómez, Beatriz L; Mora-Montes, Héctor M; Mackenzie, Kevin S; Munro, Carol A; Brown, Alistair J P; Gow, Neil A R; Kibbler, Christopher C; Odds, Frank C

    2010-09-01

    The fungal pathogen Candida albicans produces dark-pigmented melanin after 3 to 4 days of incubation in medium containing l-3,4-dihydroxyphenylalanine (l-DOPA) as a substrate. Expression profiling of C. albicans revealed very few genes significantly up- or downregulated by growth in l-DOPA. We were unable to determine a possible role for melanin in the virulence of C. albicans. However, we showed that melanin was externalized from the fungal cells in the form of electron-dense melanosomes that were free or often loosely bound to the cell wall exterior. Melanin production was boosted by the addition of N-acetylglucosamine to the medium, indicating a possible association between melanin production and chitin synthesis. Melanin externalization was blocked in a mutant specifically disrupted in the chitin synthase-encoding gene CHS2. Melanosomes remained within the outermost cell wall layers in chs3Delta and chs2Delta chs3Delta mutants but were fully externalized in chs8Delta and chs2Delta chs8Delta mutants. All the CHS mutants synthesized dark pigment at equivalent rates from mixed membrane fractions in vitro, suggesting it was the form of chitin structure produced by the enzymes, not the enzymes themselves, that was involved in the melanin externalization process. Mutants with single and double disruptions of the chitinase genes CHT2 and CHT3 and the chitin pathway regulator ECM33 also showed impaired melanin externalization. We hypothesize that the chitin product of Chs3 forms a scaffold essential for normal externalization of melanosomes, while the Chs8 chitin product, probably produced in cell walls in greater quantity in the absence of CHS2, impedes externalization.

  14. Melanin Externalization in Candida albicans Depends on Cell Wall Chitin Structures▿

    Science.gov (United States)

    Walker, Claire A.; Gómez, Beatriz L.; Mora-Montes, Héctor M.; Mackenzie, Kevin S.; Munro, Carol A.; Brown, Alistair J. P.; Gow, Neil A. R.; Kibbler, Christopher C.; Odds, Frank C.

    2010-01-01

    The fungal pathogen Candida albicans produces dark-pigmented melanin after 3 to 4 days of incubation in medium containing l-3,4-dihydroxyphenylalanine (l-DOPA) as a substrate. Expression profiling of C. albicans revealed very few genes significantly up- or downregulated by growth in l-DOPA. We were unable to determine a possible role for melanin in the virulence of C. albicans. However, we showed that melanin was externalized from the fungal cells in the form of electron-dense melanosomes that were free or often loosely bound to the cell wall exterior. Melanin production was boosted by the addition of N-acetylglucosamine to the medium, indicating a possible association between melanin production and chitin synthesis. Melanin externalization was blocked in a mutant specifically disrupted in the chitin synthase-encoding gene CHS2. Melanosomes remained within the outermost cell wall layers in chs3Δ and chs2Δ chs3Δ mutants but were fully externalized in chs8Δ and chs2Δ chs8Δ mutants. All the CHS mutants synthesized dark pigment at equivalent rates from mixed membrane fractions in vitro, suggesting it was the form of chitin structure produced by the enzymes, not the enzymes themselves, that was involved in the melanin externalization process. Mutants with single and double disruptions of the chitinase genes CHT2 and CHT3 and the chitin pathway regulator ECM33 also showed impaired melanin externalization. We hypothesize that the chitin product of Chs3 forms a scaffold essential for normal externalization of melanosomes, while the Chs8 chitin product, probably produced in cell walls in greater quantity in the absence of CHS2, impedes externalization. PMID:20543065

  15. Extraction and characterization of chitin and chitosan from Nigerian ...

    African Journals Online (AJOL)

    Chitin was synthesized from Nigerian brown shrimps by a chemical process involving demineralization and deproteinisation. Deacetylation of the chitin was conducted to obtain Chitosan. The chitin and chitosan were characterized using FTIR, XRD and SEM. Proximate and elemental analysis were also conducted.

  16. The impact of drought on wheat leaf cuticle properties.

    Science.gov (United States)

    Bi, Huihui; Kovalchuk, Nataliya; Langridge, Peter; Tricker, Penny J; Lopato, Sergiy; Borisjuk, Nikolai

    2017-05-08

    The plant cuticle is the outermost layer covering aerial tissues and is composed of cutin and waxes. The cuticle plays an important role in protection from environmental stresses and glaucousness, the bluish-white colouration of plant surfaces associated with cuticular waxes, has been suggested as a contributing factor in crop drought tolerance. However, the cuticle structure and composition is complex and it is not clear which aspects are important in determining a role in drought tolerance. Therefore, we analysed residual transpiration rates, cuticle structure and epicuticular wax composition under well-watered conditions and drought in five Australian bread wheat genotypes, Kukri, Excalibur, Drysdale, RAC875 and Gladius, with contrasting glaucousness and drought tolerance. Significant differences were detected in residual transpiration rates between non-glaucous and drought-sensitive Kukri and four glaucous and drought-tolerant lines. No simple correlation was found between residual transpiration rates and the level of glaucousness among glaucous lines. Modest differences in the thickness of cuticle existed between the examined genotypes, while drought significantly increased thickness in Drysdale and RAC875. Wax composition analyses showed various amounts of C31 β-diketone among genotypes and increases in the content of alkanes under drought in all examined wheat lines. The results provide new insights into the relationship between drought stress and the properties and structure of the wheat leaf cuticle. In particular, the data highlight the importance of the cuticle's biochemical makeup, rather than a simple correlation with glaucousness or stomatal density, for water loss under limited water conditions.

  17. In vitro lipid digestion of chitin nanocrystal stabilized o/w emulsions

    NARCIS (Netherlands)

    Tzoumaki, M.V.; Moschakis, T.; Scholten, E.; Biliaderis, C.G.

    2013-01-01

    Chitin nanocrystals (ChN) have been shown to form stable Pickering emulsions. These oil-in-water emulsions were compared with conventional milk (whey protein isolate, WPI, and sodium caseinate, SCn) protein-stabilized emulsions in terms of their lipid digestion kinetics using an in vitro enzymatic

  18. Adsorption studies of iron (III) on chitin

    Indian Academy of Sciences (India)

    The effect of anions like chloride, nitrate and sulphate and also of cations like zinc, chromium and copper on the adsorption of iron(III) was determined. The time dependence of fraction of adsorption, , at varying particle sizes and doses of chitin and the intraparticle diffusion rate constants, , of the adsorption process ...

  19. Poriferan chitin as a template for hydrothermal zirconia deposition

    Science.gov (United States)

    Wysokowski, Marcin; Motylenko, Mykhaylo; Bazhenov, Vasilii V.; Stawski, Dawid; Petrenko, Iaroslav; Ehrlich, Andre; Behm, Thomas; Kljajic, Zoran; Stelling, Allison L.; Jesionowski, Teofil; Ehrlich, Hermann

    2013-09-01

    Chitin is a thermostable biopolymer found in various inorganic-organic skeletal structures of numerous invertebrates including sponges (Porifera). The occurrence of chitin within calcium- and silica-based biominerals in organisms living in extreme natural conditions has inspired development of new (extreme biomimetic) synthesis route of chitin-based hybrid materials in vitro. Here, we show for the first time that 3D-α-chitin scaffolds isolated from skeletons of the marine sponge Aplysina aerophoba can be effectively mineralized under hydrothermal conditions (150°C) using ammonium zirconium(IV) carbonate as a precursor of zirconia. Obtained chitin-ZrO2 hybrid materials were characterized by FT-IR, SEM, HRTEM, as well as light and confocal laser microscopy. We suggest that formation of chitin-ZrO2 hybrids occurs due to hydrogen bonds between chitin and ZrO2.

  20. Biopolymer chitin: extraction and characterization; Biopolimero quitina: extracao e caracterizacao

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The biopolymers are materials made from renewable sources such as soybean, corn, cane sugar, cellulose and chitin. Chitin is the most abundant biopolymer found in nature, after cellulose. The chemical structure of chitin is distinguished by the hydroxyl group, of structure from cellulose, located at position C-2, which in the chitin is replaced by acetamine group. The objective of this study was to develop the chitin from exoskeletons of Litopenaeus vannamei shrimp, which are discarded as waste, causing pollutions, environmental problems and thus obtain better utilization of these raw materials. It also, show the extraction process and deacetylation of chitosan. The extraction of chitin followed steps of demineralization, desproteinization and deodorization. Chitin and chitosan were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and the thermals properties were analyzed by thermogravimetry (TG/DTG). (author)

  1. RNA interference of chitin synthase genes inhibits chitin biosynthesis and affects larval performance in Leptinotarsa decemlineata (Say).

    Science.gov (United States)

    Shi, Ji-Feng; Mu, Li-Li; Chen, Xu; Guo, Wen-Chao; Li, Guo-Qing

    2016-01-01

    Dietary introduction of bacterially expressed double-stranded RNA (dsRNA) has great potential for management of Leptinotarsa decemlineata. Identification of the most attractive candidate genes for RNA interference (RNAi) is the first step. In the present paper, three complete chitin synthase cDNA sequences (LdChSAa, LdChSAb and LdChSB) were cloned. LdChSAa and LdChSAb, two splicing variants of LdChSA gene, were highly expressed in ectodermally-derived epidermal cells forming epidermis, trachea, foregut and hindgut, whereas LdChSB was mainly transcribed in midgut cells. Feeding bacterially expressed dsChSA (derived from a common fragment of LdChSAa and LdChSAb), dsChSAa, dsChSAb and dsChSB in the second- and fourth-instar larvae specifically knocked down their target mRNAs. RNAi of LdChSAa+LdChSAb and LdChSAa lowered chitin contents in whole body and integument samples, and thinned tracheal taenidia. The resulting larvae failed to ecdyse, pupate, or emerge as adults. Comparably, knockdown of LdChSAb mainly affected pupal-adult molting. The LdChSAb RNAi pupae did not completely shed the old larval exuviae, which caused failure of adult emergence. In contrast, silencing of LdChSB significantly reduced foliage consumption, decreased chitin content in midgut sample, damaged midgut peritrophic matrix, and retarded larval growth. As a result, the development of the LdChSB RNAi hypomorphs was arrested. Our data reveal that these LdChSs are among the effective candidate genes for an RNAi-based control strategy against L. decemlineata.

  2. The importance of water for the mechanical properties of insect cuticle

    Science.gov (United States)

    Klocke, D.; Schmitz, H.

    2011-04-01

    Insect cuticle has a broad range of mechanical properties. As it has to provide a very efficient and lightweight skeleton, cuticle is a highly interesting composite-material and may serve as a natural model for new biomimetic materials. However, the water content of insect cuticle is of great importance for its material properties. Here, we present a new method to perform nano-indentation experiments in cuticle which has its full water content. Parts of the exoskeleton of Locusta migratoria were investigated to determine the elastic modulus (Er) and hardness (H) of the cuticle. Cuticle sections were measured in air and then submerged and measured in water. As insect cuticle is an anisotropic material, we performed nano-indentation in the normal as well as in the transverse direction and also tested different cuticle layers within each sample (exo-, meso- and endo-cuticle). It turned out that a change of the water content has a dramatic impact on the material properties of the cuticle. For example, the Er of submerged endo-cuticle turned out to be 75% lower than of endo-cuticle samples measured in air. Further, the proportion of material property values between different cuticle layers within a sample change dramatically after addition of water.

  3. The glabra1 Mutation Affects Cuticle Formation and Plant Responses to Microbes1[C][W][OA

    Science.gov (United States)

    Xia, Ye; Yu, Keshun; Navarre, Duroy; Seebold, Kenneth; Kachroo, Aardra; Kachroo, Pradeep

    2010-01-01

    Systemic acquired resistance (SAR) is a form of defense that provides resistance against a broad spectrum of pathogens in plants. Previous work indicates a role for plastidial glycerolipid biosynthesis in SAR. Specifically, mutations in FATTY ACID DESATURASE7 (FAD7), which lead to reduced trienoic fatty acid levels and compromised plastidial lipid biosynthesis, have been associated with defective SAR. We show that the defective SAR in Arabidopsis (Arabidopsis thaliana) fad7-1 plants is not associated with a mutation in FAD7 but rather with a second-site mutation in GLABRA1 (GL1), a gene well known for its role in trichome formation. The compromised SAR in gl1 plants is associated with impairment in their cuticles. Furthermore, mutations in two other components of trichome development, GL3 and TRANSPARENT TESTA GLABRA1, also impaired cuticle development and SAR. This suggests an overlap in the biochemical pathways leading to cuticle and trichome development. Interestingly, exogenous application of gibberellic acid (GA) not only enhanced SAR in wild-type plants but also restored SAR in gl1 plants. In contrast to GA, the defense phytohoromes salicylic acid and jasmonic acid were unable to restore SAR in gl1 plants. GA application increased levels of cuticular components but not trichome formation on gl1 plants, thus implicating cuticle, but not trichomes, as an important component of SAR. Our findings question the prudence of using mutant backgrounds for genetic screens and underscore a need to reevaluate phenotypes previously studied in the gl1 background. PMID:20699396

  4. The cuticle modulates ultraviolet reflectance of avian eggshells.

    Science.gov (United States)

    Fecheyr-Lippens, Daphne C; Igic, Branislav; D'Alba, Liliana; Hanley, Daniel; Verdes, Aida; Holford, Mande; Waterhouse, Geoffrey I N; Grim, Tomas; Hauber, Mark E; Shawkey, Matthew D

    2015-05-11

    Avian eggshells are variedly coloured, yet only two pigments, biliverdin and protoporphyrin IX, are known to contribute to the dramatic diversity of their colours. By contrast, the contributions of structural or other chemical components of the eggshell are poorly understood. For example, unpigmented eggshells, which appear white to the human eye, vary in their ultraviolet (UV) reflectance, which may be detectable by birds. We investigated the proximate mechanisms for the variation in UV-reflectance of unpigmented bird eggshells using spectrophotometry, electron microscopy, chemical analyses, and experimental manipulations. We specifically tested how UV-reflectance is affected by the eggshell cuticle, the outermost layer of most avian eggshells. The chemical dissolution of the outer eggshell layers, including the cuticle, increased UV-reflectance for only eggshells that contained a cuticle. Our findings demonstrate that the outer eggshell layers, including the cuticle, absorb UV-light, probably because they contain higher levels of organic components and other chemicals, such as calcium phosphates, compared to the predominantly calcite-based eggshell matrix. These data highlight the need to examine factors other than the known pigments in studies of avian eggshell colour. © 2015. Published by The Company of Biologists Ltd.

  5. The cuticle modulates ultraviolet reflectance of avian eggshells

    Directory of Open Access Journals (Sweden)

    Daphne C. Fecheyr-Lippens

    2015-07-01

    Full Text Available Avian eggshells are variedly coloured, yet only two pigments, biliverdin and protoporphyrin IX, are known to contribute to the dramatic diversity of their colours. By contrast, the contributions of structural or other chemical components of the eggshell are poorly understood. For example, unpigmented eggshells, which appear white to the human eye, vary in their ultraviolet (UV reflectance, which may be detectable by birds. We investigated the proximate mechanisms for the variation in UV-reflectance of unpigmented bird eggshells using spectrophotometry, electron microscopy, chemical analyses, and experimental manipulations. We specifically tested how UV-reflectance is affected by the eggshell cuticle, the outermost layer of most avian eggshells. The chemical dissolution of the outer eggshell layers, including the cuticle, increased UV-reflectance for only eggshells that contained a cuticle. Our findings demonstrate that the outer eggshell layers, including the cuticle, absorb UV-light, probably because they contain higher levels of organic components and other chemicals, such as calcium phosphates, compared to the predominantly calcite-based eggshell matrix. These data highlight the need to examine factors other than the known pigments in studies of avian eggshell colour.

  6. Butterfly Wings Are Three-Dimensional: Pupal Cuticle Focal Spots and Their Associated Structures in Junonia Butterflies.

    Science.gov (United States)

    Taira, Wataru; Otaki, Joji M

    2016-01-01

    Butterfly wing color patterns often contain eyespots, which are developmentally determined at the late larval and early pupal stages by organizing activities of focal cells that can later form eyespot foci. In the pupal stage, the focal position of a future eyespot is often marked by a focal spot, one of the pupal cuticle spots, on the pupal surface. Here, we examined the possible relationships of the pupal focal spots with the underneath pupal wing tissues and with the adult wing eyespots using Junonia butterflies. Large pupal focal spots were found in two species with large adult eyespots, J. orithya and J. almana, whereas only small pupal focal spots were found in a species with small adult eyespots, J. hedonia. The size of five pupal focal spots on a single wing was correlated with the size of the corresponding adult eyespots in J. orithya. A pupal focal spot was a three-dimensional bulge of cuticle surface, and the underside of the major pupal focal spot exhibited a hollowed cuticle in a pupal case. Cross sections of a pupal wing revealed that the cuticle layer shows a curvature at a focal spot, and a positional correlation was observed between the cuticle layer thickness and its corresponding cell layer thickness. Adult major eyespots of J. orithya and J. almana exhibited surface elevations and depressions that approximately correspond to the coloration within an eyespot. Our results suggest that a pupal focal spot is produced by the organizing activity of focal cells underneath the focal spot. Probably because the focal cell layer immediately underneath a focal spot is thicker than that of its surrounding areas, eyespots of adult butterfly wings are three-dimensionally constructed. The color-height relationship in adult eyespots might have an implication in the developmental signaling for determining the eyespot color patterns.

  7. Chitin and Chitosan as Direct Compression Excipients in Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Adnan A. Badwan

    2015-03-01

    Full Text Available Despite the numerous uses of chitin and chitosan as new functional materials of high potential in various fields, they are still behind several directly compressible excipients already dominating pharmaceutical applications. There are, however, new attempts to exploit chitin and chitosan in co-processing techniques that provide a product with potential to act as a direct compression (DC excipient. This review outlines the compression properties of chitin and chitosan in the context of DC pharmaceutical applications.

  8. Chitin and Chitosan as Direct Compression Excipients in Pharmaceutical Applications

    Science.gov (United States)

    Badwan, Adnan A.; Rashid, Iyad; Al Omari, Mahmoud M.H.; Darras, Fouad H.

    2015-01-01

    Despite the numerous uses of chitin and chitosan as new functional materials of high potential in various fields, they are still behind several directly compressible excipients already dominating pharmaceutical applications. There are, however, new attempts to exploit chitin and chitosan in co-processing techniques that provide a product with potential to act as a direct compression (DC) excipient. This review outlines the compression properties of chitin and chitosan in the context of DC pharmaceutical applications. PMID:25810109

  9. Bacterial Chitin Hydrolysis in Two Lakes with Contrasting Trophic Statuses

    OpenAIRE

    Köllner, Krista E.; Carstens, Dörte; Keller, Esther; Vazquez, Francisco; Schubert, Carsten J.; Zeyer, Josef; Bürgmann, Helmut

    2012-01-01

    Chitin, which is a biopolymer of the amino sugar glucosamine (GlcN), is highly abundant in aquatic ecosystems, and its degradation is assigned a key role in the recycling of carbon and nitrogen. In order to study the significance of chitin decomposition in two temperate freshwater lakes with contrasting trophic and redox conditions, we measured the turnover rate of the chitin analog methylumbelliferyl-N,N′-diacetylchitobioside (MUF-DC) and the presence of chitinase (chiA) genes in zooplankton...

  10. The battle for chitin recognition in plant-microbe interactions.

    Science.gov (United States)

    Sánchez-Vallet, Andrea; Mesters, Jeroen R; Thomma, Bart P H J

    2015-03-01

    Fungal cell walls play dynamic functions in interaction of fungi with their surroundings. In pathogenic fungi, the cell wall is the first structure to make physical contact with host cells. An important structural component of fungal cell walls is chitin, a well-known elicitor of immune responses in plants. Research into chitin perception has sparked since the chitin receptor from rice was cloned nearly a decade ago. Considering the widespread nature of chitin perception in plants, pathogens evidently evolved strategies to overcome detection, including alterations in the composition of cell walls, modification of their carbohydrate chains and secretion of effectors to provide cell wall protection or target host immune responses. Also non-pathogenic fungi contain chitin in their cell walls and are recipients of immune responses. Intriguingly, various mutualists employ chitin-derived signaling molecules to prepare their hosts for the mutualistic relationship. Research on the various types of interactions has revealed different molecular components that play crucial roles and, moreover, that various chitin-binding proteins contain dissimilar chitin-binding domains across species that differ in affinity and specificity. Considering the various strategies from microbes and hosts focused on chitin recognition, it is evident that this carbohydrate plays a central role in plant-fungus interactions. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Hydroxyapatite-chitin materials as potential tissue engineered bone substitutes.

    Science.gov (United States)

    Ge, Zigang; Baguenard, Sophie; Lim, Lee Yong; Wee, Aileen; Khor, Eugene

    2004-03-01

    Hydroxyapatite (HA) in 25%, 50% and 75% w/w fractions was incorporated into chitin solutions and processed into air- and freeze-dried materials. These HA-chitin materials were exposed to cell cultures and implanted into the intramusculature of a rat model. The HA-chitin materials were found to be non-cytotoxic and degraded in vivo. The presence of the HA filler enhanced calcification as well as accelerated degradation of the chitin matrix. The freeze-dried HA-chitin matrixes were selected for further cell seeding experiments because of their porous nature. Mesenchymal stem cells harvested from NZW rabbits were induced into osteoblasts in vitro using dexamethasone. These osteoblasts were cultured for 1 week, statically loaded onto the porous HA-chitin matrixes and implanted into bone defects of the rabbit femur for 2 months. Histology of explants showed bone regeneration with biodegradation of the HA-chitin matrix. Similarly, green fluorescence protein (GFP) transfected MSC-induced osteoblasts were also loaded onto porous HA-chitin matrixes and implanted into the rabbit femur. The results from GFP-transfected MSCs showed that loaded MSCs-induced osteoblasts did not only proliferate but also recruited surrounding tissue to grow in. This study demonstrates the potential of HA-chitin matrixes as a good substrate candidate for tissue engineered bone substitute.

  12. Electrical, thermoelectric and thermophysical properties of hornet cuticle

    Science.gov (United States)

    Galushko, D.; Ermakov, N.; Karpovski, M.; Palevski, A.; Ishay, J. S.; Bergman, D. J.

    2005-03-01

    Seebeck effect (thermo-emf), thermal conductivity and electrical conductivity of social hornet cuticle were measured in a direction perpendicular to the cuticular surface. The obtained value of the Seebeck coefficient (S) was about 3 ± 0.5 mV K-1 and its sign corresponded to an n-type (electronic) conductivity. Hornet cuticle is shown to be a fairly good heat insulator, with recorded values of the heat conductivity as low as 0.1-0.2 W m-1 K-1. The measured value of the electrical conductivity in the linear regime is σ = 8.5 × 10-5 Ω-1 cm-1. The thermoelectric figure of merit is computed. Implications for possible exploitation as a natural thermoelectric heat pump are discussed.

  13. The extensible alloscutal cuticle of the tick, Ixodes ricinus

    DEFF Research Database (Denmark)

    Andersen, Svend Olav; Roepstorff, Peter

    2005-01-01

    the cuticular structure during the extensive distension occurring during a blood meal. Small amounts of 3-monochlorotyrosine and 3,5-dichlorotyrosine were obtained from the distended tick cuticle, corresponding to chlorination of between 0.5% and 1.5% of the tyrosine residues. It is suggested...... of the insoluble fraction are fluorescent when exposed to ultraviolet light, and the fluorescence corresponds in excitation and emission maxima to the fluorescence of the rubber-like arthropodan protein, resilin, and to the amino acid dityrosine. Small amounts of dityrosine were obtained from ticks in the early...... phase of a blood meal when the cuticle weighs less than 4 mg; increasing amounts were obtained from animals in the initial period of feeding, during which the cuticular weight increases from 4 to 11 mg, whereas little increase in dityrosine content was observed during the final period of engorgement...

  14. STRUCTURAL FEATURES OF PLANT CHITINASES AND CHITIN-BINDING PROTEINS

    NARCIS (Netherlands)

    BEINTEMA, JJ

    1994-01-01

    Structural features of plant chitinases and chitin-binding proteins are discussed. Many of these proteins consist of multiple domains,of which the chitin-binding hevein domain is a predominant one. X-ray and NMR structures of representatives of the major classes of these proteins are available now,

  15. Chitin degrading potential of three aquatic actinomycetes and its ...

    African Journals Online (AJOL)

    Eighty actinomycetes obtained from Krishna River in Satara district, India were screened for their chitinolytic activity on colloidal chitin agar. Fifty-two isolates showed clear zones of hydrolysis of chitin. Three isolates: Streptomyces canus, Streptomyces pseudogriseolus and Micromonospora brevicatiana were selected on ...

  16. Thermal decomposition of natural polysaccharides: Chitin and chitosan

    Directory of Open Access Journals (Sweden)

    Kuchina Yu.A.

    2015-03-01

    Full Text Available The results of the thermal analysis of shrimp’s chitin and chitosan have been presented (samples of polysaccharide differed by the deacetylation degree have been studied. The thermal analysis has been carried out by differential thermogravimetry and differential scanning calorimetry. Activation energy of process of chitin and chitosan thermal destruction has been calculated

  17. Activity staining method of chitinase on chitin agar plate through ...

    African Journals Online (AJOL)

    A method for detection of chitinase activity on chitin agar plate after polyacrylamide gel electrophoresis is described. Different staining dyes such as calcofluor white M2R, fluorescein isothiocyanate, rhodamine B, ruthenium red and congo red were separately incorporated in chitin agar plates. After running polyacrylamide ...

  18. Dielectric Relaxation Phenomena of Polylactic Acid with -Crystalline Chitin

    Directory of Open Access Journals (Sweden)

    Katsuyoshi Shinyama

    2012-01-01

    Full Text Available -crystalline chitin was added to polylactic acid (PLA, and this PLA was then heat-treated at 100∘C for one minute. The crystallinity of the heat-treated PLA increased to more than 40%, and its crystallization speed also increased significantly. The temperature dependency of these materials’ relative permittivity ( and relative dielectric loss factor ( was also examined. The dielectric absorption peak value in  curve of the PLA to which chitin was added and was smaller than that of PLA without chitin. Additionally, the Havriliak-Negami relaxation function was used to produce approximation curves for the frequency dependency of  and  of chitin with PLA added at 80∘C. As a result, the relaxation strength (Δ of the chitin with PLA added was smaller than that of the PLA without chitin, and the relaxation time ( of the chitin with PLA added was approximately 2.5 times larger than that of the PLA without chitin.

  19. Chitin and chitosan as functional biopolymers for industrial applications

    NARCIS (Netherlands)

    kardas, I.; Struzczyk, M.H.; Kucharska, M.; Broek, van den L.A.M.; Dam, van J.E.G.

    2012-01-01

    Chitin research and development seems to be under intensive progress during the last years. Attractive properties of chitin and its derivative—chitosan, for example, biological behavior, and development of their applications caused increased interest of scientists and companies. More and more

  20. Extraction and characterization of chitin and chitosan from ...

    African Journals Online (AJOL)

    Chitin has been extracted from two Tunisian crustacean species. The obtained chitin was transformed into the more useful soluble chitosan. These products were characterized by their biological activity as antimicrobial and antifungal properties. The tested bacterial strains were Escherichia coli American Type Cell Culture ...

  1. Antioxidant effects of chitin, chitosan, and their derivatives.

    Science.gov (United States)

    Ngo, Dai-Hung; Kim, Se-Kwon

    2014-01-01

    Chitin, chitosan, and their derivatives are considered to promote diverse activities, including antioxidant, antihypertensive, anti-inflammatory, anticoagulant, antitumor and anticancer, antimicrobial, hypocholesterolemic, and antidiabetic effects, one of the most crucial of which is the antioxidant effect. By modulating and improving physiological functions, chitin, chitosan, and their derivatives may provide novel therapeutic applications for the prevention or treatment of chronic diseases. Antioxidant activity of chitin, chitosan, and their derivatives can be attributed to in vitro and in vivo free radical-scavenging activities. Antioxidant effect of chitin, chitosan, and their derivatives may be used as functional ingredients in food formulations to promote consumer health and to improve the shelf life of food products. This chapter presents an overview of the antioxidant activity of chitin, chitosan, and their derivatives with the potential utilization in the food and pharmaceutical industries. © 2014 Elsevier Inc. All rights reserved.

  2. Applications of Chitin and Its Derivatives in Biological Medicine

    Directory of Open Access Journals (Sweden)

    Moon-Moo Kim

    2010-12-01

    Full Text Available Chitin and its derivatives—as a potential resource as well as multiple functional substrates—have generated attractive interest in various fields such as biomedical, pharmaceutical, food and environmental industries, since the first isolation of chitin in 1811. Moreover, chitosan and its chitooligosaccharides (COS are degraded products of chitin through enzymatic and acidic hydrolysis processes; and COS, in particular, is well suited for potential biological application, due to the biocompatibility and nontoxic nature of chitosan. In this review, we investigate the current bioactivities of chitin derivatives, which are all correlated with their biomedical properties. Several new and cutting edge insights here may provide a molecular basis for the mechanism of chitin, and hence may aid its use for medical and pharmaceutical applications.

  3. Degradation and mineralization of chitin in an estuary

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, J.

    1987-01-01

    A method for measuring microbial degradation and mineralization of radiolabeled native chitin is described. /sup 14/C-labeled chitin was synthesized in vivo by injecting shed blue crabs (Callinectes sapidus) with N-acetyl-D-(/sup 14/C)-glucosamine, allowing for its incorporation into the exoskeleton. Rates of chitin degradation and mineralization in estuarine water and sediments were determined as functions of temperature, inoculum source, and oxygen condition. Significant differences in rates between temperature treatments were evident. Q/sub 10/ values ranged from 1.2 to 2.5 for water and sediment, respectively. Increased incubation temperature also resulted in decreased lag times before onset of chitinoclastic bacterial growth and chitin degradation. The anaerobic pathway of chitin decomposition by chitinoclastic bacteria was examined with an emphasis on end product coupling to other bacterial types. Actively growing chitinoclastic bacterial isolates produced primarily acetate, hydrogen, and carbon dioxide in broth culture.

  4. Preparation of Chitin, Study of Physicochemical Properties and Biopesticide Activities

    Directory of Open Access Journals (Sweden)

    Yuli Rohyami

    2013-08-01

    Full Text Available Chitin was preparated from shrimp shells by chemically method. Preparation was carried out by deproteination shrimp shells powder < 150 mesh with 1 - 2 M NaOH, demineralization followed by reaction with 1.0 M HCl and depigmentation with (1 : 2 : 4, v/v of chloroform : methanol : water. Physicochemical properties of chitin was determined from characterization of infrared spectra, ash value, loss on drying and total of nitrogen. Biopesticide activities of chitin was done to pest Bemisia tabaci at guava leaves with various concentration from 0.5 to 2.0 % chitin on 3 % v/v acetic acid. This study indicated that concentration of NaOH on deproteination process effected to its physicochemicals properties. Effectivity of 2 M NaOH on deproteination reaction was higher than 1 M NaOH . The degree of chitin deacetylation from 2 M NaOH was 13.61% and had lower molar ratio of total nitrogen. The degree of deacetylation of chitin from 1 M NaOH had lower and had higher molar ratio of total nitrogen. Physicochemicals properties of chitin quite an impact on its ability to reduce pest Bemisia tabaci. Biopesticide activity assay showed that treatment for 2 days on average mortality rate of 13.83%. Deacetylation of chitin which has a higher degree have a greaterability biopesticide with a mortality rate of up to 38.24%. This study the effect of deproteination process to biopesticide activities of chitin.Key Words : chitin, degree of deacetilation, molar ratio, biopesticide, Bemisia tabaci

  5. [Methods for extracting chitin from shrimp shell waste].

    Science.gov (United States)

    Pinelli Saavedra, A; Toledo Guillén, A R; Esquerra Brauer, I R; Luviano Silva, A R; Higuera Ciapara, I

    1998-03-01

    Shrimp shell waste obtained from several industrial freezing-purchasing plants of Guaymas, Sonora, Méx., was studied as a source of value-added chitin biopolymers. In part I, the effect of different isolation conditions on the chitin yield and chemical characteristic, was investigated. Protein and mineral matter were removed with alkali and acid treatment respectively. A 2x2x3 factorial a way of a completely randomized design was used in order to evaluate the effect of the process variables, namely, NaOH concentration (0.4 and 2%) during the deproteinization and HCl concentration (3 and 5%) carried out at 40, 50 and 60 degrees C. The best processing conditions were desproteinization with 2% NaOH, and demineralization with 5% HCl at 50 degrees C, in terms of final ash and chitin content and yield. In part II, a selection of methods of isolation of chitin and chitosan was studied in order to establish the best conditions for scaling up a process to pilot plant level. The processing conditions were selected from reported methods as well as from those defined in part I. Purity of chitin samples was determined in terms of residual protein, ash and chitin each one to produce high quality chitin (0.00% protein, 0.01% ash, 99.99% chitin) and standard grade chitin (0.00% protein, 0.09% ash, 99.13% chitin). Both products were considered as of adequate quality and their manufacture process could be scaled up by further optimization of the processing conditions.

  6. Exoskeletal chitin scales isometrically with body size in terrestrial insects.

    Science.gov (United States)

    Lease, Hilary M; Wolf, Blair O

    2010-06-01

    The skeletal system of animals provides the support for a variety of activities and functions. For animals such as mammals, which have endoskeletons, research has shown that skeletal investment (mass) scales with body mass to the 1.1 power. In this study, we ask how exoskeletal investment in insects scales with body mass. We measured the body mass and mass of exoskeletal chitin of 551 adult terrestrial insects of 245 species, with dry masses ranging from 0.0001 to 2.41 g (0.0002-6.13 g wet mass) to assess the allometry of exoskeletal investment. Our results showed that exoskeletal chitin mass scales isometrically with dry body mass across the Insecta as M(chitin) = a M(dry) (b), where b = 1.03 +/- 0.04, indicating that both large and small terrestrial insects allocate a similar fraction of their body mass to chitin. This isometric chitin-scaling relationship was also evident at the taxonomic level of order, for all insect orders except Coleoptera. We additionally found that the relative exoskeletal chitin investment, indexed by the coefficient, a, varies with insect life history and phylogeny. Exoskeletal chitin mass tends to be proportionally less and to increase at a lower rate with mass in flying than in nonflying insects (M(flying insect chitin) = -0.56 x M(dry) (0.97); M(nonflying insect chitin) = -0.55 x M(dry) (1.03)), and to vary with insect order. Isometric scaling (b = 1) of insect exoskeletal chitin suggests that the exoskeleton in insects scales differently than support structures of most other organisms, which have a positive allometry (b > 1) (e.g., vertebrate endoskeleton, tree secondary tissue). The isometric pattern that we document here additionally suggests that exoskeletal investment may not be the primary limit on insect body size.

  7. A Venom Gland Extracellular Chitin-Binding-Like Protein from Pupal Endoparasitoid Wasps, Pteromalus Puparum, Selectively Binds Chitin

    Science.gov (United States)

    Chitin-binding proteins (CBPs) existed in various species and involved in different biology processes. In the present study, we cloned a full length cDNA of chitin-binding protein-like (PpCBP-like) from Pteromalus puparum, a pupal endoparasitoid of Pieris rapae. PpCBP-like encoded a 96 putative amin...

  8. Organic pollutant clustered in the plant cuticular membranes: visualizing the distribution of phenanthrene in leaf cuticle using two-photon confocal scanning laser microscopy.

    Science.gov (United States)

    Li, Qingqing; Chen, Baoliang

    2014-05-06

    Plants play a key role in the transport and fate of organic pollutants. Cuticles on plant surfaces represent the first resistance for the uptake of airborne toxicants. In this study, a confocal scanning microscope enhanced with a two-photon laser was applied as a direct and noninvasive probe to explore the in situ uptake of a model pollutant, phenanthrene (PHE), into the cuticular membrane of a hypostomatic plant, Photinia serrulata. On the leaf cuticle surfaces, PHE forms clusters instead of being evenly distributed. The PHE distribution was quantified by the PHE fluorescence intensity. When PHE concentrations in water varying over 5 orders of magnitude were applied to the isolated cuticle, the accumulated PHE level by the cuticle was not vastly different, whether PHE was applied to the outer or inner side of the cuticle. Notably, PHE was found to diffuse via a channel-like pathway into the middle layer of the cuticle matrix, where it was identified to be composed of polymeric lipids. The strong affinity of PHE for polymeric lipids is a major contributor of the fugacity gradient driving the diffusive uptake of PHE in the cuticular membrane. Membrane lipids constitute important domains for hydrophobic interaction with pollutants, determining significant differentials of fugacities within the membrane microsystem. These, under unsteady conditions, contribute to enhance net transport and clustering along the z dimension. Moreover, the liquid-like state of polymeric lipids may promote mobility by enhancing the diffusion rate. The proposed "diffusive uptake and storage" function of polymeric lipids within the membrane characterizes the modality of accumulation of the hydrophobic contaminant at the interface between the plant and the environment. Assessing the capacity of fugacity of these constituents in detail will bring about knowledge of contaminant fate in superior plants with a higher level of accuracy.

  9. First report on chitinous holdfast in sponges (Porifera).

    Science.gov (United States)

    Ehrlich, Hermann; Kaluzhnaya, Oksana V; Tsurkan, Mikhail V; Ereskovsky, Alexander; Tabachnick, Konstantin R; Ilan, Micha; Stelling, Allison; Galli, Roberta; Petrova, Olga V; Nekipelov, Serguei V; Sivkov, Victor N; Vyalikh, Denis; Born, René; Behm, Thomas; Ehrlich, Andre; Chernogor, Lubov I; Belikov, Sergei; Janussen, Dorte; Bazhenov, Vasilii V; Wörheide, Gert

    2013-07-07

    A holdfast is a root- or basal plate-like structure of principal importance that anchors aquatic sessile organisms, including sponges, to hard substrates. There is to date little information about the nature and origin of sponges' holdfasts in both marine and freshwater environments. This work, to our knowledge, demonstrates for the first time that chitin is an important structural component within holdfasts of the endemic freshwater demosponge Lubomirskia baicalensis. Using a variety of techniques (near-edge X-ray absorption fine structure, Raman, electrospray ionization mas spectrometry, Morgan-Elson assay and Calcofluor White staining), we show that chitin from the sponge holdfast is much closer to α-chitin than to β-chitin. Most of the three-dimensional fibrous skeleton of this sponge consists of spicule-containing proteinaceous spongin. Intriguingly, the chitinous holdfast is not spongin-based, and is ontogenetically the oldest part of the sponge body. Sequencing revealed the presence of four previously undescribed genes encoding chitin synthases in the L. baicalensis sponge. This discovery of chitin within freshwater sponge holdfasts highlights the novel and specific functions of this biopolymer within these ancient sessile invertebrates.

  10. Chitin and chitinase: Role in pathogenicity, allergenicity and health.

    Science.gov (United States)

    Patel, Seema; Goyal, Arun

    2017-04-01

    Chitin, a polysaccharide with particular abundance in fungi, nematodes and arthropods is immunogenic. It acts as a threat to other organisms, to tackle which they have been endowed with chitinase enzyme. Even if this enzyme is not present in all organisms, they possess proteins having chitin-binding domain(s) (ChtBD). Many lethal viruses like Ebola, and HCV (Hepatitis C virus) have these domains to manipulate their carriers and target organisms. In keeping with the basic rule of survival, the self-origin (own body component) chitins and chitinases are protective, but that of non-self origin (from other organisms) are detrimental to health. The exogenous chitins and chitinases provoke human innate immunity to generate a deluge of inflammatory cytokines, which injure organs (leading to asthma, atopic dermatitis etc.), and in persistent situations lead to death (multiple sclerosis, systemic lupus erythromatosus (SLE), cancer, etc.). Unfortunately, chitin-chitinase-stimulated hypersensitivity is a common cause of occupational allergy. On the other hand, chitin, and its deacetylated derivative chitosan are increasingly proving useful in pharmaceutical, agriculture, and biocontrol applications. This critical review discusses the complex nexus of chitin and chitinase and assesses both their pathogenic as well as utilitarian aspects. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Chitin, a key factor in immune regulation: lesson from infection with fungi and chitin bearing parasites.

    Science.gov (United States)

    Brodaczewska, Klaudia; Donskow-Łysoniewska, Katarzyna; Doligalska, Maria

    2015-06-01

    The probability of infection with fungi, as well as parasitic nematodes or arthropods may increase in overcrowded population of animals and human. The widespread overuse of drugs and immunosuppressants for veterinary or medical treatment create an opportunity for many pathogenic species. The aim of the review is to present the common molecular characteristics of such pathogens as fungi and nematodes and other chitin bearing animals, which may both activate and downregulate the immune response of the host. Although these pathogens are evolutionary distinct and distant, they may provoke similar immune mechanisms. The role of chitin in these phenomena will be reviewed, highlighting the immune reactions that may be induced in mammals by this natural polymer.

  12. Fabrication of the durable low refractive index thin film with chitin-nanofiber by LBL method

    Directory of Open Access Journals (Sweden)

    Tanaka C.

    2013-08-01

    Full Text Available Durable low refractive index thin films with anti-reflection properties were successfully fabricated using chitin nanofibers (CHINF obtained from crab shell. The low refractive index film was achieved by forming porous thin films; the porosity was produced by increasing the number of airspaces inside the membrane. The layer-by-layer (LBL method was used to achieve the effective stacking of the CHINF. The influence of surface structure and refractive index under changes in the solution pH was investigated using scanning electron microscopy and ellipsometry. Transmittance of the fabricated film is 4.1 % higher than that of a glass substrate and refractive index film of that is 1.29. The films had abrasion resistance and antifogging properties because of the high mechanical strength and hydrophilicity of chitin. We believe this LBL film using CHINF is a promising candidate material to overcome the durability problems associated with optical thin films.

  13. The fungicidal properties of the carbon materials obtained from chitin and chitosan promoted by copper salts

    Energy Technology Data Exchange (ETDEWEB)

    Ilnicka, Anna, E-mail: annakucinska@o2.pl; Walczyk, Mariusz; Lukaszewicz, Jerzy P.

    2015-07-01

    Renewable raw materials chitin and chitosan (N-deacetylated derivative of chitin) were subjected to action of different copper modifiers that were carbonized in the atmosphere of the N{sub 2} inert gas. As a result of the novel manufacturing procedure, a series of carbon materials was obtained with developed surface area and containing copper derivatives of differentiated form, size, and dispersion. The copper modifier and manufacturing procedure (concentration, carbonization temperature) influence the physical–chemical and fungicide properties of the carbons. The received carbons were chemically characterized using several methods like low-temperature adsorption of nitrogen, X-ray diffraction analysis, scanning electron microscopy, cyclic voltammetry, elemental analysis, and bioassay. Besides chemical testing, some biological tests were performed and let to select carbons with the highest fungicidal activity. Such carbons were characteristic of the specific form of copper derivatives occurring in them, i.e., nanocrystallites of Cu{sup 0} and/or Cu{sub 2}O of high dispersion on the surface of carbon. The carbons may find an application as effective contact fungistatic agents in cosmetology, medicine, food industry, etc. - Highlights: • The novel manufacturing procedure yields new functional carbon materials. • Two biopolymers chitin and chitosan can undergo copper(II) ion modification. • The Cu-modified carbon materials exhibit high fungicidal activity. • The fungicidal activity results from the presence of Cu{sup 0} and Cu{sub 2}O nano-crystallites.

  14. Action on the Surface: Entomopathogenic Fungi versus the Insect Cuticle.

    Science.gov (United States)

    Ortiz-Urquiza, Almudena; Keyhani, Nemat O

    2013-07-16

    Infections mediated by broad host range entomopathogenic fungi represent seminal observations that led to one of the first germ theories of disease and are a classic example of a co-evolutionary arms race between a pathogen and target hosts. These fungi are able to parasitize susceptible hosts via direct penetration of the cuticle with the initial and potentially determining interaction occurring between the fungal spore and the insect epicuticle. Entomogenous fungi have evolved mechanisms for adhesion and recognition of host surface cues that help direct an adaptive response that includes the production of: (a) hydrolytic, assimilatory, and/or detoxifying enzymes including lipase/esterases, catalases, cytochrome P450s, proteases, and chitinases; (b) specialized infectious structures, e.g., appressoria or penetrant tubes; and (c) secondary and other metabolites that facilitate infection. Aside from immune responses, insects have evolved a number of mechanisms to keep pathogens at bay that include: (a) the production of (epi) cuticular antimicrobial lipids, proteins, and metabolites; (b) shedding of the cuticle during development; and (c) behavioral-environmental adaptations such as induced fever, burrowing, and grooming, as well as potentially enlisting the help of other microbes, all intended to stop the pathogen before it can breach the cuticle. Virulence and host-defense can be considered to be under constant reciprocal selective pressure, and the action on the surface likely contributes to phenomena such as strain variation, host range, and the increased virulence often noted once a (low) virulent strain is "passaged" through an insect host. Since the cuticle represents the first point of contact and barrier between the fungus and the insect, the "action on the surface" may represent the defining interactions that ultimately can lead either to successful mycosis by the pathogen or successful defense by the host. Knowledge concerning the molecular mechanisms

  15. Preparation and Grafting Functionalization of Self-Assembled Chitin Nanofiber Film

    Directory of Open Access Journals (Sweden)

    Jun-ichi Kadokawa

    2016-07-01

    Full Text Available Chitin is a representative biomass resource comparable to cellulose. Although considerable efforts have been devoted to extend novel applications to chitin, lack of solubility in water and common organic solvents causes difficulties in improving its processability and functionality. Ionic liquids have paid much attention as solvents for polysaccharides. However, little has been reported regarding the dissolution of chitin with ionic liquids. The author found that an ionic liquid, 1-allyl-3-methylimidazolium bromide (AMIMBr, dissolved chitin in concentrations up to ~4.8 wt % and the higher contents of chitin with AMIMBr gave ion gels. When the ion gel was soaked in methanol for the regeneration of chitin, followed by sonication, a chitin nanofiber dispersion was obtained. Filtration of the dispersion was subsequently carried out to give a chitin nanofiber film. A chitin nanofiber/poly(vinyl alcohol composite film was also obtained by co-regeneration approach. Chitin nanofiber-graft-synthetic polymer composite films were successfully prepared by surface-initiated graft polymerization technique. For example, the preparation of chitin nanofiber-graft-biodegradable polyester composite film was achieved by surface-initiated graft polymerization from the chitin nanofiber film. The similar procedure also gave chitin nanofiber-graft-polypeptide composite film. The surface-initiated graft atom transfer radical polymerization was conducted from a chitin macroinitiator film derived from the chitin nanofiber film.

  16. The chitin-binding domain of a GH-18 chitinase from Vibrio harveyi is crucial for chitin-chitinase interactions.

    Science.gov (United States)

    Suginta, Wipa; Sirimontree, Paknisa; Sritho, Natchanok; Ohnuma, Takayuki; Fukamizo, Tamo

    2016-12-01

    Vibrio harveyi chitinase A (VhChiA) is a GH-18 glycosyl hydrolase with a structure containing three distinct domains: i) the N-terminal chitin-binding domain; ii) the (α/β)8 TIM barrel catalytic domain; and iii) the α+β insertion domain. In this study, we cloned the gene fragment encoding the chitin-binding domain of VhChiA, termed ChBDVhChiA. The recombinant ChBDVhChiA was heterologously expressed in E. coli BL21 strain Tuner(DE3)pLacI host cells, and purified to homogeneity. CD measurements suggested that ChBDVhChiA contained β-sheets as major structural components and fluorescence spectroscopy showed that the protein domain was folded correctly, and suitable for functional characterization. Chitin binding assays showed that ChBDVhChiA bound to both α- and β-chitins, with the greatest affinity for β-colloidal chitin, but barely bound to polymeric chitosan. These results identified the tandem N-acetamido functionality on chitin chains as the specific sites of enzyme-substrate interactions. The binding affinity of the isolated domain was significantly lower than that of intact VhChiA, suggesting that the catalytic domain works synergistically with the chitin-binding domain to guide the polymeric substrate into the substrate binding cleft. These data confirm the physiological role of the chitin-binding domain of the marine bacterial GH-18 chitinase A in chitin-chitinase interactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Comparison of green method for chitin deacetylation

    Science.gov (United States)

    Anwar, Muslih; Anggraeni, Ayu Septi; Amin, M. Harisuddin Al

    2017-03-01

    Developing highly environmentally friendly and cost-effective approaches for the chitosan production has paramount important in the future technology. Deacetylation process is one of the most importing steps to classify the quality of chitosan. This research aimed to study the best method for deacetylation of chitin considered by several factors like the concentration of base, temperature, time and reaction method. From the green chemistry point of view, conventional refluxing method relatively wasted energy compared to another method such as maceration, grinding and sonication. The degree of deacetylation (DD) of chitosan was studied by sonication, resulted in slightly increasing of DD from 73.14 to 73.28% during the time from 0.5 h to 1 h. Deacetylation of chitin with various sodium hydroxide concentration 60, 70 and 80% gave 73.14, 76.36 and 77.88% of DD, respectively. Variation of temperature at 40, 60, and 80 °C was slightly affected on increasing DD from 67.53, 72.84 and 73.14%, respectively. The DD of chitosan significantly increased from 60.19, 74.27 and 81.20% respectively correspondent to varying NaOH concentration 60, 70 and 80% using the maceration method. Solid phase grinding method for half hour resulted in 79.49% of DD. The application of ultrasound grinding method not only was enhanced toward the deacetylation but also favoured the depolymerization process. Moreover, maceration for 7 days with 80% NaOH can be as an alternative method.

  18. Emerging chitin and chitosan nanofibrous materials for biomedical applications.

    Science.gov (United States)

    Ding, Fuyuan; Deng, Hongbing; Du, Yumin; Shi, Xiaowen; Wang, Qun

    2014-08-21

    Over the past several decades, we have witnessed significant progress in chitosan and chitin based nanostructured materials. The nanofibers from chitin and chitosan with appealing physical and biological features have attracted intense attention due to their excellent biological properties related to biodegradability, biocompatibility, antibacterial activity, low immunogenicity and wound healing capacity. Various methods, such as electrospinning, self-assembly, phase separation, mechanical treatment, printing, ultrasonication and chemical treatment were employed to prepare chitin and chitosan nanofibers. These nanofibrous materials have tremendous potential to be used as drug delivery systems, tissue engineering scaffolds, wound dressing materials, antimicrobial agents, and biosensors. This review article discusses the most recent progress in the preparation and application of chitin and chitosan based nanofibrous materials in biomedical fields.

  19. A factorial design analysis of chitin production by Cunninghamella elegans.

    Science.gov (United States)

    Andrade, V S; Neto, B B; Souza, W; Campos-Takaki, G M

    2000-11-01

    Chitin production by Cunninghamella elegans (IFM 46109) was studied with a two-level full factorial design, varying time of cultivation and the concentration of D-glucose, L-asparagine, and thiamine in the culture medium. The material extracted was characterized by infrared and NMR spectroscopy. The highest chitin yield, 28.8%, was comparable with the highest in the literature and was obtained with a medium containing 60 g.L-1 of glucose, 3 g.L-1 of asparagine, and 0.008 mg.L-1 of thiamine. Increasing the time of cultivation from 24 h to 72 h did not affect chitin production. The three factors showed significant positive effects on chitin production, without interactions between them.

  20. Emerging chitin and chitosan nanofibrous materials for biomedical applications

    Science.gov (United States)

    Ding, Fuyuan; Deng, Hongbing; Du, Yumin; Shi, Xiaowen; Wang, Qun

    2014-07-01

    Over the past several decades, we have witnessed significant progress in chitosan and chitin based nanostructured materials. The nanofibers from chitin and chitosan with appealing physical and biological features have attracted intense attention due to their excellent biological properties related to biodegradability, biocompatibility, antibacterial activity, low immunogenicity and wound healing capacity. Various methods, such as electrospinning, self-assembly, phase separation, mechanical treatment, printing, ultrasonication and chemical treatment were employed to prepare chitin and chitosan nanofibers. These nanofibrous materials have tremendous potential to be used as drug delivery systems, tissue engineering scaffolds, wound dressing materials, antimicrobial agents, and biosensors. This review article discusses the most recent progress in the preparation and application of chitin and chitosan based nanofibrous materials in biomedical fields.

  1. Preparation of Chitin-PLA laminated composite for implantable application

    Directory of Open Access Journals (Sweden)

    Romana Nasrin

    2017-12-01

    Full Text Available The present study explores the possibilities of using locally available inexpensive waste prawn shell derived chitin reinforced and bioabsorbable polylactic acid (PLA laminated composites to develop new materials with excellent mechanical and thermal properties for implantable application such as in bone or dental implant. Chitin at different concentration (1–20% of PLA reinforced PLA films (CTP were fabricated by solvent casting process and laminated chitin-PLA composites (LCTP were prepared by laminating PLA film (obtained by hot press method with CTP also by hot press method at 160 °C. The effect of variation of chitin concentration on the resulting laminated composite's behavior was investigated. The detailed physico-mechanical, surface morphology and thermal were assessed with different characterization technique such as FT-IR, XRD, SEM and TGA. The FTIR spectra showed the characteristic peaks for chitin and PLA in the composites. SEM images showed an excellent dispersion of chitin in the films and composites. Thermogravimetric analysis (TGA showed that the complete degradation of chitin, PLA film, 5% chitin reinforced PLA film (CTP2 and LCTP are 98%, 95%, 87% and 98% respectively at temperature of 500 °C. The tensile strength of the LCTP was found 25.09 MPa which is significantly higher than pure PLA film (18.55 MPa and CTP2 film (8.83 MPa. After lamination of pure PLA and CTP2 film, the composite (LCTP yielded 0.265–1.061% water absorption from 30 min to 24 h immerse in water that is much lower than PLA and CTP. The increased mechanical properties of the laminated films with the increase of chitin content indicated good dispersion of chitin into PLA and strong interfacial actions between the polymer and chitin. The improvement of mechanical properties and the results of antimicrobial and cytotoxicity of the composites also evaluated and revealed the composite would be a suitable candidate for implant application in biomedical

  2. Co-Processed Chitin-Mannitol as a New Excipient for Oro-Dispersible Tablets

    Directory of Open Access Journals (Sweden)

    Nidal Daraghmeh

    2015-03-01

    Full Text Available This study describes the preparation, characterization and performance of a novel excipient for use in oro-dispersible tablets (ODT. The excipient (Cop–CM consists of chitin and mannitol. The excipient with optimal physicochemical properties was obtained at a chitin: mannitol ratio of 2:8 (w/w and produced by roll compaction (RC. Differential scanning calorimetry (DSC, Fourier transform-Infrared (FT-IR, X-ray powder diffraction (XRPD and scanning electron microscope (SEM techniques were used to characterize Cop–CM, in addition to characterization of its powder and ODT dosage form. The effect of particle size distribution of Cop–CM was investigated and found to have no significant influence on the overall tablet physical properties. The compressibility parameter (a for Cop–CM was calculated from a Kawakita plot and found to be higher (0.661 than that of mannitol (0.576 due to the presence of the highly compressible chitin (0.818. Montelukast sodium and domperidone ODTs produced, using Cop–CM, displayed excellent physicochemical properties. The exceptional binding, fast wetting and superdisintegration properties of Cop–CM, in comparison with commercially available co-processed ODT excipients, results in a unique multifunctional base which can successfully be used in the formulation of oro-dispersible and fast immediate release tablets.

  3. Chitin and chitosan from the Norway lobster by-products: Antimicrobial and anti-proliferative activities.

    Science.gov (United States)

    Sayari, Nadhem; Sila, Assaâd; Abdelmalek, Baha Eddine; Abdallah, Rihab Ben; Ellouz-Chaabouni, Semia; Bougatef, Ali; Balti, Rafik

    2016-06-01

    Chitin was recovered through enzymatic deproteinization of the Norway lobster (Nephrops norvegicus) processing by-products. The obtained chitin was characterized and converted into chitosan by N-deacetylation, the acid-soluble form of chitin. Chitosan samples were then characterized by Fourier transform infrared spectroscopy (FTIR) and 13 Cross polarization magic angle spinning nuclear magnetic resonance (CP/MAS)-NMR spectroscopy. The antimicrobial activity and anti-proliferative capacity of chitosan were evaluated. Antimicrobial activity assays indicated that prepared chitosan exhibited marked inhibitory activity against the bacterial and fungal strains tested. Further, cytotoxic effects of chitosan samples on human colon carcinoma cells HCT116 was evaluated using the MTT assay. Chitosan showed the antiproliferative capacity against the colon-cancer-cell HCT116 in a dose dependent manner with IC50 of 4.6mg/ml. Indeed, HCT116 cell proliferation was significantly inhibited (pchitosan after 24h of cell treatment. The chitosan showed high antitumor activity which seemed to be dependent on its characteristics such as acetylation degree. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The biocompatibility of dibutyryl chitin in the context of wound dressings.

    Science.gov (United States)

    Muzzarelli, Riccardo A A; Guerrieri, Mario; Goteri, Gaia; Muzzarelli, Corrado; Armeni, Tatiana; Ghiselli, Roberto; Cornelissen, Maria

    2005-10-01

    Dibutyryl chitin (DBC) is a modified chitin carrying butyryl groups at 3 and 6 positions; its peculiarity is that it dissolves promptly in common solvents, while being insoluble in aqueous systems. The high biocompatibility of dibutyryl chitin in the form of films and non-wovens has been demonstrated for human, chick and mouse fibroblasts by the Viability/Cytotoxicity assay, In situ Cell Proliferation assay, Neutral Red Retention assay, Lactate Dehydrogenase Release assay, MTS cytotoxicity assay, and scanning electron microscopy. DBC was hardly degradable by lysozyme, amylase, collagenase, pectinase and cellulase over the observation period of 48 days at room temperature, during which no more than 1.33% by weight of the DBC filaments (0.3 mm diameter) was released to the aqueous medium. DBC non-wovens were incorporated into 5-methylpyrrolidinone chitosan solution and submitted to freeze-drying to produce a reinforced wound dressing material. The latter was tested in vivo in full thickness wounds in rats. The insertion of 4x4 mm pieces did not promote any adverse effect on the healing process, as shown histologically. DBC is therefore suitable for contacting intact and wounded human tissues.

  5. Co-Processed Chitin-Mannitol as a New Excipient for Oro-Dispersible Tablets

    Science.gov (United States)

    Daraghmeh, Nidal; Chowdhry, Babur Z.; Leharne, Stephen A.; Al Omari, Mahmoud M. H.; Badwan, Adnan A.

    2015-01-01

    This study describes the preparation, characterization and performance of a novel excipient for use in oro-dispersible tablets (ODT). The excipient (Cop–CM) consists of chitin and mannitol. The excipient with optimal physicochemical properties was obtained at a chitin: mannitol ratio of 2:8 (w/w) and produced by roll compaction (RC). Differential scanning calorimetry (DSC), Fourier transform-Infrared (FT-IR), X-ray powder diffraction (XRPD) and scanning electron microscope (SEM) techniques were used to characterize Cop–CM, in addition to characterization of its powder and ODT dosage form. The effect of particle size distribution of Cop–CM was investigated and found to have no significant influence on the overall tablet physical properties. The compressibility parameter (a) for Cop–CM was calculated from a Kawakita plot and found to be higher (0.661) than that of mannitol (0.576) due to the presence of the highly compressible chitin (0.818). Montelukast sodium and domperidone ODTs produced, using Cop–CM, displayed excellent physicochemical properties. The exceptional binding, fast wetting and superdisintegration properties of Cop–CM, in comparison with commercially available co-processed ODT excipients, results in a unique multifunctional base which can successfully be used in the formulation of oro-dispersible and fast immediate release tablets. PMID:25830680

  6. Cigarette Smoke-Exposed Candida albicans Increased Chitin Production and Modulated Human Fibroblast Cell Responses

    Directory of Open Access Journals (Sweden)

    Humidah Alanazi

    2014-01-01

    Full Text Available The predisposition of cigarette smokers for development of respiratory and oral bacterial infections is well documented. Cigarette smoke can also contribute to yeast infection. The aim of this study was to investigate the effect of cigarette smoke condensate (CSC on C. albicans transition, chitin content, and response to environmental stress and to examine the interaction between CSC-pretreated C. albicans and normal human gingival fibroblasts. Following exposure to CSC, C. albicans transition from blastospore to hyphal form increased. CSC-pretreated yeast cells became significantly (P<0.01 sensitive to oxidation but significantly (P<0.01 resistant to both osmotic and heat stress. CSC-pretreated C. albicans expressed high levels of chitin, with 2- to 8-fold recorded under hyphal conditions. CSC-pretreated C. albicans adhered better to the gingival fibroblasts, proliferated almost three times more and adapted into hyphae, while the gingival fibroblasts recorded a significantly (P<0.01 slow growth rate but a significantly higher level of IL-1β when in contact with CSC-pretreated C. albicans. CSC was thus able to modulate both C. albicans transition through the cell wall chitin content and the interaction between C. albicans and normal human gingival fibroblasts. These findings may be relevant to fungal infections in the oral cavity in smokers.

  7. Functional characterization of cellulose and chitin synthase genes in Oomycetes

    OpenAIRE

    Fugelstad, Johanna

    2011-01-01

    Some species of Oomycetes are well studied pathogens that cause considerable economical losses in the agriculture and aquaculture industries. Currently, there are no chemicals available that are environmentally friendly and at the same time efficient Oomycete inhibitors. The cell wall of Oomycetes consists of b-(1à3) and b-(1à6)-glucans, cellulose and in some species minute amounts of chitin. The biosynthesis of cellulose and chitin in Oomycetes is poorly understood. However, cell wall synthe...

  8. Digestibility of chitin in cod, Gadus morhua, in vivo

    Science.gov (United States)

    Danulat, Eva

    1987-12-01

    Sixteen cod, Gadus morhua (L.), were individually fed a single ration of shrimps, Crangon allmanni. Four fish were killed and examined 6, 12, 24 and 48 h after the fish had been fed. Chitinase activities were measured in the extracts of stomach contents, stomach tissue, pyloric caecae, intestinal contents and intestinal tissue. The level of enzyme activity in different parts of the digestive tract was shown to be dependent on the phase of the digestive process. High concentrations of the chitin degradation product N-acetyl-D-glucosamine were determined in the stomach and in the intestinal contents. Based on the chitin concentration in the food organisms and the individual food uptake, the amount of chitin consumed by each fish could be calculated. Only up to 9% of the ingested chitin was recovered from the intestinal contents of the fish at any given time after feeding (6, 12, 24 and 48 h). In addition, only 2.4% of the chitin consumed with the food could be recovered in the collected faeces of the fish. The 4 cod killed 48 h after feeding had completely emptied their stomach. Chitin digestion in these fish was calculated to have been 90%.

  9. Bacterial chitin hydrolysis in two lakes with contrasting trophic statuses.

    Science.gov (United States)

    Köllner, Krista E; Carstens, Dörte; Keller, Esther; Vazquez, Francisco; Schubert, Carsten J; Zeyer, Josef; Bürgmann, Helmut

    2012-02-01

    Chitin, which is a biopolymer of the amino sugar glucosamine (GlcN), is highly abundant in aquatic ecosystems, and its degradation is assigned a key role in the recycling of carbon and nitrogen. In order to study the significance of chitin decomposition in two temperate freshwater lakes with contrasting trophic and redox conditions, we measured the turnover rate of the chitin analog methylumbelliferyl-N,N'-diacetylchitobioside (MUF-DC) and the presence of chitinase (chiA) genes in zooplankton, water, and sediment samples. In contrast to the eutrophic and partially anoxic lake, chiA gene fragments were detectable throughout the oligotrophic water column and chiA copy numbers per ml of water were up to 15 times higher than in the eutrophic waters. For both lakes, the highest chiA abundance was found in the euphotic zone--the main habitat of zooplankton, but also the site of production of easily degradable algal chitin. The bulk of chitinase activity was measured in zooplankton samples and the sediments, where recalcitrant chitin is deposited. Both, chiA abundance and chitinase activity correlated well with organic carbon, nitrogen, and concentrations of particulate GlcN. Our findings show that chitin, although its overall contribution to the total organic carbon is small (~0.01 to 0.1%), constitutes an important microbial growth substrate in these temperate freshwater lakes, particularly where other easily degradable carbon sources are scarce.

