WorldWideScience

Sample records for chitin

  1. Chitin Degradation In Marine Bacteria

    DEFF Research Database (Denmark)

    Paulsen, Sara; Machado, Henrique; Gram, Lone

    2015-01-01

    Introduction: Chitin is the most abundant polymer in the marine environment and the second most abundant in nature. Chitin does not accumulate on the ocean floor, because of microbial breakdown. Chitin degrading bacteria could have potential in the utilization of chitin as a renewable carbon and...... nitrogen source in the fermentation industry.Methods: Here, whole genome sequenced marine bacteria were screened for chitin degradation using phenotypic and in silico analyses.Results: The in silico analyses revealed the presence of three to nine chitinases in each strain, however the number of chitinases...... chitin regulatory system.Conclusions: This study has provided insight into the ecology of chitin degradation in marine bacteria. It also served as a basis for choosing a more efficient chitin degrading production strain e.g. for the use of chitin waste for large-scale fermentations....

  2. Chitin fulfilling a biomaterials promise

    CERN Document Server

    Khor, Eugene

    2001-01-01

    The second edition of Chitin underscores the important factors for standardizing chitin processing and characterization. It captures the essential interplay between chitin's assets and limitations as a biomaterial, placing the past promises of chitin in perspective, addressing its present realities and offering insight into what is required to realize chitin's destiny (including its derivative, chitosan) as a biomaterial of the twenty-first century. This book is an ideal guide for both industrialists and researchers with a vested interest in commercializing chitin.An upd

  3. Pyrolysis of chitin biomass

    DEFF Research Database (Denmark)

    Qiao, Yan; Chen, Shuai; Liu, Ying;

    2015-01-01

    The thermal degradation of chitin biomass with various molecular structures was investigated by thermogravimetric analysis (TG), and the gaseous products were analyzed by connected mass spectroscopy (MS). The chemical structure and morphology of char residues collected at 750°C using the model...

  4. Benzoylurea Chitin Synthesis Inhibitors.

    Science.gov (United States)

    Sun, Ranfeng; Liu, Chunjuan; Zhang, Hao; Wang, Qingmin

    2015-08-12

    Benzoylurea chitin synthesis inhibitors are widely used in integrated pest management (IPM) and insecticide resistance management (IRM) programs due to their low toxicity to mammals and predatory insects. In the past decades, a large number of benzoylurea derivatives have been synthesized, and 15 benzoylurea chitin synthesis inhibitors have been commercialized. This review focuses on the history of commercial benzolyphenylureas (BPUs), synthetic methods, structure-activity relationships (SAR), action mechanism research, environmental behaviors, and ecotoxicology. Furthermore, their disadvantages of high risk to aquatic invertebrates and crustaceans are pointed out. Finally, we propose that the para-substituents at anilide of benzoylphenylureas should be the functional groups, and bipartite model BPU analogues are discussed in an attempt to provide new insight for future development of BPUs. PMID:26168369

  5. Chitin-based Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    D.K.Polyakov; S.N.Chvalun

    2007-01-01

    1 Results The one of the promising development of biodegradable nanocomposites is using native polysaccharides which have pronounced fibril structure to provide not only excellent mechanical properties and biodegradability of produced material but also control the barrier properties, for example increasing selectivity of pervaporation membrane. Chitin is the most popular biopolymer in the nature after cellulose. It is the 2-acetoamido-derivative of cellulose and serves as the fibrous component of the sk...

  6. In situ microscopic observation of chitin and fungal cells with chitinous cell walls in hydrothermal conditions

    OpenAIRE

    Shigeru Deguchi; Kaoru Tsujii; Koki Horikoshi

    2015-01-01

    Recent findings of intact chitin in fossil records suggest surprisingly high recalcitrance of this biopolymer during hydrothermal treatments. We also know in the experience of everyday life that mushroom, cells of which have chitinous cell walls, do not fall apart however long they are simmered. We used in situ optical microscopy to examine chitin and fungal cells with chitinous cell walls during hydrothermal treatments, and obtained direct evidence that they remained undegraded at temperatur...

  7. Physicochemical Characterization and the Comparison of Chitin and Chitin Modified with Maleic Anhydride

    OpenAIRE

    İlhan Uzun; Ömer Çelik

    2015-01-01

    Firstly, chitin was modified via ring-opening reaction with maleic anhydride in lithium chloride/N,N-dimethylacetamide. Then, both chitin and chitin modified with maleic anhydride (CMA) were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) method, ultraviolet-visible (UV-Vis) spectroscopy, and scanning electron microscopy (SEM). Thermogravimetric analysis (TGA) was performed to investigate the thermal stability of chitin and CMA. TGA results showed that...

  8. Determination of chitin in Claviceps

    International Nuclear Information System (INIS)

    Preparations rich in chitin obtained from the cell walls of ergot fungi were studied by X-ray diffraction and IR-techniques. During the course of fermentation the yield of chitin was determined using a modified procedure according to Ride and Drysdale (1972). A saprophytically ergotoxine producing Claviceps purpurea strain (Pepty 695) was found to contain 7-9 μg glucosamine/mg dry weight of the mycelium in contrast to 3-5 μg glucosamine/mg dry weight of a non-alkaloid producing C. purpurea strain (PUR 212). There was no remarkable fluctuation of the glucosamine content in strain Pepty 695 during the course of fermentation. (author)

  9. Chitin Degradation Proteins Produced by the Marine Bacterium Vibrio harveyi Growing on Different Forms of Chitin

    Science.gov (United States)

    Svitil, A. L.; Chadhain, S.; Moore, J. A.; Kirchman, D. L.

    1997-01-01

    Relatively little is known about the number, diversity, and function of chitinases produced by bacteria, even though chitin is one of the most abundant polymers in nature. Because of the importance of chitin, especially in marine environments, we examined chitin-degrading proteins in the marine bacterium Vibrio harveyi. This bacterium had a higher growth rate and more chitinase activity when grown on (beta)-chitin (isolated from squid pen) than on (alpha)-chitin (isolated from snow crab), probably because of the more open structure of (beta)-chitin. When exposed to different types of chitin, V. harveyi excreted several chitin-degrading proteins into the culture media. Some chitinases were present with all of the tested chitins, while others were unique to a particular chitin. We cloned and identified six separate chitinase genes from V. harveyi. These chitinases appear to be unique based on DNA restriction patterns, immunological data, and enzyme activity. This marine bacterium and probably others appear to synthesize separate chitinases for efficient utilization of different forms of chitin and chitin by-products. PMID:16535505

  10. Differentiations of chitin content and surface morphologies of chitins extracted from male and female grasshopper species.

    Directory of Open Access Journals (Sweden)

    Murat Kaya

    Full Text Available In this study, we used Fourier transform infrared spectroscopy (FT-IR, elemental analysis (EA, thermogravimetric analysis (TGA, X-ray diffractometry (XRD, and scanning electron microscopy (SEM to investigate chitin structure isolated from both sexes of four grasshopper species. FT-IR, EA, XRD, and TGA showed that the chitin was in the alpha form. With respect to gender, two main differences were observed. First, we observed that the quantity of chitin was greater in males than in females and the dry weight of chitin between species ranged from 4.71% to 11.84%. Second, using SEM, we observed that the male chitin surface structure contained 25-90 nm wide nanofibers and 90-250 nm nanopores, while no pores or nanofibers were observed in the chitin surface structure of the majority of females (nanofibers were observed only in M. desertus females. In contrast, the elemental analysis, thermal properties, and crystalline index values for chitin were similar in males and females. Also, we carried out enzymatic digestion of the isolated chitins using commercial chitinase from Streptomyces griseus. We observed that there were no big differences in digestion rate of the chitins from both sexes and commercial chitin. The digestion rates were for grasshoppers' chitins; 88.45-95.48% and for commercial chitin; 94.95%.

  11. Preparation of Chitin Nanofibers from Mushrooms

    Directory of Open Access Journals (Sweden)

    Hiroyuki Saimoto

    2011-08-01

    Full Text Available Chitin nanofibers were isolated from the cell walls of five different types of mushrooms by the removal of glucans, minerals, and proteins, followed by a simple grinding treatment under acidic conditions. The Chitin nanofibers thus obtained have a uniform structure and a long fiber length. The width of the nanofibers depended on the type of mushrooms and varied in the range 20 to 28 nm. The Chitin nanofibers were characterized by elemental analyses, FT-IR spectra, and X-ray diffraction profiles. The results showed that the α-chitin crystal structure was maintained and glucans remained on the nanofiber surface.

  12. Chitin nanofiber elucidates the elicitor activity of polymeric chitin in plants

    Directory of Open Access Journals (Sweden)

    Mayumi eEgusa

    2015-12-01

    Full Text Available Chitin, an N-acetyl-D-glucosamine polymer, is a component of fungal cell walls and a microbe/pathogen-associated molecular pattern that elicits plant defense responses. As polymeric chitin is difficult to handle due to its insolubility in water, many studies on chitin-induced immune responses have used water-soluble low-molecular weight chitin instead. Thus, it is unclear if polymeric chitin can induce resistance. Here, we examined the elicitor activity of chitin nanofiber (CNF of submicron thickness prepared from polymeric chitin. CNF showed a high dispersing ability in water and induced both reactive oxygen species (ROS production and chitin-induced defense-related gene expression in Arabidopsis thaliana seedlings. The Arabidopsis chitin elicitor receptor kinase 1 (Atcerk1 mutant, which is impaired in chitin perception, also failed to respond to CNF. CNF exposure triggered ROS generation in suspension-cultured cells from Oryza sativa. Furthermore, pre-treatment of Arabidopsis leaves with CNF effectively reduced pathogen infection by both the fungus Alternaria brassicicola and the bacterium Pseudomonas syringae pv. tomato DC3000. These results demonstrate that CNF has elicitor activity and will help define the role of polymeric chitin in plant immune responses.

  13. Physicochemical Characterization and the Comparison of Chitin and Chitin Modified with Maleic Anhydride

    Directory of Open Access Journals (Sweden)

    İlhan Uzun

    2015-06-01

    Full Text Available Firstly, chitin was modified via ring-opening reaction with maleic anhydride in lithium chloride/N,N-dimethylacetamide. Then, both chitin and chitin modified with maleic anhydride (CMA were characterized by Fourier transform infrared (FTIR spectroscopy, X-ray diffraction (XRD method, ultraviolet-visible (UV-Vis spectroscopy, and scanning electron microscopy (SEM. Thermogravimetric analysis (TGA was performed to investigate the thermal stability of chitin and CMA. TGA results showed that chitin is thermally more stable than CMA. In addition, the electrical conductivity of chitin and CMA was also measured. Electrical conductivity measurement results showed that the electrical conductivity of CMA (4.3x10-4 S cm-1 is more than that of chitin (6.5x10-6 S cm-1.

  14. Chitin promotes Mycobacterium ulcerans growth.

    Science.gov (United States)

    Sanhueza, Daniel; Chevillon, Christine; Colwell, Rita; Babonneau, Jérémie; Marion, Estelle; Marsollier, Laurent; Guégan, Jean-François

    2016-06-01

    Mycobacterium ulcerans(MU) is the causative agent of Buruli ulcer, an emerging human infectious disease. However, both the ecology and life cycle of MU are poorly understood. The occurrence of MU has been linked to the aquatic environment, notably water bodies affected by human activities. It has been hypothesized that one or a combination of environmental factor(s) connected to human activities could favour growth of MU in aquatic systems. Here, we testedin vitrothe growth effect of two ubiquitous polysaccharides and five chemical components on MU at concentration ranges shown to occur in endemic regions. Real-time PCR showed that chitin increased MU growth significantly providing a nutrient source or environmental support for thebacillus, thereby, providing a focus on the association between MU and aquatic arthropods. Aquatic environments with elevated population of arthropods provide increased chitin availability and, thereby, enhanced multiplication of MU. If calcium very slightly enhanced MU growth, iron, zinc, sulphate and phosphate did not stimulate MU growth, and at the concentration ranges of this study would limit MU population in natural ecosystems. PMID:27020062

  15. Fabrication of optically transparent chitin nanocomposites

    Science.gov (United States)

    Shams, M. Iftekhar; Ifuku, Shinsuke; Nogi, Masaya; Oku, Takeshi; Yano, Hiroyuki

    2011-02-01

    This paper demonstrates the preparation of chitin nanofibers from crab shells using a simple mechanical treatment. The nanofibers are small enough to retain the transparency of neat acrylic resin. Possessing hydroxyl and amine/ N-acetyl functionalities, water suspension of chitin nanofibers was vacuum-filtered 9 times faster than cellulose nanofibers to prepare a nanofiber sheet of 90 mm in diameter. This is a prominent advantage of chitin nanofibers over cellulose nanofibers in terms of commercial application. Interestingly, chitin acrylic resin films exhibited much higher transparency than cellulose acrylic resin films owing to the close affinity between less hydrophilic chitin and hydrophobic resin. Furthermore, the incorporation of chitin nanofibers contributes to the significant improvement of the thermal expansion and mechanical properties of the neat acrylic resin. The properties of high light transmittance and low thermal expansion make chitin nanocomposites promising candidates for the substrate in a continuous roll-to-roll process in the manufacturing of various optoelectronic devices such as flat panel displays, bendable displays, and solar cells.

  16. Induction of Chitin-Binding Proteins during the Specific Attachment of the Marine Bacterium Vibrio harveyi to Chitin

    Science.gov (United States)

    Montgomery, Michael T.; Kirchman, David L.

    1994-01-01

    Previous work has shown that attachment of Vibrio harveyi to chitin is specific and involves at least two chitin-binding peptides. However, the roles and regulation of these chitin-binding peptides in attachment are still unclear. Here we show that preincubation with the oligomeric sugars composing chitin stimulated chitinase activity, cellular attachment to chitin, and production of chitin-binding peptides. One of these peptides, a 53-kDa peptide, is produced constitutively and appears to mediate initial attachment to chitin. Synthesis of another peptide, a 150-kDa chitin-binding peptide, is induced by chitin and thus may be involved in time-dependent attachment. Coordinated regulation of attachment and degradation of chitin may give bacteria like V. harveyi a selective advantage over other bacteria in nutrient-poor aquatic environments. Images PMID:16349455

  17. Role of Chitin-Binding Proteins in the Specific Attachment of the Marine Bacterium Vibrio harveyi to Chitin

    Science.gov (United States)

    Montgomery, Michael T.; Kirchman, David L.

    1993-01-01

    We examined the mechanism of attachment of the marine bacterium Vibrio harveyi to chitin. Wheat germ agglutinin and chitinase bind to chitin and competitively inhibited the attachment of V. harveyi to chitin, but not to cellulose. Bovine serum albumin and cellulase do not bind to chitin and had no effect on bacterial attachment to chitin. These data suggest that this bacterium recognizes specific attachment sites on the chitin particle. The level of attachment of a chitinase-overproducing mutant of V. harveyi to chitin was about twice as much as that of the uninduced wild type. Detergent-extracted cell membranes inhibited attachment and contained a 53-kDa peptide that was overproduced by the chitinase-overproducing mutant. Three peptides (40, 53, and 150 kDa) were recovered from chitin which had been exposed to membrane extracts. Polyclonal antibodies raised against extracellular chitinase cross-reacted with the 53- and 150-kDa chitin-binding peptides and inhibited attachment, probably by sterically hindering interactions between the chitin-binding peptides and chitin. The 53- and 150-kDa chitin-binding peptides did not have chitinase activity. These results suggest that chitin-binding peptides, especially the 53-kDa chitin-binding peptide and chitinase and perhaps the 150-kDa peptide, mediate the specific attachment of V. harveyi to chitin. Images PMID:16348865

  18. A Selective Assay to Detect Chitin and Biologically Active Nano-Machineries for Chitin-Biosynthesis with Their Intrinsic Chitin-Synthase Molecules

    Directory of Open Access Journals (Sweden)

    Hildgund Schrempf

    2010-09-01

    Full Text Available A new assay system for chitin has been developed. It comprises the chitin-binding protein ChbB in fusion with a His-tag as well as with a Strep-tag, the latter of which was chemically coupled to horseradish peroxidase. With the resulting complex, minimal quantities of chitin are photometrically detectable. In addition, the assay allows rapid scoring of the activity of chitin-synthases. As a result, a refined procedure for the rapid purification of yeast chitosomes (nano-machineries for chitin biosynthesis has been established. Immuno-electronmicroscopical studies of purified chitosomes, gained from a yeast strain carrying a chitin-synthase gene fused to that for GFP (green-fluorescence protein, has led to the in situ localization of chitin-synthase-GFP molecules within chitosomes.

  19. Bacterial chitin degradation-mechanisms and ecophysiological strategies.

    Science.gov (United States)

    Beier, Sara; Bertilsson, Stefan

    2013-01-01

    Chitin is one the most abundant polymers in nature and interacts with both carbon and nitrogen cycles. Processes controlling chitin degradation are summarized in reviews published some 20 years ago, but the recent use of culture-independent molecular methods has led to a revised understanding of the ecology and biochemistry of this process and the organisms involved. This review summarizes different mechanisms and the principal steps involved in chitin degradation at a molecular level while also discussing the coupling of community composition to measured chitin hydrolysis activities and substrate uptake. Ecological consequences are then highlighted and discussed with a focus on the cross feeding associated with the different habitats that arise because of the need for extracellular hydrolysis of the chitin polymer prior to metabolic use. Principal environmental drivers of chitin degradation are identified which are likely to influence both community composition of chitin degrading bacteria and measured chitin hydrolysis activities. PMID:23785358

  20. Bacterial chitin degradation – mechanisms and ecophysiological strategies

    Directory of Open Access Journals (Sweden)

    StefanBertilsson

    2013-06-01

    Full Text Available Chitin is one the most abundant polymers in nature and interacts with both carbon and nitrogen cycles. Processes controlling chitin degradation are summarized in reviews published some 20 years ago, but the recent use of culture-independent molecular methods has led to a revised understanding of the ecology and biochemistry of this process and the organisms involved. This review summarizes different mechanisms and the principal steps involved in chitin degradation at a molecular level while also discussing the coupling of community composition to measured chitin hydrolysis activities and substrate uptake. Ecological consequences are then highlighted and discussed with a focus on the cross feeding associated with the different habitats that arise because of the need for extracellular hydrolysis of the chitin polymer prior to metabolic use. Principal environmental drivers of chitin degradation are identified which are likely to influence both community composition of chitin degrading bacteria and measured chitin hydrolysis activities.

  1. Single polymer composites. Chitin-nanofibrils-reinforced chitosan films

    Czech Academy of Sciences Publication Activity Database

    Tishchenko, Galina; Peter, Jakub; Pavlova, Ewa; Brus, Jiří; Netopilík, Miloš; Pekárek, Michal; Sedláková, Zdeňka; Špírková, Milena; Rosova, E. Yu.; Elyashevich, G. K.

    Saint-Petersburg : Russian Chitin Society, 2011. s. 28. [International Conference of the European Chitin Society /10./. 20.05.2011-24.05.2011, Saint-Petersburg] R&D Projects: GA ČR(CZ) GA525/08/0803 Institutional research plan: CEZ:AV0Z40500505 Keywords : chitin nanofibrils * chitosan * composite films Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition

  2. Perspectives of Chitin and Chitosan Nanofibrous Scaffolds in Tissue Engineering

    OpenAIRE

    Jayakumar, R.; Nair, S. V.; Furuike, T.; Tamura, H.

    2010-01-01

    This review summarized the preparation and tissue engineering applications of chitin and chitosan based nanofibers. Additional studies are necessary before clinical applications and for commercialization of the chitin and chitosan based nanofibers. We hope that this review article will bring new innovative types of chitin and chitosan nanofibers for tissue engineering applications in the future.

  3. Migration of canine neutrophils to chitin and chitosan.

    Science.gov (United States)

    Usami, Y; Okamoto, Y; Minami, S; Matsuhashi, A; Kumazawa, N H; Tanioka, S; Shigemasa, Y

    1994-12-01

    Suspension of chitin and chitosan particles (mean size of 1 micron) were found to attract canine neutrophils chemotactically as determined by a checkerboard assay through polycarbonate filter with 5 microns pore size in Blind well chamber. Suspension of chitin induced chemokinetic migrations of the neutrophils. These evidences might reflect accumulation of neutrophils to chitin- and chitosan-implanted regions in dogs. PMID:7696425

  4. Preparation of chitin nanofibers by surface esterification of chitin with maleic anhydride and mechanical treatment.

    Science.gov (United States)

    Aklog, Yihun Fantahun; Nagae, Tomone; Izawa, Hironori; Morimoto, Minoru; Saimoto, Hiroyuki; Ifuku, Shinsuke

    2016-11-20

    Esterification with maleic anhydride significantly improved the mechanical disintegration of chitin into uniform 10-nm nanofibers. Nanofibers with 0.25° of esterification were homogeneously dispersed in basic water due to the carboxylate salt on the surface. Esterification proceeded on the surface and did not affect the relative crystallinity. A cast film of the esterified chitin nanofibers was highly transparent, since the film was free from light scattering. PMID:27561471

  5. Poriferan chitin as a template for hydrothermal zirconia deposition

    Science.gov (United States)

    Wysokowski, Marcin; Motylenko, Mykhaylo; Bazhenov, Vasilii V.; Stawski, Dawid; Petrenko, Iaroslav; Ehrlich, Andre; Behm, Thomas; Kljajic, Zoran; Stelling, Allison L.; Jesionowski, Teofil; Ehrlich, Hermann

    2013-09-01

    Chitin is a thermostable biopolymer found in various inorganic-organic skeletal structures of numerous invertebrates including sponges (Porifera). The occurrence of chitin within calcium- and silica-based biominerals in organisms living in extreme natural conditions has inspired development of new (extreme biomimetic) synthesis route of chitin-based hybrid materials in vitro. Here, we show for the first time that 3D-α-chitin scaffolds isolated from skeletons of the marine sponge Aplysina aerophoba can be effectively mineralized under hydrothermal conditions (150°C) using ammonium zirconium(IV) carbonate as a precursor of zirconia. Obtained chitin-ZrO2 hybrid materials were characterized by FT-IR, SEM, HRTEM, as well as light and confocal laser microscopy. We suggest that formation of chitin-ZrO2 hybrids occurs due to hydrogen bonds between chitin and ZrO2.

  6. Biopolymer chitin: extraction and characterization; Biopolimero quitina: extracao e caracterizacao

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The biopolymers are materials made from renewable sources such as soybean, corn, cane sugar, cellulose and chitin. Chitin is the most abundant biopolymer found in nature, after cellulose. The chemical structure of chitin is distinguished by the hydroxyl group, of structure from cellulose, located at position C-2, which in the chitin is replaced by acetamine group. The objective of this study was to develop the chitin from exoskeletons of Litopenaeus vannamei shrimp, which are discarded as waste, causing pollutions, environmental problems and thus obtain better utilization of these raw materials. It also, show the extraction process and deacetylation of chitosan. The extraction of chitin followed steps of demineralization, desproteinization and deodorization. Chitin and chitosan were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and the thermals properties were analyzed by thermogravimetry (TG/DTG). (author)

  7. Reinforcing of chitosan phase with chitin nanofibrils

    Czech Academy of Sciences Publication Activity Database

    Tishchenko, Galina; Kelnar, Ivan; Kaprálková, Ludmila; Pavlova, Ewa; Vacková, Taťana; Brožová, Libuše; Strachota, Adam; Špírková, Milena; Bastl, Zdeněk; Carezzi, F.; Morganti, P.

    Roma : AIRI/Nanotec IT, 2013. s. 105. ISBN 978-88-6140-152-5. [NanotechItaly 2013 - Key Enabling Technologies for Responsible Innovation. 27.11.2013-29.11.2013, Venice] EU Projects: European Commission(XE) 315233 - N-CHITOPACK Institutional support: RVO:61389013 ; RVO:61388955 Keywords : chitin nanofibers * chitosan * reinforcing effect Subject RIV: CD - Macromolecular Chemistry

  8. Biosynthesis, Turnover, and Functions of Chitin in Insects.

    Science.gov (United States)

    Zhu, Kun Yan; Merzendorfer, Hans; Zhang, Wenqing; Zhang, Jianzhen; Muthukrishnan, Subbaratnam

    2016-03-11

    Chitin is a major component of the exoskeleton and the peritrophic matrix of insects. It forms complex structures in association with different assortments of cuticle and peritrophic matrix proteins to yield biocomposites with a wide range of physicochemical and mechanical properties. The growth and development of insects are intimately coupled with the biosynthesis, turnover, and modification of chitin. The genes encoding numerous enzymes of chitin metabolism and proteins that associate with and organize chitin have been uncovered by bioinformatics analyses. Many of these proteins are encoded by sets of large gene families. There is specialization among members within each family, which function in particular tissues or developmental stages. Chitin-containing matrices are dynamically modified at every developmental stage and are under developmental and/or physiological control. A thorough understanding of the diverse processes associated with the assembly and turnover of these chitinous matrices offers many strategies to achieve selective pest control. PMID:26982439

  9. Chitin and Chitosan as Direct Compression Excipients in Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Adnan A. Badwan

    2015-03-01

    Full Text Available Despite the numerous uses of chitin and chitosan as new functional materials of high potential in various fields, they are still behind several directly compressible excipients already dominating pharmaceutical applications. There are, however, new attempts to exploit chitin and chitosan in co-processing techniques that provide a product with potential to act as a direct compression (DC excipient. This review outlines the compression properties of chitin and chitosan in the context of DC pharmaceutical applications.

  10. Bacterial chitin degradation—mechanisms and ecophysiological strategies

    OpenAIRE

    StefanBertilsson; SaraBeier

    2013-01-01

    Chitin is one the most abundant polymers in nature and interacts with both carbon and nitrogen cycles. Processes controlling chitin degradation are summarized in reviews published some 20 years ago, but the recent use of culture-independent molecular methods has led to a revised understanding of the ecology and biochemistry of this process and the organisms involved. This review summarizes different mechanisms and the principal steps involved in chitin degradation at a molecular level while a...

  11. Nonlinear microscopy of chitin and chitinous structures: a case study of two cave-dwelling insects

    Science.gov (United States)

    Rabasović, Mihailo D.; Pantelić, Dejan V.; Jelenković, Branislav M.; Ćurčić, Srećko B.; Rabasović, Maja S.; Vrbica, Maja D.; Lazović, Vladimir M.; Ćurčić, Božidar P. M.; Krmpot, Aleksandar J.

    2015-01-01

    We performed a study of the nonlinear optical properties of chemically purified chitin and insect cuticle using two-photon excited autofluorescence (TPEF) and second-harmonic generation (SHG) microscopy. Excitation spectrum, fluorescence time, polarization sensitivity, and bleaching speed were measured. We have found that the maximum autofluorescence signal requires an excitation wavelength below 850 nm. At longer wavelengths, we were able to penetrate more than 150-μm deep into the sample through the chitinous structures. The excitation power was kept below 10 mW (at the sample) in order to diminish bleaching. The SHG from the purified chitin was confirmed by spectral- and time-resolved measurements. Two cave-dwelling, depigmented, insect species were analyzed and three-dimensional images of the cuticular structures were obtained.

  12. La chitine dans le règne animal

    OpenAIRE

    Jeuniaux, Charles

    1982-01-01

    La chitine, haut polymère linéaire B-1,4 de la N-acétyl-D-glucosamine, est largement utilisée dans le règne animal comme trame organique de structures exosquelettiques et cuticulaires. Une méthode enzymatique, rigoureusement spécifique, permet de déceler la chitine, de mesurer son importance quantitative, et de reconnaître l'existence de liaisons avec d'autres constituants (chitine "masquée" et chitine "libre"). Elle se présente principalement sous forme de microfibrilles (complexes glycopro...

  13. Enhanced levan production using chitin-binding domain fused levansucrase immobilized on chitin beads.

    Science.gov (United States)

    Chiang, Chung-Jen; Wang, Jen-You; Chen, Po-Ting; Chao, Yun-Peng

    2009-03-01

    Levan is a homopolymer of fructose which can be produced by the transfructosylation reaction of levansucrase (EC 2.4.1.10) from sucrose. In particular, levan synthesized by Zymomonas mobilis has found a wide and potential application in the food and pharmaceutical industry. In this study, the immobilization of Z. mobilis levansucrae (encoded by levU) was attempted for repeated production of levan. By fusion levU with the chitin-binding domain (ChBD), the hybrid protein was overproduced in a soluble form in Escherichia coli. After direct absorption of the protein mixture from E. coli onto chitin beads, levansucrase tagged with ChBD was found to specifically attach to the affinity matrix. Subsequent analysis indicated that the linkage between the enzyme and chitin beads was substantially stable. Furthermore, with 20% sucrose, the production of levan was enhanced by 60% to reach 83 g/l using the immobilized levansucrase as compared to that by the free counterpart. This production yield accounts for 41.5% conversion yield (g/g) on the basis of sucrose. After all, a total production of levan with 480 g/l was obtained by recycling of the immobilized enzyme for seven times. It is apparent that this approach offers a promising way for levan production by Z. mobilis levansucrase immobilized on chitin beads. PMID:19018526

  14. STRUCTURAL FEATURES OF PLANT CHITINASES AND CHITIN-BINDING PROTEINS

    NARCIS (Netherlands)

    BEINTEMA, JJ

    1994-01-01

    Structural features of plant chitinases and chitin-binding proteins are discussed. Many of these proteins consist of multiple domains,of which the chitin-binding hevein domain is a predominant one. X-ray and NMR structures of representatives of the major classes of these proteins are available now,

  15. Chitin and chitosan as functional biopolymers for industrial applications

    NARCIS (Netherlands)

    kardas, I.; Struzczyk, M.H.; Kucharska, M.; Broek, van den L.A.M.; Dam, van J.E.G.

    2012-01-01

    Chitin research and development seems to be under intensive progress during the last years. Attractive properties of chitin and its derivative—chitosan, for example, biological behavior, and development of their applications caused increased interest of scientists and companies. More and more practi

  16. Thermal decomposition of natural polysaccharides: Chitin and chitosan

    Directory of Open Access Journals (Sweden)

    Kuchina Yu.A.

    2015-03-01

    Full Text Available The results of the thermal analysis of shrimp’s chitin and chitosan have been presented (samples of polysaccharide differed by the deacetylation degree have been studied. The thermal analysis has been carried out by differential thermogravimetry and differential scanning calorimetry. Activation energy of process of chitin and chitosan thermal destruction has been calculated

  17. Chitin synthesis inhibitors: old molecules and new developments

    Institute of Scientific and Technical Information of China (English)

    Hans Merzendorfer

    2013-01-01

    Chitin is the most abundant natural aminopolysaccharide and serves as a structural component of extracellular matrices.It is found in fungal septa,spores,and cell walls,and in arthropod cuticles and peritrophic matrices,squid pens,mollusk shells,nematode egg shells,and some protozoan cyst walls.As prokaryotes,plants and vertebrates including humans do not produce chitin,its synthesis is considered as an attractive target site for fungicides,insecticides,and acaricides.Although no chitin synthesis inhibitor has been developed into a therapeutic drug to treat fungal infections in humans,a larger number of compounds have been successfully launched worldwide to combat arthropod pests in agriculture and forestry.This review summarizes the latest advances on the mode of action of chitin synthesis inhibitors with a special focus on those molecules that act on a postcatalytic step of chitin synthesis.

  18. Applications of Chitin and Its Derivatives in Biological Medicine

    Directory of Open Access Journals (Sweden)

    Moon-Moo Kim

    2010-12-01

    Full Text Available Chitin and its derivatives—as a potential resource as well as multiple functional substrates—have generated attractive interest in various fields such as biomedical, pharmaceutical, food and environmental industries, since the first isolation of chitin in 1811. Moreover, chitosan and its chitooligosaccharides (COS are degraded products of chitin through enzymatic and acidic hydrolysis processes; and COS, in particular, is well suited for potential biological application, due to the biocompatibility and nontoxic nature of chitosan. In this review, we investigate the current bioactivities of chitin derivatives, which are all correlated with their biomedical properties. Several new and cutting edge insights here may provide a molecular basis for the mechanism of chitin, and hence may aid its use for medical and pharmaceutical applications.

  19. Degradation and mineralization of chitin in an estuary

    International Nuclear Information System (INIS)

    A method for measuring microbial degradation and mineralization of radiolabeled native chitin is described. 14C-labeled chitin was synthesized in vivo by injecting shed blue crabs (Callinectes sapidus) with N-acetyl-D-[14C]-glucosamine, allowing for its incorporation into the exoskeleton. Rates of chitin degradation and mineralization in estuarine water and sediments were determined as functions of temperature, inoculum source, and oxygen condition. Significant differences in rates between temperature treatments were evident. Q10 values ranged from 1.2 to 2.5 for water and sediment, respectively. Increased incubation temperature also resulted in decreased lag times before onset of chitinoclastic bacterial growth and chitin degradation. The anaerobic pathway of chitin decomposition by chitinoclastic bacteria was examined with an emphasis on end product coupling to other bacterial types. Actively growing chitinoclastic bacterial isolates produced primarily acetate, hydrogen, and carbon dioxide in broth culture

  20. Granular chitin in the epidermis of nudibranch molluscs.

    Science.gov (United States)

    Martin, Rainer; Hild, Sabine; Walther, Paul; Ploss, Kerstin; Boland, Wilhelm; Tomaschko, Karl-Heinz

    2007-12-01

    Chitin is usually found in stiff extracellular coatings typified by the arthropod exoskeleton, and is not associated with the soft, flexible mollusc skin. Here, we show, however, that chitin in nudibranch gastropods (Opisthobranchia, Mollusca) occurs as intracellular granules that fill the epidermal cells of the skin and the epithelial cells of the stomach. In response to nematocysts fired by tentacles of prey Cnidaria, the epidermal cells of eolid nudibranchs (Aeolidacea) release masses of chitin granules, which then form aggregates with the nematocyst tubules, having the effect of insulating the animal from the deleterious action of the Cnidaria tentacles. Granular chitin, while protecting the animal, does not interfere with the suppleness and flexibility of the skin, in contrast to the stiffness of chitin armor. The specialized epidermis enables nudibranchs to live with and feed on Cnidaria. PMID:18083970

  1. Preparation and characterization of α-chitin from cicada sloughs

    International Nuclear Information System (INIS)

    In this study, a new source of insect chitin was proposed. Insect chitin was extracted from cicada sloughs by 1 M HCl and 1 M NaOH treatment for demineralization and deproteinization, respectively. The brown color of this chitin from cicada sloughs was removed using 6% sodium hypochlorite as an oxidizing agent. It was found that the insect chitin extracted from the cicada sloughs has a higher percent recovery than the chitin from rice-field crab shells. The chemical structure and physicochemical properties of α-chitin from cicada sloughs were characterized using elemental analysis (EA), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), proton nuclear magnetic resonance spectroscopy (1H NMR), solid-state 13C cross-polarization magic-angle-spinning nuclear magnetic resonance (CP/MAS) NMR spectroscopy, X-ray diffractometry (XRD), and thermogravimetry (TG). The degree of acetylation (DA) was determined by EA, 1H NMR, and 13C CP/MAS NMR techniques. The DA values of chitin from cicada sloughs were in the range of 97% to 102% depending on each technique. Furthermore, it was found that the DA increased with an increasing thermal property and crystallinity.

  2. The apical plasma membrane of chitin-synthesizing epithelia

    Institute of Scientific and Technical Information of China (English)

    Bernard Moussian

    2013-01-01

    Chitin is the second most abundant polysaccharide on earth.It is produced at the apical side of epidermal,tracheal,fore-,and hindgut epithelial cells in insects as a central component of the protective and supporting extracellular cuticle.Chitin is also an important constituent of the midgut peritrophic matrix that encases the food supporting its digestion and protects the epithelium against invasion by possibly ingested pathogens.The enzyme producing chitin is a glycosyltransferase that resides in the apical plasma membrane forming a pore to extrude the chains of chitin into the extracellular space.The apical plasma membrane is not only a platform for chitin synthases but,probably through its shape and equipment with distinct factors,also plays an important role in orienting and organizing chitin fibers.Here,I review findings on the cellular and molecular constitution of the apical plasma membrane of chitin-producing epithelia mainly focusing on work done in the fruit fly Drosophila melanogaster.