  10. Protective Effect of Chitin Urocanate Nanofibers against Ultraviolet Radiation

    Directory of Open Access Journals (Sweden)

    Ikuko Ito

    2015-12-01

    Full Text Available Urocanic acid is a major ultraviolet (UV-absorbing chromophore. Chitins are highly crystalline structures that are found predominantly in crustacean shells. Alpha-chitin consists of microfibers that contain nanofibrils embedded in a protein matrix. Acid hydrolysis is a common method used to prepare chitin nanofibrils (NFs. We typically obtain NFs by hydrolyzing chitin with acetic acid. However, in the present study, we used urocanic acid to prepare urocanic acid chitin NFs (UNFs and examined its protective effect against UVB radiation. Hos: HR-1 mice coated with UNFs were UVB irradiated (302 nm, 150 mJ/cm2, and these mice showed markedly lower UVB radiation-induced cutaneous erythema than the control. Additionally, sunburn cells were rarely detected in the epidermis of UNFs-coated mice after UVB irradiation. Although the difference was not as significant as UNFs, the number of sunburn cells in mice treated with acetic acid chitin nanofibrils (ANFs tended to be lower than in control mice. These results demonstrate that ANFs have a protective effect against UVB and suggest that the anti-inflammatory and antioxidant effects of NFs influence the protective effect of ANFs against UVB radiation. The combination of NFs with other substances that possess UV-protective effects, such as urocanic acid, may provide an enhanced protective effect against UVB radiation.

  11. Three-dimensional imaging of plant cuticle architecture using confocal scanning laser microscopy.

    Science.gov (United States)

    Buda, Gregory J; Isaacson, Tal; Matas, Antonio J; Paolillo, Dominick J; Rose, Jocelyn K C

    2009-10-01

    Full appreciation of the roles of the plant cuticle in numerous aspects of physiology and development requires a comprehensive understanding of its biosynthesis and deposition; however, much is still not known about cuticle structure, trafficking and assembly. To date, assessment of cuticle organization has been dominated by 2D imaging, using histochemical stains in conjunction with light and fluorescence microscopy. This strategy, while providing valuable information, has limitations because it attempts to describe a complex 3D structure in 2D. An imaging technique that could accurately resolve 3D architecture would provide valuable additions to the growing body of information on cuticle molecular biology and biochemistry. We present a novel application of 3D confocal scanning laser microscopy for visualizing the architecture, deposition patterns and micro-structure of plant cuticles, using the fluorescent stain auramine O. We demonstrate the utility of this technique by contrasting the fruit cuticle of wild-type tomato (Solanum lycopersicum cv. M82) with those of cutin-deficient mutants. We also introduce 3D cuticle modeling based on reconstruction of serial optical sections, and describe its use in identification of several previously unreported features of the tomato fruit cuticle.

  12. Fruit cuticle lipid composition and water loss in a diverse collection of pepper (capsicum)

    Science.gov (United States)

    Pepper (Capsicum spp.) fruits are covered by a relatively thick coating of cuticle that limits fruit water loss, a trait previously associated with maintenance of post-harvest fruit quality during commercial marketing. We’ve examined the fruit cuticles from 50 diverse pepper genotypes from a world c...

  13. Impact of cuticle on calculations of the CO2 concentration inside leaves.

    Science.gov (United States)

    Boyer, John S

    2015-12-01

    Water vapor over-estimates the CO 2 entering leaves during photosynthesis because the cuticle and epidermis transmit more water vapor than CO 2 . Direct measurements of internal CO 2 concentrations may be preferred. The CO2 concentration inside leaves (c i) is typically calculated from the relationship between water vapor diffusing out while CO2 diffuses in. Diffusion through the cuticle/epidermis is usually not considered. This study was undertaken to determine how much the calculations would be affected by including cuticle properties. Previous studies indicate that measurable amounts of CO2 and water vapor move through the cuticle, although much less CO2 than water vapor. The present experiments were conducted with sunflower (Helianthus annuus L) leaves in a gas exchange apparatus designed to directly measure c i, while simultaneously calculating c i. Results showed that, in normal air, calculated c i were always higher than directly measured ones, especially when abscisic acid was fed to the leaves to close the stomata and cause gas exchange to be dominated by the cuticle. The effect was attributed mostly to the reliance on the gas phase for the calculations without taking cuticle properties into account. Because cuticle properties are usually unknown and vary with the turgor of the leaf, which can stretch the waxes, it is difficult to include cuticle properties in the calculation. It was concluded that direct measurement of c i may be preferable to the calculations.

  14. Turgor and the transport of CO2 and water across the cuticle (epidermis) of leaves

    Science.gov (United States)

    Boyer, John S.

    2015-01-01

    Leaf photosynthesis relies on CO2 diffusing in while water vapour diffuses out. When stomata close, cuticle waxes on the epidermal tissues increasingly affect this diffusion. Also, changes in turgor can shrink or swell a leaf, varying the cuticle size. In this study, the properties of the cuticle were investigated while turgor varied in intact leaves of hypo stomatous grape (Vitis vinifera L.) or amphistomatous sunflower (Helianthus annuus L.). For grape, stomata on the abaxial surface were sealed and high CO2 concentrations outside the leaf were used to maximize diffusion through the adaxial, stoma-free cuticle. For sunflower, stomata were closed in the dark or with abscisic acid to maximize the cuticle contribution to the path. In both species, the internal CO2 concentration was measured directly and continuously while other variables were determined to establish the cuticle properties. The results indicated that stomatal closure diminished the diffusion of both gases in both species, but for CO2 more than for water vapour. Decreasing the turgor diminished the movement of both gases through the cuticle of both species. Because this turgor effect was observed in the adaxial surface of grape, which had no stomata, it could only be attributed to cuticle tightening. Comparing calculated and measured concentrations of CO2 in leaves revealed differences that became large as stomata began to close. These differences in transport, together with turgor effects, suggest calculations of the CO2 concentration inside leaves need to be viewed with caution when stomata begin to close. PMID:25737532

  15. Diffusion and Electric Mobility of Ions within Isolated Cuticles of Citrus aurantium 1

    Science.gov (United States)

    Tyree, Melvin T.; Wescott, Charles R.; Tabor, Christopher A.

    1991-01-01

    We report a new method for measuring cation and anion permeability across cuticles of sour orange, Citrus aurantium, leaves. The method requires the measurement of two electrical parameters: the diffusion potential arising when the two sides of the cuticle are bathed in unequal concentrations of a Cl− salt; and the electrical conductance of the cuticle measured at a salt concentration equal to the average of that used in the diffusion-potential measurement. The permeabilities of H+, Li+, Na+, K+, and Cs+ ranged from 2 × 10−8 to 0.6 × 10−8 meters per second when cuticles were bathed in 2 moles per cubic meter Cl− salts. The permeability of Cl− was 3 × 10−9 meters per second. The permeability of Li+, Na+, and K+ was about five times less when measured in 500 moles per cubic meter Cl− salts. We also report an asymmetry in cuticle-conductance values depending on the magnitude and the direction of current flow. The asymmetry disappears at low current-pulse magnitude and increases linearly with the magnitude of the current pulse. This phenomenon is explained in terms of transport-number effects in a bilayer model of the cuticle. Conductance is not augmented by current carried by exchangeable cations in cuticles; conductance is rate limited by the outer waxy layer of the cuticle. PMID:16668382

  16. Squid pen-inspired chitinous functional materials: Hierarchical chitin fibers by centrifugal jet-spinning and transparent chitin fiber-reinforced composite

    Science.gov (United States)

    Jeong, Seung-Hwan; Kim, Joong-Kwon; Lim, Young-Woo; Hwang, Hyun-Bin; Kwon, Hee-Young; Bae, Byeong-Soo; Jin, Jungho

    2018-01-01

    Here, inspired by the fibrous composite structure of a squid pen, we introduce hierarchical chitin fibers (herein, termed "Chiber") and their transparent composites and demonstrate the potential of these chitinous functional materials as a sustainable separation-membrane and reinforcing filler for composites. We employ a centrifugal jet-spinning process to fabricate Chiber with aligned chitin nanofibrillar architectures, for which we discuss the processing-morphology relationship. A nonwoven fiber-mat made of Chiber exhibits excellent adsorbing performance for a toxic ionic dye (Congo Red), and has a low coefficient of thermal expansion comparable to that of glass fibers. Finally, we demonstrate a squid pen-mimetic transparent composite using Chiber and investigate its optical property.

  17. Genetic variation in the cuticle-degrading protease activity of the entomopathogen Metarhizium flavoviride

    Directory of Open Access Journals (Sweden)

    Fabiana Gisele da Silva Pinto

    2002-01-01

    Full Text Available Extracellular proteases have been shown to be factors of virulence in fungal entomopathogenicity. We examined the production of the cuticle-degrading extracellular proteases chymoelastase (Pr1 and trypsin (Pr2 in isolates of the fungus Metarhizium flavoviride. Fungal growth was in a mineral medium (MM containing nitrate, and in MM supplemented with either cuticle from Rhammatocerus schistocercoides or with the non-cuticular substrate casein. The substrates used for growth influenced the expression of both analyzed proteases, the highest protease activities of nearly all isolates having been observed in the medium containing insect cuticle, with more Pr1 than Pr2 being produced. There was a natural variability in the production of cuticle-degrading proteases among isolates, although this was less evident for Pr2. Our data support the hypothesis that the production of Pr1 on insect cuticle is a useful characteristic for the analysis of intraspecific variability of M. flavoviride isolates.

  18. Cuticle thickening associated with pyrethroid resistance in the major malaria vector Anopheles funestus

    Directory of Open Access Journals (Sweden)

    Coetzee M

    2010-08-01

    Full Text Available Abstract Background Malaria in South Africa is primarily transmitted by Anopheles funestus Giles. Resistance to pyrethroid insecticides in An. funestus in northern Kwazulu/Natal, South Africa, and in neighbouring areas of southern Mozambique enabled populations of this species to increase their ranges into areas where pyrethroids were being exclusively used for malaria control. Pyrethroid resistance in southern African An. funestus is primarily conferred by monooxygenase enzyme metabolism. However, selection for this resistance mechanism is likely to have occurred in conjunction with other factors that improve production of the resistance phenotype. A strong candidate is cuticle thickening. This is because thicker cuticles lead to slower rates of insecticide absorption, which is likely to increase the efficiency of metabolic detoxification. Results Measures of mean cuticle thickness in laboratory samples of female An. funestus were obtained using scanning electron microscopy (SEM. These females were drawn from a laboratory colony carrying the pyrethroid resistance phenotype at a stable rate, but not fixed. Prior to cuticle thickness measurements, these samples were characterised as either more or less tolerant to permethrin exposure in one experiment, and either permethrin resistant or susceptible in another experiment. There was a significant and positive correlation between mean cuticle thickness and time to knock down during exposure to permethrin. Mean cuticle thickness was significantly greater in those samples characterised either as more tolerant or resistant to permethrin exposure compared to those characterised as either less tolerant or permethrin susceptible. Further, insecticide susceptible female An. funestus have thicker cuticles than their male counterparts. Conclusion Pyrethroid tolerant or resistant An. funestus females are likely to have thicker cuticles than less tolerant or susceptible females, and females generally have

  19. Polarizing properties and structural characteristics of the cuticle of the scarab Beetle Chrysina gloriosa

    Energy Technology Data Exchange (ETDEWEB)

    Fernández del Río, Lía, E-mail: liafe@ifm.liu.se; Arwin, Hans; Järrendahl, Kenneth

    2014-11-28

    The scarab beetle Chrysina gloriosa is green with gold-colored stripes along its elytras. The properties of light reflected on these areas are investigated using Mueller-matrix spectroscopic ellipsometry. Both areas reflect light with high degree of left-handed polarization but this effect occurs for specular reflection for the gold-colored areas and for off-specular angles for the green areas. The colors and polarization phenomena originate from reflection of light in the cuticle and a structural analysis is presented to facilitate understanding of the different behaviors of these two areas. Scanning electron microscopy (SEM) images of the cross section of beetle cuticles show a multilayered structure. On the gold-colored areas the layers are parallel to the surface whereas on the green-colored areas they form cusp-like structures. Optical microscopy images show a rather flat surface in the gold-colored areas compared to the green-colored areas which display a net of polygonal cells with star-shaped cavities in the center. Each of the polygons corresponds to one of the cusps observed in the SEM images. Atomic force microscopy images of the star-shaped cavities are also provided. The roughness of the surface and the cusp-like structure of the green-colored areas are considered to cause scattering on this area. - Highlights: • Chrysina gloriosa reflects light with high degree of left-handed polarization. • Gold-colored areas are good specular reflectors whereas green-colored areas scatter light. • The cusp-like structure in the green areas is responsible for the scattering.

  20. Surfactant effects on the affinity of plant cuticles with organic pollutants.

    Science.gov (United States)

    Li, Yungui; Chen, Baoliang; Chen, Zaiming; Zhu, Lizhong

    2009-05-13

    To precisely predict organics accumulation and crop safety, the affinity of fruit cuticles for naphthalene and 1-naphthol was investigated with the presence of three surfactants below and above the critical micelle concentration (CMC), including anionic sodium dodecylbenzene sulfonate (SDBS), cationic cetyltrimethylammonium bromide (CTMAB), and nonionic polyoxyethylene (20) sorbitan monolaurate (Tween 20). Tomato and apple cuticles with distinct compositions were selected. With increasing SDBS concentrations, apparent sorption coefficients (K(d)*) of 1-naphthol by both cuticles first increased a bit and then decreased slightly. The K(d)* of naphthalene by tomato cuticle is sensitive to SDBS concentration with a sharp increase and then decrease, whereas SDBS has little effect on naphthalene K(d)* by apple cuticle. For CTMAB with lower CMC, the naphthalene K(d)* decreased more quickly. Tween 20 seems to be ineffective on naphthalene sorption by both cuticles. Nevertheless, the intrinsic sorption coefficients (K(d)) were almost promoted by the coexisting surfactants, resulting from the cuticle-sorbed surfactant's plasticizing effect.

  1. Stimulation of chitin synthesis rescues Candida albicans from echinocandins.

    Directory of Open Access Journals (Sweden)

    Louise A Walker

    2008-04-01

    Full Text Available Echinocandins are a new generation of novel antifungal agent that inhibit cell wall beta(1,3-glucan synthesis and are normally cidal for the human pathogen Candida albicans. Treatment of C. albicans with low levels of echinocandins stimulated chitin synthase (CHS gene expression, increased Chs activity, elevated chitin content and reduced efficacy of these drugs. Elevation of chitin synthesis was mediated via the PKC, HOG, and Ca(2+-calcineurin signalling pathways. Stimulation of Chs2p and Chs8p by activators of these pathways enabled cells to survive otherwise lethal concentrations of echinocandins, even in the absence of Chs3p and the normally essential Chs1p, which synthesize the chitinous septal ring and primary septum of the fungus. Under such conditions, a novel proximally offset septum was synthesized that restored the capacity for cell division, sustained the viability of the cell, and abrogated morphological and growth defects associated with echinocandin treatment and the chs mutations. These findings anticipate potential resistance mechanisms to echinocandins. However, echinocandins and chitin synthase inhibitors synergized strongly, highlighting the potential for combination therapies with greatly enhanced cidal activity.

  2. Chitins and Chitosans as Immunoadjuvants and Non-Allergenic Drug Carriers

    OpenAIRE

    Muzzarelli, Riccardo A. A.

    2010-01-01

    Due to the fact that some individuals are allergic to crustaceans, the presumed relationship between allergy and the presence of chitin in crustaceans has been investigated. In vivo, chitin is part of complex structures with other organic and inorganic compounds: in arthropods chitin is covalently linked to proteins and tanned by quinones, in fungi it is covalently linked to glucans, while in bacteria chitin is diversely combined according to Gram(+/-) classification. On the other hand, isola...

  3. Insoluble, nonhydrolyzable highly aliphatic biopolymers from algal cell walls and vascular plant cuticles and barks as sources of N-alkanes in crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Tegelaar, E.W.; De Leeuw, J.E.; Horsfield, B.

    1989-03-01

    Recently discovered insoluble, nonhydrolyzable highly aliphatic biopolymers occurring in cell walls of several extant algae and in cuticles and barks of vascular plants are selectively preserved during diagenesis and represent as such, or in a slightly altered form, a considerable part of kerogens. Thermal simulation experiments performed with these isolated biopolymers of extant organisms yield series of n-alkanes with carbon number distribution patterns very similar to those of n-alkanes in natural crude oils.

  4. A permeable cuticle is associated with the release of reactive oxygen species and induction of innate immunity.

    Directory of Open Access Journals (Sweden)

    Floriane L'Haridon

    2011-07-01

    Full Text Available Wounded leaves of Arabidopsis thaliana show transient immunity to Botrytis cinerea, the causal agent of grey mould. Using a fluorescent probe, histological staining and a luminol assay, we now show that reactive oxygen species (ROS, including H(2O(2 and O(2 (-, are produced within minutes after wounding. ROS are formed in the absence of the enzymes Atrboh D and F and can be prevented by diphenylene iodonium (DPI or catalase. H(2O(2 was shown to protect plants upon exogenous application. ROS accumulation and resistance to B. cinerea were abolished when wounded leaves were incubated under dry conditions, an effect that was found to depend on abscisic acid (ABA. Accordingly, ABA biosynthesis mutants (aba2 and aba3 were still fully resistant under dry conditions even without wounding. Under dry conditions, wounded plants contained higher ABA levels and displayed enhanced expression of ABA-dependent and ABA-reporter genes. Mutants impaired in cutin synthesis such as bdg and lacs2.3 are already known to display a high level of resistance to B. cinerea and were found to produce ROS even when leaves were not wounded. An increased permeability of the cuticle and enhanced ROS production were detected in aba2 and aba3 mutants as described for bdg and lacs2.3. Moreover, leaf surfaces treated with cutinase produced ROS and became more protected to B. cinerea. Thus, increased permeability of the cuticle is strongly linked with ROS formation and resistance to B. cinerea. The amount of oxalic acid, an inhibitor of ROS secreted by B. cinerea could be reduced using plants over expressing a fungal oxalate decarboxylase of Trametes versicolor. Infection of such plants resulted in a faster ROS accumulation and resistance to B. cinerea than that observed in untransformed controls, demonstrating the importance of fungal suppression of ROS formation by oxalic acid. Thus, changes in the diffusive properties of the cuticle are linked with the induction ROS and attending

  5. Chitin stimulates production of the antibiotic andrimid in a Vibrio corallilyticus strain

    DEFF Research Database (Denmark)

    Wietz, Matthias; Månsson, Maria; Gram, Lone

    2011-01-01

    per cell was twofold higher. In cultures with Artemia as live chitin model system, S2052 reached up to 108 cells ml-1, produced andrimid and showed attachment to the exoskeleton and chitinous exuviae. The metabolic focus on andrimid production with chitin indicates that the antibiotic could serve...

  6. Response of the chitinolytic microbial community to chitin amendments of dune soils

    NARCIS (Netherlands)

    De Boer, W.; Gerards, S.; Klein Gunnewiek, P.J.A.; Modderman, R.

    1999-01-01

    The dynamics of culturable chitin-degrading microorganisms were studied during a 16-week incubation of chitin-amended coastal dune soils that differed in acidity. Soil samples were incubated at normal (5% Why) and high (15% w/w) moisture levels. More than half of the added chitin was decomposed

  7. Induction of innate immunity by Apergillus fumigatus cell wall polysaccharides is enhanced by the composite presentation of chitin and beta-glucan

    DEFF Research Database (Denmark)

    Dubey, L. K.; Moeller, J. B.; Schlosser, A.

    2014-01-01

    Chitin and beta-glucan are conserved throughout evolution in the fungal cell wall and are the most common polysaccharides in fungal species. Together, these two polysaccharides form a structural scaffold that is essential for the survival of the fungus. In the present study, we demonstrated...... that Aspergillus fumigatus alkali-insoluble cell wall fragments (AIF), composed of chitin linked covalently to beta-glucan, induced enhanced immune responses when compared with individual cell wall polysaccharides. Intranasal administration of AIF induced eosinophil and neutrophil recruitment, chitinase activity......, TNF-alpha and TSLP production in mice lungs. Selective destruction of chitin or beta-glucan from AIF significantly reduced eosinophil and neutrophil recruitment as well as chitinase activity and cytokine expression by macrophages, indicating the synergistic effect of the cell wall polysaccharides when...

  8. Effects of chitin synthase double-stranded RNA on molting and oogenesis in the Chagas disease vector Rhodnius prolixus.

    Science.gov (United States)

    Mansur, Juliana F; Alvarenga, Evelyn S L; Figueira-Mansur, Janaina; Franco, Thiago A; Ramos, Isabela B; Masuda, Hatisaburo; Melo, Ana C A; Moreira, Mônica F

    2014-08-01

    In this study, we provided the demonstration of the presence of a single CHS gene in the Rhodnius prolixus (a blood-sucking insect) genome that is expressed in adults (integument and ovary) and in the integument of nymphs during development. This CHS gene appears to be essential for epidermal integrity and egg formation in R. prolixus. Because injection of CHS dsRNA was effective in reducing CHS transcript levels, phenotypic alterations in the normal course of ecdysis occurred. In addition, two phenotypes with severe cuticle deformations were observed, which were associated with loss of mobility and lifetime. The CHS dsRNA treatment in adult females affected oogenesis, reducing the size of the ovary and presenting a greater number of atresic oocytes and a smaller number of chorionated oocytes compared with the control. The overall effect was reduced oviposition. The injection of CHS dsRNA modified the natural course of egg development, producing deformed eggs that were dark in color and unable to hatch, distinct from the viable eggs laid by control females. The ovaries, which were examined under fluorescence microscopy using a probe for chitin detection, showed a reduced deposition on pre-vitellogenic and vitellogenic oocytes compared with control. Taken together, these data suggest that the CHS gene is fundamentally important for ecdysis, oogenesis and egg hatching in R. prolixus and also demonstrated that the CHS gene is a good target for controlling Chagas disease vectors. Published by Elsevier Ltd.

  9. Effects of egg washing and storage temperature on the quality of eggshell cuticle and eggs.

    Science.gov (United States)

    Liu, Yu-Chi; Chen, Ter-Hsin; Wu, Ying-Chen; Lee, Yi-Chain; Tan, Fa-Jui

    2016-11-15

    This study investigated the quality of washed and unwashed eggs stored at 7°C (WC and UC for washed and unwashed eggs, respectively) and 25°C (WR and UR for washed and unwashed eggs, respectively) for 4weeks. The results show that the Haugh unit, albumin pH, thick albumin ratio, yolk index, air cell size, and S-ovalbumin content of UC were significantly the most superior, followed by those of WC, WR, and UR, in that order. Scanning electron microscopy and cuticle staining confirmed the damages and decreased cuticle coverage caused by washing and extended storage. Attenuated total reflection Fourier transform infrared spectroscopy revealed that cuticle composition changed significantly after washing and storage (Pegg quality, and egg washing reduced cuticle coverage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Polar Paths of Diffusion across Plant Cuticles: New Evidence for an Old Hypothesis

    OpenAIRE

    Schreiber, Lukas

    2005-01-01

    • Background The plant cuticle is an extracellular lipophilic biopolymer covering leaf and fruit surfaces. Its main function is the protection of land-living plants from uncontrolled water loss. In the past, the permeability of the cuticle to water and to non-ionic lipophilic molecules (pesticides, herbicides and other xenobiotics) was studied intensively, whereas cuticular penetration of polar ionic compounds was rarely investigated.

  11. Phytochemistry of the fossilized-cuticle frond Macroneuropteris macrophylla (Pennsylvanian seed fern, Canada)

    Science.gov (United States)

    Zodrow, E.L.; D'Angelo, J. A.; Mastalerz, Maria; Cleal, C.J.; Keefe, D.

    2010-01-01

    In Canada's Sydney Coalfield, specimens of the extinct Carboniferous seed fern Macroneuropteris macrophylla (Brongniart) invariably show preservation stages intermediate between compression and fossilized-cuticle, even concerning a single pinnule. In this interdisciplinary approach, we study a ca. 300 to 350 mm long fossilized-cuticle-preserved frond section of M. macrophylla (Brongniart) that represents about one third of the length of a frond that was originally 1 m long. Size and preservation allow us to study the phytochemistry of the cuticle biomacropolymers over the length of the frond to assess what impact, if any, results would have on Carboniferous palaeophytochemotaxonomy. For comparison, the phytochemistry of compressions with their extracted cuticles from the same species and the same sample locality is also investigated. We use solid- and liquid-state, semi-quantitative Fourier transform infrared spectroscopy (FTIR) for the chemical characterization of the frond.Based on our results, we infer an essentially uniform phytochemistry over the fossilized-cuticle frond, suggesting that only a single pinnule needs to be analyzed to get an overall phytochemical picture of the frond, which has been our long-time working hypothesis. We distinguish between phytochemistry and cutinization. The latter is much less pronounced above than below the frond dichotomy, and we suggest a palaeoecological cause, rather than differing pathways of organic matter transformation. Moreover, cuticles below and above the frond dichotomy have essentially the same epidermal pattern, but those from below have features that may have been an adaptation to prevent stomatal flooding during the tropical, rainy season.This study suggests that chemically the fossilized-cuticle is more similar to the compression than to the cuticle obtained from that compression of the same species which invites reevaluation of the classical compression concept. ?? 2010 Elsevier B.V.

  12. Phytochemistry of the fossilized-cuticle frond Macroneuropteris macrophylla (Pennsylvanian seed fern, Canada)

    Energy Technology Data Exchange (ETDEWEB)

    Zodrow, Erwin L. [Palaeobotanical Laboratory, Cape Breton University, Sydney, Nova Scotia, B1P 6L2 (Canada); D' Angelo, Jose A. [IANIGLA, CCT-CONICET-Mendoza, Avda. Ruiz Leal s/n Parque Gral. San Martin (5500) Mendoza (Argentina); Mastalerz, Maria [Indiana Geological Survey, Indiana University, Bloomington, IN, 47405-2208 (United States); Cleal, Christopher J. [Department of Biodiversity and Systematic Biology, National Museum of Wales, Cathays Park, Cardiff, CF10 3NP (United Kingdom); Keefe, Dale [Molecular Spectroscopy Research Laboratory, Department of Chemistry, Cape Breton University, Sydney, Nova Scotia (Canada)

    2010-11-01

    In Canada's Sydney Coalfield, specimens of the extinct Carboniferous seed fern Macroneuropteris macrophylla (Brongniart) invariably show preservation stages intermediate between compression and fossilized-cuticle, even concerning a single pinnule. In this interdisciplinary approach, we study a ca. 300 to 350 mm long fossilized-cuticle-preserved frond section of M. macrophylla (Brongniart) that represents about one third of the length of a frond that was originally 1 m long. Size and preservation allow us to study the phytochemistry of the cuticle biomacropolymers over the length of the frond to assess what impact, if any, results would have on Carboniferous palaeophytochemotaxonomy. For comparison, the phytochemistry of compressions with their extracted cuticles from the same species and the same sample locality is also investigated. We use solid- and liquid-state, semi-quantitative Fourier transform infrared spectroscopy (FTIR) for the chemical characterization of the frond. Based on our results, we infer an essentially uniform phytochemistry over the fossilized-cuticle frond, suggesting that only a single pinnule needs to be analyzed to get an overall phytochemical picture of the frond, which has been our long-time working hypothesis. We distinguish between phytochemistry and cutinization. The latter is much less pronounced above than below the frond dichotomy, and we suggest a palaeoecological cause, rather than differing pathways of organic matter transformation. Moreover, cuticles below and above the frond dichotomy have essentially the same epidermal pattern, but those from below have features that may have been an adaptation to prevent stomatal flooding during the tropical, rainy season. This study suggests that chemically the fossilized-cuticle is more similar to the compression than to the cuticle obtained from that compression of the same species which invites reevaluation of the classical compression concept. (author)

  13. Charge Transport Mechanism in Thin Cuticles Holding Nandi Flame Seeds

    Directory of Open Access Journals (Sweden)

    Wycliffe K. Kipnusu

    2009-01-01

    Full Text Available Metal-sample-metal sandwich configuration has been used to investigate DC conductivity in 4 m thick Nandi flame [Spathodea campanulata P. Beauv.] seed cuticles. - characteristics showed ohmic conduction at low fields and space charge limited current at high fields. Charge mobility in ohmic region was 4.06×10−5(m2V−1s−1. Temperature-dependent conductivity measurements have been carried out in the temperature range 320 K 450 K. Activation energy within a temperature of 320 K–440 K was about 0.86 eV. Variable range hopping (VRH is the main current transport mechanism at the range of 330–440 K. The VRH mechanism was analyzed based on Mott theory and the Mott parameters: density of localized states near the Fermi-level N(≈9.04×1019(eV−1cm−3 and hopping distance ≈1.44×10−7 cm, while the hopping energy ( was in the range of 0.72 eV–0.98 eV.

  14. Evidence for a radial strain gradient in apple fruit cuticles.

    Science.gov (United States)

    Khanal, Bishnu Prasad; Knoche, Moritz; Bußler, Sara; Schlüter, Oliver

    2014-10-01

    The morphological outer side of the apple fruit cuticle is markedly more strained than the inner side. This strain is released upon wax extraction. This paper investigates the effect of ablating outer and inner surfaces of isolated cuticular membranes (CM) of mature apple (Malus × domestica) fruit using cold atmospheric pressure plasma (CAPP) on the release of strain after extraction of waxes. Strain release was quantified as the decrease in area of CM discs following CAPP treatment and subsequent solvent extraction of wax. Increasing duration of CAPP treatment proportionally decreased CM mass per unit area. There was no difference in mass loss rate between CAPP treatments of outer or inner surfaces. Also, there was no difference in surface area of CMs before and after CAPP treatment. However, upon subsequent wax extraction, surface area of CMs decreased indicating the release of strain. Increasing the duration of CAPP treatment resulted in increasing strain release up to 47.7 ± 8.0 % at 20 min when CAPP was applied to the inner surface. In contrast, strain release was independent of CAPP duration averaging about 12.1 ± 0.6 % when applied to the outer surface of the CM. Our results provide evidence for a marked gradient of strain between the outer side (strained) and the inner side of the CM (not strained) of mature apple fruit.

  15. The evolution of eggshell cuticle in relation to nesting ecology.

    Science.gov (United States)

    D'Alba, Liliana; Maia, Rafael; Hauber, Mark E; Shawkey, Matthew D

    2016-08-17

    Avian eggs are at risk of microbial infection prior to and during incubation. A large number of defence mechanisms have evolved in response to the severe costs imposed by these infections. The eggshell's cuticle is an important component of antimicrobial defence, and its role in preventing contamination by microorganisms in domestic chickens is well known. Nanometer-scale cuticular spheres that reduce microbial attachment and penetration have recently been identified on eggs of several wild avian species. However, whether these spheres have evolved specifically for antimicrobial defence is unknown. Here, we use comparative data on eggshell cuticular structure and nesting ecology to test the hypothesis that birds nesting in habitats with higher risk of infection (e.g. wetter and warmer) are more likely to evolve cuticular nanospheres on their eggshells than those nesting in less risky habitats. We found that nanostructuring, present in 54 of 296 analysed species, is the ancestral condition of avian eggshells and has been retained more often in taxa that nest in humid infection-prone environments, suggesting that they serve critical roles in antimicrobial egg defence. © 2016 The Author(s).

  16. Data for chitin binding activity of Moringa seed resistant protein (MSRP

    Directory of Open Access Journals (Sweden)

    Anudeep Sandanamudi

    2016-12-01

    Full Text Available Chitin binding activity of moringa seed resistant protein (MSRP isolated from defatted moringa seed flour was investigated in the present study “Characterization of soluble dietary fiber from Moringa oleifera seeds and its immunomodulatory effects” (S. Anudeep, V.K. Prasanna, S.M. Adya, C. Radha, 2016 [1]. The assay reaction mixture contained 0.4 mg/ml of MSRP and different amounts (20–100 mg of chitin. MSRP exhibited binding activity over wide range of chitin concentration. Maximum binding activity was observed at 80 mg of chitin. The property of MSRP to bind chitin can be exploited for its purification.

  17. Data for chitin binding activity of Moringa seed resistant protein (MSRP).

    Science.gov (United States)

    Sandanamudi, Anudeep; Bharadwaj, Kishan R; Cheruppanpullil, Radha

    2016-12-01

    Chitin binding activity of moringa seed resistant protein (MSRP) isolated from defatted moringa seed flour was investigated in the present study "Characterization of soluble dietary fiber from Moringa oleifera seeds and its immunomodulatory effects" (S. Anudeep, V.K. Prasanna, S.M. Adya, C. Radha, 2016) [1]. The assay reaction mixture contained 0.4 mg/ml of MSRP and different amounts (20-100 mg) of chitin. MSRP exhibited binding activity over wide range of chitin concentration. Maximum binding activity was observed at 80 mg of chitin. The property of MSRP to bind chitin can be exploited for its purification.

  18. Breeding for cuticle-associated traits in crop species: traits, targets, and strategies.

    Science.gov (United States)

    Petit, Johann; Bres, Cécile; Mauxion, Jean-Philippe; Bakan, Bénédicte; Rothan, Christophe

    2017-11-09

    Improving crop productivity and quality while promoting sustainable agriculture have become major goals in plant breeding. The cuticle is a natural film covering the aerial organs of plants and consists of lipid polyesters covered and embedded with wax. The cuticle protects plants against water loss and pathogens and affects traits with strong impacts on crop quality such as, for horticultural crops, fruit brightness, cracking, russeting, netting, and shelf life. Here we provide an overview of the most important cuticle-associated traits that can be targeted for crop improvement. To date, most studies on cuticle-associated traits aimed at crop breeding have been done on fleshy fruits. Less information is available for staple crops such as rice, wheat or maize. Here we present new insights into cuticle formation and properties resulting from the study of genetic resources available for the various crop species. Our review also covers the current strategies and tools aimed at exploiting available natural and artificially induced genetic diversity and the technologies used to transfer the beneficial alleles affecting cuticle-associated traits to commercial varieties. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. The thermoelectric properties of hornet cuticle: correlation with measuring body sites and activity status.

    Science.gov (United States)

    Pertsis, Vitaly; Sverdlov, Anna; Riabinin, Ksenia; Kozhevnikov, Marija; Ishay, Jacob S

    2004-01-01

    Our study focused on the thermoelectric properties of hornet cuticle at different body compartments and under varying states of awakeness. We also measured the temperature alteration patterns in various body parts of the hornet. Electric voltage and current were dependent on: a) the state of wakefulness; b) the part of the body. The current was lowest in dead hornet cuticle, somewhat higher in narcotized hornet cuticle, considerably higher in the cuticle of hornets awakening from anesthesia and highest in fully awake hornets. Voltage values were of the same order for dead and narcotized hornets, but considerably higher in unanesthetized awake hornets and highest in the cuticle of hornets awakening from anesthesia. At optimal temperature (29 degrees C) the hornet body temperature was higher on the abdominal cuticle than on other body parts. At an ambient temperature of 20 degrees C, the highest temperatures were recorded on the head and thorax, and the lowest on the abdomen. Body temperatures of live hornets were higher than the cooler ambient temperature outside the nest at night. The results suggest that the hornets possess an intrinsic biological heat pump mechanism, which can be used to achieve active thermoregulation.

  20. Characterization of a novel Salmonella typhimurium chitinase which hydrolyzes chitin, chitooligosaccharides and an N-acetyllactosamine conjugate

    DEFF Research Database (Denmark)

    Larsen, Tanja; Petersen, Bent O.; Storgaard, Birgit Groth

    2011-01-01

    -terminal truncated form of chiA lacking a putative chitin-binding domain was amplified by PCR, cloned and expressed in Escherichia coli BL21 (DE3) with an N-terminal (His)(6) tag. The purified enzyme hydrolyzes 4-nitrophenyl N,N'-diacetyl-ß-D-chitobioside, 4-nitrophenyl ß...

  1. A crayfish molar tooth protein with putative mineralized exoskeletal chitinous matrix properties.

    Science.gov (United States)

    Tynyakov, Jenny; Bentov, Shmuel; Abehsera, Shai; Yehezkel, Galit; Roth, Ziv; Khalaila, Isam; Weil, Simy; Berman, Amir; Plaschkes, Inbar; Tom, Moshe; Aflalo, Eliahu D; Sagi, Amir

    2015-11-01

    Some crustaceans possess exoskeletons that are reinforced with calcium carbonate. In the crayfish Cherax quadricarinatus, the molar tooth, which is part of the mandibular exoskeleton, contains an unusual crystalline enamel-like apatite layer. As this layer resembles vertebrate enamel in composition and function, it offers an interesting example of convergent evolution. Unlike other parts of the crayfish exoskeleton, which is periodically shed and regenerated during the molt cycle, molar mineral deposition takes place during the pre-molt stage. The molar mineral composition transforms continuously from fluorapatite through amorphous calcium phosphate to amorphous calcium carbonate and is mounted on chitin. The process of crayfish molar formation is entirely extracellular and presumably controlled by proteins, lipids, polysaccharides, low-molecular weight molecules and calcium salts. We have identified a novel molar protein termed Cq-M15 from C. quadricarinatus and cloned its transcript from the molar-forming epithelium. Its transcript and differential expression were confirmed by a next-generation sequencing library. The predicted acidic pI of Cq-M15 suggests its possible involvement in mineral arrangement. Cq-M15 is expressed in several exoskeletal tissues at pre-molt and its silencing is lethal. Like other arthropod cuticular proteins, Cq-M15 possesses a chitin-binding Rebers-Riddiford domain, with a recombinant version of the protein found to bind chitin. Cq-M15 was also found to interact with calcium ions in a concentration-dependent manner. This latter property might make Cq-M15 useful for bone and dental regenerative efforts. We suggest that, in the molar tooth, this protein might be involved in calcium phosphate and/or carbonate precipitation. © 2015. Published by The Company of Biologists Ltd.

  2. Slow food: insect prey and chitin induce phytohormone accumulation and gene expression in carnivorous Nepenthes plants.

    Science.gov (United States)

    Yilamujiang, Ayufu; Reichelt, Michael; Mithöfer, Axel

    2016-08-01

    Carnivorous Nepenthes plants use modified leaves forming pitfall traps to capture and digest prey, mainly insects, for additional nutrient supply. These traps, so called pitchers, contain a plant-derived fluid composed of many hydrolytic enzymes and defence-related proteins. In this study, the prey-induced induction of corresponding genes of those proteins and a role for phytohormones in this process was analysed. Tissue from insect prey-fed, chitin- and phytohormone-challenged pitchers was harvested and analysed for selected gene expressions by a quantitative PCR technique. Phytohormone levels were determined by LC-MS/MS. Nepenthesin proteolytic activities were measured in the digestive fluid using a fluorescence substrate. Insect prey in the pitchers induced the accumulation of phytohormones such as jasmonates as well as the transcription of studied genes encoding a chitinase 3 and a protease (nepenthesin I), whereas a defence-related protein (PR-1) gene was not induced. Treatment with chitin as a component of the insects' exoskeleton triggered the accumulation of jasmonates, the expression of nepenthesin I and chitinase 3 genes similar to jasmonic acid treatment, and induced protease activity in the fluid. All detectable responses were slowly induced. The results suggest that upon insect prey catch a sequence of signals is initiated: (1) insect-derived chitin, (2) jasmonate as endogenous phytohormone signal, (3) the induction of digestive gene expression and (4) protein expression. This resembles a similar hierarchy of events as described from plant pathogen/herbivore interactions, supporting the idea that carnivory evolved from plant defences. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Chitin elicitation of natural product production in marine bacteria

    DEFF Research Database (Denmark)

    Månsson, Maria; Wietz, Matthias; Larsen, Thomas Ostenfeld

    -negative bacteria (mainly Pseudoalteromonas and Vibrio), we found that some strains were capable of producing antibacterial compounds when grown on chitin, an N-acetyl-D-glucosamine polymer found in the exoskeleton of zooplankton.2 A strain of Vibrio coralliilyticus solely produced the antibiotic andrimid,3...

  4. Chitin-induced responses in the moss Physcomitrella patens

    DEFF Research Database (Denmark)

    Bressendorff, Simon; Rasmussen, Magnus Wohlfahrt; Petersen, Morten

    2017-01-01

    A MAP kinase pathway below a chitin receptor in the moss Physcomitrella patens induces immune responses including rapid growth inhibition, a novel fluorescence burst, and cell wall depositions. The molecular mechanisms producing these three responses are currently unknown but warrant further...

  5. Effect of Acid Hydrolysis on Tableting Properties of Chitin Obtained ...

    African Journals Online (AJOL)

    Results: The combined effect of high temperature (> 80 oC), HCl concentration (> 2 M) and reaction time (> 4 h) led to high depolymerization, reduction in degree of acetylation, crystallinity, chitin yield and thus, decreased tensile strength and accelerated compact disintegration time. Optimal reaction conditions were ...

  6. Biomedical exploitation of chitin and chitosan via mechano-chemical disassembly, electrospinning, dissolution in imidazolium ionic liquids, and supercritical drying.

    Science.gov (United States)

    Muzzarelli, Riccardo A A

    2011-01-01

    Recently developed technology permits to optimize simultaneously surface area, porosity, density, rigidity and surface morphology of chitin-derived materials of biomedical interest. Safe and ecofriendly disassembly of chitin has superseded the dangerous acid hydrolysis and provides higher yields and scaling-up possibilities: the chitosan nanofibrils are finding applications in reinforced bone scaffolds and composite dressings for dermal wounds. Electrospun chitosan nanofibers, in the form of biocompatible thin mats and non-wovens, are being actively studied: composites of gelatin + chitosan + polyurethane have been proposed for cardiac valves and for nerve conduits; fibers are also manufactured from electrospun particles that self-assemble during subsequent freeze-drying. Ionic liquids (salts of alkylated imidazolium) are suitable as non-aqueous solvents that permit desirable reactions to occur for drug delivery purposes. Gel drying with supercritical CO(2) leads to structures most similar to the extracellular matrix, even when the chitosan is crosslinked, or in combination with metal oxides of interest in orthopedics.

  7. Microbial deproteinization of shrimp shell penaeus merguiensis for chitin extraction

    Directory of Open Access Journals (Sweden)

    Fatemeh Sedaghat

    2016-09-01

    Full Text Available Introduction: After cellulose, Chitin is the most abundant biopolymer in nature. The most important derivative of chitin is chitosan, obtained by deacetylation of chitin. Major sources of chitin are the exoskeleton of marine crustaceans such as crab, shrimp, and krill. Chitin extraction from shrimp shells can be carried out chemically or using biological methods. Microbial fermentation as an eco-friendly procedure is a suitable alternative for the chemical and enzymatic processes. In this study, the effect of three protease-producing bacteria species (Pseudomonas aeruginosa, Serratia marcescens, and Bacillus pumilus on the efficiency of microbial demineralization (DM and deproteinization (DP of the shrimp shell penaeus merguiensis, was investigated. Furthermore, the antioxidant activity of hydrolysate obtained during the fermentation process was measured. Materials and methods: Demineralization and deproteinization was carried out by incubating shrimp waste inoculated with bacteria at 30°C and 100 rpm for 6 days. Results: Statistical analysis of data showed a significant difference between the percentage of demineralization and deproteinization in different bacteria species (p<0.05. The highest deproteinization (74.76% and demineralization rate (78.46% were obtained with P. aeruginosa, while the lowest was observed for S. marcescens. Antioxidant activity of hydrolysate also showed a significant difference. The highest reducing power and total antioxidant capacity were observed in volumes of 400 µl hydrolysate of S.marcescens and 100 µl hydrolysate of B. pumilus, respectively. Discussion and conclusion: The results indicated that P. aeruginosa in comparison with other bacterial strains, had a higher ability to remove proteins and minerals from shrimp shell waste. Therefore, the use of this bacterium is suitable for protein and minerals removal from marine crustaceans.

  8. Tomato fruit continues growing while ripening, affecting cuticle properties and cracking.

    Science.gov (United States)

    Domínguez, Eva; Fernández, María Dolores; Hernández, Juan Carlos López; Parra, Jerónimo Pérez; España, Laura; Heredia, Antonio; Cuartero, Jesús

    2012-12-01

    Fruit cuticle composition and their mechanical performance have a special role during ripening because internal pressure is no longer sustained by the degraded cell walls of the pericarp but is directly transmitted to epidermis and cuticle which could eventually crack. We have studied fruit growth, cuticle modifications and its biomechanics, and fruit cracking in tomato; tomato has been considered a model system for studying fleshy fruit growth and ripening. Tomato fruit cracking is a major disorder that causes severe economic losses and, in cherry tomato, crack appearance is limited to the ripening process. As environmental conditions play a crucial role in fruit growing, ripening and cracking, we grow two cherry tomato cultivars in four conditions of radiation and relative humidity (RH). High RH and low radiation decreased the amount of cuticle and cuticle components accumulated. No effect of RH in cuticle biomechanics was detected. However, cracked fruits had a significantly less deformable (lower maximum strain) cuticle than non-cracked fruits. A significant and continuous fruit growth from mature green to overripe has been detected with special displacement sensors. This growth rate varied among genotypes, with cracking-sensitive genotypes showing higher growth rates than cracking-resistant ones. Environmental conditions modified this growth rate during ripening, with higher growing rates under high RH and radiation. These conditions corresponded to those that favored fruit cracking. Fruit growth rate during ripening, probably sustained by an internal turgor pressure, is a key parameter in fruit cracking, because fruits that ripened detached from the vine did not crack. Copyright © Physiologia Plantarum 2012.

  9. A biomimetic approach for designing stent-graft structures: Caterpillar cuticle as design model.

    Science.gov (United States)

    Singh, Charanpreet; Wang, Xungai

    2014-02-01

    Stent-graft (SG) induced biomechanical mismatch at the aortic repair site forms the major reason behind postoperative hemodynamic complications. These complications arise from mismatched radial compliance and stiffness property of repair device relative to native aortic mechanics. The inability of an exoskeleton SG design (an externally stented rigid polyester graft) to achieve optimum balance between structural robustness and flexibility constrains its biomechanical performance limits. Therefore, a new SG design capable of dynamically controlling its stiffness and flexibility has been proposed in this study. The new design is adopted from the segmented hydroskeleton structure of a caterpillar cuticle and comprises of high performance polymeric filaments constructed in a segmented knit architecture. Initially, conceptual design models of caterpillar and SG were developed and later translated into an experimental SG prototype. The in-vitro biomechanical evaluation (compliance, bending moment, migration intensity, and viscoelasticity) revealed significantly better performance of hydroskeleton structure than a commercial SG device (Zenith(™) Flex SG) and woven Dacron(®) graft-prosthesis. Structural segmentation improved the biomechanical behaviour of new SG by inducing a three dimensional volumetric expansion property when the SG was subjected to hoop stresses. Interestingly, this behaviour matches the orthotropic elastic property of native aorta and hence proposes segmented hydroskeleton structures as promising design approach for future aortic repair devices. © 2013 Published by Elsevier Ltd.

  10. Degradation of plant cuticles in soils: impact on formation and sorptive ability of humin-mineral matrices.

    Science.gov (United States)

    Olshansky, Yaniv; Polubesova, Tamara; Chefetz, Benny

    2015-05-01

    Plant cuticles are important precursors for soil organic matter, in particular for soil humin, which is considered an efficient sorbent for organic pollutants. In this study, we examined degradation and transformation of cuticles isolated from fruit and leaves in loamy sand and sandy clay loessial arid brown soils. We then studied sorption of phenanthrene and carbamazepine to humin-mineral matrices isolated from the incubated soils. Low degradation (22%) was observed for agave cuticle in a sandy clay soil system, whereas high degradation (68-78%) was obtained for agave cuticle in a loamy sand soil system and for loamy sand and sandy clay soils amended with tomato cuticle. During incubation, most of the residual organic matter was accumulated in the humin fraction. Sorption of phenanthrene was significantly higher for humin-mineral matrices obtained from soils incubated with plant cuticles as compared with soils without cuticle application. Sorption of carbamazepine to humin-mineral matrices was not affected by cuticle residues. Cooperative sorption of carbamazepine on humin-mineral matrices isolated from sandy clay soil is suggested. Sorption-desorption hysteresis of both phenanthrene and carbamazepine was lower for humin-mineral matrices obtained from soils incubated with plant cuticles as compared with nonamended soils. Our results show that cuticle composition significantly affects the rate and extent of cuticle degradation in soils and that plant cuticle application influences sorption and desorption of polar and nonpolar pollutants by humin-mineral matrices. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Structural alterations, pore generation, and deacetylation of α- and β-chitin submitted to steam explosion.

    Science.gov (United States)

    Tan, Too Shen; Chin, Hui Yen; Tsai, Min-Lang; Liu, Chao-Lin

    2015-05-20

    The purpose of this study was to use an environmentally friendly steam explosion method to achieve α- and β-chitin structural alterations, pore generation, and deacetylation, enhancing the degree of deacetylation (DD) in chitin and extending its applications. The samples of α- and β-chitin possessing various moisture contents that were exploded at 9 kg/cm(2) exhibited higher DDs, lower densities, lower crystallinity and more porous structures compared to unexploded chitin. After explosion, β-chitin exhibited a larger expansion ratio, lower crystallinity and contained a larger proportion of small-sized particles compared to α-chitin. The highest DD values of exploded α- and β-chitin with 75% moisture content were 42.9% and 43.7%, respectively. The exploded chitin samples with lower moisture content exhibited lower DDs, densities, crystallinity indices, smaller particle sizes, and higher expansion ratios than the chitin samples with higher moisture content. The chitin samples with lower moisture content also contained larger and more numerous pores. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. In situ chitin isolation from body parts of a centipede and lysozyme adsorption studies.

    Science.gov (United States)

    Bulut, Esra; Sargin, Idris; Arslan, Ozlem; Odabasi, Mehmet; Akyuz, Bahar; Kaya, Murat

    2017-01-01

    Isolation of structurally intact chitin samples for biotechnological applications has gained much recent attention. So far, three-dimensional chitin isolates have been obtained from only diplopods and sponges. In this study, three-dimensional chitin isolates were obtained from the body parts of centipede Scolopendra sp. (antennae, head, forcipule, collum, trunk, trunk legs and last pair of legs) without leading to structural failure. FT-IR spectra of chitin isolates confirmed that chitin samples are in α allomorph. TGA, XRD and SEM analyses and lysozyme adsorption studies revealed that each chitin isolate had different thermal stability, crystallinity and surface characteristics. Among the chitin isolates, Cu(II)-immobilized forcipule chitin showed the highest affinity for lysozyme (54.1mg/g), whereas chitin from last pair of legs exhibited the lowest affinity (3.7mg/g). This study demonstrated that structurally intact chitin isolates can be obtained from the body parts of centipede Scolopendra sp. (antennae, head, forcipule, collum, trunk, trunk legs and last pair of legs) by using a simple chemical procedure. Also, it gives a biotechnological perspective to the organisms in the group of Chilipoda. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Chemical and structural analysis of Eucalyptus globulus and E. camaldulensis leaf cuticles: a lipidized cell wall region

    Directory of Open Access Journals (Sweden)

    Paula eGuzmán

    2014-09-01

    Full Text Available The plant cuticle has traditionally been conceived as an independent hydrophobic layer that covers the external epidermal cell wall. Due to its complexity, the existing relationship between cuticle chemical composition and ultra-structure remains unclear to date. This study aimed to examine the link between chemical composition and structure of isolated, adaxial leaf cuticles of Eucalyptus camaldulensis and E. globulus by the gradual extraction and identification of lipid constituents (cutin and soluble lipids, coupled to spectroscopic and microscopic analyses. The soluble compounds and cutin monomers identified could not be assigned to a concrete internal cuticle ultra-structure. After cutin depolymerization, a cellulose network resembling the cell wall was observed, with different structural patterns in the regions ascribed to the cuticle proper and cuticular layer, respectively. Our results suggest that the current cuticle model should be revised, stressing the presence and major role of cell wall polysaccharides. It is concluded that the cuticle may be interpreted as a modified cell wall region which contains additional lipids. The major heterogeneity of the plant cuticle makes it difficult to establish a direct link between cuticle chemistry and structure with the existing methodologies.

  14. Chemical and structural analysis of Eucalyptus globulus and E. camaldulensis leaf cuticles: a lipidized cell wall region.

    Science.gov (United States)

    Guzmán, Paula; Fernández, Victoria; Graça, José; Cabral, Vanessa; Kayali, Nour; Khayet, Mohamed; Gil, Luis

    2014-01-01

    The plant cuticle has traditionally been conceived as an independent hydrophobic layer that covers the external epidermal cell wall. Due to its complexity, the existing relationship between cuticle chemical composition and ultra-structure remains unclear to date. This study aimed to examine the link between chemical composition and structure of isolated, adaxial leaf cuticles of Eucalyptus camaldulensis and E. globulus by the gradual extraction and identification of lipid constituents (cutin and soluble lipids), coupled to spectroscopic and microscopic analyses. The soluble compounds and cutin monomers identified could not be assigned to a concrete internal cuticle ultra-structure. After cutin depolymerization, a cellulose network resembling the cell wall was observed, with different structural patterns in the regions ascribed to the cuticle proper and cuticular layer, respectively. Our results suggest that the current cuticle model should be revised, stressing the presence and major role of cell wall polysaccharides. It is concluded that the cuticle may be interpreted as a modified cell wall region which contains additional lipids. The major heterogeneity of the plant cuticle makes it difficult to establish a direct link between cuticle chemistry and structure with the existing methodologies.

  15. Two-way traffic of glycoside hydrolase family 18 processive chitinases on crystalline chitin

    Science.gov (United States)

    Igarashi, Kiyohiko; Uchihashi, Takayuki; Uchiyama, Taku; Sugimoto, Hayuki; Wada, Masahisa; Suzuki, Kazushi; Sakuda, Shohei; Ando, Toshio; Watanabe, Takeshi; Samejima, Masahiro

    2014-06-01

    Processivity refers to the ability of synthesizing, modifying and degrading enzymes to catalyse multiple successive cycles of reaction with polymeric substrates without disengaging from the substrates. Since biomass polysaccharides, such as chitin and cellulose, often form recalcitrant crystalline regions, their degradation is highly dependent on the processivity of degrading enzymes. Here we employ high-speed atomic force microscopy to directly visualize the movement of two processive glycoside hydrolase family 18 chitinases (ChiA and ChiB) from the chitinolytic bacterium Serratia marcescens on crystalline β-chitin. The half-life of processive movement and the velocity of ChiA are larger than those of ChiB, suggesting that asymmetric subsite architecture determines both the direction and the magnitude of processive degradation of crystalline polysaccharides. The directions of processive movements of ChiA and ChiB are observed to be opposite. The molecular mechanism of the two-way traffic is discussed, including a comparison with the processive cellobiohydrolases of the cellulolytic system.

  16. In vivo photoacoustic microscopy of human cuticle microvasculature with single-cell resolution

    Science.gov (United States)

    Hsu, Hsun-Chia; Wang, Lidai; Wang, Lihong V.

    2016-05-01

    As a window on the microcirculation, human cuticle capillaries provide rich information about the microvasculature, such as its morphology, density, dimensions, or even blood flow speed. Many imaging technologies have been employed to image human cuticle microvasculature. However, almost none of these techniques can noninvasively observe the process of oxygen release from single red blood cells (RBCs), an observation which can be used to study healthy tissue functionalities or to diagnose, stage, or monitor diseases. For the first time, we adapted single-cell resolution photoacoustic (PA) microscopy (PA flowoxigraphy) to image cuticle capillaries and quantified multiple functional parameters. Our results show more oxygen release in the curved cuticle tip region than in other regions of a cuticle capillary loop, associated with a low of RBC flow speed in the tip region. Further analysis suggests that in addition to the RBC flow speed, other factors, such as the drop of the partial oxygen pressure in the tip region, drive RBCs to release more oxygen in the tip region.

  17. Diffusion and Electric Mobility of KCI within Isolated Cuticles of Citrus aurantium.

    Science.gov (United States)

    Tyree, M T; Wescott, C R; Tabor, C A; Morse, A D

    1992-07-01

    Fick's second law has been used to predict the time course of electrical conductance change in isolated cuticles following the rapid change in bathing solution (KCI) from concentration C to 0.1 C. The theoretical time course is dependent on the coefficient of diffusion of KCI in the cuticle and the cuticle thickness. Experimental results, obtained from cuticles isolated from sour orange (Citrus aurantium), fit with a diffusion model of an isolated cuticle in which about 90% of the conductance change following a solution change is due to salts diffusing from polar pores in the wax, and 10% of the change is due to salt diffusion from the wax. Short and long time constants for the washout of KCI were found to be 0.11 and 3.8 hours, respectively. These time constants correspond to KCI diffusion coefficients of 1 x 10(-15) and 3 x 10(-17) square meters per second, respectively. The larger coefficient is close to the diffusion coefficient for water in polar pores of Citrus reported elsewhere (M Becker, G Kerstiens, J Schönherr [1986] Trees 1: 54-60). This supports our interpretation of the washout kinetics of KCI following a change in concentration of bathing solution.

  18. Diffusion and Electric Mobility of KCI within Isolated Cuticles of Citrus aurantium 1

    Science.gov (United States)

    Tyree, Melvin T.; Wescott, Charles R.; Tabor, Christopher A.; Morse, Anne D.

    1992-01-01

    Fick's second law has been used to predict the time course of electrical conductance change in isolated cuticles following the rapid change in bathing solution (KCI) from concentration C to 0.1 C. The theoretical time course is dependent on the coefficient of diffusion of KCI in the cuticle and the cuticle thickness. Experimental results, obtained from cuticles isolated from sour orange (Citrus aurantium), fit with a diffusion model of an isolated cuticle in which about 90% of the conductance change following a solution change is due to salts diffusing from polar pores in the wax, and 10% of the change is due to salt diffusion from the wax. Short and long time constants for the washout of KCI were found to be 0.11 and 3.8 hours, respectively. These time constants correspond to KCI diffusion coefficients of 1 × 10−15 and 3 × 10−17 square meters per second, respectively. The larger coefficient is close to the diffusion coefficient for water in polar pores of Citrus reported elsewhere (M Becker, G Kerstiens, J Schönherr [1986] Trees 1: 54-60). This supports our interpretation of the washout kinetics of KCI following a change in concentration of bathing solution. PMID:16668971

  19. The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice.

    Science.gov (United States)

    Miyata, Kana; Kozaki, Toshinori; Kouzai, Yusuke; Ozawa, Kenjirou; Ishii, Kazuo; Asamizu, Erika; Okabe, Yoshihiro; Umehara, Yosuke; Miyamoto, Ayano; Kobae, Yoshihiro; Akiyama, Kohki; Kaku, Hanae; Nishizawa, Yoko; Shibuya, Naoto; Nakagawa, Tomomi

    2014-11-01

    Plants are constantly exposed to threats from pathogenic microbes and thus developed an innate immune system to protect themselves. On the other hand, many plants also have the ability to establish endosymbiosis with beneficial microbes such as arbuscular mycorrhizal (AM) fungi or rhizobial bacteria, which improves the growth of host plants. How plants evolved these systems managing such opposite plant-microbe interactions is unclear. We show here that knockout (KO) mutants of OsCERK1, a rice receptor kinase essential for chitin signaling, were impaired not only for chitin-triggered defense responses but also for AM symbiosis, indicating the bifunctionality of OsCERK1 in defense and symbiosis. On the other hand, a KO mutant of OsCEBiP, which forms a receptor complex with OsCERK1 and is essential for chitin-triggered immunity, established mycorrhizal symbiosis normally. Therefore, OsCERK1 but not chitin-triggered immunity is required for AM symbiosis. Furthermore, experiments with chimeric receptors showed that the kinase domains of OsCERK1 and homologs from non-leguminous, mycorrhizal plants could trigger nodulation signaling in legume-rhizobium interactions as the kinase domain of Nod factor receptor1 (NFR1), which is essential for triggering the nodulation program in leguminous plants, did. Because leguminous plants are believed to have developed the rhizobial symbiosis on the basis of AM symbiosis, our results suggest that the symbiotic function of ancestral CERK1 in AM symbiosis enabled the molecular evolution to leguminous NFR1 and resulted in the establishment of legume-rhizobia symbiosis. These results also suggest that OsCERK1 and homologs serve as a molecular switch that activates defense or symbiotic responses depending on the infecting microbes. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Poriferan Chitin as a Versatile Template for Extreme Biomimetics

    Directory of Open Access Journals (Sweden)

    Marcin Wysokowski

    2015-02-01

    Full Text Available In this mini-review, we shall first cover a short history of the discovery of chitin isolated from sponges; as well as its evolutionarily ancient roots. Next, we will delve into the unique structural, mechanical, and thermal properties of this naturally occurring polymer to illuminate how its physicochemical properties may find uses in diverse areas of the material sciences. We show how the unique properties and morphology of sponge chitin renders it quite useful for the new route of “Extreme Biomimetics”; where high temperatures and pressures allow a range of interesting bioinorganic composite materials to be made. These new biomaterials have electrical, chemical, and material properties that have applications in water filtration, medicine, catalysis, and biosensing.

  1. Surface morphology of chitin highly related with the isolated body part of butterfly (Argynnis pandora).

    Science.gov (United States)

    Kaya, Murat; Bitim, Betül; Mujtaba, Muhammad; Koyuncu, Turgay

    2015-11-01

    This study was conducted to understand the differences in the physicochemical properties of chitin samples isolated from the wings and the other body parts except the wings (OBP) of a butterfly species (Argynnis pandora). The same isolation method was used for obtaining chitin specimens from both types of body parts. The chitin content of the wings (22%) was recorded as being much higher than the OBP (8%). The extracted chitin samples were characterized via FT-IR, TGA, XRD, SEM, and elemental analysis techniques. Results of these characterizations revealed that the chitins from both structures (wings and OBP) were very similar, except for their surface morphologies. SEM results demonstrated one type of surface morphology for the wings and four different surface morphologies for the OBP. Therefore, it can be hypothesized that the surface morphology of the chitin is highly related with the body part. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Customizing Properties of β-Chitin in Squid Pen (Gladius by Chemical Treatments

    Directory of Open Access Journals (Sweden)

    Alessandro Ianiro

    2014-12-01

    Full Text Available The squid pen (gladius from the Loligo vulgaris was used for preparation of β-chitin materials characterized by different chemical, micro- and nano-structural properties that preserved, almost completely the macrostructural and the mechanical ones. The β-chitin materials obtained by alkaline treatment showed porosity, wettability and swelling that are a function of the duration of the treatment. Microscopic, spectroscopic and synchrotron X-ray diffraction techniques showed that the chemical environment of the N-acetyl groups of the β-chitin chains changes after the thermal alkaline treatment. As a consequence, the crystalline packing of the β-chitin is modified, due to the intercalation of water molecules between β-chitin sheets. Potential applications of these β-chitin materials range from the nanotechnology to the regenerative medicine. The use of gladii, which are waste products of the fishing industry, has also important environmental implications.

  3. Effect of Acetyl Group on Mechanical Properties of Chitin/Chitosan Nanocrystal: A Molecular Dynamics Study

    Directory of Open Access Journals (Sweden)

    Junhe Cui

    2016-01-01

    Full Text Available Chitin fiber is the load-bearing component in natural chitin-based materials. In these materials, chitin is always partially deacetylated to different levels, leading to diverse material properties. In order to understand how the acetyl group enhances the fracture resistance capability of chitin fiber, we constructed atomistic models of chitin with varied acetylation degree and analyzed the hydrogen bonding pattern, fracture, and stress-strain behavior of these models. We notice that the acetyl group can contribute to the formation of hydrogen bonds that can stabilize the crystalline structure. In addition, it is found that the specimen with a higher acetylation degree presents a greater resistance against fracture. This study describes the role of the functional group, acetyl groups, in crystalline chitin. Such information could provide preliminary understanding of nanomaterials when similar functional groups are encountered.

  4. Bacterial chitinolytic communities respond to chitin and pH alteration in soil

    DEFF Research Database (Denmark)

    Kielak, Anna; Cretoiu, Mariana; Semenov, Alexander

    2013-01-01

    Chitin amendment is a promising soil management strategy that may enhance the suppressiveness of soil toward plant pathogens. However, we understand very little of the effects of added chitin, including the putative successions that take place in the degradative process. We performed an experiment...... by the addition of chitin at different prevailing soil pH values. Interestingly, a major role of Gram-negative bacteria versus a minor one of Actinobacteria in the immediate response to the added chitin (based on 16S rRNA gene abundance and chiA gene types) was indicated. The results of this study enhance our...... in moderately acid soil in which the level of chitin, next to the pH, was altered. Examination of chitinase activities revealed fast responses to the added crude chitin, with peaks of enzymatic activity occurring on day 7. PCR-denaturing gradient gel electrophoresis (DGGE)-based analyses of 16S rRNA and chi...

  5. Antihepatotoxic effect of isolated chitin from Rhizopus oryzae against paracetamol-induced hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Akila Ramanathan

    2011-03-01

    Full Text Available The present study was aimed at investigating the antihepatotoxic activity of isolated fungal chitin, a natural polysaccharide from Rhizopus oryzae NCIM1009 against paracetamol-induced toxicity in rats. Changes in the levels of biochemical markers of hepatic injury such as serum glutamate oxaloacetic transaminase (SGOT, serum glutamic pyuruvic transaminase (SGPT, alkaline phosphatase, bilirubin and total protein were determined in both treated and control group of rats. The effect of fungal chitin was compared with that of silymarin (25 mg/kg. The results showed that paracetamol (750 mg/kg elevated the levels of biomarkers enzymes. Treatment with fungal chitin (200 mg/kg brought the marker level near to normal and showed significant hepatoprotective activity. Acute toxicity studies of fungal chitin was carried out and found safe up to 2,000 mg/kg. The isolated fungal chitin was characterized by IR spectroscopy and compared with commercial chitin.

  6. Connecting the Molecular Structure of Cutin to Ultrastructure and Physical Properties of the Cuticle in Petals of Arabidopsis.

    Science.gov (United States)

    Mazurek, Sylwester; Garroum, Imène; Daraspe, Jean; De Bellis, Damien; Olsson, Vilde; Mucciolo, Antonio; Butenko, Melinka A; Humbel, Bruno M; Nawrath, Christiane

    2017-02-01

    The plant cuticle is laid down at the cell wall surface of epidermal cells in a wide variety of structures, but the functional significance of this architectural diversity is not yet understood. Here, the structure-function relationship of the petal cuticle of Arabidopsis (Arabidopsis thaliana) was investigated. Applying Fourier transform infrared microspectroscopy, the cutin mutants long-chain acyl-coenzyme A synthetase2 (lacs2), permeable cuticle1 (pec1), cyp77a6, glycerol-3-phosphate acyltransferase6 (gpat6), and defective in cuticular ridges (dcr) were grouped in three separate classes based on quantitative differences in the ν(C=O) and ν(C-H) band vibrations. These were associated mainly with the quantity of 10,16-dihydroxy hexadecanoic acid, a monomer of the cuticle polyester, cutin. These spectral features were linked to three different types of cuticle organization: a normal cuticle with nanoridges (lacs2 and pec1 mutants); a broad translucent cuticle (cyp77a6 and dcr mutants); and an electron-opaque multilayered cuticle (gpat6 mutant). The latter two types did not have typical nanoridges. Transmission electron microscopy revealed considerable variations in cuticle thickness in the dcr mutant. Different double mutant combinations showed that a low amount of C16 monomers in cutin leads to the appearance of an electron-translucent layer adjacent to the cuticle proper, which is independent of DCR action. We concluded that DCR is not only essential for incorporating 10,16-dihydroxy C16:0 into cutin but also plays a crucial role in the organization of the cuticle, independent of cutin composition. Further characterization of the mutant petals suggested that nanoridge formation and conical cell shape may contribute to the reduction of physical adhesion forces between petals and other floral organs during floral development. © 2017 American Society of Plant Biologists. All Rights Reserved.

  7. Biosorption of gold from computer microprocessor leachate solutions using chitin.

    Science.gov (United States)

    Côrtes, Letícia N; Tanabe, Eduardo H; Bertuol, Daniel A; Dotto, Guilherme L

    2015-11-01

    The biosorption of gold from discarded computer microprocessor (DCM) leachate solutions was studied using chitin as a biosorbent. The DCM components were leached with thiourea solutions, and two procedures were tested for recovery of gold from the leachates: (1) biosorption and (2) precipitation followed by biosorption. For each procedure, the biosorption was evaluated considering kinetic, equilibrium, and thermodynamic aspects. The general order model was able to represent the kinetic behavior, and the equilibrium was well represented by the BET model. The maximum biosorption capacities were around 35 mg g(-1) for both procedures. The biosorption of gold on chitin was a spontaneous, favorable, and exothermic process. It was found that precipitation followed by biosorption resulted in the best gold recovery, because other species were removed from the leachate solution in the precipitation step. This method enabled about 80% of the gold to be recovered, using 20 g L(-1) of chitin at 298 K for 4 h. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Chitin synthetase in encysting Giardia lamblia and Entamoeba invadens

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.; Gillin, F.D.

    1987-05-01

    Giardia lamblia (Gl) and Entamoeba invadens (Ei) are protozoan parasites with two morphologic stages in their life cycles. Motile trophozoites colonize the intestine of humans and reptiles respectively. Water resistant cysts, which can survive outside the host, transmit infection. In vitro cyst formation of Ei from trophozoites has been reported, and the authors have recently induced in vitro encystation of Gl. Although the cyst walls of both parasites contain chitin, it synthesis by encysting trophozoites has not been reported. The authors now show that encystation conditions greatly increase chitin synthetase (CS) specific activity (incorporation of /sup 3/H GlcNAc from UDP-GlcNAc into TCA-or alcohol-precipitable material). Extracts of encysting Gl incorporated 3.6 nmol/mg protein in 5 hr compared to < 0.005 in controls. Extracts of encysting Fi incorporated 4.8 n mol/mg protein, compared to 1.7 in the control. CS activity of both parasites requires preformed chitin. The Gl enzyme requires a reducing agent, is inhibited by digitonin and the CS inhibitors, polyoxin D and Nikkomycin, but not by tunicamycin. The product is digested by chitinase. Ei enzyme does not require a reducing agent and is stimulated by 1 mg/ml digitonin, but inhibited by higher concentrations. These studies demonstrate CS enzymes which may play important roles in encystation of Gl and Ei.

  9. Cuticle ultrastructure, cuticular lipid composition, and gene expression in hypoxia-stressed Arabidopsis stems and leaves.

    Science.gov (United States)

    Kim, Hyojin; Choi, Dongsu; Suh, Mi Chung

    2017-06-01

    An increased permeability of the cuticle is closely associated with downregulation of genes involved in cuticular lipid synthesis in hypoxia-stressed Arabidopsis and may allow plants to cope with oxygen deficiency. The hydrophobic cuticle layer consisting of cutin polyester and cuticular wax is the first barrier to protect the aerial parts of land plants from environmental stresses. In the present study, we investigated the role of cuticle membrane in Arabidopsis responses to oxygen deficiency. TEM analysis showed that the epidermal cells of hypoxia-treated Arabidopsis stems and leaves possessed a thinner electron-translucent cuticle proper and a more electron-dense cuticular layer. A reduction in epicuticular wax crystal deposition was observed in SEM images of hypoxia-treated Arabidopsis stem compared with normoxic control. Cuticular transpiration was more rapid in hypoxia-stressed leaves than in normoxic control. Total wax and cutin loads decreased by approximately 6-12 and 12-22%, respectively, and the levels of C29 alkanes, secondary alcohols, and ketones, C16:0 ω-hydroxy fatty acids, and C18:2 dicarboxylic acids were also prominently reduced in hypoxia-stressed Arabidopsis leaves and/or stems relative to normoxic control. Genome-wide transcriptome and quantitative RT-PCR analyses revealed that the expression of several genes involved in the biosynthesis and transport of cuticular waxes and cutin monomers were downregulated more than fourfold, but no significant alterations were detected in the transcript levels of fatty acid biosynthetic genes, BCCP2, PDH-E1α, and ENR1 in hypoxia-treated Arabidopsis stems and leaves compared with normoxic control. Taken together, an increased permeability of the cuticle is closely associated with downregulation of genes involved in cuticular lipid synthesis in hypoxia-stressed Arabidopsis. The present study elucidates one of the cuticle-related adaptive responses that may allow plants to cope with low oxygen levels.

  10. Quantification of lateral heterogeneity in carbohydrate permeability of isolated plant leaf cuticles

    Directory of Open Access Journals (Sweden)

    Mitja NP Remus-Emsermann

    2011-09-01

    Full Text Available In phyllosphere microbiology, the distribution of resources available to bacterial colonizers of leaf surfaces is generally understood to be very heterogeneous. However, there is little quantitative understanding of the mechanisms that underlie this heterogeneity. Here, we tested the hypothesis that different parts of the cuticle vary in the degree to which they allow diffusion of the leaf sugar fructose to the surface. To this end, individual, isolated cuticles of poplar leaves were each analyzed for two properties: 1 the permeability for fructose, which involved measurement of diffused fructose by gas chromatography and flame ionization detection (GC-FID, and 2 the number and size of fructose-permeable sites on the cuticle, which was achieved using a green fluorescent protein (GFP-based bacterial bioreporter for fructose. Bulk flux measurements revealed an average permeance P of 3.39x10-9 m s-1, while the bioreporter showed that most of the leaching fructose was clustered to sites around the base of shed trichomes, which accounted for only 0.37 % of the surface of the cuticles under study. Combined, the GC-FID and GFP measurements allowed us to calculate an apparent rate of fructose diffusion at these preferential leaching sites of 9.2x10-7 m s-1. To the best of our knowledge, this study represents the first successful attempt to quantify cuticle permeability at a resolution that is most relevant to bacterial colonizers of plant leaves. The estimates for P at different spatial scales will be useful for future models that aim to explain and predict temporal and spatial patterns of bacterial colonization of plant foliage based on lateral heterogeneity in sugar permeability of the leaf cuticle.

  11. Characterization of a chitin synthase cDNA and its increased mRNA level associated with decreased chitin synthesis in Anopheles quadrimaculatus exposed to diflubenzuron.

    Science.gov (United States)

    Zhang, Jianzhen; Zhu, Kun Yan

    2006-09-01

    Chitin synthase (EC 2.4.1.16) is a crucial enzyme responsible for chitin biosynthesis in all chitin-containing organisms. This paper reports a complete cDNA encoding chitin synthase 1 (AqCHS1), change of AqCHS1 mRNA level in response to diflubenzuron exposure, and concentration-dependent effect of diflubenzuron on chitin synthesis in the common malaria mosquito (Anopheles quadrimaculatus). The cDNA consists of 5723 nucleotides, including an open reading frame (ORF) of 4734 nucleotides that encode 1578 amino acid residues and a non-translated region of 989 nucleotides. The deduced amino acid sequence contains all the chitin synthase signature motifs (EDR, QRRRW and SWGTR) and shows 97% identity to that of An. gambiae (AgCHS1, XM_321337). Northern blot and real-time quantitative PCR analyses revealed a significant increase of AqCHS1 mRNA level in the larvae exposed to diflubenzuron at 100 and 500 microg/L. As confirmed by real-time quantitative PCR, AqCHS1 mRNA level was enhanced by 2-fold in the larvae exposed to diflubenzuron at 500 microg/L for 24 h. In contrast, exposures of the larvae to diflubenzuron at 4.0, 20, 100 and 500 microg/L for 48 h resulted in decreases of chitin content by 9.0%, 43%, 58% and 76%, respectively. Significantly increased AqCHS1 mRNA level associated with decreased chitin synthesis may imply possible inhibition of chitin synthase, or abnormal chitin synthase translocation or chitin microfibril assembly conferred by diflubenzuron. Increased AqCHS1 expression due to increased transcription and/or increased mRNA stability may serve as a feedback mechanism to compensate such an effect in the mosquitoes. Further studies are necessary to elucidate the relationship between reduced chitin synthesis and increased expression of AqCHS1 in order to shed new light on trafficking and regulation of chitin biosynthesis in the mosquito affected by diflubenzuron.

  12. Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part I. Isolation and identification of chitin.

    Science.gov (United States)

    Ehrlich, H; Ilan, M; Maldonado, M; Muricy, G; Bavestrello, G; Kljajic, Z; Carballo, J L; Schiaparelli, S; Ereskovsky, A; Schupp, P; Born, R; Worch, H; Bazhenov, V V; Kurek, D; Varlamov, V; Vyalikh, D; Kummer, K; Sivkov, V V; Molodtsov, S L; Meissner, H; Richter, G; Steck, E; Richter, W; Hunoldt, S; Kammer, M; Paasch, S; Krasokhin, V; Patzke, G; Brunner, E

    2010-08-01

    Marine invertebrate organisms including sponges (Porifera) not only provide an abundant source of biologically active secondary metabolites but also inspire investigations to develop biomimetic composites, scaffolds and templates for practical use in materials science, biomedicine and tissue engineering. Here, we presented a detailed study of the structural and physico-chemical properties of three-dimensional skeletal scaffolds of the marine sponges Aiolochroia crassa, Aplysina aerophoba, A. cauliformis, A. cavernicola, and A. fulva (Verongida: Demospongiae). We show that these fibrous scaffolds have a multilayered design and are made of chitin. (13)C solid-state NMR spectroscopy, NEXAFS, and IR spectroscopy as well as chitinase digestion and test were applied in order to unequivocally prove the existence of alpha-chitin in all investigated species. Copyright 2010 Elsevier B.V. All rights reserved.

  13. A High Diversity in Chitinolytic and Chitosanolytic Species and Enzymes and Their Oligomeric Products Exist in Soil with a History of Chitin and Chitosan Exposure.

    Science.gov (United States)

    Nampally, Malathi; Rajulu, M B Govinda; Gillet, Dominique; Suryanarayanan, T S; Moerschbacher, Bruno B

    2015-01-01

    Chitin is one of the most abundant biomolecules on earth, and its partially de-N-acetylated counterpart, chitosan, is one of the most promising biotechnological resources due to its diversity in structure and function. Recently, chitin and chitosan modifying enzymes (CCMEs) have gained increasing interest as tools to engineer chitosans with specific functions and reliable performance in biotechnological and biomedical applications. In a search for novel CCME, we isolated chitinolytic and chitosanolytic microorganisms from soils with more than ten-years history of chitin and chitosan exposure and screened them for chitinase and chitosanase isoenzymes as well as for their patterns of oligomeric products by incubating their secretomes with chitosan polymers. Of the 60 bacterial strains isolated, only eight were chitinolytic and/or chitosanolytic, while 20 out of 25 fungal isolates were chitinolytic and/or chitosanolytic. The bacterial isolates produced rather similar patterns of chitinolytic and chitosanolytic enzymes, while the fungal isolates produced a much broader range of different isoenzymes. Furthermore, diverse mixtures of oligosaccharides were formed when chitosan polymers were incubated with the secretomes of select fungal species. Our study indicates that soils with a history of chitin and chitosan exposure are a good source of novel CCME for chitosan bioengineering.

  14. A High Diversity in Chitinolytic and Chitosanolytic Species and Enzymes and Their Oligomeric Products Exist in Soil with a History of Chitin and Chitosan Exposure

    Directory of Open Access Journals (Sweden)

    Malathi Nampally

    2015-01-01

    Full Text Available Chitin is one of the most abundant biomolecules on earth, and its partially de-N-acetylated counterpart, chitosan, is one of the most promising biotechnological resources due to its diversity in structure and function. Recently, chitin and chitosan modifying enzymes (CCMEs have gained increasing interest as tools to engineer chitosans with specific functions and reliable performance in biotechnological and biomedical applications. In a search for novel CCME, we isolated chitinolytic and chitosanolytic microorganisms from soils with more than ten-years history of chitin and chitosan exposure and screened them for chitinase and chitosanase isoenzymes as well as for their patterns of oligomeric products by incubating their secretomes with chitosan polymers. Of the 60 bacterial strains isolated, only eight were chitinolytic and/or chitosanolytic, while 20 out of 25 fungal isolates were chitinolytic and/or chitosanolytic. The bacterial isolates produced rather similar patterns of chitinolytic and chitosanolytic enzymes, while the fungal isolates produced a much broader range of different isoenzymes. Furthermore, diverse mixtures of oligosaccharides were formed when chitosan polymers were incubated with the secretomes of select fungal species. Our study indicates that soils with a history of chitin and chitosan exposure are a good source of novel CCME for chitosan bioengineering.

  15. Temperature effect on optical properties of the cuticle of Lucilia sericata

    Science.gov (United States)

    Martincek, Ivan; Pudis, Dusan; Satka, Alexander; Janigova, Ivica; Csomorova, Katarina; Cernobila, Frantisek

    2008-08-01

    Optical properties of the spinal cuticle taken from the species of Lucilia sericata are studied by the reflectance measurements and their structural properties by scanning electron microscopy. The multilayer structure of the cuticle has been confirmed from the scanning electron micrographs. The temperature sensitivity of the multilayer structure is documented by the modification of optical properties in a heating process. The heating process and the local heating using the focused laser beam causes the local changes of the optical properties what is finally demonstrated by the structural color shift of the reflected spectra.

  16. Elevated Chitin Content Reduces the Susceptibility of Candida Species to Caspofungin

    Science.gov (United States)

    Walker, Louise A.; Gow, Neil A. R.

    2013-01-01

    The echinocandin antifungal drugs inhibit synthesis of the major fungal cell wall polysaccharide β(1,3)-glucan. Echinocandins have good efficacy against Candida albicans but reduced activity against other Candida species, in particular Candida parapsilosis and Candida guilliermondii. Treatment of Candida albicans with a sub-MIC level of caspofungin has been reported to cause a compensatory increase in chitin content and to select for sporadic echinocandin-resistant FKS1 point mutants that also have elevated cell wall chitin. Here we show that elevated chitin in response to caspofungin is a common response in various Candida species. Activation of chitin synthesis was observed in isolates of C. albicans, Candida tropicalis, C. parapsilosis, and C. guilliermondii and in some isolates of Candida krusei in response to caspofungin treatment. However, Candida glabrata isolates demonstrated no exposure-induced change in chitin content. Furthermore, isolates of C. albicans, C. krusei, C. parapsilosis, and C. guilliermondii which were stimulated to have higher chitin levels via activation of the calcineurin and protein kinase C (PKC) signaling pathways had reduced susceptibility to caspofungin. Isolates containing point mutations in the FKS1 gene generally had higher chitin levels and did not demonstrate a further compensatory increase in chitin content in response to caspofungin treatment. These results highlight the potential of increased chitin synthesis as a potential mechanism of tolerance to caspofungin for the major pathogenic Candida species. PMID:23089748

  17. Chitin degradation and electricity generation by Aeromonas hydrophila in microbial fuel cells.

    Science.gov (United States)

    Li, Shan-Wei; He, Hui; Zeng, Raymond J; Sheng, Guo-Ping

    2017-02-01

    Chitin is one of the most abundant biopolymers in nature and the main composition of shrimp and crab shells (usually as food wastes). Thus it is essential to investigate the potential of degrading chitin for energy recovery. This study investigated the anaerobic degradation of chitin by Aeromonas hydrophila, a chitinolytic and popular electroactive bacterium, in both fermentation and microbial fuel cell (MFC) systems. The primary chitin metabolites produced in MFC were succinate, lactate, acetate, formate, and ethanol. The total metabolite concentration from chitin degradation increased seven-fold in MFC compared to the fermentation system, as well as additional electricity generation. Moreover, A. hydrophila degraded GlcNAc (the intermediate of chitin hydrolysis) significantly faster (0.97 and 0.94 mM C/d/mM-GlcNAc) than chitin (0.13 and 0.03 mM C/d/mM-GlcNAc) in MFC and fermentation systems, indicating that extracellular hydrolysis of chitin was the rate-limiting step and this step could be accelerated in MFC. Furthermore, more chemicals produced by the addition of exogenous mediators in MFC. This study proves that the chitin could be degraded effectively by an electroactive bacterium in MFC, and our results suggest that this bioelectrochemical system might be useful for the degradation of recalcitrant biomass to recover energy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Physicochemical and antifungal properties of bio-nanocomposite film based on gelatin-chitin nanoparticles.

    Science.gov (United States)

    Sahraee, Samar; Milani, Jafar M; Ghanbarzadeh, Babak; Hamishehkar, Hamed

    2017-04-01

    The gelatin-based nanocomposite films containing chitin nanoparticles (N-chitin) with concentrations of 0, 3, 5 and 10% were prepared and their physical, thermal and anti-microbial properties were investigated. Scanning electron microscopy (SEM) micrographs showed that N-chitin size distribution was around 60-70nm which dispersed appropriately at low concentration in gelatin matrix. The results showed that incorporation of N-chitin significantly influenced apparent color and transparency of the gelatin films. The reduced water vapor permeability (WVP) and solubility and higher surface hydrophobicity of the nanocomposite films were obtained by enhancing N-chitin concentration in film formulation. The use of N-chitin up to 5% concentration in the gelatin based nanocomposite film led to improved mechanical properties. Also, the results of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) confirmed improved stability of nanocomposite films against melting and degradation at high temperatures in comparison to neat gelatin film. The well compatibility of chitin nanoparticles with gelatin polymer was concluded from Fourier transform infrared (FTIR) spectra and X-ray diffraction (XRD) plots. Finally, the gelatin based nanocomposite films had anti-fungal properties against Aspergillus niger in the contact surface zone. Increasing the concentration of N-chitin up to 5% enlarged inhibition zone diameter, but the nanocomposite film containing 10% N-chitin showed smaller inhibition zone. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Comparison of Extraction Methods of Chitin from Ganoderma lucidum Mushroom Obtained in Submerged Culture

    Directory of Open Access Journals (Sweden)

    Sandra Patricia Ospina Álvarez

    2014-01-01

    Full Text Available The chitin was isolated from the Ganoderma lucidum submerged cultures mycelium as potential source of chitin under biotechnological processes. The extraction of chitin was carried out through 5 different assays which involved mainly three phases: pulverization of the mushroom, deproteinization of the mycelia with NaOH solution, and a process of decolorization with potassium permanganate and oxalic acid. The chitin contents extracted from 9-day mycelia were 413, 339, 87, 78, and 144 mg/g−1 (milligrams of chitin/grams of dry biomass for A1, A2, A3, A4, and A5, respectively. Obtained chitin was characterized by X-Ray Diffraction (XRD, by Fourier transform infrared spectroscopy (FTIR, and by thermal analysis (TGA. The results showed that Ganoderma lucidum chitin has similar characteristic of chitin from different fonts. The advantage of the biotechnological processes and the fact that Ganoderma lucidum fungus may be used as a potential raw material for chitin production were demonstrated.

  20. Characterization of chitin and chitosan synthesized from red snapper (Lutjanus sp.) scale's waste

    Science.gov (United States)

    Takarina, N. D.; Fanani, A. A.

    2017-07-01

    Chitin and chitosan are natural biopolymer which are useful for industrial, medical and environmental field. Study about using fish scale sources especially saltwater fish is still limited. Red snapper (Lutjanus sp) is common tropical saltwater fish that known as important source of marine products, particularly in Indonesia. Correspondingly, the consumption of this species has generated significant amount of discarded scale wastes recently and hence can cause adverse impact on the environment. Utilizing the fish scale as alternative sources of chitin and chitosan can be one solution dealing with environmental problem. Therefore, this research aimed to characterize the chitin and chitosan derived from the red snapper scale wastes. Chitin were extracted by deproteination and demineralization while chitosan using deacetylation. Morphology of the chitin and chitosan were analyzed using electron dispersal spectroscopy (EDS) and scanning electron microscope (SEM), while degree of deacetylation using fourier transform infrared spectroscopy (FTIR). Proximate analysis showed that content of moisture, ash, and nitrogen in chitin were 3.20 %, 2.40 %, 0.04 %, respectively while in chitosan were 6.14 %, 1.18 %, 0.03 % respectively. Furthermore, amount of C, O, Na, Al, P and Ca elements were obtained from chitin and chitosan samples by energy dispersed spectroscopy respectively. The degree of deacetylation for both chitin and chitosan showed high value more than 75 %. Hence, by considering the chemical properties of red snapper scales, it confirms that this species is a promising alternative source for both chitin and chitosan.

  1. Facile nanofibrillation of chitin derivatives by gas bubbling and ultrasonic treatments in water.

    Science.gov (United States)

    Tanaka, Kohei; Yamamoto, Kazuya; Kadokawa, Jun-ichi

    2014-10-29

    In this paper, we report that nanofiber network structures were constructed from chitin derivatives by gas bubbling and ultrasonic treatments in water. When chitin was first subjected to N2 gas bubbling with ultrasonication in water, the SEM images of the product showed nanofiber network morphology. However, nanofiber network was not re-constructed by the same N2 gas bubbling and ultrasonic treatments after agglomeration. We then have paid attention to an amidine group to provide the agglomeration-nanofibrillation behavior of chitin derivatives. An amidinated chitin was synthesized by the reaction of the amino groups in a partially deacetylated chitin with N,N-dimethylacetamide dimethyl acetal, which was subjected to CO2 gas bubbling and ultrasonic treatments in water to convert into an amidinium chitin by protonation. The SEM images of the product clearly showed nanofiber network morphology. We further examined re-nanofibrillation of the agglomerated material, which was obtained by mixing the nanofibrillated amidinium chitin with water, followed by drying under reduced pressure. Consequently, the material was re-nanofibrillated by N2 gas bubbling with ultrasonication in water owing to electrostatic repulsion between the amidinium groups. Furthermore, deprotonation of the amidinium chitin and re-protonation of the resulting amidinated chitin were conducted by alkaline treatment and CO2 gas bubbling-ultrasonic treatments, respectively. The material showed the agglomeration-nanofibrillation behavior during the processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Comparison of Extraction Methods of Chitin from Ganoderma lucidum Mushroom Obtained in Submerged Culture

    Science.gov (United States)

    Ospina Álvarez, Sandra Patricia; Ramírez Cadavid, David Alexander; Ossa Orozco, Claudia Patricia; Zapata Ocampo, Paola; Atehortúa, Lucía

    2014-01-01

    The chitin was isolated from the Ganoderma lucidum submerged cultures mycelium as potential source of chitin under biotechnological processes. The extraction of chitin was carried out through 5 different assays which involved mainly three phases: pulverization of the mushroom, deproteinization of the mycelia with NaOH solution, and a process of decolorization with potassium permanganate and oxalic acid. The chitin contents extracted from 9-day mycelia were 413, 339, 87, 78, and 144 mg/g−1 (milligrams of chitin/grams of dry biomass) for A1, A2, A3, A4, and A5, respectively. Obtained chitin was characterized by X-Ray Diffraction (XRD), by Fourier transform infrared spectroscopy (FTIR), and by thermal analysis (TGA). The results showed that Ganoderma lucidum chitin has similar characteristic of chitin from different fonts. The advantage of the biotechnological processes and the fact that Ganoderma lucidum fungus may be used as a potential raw material for chitin production were demonstrated. PMID:24551839

  3. Diffusion and Electric Mobility of Ions within Isolated Cuticles of Citrus aurantium: Steady-State and Equilibrium Values.

    Science.gov (United States)

    Tyree, M T; Wescott, C R; Tabor, C A

    1991-09-01

    We report a new method for measuring cation and anion permeability across cuticles of sour orange, Citrus aurantium, leaves. The method requires the measurement of two electrical parameters: the diffusion potential arising when the two sides of the cuticle are bathed in unequal concentrations of a Cl(-) salt; and the electrical conductance of the cuticle measured at a salt concentration equal to the average of that used in the diffusion-potential measurement. The permeabilities of H(+), Li(+), Na(+), K(+), and Cs(+) ranged from 2 x 10(-8) to 0.6 x 10(-8) meters per second when cuticles were bathed in 2 moles per cubic meter Cl(-) salts. The permeability of Cl(-) was 3 x 10(-9) meters per second. The permeability of Li(+), Na(+), and K(+) was about five times less when measured in 500 moles per cubic meter Cl(-) salts. We also report an asymmetry in cuticle-conductance values depending on the magnitude and the direction of current flow. The asymmetry disappears at low current-pulse magnitude and increases linearly with the magnitude of the current pulse. This phenomenon is explained in terms of transport-number effects in a bilayer model of the cuticle. Conductance is not augmented by current carried by exchangeable cations in cuticles; conductance is rate limited by the outer waxy layer of the cuticle.

  4. Temporal and spatial expression of the yellow gene in correlation with cuticle formation and DOPA decarboxylase activity in drosophila development

    National Research Council Canada - National Science Library

    Walter, Marika F; Black, Bruce C; Afshar, Golnar; Kermabon, Anne-Yvonne; Wright, Theodore R.F; Biessmann, Harald

    1991-01-01

    ... by immunohistochemical methods the temporal and spatial distribution of the protein product of the y gene during embryonic and pupal development and have correlated its expression with events of cuticle synthesis by the epidermal cells and with cuticle sclerotization. Except for expression in early embryos, the y protein is only found in the epidermal cells and may ...

  5. Postharvest changes in LIN5-down-regulated plants suggest a role for sugar deficiency in cuticle metabolism during ripening.

    Science.gov (United States)

    Vallarino, José G; Yeats, Trevor H; Maximova, Eugenia; Rose, Jocelyn K; Fernie, Alisdair R; Osorio, Sonia

    2017-10-01

    The cell wall invertase gene (LIN5) was reported to be a key enzyme influencing sugar uptake of tomato (Solanum lycopersicum) fruit. It was additionally revealed to be a key regulator of total soluble solids content in fruit as well as for reproductive development, being mainly involved in flower development, early fruit and seed development but also in ripening. Here, we demonstrate that silencing of the LIN5 gene promotes changes affecting fruit cuticle development which has a direct effect on postharvest properties. Transformants were characterized by reduced transpirational water loss in mature fruits accompanied by several other changes in the cuticle. Quantitative chemical composition, coupled with microscopy of isolated cuticle fruits revealed that the cuticle of the transformants were characterized by an increase of the thickness as well as significant increase in the content of cuticle components (cutin, phenolic compounds, and waxes). Furthermore, detailed analysis of the waxes revealed that the transformants displayed changes in waxes composition, showing higher levels of n-alkanes and triterpenoids which can shift the proportion of crystalline and amorphous waxes and change the water flux through the cuticle. Expression of the genes involved in cuticle biosynthesis indicated that LIN5 influences the biosynthesis of components of the cuticle, indicating that this process is coupled to sugar uploading via a mechanism which links carbon supply with the capacity for fruit expansion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. EUCHIS '99 : proceedings of the 3rd international conference of the European Chitin Society, Potsdam, Germany, Aug. 31 - Sept. 3, 1999

    OpenAIRE

    2010-01-01

    Contents: Production and Applications of Chitin and Chitosan Krill as a promising raw material for the production of chitin in Europe - Containerized plant for producing chitin - Preparation and characterization of chitosan from Mucorales - Chitosan from Absidia orchidis - Scaling up of lactic acid fermentation of prawn wastes in packed-bed column reactor for chitin recovery - Preparation of chitin by acetic acid fermentation - Inter-source reproducibility of the chitin deacetylation process ...

  7. Structure and interactions of calcite spherulites with {alpha}-chitin in the brown shrimp (Penaeus aztecus) shell

    Energy Technology Data Exchange (ETDEWEB)

    Heredia, A. [Instituto de Ciencias Nucleares, Departamento de Quimica de Radiaciones y Radioquimica, UNAM, Circuito Exterior C.U. Apdo., Postal 70-543, 04510 Mexico, D.F. (Mexico); Physikalisches Institut and Center for Nanotechnology, Universitaet Muenster, Gievenbecker Weg 11, 48149 Muenster (Germany); Aguilar-Franco, M. [Instituto de Fisica, Depto de Fisicoquimica, UNAM, Circuito Exterior s/n, Ciudad Universitaria Apartado Postal 20-364 01000 Mexico D.F. (Mexico); Magana, C. [Instituto de Fisica, Depto de Estado Solido, UNAM, Circuito Exterior s/n, Ciudad Universitaria Apartado Postal 20-364 01000 Mexico D.F. (Mexico); Flores, C. [Instituto de Investigaciones en Materiales, Depto de Estado Solido, Laboratorio de Biomateriales, UNAM, Circuito Exterior C.U. S/N CP 04510 Mexico, D.F. (Mexico); Pina, C. [Instituto de Investigaciones en Materiales, Depto de Estado Solido, Laboratorio de Biomateriales, UNAM, Circuito Exterior C.U. S/N CP 04510 Mexico, D.F. (Mexico); Velazquez, R. [Centro de Fisica Aplicada Tecnologia Avanzada, UNAM, Km. 15 Carretera Queretaro-San Luis Potosi, C.P. 76230, Queretaro, Qro. (Mexico); Schaeffer, T.E. [Physikalisches Institut and Center for Nanotechnology, Universitaet Muenster, Gievenbecker Weg 11, 48149 Muenster (Germany); Bucio, L. [Instituto de Fisica, Depto de Estado Solido, UNAM, Circuito Exterior s/n, Ciudad Universitaria Apartado Postal 20-364 01000 Mexico D.F. (Mexico); Basiuk, V.A. [Instituto de Ciencias Nucleares, Departamento de Quimica de Radiaciones y Radioquimica, UNAM, Circuito Exterior C.U. Apdo., Postal 70-543, 04510 Mexico, D.F. (Mexico)

    2007-01-15

    White spots form in the brown shrimp (Penaeus aztecus, Decapoda) shell during frozen storage. The mineral formed consists of calcite incorporated into an amorphous {alpha}-chitin matrix. We studied mechanisms of interaction of amorphous {alpha}-chitin macromolecules with hkl crystal planes to form highly ordered structures, as well as the role of specific sites in the biopolymer, which can be related to nucleation and spheroidal crystal growth. We used low vacuum scanning electron microscopy (LVSEM), X-ray powder diffraction (XRD), atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FT-IR), and molecular mechanics modeling (MM+ method). AFM images showed fingerprint distances in the biopolymer and a highly layered structure in the crystalline material. The presence of {alpha}-chitin, with a specific spatial distribution of radicals, is thought to be responsible for nucleation and to thermodynamically stabilize ions to form the spherulite crystalline phase, which are usually oval to spherical (0.10 to 200 {mu}m in diameter). Our models of crystal-biopolymer interaction found high affinity of CO{sub 3} {sup 2-} anions in the (104) crystalline plane (the main plane in calcite monocrystals) to NH- groups of the biopolymer, as well as of the C=O in the biopolymer to Ca{sup 2+} cations in the crystalline structure. These interactions explain the spherical growth and inhibition in some planes. The specific physicochemical interactions (docking of groups depending on their geometrical distribution) suggest that the biomineral structure is controlled by the biopolymer on a local scale. This information is useful for further design and improvement of (hybrid) materials for versatile application, from nanotechnology to biomedicine and engineering.

  8. Knickkopf protein protects and organizes chitin in the newly synthesized insect exoskeleton

    Science.gov (United States)

    New cuticle synthesis and molting are complex developmental processes that all insects must undergo to allow for growth. However, little is known about how insects regulate the selective degradation of the old cuticle while leaving the new one intact. In this study we show that in the red flour beet...

  9. Functional dissection of a neuronal network required for cuticle tanning and wing expansion in Drosophila.

    Science.gov (United States)

    Luan, Haojiang; Lemon, William C; Peabody, Nathan C; Pohl, Jascha B; Zelensky, Paul K; Wang, Ding; Nitabach, Michael N; Holmes, Todd C; White, Benjamin H

    2006-01-11

    A subset of Drosophila neurons that expresses crustacean cardioactive peptide (CCAP) has been shown previously to make the hormone bursicon, which is required for cuticle tanning and wing expansion after eclosion. Here we present evidence that CCAP-expressing neurons (NCCAP) consist of two functionally distinct groups, one of which releases bursicon into the hemolymph and the other of which regulates its release. The first group, which we call NCCAP-c929, includes 14 bursicon-expressing neurons of the abdominal ganglion that lie within the expression pattern of the enhancer-trap line c929-Gal4. We show that suppression of activity within this group blocks bursicon release into the hemolymph together with tanning and wing expansion. The second group, which we call NCCAP-R, consists of NCCAP neurons outside the c929-Gal4 pattern. Because suppression of synaptic transmission and protein kinase A (PKA) activity throughout NCCAP, but not in NCCAP-c929, also blocks tanning and wing expansion, we conclude that neurotransmission and PKA are required in NCCAP-R to regulate bursicon secretion from NCCAP-c929. Enhancement of electrical activity in NCCAP-R by expression of the bacterial sodium channel NaChBac also blocks tanning and wing expansion and leads to depletion of bursicon from central processes. NaChBac expression in NCCAP-c929 is without effect, suggesting that the abdominal bursicon-secreting neurons are likely to be silent until stimulated to release the hormone. Our results suggest that NCCAP form an interacting neuronal network responsible for the regulation and release of bursicon and suggest a model in which PKA-mediated stimulation of inputs to normally quiescent bursicon-expressing neurons activates release of the hormone.

  10. Structural changes in cuticles on violin bow hair caused by wear.

    Science.gov (United States)

    Yamamoto, Tomoko; Sugiyama, Shigeru

    2010-01-01

    A bow with horse tail hair is used to play the violin. New and worn-out bow hairs were observed by atomic force microscopy. The cuticles of the new bow hair were already damaged by bleach and delipidation, however the worn-out bow hairs were much more damaged and broken off by force, which relates to wearing out.

  11. Do cuticle characters support the recognition of Alseodaphne, Nothaphoebe and Dehaasia as distinct genera?

    Directory of Open Access Journals (Sweden)

    Sachiko Nishida

    2014-12-01

    Full Text Available The Asian members of the Persea group are divided among the genera Alseodaphne, Apollonias, Dehaasia, Machilus, Nothaphoebe and Phoebe. A recent phylogenetic analysis has shown that Machilus and Phoebe are supported as monophyletic genera but evidence that the closely     related genera Alseodaphne, Dehaasia and Nothaphoebe are monophyletic or not was equivocal. In this study we     analyzed cuticle characters of 95 collections belonging to the Asian members except for Apollonias. We anticipated two possible outcomes. If the genera were not monophyletic, we expected that the groups based on cuticle characters would consist of species belonging to different genera. If the genera were monophyletic, we expected that the groups based on cuticle characters would consist of species belonging to the same genus. We found 16 groups based on cuticles. Of these, 12 consisted of species of a single genus (one group included a single species and thus a single genus.  The four mixed groups included mostly species of one genus with 1 or 2 species of a different genus. Our results support the  recognition of Alseodaphne, Dehaasia, Machilus, Nothaphoebe and Phoebe as distinct genera. 

  12. Presence of a large β(1-3)glucan linked to chitin at the Saccharomyces cerevisiae mother-bud neck suggests involvement in localized growth control.

    Science.gov (United States)

    Cabib, Enrico; Blanco, Noelia; Arroyo, Javier

    2012-04-01

    Previous results suggested that the chitin ring present at the yeast mother-bud neck, which is linked specifically to the nonreducing ends of β(1-3)glucan, may help to suppress cell wall growth at the neck by competing with β(1-6)glucan and thereby with mannoproteins for their attachment to the same sites. Here we explored whether the linkage of chitin to β(1-3)glucan may also prevent the remodeling of this polysaccharide that would be necessary for cell wall growth. By a novel mild procedure, β(1-3)glucan was isolated from cell walls, solubilized by carboxymethylation, and fractionated by size exclusion chromatography, giving rise to a very high-molecular-weight peak and to highly polydisperse material. The latter material, soluble in alkali, may correspond to glucan being remodeled, whereas the large-size fraction would be the final cross-linked structural product. In fact, the β(1-3)glucan of buds, where growth occurs, is solubilized by alkali. A gas1 mutant with an expected defect in glucan elongation showed a large increase in the polydisperse fraction. By a procedure involving sodium hydroxide treatment, carboxymethylation, fractionation by affinity chromatography on wheat germ agglutinin-agarose, and fractionation by size chromatography on Sephacryl columns, it was shown that the β(1-3)glucan attached to chitin consists mostly of high-molecular-weight material. Therefore, it appears that linkage to chitin results in a polysaccharide that cannot be further remodeled and does not contribute to growth at the neck. In the course of these experiments, the new finding was made that part of the chitin forms a noncovalent complex with β(1-3)glucan.

  13. A proposed origin for fossilized Pennsylvanian plant cuticles by pyrite oxidation (Sydney Coalfield, Nova Scotia, Canada)

    Science.gov (United States)

    Zodrow, E.L.; Mastalerz, Maria

    2009-01-01

    Fossilized cuticles, though rare in the roof rocks of coal seam in the younger part of the Pennsylvanian Sydney Coalfield, Nova Scotia, represent nearly all of the major plant groups. Selected for investigation, by methods of Fourier transform infrared spectroscopy (FTIR) and elemental analysis, are fossilized cuticles (FCs) and cuticles extracted from compressions by Schulze's process (CCs) of Alethopteris ambigua. These investigations are supplemented by FTIR analysis of FCs and CCs of Cordaites principalis, and a cuticle-fossilized medullosalean(?) axis. The purpose of this study is threefold: (1) to try to determine biochemical discriminators between FCs and CCs of the same species using semi-quantitative FTIR techniques; (2) to assess the effects chemical treatments have, particularly Schulze's process, on functional groups; and most importantly (3) to study the primary origin of FCs. Results are equivocal in respect to (1); (2) after Schulze's treatment aliphatic moieties tend to be reduced relative to oxygenated groups, and some aliphatic chains may be shortened; and (3) a primary chemical model is proposed. The model is based on a variety of geological observations, including stratal distribution, clay and pyrite mineralogies associated with FCs and compressions, and regional geological structure. The model presupposes compression-cuticle fossilization under anoxic conditions for late authigenic deposition of sub-micron-sized pyrite on the compressions. Rock joints subsequently provided conduits for oxygen-enriched ground-water circulation to initiate in situ pyritic oxidation that produced sulfuric acid for macerating compressions, with resultant loss of vitrinite, but with preservation of cuticles as FCs. The timing of the process remains undetermined, though it is assumed to be late to post-diagenetic. Although FCs represent a pathway of organic matter transformation (pomd) distinct from other plant-fossilization processes, global applicability of the

  14. Fungal chitin dampens inflammation through IL-10 induction mediated by NOD2 and TLR9 activation.

    Directory of Open Access Journals (Sweden)

    Jeanette Wagener

    2014-04-01

    Full Text Available Chitin is an essential structural polysaccharide of fungal pathogens and parasites, but its role in human immune responses remains largely unknown. It is the second most abundant polysaccharide in nature after cellulose and its derivatives today are widely used for medical and industrial purposes. We analysed the immunological properties of purified chitin particles derived from the opportunistic human fungal pathogen Candida albicans, which led to the selective secretion of the anti-inflammatory cytokine IL-10. We identified NOD2, TLR9 and the mannose receptor as essential fungal chitin-recognition receptors for the induction of this response. Chitin reduced LPS-induced inflammation in vivo and may therefore contribute to the resolution of the immune response once the pathogen has been defeated. Fungal chitin also induced eosinophilia in vivo, underpinning its ability to induce asthma. Polymorphisms in the identified chitin receptors, NOD2 and TLR9, predispose individuals to inflammatory conditions and dysregulated expression of chitinases and chitinase-like binding proteins, whose activity is essential to generate IL-10-inducing fungal chitin particles in vitro, have also been linked to inflammatory conditions and asthma. Chitin recognition is therefore critical for immune homeostasis and is likely to have a significant role in infectious and allergic disease.

  15. Preparation of Size-Controlled Silver Nanoparticles and Chitin-Based Composites and Their Antimicrobial Activities

    Directory of Open Access Journals (Sweden)

    Vinh Quang Nguyen

    2013-01-01

    Full Text Available A simple method for the preparation of size-controlled spherical silver nanoparticles (Ag NPs was reported for their generation by autoclaving a mixture of silver-containing glass powder and glucose. The particle size is regulated by the glucose concentration, with concentrations of 0.25, 1.0, and 4.0 wt% glucose providing small (3.48±1.83 nm in diameter, medium (6.53±1.78 nm, and large (12.9±2.5 nm particles, respectively. In this study, Ag NP/chitin composites were synthesized by mixing each of these three Ag NP suspensions with a <5% deacetylated (DAc chitin powder (pH 7.0 at room temperature. The Ag NPs were homogenously dispersed and stably adsorbed onto the chitin. The Ag NP/chitin composites were obtained as yellow or brown powders. Approximately 5, 15, and 20 μg of the small, medium, and large Ag NPs, respectively, were estimated to maximally adsorb onto 1 mg of chitin. The bactericidal and antifungal activities of the Ag NP/chitin composites increased as the amount of Ag NPs in the chitin increased. Furthermore, smaller Ag NPs (per weight in the chitin composites provided higher bactericidal and anti-fungal activities.

  16. Soil bacterial community shifts after chitin enrichment: an integrative metagenomic approach.

    Directory of Open Access Journals (Sweden)

    Samuel Jacquiod

    Full Text Available Chitin is the second most produced biopolymer on Earth after cellulose. Chitin degrading enzymes are promising but untapped sources for developing novel industrial biocatalysts. Hidden amongst uncultivated micro-organisms, new bacterial enzymes can be discovered and exploited by metagenomic approaches through extensive cloning and screening. Enrichment is also a well-known strategy, as it allows selection of organisms adapted to feed on a specific compound. In this study, we investigated how the soil bacterial community responded to chitin enrichment in a microcosm experiment. An integrative metagenomic approach coupling phylochips and high throughput shotgun pyrosequencing was established in order to assess the taxonomical and functional changes in the soil bacterial community. Results indicate that chitin enrichment leads to an increase of Actinobacteria, γ-proteobacteria and β-proteobacteria suggesting specific selection of chitin degrading bacteria belonging to these classes. Part of enriched bacterial genera were not yet reported to be involved in chitin degradation, like the members from the Micrococcineae sub-order (Actinobacteria. An increase of the observed bacterial diversity was noticed, with detection of specific genera only in chitin treated conditions. The relative proportion of metagenomic sequences related to chitin degradation was significantly increased, even if it represents only a tiny fraction of the sequence diversity found in a soil metagenome.

  17. Soil Bacterial Community Shifts after Chitin Enrichment: An Integrative Metagenomic Approach

    Science.gov (United States)

    Jacquiod, Samuel; Franqueville, Laure; Cécillon, Sébastien; M. Vogel, Timothy; Simonet, Pascal

    2013-01-01

    Chitin is the second most produced biopolymer on Earth after cellulose. Chitin degrading enzymes are promising but untapped sources for developing novel industrial biocatalysts. Hidden amongst uncultivated micro-organisms, new bacterial enzymes can be discovered and exploited by metagenomic approaches through extensive cloning and screening. Enrichment is also a well-known strategy, as it allows selection of organisms adapted to feed on a specific compound. In this study, we investigated how the soil bacterial community responded to chitin enrichment in a microcosm experiment. An integrative metagenomic approach coupling phylochips and high throughput shotgun pyrosequencing was established in order to assess the taxonomical and functional changes in the soil bacterial community. Results indicate that chitin enrichment leads to an increase of Actinobacteria, γ-proteobacteria and β-proteobacteria suggesting specific selection of chitin degrading bacteria belonging to these classes. Part of enriched bacterial genera were not yet reported to be involved in chitin degradation, like the members from the Micrococcineae sub-order (Actinobacteria). An increase of the observed bacterial diversity was noticed, with detection of specific genera only in chitin treated conditions. The relative proportion of metagenomic sequences related to chitin degradation was significantly increased, even if it represents only a tiny fraction of the sequence diversity found in a soil metagenome. PMID:24278158

  18. A simple procedure for preparing chitin oligomers through acetone precipitation after hydrolysis in concentrated hydrochloric acid.

    Science.gov (United States)

    Kazami, Nao; Sakaguchi, Masayoshi; Mizutani, Daisuke; Masuda, Tatsuhiko; Wakita, Satoshi; Oyama, Fumitaka; Kawakita, Masao; Sugahara, Yasusato

    2015-11-05

    Chitin oligomers are of interest because of their numerous biologically relevant properties. To prepare chitin oligomers containing 4-6 GlcNAc units [(GlcNAc)4-6], α- and β-chitin were hydrolyzed with concentrated hydrochloric acid at 40 °C. The reactant was mixed with acetone to recover the acetone-insoluble material, and (GlcNAc)4-6 was efficiently recovered after subsequent water extraction. Composition analysis using gel permeation chromatography and MALDI-TOF mass spectrometry indicated that (GlcNAc)4-6 could be isolated from the acetone-insoluble material with recoveries of approximately 17% and 21% from the starting α-chitin and β-chitin, respectively. The acetone precipitation method is highly useful for recovering chitin oligomers from the acid hydrolysate of chitin. The changes in the molecular size and higher-order structure of chitin during the course of hydrolysis were also analyzed, and a model that explains the process of oligomer accumulation is proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Removal of dyes from water using chitosan hydrogel/SiO{sub 2} and chitin hydrogel/SiO{sub 2} hybrid materials obtained by the sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Copello, Guillermo J. [Catedra de Quimica Analitica Instrumental, Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires (UBA), Junin 956, C1113AAD Buenos Aires (Argentina); IQUIMEFA (UBA-CONICET), Junin 956, C1113AAD Buenos Aires (Argentina); Mebert, Andrea M.; Raineri, M.; Pesenti, Mariela P. [Catedra de Quimica Analitica Instrumental, Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires (UBA), Junin 956, C1113AAD Buenos Aires (Argentina); Diaz, Luis E., E-mail: ldiaz@ffyb.uba.ar [Catedra de Quimica Analitica Instrumental, Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires (UBA), Junin 956, C1113AAD Buenos Aires (Argentina); IQUIMEFA (UBA-CONICET), Junin 956, C1113AAD Buenos Aires (Argentina)

    2011-02-15

    This work describes the synthesis of chitosan hydrogel/SiO{sub 2} and chitin hydrogel/SiO{sub 2} hybrid mesoporous materials obtained by the sol-gel method for their use as biosorbents. Their adsorption capabilities against four dyes (Remazol Black B, Erythrosine B, Neutral Red and Gentian Violet) were compared in order to evaluate chitin as a plausible replacement for chitosan considering its efficiency and lower cost. Both chitin and chitosan were used in the form of hydrogels. This allowed full compatibility with the ethanol release from tetraethoxysilane. The hybrid materials were characterized by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), Nitrogen Adsorption Isotherms and {sup 13}C solid-state Nuclear Magnetic Resonance. Adsorption experimental data were analyzed using Langmuir, Freundlich and Dubinin-Radushkevich isotherm models along with the evaluation of adsorption energy and standard free energy ({Delta}G{sup 0}). The adsorption was observed to be pH dependent. The main mechanism of dye adsorption was found to be a spontaneous charge associated interaction, except for EB adsorption on chitin/SiO{sub 2} matrix, which showed to involve a lower energy physical adsorption interaction. Aside from highly charged dyes the chitin containing matrix has similar or higher adsorption capacity than the chitosan one.

  20. Altering the expression of two chitin synthase genes differentially affects the growth and morphology of Aspergillus oryzae

    DEFF Research Database (Denmark)

    Müller, Christian; Hjort, C.M.; Hansen, K.

    2002-01-01

    In Aspergillus oryzae, one full-length chitin synthase (chsB) and fragments of two other chitin synthases (csmA and chsC) were identified. The deduced amino acid sequence of chsB was similar (87% identity) to chsB from Aspergillus nidulans, which encodes a class III chitin synthase. The sequence...

  1. Effects of supercritical water and mechanochemical grinding treatments on physicochemical properties of chitin.

    Science.gov (United States)

    Osada, Mitsumasa; Miura, Chika; Nakagawa, Yuko S; Kaihara, Mikio; Nikaido, Mitsuru; Totani, Kazuhide

    2013-02-15

    This study examined the effects of a combined pretreatment with supercritical water and mechanochemical grinding with a ball mill on the physicochemical properties of chitin and its enzymatic degradation. Following pretreatment with a combination of supercritical water and grinding, chitin had a lower mean molecular weight, a lower crystallinity index, a lower crystallite size, greater d-spacing, weaker hydrogen bonds, and the amide group was more exposed compared with untreated chitin. These properties increased the hydrophilicity of the chitin and enhanced its enzymatic degradation. The N,N'-diacetylchitobiose (GlcNAc)(2) yield after enzymatic degradation of chitin following pretreatment with supercritical water (400 °C, 1 min) and grinding (800 rpm, 10 min) was 93%, compared with 5% without any treatment, 37% with supercritical water pretreatment alone (400 °C, 1 min), and 60% with grinding alone (800 rpm, 30 min). Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Bioinspired catecholic activation of marine chitin for immobilization of Ag nanoparticles as recyclable pollutant nanocatalysts.

    Science.gov (United States)

    Wang, Yanwei; Kong, Qingshan; Ding, Beibei; Chen, Yijun; Yan, Xiaofei; Wang, Shiwei; Chen, Fushan; You, Jun; Li, Chaoxu

    2017-11-01

    Being one type of the most abundant marine polysaccharides in nature, chitin has inert chemical properties and thus prolonged been hindered for high-value utilization. A mussel-inspired catecholic chemistry was found to be able to confer nature-derived mesoporous chitin aerogels with high and tunable surface activities. When further combining with their high porosity, high specific surface area, mechanical toughness and unique nanofibrous architecture, these catechol-activated chitin aerogels could be used as a unique supporting matrix to immobilize Ag nanoparticles. Besides the mild synthesis conditions and the merits inherited from pristine chitin, the resultant chitin-Ag hybrid aerogels further exhibited high catalytic activity, excellent recyclability, super solvent endurance and fast regeneration ability. Their high mechanic properties and porous structures also enabled a convenient membrane process to remove organic dyes from water. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Transcriptome Analysis of Mango (Mangifera indica L.) Fruit Epidermal Peel to Identify Putative Cuticle-Associated Genes.

    Science.gov (United States)

    Tafolla-Arellano, Julio C; Zheng, Yi; Sun, Honghe; Jiao, Chen; Ruiz-May, Eliel; Hernández-Oñate, Miguel A; González-León, Alberto; Báez-Sañudo, Reginaldo; Fei, Zhangjun; Domozych, David; Rose, Jocelyn K C; Tiznado-Hernández, Martín E

    2017-04-20

    Mango fruit (Mangifera indica L.) are highly perishable and have a limited shelf life, due to postharvest desiccation and senescence, which limits their global distribution. Recent studies of tomato fruit suggest that these traits are influenced by the expression of genes that are associated with cuticle metabolism. However, studies of these phenomena in mango fruit are limited by the lack of genome-scale data. In order to gain insight into the mango cuticle biogenesis and identify putative cuticle-associated genes, we analyzed the transcriptomes of peels from ripe and overripe mango fruit using RNA-Seq. Approximately 400 million reads were generated and de novo assembled into 107,744 unigenes, with a mean length of 1,717 bp and with this information an online Mango RNA-Seq Database (http://bioinfo.bti.cornell.edu/cgi-bin/mango/index.cgi) which is a valuable genomic resource for molecular research into the biology of mango fruit was created. RNA-Seq analysis suggested that the pathway leading to biosynthesis of the cuticle component, cutin, is up-regulated during overripening. This data was supported by analysis of the expression of several putative cuticle-associated genes and by gravimetric and microscopic studies of cuticle deposition, revealing a complex continuous pattern of cuticle deposition during fruit development and involving substantial accumulation during ripening/overripening.

  4. Nonlinear Porous Diffusion Modeling of Hydrophilic Ionic Agrochemicals in Astomatous Plant Cuticle Aqueous Pores: A Mechanistic Approach

    Directory of Open Access Journals (Sweden)

    Eloise C. Tredenick

    2017-05-01

    Full Text Available The agricultural industry requires improved efficacy of sprays being applied to crops and weeds in order to reduce their environmental impact and deliver improved financial returns. Enhanced foliar uptake is one means of improving efficacy. The plant leaf cuticle is known to be the main barrier to diffusion of agrochemicals within the leaf. The usefulness of a mathematical model to simulate uptake of agrochemicals in plant cuticles has been noted previously in the literature, as the results of each uptake experiment are specific to each formulation of active ingredient, plant species and environmental conditions. In this work we develop a mathematical model and numerical simulation for the uptake of hydrophilic ionic agrochemicals through aqueous pores in plant cuticles. We propose a novel, nonlinear, porous diffusion model for ionic agrochemicals in isolated cuticles, which extends simple diffusion through the incorporation of parameters capable of simulating: plant species variations, evaporation of surface droplet solutions, ion binding effects on the cuticle surface and swelling of the aqueous pores with water. We validate our theoretical results against appropriate experimental data, discuss the key sensitivities in the model and relate theoretical predictions to appropriate physical mechanisms. Major influencing factors have been found to be cuticle structure, including tortuosity and density of the aqueous pores, and to a lesser extent humidity and cuticle surface ion binding effects.

  5. Transcriptome Analysis of Mango (Mangifera indica L.) Fruit Epidermal Peel to Identify Putative Cuticle-Associated Genes

    Science.gov (United States)

    Tafolla-Arellano, Julio C.; Zheng, Yi; Sun, Honghe; Jiao, Chen; Ruiz-May, Eliel; Hernández-Oñate, Miguel A.; González-León, Alberto; Báez-Sañudo, Reginaldo; Fei, Zhangjun; Domozych, David; Rose, Jocelyn K. C.; Tiznado-Hernández, Martín E.

    2017-04-01

    Mango fruit (Mangifera indica L.) are highly perishable and have a limited shelf life, due to postharvest desiccation and senescence, which limits their global distribution. Recent studies of tomato fruit suggest that these traits are influenced by the expression of genes that are associated with cuticle metabolism. However, studies of these phenomena in mango fruit are limited by the lack of genome-scale data. In order to gain insight into the mango cuticle biogenesis and identify putative cuticle-associated genes, we analyzed the transcriptomes of peels from ripe and overripe mango fruit using RNA-Seq. Approximately 400 million reads were generated and de novo assembled into 107,744 unigenes, with a mean length of 1,717 bp and with this information an online Mango RNA-Seq Database (http://bioinfo.bti.cornell.edu/cgi-bin/mango/index.cgi) which is a valuable genomic resource for molecular research into the biology of mango fruit was created. RNA-Seq analysis suggested that the pathway leading to biosynthesis of the cuticle component, cutin, is up-regulated during overripening. This data was supported by analysis of the expression of several putative cuticle-associated genes and by gravimetric and microscopic studies of cuticle deposition, revealing a complex continuous pattern of cuticle deposition during fruit development and involving substantial accumulation during ripening/overripening.

  6. Depolymerization and de-N-acetylation of chitin oligomers in hydrochloric acid.

    Science.gov (United States)

    Einbu, Aslak; Vårum, Kjell M

    2007-01-01

    The monosaccharide 2-amino-2-deoxy-D-glucose (glucosamine, GlcN) has recently drawn much attention in relation to its use to treat or prevent osteoarthritis in humans. Glucosamine is prepared from chitin, a process that is performed in concentrated acid, such as hydrochloric acid. This process involves two acid-catalyzed processes, that is, the hydrolysis of the glycosidic linkages (depolymerization) and of the N-acetyl linkages (de-N-acetylation). The depolymerization reaction has previously been found to be much faster compared to the deacetylation, with the consequence that the chitin chain will first be hydrolyzed to the monomer 2-acetamido-2-deoxy-D-glucose (N-acetylglucosamine, GlcNAc) which is subsequently deacetylated. We have found that the chitin disaccharide GlcNAc(1-->4)GlcNAc could be completely hydrolyzed to the monosaccharide GlcNAc with negligible concomitant de-N-acetylation, and the chitin disaccharide and monosaccharide were further used to study the depolymerization reaction and the de-N-acetylation reaction, respectively. The reactions were performed in hydrochloric acid as a function of acid concentration (3-12 M) and temperature (20-35 degrees C), and 1H-NMR spectroscopy was used to monitor the reaction rates. The 1H NMR spectrum of GlcNAc in concentrated (12 M) and deuterated hydrochloric acid at 25 degrees C was assigned. The glucofuranosyl oxazolinium (3) ion was found to exist in equilibrium with the alpha- and beta-anomers of the pyranose form of GlcNAc, where 3 was present in half the total molar concentrations of the two anomeric forms of GlcNAc. At lower acid concentration (3-6 M), only trace concentrations of 3 could be detected. The rate of de-N-acetylation of GlcNAc was determined as a function of hydrochloric acid concentration, showing a maximum at 6 M and decreasing by a factor of 2 upon decreasing or increasing the acid concentration to 3 or 12 M. The activation energy for hydrolysis of the N-acetyl linkage of GlcNAc was

  7. Microbial responses to chitin and chitosan in oxic and anoxic agricultural soil slurries

    Science.gov (United States)

    Wieczorek, A. S.; Hetz, S. A.; Kolb, S.

    2014-06-01

    Microbial degradation of chitin in soil substantially contributes to carbon cycling in terrestrial ecosystems. Chitin is globally the second most abundant biopolymer after cellulose and can be deacetylated to chitosan or can be hydrolyzed to N,N'-diacetylchitobiose and oligomers of N-acetylglucosamine by aerobic and anaerobic microorganisms. Which pathway of chitin hydrolysis is preferred by soil microbial communities is unknown. Supplementation of chitin stimulated microbial activity under oxic and anoxic conditions in agricultural soil slurries, whereas chitosan had no effect. Thus, the soil microbial community likely was more adapted to chitin as a substrate. In addition, this finding suggested that direct hydrolysis of chitin was preferred to the pathway that starts with deacetylation. Chitin was apparently degraded by aerobic respiration, ammonification, and nitrification to carbon dioxide and nitrate under oxic conditions. When oxygen was absent, fermentation products (acetate, butyrate, propionate, hydrogen, and carbon dioxide) and ammonia were detected, suggesting that butyric and propionic acid fermentation, along with ammonification, were likely responsible for anaerobic chitin degradation. In total, 42 different chiA genotypes were detected of which twenty were novel at an amino acid sequence dissimilarity of less than 50%. Various chiA genotypes responded to chitin supplementation and affiliated with a novel deep-branching bacterial chiA genotype (anoxic conditions), genotypes of Beta- and Gammaproteobacteria (oxic and anoxic conditions), and Planctomycetes (oxic conditions). Thus, this study provides evidence that detected chitinolytic bacteria were catabolically diverse and occupied different ecological niches with regard to oxygen availability enabling chitin degradation under various redox conditions on community level.

  8. Transepithelially transported pro-phenoloxidase in the cuticle of the silkworm, Bombyx mori. Identification of its methionyl residues oxidized to methionine sulfoxides.

    Science.gov (United States)

    Asano, T; Ashida, M

    2001-04-06

    Pro-phenoloxidase (proPO) in insects is activated through the action of a protease cascade triggered by minute amounts of microbial cell wall components. It is an important molecule for the defense against invading microorganisms and for the repair of wounds. In the accompanying paper (Asano, T., and Ashida, M. (2001) J. Biol. Chem. 276, 11100-11112), a proPO isoform, proPO-HS, in the hemolymph of the silkworm, Bombyx mori, is reported to be transported to the cuticle. The transported proPO isoform was recovered from the cuticle and named proPO-CS. The elution profiles of proPO-CS and proPO-HS in reversed-phase high performance liquid chromatography (HPLC) were found to be different, giving a basis to the inference that proPO-CS is a modified form of proPO-HS. In the present study, we investigated the nature of the modifications occurring in proPO-CS, in which proteolytically and chemically cleaved fragments originating from the subunits of proPO-CS and proPO-HS were analyzed by reversed-phase HPLC, amino acid sequencing, and mass spectrometry. A subunit of the heterodimeric proPO-CS was found to contain five or six methionine sulfoxides, and another subunit was found to contain one methionine residue oxidized to the sulfoxide. All of the oxidized methionyl residues were identified. Other than oxidation of the methionyl residues, no additional modification of proPO-CS was found. In the model structure of each subunit of proPO-CS constructed by protein modeling with the known structures of the horseshoe crab, Limulus polyphemus, hemocyanin type II subunit as templates, the methionine residues identified as methionine sulfoxide had high degrees of accessibility to the solvent. The implication of the oxidation at the methionine residues is discussed in relation to the mechanism of transepithelial transport of proPO from the hemolymph to the cuticle.