  3. First report on chitinous holdfast in sponges (Porifera).

    Science.gov (United States)

    Ehrlich, Hermann; Kaluzhnaya, Oksana V; Tsurkan, Mikhail V; Ereskovsky, Alexander; Tabachnick, Konstantin R; Ilan, Micha; Stelling, Allison; Galli, Roberta; Petrova, Olga V; Nekipelov, Serguei V; Sivkov, Victor N; Vyalikh, Denis; Born, René; Behm, Thomas; Ehrlich, Andre; Chernogor, Lubov I; Belikov, Sergei; Janussen, Dorte; Bazhenov, Vasilii V; Wörheide, Gert

    2013-07-01

    A holdfast is a root- or basal plate-like structure of principal importance that anchors aquatic sessile organisms, including sponges, to hard substrates. There is to date little information about the nature and origin of sponges' holdfasts in both marine and freshwater environments. This work, to our knowledge, demonstrates for the first time that chitin is an important structural component within holdfasts of the endemic freshwater demosponge Lubomirskia baicalensis. Using a variety of techniques (near-edge X-ray absorption fine structure, Raman, electrospray ionization mas spectrometry, Morgan-Elson assay and Calcofluor White staining), we show that chitin from the sponge holdfast is much closer to α-chitin than to β-chitin. Most of the three-dimensional fibrous skeleton of this sponge consists of spicule-containing proteinaceous spongin. Intriguingly, the chitinous holdfast is not spongin-based, and is ontogenetically the oldest part of the sponge body. Sequencing revealed the presence of four previously undescribed genes encoding chitin synthases in the L. baicalensis sponge. This discovery of chitin within freshwater sponge holdfasts highlights the novel and specific functions of this biopolymer within these ancient sessile invertebrates. PMID:23677340

  4. Preparation and Grafting Functionalization of Self-Assembled Chitin Nanofiber Film

    Directory of Open Access Journals (Sweden)

    Jun-ichi Kadokawa

    2016-07-01

    Full Text Available Chitin is a representative biomass resource comparable to cellulose. Although considerable efforts have been devoted to extend novel applications to chitin, lack of solubility in water and common organic solvents causes difficulties in improving its processability and functionality. Ionic liquids have paid much attention as solvents for polysaccharides. However, little has been reported regarding the dissolution of chitin with ionic liquids. The author found that an ionic liquid, 1-allyl-3-methylimidazolium bromide (AMIMBr, dissolved chitin in concentrations up to ~4.8 wt % and the higher contents of chitin with AMIMBr gave ion gels. When the ion gel was soaked in methanol for the regeneration of chitin, followed by sonication, a chitin nanofiber dispersion was obtained. Filtration of the dispersion was subsequently carried out to give a chitin nanofiber film. A chitin nanofiber/poly(vinyl alcohol composite film was also obtained by co-regeneration approach. Chitin nanofiber-graft-synthetic polymer composite films were successfully prepared by surface-initiated graft polymerization technique. For example, the preparation of chitin nanofiber-graft-biodegradable polyester composite film was achieved by surface-initiated graft polymerization from the chitin nanofiber film. The similar procedure also gave chitin nanofiber-graft-polypeptide composite film. The surface-initiated graft atom transfer radical polymerization was conducted from a chitin macroinitiator film derived from the chitin nanofiber film.

  5. Application of chitin/chitosan in agriculture

    International Nuclear Information System (INIS)

    Chitosan is the deacetylated derivative of chitin and deacetylation degree is an important chemical characteristic which could be determined by HNMR or IR. spectroscopy. Chitosan of high deacetylation degree (87.37%) was oxidized by hydrogen peroxide at 0.6M concentration for 4 hours to obtain low molecular weight ∼ 6.0 x 104, further degradation was carried out by irradiation of chitosan in solution (4%, w/v) with gamma Co-60 rays, in the dose range from 10 kGy to 70 kGy. The test in the field for antifungus of Rhizoctonia Solani on rice plants was investigated. The antifungal effect of resultant chitosan at dose of 50 kGy and concentration of 80 ppm was most effective. (author)

  6. Adsorption studies of iron(III) on chitin

    Indian Academy of Sciences (India)

    G Karthikeyan; N Muthulakshmi Andal; K Anbalagan

    2005-11-01

    Adsorption of ferric ions by chitin was studied by the batch equilibration method. The influence of particle size and dosage of the adsorbant, contact time, initial concentration of the adsorbate and temperature were experimentally verified. The effect of anions like chloride, nitrate and sulphate and also of cations like zinc, chromium and copper on the adsorption of iron(III) was determined. The time dependence of fraction of adsorption, , at varying particle sizes and doses of chitin and the intraparticle diffusion rate constants, , of the adsorption process were calculated. Thermodynamic and equilibrium parameters of the reaction were determined to understand the sorption behaviour of chitin. The results revealed that the adsorption of iron(III) by chitin is spontaneous, endothermic and favourable.

  7. Emerging chitin and chitosan nanofibrous materials for biomedical applications

    Science.gov (United States)

    Ding, Fuyuan; Deng, Hongbing; Du, Yumin; Shi, Xiaowen; Wang, Qun

    2014-07-01

    Over the past several decades, we have witnessed significant progress in chitosan and chitin based nanostructured materials. The nanofibers from chitin and chitosan with appealing physical and biological features have attracted intense attention due to their excellent biological properties related to biodegradability, biocompatibility, antibacterial activity, low immunogenicity and wound healing capacity. Various methods, such as electrospinning, self-assembly, phase separation, mechanical treatment, printing, ultrasonication and chemical treatment were employed to prepare chitin and chitosan nanofibers. These nanofibrous materials have tremendous potential to be used as drug delivery systems, tissue engineering scaffolds, wound dressing materials, antimicrobial agents, and biosensors. This review article discusses the most recent progress in the preparation and application of chitin and chitosan based nanofibrous materials in biomedical fields.

  8. Molecular Mechanics of Chitin-Protein Interface: Terminus and Side Chain

    CERN Document Server

    Yu, Zechuan

    2016-01-01

    Chitin and protein are two main building blocks for many natural biomaterials. The interaction between chitin and protein critically determines the properties of the composite biological materials. As living organisms usually encounter complex ambient conditions like water, pH and ions are critical factors towards the structural integrity of biomaterials. It is therefore essential to study the chitin-protein interface under different environmental conditions. Here, an atomistic model consisting of a chitin substrate and a protein filament is constructed, which is regarded as a representative of the chitin-protein interface existing in many chitin-based biomaterials. Based on this model, the mechanical properties of chitin-protein interface under different moisture and pH values are investigated through molecular dynamics simulations. The results reveal a weakening effect of water towards the chitin-protein interface, as well as acidity, i.e. the protonated protein forms a stronger adhesion to chitin than that...

  9. Protective Effect of Chitin Urocanate Nanofibers against Ultraviolet Radiation

    Directory of Open Access Journals (Sweden)

    Ikuko Ito

    2015-12-01

    Full Text Available Urocanic acid is a major ultraviolet (UV-absorbing chromophore. Chitins are highly crystalline structures that are found predominantly in crustacean shells. Alpha-chitin consists of microfibers that contain nanofibrils embedded in a protein matrix. Acid hydrolysis is a common method used to prepare chitin nanofibrils (NFs. We typically obtain NFs by hydrolyzing chitin with acetic acid. However, in the present study, we used urocanic acid to prepare urocanic acid chitin NFs (UNFs and examined its protective effect against UVB radiation. Hos: HR-1 mice coated with UNFs were UVB irradiated (302 nm, 150 mJ/cm2, and these mice showed markedly lower UVB radiation-induced cutaneous erythema than the control. Additionally, sunburn cells were rarely detected in the epidermis of UNFs-coated mice after UVB irradiation. Although the difference was not as significant as UNFs, the number of sunburn cells in mice treated with acetic acid chitin nanofibrils (ANFs tended to be lower than in control mice. These results demonstrate that ANFs have a protective effect against UVB and suggest that the anti-inflammatory and antioxidant effects of NFs influence the protective effect of ANFs against UVB radiation. The combination of NFs with other substances that possess UV-protective effects, such as urocanic acid, may provide an enhanced protective effect against UVB radiation.

  10. Digestibility of chitin in cod, Gadus morhua, in vivo

    Science.gov (United States)

    Danulat, Eva

    1987-12-01

    Sixteen cod, Gadus morhua (L.), were individually fed a single ration of shrimps, Crangon allmanni. Four fish were killed and examined 6, 12, 24 and 48 h after the fish had been fed. Chitinase activities were measured in the extracts of stomach contents, stomach tissue, pyloric caecae, intestinal contents and intestinal tissue. The level of enzyme activity in different parts of the digestive tract was shown to be dependent on the phase of the digestive process. High concentrations of the chitin degradation product N-acetyl-D-glucosamine were determined in the stomach and in the intestinal contents. Based on the chitin concentration in the food organisms and the individual food uptake, the amount of chitin consumed by each fish could be calculated. Only up to 9% of the ingested chitin was recovered from the intestinal contents of the fish at any given time after feeding (6, 12, 24 and 48 h). In addition, only 2.4% of the chitin consumed with the food could be recovered in the collected faeces of the fish. The 4 cod killed 48 h after feeding had completely emptied their stomach. Chitin digestion in these fish was calculated to have been 90%.

  11. Dopamine-Mediated Sclerotization of Regenerated Chitin in Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Dongyeop X. Oh

    2013-09-01

    Full Text Available Chitin is a promising structural material for biomedical applications, due to its many advantageous properties and abundance in nature. However, its usage and development in the biomedical field have been stagnant, because of chitin’s poor mechanical properties in wet conditions and the difficulties in transforming it into an applicable form. To overcome these challenges, we created a novel biomimetic chitin composite. This regenerated chitin, prepared with ionic liquid, showed improved mechanical properties in wet conditions by mimicking insect cuticle and squid beak sclerotization, i.e., catechol-meditated cross-linking. By ionic liquid-based heat treatment, dopamine oxidation produced melanin-like compounds and dopamine-meditated cross-links without any solvent evaporation and oxidant utilization. The dopamine-meditated sclerotization increased the ultimate tensile strength (UTS of the regenerated chitin by 2.52-fold, measured after six weeks of phosphate-buffered saline (PBS submersion. In addition, the linear swelling ratio (LSR of the chitin film was reduced by about 22%. This strategy raises a possibility of using regenerated chitin as an artificial hard tissue in wet conditions.

  12. Extraction and Characterization of Chitin from the Beetle Holotrichia parallela Motschulsky

    Directory of Open Access Journals (Sweden)

    Feng Zhu

    2012-04-01

    Full Text Available Insect chitin was isolated from adult Holotrichia parallela by treatment with 1 M HCl and 1 M NaOH, following by 1% potassium permanganate solution for decolorization. The yield of chitin from this species is 15%. This insect chitin was compared with the commercial a-chitin from shrimp, by infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and elemental analysis. Both chitins exhibited similar chemical structures and physicochemical properties. Adult H. parallela is thus a promising alternative source of chitin.

  13. XRD studies of chitin-based polyurethane elastomers.

    Science.gov (United States)

    Zia, Khalid Mahmood; Bhatti, Ijaz Ahmad; Barikani, Mehdi; Zuber, Mohammad; Sheikh, Munir Ahmad

    2008-08-15

    Chitin-based polyurethane elastomers (PUEs) were synthesized by step growth polymerization techniques using poly(epsilon-caprolactone) (PCL) varying diisocyanate and chain extender structures. The viscosity average molecular weight (M(v)) of chitin was deduced from the intrinsic viscosity and found; M(v)=6.067 x 10(5). The conventional spectroscopic characterization of the samples with FTIR, (1)H NMR and (13)C NMR were in accordance with proposed PUEs structure. The crystalline behavior of the synthesized polymers were investigated by X-ray diffraction (XRD), differential scanning calorimetery (DSC) and loss tangent curves (tan delta peaks). The observed patterns of the crystalline peaks for the lower angle for chitin in the 2theta range were indexed as 9.39 degrees, 19.72 degrees, 20.73 degrees, 23.41 degrees and 26.39 degrees. Results showed that crystallinity of the synthesized PUEs samples was affected by varying the structure of the diisocyanate and chain extender. Crystallinity decreased from aliphatic to aromatic characters of the diisocyanates used in the final PU. The presence of chitin also favors the formation of more ordered structure, as higher peak intensities was obtained from the PU extended with chitin than 1,4-butane diol (BDO). The value of peak enthalpy (DeltaH) of chitin was found to be 47.13 J g(-1). The higher DeltaH value of 46.35 J g(-1) was found in the samples extended with chitin than BDO (39.73 J g(-1)). PMID:18495239

  14. ChtVis-Tomato, a genetic reporter for in vivo visualization of chitin deposition in Drosophila.

    Science.gov (United States)

    Sobala, Lukasz F; Wang, Ying; Adler, Paul N

    2015-11-15

    Chitin is a polymer of N-acetylglucosamine that is abundant and widely found in the biological world. It is an important constituent of the cuticular exoskeleton that plays a key role in the insect life cycle. To date, the study of chitin deposition during cuticle formation has been limited by the lack of a method to detect it in living organisms. To overcome this limitation, we have developed ChtVis-Tomato, an in vivo reporter for chitin in Drosophila. ChtVis-Tomato encodes a fusion protein that contains an apical secretion signal, a chitin-binding domain (CBD), a fluorescent protein and a cleavage site to release it from the plasma membrane. The chitin reporter allowed us to study chitin deposition in time lapse experiments and by using it we have identified unexpected deposits of chitin fibers in Drosophila pupae. ChtVis-Tomato should facilitate future studies on chitin in Drosophila and other insects. PMID:26395478

  15. Micro-CT Imaging of Denatured Chitin by Silver to Explore Honey Bee and Insect Pathologies

    OpenAIRE

    Butzloff, Peter R.

    2011-01-01

    BACKGROUND: Chitin and cuticle coatings are important to the environmental and immune defense of honey bees and insect pollinators. Pesticides or environmental effects may target the biochemistry of insect chitin and cuticle coating. Denaturing of chitin involves a combination of deacetylation, intercalation, oxidation, Schweiger-peeling, and the formation of amine hydrochloride salt. The term "denatured chitin" calls attention to structural and property changes to the internal membranes and ...

  16. Radiation grafting of acrylic acid onto partially deacetylated chitin for metal ion adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Quoc Hien [Research and Development Center for Radiation Technology, Vietnam Atomic Energy Commission, Truong tre Str., Linh xuan, Thu duc, Ho Chi Minh City (Viet Nam)]. E-mail: hiennq@hcm.vnn.vn; Dang Van Phu [Research and Development Center for Radiation Technology, Vietnam Atomic Energy Commission, Truong tre Str., Linh xuan, Thu duc, Ho Chi Minh City (Viet Nam); Nguyen Ngoc Duy [College of Natural Sciences, National University Ho Chi Minh City, 227 Nguyen Van Cu, Ho Chi Minh City (Viet Nam); Ha Thuc Huy [College of Natural Sciences, National University Ho Chi Minh City, 227 Nguyen Van Cu, Ho Chi Minh City (Viet Nam)

    2005-07-01

    Radiation processing technology is proved to be a useful tool for modification of polymer material including grafting of monomer onto polymer. In this study, partially deacetylated chitin (PD-chitin) was prepared by soaking chitin in NaOH solution with various concentrations from 10% to 50% (w/w) at room temperature for four days. The degree of deacetylation (DD%) of chitin samples was measured by IR spectroscopy method. Radiation grafting of acrylic acid (AAc) onto PD-chitin was carried out by immerging PD-chitin in AAc solution (5-20%v/v) for swelling two days. The swelled PD-chitin sample was filtered and irradiated with Co-60 radiation at dose of 4.8 kGy for grafting. The resulting product, so called PD-chitin-g-PAA was changed to sodium form, PD-chitin-g-PANa by treating with NaOH 1 N and used as metal ion adsorbent. The adsorption capacities of studied chitin samples for metal ion typically for Cu{sup 2+} was determined using atomic absorption spectrophotometer. The results showed that the adsorption capacities for Cu{sup 2+} were as the following order: chitin < PD-chitin < PD-chitin-g-PANa < chitosan (DD76%). In addition, equilibrium isotherms were well fitted by Langmuir equation with the constants K {sub L} = 15.5 and 19.4 (mg/g); b = 0.02 and 0.04 (L/mg) for PD-chitin and PD-chitin-g-PANa, respectively. The obtained product, PD-chitin-g-PANa can be produced on large scale with competitive cost and used as metal ion adsorbent for water purification as well as for other purposes such as for sorption of dyes and for immobilization of bioactive substances.

  17. Chitin stimulates production of the antibiotic andrimid in a Vibrio corallilyticus strain

    DEFF Research Database (Denmark)

    Wietz, Matthias; Månsson, Maria; Gram, Lone

    2011-01-01

    per cell was twofold higher. In cultures with Artemia as live chitin model system, S2052 reached up to 108 cells ml-1, produced andrimid and showed attachment to the exoskeleton and chitinous exuviae. The metabolic focus on andrimid production with chitin indicates that the antibiotic could serve an...

  18. A Venom Gland Extracellular Chitin-Binding-Like Protein from Pupal Endoparasitoid Wasps, Pteromalus Puparum, Selectively Binds Chitin

    Directory of Open Access Journals (Sweden)

    Yu Zhu

    2015-11-01

    Full Text Available Chitin-binding proteins (CBPs are present in many species and they act in a variety of biological processes. We analyzed a Pteromalus puparum venom apparatus proteome and transcriptome and identified a partial gene encoding a possible CBP. Here, we report cloning a full-length cDNA of a sequence encoding a chitin-binding-like protein (PpCBP from P. puparum, a pupal endoparasitoid of Pieris rapae. The cDNA encoded a 96-amino-acid protein, including a secretory signal peptide and a chitin-binding peritrophin-A domain. Phylogenetic analysis of chitin binding domains (CBDs of cuticle proteins and peritrophic matrix proteins in selected insects revealed that the CBD of PpCBP clustered with the CBD of Nasonia vitripennis. The PpCBP is specifically expressed in the venom apparatus of P. puparum, mostly in the venom gland. PpCBP expression was highest at day one after adult eclosion and much lower for the following five days. We produced a recombinant PpCBP and binding assays showed the recombinant protein selectively binds chitin but not cellulose in vitro. We infer that PpCBP serves a structural role in the venom reservoir, or may be injected into the host to help wound healing of the host exoskeleton.

  19. A Venom Gland Extracellular Chitin-Binding-Like Protein from Pupal Endoparasitoid Wasps, Pteromalus Puparum, Selectively Binds Chitin.

    Science.gov (United States)

    Zhu, Yu; Ye, Xin-Hai; Liu, Yang; Yan, Zhi-Chao; Stanley, David; Ye, Gong-Yin; Fang, Qi

    2015-12-01

    Chitin-binding proteins (CBPs) are present in many species and they act in a variety of biological processes. We analyzed a Pteromalus puparum venom apparatus proteome and transcriptome and identified a partial gene encoding a possible CBP. Here, we report cloning a full-length cDNA of a sequence encoding a chitin-binding-like protein (PpCBP) from P. puparum, a pupal endoparasitoid of Pieris rapae. The cDNA encoded a 96-amino-acid protein, including a secretory signal peptide and a chitin-binding peritrophin-A domain. Phylogenetic analysis of chitin binding domains (CBDs) of cuticle proteins and peritrophic matrix proteins in selected insects revealed that the CBD of PpCBP clustered with the CBD of Nasonia vitripennis. The PpCBP is specifically expressed in the venom apparatus of P. puparum, mostly in the venom gland. PpCBP expression was highest at day one after adult eclosion and much lower for the following five days. We produced a recombinant PpCBP and binding assays showed the recombinant protein selectively binds chitin but not cellulose in vitro. We infer that PpCBP serves a structural role in the venom reservoir, or may be injected into the host to help wound healing of the host exoskeleton. PMID:26633500

  20. Microbial destruction of chitin in soils under different moisture conditions

    Science.gov (United States)

    Yaroslavtsev, A. M.; Manucharova, N. A.; Stepanov, A. L.; Zvyagintsev, D. G.; Sudnitsyn, I. I.

    2009-07-01

    The most favorable moisture conditions for the microbial destruction of chitin in soils are close to the total water capacity. The water content has the most pronounced effect on chitin destruction in soils in comparison with other studied substrates. It was found using gas-chromatographic and luminescent-microscopic methods that the maximum specific activity of the respiration of the chitinolytic community was at a rather low redox potential with the soil moisture close to the total water capacity. The range of moisture values under which the most intense microbial transformation of chitin occurred was wider in clayey and clay loamy soils as compared with sandy ones. The increase was observed due to the contribution of mycelial bacteria and actinomycetes in the chitinolytic complex as the soil moisture increased.

  1. Effect of gamma radiation on chitin-nanosilver membranes

    International Nuclear Information System (INIS)

    Antimicrobial wound dressings are indispensable for the effective healing of skin wounds such as burns and ulcers. Various synthetic and natural polymers with good biocompatibility have been used to develop wound dressings. Chitin possesses excellent properties that are advantageous for wound dressing namely biocompatibility, biodegradability and haemostatic activity. Chitin-nanosilver membranes were developed for use as an antimicrobial dressing for wound care. For clinical applications, the wound dressing should be assuredly free of microbial contamination. Gamma irradiation has well appreciated technological advantages and is the most suitable method for the sterilization of biomedical materials. The present study was carried out to evaluate the effect of gamma radiation on the chemical and functional characteristics of the chitin-nanosilver membranes

  2. Chitin elicitation of natural product production in marine bacteria

    DEFF Research Database (Denmark)

    Månsson, Maria; Wietz, Matthias; Larsen, Thomas Ostenfeld;

    glucose-based medium. The different phenotypic responses to a natural growth substrate may reflect different niche-adaptations or ecological functions of the compounds produced and it represents a fruitful approach for elicitation of natural product production in marine bacteria....... uncharacterized chemical potential of these organisms. As part of a new project on ecology-driven drug discovery at the Technical University of Denmark, we investigate the use of chitin to elicit or alter production of antibacterial compounds in marine bacteria. Within our large collection of Gram...... indicating that andrimid serves a function while growing on chitin-containing surfaces. In contrast, a Photobacterium halotolerans sustained production of all metabolites including the antibiotic holomycin. Furthermore, chitin stimulated the production of two potentially novel metabolites not observed on...

  3. Removal of Petroleum Spill in Water by Chitin and Chitosan

    OpenAIRE

    Francisco Cláudio de Freitas Barros; Luiz Constantino Grombone Vasconcellos; Técia Vieira Carvalho; Ronaldo Ferreira do Nascimento

    2014-01-01

    The present study was undertaken to evaluate the capacity of adsorption of crude oil spilled in seawater by chitin flakes, chitin powder, chitosan flakes, chitosan powder, and chitosan solution. The results showed that, although chitosan flakes had a better adsorption capacity by oil (0.379 ± 0.030 grams oil per gram of adsorbent), the biopolymer was sinking after adsorbing oil. Chitosan solution did not present such inconvenience, despite its lower adsorption capacity (0.013 ± 0.001 grams oi...

  4. Transmembrane myosin chitin synthase involved in mollusc shell formation produced in Dictyostelium is active

    Energy Technology Data Exchange (ETDEWEB)

    Schoenitzer, Veronika [INM - Leibniz Institute for New Materials, Biomineralisation Group, Campus D2.2, D-66123 Saarbruecken (Germany); Universitaet Regensburg, Biochemie I, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Eichner, Norbert [Universitaet Regensburg, Biochemie I, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Clausen-Schaumann, Hauke [Munich University of Applied Sciences, Lothstrasse 34, D-80335 Muenchen, Germany, and Center for NanoScience (CeNS), Geschwister-Scholl-Platz 1, D-80539 Muenchen (Germany); Weiss, Ingrid M., E-mail: ingrid.weiss@inm-gmbh.de [INM - Leibniz Institute for New Materials, Biomineralisation Group, Campus D2.2, D-66123 Saarbruecken (Germany); Universitaet Regensburg, Biochemie I, Universitaetsstrasse 31, D-93053 Regensburg (Germany)

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Dictyostelium produces the 264 kDa myosin chitin synthase of bivalve mollusc Atrina. Black-Right-Pointing-Pointer Chitin synthase activity releases chitin, partly associated with the cell surface. Black-Right-Pointing-Pointer Membrane extracts of transgenic slime molds produce radiolabeled chitin in vitro. Black-Right-Pointing-Pointer Chitin producing Dictyostelium cells can be characterized by atomic force microscopy. Black-Right-Pointing-Pointer This model system enables us to study initial processes of chitin biomineralization. -- Abstract: Several mollusc shells contain chitin, which is formed by a transmembrane myosin motor enzyme. This protein could be involved in sensing mechanical and structural changes of the forming, mineralizing extracellular matrix. Here we report the heterologous expression of the transmembrane myosin chitin synthase Ar-CS1 of the bivalve mollusc Atrina rigida (2286 amino acid residues, M.W. 264 kDa/monomer) in Dictyostelium discoideum, a model organism for myosin motor proteins. Confocal laser scanning immunofluorescence microscopy (CLSM), chitin binding GFP detection of chitin on cells and released to the cell culture medium, and a radiochemical activity assay of membrane extracts revealed expression and enzymatic activity of the mollusc chitin synthase in transgenic slime mold cells. First high-resolution atomic force microscopy (AFM) images of Ar-CS1 transformed cellulose synthase deficient D. discoideumdcsA{sup -} cell lines are shown.

  5. Early divergence, broad distribution, and high diversity of animal chitin synthases.

    Science.gov (United States)

    Zakrzewski, Anne-C; Weigert, Anne; Helm, Conrad; Adamski, Marcin; Adamska, Maja; Bleidorn, Christoph; Raible, Florian; Hausen, Harald

    2014-02-01

    Even though chitin is one of the most abundant biopolymers in nature, current knowledge on chitin formation is largely based only on data from fungi and insects. This study reveals unanticipated broad taxonomic distribution and extensive diversification of chitin synthases (CSs) in Metazoa, shedding new light on the relevance of chitin in animals and suggesting unforeseen complexity of chitin synthesis in many groups. We uncovered robust orthologs to insect type CSs in several representatives of deuterostomes, which generally are not thought to possess chitin. This suggests a broader distribution and function of chitin in this branch of the animal kingdom. We characterize a new CS type present not only in basal metazoans such as sponges and cnidarians but also in several bilaterian representatives. The most extensive diversification of CSs took place during emergence of lophotrochozoans, the third large group of protostomes next to arthropods and nematodes, resulting in coexistence of up to ten CS paralogs in molluscs. Independent fusion to different kinds of myosin motor domains in fungi and lophotrochozoans points toward high relevance of CS interaction with the cytoskeleton for fine-tuned chitin secretion. Given the fundamental role that chitin plays in the morphology of many animals, the here presented CS diversification reveals many evolutionary complexities. Our findings strongly suggest a very broad and multifarious occurrence of chitin and question an ancestral role as cuticular component. The molecular mechanisms underlying regulation of animal chitin synthesis are most likely far more complex and diverse than existing data from insects suggest. PMID:24443419

  6. Thermoanalytical characterization of chitosan/chitin nanofibrils films

    Czech Academy of Sciences Publication Activity Database

    Kovářová, Jana; Tishchenko, Galina; Morganti, P.

    Pisa : University of Pisa, Department of Civil and Industrial Engineering, 2013, s. 92-93. [Workshop Green Chemistry and Nanotechnologies in Polymer Chemistry /4./. Pisa (IT), 04.09.2013-06.09.2013] EU Projects: European Commission(XE) 315233 - N-CHITOPACK Institutional support: RVO:61389013 Keywords : thermogravimetric analysis * chitosan * chitin nanofibrils Subject RIV: CD - Macromolecular Chemistry

  7. Biodegradable composite films from chitosan and chitin nanofibrils

    Czech Academy of Sciences Publication Activity Database

    Tishchenko, Galina; Kelnar, Ivan; Kaprálková, Ludmila; Pavlová, Eva; Kovářová, Jana; Mikešová, Jana; Brožová, Libuše; Strachota, Adam; Špírková, Milena; Kobera, Libor; Netopilík, Miloš; Bastl, Zdeněk; Carezzi, F.; Morganti, P.

    Pisa : University of Pisa, Department of Civil and Industrial Engineering, 2013, s. 58-59. [Workshop Green Chemistry and Nanotechnologies in Polymer Chemistry /4./. Pisa (IT), 04.09.2013-06.09.2013] EU Projects: European Commission(XE) 315233 - N-CHITOPACK Institutional support: RVO:61389013 ; RVO:61388955 Keywords : biodegradable films * chitosan chitin nanofibrils Subject RIV: CD - Macromolecular Chemistry

  8. Rheological properties of chitosan solutions filled with chitin nanofibrils

    Czech Academy of Sciences Publication Activity Database

    Mikešová, Jana; Tishchenko, Galina; Morganti, P.

    Pisa : University of Pisa, Department of Civil and Industrial Engineering, 2013, s. 44-45. [Workshop Green Chemistry and Nanotechnologies in Polymer Chemistry /4./. Pisa (IT), 04.09.2013-06.09.2013] EU Projects: European Commission(XE) 315233 - N-CHITOPACK Institutional support: RVO:61389013 Keywords : chitosan solution * chitin nanofibrils * rheology Subject RIV: CD - Macromolecular Chemistry

  9. Rheological study of chitosan acetate solutions containing chitin nanofibrils

    Czech Academy of Sciences Publication Activity Database

    Mikešová, Jana; Hašek, Jindřich; Tishchenko, Galina; Morganti, P.

    2014-01-01

    Roč. 112, 4 November (2014), s. 753-757. ISSN 0144-8617 EU Projects: European Commission(XE) 315233 - N-CHITOPACK Institutional support: RVO:61389013 Keywords : rheology * chitosan solutions * chitin nanofibrils Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.074, year: 2014

  10. Nanocomposite films based on chitosan and chitin nanofibrils

    Czech Academy of Sciences Publication Activity Database

    Tishchenko, Galina; Kelnar, Ivan; Morganti, P.; Carezzi, F.; Pavlova, Ewa; Hašek, Jindřich; Kaprálková, Ludmila; Brožová, Libuše; Kovářová, Jana; Mikešová, Jana; Pekárek, Michal; Kobera, Libor; Bastl, Zdeněk

    Moscow : Lomonosov Moscow State University, 2014. s. 521. [International Conference on Nanostructured Materials /12./ - NANO 2014. 13.07.2014-18.07.2014, Moscow] EU Projects: European Commission(XE) 315233 - N-CHITOPACK Institutional support: RVO:61389013 ; RVO:61388955 ; RVO:86652036 Keywords : chitin nanofibrils * chitosan * nanocomposite Subject RIV: CD - Macromolecular Chemistry

  11. Chitin purification from shrimp wastes by microbial deproteination and decalcification.

    Science.gov (United States)

    Xu, Y; Gallert, C; Winter, J

    2008-06-01

    Chitin was purified from Penaeus monodon and Crangon crangon shells using a two-stage fermentation process with anaerobic deproteination followed by decalcification through homofermentative lactic acid fermentation. Deproteinating enrichment cultures from sewage sludge and ground meat (GM) were used with a proteolytic activity of 59 and 61 mg N l(-1) h(-1) with dried and 26 and 35 mg N l(-1) h(-1) with wet P. monodon shells. With 100 g wet cells of proteolytic bacteria per liter, protein removal was obtained in 42 h. An anaerobic spore-forming bacterium HP1 was isolated from enrichment GM. Its proteolytic activity was 76 U ml(-1) compared to 44 U ml(-1) of the consortium. Glucose was fermented with Lactobacillus casei MRS1 to lactic acid. At a pH of 3.6, calcium carbonate of the shells was solubilised. After deproteination and decalcification of P. monodon or C. crangon shells, the protein content was 5.8% or 6.7%, and the calcium content was 0.3% or 0.4%, respectively. The viscosity of the chitin from P. monodon and C. crangon was 45 and 135 mPa s, respectively, whereas purchased crab shell chitin (practical grade) had a viscosity of 21 mPa s, indicating a higher quality of biologically purified chitin. PMID:18418590

  12. Radiation grafting of acrylic acid onto partially deacetylated chitin for metal ion adsorbent

    International Nuclear Information System (INIS)

    Radiation processing technology is proved to be a useful tool for modification of polymer material including grafting of monomer onto polymer. In this study, partially deacetylated chitin (PD-chitin) was prepared by soaking chitin in NaOH solution with various concentrations from 10% to 50% (w/w) at room temperature for four days. The degree of deacetylation (DD%) of chitin samples was measured by IR spectroscopy method. Radiation grafting of acrylic acid (AAc) onto PD-chitin was carried out by immerging PD-chitin in AAc solution (5-20%v/v) for swelling two days. The swelled PD-chitin sample was filtered and irradiated with Co-60 radiation at dose of 4.8 kGy for grafting. The resulting product, so called PD-chitin-g-PAA was changed to sodium form, PD-chitin-g-PANa by treating with NaOH 1 N and used as metal ion adsorbent. The adsorption capacities of studied chitin samples for metal ion typically for Cu2+ was determined using atomic absorption spectrophotometer. The results showed that the adsorption capacities for Cu2+ were as the following order: chitin L = 15.5 and 19.4 (mg/g); b = 0.02 and 0.04 (L/mg) for PD-chitin and PD-chitin-g-PANa, respectively. The obtained product, PD-chitin-g-PANa can be produced on large scale with competitive cost and used as metal ion adsorbent for water purification as well as for other purposes such as for sorption of dyes and for immobilization of bioactive substances

  13. La production de chitine par les crustacés dans les écosystèmes marins

    OpenAIRE

    Jeuniaux, Charles; Voss-Foucart, Marie-Françoise; Bussers, Jean-Claude

    1993-01-01

    Chitin is synthesized by numerous animal species, either unicellular organisms or metazoans, belonging mainly to zoological groups of the Coelomate Spiralia lineage. However, the produced chitin in marine ecosystems is principally by crustaceans. A comparative study of analytical data so far available allowed calculation of chitin biomass and chitin production values in some types of marine ecosystems, and thus estimation of the quantitative importance of chitin in the biogeochemical cycles o...

  14. Preparation Of Glucosamine Hydrochloride And Glucosamine Sulfate From Irradiated Chitin

    International Nuclear Information System (INIS)

    Glucosamine hydrochloride is an amino sugar which is incorporated into the structure of body tissues. It comprises about 80% glucosamine, a compound helpful in maintaining joint health in individuals suffering from degenerative conditions such as arthritis. When orally ingested, it is selectively taken up by joint tissues to exert beneficial effects. Glucosamine may also have other therapeutic effects such as antiviral, anti-cancer, anti-aging, immune boosting or cholesterol lowering activity. Glucosamine may be obtained by hydrolysis and deacetylation of chitin, a polymer of N-acetyl glucosamine with hydrochloric acid. In this work we prepare glucosamine hydrochloride and glucosamine sulfate from irradiated chitin in order to produce high-purity product with good yield. The method consists of the following steps: 1/ Grinding the chitin; 2/ Irradiation the chitin using gamma Co-60 source at 30 kGy; 3/ Digesting the chitin with prewarmed, concentrated HCl, by mixing the chitin with the HCl, and heating to 95oC for 2 hours to produce a slurry; 4/ Cooling the slurry to room temperature and filtering the precipitate; 5/ Dissolving the precipitate in hot water with activated charcoal at room temperature; 6/ Filtering the solution and discarding the solids; 7/ Evaporating the solution to recover glucosamine solids; 8/ Washing the glucosamine solids with ethanol; 9/ Drying the glucosamine solids. Glucosamine sulfate is very hygroscopic and degrades rapidly when exposed to moisture. To avoid this problem, glucosamine sulfate is made from glucosamine hydrochloride by adding potassium sulfate and co-crystallizing the resulting mixture. The method comprising the following steps:1/ Dissolving 25.9 g of glucosamine hydrochloride in 84 g of distilled water with stirring; 2/ Adding 10.6 g of potassium sulfate and stirring was continued for about one hour at temperature of from 35oC to 45oC to complete the reaction; 3/ Precipitating the stable crystalline form by addition of a

  15. CSD2, CSD3, and CSD4, genes required for chitin synthesis in Saccharomyces cerevisiae: the CSD2 gene product is related to chitin synthases and to developmentally regulated proteins in Rhizobium species and Xenopus laevis.

    OpenAIRE

    Bulawa, C E

    1992-01-01

    In Saccharomyces cerevisiae, chitin forms the primary division septum and the bud scar in the walls of vegetative cells. Three chitin synthetic activities have been detected. Two of them, chitin synthase I and chitin synthase II, are not required for synthesis of most of the chitin present in vivo. Using a novel screen, I have identified three mutations, designated csd2, csd3, and csd4, that reduce levels of chitin in vivo by as much as 10-fold without causing any obvious perturbation of cell...

  16. A comparison study of radiostrontium chelation with chitin, chitosan, EDTA and DTPA

    International Nuclear Information System (INIS)

    Chitin and chitosan are nontoxic natural chelators that chelate radiostrontium effectively. The purpose of this study was to compare radiostrontium chelation of chitin and chitosan with that of well known chemical chelators, namely EDTA and DTPA. The chelaton rates of chitin, chitosan, EDTA and DTPA were compared using a column chromatography method (Sephadex G-25M, Sweden). Three kinds of chitins and four kinds of chitosans were used. All of them were water soluble. Phosphated chitosan showed the highest chelation yield of 97% at pH 7. All of chitins, chitosans, EDTA and DTPA showed chelation yield of more than 90% independent of varing pH level. Chitin and chitosan have similar chelation rate as compared with EDTA and DTPA

  17. Self-bonded composite films based on cellulose nanofibers and chitin nanocrystals as antifungal materials.

    Science.gov (United States)

    Robles, Eduardo; Salaberria, Asier M; Herrera, Rene; Fernandes, Susana C M; Labidi, Jalel

    2016-06-25

    Cellulose nanofibers and chitin nanocrystals, two main components of agricultural and aquacultural by-products, were obtained from blue agave and yellow squat lobster industrial residues. Cellulose nanofibers were obtained using high pressure homogenization, while chitin nanocrystals were obtained by hydrolysis in acid medium. Cellulose nanofibers and chitin nanocrystals were characterized by X-ray diffraction, Atomic Force Microscopy and Infrared spectroscopy. Self-bonded composite films with different composition were fabricated by hot pressing and their properties were evaluated. Antifungal activity of chitin nanocrystals was studied using a Cellometer(®) cell count device, mechanical properties at tension were measured with a universal testing machine, water vapor permeability was evaluated with a thermohygrometer and surface tension with sessile drop contact angle method. The addition of chitin nanocrystals reduced slightly the mechanical properties of the composite. Presence of chitin nanocrystals influenced the growth of Aspergillus sp fungus in the surface of the composites as expected. PMID:27083791

  18. Effect of Acetyl Group on Mechanical Properties of Chitin/Chitosan Nanocrystal: A Molecular Dynamics Study

    Directory of Open Access Journals (Sweden)

    Junhe Cui

    2016-01-01

    Full Text Available Chitin fiber is the load-bearing component in natural chitin-based materials. In these materials, chitin is always partially deacetylated to different levels, leading to diverse material properties. In order to understand how the acetyl group enhances the fracture resistance capability of chitin fiber, we constructed atomistic models of chitin with varied acetylation degree and analyzed the hydrogen bonding pattern, fracture, and stress-strain behavior of these models. We notice that the acetyl group can contribute to the formation of hydrogen bonds that can stabilize the crystalline structure. In addition, it is found that the specimen with a higher acetylation degree presents a greater resistance against fracture. This study describes the role of the functional group, acetyl groups, in crystalline chitin. Such information could provide preliminary understanding of nanomaterials when similar functional groups are encountered.

  19. Effect of Acetyl Group on Mechanical Properties of Chitin/Chitosan Nanocrystal: A Molecular Dynamics Study

    Science.gov (United States)

    Cui, Junhe; Yu, Zechuan; Lau, Denvid

    2016-01-01

    Chitin fiber is the load-bearing component in natural chitin-based materials. In these materials, chitin is always partially deacetylated to different levels, leading to diverse material properties. In order to understand how the acetyl group enhances the fracture resistance capability of chitin fiber, we constructed atomistic models of chitin with varied acetylation degree and analyzed the hydrogen bonding pattern, fracture, and stress-strain behavior of these models. We notice that the acetyl group can contribute to the formation of hydrogen bonds that can stabilize the crystalline structure. In addition, it is found that the specimen with a higher acetylation degree presents a greater resistance against fracture. This study describes the role of the functional group, acetyl groups, in crystalline chitin. Such information could provide preliminary understanding of nanomaterials when similar functional groups are encountered. PMID:26742033

  20. Customizing Properties of β-Chitin in Squid Pen (Gladius by Chemical Treatments

    Directory of Open Access Journals (Sweden)

    Alessandro Ianiro

    2014-12-01

    Full Text Available The squid pen (gladius from the Loligo vulgaris was used for preparation of β-chitin materials characterized by different chemical, micro- and nano-structural properties that preserved, almost completely the macrostructural and the mechanical ones. The β-chitin materials obtained by alkaline treatment showed porosity, wettability and swelling that are a function of the duration of the treatment. Microscopic, spectroscopic and synchrotron X-ray diffraction techniques showed that the chemical environment of the N-acetyl groups of the β-chitin chains changes after the thermal alkaline treatment. As a consequence, the crystalline packing of the β-chitin is modified, due to the intercalation of water molecules between β-chitin sheets. Potential applications of these β-chitin materials range from the nanotechnology to the regenerative medicine. The use of gladii, which are waste products of the fishing industry, has also important environmental implications.

  1. Chitin and carbon nanotube composites as biocompatible scaffolds for neuron growth

    Science.gov (United States)

    Singh, Nandita; Chen, Jinhu; Koziol, Krzysztof K.; Hallam, Keith R.; Janas, Dawid; Patil, Avinash J.; Strachan, Ally; G. Hanley, Jonathan; Rahatekar, Sameer S.

    2016-04-01

    The design of biocompatible implants for neuron repair/regeneration ideally requires high cell adhesion as well as good electrical conductivity. Here, we have shown that plasma-treated chitin carbon nanotube composite scaffolds show very good neuron adhesion as well as support of synaptic function of neurons. The addition of carbon nanotubes to a chitin biopolymer improved the electrical conductivity and the assisted oxygen plasma treatment introduced more oxygen species onto the chitin nanotube scaffold surface. Neuron viability experiments showed excellent neuron attachment onto plasma-treated chitin nanotube composite scaffolds. The support of synaptic function was evident on chitin/nanotube composites, as confirmed by PSD-95 staining. The biocompatible and electrically-conducting chitin nanotube composite scaffold prepared in this study can be used for in vitro tissue engineering of neurons and, potentially, as an implantable electrode for stimulation and repair of neurons.

  2. Removal of Petroleum Spill in Water by Chitin and Chitosan

    Directory of Open Access Journals (Sweden)

    Francisco Cláudio de Freitas Barros

    2014-05-01

    Full Text Available The present study was undertaken to evaluate the capacity of adsorption of crude oil spilled in seawater by chitin flakes, chitin powder, chitosan flakes, chitosan powder, and chitosan solution. The results showed that, although chitosan flakes had a better adsorption capacity by oil (0.379 ± 0.030 grams oil per gram of adsorbent, the biopolymer was sinking after adsorbing oil. Chitosan solution did not present such inconvenience, despite its lower adsorption capacity (0.013 ± 0.001 grams oil per gram of adsorbent. It was able to form a polymeric film on the oil slick, which allowed to restrain and to remove the oil from the samples of sea water. The study also suggests that chitosan solution 0.5% has greater efficiency against oil spills in alkaline medium than acidic medium.

  3. Identification of chitin as a structural component of Giardia cysts.

    OpenAIRE

    Ward, H D; Alroy, J.; Lev, B. I.; Keusch, G T; Pereira, M.E.

    1985-01-01

    The intestinal parasite Giardia lamblia is a significant cause of diarrheal disease, which is perpetuated by the infective cyst form of the parasite. Although a rational approach to the control of giardiasis would be to inhibit cyst formation, nothing is known of the chemical composition of the cyst wall or of its biosynthesis. In these studies, we have shown that chitin is a major structural component of G. lamblia and G. muris cyst walls. This conclusion is based on the finding that chitina...

  4. Extraction of Chitin from Trash Crabs (Podophthalmus vigil) by an Eccentric Method

    OpenAIRE

    Sunita Das

    2010-01-01

    The present study was undertaken to extract chitin from trash crab (Podophthalmus vigil) inCuddalore landing center. Demineralization is an important step in chitin purification process from crabs. Thechemical method of demineralization includes the use of strong acid (HCl) that harms the physiochemicalproperties of chitin. In the present study, Lactobacillus plantarum produced organic acid w as used to substitutethe Hydrochloric acid and deproteinization was done by fungus Aspergillus niger....

  5. "Nonfibrillar" chitin associated with walls and septa of Trichophyton mentagrophytes arthrospores.

    OpenAIRE

    Pollack, J H; Lange, C F; Hashimoto, T

    1983-01-01

    Two morphologically distinct forms of chitin were found in the arthrospore walls and septa of Trichophyton mentagrophytes. Two-thirds of the total wall chitin was the microfibrillar and chitinase-sensitive form. The remaining chitin existed in a previously uncharacterized "nonfibrillar" form and was insensitive to the action of Streptomyces chitinase. Exhaustive digestion of the arthrospore walls and septa with beta (1 leads to 3)-glucanase and chitinase followed by extraction with NaOH (1 N,...

  6. Structure and Function of Chitosan (V). Conformations of Ethylene Glycol Derivatives of Chitin and Chitosan

    OpenAIRE

    YUI, Toshifumi; NAKATA, Kunihiko; OGAWA, Kozo

    1996-01-01

    Molecular structures of ethylene glycol derivatives of chitin and chitosan, where 0-6 of chitin chain was etherified and both 0-3 and 0-6 of chitosan were substituted, were studied by X-ray fiber diffraction methods coupled with conformational analyses. The extended two-fold helical conformations of both chitin and chitosan chains were retained even by the etherifications. Possible molecular conformations of these derivatives were proposed.

  7. Chitin, Chitosan, and Its Derivatives for Wound Healing: Old and New Materials

    OpenAIRE

    Kazuo Azuma; Ryotaro Izumi; Tomohiro Osaki; Shinsuke Ifuku; Minoru Morimoto; Hiroyuki Saimoto; Saburo Minami; Yoshiharu Okamoto

    2015-01-01

    Chitin (β-(1-4)-poly-N-acetyl-D-glucosamine) is widely distributed in nature and is the second most abundant polysaccharide after cellulose. It is often converted to its more deacetylated derivative, chitosan. Previously, many reports have indicated the accelerating effects of chitin, chitosan, and its derivatives on wound healing. More recently, chemically modified or nano-fibrous chitin and chitosan have been developed, and their effects on wound healing have been evaluated. In this review,...

  8. A transcriptional regulator linking quorum sensing and chitin induction to render Vibrio cholerae naturally transformable

    OpenAIRE

    Lo Scrudato, Mirella; Blokesch, Melanie

    2013-01-01

    The human pathogen Vibrio cholerae is an aquatic bacterium associated with zooplankton and their chitinous exoskeletons. On chitinous surfaces, V. cholerae initiates a developmental programme, known as natural competence, to mediate transformation, which is a mode of horizontal gene transfer. Competence facilitates the uptake of free DNA and recombination into the bacterial genome. Recent studies have indicated that chitin surfaces are required, but not sufficient to induce competence. Two ad...

  9. FIBCD1 Modulation of the Epithelial Immune Response Elicited by Chitin

    DEFF Research Database (Denmark)

    Hammond, Mark; Schlosser, Anders; Bak-Thomsen, Theresa Helene;

    2010-01-01

    Background: FIBCD1 is a type II transmembrane protein located on the brush border of intestinal epithelial cells. FIBCD1 binds specifically to acetylated compounds such as chitin through the C-terminal fibrinogen-related domain. Chitin is a highly acetylated homopolymeric b-1,4-N-acetylglucosamine ...... to chitin may provide new strategies for therapeutic intervention of allergic or parasitic disease....

  10. Biotechnological process of chitin recovery from shrimp waste using Lactobacillus plantarum NCDN4

    OpenAIRE

    Le, Thanh Ha; Nguyen, Thi Ha

    2015-01-01

    Chitin in shrimp waste is tightly associated with proteins, lipids, pigments and mineral deposits. Therefore, these source materials have to be pretreated to remove these components. For a long time, chemical process has been used widely for extraction of chitin from shrimp waste. The chemical process however led to severe environmental damage and low chitin quality. The biological process has been shown promising to replace the harsh chemical process to reduce the environment impact. In our ...

  11. Chitin synthetase in encysting Giardia lamblia and Entamoeba invadens

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.; Gillin, F.D.

    1987-05-01

    Giardia lamblia (Gl) and Entamoeba invadens (Ei) are protozoan parasites with two morphologic stages in their life cycles. Motile trophozoites colonize the intestine of humans and reptiles respectively. Water resistant cysts, which can survive outside the host, transmit infection. In vitro cyst formation of Ei from trophozoites has been reported, and the authors have recently induced in vitro encystation of Gl. Although the cyst walls of both parasites contain chitin, it synthesis by encysting trophozoites has not been reported. The authors now show that encystation conditions greatly increase chitin synthetase (CS) specific activity (incorporation of /sup 3/H GlcNAc from UDP-GlcNAc into TCA-or alcohol-precipitable material). Extracts of encysting Gl incorporated 3.6 nmol/mg protein in 5 hr compared to < 0.005 in controls. Extracts of encysting Fi incorporated 4.8 n mol/mg protein, compared to 1.7 in the control. CS activity of both parasites requires preformed chitin. The Gl enzyme requires a reducing agent, is inhibited by digitonin and the CS inhibitors, polyoxin D and Nikkomycin, but not by tunicamycin. The product is digested by chitinase. Ei enzyme does not require a reducing agent and is stimulated by 1 mg/ml digitonin, but inhibited by higher concentrations. These studies demonstrate CS enzymes which may play important roles in encystation of Gl and Ei.

  12. Versatile carboxymethyl chitin and chitosan nanomaterials: a review.

    Science.gov (United States)

    Narayanan, Deepa; Jayakumar, R; Chennazhi, K P

    2014-01-01

    Biocompatibility, biodegradability, and low cost of chitin and chitosan have drawn immense attention in many fields including medicine, bioinspired material science, pharmaceuticals, and agriculture. Their handling and processing are difficult owing to its insolubility in neutral aqueous solution or organic solvents. One of the methods used to improve the solubility characteristics of chitin and chitosan is chemical modification. Introducing a carboxymethyl group is the most advantageous method of increasing the solubility of chitosan at neutral and alkaline pH. Carboxymethyl chitin (CMC) and carboxymethyl chitosan (CMCS) are water soluble derivatives formed by introducing CH₂COOH function into the polymer which endows it with better biological properties. The functional group makes CMC/CMCS nanoparticles (NPs) efficient vehicles for the delivery of DNA, proteins, and drugs. This review provides an overview of the characteristics of CMC/CMCS NPs as well as fulfills the task of describing and discussing its important roles primarily in cancer nanomedicine detailing the targeted drug delivery aspect. The application of these NPs in imaging, agriculture, and textiles has also been highlighted. The review also elaborates the advantages of using the CMC and CMCS NPs for drug and gene delivery. PMID:25266740

  13. Chitin dipentanoate as the new technologically usable biomaterial.

    Science.gov (United States)

    Skołucka-Szary, Karolina; Ramięga, Aleksandra; Piaskowska, Wanda; Janicki, Bartosz; Grala, Magdalena; Rieske, Piotr; Stoczyńska-Fidelus, Ewelina; Piaskowski, Sylwester

    2015-10-01

    In this article, the synthesis of novel biopolymer, chitin dipentanoate (Di-O-Valeryl Chitin, DVCH) has been described. DVCH is a chitin derivative esterified with two valeryl groups at positions 3 and 6 of the N-acetylglucosamine units and it is soluble in common organic solvents like ethanol, methanol, acetone, dichloromethane, 1,2-dichloroethane, N,N-dimethylmethanamide, N,N-dimethylacetamide and ethyl acetate. Highly efficient synthesis (degree of esterification close to 2) of DVCH was achieved by employing a huge excess of valeric anhydride used as both the acylation agent and the reaction medium in the presence of perchloric acid as catalyst. Studies on the DVCH synthesis were aimed at finding optimal conditions (temperature, reaction time) to obtain DVCH with high reaction yield and desirable physicochemical properties. Biological data demonstrate that DVCH is non-cytotoxic in vitro and doesn't exert irritating or allergic effects to animal skin. Thanks to its filmogenic properties, it can be used to manufacture threads, foils, foams and non-woven materials. Moreover, DVCH can be easily processed by salt-leaching method to prepare highly porous structures exhibiting open-cell architecture, that can be further employed in wound dressing therapies and scaffolds for tissue engineering. PMID:26117738

  14. Chitin synthetase in encysting Giardia lamblia and Entamoeba invadens

    International Nuclear Information System (INIS)

    Giardia lamblia (Gl) and Entamoeba invadens (Ei) are protozoan parasites with two morphologic stages in their life cycles. Motile trophozoites colonize the intestine of humans and reptiles respectively. Water resistant cysts, which can survive outside the host, transmit infection. In vitro cyst formation of Ei from trophozoites has been reported, and the authors have recently induced in vitro encystation of Gl. Although the cyst walls of both parasites contain chitin, it synthesis by encysting trophozoites has not been reported. The authors now show that encystation conditions greatly increase chitin synthetase (CS) specific activity (incorporation of 3H GlcNAc from UDP-GlcNAc into TCA-or alcohol-precipitable material). Extracts of encysting Gl incorporated 3.6 nmol/mg protein in 5 hr compared to < 0.005 in controls. Extracts of encysting Fi incorporated 4.8 n mol/mg protein, compared to 1.7 in the control. CS activity of both parasites requires preformed chitin. The Gl enzyme requires a reducing agent, is inhibited by digitonin and the CS inhibitors, polyoxin D and Nikkomycin, but not by tunicamycin. The product is digested by chitinase. Ei enzyme does not require a reducing agent and is stimulated by 1 mg/ml digitonin, but inhibited by higher concentrations. These studies demonstrate CS enzymes which may play important roles in encystation of Gl and Ei

  15. EUCHIS '99 : proceedings of the 3rd international conference of the European Chitin Society, Potsdam, Germany, Aug. 31 - Sept. 3, 1999

    OpenAIRE

    2010-01-01

    Contents: Production and Applications of Chitin and Chitosan Krill as a promising raw material for the production of chitin in Europe - Containerized plant for producing chitin - Preparation and characterization of chitosan from Mucorales - Chitosan from Absidia orchidis - Scaling up of lactic acid fermentation of prawn wastes in packed-bed column reactor for chitin recovery - Preparation of chitin by acetic acid fermentation - Inter-source reproducibility of the chitin deacetylation process ...

  16. Comparison of Extraction Methods of Chitin from Ganoderma lucidum Mushroom Obtained in Submerged Culture

    Directory of Open Access Journals (Sweden)

    Sandra Patricia Ospina Álvarez

    2014-01-01

    Full Text Available The chitin was isolated from the Ganoderma lucidum submerged cultures mycelium as potential source of chitin under biotechnological processes. The extraction of chitin was carried out through 5 different assays which involved mainly three phases: pulverization of the mushroom, deproteinization of the mycelia with NaOH solution, and a process of decolorization with potassium permanganate and oxalic acid. The chitin contents extracted from 9-day mycelia were 413, 339, 87, 78, and 144 mg/g−1 (milligrams of chitin/grams of dry biomass for A1, A2, A3, A4, and A5, respectively. Obtained chitin was characterized by X-Ray Diffraction (XRD, by Fourier transform infrared spectroscopy (FTIR, and by thermal analysis (TGA. The results showed that Ganoderma lucidum chitin has similar characteristic of chitin from different fonts. The advantage of the biotechnological processes and the fact that Ganoderma lucidum fungus may be used as a potential raw material for chitin production were demonstrated.

  17. A comparative study of sorption of chromium (III) onto chitin and chitosan

    Science.gov (United States)

    Singh, Pooja; Nagendran, R.

    2016-06-01

    Heavy metals have always been the most hazardous components in the wastewater of industries like electroplating, automobiles, mining facilities and fertilizer manufacturers. Treatment of heavy metal laden wastewater requires expensive operational and maintenance systems. Food processing industries create a huge amount of shell waste which is sold to poultry farms in powdered form but the quantity thus used is still not comparable to the left over waste. The shell contains chitin which acts as an adsorbent for the heavy metals and can be used to treat heavy metal wastewater. The paper presents a study on the use of chitin and its processed product, chitosan, to remove chromium. Shake flask experiment was conducted to compare the adsorptive capacity of chitin and chitosan for chromium removal from simulated solution and isotherm studies were carried out. The studies showed that the chitosan was a better adsorbent than chitin. Both chitin and chitosan gave best adsorption results at pH 3. Chitin exhibited maximum chromium removal of 49.98 % in 20 min, whereas chitosan showed 50 % removal efficiency at a contact time of 20 min showing higher adsorptive capacity for chromium than chitin. The Langmiur and Freundlich isotherm studies showed very good adsorption capacity and monolayer interaction according to the regression coefficient 0.973 for chitosan and 0.915 for chitin. The regression coefficient for Freundlich isotherm was 0.894 and 0.831 for chitosan and chitin, respectively.

  18. Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part I. Isolation and identification of chitin.

    Science.gov (United States)

    Ehrlich, H; Ilan, M; Maldonado, M; Muricy, G; Bavestrello, G; Kljajic, Z; Carballo, J L; Schiaparelli, S; Ereskovsky, A; Schupp, P; Born, R; Worch, H; Bazhenov, V V; Kurek, D; Varlamov, V; Vyalikh, D; Kummer, K; Sivkov, V V; Molodtsov, S L; Meissner, H; Richter, G; Steck, E; Richter, W; Hunoldt, S; Kammer, M; Paasch, S; Krasokhin, V; Patzke, G; Brunner, E

    2010-08-01

    Marine invertebrate organisms including sponges (Porifera) not only provide an abundant source of biologically active secondary metabolites but also inspire investigations to develop biomimetic composites, scaffolds and templates for practical use in materials science, biomedicine and tissue engineering. Here, we presented a detailed study of the structural and physico-chemical properties of three-dimensional skeletal scaffolds of the marine sponges Aiolochroia crassa, Aplysina aerophoba, A. cauliformis, A. cavernicola, and A. fulva (Verongida: Demospongiae). We show that these fibrous scaffolds have a multilayered design and are made of chitin. (13)C solid-state NMR spectroscopy, NEXAFS, and IR spectroscopy as well as chitinase digestion and test were applied in order to unequivocally prove the existence of alpha-chitin in all investigated species. PMID:20471418

  19. SEM characterization of anatomical variation in chitin organization in insect and arthropod cuticles.

    Science.gov (United States)

    Chandran, Rakkiyappan; Williams, Lee; Hung, Albert; Nowlin, Kyle; LaJeunesse, Dennis

    2016-03-01

    The cuticles of insects and arthropods have some of the most diverse material properties observed in nature, so much so that it is difficult to imagine that all cutciles are primarily composed of the same two materials: a fibrous chitin network and a matrix composed of cuticle proteins. Various factors contribute to the mechanical and optical properties of an insect or arthropod cuticle including the thickness and composition. In this paper, we also identified another factor that may contribute to the optical, surface, and mechanical properties of a cuticle, i.e. the organization of chitin nanofibers and chitin fiber bundles. Self-assembled chitin nanofibers serve as the foundation for all higher order chitin structures in the cuticles of insects and other arthropods via interactions with structural cuticle proteins. Using a technique that enables the characterization of chitin organization in the cuticle of intact insects and arthropod exoskeletons, we demonstrate a structure/function correlation of chitin organization with larger scale anatomical structures. The chitin scaffolds in cuticles display an extraordinarily diverse set of morphologies that may reflect specific mechanical or physical properties. After removal of the proteinaceous and mineral matrix of a cuticle, we observe using SEM diverse nanoscale and micro scale organization of in-situ chitin in the wing, head, eye, leg, and dorsal and ventral thoracic regions of the periodical cicada Magicicada septendecim and in other insects and arthropods. The organization of chitin also appears to have a significant role in the organization of nanoscale surface structures. While microscale bristles and hairs have long been known to be chitin based materials formed as cellular extensions, we have found a nanostructured layer of chitin in the cuticle of the wing of the dog day annual cicada Tibicen tibicens, which may be the scaffold for the nanocone arrays found on the wing. We also use this process to examine

  20. Preparation of Size-Controlled Silver Nanoparticles and Chitin-Based Composites and Their Antimicrobial Activities

    International Nuclear Information System (INIS)

    A simple method for the preparation of size-controlled spherical silver nanoparticles (Ag NPs) was reported for their generation by autoclaving a mixture of silver-containing glass powder and glucose. The particle size is regulated by the glucose concentration, with concentrations of 0.25, 1.0, and 4.0 wt % glucose providing small (3.48±1.83 nm in diameter), medium (6.53±1.78 nm), and large (12.9 ±2.5 nm) particles, respectively. In this study, Ag NP/chitin composites were synthesized by mixing each of these three Ag NP suspensions with a <5% deacetylated (DAc) chitin powder (ph 7.0) at room temperature. The Ag NPs were homogeneously dispersed and stably adsorbed onto the chitin. The Ag NP/chitin composites were obtained as yellow or brown powders. Approximately 5, 15, and 20 μg of the small, medium, and large Ag NPs, respectively, were estimated to maximally adsorb onto 1 mg of chitin. The bactericidal and antifungal activities of the Ag NP/chitin composites increased as the amount of Ag NPs in the chitin increased. Furthermore, smaller Ag NPs (per weight) in the chitin composites provided higher bactericidal and anti-fungal activities.

  1. Bacterial communities in chitin-amended soil as revealed by 16S rRNA gene based pyrosequencing

    NARCIS (Netherlands)

    Cretoiu, Mariana Silvia; Kielak, Anna Maria; Schluter, Andreas; van Elsas, Jan Dirk

    2014-01-01

    Chitin and its derivatives are natural biopolymers that are often used as compounds for the control of soilborne plant pathogens. In spite of recent advances in agricultural practices involving chitin amendments, the microbial communities in chitin-amended soils remain poorly known. The objectives o

  2. Preparation of monolithic silica-chitin composite under extreme biomimetic conditions.

    Science.gov (United States)

    Bazhenov, Vasilii V; Wysokowski, Marcin; Petrenko, Iaroslav; Stawski, Dawid; Sapozhnikov, Philipp; Born, René; Stelling, Allison L; Kaiser, Sabine; Jesionowski, Teofil

    2015-05-01

    Chitin is a widespread renewable biopolymer that is extensively distributed in the natural world. The high thermal stability of chitin provides an opportunity to develop novel inorganic-organic composites under hydrothermal synthesis conditions in vitro. For the first time, in this work we prepared monolithic silica-chitin composite under extreme biomimetic conditions (80°C and pH 1.5) using three dimensional chitinous matrices isolated from the marine sponge Aplysina cauliformis. The resulting material was studied using light and fluorescence microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy. A mechanism for the silica-chitin interaction after exposure to these hydrothermal conditions is proposed and discussed. PMID:25701776

  3. Bacterial chitinolytic communities respond to chitin and pH alteration in soil

    DEFF Research Database (Denmark)

    Kielak, Anna; Cretoiu, Mariana; Semenov, Alexander; Sørensen, Søren Johannes; van Elsas, Jan

    2013-01-01

    Chitin amendment is a promising soil management strategy that may enhance the suppressiveness of soil toward plant pathogens. However, we understand very little of the effects of added chitin, including the putative successions that take place in the degradative process. We performed an experiment...... in moderately acid soil in which the level of chitin, next to the pH, was altered. Examination of chitinase activities revealed fast responses to the added crude chitin, with peaks of enzymatic activity occurring on day 7. PCR-denaturing gradient gel electrophoresis (DGGE)-based analyses of 16S r......RNA and chiA genes showed structural changes of the phylogenetically and functionally based bacterial communities following chitin addition and pH alteration. Pyrosequencing analysis indicated (i) that the diversity of chiA gene types in soil is enormous and (i) that different chiA gene types are selected...

  4. Chitin enhances serum IgE in Aspergillus fumigatus induced allergy in mice

    DEFF Research Database (Denmark)

    Dubey, Lalit Kumar; Moeller, Jesper Bonnet; Schlosser, Anders;

    2015-01-01

    Aspergillus fumigatus (A. fumigatus) is a ubiquitous fungus that activates, suppresses or modulates the immune response by changing its cell wall structure and by secreting proteases. In this study, we show that chitin acts as an adjuvant in a murine model of A. fumigatus protease induced allergy....... The mice were immunised intraperitoneally with A. fumigatus culture filtrate antigen either with or without chitin and were subsequently challenged with the culture filtrate antigen intranasally. Alum was used as an adjuvant control. Compared to alum, chitin induced a weaker inflammatory response in...... the lungs, measured as the total cell efflux in BAL, EPO and chitinase production. However, chitin enhanced the total IgE, specific IgE and specific IgG1 production as efficiently as alum. Pre-treatment with chitin but not with alum depressed the concentration of the Th2 cytokines IL-4 and IL-13 in...

  5. Biodegradable composite chitosan/chitin nanofibrils films for food packaging

    Czech Academy of Sciences Publication Activity Database

    Tishchenko, Galina; Špírková, Milena; Pavlová, Eva; Brus, Jiří; Kelnar, Ivan; Brožová, Libuše; Peter, Jakub; Pekárek, Michal; Dohnálek, Jan; Rosova, E. Yu.; Elyashevich, G. K.; Morganti, P.

    Praha : Česká společnost chemického inženýrství, 2012. 0786. ISBN 978-80-905035-1-9. [International Congress of Chemical and Process Engineering CHISA 2012 /20./ and Conference PRES 2012 /15./. 25.08.2012-29.08.2012, Praha] R&D Projects: GA ČR GA310/09/1407 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : chitosan * chitin nanofibrils * composite films Subject RIV: EE - Microbiology, Virology

  6. Microbial responses to chitin and chitosan in oxic and anoxic agricultural soil slurries

    Directory of Open Access Journals (Sweden)

    A. S. Wieczorek

    2014-02-01

    Full Text Available Chitin is the second most abundant biopolymer in terrestrial ecosystems and is subject to microbial degradation. Chitin can be deacetylated to chitosan or can be hydrolyzed to N,N′-diacetylchitobiose and oligomers of N-acetylglucosamine by aerobic and anaerobic microorganisms. Which pathway of chitin hydrolysis is preferred by soil microbial communities has previously been unknown. Supplementation of chitin stimulated microbial activity under oxic and anoxic conditions in agricultural soil slurries, whereas chitosan had no effect. Thus, the soil microbial community likely was more adapted to chitin as a substrate. In addition, this finding suggested that direct hydrolysis of chitin was preferred to the pathway that starts with deacetylation. Chitin was apparently degraded by aerobic respiration, ammonification, and nitrification to carbon dioxide and nitrate under oxic conditions. When oxygen was absent, fermentation products (acetate, butyrate, propionate, hydrogen, carbon dioxide and ammonia were detected, suggesting that butyric and propionic acid fermentation were along with ammonification likely responsible for apparent anaerobic chitin degradation. In total, 42 different chiA genotypes were detected of which twenty were novel at an amino acid sequence dissimilarity of >50%. Various chiA genotypes responded to chitin supplementation and affiliated with a novel deep-branching bacterial chiA genotype (anoxic conditions, genotypes of Beta- and Gammaproteobacteria (oxic and anoxic conditions, and Planctomycetes (oxic conditions. Thus, this study provides evidence that detected chitinolytic bacteria were catabolically diverse and occupied different ecological niches with regard to oxygen availability enabling chitin degradation under various redox conditions at the level of the community.

  7. Microbial responses to chitin and chitosan in oxic and anoxic agricultural soil slurries

    Science.gov (United States)

    Wieczorek, A. S.; Hetz, S. A.; Kolb, S.

    2014-06-01

    Microbial degradation of chitin in soil substantially contributes to carbon cycling in terrestrial ecosystems. Chitin is globally the second most abundant biopolymer after cellulose and can be deacetylated to chitosan or can be hydrolyzed to N,N'-diacetylchitobiose and oligomers of N-acetylglucosamine by aerobic and anaerobic microorganisms. Which pathway of chitin hydrolysis is preferred by soil microbial communities is unknown. Supplementation of chitin stimulated microbial activity under oxic and anoxic conditions in agricultural soil slurries, whereas chitosan had no effect. Thus, the soil microbial community likely was more adapted to chitin as a substrate. In addition, this finding suggested that direct hydrolysis of chitin was preferred to the pathway that starts with deacetylation. Chitin was apparently degraded by aerobic respiration, ammonification, and nitrification to carbon dioxide and nitrate under oxic conditions. When oxygen was absent, fermentation products (acetate, butyrate, propionate, hydrogen, and carbon dioxide) and ammonia were detected, suggesting that butyric and propionic acid fermentation, along with ammonification, were likely responsible for anaerobic chitin degradation. In total, 42 different chiA genotypes were detected of which twenty were novel at an amino acid sequence dissimilarity of less than 50%. Various chiA genotypes responded to chitin supplementation and affiliated with a novel deep-branching bacterial chiA genotype (anoxic conditions), genotypes of Beta- and Gammaproteobacteria (oxic and anoxic conditions), and Planctomycetes (oxic conditions). Thus, this study provides evidence that detected chitinolytic bacteria were catabolically diverse and occupied different ecological niches with regard to oxygen availability enabling chitin degradation under various redox conditions on community level.

  8. Quorum sensing-regulated chitin metabolism provides grazing resistance to Vibrio cholerae biofilms.

    Science.gov (United States)

    Sun, Shuyang; Tay, Qi Xiang Martin; Kjelleberg, Staffan; Rice, Scott A; McDougald, Diane

    2015-08-01

    Association of Vibrio cholerae with chitinous surfaces of zooplankton is important for its persistence in marine environments, as it provides accessibility to nutrients and resistance to stresses. Predation by heterotrophic protists has a major impact on the survival of V. cholerae. V. cholerae forms biofilms as its main defensive strategy, and quorum sensing (QS) additionally regulates the production of antiprotozoal factors. The role of chitin and QS regulation in V. cholerae grazing resistance was investigated by exposing V. cholerae wild-type (WT) and QS mutant biofilms grown on chitin flakes to the bacteriotrophic, surface-feeding flagellate Rhynchomonas nasuta. V. cholerae formed more biofilm biomass on chitin flakes compared with nonchitinous surfaces. The growth of R. nasuta was inhibited by WT biofilms grown on chitin flakes, whereas the inhibition was attenuated in QS mutant biofilms. The chitin-dependent toxicity was also observed when the V. cholerae biofilms were developed under continuous flow or grown on a natural chitin source, the exoskeleton of Artemia. In addition, the antiprotozoal activity and ammonium concentration of V. cholerae biofilm supernatants were quantified. The ammonium levels (3.5 mM) detected in the supernatants of V. cholerae WT biofilms grown on chitin flakes were estimated to reduce the number of R. nasuta by >80% in add-back experiments, and the supernatant of QS mutant biofilms was less toxic owing to a decrease in ammonium production. Transcriptomic analysis revealed that the majority of genes involved in chitin metabolism and chemotaxis were significantly downregulated in QS mutant biofilms when grown on chitin compared with the WT biofilms. PMID:25615438

  9. Rheological Properties of Aqueous Suspensions of Chitin Crystallites

    Science.gov (United States)

    Li; Revol; Marchessault

    1996-11-10

    Rheologically, suspensions of chitin crystallites are found to behave as other molecular liquid crystalline polymers (LCPs). The average hydrodynamic diameter of the crystallites in the suspension at pH 4 is determined to be approximately 80 nm using dynamic light scattering. Conductimetric and pH titration results show that the pKa of the crystallites is 6.3, which is the same as that reported for chitosan. In combination with phase diagrams, flow properties of isotropic, biphasic, and anisotropic chitin suspensions were investigated. For isotropic suspensions, a classical shear thinning behavior of rodlike particles is observed. In the case of biphasic suspensions, a two-regime curve is observed where tactoids first orient, deform, and then break up under a shearing force. Similar to other LCPs, a three-regime flow curve is found for the anisotropic suspensions. The viscosity-concentration curve exhibits a maximum at the phase separation concentration, and this maximum is less distinct with a decrease of the ionic strength. Secondary electroviscous effects due to strong particle-particle interactions influence the viscosity of the suspensions at higher concentrations. PMID:8954679

  10. Polycaprolactone-Chitin Nanofibrous Mats as Potential Scaffolds for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Min Sup Kim

    2012-01-01

    Full Text Available We describe here the preparation of poly(caprolactone (PCL-chitin nanofibrous mats by electrospinning from a blended solution of PCL and chitin dissolved in a cosolvent, 1,1,1,3,3,3-hexafluoro-2-propanol and trifluoroacetic acid. Scanning electron microscopy showed that the neutralized PCL-chitin nanofibrous mats were morphologically stable, with a mean diameter of 340.5±2.6 nm, compared with a diameter of 524.2±12.1 nm for PCL mats. The nanofibrous mats showed decreased water contact angles as the proportion of chitin increased. However, the tensile properties of nanofibrous mats containing 30~50% (wt/wt chitin were enhanced compared with PCL-only mats. In vitro studies showed that the viability of human dermal fibroblasts (HDFs for up to 7 days in culture was higher on composite (OD value: 1.42±0.09 than on PCL-only (0.51±0.14 nanofibrous mats, with viability correlated with chitin concentration. Together, our results suggest that PCL-chitin nanofibrous mats can be used as an implantable substrate to modulate HDF viability in tissue engineering.