  9. Impact of cuticle photoluminescence on the color morphism of a male damselfly Ischnura senegalensis (Rambur, 1842)

    Science.gov (United States)

    Chuang, Chin-Jung; Liu, Cheng-Der; Patil, Ranjit A.; Wu, Chi-Chung; Chang, Yao-Chih; Peng, Chih-Wen; Chao, Ting-Kwuan; Liou, Je-Wen; Liou, Yung; Ma, Yuan-Ron

    2016-12-01

    In this study the damselfly Ischnura senegalensis (Rambur, 1842) was first found to produce strong photoluminescence (PL) emissions from various colored-body portions, such as the eighth abdominal segment of the tail. The colors of the colored-body portions can be enhanced or modified by the PL emissions for assistance in reducing intrasexual and male harassment, and improving mature mating and conspecific identity. Therefore, the PL emissions that contribute to the color modification and coloration are involved in the cuticle evolution of the damselflies. The micro-PL confocal images verify that the PL emissions can strongly influence the surface colors of the cuticle, and demonstrate why the damselfly Ischnura senegalensis is called a bluetail.

  10. Polycaprolactone-Chitin Nanofibrous Mats as Potential Scaffolds for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Min Sup Kim

    2012-01-01

    Full Text Available We describe here the preparation of poly(caprolactone (PCL-chitin nanofibrous mats by electrospinning from a blended solution of PCL and chitin dissolved in a cosolvent, 1,1,1,3,3,3-hexafluoro-2-propanol and trifluoroacetic acid. Scanning electron microscopy showed that the neutralized PCL-chitin nanofibrous mats were morphologically stable, with a mean diameter of 340.5±2.6 nm, compared with a diameter of 524.2±12.1 nm for PCL mats. The nanofibrous mats showed decreased water contact angles as the proportion of chitin increased. However, the tensile properties of nanofibrous mats containing 30~50% (wt/wt chitin were enhanced compared with PCL-only mats. In vitro studies showed that the viability of human dermal fibroblasts (HDFs for up to 7 days in culture was higher on composite (OD value: 1.42±0.09 than on PCL-only (0.51±0.14 nanofibrous mats, with viability correlated with chitin concentration. Together, our results suggest that PCL-chitin nanofibrous mats can be used as an implantable substrate to modulate HDF viability in tissue engineering.

  11. Green conversion of agroindustrial wastes into chitin and chitosan by Rhizopus arrhizus and Cunninghamella elegans strains.

    Science.gov (United States)

    Berger, Lúcia Raquel Ramos; Stamford, Thayza Christina Montenegro; Stamford-Arnaud, Thatiana Montenegro; de Alcântara, Sergio Roberto Cabral; da Silva, Antonio Cardoso; da Silva, Adamares Marques; do Nascimento, Aline Elesbão; de Campos-Takaki, Galba Maria

    2014-05-21

    This article sets out a method for producing chitin and chitosan by Cunninghamella elegans and Rhizopus arrhizus strains using a green metabolic conversion of agroindustrial wastes (corn steep liquor and molasses). The physicochemical characteristics of the biopolymers and antimicrobial activity are described. Chitin and chitosan were extracted by alkali-acid treatment, and characterized by infrared spectroscopy, viscosity and X-ray diffraction. The effectiveness of chitosan from C. elegans and R. arrhizus in inhibiting the growth of Listeria monocytogenes, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella enterica, Escherichia coli and Yersinia enterocolitica were evaluated by determining the minimum inhibitory concentrations (MIC) and the minimum bactericidal concentrations (MBC). The highest production of biomass (24.60 g/L), chitin (83.20 mg/g) and chitosan (49.31 mg/g) was obtained by R. arrhizus. Chitin and chitosan from both fungi showed a similar degree of deacetylation, respectively of 25% and 82%, crystallinity indices of 33.80% and 32.80% for chitin, and 20.30% and 17.80% for chitosan. Both chitin and chitosan presented similar viscosimetry of 3.79-3.40 cP and low molecular weight of 5.08×10³ and 4.68×10³ g/mol. They both showed identical MIC and MBC for all bacteria assayed. These results suggest that: agricultural wastes can be produced in an environmentally friendly way; chitin and chitosan can be produced economically; and that chitosan has antimicrobial potential against pathogenic bacteria.

  12. Chitin, chitinases and chitinase-like proteins in allergic inflammation and tissue remodeling.

    Science.gov (United States)

    Lee, Chun Geun

    2009-02-28

    Chitin, the second most abundant polysaccharide in nature after cellulose, consist exoskeleton of lower organisms such as fungi, crustaceans and insects except mammals. Recently, several studies evaluated immunologic effects of chitin in vivo and in vitro and revealed new aspects of chitin regulation of innate and adaptive immune responses. It has been shown that exogenous chitin activates macrophages and other innate immune cells and also modulates adaptive type 2 allergic inflammation. These studies further demonstrate that chitin stimulate macrophages by interacting with different cell surface receptors such as macrophage mannose receptor, toll-like receptor 2 (TLR-2), C-type lectin receptor Dectin-1, and leukotriene B4 receptor (BLT1). On the other hand, a number of chitinase or chitinase-like proteins (C/CLP) are ubiquitously expressed in the airways and intestinal tracts from insects to mammals. In general, these chitinase family proteins confer protective functions to the host against exogenous chitin-containing pathogens. However, substantial body of recent studies also set light on new roles of C/CLP in the development and progression of allergic inflammation and tissue remodeling. In this review, recent findings on the role of chitin and C/CLP in allergic inflammation and tissue remodeling will be highlighted and controversial and unsolved issues in this field of studies will be discussed.

  13. Green Conversion of Agroindustrial Wastes into Chitin and Chitosan by Rhizopus arrhizus and Cunninghamella elegans Strains

    Science.gov (United States)

    Berger, Lúcia Raquel Ramos; Stamford, Thayza Christina Montenegro; Stamford-Arnaud, Thatiana Montenegro; de Alcântara, Sergio Roberto Cabral; da Silva, Antonio Cardoso; da Silva, Adamares Marques; do Nascimento, Aline Elesbão; de Campos-Takaki, Galba Maria

    2014-01-01

    This article sets out a method for producing chitin and chitosan by Cunninghamella elegans and Rhizopus arrhizus strains using a green metabolic conversion of agroindustrial wastes (corn steep liquor and molasses). The physicochemical characteristics of the biopolymers and antimicrobial activity are described. Chitin and chitosan were extracted by alkali-acid treatment, and characterized by infrared spectroscopy, viscosity and X-ray diffraction. The effectiveness of chitosan from C. elegans and R. arrhizus in inhibiting the growth of Listeria monocytogenes, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella enterica, Escherichia coli and Yersinia enterocolitica were evaluated by determining the minimum inhibitory concentrations (MIC) and the minimum bactericidal concentrations (MBC). The highest production of biomass (24.60 g/L), chitin (83.20 mg/g) and chitosan (49.31 mg/g) was obtained by R. arrhizus. Chitin and chitosan from both fungi showed a similar degree of deacetylation, respectively of 25% and 82%, crystallinity indices of 33.80% and 32.80% for chitin, and 20.30% and 17.80% for chitosan. Both chitin and chitosan presented similar viscosimetry of 3.79–3.40 cP and low molecular weight of 5.08 × 103 and 4.68 × 103 g/mol. They both showed identical MIC and MBC for all bacteria assayed. These results suggest that: agricultural wastes can be produced in an environmentally friendly way; chitin and chitosan can be produced economically; and that chitosan has antimicrobial potential against pathogenic bacteria. PMID:24853288

  14. An intact cuticle in distal tissues is essential for the induction of systemic acquired resistance in plants.

    Science.gov (United States)

    Xia, Ye; Gao, Qing-Ming; Yu, Keshun; Lapchyk, Ludmila; Navarre, DuRoy; Hildebrand, David; Kachroo, Aardra; Kachroo, Pradeep

    2009-02-19

    Systemic acquired resistance (SAR), initiated by a plant upon recognition of microbial effectors, involves generation of a mobile signal at the primary infection site, which translocates to and activates defense responses in distal tissues via unknown mechanism(s). We find that an acyl carrier protein, ACP4, is required to perceive the mobile SAR signal in distal tissues of Arabidopsis. Although acp4 plants generated the mobile signal, they failed to induce the systemic immunity response. Defective SAR in acp4 plants was not due to impairment in salicylic acid (SA)-, methyl SA-, or jasmonic acid-mediated plant hormone signaling pathways but was associated with the impaired cuticle of acp4 leaves. Other cuticle-impairing genetic mutations or physical removal of the cuticle also compromised SAR. This cuticular requirement was relevant only during mobile signal generation and its translocation to distal tissues. Collectively, these data suggest an active role for the plant cuticle in SAR-related molecular signaling.

  15. Cuticle Affects Calculations of Internal CO2 in Leaves Closing Their Stomata.

    Science.gov (United States)

    Tominaga, Jun; Kawamitsu, Yoshinobu

    2015-10-01

    Analyzing the assimilation rate (A) relative to the CO(2) concentration inside leaves (C(i)) has been a useful approach for investigating plant responses to various environments. Nevertheless, there are uncertainties in calculating C(i) when stomata close, restricting the application. Here, A-C(i) curves were traced in sunflower (Helianthus annuus L.) leaves using a method for directly measuring C(i). The method was incorporated into an LI-6400 open gas exchange system, and stomata were closed by feeding 10 µM ABA through petioles. The conductance to CO(2) was derived from the directly measured C(i) and compared with the conductance from the water vapor flux (i.e. the standard calculation). When stomata were open, measured and calculated C(i) gave similar A-C(i) curves. When stomata were closed, the curves differed because measured C(i) departed from the calculated value. This difference caused the calculation to trace an artifactual limitation of photosynthesis. The direct measurement avoided this problem and followed the curve for leaves with open stomata. Largely because of the cuticle, the calculation overestimated CO(2) entry into the leaf because the cuticle transmitted more water vapor than CO(2), and the calculation relied on water vapor. Consequently, the standard calculation gave conductances larger than those from directly measured C(i). Although the cuticle conductance to water vapor remained constant as stomata closed, it increasingly contributed to the overestimation of C(i). The system provided here is not affected by these cuticle properties and thus is expected to open up the opportunity for A-C(i) analysis in plant physiology. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. RNAi-Mediated Functional Analysis of Bursicon Genes Related to Adult Cuticle Formation and Tanning in the Honeybee, Apis mellifera

    OpenAIRE

    Costa, Claudin?ia Pereira; Elias-Neto, Moys?s; Falcon, Tiago; Dallacqua, Rodrigo Pires; Martins, Juliana Ramos; Bitondi, Marcia Maria Gentile

    2016-01-01

    Bursicon is a heterodimeric neurohormone that acts through a G protein-coupled receptor named rickets (rk), thus inducing an increase in cAMP and the activation of tyrosine hydroxylase, the rate-limiting enzyme in the cuticular tanning pathway. In insects, the role of bursicon in the post-ecdysial tanning of the adult cuticle and wing expansion is well characterized. Here we investigated the roles of the genes encoding the bursicon subunits during the adult cuticle development in the honeybee...

  17. Transcriptome Analysis of Mango (Mangifera indica L.) Fruit Epidermal Peel to Identify Putative Cuticle-Associated Genes

    OpenAIRE

    Tafolla-Arellano, Julio C.; Yi Zheng; Honghe Sun; Chen Jiao; Eliel Ruiz-May; Miguel A. Hernández-Oñate; Alberto González-León; Reginaldo Báez-Sañudo; Zhangjun Fei; David Domozych; Rose, Jocelyn K. C.; Martín E. Tiznado-Hernández

    2017-01-01

    Mango fruit (Mangifera indica L.) are highly perishable and have a limited shelf life, due to postharvest desiccation and senescence, which limits their global distribution. Recent studies of tomato fruit suggest that these traits are influenced by the expression of genes that are associated with cuticle metabolism. However, studies of these phenomena in mango fruit are limited by the lack of genome-scale data. In order to gain insight into the mango cuticle biogenesis and identify putative c...

  18. Potential use of cutinase in enzymatic scouring of cotton fiber cuticle.

    Science.gov (United States)

    Degani, Ofir; Gepstein, Shimon; Dosoretz, Carlos G

    2002-01-01

    The present study characterized the ability of a bacterial cutinase to improve the wettability of raw cotton fabrics by specific hydrolysis of the cutin structure of the cuticle. The effect of cutinase was studied alone and in coreaction with pectin lyase. The changes in both the fabric and the reaction fluid were measured and compared to enzymatic hydrolysis with polygalacturonase, and to chemical hydrolysis with boiling NaOH. Water absorbancy, specific staining, fabric weight loss, and evaporative light-scattering reverse-phase high-performance liquid chromatography analysis of chloroform extract of the reaction fluid were measured to assess the enzymatic hydrolysis of the cuticle waxy layer. The pattern and extent of hydrolysis of the major cuticle constituents depended on the enzyme type and titers employed and paralleled the degree of wettability obtained. The combination of cutinase and pectin lyase resulted in a synergistic effect. The use of detergents improved enzymatic scouring. The major products released to the reaction medium by the cutinase treatment were identified by gas chromatography/mass spectrometry analysis as C:16 and C:18 saturated fatty acid chains.

  19. Transmission electron microscopic observation of body cuticle structures of phoretic and parasitic stages of Parasitaphelenchinae nematodes.

    Directory of Open Access Journals (Sweden)

    Taisuke Ekino

    Full Text Available Using transmission electron microscopy, we examined the body cuticle ultrastructures of phoretic and parasitic stages of the parasitaphelenchid nematodes Bursaphelenchus xylophilus, B. conicaudatus, B. luxuriosae, B. rainulfi; an unidentified Bursaphelenchus species, and an unidentified Parasitaphelenchus species. Nematode body cuticles usually consist of three zones, a cortical zone, a median zone, and a basal zone. The phoretic stages of Bursaphelenchus spp., isolated from the tracheal systems of longhorn beetles or the elytra of bark beetles, have a thick and radially striated basal zone. In contrast, the parasitic stage of Parasitaphelenchus sp., isolated from bark beetle hemocoel, has no radial striations in the basal zone. This difference probably reflects the peculiar ecological characteristics of the phoretic stage. A well-developed basal radially striated zone, composed of very closely linked proteins, is the zone closest to the body wall muscle. Therefore, the striation is necessary for the phoretic species to be able to seek, enter, and depart from host/carrier insects, but is not essential for internal parasites in parasitaphelenchid nematodes. Phylogenetic relationships inferred from near-full-length small subunit ribosomal RNA sequences suggest that the cuticle structures of parasitic species have apomorphic characters, e.g., lack of striation in the basal zone, concurrent with the evolution of insect parasitism from a phoretic life history.

  20. Kinetics of chitinase production. II. Relationship between bacterial growth, chitin hydrolysis and enzyme synthesis.

    Science.gov (United States)

    Young, M E; Bell, R L; Carroad, P A

    1985-06-01

    A comprehensive model for chitinase production during growth of Serratia marcescens QMB 1466 on chitin was developed taking into account the rate of chitin hydrolysis in order to estimate the rate of bacterial growth. In relating growth with enzyme synthesis the total enzyme concentration was used as the sum of the enzyme present in the bulk of the fermentation broth and the enzyme adsorbed on the chitin particles. The equations constituting the proposed model were fitted to the experimental results from both continuous and batch fermentation to obtain parameters describing substrate yield, metabolic maintenance, and enzyme yields.

  1. Data for chitin binding activity of Moringa seed resistant protein (MSRP)

    OpenAIRE

    Sandanamudi, Anudeep; Bharadwaj, Kishan R.; Cheruppanpullil, Radha

    2016-01-01

    Chitin binding activity of moringa seed resistant protein (MSRP) isolated from defatted moringa seed flour was investigated in the present study “Characterization of soluble dietary fiber from Moringa oleifera seeds and its immunomodulatory effects” (S. Anudeep, V.K. Prasanna, S.M. Adya, C. Radha, 2016) [1]. The assay reaction mixture contained 0.4 mg/ml of MSRP and different amounts (20–100 mg) of chitin. MSRP exhibited binding activity over wide range of chitin concentration. Maximum bindin...

  2. Optimization of lactic fermentation for extraction of chitin from freshwater shrimp waste

    Directory of Open Access Journals (Sweden)

    Andressa Caroline Neves

    2017-05-01

    Full Text Available Freshwater shrimp shells from the shrimp farming activity in tanks, were processed for biological extraction of chitin, by fermentation with Lactobacillus plantarum isolated from meat products, offering an advantageous demineralization and deproteination of the residue, replacing the chemically. Deproteination was obtained approximately 99% and demineralization of up to 87% using batch fermentations with a maximum of 72 hours and the use of simple strategies such as pH adjustment and reinoculation. The performance of chitin was about 40% greater than in the chemical extraction and the results indicate an interesting method in the process of production of chitosan, where the biopolymer chitin is precursor.

  3. Glycol chitin-based thermoresponsive hydrogel scaffold supplemented with enamel matrix derivative promotes odontogenic differentiation of human dental pulp cells.

    Science.gov (United States)

    Park, Su-Jung; Li, Zhengzheng; Hwang, In-Nam; Huh, Kang Moo; Min, Kyung-San

    2013-08-01

    Hydrogels have been widely studied as tissue engineering scaffolds over the past 2 decades because of their favorable biological properties. Recently, a new biodegradable glycol chitin-based thermoresponsive hydrogel scaffold (GC-TRS) was developed that can be easily applied as a mild viscous solution at room temperature but quickly transforms into a durable hydrogel under physiological conditions. The aim of this study was to investigate the effects of GC-TRS on the proliferation and odontogenic differentiation of colony-forming human dental pulp cells (hDPCs) in the presence of enamel matrix derivative. Glycol chitin was synthesized by N-acetylation of glycol chitosan. The morphology of the thermoresponsive hydrogel scaffold was observed by using scanning electron microscopy. The sol gel phase transition of the aqueous solution of glycol chitin was investigated by using the tilting method and rheometer studies. hDPCs were isolated based on their ability to generate clonogenic adherent cell clusters. The effect of GC-TRS and collagen on cell viability was examined by performing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Expression of markers for odontogenic/osteogenic differentiation (ie, dentin sialophosphoprotein, dentin matrix protein-1, osteonectin, and osteopontin) was analyzed by performing real-time polymerase chain reaction. GC-TRS exhibited a highly macroporous and well-interconnected porous structure. The polymer solution existed in a mildly viscous sol state, but it transitioned to a gel state and did not flow above approximately 37°C. Rheometer studies showed that the glycol chitin solution exhibited a fast sol gel transition approximately at body temperature. GC-TRS and collagen did not inhibit cell viability until 7 days. Dentin sialophosphoprotein and dentin matrix protein-1 were expressed by cells cultured in GC-TRS at a higher level than that in cells cultured in collagen (P matrix protein-1, and osteopontin

  4. MICROBIAL FERMENTATION OF ABUNDANT BIOPOLYMERS: CELLULOSE AND CHITIN

    Energy Technology Data Exchange (ETDEWEB)

    Leschine, Susan

    2009-10-31

    Our research has dealt with seven major areas of investigation: i) characterization of cellulolytic members of microbial consortia, with special attention recently given to Clostridium phytofermentans, a bacterium that decomposes cellulose and produces uncommonly large amounts of ethanol, ii) investigations of the chitinase system of Cellulomonas uda; including the purification and characterization of ChiA, the major component of this enzyme system, iii) molecular cloning, sequence and structural analysis of the gene that encodes ChiA in C. uda, iv) biofilm formation by C. uda on nutritive surfaces, v) investigations of the effects of humic substances on cellulose degradation by anaerobic cellulolytic microbes, vi) studies of nitrogen metabolism in cellulolytic anaerobes, and vii) understanding the molecular architecture of the multicomplex cellulase-xylanase system of Clostridium papyrosolvens. Also, progress toward completing the research of more recent projects is briefly summarized. Major accomplishments include: 1. Characterization of Clostridium phytofermentans, a cellulose-fermenting, ethanol-producing bacterium from forest soil. The characterization of a new cellulolytic species isolated from a cellulose-decomposing microbial consortium from forest soil was completed. This bacterium is remarkable for the high concentrations of ethanol produced during cellulose fermentation, typically more than twice the concentration produced by other species of cellulolytic clostridia. 2. Examination of the use of chitin as a source of carbon and nitrogen by cellulolytic microbes. We discovered that many cellulolytic anaerobes and facultative aerobes are able to use chitin as a source of both carbon and nitrogen. This major discovery expands our understanding of the biology of cellulose-fermenting bacteria and may lead to new applications for these microbes. 3. Comparative studies of the cellulase and chitinase systems of Cellulomonas uda. Results of these studies indicate

  5. Chitin extraction and chitosan production from cell wall of two mushroom species (Lactarius vellereus and Phyllophora ribis)

    Science.gov (United States)

    Erdogan, S.; Kaya, M.; Akata, I.

    2017-02-01

    Chitin is an important polysaccharide found as supporting material in the cell wall of mushrooms. In this study, chitin and chitosan were obtained from the cell wall of two different mushroom species using chemical method and physicochemically characterized. The dry weight chitin contents of the mushroom species were determined as 11.4% for Lactarius vellereus and 7.9% for Phyllophora ribis. Chitosan yields of the chitins isolated from L. vellereus and P. ribis were 73.1% and 75.3%, respectively. While, the maximum degradation temperatures of L. vellereus and P. ribis chitins were found to be 354°C and 275°C by thermogravimetric analysis (TGA), the maximum degradation temperature of the chitosans obtained from these chitins were recorded as 262°C and 229°C, respectively. The crystalline index values of L. vellereus and P. ribis chitins were calculated as 64% and 49%, respectively according to the X-ray diffraction analysis (XRD) results. The scanning electron microscopy (SEM) indicated that there were no nanofiber or nanopores on the surface of the chitins and chitosans obtained from these two mushroom species. The results of this study revealed that L. vellereus and P. ribis had higher chitin contents than some other insects and mushroom species recorded in the literature and these species may be used as a potential chitin sources.

  6. CERK1, a LysM Receptor Kinase, Is Essential for Chitin Elicitor Signaling in Arabidopsis

    National Research Council Canada - National Science Library

    Ayako Miya; Premkumar Albert; Tomonori Shinya; Yoshitake Desaki; Kazuya Ichimura; Ken Shirasu; Yoshihiro Narusaka; Naoto Kawakami; Hanae Kaku; Naoto Shibuya

    2007-01-01

    ...(s) is required for signaling through the plasma membrane into the cytoplasm. Here, we identified a receptor-like kinase, designated CERK1, which is essential for chitin elicitor signaling in Arabidopsis...

  7. Solid state characterization of {alpha}-chitin from Vanessa cardui Linnaeus wings

    Energy Technology Data Exchange (ETDEWEB)

    Schiffman, Jessica D. [Department of Materials Science and Engineering, Drexel University, Philadelphia, PA (United States); Schauer, Caroline L., E-mail: cschauer@coe.drexel.edu [Department of Materials Science and Engineering, Drexel University, Philadelphia, PA (United States)

    2009-05-05

    Material properties of the painted lady butterfly, Vanessa cardui Linnaeus were investigated using typical material science techniques. The examined butterflies were raised and hatched from the larvae stage and their chemical and crystalline structure evaluated and compared to that of crab shell ({alpha}-chitin) and squid pens from Notodarus sloanii and Loligo pealei ({beta}-chitin). Fourier transmission infrared spectroscopy (FTIR) and X-ray diffraction (XRD) revealed that the painted lady butterflies are composed of {alpha}-chitin. Additionally, macro- and microstructure characterization of the chitins was conducted utilizing digital photography and field emission scanning electron microscopy (FESEM). This work demonstrates that common characterization techniques combined with simple sample preparation of biological materials can yield successful material characterization, which could aide the fabrication of biomimetic materials.

  8. Halo(natrono)archaea isolated from hypersaline lakes utilize cellulose and chitin as growth substrates

    NARCIS (Netherlands)

    Sorokin, D.Y.; Toshchakov, S.V.; Kolganova, T.V.; Kublanov, I.V.

    2015-01-01

    Until recently, extremely halophilic euryarchaeota were considered mostly as aerobic heterotrophs utilizing simple organic compounds as growth substrates. Almost nothing is known on the ability of these prokaryotes to utilize complex polysaccharides, such as cellulose, xylan, and chitin. Although

  9. Isolation and identification of chitin in the black coral Parantipathes larix (Anthozoa: Cnidaria).

    Science.gov (United States)

    Bo, Marzia; Bavestrello, Giorgio; Kurek, Denis; Paasch, Silvia; Brunner, Eike; Born, René; Galli, Roberta; Stelling, Allison L; Sivkov, Viktor N; Petrova, Olga V; Vyalikh, Denis; Kummer, Kurt; Molodtsov, Serguei L; Nowak, Dorota; Nowak, Jakub; Ehrlich, Hermann

    2012-01-01

    Until now, there is a lack of knowledge about the presence of chitin in numerous representatives of corals (Cnidaria). However, investigations concerning the chitin-based skeletal organization in different coral taxa are significant from biochemical, structural, developmental, ecological and evolutionary points of view. In this paper, we present a thorough screening for the presence of chitin within the skeletal formations of a poorly investigated Mediterranean black coral, Parantipathes larix (Esper, 1792), as a typical representative of the Schizopathidae family. Using a wide array variety of techniques ((13)C solid state NMR, Fourier transform infrared (FTIR), Raman, NEXAFS, Morgan-Elson assay and Calcofluor White Staining), we unambiguously show for the first time that chitin is an important component within the skeletal stalks as well as pinnules of this coral. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan

    Directory of Open Access Journals (Sweden)

    Jolanta Kumirska

    2010-04-01

    Full Text Available Chitin, the second most important natural polymer in the world, and its N-deacetylated derivative chitosan, have been identified as versatile biopolymers for a broad range of applications in medicine, agriculture and the food industry. Two of the main reasons for this are firstly the unique chemical, physicochemical and biological properties of chitin and chitosan, and secondly the unlimited supply of raw materials for their production. These polymers exhibit widely differing physicochemical properties depending on the chitin source and the conditions of chitosan production. The presence of reactive functional groups as well as the polysaccharide nature of these biopolymers enables them to undergo diverse chemical modifications. A complete chemical and physicochemical characterization of chitin, chitosan and their derivatives is not possible without using spectroscopic techniques. This review focuses on the application of spectroscopic methods for the structural analysis of these compounds.

  11. Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan

    Science.gov (United States)

    Kumirska, Jolanta; Czerwicka, Małgorzata; Kaczyński, Zbigniew; Bychowska, Anna; Brzozowski, Krzysztof; Thöming, Jorg; Stepnowski, Piotr

    2010-01-01

    Chitin, the second most important natural polymer in the world, and its N-deacetylated derivative chitosan, have been identified as versatile biopolymers for a broad range of applications in medicine, agriculture and the food industry. Two of the main reasons for this are firstly the unique chemical, physicochemical and biological properties of chitin and chitosan, and secondly the unlimited supply of raw materials for their production. These polymers exhibit widely differing physicochemical properties depending on the chitin source and the conditions of chitosan production. The presence of reactive functional groups as well as the polysaccharide nature of these biopolymers enables them to undergo diverse chemical modifications. A complete chemical and physicochemical characterization of chitin, chitosan and their derivatives is not possible without using spectroscopic techniques. This review focuses on the application of spectroscopic methods for the structural analysis of these compounds. PMID:20559489

  12. Chitin and chitosan on Meloidogyne javanica management and on chitinase activity in tomato plants

    National Research Council Canada - National Science Library

    Mota, Lara C. B. M; dos Santos, Maria Amelia

    2016-01-01

    This study evaluated the efficacy of chitin and chitosan on the control of M. javanica, on the increase of chitinolyctic microorganisms in the soil, on chitinase activity on tomato leaves and on plant development...

  13. Chitin enhances serum IgE in Aspergillus fumigatus induced allergy in mice

    DEFF Research Database (Denmark)

    Dubey, Lalit Kumar; Moeller, Jesper Bonnet; Schlosser, Anders

    2015-01-01

    Aspergillus fumigatus (A. fumigatus) is a ubiquitous fungus that activates, suppresses or modulates the immune response by changing its cell wall structure and by secreting proteases. In this study, we show that chitin acts as an adjuvant in a murine model of A. fumigatus protease induced allergy....... The mice were immunised intraperitoneally with A. fumigatus culture filtrate antigen either with or without chitin and were subsequently challenged with the culture filtrate antigen intranasally. Alum was used as an adjuvant control. Compared to alum, chitin induced a weaker inflammatory response...... fluid. These results shows that chitin, in spite of a reduction of the Th2 cytokine levels in the lungs, enhanced the total and specific IgE production in A. fumigatus culture filtrate induced allergy....

  14. Designing a new chitinase with more chitin binding and antifungal activity.

    Science.gov (United States)

    Matroodi, Soheila; Motallebi, Mostafa; Zamani, Mohammadreza; Moradyar, Mehdi

    2013-08-01

    Chitinases have the ability of chitin digestion that constitutes a main compound of the cell wall in many of the phytopathogens such as fungi. Chitinase Chit42 from Trichoderma atroviride PTCC5220 is considered to play an important role in the biocontrol activity of this fungus against plant pathogens. Chit42 lacks a chitin binding domain (ChBD). We have produced a chimeric chitinase with stronger chitin-binding capacity by fusing to Chit42 a ChBD from Serratia marcescens Chitinase B. The fusion of ChBD improved the affinity to crystalline and colloidal chitin and also the enzyme activity of the chimeric chitinase when compared with the native Chit42. The chimeric chitinase showed higher antifungal activity toward phytopathogenic fungi.

  15. A Preliminary Evaluation of Lyophilized Gelatin Sponges, Enhanced with Platelet-Rich Plasma, Hydroxyapatite and Chitin Whiskers for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Andrew J. Spence

    2013-04-01

    Full Text Available The purpose of this study was to perform a number of preliminary in vitro evaluations on an array of modified gelatin gel sponge scaffolds for use in a bone graft application. The gelatin gels were modified through the addition of a number of components which each possess unique properties conducive to the creation and regeneration of bone: a preparation rich in growth factors (PRGF, a bioactive, lyophilized form of platelet-rich plasma, hydroxyapatite, and chitin whiskers. Platelet-rich plasma therapy is an emerging practice that has proven effective in a number of clinical applications, including enhancing bone repair through improved deposition of new bony matrix and angiogenesis. As such, the inclusion of PRGF in our gelatin scaffolds was intended to significantly enhance scaffold bioactivity, while the addition of hydroxyapatite and chitin whiskers were anticipated to increase scaffold strength. Additionally, the gelatin sponges, which readily dissolve in aqueous solutions, were subjected to 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC cross-linking, either during or post-gelation, to control their rate of degradation. Scaffolds were evaluated in vitro with respect to compressive strength, mass loss/degradation, protein release, and cellular interaction, with results demonstrating the potential of the gelatin gel sponge scaffold for use in the regeneration of bone.

  16. A Structurally Novel Chitinase from the Chitin-Degrading Hyperthermophilic Archaeon Thermococcus chitonophagus.

    Science.gov (United States)

    Horiuchi, Ayumi; Aslam, Mehwish; Kanai, Tamotsu; Atomi, Haruyuki

    2016-06-15

    A structurally novel chitinase, Tc-ChiD, was identified from the hyperthermophilic archaeon Thermococcus chitonophagus, which can grow on chitin as the sole organic carbon source. The gene encoding Tc-ChiD contains regions corresponding to a signal sequence, two chitin-binding domains, and a putative catalytic domain. This catalytic domain shows no similarity with previously characterized chitinases but resembles an uncharacterized protein found in the mesophilic anaerobic bacterium Clostridium botulinum Two recombinant Tc-ChiD proteins were produced in Escherichia coli, one without the signal sequence [Tc-ChiD(ΔS)] and the other corresponding only to the putative catalytic domain [Tc-ChiD(ΔBD)]. Enzyme assays using N-acetylglucosamine (GlcNAc) oligomers indicated that both proteins hydrolyze GlcNAc oligomers longer than (GlcNAc)4 Chitinase assays using colloidal chitin suggested that Tc-ChiD is an exo-type chitinase that releases (GlcNAc)2 or (GlcNAc)3 Analysis with GlcNAc oligomers modified with p-nitrophenol suggested that Tc-ChiD recognizes the reducing end of chitin chains. While Tc-ChiD(ΔBD) displayed a higher initial velocity than that of Tc-ChiD(ΔS), we found that the presence of the two chitin-binding domains significantly enhanced the thermostability of the catalytic domain. In T. chitonophagus, another chitinase ortholog that is similar to the Thermococcus kodakarensis chitinase ChiA is present and can degrade chitin from the nonreducing ends. Therefore, the presence of multiple chitinases in T. chitonophagus with different modes of cleavage may contribute to its unique ability to efficiently degrade chitin. A structurally novel chitinase, Tc-ChiD, was identified from Thermococcus chitonophagus, a hyperthermophilic archaeon. The protein contains a signal peptide for secretion, two chitin-binding domains, and a catalytic domain that shows no similarity with previously characterized chitinases. Tc-ChiD thus represents a new family of chitinases. Tc

  17. Design and characterization of Chitin- Glucan polymeric structures for wound dressing materials

    OpenAIRE

    Ardiyanti, Rizza

    2014-01-01

    The main objective of this work was the development of polymeric structures, gel and films, generated from the dissolution of the Chitin-Glucan Complex (CGC) in biocompatible ionic liquids for biomedical applications. Similar as chitin, CGC is only soluble in some special solvents which are toxic and corrosive. Due to this fact and the urgent development of biomedical applications, the need to use biocompatible ionic liquids to dissolve the CGC is indispensable. For the dissolution of CGC, th...

  18. Studies on electrospun chitosan based nanofibres reinforced with cellulose and chitin nanowhiskers

    CSIR Research Space (South Africa)

    Jacobs, V

    2010-09-01

    Full Text Available ,5. . The potential of nanocomposites reinforced with polysaccharide nanowhiskers in various sectors of research and application is attracting enormous investment. For example, the inclusion of chitin and cellulose nanowhiskers in biopolymer matrix has been...-Linked Chitosan/Chitin Crystal Nanocomposites with Improved Permeation Selectivity and pH Stability, Biomacromolecules 2009, 10, 1627–1632. 7. Dufresne, A. Processing of Polymer Nanocomposites Reinforced with Polysaccharide Nanocrystals, Molecules 2010, 15...

  19. Hydrogen and oxygen in brine shrimp chitin reflect environmental water and dietary isotopic composition

    Science.gov (United States)

    Nielson, Kristine E.; Bowen, Gabriel J.

    2010-03-01

    Hydrogen and oxygen isotope ratios of the common structural biopolymer chitin are a potential recorder of ecological and environmental information, but our understanding of the mechanisms of incorporation of H and O from environmental substrates into chitin is limited. We report the results of a set of experiments in which the isotopic compositions of environmental water and diet were varied independently in order to assess the contribution of these variables to the H and O isotopic composition of Artemia franciscana chitin. Hydrogen isotope ratios of chitin were strongly linearly correlated with both food and water, with approximately 26% of the hydrogen signal reflecting food and approximately 38% reflecting water. Oxygen isotopes were also strongly correlated with the isotopic composition of water and food, but whereas 69% of oxygen in chitin exchanged with environmental water, only 10% was derived from food. We propose that these observations reflect the position-specific, partial exchange of H and O atoms with brine shrimp body water during the processes of digestion and chitin biosynthesis. Comparison of culture experiments with a set of natural samples collected from the Great Salt Lake, UT in 2006 shows that, with some exceptions, oxygen isotope compositions of chitin track those of water, whereas hydrogen isotopes vary inversely with those of lake water. The different behavior of the two isotopic systems can be explained in terms of a dietary shift from allochthonous particulate matter with relatively higher δ 2H values in the early spring to autochthonous particulate matter with significantly lower δ 2H values in the late summer to autumn. These results suggest oxygen in chitin may be a valuable proxy for the oxygen isotopic composition of environmental water, whereas hydrogen isotope values from the same molecule may reveal ecological and biogeochemical changes within lakes.

  20. Formulation development of stronger and quick disintegrating tablets: a crucial effect of chitin.

    Science.gov (United States)

    Goel, Honey; Kaur, Gurpreet; Tiwary, Ashok K; Rana, Vikas

    2010-05-01

    A well known superdisintegrant like croscarmellose sodium or crospovidone loses their quick disintegration property when compressed at more than 4 kg tablet crushing strength (TCS). Therefore, the objective of the present work was to develop a disintegrating system that could be used for preparing fast disintegrating tablets (FDTs) of highly water soluble drug, metoclopramide, without compromising on the mechanical strength, irrespective of the TCS used for compressing the granules. For this purpose disintegrating system consisting of chitosan-alginate (CTN-ALG) complex (1:1): glycine and chitin was developed. The results revealed that when CTN-ALG and glycine were mixed in the ratio of 30:70, the granules exhibited a minimum water sorption time and maximum effective pore radius (R(eff.p)). The addition of chitin (5-10% w/w) into this mixture further enhanced the R(eff.p). Further, increase in the concentration of chitin from 10% to 20% w/w did not produce any significant effect (p>0.05) on the R(eff.p). The FDTs prepared by using CTN-ALG:glycine (30:70) and chitin exhibited increased porosity and lower disintegration time (DT). Further, chitin was found to neutralize the effect of TCS on DT of FDTs. This property of chitin was also observed in FDTs prepared by using croscarmellose sodium (5% w/w) or crospovidone (5% w/w). The reduction in DT of FDTs by chitin was also observed in tablets prepared without the drug. Hence, the effect was not influenced by the solubility component present in the tablets. Overall, the results suggested incorporation of chitin (5-10% w/w) while preparing FDTs of metoclopramide to enhanced the disintegration without compromising their mechanical strength of the tablets.

  1. A novel chitin binding crayfish molar tooth protein with elasticity properties.

    Directory of Open Access Journals (Sweden)

    Jenny Tynyakov

    Full Text Available The molar tooth of the crayfish Cherax quadricarinatus is part of the mandible, and is covered by a layer of apatite (calcium phosphate. This tooth sheds and is regenerated during each molting cycle together with the rest of the exoskeleton. We discovered that molar calcification occurs at the pre-molt stage, unlike calcification of the rest of the new exoskeleton. We further identified a novel molar protein from C. quadricarinatus and cloned its transcript from the molar-forming epithelium. We termed this protein Cq-M13. The temporal level of transcription of Cq-M13 in an NGS library of molar-forming epithelium at different molt stages coincides with the assembly and mineralization pattern of the molar tooth. The predicted protein was found to be related to the pro-resilin family of cuticular proteins. Functionally, in vivo silencing of the transcript caused molt cycle delay and a recombinant version of the protein was found to bind chitin and exhibited elastic properties.

  2. A novel chitin binding crayfish molar tooth protein with elasticity properties.

    Science.gov (United States)

    Tynyakov, Jenny; Bentov, Shmuel; Abehsera, Shai; Khalaila, Isam; Manor, Rivka; Katzir Abilevich, Lihie; Weil, Simy; Aflalo, Eliahu D; Sagi, Amir

    2015-01-01

    The molar tooth of the crayfish Cherax quadricarinatus is part of the mandible, and is covered by a layer of apatite (calcium phosphate). This tooth sheds and is regenerated during each molting cycle together with the rest of the exoskeleton. We discovered that molar calcification occurs at the pre-molt stage, unlike calcification of the rest of the new exoskeleton. We further identified a novel molar protein from C. quadricarinatus and cloned its transcript from the molar-forming epithelium. We termed this protein Cq-M13. The temporal level of transcription of Cq-M13 in an NGS library of molar-forming epithelium at different molt stages coincides with the assembly and mineralization pattern of the molar tooth. The predicted protein was found to be related to the pro-resilin family of cuticular proteins. Functionally, in vivo silencing of the transcript caused molt cycle delay and a recombinant version of the protein was found to bind chitin and exhibited elastic properties.

  3. RNAi-Mediated Functional Analysis of Bursicon Genes Related to Adult Cuticle Formation and Tanning in the Honeybee, Apis mellifera.

    Science.gov (United States)

    Costa, Claudinéia Pereira; Elias-Neto, Moysés; Falcon, Tiago; Dallacqua, Rodrigo Pires; Martins, Juliana Ramos; Bitondi, Marcia Maria Gentile

    2016-01-01

    Bursicon is a heterodimeric neurohormone that acts through a G protein-coupled receptor named rickets (rk), thus inducing an increase in cAMP and the activation of tyrosine hydroxylase, the rate-limiting enzyme in the cuticular tanning pathway. In insects, the role of bursicon in the post-ecdysial tanning of the adult cuticle and wing expansion is well characterized. Here we investigated the roles of the genes encoding the bursicon subunits during the adult cuticle development in the honeybee, Apis mellifera. RNAi-mediated knockdown of AmBurs α and AmBurs β bursicon genes prevented the complete formation and tanning (melanization/sclerotization) of the adult cuticle. A thinner, much less tanned cuticle was produced, and ecdysis toward adult stage was impaired. Consistent with these results, the knockdown of bursicon transcripts also interfered in the expression of genes encoding its receptor, AmRk, structural cuticular proteins, and enzymes in the melanization/sclerotization pathway, thus evidencing roles for bursicon in adult cuticle formation and tanning. Moreover, the expression of AmBurs α, AmBurs β and AmRk is contingent on the declining ecdysteroid titer that triggers the onset of adult cuticle synthesis and deposition. The search for transcripts of AmBurs α, AmBurs β and candidate targets in RNA-seq libraries prepared with brains and integuments strengthened our data on transcript quantification through RT-qPCR. Together, our results support our premise that bursicon has roles in adult cuticle formation and tanning, and are in agreement with other recent studies pointing for roles during the pharate-adult stage, in addition to the classical post-ecdysial ones.

  4. Role of Shrimp Chitin in the Ecology of Toxigenic Vibrio cholerae and Cholera Transmission

    Directory of Open Access Journals (Sweden)

    Marzia eSultana

    2012-01-01

    Full Text Available Seasonal plankton blooms correlate with occurrence of cholera in Bangladesh, although the mechanism of how dormant Vibrio cholerae, enduring interepidemic period in biofilms and plankton, initiates seasonal cholera is not fully understood. In this study, laboratory microcosms prepared with estuarine Mathbaria water (MW samples supported active growth of toxigenic V. cholerae O1 up to seven weeks as opposed to six months when microcosms were supplemented with dehydrated shrimp chitin chips (CC as the single source of nutrient. Bacterial counting and detection of wbe and ctxA genes were done employing culture, Direct Fluorescent Antibody (DFA assay, and multiplex PCR (M-PCR methods. In MW microcosm, the aqueous phase became clear as the non-culturable cells settled, whereas the aqueous phase of the MW-CC microcosm became turbid from bacterial growth stimulated by chitin. Bacterial chitin degradation and biofilm formation proceeded from an initial steady state to a gradually declining bacterial culturable count. V. cholerae within the microenvironments of chitin and chitin-associated biofilms remained metabolically active even in a high acidic environment without losing either viability or virulence. It is concluded that the abundance of chitin that occurs during blooms plays an important role in the aquatic life cycle of V. cholerae and, ultimately, in the seasonal transmission of cholera.

  5. Role of Shrimp Chitin in the Ecology of Toxigenic Vibrio cholerae and Cholera Transmission.

    Science.gov (United States)

    Nahar, Shamsun; Sultana, Marzia; Naser, M Niamul; Nair, Gopinath B; Watanabe, Haruo; Ohnishi, Makoto; Yamamoto, Shouji; Endtz, Hubert; Cravioto, Alejandro; Sack, R Bradley; Hasan, Nur A; Sadique, Abdus; Huq, Anwar; Colwell, Rita R; Alam, Munirul

    2011-01-01

    Seasonal plankton blooms correlate with occurrence of cholera in Bangladesh, although the mechanism of how dormant Vibrio cholerae, enduring interepidemic period in biofilms and plankton, initiates seasonal cholera is not fully understood. In this study, laboratory microcosms prepared with estuarine Mathbaria water (MW) samples supported active growth of toxigenic V. cholerae O1 up to 7 weeks as opposed to 6 months when microcosms were supplemented with dehydrated shrimp chitin chips (CC) as the single source of nutrient. Bacterial counting and detection of wbe and ctxA genes were done employing culture, direct fluorescent antibody (DFA) assay, and multiplex-polymerase chain reaction methods. In MW microcosm, the aqueous phase became clear as the non-culturable cells settled, whereas the aqueous phase of the MW-CC microcosm became turbid from bacterial growth stimulated by chitin. Bacterial chitin degradation and biofilm formation proceeded from an initial steady state to a gradually declining bacterial culturable count. V. cholerae within the microenvironments of chitin and chitin-associated biofilms remained metabolically active even in a high acidic environment without losing either viability or virulence. It is concluded that the abundance of chitin that occurs during blooms plays an important role in the aquatic life cycle of V. cholerae and, ultimately, in the seasonal transmission of cholera.

  6. Effects of Chitin Whiskers on Physical Properties and Osteoblast Culture of Alginate Based Nanocomposite Hydrogels.

    Science.gov (United States)

    Huang, Yao; Yao, Mengyu; Zheng, Xing; Liang, Xichao; Su, Xiaojuan; Zhang, Yu; Lu, Ang; Zhang, Lina

    2015-11-09

    Novel nanocomposite hydrogels composed of polyelectrolytes alginate and chitin whiskers with biocompatibility were successfully fabricated based on the pH-induced charge shifting behavior of chitin whiskers. The chitin whiskers with mean length and width of 300 and 20 nm were uniformly dispersed in negatively charged sodium alginate aqueous solution, leading to the formation of the homogeneous nanocomposite hydrogels. The experimental results indicated that their mechanical properties were significantly improved compared to alginate hydrogel and the swelling trends were inhibited as a result of the strong electrostatic interactions between the chitin whiskers and alginate. The nanocomposite hydrogels exhibited certain crystallinity and hierarchical structure with nanoscale chitin whiskers, similar to the structure of the native extracellular matrix. Moreover, the nanocomposite hydrogels were successfully applied as bone scaffolds for MC3T3-E1 osteoblast cells, showing their excellent biocompatibility and low cytotoxicity. The results of fluorescent micrographs and scanning electronic microscope (SEM) images revealed that the addition of chitin whiskers into the nanocomposite hydrogels markedly promoted the cell adhesion and proliferation of the osteoblast cells. The biocompatible nanocomposite hydrogels have potential application in bone tissue engineering.

  7. Pharyngeal Polysaccharide Deacetylases Affect Development in the Nematode C. elegans and Deacetylate Chitin In Vitro

    Science.gov (United States)

    Heustis, Ronald J.; Ng, Hong K.; Brand, Kenneth J.; Rogers, Meredith C.; Le, Linda T.; Specht, Charles A.; Fuhrman, Juliet A.

    2012-01-01

    Chitin (β-1,4-linked-N-acetylglucosamine) provides structural integrity to the nematode eggshell and pharyngeal lining. Chitin is synthesized in nematodes, but not in plants and vertebrates, which are often hosts to parasitic roundworms; hence, the chitin metabolism pathway is considered a potential target for selective interventions. Polysaccharide deacetylases (PDAs), including those that convert chitin to chitosan, have been previously demonstrated in protists, fungi and insects. We show that genes encoding PDAs are distributed throughout the phylum Nematoda, with the two paralogs F48E3.8 and C54G7.3 found in C. elegans. We confirm that the genes are somatically expressed and show that RNAi knockdown of these genes retards C. elegans development. Additionally, we show that proteins from the nematode deacetylate chitin in vitro, we quantify the substrate available in vivo as targets of these enzymes, and we show that Eosin Y (which specifically stains chitosan in fungal cells walls) stains the C. elegans pharynx. Our results suggest that one function of PDAs in nematodes may be deacetylation of the chitinous pharyngeal lining. PMID:22808160

  8. Pharyngeal polysaccharide deacetylases affect development in the nematode C. elegans and deacetylate chitin in vitro.

    Directory of Open Access Journals (Sweden)

    Ronald J Heustis

    Full Text Available Chitin (β-1,4-linked-N-acetylglucosamine provides structural integrity to the nematode eggshell and pharyngeal lining. Chitin is synthesized in nematodes, but not in plants and vertebrates, which are often hosts to parasitic roundworms; hence, the chitin metabolism pathway is considered a potential target for selective interventions. Polysaccharide deacetylases (PDAs, including those that convert chitin to chitosan, have been previously demonstrated in protists, fungi and insects. We show that genes encoding PDAs are distributed throughout the phylum Nematoda, with the two paralogs F48E3.8 and C54G7.3 found in C. elegans. We confirm that the genes are somatically expressed and show that RNAi knockdown of these genes retards C. elegans development. Additionally, we show that proteins from the nematode deacetylate chitin in vitro, we quantify the substrate available in vivo as targets of these enzymes, and we show that Eosin Y (which specifically stains chitosan in fungal cells walls stains the C. elegans pharynx. Our results suggest that one function of PDAs in nematodes may be deacetylation of the chitinous pharyngeal lining.

  9. FIBCD1 Modulation of the Epithelial Immune Response Elicited by Chitin

    DEFF Research Database (Denmark)

    Hammond, Mark; Schlosser, Anders; Bak-Thomsen, Theresa Helene

    2010-01-01

    Background: FIBCD1 is a type II transmembrane protein located on the brush border of intestinal epithelial cells. FIBCD1 binds specifically to acetylated compounds such as chitin through the C-terminal fibrinogen-related domain. Chitin is a highly acetylated homopolymeric b-1,4-N-acetylglucosamine ......Background: FIBCD1 is a type II transmembrane protein located on the brush border of intestinal epithelial cells. FIBCD1 binds specifically to acetylated compounds such as chitin through the C-terminal fibrinogen-related domain. Chitin is a highly acetylated homopolymeric b-1,4-N......-acetylglucosamine carbohydrate, which next to cellulose is the most abundant biopolymer found in nature, eg in fungi and parasites. It was recently demonstrated that chitin induces the accumulation in tissue of IL-4-expressing innate immune cells in vivo and it was suggested that chitin thus could be a recognition element...... of NF-jB signalling and downstream synthesis of mucosal epithelial-derived cytokines, TSLP and IL-33, which shapes the local accumulation and activation of Th2 responses. Results: Initial experiments have focused on the establishment of stable FIBCD1 overexpression in HEK293, HCT-116 and A549 epithelial...

  10. ISOLATION AND CHARACTERIZATION OF CHITIN AND CHITOSAN PREPARED UNDER VARIOUS PROCESSING TIMES

    Directory of Open Access Journals (Sweden)

    Crescentiana Dewi Poeloengasih

    2010-06-01

    Full Text Available Generally production of chitosan from crustacean shells consists of 4 steps, i.e. deproteinization, demineralization, decolorization and deacetylation. Simplification of chitosan production by elimination of deproteinization and/or demineralization, or reducing of reaction time would give many advantages, e.g. reduction of processing time and cost production due to reduction of chemical and power usage. The objectives of this research were to prepare chitosan under various processing times and to characterize the obtained chitin and chitosan. Chitin was prepared under various deproteinization times (0, 15, 30 min at 90 ºC using NaOH 2N and demineralization times (0, 15, 30 min at ambient temperature using HCl 2N. Chitin was then bleached using aceton/etanol (1:1 for an hour. Deacetylation was achieved by treatment of chitin under condition at 120 ºC for 5 hr using NaOH 50%. Ash and nitrogen content, and degree of deacetylation of chitosan were evaluated. Demineralization and/or deproteinization times influenced the quality of chitin. Chitin and chitosan prepared without demineralization had white and chalky appearance, whereas the other chitosan were off-white in color. Ash and nitrogen contents of the chitosan products were 0.18 - 32.40% and 3.56 - 7.59%, respectively. Chitosan prepared under various processing times, except chitosan without demineralization treatment, had degree of deacetylation ≥ 70%.   Keywords: chitosan, deproteinization, demineralization, deacetylation, processing times

  11. Squid-derived chitin oligosaccharides are a chemotactic signal during colonization by Vibrio fischeri.

    Science.gov (United States)

    Mandel, Mark J; Schaefer, Amy L; Brennan, Caitlin A; Heath-Heckman, Elizabeth A C; Deloney-Marino, Cindy R; McFall-Ngai, Margaret J; Ruby, Edward G

    2012-07-01

    Chitin, a polymer of N-acetylglucosamine (GlcNAc), is noted as the second most abundant biopolymer in nature. Chitin serves many functions for marine bacteria in the family Vibrionaceae ("vibrios"), in some instances providing a physical attachment site, inducing natural genetic competence, and serving as an attractant for chemotaxis. The marine luminous bacterium Vibrio fischeri is the specific symbiont in the light-emitting organ of the Hawaiian bobtail squid, Euprymna scolopes. The bacterium provides the squid with luminescence that the animal uses in an antipredatory defense, while the squid supports the symbiont's nutritional requirements. V. fischeri cells are harvested from seawater during each host generation, and V. fischeri is the only species that can complete this process in nature. Furthermore, chitin is located in squid hemocytes and plays a nutritional role in the symbiosis. We demonstrate here that chitin oligosaccharides produced by the squid host serve as a chemotactic signal for colonizing bacteria. V. fischeri uses the gradient of host chitin to enter the squid light organ duct and colonize the animal. We provide evidence that chitin serves a novel function in an animal-bacterial mutualism, as an animal-produced bacterium-attracting synomone.

  12. Application of crustacean chitin as a co-diluent in direct compression of tablets.

    Science.gov (United States)

    Mir, Viviana García; Heinämäki, Jyrki; Antikainen, Osmo; Sandler, Niklas; Revoredo, Ofelia Bilbao; Colarte, Antonio Iraizoz; Nieto, Olga Maria; Yliruusi, Jouko

    2010-03-01

    A "simplex-centroid mixture design" was used to study the direct-compression properties of binary and ternary mixtures of chitin and two cellulosic direct-compression diluents. Native milled and fractioned (125-250 microm) crustacean chitin of lobster origin was blended with microcrystalline cellulose, MCC (Avicel PH 102) and spray-dried lactose-cellulose, SDLC Cellactose (composed of a spray-dried mixture of alpha-lactose monohydrate 75% and cellulose powder 25%). An instrumented single-punch tablet machine was used for tablet compactions. The flowability of the powder mixtures composed of a high percentage of chitin and SDLC was clearly improved. The fractioned pure chitin powder was easily compressed into tablets by using a magnesium stearate level of 0.1% (w/w) but, as the die lubricant level was 0.5% (w/w), the tablet strength collapsed dramatically. The tablets compressed from the binary mixtures of MCC and SDLC exhibited elevated mechanical strengths (>100 N) independent of the die lubricant level applied. In conclusion, fractioned chitin of crustacean origin can be used as an abundant direct-compression co-diluent with the established cellulosic excipients to modify the mechanical strength and, consequently, the disintegration of the tablets. Chitin of crustacean origin, however, is a lubrication-sensitive material, and this should be taken into account in formulating direct-compression tablets of it.

  13. The functions Of LysM Proteins And Chitin Tetra-Saccarides Signaling Pathway in Zebrafish Embryos

    DEFF Research Database (Denmark)

    Laroche, Fabrice Jean Francois

    Chitin is an ancient organic bio-polymer, found in abundance on land and at sea. However, knowledge on chitin functions in animals is lacking. In his research project, Fabrice Laroche studied responses to chitin in zebrafish embryos, and he described chitin signalling pathways. Proteins related...... to chitin responses are increasingly being associated with human diseases. Recently, several lysin motif (LysM)-containing proteins were highlighted for their molecular affinity to chitin-like compounds. Addressing these matters, Fabrice Laroche identified zebrafish and human lysin motif-encoding genes...... and studied their roles – at the cellular level and during zebrafish development. To improve the experimental methods, he developed nanotechnological strategies to genetically modify human embryonic kidney cells and zebrafish. The PhD degree was completed at the Department of Molecular Biology and Genetics...

  14. A multilayer micromechanical model of the cuticle of Curculio longinasus Chittenden, 1927 (Coleoptera: Curculionidae).

    Science.gov (United States)

    Andrew Jansen, M; Singh, Sudhanshu S; Chawla, Nikhilesh; Franz, Nico M

    2016-08-01

    Curculio longinasus Chittenden, 1927 (Coleoptera: Curculionidae), is a weevil species common throughout the southwestern United States that uses its rostrum - a very slender, curved, beak-like projection of the head - to excavate tunnels in plant organs (such as acorns) for egg laying (oviposition). Once the apical portion of the rostrum has been inserted into the preferred substrate for oviposition, the female begins rotating around the perimeter of the hole, elevating her head by extending the fore-legs, and rotating the head in place in a drilling motion. This action causes significant elastic deformation of the rostrum, which will bend until it becomes completely straight. To better understand the mechanical behavior of the cuticle as it undergoes deformation during the preparation of oviposition sites, we develop a comprehensive micro/macro model of the micromechanical structure and properties of the cuticle, spanning across all cuticular regions, and reliably mirroring the resultant macroscale properties of the cuticle. Our modeling approach relies on the use of multi-scale, hierarchical biomaterial representation, and employs various micromechanical schemata - e.g., Mori-Tanaka, effective field, and Maxwell - to calculate the homogenized properties of representative volume elements at each level in the hierarchy. We describe the configuration and behavior of this model in detail, and discuss the theoretical implications and limitations of this approach with emphasis on future biomechanical and comparative evolutionary research. Our detailed account of this approach can thereby serve as a methodological template for exploring the biomechanical behavior of new insect structures. Copyright © 2016. Published by Elsevier Inc.

  15. Preparation and characterization of cross-linked carboxymethyl chitin porous membrane scaffold for biomedical applications.

    Science.gov (United States)

    Zhao, Liqing; Wu, Yiguang; Chen, Shu; Xing, Tao

    2015-08-01

    Porous dermal scaffold membrane (PDSM) was successfully prepared by using a so-called sol-gel freeze-drying method. In this method, the carboxymethyl chitin (CMC) hydrosol was first cross-linked by 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS), and then lyophilized to form the PDSM. For the first time, this research focused on the cross-linked CMC as the only component for three-dimensional PDSM. The effects of cross-linking conditions on the performance of the PDSM were investigated. And PDSM with optimal performance was obtained through 4-h cross-linking at 4 wt% of CMC concentration in the hydrosol, where the mass ratio of EDC to NHS to CMC was 5:3:10. The porosity of the optimized PDSM was more than 90% and the water swelling rate was above 4000%. The pore size was well distributed and was between 100 μm and 200 μm. And the tensile strength was above 0.09 MPa. The as-made PDSM could be degraded above 80% in 12 days in the presence of a 0.2mg/mL lysozyme solution. Very importantly, the PDSM had no cytotoxicity and good biocompatibility from MTT assays. Our results showed the application possibility of the as-prepared PDSM as dermal scaffold for skin tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Regenerated chitin fibers reinforced with bacterial cellulose nanocrystals as suture biomaterials.

    Science.gov (United States)

    Wu, Huanling; Williams, Gareth R; Wu, Junzi; Wu, Jianrong; Niu, Shiwei; Li, Heyu; Wang, Haijun; Zhu, Limin

    2018-01-15

    The objective of this work was to prepare a novel filament with good biocompatibility and mechanical performance which can meet the demands of surgical sutures. Bacterial cellulose nanocrystals (BCNCs) were used to reinforce regenerated chitin (RC) fibers to form BCNC/RC filaments. Mechanical performance measurements demonstrated that the strength of the BCNC/RC filament was increased dramatically over the RC analogue. A yarn made of 30 BCNC-loaded fibers also achieved satisfactory mechanical performance, with a knot-pull tensile strength of 9.8±0.6N. Enzymatic degradation studies showed the BCNC/RC materials to have good biodegradability, the rate of which can be tuned by varying the concentration of BCNCs in the yarn. The RC and the BCNC/RC materials had no cytotoxicity and can promote cell proliferation. In vivo experiments on mice demonstrated that suturing with the BCNC/RC yarn can promote wound healing without obvious adverse effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Peptide induced crystallization of calcium carbonate on wrinkle patterned substrate: implications for chitin formation in molluscs.

    Science.gov (United States)

    Ghatak, Anindita Sengupta; Koch, Marcus; Guth, Christina; Weiss, Ingrid M

    2013-06-04

    We here present the nucleation and growth of calcium carbonate under the influence of synthetic peptides on topographically patterned poly(dimethylsiloxane) (PDMS) substrates, which have a controlled density of defects between the wrinkles. Experiments with two lysine-rich peptides derived from the extracellular conserved domain E22 of the mollusc chitin synthase Ar-CS1, AKKKKKAS (AS8) and EEKKKKKES (ES9) on these substrates showed their influence on the calcium carbonate morphology. A transition from polycrystalline composites to single crystalline phases was achieved with the peptide AS8 by changing the pH of the buffer solution. We analyzed three different pH values as previous experiments showed that E22 interacts with aragonite biominerals more strongly at pH 7.75 than at pH 9.0. At any given pH, crystals appeared in characteristic morphologies only on wrinkled substrates, and did not occur on the flat, wrinkle-free PDMS substrate. These results suggest that these wrinkled substrates could be useful for controlling the morphologies of other mineral/peptide and mineral/protein composites. In nature, these templates are formed enzymatically by glycosyltransferases containing pH-sensitive epitopes, similar to the peptides investigated here. Our in vitro test systems may be useful to gain understanding of the formation of distinct 3D morphologies in mollusc shells in response to local pH shifts during the mineralization of organic templates.

  18. Antifungal curcumin promotes chitin accumulation associated with decreased virulence of Sporothrix schenckii.

    Science.gov (United States)

    Huang, Lilin; Zhang, Jing; Song, Tianzhang; Yuan, Liyan; Zhou, Junjie; Yin, Hongling; He, Tailong; Gao, Wenchao; Sun, Yao; Hu, Xuchu; Huang, Huaiqiu

    2016-05-01

    Curcumin, a yellow polyphenol compound, is known to possess antifungal activity for a range of pathogenic fungi. However, the fungicidal mechanism of curcumin (CUR) has not been identified. We have occasionally found that chitin redistributes to the cell wall outer layer of Sporothrix schenckii (S. schenckii) upon sublethal CUR treatment. Whether CUR can affect chitin synthesis via the protein kinase C (PKC) signaling pathway has not been investigated. This study describes a direct fungicidal activity of CUR against S. schenckii demonstrated by the results of a checkerboard microdilution assay and, for the first time, a synergistic effect of CUR with terbinafine (TRB). Furthermore, the results of real-time PCR showed that sublethal CUR upregulated the transcription of PKC, chitin synthase1 (CHS1), and chitin synthase3 (CHS3) in S. schenckii. The fluorescence staining results using wheat germ agglutinin-fluorescein isothiocyanate (WGA-FITC) and calcofluor white (CFW) consistently showed that chitin exposure and total chitin content were increased on the conidial cell wall of S. schenckii by sublethal CUR treatment. A histopathological analysis of mice infected with CUR-treated conidia showed dampened inflammation in the local lesion and a reduced fungal burden. The ELISA results showed proinflammatory cytokine secretion at an early stage from macrophages stimulated by the CUR-treated conidia. The present data led to the conclusion that CUR is a potential antifungal agent and that its fungicidal mechanism may involve chitin accumulation on the cell wall of S. schenckii, which is associated with decreased virulence in infected mice. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Green Conversion of Agroindustrial Wastes into Chitin and Chitosan by Rhizopus arrhizus and Cunninghamella elegans Strains

    Directory of Open Access Journals (Sweden)

    Lúcia Raquel Ramos Berger

    2014-05-01

    Full Text Available This article sets out a method for producing chitin and chitosan by Cunninghamella elegans and Rhizopus arrhizus strains using a green metabolic conversion of agroindustrial wastes (corn steep liquor and molasses. The physicochemical characteristics of the biopolymers and antimicrobial activity are described. Chitin and chitosan were extracted by alkali-acid treatment, and characterized by infrared spectroscopy, viscosity and X-ray diffraction. The effectiveness of chitosan from C. elegans and R. arrhizus in inhibiting the growth of Listeria monocytogenes, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella enterica, Escherichia coli and Yersinia enterocolitica were evaluated by determining the minimum inhibitory concentrations (MIC and the minimum bactericidal concentrations (MBC. The highest production of biomass (24.60 g/L, chitin (83.20 mg/g and chitosan (49.31 mg/g was obtained by R. arrhizus. Chitin and chitosan from both fungi showed a similar degree of deacetylation, respectively of 25% and 82%, crystallinity indices of 33.80% and 32.80% for chitin, and 20.30% and 17.80% for chitosan. Both chitin and chitosan presented similar viscosimetry of 3.79–3.40 cP and low molecular weight of 5.08 × 103 and 4.68 × 103 g/mol. They both showed identical MIC and MBC for all bacteria assayed. These results suggest that: agricultural wastes can be produced in an environmentally friendly way; chitin and chitosan can be produced economically; and that chitosan has antimicrobial potential against pathogenic bacteria.