  11. Chitin enhances biocontrol of Rhodotorula mucilaginosa to postharvest decay of peaches.

    Science.gov (United States)

    Zhang, Hongyin; Yang, Qiya; Ge, Lingling; Zhang, Guochao; Zhang, Xiaoli; Zhang, Xiaoyun

    2016-07-01

    Biological control using microbial antagonists is a promising alternative approach to synthetic fungicides. However, effective biological control requires enhancing the consistency and efficacy of the antagonists used to control postharvest diseases. This study investigated the effect of chitin on the biocontrol efficacy of Rhodotorula mucilaginosa against blue mold and Rhizopus decay of peaches and on the protein expression profiles of R. mucilaginosa. The antagonistic activity of R. mucilaginosa harvested from the nutrient yeast dextrose broth (NYDB) with 0.5% chitin added was significantly improved compared with culture in NYDB without chitin. The R. mucilaginosa population cultured in chitin-supplement NYDB and nutrient yeast chitin borth (NYCB) harvested from peach wounds was more than that of R. mucilaginosa cultured in NYDB without chitin throughout the storage period except at 1 d. The protein expression profiles findings revealed that there were several differentially expressed proteins of R. mucilaginosa in the 0.5% chitin-supplemented NYDB and NYCB compared with that of R. mucilaginosa in NYDB. Most of these were cellular proteomes relating to the primary metabolic reactions such as glycoside hydrolases, phosphoribosyl pyrophosphate, and NADH dehydrogenases. Some proteins were also related to signal transmission and stress response. PMID:27064085

  12. Salmonella biofilm formation on Aspergillus niger involves cellulose--chitin interactions.

    Science.gov (United States)

    Brandl, Maria T; Carter, Michelle Q; Parker, Craig T; Chapman, Matthew R; Huynh, Steven; Zhou, Yaguang

    2011-01-01

    Salmonella cycles between host and nonhost environments, where it can become an active member of complex microbial communities. The role of fungi in the environmental adaptation of enteric pathogens remains relatively unexplored. We have discovered that S. enterica Typhimurium rapidly attaches to and forms biofilms on the hyphae of the common fungus, Aspergillus niger. Several Salmonella enterica serovars displayed a similar interaction, whereas other bacterial species were unable to bind to the fungus. Bacterial attachment to chitin, a major constituent of fungal cell walls, mirrored this specificity. Pre-incubation of S. Typhimurium with N-acetylglucosamine, the monomeric component of chitin, reduced binding to chitin beads by as much as 727-fold and inhibited attachment to A. niger hyphae considerably. A cellulose-deficient mutant of S. Typhimurium failed to attach to chitin beads and to the fungus. Complementation of this mutant with the cellulose operon restored binding to chitin beads to 79% of that of the parental strain and allowed for attachment and biofilm formation on A. niger, indicating that cellulose is involved in bacterial attachment to the fungus via the chitin component of its cell wall. In contrast to cellulose, S. Typhimurium curli fimbriae were not required for attachment and biofilm development on the hyphae but were critical for its stability. Our results suggest that cellulose-chitin interactions are required for the production of mixed Salmonella-A. niger biofilms, and support the hypothesis that encounters with chitinaceous alternate hosts may contribute to the ecological success of human pathogens. PMID:22003399

  13. Pyrolysis GC/MS and IR spectroscopy in chitin analysis of molluscan shells.

    Science.gov (United States)

    Furuhashi, Takeshi; Beran, Anton; Blazso, Marianne; Czegeny, Zsuzsanna; Schwarzinger, Clemens; Steiner, Gerhard

    2009-01-01

    Chitin is an insoluble component in the shells of several molluscan species. It is thought to play important roles, in biomineralization and shell structure. To date, however, reports are scarce and sometimes contradictory, and suffer from methodological problems. Only in a single cephalopod species has the chitin been identified as beta-chitin. We present data on chitin occurrence in 22 species of shell-bearing Mollusca (Conchifera) and Polyplacophora, including the first evidence for scaphopods, based on pyrolysis gas chromatography, mass spectrometry (GC-MS), and infrared spectroscopy (IR). Pyrolysis GC-MS detected chitin in every tested member of the Conchifera. IR spectroscopy before and after chitinase treatment revealed at least three distinct patterns of peak changes. The contents of the insoluble shell organics included not only chitin and proteins, but also insoluble polysaccharides, e.g., glucan. We conclude that chitin was present in the last common ancestor of the Conchifera and that its abundance in the shell matrix depends on the differentiation of the shell. PMID:19129649

  14. Description of a new surface morphology for chitin extracted from wings of cockroach (Periplaneta americana).

    Science.gov (United States)

    Kaya, Murat; Baran, Talat

    2015-04-01

    In this study a new morphology of chitin, which could find wide applications in the fields of medicine, pharmacy, agriculture, food and textiles, has been described. The chitin was isolated from the wings of Periplaneta americana employing a conventional method. Considering chitin isolation studies conducted previously, chitin has three surface morphologies, which are (1) hard and rough surface without pores or nanofibers, (2) surface solely composed of nanofibers and (3) surfaces with both pores and nanofibers. In this study, the surface of the chitin, examined with environmental scanning electron microscopy (ESEM), only has oval nanopores (230-510 nm) without nanofibers, and this is different from the above mentioned surface morphologies. The nanopores are not distributed on the chitin surface randomly. Typically, there is a pore in the center that is surrounded by six or seven other pores in an ordered manner. Structures similar to cell walls exist between the pores. Chitin with the new surface morphology was characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG), X-ray diffraction (XRD) and elemental analysis. PMID:25597430

  15. Salmonella biofilm formation on Aspergillus niger involves cellulose--chitin interactions.

    Directory of Open Access Journals (Sweden)

    Maria T Brandl

    Full Text Available Salmonella cycles between host and nonhost environments, where it can become an active member of complex microbial communities. The role of fungi in the environmental adaptation of enteric pathogens remains relatively unexplored. We have discovered that S. enterica Typhimurium rapidly attaches to and forms biofilms on the hyphae of the common fungus, Aspergillus niger. Several Salmonella enterica serovars displayed a similar interaction, whereas other bacterial species were unable to bind to the fungus. Bacterial attachment to chitin, a major constituent of fungal cell walls, mirrored this specificity. Pre-incubation of S. Typhimurium with N-acetylglucosamine, the monomeric component of chitin, reduced binding to chitin beads by as much as 727-fold and inhibited attachment to A. niger hyphae considerably. A cellulose-deficient mutant of S. Typhimurium failed to attach to chitin beads and to the fungus. Complementation of this mutant with the cellulose operon restored binding to chitin beads to 79% of that of the parental strain and allowed for attachment and biofilm formation on A. niger, indicating that cellulose is involved in bacterial attachment to the fungus via the chitin component of its cell wall. In contrast to cellulose, S. Typhimurium curli fimbriae were not required for attachment and biofilm development on the hyphae but were critical for its stability. Our results suggest that cellulose-chitin interactions are required for the production of mixed Salmonella-A. niger biofilms, and support the hypothesis that encounters with chitinaceous alternate hosts may contribute to the ecological success of human pathogens.

  16. Solvothermal synthesis of hydrophobic chitin-polyhedral oligomeric silsesquioxane (POSS) nanocomposites.

    Science.gov (United States)

    Wysokowski, Marcin; Materna, Katarzyna; Walter, Juliane; Petrenko, Iaroslav; Stelling, Allison L; Bazhenov, Vasilii V; Klapiszewski, Łukasz; Szatkowski, Tomasz; Lewandowska, Olga; Stawski, Dawid; Molodtsov, Serguei L; Maciejewski, Hieronim; Ehrlich, Hermann; Jesionowski, Teofil

    2015-01-01

    Chitinous scaffolds isolated from the skeleton of marine sponge Aplysina cauliformis were used as a template for the deposition of polyhedral oligomeric silsesquioxanes (POSS). These chitin-POSS based composites with hydrophobic properties were prepared for the first time using solvothermal synthesis (pH 3, temp 80 °C), and were thoroughly characterized. The resulting material was studied using scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and thermogravimetry. A mechanism for the chitin-POSS interaction after exposure to these solvothermal conditions is proposed and discussed. PMID:25889055

  17. Polycaprolactone-Chitin Nanofibrous Mats as Potential Scaffolds for Tissue Engineering

    OpenAIRE

    Min Sup Kim; Sang Jun Park; Bon Kang Gu; Chun-Ho Kim

    2012-01-01

    We describe here the preparation of poly(caprolactone) (PCL)-chitin nanofibrous mats by electrospinning from a blended solution of PCL and chitin dissolved in a cosolvent, 1,1,1,3,3,3-hexafluoro-2-propanol and trifluoroacetic acid. Scanning electron microscopy showed that the neutralized PCL-chitin nanofibrous mats were morphologically stable, with a mean diameter of 340.5±2.6 nm, compared with a diameter of 524.2±12.1 nm for PCL mats. The nanofibrous mats showed decreased water contact angle...

  18. Chitins and Chitosans as Immunoadjuvants and Non-Allergenic Drug Carriers

    Directory of Open Access Journals (Sweden)

    Riccardo A. A. Muzzarelli

    2010-02-01

    Full Text Available Due to the fact that some individuals are allergic to crustaceans, the presumed relationship between allergy and the presence of chitin in crustaceans has been investigated. In vivo, chitin is part of complex structures with other organic and inorganic compounds: in arthropods chitin is covalently linked to proteins and tanned by quinones, in fungi it is covalently linked to glucans, while in bacteria chitin is diversely combined according to Gram(+/- classification. On the other hand, isolated, purified chitin is a plain polysaccharide that, at the nano level, presents itself as a highly associated structure, recently refined in terms of regularity, nature of bonds, crystallinity degree and unusual colloidal behavior. Chitins and modified chitins exert a number of beneficial actions, i.e., (i they stimulate macrophages by interacting with receptors on the macrophage surface that mediate the internalization of chitin particles to be degraded by lysozyme and N-acetyl-β-glucosaminidase (such as Nod-like, Toll-like, lectin, Dectin-1, leukotriene 134 and mannose receptors; (ii the macrophages produce cytokines and other compounds that confer non-specific host resistance against bacterial and viral infections, and anti-tumor activity; (iii chitin is a strong Th1 adjuvant that up-regulates Th1 immunity induced by heat-killed Mycobacterium bovis, while down- regulating Th2 immunity induced by mycobacterial protein; (iv direct intranasal application of chitin microparticles into the lung was also able to significantly down-regulate allergic response to Dermatophagoids pteronyssinus and Aspergillus fumigatus in a murine model of allergy; (v chitin microparticles had a beneficial effect in preventing and treating histopathologic changes in the airways of asthmatic mice; (vi authors support the fact that chitin depresses the development of adaptive type 2 allergic responses. Since the expression of chitinases, chitrotriosidase and chitinase-like proteins

  19. MICROBIAL FERMENTATION OF ABUNDANT BIOPOLYMERS: CELLULOSE AND CHITIN

    Energy Technology Data Exchange (ETDEWEB)

    Leschine, Susan

    2009-10-31

    Our research has dealt with seven major areas of investigation: i) characterization of cellulolytic members of microbial consortia, with special attention recently given to Clostridium phytofermentans, a bacterium that decomposes cellulose and produces uncommonly large amounts of ethanol, ii) investigations of the chitinase system of Cellulomonas uda; including the purification and characterization of ChiA, the major component of this enzyme system, iii) molecular cloning, sequence and structural analysis of the gene that encodes ChiA in C. uda, iv) biofilm formation by C. uda on nutritive surfaces, v) investigations of the effects of humic substances on cellulose degradation by anaerobic cellulolytic microbes, vi) studies of nitrogen metabolism in cellulolytic anaerobes, and vii) understanding the molecular architecture of the multicomplex cellulase-xylanase system of Clostridium papyrosolvens. Also, progress toward completing the research of more recent projects is briefly summarized. Major accomplishments include: 1. Characterization of Clostridium phytofermentans, a cellulose-fermenting, ethanol-producing bacterium from forest soil. The characterization of a new cellulolytic species isolated from a cellulose-decomposing microbial consortium from forest soil was completed. This bacterium is remarkable for the high concentrations of ethanol produced during cellulose fermentation, typically more than twice the concentration produced by other species of cellulolytic clostridia. 2. Examination of the use of chitin as a source of carbon and nitrogen by cellulolytic microbes. We discovered that many cellulolytic anaerobes and facultative aerobes are able to use chitin as a source of both carbon and nitrogen. This major discovery expands our understanding of the biology of cellulose-fermenting bacteria and may lead to new applications for these microbes. 3. Comparative studies of the cellulase and chitinase systems of Cellulomonas uda. Results of these studies indicate

  20. MICROBIAL FERMENTATION OF ABUNDANT BIOPOLYMERS: CELLULOSE AND CHITIN

    Energy Technology Data Exchange (ETDEWEB)

    Leschine, Susan

    2009-10-31

    Our research has dealt with seven major areas of investigation: i) characterization of cellulolytic members of microbial consortia, with special attention recently given to Clostridium phytofermentans, a bacterium that decomposes cellulose and produces uncommonly large amounts of ethanol, ii) investigations of the chitinase system of Cellulomonas uda; including the purification and characterization of ChiA, the major component of this enzyme system, iii) molecular cloning, sequence and structural analysis of the gene that encodes ChiA in C. uda, iv) biofilm formation by C. uda on nutritive surfaces, v) investigations of the effects of humic substances on cellulose degradation by anaerobic cellulolytic microbes, vi) studies of nitrogen metabolism in cellulolytic anaerobes, and vii) understanding the molecular architecture of the multicomplex cellulase-xylanase system of Clostridium papyrosolvens. Also, progress toward completing the research of more recent projects is briefly summarized. Major accomplishments include: 1. Characterization of Clostridium phytofermentans, a cellulose-fermenting, ethanol-producing bacterium from forest soil. The characterization of a new cellulolytic species isolated from a cellulose-decomposing microbial consortium from forest soil was completed. This bacterium is remarkable for the high concentrations of ethanol produced during cellulose fermentation, typically more than twice the concentration produced by other species of cellulolytic clostridia. 2. Examination of the use of chitin as a source of carbon and nitrogen by cellulolytic microbes. We discovered that many cellulolytic anaerobes and facultative aerobes are able to use chitin as a source of both carbon and nitrogen. This major discovery expands our understanding of the biology of cellulose-fermenting bacteria and may lead to new applications for these microbes. 3. Comparative studies of the cellulase and chitinase systems of Cellulomonas uda. Results of these studies indicate

  1. Three-dimensional chitin rings from body segments of a pet diplopod species: Characterization and protein interaction studies.

    Science.gov (United States)

    Kaya, Murat; Mulerčikas, Povilas; Sargin, Idris; Kazlauskaitė, Sonata; Baublys, Vykintas; Akyuz, Bahar; Bulut, Esra; Tubelytė, Vaida

    2016-11-01

    Physicochemical characterization of new chitin isolates can provide valuable insights into designing of biomimetic materials. Chitin isolates with a definite three-dimensional (3D) structure can exhibit characteristics that distinguish them from other chitin specimens that are in form of powder or flakes without a definite and uniform shape. Herein, 3D chitin rings were produced from body segments of a diplopod (Archispirostreptus gigas) inhabiting tropical regions. This organism is cultured easily and can reach 38cm in length, which makes it a suitable source for isolation of chitin. The chitin rings were characterized via TGA, FT-IR, SEM and XRD analyses. Enzymatic digestion test with chitinase demonstrated that chitin isolates had high purity (digestion rate: 97.4%). The source organism had high chitin content; 21.02±2.23% on dry weight. Interactions of the chitin rings with bovine serum albumin (BSA) protein were studied under different conditions (pH: 4.0-8.0, chitin amount: 6-14mg, contact time: 30-360min, protein concentration: 0.2-1mg/mL). The highest BSA adsorption was observed at pH5.0 at 20°C. The adsorption equilibrium data exhibited a better fit to Langmuir adsorption and the pseudo-first order kinetic models. The findings presented here can be useful for further studies aiming to develop biocompatible and nontoxic biomaterials. PMID:27524072

  2. Radiation processing and characterization of chitin and chitosan extracted from crab shells

    International Nuclear Information System (INIS)

    The extraction and characterization of Chitin and Chitosan from crab shells (Callinectes sp.) obtained locally in Ghana is presented. The shells were finely milled and soaked in 10 % dilute hydrochloric acid (HCI) for 48 hr followed by de-proteinization using 2M sodium hydroxide (NaOH) solution for 24 hr to obtain Chitin. The Chitin was refluxed at 100 (deg) C in 50 % NaOH for 7 hr to yield Chitosan. The Chitin and Chitosan were characterized by determining the de-acetylation, viscosity and average molecular weights. The degree of de-acetylation was determined to be 89.7 %. The viscosity of Chitosan in dilute acetic acid was measured and the average molecular weight estimated. The average molecular weight of dry gamma irradiated (up to 100kGy) Chitosan samples decreased with increasing dose. The results have been discussed in terms of radiation induced degradation of solids. (au)

  3. Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan

    Directory of Open Access Journals (Sweden)

    Jolanta Kumirska

    2010-04-01

    Full Text Available Chitin, the second most important natural polymer in the world, and its N-deacetylated derivative chitosan, have been identified as versatile biopolymers for a broad range of applications in medicine, agriculture and the food industry. Two of the main reasons for this are firstly the unique chemical, physicochemical and biological properties of chitin and chitosan, and secondly the unlimited supply of raw materials for their production. These polymers exhibit widely differing physicochemical properties depending on the chitin source and the conditions of chitosan production. The presence of reactive functional groups as well as the polysaccharide nature of these biopolymers enables them to undergo diverse chemical modifications. A complete chemical and physicochemical characterization of chitin, chitosan and their derivatives is not possible without using spectroscopic techniques. This review focuses on the application of spectroscopic methods for the structural analysis of these compounds.

  4. Infiltration of chitin by protein coacervates defines the squid beak mechanical gradient.

    Science.gov (United States)

    Tan, YerPeng; Hoon, Shawn; Guerette, Paul A; Wei, Wei; Ghadban, Ali; Hao, Cai; Miserez, Ali; Waite, J Herbert

    2015-07-01

    The beak of the jumbo squid Dosidicus gigas is a fascinating example of how seamlessly nature builds with mechanically mismatched materials. A 200-fold stiffness gradient begins in the hydrated chitin of the soft beak base and gradually increases to maximum stiffness in the dehydrated distal rostrum. Here, we combined RNA-Seq and proteomics to show that the beak contains two protein families. One family consists of chitin-binding proteins (DgCBPs) that physically join chitin chains, whereas the other family comprises highly modular histidine-rich proteins (DgHBPs). We propose that DgHBPs play multiple key roles during beak bioprocessing, first by forming concentrated coacervate solutions that diffuse into the DgCBP-chitin scaffold, and second by inducing crosslinking via an abundant GHG sequence motif. These processes generate spatially controlled desolvation, resulting in the impressive biomechanical gradient. Our findings provide novel molecular-scale strategies for designing functional gradient materials. PMID:26053298

  5. In vitro degradation of porous nano-hydroxyapatite/collagen/PLLA scaffold reinforced by chitin fibres

    International Nuclear Information System (INIS)

    In this paper, a novel porous scaffold for bone tissue engineering was prepared with nano-hydroxyapatite/collagen/Poly-L-lactic acid (PLLA) composite reinforced by chitin fibres. To enhance the strength of the scaffold further, PLLA was linked with chitin fibres by Dicyclohexylcarbodimide (DCC). The structures of the reinforced scaffold with and without linking were characterized by Scanning Electron Microscopy (SEM). The chemical characteristics of the chitin fibres with and without linking were evaluated by Fourier-transformed infrared (FTIR) spectroscopy. The mechanical performance during degradation in vitro was investigated. The results indicated that the nano-hydroxyapatite/collagen/PLLA composite reinforced by chitin fibres with linking kept better mechanical properties than that of the composite without linking. These results denoted that the stronger interfacial bonding strength of the scaffold with linking could decrease the degradation rate in vitro. The reinforced composite with the link-treatment can be severed as a scaffold for bone tissue engineering

  6. Solid state characterization of {alpha}-chitin from Vanessa cardui Linnaeus wings

    Energy Technology Data Exchange (ETDEWEB)

    Schiffman, Jessica D. [Department of Materials Science and Engineering, Drexel University, Philadelphia, PA (United States); Schauer, Caroline L., E-mail: cschauer@coe.drexel.edu [Department of Materials Science and Engineering, Drexel University, Philadelphia, PA (United States)

    2009-05-05

    Material properties of the painted lady butterfly, Vanessa cardui Linnaeus were investigated using typical material science techniques. The examined butterflies were raised and hatched from the larvae stage and their chemical and crystalline structure evaluated and compared to that of crab shell ({alpha}-chitin) and squid pens from Notodarus sloanii and Loligo pealei ({beta}-chitin). Fourier transmission infrared spectroscopy (FTIR) and X-ray diffraction (XRD) revealed that the painted lady butterflies are composed of {alpha}-chitin. Additionally, macro- and microstructure characterization of the chitins was conducted utilizing digital photography and field emission scanning electron microscopy (FESEM). This work demonstrates that common characterization techniques combined with simple sample preparation of biological materials can yield successful material characterization, which could aide the fabrication of biomimetic materials.

  7. Chitin-Induced Airway Epithelial Cell Innate Immune Responses Are Inhibited by Carvacrol/Thymol

    Science.gov (United States)

    Erle, David J.

    2016-01-01

    Chitin is produced in large amounts by fungi, insects, and other organisms and has been implicated in the pathogenesis of asthma. Airway epithelial cells are in direct contact with environmental particles and serve as the first line of defense against inhaled allergens and pathogens. The potential contributions of airway epithelial cells to chitin-induced asthma remain poorly understood. We hypothesized that chitin directly stimulates airway epithelial cells to release cytokines that promote type 2 immune responses and to induce expression of molecules which are important in innate immune responses. We found that chitin exposure rapidly induced the expression of three key type 2-promoting cytokines, IL-25, IL-33 and TSLP, in BEAS-2B transformed human bronchial epithelial cells and in A549 and H292 lung carcinoma cells. Chitin also induced the expression of the key pattern recognition receptors TLR2 and TLR4. Chitin induced the expression of miR-155, miR-146a and miR-21, each of which is known to up-regulate the expression of pro-inflammatory cytokines. Also the expression of SOCS1 and SHIP1 which are known targets of miR-155 was repressed by chitin treatment. The monoterpene phenol carvacrol (Car) and its isomer thymol (Thy) are found in herbal essential oils and have been shown to inhibit allergic inflammation in asthma models. We found that Car/Thy inhibited the effects of chitin on type 2-promoting cytokine release and on the expression of TLRs, SOCS1, SHIP1, and miRNAs. Car/Thy could also efficiently reduce the protein levels of TLR4, inhibit the increase in TLR2 protein levels in chitin plus Car/Thy-treated cells and increase the protein levels of SHIP1 and SOCS1, which are negative regulators of TLR-mediated inflammatory responses. We conclude that direct effects of chitin on airway epithelial cells are likely to contribute to allergic airway diseases like asthma, and that Car/Thy directly inhibits epithelial cell pro-inflammatory responses to chitin. PMID

  8. Nanostructural Organization of Naturally Occurring Composites—Part II: Silica-Chitin-Based Biocomposites

    OpenAIRE

    VOURNAKIS, JOHN N.; Hartmut Worch; Thomas Hanke; Sascha Heinemann; René Born; Michael Mertig; Christiane Erler; Shapkin, Nikolay P.; Vasily V. Bazhenov; Paul Simon; Dorte Janussen; Hermann Ehrlich

    2008-01-01

    Investigations of the micro- and nanostructures and chemical composition of the sponge skeletons as examples for natural structural biocomposites are of fundamental scientific relevance. Recently, we show that some demosponges (Verongula gigantea, Aplysina sp.) and glass sponges (Farrea occa, Euplectella aspergillum) possess chitin as a component of their skeletons. The main practical approach we used for chitin isolation was based on alkali treatment of corresponding external layers of spicu...

  9. Insectivorous Bats Digest Chitin in the Stomach Using Acidic Mammalian Chitinase

    OpenAIRE

    Strobel, Sara; Roswag, Anna; Becker, Nina I.; Trenczek, Tina E.; Encarnação, Jorge A.

    2013-01-01

    The gastrointestinal tract of animals is adapted to their primary source of food to optimize resource use and energy intake. Temperate bat species mainly feed on arthropods. These contain the energy-rich carbohydrate chitin, which is indigestible for the endogenous enzymes of a typical mammalian gastrointestinal tract. However, the gastrointestinal tract of bat species should be adapted to their diet and be able to digest chitin. We hypothesized that (i) European vespertilionid bat species ha...

  10. Infiltration of chitin by protein coacervates defines the squid beak mechanical gradient

    OpenAIRE

    Y. Tan; Hoon, S; Guerette, PA; Wei, W; Ghadban, A; Hao, C; Miserez, A; Waite, JH

    2015-01-01

    © 2015 Nature America, Inc. All rights reserved. The beak of the jumbo squid Dosidicus gigas is a fascinating example of how seamlessly nature builds with mechanically mismatched materials. A 200-fold stiffness gradient begins in the hydrated chitin of the soft beak base and gradually increases to maximum stiffness in the dehydrated distal rostrum. Here, we combined RNA-Seq and proteomics to show that the beak contains two protein families. One family consists of chitin-binding proteins (DgCB...

  11. Chitin, Chitosan, and Glycated Chitosan Regulate Immune Responses: The Novel Adjuvants for Cancer Vaccine

    OpenAIRE

    Xiaosong Li; Min Min; Nan Du; Ying Gu; Tomas Hode; Mark Naylor; Dianjun Chen; Nordquist, Robert E.; Chen, Wei R.

    2013-01-01

    With the development of cancer immunotherapy, cancer vaccine has become a novel modality for cancer treatment, and the important role of adjuvant has been realized recently. Chitin, chitosan, and their derivatives have shown their advantages as adjuvants for cancer vaccine. In this paper, the adjuvant properties of chitin and chitosan were discussed, and some detailed information about glycated chitosan and chitosan nanoparticles was also presented to illustrate the trend for future development.

  12. Bridging peripheral nerves using a deacetyl chitin conduit combined with short-term electrical stimulation

    OpenAIRE

    Zhang, Zhongli; Xin LI; Zuo, Songjie; Xin, Jie; Zhang, Peixun

    2014-01-01

    Previous studies have demonstrated that deacetyl chitin conduit nerve bridging or electrical stimulation can effectively promote the regeneration of the injured peripheral nerve. We hypothesized that the combination of these two approaches could result in enhanced regeneration. Rats with right sciatic nerve injury were subjected to deacetyl chitin conduit bridging combined with electrical stimulation (0.1 ms, 3 V, 20 Hz, for 1 hour). At 6 and 12 weeks after treatment, nerve conduction velocit...

  13. Chitin-containing materials as sorbents for radioiodine from air-gas mixture

    International Nuclear Information System (INIS)

    It is shown the perspective of mushroom genesis chitin-chitosan materials for creation of screens entrapping joint of radioiodine from air-gas mixtures of NPP's workplace and on waste-handling spent nuclear fuel enterprises. Contrasted to traditional sorbents, chemical activity of natural chitin materials allows to increase immobilization in 3-5 times not only inorganic iodine, but also its organic derivatives

  14. Preparation of metal adsorbents from chitin/chitosan by radiation technology

    International Nuclear Information System (INIS)

    The methods of preparation of metal adsorbents basing on chitin/chitosan were developed. That include the adsorbent from chitin grafted with acrylic acid by different irradiation doses; the clinging chitosan gel beads; the coagulable solution and the chitosan composite filter. The process of metal adsorption for each adsorbent was studied as adsorption kinetic, isothermal adsorption. The results have been applied for removal of some elements as Hg, Pb, Cd, U, Cu, ect. in the wastewater. (NHA)

  15. Laboratory Evaluation of Five Chitin Synthesis Inhibitors Against the Colorado Potato Beetle, Leptinotarsa decemlineata

    OpenAIRE

    Karimzadeh, R.; Hejazi, M. J.; Rahimzadeh Khoei, F.; Moghaddam, M.

    2007-01-01

    Results of laboratory experiments are reported that tested the effects of five chitin synthesis inhibitors, diflubenzuron, cyromazine, lufenuron, hexaflumuron and triflumuron. on second instars of the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Crysomelidae), originally collected from potato fields of Bostanabaad, a town 66 km southeast of Tabriz, Iran. In bioassays, the larvae were fed potato leaves dipped in aqueous solutions containing chitin synthesis inhibitors. ...

  16. Extraction biotechnologique de la chitine pour la production de chitosane : caractérisation et application

    OpenAIRE

    Pacheco Lopez, Neith

    2010-01-01

    The chitin is one of the most abundant biopolymers in biomass. Its main industrial derivative is the chitosan. These two polysaccharides present an increasing interest thanks to their various interesting physicochemical and biological properties. Their potential applications concern diverse fields as the pharmacy, medicine, food industry and agriculture. Despite numerous advances in methods for the chemical production of chitin and chitosan, the use of concentrated solutions of acids and alka...

  17. Discussion remarks on the role of wood and chitin constituents during carbonization

    OpenAIRE

    Anna eIlnicka; Jerzy P Lukaszewicz

    2015-01-01

    Nature is a source of some biomaterials like wood and chitin which can be successfully transformed into chars of advanced structural/surface parameters. The manuscript is discursive and suggests that particular components of the materials (cellulose, lignin, hemicellulose, alfa-chitin fibrils, mineral-protein matrix) play a specific role in the manufacturing of porous chars. It is proposed that some of the components (hemicellulose and mineral-protein matrixes) behave like a natural soft temp...

  18. Discussion Remarks on the Role of Wood and Chitin Constituents during Carbonization

    OpenAIRE

    Ilnicka, Anna; Jerzy P Lukaszewicz

    2015-01-01

    Nature is a source of some biomaterials like wood and chitin, which can be successfully transformed into chars of advanced structural/surface parameters. The manuscript is discursive and suggests that particular components of the materials (cellulose, lignin, hemicellulose, alfa-chitin fibrils, mineral–protein matrix) play a specific role in the manufacturing of porous chars. It is proposed that some of the components (hemicellulose and mineral–protein matrixes) behave like a natural soft tem...

  19. Structural Investigations of Chitin and Chitosan Complexed with Iron or Tin

    Science.gov (United States)

    Gamblin, B. E.; Stevens, J. G.; Wilson, K. L.

    1998-12-01

    Chitin (N-acetyl-glucosamine) and its derivative chitosan (glucosamine) bind with most transition and main group metals, including iron and tin. Using 57Fe and 119Sn Mössbauer Spectroscopy it is determined that an oxidation reaction occurs during the metal uptake. Data also supports a structure with more than one metal bonding site and shows the ability of the chitin and chitosan polymers to bind large concentrations of iron.

  20. Preparation and Characterization of a Novel Co-processed Excipient of Chitin and Crystalline Mannitol

    OpenAIRE

    Daraghmeh, Nidal; Rashid, Iyad; Mahmoud M. H. Al Omari; Leharne, Stephen A.; Babur Z. Chowdhry; Badwan, Adnan

    2010-01-01

    A co-processed excipient was prepared from commercially available crystalline mannitol and α-chitin using direct compression as well as spray, wet, and dry granulation. The effect of the ratio of the two components, percentage of lubricant and particle size, on the properties of the prepared co-processed excipient has been investigated. α-Chitin forms non-hygroscopic, highly compactable, disintegrable compacts when co-processed with crystalline mannitol. The compaction properties of the co-pr...

  1. Co-Processed Chitin-Mannitol as a New Excipient for Oro-Dispersible Tablets

    OpenAIRE

    Nidal Daraghmeh; Babur Z. Chowdhry; Leharne, Stephen A.; Mahmoud M. H. Al Omari; Badwan, Adnan A.

    2015-01-01

    This study describes the preparation, characterization and performance of a novel excipient for use in oro-dispersible tablets (ODT). The excipient (Cop–CM) consists of chitin and mannitol. The excipient with optimal physicochemical properties was obtained at a chitin: mannitol ratio of 2:8 (w/w) and produced by roll compaction (RC). Differential scanning calorimetry (DSC), Fourier transform-Infrared (FT-IR), X-ray powder diffraction (XRPD) and scanning electron microscope (SEM) techniques we...

  2. Isocyanate-Functionalized Chitin and Chitosan as Gelling Agents of Castor Oil

    OpenAIRE

    Franco, José M.; Rocío Gallego; Jesús F. Arteaga; Concepción Valencia

    2013-01-01

    The main objective of this work was the incorporation of reactive isocyanate groups into chitin and chitosan in order to effectively use the products as reactive thickening agents in castor oil. The resulting gel-like dispersions could be potentially used as biodegradable lubricating greases. Three different NCO–functionalized polymers were obtained: two of them by promoting the reaction of chitosan with 1,6-hexamethylene diisocyanate (HMDI), and the other by using chitin instead of chitosan....

  3. Hydrogen and oxygen in brine shrimp chitin reflect environmental water and dietary isotopic composition

    Science.gov (United States)

    Nielson, Kristine E.; Bowen, Gabriel J.

    2010-03-01

    Hydrogen and oxygen isotope ratios of the common structural biopolymer chitin are a potential recorder of ecological and environmental information, but our understanding of the mechanisms of incorporation of H and O from environmental substrates into chitin is limited. We report the results of a set of experiments in which the isotopic compositions of environmental water and diet were varied independently in order to assess the contribution of these variables to the H and O isotopic composition of Artemia franciscana chitin. Hydrogen isotope ratios of chitin were strongly linearly correlated with both food and water, with approximately 26% of the hydrogen signal reflecting food and approximately 38% reflecting water. Oxygen isotopes were also strongly correlated with the isotopic composition of water and food, but whereas 69% of oxygen in chitin exchanged with environmental water, only 10% was derived from food. We propose that these observations reflect the position-specific, partial exchange of H and O atoms with brine shrimp body water during the processes of digestion and chitin biosynthesis. Comparison of culture experiments with a set of natural samples collected from the Great Salt Lake, UT in 2006 shows that, with some exceptions, oxygen isotope compositions of chitin track those of water, whereas hydrogen isotopes vary inversely with those of lake water. The different behavior of the two isotopic systems can be explained in terms of a dietary shift from allochthonous particulate matter with relatively higher δ 2H values in the early spring to autochthonous particulate matter with significantly lower δ 2H values in the late summer to autumn. These results suggest oxygen in chitin may be a valuable proxy for the oxygen isotopic composition of environmental water, whereas hydrogen isotope values from the same molecule may reveal ecological and biogeochemical changes within lakes.

  4. Nature-Inspired One-Step Green Procedure for Enhancing the Antibacterial and Antioxidant Behavior of a Chitin Film: Controlled Interfacial Assembly of Tannic Acid onto a Chitin Film.

    Science.gov (United States)

    Wang, Yuntao; Li, Jing; Li, Bin

    2016-07-20

    The final goal of this study was to develop antimicrobial food-contact materials based on a natural phenolic compound (tannic acid) and chitin, which is the second most abundant polysaccharide on earth, using an interfacial assembly approach. Chitin film has poor antibacterial and antioxidant ability, which limits its application in industrial fields such as active packaging. Therefore, in this study, a novel one-step green procedure was applied to introduce antibacterial and antioxidant properties into a chitin film simultaneously by incorporation of tannic acid into the chitin film through interfacial assembly. The antibacterial and antioxidant behavior of chitin film has been greatly enhanced. Hydrogen bonds and hydrophobic interaction were found to be the main driving forces for interfacial assembly. Therefore, controlled interfacial assembly of tannic acid onto a chitin film demonstrated a good way to develop functional materials that can be potentially applied in industry. PMID:27378105

  5. Unconventional Approach for Demineralization of Deproteinized Crustacean Shells for Chitin Production

    Directory of Open Access Journals (Sweden)

    N. S. Mahmoud

    2007-01-01

    Full Text Available Chitin is a versatile environmentally friendly modern material. It has a wide range of applications in areas such as water treatment, pulp and paper, biomedical devices and therapies, cosmetics, membrane technology and biotechnology and food applications. Crustacean waste is the most important chitin source for commercial use. Demineralization is an important step in the chitin purification process from crustacean waste. The conventional method of demineralization includes the use of strong acid (commonly HCl that harms the physiochemical properties of chitin, results in a harmful effluent wastewater and increases the cost of chitin purification process. The current study proposes the use of organic acids (lactic and acetic produced by cheese whey fermentation to demineralize microbially deproteinized shrimp shells. The effects of acid type, demineralization condition, retention time and shells to acid ratio were investigated. The study showed that the effectiveness of using lactic and/or acetic acids for demineralization of shrimp shells was comparable to that of using hydrochloric acid. Using organic acids for demineralization is a promising concept, since organic acids are less harmful to the environment, can preserve the characteristics of the purified chitin and can be produced from low cost biomass such as cheese whey. In addition, the resulted organic salts from the demineralization process can be used as a food preservative and/or an environmentally friendly de-icing/anti-icing agents.