  20. Squid Pen Chitin Chitooligomers as Food Colorants Absorbers

    Directory of Open Access Journals (Sweden)

    Tzu-Wen Liang

    2015-01-01

    Full Text Available One of the most promising applications of chitosanase is the conversion of chitinous biowaste into bioactive chitooligomers (COS. TKU033 chitosanase was induced from squid pen powder (SPP-containing Bacillus cereus TKU033 medium and purified by ammonium sulfate precipitation and column chromatography. The enzyme was relatively more thermostable in the presence of the substrate and had an activity of 93% at 50 °C in a pH 5 buffer solution for 60 min. Furthermore, the enzyme used for the COS preparation was also studied. The enzyme products revealed various mixtures of COS that with different degrees of polymerization (DP, ranging from three to nine. In the culture medium, the fermented SPP was recovered, and it displayed a better adsorption rate (up to 96% for the disperse dyes than the water-soluble food colorants, Allura Red AC (R40 and Tartrazne (Y4. Fourier transform-infrared spectroscopic (FT-IR analysis proved that the adsorption of the dyes onto fermented SPP was a physical adsorption. Results also showed that fermented SPP was a favorable adsorber and could be employed as low-cost alternative for dye removal in wastewater treatment.

  1. Tough and highly stretchable polyacrylamide nanocomposite hydrogels with chitin nanocrystals.

    Science.gov (United States)

    Liu, Mingxian; Huang, Jiandong; Luo, Binghong; Zhou, Changren

    2015-01-01

    Chitin nanocrystals (CNCs) that were 10-20 nm wide and 100-500 nm long were synthetized via acidolysis and characterized with various methods. To avoid the flocculation of CNCs in the initiator solution during acrylamide polymerization, chitosan was selected as a surface modifier. The chitosan-modified CNCs were employed as multifunctional crosslinkers for the polyacrylamide (PAAm) nanocomposite (NC) hydrogels. The NC gels were tough and stretchable; for example, the maximum tensile strength and the elongation at break of the NC gels were 90 kPa and 3070%, respectively. The dynamic shear modulus of the NC gels was also significantly higher than that of the PAAm. The NC gels were nearly free of residual strain after 2000% elongation. The microstructures of all NC gels were porous, with a pore size of 20-100 μm. The maximum equilibrium swelling degree of the NC gels was 3800%. The improvement in the properties of the NC gels is attributed to the good dispersion of CNCs and the interfacial interactions in the composites. This work developed PAAm NC hydrogels with CNCs for application as absorbent or biomedical material due to the high mechanical properties, high absorb ability and good biocompatibility of CNCs and explored new applications for CNCs as well. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Identification of the novel evolutionary conserved obstructor multigene family in invertebrates.

    Science.gov (United States)

    Behr, Matthias; Hoch, Michael

    2005-12-19

    Insects have evolved chitin-containing structures such as the cuticle or peritrophic membranes that serve to protect their bodies against the hostile environment. The specific mechanisms by which these structures are produced, are mostly unknown. We have identified a novel multigene family, the obstructor family, which encodes ten putatively secreted chitin-binding proteins that are characterized by a stereotype arrangement of a N-terminal signaling peptide and 3 chitin-binding-domains. Gene expression studies in Drosophila melanogaster embryos demonstrate that obstructor family members are expressed in cuticle forming tissues. Using computational and phylogenetic analysis, we show that obstructor genes represent an evolutionary conserved multigene family in invertebrates.

  3. Micromorphology of the elytral cuticle of beetles, with an emphasis on weevils (Coleoptera: Curculionoidea).

    Science.gov (United States)

    van de Kamp, Thomas; Riedel, Alexander; Greven, Hartmut

    2016-01-01

    The elytral cuticle of 40 beetle species, comprising 14 weevils (Curculionoidea) and 26 representatives of other taxa, is examined. All weevils and 18 other species have an endocuticle with prominent macrofibers, which corresponds to a modified pseudo-orthogonal cuticle. Angles between successive layers of macrofibers range between 30° and 90°, but are constantly less than 60° in weevils. In all Curculionoidea, as well as in one buprestid and one erotylid species exo- and endocuticle are densely interlocked. In the weevil Sitophilus granarius, transmission electron microscopy revealed vertical microfibrils extending from the exocuticle between the macrofibers of the underlaying endocuticle. Vertical microfibrils connecting successive macrofiber layers of the endocuticle were observed in S. granarius and Trigonopterus nasutus. Distinct cuticular characters are traced on a beetle phylogeny: the angles between unidirectional endocuticle layers; the presence and the shape of endocuticular macrofibers; and the interlocking of exo- and endocuticle. While character traits seem to be more or less randomly distributed among Coleoptera, the Curculionoidea have a uniform groundplan: The "weevil-specific" combination of characters includes 1) interlocking of exo- and endocuticle, 2) an endocuticle with distinct ovoid macrofibers embedded in a matrix and 3) comparatively small angles between successive endocuticular layers. Thus, phylogenetic constraints appear equally important to functional factors in the construction of the weevil elytron. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Coprinus comatus damages nematode cuticles mechanically with spiny balls and produces potent toxins to immobilize nematodes.

    Science.gov (United States)

    Luo, Hong; Liu, Yajun; Fang, Lin; Li, Xuan; Tang, Ninghua; Zhang, Keqin

    2007-06-01

    We reported recently a unique fungal structure, called the spiny ball, on the vegetative hyphae of Coprinus comatus (O. F. Müll.:Fr.) Pers. Although some observations regarding the role of this structure were presented, its function remained largely unknown. In this study, we showed that purified (isolated and washed) spiny balls could immobilize and kill the free-living nematode Panagrellus redivivus Goodey highly efficiently. Scanning electron microscopy studies illustrated that the spiny structure damaged the nematode cuticle, suggesting the presence of a mechanical force during the process of nematode immobilization. Severe injuries on nematode cuticles caused the leakage of inner materials of the nematodes. When these structures were ground in liquid nitrogen, their killing efficacy against nematodes was lost, indicating that the shape and the complete structure of the spiny balls are indispensable for their function. However, extraction with organic solvents never lowered their activity against P. redivivus, and the extracts showed no obvious effect on the nematode. We also investigated whether C. comatus was able to produce toxins which would aid in the immobilization of nematodes. In total, we identified seven toxins from C. comatus that showed activity to immobilize the nematodes P. redivivus and Meloidogyne incognita (Kofoid et White) Chitwood. The chemical structures of these toxins were identified with nuclear magnetic resonance, mass spectrometry, infrared, and UV spectrum analysis. Two compounds were found to be novel. The toxins found in C. comatus are O-containing heterocyclic compounds.

  5. Coprinus comatus Damages Nematode Cuticles Mechanically with Spiny Balls and Produces Potent Toxins To Immobilize Nematodes▿

    Science.gov (United States)

    Luo, Hong; Liu, Yajun; Fang, Lin; Li, Xuan; Tang, Ninghua; Zhang, Keqin

    2007-01-01

    We reported recently a unique fungal structure, called the spiny ball, on the vegetative hyphae of Coprinus comatus (O. F. Müll.:Fr.) Pers. Although some observations regarding the role of this structure were presented, its function remained largely unknown. In this study, we showed that purified (isolated and washed) spiny balls could immobilize and kill the free-living nematode Panagrellus redivivus Goodey highly efficiently. Scanning electron microscopy studies illustrated that the spiny structure damaged the nematode cuticle, suggesting the presence of a mechanical force during the process of nematode immobilization. Severe injuries on nematode cuticles caused the leakage of inner materials of the nematodes. When these structures were ground in liquid nitrogen, their killing efficacy against nematodes was lost, indicating that the shape and the complete structure of the spiny balls are indispensable for their function. However, extraction with organic solvents never lowered their activity against P. redivivus, and the extracts showed no obvious effect on the nematode. We also investigated whether C. comatus was able to produce toxins which would aid in the immobilization of nematodes. In total, we identified seven toxins from C. comatus that showed activity to immobilize the nematodes P. redivivus and Meloidogyne incognita (Kofoid et White) Chitwood. The chemical structures of these toxins were identified with nuclear magnetic resonance, mass spectrometry, infrared, and UV spectrum analysis. Two compounds were found to be novel. The toxins found in C. comatus are O-containing heterocyclic compounds. PMID:17449690

  6. Acyl CoA Binding Proteins are Required for Cuticle Formation and Plant Responses to Microbes

    Science.gov (United States)

    Xia, Ye; Yu, Keshun; Gao, Qing-ming; Wilson, Ella V.; Navarre, Duroy; Kachroo, Pradeep; Kachroo, Aardra

    2012-01-01

    Fatty acids (FA) and lipids are well known regulators of plant defense. Our previous studies have shown that components of prokaryotic (plastidal) FA biosynthesis pathway regulate various aspects of plant defense. Here, we investigated the defense related roles of the soluble acyl CoA binding proteins (ACBPs), which are thought to facilitate the intracellular transport of FA/lipids. We show that ACBP3 and 4 are required for maintaining normal lipid levels and that ACBP3 contributes to the lipid flux between the prokaryotic and eukaryotic pathways. We also show that loss of ACBP3, 4, or 6 impair normal development of the cuticle and affect both basal and resistance protein-mediated defense against bacterial and fungal pathogens. Loss of ACBP3, 4, or 6 also inhibits the induction of systemic acquired resistance (SAR) due to the plants inability to generate SAR inducing signal(s). Together, these data show that ACBP3, ACBP4, and ACBP6 are required for cuticle development as well as defense against microbial pathogens. PMID:23060893

  7. Acyl CoA binding proteins are required for cuticle formation and plant responses to microbes

    Directory of Open Access Journals (Sweden)

    Ye eXia

    2012-10-01

    Full Text Available Fatty acids (FA and lipids are well known regulators of plant defense. Our previous studies have shown that components of prokaryotic (plastidal FA biosynthesis pathway regulate various aspects of plant defense. Here, we investigated the defense related roles of the soluble acyl CoA binding proteins (ACBP, which are thought to facilitate the intracellular transport of FA/lipids. We show that ACBP3 and 4 are required for maintaining normal lipids levels and that ACBP3 contributes to the lipid flux between the prokaryotic and eukaryotic pathways. We also show that loss of ACBP 3, 4, or 6 impair normal development of the cuticle and affect both basal and resistance protein-mediated defense against bacterial and fungal pathogens. Loss of ACBP3, 4, or 6 also inhibits the induction of systemic acquired resistance (SAR due to the plants inability to generate SAR inducing signal(s. Together, these data show that ACBP3, ACBP4 and ACBP6 are required for cuticle development as well as defense against microbial pathogens.

  8. Antimicrobial activity in the cuticle of the American lobster, Homarus americanus.

    Science.gov (United States)

    Mars Brisbin, Margaret; McElroy, Anne E; Pales Espinosa, Emmanuelle; Allam, Bassem

    2015-06-01

    American lobster, Homarus americanus, continues to be an ecologically and socioeconomically important species despite a severe decline in catches from Southern New England and Long Island Sound (USA) and a high prevalence of epizootic shell disease in these populations. A better understanding of lobster immune defenses remains necessary. Cuticle material collected from Long Island Sound lobsters was found to be active against a broad spectrum of bacteria, including Gram-negative and -positive species. The antimicrobial activity was characterized by boiling, muffling, and size fractioning. Boiling did not significantly reduce activity, while muffling did have a significant effect, suggesting that the active component is organic and heat stable. Size fractioning with 3 and 10 kDa filters did not significantly affect activity. Fast protein liquid chromatography fractions were also tested for antimicrobial activity, and fractions exhibiting protein peaks remained active. MALDI mass spectrometry revealed peptide peaks at 1.6, 2.8, 4.6, and 5.6 kDa. The data presented suggest that one or several antimicrobial peptides contribute to antimicrobial activity present in the American lobster cuticle. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Extraction and Characterization of Chitin and Chitosan from Blue Crab and Synthesis of Chitosan Cryogel Scaffolds

    Directory of Open Access Journals (Sweden)

    Nimet Bölgen

    2016-08-01

    Full Text Available Polymeric scaffolds produced by cryogelation technique have attracted increasing attention for tissue engineering applications. Cryogelation is a technique which enables to produce interconnected porous matrices from the frozen reaction mixtures of polymers or monomeric precursors. Chitosan is a biocompatible, biodegradable, nontoxic, antibacterial, antioxidant and antifungal natural polymer that is obtained by deacetylation of chitin, which is mostly found in the exoskeleton of many crustacean. In this study, chitin was isolated from the exoskeleton of blue crap (Callinectes sapidus using a chemical method. Callinectes sapidus samples were collected from a market, as a waste material after it has been consumed as food. Demineralization, deproteinization and decolorization steps were applied to the samples to obtain chitin. Chitosan was prepared from isolated chitin by deacetylation at high temperatures. The chemical compositon of crab shell, extracted chitin and chitosan were characterized with FTIR analyses. And also to determine the physicochemical and functional properties of the produced chitosan; solubility, water binding and fat binding analysis were performed. Chitosan cryogel scaffolds were prepared by crosslinking reaction at cryogenic conditions at constant amount of chitosan (1%, w/v with different ratios of glutaraldehyde (1, 3, and 6%, v/v as crosslinker. The chemical structure of the scaffolds were examined by FTIR. Also, the water uptake capacity of scaffolds have been determined. Collectively, the results suggested that the characterized chitosan cryogels can be potential scaffolds to be used in tissue engineering applications.

  10. Revisit of alpha-chitin crystal structure using high resolution X-ray diffraction data.

    Science.gov (United States)

    Sikorski, Pawel; Hori, Ritsuko; Wada, Masahisa

    2009-05-11

    High resolution synchrotron X-ray fiber diffraction data recorded from crab tendon chitin have been used to describe the crystal structure of alpha-chitin. Crystal structures at 100 and 300 K have been solved using restrained crystallographic refinement against diffraction intensities measured from the fiber diffraction patterns. The unit cell contains two polymer chains in a 2(1) helix conformation and in the antiparallel orientation. The best agreement between predicated and observed X-ray diffraction intensities is obtained for a model that includes two distinctive conformations of C6-O6 hydroxymethl group. Those conformations are different from what is proposed in the generally accepted alpha-chitin crystal structure (J. Mol. Biol. 1978, 120, 167-181). Based on refined positions of the O6 atoms, a network of hydrogen bonds involving O6 is proposed. This network of hydrogen bonds can explain the main features of the polarized FTIR spectra of alpha-chitin and sheds some light on the origin of splitting of the amide I band observed on alpha-chitin IR spectra.

  11. Chitin-based materials in tissue engineering: applications in soft tissue and epithelial organ.

    Science.gov (United States)

    Yang, Tsung-Lin

    2011-01-01

    Chitin-based materials and their derivatives are receiving increased attention in tissue engineering because of their unique and appealing biological properties. In this review, we summarize the biomedical potential of chitin-based materials, specifically focusing on chitosan, in tissue engineering approaches for epithelial and soft tissues. Both types of tissues play an important role in supporting anatomical structures and physiological functions. Because of the attractive features of chitin-based materials, many characteristics beneficial to tissue regeneration including the preservation of cellular phenotype, binding and enhancement of bioactive factors, control of gene expression, and synthesis and deposition of tissue-specific extracellular matrix are well-regulated by chitin-based scaffolds. These scaffolds can be used in repairing body surface linings, reconstructing tissue structures, regenerating connective tissue, and supporting nerve and vascular growth and connection. The novel use of these scaffolds in promoting the regeneration of various tissues originating from the epithelium and soft tissue demonstrates that these chitin-based materials have versatile properties and functionality and serve as promising substrates for a great number of future applications.

  12. Thin-film Nanofibrous Composite Membranes Containing Cellulose or Chitin Barrier Layers Fabricated by Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    H Ma; B Hsiao; B Chu

    2011-12-31

    The barrier layer of high-flux ultrafiltration (UF) thin-film nanofibrous composite (TFNC) membranes for purification of wastewater (e.g., bilge water) have been prepared by using cellulose, chitin, and a cellulose-chitin blend, regenerated from an ionic liquid. The structures and properties of regenerated cellulose, chitin, and a cellulose-chitin blend were analyzed with thermogravimetric analysis (TGA) and wide-angle X-ray diffraction (WAXD). The surface morphology, pore size and pore size distribution of TFNC membranes were determined by SEM images and molecular weight cut-off (MWCO) methods. An oil/water emulsion, a model of bilge water, was used as the feed solution, and the permeation flux and rejection ratio of the membranes were investigated. TFNC membranes based on the cellulose-chitin blend exhibited 10 times higher permeation flux when compared with a commercial UF membrane (PAN10, Sepro) with a similar rejection ratio after filtration over a time period of up to 100 h, implying the practical feasibility of such membranes for UF applications.

  13. Chitin's Functionality as a Novel Disintegrant: Benchmarking Against Commonly Used Disintegrants in Different Physicochemical Environments.

    Science.gov (United States)

    Chaheen, Mohammad; Soulairol, Ian; Bataille, Bernard; Yassine, Ahmad; Belamie, Emmanuel; Sharkawi, Tahmer

    2017-07-01

    Disintegrants are used as excipients to ensure rapid disintegration of pharmaceutical tablets and further ensure proper dissolution of the active pharmaceutical ingredient. This study investigates disintegration mechanisms of chitin and common disintegrants. Swelling assessment (swelling force and swelling ratio) in different media, and compaction behavior (pure or mixed with other excipients) tabletability, deformation (Heckel modeling), and compact disintegration times were investigated on the tested disintegrants (alginic acid calcium salt, crospovidone, sodium starch glycolate, croscarmellose sodium, and chitin). Results show that the physicochemical properties of the disintegration medium such as pH and ionic strength, as well as other formulation ingredients, affect the disintegrant functionalities. Heckel analysis using the mean yield pressure "Py" shows that alginic acid calcium salt is the most brittle among the studied disintegrants, while crospovidone has the most plastic deformation mechanism, followed by chitin. Chitin showed good tabletability and disintegration properties that were not influenced by the physicochemical formulation environment. Chitin is largely available and easily modifiable and thus a promising material that could be used as a multifunctional excipient in tablet formulation. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Modification of Chitin with Kraft Lignin and Development of New Biosorbents for Removal of Cadmium(II) and Nickel(II) Ions

    Science.gov (United States)

    Wysokowski, Marcin; Klapiszewski, Łukasz; Moszyński, Dariusz; Bartczak, Przemysław; Szatkowski, Tomasz; Majchrzak, Izabela; Siwińska-Stefańska, Katarzyna; Bazhenov, Vasilii V.; Jesionowski, Teofil

    2014-01-01

    Novel, functional materials based on chitin of marine origin and lignin were prepared. The synthesized materials were subjected to physicochemical, dispersive-morphological and electrokinetic analysis. The results confirm the effectiveness of the proposed method of synthesis of functional chitin/lignin materials. Mechanism of chitin modification by lignin is based on formation of hydrogen bonds between chitin and lignin. Additionally, the chitin/lignin materials were studied from the perspective of waste water treatment. The synthetic method presented in this work shows an attractive and facile route for producing low-cost chitin/lignin biosorbents with high efficiency of nickel and cadmium adsorption (88.0% and 98.4%, respectively). The discovery of this facile method of synthesis of functional chitin/lignin materials will also have a significant impact on the problematic issue of the utilization of chitinous waste from the seafood industry, as well as lignin by-products from the pulp and paper industry. PMID:24727394

  15. Chitin amendment increases soil suppressiveness toward plant pathogens and modulates the actinobacterial and oxalobacteraceal communities in an experimental agricultural field

    NARCIS (Netherlands)

    Cretoiu, Mariana Silvia; Korthals, Gerard W.; Visser, Johnny H. M.; van Elsas, Jan Dirk

    A long-term experiment on the effect of chitin addition to soil on the suppression of soilborne pathogens was set up and monitored for 8 years in an experimental field, Vredepeel, The Netherlands. Chitinous matter obtained from shrimps was added to soil top layers on two different occasions, and the

  16. Effects of Chitin and Its Derivative Chitosan on Postharvest Decay of Fruits: A Review

    Directory of Open Access Journals (Sweden)

    Weimin Liu

    2011-01-01

    Full Text Available Considerable economic losses to harvested fruits are caused by postharvest fungal decay during transportation and storage, which can be significantly controlled by synthetic fungicides. However, considering public concern over pesticide residues in food and the environment, there is a need for safer alternatives for the control of postharvest decay to substitute synthetic fungicides. As the second most abundant biopolymer renewable source in nature, chitin and its derivative chitosan are widely used in controlling postharvest decay of fruits. This review aims to introduce the effect of chitin and chitosan on postharvest decay in fruits and the possible modes of action involved. We found most of the actions discussed in these researches rest on physiological mechanisms. All of the mechanisms are summarized to lay the groundwork for further studies which should focus on the molecular mechanisms of chitin and chitosan in controlling postharvest decay of fruits.

  17. Facile production of chitin from crab shells using ionic liquid and citric acid.

    Science.gov (United States)

    Setoguchi, Tatsuya; Kato, Takeshi; Yamamoto, Kazuya; Kadokawa, Jun-ichi

    2012-04-01

    Facile production of chitin from crab shells was performed by direct extraction using an ionic liquid, 1-allyl-3-methylimidazolium bromide (AMIMBr), followed by demineralization using citric acid. First, dried crab shells were treated with AMIMBr at elevated temperatures to extract chitin. Supernatants separated by centrifugation were then subjected to a chelating treatment with an aqueous solution of citric acid to achieve demineralization. The precipitated extracts were filtered and dried. The isolated material was subjected to X-ray diffraction, IR, (1)H NMR, and energy-dispersive X-ray spectroscopy, and thermal gravimetric analysis; the results indicated the structure of chitin. On the basis of the IR spectra, the degree of deacetylation in the samples obtained was calculated to be <7%. Furthermore, the protein content was <0.1% and the M(w) values were 0.7-2.2×10(5). Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Aspergillus Cell Wall Chitin Induces Anti- and Proinflammatory Cytokines in Human PBMCs via the Fc-γ Receptor/Syk/PI3K Pathway

    NARCIS (Netherlands)

    Becker, K. L.; Aimanianda, V.; Wang, X.; Gresnigt, M. S.; Ammerdorffer, A.; Jacobs, C. W.; Gazendam, R. P.; Joosten, L. A. B.; Netea, M. G.; Latgé, J. P.; van de Veerdonk, F. L.

    2016-01-01

    Chitin is an important cell wall component of Aspergillus fumigatus conidia, of which hundreds are inhaled on a daily basis. Previous studies have shown that chitin has both anti- and proinflammatory properties; however the exact mechanisms determining the inflammatory signature of chitin are poorly

  19. Kinetics of H2O2-driven degradation of chitin by a bacterial lytic polysaccharide monooxygenase.

    Science.gov (United States)

    Kuusk, Silja; Bissaro, Bastien; Kuusk, Piret; Forsberg, Zarah; Eijsink, Vincent G H; Sørlie, Morten; Väljamäe, Priit

    2017-11-14

    Lytic polysaccharide monooxygenases (LPMOs) catalyze the oxidative cleavage of glycosidic bonds in recalcitrant polysaccharides, such as cellulose and chitin, and are of interest in biotechnological utilization of these abundant biomaterials. It has recently been shown that LPMOs can use H2O2, instead of O2, as a co-substrate. This peroxygenase-like reaction by a mono-copper enzyme is unprecedented in nature and opens new avenues in chemistry and enzymology. Here, we provide the first detailed kinetic characterization of chitin degradation by the bacterial LPMO chitin-binding protein CBP21 using H2O2 as co-substrate. The use of [14C]-labeled chitin provided convenient and sensitive detection of the released soluble products, which enabled detailed kinetic measurements. The kcat for chitin oxidation found here (5.6 s-1) is more than an order of magnitude higher than previously reported (apparent) rate constants for reactions containing O2 but no added H2O2 The kcat/KM for H2O2-driven degradation of chitin was on the order of 106 M-1 s-1, indicating that LPMOs have catalytic efficiencies similar to those of peroxygenases. Of note, H2O2 also inactivated CBP21, but the second-order rate constant for inactivation was about three orders of magnitude lower than that for catalysis. In light of the observed CBP21 inactivation at higher H2O2 levels we conclude that controlled generation of H2O2, in situ, seems most optimal for fueling LPMO-catalyzed oxidation of polysaccharides. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  20. Two very long chain fatty acid acyl-CoA synthetase genes, acs-20 and acs-22, have roles in the cuticle surface barrier in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Eriko Kage-Nakadai

    Full Text Available In multicellular organisms, the surface barrier is essential for maintaining the internal environment. In mammals, the barrier is the stratum corneum. Fatty acid transport protein 4 (FATP4 is a key factor involved in forming the stratum corneum barrier. Mice lacking Fatp4 display early neonatal lethality with features such as tight, thick, and shiny skin, and a defective skin barrier. These symptoms are strikingly similar to those of a human skin disease called restrictive dermopathy. FATP4 is a member of the FATP family that possesses acyl-CoA synthetase activity for very long chain fatty acids. How Fatp4 contributes to skin barrier function, however, remains to be elucidated. In the present study, we characterized two Caenorhabditis elegans genes, acs-20 and acs-22, that are homologous to mammalian FATPs. Animals with mutant acs-20 exhibited defects in the cuticle barrier, which normally prevents the penetration of small molecules. acs-20 mutant animals also exhibited abnormalities in the cuticle structure, but not in epidermal cell fate or cell integrity. The acs-22 mutants rarely showed a barrier defect, whereas acs-20;acs-22 double mutants had severely disrupted barrier function. Moreover, the barrier defects of acs-20 and acs-20;acs-22 mutants were rescued by acs-20, acs-22, or human Fatp4 transgenes. We further demonstrated that the incorporation of exogenous very long chain fatty acids into sphingomyelin was reduced in acs-20 and acs-22 mutants. These findings indicate that C. elegans Fatp4 homologue(s have a crucial role in the surface barrier function and this model might be useful for studying the fundamental molecular mechanisms underlying human skin barrier and relevant diseases.

  1. Saccharomyces cerevisiae chitin biosynthesis activation by N-acetylchitooses depends on size and structure of chito-oligosaccharides

    Directory of Open Access Journals (Sweden)

    Piffeteau Annie

    2011-10-01

    Full Text Available Abstract Background To explore chitin synthesis initiation, the effect of addition of exogenous oligosaccharides on in vitro chitin synthesis was studied. Oligosaccharides of various natures and lengths were added to a chitin synthase assay performed on a Saccharomyces cerevisiae membrane fraction. Findings N-acetylchito-tetra, -penta and -octaoses resulted in 11 to 25% [14C]-GlcNAc incorporation into [14C]-chitin, corresponding to an increase in the initial velocity. The activation appeared specific to N-acetylchitooses as it was not observed with oligosaccharides in other series, such as beta-(1,4, beta-(1,3 or alpha-(1,6 glucooligosaccharides. Conclusions The effect induced by the N-acetylchitooses was a saturable phenomenon and did not interfere with free GlcNAc and trypsin which are two known activators of yeast chitin synthase activity in vitro. The magnitude of the activation was dependent on both oligosaccharide concentration and oligosaccharide size.

  2. The Dufour's gland and the cuticle in the social wasp Ropalidia marginata contain the same hydrocarbons in similar proportions.

    Science.gov (United States)

    Mitra, A; Gadagkar, R

    2014-01-23

    Queens in many social insects are known to maintain their status through chemicals (pheromones) and cuticular hydrocarbons and have been the focus of many investigations that have looked at the chemicals involved in queen signaling. In the primitively eusocial wasp Ropalidia marginata Lepeletier (Hymenoptera: Vespidae), the Dufour's gland has been shown to be involved in queen signaling, and Dufour's gland hydrocarbons have been found to be correlated with fertility. Hence, this study analyzed the cuticle of R. marginata along with the Dufour's gland in order to compare their hydrocarbon profiles. The results show that the Dufour's gland and cuticle contained the same set of hydrocarbons in similar proportions (for the majority of compounds). Patterns pertaining to fertility signaling present in cuticular hydrocarbons were also similar to those present in the Dufour's gland hydrocarbons. Furthermore, the haemolymph contained the same hydrocarbons as found in the Dufour's gland and cuticle in similar proportions, thereby providing an explanation as to why the hydrocarbon profiles of the Dufour's gland and cuticle are correlated. This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.

  3. Hornet cuticle - a composite structure comprised of a series of duplex lamellae attenuating toward the interior of the body

    NARCIS (Netherlands)

    Ishay, JS; Kirshboim, S; Steinberg, D; Kalicharan, D; Jongebloed, WL

    Our study deals with the ultramicroscopic structure of the yellow pigmented cuticular stripes on the abdomen of the oriental hornet Vespa orientalis (Hymenoptera, Vespinae). The abdominal cuticle is composed of numerous (more than 25) lamellae which progressively attenuate as one proceeds from the

  4. Fruit cuticle lipid composition and fruit post-harvest water loss in an advanced backcross generation of pepper (Capsicum sp.)

    Science.gov (United States)

    During postharvest storage, pepper (Capsicum sp.) fruit commonly wilts (or shrivels) early because of rapid water loss combined with the hollow fruit’s limited water storage capacity, a condition that greatly reduces its shelf-life and market value. To understand the role of fruit cuticle lipid comp...

  5. Characteristic properties of proteins from pre-ecdysial cuticle of larvae and pupae of the mealworm Tenebrio molitor

    DEFF Research Database (Denmark)

    Andersen, Svend Olav

    2002-01-01

    Proteins extracted from the cuticle of pharate larvae and pupae of the mealworm Tenebrio molitor are more soluble at low temperatures than at higher temperatures, a behaviour characteristic of hydrophobic proteins. When the temperature of an unfractionated cuticular extract is raised from 4 to 25...

  6. PR130 is a modulator of the Wnt-signaling cascade that counters repression of the antagonist Naked cuticle

    NARCIS (Netherlands)

    Creyghton, M.P.; Roël, G.; Eichhorn, P.J.A.; Vredeveld, L.C.; Destrée, O.; Bernards, R.A.

    2006-01-01

    The Wnt-signaling cascade is required for several crucial steps during early embryogenesis, and its activity is modulated by various agonists and antagonists to provide spatiotemporal-specific signaling. Naked cuticle is a Wnt antagonist that itself is induced by Wnt signaling to keep Wnt signaling

  7. MALE STERILE6021 (MS6021) is required for the development of anther cuticle and pollen exine in maize.

    Science.gov (United States)

    Tian, Youhui; Xiao, Senlin; Liu, Juan; Somaratne, Yamuna; Zhang, Hua; Wang, Mingming; Zhang, Huairen; Zhao, Li; Chen, Huabang

    2017-12-01

    The anther cuticle and pollen wall function as physical barriers that protect genetic material from various environmental stresses. The anther cuticle is composed of wax and cutin, the pollen wall includes exine and intine, and the components of the outer exine are collectively called sporopollenin. Other than cuticle wax, cutin and sporopollenin are biopolymers compounds. The precise constituents and developmental mechanism of these biopolymeric are poorly understood. Here, we reported a complete male sterile mutant, male sterile6021, in maize. The mutant displayed a smooth anther surface and irregular pollen wall formation before anthesis, and its tapetum was degraded immaturely. Gas chromatography-mass spectrometry analysis revealed a severe reduction of lipid derivatives in the mutant anther. We cloned the gene by map based cloning. It encoded a fatty acyl carrier protein reductase that was localized in plastids. Expression analysis indicated that MS6021 was mainly expressed in the tapetum and microspore after the microspore was released from the tetrad. Functional complementation of the orthologous Arabidopsis mutant demonstrated that MS6021 is conserved between monocots and dicots and potentially even in flowering plants. MS6021 plays a conserved, essential role in the successful development of anther cuticle and pollen exine in maize.

  8. Eco-Friendly Extraction of Biopolymer Chitin and Carotenoids from Shrimp Waste

    Science.gov (United States)

    Prameela, K.; Venkatesh, K.; Divya vani, K.; Sudesh Kumar, E.; Mohan, CH Murali

    2017-08-01

    Astaxanthin a nutraceutical and chitin a natural biopolymer present in shrimp waste. In current chemical extraction methods HCl and NaOH are used for extraction and these chemicals are introduced into aquatic ecosystems are spoiling aquatic flora and fauna, pollute the environment and destroy astaxanthin. Lactobacillus species were isolated from gut of Solenocera melantho and characterized phenotypically and genotypically. Initial screening experiments have shown to be an effective and identified as Lactobacillus plantaram based on morphological, biochemical characteristics and molecular analysis. Efficiency of fermentation has shown with good yield of astaxanthin and recovery of chitin. Hence this alternative microbial process is having advantage than existing hazardous, non-economical chemical process.

  9. Hierarchical Chitin Fibers with Aligned Nanofibrillar Architectures: A Nonwoven-Mat Separator for Lithium Metal Batteries.

    Science.gov (United States)

    Kim, Joong-Kwon; Kim, Do Hyeong; Joo, Se Hun; Choi, Byeongwook; Cha, Aming; Kim, Kwang Min; Kwon, Tae-Hyuk; Kwak, Sang Kyu; Kang, Seok Ju; Jin, Jungho

    2017-06-27

    Here, we introduce regenerated fibers of chitin (Chiber), the second most abundant biopolymer after cellulose, and propose its utility as a nonwoven fiber separator for lithium metal batteries (LMBs) that exhibits an excellent electrolyte-uptaking capability and Li-dendrite-mitigating performance. Chiber is produced by a centrifugal jet-spinning technique, which allows a simple and fast production of Chibers consisting of hierarchically aligned self-assembled chitin nanofibers. Following the scrutinization on the Chiber-Li-ion interaction via computational methods, we demonstrate the potential of Chiber as a nonwoven mat-type separator by monitoring it in Li-O 2 and Na-O 2 cells.

  10. Characterization of chitin extracted from fish scales of marine fish species purchased from local markets in North Sulawesi, Indonesia

    Science.gov (United States)

    Rumengan, I. F. M.; Suptijah, P.; Wullur, S.; Talumepa, A.

    2017-10-01

    Chitin is a biodegradable biopolymer with a variety of commercial applications, including in the food food-supplement industries as a marine-derived nutraceutical. The purpose of this study was to characterize the molecular structure of chitin extracted from fish scales of important marine fish purchased from local markets in North Sulawesi. Chitin compound material was obtained from a specific fish scale, and then sequentially carrying out a boiling treatment to separate it from a complex with collagen. From the scales of two fish species, parrotfish (Chlorurus sordidus) and red snapper (Lutjanus argentimaculatus), the rendemen of chitin obtained were 45 % and 33%, respectively. Structural characteristics of the chitin were discussed by FTIR (Fourier Transform Infrared) analysis data. FTIR analysis was done using infrared spectroscopy, which is the resulting spectrum represents the molecular absorption and transmission, creating a molecular fingerprint of the sample. The molecular structure of chitin, C18H26N2O10, where the hydroxyl group on the second carbon replaced by acetyl amide, was shown by the infrared spectra. In the infrared spectra, chitin from parrot fish scales indicated the amide band at 1627.13 cm‑1, and chitin from red snapper fish scales the amide band at 1648.09 cm‑1 which are a typical one for marine chitin. The hydroxyl and amino bands at the ranged spectra up to 3500 cm‑1. The yields of chitin isolated from fish scale were relatively huge. Some treatments are necessary to confirm the molecular conformation and deacetylation behavior. All products from the extraction of fish scales could be more accessible for structural modifications to develop biocompatible materials for pharmaceutical purposes.

  11. A Novel, Extremely Elongated, and Endocellular Bacterial Symbiont Supports Cuticle Formation of a Grain Pest Beetle

    Directory of Open Access Journals (Sweden)

    Bin Hirota

    2017-09-01

    Full Text Available The saw-toothed grain beetle, Oryzaephilus surinamensis (Silvanidae, is a cosmopolitan stored-product pest. Early studies on O. surinamensis in the 1930s described the presence of peculiar bacteriomes harboring endosymbiotic bacteria in the abdomen. Since then, however, the microbiological nature of the symbiont has been elusive. Here we investigated the endosymbiotic system of O. surinamensis in detail. In the abdomen of adults, pupae, and larvae, four oval bacteriomes were consistently identified, whose cytoplasm was full of extremely elongated tubular bacterial cells several micrometers wide and several hundred micrometers long. Molecular phylogenetic analysis identified the symbiont as a member of the Bacteroidetes, in which the symbiont was the most closely related to the endosymbiont of a grain pest beetle, Rhyzopertha dominica (Bostrichidae. The symbiont was detected in developing embryos, corroborating vertical symbiont transmission through host generations. The symbiont gene showed AT-biased nucleotide composition and accelerated molecular evolution, plausibly reflecting degenerative evolution of the symbiont genome. When the symbiont infection was experimentally removed, the aposymbiotic insects grew and reproduced normally, but exhibited a slightly but significantly more reddish cuticle and lighter body mass. These results indicate that the symbiont of O. surinamensis is not essential for the host’s growth and reproduction but contributes to the host’s cuticle formation. Symbiont genome sequencing and detailed comparison of fitness parameters between symbiotic and aposymbiotic insects under various environmental conditions will provide further insights into the symbiont’s biological roles for the stored-product pest.

  12. Arabidopsis ECERIFERUM9 involvement in cuticle formation and maintenance of plant water status

    KAUST Repository

    Lu, Shiyou

    2012-05-25

    Mutation of the ECERIFERUM9 (CER9) gene in Arabidopsis (Arabidopsis thaliana) causes elevated amounts of 18-carbon-length cutin monomers and a dramatic shift in the cuticular wax profile (especially on leaves) toward the very-long-chain free fatty acids tetracosanoic acid (C24) and hexacosanoic acid (C26). Relative to the wild type, cer9 mutants exhibit elevated cuticle membrane thickness over epidermal cells and cuticular ledges with increased occlusion of the stomatal pore. The cuticular phenotypes of cer9 are associated with delayed onset of wilting in plants experiencing water deficit, lower transpiration rates, and improved water use efficiency measured as carbon isotope discrimination. The CER9 protein thus encodes a novel determinant of plant drought tolerance-associated traits, one whose deficiency elevates cutin synthesis, redistributes wax composition, and suppresses transpiration. Map-based cloning identified CER9, and sequence analysis predicted that it encodes an E3 ubiquitin ligase homologous to yeast Doa10 (previously shown to target endoplasmic reticulum proteins for proteasomal degradation). To further elucidate CER9 function, the impact of CER9 deficiency on interactions with other genes was examined using double mutant and transcriptome analyses. For both wax and cutin, cer9 showed mostly additive effects with cer6, long-chain acyl-CoA synthetase1 (lacs1), and lacs2 and revealed its role in early steps of both wax and cutin synthetic pathways. Transcriptome analysis revealed that the cer9 mutation affected diverse cellular processes, with primary impact on genes associated with diverse stress responses. The discovery of CER9 lays new groundwork for developing novel cuticle-based strategies for improving the drought tolerance and water use efficiency of crop plants. © 2012 American Society of Plant Biologists. All Rights Reserved.

  13. Two strategies by epiphytic orchids for maintaining water balance: thick cuticles in leaves and water storage in pseudobulbs.

    Science.gov (United States)

    Yang, Shi-Jian; Sun, Mei; Yang, Qiu-Yun; Ma, Ren-Yi; Zhang, Jiao-Lin; Zhang, Shi-Bao

    2016-01-01

    Epiphytes are an important component of tropical and subtropical flora, and serve vital ecological functions in forest hydrology and nutrient fluxes. However, they often encounter water deficits because there is no direct contact between their roots and the soil. The strategies employed by epiphytes for maintaining water balance in relatively water-limited habitats are not completely understood. In the present study, we investigated the anatomical traits, water loss rates, and physiology of leaves and pseudobulbs of four Dendrobium species with different pseudobulb morphologies to understand the roles of leaf and pseudobulb in maintaining water balance of epiphytic orchids. Our results showed that two species (D. chrysotoxum and D. officinale), with lower rates of water loss, have thicker leaves and upper cuticles, but lower epidermal thickness and leaf dry mass per area. In contrast, the other two species (D. chrysanthum and D. crystallinum) with thinner cuticles and higher rates of water loss, have less tissue density and greater saturated water contents in their pseudobulbs. Therefore, our results indicate that these latter two species may resist drought by storing water in the pseudobulbs to compensate for their thin cuticles and rapid water loss through the leaves. Under the same laboratory conditions, excised pseudobulbs with attached leaves had lower rates of water loss when compared with samples comprising only excised leaves. This implies that epiphytic orchids utilize two different strategies for sustaining water balance: thick cuticles to conserve water in leaves and water storage in pseudobulbs. Our results also show that Dendrobium species with thin cuticles tend to have pseudobulbs with high water storage capacity that compensates for their faster rates of water loss. These outcomes contribute to our understanding of the adaptive water-use strategies in Dendrobium species, which is beneficial for the conservation and cultivation of epiphytic orchids

  14. Compression-cuticle relationship of seed ferns: Insights from liquid-solid states FTIR (Late Palaeozoic-Early Mesozoic, Canada-Spain-Argentina)

    Science.gov (United States)

    Zodrow, E.L.; D'Angelo, J. A.; Mastalerz, Maria; Keefe, D.

    2009-01-01

    Cuticles have been macerated from suitably preserved compressed fossil foliage by Schulze's process for the past 150 years, whereas the physical-biochemical relationship between the "coalified layer" with preserved cuticle as a unit has hardly been investigated, although they provide complementary information. This relationship is conceptualized by an analogue model of the anatomy of an extant leaf: "vitrinite (mesophyll) + cuticle (biomacropolymer) = compression". Alkaline solutions from Schulze's process as a proxy for the vitrinite, are studied by means of liquid-solid states Fourier transform infrared spectroscopy (FTIR). In addition, cuticle-free coalified layers and fossilized cuticles of seed ferns mainly from Canada, Spain and Argentina of Late Pennsylvanian-Late Triassic age are included in the study sample. Infrared data of cuticle and alkaline solutions differ which is primarily contingent on the mesophyll +biomacropolymer characteristics. The compression records two pathways of organic matter transformation. One is the vitrinized component that reflects the diagenetic-post-diagenetic coalification history parallel with the evolution of the associated coal seam. The other is the cuticle that reflects the sum-total of evolutionary pathway of the biomacropolymer, its monomeric, or polymeric fragmentation, though factors promoting preservation include entombing clay minerals and lower pH conditions. Caution is advised when interpreting liquid-state-based FTIR data, as some IR signals may have resulted from the interaction of Schulze's process with the cuticular biochemistry. A biochemical-study course for taphonomy is suggested, as fossilized cuticles, cuticle-free coalified layers, and compressions are responses to shared physicogeochemical factors. ?? 2009 Elsevier B.V. All rights reserved.

  15. Compression-cuticle relationship of seed ferns: Insights from liquid-solid states FTIR (Late Palaeozoic-Early Mesozoic, Canada-Spain-Argentina)

    Energy Technology Data Exchange (ETDEWEB)

    Zodrow, Erwin L. [Palaeobotanical Laboratory, Cape Breton University, Sydney, Nova Scotia (Canada); D' Angelo, Jose A. [Instituto Argentino de Nivologia, Glaciologia y Ciencias Ambientales (IANIGLA), CCT-CONICET-Mendoza, Avda. Ruiz Leal s/n Parque Gral. San Martin (5500) Mendoza (Argentina); Area de Quimica, Instituto de Ciencias Basicas, Universidad Nacional de Cuyo, Centro Universitario - M5502JMA - Mendoza (Argentina); Mastalerz, Maria [Indiana Geological Survey, Indiana University, 611 North Walnut Grove, Bloomington, IN 47405-2208 (United States); Keefe, Dale [Molecular Spectroscopy Research Laboratory, Department of Chemistry, Cape Breton University, Sydney, Nova Scotia (Canada)

    2009-08-01

    Cuticles have been macerated from suitably preserved compressed fossil foliage by Schulze's process for the past 150 years, whereas the physical-biochemical relationship between the ''coalified layer'' with preserved cuticle as a unit has hardly been investigated, although they provide complementary information. This relationship is conceptualized by an analogue model of the anatomy of an extant leaf: ''vitrinite (mesophyll) + cuticle (biomacropolymer) = compression''. Alkaline solutions from Schulze's process as a proxy for the vitrinite, are studied by means of liquid-solid states Fourier transform infrared spectroscopy (FTIR). In addition, cuticle-free coalified layers and fossilized cuticles of seed ferns mainly from Canada, Spain and Argentina of Late Pennsylvanian-Late Triassic age are included in the study sample. Infrared data of cuticle and alkaline solutions differ which is primarily contingent on the mesophyll +biomacropolymer characteristics. The compression records two pathways of organic matter transformation. One is the vitrinized component that reflects the diagenetic-post-diagenetic coalification history parallel with the evolution of the associated coal seam. The other is the cuticle that reflects the sum-total of evolutionary pathway of the biomacropolymer, its monomeric, or polymeric fragmentation, though factors promoting preservation include entombing clay minerals and lower pH conditions. Caution is advised when interpreting liquid-state-based FTIR data, as some IR signals may have resulted from the interaction of Schulze's process with the cuticular biochemistry. A biochemical-study course for taphonomy is suggested, as fossilized cuticles, cuticle-free coalified layers, and compressions are responses to shared physicogeochemical factors. (author)

  16. Participation of chitin-binding peroxidase isoforms in the wilt pathogenesis of cotton

    Science.gov (United States)

    Specific chitin-binding isozymes of peroxidase (POX) play an important role in pathogenesis of plant diseases caused with fungi. We studied the dynamics of peroxidase activity in two varieties of cotton (Gossypium hirsutum L.); one was a susceptible and the other resistant to the plant pathogen Vert...

  17. Isolation of proteolytic bacteria from mealworm (Tenebrio molitor) exoskeletons to produce chitinous material.

    Science.gov (United States)

    da Silva, Fernanda Kerche Paes; Brück, Dieter W; Brück, Wolfram M

    2017-09-15

    The use of insects as a source of protein is becoming an important factor for feeding an increasing population. After protein extraction for food use, the insect exoskeleton may offer the possibility for the production of added value products. Here, the aim was to isolate bacteria from the surface of farmed mealworms (Tenebrio molitor Linnaeus, 1758) for the production of chitinous material from insect exoskeletons using microbial fermentation. Isolates were screened for proteases and acid production that may aid deproteination and demineralisation of insects through fermentation to produce chitin. Selected isolates were used single-step (isolated bacteria only) or two-step fermentations with Lactobacillus plantarum (DSM 20174). Two-step fermentations with isolates from mealworm exoskeletons resulted in a demineralisation of 97.9 and 98.5% from deproteinated mealworm fractions. Attenuated total reflectance-Fourier- transform infrared spectroscopy analysis showed that crude chitin was produced. However, further optimisation is needed before the process can be upscaled. This is, to our knowledge, the first report using microbial fermentation for the extraction of chitin from insects. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. The influence of HCl concentration and demineralization temperature of Atrina pectinata shells on quality of chitin

    Science.gov (United States)

    Nugroho, Intan Lazuardi; Pursetyo, Kustiawan Tri; Masithah, Endang Dewi

    2017-02-01

    Atrina pectinata is one of shells species widely consumed by people, which means the high consumption will generate the availability of shells in the environment as waste. Chitin can be produced from the shells. Shells contain quite high minerals that it should be demineralized to reduce the mineral content from the shells. This study aimed to determine the effect of HCl concentration and temperature affect chitin characteristics as the result of demineralization process from pen shells. The method based on two steps, there were demineralization and deproteination. This study used Completely Randomized Design (CRD) with two factors, including HCl concentration (2N, 4N, and 6N) and temperature (33°C and 60°C) which consists six combination treatments and three replications. Data was analyzed by using Analysis of Variance (ANOVA) and followed by Duncan's Multiple Range Test. The results showed that interaction of HCl concentration and temperature has significant effect (p<0.05) to ash content of chitin. The use concentration of 6N and 33°C produced the lowest ash content. Characteristics chitin resulted from the treatment of 6N and 33°C produced ash content 25.33% ± 6.82, moisture content 3.67% ± 1.10, yield 0.72% ± 0.12 and protein content 5.86%.

  19. In vitro bioactivity studies of larnite and larnite/chitin composites ...

    Indian Academy of Sciences (India)

    Larnite/chitin composites were fabricated into scaffold with different ratios of bioceramic to biopolymer (70:30, 80:20) to investigatethe influence of the polymer content on the apatite formation ability in simulated body fluid (SBF) medium. XRDpattern and FTIR spectra of the scaffold immersed in SBF shows apatite deposition ...

  20. Novel chitin/chitosan-glucan wound dressing: Isolation, characterization, antibacterial activity and wound healing properties

    Czech Academy of Sciences Publication Activity Database

    Abdel-Mohsen, A. M.; Jancar, J.; Massoud, D.; Fohlerová, Z.; Elhadidy, Hassan; Spotz, Z.; Hebeish, A.

    2016-01-01

    Roč. 510, č. 1 (2016), s. 86-99 ISSN 0378-5173 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : Chitin/chitosan-glucan complex * Nonwoven mat * Surgical wound healing Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.649, year: 2016

  1. Spontaneous Chitin Accumulation in Airways and Age-Related Fibrotic Lung Disease.

    Science.gov (United States)

    Van Dyken, Steven J; Liang, Hong-Erh; Naikawadi, Ram P; Woodruff, Prescott G; Wolters, Paul J; Erle, David J; Locksley, Richard M

    2017-04-20

    The environmentally widespread polysaccharide chitin is degraded and recycled by ubiquitous bacterial and fungal chitinases. Although vertebrates express active chitinases from evolutionarily conserved loci, their role in mammalian physiology is unclear. We show that distinct lung epithelial cells secrete acidic mammalian chitinase (AMCase), which is required for airway chitinase activity. AMCase-deficient mice exhibit premature morbidity and mortality, concomitant with accumulation of environmentally derived chitin polymers in the airways and expression of pro-fibrotic cytokines. Over time, these mice develop spontaneous pulmonary fibrosis, which is ameliorated by restoration of lung chitinase activity by genetic or therapeutic approaches. AMCase-deficient epithelial cells express fibrosis-associated gene sets linked with cell stress pathways. Mice with lung fibrosis due to telomere dysfunction and humans with interstitial lung disease also accumulate excess chitin polymers in their airways. These data suggest that altered chitin clearance could exacerbate fibrogenic pathways in the setting of lung diseases characterized by epithelial cell dysfunction. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Defense Against Pathogens: Structural Insights into the Mechanism of Chitin Induced Activation of Innate Immunity.

    Science.gov (United States)

    Squeglia, Flavia; Berisio, Rita; Shibuya, Naoto; Kaku, Hanae

    2017-11-24

    Pattern recognition receptors on the plant cell surface mediate the recognition of microbe-associated molecular patterns, in a process which activates downstream immune signaling. These receptors are plasma membrane-localized kinases which need to be autophosphorylated to activate downstream responses. Perception of attacks from fungi occurs through recognition of chitin, a polymer of an N-acetylglucosamine which is a characteristic component of the cell walls of fungi. This process is regulated in Arabidopsis by chitin elicitor receptor kinase CERK1. A more complex process characterizes rice, in which regulation of chitin perception is operated by a complex composed of OsCERK1, a homolog of CERK1, and the chitin elicitor binding protein OsCEBiP. Recent literature has provided a mechanistic description of the complex regulation of activation of innate immunity in rice and an advance in the structural description of molecular players involved in this process. This review describes the current status of the understanding of molecular events involved in innate immunity activation in rice. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Chitin extraction from shrimp shell using enzymatic treatment. Antitumor, antioxidant and antimicrobial activities of chitosan.

    Science.gov (United States)

    Younes, Islem; Hajji, Sawssen; Frachet, Véronique; Rinaudo, Marguerite; Jellouli, Kemel; Nasri, Moncef

    2014-08-01

    Chitin was recovered through enzymatic deproteinization of the shrimp processing by-products. Different microbial and fish viscera proteases were tested for their deproteinization efficiency. High levels of protein removal of about 77±3% and 78±2% were recorded using Bacillus mojavensis A21 and Balistes capriscus proteases, respectively, after 3h of hydrolysis at 45°C using an enzyme/substrate ratio of 20U/mg. Therefore, these two crude proteases were used separately for chitin extraction and then chitosan preparation by N-deacetylation. Chitin and chitosan samples were then characterized by 13 Cross polarization magic angle spinning nuclear magnetic resonance (CP/MAS)-NMR spectroscopy and compared to samples prepared through chemical deproteinization. All chitins and chitosans showed identical spectra. Chitosans prepared through enzymatic deproteinization have practically the same acetylation degree but higher molecular weights compared to that obtained through chemical process. Antimicobial, antioxidant and antitumoral activitities of chitosan-M obtained by treatment with A21 proteases and chitosan-C obtained by alkaline treatment were investigated. Results showed that both chitosans inhibited the growth of most Gram-negative, Gram-positive bacteria and fungi tested. Furthermore, both chitosans exhibited antioxidant and antitumor activities which was dependent on the molecular weight. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Transforming nanostructured chitin from crustacean waste into beneficial health products: a must for our society

    Directory of Open Access Journals (Sweden)

    Morganti P

    2011-12-01

    Full Text Available P Morganti1, G Morganti2, A Morganti3,41Department of Dermatology, Second University of Naples, Naples, Italy; 2Centre of Nanoscience, Mavi Sud s.r.l, Aprilia, Italy; 3Max Planck Institute for Intellectual Property and Competition Law, Munich, Germany; 4Lextray, Milan, ItalyAbstract: Chitin, obtained principally from crustacean waste, is a sugar-like polymer that is available at low cost. It has been shown to be bio- and ecocompatible, and has a very low level of toxicity. Recently, it has become possible to industrially produce pure chitin crystals, named "chitin nanofibrils" (CN for their needle-like shape and nanostructured average size (240 × 5 × 7 nm. Due to their specific chemical and physical characteristics, CN may have a range of industrial applications, from its use in biomedical products and biomimetic cosmetics, to biotextiles and health foods. At present, world offshore disposal of this natural waste material is around 250 billion tons per year. It is an underutilized resource and has the potential to supply a wide range of useful products if suitably recycled, thus contributing to sustainable growth and a greener economy.Keywords: chitin nanofibrils, biomimetic cosmetics, biomedical products, food, nanotechnology, waste

  5. Papain incorporated chitin dressings for wound debridement sterilized by gamma radiation

    Science.gov (United States)

    Singh, Durgeshwer; Singh, Rita

    2012-11-01

    Wound debridement is essential for the removal of necrotic or nonviable tissue from the wound surface to create an environment conducive to healing. Nonsurgical enzymatic debridement is an attractive method due to its effectiveness and ease of use. Papain is a proteolytic enzyme derived from the fruit of Carica papaya and is capable of breaking down a variety of necrotic tissue substrates. The present study was focused on the use of gamma radiation for sterilization of papain dressing with wound debriding activity. Membranes with papain were prepared using 0.5% chitin in lithium chloride/dimethylacetamide solvent and sterilized by gamma radiation. Fluid absorption capacity of chitin-papain membranes without glycerol was 14.30±6.57% in 6 h. Incorporation of glycerol resulted in significant (psterilization of the dressings. Infrared (IR) spectral scanning has shown that papain was stable on gamma irradiation at 25-35 kGy. The irradiated chitin-papain membranes were impermeable to different bacterial strains and also exhibited strong bactericidal action against both Gram-positive and Gram-negative bacteria. The fluid handling characteristics and the antimicrobial properties of chitin-papain membranes sterilized by gamma radiation were found suitable for use as wound dressing with debriding activity.

  6. Current Status and New Perspectives on Chitin and Chitosan as Functional Biopolymers.

    Science.gov (United States)

    Philibert, Tuyishime; Lee, Byong H; Fabien, Nsanzabera

    2017-04-01

    The natural biopolymer chitin and its deacetylated product chitosan are found abundantly in nature as structural building blocks and are used in all sectors of human activities like materials science, nutrition, health care, and energy. Far from being fully recognized, these polymers are able to open opportunities for completely novel applications due to their exceptional properties which an economic value is intrinsically entrapped. On a commercial scale, chitosan is mainly obtained from crustacean shells rather than from the fungal and insect sources. Significant efforts have been devoted to commercialize chitosan extracted from fungal and insect sources to completely replace crustacean-derived chitosan. However, the traditional chitin extraction processes are laden with many disadvantages. The present review discusses the potential bioextraction of chitosan from fungal, insect, and crustacean as well as its superior physico-chemical properties. The different aspects of fungal, insects, and crustacean chitosan extraction methods and various parameters having an effect on the yield of chitin and chitosan are discussed in detail. In addition, this review also deals with essential attributes of chitosan for high value-added applications in different fields and highlighted new perspectives on the production of chitin and deacetylated chitosan from different sources with the concomitant reduction of the environmental impact.

  7. Characterization of organics consistent with β-chitin preserved in the Late Eocene cuttlefish Mississaepia mississippiensis.

    Directory of Open Access Journals (Sweden)

    Patricia G Weaver

    Full Text Available BACKGROUND: Preservation of original organic components in fossils across geological time is controversial, but the potential such molecules have for elucidating evolutionary processes and phylogenetic relationships is invaluable. Chitin is one such molecule. Ancient chitin has been recovered from both terrestrial and marine arthropods, but prior to this study had not been recovered from fossil marine mollusks. METHODOLOGY/PRINCIPAL FINDINGS: Organics consistent with β-chitin are recovered in cuttlebones of Mississaepia mississippiensis from the Late Eocene (34.36 million years ago marine clays of Hinds County, Mississippi, USA. These organics were determined and characterized through comparisons with extant taxa using Scanning Electron Microscopy/Energy Dispersive Spectrometry (SEM/EDS, Field Emission Scanning Electron Microscopy (Hyperprobe, Fourier Transmission Infrared Spectroscopy (FTIR and Immunohistochemistry (IHC. CONCLUSIONS/SIGNIFICANCE: Our study presents the first evidence for organics consistent with chitin from an ancient marine mollusk and discusses how these organics have been degraded over time. As mechanisms for their preservation, we propose that the inorganic/organic lamination of the cuttlebone, combined with a suboxic depositional environment with available free Fe(2+ ions, inhibited microbial or enzymatic degradation.

  8. Characterization of organics consistent with β-chitin preserved in the Late Eocene cuttlefish Mississaepia mississippiensis.

    Science.gov (United States)

    Weaver, Patricia G; Doguzhaeva, Larisa A; Lawver, Daniel R; Tacker, R Christopher; Ciampaglio, Charles N; Crate, Jon M; Zheng, Wenxia

    2011-01-01

    Preservation of original organic components in fossils across geological time is controversial, but the potential such molecules have for elucidating evolutionary processes and phylogenetic relationships is invaluable. Chitin is one such molecule. Ancient chitin has been recovered from both terrestrial and marine arthropods, but prior to this study had not been recovered from fossil marine mollusks. Organics consistent with β-chitin are recovered in cuttlebones of Mississaepia mississippiensis from the Late Eocene (34.36 million years ago) marine clays of Hinds County, Mississippi, USA. These organics were determined and characterized through comparisons with extant taxa using Scanning Electron Microscopy/Energy Dispersive Spectrometry (SEM/EDS), Field Emission Scanning Electron Microscopy (Hyperprobe), Fourier Transmission Infrared Spectroscopy (FTIR) and Immunohistochemistry (IHC). Our study presents the first evidence for organics consistent with chitin from an ancient marine mollusk and discusses how these organics have been degraded over time. As mechanisms for their preservation, we propose that the inorganic/organic lamination of the cuttlebone, combined with a suboxic depositional environment with available free Fe(2+) ions, inhibited microbial or enzymatic degradation.

  9. Growth on Chitin Impacts the Transcriptome and Metabolite Profiles of Antibiotic-Producing Vibrio coralliilyticus S2052 and Photobacterium galatheae S2753

    DEFF Research Database (Denmark)

    Giubergia, Sonia; Phippen, Christopher; Nielsen, Kristian Fog

    2017-01-01

    , Vibrio coralliilyticus and Photobacterium galatheae. We focused on chitin degradation genes and secondary metabolites based on the assumption that these molecules in nature confer an advantage to the producer. Growth on chitin caused upregulation of genes related to chitin metabolism and of genes...... potentially involved in host colonization and/or infection. The expression of genes involved in secondary metabolism was also significantly affected by growth on chitin, in one case being 34-fold upregulated. This was reflected in the metabolome, where the antibiotics andrimid and holomycin were produced...... in larger amounts on chitin. Other polyketide synthase/ nonribosomal peptide synthetase (PKS-NRPS) clusters in P. galatheae were also strongly upregulated on chitin. Collectively, this suggests that both V. coralliilyticus and P. galatheae have a specific lifestyle for growth on chitin...

  10. A Review of the Applications of Chitin and Its Derivatives in Agriculture to Modify Plant-Microbial Interactions and Improve Crop Yields

    Directory of Open Access Journals (Sweden)

    Russell G. Sharp

    2013-11-01

    Full Text Available In recent decades, a greater knowledge of chitin chemistry, and the increased availability of chitin-containing waste materials from the seafood industry, have led to the testing and development of chitin-containing products for a wide variety of applications in the agriculture industry. A number of modes of action have been proposed for how chitin and its derivatives can improve crop yield. In addition to direct effects on plant nutrition and plant growth stimulation, chitin-derived products have also been shown to be toxic to plant pests and pathogens, induce plant defenses and stimulate the growth and activity of beneficial microbes. A repeating theme of the published studies is that chitin-based treatments augment and amplify the action of beneficial chitinolytic microbes. This article reviews the evidence for claims that chitin-based products can improve crop yields and the current understanding of the modes of action with a focus on plant-microbe interactions.

  11. Microbial colonization of copepod body surfaces and chitin degradation in the sea

    Science.gov (United States)

    Kirchner, M.

    1995-03-01

    Next to cellulose, chitin (composed of N-acetyl-D-glucosamine sugar units) is the most frequently occurring biopolymer in nature. Among the most common sources of chitin in the marine environment are copepods and the casings of their fecal pellets. During the mineralization of chitin by microorganisms, which occurs chiefly by means of exoenzymes, nitrogen and carbon are returned to the nutrient cycle. In this study, the microbial colonization of the moults (exuviae), carcasses and fecal pellets of Tisbe holothuriae Humes (Copepoda: Harpacticoida) was examined in the laboratory. Results obtained with DAPI staining indicated that a succession of microorganisms from rodshaped bacteria and cocci to starlike aggregates took place, followed by the yeastlike fungus Aureobasidium pullulans (de Bary) Arnaud. No differences were noted between moults from various developmental stages, from nauplius to adult. The ventral sides and extremities of exuviae and carcasses were more rapidly colonized than other parts of the bodies. The casings of fecal pellets were frequently surrounded by bacteria with fimbriae or slime threads. In situ studies of chitin degradation (practical grade chitin from crustacean shells) with the mesh bag technique showed that about 90% of the original substance was lost after 3 months exposure in seawater at temperatures between 10 and 18°C. Chitinase activity was measured in the water at two stations near Helgoland, an island in the North Sea. A higher exoenzymatic activity was found in the rocky intertidal zone, compared to the Station Cable Buoy located between the main and Düne island. These values correspond to the higher bacteria numbers (cfu ml-1) found in the rocky intertidal: 10 to 100× greater than those found at the Cable Buoy Station.

  12. [The composition of the chitinolytic microbial complex and its effect on chitin decomposition at various humidity levels].

    Science.gov (United States)

    Vorob'ev, A V; Manucharova, N A; Iaroslavtsev, A M; Belova, E V; Zviagintsev, D G; Sudnitsyn, I I

    2007-01-01

    The dynamics of assimilation of chitin by soil microorganisms (primarily prokaryotes) as a source of carbon and nitrogen has been determined by gas chromatography and fluorescence microscopy. The highest rates of chitin decomposition in chernozem were detected at humidity levels corresponding to the pressure of soil moisture (P) of -1.4 atm. The rate of microbial consumption of chitin is three times higher than that of the carbon of soil organic matter. Fluorescence microscopy revealed that an increase in the pressure of soil moisture from P = -10 atm to P = -0.7 atm resulted in a considerable increase in the proportion of the specific surface of mycelial bacteria (actinomycetes).

  13. CHANGES OF CUTICLE SURFACE LIPIDS OF POPULUS ITALICA AND BETULA PENDULA CAUSED BY POLLUTION

    Directory of Open Access Journals (Sweden)

    O. M. Zubrovskaya

    2014-08-01

    Full Text Available Arboreal plants intensively accumulate heavy metals, resulting in a corresponding revocation level of physiological processes. The lipid components operate an important role in the formation of plant resistance. Therefore, it was very important to determine the characteristics of lipid peroxidation flow in leaves of arboreal plants, and changes in the composition of cuticle surface lipids at different levels of heavy metal accumulation. Research objects were Populus italica (Du Roi Moench and Betula pendula Roth. of second age group, growing on the industrial site РJSC ‘Kryvyi Rig Factory of minium’ (with strong contamination and in the arboretum of Kryvyi Rig Botanic Garden, National Academy of Science of Ukraine (conventional control. Leaves were taken from the middle of the crown southwest exposure in phase of leaf full separation and 5-10 day of phase finishing point of their growth. It was shown that P. italica maximally accumulated zinc, content of which was increased in the phase of leaf full separation and on 5-10 day of phase of leaf growth finishing point relative to the control to 12,6 and 23 times respectively. The accumulation level of heavy metals was typically less significant for assimilation organs of B. pendula compared to P. italica. Thus, the content of zinc and lead in the leaves during the study increased only in 2 times towards control. The leaves of B. pendula, unlike P. italica, more intensively accumulated cadmium in the phase of leaf full separation and on 5-10 day of phase finishing point of their growth (it was 6 and 15 times higher relative to control respectively. It was obviously connected to the fact that the surface texture of poplar leaves may cause intense sticking of dust particles containing heavy metals and penetration into the leaves. The effect of heavy metals in both phases of leaf morphogenesis caused an increase in lipid peroxidation by 40-52% for P. italica and almost by 3 times for B

  14. CHANGES OF CUTICLE SURFACE LIPIDS OF POPULUS ITALICA AND BETULA PENDULA CAUSED BY POLLUTION

    Directory of Open Access Journals (Sweden)

    Zubrovskaya O. M.

    2014-08-01

    Full Text Available Arboreal plants intensively accumulate heavy metals, resulting in a corresponding revocation level of physiological processes. The lipid components operate an important role in the formation of plant resistance. Therefore, it was very important to determine the characteristics of lipid peroxidation flow in leaves of arboreal plants, and changes in the composition of cuticle surface lipids at different levels of heavy metal accumulation. Research objects were Populus italica (Du Roi Moench and Betula pendula Roth. of second age group, growing on the industrial site РJSC ‘Kryvyi Rig Factory of minium’ (with strong contamination and in the arboretum of Kryvyi Rig Botanic Garden, National Academy of Science of Ukraine (conventional control. Leaves were taken from the middle of the crown southwest exposure in phase of leaf full separation and 5-10 day of phase finishing point of their growth. It was shown that P. italica maximally accumulated zinc, content of which was increased in the phase of leaf full separation and on 5-10 day of phase of leaf growth finishing point relative to the control to 12,6 and 23 times respectively. The accumulation level of heavy metals was typically less significant for assimilation organs of B. pendula compared to P. italica. Thus, the content of zinc and lead in the leaves during the study increased only in 2 times towards control. The leaves of B. pendula, unlike P. italica, more intensively accumulated cadmium in the phase of leaf full separation and on 5-10 day of phase finishing point of their growth (it was 6 and 15 times higher relative to control respectively. It was obviously connected to the fact that the surface texture of poplar leaves may cause intense sticking of dust particles containing heavy metals and penetration into the leaves. The effect of heavy metals in both phases of leaf morphogenesis caused an increase in lipid peroxidation by 40-52% for P. italica and almost by 3 times for B. pendula

  15. Antimicrobial Nanoemulsion Formulation with Improved Penetration of Foliar Spray through Citrus Leaf Cuticles to Control Citrus Huanglongbing.

    Science.gov (United States)

    Yang, Chuanyu; Powell, Charles A; Duan, Yongping; Shatters, Robert; Zhang, Muqing

    2015-01-01

    Huanglongbing (HLB) is the most serious disease affecting the citrus industry worldwide to date. The causal agent, Candidatus Liberibacter asiaticus (Las), resides in citrus phloem, which makes it difficult to effectively treat with chemical compounds. In this study, a transcuticular nanoemulsion formulation was developed to enhance the permeation of an effective antimicrobial compound (ampicillin; Amp) against HLB disease through the citrus cuticle into the phloem via a foliar spray. The results demonstrated that efficiency of cuticle isolation using an enzymatic method (pectinase and cellulase) was dependent on the citrus cultivar and Las-infection, and it was more difficult to isolate cuticles from valencia orange (Citrus sinensis) and HLB-symptomatic leaves. Of eight adjuvants tested, Brij 35 provided the greatest increase in permeability of the HLB-affected cuticle with a 3.33-fold enhancement of cuticular permeability over water control. An in vitro assay using Bacillus subtilis showed that nanoemulsion formulations containing Amp (droplets size = 5.26 ± 0.04 nm and 94 ± 1.48 nm) coupled with Brij 35 resulted in greater inhibitory zone diameters (5.75 mm and 6.66 mm) compared to those of Brij 35 (4.34 mm) and Amp solution (2.83 mm) alone. Furthermore, the nanoemulsion formulations eliminated Las bacteria in HLB-affected citrus in planta more efficiently than controls. Our study shows that a water in oil (W/O) nanoemulsion formulation may provide a useful model for the effective delivery of chemical compounds into citrus phloem via a foliar spray for controlling citrus HLB.

  16. CFLAP1 and CFLAP2 Are Two bHLH Transcription Factors Participating in Synergistic Regulation of AtCFL1-Mediated Cuticle Development in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Shibai Li

    2016-01-01

    Full Text Available The cuticle is a hydrophobic lipid layer covering the epidermal cells of terrestrial plants. Although many genes involved in Arabidopsis cuticle development have been identified, the transcriptional regulation of these genes is largely unknown. Previously, we demonstrated that AtCFL1 negatively regulates cuticle development by interacting with the HD-ZIP IV transcription factor HDG1. Here, we report that two bHLH transcription factors, AtCFL1 associated protein 1 (CFLAP1 and CFLAP2, are also involved in AtCFL1-mediated regulation of cuticle development. CFLAP1 and CFLAP2 interact with AtCFL1 both in vitro and in vivo. Overexpression of either CFLAP1 or CFLAP2 led to expressional changes of genes involved in fatty acids, cutin and wax biosynthesis pathways and caused multiple cuticle defective phenotypes such as organ fusion, breakage of the cuticle layer and decreased epicuticular wax crystal loading. Functional inactivation of CFLAP1 and CFLAP2 by chimeric repression technology caused opposite phenotypes to the CFLAP1 overexpressor plants. Interestingly, we find that, similar to the transcription factor HDG1, the function of CFLAP1 in cuticle development is dependent on the presence of AtCFL1. Furthermore, both HDG1 and CFLAP1/2 interact with the same C-terminal C4 zinc finger domain of AtCFL1, a domain that is essential for AtCFL1 function. These results suggest that AtCFL1 may serve as a master regulator in the transcriptional regulation of cuticle development, and that CFLAP1 and CFLAP2 are involved in the AtCFL1-mediated regulation pathway, probably through competing with HDG1 to bind to AtCFL1.

  17. Actinomycetes inhibit filamentous fungi from the cuticle of Acromyrmex leafcutter ants.

    Science.gov (United States)

    Dângelo, Rômulo Augusto Cotta; de Souza, Danival José; Mendes, Thais Demarchi; Couceiro, Joel da Cruz; Lucia, Terezinha Maria Castro Della

    2016-03-01

    Actinomycetes bacteria associated with leafcutter ants produce secondary metabolites with antimicrobial properties against Escovopsis, a fungus specialized in attacking the gardens of fungus-growing ants, which denies the ants their food source. Because previous studies have used fungi isolated from fungus gardens but not from ant integument, the aims of the present study were to isolate actinomycetes associated with the cuticle of the Acromyrmex spp. and to quantify their inhibition abilities against the filamentous fungal species carried by these ants. The results demonstrated that actinomycetes had varied strain-dependent effects on several filamentous fungal species in addition to antagonistic activity against Escovopsis. The strain isolated from Acromyrmex balzani was identified as a Streptomyces species, whereas the remaining isolates were identified as different strains belonging to the genus Pseudonocardia. These findings corroborate the hypothesis that actinomycetes do not act specifically against Escovopsis mycoparasites and may have the ability to inhibit other species of pathogenic fungi. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Nocardia lasii sp. nov., a novel actinomycete isolated from the cuticle of an ant (Lasius fuliginosus L).

    Science.gov (United States)

    Liu, Chongxi; Bai, Lu; Ye, Lan; Zhao, Junwei; Yan, Kai; Xiang, Wensheng; Wang, Xiangjing

    2016-11-01

    A novel actinomycete, designated strain 3C-HV12(T), was isolated from the cuticle of an ant (Lasius fuliginosus L) and characterised using a polyphasic approach. 16S rRNA gene sequence similarity studies showed that strain 3C-HV12(T) belongs to the genus Nocardia with high sequence similarities to Nocardia soli DSM 44488(T) (99.2 %) and Nocardia cummidelens R89(T) (99.2 %), and phylogenetically clustered with these two species and Nocardia ignorata DSM 44496(T) (98.8 %), Nocardia salmonicida JCM 4826(T) (98.8 %), Nocardia fluminea S1(T) (98.8 %), Nocardia coubleae OFN N12(T) (98 %) and Nocardia camponoti 1H-HV4(T) (97.4 %). The morphological and chemotaxonomic properties of the strain are also consistent with those of members of the genus Nocardia. The strain was observed to form extensively branched substrate hyphae which fragmented into rod-shaped and non-motile elements. The cell wall was found to contain meso-diaminopimelic acid and the whole cell sugars were identified as arabinose and galactose. The predominant menaquinone was identified as MK-8(H4, ω-cycl). The phospholipid profile was found to consist of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. The major fatty acids were identified as C18:0 10-methyl, C16:0 and C16:1ω7c. Mycolic acids were found to be present. A combination of DNA-DNA hybridisation experiments and phenotypic tests were carried out between strain 3C-HV12(T) and its phylogenetically closely related strains, which further clarified their relatedness and demonstrated that 3C-HV12(T) could be distinguished from these strains. Therefore, the strain is concluded to represent a novel species of the genus Nocardia, for which the name Nocardia lasii sp. nov. is proposed. The type strain is 3C-HV12(T) (=DSM 100525(T) = CGMCC 4.7279(T)).

  19. Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part II: Biomimetic potential and applications.

    Science.gov (United States)

    Ehrlich, H; Steck, E; Ilan, M; Maldonado, M; Muricy, G; Bavestrello, G; Kljajic, Z; Carballo, J L; Schiaparelli, S; Ereskovsky, A; Schupp, P; Born, R; Worch, H; Bazhenov, V V; Kurek, D; Varlamov, V; Vyalikh, D; Kummer, K; Sivkov, V V; Molodtsov, S L; Meissner, H; Richter, G; Hunoldt, S; Kammer, M; Paasch, S; Krasokhin, V; Patzke, G; Brunner, E; Richter, W

    2010-08-01

    In order to evaluate the biomedical potential of three-dimensional chitinous scaffolds of poriferan origin, chondrocyte culturing experiments were performed. It was shown for the first time that freshly isolated chondrocytes attached well to the chitin scaffold and synthesized an extracellular matrix similar to that found in other cartilage tissue engineering constructs. Chitin scaffolds also supported deposition of a proteoglycan-rich extracellular matrix of chondrocytes seeded bioconstructs in an in vivo environment. We suggest that chitin sponge scaffolds, apart from the demonstrated biomedical applications, are highly optimized structures for use as filtering systems, templates for biomineralization as well as metallization in order to produce catalysts. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Biomedical Exploitation of Chitin and Chitosan via Mechano-Chemical Disassembly, Electrospinning, Dissolution in Imidazolium Ionic Liquids, and Supercritical Drying

    Directory of Open Access Journals (Sweden)

    Riccardo A. A. Muzzarelli

    2011-09-01

    Full Text Available Recently developed technology permits to optimize simultaneously surface area, porosity, density, rigidity and surface morphology of chitin-derived materials of biomedical interest. Safe and ecofriendly disassembly of chitin has superseded the dangerous acid hydrolysis and provides higher yields and scaling-up possibilities: the chitosan nanofibrils are finding applications in reinforced bone scaffolds and composite dressings for dermal wounds. Electrospun chitosan nanofibers, in the form of biocompatible thin mats and non-wovens, are being actively studied: composites of gelatin + chitosan + polyurethane have been proposed for cardiac valves and for nerve conduits; fibers are also manufactured from electrospun particles that self-assemble during subsequent freeze-drying. Ionic liquids (salts of alkylated imidazolium are suitable as non-aqueous solvents that permit desirable reactions to occur for drug delivery purposes. Gel drying with supercritical CO2 leads to structures most similar to the extracellular matrix, even when the chitosan is crosslinked, or in combination with metal oxides of interest in orthopedics.

  1. Seasonality influences cuticle melanization and immune defense in a cricket: support for a temperature-dependent immune investment hypothesis in insects

    Energy Technology Data Exchange (ETDEWEB)

    Fedorka, K. M. [Univ. of Central Florida, Orlando, FL (United States); Copeland, E. K. [Univ. of Central Florida, Orlando, FL (United States); Winterhalter, W. E. [Univ. of Central Florida, Orlando, FL (United States)

    2013-07-18

    To improve thermoregulation in colder environments, insects are expected to darken their cuticles with melanin via the phenoloxidase cascade, a phenomenon predicted by the thermal melanin hypothesis. However, the phenoloxidase cascade also plays a significant role in insect immunity, leading to the additional hypothesis that the thermal environment indirectly shapes immune function via direct selection on cuticle color. Support for the latter hypothesis comes from the cricket Allonemobius socius, where cuticle darkness and immune-related phenoloxidase activity increase with latitude. However, thermal environments vary seasonally as well as geographically, suggesting that seasonal plasticity in immunity may also exist. Although seasonal fluctuations in vertebrate immune function are common (because of flux in breeding or resource abundance), seasonality in invertebrate immunity has not been widely explored. We addressed this possibility by rearing crickets in simulated summer and fall environments and assayed their cuticle color and immune function. Prior to estimating immunity, crickets were placed in a common environment to minimize metabolic rate differences. Individuals reared under fall-like conditions exhibited darker cuticles, greater phenoloxidase activity and greater resistance to the bacteria Serratia marcescens. These data support the hypothesis that changes in the thermal environment modify cuticle color, which indirectly shapes immune investment through pleiotropy. This hypothesis may represent a widespread mechanism governing immunity in numerous systems, considering that most insects operate in seasonally and geographically variable thermal environments.

  2. Interaction of insulin, cholesterol-derivatized mannan, and carboxymethyl chitin with liposomes: A differential scanning calorimetry study

    OpenAIRE

    M. Tabbakhian; Rogers, J.A.

    2012-01-01

    The interaction of drugs and polymers used to incorporate in or surface modify/coat the liposomes can affect the phase transition, fluidity and other physical properties as well as in vivo fate of vesicles. In this study, differential scanning calorimetry (DSC) was used to investigate changes in the temperature and the enthalpy of phase transition of liposomes of various electrical charges following interaction with carboxymethyl chitin (CM-chitin) as a hydrophilic polymer, cholesterol-deriva...

  3. Arabidopsis ubiquitin ligase PUB12 interacts with and negatively regulates Chitin Elicitor Receptor Kinase 1 (CERK1.

    Directory of Open Access Journals (Sweden)

    Koji Yamaguchi

    Full Text Available In Arabidopsis, fungal chitin is recognized as a pathogen-associated molecular pattern (PAMP by the chitin receptor complex containing the lysin-motif (LysM receptor-like kinases CERK1 and LYK5. Upon the perception of chitin, CERK1 phosphorylates the receptor-like cytoplasmic kinase, PBL27, which activates the intracellular mitogen-activated protein kinase (MAPK cascade. However, the mechanisms by which the CERK1-PBL27 complex is regulated remain largely unknown. We identified ubiquitin ligase PUB12 as a component of the PBL27 complex using co-immunoprecipitation and mass spectrometry. However, PUB12 did not interact directly with PBL27. Instead, the ARM domains of PUB12 and its paralog PUB13 interacted with the intracellular domain of CERK1 in a manner that was dependent on its autophosphorylation, suggesting that the phosphorylation-based auto-activation of CERK1 may be required for its interaction with PUB12. The co-expression of PUB12 in Nicotiana benthamiana reduced the accumulation of CERK1. The pub12 pub13 mutant exhibited enhanced chitin-induced immune responses such as ROS production, MAPK activation, and callose deposition. These results suggest that PUB12 and PUB13 are involved in the negative regulation of the chitin receptor complex, which may contribute to the transient desensitization of chitin-induced responses.

  4. The Antifungal Activity of Functionalized Chitin Nanocrystals in Poly (Lactid Acid Films

    Directory of Open Access Journals (Sweden)

    Asier M. Salaberria

    2017-05-01

    Full Text Available As, in the market, poly (lactic acid (PLA is the most used polymer as an alternative to conventional plastics, and as functionalized chitin nanocrystals (CHNC can provide structural and bioactive properties, their combination sounds promising in the preparation of functional nanocomposite films for sustainable packaging. Chitin nanocrystals were successfully modified via acylation using anhydride acetic and dodecanoyl chloride acid to improve their compatibility with the matrix, PLA. The nanocomposite films were prepared by extrusion/compression approach using different concentrations of both sets of functionalized CHNC. This investigation brings forward that both sets of modified CHNC act as functional agents, i.e., they slightly improved the hydrophobic character of the PLA nanocomposite films, and, very importantly, they also enhanced their antifungal activity. Nonetheless, the nanocomposite films prepared with the CHNC modified with dodecanoyl chloride acid presented the best properties.

  5. Comments on "Solubility parameter of chitin and chitosan" Carbohydrate Polymers 36 (1998) 121-127.

    Science.gov (United States)

    Lehnert, Ralph J; Kandelbauer, Andreas

    2017-11-01

    Results on the solubility parameters of chitin and chitosan presented in the paper DOI: 10.1016/S0144-8617(98)00020-4 were recalculated and data evaluation was redone. A number of misprints, erroneous calculations and data evaluations were found with respect to Hansen as well as total solubility parameters as derived according to group contribution methods by Hoftyzer-Van Krevelen and Hoy's system. Revised numerical data are presented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. NATURAL POLYMERS: CELLULOSE, CHITIN, CHITOSAN, GELATIN, STARCH, CARRAGEENAN, XYLAN AND DEXTRAN

    Directory of Open Access Journals (Sweden)

    Fatma Zohra Benabid

    2016-12-01

    Full Text Available Biopolymers have been investigated for drug fields. They are widely being studied because of their non-toxic and biocompatible in nature. Biopolymers are used in industries as diverse as paper, plastics, food, textiles, pharmaceuticals, and cosmetics.This review covers different natural polymers, recent techniques applied in their processing and characterization. Advanced applications of natural polymers, including chitin, chitosan, alginate, etc., are discussed.

  7. Disruption of Bcchs4, Bcchs6 or Bcchs7 chitin synthase genes in Botrytis cinerea and the essential role of class VI chitin synthase (Bcchs6).

    Science.gov (United States)

    Morcx, Serena; Kunz, Caroline; Choquer, Mathias; Assie, Sébastien; Blondet, Eddy; Simond-Côte, Elisabeth; Gajek, Karina; Chapeland-Leclerc, Florence; Expert, Dominique; Soulie, Marie-Christine

    2013-03-01

    Chitin synthases play critical roles in hyphal development and fungal pathogenicity. Previous studies on Botrytis cinerea, a model organism for necrotrophic pathogens, have shown that disruption of Bcchs1 and more particularly Bcchs3a genes have a drastic impact on virulence (Soulié et al., 2003, 2006). In this work, we investigate the role of other CHS including BcCHS4, BcCHS6 and BcCHS7 during the life cycle of B. cinerea. Single deletions of corresponding genes were carried out. Phenotypic analysis indicates that: (i) BcCHS4 enzyme is not essential for development and pathogenicity of the fungus; (ii) BcCHS7 is required for pathogenicity in a host dependant manner. For Bcchs6 gene disruption, we obtained only heterokaryotic strains. Indeed, sexual or asexual purification assays were unsuccessful. We concluded that class VI chitin synthase could be essential for B. cinerea and therefore BcCHS6 represents a valuable antifungal target. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Thermal analysis and structural characterization of chitinous exoskeleton from two marine invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Juárez-de la Rosa, B.A., E-mail: balej05@yahoo.com.mx [Laboratory of Natural Polymers, CIAD – Coordinación Guaymas, Carretera al Varadero Nacional km. 6.6, Col. Las Playitas, 85480 Guaymas, Sonora (Mexico); Applied Physics Department, CINVESTAV-IPN Unidad Mérida, Carretera antigua a Progreso, km. 6. Apdo, Postal 73, Cordemex, 97310 Mérida, Yucatan (Mexico); May-Crespo, J.; Quintana-Owen, P.; Gónzalez-Gómez, W.S. [Applied Physics Department, CINVESTAV-IPN Unidad Mérida, Carretera antigua a Progreso, km. 6. Apdo, Postal 73, Cordemex, 97310 Mérida, Yucatan (Mexico); Yañez-Limón, J.M. [Materials and Engineering Science, CINVESTAV-IPN, Unidad Querétaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, 76230 Santiago de Querétaro, Querétaro (Mexico); Alvarado-Gil, J.J., E-mail: jjag@mda.cinvestav.mx [Applied Physics Department, CINVESTAV-IPN Unidad Mérida, Carretera antigua a Progreso, km. 6. Apdo, Postal 73, Cordemex, 97310 Mérida, Yucatan (Mexico)

    2015-06-20

    Highlights: • Thermal analysis of exoskeletons: Antipathes caribbeana and Limulus polyphemus. • DMTA revealed Limulus has a stronger structure with a stepper glass transition. • DSC measurements exhibited a much larger water holding capacity in Antipathes. • X-ray diffraction analysis shows a higher crystallinity index in Limulus • FTIR showed α-chitin structures and high temperature C–N groups prevalence. - ABSTRACT: Thermomechanical and structural properties of two marine species exoskeletons, Antipathes caribbeana (black coral) and Limulus polyphemus (xiphosure), were studied using dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). DMTA curves indicate the viscoelastic behavior and glass transition around 255 °C, black coral presented a second transition (175 °C) associated to the acetamide group attached to the α-chitin chain. DSC measurements showed a endothermic peak around 100 °C, with enthalpies of 4.02 and 118.04 J/g, indicating strong differences between exoskeletons respect to their water holding capacity and strength water–polymer interaction. A comparative analysis involving DSC and X-ray diffraction showed that lower values ΔH in xiphosure correspond to a material with a higher crystallinity (30), in contrast black coral exhibits higher values ΔH and a lower crystallinity (19). FTIR confirmed α-chitin based structure, at higher temperature diminishes the amide bands and a new one appears, related to C–N groups.

  9. Fabrication and feasibility study of an absorbable diacetyl chitin surgical suture for wound healing.

    Science.gov (United States)

    Shao, Kai; Han, Baoqin; Gao, Jinning; Jiang, Zhiwen; Liu, Weizhi; Liu, Wanshun; Liang, Ye

    2016-01-01

    Diacetyl chitin (DAC) is an acidylated chitin obtained using acetic anhydride mixed perchloric acid system. By wet spinning and weaving technique, DAC has been successfully developed into a novel absorbable surgical suture. Thanks to the unique properties of chitins, the potential application of this novel monocomponent multifilament DAC suture may break the monopoly of synthetic polymer sutures in wound closure area. In this study, DAC was synthesized and characterized by multiple approaches including elemental analysis, Fourier transform infrared spectrometry (FTIR), and X-ray diffraction (XRD). In addition, we performed the feasibility assessment of DAC suture (USP 2-0) as absorbable suture for wound healing. Several lines of evidences suggested that DAC suture had comparable mechanical properties as synthetic polymer sutures. Moreover, DAC suture retained approximately 63% of the original strength at 14 days and completely absorbed in 42 days with no remarkable tissue reaction in vivo. Most important of all, DAC suture significantly promoted skin regeneration with faster tissue reconstruction and higher wound breaking strength on a linear incisional wound model. All these results demonstrated the potential use of DAC suture in short- or middle-term wound healing, such as epithelial and connective tissue. © 2015 Wiley Periodicals, Inc.

  10. Natural waste materials containing chitin as adsorbents for textile dyestuffs: batch and continuous studies.

    Science.gov (United States)

    Figueiredo, S A; Loureiro, J M; Boaventura, R A

    2005-10-01

    In this work three natural waste materials containing chitin were used as adsorbents for textile dyestuffs, namely the Anodonta (Anodonta cygnea) shell, the Sepia (Sepia officinalis) and the Squid (Loligo vulgaris) pens. The selected dyestuffs were the Cibacron green T3G-E (CI reactive green 12), and the Solophenyl green BLE 155% (CI direct green 26), both from CIBA, commonly used in cellulosic fibres dyeing, the most used fibres in the textile industry. Batch equilibrium studies showed that the materials' adsorption capacities increase after a simple and inexpensive chemical treatment, which increases their porosity and chitin relative content. Kinetic studies suggested the existence of a high internal resistance in both systems. Fixed bed column experiments performed showed an improvement in adsorbents' behaviour after chemical treatment. However, in the column experiments, the biodegradation was the main mechanism of dyestuff removal, allowing the materials' bioregeneration. The adsorption was strongly reduced by the pore clogging effect of the biomass. The deproteinised Squid pen (grain size 0.500-1.41 mm) is the adsorbent with highest adsorption capacity (0.27 and 0.037 g/g, respectively, for the reactive and direct dyestuffs, at 20 degrees C), followed by the demineralised Sepia pen and Anodonta shell, behaving like pure chitin in all experiments, but showing inferior performances than the granular activated carbon tested in the column experiments.

  11. Isocyanate-Functionalized Chitin and Chitosan as Gelling Agents of Castor Oil

    Directory of Open Access Journals (Sweden)

    José M. Franco

    2013-06-01

    Full Text Available The main objective of this work was the incorporation of reactive isocyanate groups into chitin and chitosan in order to effectively use the products as reactive thickening agents in castor oil. The resulting gel-like dispersions could be potentially used as biodegradable lubricating greases. Three different NCO–functionalized polymers were obtained: two of them by promoting the reaction of chitosan with 1,6-hexamethylene diisocyanate (HMDI, and the other by using chitin instead of chitosan. These polymers were characterized through 1H-NMR, FTIR and thermogravimetric analysis (TGA. Thermal and rheological behaviours of the oleogels prepared by dispersing these polymers in castor oil were studied by means of TGA and small-amplitude oscillatory shear (SAOS measurements. The evolution and values of the linear viscoelasticity functions with frequency for –NCO–functionalized chitosan- and chitin-based oleogels are quite similar to those found for standard lubricating greases. In relation to long-term stability of these oleogels, no phase separation was observed and the values of viscoelastic functions increase significantly during the first seven days of ageing, and then remain almost constant. TGA analysis showed that the degradation temperature of the resulting oleogels is higher than that found for traditional lubricating greases.

  12. Microbial Degradation of Lobster Shells to Extract Chitin Derivatives for Plant Disease Management.

    Science.gov (United States)

    Ilangumaran, Gayathri; Stratton, Glenn; Ravichandran, Sridhar; Shukla, Pushp S; Potin, Philippe; Asiedu, Samuel; Prithiviraj, Balakrishnan

    2017-01-01

    Biodegradation of lobster shells by chitinolytic microorganisms are an environment safe approach to utilize lobster processing wastes for chitin derivation. In this study, we report degradation activities of two microbes, "S223" and "S224" isolated from soil samples that had the highest rate of deproteinization, demineralization and chitinolysis among ten microorganisms screened. Isolates S223 and S224 had 27.3 and 103.8 protease units mg-1 protein and 12.3 and 11.2 μg ml-1 of calcium in their samples, respectively, after 1 week of incubation with raw lobster shells. Further, S223 contained 23.8 μg ml-1 of N-Acetylglucosamine on day 3, while S224 had 27.3 μg ml-1 on day 7 of incubation with chitin. Morphological observations and 16S rDNA sequencing suggested both the isolates were Streptomyces. The culture conditions were optimized for efficient degradation of lobster shells and chitinase (∼30 kDa) was purified from crude extract by affinity chromatography. The digested lobster shell extracts induced disease resistance in Arabidopsis by induction of defense related genes (PR1 > 500-fold, PDF1.2 > 40-fold) upon Pseudomonas syringae and Botrytis cinerea infection. The study suggests that soil microbes aid in sustainable bioconversion of lobster shells and extraction of chitin derivatives that could be applied in plant protection.

  13. Mechanical and thermal properties of crab chitin reinforced carboxylated SBR composites

    Directory of Open Access Journals (Sweden)

    C. Santulli

    2012-05-01

    Full Text Available The addition of small amounts (up to 9 wt% of chitin microsized particles, originating from shellfish waste, to carboxylated styrene-butadiene rubber (XSBR matrix (as received and annealed to 100°C has been studied. In particular, this study concentrated on their mechanical (creep investigation by nanoindentation and dynamical-mechanical analysis, thermal (differential scanning calorimetry and thermogravimetry and swelling behaviour (toluene absorption and was completed by morphological characterisation by scanning electron microscopy and atomic force microscopy. The results show that annealing has a limited effect on materials properties, effects which are further reduced by the addition of growing amounts of crab chitin. It should be noted that the limited filler content used in the study does not substantially modify the linear creep behaviour of XSBR for sufficiently long loading times. The thermal stability of the system does also appear to be preserved even with the maximum chitin content added, while it serves sufficiently as an effective barrier against aromatic solvent absorption.

  14. Role of Chitin and Chitinase/Chitinase-Like Proteins in Inflammation, Tissue Remodeling, and Injury

    Science.gov (United States)

    Lee, Chun Geun; Da Silva, Carla A.; Dela Cruz, Charles S.; Ahangari, Farida; Ma, Bing; Kang, Min-Jong; He, Chuan-Hua; Takyar, Seyedtaghi; Elias, Jack A.

    2013-01-01

    The 18 glycosyl hydrolase family of chitinases is an ancient gene family that is widely expressed from prokaryotes to eukaryotes. In mammals, despite the absence of endogenous chitin, a number of chitinases and chitinase-like proteins (C/CLPs) have been identified. However, their roles have only recently begun to be elucidated. Acidic mammalian chitinase (AMCase) inhibits chitin-induced innate inflammation; augments chitin-free, allergen-induced Th2 inflammation; and mediates effector functions of IL-13. The CLPs BRP-39/YKL-40 (also termed chitinase 3-like 1) inhibit oxidant-induced lung injury, augments adaptive Th2 immunity, regulates apoptosis, stimulates alternative macrophage activation, and contributes to fibrosis and wound healing. In accord with these findings, levels of YKL-40 in the lung and serum are increased in asthma and other inflammatory and remodeling disorders and often correlate with disease severity. Our understanding of the roles of C/CLPs in inflammation, tissue remodeling, and tissue injury in health and disease is reviewed below. PMID:21054166

  15. Prawn Shell Derived Chitin Nanofiber Membranes as Advanced Sustainable Separators for Li/Na-Ion Batteries.

    Science.gov (United States)

    Zhang, Tian-Wen; Shen, Bao; Yao, Hong-Bin; Ma, Tao; Lu, Lei-Lei; Zhou, Fei; Yu, Shu-Hong

    2017-08-09

    Separators, necessary components to isolate cathodes and anodes in Li/Na-ion batteries, are consumed in large amounts per year; thus, their sustainability is a concerning issue for renewable energy storage systems. However, the eco-efficient and environmentally friendly fabrication of separators with a high mechanical strength, excellent thermal stability, and good electrolyte wettability is still challenging. Herein, we reported the fabrication of a new type of separators for Li/Na-ion batteries through the self-assembly of eco-friendly chitin nanofibers derived from prawn shells. We demonstrated that the pore size in the chitin nanofiber membrane (CNM) separator can be tuned by adjusting the amount of pore generation agent (sodium dihydrogen citrate) in the self-assembly process of chitin nanofibers. By optimizing the pore size in CNM separators, the electrochemical performance of the LiFePO4/Li half-cell with a CNM separator is comparable to that with a commercialized polypropylene (PP) separator. More attractively, the CNM separator showed a much better performance in the LiFePO4/Li cell at 120 °C and Na3V2(PO4)3/Na cell than the PP separator. The proposed fabrication of separators by using natural raw materials will play a significant contribution to the sustainable development of renewable energy storage systems.

  16. Biomedical Activity of Chitin/Chitosan Based Materials—Influence of Physicochemical Properties Apart from Molecular Weight and Degree of N-Acetylation

    OpenAIRE

    Weinhold, Mirko X.; Piotr Stepnowski; Jorg Thöming; Jolanta Kumirska

    2011-01-01

    The physicochemical nature of chitin and chitosan, which influences the biomedical activity of these compounds, is strongly related to the source of chitin and the conditions of the chitin/chitosan production process. Apart from widely described key factors such as weight-averaged molecular weight (MW) and degree of N-acetylation (DA), other physicochemical parameters like polydispersity (MW/MN), crystallinity or the pattern of acetylation (PA) have to be taken into consideration. From the bi...

  17. New functions of arthropod bursicon: inducing deposition and thickening of new cuticle and hemocyte granulation in the blue crab, Callinectes sapidus.

    Directory of Open Access Journals (Sweden)

    J Sook Chung

    Full Text Available Arthropod growth requires molt-associated changes in softness and stiffness of the cuticle that protects from desiccation, infection and injury. Cuticle hardening in insects depends on the blood-borne hormone, bursicon (Burs, although it has never been determined in hemolymph. Whilst also having Burs, decapod crustaceans reiterate molting many more times during their longer life span and are encased in a calcified exoskeleton, which after molting undergoes similar initial cuticle hardening processes as in insects. We investigated the role of homologous crustacean Burs in cuticular changes and growth in the blue crab, Callinectes sapidus. We found dramatic increases in size and number of Burs cells during development in paired thoracic ganglion complex (TGC neurons with pericardial organs (POs as neurohemal release sites. A skewed expression of Burs β/Burs α mRNA in TGC corresponds to protein contents of identified Burs β homodimer and Burs heterodimer in POs. In hemolymph, Burs is consistently present at ∼21 pM throughout the molt cycle, showing a peak of ∼89 pM at ecdysis. Since initial cuticle hardness determines the degree of molt-associated somatic increment (MSI, we applied recombinant Burs in vitro to cuticle explants of late premolt or early ecdysis. Burs stimulates cuticle thickening and granulation of hemocytes. These findings demonstrate novel cuticle-associated functions of Burs during molting, while the unambiguous and constant presence of Burs in cells and hemolymph throughout the molt cycle and life stages may implicate further functions of its homo- and heterodimer hormone isoforms in immunoprotective defense systems of arthropods.

  18. New functions of arthropod bursicon: inducing deposition and thickening of new cuticle and hemocyte granulation in the blue crab, Callinectes sapidus.

    Science.gov (United States)

    Chung, J Sook; Katayama, Hidekazu; Dircksen, Heinrich

    2012-01-01

    Arthropod growth requires molt-associated changes in softness and stiffness of the cuticle that protects from desiccation, infection and injury. Cuticle hardening in insects depends on the blood-borne hormone, bursicon (Burs), although it has never been determined in hemolymph. Whilst also having Burs, decapod crustaceans reiterate molting many more times during their longer life span and are encased in a calcified exoskeleton, which after molting undergoes similar initial cuticle hardening processes as in insects. We investigated the role of homologous crustacean Burs in cuticular changes and growth in the blue crab, Callinectes sapidus. We found dramatic increases in size and number of Burs cells during development in paired thoracic ganglion complex (TGC) neurons with pericardial organs (POs) as neurohemal release sites. A skewed expression of Burs β/Burs α mRNA in TGC corresponds to protein contents of identified Burs β homodimer and Burs heterodimer in POs. In hemolymph, Burs is consistently present at ∼21 pM throughout the molt cycle, showing a peak of ∼89 pM at ecdysis. Since initial cuticle hardness determines the degree of molt-associated somatic increment (MSI), we applied recombinant Burs in vitro to cuticle explants of late premolt or early ecdysis. Burs stimulates cuticle thickening and granulation of hemocytes. These findings demonstrate novel cuticle-associated functions of Burs during molting, while the unambiguous and constant presence of Burs in cells and hemolymph throughout the molt cycle and life stages may implicate further functions of its homo- and heterodimer hormone isoforms in immunoprotective defense systems of arthropods.

  19. Genome investigation suggests MdSHN3, an APETALA2-domain transcription factor gene, to be a positive regulator of apple fruit cuticle formation and an inhibitor of russet development.

    Science.gov (United States)

    Lashbrooke, Justin; Aharoni, Asaph; Costa, Fabrizio

    2015-11-01

    The outer epidermal layer of apple fruit is covered by a protective cuticle. Composed of a polymerized cutin matrix embedded with waxes, the cuticle is a natural waterproof barrier and protects against several abiotic and biotic stresses. In terms of apple production, the cuticle is essential to maintain long post-harvest storage, while severe failure of the cuticle can result in the formation of a disorder known as russet. Apple russet results from micro-cracking of the cuticle and the formation of a corky suberized layer. This is typically an undesirable consumer trait, and negatively impacts the post-harvest storage of apples. In order to identify genetic factors controlling cuticle biosynthesis (and thus preventing russet) in apple, a quantitative trait locus (QTL) mapping survey was performed on a full-sib population. Two genomic regions located on chromosomes 2 and 15 that could be associated with russeting were identified. Apples with compromised cuticles were identified through a novel and high-throughput tensile analysis of the skin, while histological analysis confirmed cuticle failure in a subset of the progeny. Additional genomic investigation of the determined QTL regions identified a set of underlying genes involved in cuticle biosynthesis. Candidate gene expression profiling by quantitative real-time PCR on a subset of the progeny highlighted the specific expression pattern of a SHN1/WIN1 transcription factor gene (termed MdSHN3) on chromosome 15. Orthologues of SHN1/WIN1 have been previously shown to regulate cuticle formation in Arabidopsis, tomato, and barley. The MdSHN3 transcription factor gene displayed extremely low expression in lines with improper cuticle formation, suggesting it to be a fundamental regulator of cuticle biosynthesis in apple fruit. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Chitin-Hyaluronan Nanoparticles: A Multifunctional Carrier to Deliver Anti-Aging Active Ingredients through the Skin

    Directory of Open Access Journals (Sweden)

    Pierfrancesco Morganti

    2014-07-01

    Full Text Available The paper describes the process to produce Chitin Nanofibril-Hyaluronan nanoparticles (CN-HA, showing their ability to easily load active ingredients, facilitate penetration through the skin layers, and increase their effectiveness and safety as an anti-aging agent. Size and characterization of CN-HA nanoparticles were determined by Scanning Electron Microscopy (SEM and Zetasizer, while encapsulation efficiency and loading capacity of the entrapped ingredients were controlled by chromatographic and spectrophotometric methods. Safeness was evidenced on fibroblasts and keratinocytes culture viability by the MTT (Methylthiazol assay; anti-aging activity was evaluated in vitro measuring antioxidant capacity, anti-collagenase activity, and metalloproteinase and pro-inflammatory release; efficacy was shown in vivo by a double-blind vehicle-controlled study for 60 days on 60 women affected by photo-aging. In addition, the CN-HA nanoparticles have shown interesting possibility to be used as active ingredients, for designing and making advanced medication by the electrospinning technology, as well as to produce transparent films for food packaging, by the casting method, and can be used also in their dry form as tissues or films without adding preservatives. These unusual CN-HA nanoparticles obtained from the use of raw materials of waste origin may offer an unprecedented occasion for making innovative products, ameliorating the quality of life, reducing pollution and safeguarding the environment’s integrity.

  1. Accelerators increase permeability of cuticles for the lipophilic solutes metribuzin and iprovalicarb but not for hydrophilic methyl glucose.

    Science.gov (United States)

    Shi, Tuansheng; Schönherr, Jörg; Schreiber, Lukas

    2005-04-06

    Effects of diethylsuberate (DESU), tributyl phosphate (TBP), and monodisperse ethoxylated alcohols (EAs) on rate constants of penetration (k) of model solutes across astomatous cuticular membranes isolated from Madagascar ivy (Stephanotis floribunda) and pear (Pyrus communis) leaves were studied. Model solutes (selected on the basis of their octanol/water partition coefficients, K(ow)) were iprovalicarb (log K(ow) = 3.18), metribuzin (log K(ow) = 1.60), and methyl glucose (MG) (log K(ow) = -3.0). K(ow) varied by more than 6 orders of magnitude. Accelerators had wax/water partition coefficients (log K(ww)) ranging from 1.75 (DESU) to 4.32 (C(12)E(2)), and their equilibrium concentrations in Stephanotis wax varied from 0 to about 160 g kg(-)(1). Accelerators increase solute mobility in cuticles by increasing fluidity of cutin and waxes. This effect was quantified by plotting log k versus the accelerator concentration in wax. With the lipophilic solutes metribuzin and iprovalicarb, these plots were linear. Slopes of these plots characterize the intrinsic activities of the accelerators, and they decreased in the order DESU (0.029) > TBP (0.015) > EAs (0.01). Using these intrinsic activities, the effects of accelerators on rate constants of penetration can be calculated for any accelerator concentration in wax. For instance, at 50 g kg(-)(1), rate constants for lipophilic solutes increased by factors of 28 (DESU), 5.6 (TBP), and 3.2 (C(12)E(n)()), respectively. Permeability of cuticles for the hydrophilic MG was not increased by DESU, TBP, C(12)E(2), and C(12)E(4), while C(12)E(6) and C(12)E(8) increased it. Small hydrophilic solutes such as MG can access aqueous pores in cuticles, and this pathway is not affected by changes in fluidity of amorphous waxes. After rate constants of penetration of ionic CaCl(2) were compared with those for nonionic MG, it was concluded that 60% of the MG diffused across aqueous pores, while 40% used an alternative pathway. Because the

  2. Bursicon, the insect cuticle-hardening hormone, is a heterodimeric cystine knot protein that activates G protein-coupled receptor LGR2.

    Science.gov (United States)

    Luo, Ching-Wei; Dewey, Elizabeth M; Sudo, Satoko; Ewer, John; Hsu, Sheau Yu; Honegger, Hans-Willi; Hsueh, Aaron J W

    2005-02-22

    All arthropods periodically molt to replace their exoskeleton (cuticle). Immediately after shedding the old cuticle, the neurohormone bursicon causes the hardening and darkening of the new cuticle. Here we show that bursicon, to our knowledge the first heterodimeric cystine knot hormone found in insects, consists of two proteins encoded by the genes burs and pburs (partner of burs). The pburs/burs heterodimer from Drosophila melanogaster binds with high affinity and specificity to activate the G protein-coupled receptor DLGR2, leading to the stimulation of cAMP signaling in vitro and tanning in neck-ligated blowflies. Native bursicon from Periplaneta americana is also a heterodimer. In D. melanogaster the levels of pburs, burs, and DLGR2 transcripts are increased before ecdysis, consistent with their role in postecdysial cuticle changes. Immunohistochemical analyses in diverse insect species revealed the colocalization of pburs- and burs-immunoreactivity in some of the neurosecretory neurons that also express crustacean cardioactive peptide. Forty-three years after its initial description, the elucidation of the molecular identity of bursicon and the verification of its receptor allow for studies of bursicon actions in regulating cuticle tanning, wing expansion, and as yet unknown functions. Because bursicon subunit genes are homologous to the vertebrate bone morphogenetic protein antagonists, our findings also facilitate investigation on the function of these proteins during vertebrate development.

  3. Candida antarctica Lipase B Immobilized onto Chitin Conjugated with POSS® Compounds: Useful Tool for Rapeseed Oil Conversion

    Directory of Open Access Journals (Sweden)

    Jakub Zdarta

    2016-09-01

    Full Text Available A new method is proposed for the production of a novel chitin-polyhedral oligomeric silsesquioxanes (POSS enzyme support. Analysis by such techniques as X-ray photoelectron spectroscopy (XPS and Raman spectroscopy confirmed the effective functionalization of the chitin surface. The resulting hybrid carriers were used in the process of immobilization of the lipase type b from Candida antarctica (CALB. Fourier transform infrared spectroscopy (FTIR confirmed the effective immobilization of the enzyme. The tests of the catalytic activity showed that the resulting support-biocatalyst systems remain hydrolytically active (retention of the hydrolytic activity up to 87% for the chitin + Methacryl POSS® cage mixture (MPOSS + CALB after 24 h of the immobilization, as well as represents good thermal and operational stability, and retain over 80% of its activity in a wide range of temperatures (30–60 °C and pH (6–9. Chitin-POSS-lipase systems were used in the transesterification processes of rapeseed oil at various reaction conditions. Produced systems allowed the total conversion of the oil to fatty acid methyl esters (FAME and glycerol after 24 h of the process at pH 10 and a temperature 40 °C, while the Methacryl POSS® cage mixture (MPOSS was used as a chitin-modifying agent.

  4. Effect of sub- and supercritical water treatments on the physicochemical properties of crab shell chitin and its enzymatic degradation.

    Science.gov (United States)

    Osada, Mitsumasa; Miura, Chika; Nakagawa, Yuko S; Kaihara, Mikio; Nikaido, Mitsuru; Totani, Kazuhide

    2015-12-10

    This study examined the effects of sub- and supercritical water pretreatments on the physicochemical properties of crab shell α-chitin and its enzymatic degradation to obtain N,N'-diacetylchitobiose (GlcNAc)2. Following sub- and supercritical water pretreatments, the protein in the crab shell was removed and the residue of crab shell contained α-chitin and CaCO3. Prolonged pretreatment led to α-chitin decomposition. The reaction of pure α-chitin in sub- and supercritical water pretreatments was investigated separately; we observed lower mean molecular weight and weaker hydrogen bonds compared with untreated α-chitin. (GlcNAc)2 yields from enzymatic degradation of subcritical (350 °C, 7 min) and supercritical water (400 °C, 2.5 min) pretreated crab shell were 8% and 6%, compared with 0% without any pretreatment. This study shows that sub- and supercritical water pretreatments of crab shell provide to an alternative method to the use of acid and base for decalcification and deproteinization of crab shell required for (GlcNAc)2 production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Chitin extraction from blue crab (Portunus segnis) and shrimp (Penaeus kerathurus) shells using digestive alkaline proteases from P. segnis viscera.

    Science.gov (United States)

    Hamdi, Marwa; Hammami, Amal; Hajji, Sawssen; Jridi, Mourad; Nasri, Moncef; Nasri, Rim

    2017-08-01

    Since chitin is closely associated with proteins, deproteinization is a crucial step in the process of extracting chitin. Thus, this research aimed to extract chitin from Portunus segnis and Penaeus kerathurus shells by means of crude digestive alkaline proteases from the viscera of P. segnis, regarding deproteinization step, as an alternative to chemical treatment. Casein zymography revealed that five caseinolytic proteases bands exist, suggesting the presence of at least five different major proteases. The optimum pH and temperature for protease activity were pH 8.0 and 60°C, respectively, using casein as a substrate. The crude enzymes extract was highly stable at low temperatures and over a wide range of pH from 6.0 to 12.0. The crude alkaline protease extract was found to be effective in the deproteinization of blue crab and shrimp shells, to produce chitin. The best efficiency in deproteinization (84.69±0.65% for blue crab shells and 91.06±1.40% for shrimp shells) was achieved with an E/S ratio of 5U/mg of proteins after 3h incubation at 50°C. These results suggest that enzymatic deproteinization of crab and shrimp wastes by fish endogenous alkaline proteases could be a potential alternative in the chitin production process. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The Synthesis of the Locating Substitution Derivatives of Chitosan by Click Reaction at the 6-Position of Chitin

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2015-01-01

    Full Text Available A novel method to prepare the macrocyclic compound locating substitution derivatives of chitosan was investigated, by using cyclodextrin as the model of macrocyclic compound. The method combines the advantages of activated 6-OH of chitin and high efficiency of click reaction. Chitin C6-OH p-toluenesulfonate (CTN-6-OTs was generated and subsequently transferred to chitin C6-N3 via nucleophilic substitution. Afterwards, β-cyclodextrin was immobilized at 6-OH of chitin via click reaction to afford CTN-6-CD. Ultimately, CTS-6-CD was obtained by removing the acetyl group of chitin unit. The structures and properties of these products were characterized by FTIR, TG, and XRD, respectively. It was found that CTN-6-CD synthesized at the optimum conditions has an immobilized loading of 1.6126×10-4 mol/g and that of the corresponding CTS-6-CD, generated by removal of the acetyl group, was 1.6891×10-4 mol/g.

  7. Phase distribution of products of radiation and post-radiation distillation of biopolymers: Cellulose, lignin and chitin

    Energy Technology Data Exchange (ETDEWEB)

    Ponomarev, A.V., E-mail: ponomarev@ipc.rssi.ru [A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prospect 31, 119991 Moscow (Russian Federation); Kholodkova, E.M.; Metreveli, A.K.; Metreveli, P.K.; Erasov, V.S.; Bludenko, A.V.; Chulkov, V.N. [A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prospect 31, 119991 Moscow (Russian Federation)

    2011-11-15

    Influence of both the absorbed dose and the dose rate of 8 MeV electron-beam radiation on destruction of microcrystalline cellulose, pine lignin and krill chitin was investigated. Two conversion modes were compared: (1) post-radiation distillation PRD and (2) electron-beam distillation EBD. Cellulose, chitin and lignin demonstrate different responses to irradiation and distillation in PRD and EBD modes. Treatment in EBD mode transforms biopolymers to organic liquid more productively than conventional dry distillation and treatment in PRD mode. Both radiation heating and an irradiation without heating intensify chitin and cellulose decomposition and distillation. At the same time lignin decaying rather efficiently in EBD mode appears to be insensitive to a preliminary irradiation in PRD mode up to a dose of 2.4 MGy. - Highlights: > Direct conversion of cellulose, chitin and lignin to organic liquid is intensified by electron-beam irradiation. > Alternative approach to bio-oil production. > Both electron-beam distillation mode and post-radiation distillation mode are effective for cellulose and chitin conversion. > Electron-beam distillation mode is preferable for lignin conversion. > Preliminary deep dehydration of biopolymers is realizable at low dose rates.

  8. Mutation in Wilted Dwarf and Lethal 1 (WDL1) causes abnormal cuticle formation and rapid water loss in rice.

    Science.gov (United States)

    Park, Jong-Jin; Jin, Ping; Yoon, Jinmi; Yang, Jung-Il; Jeong, Hee Joong; Ranathunge, Kosala; Schreiber, Lukas; Franke, Rochus; Lee, In-Jung; An, Gynheung

    2010-09-01

    Epidermal cell layers play important roles in plant defenses against various environmental stresses. Here we report the identification of a cuticle membrane mutant, wilted dwarf and lethal 1 (wdl1), from a rice T-DNA insertional population. The mutant is dwarf and die at seedling stage due to increased rates of water loss. Stomatal cells and pavement cells are smaller in the mutant, suggesting that WDL1 affects epidermal cell differentiation. T-DNA was inserted into a gene that encodes a protein belonging to the SGNH subfamily, within the GDSL lipase superfamily. The WDL1-sGFP signal coincided with the RFP signal driven by AtBIP-mRFP, indicating that WDL1 is an ER protein. SEM analyses showed that their leaves have a disorganized crystal wax layer. Cross-sectioning reveals loose packing of the cuticle and irregular thickness of cell wall. Detailed analyses of the epicuticular wax showed no significant changes either in the total amount and amounts of each monomer or in the levels of lipid polymers, including cutin and other covalently bound lipids, attached to the cell wall. We propose that WDL1 is involved in cutin organization, affecting depolymerizable components.

  9. Impedance of the Grape Berry Cuticle as a Novel Phenotypic Trait to Estimate Resistance to Botrytis Cinerea

    Directory of Open Access Journals (Sweden)

    Katja Herzog

    2015-05-01

    Full Text Available Warm and moist weather conditions during berry ripening provoke Botrytis cinerea (B. cinerea causing notable bunch rot on susceptible grapevines with the effect of reduced yield and wine quality. Resistance donors of genetic loci to increase B. cinerea resistance are widely unknown. Promising traits of resistance are represented by physical features like the thickness and permeability of the grape berry cuticle. Sensor-based phenotyping methods or genetic markers are rare for such traits. In the present study, the simple-to-handle I-sensor was developed. The sensor enables the fast and reliable measurement of electrical impedance of the grape berry cuticles and its epicuticular waxes (CW. Statistical experiments revealed highly significant correlations between relative impedance of CW and the resistance of grapevines to B. cinerea. Thus, the relative impedance Zrel of CW was identified as the most important phenotypic factor with regard to the prediction of grapevine resistance to B. cinerea. An ordinal logistic regression analysis revealed a R2McFadden of 0.37 and confirmed the application of Zrel of CW for the prediction of bunch infection and in this way as novel phenotyping trait. Applying the I-sensor, a preliminary QTL region was identified indicating that the novel phenotypic trait is as well a valuable tool for genetic analyses.

  10. The Cuticle Protein Gene MPCP4 of Myzus persicae (Homoptera: Aphididae) Plays a Critical Role in Cucumber Mosaic Virus Acquisition.

    Science.gov (United States)

    Liang, Yan; Gao, Xi-Wu

    2017-06-01

    Myzus persicae (Sulzer) (Homoptera: Aphididae) is one of the most important agricultural pests worldwide. In addition to sucking phloem sap, M. persicae also transmits Cucumber mosaic virus (CMV) as a vector in a nonpersistent manner. At present, the infection mechanism remains unclear, especially the process of aphid virus acquisition. In this study, we isolated four M. persicae cuticle protein genes (MPCP1, MPCP2, MPCP4, and MPCP5) from M. persicae. The relative amount of the gene encoding Cucumber mosaic virus capsid protein (CMV CP) and the transcript levels of these four cuticle protein genes were investigated in aphid virus acquisition by feeding the tobacco preinfested by CMV. The relative expression of MPCP1, MPCP2, and MPCP4 were significantly higher than MPCP5 at 24 h after aphids feeding on virus-infested tobacco. Yeast two-hybrid assays demonstrated that the protein encoded by MPCP4 gene was closely associated with the CMV CP through the direct interaction. Moreover, the ability of M. persicae to acquire CMV was suppressed by RNA interference of MPCP4. All these lines of evidence indicate that MPCP4, as a viral putative receptor in the stylet of aphid, plays an important role in aphid acquisition of CMV. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. The plant cuticle is required for osmotic stress regulation of abscisic acid biosynthesis and osmotic stress tolerance in Arabidopsis

    KAUST Repository

    Wang, Zhenyu

    2011-05-01

    Osmotic stress activates the biosynthesis of abscisic acid (ABA). One major step in ABA biosynthesis is the carotenoid cleavage catalyzed by a 9-cis epoxycarotenoid dioxygenase (NCED). To understand the mechanism for osmotic stress activation of ABA biosynthesis, we screened for Arabidopsis thaliana mutants that failed to induce the NCED3 genee xpression in response to osmotic stress treatments. The ced1 (for 9-cis epoxycarotenoid dioxy genase defective 1) mutant isolated in this study showed markedly reduced expression of NCED3 in response to osmotic stress (polyethylene glycol)treatments compared with the wild type. Other ABA biosynthesis genes are also greatly reduced in ced1 under osmotic stress. ced1 mutant plants are very sensitive to even mild osmotic stress. Map-based cloning revealed unexpectedly thatCED1 encodes a putative a/b hydrolase domain-containing protein and is allelic to the BODYGUARD gene that was recently shown to be essential for cuticle biogenesis. Further studies discovered that other cut in biosynthesis mutants are also impaired in osmotic stress induction of ABA biosynthesis genes and are sensitive to osmotic stress. Our work demonstrates that the cuticle functions not merely as a physical barrier to minimize water loss but also mediates osmotic stress signaling and tolerance by regulating ABA biosynthesis and signaling. © 2011 American Society of Plant Biologists. All rights reserved.

  12. Solid Phase Micro-extraction (SPME) with In Situ Transesterification: An Easy Method for the Detection of Non-volatile Fatty Acid Derivatives on the Insect Cuticle.

    Science.gov (United States)

    Kühbandner, Stephan; Ruther, Joachim

    2015-06-01

    Triacylglycerides (TAGs) and other non-volatile fatty acid derivatives (NFADs) occur in large amounts in the internal tissues of insects, but their presence on the insect cuticle is controversially discussed. Most studies investigating cuticular lipids of insects involve solvent extraction, which implies the risk of extracting lipids from internal tissues. Here, we present a new method that overcomes this problem. The method employs solid phase micro-extraction (SPME) to sample NFADs by rubbing the SPME fiber over the insect cuticle. Subsequently, the sampled NFADs are transesterified in situ with trimethyl sulfonium hydroxide (TMSH) into more volatile fatty acid methyl esters (FAMEs), which can be analyzed by standard GC/MS. We performed two types of control experiments to enable significant conclusions: (1) to rule out contamination of the GC/MS system with NFADs, and (2) to exclude the presence of free fatty acids on the insect cuticle, which would also furnish FAMEs after TMSH treatment, and thus might simulate the presence of NFADs. In combination with these two essential control experiments, the described SPME technique can be used to detect TAGs and/or other NFADs on the insect cuticle. We analyzed six insect species from four insect orders with our method and compared the results with conventional solvent extraction followed by ex situ transesterification. Several fatty acids typically found as constituents of TAGs were detected by the SPME method on the cuticle of all species analyzed. A comparison of the two methods revealed differences in the fatty acid compositions of the samples. Saturated fatty acids showed by trend higher relative abundances when sampled with the SPME method, while several minor FAMEs were detected only in the solvent extracts. Our study suggests that TAGs and maybe other NFADs are far more common on the insect cuticle than usually thought.

  13. Identification and characterization of a class III chitin synthase gene of Moniliophthora perniciosa, the fungus that causes witches' broom disease of cacao.

    Science.gov (United States)

    Souza, Catiane S; Oliveira, Bruno M; Costa, Gustavo G L; Schriefer, Albert; Selbach-Schnadelbach, Alessandra; Uetanabaro, Ana Paula T; Pirovani, Carlos P; Pereira, Gonçalo A G; Taranto, Alex G; Cascardo, Júlio Cézar de M; Góes-Neto, Aristóteles

    2009-08-01

    Chitin synthase (CHS) is a glucosyltransferase that converts UDP-N-acetylglucosamine into chitin, one of the main components of fungal cell wall. Class III chitin synthases act directly in the formation of the cell wall. They catalyze the conversion of the immediate precursor of chitin and are responsible for the majority of chitin synthesis in fungi. As such, they are highly specific molecular targets for drugs that can inhibit the growth and development of fungal pathogens. In this work, we have identified and characterized a chitin synthase gene of Moniliophthora perniciosa (Mopchs) by primer walking. The complete gene sequence is 3,443 bp, interrupted by 13 small introns, and comprises a cDNA with an ORF with 2,739 bp, whose terminal region was experimentally determined, encoding a protein with 913 aa that harbors all the motifs and domains typically found in class III chitin synthases. This is the first report on the characterization of a chitin synthase gene, its mature transcription product, and its putative protein in basidioma and secondary mycelium stages of M. perniciosa, a basidiomycotan fungus that causes witches' broom disease of cacao.

  14. Chitin amendment raises the suppressiveness of soil towards plant pathogens and modulates the actinobacterial and oxalobacteriaceal communities in an experimental agricultural field

    NARCIS (Netherlands)

    Cretoiu, M.S.; Korthals, G.W.; Visser, J.H.M.; Elsas, van J.D.

    2013-01-01

    A long-term experiment on the effect of chitin addition to soil on the suppression of soil-borne pathogens was set up and monitored for eight years in an experimental field, Vredepeel, the Netherlands. Chitinous matter obtained from shrimps was added to soil top layers at two different occasions and

  15. A New Gut-Specific Chitinase Gene Essential for Regulation of Chitin Content of Peritrophic Matrix and Growth of Ostrinia Nubilalis Larvae

    Science.gov (United States)

    Chitinases belong to a large and diverse family of hydrolytic enzymes that break down glycosidic bonds of chitin. However, very little is known about the function of chitinase genes in regulating the chitin content in peritrophic matrix (PM) of the midgut in insects. We identified a cDNA putatively ...

  16. Chitin extraction from crab shells by Bacillus bacteria. Biological activities of fermented crab supernatants.

    Science.gov (United States)

    Hajji, Sawssen; Ghorbel-Bellaaj, Olfa; Younes, Islem; Jellouli, Kemel; Nasri, Moncef

    2015-08-01

    Crab shells waste were fermented using six protease-producing Bacillus species (Bacillus subtilis A26, Bacillus mojavensis A21, Bacillus pumilus A1, Bacillus amyloliquefaciens An6, Bacillus licheniformis NH1 and Bacillus cereus BG1) for the production of chitin and fermented-crab supernatants (FCSs). In medium containing only crab shells, the highest demineralization DM was obtained with B. licheniformis NH1 (83±0.5%) and B. pumilus A1 (80±0.6%), while the highest deproteinization (DP) was achieved with A1 (94±1%) followed by NH1 (90±1.5%) strains. Cultures conducted in medium containing crab shells waste supplemented with 5% (w/v) glucose, were found to remarkably promote demineralization efficiency, and enhance slightly deproteinization rates. FTIR spectra of chitins showed the characteristics bands of α-chitin. FCSs showed varying degrees of antioxidant activities which were in a dose-dependent manner (p<0.01). In fact, FCS produced by B. amyloliquefaciens An6 exhibited the highest DPPH free radical-scavenging activity (92% at 4 mg/ml), while the lowest hydroxyl radical-scavenging activity (60% at 4 mg/ml) was obtained with B. subtilis A26 hydrolysates. However, the highest reducing power (OD700nm=2 at 0.5 mg/ml) was obtained by B.amyloliquefaciens An6 hydrolysates. These results suggest that crab hydrolysates are good sources of natural antioxidants. Further, FCSs were found to exhibit antibacterial activity against Gram-positive and Gram-negative bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Albizia lebbeck Seed Coat Proteins Bind to Chitin and Act as a Defense against Cowpea Weevil Callosobruchus maculatus.

    Science.gov (United States)

    Silva, Nadia C M; De Sá, Leonardo F R; Oliveira, Eduardo A G; Costa, Monique N; Ferreira, Andre T S; Perales, Jonas; Fernandes, Kátia V S; Xavier-Filho, Jose; Oliveira, Antonia E A

    2016-05-11

    The seed coat is an external tissue that participates in defense against insects. In some nonhost seeds, including Albizia lebbeck, the insect Callosobruchus maculatus dies during seed coat penetration. We investigated the toxicity of A. lebbeck seed coat proteins to C. maculatus. A chitin-binding protein fraction was isolated from seed coat, and mass spectrometry showed similarity to a C1 cysteine protease. By ELM program an N-glycosylation interaction motif was identified in this protein, and by molecular docking the potential to interact with N-acetylglucosamine (NAG) was shown. The chitin-binding protein fraction was toxic to C. maculatus and was present in larval midgut and feces but not able to hydrolyze larval gut proteins. It did not interfere, though, with the intestinal cell permeability. These results indicate that the toxicity mechanism of this seed coat fraction may be related to its binding to chitin, present in the larvae gut, disturbing nutrient absorption.