  6. Nanostructural Organization of Naturally Occurring Composites—Part II: Silica-Chitin-Based Biocomposites

    Directory of Open Access Journals (Sweden)

    Hermann Ehrlich

    2008-01-01

    Full Text Available Investigations of the micro- and nanostructures and chemical composition of the sponge skeletons as examples for natural structural biocomposites are of fundamental scientific relevance. Recently, we show that some demosponges (Verongula gigantea, Aplysina sp. and glass sponges (Farrea occa, Euplectella aspergillum possess chitin as a component of their skeletons. The main practical approach we used for chitin isolation was based on alkali treatment of corresponding external layers of spicules sponge material with the aim of obtaining alkali-resistant compounds for detailed analysis. Here, we present a detailed study of the structural and physicochemical properties of spicules of the glass sponge Rossella fibulata. The structural similarity of chitin derived from this sponge to invertebrate alpha chitin has been confirmed by us unambiguously using physicochemical and biochemical methods. This is the first report of a silica-chitin composite biomaterial found in Rossella species. Finally, the present work includes a discussion related to strategies for the practical application of silica-chitin-based composites as biomaterials.

  7. RECOVERY OF CHITIN AND CHITOSAN FROM SHRIMP WASTE BY CHEMICAL AND MICROBIAL METHODS

    Directory of Open Access Journals (Sweden)

    A. Khanafari, R. Marandi, Sh. Sanatei

    2008-01-01

    Full Text Available Shrimp waste is the most important chitin source for commercial use. In this study chitin and chitosan were extracted from Penaeus semisulcatus waste collected from a shrimp processing landing center situated at Persian Gulf in south of Iran by chemical and microbial methods. Chitin and chitosan were extracted by alkali-acid treatment and the yields were 510 and 410mg/g, respectively. Demineralization is an important step in the chitin purification process from shrimp waste. Chemical extraction method included the use of NaOH solution and acetic acid. In microbial extraction, organic acids (lactic acid produced by probiotic bacteria was used to demineralize microbial deproteinized shrimp shells. The study showed that the effectiveness of using lactic acid bacteria especially added Fe (NO33 as extra nitrogen source for demineralization of shrimp shells than chemical method (1750 against 810mg/g. Chitin and chitosan extracted from shrimp waste by chemical and microbial methods was crystalline powder, non-harmful and odorless, white and off-white, respectively. The moisture content was calculated as 63.8%. The amount of Ca, Fe, Cu and Mn present in the shells was 168, 35.58, 38.28 and 6.72mg/L, obtained by atomic absorption spectroscopy, respectively. The amount of calcium in the shells was 25 times higher than manganese. The results suggested Lactobacillus plantarum (PTTC 1058 is an attractive source of recovery for chitin and chitosan.

  8. Facile route to produce chitin nanofibers as precursors for flexible and transparent gas barrier materials.

    Science.gov (United States)

    Wu, Jie; Zhang, Kuang; Girouard, Natalie; Meredith, J Carson

    2014-12-01

    Chitin is the second most abundant biopolymer in nature and has tremendous potential in renewable materials for packaging, energy storage, reinforced composites, and biomedical engineering. Despite attractive properties, including biodegradability, antibacterial activity, and high strength, chitin is not utilized widely due to strong molecular interactions, which make solubilization and processing difficult. We report a high pressure homogenization route to produce pure chitin nanofibers (ChNFs) starting with a mildly acidic aqueous dispersion of purified crab α-chitin. The well-dispersed ChNFs with diameter ∼20 nm do not form strong network structures under conditions explored herein and can be directly processed into useful materials, bypassing the need to dissolve the chitin. Dried ChNFs form pure self-standing chitin films with the lowest to-date reported O2 and CO2 permeabilities of 0.006 and 0.018 barrer, respectively. Combined with high flexibility and optical transparency, these materials are ideal candidates for sustainable barrier packaging. PMID:25483821

  9. A carnivorous sundew plant prefers protein over chitin as a source of nitrogen from its traps.

    Science.gov (United States)

    Pavlovič, Andrej; Krausko, Miroslav; Adamec, Lubomír

    2016-07-01

    Carnivorous plants have evolved in nutrient-poor wetland habitats. They capture arthropod prey, which is an additional source of plant growth limiting nutrients. One of them is nitrogen, which occurs in the form of chitin and proteins in prey carcasses. In this study, the nutritional value of chitin and protein and their digestion traits in the carnivorous sundew Drosera capensis L. were estimated using stable nitrogen isotope abundance. Plants fed on chitin derived 49% of the leaf nitrogen from chitin, while those fed on the protein bovine serum albumin (BSA) derived 70% of its leaf nitrogen from this. Moreover, leaf nitrogen content doubled in protein-fed in comparison to chitin-fed plants indicating that the proteins were digested more effectively in comparison to chitin and resulted in significantly higher chlorophyll contents. The surplus chlorophyll and absorbed nitrogen from the protein digestion were incorporated into photosynthetic proteins - the light harvesting antennae of photosystem II. The incorporation of insect nitrogen into the plant photosynthetic apparatus may explain the increased rate of photosynthesis and plant growth after feeding. This general response in many genera of carnivorous plants has been reported in many previous studies. PMID:26998942

  10. The Plasmodiophora brassicae genome reveals insights in its life cycle and ancestry of chitin synthases.

    Science.gov (United States)

    Schwelm, Arne; Fogelqvist, Johan; Knaust, Andrea; Jülke, Sabine; Lilja, Tua; Bonilla-Rosso, German; Karlsson, Magnus; Shevchenko, Andrej; Dhandapani, Vignesh; Choi, Su Ryun; Kim, Hong Gi; Park, Ju Young; Lim, Yong Pyo; Ludwig-Müller, Jutta; Dixelius, Christina

    2015-01-01

    Plasmodiophora brassicae causes clubroot, a major disease of Brassica oil and vegetable crops worldwide. P. brassicae is a Plasmodiophorid, obligate biotrophic protist in the eukaryotic kingdom of Rhizaria. Here we present the 25.5 Mb genome draft of P. brassicae, developmental stage-specific transcriptomes and a transcriptome of Spongospora subterranea, the Plasmodiophorid causing powdery scab on potato. Like other biotrophic pathogens both Plasmodiophorids are reduced in metabolic pathways. Phytohormones contribute to the gall phenotypes of infected roots. We report a protein (PbGH3) that can modify auxin and jasmonic acid. Plasmodiophorids contain chitin in cell walls of the resilient resting spores. If recognized, chitin can trigger defense responses in plants. Interestingly, chitin-related enzymes of Plasmodiophorids built specific families and the carbohydrate/chitin binding (CBM18) domain is enriched in the Plasmodiophorid secretome. Plasmodiophorids chitin synthases belong to two families, which were present before the split of the eukaryotic Stramenopiles/Alveolates/Rhizaria/Plantae and Metazoa/Fungi/Amoebozoa megagroups, suggesting chitin synthesis to be an ancient feature of eukaryotes. This exemplifies the importance of genomic data from unexplored eukaryotic groups, such as the Plasmodiophorids, to decipher evolutionary relationships and gene diversification of early eukaryotes. PMID:26084520

  11. Structural characterization of chitin and chitosan obtained by biological and chemical methods.

    Science.gov (United States)

    Pacheco, Neith; Garnica-Gonzalez, Mónica; Gimeno, Miquel; Bárzana, Eduardo; Trombotto, Stéphane; David, Laurent; Shirai, Keiko

    2011-09-12

    Chitin production was biologically achieved by lactic acid fermentation (LAF) of shrimp waste (Litopenaeus vannameii) in a packed bed column reactor with maximal percentages of demineralization (D(MIN)) and deproteinization (D(PROT)) after 96 h of 92 and 94%, respectively. This procedure also afforded high free astaxanthin recovery with up to 2400 μg per gram of silage. Chitin product was also obtained from the shrimp waste by a chemical method using acid and alkali for comparison. The biologically obtained chitin (BIO-C) showed higher M(w) (1200 kDa) and crystallinity index (I(CR)) (86%) than the chemically extracted chitin (CH-C). A multistep freeze-pump-thaw (FPT) methodology was applied to obtain medium M(w) chitosan (400 kDa) with degree of acetylation (DA) ca. 10% from BIO-C, which was higher than that from CH-C. Additionally, I(CR) values showed the preservation of crystalline chitin structure in BIO-C derivatives at low DA (40-25%). Moreover, the FPT deacetylation of the attained BIO-C produced chitosans with bloc copolymer structure inherited from a coarse chitin crystalline morphology. Therefore, our LAF method combined with FPT proved to be an affective biological method to avoid excessive depolymerization and loss of crystallinity during chitosan production, which offers new perspective applications for this material. PMID:21790136

  12. Production of High Viscosity Chitosan from Biologically Purified Chitin Isolated by Microbial Fermentation and Deproteinization

    Directory of Open Access Journals (Sweden)

    Ekkalak Ploydee

    2014-01-01

    Full Text Available The objective of this study was to produce high viscosity chitosan from shrimp chitin prepared by using a two-step biological treatment process: decalcification and deproteinization. Glucose was fermented with Lactobacillus pentosus L7 to lactic acid. At a pH of 3.9±0.1, the calcium carbonate of the shells was solubilized in 48 hours. The amounts of residual calcium in the form of ash (1.4±0.5% and crude protein (23.2±2.5% were further eliminated by the activity of proteolytic Bacillus thuringiensis SA. After decalcification and deproteinization of the shrimp shells, residual calcium and crude protein of shrimp chitin flakes were 1.7±0.4% and 3.8±1.3%, respectively. Chitin was deacetylated with 50% NaOH at 121°C for 5 hours. After deacetylation, the chitosan had residual calcium, crude protein content, and degree of acetylation of 1.6±0.6%, 0.4±0.3%, and 83.2±1.5%, respectively. The viscosity of chitosan prepared from chitin extracted by this two-step biological process was 1,007±14.7 mPa·s, whereas chitosan prepared from chemically processed chitin had a viscosity of 323±15.6   mPa·s, indicating that biologically purified chitin gave chitosan with a high quality.

  13. Synthesis and utilization of chitin humic acid hybrid as sorbent for Cr(III)

    Science.gov (United States)

    Santosa, Sri Juari; Siswanta, Dwi; Sudiono, Sri; Sehol, Muhamad

    2007-11-01

    New types of hybrid material have been synthesized by using four different methods of immobilization of humic acid (HA) on chitin. The most stable hybrid material toward the change of medium acidity was then utilized as sorbent for Cr(III). The HA was extracted from peat soil of Gambut District, South Kalimantan, Indonesia, using the recommended procedure of International Humic Substances Society (IHSS), while the chitin was isolated from crab shell waste through deproteination using 3.5% (w/v) NaOH and followed by removal of inorganic impurities using 1 M HCl. The four methods of immobilization of HA on chitin were (i) Method A: chitin powder (4 g) was gently poured into the stirred solution of 0.4 g HA in 40 mL of 0.01 M NaOH. After overnight stirring, the solid was separated, washed with water, and dried in oven at 70 °C. (ii) Method B: gelatinous chitin (40 g) in 250 mL of 0.5 M HCl was reacted with HA (4 g) in 500 mL of 0.5 M NaOH and aged for 24 h. The product was washed with water and dried. (iii) Method C: HA powder (0.5 g) was mixed with the stirred gel of chitin (2.5 g) in 60 mL of CaCl 2 saturated methanol and the mixture was then washed with the mixed solution of 25 mL of 2 M sodium citrate and ethylene glycol 1:1. The solid was separated, washed with water, and dried. (iv) Method D: the solution of HA (0.056 g) in 10 mL of 0.01 M NaOH was reacted with the gel of chitin (0.2 g) in 10 mL of CaCl 2 saturated methanol. After 24 h stirring, the solid was separated from the reaction medium, washed with the mixed solution of 2 M sodium citrate and ethylene glycol 1:1, and followed by washing with water and drying. Parameters investigated in this study consisted of the stability test of the immobilized HA, as well as the rate constant ( k1), capacity ( b), and energy ( E) of sorption as well as the rate constant of desorption ( k-1). The k1 and k-1 were determined according to a kinetic model of first order sorption reaching equilibrium, while the b and E

  14. Identification of a Membrane-Bound Transcriptional Regulator That Links Chitin and Natural Competence in Vibrio cholerae

    OpenAIRE

    Dalia, Ankur B.; Lazinski, David W.; Camilli, Andrew

    2014-01-01

    ABSTRACT Vibrio cholerae is naturally competent when grown on chitin. It is known that expression of the major regulator of competence, TfoX, is controlled by chitin; however, the molecular mechanisms underlying this requirement for chitin have remained unclear. In the present study, we identify and characterize a membrane-bound transcriptional regulator that positively regulates the small RNA (sRNA) TfoR, which posttranscriptionally enhances tfoX translation. We show that this regulation of ...

  15. The functions Of LysM Proteins And Chitin Tetra-Saccarides Signaling Pathway in Zebrafish Embryos

    DEFF Research Database (Denmark)

    Laroche, Fabrice Jean Francois

    Chitin is an ancient organic bio-polymer, found in abundance on land and at sea. However, knowledge on chitin functions in animals is lacking. In his research project, Fabrice Laroche studied responses to chitin in zebrafish embryos, and he described chitin signalling pathways. Proteins related to...... studied their roles – at the cellular level and during zebrafish development. To improve the experimental methods, he developed nanotechnological strategies to genetically modify human embryonic kidney cells and zebrafish. The PhD degree was completed at the Department of Molecular Biology and Genetics......, Science and Technology, Aarhus University, and the Department of Molecular Cell Biology, Leiden University, The Netherlands...

  16. Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part II: Biomimetic potential and applications.

    Science.gov (United States)

    Ehrlich, H; Steck, E; Ilan, M; Maldonado, M; Muricy, G; Bavestrello, G; Kljajic, Z; Carballo, J L; Schiaparelli, S; Ereskovsky, A; Schupp, P; Born, R; Worch, H; Bazhenov, V V; Kurek, D; Varlamov, V; Vyalikh, D; Kummer, K; Sivkov, V V; Molodtsov, S L; Meissner, H; Richter, G; Hunoldt, S; Kammer, M; Paasch, S; Krasokhin, V; Patzke, G; Brunner, E; Richter, W

    2010-08-01

    In order to evaluate the biomedical potential of three-dimensional chitinous scaffolds of poriferan origin, chondrocyte culturing experiments were performed. It was shown for the first time that freshly isolated chondrocytes attached well to the chitin scaffold and synthesized an extracellular matrix similar to that found in other cartilage tissue engineering constructs. Chitin scaffolds also supported deposition of a proteoglycan-rich extracellular matrix of chondrocytes seeded bioconstructs in an in vivo environment. We suggest that chitin sponge scaffolds, apart from the demonstrated biomedical applications, are highly optimized structures for use as filtering systems, templates for biomineralization as well as metallization in order to produce catalysts. PMID:20478334

  17. Pre-irradiation grafting of acrylonitrile onto chitin for adsorption of arsenic in water

    International Nuclear Information System (INIS)

    Radiation-induced grafting is an effective technique for preparation of novel materials. In this study, partially deacetylated chitin with deacetylation degree (DDA) of about 40% was graft-copolymerized with acrylonitrile (AN) by a γ-ray pre-irradiation method. The maximal grafting degree of AN onto pre-irradiated chitin at 25±1.2 kGy was 114% for AN concentration in dimethylformamide of 40% (v/v) at 70 °C for 8 h. The mixture ratio of 0.1 N NH2OH·HCl to 0.1 N NaOH was selected to be 7:3 (v/v) for amidoxime conversion of cyano-groups on grafted chitin (Chi-g-AN). The characteristics of modified chitin were depicted by the FT-IR spectra, BET area and SEM images. Adsorption equilibrium of As(III) onto Chi-g-AN converted amidoxime (Chi-g-AN-C) fits with the Langmuir model and the maximal adsorption capacity was 19.724 mg/g. The break-through times of As(III) on Chi-g-AN-C in column adsorption experiments increased with the increase in bed depths. - Highlights: • Partially deacetylated chitin was used for grafting AN by pre-irradiation. • The maximal grafting degree of AN onto chitin was 114%. • The cyano- of AN was converted into amidoxime to enhance adsorption. • The adsorption capacity of As(III) onto modified chitin was 19.724 mg/g. • Removal of arsenic in groundwater samples was tested by continuous adsorption

  18. Embryonic desiccation resistance in Aedes aegypti: presumptive role of the chitinized Serosal Cuticle

    Directory of Open Access Journals (Sweden)

    Peixoto Alexandre

    2008-09-01

    Full Text Available Abstract Background One of the major problems concerning dengue transmission is that embryos of its main vector, the mosquito Aedes aegypti, resist desiccation, surviving several months under dry conditions. The serosal cuticle (SC contributes to mosquito egg desiccation resistance, but the kinetics of SC secretion during embryogenesis is unknown. It has been argued that mosquito SC contains chitin as one of its components, however conclusive evidence is still missing. Results We observed an abrupt acquisition of desiccation resistance during Ae. aegypti embryogenesis associated with serosal cuticle secretion, occurring at complete germ band extension, between 11 and 13 hours after egglaying. After SC formation embryos are viable on dry for at least several days. The presence of chitin as one of the SC constituents was confirmed through Calcofluor and WGA labeling and chitin quantitation. The Ae. aegypti Chitin Synthase A gene (AaCHS1 possesses two alternatively spliced variants, AaCHS1a and AaCHS1b, differentially expressed during Ae. aegypti embryonic development. It was verified that at the moment of serosal cuticle formation, AaCHS1a is the sole variant specifically expressed. Conclusion In addition to the peritrophic matrix and exoskeleton, these findings confirm chitin is also present in the mosquito serosal cuticle. They also point to the role of the chitinized SC in the desiccation resistance of Ae. aegypti eggs. AaCHS1a expression would be responsible for SC chitin synthesis. With this embryological approach we expect to shed new light regarding this important physiological process related to the Ae. aegypti life cycle.

  19. Chitin Fiber and Chitosan 3D Composite Rods

    Directory of Open Access Journals (Sweden)

    Zhengke Wang

    2010-01-01

    Full Text Available Chitin fiber (CHF and chitosan (CS 3D composite rods with layer-by-layer structure were constructed by in situ precipitation method. CHF could not be dissolved in acetic acid aqueous solution, but CS could be dissolved due to the different deacetylation degree (D.D between CHF and CS. CHF with undulate surfaces could be observed using SEM to demonstrate that the sufficiently rough surfaces and edges of the fiber could enhance the mechanical combining stress between fiber and matrix. XRD indicated that the crystallinity of CHF/CS composites decreased and CS crystal plane d-spacing of CHF/CS composites became larger than that of pure CS rod. TG analysis showed that mixing a little amount of CHF could enhance thermal stability of CS rod, but when the content of CHF was higher than the optimum amount, its thermal stability decreased. When 0.5% CHF was added into CS matrix, the bending strength and bending modulus of the composite rods arrived at 114.2 MPa and 5.2 GPa, respectively, increased by 23.6% and 26.8% compared with pure CS rods, indicating that CHF/CS composite rods could be a better candidate for bone fracture internal fixation.

  20. Squid pen chitin chitooligomers as food colorants absorbers.

    Science.gov (United States)

    Liang, Tzu-Wen; Huang, Chih-Ting; Dzung, Nguyen Anh; Wang, San-Lang

    2015-01-01

    One of the most promising applications of chitosanase is the conversion of chitinous biowaste into bioactive chitooligomers (COS). TKU033 chitosanase was induced from squid pen powder (SPP)-containing Bacillus cereus TKU033 medium and purified by ammonium sulfate precipitation and column chromatography. The enzyme was relatively more thermostable in the presence of the substrate and had an activity of 93% at 50 °C in a pH 5 buffer solution for 60 min. Furthermore, the enzyme used for the COS preparation was also studied. The enzyme products revealed various mixtures of COS that with different degrees of polymerization (DP), ranging from three to nine. In the culture medium, the fermented SPP was recovered, and it displayed a better adsorption rate (up to 96%) for the disperse dyes than the water-soluble food colorants, Allura Red AC (R40) and Tartrazne (Y4). Fourier transform-infrared spectroscopic (FT-IR) analysis proved that the adsorption of the dyes onto fermented SPP was a physical adsorption. Results also showed that fermented SPP was a favorable adsorber and could be employed as low-cost alternative for dye removal in wastewater treatment. PMID:25608726

  1. Chitosan-chitin nanocrystal composite scaffolds for tissue engineering.

    Science.gov (United States)

    Liu, Mingxian; Zheng, Huanjun; Chen, Juan; Li, Shuangli; Huang, Jianfang; Zhou, Changren

    2016-11-01

    Chitin nanocrystals (CNCs) with length and width of 300 and 20nm were uniformly dispersed in chitosan (CS) solution. The CS/CNCs composite scaffolds prepared utilizing a dispersion-based freeze dry approach exhibit significant enhancement in compressive strength and modulus compared with pure CS scaffold both in dry and wet state. A well-interconnected porous structure with size in the range of 100-200μm and over 80% porosity are found in the composite scaffolds. The crystal structure of CNCs is retained in the composite scaffolds. The incorporation of CNCs leads to increase in the scaffold density and decrease in the water swelling ratio. Moreover, the composite scaffolds are successfully applied as scaffolds for MC3T3-E1 osteoblast cells, showing their excellent biocompatibility and low cytotoxicity. The results of fluorescent micrographs images reveal that CNCs can markedly promote the cell adhesion and proliferation of the osteoblast on CS. The biocompatible composite scaffolds with enhanced mechanical properties have potential application in bone tissue engineering. PMID:27516335

  2. Immobilization of Candida cylindracea lipase on PVC, chitin and agarose

    Energy Technology Data Exchange (ETDEWEB)

    Chang, R.C.; Shaw, J.F.

    1987-01-01

    Candida cylindracea lipase was covalently coupled to PVC, chitin and agarose, which are abundant in Taiwan by several different methods. The agarose-dodecylene-diamine-glutaraldehyde (A-DDA-GA) system showed the highest relative loading enzyme activity, 118 mg soluble lipase per gram support. The chitosan-carbodiimide glutaraldehyde (CN-EDC-GA) systems immobilized 67 mg soluble lipase per gram support. The optimal pH of immobilized lipase was 8.5, which was one pH unit higher than that of soluble lipase. The optimal temperatures were in the range between 52-64/sup 0/C. The CN-EDC-GA system was the highest (64/sup 0/C), which was 27/sup 0/C higher than soluble lipase. The CH-EDC-GA system also had the best thermal stability (the half life at 55/sup 0/C was 29 h.) and operational stability at higher temperature (the half life at 40/sup 0/C was 495 h). However, the PVC-ethylenediamine-GA system appeared to have the best stability at lower temperature, the projected half life at 20/sup 0/C from Arrhenius plot was 31,802 h.

  3. Squid Pen Chitin Chitooligomers as Food Colorants Absorbers

    Directory of Open Access Journals (Sweden)

    Tzu-Wen Liang

    2015-01-01

    Full Text Available One of the most promising applications of chitosanase is the conversion of chitinous biowaste into bioactive chitooligomers (COS. TKU033 chitosanase was induced from squid pen powder (SPP-containing Bacillus cereus TKU033 medium and purified by ammonium sulfate precipitation and column chromatography. The enzyme was relatively more thermostable in the presence of the substrate and had an activity of 93% at 50 °C in a pH 5 buffer solution for 60 min. Furthermore, the enzyme used for the COS preparation was also studied. The enzyme products revealed various mixtures of COS that with different degrees of polymerization (DP, ranging from three to nine. In the culture medium, the fermented SPP was recovered, and it displayed a better adsorption rate (up to 96% for the disperse dyes than the water-soluble food colorants, Allura Red AC (R40 and Tartrazne (Y4. Fourier transform-infrared spectroscopic (FT-IR analysis proved that the adsorption of the dyes onto fermented SPP was a physical adsorption. Results also showed that fermented SPP was a favorable adsorber and could be employed as low-cost alternative for dye removal in wastewater treatment.

  4. Modification of Chitin with Kraft Lignin and Development of New Biosorbents for Removal of Cadmium(II and Nickel(II Ions

    Directory of Open Access Journals (Sweden)

    Marcin Wysokowski

    2014-04-01

    Full Text Available Novel, functional materials based on chitin of marine origin and lignin were prepared. The synthesized materials were subjected to physicochemical, dispersive-morphological and electrokinetic analysis. The results confirm the effectiveness of the proposed method of synthesis of functional chitin/lignin materials. Mechanism of chitin modification by lignin is based on formation of hydrogen bonds between chitin and lignin. Additionally, the chitin/lignin materials were studied from the perspective of waste water treatment. The synthetic method presented in this work shows an attractive and facile route for producing low-cost chitin/lignin biosorbents with high efficiency of nickel and cadmium adsorption (88.0% and 98.4%, respectively. The discovery of this facile method of synthesis of functional chitin/lignin materials will also have a significant impact on the problematic issue of the utilization of chitinous waste from the seafood industry, as well as lignin by-products from the pulp and paper industry.

  5. XRD studies of beta-chitin from squid pen with calcium solvent.

    Science.gov (United States)

    Nagahama, H; Higuchi, T; Jayakumar, R; Furuike, T; Tamura, H

    2008-05-01

    The crystalline structure of beta-chitin from squid pen was investigated by X-ray diffraction (XRD). The purified beta-chitin was prepared from bigfin reefsquid pen. beta-Chitin was treated with saturated calcium chloride dihydrate/alchohol (CaCl(2).2H(2)O/MeOH) solvent system at different conditions for XRD studies. The change of crystallinity of beta-chitin from squid pen was studied by using the fiber photographs on imaging plates. The results showed that the diffraction peak (010) was shifted. It means that the lattice plane (010) interplanarilly spreaded to 3.4A, when the squid pen was washed with water after treatment of Ca solvent. Furthermore, when the squid pen was dried after treatment of Ca solvent and washing with water, interplanar spacing of (010) inversely shrank to 1.1A. These results suggested that Ca solvent especially influences the plane (010) of beta-chitin structure. PMID:18036656

  6. Chitin particles induce size-dependent but carbohydrate-independent innate eosinophilia.

    Science.gov (United States)

    Kogiso, Mari; Nishiyama, Akihito; Shinohara, Tsutomu; Nakamura, Masataka; Mizoguchi, Emiko; Misawa, Yoshinori; Guinet, Elisabeth; Nouri-Shirazi, Mahyar; Dorey, C Kathleen; Henriksen, Ruth Ann; Shibata, Yoshimi

    2011-07-01

    Murine Mϕ that phagocytose CMP develop into M1; this response depends on the size and the chemical composition of the particles. In contrast, recent studies concluded that chitin particles induce M2 and eosinophil migration, promoting acquired Th2 immune responses against chitin-containing microbes or allergens. This study examined whether these apparently inconsistent responses to chitin could be induced by variation in the size and chemical composition of the chitin particles. We compared the responses of Mϕ with CMP, LCB, and Sephadex G-100 beads (>40 μm). Beads were given i.p. to WT mice and to mice deficient in a CRTH2, a receptor for the eosinophil chemoattractant PGD(2). In contrast to the M1 activation induced by CMP, i.p. administration of LCB or Sephadex beads induced within 24 h a CRTH2-dependent peritoneal eosinophilia, as well as CRTH2-independent activation of peritoneal Mϕ that expressed Arg I, an M2 phenotype. LCB-induced Mϕ exhibited elevated Arg I and a surface MR, reduced surface TLR2 levels, and no change in the levels of CHI3L1 or IL-10 production. Our results indicate that the effects of chitin in vivo are highly dependent on particle size and that large, nonphagocytosable beads, independent of their chemical composition, induce innate eosinophilia and activate Mϕ expressing several M2, but not M1, phenotypes. PMID:21447645

  7. First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (demospongia: Porifera).

    Science.gov (United States)

    Ehrlich, Hermann; Maldonado, Manuel; Spindler, Klaus-Dieter; Eckert, Carsten; Hanke, Thomas; Born, René; Goebel, Caren; Simon, Paul; Heinemann, Sascha; Worch, Hartmut

    2007-07-15

    The Porifera (sponges) are often regarded as the oldest, extant metazoan phylum, also bearing the ancestral stage for most features occurring in higher animals. The absence of chitin in sponges, except for the wall of peculiar resistance bodies produced by a highly derived fresh-water group, is puzzling, since it points out chitin to be an autapomorphy for a particular sponge family rather than the ancestral condition within the metazoan lineage. By investigating the internal proteinaceous (spongin) skeleton of two demosponges (Aplysina sp. and Verongula gigantea) using a wide array of techniques (Fourier transform infrared (FTIR), Raman, X-ray, Calcofluor White Staining, Immunolabeling, and chitinase test), we show that chitin is a component of the outermost layer (cuticle) of the skeletal fibers of these demosponges. FTIR and Raman spectra, as well as X-ray difractograms consistently revealed that sponge chitin is much closer to the alpha-chitin known from other animals than to beta-chitin. These findings support the view that the occurrence of a chitin-producing system is the ancestral condition in Metazoa, and that the alpha-chitin is the primitive form in animals. PMID:17285638

  8. Chitin Amendment Increases Soil Suppressiveness toward Plant Pathogens and Modulates the Actinobacterial and Oxalobacteraceal Communities in an Experimental Agricultural Field

    NARCIS (Netherlands)

    Cretoiu, Mariana Silvia; Korthals, Gerard W.; Visser, Johnny H. M.; van Elsas, Jan Dirk

    2013-01-01

    A long-term experiment on the effect of chitin addition to soil on the suppression of soilborne pathogens was set up and monitored for 8 years in an experimental field, Vredepeel, The Netherlands. Chitinous matter obtained from shrimps was added to soil top layers on two different occasions, and the

  9. Properties of polymethyl methacrylate-based nanocomposites: Reinforced with ultra-long chitin nanofiber extracted from crab shells

    International Nuclear Information System (INIS)

    Highlights: • Using waste crab shells to develop high-performance composites by simple method. • Combining the anatomic analysis of crab shell with the design of composite. • Introducing a 4-step all-mechanical treatment to prepare ultra-long chitin fiber. • Incorporation of chitin nanofiber improves properties of PMMA/Chitin composite. - Abstract: Ultra-long chitin nanofibers were incorporated into polymethyl methacrylate (PMMA) resin to prepared PMMA/Chitin nanocomposites with improved properties. Transmission electron microscopy (TEM) images showed that through the introduced 4-step all-mechanical treatment, the average aspect ratio of the obtained chitin fiber was up to 1000 with the length at dozens of micron range. Due to the laminated structure formed by “layer-by-layer” effect, tensile strength and Young’s modulus of the prepared composite were significantly enhanced after the filling of chitin nanofibers, as compared with neat PMMA. Light transmittance test indicated that increasing the fiber content causes little light scattering because the nano-scalar network which is smaller enough than the visible wavelength could well preserve the original transparency of PMMA. Furthermore, chitin nanofiber film with extremely low thermal expansion improved the thermal stability of PMMA in a great degree. This could lead to various commercial applications including flexible electronic printing, organic thin-film photovoltaic devices, and is a significantly environmental move towards the sustainable utilization of marine-river crab shell wastes

  10. The chsA gene, encoding a class-I chitin synthase from Ampelomyces quisqualis.

    Science.gov (United States)

    Weiss, N; Sztejnberg, A; Yarden, O

    1996-02-01

    Degenerate oligodeoxyribonucleotide primers, designed on the basis of conserved regions of the chitin synthase gene family, were used to amplify a fragment of the Ampelomyces quisqualis (Aq) chsA gene. Subsequently, the PCR product was used as a probe in order to identify and isolate genomic clones harboring the entire chsA gene. Aq chsA is 2786-nt long, has one intron and encodes a 910-amino-acid polypeptide belonging to the class-I chitin synthases. Low-stringency Southern hybridizations to Aq genomic DNA provided evidence for the presence of additional DNA fragments resembling chsA in the fungal genome, suggesting the presence of a multigene family of chitin synthases in Aq. PMID:8626074

  11. Bridging peripheral nerves using a deacetyl chitin conduit combined with short-term electrical stimulation

    Institute of Scientific and Technical Information of China (English)

    Zhongli Zhang; Xin Li; Songjie Zuo; Jie Xin; Peixun Zhang

    2014-01-01

    Previous studies have demonstrated that deacetyl chitin conduit nerve bridging or electrical stimulation can effectively promote the regeneration of the injured peripheral nerve. We hypoth-esized that the combination of these two approaches could result in enhanced regeneration. Rats with right sciatic nerve injury were subjected to deacetyl chitin conduit bridging combined with electrical stimulation (0.1 ms, 3 V, 20 Hz, for 1 hour). At 6 and 12 weeks after treatment, nerve conduction velocity, myelinated axon number, ifber diameter, axon diameter and the thickness of the myelin sheath in the stimulation group were better than in the non-stimulation group. The results indicate that deacetyl chitin conduit bridging combined with temporary electrical stimu-lation can promote peripheral nerve repair.

  12. Bridging peripheral nerves using a deacetyl chitin conduit combined with short-term electrical stimulation.

    Science.gov (United States)

    Zhang, Zhongli; Li, Xin; Zuo, Songjie; Xin, Jie; Zhang, Peixun

    2014-05-15

    Previous studies have demonstrated that deacetyl chitin conduit nerve bridging or electrical stimulation can effectively promote the regeneration of the injured peripheral nerve. We hypothesized that the combination of these two approaches could result in enhanced regeneration. Rats with right sciatic nerve injury were subjected to deacetyl chitin conduit bridging combined with electrical stimulation (0.1 ms, 3 V, 20 Hz, for 1 hour). At 6 and 12 weeks after treatment, nerve conduction velocity, myelinated axon number, fiber diameter, axon diameter and the thickness of the myelin sheath in the stimulation group were better than in the non-stimulation group. The results indicate that deacetyl chitin conduit bridging combined with temporary electrical stimulation can promote peripheral nerve repair. PMID:25206762

  13. Cytotoxicity and mechanical behavior of chitin-bentonite clay based polyurethane bio-nanocomposites.

    Science.gov (United States)

    Zia, Khalid Mahmood; Zuber, Mohammad; Barikani, Mehdi; Hussain, Rizwan; Jamil, Tahir; Anjum, Sohail

    2011-12-01

    Chitin based polyurethane bio-nanocomposites (PUBNC) were prepared using chitin, Delite HPS bentonite nanoclay enriched in montmorillonite (MMT), 4,4'-diphenylmethane diisocyanate (MDI) and polycaprolactone polyol CAPA 231 (3000 g/mol(-1)). The prepolymers having different concentration of Delite HPS bentonite nanoclay were extended with 2 moles of chitin. The structures of the resulted polymers were determined by FT-IR technique. The effect of nanoclay contents on mechanical properties and in vitro biocompatibility was investigated. The mechanical properties of the synthesized materials were improved with increase in the Delite HPS bentonite nanoclay contents. Optimum mechanical properties were obtained from the PU bio-nanocomposite samples having 4% Delite HPS bentonite nanoclay. The results revealed that the final PU bio-nanocomposite having 2% Delite HPS bentonite nanoclay contents is ideal contenders for surgical threads with on going investigations into their in vitro biocompatibility, non-toxicity, and mechanical properties. PMID:21945787

  14. Role of Tyr-435 of Vibrio harveyi chitinase A in chitin utilization.

    Science.gov (United States)

    Sritho, Natchanok; Suginta, Wipa

    2012-03-01

    Vibrio harveyi chitinase A or VhChiA (EC.3.2.1.14) is a member of GH-18 chitinases that catalyzes chitin degradation from marine biomaterials. Our earlier structural data of VhChiA suggested that Tyr-435 marks the ending of subsite +2 and may influence binding of the interacting substrate at the aglycone binding sites. This study reports the effects of Tyr-435 using site-directed mutagenesis technique. Mutation of Tyr-435 to Ala (mutant Y435A) enhanced both binding and catalytic efficiency of VhChiA, whereas substitution of Tyr-435 to Trp (mutant Y435W) lessened the ability of the enzyme to bind and hydrolyze chitin substrates. The increased activity of Y435A can be explained by partial removal of a steric clash around subsite (+2), thereby allowing a chitin chain to move beyond or to access the enzyme's active site from the aglycone side more straightforwardly. PMID:22194054

  15. Effects of Chitin and Its Derivative Chitosan on Postharvest Decay of Fruits: A Review

    Directory of Open Access Journals (Sweden)

    Weimin Liu

    2011-01-01

    Full Text Available Considerable economic losses to harvested fruits are caused by postharvest fungal decay during transportation and storage, which can be significantly controlled by synthetic fungicides. However, considering public concern over pesticide residues in food and the environment, there is a need for safer alternatives for the control of postharvest decay to substitute synthetic fungicides. As the second most abundant biopolymer renewable source in nature, chitin and its derivative chitosan are widely used in controlling postharvest decay of fruits. This review aims to introduce the effect of chitin and chitosan on postharvest decay in fruits and the possible modes of action involved. We found most of the actions discussed in these researches rest on physiological mechanisms. All of the mechanisms are summarized to lay the groundwork for further studies which should focus on the molecular mechanisms of chitin and chitosan in controlling postharvest decay of fruits.

  16. Zinc ions alter morphology and chitin deposition in an ericoid fungus

    Directory of Open Access Journals (Sweden)

    L. Lanfranco

    2010-05-01

    Full Text Available A sterile mycelium PS IV, an ascomycete capable of establishing ericoid mycorrhizas, was used to investigate how zinc ions affect the cellular mechanisms of fungal growth. Asignificant reduction of the fungal biomass was observed in the presence of millimolar zinc concentrations; this mirrored conspicuous changes in hyphal morphology which led to apical swellings and increased branching in the subapical parts. Specific probes for fluorescence and electron microscopy localised chitin, the main cell wall polysaccharide, on the inner part of the fungal wall and on septa in control specimens. In Zn-treated mycelium, hyphal walls were thicker and a more intense chitin labelling was detected on the transverse walls. Aquantitative assay showed a significant increase in the amount of chitin in metal- treated hyphae.

  17. AFM PeakForce QNM mode: Evidencing nanometre-scale mechanical properties of chitin-silica hybrid nanocomposites.

    Science.gov (United States)

    Smolyakov, G; Pruvost, S; Cardoso, L; Alonso, B; Belamie, E; Duchet-Rumeau, J

    2016-10-20

    PeakForce Quantitative Nanomechanical Mapping (QNM) AFM mode was used to explore the mechanical properties of textured chitin-silica hybrid films at the nanoscale. The influence of the force applied by the tip on the sample surface was studied for standard homogeneous samples, for chitin nanorods and for chitin-silica hybrid nanocomposites. Thick films of superimposed chitin nanorods showed a monotonous increase of DMT modulus (based on the Derjaguin-Muller-Toporov model) owing to an increase in modulus at the interface between nanorods due to geometrical constraints of the AFM acquisition. A similar variation of DMT modulus was obtained for chitin-silica hybrid thick films related to mechanical strengthening induced by the presence of silica. This work revealed the role of the organic-inorganic interface, at the nanoscale, in the mechanical behaviour of textured materials using PeakForce QNM mode, with optimized analysis conditions. PMID:27474579

  18. Saccharomyces cerevisiae chitin biosynthesis activation by N-acetylchitooses depends on size and structure of chito-oligosaccharides

    Directory of Open Access Journals (Sweden)

    Piffeteau Annie

    2011-10-01

    Full Text Available Abstract Background To explore chitin synthesis initiation, the effect of addition of exogenous oligosaccharides on in vitro chitin synthesis was studied. Oligosaccharides of various natures and lengths were added to a chitin synthase assay performed on a Saccharomyces cerevisiae membrane fraction. Findings N-acetylchito-tetra, -penta and -octaoses resulted in 11 to 25% [14C]-GlcNAc incorporation into [14C]-chitin, corresponding to an increase in the initial velocity. The activation appeared specific to N-acetylchitooses as it was not observed with oligosaccharides in other series, such as beta-(1,4, beta-(1,3 or alpha-(1,6 glucooligosaccharides. Conclusions The effect induced by the N-acetylchitooses was a saturable phenomenon and did not interfere with free GlcNAc and trypsin which are two known activators of yeast chitin synthase activity in vitro. The magnitude of the activation was dependent on both oligosaccharide concentration and oligosaccharide size.

  19. Lipo-chitin oligosaccharides, plant symbiosis signalling molecules that modulate mammalian angiogenesis in vitro.

    Directory of Open Access Journals (Sweden)

    Michael A Djordjevic

    Full Text Available Lipochitin oligosaccharides (LCOs are signaling molecules required by ecologically and agronomically important bacteria and fungi to establish symbioses with diverse land plants. In plants, oligo-chitins and LCOs can differentially interact with different lysin motif (LysM receptors and affect innate immunity responses or symbiosis-related pathways. In animals, oligo-chitins also induce innate immunity and other physiological responses but LCO recognition has not been demonstrated. Here LCO and LCO-like compounds are shown to be biologically active in mammals in a structure dependent way through the modulation of angiogenesis, a tightly-regulated process involving the induction and growth of new blood vessels from existing vessels. The testing of 24 LCO, LCO-like or oligo-chitin compounds resulted in structure-dependent effects on angiogenesis in vitro leading to promotion, or inhibition or nil effects. Like plants, the mammalian LCO biological activity depended upon the presence and type of terminal substitutions. Un-substituted oligo-chitins of similar chain lengths were unable to modulate angiogenesis indicating that mammalian cells, like plant cells, can distinguish between LCOs and un-substituted oligo-chitins. The cellular mode-of-action of the biologically active LCOs in mammals was determined. The stimulation or inhibition of endothelial cell adhesion to vitronectin or fibronectin correlated with their pro- or anti-angiogenic activity. Importantly, novel and more easily synthesised LCO-like disaccharide molecules were also biologically active and de-acetylated chitobiose was shown to be the primary structural basis of recognition. Given this, simpler chitin disaccharides derivatives based on the structure of biologically active LCOs were synthesised and purified and these showed biological activity in mammalian cells. Since important chronic disease states are linked to either insufficient or excessive angiogenesis, LCO and LCO

  20. Micro-CT imaging of denatured chitin by silver to explore honey bee and insect pathologies.

    Directory of Open Access Journals (Sweden)

    Peter R Butzloff

    Full Text Available BACKGROUND: Chitin and cuticle coatings are important to the environmental and immune defense of honey bees and insect pollinators. Pesticides or environmental effects may target the biochemistry of insect chitin and cuticle coating. Denaturing of chitin involves a combination of deacetylation, intercalation, oxidation, Schweiger-peeling, and the formation of amine hydrochloride salt. The term "denatured chitin" calls attention to structural and property changes to the internal membranes and external carapace of organisms so that some properties affecting biological activities are diminished. METHODOLOGY/PRINCIPAL FINDINGS: A case study was performed on honey bees using silver staining and microscopic computer-tomographic x-ray radiography (micro-CT. Silver nitrate formed counter-ion complexes with labile ammonium cations and reacted with amine hydrochloride. Silver was concentrated in the peritrophic membrane, on the abdomen, in the glossa, at intersegmental joints (tarsi, at wing attachments, and in tracheal air sacs. Imaged mono-esters and fatty acids from cuticle coating on external surfaces were apparently reduced by an alcohol pretreatment. CONCLUSIONS/SIGNIFICANCE: The technique provides 3-dimensional and sectional images of individual honey bees consistent with the chemistries of silver reaction and complex formation with denatured chitin. Environmental exposures and influences such as gaseous nitric oxide intercalant, trace oxidants such as ozone gas, oligosachharide salt conversion, exposure to acid rain, and chemical or biochemical denaturing by pesticides may be studied using this technique. Peritrophic membranes, which protect against food abrasion, microorganisms, and permit efficient digestion, were imaged. Apparent surface damage to the corneal lenses of compound eyes by dilute acid exposure consistent with chitin amine hydrochloride formation was imaged. The technique can contribute to existing insect pathology research, and may

  1. Isolation and identification of chitin in three-dimensional skeleton of Aplysina fistularis marine sponge.

    Science.gov (United States)

    Wysokowski, Marcin; Bazhenov, Vasilii V; Tsurkan, Mikhail V; Galli, Roberta; Stelling, Allison L; Stöcker, Hartmut; Kaiser, Sabine; Niederschlag, Elke; Gärtner, Günter; Behm, Thomas; Ilan, Micha; Petrenko, Alexander Y; Jesionowski, Teofil; Ehrlich, Hermann

    2013-11-01

    The recent discovery of chitin within skeletons of numerous marine and freshwater sponges (Porifera) stimulates further experiments to identify this structural aminopolysaccharide in new species of these aquatical animals. Aplysina fistularis (Verongida: Demospongiae: Porifera) is well known to produce biologically active bromotyrosines. Here, we present a detailed study of the structural and physico-chemical properties of the three-dimensional skeletal scaffolds of this sponge. Calcofluor white staining, Raman and IR spectroscopy, ESI-MS as well as chitinase digestion test were applied in order to unequivocally prove the first discovery of α-chitin in skeleton of A. fistularis. PMID:23994783

  2. Effect of Chitin Biopolymer on Dyeing Polyester/Cotton Fabrics with Disperse/Reactive Dyes

    OpenAIRE

    Najafi, H.; M. Hajilari; M. Parvinzadeh

    2008-01-01

    In this research into the process of dyeing polyester/cotton fabrics using disperse/reactive dyestuffs in one method dyeing processes. In order to improve the adhesion of chitin to the surface of polyester/cotton fibers, pre-treatment in NaOH solutions was performed. The colour and rubbing fastness properties of the chitin-deposited polyester/cotton fabrics were assessed. The colour difference between the dyed blank samples and samples dyed in after NaOH and/or different viscosity chiti...

  3. Blue Chitin columns for the extraction of heterocyclic amines from urine samples

    DEFF Research Database (Denmark)

    Bang, J.; Frandsen, Henrik Lauritz; Skog, K.

    During normal cooking of meat, a class of mutagenic/carcinogenic compounds called heterocyclic amines is formed. Heterocyclic amines are rapidly absorbed and metabolised in the human body, and for estimation of the intake of heterocyclic amines, it is useful to determinate their levels in the urine....... Blue Chitin columns were used for the extraction and purification of heterocyclic amines from urine samples spiked with 14 different heterocyclic amines. The samples were analysed using LC-MS. The results show that Blue Chitin columns provide a straightforward and rapid means of extracting heterocyclic...

  4. Management of Plant-parasitic Nematodes with a Chitin-Urea Soil Amendment and Other Materials

    OpenAIRE

    Westerdahl, B. B.; Carlson, H. L.; Grant, J; Radewald, J. D.; Welch, N.; Anderson, C A; Darso, J.; Kirby, D.; Shibuya, F.

    1992-01-01

    Field trials were conducted with a chitin-urea soil amendment and several other nematicides on four crop-nematode combinations: tomato-Meloidogyne incognita; potato-Meloidogyne chitwoodi; walnut-Pratylenchus vulnus; and brussels sprouts-Heterodera schachtii. Significant (P ≤ 0.10) nematode population reductions were obtained with the chitin-urea soil amendment in the trims on potato and walnut. In the trials on brussels sprouts and on tomato, phytotoxicity occurred at rates of 1,868 and 1,093...

  5. Cadmium sorption in solution by a chitin: effect of pH; Sorption du cadmium en solution par une chitine: effet du pH

    Energy Technology Data Exchange (ETDEWEB)

    Benguella, B.; Benaissa, H. [Universtie de Tlemcen, Lab. de Materiaux Sorbants et Traitement des Eaux, Dept. de Chimie, Faculte des Sciences, Tlemcen (Algeria)

    2001-07-01

    The pH is an essential factor to take into consideration in the sorption mechanisms of metals: it acts both on the metal speciation in solution and on the chemical behaviour of the surface of the sorbing material, and thus indirectly on the sorption mechanism. The effect of the initial pH of the solution on the cadmium sorption by raw state chitin has been studied in static conditions. The approach used is the determination of the sorption kinetics and equilibria for different values of initial pH (pH < 7-7.5). An increase of the initial pH value of the solution leads to an increase of the cadmium sorption capacity by chitin at the equilibrium. The Langmuir model has revealed to be convenient for a mathematical description of the sorption isotherms obtained. (J.S.)

  6. A Review of the Applications of Chitin and Its Derivatives in Agriculture to Modify Plant-Microbial Interactions and Improve Crop Yields

    Directory of Open Access Journals (Sweden)

    Russell G. Sharp

    2013-11-01

    Full Text Available In recent decades, a greater knowledge of chitin chemistry, and the increased availability of chitin-containing waste materials from the seafood industry, have led to the testing and development of chitin-containing products for a wide variety of applications in the agriculture industry. A number of modes of action have been proposed for how chitin and its derivatives can improve crop yield. In addition to direct effects on plant nutrition and plant growth stimulation, chitin-derived products have also been shown to be toxic to plant pests and pathogens, induce plant defenses and stimulate the growth and activity of beneficial microbes. A repeating theme of the published studies is that chitin-based treatments augment and amplify the action of beneficial chitinolytic microbes. This article reviews the evidence for claims that chitin-based products can improve crop yields and the current understanding of the modes of action with a focus on plant-microbe interactions.

  7. Identification and Characterization of Novel Chitin-Binding Proteins from the Larval Cuticle of Silkworm, Bombyx mori.

    Science.gov (United States)

    Dong, Zhaoming; Zhang, Weiwei; Zhang, Yan; Zhang, Xiaolu; Zhao, Ping; Xia, Qingyou

    2016-05-01

    Cuticle is mainly made of chitin filaments embedded in a matrix of cuticular proteins (CPs). Cuticular chitins have minor differences, whereas CPs are widely variable with respect to their sequences and structures. To understand the molecular basis underlying the mechanical properties of cuticle, it is necessary to know which CPs interact with chitin and how they are assembled into the cuticle structure. In the present study, a chitin-binding assay was performed followed by liquid chromatography-tandem mass spectrometry to identify the extracted proteins from the larval cuticle of silkworm, Bombyx mori. There were 463 proteins identified from the silkworm larval cuticle, 200 of which were recovered in the chitin-binding fraction. A total of 103 proteins were annotated as CPs, which were classified into 11 CP families based on their conserved motifs, including CPR, CPAP, CPT, CPF and CPFL, CPCFC, chitin_bind 3, BmCPH2 homologues, BmCPH9 homologues, BmCPG1 homologues, BmCPG20 homologues, and BmCPG21 homologues. A total of five CP families were newly identified in the chitin-binding fraction, thereby providing new information and insight into the composition, structure, and function of the silkworm larval cuticle. PMID:26972338

  8. Papain incorporated chitin dressings for wound debridement sterilized by gamma radiation

    Science.gov (United States)

    Singh, Durgeshwer; Singh, Rita

    2012-11-01

    Wound debridement is essential for the removal of necrotic or nonviable tissue from the wound surface to create an environment conducive to healing. Nonsurgical enzymatic debridement is an attractive method due to its effectiveness and ease of use. Papain is a proteolytic enzyme derived from the fruit of Carica papaya and is capable of breaking down a variety of necrotic tissue substrates. The present study was focused on the use of gamma radiation for sterilization of papain dressing with wound debriding activity. Membranes with papain were prepared using 0.5% chitin in lithium chloride/dimethylacetamide solvent and sterilized by gamma radiation. Fluid absorption capacity of chitin-papain membranes without glycerol was 14.30±6.57% in 6 h. Incorporation of glycerol resulted in significant (ppapain was stable on gamma irradiation at 25-35 kGy. The irradiated chitin-papain membranes were impermeable to different bacterial strains and also exhibited strong bactericidal action against both Gram-positive and Gram-negative bacteria. The fluid handling characteristics and the antimicrobial properties of chitin-papain membranes sterilized by gamma radiation were found suitable for use as wound dressing with debriding activity.

  9. Chitosan/chitin nanowhiskers composites: effect of plasticisers on the mechanical behaviour

    Czech Academy of Sciences Publication Activity Database

    Kelnar, Ivan; Kovářová, Jana; Tishchenko, Galina; Kaprálková, Ludmila; Pavlova, Ewa; Carezzi, F.; Morganti, P.

    2015-01-01

    Roč. 22, č. 2 (2015), 5_1-5_6. ISSN 1022-9760 R&D Projects: GA ČR(CZ) GA13-15255S EU Projects: European Commission(XE) 315233 - N-CHITOPACK Institutional support: RVO:61389013 Keywords : chitosan * chitin nanowhiskers * composite Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.920, year: 2014

  10. Chitin stimuůates development and sporulation of arbuscular mycorrhizal fungi

    Czech Academy of Sciences Publication Activity Database

    Gryndler, Milan; Jansa, Jan; Hršelová, Hana; Chvátalová, Irena; Vosátka, M.

    2003-01-01

    Roč. 22, - (2003), s. 283-287. ISSN 0929-1393 R&D Projects: GA ČR GA526/99/0895 Institutional research plan: CEZ:AV0Z5020903 Keywords : arbuscular mycorrhizal fungi * chitin Subject RIV: EE - Microbiology, Virology Impact factor: 1.483, year: 2003

  11. Effect of chitin nanofibrils/plasticizer combination on mechanical behaviour of chitosan-matrix films

    Czech Academy of Sciences Publication Activity Database

    Kelnar, Ivan; Tishchenko, Galina; Kaprálková, Ludmila; Strachota, Adam; Carezzi, F.; Morganti, P.

    Pisa : University of Pisa, Department of Civil and Industrial Engineering, 2013, s. 31. [Workshop Green Chemistry and Nanotechnologies in Polymer Chemistry /4./. Pisa (IT), 04.09.2013-06.09.2013] EU Projects: European Commission(XE) 315233 - N-CHITOPACK Institutional support: RVO:61389013 Keywords : chitosan * single polymer composite * chitin nanofibrils Subject RIV: CD - Macromolecular Chemistry

  12. Effect of plasticizers on behavior of chitosan/chitin nanofibrils composite

    Czech Academy of Sciences Publication Activity Database

    Kelnar, Ivan; Morganti, P.; Carezzi, F.; Tishchenko, Galina; Kovářová, Jana; Pavlova, Ewa

    Moscow : Lomonosov Moscow State University, 2014. s. 505. [International Conference on Nanostructured Materials /12./ - NANO 2014. 13.07.2014-18.07.2014, Moscow] EU Projects: European Commission(XE) 315233 - N-CHITOPACK Institutional support: RVO:61389013 Keywords : chitin nanofibrils * chitosan * nanocomposite Subject RIV: CD - Macromolecular Chemistry

  13. The effect of chitin synthesis inhibitors on the development of Brugia malayi in Aedes aegypti.

    Science.gov (United States)

    Mohapatra, R; Ranjit, M R; Dash, A P

    1996-09-01

    Two chitin synthesis inhibitors (CSIs) viz., triflumuron and hexaflumuron interfere++ with the development of Brugia malayi in Aedes aegypti (a black-eyed Liverpool strain). The development of B. malayi was slow in both the treated populations and the infection rate, infectivity rate and L3 load per mosquito decreased significantly (P triflumuron. PMID:8984113

  14. Transforming nanostructured chitin from crustacean waste into beneficial health products: a must for our society

    Directory of Open Access Journals (Sweden)

    Morganti P

    2011-12-01

    Full Text Available P Morganti1, G Morganti2, A Morganti3,41Department of Dermatology, Second University of Naples, Naples, Italy; 2Centre of Nanoscience, Mavi Sud s.r.l, Aprilia, Italy; 3Max Planck Institute for Intellectual Property and Competition Law, Munich, Germany; 4Lextray, Milan, ItalyAbstract: Chitin, obtained principally from crustacean waste, is a sugar-like polymer that is available at low cost. It has been shown to be bio- and ecocompatible, and has a very low level of toxicity. Recently, it has become possible to industrially produce pure chitin crystals, named "chitin nanofibrils" (CN for their needle-like shape and nanostructured average size (240 × 5 × 7 nm. Due to their specific chemical and physical characteristics, CN may have a range of industrial applications, from its use in biomedical products and biomimetic cosmetics, to biotextiles and health foods. At present, world offshore disposal of this natural waste material is around 250 billion tons per year. It is an underutilized resource and has the potential to supply a wide range of useful products if suitably recycled, thus contributing to sustainable growth and a greener economy.Keywords: chitin nanofibrils, biomimetic cosmetics, biomedical products, food, nanotechnology, waste

  15. In vitro lipid digestion of chitin nanocrystal stabilized o/w emulsions

    NARCIS (Netherlands)

    Tzoumaki, M.V.; Moschakis, T.; Scholten, E.; Biliaderis, C.G.

    2013-01-01

    Chitin nanocrystals (ChN) have been shown to form stable Pickering emulsions. These oil-in-water emulsions were compared with conventional milk (whey protein isolate, WPI, and sodium caseinate, SCn) protein-stabilized emulsions in terms of their lipid digestion kinetics using an in vitro enzymatic p

  16. Direct conversion of chitin biomass to 5-hydroxymethylfurfural in concentrated ZnCl2 aqueous solution

    DEFF Research Database (Denmark)

    Wang, Yingxiong; Pedersen, Christian Marcus; Deng, Tiansheng;

    2013-01-01

    The direct conversion of chitin biomass to 5-hydroxymethylfurfural (5-HMF) in ZnCl2 aqueous solution was studied systemically. D-Glucosamine (GlcNH2) was chosen as the model compound to investigate the reaction, and 5-HMF could be obtained in 21.9% yield with 99% conversion of GlcNH2. Optimization...

  17. Potential of chitosan (chemically-modified chitin) for extraction of lead-arsenate contaminated soils

    Science.gov (United States)

    Arsenic (As), phosphorous (P), and lead (Pb) contamination in soils represents a health risk to humans and the environment. Chitosan (poly-N-acetyl glucosamine) is a non-toxic and inexpensive food industry byproduct derived from chitin that has been used as an adsorbent of heavy metals. The object...

  18. MOLECULAR TRACERS FOR SMOKE FROM CHARRING/BURNING OF CHITIN BIOPOLYMER. (R823990)

    Science.gov (United States)

    AbstractMonosaccharide derivatives from the breakdown of cellulose are the major organic components of smoke particles emitted to the atmosphere from biomass burning. In urban areas a related biopolymer, chitin, may contribute markers to smoke from grilling/charring o...

  19. Characterization of organics consistent with β-chitin preserved in the Late Eocene cuttlefish Mississaepia mississippiensis.

    Directory of Open Access Journals (Sweden)

    Patricia G Weaver

    Full Text Available BACKGROUND: Preservation of original organic components in fossils across geological time is controversial, but the potential such molecules have for elucidating evolutionary processes and phylogenetic relationships is invaluable. Chitin is one such molecule. Ancient chitin has been recovered from both terrestrial and marine arthropods, but prior to this study had not been recovered from fossil marine mollusks. METHODOLOGY/PRINCIPAL FINDINGS: Organics consistent with β-chitin are recovered in cuttlebones of Mississaepia mississippiensis from the Late Eocene (34.36 million years ago marine clays of Hinds County, Mississippi, USA. These organics were determined and characterized through comparisons with extant taxa using Scanning Electron Microscopy/Energy Dispersive Spectrometry (SEM/EDS, Field Emission Scanning Electron Microscopy (Hyperprobe, Fourier Transmission Infrared Spectroscopy (FTIR and Immunohistochemistry (IHC. CONCLUSIONS/SIGNIFICANCE: Our study presents the first evidence for organics consistent with chitin from an ancient marine mollusk and discusses how these organics have been degraded over time. As mechanisms for their preservation, we propose that the inorganic/organic lamination of the cuttlebone, combined with a suboxic depositional environment with available free Fe(2+ ions, inhibited microbial or enzymatic degradation.

  20. Concurrent protein synthesis is required for in vivo chitin synthesis in postmolt blue crabs

    International Nuclear Information System (INIS)

    Chitin synthesis in crustaceans involves the deposition of a protein-polysaccharide complex at the apical surface of epithelial cells which secrete the cuticle or exoskeleton. The present study involves an examination of in vivo incorporation of radiolabeled amino acids and amino sugars into the cuticle of postmolt blue crabs, Callinectes sapidus. Rates of incorporation of both 3H leucine and 3H threonine were linear with respect to time of incubation. Incorporation of 3H threonine into the endocuticle was inhibited greater than 90% in the presence of the protein synthesis inhibitor, puromycin. Linear incorporation of 14C glucosamine into the cuticle was also demonstrated; a significant improvement of radiolabeling was achieved by using 14C-N-acetylglucosamine as the labeled precursor. Incorporation of 3H-N-acetylglucosamine into the cuticle of postmolt blue crabs was inhibited 89% by puromycin, indicating that concurrent protein synthesis is required for the deposition of chitin in the blue crab. Autoradiographic analysis of control vs. puromycin-treated crabs indicates that puromycin totally blocks labeling of the new endocuticle with 3H glucosamine. These results are consistent with the notion that crustacean chitin is synthesized as a protein-polysaccharide complex. Analysis of the postmolt and intermolt blue crab cuticle indicates that the exoskeleton contains about 60% protein and 40% chitin. The predominant amino acids are arginine, glutamic acid, alanine, aspartic acid, and threonine

  1. Electrochemical study of functionalization on the surface of a chitin/platinum-modified glassy carbon paste electrode.

    Science.gov (United States)

    Sugawara, Kazuharu; Yugami, Asako; Terui, Norifumi; Kuramitz, Hideki

    2009-11-01

    To functionalize chitin surfaces using proteins, we developed a glucose oxidase (GOD)-chitin/platinum-modified glassy carbon paste electrode (GCPE) as a model. In a weakly acidic solution, negatively charged GOD were immobilized by the protonated acetylamide groups on chitin. When the electrode was immersed in a solution containing GOD, the enzyme was readily immobilized due to the electrostatic interaction. In addition, measurements were performed using electrodes made with powders of different sizes because sensor performance depends on the particle sizes of glassy carbon powder. PMID:19907096

  2. Identification of a membrane-bound transcriptional regulator that links chitin and natural competence in Vibrio cholerae.

    Science.gov (United States)

    Dalia, Ankur B; Lazinski, David W; Camilli, Andrew

    2014-01-01

    Vibrio cholerae is naturally competent when grown on chitin. It is known that expression of the major regulator of competence, TfoX, is controlled by chitin; however, the molecular mechanisms underlying this requirement for chitin have remained unclear. In the present study, we identify and characterize a membrane-bound transcriptional regulator that positively regulates the small RNA (sRNA) TfoR, which posttranscriptionally enhances tfoX translation. We show that this regulation of the tfoR promoter is direct by performing electrophoretic mobility shift assays and by heterologous expression of this system in Escherichia coli. This transcriptional regulator was recently identified independently and was named "TfoS" (S. Yamamoto et al., Mol. Microbiol., in press, doi:10.1111/mmi.12462). Using a constitutively active form of TfoS, we demonstrate that the activity of this regulator is sufficient to promote competence in V. cholerae in the absence of chitin. Also, TfoS contains a large periplasmic domain, which we hypothesized interacts with chitin to regulate TfoS activity. In the heterologous host E. coli, we demonstrate that chitin oligosaccharides are sufficient to activate TfoS activity at the tfoR promoter. Collectively, these data characterize TfoS as a novel chitin-sensing transcriptional regulator that represents the direct link between chitin and natural competence in V. cholerae. IMPORTANCE Naturally competent bacteria can take up exogenous DNA from the environment and integrate it into their genome by homologous recombination. This ability to take up exogenous DNA is shared by diverse bacterial species and serves as a mechanism to acquire new genes to enhance the fitness of the organism. Several members of the family Vibrionaceae become naturally competent when grown on chitin; however, a molecular understanding of how chitin activates competence is lacking. Here, we identify a novel membrane-bound transcriptional regulator that is required for natural

  3. Morphological study of chitin from Xiphopenaeus kroyeri exoskeletons by using atomic force microscopy (AFM) and CPMAS 13 C NMR

    International Nuclear Information System (INIS)

    A sample of α chitin was isolated from exoskeletons of Xiphopenaeus kroyeri. This sample ws dissolved in phosphoric acid and recovered as a fibrous precipitate. Atomic force microscopy was used in noncontact mode to obtain images of the native chitin sample. Different morphological features were observed, including rigid rod crystals 200-300 nm wide. Solid state 13 C NMR techniques were used to investigate chitin samples, and revealed molecular order in both samples. The differences observed in the proton spin-lattice relaxation times in the rotating frame, TH1p were attributed to the formation of hydrogen bonds in preferential sites in the samples. (author)

  4. Unique synteny and alternate splicing of the chitin synthases in closely related heliothine moths.

    Science.gov (United States)

    Shirk, Paul D; Perera, Omaththage P; Shelby, Kent S; Furlong, Richard B; LoVullo, Eric D; Popham, Holly J R

    2015-12-10

    Chitin is an extracellular biopolymer that contributes to the cuticular structural matrix in arthropods. As a consequence of its rigid structure, the chitinous cuticle must be shed and replaced to accommodate growth. Two chitin synthase genes that encode for chitin synthase A (ChSA), which produces cuticular exoskeleton, and chitin synthase B (ChSB), which produces peritrophic membrane, were characterized in the genomes of two heliothine moths: the corn earworm/cotton bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) and the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). In both moths, the two genes were arranged in tandem with the same orientation on the same strand with ChSB located 5' of ChSA. Sequence comparisons showed that the coding sequences were highly conserved with homologues from other species but that the tandem juxtaposed genomic arrangement of the two genes was unique in these insects. The mechanism that has led to this arrangement is unclear but is most likely a recent recombinational event. Transcript mapping of HzChSB and HzChSA in H. zea demonstrated that both transcripts were differentially spliced in various tissues and larval stages. The identification of the HzChSB-E12b alternate spliced transcript is the first report of alternate splicing for the ChSB group. The importance of this splice form is not clear because the protein produced would lack any enzymatic activity but retain the membrane insertion motifs. As for other insects, these genes provide an important target for potential control through RNAi but also provide a subject for broad scale genomic recombinational events. PMID:26253161

  5. Alkali- or acid-induced changes in structure, moisture absorption ability and deacetylating reaction of β-chitin extracted from jumbo squid (Dosidicus gigas) pens.

    Science.gov (United States)

    Jung, Jooyeoun; Zhao, Yanyun

    2014-01-01

    Alkali- or acid-induced structural modifications in β-chitin from squid (Dosidicus gigas, d'Orbigny, 1835) pens and their moisture absorption ability (MAA) and deacetylating reaction were investigated and compared with α-chitin from shrimp shells. β-Chitin was converted into the α-form after 3h in 40% NaOH or 1-3 h in 40% HCl solution, and α-chitin obtained from NaOH treatment had higher MAA than had native α-chitin, due to polymorphic destructions. In contrast, induced α-chitin from acid treatment of β-chitin had few polymorphic modifications, showing no significant change (P>0.05) in MAA. β-Chitin was more susceptible to alkali deacetylation than was α-chitin, and required a lower concentration of NaOH and shorter reaction time. These results demonstrate that alkali- or acid-treated β-chitin retained high susceptibility toward solvents, which in turn resulted in good biological activity of β-chitosan for use as a natural antioxidant and antimicrobial substance or application as edible coatings and films for various food applications. PMID:24444948

  6. Studies on sorption of uranium on Chitin- a solid state microextractant-application to preparation of uranium free ground water

    International Nuclear Information System (INIS)

    Studies were carried out to remove uranium based on the solid phase extraction of uranium by chitin from aqueous systems. Investigations were carried out to optimise the parameters like pH, contact time, and amount of chitin. The studies with synthetic samples and real water samples showed that U was easily sorbed on chitin at pH 5. The effects of other cations and anions, which are present in the water samples, were also studied. The method is simple, fast and environmental friendly and it is unaffected by the other ions present in the natural waters. The accuracy of the method was evaluated by applying the present method on ground water samples containing uranium in the range of 100-2200 ppb. The uranium remained in water samples is <20 ppb after treatment with chitin, which is below the WHO and AERB limits given for uranium in drinking water. (author)

  7. Chitin and Chitosan as Multipurpose Natural Polymers for Groundwater Arsenic Removal and As2O3 Delivery in Tumor Therapy

    Directory of Open Access Journals (Sweden)

    Letizia Da Sacco

    2010-04-01

    Full Text Available Chitin and chitosan are natural polysaccharide polymers. These polymers have been used in several agricultural, food protection and nutraceutical applications. Moreover, chitin and chitosan have been also used in biomedical and biotechnological applications as drug delivery systems or in pharmaceutical formulations. So far, there are only few studies dealing with arsenic (As removal from groundwater using chitin or chitosan and no evidence of the use of these natural polymers for arsenic trioxide (As2O3 delivery in tumor therapy. Here we suggest that chitin and/or chitosan might have the right properties to be employed as efficient polymers for such applications. Besides, nanotechnology offers suitable tools for the fabrication of novel nanostructured materials of natural origin. Since different nanostructured materials have already been employed successfully in various multidisciplinary fields, we expect that the integration of nanotechnology and natural polymer chemistry will further lead to innovative applications for environment and medicine.

  8. Isolierung und Charakterisierung der Chitin-basierten Skelette der marinen Schwämme Aplysina cavernicola und Ianthella basta

    OpenAIRE

    Ueberlein, Susanne

    2016-01-01

    Die Schwammskelette der Ordnung Verongida zeichnen sich durch das Fehlen mineralischer Komponenten aus. Stattdessen bestehen sie aus Spongin, einem kollagenartigen Protein, und Chitin. Im Rahmen der vorliegenden Arbeit wurden die aus solch einem Chitin-Protein-Komplex bestehenden Skelette der Schwammspezies Aplysina cavernicola und Ianthella basta aus der Ordnung Verongida untersucht. Aufgrund ihrer morphologischen Unterschiede wurde für jede Schwammart eine eigene Methode zur Isolierung der ...

  9. Enzymatic production of defined chitosan oligomers with a specific pattern of acetylation using a combination of chitin oligosaccharide deacetylases

    Science.gov (United States)

    Hamer, Stefanie Nicole; Cord-Landwehr, Stefan; Biarnés, Xevi; Planas, Antoni; Waegeman, Hendrik; Moerschbacher, Bruno Maria; Kolkenbrock, Stephan

    2015-03-01

    Chitin and chitosan oligomers have diverse biological activities with potentially valuable applications in fields like medicine, cosmetics, or agriculture. These properties may depend not only on the degrees of polymerization and acetylation, but also on a specific pattern of acetylation (PA) that cannot be controlled when the oligomers are produced by chemical hydrolysis. To determine the influence of the PA on the biological activities, defined chitosan oligomers in sufficient amounts are needed. Chitosan oligomers with specific PA can be produced by enzymatic deacetylation of chitin oligomers, but the diversity is limited by the low number of chitin deacetylases available. We have produced specific chitosan oligomers which are deacetylated at the first two units starting from the non-reducing end by the combined use of two different chitin deacetylases, namely NodB from Rhizobium sp. GRH2 that deacetylates the first unit and COD from Vibrio cholerae that deacetylates the second unit starting from the non-reducing end. Both chitin deacetylases accept the product of each other resulting in production of chitosan oligomers with a novel and defined PA. When extended to further chitin deacetylases, this approach has the potential to yield a large range of novel chitosan oligomers with a fully defined architecture.

  10. Synthesis of carboxymethyl chitin in aqueous solution and its thermo- and pH-sensitive behaviors.

    Science.gov (United States)

    Liu, Hui; Yang, Qizhi; Zhang, Lina; Zhuo, Renxi; Jiang, Xulin

    2016-02-10

    Homogenous modification of natural chitin offers the advantage of fair structure control. In this work, novel carboxymethyl chitins (CMCHs) with broad range of degree of substitution (DS: 0.035 to 0.74), high degree of acetylation (DA) and little de-polymerization were synthesized homogeneously in aqueous NaOH/urea solution. The simultaneous determination of DA, DS and carboxymethylation fraction at C3 and C6 for these CMCHs was achieved by proton NMR in acidic deuterated aqueous solution for the first time. Due to the good homogeneity, the prepared CMCH-4 with lower DS of carboxymethylation exhibited, for the first time to our knowledge, dual thermo- and pH-sensitive properties. The nontoxic thermo-sensitive polymer systems gel at body temperature (37 °C) in physiological condition, which is very useful as injectable hydrogels for drug delivery and tissue engineering. PMID:26686169

  11. Ovicidal activity of chitin synthesis inhibitors when fed to adult German cockroaches (Dictyoptera: Blattellidae).

    Science.gov (United States)

    DeMark, J J; Bennett, G W

    1990-07-01

    Ovicidal activity was observed in four adult groups (virgin males; virgin females; newly gravid females; and inseminated, reproducing females) of the German cockroach, Blattella germanica (L.), fed the chitin synthesis inhibitors triflumuron, chlorfluazuron, hexafluron, and UC 84572 (structure not disclosed) at the LC50's and LC95's determined from fifth-stage nymphs. All compounds were active only when fed to reproducing females (including the feeding period in which the ootheca is developing). Hexafluron and triflumuron at the LC50 caused 100% inhibition of hatch in reproducing females. Chlorfluazuron and UC 84572 at the LC50 had similar ovicidal activity (45.8 and 50.0% hatch, respectively). Female German cockroaches fed the chitin synthesis inhibitors before mating and after the ootheca had protruded from the abdomen were not affected. Reproductive capabilities of males were not affected, and males did not effectively transfer the compounds to untreated females during mating. PMID:2388230

  12. Chitin nanofibrils biomimetic products: nanoparticles and nanocomposite chitosan films in health care

    Czech Academy of Sciences Publication Activity Database

    Morganti, P.; Tishchenko, Galina; Palombo, M.; Kelnar, Ivan; Brožová, Libuše; Špírková, Milena; Pavlova, Ewa; Kobera, Libor; Carezzi, F.