  18. Oral administration of chitin and chitosan prevents peanut-induced anaphylaxis in a murine food allergy model.

    Science.gov (United States)

    Bae, Min-Jung; Shin, Hee Soon; Kim, En-Kyoung; Kim, Jaeheung; Shon, Dong-Hwa

    2013-10-01

    Peanut allergy is IgE-mediated type-I hypersensitivity, and T helper 2 cytokines are central to those pathogenesis. We investigated the effects of the administration of chitin and chitosan on peanut-induced hypersensitivities in mouse food allergy models. Chitin and chitosan protected mice against peanut-induced anaphylaxis reactions, and the peanut-specific IgE production decreased by up to 47% with the administration of β-chitosan. The levels of IL-5, IL-13, and IL-10 were significantly suppressed in all groups (α-chitin≥β-chitin≥β-chitosan). These results suggested that the administration of chitin and chitosan from by-products of food processing are beneficial for the prevention of food allergies. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Optimization and adsorption kinetic studies of aqueous manganese ion removal using chitin extracted from shells of edible Philippine crabs

    Science.gov (United States)

    Quimque, Mark Tristan J.; Jimenez, Marvin C.; Acas, Meg Ina S.; Indoc, Danrelle Keth L.; Gomez, Enjelyn C.; Tabuñag, Jenny Syl D.

    2017-01-01

    Manganese is a common contaminant in drinking water along with other metal pollutants. This paper investigates the use of chitin, extracted from crab shells obtained as restaurant throwaway, as an adsorbent in removing manganese ions from aqueous medium. In particular, this aims to optimize the adsorption parameters and look into the kinetics of the process. The adsorption experiments done in this study employed the batch equilibration method. In the optimization, the following parameters were considered: pH and concentration of Mn (II) sorbate solution, particle size and dosage of adsorbent chitin, and adsorbent-adsorbate contact time. At the optimal condition, the order of the adsorption reaction was estimated using kinetic models which describes the process best. It was found out that the adsorption of aqueous Mn (II) ions onto chitin obeys the pseudo-second order model. This model assumes that the adsorption occurred via chemisorption

  20. Effect of deletion of chitin synthase genes on mycelial morphology and culture viscosity in Aspergillus oryzae

    DEFF Research Database (Denmark)

    Müller, Christian; Hansen, K.; Szabo, Peter

    2003-01-01

    The objective of this study was to quantify the effect of disrupting two chitin synthases, chsB and csmA, on the morphology and rheology during batch cultivation of Aspergillus oryzae. The rheological properties were characterized in batch cultivations at different biomass concentrations (from 3...... broth was significantly affected by the biomass concentration, the morphology, and also by pH. The chsB disruption strain had lower consistency index K values for all biomass concentrations investigated, which is a desirable trait for industrial Aspergillus fermentations. (C) 2003 Wiley Periodicals, Inc....

  1. Identification and characterization of a chitin deacetylase from a metagenomic library of deep-sea sediments of the Arctic Ocean.

    Science.gov (United States)

    Liu, Jinlin; Jia, Zhijuan; Li, Sha; Li, Yan; You, Qiang; Zhang, Chunyan; Zheng, Xiaotong; Xiong, Guomei; Zhao, Jin; Qi, Chao; Yang, Jihong

    2016-09-15

    The chemical and biological compositions of deep-sea sediments are interesting because of the underexplored diversity when it comes to bioprospecting. The special geographical location and climates make Arctic Ocean a unique ocean area containing an abundance of microbial resources. A metagenomic library was constructed based on the deep-sea sediments of Arctic Ocean. Part of insertion fragments of this library were sequenced. A chitin deacetylase gene, cdaYJ, was identified and characterized. A metagenomic library with 2750 clones was obtained and ten clones were sequenced. Results revealed several interesting genes, including a chitin deacetylase coding sequence, cdaYJ. The CdaYJ is homologous to some known chitin deacetylases and contains conserved chitin deacetylase active sites. CdaYJ protein exhibits a long N-terminal and a relative short C-terminal. Phylogenetic analysis revealed that CdaYJ showed highest homology to CDAs from Alphaproteobacteria. The cdaYJ gene was subcloned into the pET-28a vector and the recombinant CdaYJ (rCdaYJ) was expressed in Escherichia coli BL21 (DE3). rCdaYJ showed a molecular weight of 43kDa, and exhibited deacetylation activity by using p-nitroacetanilide as substrate. The optimal pH and temperature of rCdaYJ were tested as pH7.4 and 28°C, respectively. The construction of metagenomic library of the Arctic deep-sea sediments provides us an opportunity to look into the microbial communities and exploiting valuable gene resources. A chitin deacetylase CdaYJ was identified from the library. It showed highest deacetylation activity under slight alkaline and low temperature conditions. CdaYJ might be a candidate chitin deacetylase that possesses industrial and pharmaceutical potentials. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Different chitin synthase genes are required for various developmental and plant infection processes in the rice blast fungus Magnaporthe oryzae.

    Directory of Open Access Journals (Sweden)

    Ling-An Kong

    2012-02-01

    Full Text Available Chitin is a major component of fungal cell wall and is synthesized by chitin synthases (Chs. Plant pathogenic fungi normally have multiple chitin synthase genes. To determine their roles in development and pathogenesis, we functionally characterized all seven CHS genes in Magnaporthe oryzae. Three of them, CHS1, CHS6, and CHS7, were found to be important for plant infection. While the chs6 mutant was non-pathogenic, the chs1 and chs7 mutants were significantly reduced in virulence. CHS1 plays a specific role in conidiogenesis, an essential step for natural infection cycle. Most of chs1 conidia had no septum and spore tip mucilage. The chs6 mutant was reduced in hyphal growth and conidiation. It failed to penetrate and grow invasively in plant cells. The two MMD-containing chitin synthase genes, CHS5 and CHS6, have a similar expression pattern. Although deletion of CHS5 had no detectable phenotype, the chs5 chs6 double mutant had more severe defects than the chs6 mutant, indicating that they may have overlapping functions in maintaining polarized growth in vegetative and invasive hyphae. Unlike the other CHS genes, CHS7 has a unique function in appressorium formation. Although it was blocked in appressorium formation by germ tubes on artificial hydrophobic surfaces, the chs7 mutant still produced melanized appressoria by hyphal tips or on plant surfaces, indicating that chitin synthase genes have distinct impacts on appressorium formation by hyphal tip and germ tube. The chs7 mutant also was defective in appressorium penetration and invasive growth. Overall, our results indicate that individual CHS genes play diverse roles in hyphal growth, conidiogenesis, appressorium development, and pathogenesis in M. oryzae, and provided potential new leads in the control of this devastating pathogen by targeting specific chitin synthases.

  3. Obtention and characterization of chitin and chitosan from M. rosenbergii; Obtencao e caracterizacao de quitina e quitosana a partr de M. rosenbergii

    Energy Technology Data Exchange (ETDEWEB)

    Battisti, Marcos V.; Campana Filho, Sergio P. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Quimica]. E-mail: scampana@iqsc.sc.usp.br

    2001-07-01

    Chitin was extracted from previously ground shells of Macrobrachium rosenbergii by applying acid and alkaline treatments, aiming at its demineralization and deprotenization, respectively. Its characteristics and properties were compared with those exhibited by commercial samples of chitin. Commercial chitosan and samples produced by the deacetylation of chitin obtained from M. rosenbergii shells were also compared. Average degrees of acetylation and intrinsic viscosities of the chitosan were determined by {sup 1}H NMR spectroscopy and by capillary viscosimetry, respectively. The results show that the chitin extracted from Macrobrachium rosenbergii has a lower content of inorganic materials as compared to commercial samples but the chitosan obtained from the former chitin sample is very similar to commercial chitosan. (author)

  4. Differential gene expression signatures for cell wall integrity found in chitin synthase II (chs2Δ and myosin II (myo1Δ deficient cytokinesis mutants of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Rodríguez-Medina José R

    2009-05-01

    Full Text Available Abstract Background Myosin II-dependent contraction of the cytokinetic ring and primary septum formation by chitin synthase II are interdependent processes during cytokinesis in Saccharomyces cerevisiae. Hence, null mutants of myosin II (myo1Δ and chitin synthase II (chs2Δ share multiple morphological and molecular phenotypes. To understand the nature of their interdependent functions, we will seek to identify genes undergoing transcriptional regulation in chs2Δ strains and to establish a transcription signature profile for comparison with myo1Δ strains. Results A total of 467 genes were commonly regulated between myo1Δ and chs2Δ mutant strains (p ≤ 0.01. Common regulated biological process categories identified by Gene Set Enrichment Analysis (GSEA in both gene expression profiles were: protein biosynthesis, RNA processing, and stress response. Expression of 17/20 genes in the main transcriptional fingerprint for cell wall stress was confirmed in the chs2Δ strain versus 5/20 for the myo1Δ strain. One of these genes, SLT2/MPK1, was up-regulated in both strains and both strains accumulated the hyperphosphorylated form of Slt2p thereby confirming that the PKC1 cell wall integrity pathway (CWIP was activated by both mutations. The SLT2/MPK1 gene, essential for myo1Δ strains, was not required in the chs2Δ strain. Conclusion Comparison of the chs2Δ and myo1Δ gene expression profiles revealed similarities in the biological process categories that respond to the chs2Δ and myo1Δ gene mutations. This supports the view that these mutations affect a common function in cytokinesis. Despite their similarities, these mutants exhibited significant differences in expression of the main transcriptional fingerprint for cell wall stress and their requirement of the CWIP for survival.

  5. Effects of low-frequency ultrasound on heterogenous deacetylation of chitin.

    Science.gov (United States)

    Ngo, Thi Hoai Duong; Ngo, Dang Nghia

    2017-11-01

    The effects of low frequency ultrasound to the heterogeneous deacetylation of chitin from the shell of white shrimp (Penaeus vannamei) were examined. The deacetylation process was carried out in the range of NaOH concentrations from 35% to 65% (w/w) with and without the ultrasound in the frequency of 37kHz, RMS=300W. The chitosan obtained was characterized in the degree of deacetylation, solubility, FT-IR and X-ray diffraction. The results showed that the behaviors of the deacetylation in two cases, with and without ultrasound, were similar but the ultrasound enhanced the deacetylation rate and therefore reduced the time of the reaction to get the same degree of deacetylation. The role of ultrasound in the process showed more clearly in the low concentration of sodium hydroxide, below 45% (w/w). At the higher concentration of sodium hydroxide, the influence of ultrasound on facilitating deacetylation decreased significantly, however, ultrasound was still keeping on its improving effect on the solubility of the chitosan obtained. The data from FT-IR and X-ray diffraction did not show any considerable change in structure of both kinds of chitosan. This study showed the potential of using low frequency ultrasound in enhancing the deacetylation of chitin for reducing the chemical consumption. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Grazing resistant freshwater bacteria profit from chitin and cell-wall-derived organic carbon.

    Science.gov (United States)

    Eckert, Ester M; Baumgartner, Michael; Huber, Iris M; Pernthaler, Jakob

    2013-07-01

    The rise of grazing resistant planktonic bacteria in freshwater lakes during vernal phytoplankton blooms is favoured by predation of heterotrophic nanoflagellates (HNF). The spring period is also characterized by increased availability of organic carbon species that are in parts derived from cellular debris generated during bacterivory or viral lysis, such as peptidoglycan, chitin and their subunit N-acetylglucosamine (NAG). We tested the hypothesis that two dominant grazing resistant bacterial taxa, the ac1 tribe of Actinobacteria (ac1) and filamentous bacteria from the LD2 lineage (Saprospiraceae), profit from such carbon sources during periods of intense HNF predation. The abundances of ac1 and LD2 rose in parallel with HNF, and disproportionally high fractions of cells from both lineages were involved in NAG uptake. Members of ac1 and LD2 were significantly more enriched after NAG addition to lake water. However, highest growth rates of both bacterial lineages were found on chitin and peptidoglycan. Moreover, the direct or indirect transfer of organic carbon from peptidoglycan to LD2 filaments could be demonstrated. We thus provide evidence that these taxa may benefit twofold from protistan predation: by removal of their competitors, and by specific physiological adaptations to utilize carbon sources that are released during grazing or viral lysis. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  7. Chitin and Cellulose Processing in Low-Temperature Electron Beam Plasma

    Directory of Open Access Journals (Sweden)

    Tatiana Vasilieva

    2017-11-01

    Full Text Available Polysaccharide processing by means of low-temperature Electron Beam Plasma (EBP is a promising alternative to the time-consuming and environmentally hazardous chemical hydrolysis in oligosaccharide production. The present paper considers mechanisms of the EBP-stimulated destruction of crab shell chitin, cellulose sulfate, and microcrystalline cellulose, as well as characterization of the produced oligosaccharides. The polysaccharide powders were treated in oxygen EBP for 1–20 min at 40 °C in a mixing reactor placed in the zone of the EBP generation. The chemical structure and molecular mass of the oligosaccharides were analyzed by size exclusion and the reversed phase chromatography, FTIR-spectroscopy, XRD-, and NMR-techniques. The EBP action on original polysaccharides reduces their crystallinity index and polymerization degree. Water-soluble products with lower molecular weight chitooligosaccharides (weight-average molecular mass, Mw = 1000–2000 Da and polydispersity index 2.2 and cellulose oligosaccharides with polymerization degrees 3–10 were obtained. The 1H-NMR analysis revealed 25–40% deacetylation of the EBP-treated chitin and FTIR-spectroscopy detected an increase of carbonyl- and carboxyl-groups in the oligosaccharides produced. Possible reactions of β-1,4-glycosidic bonds’ destruction due to active oxygen species and high-energy electrons are given.

  8. Cloning and sequence analysis of chitin synthase gene fragments of Demodex mites*

    Science.gov (United States)

    Zhao, Ya-e; Wang, Zheng-hang; Xu, Yang; Xu, Ji-ru; Liu, Wen-yan; Wei, Meng; Wang, Chu-ying

    2012-01-01

    To our knowledge, few reports on Demodex studied at the molecular level are available at present. In this study our group, for the first time, cloned, sequenced and analyzed the chitin synthase (CHS) gene fragments of Demodex folliculorum, Demodex brevis, and Demodex canis (three isolates from each species) from Xi’an China, by designing specific primers based on the only partial sequence of the CHS gene of D. canis from Japan, retrieved from GenBank. Results show that amplification was successful only in three D. canis isolates and one D. brevis isolate out of the nine Demodex isolates. The obtained fragments were sequenced to be 339 bp for D. canis and 338 bp for D. brevis. The CHS gene sequence similarities between the three Xi’an D. canis isolates and one Japanese D. canis isolate ranged from 99.7% to 100.0%, and those between four D. canis isolates and one D. brevis isolate were 99.1%–99.4%. Phylogenetic trees based on maximum parsimony (MP) and maximum likelihood (ML) methods shared the same clusters, according with the traditional classification. Two open reading frames (ORFs) were identified in each CHS gene sequenced, and their corresponding amino acid sequences were located at the catalytic domain. The relatively conserved sequences could be deduced to be a CHS class A gene, which is associated with chitin synthesis in the integument of Demodex mites. PMID:23024043

  9. Cloning and sequence analysis of chitin synthase gene fragments of Demodex mites.

    Science.gov (United States)

    Zhao, Ya-e; Wang, Zheng-hang; Xu, Yang; Xu, Ji-ru; Liu, Wen-yan; Wei, Meng; Wang, Chu-ying

    2012-10-01

    To our knowledge, few reports on Demodex studied at the molecular level are available at present. In this study our group, for the first time, cloned, sequenced and analyzed the chitin synthase (CHS) gene fragments of Demodex folliculorum, Demodex brevis, and Demodex canis (three isolates from each species) from Xi'an China, by designing specific primers based on the only partial sequence of the CHS gene of D. canis from Japan, retrieved from GenBank. Results show that amplification was successful only in three D. canis isolates and one D. brevis isolate out of the nine Demodex isolates. The obtained fragments were sequenced to be 339 bp for D. canis and 338 bp for D. brevis. The CHS gene sequence similarities between the three Xi'an D. canis isolates and one Japanese D. canis isolate ranged from 99.7% to 100.0%, and those between four D. canis isolates and one D. brevis isolate were 99.1%-99.4%. Phylogenetic trees based on maximum parsimony (MP) and maximum likelihood (ML) methods shared the same clusters, according with the traditional classification. Two open reading frames (ORFs) were identified in each CHS gene sequenced, and their corresponding amino acid sequences were located at the catalytic domain. The relatively conserved sequences could be deduced to be a CHS class A gene, which is associated with chitin synthesis in the integument of Demodex mites.

  10. Light scattering optimization of chitin random network in ultrawhite beetle scales

    Science.gov (United States)

    Utel, Francesco; Cortese, Lorenzo; Pattelli, Lorenzo; Burresi, Matteo; Vignolini, Silvia; Wiersma, Diederik

    2017-09-01

    Among the natural white colored photonics structures, a bio-system has become of great interest in the field of disordered optical media: the scale of the white beetle Chyphochilus. Despite its low thickness, on average 7 μm, and low refractive index, this beetle exhibits extreme high brightness and unique whiteness. These properties arise from the interaction of light with a complex network of chitin nano filaments embedded in the interior of the scales. As it's been recently claimed, this could be a consequence of the peculiar morphology of the filaments network that, by means of high filling fraction (0.61) and structural anisotropy, optimizes the multiple scattering of light. We therefore performed a numerical analysis on the structural properties of the chitin network in order to understand their role in the enhancement of the scale scattering intensity. Modeling the filaments as interconnected rod shaped scattering centers, we numerically generated the spatial coordinates of the network components. Controlling the quantities that are claimed to play a fundamental role in the brightness and whiteness properties of the investigated system (filling fraction and average rods orientation, i.e. the anisotropy of the ensemble of scattering centers), we obtained a set of customized random networks. FDTD simulations of light transport have been performed on these systems, observing high reflectance for all the visible frequencies and proving the implemented algorithm to numerically generate the structures is suitable to investigate the dependence of reflectance by anisotropy.

  11. Adsorption of Methylene Blue, Bromophenol Blue, and Coomassie Brilliant Blue by α-chitin nanoparticles.

    Science.gov (United States)

    Dhananasekaran, Solairaj; Palanivel, Rameshthangam; Pappu, Srinivasan

    2016-01-01

    Expelling of dyestuff into water resource system causes major thread to the environment. Adsorption is the cost effective and potential method to remove the dyes from the effluents. Therefore, an attempt was made to study the adsorption of dyestuff (Methylene Blue (MB), Bromophenol Blue (BPB) and Coomassie Brilliant Blue (CBB)) by α-chitin nanoparticles (CNP) prepared from Penaeus monodon (Fabricius, 1798) shell waste. On contrary to the most recognizable adsorption studies using chitin, this is the first study using unique nanoparticles of ⩽50 nm used for the dye adsorption process. The results showed that the adsorption process increased with increase in the concentration of CNP, contact time and temperature with the dyestuff, whereas the adsorption process decreased with increase in the initial dye concentration and strong acidic pH. The results from Fourier transform infrared (FTIR) spectroscopy confirmed that the interaction between dyestuff and CNP involved physical adsorption. The adsorption process obeys Langmuir isotherm (R (2) values were 0.992, 0.999 and 0.992 for MB, BPB and CBB, and RL value lies between 0 and 1 for all the three dyes) and pseudo second order kinetics (R (2) values were 0.996, 0.999 and 0.996 for MB, BPB and CBB) more effectively. The isotherm and kinetic models confirmed that CNP can be used as a suitable adsorbent material for the removal of dyestuff from effluents.

  12. Adsorption of Methylene Blue, Bromophenol Blue, and Coomassie Brilliant Blue by α-chitin nanoparticles

    Directory of Open Access Journals (Sweden)

    Solairaj Dhananasekaran

    2016-01-01

    Full Text Available Expelling of dyestuff into water resource system causes major thread to the environment. Adsorption is the cost effective and potential method to remove the dyes from the effluents. Therefore, an attempt was made to study the adsorption of dyestuff (Methylene Blue (MB, Bromophenol Blue (BPB and Coomassie Brilliant Blue (CBB by α-chitin nanoparticles (CNP prepared from Penaeus monodon (Fabricius, 1798 shell waste. On contrary to the most recognizable adsorption studies using chitin, this is the first study using unique nanoparticles of ⩽50 nm used for the dye adsorption process. The results showed that the adsorption process increased with increase in the concentration of CNP, contact time and temperature with the dyestuff, whereas the adsorption process decreased with increase in the initial dye concentration and strong acidic pH. The results from Fourier transform infrared (FTIR spectroscopy confirmed that the interaction between dyestuff and CNP involved physical adsorption. The adsorption process obeys Langmuir isotherm (R2 values were 0.992, 0.999 and 0.992 for MB, BPB and CBB, and RL value lies between 0 and 1 for all the three dyes and pseudo second order kinetics (R2 values were 0.996, 0.999 and 0.996 for MB, BPB and CBB more effectively. The isotherm and kinetic models confirmed that CNP can be used as a suitable adsorbent material for the removal of dyestuff from effluents.

  13. Reclamation of Marine Chitinous Materials for the Production of α-Glucosidase Inhibitors via Microbial Conversion

    Directory of Open Access Journals (Sweden)

    Van Bon Nguyen

    2017-11-01

    Full Text Available Six kinds of chitinous materials have been used as sole carbon/nitrogen (C/N sources for producing α-glucosidase inhibitors (aGI by Paenibacillus sp. TKU042. The aGI productivity was found to be highest in the culture supernatants using demineralized crab shell powder (deCSP and demineralized shrimp shell powder (deSSP as the C/N source. The half maximal inhibitory concentration (IC50 and maximum aGI activity of fermented deCSP (38 µg/mL, 98%, deSSP (108 µg/mL, 89%, squid pen powder (SPP (422 µg/mL, 98%, and shrimp head powder (SHP (455 µg/mL, 92% were compared with those of fermented nutrient broth (FNB (81 µg/mL, 93% and acarbose (1095 µg/mL, 74%, a commercial antidiabetic drug. The result of the protein/chitin ratio on aGI production showed that the optimal ratio was 0.2/1. Fermented deCSP showed lower IC50 and higher maximum inhibitory activity than those of acarbose against rat intestinal α-glucosidase.

  14. UV-B absorbing compounds in present-day and fossil pollen, spores, cuticles seed coats and wood: evaluation of a proxy for solar UV-B radiation.

    NARCIS (Netherlands)

    Rozema, J.; Blokker, P.; Mayoral Fuertes, M.; Broekman, R.A.

    2009-01-01

    UV-B absorbing compounds (UACs) in present-day and fossil pollen, spores, cuticles, seed coats and wood have been evaluated as a proxy for past UV. This proxy may not only provide information on variation of stratospheric ozone and solar UV in the period preceding and during the Antarctic ozone hole

  15. The shine clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis

    NARCIS (Netherlands)

    Aharoni, A.; Dixit, S.A.; Jetter, R.; Thoenes, E.; Arkel, van G.; Pereira, A.B.

    2004-01-01

    The interface between plants and the environment plays a dual role as a protective barrier as well as a medium for the exchange of gases, water, and nutrients. The primary aerial plant surfaces are covered by a cuticle, acting as the essential permeability barrier toward the atmosphere. It is a

  16. Population bulk segregant mapping uncovers resistance mutations and the mode of action of a chitin synthesis inhibitor in arthropods

    NARCIS (Netherlands)

    Van Leeuwen, T.; Demaeght, P.; Osborne, E.J.; Dermauw, W.; Gohlke, S.; Nauen, R.; Grbić, M.; Tirry, L.; Merzendorfer, H.; Clark, R.M.

    2012-01-01

    Because of its importance to the arthropod exoskeleton, chitin biogenesis is an attractive target for pest control. This point is demonstrated by the economically important benzoylurea compounds that are in wide use as highly specific agents to control insect populations. Nevertheless, the target

  17. ChsVb, a Class VII Chitin Synthase Involved in Septation, Is Critical for Pathogenicity in Fusarium oxysporum▿ †

    Science.gov (United States)

    Martín-Urdíroz, Magdalena; Roncero, M. Isabel G.; González-Reyes, José Antonio; Ruiz-Roldán, Carmen

    2008-01-01

    A new myosin motor-like chitin synthase gene, chsVb, has been identified in the vascular wilt fungus Fusarium oxysporum f. sp. lycopersici. Phylogenetic analysis of the deduced amino acid sequence of the chsVb chitin synthase 2 domain (CS2) revealed that ChsVb belongs to class VII chitin synthases. The ChsVb myosin motor-like domain (MMD) is shorter than the MMD of class V chitin synthases and does not contain typical ATP-binding motifs. Targeted disrupted single (ΔchsVb) and double (ΔchsV ΔchsVb) mutants were unable to infect and colonize tomato plants or grow invasively on tomato fruit tissue. These strains were hypersensitive to compounds that interfere with fungal cell wall assembly, produced lemon-like shaped conidia, and showed swollen balloon-like structures in hyphal subapical regions, thickened walls, aberrant septa, and intrahyphal hyphae. Our results suggest that the chsVb gene is likely to function in polarized growth and confirm the critical importance of cell wall integrity in the complex infection process of this fungus. PMID:17993572

  18. Sexual Dichromatism of the Damselfly Calopteryx japonica Caused by a Melanin-Chitin Multilayer in the Male Wing Veins

    NARCIS (Netherlands)

    Stavenga, Doekele G.; Leertouwer, Hein L.; Hariyama, Takahiko; De Raedt, Hans A.; Wilts, Bodo D.

    2012-01-01

    Mature male Calopteryx japonica damselflies have dark-blue wings, due to darkly coloured wing membranes and blue reflecting veins. The membranes contain a high melanin concentration and the veins have a multilayer of melanin and chitin. Female and immature C. japonica damselflies have brown wings.

  19. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease

    NARCIS (Netherlands)

    Mentlak, T.A.; Kombrink, A.; Shinya, T.; Ryder, L.S.; Otomo, I.; Saitoh, H.; Terauchi, R.; Nishizawa, Y.; Shibuya, N.; Thomma, B.P.H.J.; Talbot, N.J.

    2012-01-01

    Plants use pattern recognition receptors to defend themselves from microbial pathogens. These receptors recognize pathogen-associated molecular patterns (PAMPs) and activate signaling pathways that lead to immunity. In rice (Oryza sativa), the chitin elicitor binding protein (CEBiP) recognizes

  20. Chitin-hyaluronan nanoparticles: a multifunctional carrier to deliver anti-aging active ingredients through the skin

    Czech Academy of Sciences Publication Activity Database

    Morganti, P.; Palombo, M.; Tishchenko, Galina; Yudin, V. E.; Guarneri, F.; Cardillo, M.; Del Ciotto, P.; Carezzi, F.; Morganti, G.; Fabrizi, G.

    2014-01-01

    Roč. 1, č. 3 (2014), s. 140-158 ISSN 2079-9284 EU Projects: European Commission(XE) 315233 - N-CHITOPACK Institutional support: RVO:61389013 Keywords : chitin nanofibrils * skin aging emulsions * innovative beauty masks Subject RIV: CD - Macromolecular Chemistry

  1. Developmental regulation of cell interactions in the Arabidopsis fiddlehead-1 mutant: a role for the epidermal cell wall and cuticle.

    Science.gov (United States)

    Lolle, S J; Berlyn, G P; Engstrom, E M; Krolikowski, K A; Reiter, W D; Pruitt, R E

    1997-09-15

    Although the plant epidermis serves primarily a protective role, during plant development some epidermal cells specialize, becoming competent to interact not only with pollen but also with other epidermal cells. In the former case, these interactions mediate recognition, germination, and pollen growth responses and, in the latter case, result in interorgan fusions which, most commonly, alter floral architecture in ways that are thought to promote reproductive success. In either case, all of the initial signaling events must take place across the cell wall and cuticle. In Arabidopsis, mutation of the FIDDLEHEAD gene alters the shoot epidermis such that all epidermal cells become competent to participate in both types of interactions. In fdh-1 mutants, epidermal cells manifest not only a contact-mediated fusion response but also interact with pollen. Since carpel epidermal derivatives manifest both of these properties, we postulated that fdh-1 epidermal cells were ectopically expressing a carpel-like program. In this report we demonstrate that manifestation of the fdh-1 phenotype does not require the product of the AGAMOUS gene, indicating that the phenotype is either independent of the carpel development program or that fdh-1 mutations activate a carpel-specific developmental program downstream of the AG gene. Furthermore, we demonstrate that plants bearing mutations in the fdh-1 gene show significant changes in cell wall and cuticular permeability. Biochemical analyses of the lipid composition of the crude cell wall fraction reveal that fdh-1 cell walls differ from wild-type and manifest significant changes in high-molecular-weight lipid peaks. These results suggest that cell wall and cuticular permeability may be important determinants in developmental signaling between interacting cells and implicate lipids as important factors in modulating the selectivity of the permeability barrier presented by the epidermal cell wall and cuticle. Copyright 1997 Academic Press.

  2. An Endosperm-Associated Cuticle Is Required for Arabidopsis Seed Viability, Dormancy and Early Control of Germination.

    Directory of Open Access Journals (Sweden)

    Julien De Giorgi

    2015-12-01

    Full Text Available Cuticular layers and seeds are prominent plant adaptations to terrestrial life that appeared early and late during plant evolution, respectively. The cuticle is a waterproof film covering plant aerial organs preventing excessive water loss and protecting against biotic and abiotic stresses. Cutin, consisting of crosslinked fatty acid monomers, is the most abundant and studied cuticular component. Seeds are dry, metabolically inert structures promoting plant dispersal by keeping the plant embryo in an arrested protected state. In Arabidopsis thaliana seeds, the embryo is surrounded by a single cell endosperm layer itself surrounded by a seed coat layer, the testa. Whole genome analyses lead us to identify cutin biosynthesis genes as regulatory targets of the phytohormones gibberellins (GA and abscisic acid (ABA signaling pathways that control seed germination. Cutin-containing layers are present in seed coats of numerous species, including Arabidopsis, where they regulate permeability to outer compounds. However, the role of cutin in mature seed physiology and germination remains poorly understood. Here we identify in mature seeds a thick cuticular film covering the entire outer surface of the endosperm. This seed cuticle is defective in cutin-deficient bodyguard1 seeds, which is associated with alterations in endospermic permeability. Furthermore, mutants affected in cutin biosynthesis display low seed dormancy and viability levels, which correlates with higher levels of seed lipid oxidative stress. Upon seed imbibition cutin biosynthesis genes are essential to prevent endosperm cellular expansion and testa rupture in response to low GA synthesis. Taken together, our findings suggest that in the course of land plant evolution cuticular structures were co-opted to achieve key physiological seed properties.

  3. One-pot production of chitin with high purity from lobster shells using choline chloride-malonic acid deep eutectic solvent.

    Science.gov (United States)

    Zhu, Ping; Gu, Zhongji; Hong, Shu; Lian, Hailan

    2017-12-01

    For the first time in this study, chitin was solely extracted from lobster shells through a fast, easy and eco-friendly method using deep eutectic solvents (DESs), consisting of mixtures of choline chloride-thiourea (CCT), choline chloride-urea (CCU), choline chloride-glycerol (CCG) and choline chloride-malonic acid (CCMA). The physiochemical properties of the isolated chitins were compared with those of the chemically prepared one and commercial one from shrimp shells. Results showed that CCT, CCU and CCG DESs had no important effect on the elimination of proteins and minerals, while chitin obtained by CCMA DES showed a high purity. The yield (20.63±3.30%) of chitin isolated by CCMA DES was higher than that (16.53±2.35%) of the chemically prepared chitin. The chitin obtained by CCMA DES could be divided into two parts with different crystallinity (67.2% and 80.6%), which also had different thermal stability. Chitin from lobster shells showed porous structure, which is expected to be used for adsorption materials and tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Darker eggs of mosquitoes resist more to dry conditions: Melanin enhances serosal cuticle contribution in egg resistance to desiccation in Aedes, Anopheles and Culex vectors.

    Directory of Open Access Journals (Sweden)

    Luana C Farnesi

    2017-10-01

    Full Text Available Mosquito vectors lay their white eggs in the aquatic milieu. During early embryogenesis water passes freely through the transparent eggshell, which at this moment is composed of exochorion and endochorion. Within two hours the endochorion darkens via melanization but even so eggs shrink and perish if removed from moisture. However, during mid-embryogenesis, cells of the extraembryonic serosa secrete the serosal cuticle, localized right below the endochorion, becoming the third and innermost eggshell layer. Serosal cuticle formation greatly reduces water flow and allows egg survival outside the water. The degree of egg resistance to desiccation (ERD at late embryogenesis varies among different species: Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus eggs can survive in a dry environment for ≥ 72, 24 and 5 hours, respectively. In some adult insects, darker-body individuals show greater resistance to desiccation than lighter ones. We asked if egg melanization enhances mosquito serosal cuticle-dependent ERD. Species with higher ERD at late embryogenesis exhibit more melanized eggshells. The melanization-ERD hypothesis was confirmed employing two Anopheles quadrimaculatus strains, the wild type and the mutant GORO, with a dark-brown and a golden eggshell, respectively. In all cases, serosal cuticle formation is fundamental for the establishment of an efficient ERD but egg viability outside the water is much higher in mosquitoes with darker eggshells than in those with lighter ones. The finding that pigmentation influences egg water balance is relevant to understand the evolutionary history of insect egg coloration. Since eggshell and adult cuticle pigmentation ensure insect survivorship in some cases, they should be considered regarding species fitness and novel approaches for vector or pest insects control.

  5. Darker eggs of mosquitoes resist more to dry conditions: Melanin enhances serosal cuticle contribution in egg resistance to desiccation in Aedes, Anopheles and Culex vectors.

    Science.gov (United States)

    Farnesi, Luana C; Vargas, Helena C M; Valle, Denise; Rezende, Gustavo L

    2017-10-01

    Mosquito vectors lay their white eggs in the aquatic milieu. During early embryogenesis water passes freely through the transparent eggshell, which at this moment is composed of exochorion and endochorion. Within two hours the endochorion darkens via melanization but even so eggs shrink and perish if removed from moisture. However, during mid-embryogenesis, cells of the extraembryonic serosa secrete the serosal cuticle, localized right below the endochorion, becoming the third and innermost eggshell layer. Serosal cuticle formation greatly reduces water flow and allows egg survival outside the water. The degree of egg resistance to desiccation (ERD) at late embryogenesis varies among different species: Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus eggs can survive in a dry environment for ≥ 72, 24 and 5 hours, respectively. In some adult insects, darker-body individuals show greater resistance to desiccation than lighter ones. We asked if egg melanization enhances mosquito serosal cuticle-dependent ERD. Species with higher ERD at late embryogenesis exhibit more melanized eggshells. The melanization-ERD hypothesis was confirmed employing two Anopheles quadrimaculatus strains, the wild type and the mutant GORO, with a dark-brown and a golden eggshell, respectively. In all cases, serosal cuticle formation is fundamental for the establishment of an efficient ERD but egg viability outside the water is much higher in mosquitoes with darker eggshells than in those with lighter ones. The finding that pigmentation influences egg water balance is relevant to understand the evolutionary history of insect egg coloration. Since eggshell and adult cuticle pigmentation ensure insect survivorship in some cases, they should be considered regarding species fitness and novel approaches for vector or pest insects control.

  6. Teaching Form as Form

    DEFF Research Database (Denmark)

    Keiding, Tina Bering

    2012-01-01

    , this book offers both inspiration to teaching form and a systematic framework for pedagogical and didactical reflection on this topic. In this sense, it shapes and professionalizes design teaching, and contributes to the development of the double-professionalism, which is so essential for teachers in modern...... means that form serves both as the connective value and as the concept for reflection. In other words, form is observed as form, not anything else. The didactical challenge of teaching form as form is accentuated by students’ everyday-based pre-orientation towards function at the expense of form...... in this book that they are highly interested in both the declarative and formative dimension of making form. Methodologically, the courses described in the contributions have a strong focus on student-centered experiential activities, thereby implicitly claiming that students must learn to make form...

  7. Chitin mixed in potting soil alters lettuce growth, the survival of zoonotic bacteria on the leaves and associated rhizosphere microbiology.

    Directory of Open Access Journals (Sweden)

    Jane eDebode

    2016-04-01

    Full Text Available Chitin is a promising soil amendment for improving soil quality, plant growth and plant resilience. The objectives of this study were twofold. First, to study the effect of chitin mixed in potting soil on lettuce growth and on the survival of two zoonotic bacterial pathogens, Escherichia coli O157:H7 and Salmonella enterica on the lettuce leaves. Second, to assess the related changes in the microbial lettuce rhizosphere, using phospholipid fatty acid (PLFA analysis and amplicon sequencing of a bacterial 16S rRNA gene fragment and the fungal ITS2. As a result of chitin addition, lettuce fresh yield weight was significantly increased. S. enterica survival in the lettuce phyllosphere was significantly reduced. The E. coli O157:H7 survival was also lowered, but not significantly. Moreover, significant changes were observed in the bacterial and fungal community of the lettuce rhizosphere. PLFA analysis showed a significant increase in fungal and bacterial biomass. Amplicon sequencing showed no increase in fungal and bacterial biodiversity, but relative abundances of the bacterial phyla Acidobacteria, Verrucomicrobia, Actinobacteria, Bacteroidetes, and Proteobacteria and the fungal phyla Ascomycota, Basidiomycota, and Zygomycota were significantly changed. More specifically, a more than tenfold increase was observed for operational taxonomic units (OTUs belonging to the bacterial genera Cellvibrio, Pedobacter, Dyadobacter, and Streptomyces and to the fungal genera Lecanicillium and Mortierella. These genera include several species previously reported to be involved in biocontrol, plant growth promotion, the nitrogen cycle and chitin degradation. These results enhance the understanding of the response of the rhizosphere microbiome to chitin amendment. Moreover, this is the first study to investigate the use of soil amendments to control the survival of S. enterica on plant leaves.

  8. Chitin Mixed in Potting Soil Alters Lettuce Growth, the Survival of Zoonotic Bacteria on the Leaves and Associated Rhizosphere Microbiology

    Science.gov (United States)

    Debode, Jane; De Tender, Caroline; Soltaninejad, Saman; Van Malderghem, Cinzia; Haegeman, Annelies; Van der Linden, Inge; Cottyn, Bart; Heyndrickx, Marc; Maes, Martine

    2016-01-01

    Chitin is a promising soil amendment for improving soil quality, plant growth, and plant resilience. The objectives of this study were twofold. First, to study the effect of chitin mixed in potting soil on lettuce growth and on the survival of two zoonotic bacterial pathogens, Escherichia coli O157:H7 and Salmonella enterica on the lettuce leaves. Second, to assess the related changes in the microbial lettuce rhizosphere, using phospholipid fatty acid (PLFA) analysis and amplicon sequencing of a bacterial 16S rRNA gene fragment and the fungal ITS2. As a result of chitin addition, lettuce fresh yield weight was significantly increased. S. enterica survival in the lettuce phyllosphere was significantly reduced. The E. coli O157:H7 survival was also lowered, but not significantly. Moreover, significant changes were observed in the bacterial and fungal community of the lettuce rhizosphere. PLFA analysis showed a significant increase in fungal and bacterial biomass. Amplicon sequencing showed no increase in fungal and bacterial biodiversity, but relative abundances of the bacterial phyla Acidobacteria, Verrucomicrobia, Actinobacteria, Bacteroidetes, and Proteobacteria and the fungal phyla Ascomycota, Basidiomycota, and Zygomycota were significantly changed. More specifically, a more than 10-fold increase was observed for operational taxonomic units belonging to the bacterial genera Cellvibrio, Pedobacter, Dyadobacter, and Streptomyces and to the fungal genera Lecanicillium and Mortierella. These genera include several species previously reported to be involved in biocontrol, plant growth promotion, the nitrogen cycle and chitin degradation. These results enhance the understanding of the response of the rhizosphere microbiome to chitin amendment. Moreover, this is the first study to investigate the use of soil amendments to control the survival of S. enterica on plant leaves. PMID:27148242

  9. Effect of some biological factors on the chitin yield of two crustacean species inhabiting the Egyptian waters

    Directory of Open Access Journals (Sweden)

    Amira Talaat Abo-Hashesh

    2017-11-01

    Full Text Available Objective: To investigate the chitin yield of two commercial crustacean species that are exploited in the Suez Canal region, the Red Sea crab Charybdis natator (C. natator and the Mediterranean mantis shrimp Erugosquilla massavensis (E. massavensis, and to assess the effect of some biological factors such as sex, size and maturity stages of females' ovaries on this yield. Methods: A total of 64 specimens of crabs were collected from the Red Sea and 1 377 mantis shrimps were collected from the Mediterranean Sea. Chitin was obtained after the deproteinization, de-mineralization and de-colorization of 5 g oven dried exoskeletons and values were expressed as g/5 g and percentages. Results: Chitin yield was significantly higher in E. massavensis than C. natator (22.1%, 14.22%, respectively. No significant difference in the yield was recorded between males and females of C. natator (12.9%, 14.9%, respectively, while the yield in E. massavensis males was significantly higher than females (25.3%, 21.2%, respectively. Significant variations in the chitin yield were observed between the different sizes of E. massavensis with the maximum being from the individuals falling in the size range 90–130 mm body length. The yield was at its lowest in the immature stage of C. natator females' ovaries (9.29%. However, the values increased and remained constant for the remaining stages (≥ 18%. Conclusions: The study recommends the use of the mantis shrimp for the production of chitin on commercial scale particularly medium sized males.

  10. Chitin synthase gene FgCHS8 affects virulence and fungal cell wall sensitivity to environmental stress in Fusarium graminearum.

    Science.gov (United States)

    Zhang, Ya-Zhou; Chen, Qing; Liu, Cai-Hong; Liu, Yu-Bin; Yi, Pan; Niu, Ke-Xin; Wang, Yan-Qing; Wang, An-Qi; Yu, Hai-Yue; Pu, Zhi-En; Jiang, Qian-Tao; Wei, Yu-Ming; Qi, Peng-Fei; Zheng, You-Liang

    2016-05-01

    Fusarium graminearum is the major causal agent of Fusarium head blight (FHB) of wheat and barley and is considered to be one of the most devastating plant diseases worldwide. Chitin is a critical component of the fungal cell wall and is polymerized from UDP-N-acetyl-alpha-D-glucosamine by chitin synthase. We characterized FgCHS8, a new class of the chitin synthase gene in F. graminearum. Disruption of FgCHS8 resulted in reduced accumulation of chitin, decreased chitin synthase activity, and had no effect on conidia growth when compared with the wild-type isolate. ΔFgCHS8 had a growth rate comparable to that of the wild-type isolate in vitro. However, ΔFgCHS8 had reduced growth when grown on agar supplemented with either 0.025% SDS or 0.9 mM salicylic acid. ΔFgCHS8 produced significantly less deoxynivalenol and exhibited reduced pathogenicity in wheat spikes. Re-introduction of a functional FgCHS8 gene into the ΔFgCHS8 mutant strain restored the wild-type phenotypes. Fluorescence microscopy revealed that FgCHS8 protein was initially expressed in the septa zone, and then gradually distributed over the entire cellular membrane, indicating that FgCHS8 was required for cell wall development. Our results demonstrated that FgCHS8 is important for cell wall sensitivity to environmental stress factors and deoxynivalenol production in F. graminearum. Copyright © 2016 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  11. Morintides: cargo-free chitin-binding peptides from Moringa oleifera.

    Science.gov (United States)

    Kini, Shruthi G; Wong, Ka H; Tan, Wei Liang; Xiao, Tianshu; Tam, James P

    2017-03-31

    Hevein-like peptides are a family of cysteine-rich and chitin-binding peptides consisting of 29-45 amino acids. Their chitin-binding property is essential for plant defense against fungi. Based on the number of cysteine residues in their sequences, they are divided into three sub-families: 6C-, 8C- and 10C-hevein-like peptides. All three subfamilies contain a three-domain precursor comprising a signal peptide, a mature hevein-like peptide and a C-terminal domain comprising a hinge region with protein cargo in 8C- and 10C-hevein-like peptides. Here we report the isolation and characterization of two novel 8C-hevein-like peptides, designated morintides (mO1 and mO2), from the drumstick tree Moringa oleifera, a drought-resistant tree belonging to the Moringaceae family. Proteomic analysis revealed that morintides comprise 44 amino acid residues and are rich in cysteine, glycine and hydrophilic amino acid residues such as asparagine and glutamine. Morintides are resistant to thermal and enzymatic degradation, able to bind to chitin and inhibit the growth of phyto-pathogenic fungi. Transcriptomic analysis showed that they contain a three-domain precursor comprising an endoplasmic reticulum (ER) signal sequence, a mature peptide domain and a C-terminal domain. A striking feature distinguishing morintides from other 8C-hevein-like peptides is a short and protein-cargo-free C-terminal domain. Previously, a similar protein-cargo-free C-terminal domain has been observed only in ginkgotides, the 8C-hevein-like peptides from a gymnosperm Ginkgo biloba. Thus, morintides, with a cargo-free C-terminal domain, are a stand-alone class of 8C-hevein-like peptides from angiosperms. Our results expand the existing library of hevein-like peptides and shed light on molecular diversity within the hevein-like peptide family. Our work also sheds light on the anti-fungal activity and stability of 8C-hevein-like peptides.

  12. Ancient pests: the season of the Santorini Minoan volcanic eruption and a date from insect chitin.

    Science.gov (United States)

    Panagiotakopulu, Eva; Higham, Thomas; Sarpaki, Anaya; Buckland, Paul; Doumas, Christos

    2013-07-01

    Attributing a season and a date to the volcanic eruption of Santorini in the Aegean has become possible by using preserved remains of the bean weevil, Bruchus rufipes, pests of pulses, from the storage jars of the West House, in the Bronze Age settlement at Akrotiri. We have applied an improved pre-treatment methodology for dating the charred insects, and this provides a date of 1744-1538 BC. This date is within the range of others obtained from pulses from the same context and confirms the utility of chitin as a dating material. Based on the nature of the insect material and the life cycle of the species involved, we argue for a summer eruption, which took place after harvest, shortly after this material was transported into the West House storeroom.

  13. Effects of Oral Administration of Chitin Nanofiber on Plasma Metabolites and Gut Microorganisms

    Directory of Open Access Journals (Sweden)

    Kazuo Azuma

    2015-09-01

    Full Text Available The aim of this study was to examine the effects of oral administration of chitin nanofibers (CNFs and surface-deacetylated (SDA CNFs on plasma metabolites using metabolome analysis. Furthermore, we determined the changes in gut microbiota and fecal organic acid concentrations following oral administrations of CNFs and SDACNFs. Healthy female mice (six-week-old were fed a normal diet and administered tap water with 0.1% (v/v CNFs or SDACNFs for 28 days. Oral administration of CNFs increased plasma levels of adenosine triphosphate (ATP, adenosine diphosphate (ADP, and serotonin (5-hydroxytryptamine, 5-HT. Oral administration of SDACNFs affected the metabolisms of acyl-carnitines and fatty acids. The fecal organic level analysis indicated that oral administration of CNFs stimulated and activated the functions of microbiota. These results indicate that oral administration of CNFs increases plasma levels of ATP and 5-HT via activation of gut microbiota.

  14. Chitinase system of Bacillus circulans WL-12 and importance of chitinase A1 in chitin degradation.

    OpenAIRE

    Watanabe, T.; Oyanagi, W; K. Suzuki(Kyoto University); Tanaka, H.

    1990-01-01

    Bacillus circulans WL-12, isolated as a yeast cell wall-lytic bacterium, secretes a variety of polysaccharide-degrading enzymes into culture medium. When chitinases of the bacterium were induced with chitin, six distinct chitinase molecules were detected in the culture supernatant. These chitinases (A1, A2, B1, B2, C, and D) showed the following distinct sizes and isoelectric points: Mr 74,000, pI 4.7 (A1); Mr 69,000, pI 4.5 (A2); Mr 38,000, pI 6.6 (B1); Mr 38,000, pI 5.9 (B2); Mr 39,000, pI ...

  15. Insectivorous bats digest chitin in the stomach using acidic mammalian chitinase.

    Directory of Open Access Journals (Sweden)

    Sara Strobel

    Full Text Available The gastrointestinal tract of animals is adapted to their primary source of food to optimize resource use and energy intake. Temperate bat species mainly feed on arthropods. These contain the energy-rich carbohydrate chitin, which is indigestible for the endogenous enzymes of a typical mammalian gastrointestinal tract. However, the gastrointestinal tract of bat species should be adapted to their diet and be able to digest chitin. We hypothesized that (i European vespertilionid bat species have the digestive enzyme chitinase and that (ii the chitinolytic activity is located in the intestine, as has been found for North American bat species. The gastrointestinal tracts of seven bat species (Pipistrellus pipistrellus, Plecotus auritus, Myotis bechsteinii, Myotis nattereri, Myotis daubentonii, Myotis myotis, and Nyctalus leisleri were tested for chitinolytic activity by diffusion assay. Gastrointestinal tracts of P. pipistrellus, P. auritus, M. nattereri, M. myotis, and N. leisleri were examined for acidic mammalian chitinase by western blot analysis. Tissue sections of the gastrointestinal tract of P. pipistrellus were immunohistochemically analyzed to locate the acidic mammalian chitinase. Chitinolytic activity was detected in the stomachs of all bat species. Western blot analysis confirmed the acidic mammalian chitinase in stomach samples. Immunohistochemistry of the P. pipistrellus gastrointestinal tract indicated that acidic mammalian chitinase is located in the stomach chief cells at the base of the gastric glands. In conclusion, European vespertilionid bat species have acidic mammalian chitinase that is produced in the gastric glands of the stomach. Therefore, the gastrointestinal tracts of insectivorous bat species evolved an enzymatic adaptation to their diet.

  16. Chitin based heteroatom-doped porous carbon as electrode materials for supercapacitors.

    Science.gov (United States)

    Zhou, Jie; Bao, Li; Wu, Shengji; Yang, Wei; Wang, Hui

    2017-10-01

    Chitin biomass has received much attention as an amino-functional polysaccharide precursor for synthesis of carbon materials. Rich nitrogen and oxygen dual-doped porous carbon derived from cicada slough (CS), a renewable biomass mainly composed of chitin, was synthesized and employed as electrode materials for electrochemical capacitors, for the first time ever. The cicada slough-derived carbon (CSC) was prepared by a facile process via pre-carbonization in air, followed by KOH activation. The weight ratio of KOH and char plays an important role in fabricating the microporous structure and tuning the surface chemistry of CSC. The obtained CSC had a large specific surface area (1243-2217m(2)g(-1)), fairly high oxygen content (28.95-33.78 at%) and moderate nitrogen content (1.47-4.35 at%). The electrochemical performance of the CS char and CSC as electrodes for capacitors was evaluated in a three-electrode cell configuration with 6M KOH as the electrolyte. Electrochemical studies showed that the as-prepared CSC activated at the KOH-to-char weight ratio of 2 exhibited the highest specific capacitance (266.5Fg(-1) at a current density of 0.5Ag(-1)) and excellent rate capability (196.2Fg(-1) remained at 20Ag(-1)) and cycle durability. In addition, the CSC-2-based symmetrical device possessed the desirable energy density and power density of about 15.97Whkg(-1) and 5000Wkg(-1) at 5Ag(-1), respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Optimized production of Serratia marcescens B742 mutants for preparing chitin from shrimp shells powders.

    Science.gov (United States)

    Zhang, Hongcai; Fang, Jiyang; Deng, Yun; Zhao, Yanyun

    2014-08-01

    To improve the deproteinization (DP) efficacy of shrimp shell powders (SSP) for preparing chitin, Serratia marcescens B742 mutants were prepared using 2% diethyl sulfate (DES), UV-irradiation, and/or microwave heating treatments. Both single-stage and multi-stage mutations were investigated for optimizing S. marcescens B742 mutation conditions. Under the optimized mutation conditions (2% DES treatment for 30min plus successive 20min UV-irradiation), the protease and chitosanase activity produced by mutant S. marcescens B742 was 240.15 and 170.6mU/mL, respectively, as compared with 212.58±1.51 and 83.75±6.51mU/mL, respectively, by wild S. marcescens B742. DP efficacy of SSP by mutant S. marcescens B742 reached 91.4±4.6% after 3d of submerged fermentation instead of 83.4±4.7% from the wild S. marcescens B742 after 4d of submerged fermentation. Molecular mass of chitosanase and protease was 41.20 and 47.10kDa, respectively, and both enzymes were verified by mass spectrometry analysis. The chitosanase from both wild and mutant S. marcescens B742 was activated by sodium dodecyl sulfate (SDS), Tween 20, Tween 40, and Triton-100, and the protease and chitosanase were strongly inhibited by ethylenediaminetetraacetic acid (EDTA). These results suggested that S. marcescens B742 mutants can be used in the biological production of chitin through deproteinization of SSP. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. New chitin complexes and their anti-aging activity from inside out.

    Science.gov (United States)

    Morganti, P; Fabrizi, G; Palombo, P; Palombo, M; Guarneri, F; Cardillo, A; Morganti, G

    2012-03-01

    Nutritional and topical antioxidants and immuno-modulant compounds play a key role in maintaining healthy skin. However, little is known about the combined effects antioxidant cosmeceuticals and nutricosmetics can have on the appearance of aging skin. The clinical trial was designed to study the combined effects on skin hydration, superficial lipids, elasticity, peroxidation and global clinical appearance, of melatonin, Vit. E and Betaglucan (MEB) complexed with chitin nano-crystals administered both topically and orally. Clinical examinations were conducted by dermatologists. By a randomized placebo-controlled, 12 week multicenter study on 70 healthy subjects, affected with skin photo-aging, the anti-aging efficacy and tolerability of the combined activity of topical emulsion and oral hard capsules, containing MEB complexed with chitin nano-crystals (CN) was evaluated clinically and by biophysical non-invasive measurements at week 4,8 and 12. The effects of MEB intake resulted significantly higher (p<0.005) than placebo for all the parameters evaluated by biophysical and clinical measurements. The values resulted higher when the active ingredients MEB were complexed with CN, whether used topically, orally or a combination of both (p<0.05). The positive results, observed since week 4, were accompanied by no side-effects throughout the entire study. The combined topical and oral use of MEB was associated with reduced wrinkling, better skin appearance and general overall wellness. When MEB were complexed with CN, the obtained results were statistically more positive (p<0.05) for all the biophysical and clinical parameters considered.

  19. Cells, walls, and endless forms.

    Science.gov (United States)

    Monniaux, Marie; Hay, Angela

    2016-12-01

    A key question in biology is how the endless diversity of forms found in nature evolved. Understanding the cellular basis of this diversity has been aided by advances in non-model experimental systems, quantitative image analysis tools, and modeling approaches. Recent work in plants highlights the importance of cell wall and cuticle modifications for the emergence of diverse forms and functions. For example, explosive seed dispersal in Cardamine hirsuta depends on the asymmetric localization of lignified cell wall thickenings in the fruit valve. Similarly, the iridescence of Hibiscus trionum petals relies on regular striations formed by cuticular folds. Moreover, NAC transcription factors regulate the differentiation of lignified xylem vessels but also the water-conducting cells of moss that lack a lignified secondary cell wall, pointing to the origin of vascular systems. Other novel forms are associated with modified cell growth patterns, including oriented cell expansion or division, found in the long petal spurs of Aquilegia flowers, and the Sarracenia purpurea pitcher leaf, respectively. Another good example is the regulation of dissected leaf shape in C. hirsuta via local growth repression, controlled by the REDUCED COMPLEXITY HD-ZIP class I transcription factor. These studies in non-model species often reveal as much about fundamental processes of development as they do about the evolution of form. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Modification of chitin with kraft lignin and development of new biosorbents for removal of cadmium(II) and nickel(II) ions

    National Research Council Canada - National Science Library

    Wysokowski, Marcin; Klapiszewski, Łukasz; Moszyński, Dariusz; Bartczak, Przemysław; Szatkowski, Tomasz; Majchrzak, Izabela; Siwińska-Stefańska, Katarzyna; Bazhenov, Vasilii V; Jesionowski, Teofil

    2014-01-01

    .... The synthetic method presented in this work shows an attractive and facile route for producing low-cost chitin/lignin biosorbents with high efficiency of nickel and cadmium adsorption (88.0% and 98.4%, respectively...

  1. Histochemical evidence of β-chitin in parapodial glandular organs and tubes of Spiophanes (Annelida, Sedentaria: Spionidae), and first studies on selected Annelida.

    Science.gov (United States)

    Guggolz, Theresa; Henne, Stephan; Politi, Yael; Schütz, Roman; Mašić, Admir; Müller, Carsten H G; Meißner, Karin

    2015-12-01

    A generic character of the genus Spiophanes (Annelida, Sedentaria: Spionidae) is the presence of parapodial glandular organs. Parapodial glandular organs in Spiophanes species include secretory cells with cup-shaped microvilli, similar to those present in deep-sea inhabiting vestimentiferans and frenulate Siboglinidae. These cells are supposed to secrete β-chitin for tube-building. In this study, transverse histological and/or ultrathin sections of parapodial glandular organs and tubes of Spiophanes spp. as well as of Glandulospio orestes (Spionidae) and Owenia fusiformis (Oweniidae) were examined. Fluorescent markers together with confocal laser scanning microscopy, and Raman spectroscopy were used to detect chitin in the parapodial glandular organs of Spiophanes and/or in the glands of Owenia and Glandulospio. Tubes of these taxa were tested for chitin to elucidate the use of it for tube-building. The examinations revealed a distinct labelling of the gland contents. Raman spectroscopy documented the presence of β-chitin in both gland types of Spiophanes. The tubes of Spiophanes were found to have a grid-like structure that seems to be built with this β-chitin. Tests of tubes of Dipolydora quadrilobata (Spionidae) for chitin were negative. However, the results of our study provide strong evidence that Spiophanes species, O. fusiformis and probably also G. orestes produce chitin and supposedly use it for tube-building. This implies that the production of chitin and its use as a constituent part of tube-building is more widespread among polychaetes as yet known. The histochemical data presented in this study support previous assumptions inferring homology of parapodial glandular organs of Spionidae and Siboglinidae based on ultrastructure. Furthermore, transmission electron microscopy-based evidence of secretory cells with nail-headed microvilli in O. fusiformis suggests homology of parapodial grandular organs across annelids including Sipuncula. © 2015 Wiley

  2. Biomedical Activity of Chitin/Chitosan Based Materials—Influence of Physicochemical Properties Apart from Molecular Weight and Degree of N-Acetylation

    Directory of Open Access Journals (Sweden)

    Mirko X. Weinhold

    2011-11-01

    Full Text Available The physicochemical nature of chitin and chitosan, which influences the biomedical activity of these compounds, is strongly related to the source of chitin and the conditions of the chitin/chitosan production process. Apart from widely described key factors such as weight-averaged molecular weight (MW and degree of N-acetylation (DA, other physicochemical parameters like polydispersity (MW/MN, crystallinity or the pattern of acetylation (PA have to be taken into consideration. From the biological point of view, these parameters affect a very important factor—the solubility of chitin and chitosan in water and organic solvents. The physicochemical properties of chitosan solutions can be controlled by manipulating solution conditions (temperature, pH, ionic strength, concentration, solvent. The degree of substitution of the hydroxyl and the amino groups or the degree of quaternization of the amino groups also influence the mechanical and biological properties of chitosan samples. Finally, a considerable research effort has been directed towards developing safe and efficient chitin/chitosan-based products because many factors, like the size of nanoparticles, can determine the biomedical characteristics of medicinal products. The influence of these factors on the biomedical activity of chitin/chitosan-based products is presented in this report in more detail.

  3. Molecular Cloning, Characterization and mRNA Expression of a Chitin Synthase 2 Gene from the Oriental Fruit Fly, Bactrocera dorsalis (Diptera: Tephritidae

    Directory of Open Access Journals (Sweden)

    Kang-Kang Xu

    2013-08-01

    Full Text Available Chitin synthase (CHS, a potential target for eco-friendly insecticides, plays an essential role in chitin formation in insects. In this study, a full-length cDNA encoding chitin synthase 2 (BdCHS2 was cloned and characterized in the oriental fruit fly, Bactrocera dorsalis. The BdCHS2 cDNA had 4417 nucleotides, containing an open reading frame of 4122 nucleotides, which encoded 1373 amino acid residues with a predicted molecular weight of 158.5 kDa. Phylogenetic analysis with other insect CHSs suggested that BdCHS2 belongs to insect CHS2. The BdCHS2 transcript was predominately found in midgut but was detected at low levels in fat body, Malpighian tubules, integument, and trachea. Moreover, BdCHS2 was expressed in all developmental stages, and highly expressed in the feeding stages. There was a positive relationship between BdCHS2 expression and total chitin content during development. Furthermore, both the gene expression and chitin content in midgut decreased when the insect was fed for 24 h, then starved for 24 h, while they increased dramatically and rapidly under the condition of starvation for 24 h then feeding for 24 h. These results suggest that BdCHS2 may play an important role in regulating chitin content of the midgut, and subsequently affect the growth and development of B. dorsalis.

  4. Sexual dichromatism of the damselfly Calopteryx japonica caused by a melanin-chitin multilayer in the male wing veins.

    Directory of Open Access Journals (Sweden)

    Doekele G Stavenga

    Full Text Available Mature male Calopteryx japonica damselflies have dark-blue wings, due to darkly coloured wing membranes and blue reflecting veins. The membranes contain a high melanin concentration and the veins have a multilayer of melanin and chitin. Female and immature C. japonica damselflies have brown wings. We have determined the refractive index of melanin by comparing the differently pigmented wing membranes and applying Jamin-Lebedeff interference microscopy. Together with the previously measured refractive index of chitin the blue, structural colour of the male wing veins could be quantitatively explained by an optical multilayer model. The obtained melanin refractive index data will be useful in optical studies on melanized tissues, especially where melanin is concentrated in layers, thus causing iridescence.

  5. Crystallization and preliminary X-ray diffraction analysis of a chitin-binding domain of hyperthermophilic chitinase from Pyrococcus furiosus

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Tsutomu; Ishikawa, Kazuhiko; Hagihara, Yoshihisa; Oku, Takashi [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Nakagawa, Atsushi [Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Inoue, Tsuyoshi [Department of Materials Chemistry, Graduate School of Engineering, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ataka, Mitsuo; Uegaki, Koichi, E-mail: k-uegaki@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan)

    2005-05-01

    The expression, purification and preliminary X-ray diffraction studies of a chitin-binding domain of the chitinase from P. furiosus are reported. The crystallization and preliminary X-ray diffraction analysis of the chitin-binding domain of chitinase from a hyperthermophilic archaeon, Pyrococcus furiosus, are reported. The recombinant protein was prepared using an Escherichia coli overexpression system and was crystallized by the hanging-drop vapour-diffusion method. An X-ray diffraction data set was collected to 1.70 Å resolution. The crystal belonged to space group P4{sub 3}2{sub 1}2 or P4{sub 1}2{sub 1}2. The unit-cell parameters were determined to be a = b = 48.8, c = 85.0 Å.