    Boca Raton : CRC Press Taylor & Francis Group, 2013 - (Kim, S.), s. 681-716 ISBN 978-1-4665-0564-3 R&D Projects: GA ČR GA310/09/1407 Institutional support: RVO:61389013 Keywords : chitin nanofibrils * nanocomposite chitosan films * biomimetic products Subject RIV: EE - Microbiology, Virology http://www.crcnetbase.com/doi/abs/10.1201/b14723-39

  13. Enzyme-assisted modification of cellulose/chitin fibers with NIPAAm

    OpenAIRE

    IRIMIA, ANAMARIA; CSISZAR, EMILIA; DOBROMIR, MARIUS; Doroftei, Florica; Vasile, Cornelia

    2015-01-01

    Coating processes are applied in order to improve coating adhesion and resistance to degradation. Covalently bound organic coatings rather than merely physically bound ones assure stable modification. In this study a novel two-step process was developed to modify cellulose/chitin mix fibers consisting of enzymatic activation with a commercial cellulase, followed by a coupling reaction with N-isopropylacrylamide (or poly (N-isopropylacrylamide)) in the presence of 1-(3-dimethylaminopropyl)-3-e...

  14. Effects of Chitin and Its Derivative Chitosan on Postharvest Decay of Fruits: A Review

    OpenAIRE

    Weimin Liu; Hongyin Zhang; Renping Li

    2011-01-01

    Considerable economic losses to harvested fruits are caused by postharvest fungal decay during transportation and storage, which can be significantly controlled by synthetic fungicides. However, considering public concern over pesticide residues in food and the environment, there is a need for safer alternatives for the control of postharvest decay to substitute synthetic fungicides. As the second most abundant biopolymer renewable source in nature, chitin and its derivative chitosan are wide...

  15. Effect of applied electric field on structure and permeability of chitin nanofiber-reinforced chitosan membranes

    Czech Academy of Sciences Publication Activity Database

    Tishchenko, Galina; Peter, Jakub; Pavlova, Ewa; Brus, Jiří; Netopilík, Miloš; Pekárek, Michal; Sedláková, Zdeňka; Rosova, E. Yu.; Smirnov, M.; Elyashevich, G. K.

    Praha : Institute of Macromolecular Chemistry, 2009. s. 137. ISBN 978-80-85009-59-0. [Prague Meetings on Macromolecules /73./ New Frontiers in Macromolecular Science: From Macromolecular Concepts of Living Matter to Polymers for Better Quality of Life. 05.07.2009-09.07.2009, Prague] R&D Projects: GA ČR(CZ) GA525/08/0803 Institutional research plan: CEZ:AV0Z40500505 Keywords : chitosan membrane structure * permeability * electric field * chitin whiskers Subject RIV: CD - Macromolecular Chemistry

  16. Chitin whisker-reinforced chitosan films formed under applied electric field

    Czech Academy of Sciences Publication Activity Database

    Tishchenko, Galina; Peter, Jakub; Pavlova, Ewa; Brus, Jiří; Netopilík, Miloš; Pekárek, Michal; Sedláková, Zdeňka; Rosova, E. U.; Smirnov, M.; Elyashevich, G. K.

    Prague : Institute of Macromolecular Chemistry AS CR, v.v , 2009. s. 156. ISBN 978-80-85009-58-3. [International Conference Permea 2009. 07.06.2009-11.06.2009, Prague] R&D Projects: GA ČR(CZ) GA525/08/0803 Institutional research plan: CEZ:AV0Z40500505 Keywords : chitosan films * electric field * chitin whiskers Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition

  17. Biochemical characterization of chitin synthase activity and inhibition in the African malaria mosquito, Anopheles gambiae

    Institute of Scientific and Technical Information of China (English)

    Xin Zhang; Kun Yan Zhu

    2013-01-01

    Chitin synthase (CHS) is an important enzyme catalyzing the formation of chitin polymers in all chitin containing organisms and a potential target site for insect pest control.However,our understanding of biochemical properties of insect CHSs has been very limited.We here report enzymatic and inhibitory properties of CHS prepared from the African malaria mosquito,Anopheles gambiae.Our study,which represents the first time to use a nonradioactive method to assay CHS activity in an insect species,determined the optimal conditions for measuring the enzyme activity,including pH,temperature,and concentrations of the substrate uridine diphosphate N-acetyl-D-glucosamine (UDPGlcNAc) and Mg++.The optimal pH was about 6.5-7.0,and the highest activity was detected at temperatures between 37℃ and 44℃.Dithithreitol is required to prevent melanization of the enzyme extract.CHS activity was enhanced at low concentration of GlcNAc,but inhibited at high concentrations.Proteolytic activation of the activity is significant both in the 500×g supernatant and the 40 000×g pellet.Our study revealed only slight in vitro inhibition ofA.gambiae CHS activity by diflubenzuron and nikkomycin Z at the highest concentration (2.5μmol/L) examined.There was no in vitro inhibition by polyoxin D at any concentration examined.Furthermore,we did not observe any in vivo inhibition of CHS activity by any of these chemicals at any concentration examined.Our results suggest that the inhibition of chitin synthesis by these chemicals is not due to direct inhibition of CHS in A.gambiae.

  18. Chitin-Lignin Material as a Novel Matrix for Enzyme Immobilization

    OpenAIRE

    Jakub Zdarta; Łukasz Klapiszewski; Marcin Wysokowski; Małgorzata Norman; Agnieszka Kołodziejczak-Radzimska; Dariusz Moszyński; Hermann Ehrlich; Hieronim Maciejewski; Allison L Stelling; Teofil Jesionowski

    2015-01-01

    Innovative materials were made via the combination of chitin and lignin, and the immobilization of lipase from Aspergillus niger. Analysis by techniques including FTIR, XPS and 13C CP MAS NMR confirmed the effective immobilization of the enzyme on the surface of the composite support. The electrokinetic properties of the resulting systems were also determined. Results obtained from elemental analysis and by the Bradford method enabled the determination of optimum parameters for the immobiliza...

  19. Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route

    Science.gov (United States)

    Mangalathillam, Sabitha; Rejinold, N. Sanoj; Nair, Amrita; Lakshmanan, Vinoth-Kumar; Nair, Shantikumar V.; Jayakumar, Rangasamy

    2011-12-01

    In this study, curcumin loaded chitin nanogels (CCNGs) were developed using biocompatible and biodegradable chitin with an anticancer curcumin drug. Chitin, as well as curcumin, is insoluble in water. However, the developed CCNGs form a very good and stable dispersion in water. The CCNGs were analyzed by DLS, SEM and FTIR and showed spherical particles in a size range of 70-80 nm. The CCNGs showed higher release at acidic pH compared to neutral pH. The cytotoxicity of the nanogels were analyzed on human dermal fibroblast cells (HDF) and A375 (human melanoma) cell lines and the results show that CCNGs have specific toxicity on melanoma in a concentration range of 0.1-1.0 mg mL-1, but less toxicity towards HDF cells. The confocal analysis confirmed the uptake of CCNGs by A375. The apoptotic effect of CCNGs was analyzed by a flow-cytometric assay and the results indicate that CCNGs at the higher concentration of the cytotoxic range showed comparable apoptosis as the control curcumin, in which there was negligible apoptosis induced by the control chitin nanogels. The CCNGs showed a 4-fold increase in steady state transdermal flux of curcumin as compared to that of control curcumin solution. The histopathology studies of the porcine skin samples treated with the prepared materials showed loosening of the horny layer of the epidermis, facilitating penetration with no observed signs of inflammation. These results suggest that the formulated CCNGs offer specific advantage for the treatment of melanoma, the most common and serious type of skin cancer, by effective transdermal penetration.

  20. Effect of Chitin Addition to the Growth of Entomopathogenic fungi Penicillium sp.

    OpenAIRE

    Nurariaty, Agus; Ade, Sugiarti

    2014-01-01

    Penicillium sp. is one of the potentially entomopathogenic fungi to control the cacao pod borer (CPB). The study aims to determine the effect of chitin addition to the growth of entomopathogenic fungi Penicillium sp. Experiments was conducted in Pests Identification and Biological Control laboratory, Department of Plant Pest and Disease, Faculty of Agriculture, Hasanuddin University. The method was conducted that if the fungus Penicillium sp. has grown on PDA, then put in erlemeyer contai...

  1. Entamoeba histolytica Lectins Contain Unique 6-Cys or 8-Cys Chitin-Binding Domains

    OpenAIRE

    Van Dellen, Katrina; Ghosh, Sudip K.; Robbins, Phillips W.; Loftus, Brendan; Samuelson, John

    2002-01-01

    The Jacob lectin, the most abundant glycoprotein in the cyst wall of Entamoeba invadens, contains five unique 6-Cys chitin-binding domains (CBDs). We identified Entamoeba histolytica and Entamoeba dispar genes encoding Jacob homologues, each of which contains two predicted 6-Cys CBDs. A unique 8-Cys CBD was found at the N termini of the E. histolytica chitinase and three other predicted lectins, called Jessie 1 to Jessie 3. The CBDs of four E. histolytica lectins (Jacob, chitinase, and Jessie...

  2. Co-Processed Chitin-Mannitol as a New Excipient for Oro-Dispersible Tablets

    Directory of Open Access Journals (Sweden)

    Nidal Daraghmeh

    2015-03-01

    Full Text Available This study describes the preparation, characterization and performance of a novel excipient for use in oro-dispersible tablets (ODT. The excipient (Cop–CM consists of chitin and mannitol. The excipient with optimal physicochemical properties was obtained at a chitin: mannitol ratio of 2:8 (w/w and produced by roll compaction (RC. Differential scanning calorimetry (DSC, Fourier transform-Infrared (FT-IR, X-ray powder diffraction (XRPD and scanning electron microscope (SEM techniques were used to characterize Cop–CM, in addition to characterization of its powder and ODT dosage form. The effect of particle size distribution of Cop–CM was investigated and found to have no significant influence on the overall tablet physical properties. The compressibility parameter (a for Cop–CM was calculated from a Kawakita plot and found to be higher (0.661 than that of mannitol (0.576 due to the presence of the highly compressible chitin (0.818. Montelukast sodium and domperidone ODTs produced, using Cop–CM, displayed excellent physicochemical properties. The exceptional binding, fast wetting and superdisintegration properties of Cop–CM, in comparison with commercially available co-processed ODT excipients, results in a unique multifunctional base which can successfully be used in the formulation of oro-dispersible and fast immediate release tablets.

  3. Thermal analysis and structural characterization of chitinous exoskeleton from two marine invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Juárez-de la Rosa, B.A., E-mail: balej05@yahoo.com.mx [Laboratory of Natural Polymers, CIAD – Coordinación Guaymas, Carretera al Varadero Nacional km. 6.6, Col. Las Playitas, 85480 Guaymas, Sonora (Mexico); Applied Physics Department, CINVESTAV-IPN Unidad Mérida, Carretera antigua a Progreso, km. 6. Apdo, Postal 73, Cordemex, 97310 Mérida, Yucatan (Mexico); May-Crespo, J.; Quintana-Owen, P.; Gónzalez-Gómez, W.S. [Applied Physics Department, CINVESTAV-IPN Unidad Mérida, Carretera antigua a Progreso, km. 6. Apdo, Postal 73, Cordemex, 97310 Mérida, Yucatan (Mexico); Yañez-Limón, J.M. [Materials and Engineering Science, CINVESTAV-IPN, Unidad Querétaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, 76230 Santiago de Querétaro, Querétaro (Mexico); Alvarado-Gil, J.J., E-mail: jjag@mda.cinvestav.mx [Applied Physics Department, CINVESTAV-IPN Unidad Mérida, Carretera antigua a Progreso, km. 6. Apdo, Postal 73, Cordemex, 97310 Mérida, Yucatan (Mexico)

    2015-06-20

    Highlights: • Thermal analysis of exoskeletons: Antipathes caribbeana and Limulus polyphemus. • DMTA revealed Limulus has a stronger structure with a stepper glass transition. • DSC measurements exhibited a much larger water holding capacity in Antipathes. • X-ray diffraction analysis shows a higher crystallinity index in Limulus • FTIR showed α-chitin structures and high temperature C–N groups prevalence. - ABSTRACT: Thermomechanical and structural properties of two marine species exoskeletons, Antipathes caribbeana (black coral) and Limulus polyphemus (xiphosure), were studied using dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). DMTA curves indicate the viscoelastic behavior and glass transition around 255 °C, black coral presented a second transition (175 °C) associated to the acetamide group attached to the α-chitin chain. DSC measurements showed a endothermic peak around 100 °C, with enthalpies of 4.02 and 118.04 J/g, indicating strong differences between exoskeletons respect to their water holding capacity and strength water–polymer interaction. A comparative analysis involving DSC and X-ray diffraction showed that lower values ΔH in xiphosure correspond to a material with a higher crystallinity (30), in contrast black coral exhibits higher values ΔH and a lower crystallinity (19). FTIR confirmed α-chitin based structure, at higher temperature diminishes the amide bands and a new one appears, related to C–N groups.

  4. New photocatalyst based on graphene oxide/chitin for degradation of dyes under sunlight.

    Science.gov (United States)

    Wang, Yuntao; Pei, Yaqiong; Xiong, Wenfei; Liu, Tingguo; Li, Jing; Liu, Shilin; Li, Bin

    2015-11-01

    Sunlight photocatalyst was fabricated by in situ synthesis of Cu2O in the regenerated chitin (RC)/graphene oxide (GO) composite film, where the porous chitin film was used as the microreactor for the formation of nano Cu2O. Nano Cu2O was immobilized and evenly distributed in the matrix and Cu2O tended to grow on the GO sheets. Cu2O inside the matrix excite and generate free photoelectrons and electron holes, which was responsible for the degradation of dyes, while GO transferred the yielded photoelectrons to prevent the generation of local high potential zone and induce the chain degradation at more points. So it was found that the porous chitin film could load Cu2O and graphene at the same time, controlling the size of Cu2O and leading to easy recycle and reuse of the photocatalyst. Moreover, the introduction of GO has dramatically improved the photocatalytic activity of Cu2O in the Cu2O/GO/RC film, showing great potential application in wastewater treatment utilizing solar energy. PMID:26299711

  5. The fungicidal properties of the carbon materials obtained from chitin and chitosan promoted by copper salts

    Energy Technology Data Exchange (ETDEWEB)

    Ilnicka, Anna, E-mail: annakucinska@o2.pl; Walczyk, Mariusz; Lukaszewicz, Jerzy P.

    2015-07-01

    Renewable raw materials chitin and chitosan (N-deacetylated derivative of chitin) were subjected to action of different copper modifiers that were carbonized in the atmosphere of the N{sub 2} inert gas. As a result of the novel manufacturing procedure, a series of carbon materials was obtained with developed surface area and containing copper derivatives of differentiated form, size, and dispersion. The copper modifier and manufacturing procedure (concentration, carbonization temperature) influence the physical–chemical and fungicide properties of the carbons. The received carbons were chemically characterized using several methods like low-temperature adsorption of nitrogen, X-ray diffraction analysis, scanning electron microscopy, cyclic voltammetry, elemental analysis, and bioassay. Besides chemical testing, some biological tests were performed and let to select carbons with the highest fungicidal activity. Such carbons were characteristic of the specific form of copper derivatives occurring in them, i.e., nanocrystallites of Cu{sup 0} and/or Cu{sub 2}O of high dispersion on the surface of carbon. The carbons may find an application as effective contact fungistatic agents in cosmetology, medicine, food industry, etc. - Highlights: • The novel manufacturing procedure yields new functional carbon materials. • Two biopolymers chitin and chitosan can undergo copper(II) ion modification. • The Cu-modified carbon materials exhibit high fungicidal activity. • The fungicidal activity results from the presence of Cu{sup 0} and Cu{sub 2}O nano-crystallites.

  6. Binary gene expression patterning of the molt cycle: the case of chitin metabolism.

    Science.gov (United States)

    Abehsera, Shai; Glazer, Lilah; Tynyakov, Jenny; Plaschkes, Inbar; Chalifa-Caspi, Vered; Khalaila, Isam; Aflalo, Eliahu D; Sagi, Amir

    2014-01-01

    In crustaceans, like all arthropods, growth is accompanied by a molting cycle. This cycle comprises major physiological events in which mineralized chitinous structures are built and degraded. These events are in turn governed by genes whose patterns of expression are presumably linked to the molting cycle. To study these genes we performed next generation sequencing and constructed a molt-related transcriptomic library from two exoskeletal-forming tissues of the crayfish Cherax quadricarinatus, namely the gastrolith and the mandible cuticle-forming epithelium. To simplify the study of such a complex process as molting, a novel approach, binary patterning of gene expression, was employed. This approach revealed that key genes involved in the synthesis and breakdown of chitin exhibit a molt-related pattern in the gastrolith-forming epithelium. On the other hand, the same genes in the mandible cuticle-forming epithelium showed a molt-independent pattern of expression. Genes related to the metabolism of glucosamine-6-phosphate, a chitin precursor synthesized from simple sugars, showed a molt-related pattern of expression in both tissues. The binary patterning approach unfolds typical patterns of gene expression during the molt cycle of a crustacean. The use of such a simplifying integrative tool for assessing gene patterning seems appropriate for the study of complex biological processes. PMID:25919476

  7. Role of Chitin and Chitinase/Chitinase-Like Proteins in Inflammation, Tissue Remodeling, and Injury

    Science.gov (United States)

    Lee, Chun Geun; Da Silva, Carla A.; Dela Cruz, Charles S.; Ahangari, Farida; Ma, Bing; Kang, Min-Jong; He, Chuan-Hua; Takyar, Seyedtaghi; Elias, Jack A.

    2013-01-01

    The 18 glycosyl hydrolase family of chitinases is an ancient gene family that is widely expressed from prokaryotes to eukaryotes. In mammals, despite the absence of endogenous chitin, a number of chitinases and chitinase-like proteins (C/CLPs) have been identified. However, their roles have only recently begun to be elucidated. Acidic mammalian chitinase (AMCase) inhibits chitin-induced innate inflammation; augments chitin-free, allergen-induced Th2 inflammation; and mediates effector functions of IL-13. The CLPs BRP-39/YKL-40 (also termed chitinase 3-like 1) inhibit oxidant-induced lung injury, augments adaptive Th2 immunity, regulates apoptosis, stimulates alternative macrophage activation, and contributes to fibrosis and wound healing. In accord with these findings, levels of YKL-40 in the lung and serum are increased in asthma and other inflammatory and remodeling disorders and often correlate with disease severity. Our understanding of the roles of C/CLPs in inflammation, tissue remodeling, and tissue injury in health and disease is reviewed below. PMID:21054166

  8. Thermal analysis and structural characterization of chitinous exoskeleton from two marine invertebrates

    International Nuclear Information System (INIS)

    Highlights: • Thermal analysis of exoskeletons: Antipathes caribbeana and Limulus polyphemus. • DMTA revealed Limulus has a stronger structure with a stepper glass transition. • DSC measurements exhibited a much larger water holding capacity in Antipathes. • X-ray diffraction analysis shows a higher crystallinity index in Limulus • FTIR showed α-chitin structures and high temperature C–N groups prevalence. - ABSTRACT: Thermomechanical and structural properties of two marine species exoskeletons, Antipathes caribbeana (black coral) and Limulus polyphemus (xiphosure), were studied using dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). DMTA curves indicate the viscoelastic behavior and glass transition around 255 °C, black coral presented a second transition (175 °C) associated to the acetamide group attached to the α-chitin chain. DSC measurements showed a endothermic peak around 100 °C, with enthalpies of 4.02 and 118.04 J/g, indicating strong differences between exoskeletons respect to their water holding capacity and strength water–polymer interaction. A comparative analysis involving DSC and X-ray diffraction showed that lower values ΔH in xiphosure correspond to a material with a higher crystallinity (30), in contrast black coral exhibits higher values ΔH and a lower crystallinity (19). FTIR confirmed α-chitin based structure, at higher temperature diminishes the amide bands and a new one appears, related to C–N groups

  9. Cigarette Smoke-Exposed Candida albicans Increased Chitin Production and Modulated Human Fibroblast Cell Responses

    Directory of Open Access Journals (Sweden)

    Humidah Alanazi

    2014-01-01

    Full Text Available The predisposition of cigarette smokers for development of respiratory and oral bacterial infections is well documented. Cigarette smoke can also contribute to yeast infection. The aim of this study was to investigate the effect of cigarette smoke condensate (CSC on C. albicans transition, chitin content, and response to environmental stress and to examine the interaction between CSC-pretreated C. albicans and normal human gingival fibroblasts. Following exposure to CSC, C. albicans transition from blastospore to hyphal form increased. CSC-pretreated yeast cells became significantly (P<0.01 sensitive to oxidation but significantly (P<0.01 resistant to both osmotic and heat stress. CSC-pretreated C. albicans expressed high levels of chitin, with 2- to 8-fold recorded under hyphal conditions. CSC-pretreated C. albicans adhered better to the gingival fibroblasts, proliferated almost three times more and adapted into hyphae, while the gingival fibroblasts recorded a significantly (P<0.01 slow growth rate but a significantly higher level of IL-1β when in contact with CSC-pretreated C. albicans. CSC was thus able to modulate both C. albicans transition through the cell wall chitin content and the interaction between C. albicans and normal human gingival fibroblasts. These findings may be relevant to fungal infections in the oral cavity in smokers.

  10. Natural waste materials containing chitin as adsorbents for textile dyestuffs: batch and continuous studies.

    Science.gov (United States)

    Figueiredo, S A; Loureiro, J M; Boaventura, R A

    2005-10-01

    In this work three natural waste materials containing chitin were used as adsorbents for textile dyestuffs, namely the Anodonta (Anodonta cygnea) shell, the Sepia (Sepia officinalis) and the Squid (Loligo vulgaris) pens. The selected dyestuffs were the Cibacron green T3G-E (CI reactive green 12), and the Solophenyl green BLE 155% (CI direct green 26), both from CIBA, commonly used in cellulosic fibres dyeing, the most used fibres in the textile industry. Batch equilibrium studies showed that the materials' adsorption capacities increase after a simple and inexpensive chemical treatment, which increases their porosity and chitin relative content. Kinetic studies suggested the existence of a high internal resistance in both systems. Fixed bed column experiments performed showed an improvement in adsorbents' behaviour after chemical treatment. However, in the column experiments, the biodegradation was the main mechanism of dyestuff removal, allowing the materials' bioregeneration. The adsorption was strongly reduced by the pore clogging effect of the biomass. The deproteinised Squid pen (grain size 0.500-1.41 mm) is the adsorbent with highest adsorption capacity (0.27 and 0.037 g/g, respectively, for the reactive and direct dyestuffs, at 20 degrees C), followed by the demineralised Sepia pen and Anodonta shell, behaving like pure chitin in all experiments, but showing inferior performances than the granular activated carbon tested in the column experiments. PMID:16140355

  11. Binary Gene Expression Patterning of the Molt Cycle: The Case of Chitin Metabolism

    Science.gov (United States)

    Abehsera, Shai; Glazer, Lilah; Tynyakov, Jenny; Plaschkes, Inbar; Chalifa-Caspi, Vered; Khalaila, Isam; Aflalo, Eliahu D.; Sagi, Amir

    2015-01-01

    In crustaceans, like all arthropods, growth is accompanied by a molting cycle. This cycle comprises major physiological events in which mineralized chitinous structures are built and degraded. These events are in turn governed by genes whose patterns of expression are presumably linked to the molting cycle. To study these genes we performed next generation sequencing and constructed a molt-related transcriptomic library from two exoskeletal-forming tissues of the crayfish Cherax quadricarinatus, namely the gastrolith and the mandible cuticle-forming epithelium. To simplify the study of such a complex process as molting, a novel approach, binary patterning of gene expression, was employed. This approach revealed that key genes involved in the synthesis and breakdown of chitin exhibit a molt-related pattern in the gastrolith-forming epithelium. On the other hand, the same genes in the mandible cuticle-forming epithelium showed a molt-independent pattern of expression. Genes related to the metabolism of glucosamine-6-phosphate, a chitin precursor synthesized from simple sugars, showed a molt-related pattern of expression in both tissues. The binary patterning approach unfolds typical patterns of gene expression during the molt cycle of a crustacean. The use of such a simplifying integrative tool for assessing gene patterning seems appropriate for the study of complex biological processes. PMID:25919476

  12. Molecular Dynamics Simulations of Hydration Effects on Solvation, Diffusivity, and Permeability in Chitosan/Chitin Films.

    Science.gov (United States)

    McDonnell, Marshall T; Greeley, Duncan A; Kit, Kevin M; Keffer, David J

    2016-09-01

    The effects of hydration on the solvation, diffusivity, solubility, and permeability of oxygen molecules in sustainable, biodegradable chitosan/chitin food packaging films were studied via molecular dynamics and confined random walk simulations. With increasing hydration, the membrane has a more homogeneous water distribution with the polymer chains being fully solvated. The diffusivity increased by a factor of 4 for oxygen molecules and by an order of magnitude for water with increasing the humidity. To calculate the Henry's constant and solubility of oxygen in the membranes with changing hydration, the excess chemical potential was calculated via free energy perturbation, thermodynamic integration and direct particle deletion methods. The simulations predicted a higher solubility and permeability for the lower humidity, in contradiction to experimental results. All three methods for calculating the solubility were in good agreement. It was found that the Coulombic interactions in the potential caused the oxygen to bind too strongly to the protonated amine group. Insight from this work will help guide molecular modeling of chitosan/chitin membranes, specifically permeability measurements for small solute molecules. Efforts to chemically tailor chitosan/chitin membranes to favor discrete as opposed to continuous aqueous domains could reduce oxygen permeability. PMID:27487964

  13. An investigation of carbon dioxide capture by chitin acetate/DMSO binary system.

    Science.gov (United States)

    Eftaiha, Ala'a F; Alsoubani, Fatima; Assaf, Khaleel I; Troll, Carsten; Rieger, Bernhard; Khaled, Aseel H; Qaroush, Abdussalam K

    2016-11-01

    Chitin is considered to be the second most abundant naturally-occurring polysaccharide. Also, dimethyl sulfoxide (DMSO) is the second highest dielectric constant polar solvent after water. Despite the low solubility of chitin in common organic solvents, and due to its high nitrogen content, it may serve as a potential scrubbing agent "wet scrubbing" for carbon dioxide (CO2) capturing as an alternative to monoethanolamine "renewables for renewables approach". Briefly, a detailed investigation for the utilization of low molecular weight, chitin-acetate (CA) in DMSO for the capturing of CO2 is reported. As carbonation process takes place, the formation of ionic alkylcarbonate was confirmed throughout spectroscopic and computational studies. Supramolecular chemisorption was proven throughout (1)H Nuclear Magnetic Resonance ((1)H NMR) together with the absence of sorption of CO2 by the monomeric repeating unit, glucosamine hydrochloride. Further, Density Functional Theory (DFT) calculations supported the formation of the CA/CO2 adduct through a newly formed supramolecular ionic interaction and hydrogen bonding along the oligosaccharide backbone between the neighboring ammonium ion and hydroxyl functional groups. The sorption capacity was measured volumetrically within an in situ Attenuated Total Reflectance-Fourier Transform Infrared coupled (in situ ATR-FTIR) autoclave at 25.0°C, and 4.0bar CO2, with a maximum sorption capacity of 3.63 [Formula: see text] /gsorbent at 10.0% (w/v). PMID:27516261

  14. Binary gene expression patterning of the molt cycle: the case of chitin metabolism.

    Directory of Open Access Journals (Sweden)

    Shai Abehsera

    Full Text Available In crustaceans, like all arthropods, growth is accompanied by a molting cycle. This cycle comprises major physiological events in which mineralized chitinous structures are built and degraded. These events are in turn governed by genes whose patterns of expression are presumably linked to the molting cycle. To study these genes we performed next generation sequencing and constructed a molt-related transcriptomic library from two exoskeletal-forming tissues of the crayfish Cherax quadricarinatus, namely the gastrolith and the mandible cuticle-forming epithelium. To simplify the study of such a complex process as molting, a novel approach, binary patterning of gene expression, was employed. This approach revealed that key genes involved in the synthesis and breakdown of chitin exhibit a molt-related pattern in the gastrolith-forming epithelium. On the other hand, the same genes in the mandible cuticle-forming epithelium showed a molt-independent pattern of expression. Genes related to the metabolism of glucosamine-6-phosphate, a chitin precursor synthesized from simple sugars, showed a molt-related pattern of expression in both tissues. The binary patterning approach unfolds typical patterns of gene expression during the molt cycle of a crustacean. The use of such a simplifying integrative tool for assessing gene patterning seems appropriate for the study of complex biological processes.

  15. Cigarette smoke-exposed Candida albicans increased chitin production and modulated human fibroblast cell responses.

    Science.gov (United States)

    Alanazi, Humidah; Semlali, Abdelhabib; Perraud, Laura; Chmielewski, Witold; Zakrzewski, Andrew; Rouabhia, Mahmoud

    2014-01-01

    The predisposition of cigarette smokers for development of respiratory and oral bacterial infections is well documented. Cigarette smoke can also contribute to yeast infection. The aim of this study was to investigate the effect of cigarette smoke condensate (CSC) on C. albicans transition, chitin content, and response to environmental stress and to examine the interaction between CSC-pretreated C. albicans and normal human gingival fibroblasts. Following exposure to CSC, C. albicans transition from blastospore to hyphal form increased. CSC-pretreated yeast cells became significantly (P < 0.01) sensitive to oxidation but significantly (P < 0.01) resistant to both osmotic and heat stress. CSC-pretreated C. albicans expressed high levels of chitin, with 2- to 8-fold recorded under hyphal conditions. CSC-pretreated C. albicans adhered better to the gingival fibroblasts, proliferated almost three times more and adapted into hyphae, while the gingival fibroblasts recorded a significantly (P < 0.01) slow growth rate but a significantly higher level of IL-1β when in contact with CSC-pretreated C. albicans. CSC was thus able to modulate both C. albicans transition through the cell wall chitin content and the interaction between C. albicans and normal human gingival fibroblasts. These findings may be relevant to fungal infections in the oral cavity in smokers. PMID:25302312

  16. Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications

    Directory of Open Access Journals (Sweden)

    Islem Younes

    2015-03-01

    Full Text Available This review describes the most common methods for recovery of chitin from marine organisms. In depth, both enzymatic and chemical treatments for the step of deproteinization are compared, as well as different conditions for demineralization. The conditions of chitosan preparation are also discussed, since they significantly impact the synthesis of chitosan with varying degree of acetylation (DA and molecular weight (MW. In addition, the main characterization techniques applied for chitin and chitosan are recalled, pointing out the role of their solubility in relation with the chemical structure (mainly the acetyl group distribution along the backbone. Biological activities are also presented, such as: antibacterial, antifungal, antitumor and antioxidant. Interestingly, the relationship between chemical structure and biological activity is demonstrated for chitosan molecules with different DA and MW and homogeneous distribution of acetyl groups for the first time. In the end, several selected pharmaceutical and biomedical applications are presented, in which chitin and chitosan are recognized as new biomaterials taking advantage of their biocompatibility and biodegradability.

  17. Nature, Strength, and Cooperativity of the Hydrogen-Bonding Network in α-Chitin.

    Science.gov (United States)

    Deringer, Volker L; Englert, Ulli; Dronskowski, Richard

    2016-03-14

    Chitin is an abundant biopolymer that stabilizes the exoskeleton of insects and gives structure to plants. Its macroscopic properties go back to an intricate network of hydrogen bonds that connect the polymer strands, and these intermolecular links have been under ongoing study. Here, we use atomistic simulations to explore hydrogen bonding in the most abundant form, α-chitin. The crystal structure exhibits disorder, and so discrete models are systematically derived as suitable approximants to the macroscopic material. These models then allow us to perform dispersion-corrected density-functional theory (DFT-D) simulations on the three-dimensional crystal network and on lower-dimensional fragments. Thereby, we rationalize the nature of hydrogen bonding and the role of crystallographic disorder for the stability of α-chitin, and complement previous, larger-scale molecular-dynamics (MD) simulations as well as recent fiber-diffraction experiments. Our results provide new, atomic-level insight into one of Nature's most abundant building materials, and the techniques and concepts are likely transferable to other biopolymers. PMID:26828306

  18. Molecular cloning and expression of chitin deacetylase 1 gene from the gills of Penaeus monodon (black tiger shrimp).

    Science.gov (United States)

    Sarmiento, Katreena P; Panes, Vivian A; Santos, Mudjekeewis D

    2016-08-01

    Chitin deacetylases have been identified and studied in several fungi and insects but not in crustaceans. These glycoproteins function in catalyzing the conversion of chitin to chitosan by the hydrolysis of N-acetamido bonds of chitin. Here, for the first time, the full length cDNA of chitin deacetylase (CDA) gene from crustaceans was fully cloned using a partial fragment obtained from a transcriptome database of the gills of black tiger shrimp Penaeus monodon that survived White Spot Syndrome Virus (WSSV) infection employing Rapid Amplification of cDNA Ends (RACE) PCR. The shrimp CDA, named PmCDA1, was further characterized by in silico analysis, and its constitutive expression determined in apparently healthy shrimp through reverse transcription PCR (RT-PCR). Results revealed that the P. monodon chitin deacetylase (PmCDA1) is 2176 bp-long gene with an open reading frame (ORF) of 1596 bp encoding for 532 amino acids. Phylogenetic analysis revealed that PmCDA1 belongs to Group I CDAs together with CDA1 and CDA2 proteins found in insects. Moreover, PmCDA1 is composed of a conserved chitin-binding peritrophin-A domain (CBD), a low-density lipoprotein receptor class A domain (LDL-A) and a catalytic domain that is part of CE4 superfamily, all found in group I CDAs, which are known to serve critical immune function against WSSV. Finally, high expression of PmCDA1 gene in the gills of apparently healthy P. monodon was observed suggesting important basal function of the gene in this tissue. Taken together, this is a first report of the full chitin deacetylase 1 (CDA1) gene in crustaceans particularly in shrimp that exhibits putative immune function against WSSV and is distinctly highly expressed in the gills of shrimp. PMID:27335260

  19. Phase distribution of products of radiation and post-radiation distillation of biopolymers: Cellulose, lignin and chitin

    Energy Technology Data Exchange (ETDEWEB)

    Ponomarev, A.V., E-mail: ponomarev@ipc.rssi.ru [A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prospect 31, 119991 Moscow (Russian Federation); Kholodkova, E.M.; Metreveli, A.K.; Metreveli, P.K.; Erasov, V.S.; Bludenko, A.V.; Chulkov, V.N. [A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prospect 31, 119991 Moscow (Russian Federation)

    2011-11-15

    Influence of both the absorbed dose and the dose rate of 8 MeV electron-beam radiation on destruction of microcrystalline cellulose, pine lignin and krill chitin was investigated. Two conversion modes were compared: (1) post-radiation distillation PRD and (2) electron-beam distillation EBD. Cellulose, chitin and lignin demonstrate different responses to irradiation and distillation in PRD and EBD modes. Treatment in EBD mode transforms biopolymers to organic liquid more productively than conventional dry distillation and treatment in PRD mode. Both radiation heating and an irradiation without heating intensify chitin and cellulose decomposition and distillation. At the same time lignin decaying rather efficiently in EBD mode appears to be insensitive to a preliminary irradiation in PRD mode up to a dose of 2.4 MGy. - Highlights: > Direct conversion of cellulose, chitin and lignin to organic liquid is intensified by electron-beam irradiation. > Alternative approach to bio-oil production. > Both electron-beam distillation mode and post-radiation distillation mode are effective for cellulose and chitin conversion. > Electron-beam distillation mode is preferable for lignin conversion. > Preliminary deep dehydration of biopolymers is realizable at low dose rates.

  20. Phase distribution of products of radiation and post-radiation distillation of biopolymers: Cellulose, lignin and chitin

    International Nuclear Information System (INIS)

    Influence of both the absorbed dose and the dose rate of 8 MeV electron-beam radiation on destruction of microcrystalline cellulose, pine lignin and krill chitin was investigated. Two conversion modes were compared: (1) post-radiation distillation PRD and (2) electron-beam distillation EBD. Cellulose, chitin and lignin demonstrate different responses to irradiation and distillation in PRD and EBD modes. Treatment in EBD mode transforms biopolymers to organic liquid more productively than conventional dry distillation and treatment in PRD mode. Both radiation heating and an irradiation without heating intensify chitin and cellulose decomposition and distillation. At the same time lignin decaying rather efficiently in EBD mode appears to be insensitive to a preliminary irradiation in PRD mode up to a dose of 2.4 MGy. - Highlights: → Direct conversion of cellulose, chitin and lignin to organic liquid is intensified by electron-beam irradiation. → Alternative approach to bio-oil production. → Both electron-beam distillation mode and post-radiation distillation mode are effective for cellulose and chitin conversion. → Electron-beam distillation mode is preferable for lignin conversion. → Preliminary deep dehydration of biopolymers is realizable at low dose rates.

  1. Effect of CaCO₃/HCl pretreatment on the surface modification of chitin gel beads via graft copolymerization of 2-hydroxy ethyl methacrylate and 4-vinylpyridine.