  6. Fungal Chitin Induces Trained Immunity in Human Monocytes during Cross-talk of the Host with Saccharomyces cerevisiae*

    Science.gov (United States)

    Ifrim, Daniela C.; Moretti, Silvia; Tocci, Noemi; Cheng, Shih-Chin; Quintin, Jessica; Renga, Giorgia; Oikonomou, Vasilis; De Filippo, Carlotta; Weil, Tobias; Blok, Bastiaan A.; Lenucci, Marcello S.; Santos, Manuel A. S.; Romani, Luigina; Netea, Mihai G.; Cavalieri, Duccio

    2016-01-01

    The immune system is essential to maintain the mutualistic homeostatic interaction between the host and its micro- and mycobiota. Living as a commensal, Saccharomyces cerevisiae could potentially shape the immune response in a significant way. We observed that S. cerevisiae cells induce trained immunity in monocytes in a strain-dependent manner through enhanced TNFα and IL-6 production upon secondary stimulation with TLR ligands, as well as bacterial and fungal commensals. Differential chitin content accounts for the differences in training properties observed among strains, driving induction of trained immunity by increasing cytokine production and direct antimicrobial activity both in vitro and in vivo. These chitin-induced protective properties are intimately associated with its internalization, identifying a critical role of phagosome acidification to facilitate microbial digestion. This study reveals how commensal and passenger microorganisms could be important in promoting health and preventing mucosal diseases by modulating host defense toward pathogens and thus influencing the host microbiota-immune system interactions. PMID:26887946

  7. Rice CYP703A3, a cytochrome P450 hydroxylase, is essential for development of anther cuticle and pollen exine.

    Science.gov (United States)

    Yang, Xijia; Wu, Di; Shi, Jianxin; He, Yi; Pinot, Franck; Grausem, Bernard; Yin, Changsong; Zhu, Lu; Chen, Mingjiao; Luo, Zhijing; Liang, Wanqi; Zhang, Dabing

    2014-10-01

    Anther cuticle and pollen exine act as protective envelopes for the male gametophyte or pollen grain, but the mechanism underlying the synthesis of these lipidic polymers remains unclear. Previously, a tapetum-expressed CYP703A3, a putative cytochrome P450 fatty acid hydroxylase, was shown to be essential for male fertility in rice (Oryza sativa L.). However, the biochemical and biological roles of CYP703A3 has not been characterized. Here, we observed that cyp703a3-2 caused by one base insertion in CYP703A3 displays defective pollen exine and anther epicuticular layer, which differs from Arabidopsis cyp703a2 in which only defective pollen exine occurs. Consistently, chemical composition assay showed that levels of cutin monomers and wax components were dramatically reduced in cyp703a3-2 anthers. Unlike the wide range of substrates of Arabidopsis CYP703A2, CYP703A3 functions as an in-chain hydroxylase only for a specific substrate, lauric acid, preferably generating 7-hydroxylated lauric acid. Moreover, chromatin immunoprecipitation and expression analyses revealed that the expression of CYP703A3 is directly regulated by Tapetum Degeneration Retardation, a known regulator of tapetum PCD and pollen exine formation. Collectively, our results suggest that CYP703A3 represents a conserved and diversified biochemical pathway for in-chain hydroxylation of lauric acid required for the development of male organ in higher plants. © 2014 Institute of Botany, Chinese Academy of Sciences.

  8. Spectroscopic parameters of the cuticle and ethanol extracts of the fluorescent cave isopod Mesoniscus graniger (Isopoda, Oniscidea

    Directory of Open Access Journals (Sweden)

    Andrei Giurginca

    2015-07-01

    Full Text Available The body surface of the terrestrial isopod Mesoniscus graniger (Frivaldsky, 1863 showed blue autofluorescence under UV light (330–385 nm, using epifluorescence microscopy and also in living individuals under a UV lamp with excitation light of 365 nm. Some morphological cuticular structures expressed a more intense autofluorescence than other body parts. For this reason, only the cuticle was analyzed. The parameters of autofluorescence were investigated using spectroscopic methods (molecular spectroscopy in infrared, ultraviolet-visible, fluorescence, and X-ray fluorescence spectroscopy in samples of two subspecies of M. graniger preserved in ethanol. Samples excited by UV light (from 350 to 380 nm emitted blue light of wavelengths 419, 420, 441, 470 and 505 nm (solid phase and 420, 435 and 463 (ethanol extract. The results showed that the autofluorescence observed from living individuals may be due to some β-carboline or coumarin derivatives, some crosslinking structures, dityrosine, or due to other compounds showing similar excitation-emission characteristics.

  9. Genetic interactions underlying the biosynthesis and inhibition of β-diketones in wheat and their impact on glaucousness and cuticle permeability.

    Directory of Open Access Journals (Sweden)

    Zhengzhi Zhang

    Full Text Available Cuticular wax composition greatly impacts plant responses to dehydration. Two parallel pathways exist in Triticeae for manipulating wax composition: the acyl elongation, reduction, and decarbonylation pathway that is active at the vegetative stage and yields primary alcohols and alkanes, and the β-diketone pathway that predominates at the reproductive stage and synthesizes β-diketones. Variation in glaucousness during the reproductive stage of wheat is mainly controlled by the wax production genes, W1 and W2, and wax inhibitor genes, Iw1 and Iw2. Little is known about the metabolic and physiological effects of the genetic interactions among these genes and their roles in shifting wax composition during plant development. We characterized the effect of W1, W2, Iw1, and Iw2 and analyzed their interaction using a set of six near-isogenic lines (NILs by metabolic, molecular and physiological approaches. Loss of functional alleles of both W genes or the presence of either Iw gene depletes β-diketones and results in the nonglaucous phenotype. Elimination of β-diketones is compensated for by an increase in aldehydes and primary alcohols in the Iw NILs. Accordingly, transcription of CER4-6, which encodes an alcohol-forming fatty acyl-CoA reductase, was elevated 120-fold in iw1Iw2. CER4-6 was transcribed at much higher levels in seedlings than in adult plants, and showed little difference between the glaucous and nonglaucous NILs, suggesting that Iw2 counteracts the developmental repression of CER4-6 at the reproductive stage. While W1 and W2 redundantly function in β-diketone biosynthesis, a combination of both functional alleles led to the β-diketone hydroxylation. Consistent with this, transcription of MAH1-9, which encodes a mid-chain alkane hydroxylase, increased seven-fold only in W1W2. In parallel with the hydroxyl-β-diketone production patterns, glaucousness was intensified and cuticle permeability was reduced significantly in W1W2

  10. Comparison of availability of copper(II) complexes with organic ligands to bacterial cells and to chitin

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, M.T.S.D.; Azenha, M.A.O. [Laquipai, Porto (Portugal). Faculdade de Ciencias do Porto; Cabral, J.P.S. [Inst. de Botanica e Centro de Citologia Experimental U.P., Porto (Portugal)

    1997-10-01

    Bacterial cells or chitin were exposed to solutions with 100 {micro}M total but only 5 {micro}M free copper, due to the presence of a proper concentration of proline, lysine, cysteine, or ethylenediamine tetraacetate (EDTA). The influence of the nature and concentration of the particles and soluble ligands, on the sorption and on the desorption of the copper, at pH 6.50 and 25.0 C, was investigated. The metal sorbed by the particles and that left in the solution were measured by atomic absorption spectrometry, after different periods of contact between particles and solution. The interpretation of the results was based on the copper(II) speciation calculated through equilibrium approaches applied to homogeneous or heterogeneous systems. A significant fraction of copper bound to the organic ligands was displaced to the bacteria or chitin, and the extent of chemical reaction depended on the nature of both the soluble (or leaving) ligands and sites on the particle surface (or entering ligands), as expected by the equilibrium theory. But with chitin, the uptake of copper in the presence of cysteine or EDTA was higher than expected, which may be due to the adsorption of the soluble copper complexes on the particle surface. In consequence of a competition between soluble and particulate ligands (cells or chitin), the free copper(II) concentration decreased in the solution, even in the presence of very strong chelators. The results indicate that copper availability is not a simple function of the initial free copper concentration in the solution. Desorption of the previously fixed copper, originated by free soluble ligands indicated that the sorption of copper was quasireversible for both particles, though a larger dismissal of the equilibrium position occurred for the cells, probably due to their biological activity.

  11. Some liver functions in the Oriental hornet (Vespa orientalis) are performed in its cuticle: exposure to UV light influences these activities.

    Science.gov (United States)

    Plotkin, Marian; Volynchik, Stanislav; Itzhaky, Dganit; Lis, Monica; Bergman, David J; Ishay, Jacob S

    2009-06-01

    The Oriental hornet Vespa orientalis (Hymenoptera, Vespinae) coordinates its daily activities (e.g. flights out of the nest associated with digging activities and removal of the dug soil from the nest) with the amount of insolation. Thus, the stronger the insolation, the more intense the flight activity and vise versa. The hornet's cuticle bears a few yellow stripes interposed among brown parts of the gastral cuticle. These yellow stripes are composed of two elements, namely, a transparent cuticle and underneath it a layer of yellow granules. When the hornets are exposed to UV light, the layer containing the yellow granules is less active than in hornets kept in the dark. This diminished activity entails a lower production of glucose as well as of several enzymes prevalent also in the liver of mammals, like creatine kinase, alanine aminotransferase, aspartate transaminase. Thus solar irradiation stimulates and produces a change in the metabolic activities of the hornet. The fact that hornets link their flight activity with the insolation leads us to speculate that the sun contributes energetically to the hornet's activity.

  12. Interaction of insulin, cholesterol-derivatized mannan, and carboxymethyl chitin with liposomes: A differential scanning calorimetry study.

    Science.gov (United States)

    Tabbakhian, M; Rogers, J A

    2012-01-01

    The interaction of drugs and polymers used to incorporate in or surface modify/coat the liposomes can affect the phase transition, fluidity and other physical properties as well as in vivo fate of vesicles. In this study, differential scanning calorimetry (DSC) was used to investigate changes in the temperature and the enthalpy of phase transition of liposomes of various electrical charges following interaction with carboxymethyl chitin (CM-chitin) as a hydrophilic polymer, cholesterol-derivatized mannan (CHM) as a hydrophilic polymer bearing a hydrophobic moiety, and insulin as a model peptide. The results indicated that insulin incorporation or polymers caused no significant change in the phase transition temperature (T(m)) of liposomes. However, reduction in the enthalpy of the transition (ΔH°) following coating with CHM supports an anchoring mechanism to the bilayer by the polymer, whereas no change or little increase in the ΔH° after coating with carboxymethyl chitin suggests no significant interaction or electrostatic weak interactions of polymer with liposomes. The DSC data of liposome-polymer interaction may be suggestive of changes in membrane fluidity, drug release, and possibly the behavior of liposomes in biological milieu.

  13. Fabrication of Chitin/Poly(butylene succinate/Chondroitin Sulfate Nanoparticles Ternary Composite Hydrogel Scaffold for Skin Tissue Engineering

    Directory of Open Access Journals (Sweden)

    S. Deepthi

    2014-12-01

    Full Text Available Skin loss is one of the oldest and still not totally resolved problems in the medical field. Since spontaneous healing of the dermal defects would not occur, the regeneration of full thickness of skin requires skin substitutes. Tissue engineering constructs would provide a three dimensional matrix for the reconstruction of skin tissue and the repair of damage. The aim of the present work is to develop a chitin based scaffold, by blending it with poly(butylene succinate (PBS, an aliphatic, biodegradable and biocompatible synthetic polymer with excellent mechanical properties. The presence of chondroitin sulfate nanoparticles (CSnp in the scaffold would favor cell adhesion. A chitin/PBS/CSnp composite hydrogel scaffold was developed and characterized by SEM (Scanning Electron Microscope, FTIR (Fourier Transform Infrared Spectroscopy, and swelling ratio of scaffolds were analyzed. The scaffolds were evaluated for the suitability for skin tissue engineering application by cytotoxicity, cell attachment, and cell proliferation studies using human dermal fibroblasts (HDF. The cytotoxicity and cell proliferation studies using HDF confirm the suitability of the scaffold for skin regeneration. In short, these results show promising applicability of the developed chitin/PBS/CSnps ternary composite hydrogel scaffolds for skin tissue regeneration.

  14. Functional analyses of chitinases in the moss Physcomitrella patens: chitin oligosaccharide-induced gene expression and enzymatic characterization.

    Science.gov (United States)

    Kobaru, Saki; Tanaka, Ryusuke; Taira, Toki; Uchiumi, Toshiki

    2016-12-01

    Plant chitinases play diverse roles including defense against pathogenic fungi. Using reverse-transcription quantitative PCR analysis, we found that six chitinase (PpChi) genes and two genes for chitin elicitor receptor kinases (PpCERKs) are expressed at considerable levels in the moss Physcomitrella patens subsp. patens. The expressed PpChis belonged to glycoside hydrolase family 19 (class I: PpChi-Ia and -Ib; class II: PpChi-IIa and -IIc; and class IV: PpChi-IV) and to glycoside hydrolase family 18 (class V: PpChi-Vb). Treatment with chitin tetramer or hexamer increased the expression of class I and IV PpChi genes and decreased that of class II PpChi genes. Recombinant PpChi-Ia, PpChi-IV, and PpChi-Vb were characterized. PpChi-IV exhibited higher activity against chitin tetramer and pentamer than PpChi-Ia did. PpChi-Vb showed transglycosylation activity and PpChi-Ia inhibited fungal growth. These results suggest that chitinases of different classes play different roles in defense mechanism of moss plant against fungal pathogens.

  15. A chitin-like component on sclerotic cells of Fonsecaea pedrosoi inhibits Dectin-1-mediated murine Th17 development by masking β-glucans.

    Directory of Open Access Journals (Sweden)

    Bilin Dong

    Full Text Available Fonsecaea pedrosoi (F. pedrosoi, a major agent of chromoblastomycosis, has been shown to be recognized primarily by C-type lectin receptors (CLRs in a murine model of chromoblastomycosis. Specifically, the β-glucan receptor, Dectin-1, mediates Th17 development and consequent recruitment of neutrophils, and is evidenced to have the capacity to bind to saprophytic hyphae of F. pedrosoi in vitro. However, when embedded in tissue, most etiological agents of chromoblastomycosis including F. pedrosoi will transform into the sclerotic cells, which are linked to the greatest survival of melanized fungi in tissue. In this study, using immunocompetent and athymic (nu/nu murine models infected subcutaneously or intraperitoneally with F. pedrosoi, we demonstrated that T lymphocytes play an active role in the resolution of localized footpad infection, and there existed a significantly decreased expression of Th17-defining transcription factor Rorγt and inefficient recruitment of neutrophils in chronically infected spleen where the inoculated mycelium of F. pedrosoi transformed into the sclerotic cells. We also found that Dectin-1-expressing histocytes and neutrophils participated in the enclosure of transformed sclerotic cells in the infectious foci. Furthermore, we induced the formation of sclerotic cells in vitro, and evidenced a significantly decreased binding capacity of human or murine-derived Dectin-1 to the induced sclerotic cells in comparison with the saprophytic mycelial forms. Our analysis of β-glucans-masking components revealed that it is a chitin-like component, but not the mannose moiety on the sclerotic cells, that interferes with the binding of β-glucans by human or murine Dectin-1. Notably, we demonstrated that although Dectin-1 contributed to the development of IL-17A-producing CD3+CD4+ murine splenocytes upon in vitro-stimulation by saprophytic F. pedrosoi, the masking effect of chitin components partly inhibited Dectin-1-mediated Th

  16. Enzyme activity and expression pattern of intra- and extracellular chitinase and β-1,3-glucanase of Wickerhamomyces anomalus EG2 using glycol chitin and glucan-containing high polymer complex.

    Science.gov (United States)

    Hong, Sin-Hyoung; Song, Yong-Su; Seo, Dong-Jun; Kim, Kil-Yong; Jung, Woo-Jin

    2017-12-01

    We investigated cell growth and activity of intra- and extracellular chitinase, β-1,3-glucanase, and chitin deacetylase with SDS-PAGE by incubating W. anomalus EG2 in PDB and YPD media for 24h in presence of different concentrations (0%, 0.1%, 0.3%, and 0.5%) of colloidal chitin. Maximum cell growth was observed in both PDB and YPD media without colloidal chitin. In the absence of colloidal chitin, maximum extracellular β-1,3-glucanase activity of 32.96 and 47.28 units/mL was reported at 18h in PDB medium and 6h in YPD medium, respectively. In addition, extracellular chitinase was unaffected by various concentrations of carboxymethyl chitin in both PDB and YPD media. In the absence of colloidal chitin, maximum intracellular chitinase activity was indicated to be 9.82 and 9.86 units/mg protein in PDB and YPD media, respectively. Maximum intracellular β-1,3-glucanase activity reported was 17.34 units/mg protein in PDB medium containing 0.5% colloidal chitin and 15.0 units/mg protein in YPD medium containing 0.3% colloidal chitin. Five major isozymes, GN1, GN2, GN3, GN4, and GN5, of intracellular β-1,3-glucanase were detected with glucan-containing high polymer complex as a substrate with or without colloidal chitin. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effect of low shear modeled microgravity on phenotypic and central chitin metabolism in the filamentous fungi Aspergillus niger and Penicillium chrysogenum.

    Science.gov (United States)

    Sathishkumar, Yesupatham; Velmurugan, Natarajan; Lee, Hyun Mi; Rajagopal, Kalyanaraman; Im, Chan Ki; Lee, Yang Soo

    2014-08-01

    Phenotypic and genotypic changes in Aspergillus niger and Penicillium chrysogenum, spore forming filamentous fungi, with respect to central chitin metabolism were studied under low shear modeled microgravity, normal gravity and static conditions. Low shear modeled microgravity (LSMMG) response showed a similar spore germination rate with normal gravity and static conditions. Interestingly, high ratio of multiple germ tube formation of A. niger in LSMMG condition was observed. Confocal laser scanning microscopy images of calcofluor flurophore stained A. niger and P. chrysogenum showed no significant variations between different conditions tested. Transmission electron microscopy images revealed number of mitochondria increased in P. chrysogenum in low shear modeled microgravity condition but no stress related-woronin bodies in fungal hyphae were observed. To gain additional insight into the cell wall integrity under different conditions, transcription level of a key gene involved in cell wall integrity gfaA, encoding the glutamine: fructose-6-phosphate amidotransferase enzyme, was evaluated using qRT-PCR. The transcription level showed no variation among different conditions. Overall, the results collectively indicate that the LSMMG has shown no significant stress on spore germination, mycelial growth, cell wall integrity of potentially pathogenic fungi, A. niger and P. chrysogenum.

  18. Fibrous Polymeric Composites Based on Alginate Fibres and Fibres Made of Poly-ε-caprolactone and Dibutyryl Chitin for Use in Regenerative Medicine

    Directory of Open Access Journals (Sweden)

    Elżbieta Menaszek

    2013-03-01

    Full Text Available This work concerns the production of fibrous composite materials based on biodegradable polymers such as alginate, dibutyryl chitin (DBC and poly-ε-caprolactone (PCL. For the production of fibres from these polymers, various spinning methods were used in order to obtain composite materials of different composition and structure. In the case of alginate fibres containing the nanoadditive tricalcium phosphate (TCP, the traditional method of forming fibres wet from solution was used. However in the case of the other two polymers the electrospinning method was used. Two model systems were tested for biocompatibility. The physicochemical and basic biological tests carried out show that the submicron fibres produced using PCL and DBC have good biocompatibility. The proposed hybrid systems composed of micrometric fibres (zinc and calcium alginates containing TCP and submicron fibres (DBC and PCL meet the requirements of regenerative medicine. The biomimetic fibre system, the presence of TCP nanoadditive, and the use of polymers with different resorption times provide a framework with specific properties on which bone cells are able to settle and proliferate.

  19. [Basic Studies on Locoregional Injection of a Newly Designed Chitin Sol].

    Science.gov (United States)

    Chiba, Takehiro; Sugitachi, Akio; Kume, Kouhei; Segawa, Takenori; Nishinari, Yutaka; Ishida, Kaoru; Noda, Hironobu; Nishizuka, Satoshi; Kimura, Yusuke; Koeda, Keisuke; Sasaki, Akira

    2015-11-01

    Systemic chemotherapy in advanced cancer cases often provokes serious adverse events. We aimed to examine the fundamental properties and efficacy of a novel chitin sol, an anti-cancer agent with minor side effects designed to avoid the adverse effects of chemotherapy and enhance the QOL and ADL of patients. DAC-70 was used to create the novel agent termed DAC-70 sol. The anti-proliferative activity was assayed by the WST method using different types of cell lines. The anti-cancer efficacy of the novel agent was examined using cancer-bearing mice. DAC-70 sol was easily injectable through a 21-G needle. The sol suppressed proliferation of the cells in vitro. Intra-tumor injection of DAC-70 sol inhibited the rapid growth of solid tumors in the mice. CDDP-loaded DAC-70 sol, CDDP/DAC-70 sol, successfully controlled malignant ascites in the mice (psol and CDDP/DAC-70 sol is clinically useful as novel cancer chemotherapy for advanced cases. This warrants further clinical studies in cancer chemotherapy.

  20. Novel chitin/chitosan-glucan wound dressing: Isolation, characterization, antibacterial activity and wound healing properties.

    Science.gov (United States)

    Abdel-Mohsen, A M; Jancar, J; Massoud, D; Fohlerova, Z; Elhadidy, H; Spotz, Z; Hebeish, A

    2016-08-20

    Chitin/chitosan-glucan complex (ChCsGC) was isolated from Schizophyllum commune (S. commune) and dissolved for the first time in precooled (-15°C) 8wt.% urea/6wt.% NaOH aqueous solution. Novel nonwoven microfiber mats were fabricated by wet-dry-spinning technique and evaluated the mechanical of fabrics mats and surface morphology. Isolated and nonwoven mat were characterized employing FTIR-ATR, Optical microscope, TGA, DSC, H/C NMR, SEM and XRD techniques. According to the physical/chemical characterization measurements we can assumed that, the net and the novel dressing mats have the same chemical structure with slightly changes in the thermal stability for the dressing mats.The biological activity of the nonwoven ChCsGC fabric was tested against different types of bacteria exhibiting excellent antibacterial activity. Cell viability of the plain complex and nonwovens mats were evaluated utilizing mouse fibroblast cell line varying concentrations and treatment time. ChCsGC did not show any cytotoxicity against mouse fibroblast cells and the cell-fabrics interaction was also investigated using fluorescence microscope. The novel ChCsGC nonwovens exhibited excellent surgical wound healing ability when tested using rat models. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Sensitive determination of paraquat by square wave anodic stripping voltammetry with chitin modified carbon paste electrode.

    Science.gov (United States)

    El Harmoudi, H; Achak, M; Farahi, A; Lahrich, S; El Gaini, L; Abdennouri, M; Bouzidi, A; Bakasse, M; El Mhammedi, M A

    2013-10-15

    A novel analytical approach has been developed and evaluated for the quantitative analysis of paraquat herbicides which can be found at trace levels in olive oil and olives. The aim of this work is to optimize all factors that can influence this determination by a carbon paste electrode modified with chitin (Chit-CPE). The best responses were obtained with square wave potential in diluted Na2SO4 as supporting electrolyte. The influence of various parameters on the Chit-CPE was investigated. Under the optimized working conditions, calibration graphs were linear in the concentration ranges of 5.0 × 10(-9)-1.0 × 0(-5) mol L(-1). For 180 s preconcentration, detection limits of 2.67 × 10(-10) mol L(-1) (peak 2) was obtained at the signal noise ratio (SNR) of 3. To evaluate the reproducibility of the newly developed electrode, the measurements of 1.0 × 10(-5) mol L(-1) PQ were carried out for seven times at Chit-CPE and the relative standard deviation was 5.2%. The analytical methodology was successfully applied to monitor the paraquat content in olives and olive oil. © 2013 Elsevier B.V. All rights reserved.

  2. Halo(natronoarchaea isolated from hypersaline lakes utilize cellulose and chitin as growth substrates

    Directory of Open Access Journals (Sweden)

    Dimitry Y Sorokin

    2015-09-01

    Full Text Available Until recently, extremely halophilic euryarchaeota were considered mostly as aerobic heterotrophs utilizing simple organic compounds as growth substrates. Almost nothing is known on the ability of these prokaryotes to utilize complex polysaccharides as cellulose, xylan and chitin. Although few haloarchaeal cellulases and chitinases were recently characterized, the analysis of currently available haloarchaeal genomes deciphered numerous genes encoding glycosidases (GHs of various families including endoglucanases and chitinases. However, all these haloarchaea were isolated and cultivated on simple substrates and their ability to grow on polysaccharides in situ or in vitro is unknown. This study examines several halo(natronoarchaeal strains from geographically distant hypersaline lakes for the ability to grow on insoluble polymers as a sole growth substrate in salt-saturated mineral media. Some of them belonged to known taxa, while other represented novel phylogenetic lineages within the class Halobacteria. All isolates produced extracellular extremely salt tolerant cellulases or chitinases, either cell-free or cell-bound. Obtained results demonstrate a presence of diverse population of haloarchaeal cellulo/chitinotrophs in hypersaline habitats indicating that euryarchaea participate in aerobic mineralization of recalcitrant organic polymers in salt-saturated environments.

  3. Effects of Surface-Deacetylated Chitin Nanofibers in an Experimental Model of Hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Kazuo Azuma

    2015-07-01

    Full Text Available This study evaluated the effects of oral administration of surface-deacetylated chitin nanofibers (SDACNFs on hypercholesterolemia using an experimental model. All rats were fed a high cholesterol diet with 1% w/w cholesterol and 0.5% w/w cholic acid for 28 days. Rats were divided equally into four groups: the control group was administered 0.05% acetic acid dissolved in tap water, and the SDACNF, chitosan (CS, and cellulose nanofiber (CLNF groups were administered 0.1% CNF, CS, or CLNF dissolved in the tap water, respectively, during the experimental period. Changes in body weight, intake of food and water, and organ weight were measured. Serum blood chemistry and histopathological examination of the liver were performed. Administration of SDACNF did not affect body weight change, food and water intake, or organ weights. Administration of SDACNF and CS decreased the diet-induced increase in serum total cholesterol, chylomicron, very-low-density lipoprotein, and phospholipid levels on day 14. Moreover, oral administration of SDACNFs suppressed the increase of alanine transaminase levels on day 29 and suppressed vacuolar degeneration and accumulation of lipid droplets in liver tissue. These data indicate that SDACNF has potential as a functional food for patients with hypercholesterolemia.

  4. Chitin-Lignin Material as a Novel Matrix for Enzyme Immobilization

    Directory of Open Access Journals (Sweden)

    Jakub Zdarta

    2015-04-01

    Full Text Available Innovative materials were made via the combination of chitin and lignin, and the immobilization of lipase from Aspergillus niger. Analysis by techniques including FTIR, XPS and 13C CP MAS NMR confirmed the effective immobilization of the enzyme on the surface of the composite support. The electrokinetic properties of the resulting systems were also determined. Results obtained from elemental analysis and by the Bradford method enabled the determination of optimum parameters for the immobilization process. Based on the hydrolysis reaction of para-nitrophenyl palmitate, a determination was made of the catalytic activity, thermal and pH stability, and reusability. The systems with immobilized enzymes were found to have a hydrolytic activity of 5.72 mU, and increased thermal and pH stability compared with the native lipase. The products were also shown to retain approximately 80% of their initial catalytic activity, even after 20 reaction cycles. The immobilization process, using a cheap, non-toxic matrix of natural origin, leads to systems with potential applications in wastewater remediation processes and in biosensors.

  5. Development of antimicrobial biomaterials produced from chitin-nanofiber sheet/silver nanoparticle composites.

    Science.gov (United States)

    Nguyen, Vinh Quang; Ishihara, Masayuki; Kinoda, Jun; Hattori, Hidemi; Nakamura, Shingo; Ono, Takeshi; Miyahira, Yasushi; Matsui, Takemi

    2014-12-03

    Chitin nanofibers sheets (CNFSs) with nanoscale fiber-like surface structures are nontoxic and biodegradable biomaterials with large surface-to-mass ratio. CNFSs are widely applied as biomedical materials such as a functional wound dressing. This study aimed to develop antimicrobial biomaterials made up of CNFS-immobilized silver nanoparticles (CNFS/Ag NPs). CNFSs were immersed in suspensions of Ag NPs (5.17 ± 1.9 nm in diameter; mean ± SD) for 30 min at room temperature to produce CNFS/Ag NPs. CNFS/Ag NPs were characterized by transmission electron microscopy (TEM) and then tested for antimicrobial activities against Escherichia (E.) coli, Pseudomonas (P.) aeruginosa, and H1N1 influenza A virus, three pathogens that represent the most widespread infectious bacteria and viruses. Ultrathin sectioning of bacterial cells also was carried out to observe the bactericidal mechanism of Ag NPs. The TEM images indicated that the Ag NPs are dispersed and tightly adsorbed onto CNFSs. Although CNFSs alone have only weak antimicrobial activity, CNFS/Ag NPs showed much stronger antimicrobial properties against E. coli, P. aeruginosa, and influenza A virus, with the amount of immobilized Ag NPs onto CNFSs. Our results suggest that CNFS/Ag NPs interacting with those microbes exhibit stronger antimicrobial activities, and that it is possible to apply CNFS/Ag NPs as anti-virus sheets as well as anti-infectious wound dressings.

  6. Chitin nanowhisker (ChNW)-functionalized electrospun PVDF membrane for enhanced removal of Indigo carmine.

    Science.gov (United States)

    Gopi, Sreerag; Balakrishnan, Preetha; Pius, Anitha; Thomas, Sabu

    2017-06-01

    In this study, an active functional adsorbent membrane developed by combining both hydrophilic bio polymer filler such as chitin nanowhiskers (ChNW) which contains two functional groups and a hydrophobic polymer matrix such as polyvinylidene fluoride (PVDF) using electrospinning technique. Here ChNW were successfully extracted by excluding proteins and mineral and well characterized using FTIR, XRD, SEM and TEM. The optimized combination of PVDF/ChNW (15%:1%) membrane was fabricated and well characterized using SEM, water contact angle and FTIR spectroscopy. There was a remarkable difference in contact angle observed for PVDF/ChNW (22.72°) compared to neat PVDF (93.1°) membrane. Ultimately the membrane used for indigo carmine (IC) adsorption and an enhanced removal efficiency (88.9%) and adsorption capacity (72.6mgg-1) were observed compared to neat PVDF. In the future, the overall idea can make leads to various applications such as proteins, virus and hormones adsorption from the contaminated sources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The Correlation between Chitin and Acidic Mammalian Chitinase in Animal Models of Allergic Asthma

    Directory of Open Access Journals (Sweden)

    Chia-Rui Shen

    2015-11-01

    Full Text Available Asthma is the result of chronic inflammation of the airways which subsequently results in airway hyper-responsiveness and airflow obstruction. It has been shown that an elicited expression of acidic mammalian chitinase (AMCase may be involved in the pathogenesis of asthma. Our recent study has demonstrated that the specific suppression of elevated AMCase leads to reduced eosinophilia and Th2-mediated immune responses in an ovalbumin (OVA-sensitized mouse model of allergic asthma. In the current study, we show that the elicited expression of AMCase in the lung tissues of both ovalbumin- and Der P2-induced allergic asthma mouse models. The effects of allergic mediated molecules on AMCase expression were evaluated by utilizing promoter assay in the lung cells. In fact, the exposure of chitin, a polymerized sugar and the fundamental component of the major allergen mite and several of the inflammatory mediators, showed significant enhancement on AMCase expression. Such obtained results contribute to the basis of developing a promising therapeutic strategy for asthma by silencing AMCase expression.

  8. Rhizomucor miehei lipase immobilized on reinforced chitosan-chitin nanowhiskers support for synthesis of eugenyl benzoate.

    Science.gov (United States)

    Abdul Manan, Fatin Myra; Attan, Nursyafreena; Widodo, Nashi; Aboul-Enein, Hassan Y; Wahab, Roswanira Abdul

    2017-12-01

    An alternative environmentally benign support was prepared from chitosan-chitin nanowhiskers (CS/CNWs) for covalent immobilization of Rhizomucor miehei lipase (RML) to increase the operational stability and recyclability of RML in synthesizing eugenyl benzoate. The CS/CNWs support and RML-CS/CNWs were characterized using X-ray diffraction (XRD), fluorescent microscopy and Fourier transform infrared spectroscopy (FTIR). Efficiency of the RML-CS/CNWs was compared to the free RML to synthesize eugenyl benzoate for parameters: reaction temperature, stirring rate, reusability and thermal stability. Under optimal experimental conditions (50 °C, 250 rpm, catalyst loading 3 mg /mL), a 2-fold increase in yield of eugenyl benzoate was observed for RML-CS/CNWs as compared to free RML, with the former achieving maximum yield of the ester at 62.1% after 5 h. Results demonstrated that the strategy adopted to prepare RML-CS/CNWs was useful, producing an improved and prospectively greener biocatalyst that supported a sustainable process to prepare eugenyl benzoate. Moreover, RML-CS/CNWs are biodegradable and carry out esterification reactions under ambient conditions as compared to the less eco-friendly conventional acid catalyst. This research provides a facile and promising approach for improving activity of RML in which the resultant RML-CS/CNWs demonstrated good operational stability for up to eight successive esterification cycles to synthesize eugenyl benzoate.

  9. Polarizing properties and structure of the cuticle of scarab beetles from the Chrysina genus

    Science.gov (United States)

    Fernández del Río, Lía; Arwin, Hans; Järrendahl, Kenneth

    2016-07-01

    The optical properties of several scarab beetles have been previously studied but few attempts have been made to compare beetles in the same genus. To determine whether there is any relation between specimens of the same genus, we have studied and classified seven species from the Chrysina genus. The polarization properties were analyzed with Mueller-matrix spectroscopic ellipsometry and the structural characteristics with optical microscopy and scanning electron microscopy. Most of the Chrysina beetles are green colored or have a metallic look (gold or silver). The results show that the green-colored beetles polarize reflected light mainly at off-specular angles. The gold-colored beetles polarize light left-handed near circular at specular reflection. The structure of the exoskeleton is a stack of layers that form a cusplike structure in the green beetles whereas the layers are parallel to the surface in the case of the gold-colored beetles. The beetle C. gloriosa is green with gold-colored stripes along the elytras and exhibits both types of effects. The results indicate that Chrysina beetles can be classified according to these two major polarization properties.

  10. Identification of Nanopillars on the Cuticle of the Aquatic Larvae of the Drone Fly (Diptera: Syrphidae).

    Science.gov (United States)

    Hayes, Matthew J; Levine, Timothy P; Wilson, Roger H

    2016-01-01

    Here, we describe a nano-scale surface structure on the rat-tailed maggot, the aquatic larva of the Drone fly Eristalis tenax(L.). Larvae of this syrphid hover fly live in stagnant, anaerobic water-courses that are rich in organic matter. The larvae burrow into fetid slurry and feed on microorganisms which they filter out from the organic material. This environment is rich in bacteria, fungi and algae with the capacity to form biofilms that might develop on the larval surface and harm them. Using transmission and scanning electron microscopy we have identified an array of slender (typically < 100 nm in diameter) nanopillars that cover the surface of the larvae. The high density and dimensions of these spine-like projections appear to make it difficult for bacteria to colonize the surface of the animal. This may interfere with the formation of biofilms and potentially act as a defence against bacterial infection. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.

  11. Fluazuron-induced morphophysiological changes in the cuticle formation and midgut of Rhipicephalus sanguineus Latreille, 1806 (Acari: Ixodidae) nymphs.

    Science.gov (United States)

    de Oliveira, Patrícia Rosa; Calligaris, Izabela Braggião; Roma, Gislaine Cristina; Bechara, Gervásio Henrique; Camargo-Mathias, Maria Izabel

    2013-01-01

    The present study demonstrated the effects of the arthropod growth regulator, fluazuron (Acatak®), in the formation of the integument and digestive processes of Rhipicephalus sanguineus nymphs fed on rabbits treated with different doses of this chemical acaricide. For this, three different doses of fluazuron (20, 40, or 80 mg/kg) were applied "pour on" to the hosts (groups II, III, and IV), as well as distilled water to the control group. On the first day after treatment (24 h), the hosts were artificially infested with R. sanguineus nymphs. After full engorgement (7 days), the nymphs were removed, placed on labeled Petri dishes, and kept in biochemical oxygen demand incubator for 7 days. The engorged nymphs were then taken for morphological, histochemical, and histological analyses. The results showed the occurrence of cytological, morphohistological, and histochemical alterations in the integument and midgut of nymphs from all the different treated groups. These alterations occurred at cuticular level in the subdivisions of the cuticle, related to the size of the digestive cells, amount of accumulated blood elements, and digestive residues, as well as the presence of vacuoles in the cytoplasm of the digestive cells. Thus, this study demonstrated that fluazuron acts on the integument and midgut cells of R. sanguineus nymphs fed on treated rabbits and pointed out the possibility of the use of this chemical-which is more specific, less toxic, and less harmful to the environment and nontarget organisms-in the control of R. sanguineus, at least in the nymphal stage of its biological cycle.

  12. Collaborative form(s)

    DEFF Research Database (Denmark)

    Gunn, Wendy

    Gunn asks us to consider beauty as collaborative forms of action generated by moving between design by means of anthropology and anthropology by means of design. Specifically, she gives focus to play-like reflexions on practices of designing energy products, systems and infrastructure. Design...... anthropology engages groups of people within collaborative, interdisciplinary, inter-organizational design processes and co-analytic activities vs. the individual anthropologist conducting studies of people. In doing anthropology by means of design as Gatt and Ingold (2013) have shown, design is considered...

  13. Acidic Chitinase-Chitin Complex Is Dissociated in a Competitive Manner by Acetic Acid: Purification of Natural Enzyme for Supplementation Purposes

    Directory of Open Access Journals (Sweden)

    Eri Tabata

    2018-01-01

    Full Text Available Acidic chitinase (Chia has been implicated in asthma, allergic inflammations, and food processing. We have purified Chia enzymes with striking acid stability and protease resistance from chicken and pig stomach tissues using a chitin column and 8 M urea (urea-Chia. Here, we report that acetic acid is a suitable agent for native Chia purification from the stomach tissues using a chitin column (acetic acid-Chia. Chia protein can be eluted from a chitin column using 0.1 M acetic acid (pH 2.8, but not by using Gly-HCl (pH 2.5 or sodium acetate (pH 4.0 or 5.5. The melting temperatures of Chia are not affected substantially in the elution buffers, as assessed by differential scanning fluorimetry. Interestingly, acetic acid appears to be more effective for Chia-chitin dissociation than do other organic acids with similar structures. We propose a novel concept of this dissociation based on competitive interaction between chitin and acetic acid rather than on acid denaturation. Acetic acid-Chia also showed similar chitinolytic activity to urea-Chia, indicating that Chia is extremely stable against acid, proteases, and denaturing agents. Both acetic acid- and urea-Chia seem to have good potential for supplementation or compensatory purposes in agriculture or even biomedicine.

  14. Urea free synthesis of chitin-based acrylate superabsorbent polymers under homogeneous conditions: Effects of the degree of deacetylation and the molecular weight.

    Science.gov (United States)

    Liu, T G; Wang, Y T; Li, B; Deng, H B; Huang, Z L; Qian, L W; Wang, X

    2017-10-15

    In order to understand the chemical structure of chitin-based acrylate superabsorbent polymers (SAP), chitin was dissolved in NaOH aqueous solution via freezing-thawing cyclic treatment without urea, subsequently, a transparent hydrogel was prepared by copolymerizing the alkali-chitin solution and acrylic acid directly. The effects of the degree of deacetylation (DDA) and the molecular weight (Mw) of chitin on the properties of SAP were investigated in detail. With increasing the DDA and Mw, the yield improved while the water absorbency decreased, yet the effect of DDA is insignificant if the Mw is smaller enough. The structures were characterized by FT-IR, XRD, TG, DSC, XPS, solid-state (13)C NMR and elemental analyses. The results indicated that the poly(acrylic acid) chains were successfully grafted onto the chitin backbones, and the reaction sites were the NH2 on the chitosan units. The possible mechanism was further discussed, which was similar to that suggested for chitosan-g-poly(acrylic acid) SAP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Emerging biomedical applications of nano-chitins and nano-chitosans obtained via advanced eco-friendly technologies from marine resources.

    Science.gov (United States)

    Muzzarelli, Riccardo A A; El Mehtedi, Mohamad; Mattioli-Belmonte, Monica

    2014-11-19

    The present review article is intended to direct attention to the technological advances made in the 2010-2014 quinquennium for the isolation and manufacture of nanofibrillar chitin and chitosan. Otherwise called nanocrystals or whiskers, n-chitin and n-chitosan are obtained either by mechanical chitin disassembly and fibrillation optionally assisted by sonication, or by e-spinning of solutions of polysaccharides often accompanied by poly(ethylene oxide) or poly(caprolactone). The biomedical areas where n-chitin may find applications include hemostasis and wound healing, regeneration of tissues such as joints and bones, cell culture, antimicrobial agents, and dermal protection. The biomedical applications of n-chitosan include epithelial tissue regeneration, bone and dental tissue regeneration, as well as protection against bacteria, fungi and viruses. It has been found that the nano size enhances the performances of chitins and chitosans in all cases considered, with no exceptions. Biotechnological approaches will boost the applications of the said safe, eco-friendly and benign nanomaterials not only in these fields, but also for biosensors and in targeted drug delivery areas.

  16. Acidic Chitinase-Chitin Complex Is Dissociated in a Competitive Manner by Acetic Acid: Purification of Natural Enzyme for Supplementation Purposes.

    Science.gov (United States)

    Tabata, Eri; Kashimura, Akinori; Wakita, Satoshi; Sakaguchi, Masayoshi; Sugahara, Yasusato; Imamura, Yasutada; Shimizu, Hideaki; Matoska, Vaclav; Bauer, Peter O; Oyama, Fumitaka

    2018-01-25

    Acidic chitinase (Chia) has been implicated in asthma, allergic inflammations, and food processing. We have purified Chia enzymes with striking acid stability and protease resistance from chicken and pig stomach tissues using a chitin column and 8 M urea (urea-Chia). Here, we report that acetic acid is a suitable agent for native Chia purification from the stomach tissues using a chitin column (acetic acid-Chia). Chia protein can be eluted from a chitin column using 0.1 M acetic acid (pH 2.8), but not by using Gly-HCl (pH 2.5) or sodium acetate (pH 4.0 or 5.5). The melting temperatures of Chia are not affected substantially in the elution buffers, as assessed by differential scanning fluorimetry. Interestingly, acetic acid appears to be more effective for Chia-chitin dissociation than do other organic acids with similar structures. We propose a novel concept of this dissociation based on competitive interaction between chitin and acetic acid rather than on acid denaturation. Acetic acid-Chia also showed similar chitinolytic activity to urea-Chia, indicating that Chia is extremely stable against acid, proteases, and denaturing agents. Both acetic acid- and urea-Chia seem to have good potential for supplementation or compensatory purposes in agriculture or even biomedicine.

  17. Effect of corn steep liquor (CSL) and cassava wastewater (CW) on chitin and chitosan production by Cunninghamella elegans and their physicochemical characteristics and cytotoxicity.

    Science.gov (United States)

    Berger, Lúcia Raquel Ramos; Stamford, Thayza Christina Montenegro; Stamford-Arnaud, Thatiana Montenegro; de Oliveira Franco, Luciana; do Nascimento, Aline Elesbão; Cavalcante, Horacinna M de M; Macedo, Rui Oliveira; de Campos-Takaki, Galba Maria

    2014-02-28

    Microbiological processes were used for chitin and chitosan production with Cunninghamella elegans UCP/WFCC 0542 grown in different concentrations of two agro-industrial wastes, corn steep liquor (CSL) and cassava wastewater (CW) established using a 2² full factorial design. The polysaccharides were extracted by alkali-acid treatment and characterized by infrared spectroscopy, viscosity, thermal analysis, elemental analysis, scanning electron microscopy and X-ray diffraction. The cytotoxicity of chitosan was evaluated for signs of vascular change on the chorioallantoic membrane of chicken eggs. The highest biomass (9.93 g/L) was obtained in trial 3 (5% CW, 8% CSL), the greatest chitin and chitosan yields were 89.39 mg/g and 57.82 mg/g, respectively, and both were obtained in trial 2 (10% CW, 4% CSL). Chitin and chitosan showed a degree of deacetylation of 40.98% and 88.24%, and a crystalline index of 35.80% and 23.82%, respectively, and chitosan showed low molecular weight (LMW 5.2 × 10³ Da). Chitin and chitosan can be considered non-irritating, due to the fact they do not promote vascular change. It was demonstrated that CSL and CW are effective renewable agroindustrial alternative substrates for the production of chitin and chitosan.

  18. Co-production of lactic acid and chitin using a pelletized filamentous fungus Rhizopus oryzae cultured on cull potatoes and glucose.

    Science.gov (United States)

    Liu, Y; Liao, W; Chen, S

    2008-11-01

    This paper developed a novel process for lactic acid and chitin co-production of the pelletized Rhzious oryzae NRRL 395 fermentation using underutilized cull potatoes and glucose as nutrient source. Whole potato hydrolysate medium was first used to produce the highest pelletized biomass yield accompanying the highest chitin content in biomass. An enhanced lactic acid production then followed up using batch, repeated batch and fed batch culture with glucose as carbon source and mixture of ammonia and sodium hydroxide as neutralizer. The lactic acid productivity peaked at 2.8 and 3 g l(-1 )h(-1) in repeated batch culture and batch culture, respectively. The fed batch culture had the highest lactate concentration of 140 g l(-1). Separation of the biomass cultivation and the lactic acid production is able to not only improve lactic acid production, but also enhance the chitin content. Cull potato hydrolysate used as a nutrient source for biomass cultivation can significantly increase both biomass yield and chitin content. The three-step process using pelletized R. oryzae fermentation innovatively integrates utilization of agricultural residues into the process of co-producing lactic acid and chitin, so as to improve the efficiency, revenues and cost of fungal lactic acid production.

  19. The preparation and characterization of chitin and chitosan under large-scale submerged fermentation level using shrimp by-products as substrate.

    Science.gov (United States)

    Zhang, Hongcai; Yun, Sanyue; Song, Lingling; Zhang, Yiwen; Zhao, Yanyun

    2017-03-01

    The crustacean shells of crabs and shrimps produces quantities of by-products, leading to seriously environmental pollution and human health problems during industrial processing, yet they turned into high-value useful products, such as chitin and chitosan. To prepare them under large-scale submerged fermentation level, shrimp shell powders (SSPs) was fermented by successive three-step fermentation of Serratia marcescens B742, Lactobacillus plantarum ATCC 8014 and Rhizopus japonicus M193 to extract chitin and chitosan based on previously optimal conditions. Moreover, the key parameters was investigated to monitor the changes of resulted products during fermentation process. The results showed that the yield of prepared chitin and chitosan reached 21.35 and 13.11% with the recovery rate of 74.67 and 63.42%, respectively. The degree of deacetylation (DDA) and molecular mass (MM) of produced chitosan were 81.23% and 512.06kDa, respectively. The obtained chitin and chitosan was characterized using Fourier transform infrared spectrometer (FT-IR) and X-ray diffraction (XRD) analysis. The established microbial fermentation method can be applied for the industrial large-scale production of chitin and chitosan, while the use of chemical reagents was significantly reduced. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. KARAKTERISASI KITIN DEASETILASE TERMOSTABIL ISOLAT BAKTERI ASAL PANCURAN TUJUH, BATURADEN, JAWA TENGAH [Characterization of Thermostable Chitin Deacetylase from Bacteria Strain Pancuran Tujuh, Baturaden, Center of Java

    Directory of Open Access Journals (Sweden)

    Deuxianto Hendarsyah3

    2006-04-01

    Full Text Available Chitin deacetylase is the enzymes that has important role in converting chitin to chitosan. In nature, chitin is the second most abundant natural biopolymer after cellulose. Generally, chitin easily obtained from outer shell of crustaceans, arthropods, and also detectable on cell wall of some type of fungal (Zygomycetes. The chitin deacetylase was isolated from Bacillus sp PT2-3. It was found that the highest specific activity was attained at pH 8 60°C. The addition of 5 mM Zn2+ and 5 mM Mn2+ increased the specific activity of the enzyme, 4.39% and 7.8%, respectively, and the increase was only 2.19% when the addition was 2 mM Mn2+. On the contrary the addition of Ca2+, Mg2+ and Fe2+ decrease the specific activity 46.83%, 41.22% and 47.32%, respectively. The enzyme activity was relatively stable at 60°C for 60 minutes, while lengthen the time to 90 minutes, decreased the activity 15.05 %, and the decrease was 26.13% at temperature of 70°C for 180 minutes.

  1. Effect of Corn Steep Liquor (CSL and Cassava Wastewater (CW on Chitin and Chitosan Production by Cunninghamella elegans and Their Physicochemical Characteristics and Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Lúcia Raquel Ramos Berger

    2014-02-01

    Full Text Available Microbiological processes were used for chitin and chitosan production with Cunninghamella elegans UCP/WFCC 0542 grown in different concentrations of two agro-industrial wastes, corn steep liquor (CSL and cassava wastewater (CW established using a 22 full factorial design. The polysaccharides were extracted by alkali-acid treatment and characterized by infrared spectroscopy, viscosity, thermal analysis, elemental analysis, scanning electron microscopy and X-ray diffraction. The cytotoxicity of chitosan was evaluated for signs of vascular change on the chorioallantoic membrane of chicken eggs. The highest biomass (9.93 g/L was obtained in trial 3 (5% CW, 8% CSL, the greatest chitin and chitosan yields were 89.39 mg/g and 57.82 mg/g, respectively, and both were obtained in trial 2 (10% CW, 4% CSL. Chitin and chitosan showed a degree of deacetylation of 40.98% and 88.24%, and a crystalline index of 35.80% and 23.82%, respectively, and chitosan showed low molecular weight (LMW 5.2 × 103 Da. Chitin and chitosan can be considered non-irritating, due to the fact they do not promote vascular change. It was demonstrated that CSL and CW are effective renewable agroindustrial alternative substrates for the production of chitin and chitosan.

  2. Diversity of the bacterial and fungal microflora from the midgut and cuticle of phlebotomine sand flies collected in North-Western Iran.

    Directory of Open Access Journals (Sweden)

    Mohammad Akhoundi

    Full Text Available BACKGROUND: Phlebotomine sand flies are the vectors of the leishmaniases, parasitic diseases caused by Leishmania spp. Little is known about the prevalence and diversity of sand fly microflora colonizing the midgut or the cuticle. Particularly, there is little information on the fungal diversity. This information is important for development of vector control strategies. METHODOLOGY/PRINCIPAL FINDINGS: FIVE SAND FLY SPECIES: Phlebotomus papatasi, P. sergenti, P. kandelakii, P. perfiliewi and P. halepensis were caught in Bileh Savar and Kaleybar in North-Western Iran that are located in endemic foci of visceral leishmaniasis. A total of 35 specimens were processed. Bacterial and fungal strains were identified by routine microbiological methods. We characterized 39 fungal isolates from the cuticle and/or the midgut. They belong to six different genera including Penicillium (17 isolates, Aspergillus (14, Acremonium (5, Fusarium (1, Geotrichum (1 and Candida (1. We identified 33 Gram-negative bacteria: Serratia marcescens (9 isolates, Enterobacter cloacae (6, Pseudomonas fluorescens (6, Klebsiella ozaenae (4, Acinetobacter sp. (3, Escherichia coli (3, Asaia sp. (1 and Pantoea sp. (1 as well as Gram-positive bacteria Bacillus subtilis (5 and Micrococcus luteus (5 in 10 isolates. CONCLUSION/SIGNIFICANCE: Our study provides new data on the microbiotic diversity of field-collected sand flies and for the first time, evidence of the presence of Asaia sp. in sand flies. We have also found a link between physiological stages (unfed, fresh fed, semi gravid and gravid of sand flies and number of bacteria that they carry. Interestingly Pantoea sp. and Klebsiella ozaenae have been isolated in Old World sand fly species. The presence of latter species on sand fly cuticle and in the female midgut suggests a role for this arthropod in dissemination of these pathogenic bacteria in endemic areas. Further experiments are required to clearly delineate the vectorial

  3. Transcriptome Comparative Profiling of Barley eibi1 Mutant Reveals Pleiotropic Effects of HvABCG31 Gene on Cuticle Biogenesis and Stress Responsive Pathways

    Directory of Open Access Journals (Sweden)

    Eviatar Nevo

    2013-10-01

    Full Text Available Wild barley eibi1 mutant with HvABCG31 gene mutation has low capacity to retain leaf water, a phenotype associated with reduced cutin deposition and a thin cuticle. To better understand how such a mutant plant survives, we performed a genome-wide gene expression analysis. The leaf transcriptomes between the near-isogenic lines eibi1 and the wild type were compared using the 22-k Barley1 Affymetrix microarray. We found that the pleiotropic effect of the single gene HvABCG31 mutation was linked to the co-regulation of metabolic processes and stress-related system. The cuticle development involved cytochrome P450 family members and fatty acid metabolism pathways were significantly up-regulated by the HvABCG31 mutation, which might be anticipated to reduce the levels of cutin monomers or wax and display conspicuous cuticle defects. The candidate genes for responses to stress were induced by eibi1 mutant through activating the jasmonate pathway. The down-regulation of co-expressed enzyme genes responsible for DNA methylation and histone deacetylation also suggested that HvABCG31 mutation may affect the epigenetic regulation for barley development. Comparison of transcriptomic profiling of barley under biotic and abiotic stresses revealed that the functions of HvABCG31 gene to high-water loss rate might be different from other osmotic stresses of gene mutations in barley. The transcriptional profiling of the HvABCG31 mutation provided candidate genes for further investigation of the physiological and developmental changes caused by the mutant.

  4. Transcriptome comparative profiling of barley eibi1 mutant reveals pleiotropic effects of HvABCG31 gene on cuticle biogenesis and stress responsive pathways.

    Science.gov (United States)

    Yang, Zujun; Zhang, Tao; Lang, Tao; Li, Guangrong; Chen, Guoxiong; Nevo, Eviatar

    2013-10-14

    Wild barley eibi1 mutant with HvABCG31 gene mutation has low capacity to retain leaf water, a phenotype associated with reduced cutin deposition and a thin cuticle. To better understand how such a mutant plant survives, we performed a genome-wide gene expression analysis. The leaf transcriptomes between the near-isogenic lines eibi1 and the wild type were compared using the 22-k Barley1 Affymetrix microarray. We found that the pleiotropic effect of the single gene HvABCG31 mutation was linked to the co-regulation of metabolic processes and stress-related system. The cuticle development involved cytochrome P450 family members and fatty acid metabolism pathways were significantly up-regulated by the HvABCG31 mutation, which might be anticipated to reduce the levels of cutin monomers or wax and display conspicuous cuticle defects. The candidate genes for responses to stress were induced by eibi1 mutant through activating the jasmonate pathway. The down-regulation of co-expressed enzyme genes responsible for DNA methylation and histone deacetylation also suggested that HvABCG31 mutation may affect the epigenetic regulation for barley development. Comparison of transcriptomic profiling of barley under biotic and abiotic stresses revealed that the functions of HvABCG31 gene to high-water loss rate might be different from other osmotic stresses of gene mutations in barley. The transcriptional profiling of the HvABCG31 mutation provided candidate genes for further investigation of the physiological and developmental changes caused by the mutant.

  5. A comparison of the structure of American (Homarus americanus) and European (Homarus gammarus) lobster cuticle with particular reference to shell disease susceptibility.

    Science.gov (United States)

    Davies, Charlotte E; Whitten, Miranda M A; Kim, Anita; Wootton, Emma C; Maffeis, Thierry G G; Tlusty, Michael; Vogan, Claire L; Rowley, Andrew F

    2014-03-01

    The integument of arthropods is an important first-line defence against the invasion of parasites and pathogens. Once damaged, this can be subject to colonisation by microbial agents from the surrounding environment, which in crustaceans can lead to a condition termed shell disease syndrome. This condition has been reported in several crustacean species, including crabs and lobsters. The syndrome is a progressive condition where the outer cuticle becomes pitted and eroded, and in extreme cases is compromised, leaving animals susceptible to septicaemia. This study examined the susceptibility of juvenile American (Homarus americanus) and European (Homarus gammarus) lobsters to shell disease, as a result of mechanical damage. Scanning electron microscopy was used as a method to identify differences in the cuticle structure and consequences of mechanical damage. Claw regions were aseptically punctured, whilst carapaces were abraded using sterile sandpaper, to mimic natural damage. After a period of between 10 and 12 weeks, lobsters were sacrificed, fixed and stored for later examination. The carapace and claws of juvenile American lobsters were shown to be thinner and more vulnerable to abrasion damage than their European counterparts. In addition, the number and distribution of setal pits and pore canal openings also differed between the two species of lobster. Mechanical damage resulted in the formation of shell disease lesions on the claw and carapace of both lobster species. However, American lobsters, unlike their European counterparts, had extensive bacterial colonisation on the margins of these lesions. Overall, it is concluded that the cuticle of the American lobster is more susceptible to damage and resulting microbial colonisation. This may have implications for susceptibility of both species of lobster to shell disease syndrome. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Transformation of the matrix structure of shrimp shells during bacterial deproteination and demineralization

    Science.gov (United States)

    2013-01-01

    Background After cellulose and starch, chitin is the third-most abundant biopolymer on earth. Chitin or its deacetylated derivative chitosan is a valuable product with a number of applications. It is one of the main components of shrimp shells, a waste product of the fish industry. To obtain chitin from Penaeus monodon, wet and dried shrimp shells were deproteinated with two specifically enriched proteolytic cultures M1 and M2 and decalcified by in-situ lactic acid forming microorganisms. The viscosity of biologically processed chitin was compared with chemically processed chitin. The former was further investigated for purity, structure and elemental composition by several microscopic techniques and 13C solid state NMR spectroscopy. Results About 95% of the protein of wet shrimp shells was removed by proteolytic enrichment culture M2 in 68 h. Subsequent decalcification by lactic acid bacteria (LAB) took 48 h. Deproteination of the same amount of dried shrimps that contained a 3 × higher solid content by the same culture was a little bit faster and was finished after 140 h. The viscosity of chitin was in the order of chemically processed chitin > bioprocessed chitin > commercially available chitin. Results revealed changes in fine structure and chemical composition of the epi-, exo- and endocuticle of chitin from shrimp shells during microbial deproteination and demineralization. From transmission electron microscopy (TEM) overlays and electron energy loss spectroscopy (EELS) analysis, it was found that most protein was present in the exocuticle, whereas most chitin was present in the endocuticle. The calcium content was higher in the endocuticle than in the exocuticle.13C solid state NMR spectra of different chitin confirmed shell waste resulted in a chitin with high purity. Its viscosity was higher than that of commercially available chitin but lower than that of chemically prepared chitin in our lab. Nevertheless, the biologically processed chitin is a

  7. Purification of a chitin-binding protein from Moringa oleifera seeds with potential to relieve pain and inflammation.

    Science.gov (United States)

    Pereira, Mirella Leite; de Oliveira, Hermogenes David; de Oliveira, Jose Tadeu Abreu; Gifoni, Juliana Menezes; Rocha, Raquel de Oliveira; de Sousa, Daniele de Oliveira Bezerra; Vasconcelos, Ilka Maria

    2011-11-01

    Moringa oleifera Lam. is a perennial multipurpose tree that has been successfully used in folk medicine to cure several inflammatory processes. The aim of this study was to purify and characterize a chitin-binding protein from Moringa oleifera seeds, named Mo-CBP4, and evaluate its antinociceptive and anti-inflammatory effects in vivo. The protein was purified by affinity chromatography on chitin followed by ion exchange chromatography. Acetic acid-induced abdominal constrictions assay was used for the antinociceptive and anti-inflammatory activity assessments. Mo-CBP4 is a glycoprotein (2.9% neutral carbohydrate) composed of two protein subunits with apparent molecular masses of 28 and 18 kDa (9 kDa in the presence of reducing agent). The intraperitoneal injection of Mo-CBP4 (3.5 and 10 mg/kg) into mice 30 min before acetic acid administration potently and significantly reduced the occurrence of abdominal writhing in a dose dependent manner by 44.7% and 100%, respectively. In addition, the oral administration of the protein (10 mg/kg) resulted in 18% and 52.8% reductions in abdominal writhing when given 30 and 60 min prior to acetic acid administration, respectively. Mo-CBP4, when administered by intraperitoneal route, also caused a significant and dose-dependent inhibition of peritoneal capillary permeability induced by acid acetic and significantly inhibited leukocyte accumulation in the peritoneal cavity. In conclusion, this pioneering study describes that the chitin-binding protein Mo-CBP4, from M. oleifera seeds, exhibits anti-inflammatory and antinociceptive properties and scientifically supports the use of this multipurpose tree in folk medicine.

  8. Host Delivered RNAi of Two Cuticle Collagen Genes, Mi-col-1 and Lemmi-5 Hampers Structure and Fecundity in Meloidogyne incognita

    Directory of Open Access Journals (Sweden)

    Sagar Banerjee

    2018-01-01

    Full Text Available Root-knot nematodes have emerged as devastating parasites causing substantial losses to agricultural economy worldwide. Tomato is the most favored host for major species of root-knot nematodes. Control strategies like use of nematicides have proved to be harmful to the environment. Other control methods like development of resistant cultivars and crop rotation have serious limitations. This study deals with the application of host generated RNA interference toward development of resistance against root-knot nematode Meloidogyne incognita in tomato. Two cuticle collagen genes viz. Mi-col-1 and Lemmi-5 involved in the synthesis and maintenance of the cuticle in M. incognita were targeted through host generated RNA interference. Expression of both Mi-col-1 and Lemmi-5 was found to be higher in adult females followed by egg masses and J2s. Tomato var. Pusa Ruby was transformed with the RNAi constructs of these genes to develop transgenic lines expressing the target dsRNAs. 30.80–35.00% reduction in the number of adult females, 50.06–65.73% reduction in the number of egg mass per plant and 76.47–82.59% reduction in the number of eggs per egg mass were observed for the T1 events expressing Mi-col-1 dsRNA. Similarly, 34.14–38.54% reduction in the number of adult females, 62.34–66.71% reduction in number of egg mass per plant and 67.13–79.76% reduction in the number of eggs per egg mass were observed for the T1 generation expressing Lemmi-5 dsRNA. The multiplication factor of M. incognita reduced significantly in both the cases and the structure of adult females isolated from transgenic plants were heavily distorted. This study demonstrates the role of the cuticle collagen genes Mi-col-1 and Lemmi-5 in the structure and development of M. incognita cuticle inside the host and reinforces the potential of host generated RNA interference for management of plant parasitic nematodes (PPNs.

  9. A Major Facilitator Superfamily protein encoded by TcMucK gene is not required for cuticle pigmentation, growth and development in Tribolium castaneum.

    Science.gov (United States)

    Mun, Seulgi; Noh, Mi Young; Osanai-Futahashi, Mizuko; Muthukrishnan, Subbaratnam; Kramer, Karl J; Arakane, Yasuyuki

    2014-06-01

    Insect cuticle pigmentation and sclerotization (tanning) are vital physiological processes for insect growth, development and survival. We have previously identified several colorless precursor molecules as well as enzymes involved in their biosynthesis and processing to yield the mature intensely colored body cuticle pigments. A recent study indicated that the Bombyx mori (silkmoth) gene, BmMucK, which encodes a protein orthologous to a Culex pipiens quiquefasciatus (Southern house mosquito) cis,cis, muconate transporter, is a member of the "Major Facilitator Superfamily" (MFS) of transporter proteins and is associated with the appearance of pigmented body segments of naturally occurring body color mutants of B. mori. While RNA interference of the BmMucK gene failed to result in any observable phenotype, RNAi using a dsRNA for an orthologous gene from the red flour beetle, Tribolium castaneum, was reported to result in molting defects and darkening of the cuticle and some body parts, leading to the suggestion that orthologs of MucK genes may differ in their functions among insects. To verify the role and essentiality of the ortholog of this gene in development and body pigmentation function in T. castaneum we obtained cDNAs for the orthologous gene (TcMucK) from RNA isolated from the GA-1 wild-type strain of T. castaneum. The sequence of a 1524 nucleotides-long cDNA for TcMucK which encodes the putatively full-length protein, was assembled from two overlapping RT-PCR fragments and the expression profile of this gene during development was analyzed by real-time PCR. This cDNA encodes a 55.8 kDa protein consisting of 507 amino acid residues and includes 11 putative transmembrane segments. Transcripts of TcMucK were detected throughout all of the developmental stages analyzed. The function of this gene was explored by injection of two different double-stranded RNAs targeting different regions of the TcMucK gene (dsTcMucKs) into young larvae to down

  10. A discrete transition zone between cuticle and cortex layers of a human hair fibre: changes observed in the presence of breast cancer

    OpenAIRE

    Lyman, Donald; Gerstmann, Paula

    2017-01-01

    Attenuated total reflection Fourier transform infrared (ATR–FT-IR) spectroscopy of hair fibres shows a discrete transition zone (DTZ) between the hard protective cuticle layer and the softer elongated cortical cells of the cortex. The DTZ is composed of flattened or