    Science.gov (United States)

    Yalinca, Zulal; Mohammed, Dana Ali Kader; Hadi, Jihad M; Yilmaz, Elvan

    2016-01-01

    Although chitin, poly(N-acetylglucosamine), possesses considerable potential as a biomaterial, it has not been as thoroughly studied as its derivative chitosan. In this study, the potential of chitin gel beads has been evaluated for surface modification via vinyl polymer grafting. Grafting behavior of two well-established vinyl monomers, namely 2-hydroxyethylmethacrylate (HEMA) and 4-vinylpyridine (4-VP) were investigated using cerium (IV) ammonium nitrate as the redox initiator with the aim of obtaining chemically functionalized more hydrophilic chitin surfaces. The intractable nature of chitin, which is one of its primary drawbacks as a grafting substrate was overcome by applying a CaCO3 treatment during bead preparation. The maximum grafting percentage of poly(HEMA) onto chitin bead without CaCO3 treatment was found to be 65%, while the value for CaCO3 treated chitin beads was 515%. The maximum grafting yield of poly(4-VP) on to CaCO3 treated chitin powder was 380% at optimum conditions. The grafting system was extensively characterized before and after grafting by FT-IR, SEM, C-13 NMR and XRD analyses. Significant improvement on the swelling capacities of chitin based gel beads in aqueous acidic, basic and neutral media was obtained. An account of the pros and cons of the system has been presented. PMID:26500177

  2. Albizia lebbeck Seed Coat Proteins Bind to Chitin and Act as a Defense against Cowpea Weevil Callosobruchus maculatus.

    Science.gov (United States)

    Silva, Nadia C M; De Sá, Leonardo F R; Oliveira, Eduardo A G; Costa, Monique N; Ferreira, Andre T S; Perales, Jonas; Fernandes, Kátia V S; Xavier-Filho, Jose; Oliveira, Antonia E A

    2016-05-11

    The seed coat is an external tissue that participates in defense against insects. In some nonhost seeds, including Albizia lebbeck, the insect Callosobruchus maculatus dies during seed coat penetration. We investigated the toxicity of A. lebbeck seed coat proteins to C. maculatus. A chitin-binding protein fraction was isolated from seed coat, and mass spectrometry showed similarity to a C1 cysteine protease. By ELM program an N-glycosylation interaction motif was identified in this protein, and by molecular docking the potential to interact with N-acetylglucosamine (NAG) was shown. The chitin-binding protein fraction was toxic to C. maculatus and was present in larval midgut and feces but not able to hydrolyze larval gut proteins. It did not interfere, though, with the intestinal cell permeability. These results indicate that the toxicity mechanism of this seed coat fraction may be related to its binding to chitin, present in the larvae gut, disturbing nutrient absorption. PMID:27078512

  3. Enzymatic hydrolysis of chitin pretreated by rapid depressurization from supercritical 1,1,1,2-tetrafluoroethane toward highly acetylated oligosaccharides.

    Science.gov (United States)

    Villa-Lerma, Guadalupe; González-Márquez, Humberto; Gimeno, Miquel; Trombotto, Stéphane; David, Laurent; Ifuku, Shinsuke; Shirai, Keiko

    2016-06-01

    The hydrolysis of chitin treated under supercritical conditions was successfully carried out using chitinases obtained by an optimized fermentation of the fungus Lecanicillium lecanii. The biopolymer was subjected to a pretreatment based on suspension in supercritical 1,1,1,2-tetrafluoroethane (scR134a), which possesses a critical temperature and pressure of 101°C and 40bar, respectively, followed by rapid depressurization to atmospheric pressure and further fibrillation. This methodology was compared to control untreated chitins and chitin subjected to steam explosion showing improved production of reducing sugars (0.18mg/mL), enzymatic hydrolysis and high acetylation (FA of 0.45) in products with degrees of polymerization between 2 and 5. PMID:26970920

  4. A crayfish molar tooth protein with putative mineralized exoskeletal chitinous matrix properties.

    Science.gov (United States)

    Tynyakov, Jenny; Bentov, Shmuel; Abehsera, Shai; Yehezkel, Galit; Roth, Ziv; Khalaila, Isam; Weil, Simy; Berman, Amir; Plaschkes, Inbar; Tom, Moshe; Aflalo, Eliahu D; Sagi, Amir

    2015-11-01

    Some crustaceans possess exoskeletons that are reinforced with calcium carbonate. In the crayfish Cherax quadricarinatus, the molar tooth, which is part of the mandibular exoskeleton, contains an unusual crystalline enamel-like apatite layer. As this layer resembles vertebrate enamel in composition and function, it offers an interesting example of convergent evolution. Unlike other parts of the crayfish exoskeleton, which is periodically shed and regenerated during the molt cycle, molar mineral deposition takes place during the pre-molt stage. The molar mineral composition transforms continuously from fluorapatite through amorphous calcium phosphate to amorphous calcium carbonate and is mounted on chitin. The process of crayfish molar formation is entirely extracellular and presumably controlled by proteins, lipids, polysaccharides, low-molecular weight molecules and calcium salts. We have identified a novel molar protein termed Cq-M15 from C. quadricarinatus and cloned its transcript from the molar-forming epithelium. Its transcript and differential expression were confirmed by a next-generation sequencing library. The predicted acidic pI of Cq-M15 suggests its possible involvement in mineral arrangement. Cq-M15 is expressed in several exoskeletal tissues at pre-molt and its silencing is lethal. Like other arthropod cuticular proteins, Cq-M15 possesses a chitin-binding Rebers-Riddiford domain, with a recombinant version of the protein found to bind chitin. Cq-M15 was also found to interact with calcium ions in a concentration-dependent manner. This latter property might make Cq-M15 useful for bone and dental regenerative efforts. We suggest that, in the molar tooth, this protein might be involved in calcium phosphate and/or carbonate precipitation. PMID:26385331

  5. Resilin and chitinous cuticle form a composite structure for energy storage in jumping by froghopper insects

    Directory of Open Access Journals (Sweden)

    Shaw Stephen R

    2008-09-01

    Full Text Available Abstract Background Many insects jump by storing and releasing energy in elastic structures within their bodies. This allows them to release large amounts of energy in a very short time to jump at very high speeds. The fastest of the insect jumpers, the froghopper, uses a catapult-like elastic mechanism to achieve their jumping prowess in which energy, generated by the slow contraction of muscles, is released suddenly to power rapid and synchronous movements of the hind legs. How is this energy stored? Results The hind coxae of the froghopper are linked to the hinges of the ipsilateral hind wings by pleural arches, complex bow-shaped internal skeletal structures. They are built of chitinous cuticle and the rubber-like protein, resilin, which fluoresces bright blue when illuminated with ultra-violet light. The ventral and posterior end of this fluorescent region forms the thoracic part of the pivot with a hind coxa. No other structures in the thorax or hind legs show this blue fluorescence and it is not found in larvae which do not jump. Stimulating one trochanteral depressor muscle in a pattern that simulates its normal action, results in a distortion and forward movement of the posterior part of a pleural arch by 40 μm, but in natural jumping, the movement is at least 100 μm. Conclusion Calculations showed that the resilin itself could only store 1% to 2% of the energy required for jumping. The stiffer cuticular parts of the pleural arches could, however, easily meet all the energy storage needs. The composite structure therefore, combines the stiffness of the chitinous cuticle with the elasticity of resilin. Muscle contractions bend the chitinous cuticle with little deformation and therefore, store the energy needed for jumping, while the resilin rapidly returns its stored energy and thus restores the body to its original shape after a jump and allows repeated jumping.

  6. Effect of plagiochin E, an antifungal macrocyclic bis(bibenzyl), on cell wall chitin synthesis in Candida albicans

    Institute of Scientific and Technical Information of China (English)

    Xiu-zhen WU; Ai-xia CHENG; Ling-mei SUN; Hong-xiang LOU

    2008-01-01

    Aim: To investigate the effect of plagiochin E (PLE), an antifungal macrocyclic bis(bibenzyl) isolated from liverwort Marchantia polymorpha L, on cell wall chitin synthesis in Candida albicans. Methods: The effect of PLE on chitin synthesis in Candida albicans was investigated at the cellular and molecular lev-els. First, the ultrastructural changes were observed under transmission electron microscopy (TEM). Second, the effects of PLE on chitin synthetase (Chs) activi-ties in vitro were assayed using 6-O-dansyl-N-acetylglucosamine as a fluorescent substrate, and its effect on chitin synthesis in situ was assayed by spheroplast regeneration. Finally, real-time RT-PCR was performed to assay its effect on the expression of Chs genes (CHS). Results: Observation under TEM showed that the structure of the cell wall in Candida albicans was seriously damaged, which suggested that the antifungal activity of PLE was associated with its effect on the cell wail. Enzymatic assays and spheroplast regeneration showed that PLE inhibited chitin synthesis in vitro and in situ. The results of the PCR showed that PLE significantly downregulated the expression of CHS1, and upregulated the expression of CHS2 and CHS3. Because different Chs is regulated at different stages of transcription and post-translation, the downregulation of CHS1 would decrease the level of Chs 1 and inhibit its activity, and the inhibitory effects of PLE on Chs2 and Chs3 would be at the post-translational level or by the inhibi-tion on the enzyme-active center. Conclusion: These results indicate that the antifungal activity of PLE would be attributed to its inhibitory effect on cell wall chitin synthesis in Candida albicans.

  7. Radiosorbtive properties of chitin-melanin complexes and prospect of their use in radiation defence

    International Nuclear Information System (INIS)

    The results of study of sorption activity of chitin-melanin complexes of natural origin n relation to different actinoids are represented. The most characteristic nd ponderable for sorption there is a chelate mechanism on and these makromolekules, the adsorption besieging of insoluble salts of metals goes after. role of Van-der-vaal's forces and ionic mechanism in fastening of metals by the components of cellular all of Fungi is insignificant. The 'Mykoton' ability to destroy radionuclides and heavy metals from the human organism as shown on the group of people resident on territories contaminated by radiation

  8. Effects of chitin nano-whiskers on the antibacterial and physicochemical properties of maize starch films.

    Science.gov (United States)

    Qin, Yang; Zhang, Shuangling; Yu, Jing; Yang, Jie; Xiong, Liu; Sun, Qingjie

    2016-08-20

    We investigated the effects of chitin nano-whiskers (CNWs) on the antibacterial and physiochemical properties of maize starch-based films. The microstructures, crystalline structures, and thermal, mechanical and barrier properties of the nanocomposite films were characterized by using transmission electron microscopy, X-ray diffraction analysis, thermogravimetric, differential scanning calorimeter, and texture profile analysis. The tensile strength of the maize starch films increased from 1.64MPa to 3.69MPa (Pstarch films. Furthermore, the nanocomposite films exhibited strong antimicrobial activity against Gram-positive Listeria monocytogenes but not against Gram-negative Escherichia coli. PMID:27178943

  9. Spectrophotometric determination of deacetylation degree of chitinous materials dissolved in phosphoric acid.

    Science.gov (United States)

    Hsiao, Hsien-Yi; Tsai, Chih-Cheng; Chen, Suming; Hsieh, Bo-Chuan; Chen, Richie L C

    2004-10-20

    A simple spectrophotometric method is proposed for determining deacetylation degrees (DD) of chitinous materials using phosphoric acid as the UV-transparent solvent system. Calibrating by the extinction coefficients (A(210)) of D-glucosamine and N-acetyl-D-glucosamine, DD values (24-88%) were computed numerically. The results correlated well (R(2) = 0.9805, n = 50) with those obtained by solid-state (13)C NMR. Comparison of the results obtained by the proposed UV method and solid-state (13)C NMR. PMID:15490434

  10. Management of Plant-parasitic Nematodes with a Chitin-Urea Soil Amendment and Other Materials.

    Science.gov (United States)

    Westerdahl, B B; Carlson, H L; Grant, J; Radewald, J D; Welch, N; Anderson, C A; Darso, J; Kirby, D; Shibuya, F

    1992-12-01

    Field trials were conducted with a chitin-urea soil amendment and several other nematicides on four crop-nematode combinations: tomato-Meloidogyne incognita; potato-Meloidogyne chitwoodi; walnut-Pratylenchus vulnus; and brussels sprouts-Heterodera schachtii. Significant (P soil amendment in the trims on potato and walnut. In the trials on brussels sprouts and on tomato, phytotoxicity occurred at rates of 1,868 and 1,093 kg/ha, respectively. Significant (P Yucca extract on tomato; and dazomet granules on brussels sprouts. PMID:19283044

  11. Preparation of chitin–silica composites by in vitro silicification of two-dimensional Ianthella basta demosponge chitinous scaffolds under modified Stöber conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wysokowski, Marcin [Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, M. Skłodowskiej-Curie 2, PL-60965 Poznan (Poland); Behm, Thomas [Institute of Experimental Physics, TU Bergakademie Freiberg, Liepziger 23, 09599 Freiberg (Germany); Born, René [Institute of Materials Science, Dresden University of Technology, Helmholtzstraße 10, 01069 Dresden (Germany); Bazhenov, Vasilii V. [Institute of Experimental Physics, TU Bergakademie Freiberg, Liepziger 23, 09599 Freiberg (Germany); Meißner, Heike; Richter, Gert [Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, 01307 Dresden (Germany); Szwarc-Rzepka, Karolina [Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, M. Skłodowskiej-Curie 2, PL-60965 Poznan (Poland); Makarova, Anna; Vyalikh, Denis [Institute of Solid State Physics, Dresden University of Technology, Helmholtzstraße 10, 01069 Dresden (Germany); Schupp, Peter [Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Emsstr. 20, 26382 Wilhelmshaven (Germany); Jesionowski, Teofil, E-mail: teofil.jesionowski@put.poznan.pl [Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, M. Skłodowskiej-Curie 2, PL-60965 Poznan (Poland); Ehrlich, Hermann, E-mail: hermann.ehrlich@physik.tu-freiberg.de [Institute of Experimental Physics, TU Bergakademie Freiberg, Liepziger 23, 09599 Freiberg (Germany)

    2013-10-15

    Chitin is a biopolymer found in cell walls of various fungi and skeletal structures of numerous invertebrates. The occurrence of chitin within calcium- and silica-containing biominerals has inspired development of chitin-based hybrids and composites in vitro with specific physico-chemical and material properties. We show here for the first time that the two-dimensional α-chitin scaffolds isolated from the skeletons of marine demosponge Ianthella basta can be effectively silicified by the two-step method with the use of Stöber silica micro- and nanodispersions under Extreme Biomimetic conditions. The chitin–silica composites obtained at 120 °C were characterized by the presence of spherical SiO{sub 2} particles homogeneously distributed over the chitin fibers, which probably follows from the compatibility of Si–OH groups to the hydroxyl groups of chitin. The biocomposites obtained were characterized by various analytical techniques such as energy dispersive spectrometry, scanning electron microscopy, thermogravimetric/differential thermal analyses as well as X-ray photoelectron spectroscopy, Fourier transform infrared and Raman spectroscopy to determine possible interactions between silica and chitin molecule. The results presented proved that the character and course of the in vitro chitin silicification in Stöber dispersions depended considerably on the degree of hydrolysis of the SiO{sub 2} precursor. - Highlights: • 2D α-chitin scaffolds isolated from marine demosponge can be effectively silicified using Stöber silica. • The chitin–silica composites were obtained under Extreme Biomimetic conditions. • Character and course of the in vitro chitin silicification in Stöber dispersions is discussed.

  12. Different functions of the insect soluble and membrane-bound trehalase genes in chitin biosynthesis revealed by RNA interference.

    Directory of Open Access Journals (Sweden)

    Jie Chen

    Full Text Available BACKGROUND: Trehalase, an enzyme that hydrolyzes trehalose to yield two glucose molecules, plays a pivotal role in various physiological processes. In recent years, trehalase proteins have been purified from several insect species and are divided into soluble (Tre-1 and membrane-bound (Tre-2 trehalases. However, no functions of the two trehalases in chitin biosynthesis in insects have yet been reported. PRINCIPAL FINDINGS: The membrane-bound trehalase of Spodoptera exigua (SeTre-2 was characterized in our laboratory previously. In this study, we cloned the soluble trehalase gene (SeTre-1 and investigated the tissue distribution and developmental expression pattern of the two trehalase genes. SeTre-1 was expressed highly in cuticle and Malpighian tubules, while SeTre-2 was expressed in tracheae and fat body. In the midgut, the two trehalase genes were expressed in different locations. Additionally, the expression profiles of both trehalase mRNAs and their enzyme activities suggest that they may play different roles in chitin biosynthesis. The RNA interference (RNAi of either SeTre-1 or SeTre-2 was gene-specific and effective, with efficiency rates up to 83% at 72 h post injection. After RNAi of SeTre-1 and SeTre-2, significant higher mortality rates were observed during the larva-pupa stage and pupa-adult stage, and the lethal phenotypes were classified and analyzed. Additionally, the change trends of concentration of trehalose and glucose appeared reciprocally in RNAi-mutants. Moreover, knockdown of SeTre-1 gene largely inhibited the expression of chitin synthase gene A (CHSA and reduced the chitin content in the cuticle to two-thirds relative to the control insects. The chitin synthase gene B (CHSB expression, however, was inhibited more by the injection of dsRNA for SeTre-2, and the chitin content in the midgut decreased by about 25%. CONCLUSIONS: SeTre-1 plays a major role in CHSA expression and chitin synthesis in the cuticle, and SeTre-2

  13. Chitin synthases from Saprolegnia are involved in tip growth and represent a potential target for anti-oomycete drugs.

    Directory of Open Access Journals (Sweden)

    Gea Guerriero

    Full Text Available Oomycetes represent some of the most devastating plant and animal pathogens. Typical examples are Phytophthora infestans, which causes potato and tomato late blight, and Saprolegnia parasitica, responsible for fish diseases. Despite the economical and environmental importance of oomycete diseases, their control is difficult, particularly in the aquaculture industry. Carbohydrate synthases are vital for hyphal growth and represent interesting targets for tackling the pathogens. The existence of 2 different chitin synthase genes (SmChs1 and SmChs2 in Saprolegnia monoica was demonstrated using bioinformatics and molecular biology approaches. The function of SmCHS2 was unequivocally demonstrated by showing its catalytic activity in vitro after expression in Pichia pastoris. The recombinant SmCHS1 protein did not exhibit any activity in vitro, suggesting that it requires other partners or effectors to be active, or that it is involved in a different process than chitin biosynthesis. Both proteins contained N-terminal Microtubule Interacting and Trafficking domains, which have never been reported in any other known carbohydrate synthases. These domains are involved in protein recycling by endocytosis. Enzyme kinetics revealed that Saprolegnia chitin synthases are competitively inhibited by nikkomycin Z and quantitative PCR showed that their expression is higher in presence of the inhibitor. The use of nikkomycin Z combined with microscopy showed that chitin synthases are active essentially at the hyphal tips, which burst in the presence of the inhibitor, leading to cell death. S. parasitica was more sensitive to nikkomycin Z than S. monoica. In conclusion, chitin synthases with species-specific characteristics are involved in tip growth in Saprolegnia species and chitin is vital for the micro-organisms despite its very low abundance in the cell walls. Chitin is most likely synthesized transiently at the apex of the cells before cellulose, the major

  14. Metabolic engineering of the morphology of Aspergillus oryzae by altering chitin synthesis

    DEFF Research Database (Denmark)

    Muller, C.; Mcintyre, Mhairi; Hansen, Kim; Nielsen, Jens

    2002-01-01

    than that in the wild type., whereas that in the ChsB/G strain was 188% higher. During batch cultivation, inseparable clumps were formed in the wild-type strain., while no or fewer large inseparable clumps existed in the cultivations of the ChsB/G and CM101 strains. The alpha-amylase productivity was......Morphology and alpha-amylase production during submerged cultivation were examined in a wild-type strain (A1560) and in strains of Aspergillus oryzae in which chitin synthase B (chsB) and chitin synthesis myosin A (csmA) have been disrupted (ChsB/G and CM101). In a flowthrough cell, the growth of...... not significantly different in the three strains. A strain in which the transcription of chsB could be controlled by the nitrogen source-regulated promoter niiA (NiiA1) was examined during chemostat cultivation, and it was found that the branching intensity could be regulated by regulating the...

  15. Laboratory evaluation of five chitin synthesis inhibitors against the colorado potato beetle, Leptinotarsa decemlineata.

    Science.gov (United States)

    Karimzadeh, R; Hejazi, M J; Rahimzadeh Khoei, F; Moghaddam, M

    2007-01-01

    Results of laboratory experiments are reported that tested the effects of five chitin synthesis inhibitors, diflubenzuron, cyromazine, lufenuron, hexaflumuron and triflumuron. on second instars of the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Crysomelidae), originally collected from potato fields of Bostanabaad, a town 66 km southeast of Tabriz, Iran. In bioassays, the larvae were fed potato leaves dipped in aqueous solutions containing chitin synthesis inhibitors. The mortalities and abnormalities of the treated larvae were recorded 72 hours after treatments. LC(50) values were 58.6, 69.6, 27.3, 0.79 and 81.4 mg ai/ L for diflubenzuron, cyromazine, lufenuron, hexaflumuron and triflumuron, respectively. Compared with phosalone, which is one of the common insecticides used for controlling this pest in Iran, lufenuron and hexaflumuron seem to be much more potent, and if they perform equally well in the field, they would be suitable candidates to be considered as reduced risk insecticides in management programs for L. decemlineata due to much wider margin of safety for mammals and considerably fewer undesirable environmental side effects. PMID:20345285

  16. High prevalence of chitotriosidase deficiency in Peruvian Amerindians exposed to chitin-bearing food and enteroparasites

    Science.gov (United States)

    Manno, N.; Sherratt, S.; Boaretto, F.; Coico, F. Mejìa; Camus, C. Espinoza; Campos, C. Jara; Musumeci, S.; Battisti, A.; Quinnell, R.J.; León, J. Mostacero; Vazza, G.; Mostacciuolo, M.L.; Paoletti, M.G.; Falcone, F.H.

    2014-01-01

    The human genome encodes a gene for an enzymatically active chitinase (CHIT1) located in a single copy on Chromosome 1, which is highly expressed by activated macrophages and in other cells of the innate immune response. Several dysfunctional mutations are known in CHIT1, including a 24-bp duplication in Exon 10 causing catalytic deficiency. This duplication is a common variant conserved in many human populations, except in West and South Africans. Thus it has been proposed that human migration out of Africa and the consequent reduction of exposure to chitin from environmental factors may have enabled the conservation of dysfunctional mutations in human chitinases. Our data obtained from 85 indigenous Amerindians from Peru, representative of populations characterized by high prevalence of chitin-bearing enteroparasites and intense entomophagy, reveal a very high frequency of the 24-bp duplication (47.06%), and of other single nucleotide polymorphisms which are known to partially affect enzymatic activity (G102S: 42.7% and A442G/V: 25.5%). Our finding is in line with a founder effect, but appears to confute our previous hypothesis of a protective role against parasite infection and sustains the discussion on the redundancy of chitinolytic function. PMID:25256524

  17. Interaction of chitosan and chitin with Ni, Cu and Zn ions: A computational study

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Interaction of Ni, Cu and Zn cations with glucosamine and N-acetylglucosamine. • Enthalpies of interaction for monovalent ions decrease from Ni to Cu to Zn. • Enthalpies of interaction for divalent ions decrease from Cu to Ni to Zn. • Hydrated divalent metal complexes bind neighbouring amino and hydroxyl groups. - Abstract: The interaction of chitosan and chitin with monovalent and divalent late transition metal ions was studied by means of density functional theory. The calculations were performed at the B3LYP/6-31+G∗∗ level of theory using glucosamine and N-acetylglucosamine monomers as models of chitosan and chitin, respectively, in the absence and in the presence of a few water molecules. The calculations suggest that N-acetylglucosamine is more acidic than glucosamine and that the most stable metal complexes with each of these two molecules have similar stabilities. In the case of the interaction of these two molecules with monovalent cations, the most stable complexes are those with Ni(I). In the case of the divalent cations, complexes with Cu(II) are more favourable, which is in good agreement with the available experimental data

  18. Fusarium verticillioides chitin synthases CHS5 and CHS7 are required for normal growth and pathogenicity.

    Science.gov (United States)

    Larson, Troy M; Kendra, David F; Busman, Mark; Brown, Daren W

    2011-06-01

    Fusarium verticillioides is both an endophyte and a pathogen of maize and is a health threat in many areas of the world because it can contaminate maize with fumonisins, a toxic secondary metabolite. We identified eight putative chitin synthase (CHS) genes in F. verticillioides genomic sequence, and phylogenetic evidence shows that they group into seven established CHS gene classes. We targeted two CHSs (CHS5 and CHS7) for deletion analysis and found that both are required for normal hyphal growth and maximal disease of maize seedlings and ears. CHS5 and CHS7 encode a putative class V and class VII fungal chitin synthase, respectively; they are located adjacent to each other and are divergently transcribed. Fluorescent microscopy found that both CHS deficient strains produce balloon-shaped hyphae, while growth assays indicated that they were more sensitive to cell wall stressing compounds (e.g., the antifungal compound Nikkomycin Z) than wild type. Pathogenicity assays on maize seedlings and ears indicated that both strains were significantly reduced in their ability to cause disease. Our results demonstrate that both CHS5 and CHS7 are necessary for proper hyphal growth and pathogenicity of F. verticillioides on maize. PMID:21246198

  19. Methane production and growth of microorganisms under different moisture conditions in soils with added chitin and without it

    Science.gov (United States)

    Manucharova, N. A.; Yaroslavtsev, A. M.; Kornyushenko, E. G.; Stepanov, A. L.; Smagin, A. V.; Zvyagintsev, D. G.; Sudnitsyn, I. I.

    2007-08-01

    The limits of soil moisture providing the possibility of methane production and growth of microorganisms in soils with added chitin and without it were determined. Samples of gray forest, soddy-podzolic, gley taiga, chestnut, and chernozemic soils were studied. It was found that methane emission increases significantly under a high soil moisture content in the presence of chitin. The increase of the soil moisture up to the maximum water-holding capacity enhanced the emission of methane by two-six times. The dynamics of the methane emission from the soils in the course of microbial successions initiated by the addition of chitin or by the soil moistening to different levels were studied by the gas-chromatographic method. The population density and biomass of fungal, bacterial, and actinomycetic complexes under different moister levels were studied by the method of luminescent microscopy. It was determined that many microorganisms participate in the transformation of chitin in the soil under conditions of oxygen deficiency (upon the increased moisture content). Prokaryotes dominated by actinomycetes were the group that increased its biomass most actively (the biomass doubling took place).

  20. Sexual Dichromatism of the Damselfly Calopteryx japonica Caused by a Melanin-Chitin Multilayer in the Male Wing Veins

    NARCIS (Netherlands)

    Stavenga, Doekele G.; Leertouwer, Hein L.; Hariyama, Takahiko; De Raedt, Hans A.; Wilts, Bodo D.; Zeil, Jochen

    2012-01-01

    Mature male Calopteryx japonica damselflies have dark-blue wings, due to darkly coloured wing membranes and blue reflecting veins. The membranes contain a high melanin concentration and the veins have a multilayer of melanin and chitin. Female and immature C. japonica damselflies have brown wings. W

  1. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease

    NARCIS (Netherlands)

    Mentlak, T.A.; Kombrink, A.; Shinya, T.; Ryder, L.S.; Otomo, I.; Saitoh, H.; Terauchi, R.; Nishizawa, Y.; Shibuya, N.; Thomma, B.P.H.J.; Talbot, N.J.

    2012-01-01

    Plants use pattern recognition receptors to defend themselves from microbial pathogens. These receptors recognize pathogen-associated molecular patterns (PAMPs) and activate signaling pathways that lead to immunity. In rice (Oryza sativa), the chitin elicitor binding protein (CEBiP) recognizes chiti

  2. Botrytis cinerea virulence is drastically reduced after disruption of chitin synthase class III gene (Bcchs3a).

    Science.gov (United States)

    Soulié, Marie-Christine; Perino, Claude; Piffeteau, Annie; Choquer, Mathias; Malfatti, Pierrette; Cimerman, Agnès; Kunz, Caroline; Boccara, Martine; Vidal-Cros, Anne

    2006-08-01

    Botrytis cinerea is an important phytopathogenic fungus requiring new methods of control. Chitin biosynthesis, which involves seven classes of chitin synthases, could be an attractive target. A fragment encoding one of the class III enzymes was used to disrupt the corresponding Bcchs3a gene in the B. cinerea genome. The resulting mutant exhibited a 39% reduction in its chitin content and an 89% reduction in its in vitro chitin synthase activity, compared with the wild-type strain. Bcchs3a mutant was not affected in its growth in liquid medium, neither in its production of sclerotia, micro- and macroconidia. In contrast, the mutant Bcchs3a was severely impaired in its growth on solid medium. Counterbalancing this defect in radial growth, Bcchs3a mutant presented a large increase in hyphal ramification, resulting in an enhanced aerial growth. Observations by different techniques of microscopy revealed a thick extracellular matrix around the hyphal tips. Moreover, Bcchs3a mutant had a largely reduced virulence on Vitis vinifera and Arabidopsis thaliana leaves. PMID:16882034

  3. Chitin-hyaluronan nanoparticles: a multifunctional carrier to deliver anti-aging active ingredients through the skin

    Czech Academy of Sciences Publication Activity Database

    Morganti, P.; Palombo, M.; Tishchenko, Galina; Yudin, V. E.; Guarneri, F.; Cardillo, M.; Del Ciotto, P.; Carezzi, F.; Morganti, G.; Fabrizi, G.

    2014-01-01

    Roč. 1, č. 3 (2014), s. 140-158. ISSN 2079-9284 EU Projects: European Commission(XE) 315233 - N-CHITOPACK Institutional support: RVO:61389013 Keywords : chitin nanofibrils * skin aging emulsions * innovative beauty masks Subject RIV: CD - Macromolecular Chemistry

  4. Exposure to Diflubenzuron Results in an Up-Regulation of a Chitin Synthase 1 Gene in Citrus Red Mite, Panonychus citri (Acari: Tetranychidae)

    OpenAIRE

    Wen-Kai Xia; Tian-Bo Ding; Jin-Zhi Niu; Chong-Yu Liao; Rui Zhong; Wen-Jia Yang; Bin Liu; Wei Dou; Jin-Jun Wang

    2014-01-01

    Chitin synthase synthesizes chitin, which is critical for the arthropod exoskeleton. In this study, we cloned the cDNA sequences of a chitin synthase 1 gene, PcCHS1, in the citrus red mite, Panonychus citri (McGregor), which is one of the most economically important pests of citrus worldwide. The full-length cDNA of PcCHS1 contains an open reading frame of 4605 bp of nucleotides, which encodes a protein of 1535 amino acid residues with a predicted molecular mass of 175.0 kDa. A phylogenetic ...

  5. Chitin and L(+)-lactic acid production from crab (Callinectes bellicosus) wastes by fermentation of Lactobacillus sp. B2 using sugar cane molasses as carbon source.

    Science.gov (United States)

    Flores-Albino, Belem; Arias, Ladislao; Gómez, Jorge; Castillo, Alberto; Gimeno, Miquel; Shirai, Keiko

    2012-09-01

    Crab wastes are employed for simultaneous production of chitin and L(+)-lactic acid by submerged fermentation of Lactobacillus sp. B2 using sugar cane molasses as carbon source. Response surface methodology was applied to design the culture media considering demineralization. Fermentations in stirred tank reactor (2L) using selected conditions produced 88% demineralization and 56% deproteinization with 34% yield of chitin and 19.5 gL(-1) of lactic acid (77% yield). The chitin purified from fermentation displayed 95% degree of acetylation and 0.81 and 1 ± 0.125% of residual ash and protein contents, respectively. PMID:22367529

  6. Chitin Mixed in Potting Soil Alters Lettuce Growth, the Survival of Zoonotic Bacteria on the Leaves and Associated Rhizosphere Microbiology.

    Science.gov (United States)

    Debode, Jane; De Tender, Caroline; Soltaninejad, Saman; Van Malderghem, Cinzia; Haegeman, Annelies; Van der Linden, Inge; Cottyn, Bart; Heyndrickx, Marc; Maes, Martine

    2016-01-01

    Chitin is a promising soil amendment for improving soil quality, plant growth, and plant resilience. The objectives of this study were twofold. First, to study the effect of chitin mixed in potting soil on lettuce growth and on the survival of two zoonotic bacterial pathogens, Escherichia coli O157:H7 and Salmonella enterica on the lettuce leaves. Second, to assess the related changes in the microbial lettuce rhizosphere, using phospholipid fatty acid (PLFA) analysis and amplicon sequencing of a bacterial 16S rRNA gene fragment and the fungal ITS2. As a result of chitin addition, lettuce fresh yield weight was significantly increased. S. enterica survival in the lettuce phyllosphere was significantly reduced. The E. coli O157:H7 survival was also lowered, but not significantly. Moreover, significant changes were observed in the bacterial and fungal community of the lettuce rhizosphere. PLFA analysis showed a significant increase in fungal and bacterial biomass. Amplicon sequencing showed no increase in fungal and bacterial biodiversity, but relative abundances of the bacterial phyla Acidobacteria, Verrucomicrobia, Actinobacteria, Bacteroidetes, and Proteobacteria and the fungal phyla Ascomycota, Basidiomycota, and Zygomycota were significantly changed. More specifically, a more than 10-fold increase was observed for operational taxonomic units belonging to the bacterial genera Cellvibrio, Pedobacter, Dyadobacter, and Streptomyces and to the fungal genera Lecanicillium and Mortierella. These genera include several species previously reported to be involved in biocontrol, plant growth promotion, the nitrogen cycle and chitin degradation. These results enhance the understanding of the response of the rhizosphere microbiome to chitin amendment. Moreover, this is the first study to investigate the use of soil amendments to control the survival of S. enterica on plant leaves. PMID:27148242

  7. X-Ray Crystal Structure of the Full Length Human Chitotriosidase (CHIT1) Reveals Features of Its Chitin Binding Domain

    Science.gov (United States)

    Fadel, Firas; Zhao, Yuguang; Cousido-Siah, Alexandra; Ruiz, Francesc X.; Mitschler, André; Podjarny, Alberto

    2016-01-01

    Chitinases are enzymes that catalyze the hydrolysis of chitin. Human chitotriosidase (CHIT1) is one of the two active human chitinases, involved in the innate immune response and highly expressed in a variety of diseases. CHIT1 is composed of a catalytic domain linked by a hinge to its chitin binding domain (ChBD). This latter domain belongs to the carbohydrate-binding module family 14 (CBM14 family) and facilitates binding to chitin. So far, the available crystal structures of the human chitinase CHIT1 and the Acidic Mammalian Chitinase (AMCase) comprise only their catalytic domain. Here, we report a crystallization strategy combining cross-seeding and micro-seeding cycles which allowed us to obtain the first crystal structure of the full length CHIT1 (CHIT1-FL) at 1.95 Å resolution. The CHIT1 chitin binding domain (ChBDCHIT1) structure shows a distorted β-sandwich 3D fold, typical of CBM14 family members. Accordingly, ChBDCHIT1 presents six conserved cysteine residues forming three disulfide bridges and several exposed aromatic residues that probably are involved in chitin binding, including the highly conserved Trp465 in a surface- exposed conformation. Furthermore, ChBDCHIT1 presents a positively charged surface which may be involved in electrostatic interactions. Our data highlight the strong structural conservation of CBM14 family members and uncover the structural similarity between the human ChBDCHIT1, tachycitin and house mite dust allergens. Overall, our new CHIT1-FL structure, determined with an adapted crystallization approach, is one of the few complete bi-modular chitinase structures available and reveals the structural features of a human CBM14 domain. PMID:27111557

  8. Homogeneous synthesis of quaternized chitin in NaOH/urea aqueous solution as a potential gene vector.

    Science.gov (United States)

    Peng, Na; Ai, Ziye; Fang, Zehong; Wang, Yanfeng; Xia, Zhiping; Zhong, Zibiao; Fan, Xiaoli; Ye, Qifa

    2016-10-01

    Water-soluble quaternized chitins (QCs) were homogeneously synthesized by reacting chitin with (3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHPTAC) in 8wt% NaOH/4wt% urea aqueous solutions. The chemical structure and solution properties of the quaternized chitins were characterized by (1)H NMR, FT-IR, elemental analysis, dynamic light scattering (DLS) and zeta potential measurements. The results demonstrated that the water-soluble QCs, with a degree of substitution (DS) values of 0.27-0.54, could be obtained by varying the concentration of chitin, the molar ratio of CHPTAC to chitin unit, and the reaction time at room temperature (25°C). Two QCs (DS=0.36 and 0.54) were selected and studied as gene carriers. Agarose gel retardation assay revealed that both QCs could condense DNA efficiently when N/P ratio>3. The results of particle size and zeta potential indicated that both QCs had a good ability of condensing plasmid DNA into compact nanoparticles with the size of 100-200nm and zeta potential of +18 to +36mV. Compared to polyethylenimine (PEI, 25kDa), the QCs exhibited outstanding low cytotoxicity. Transfection efficiencies of the QCs/DNA complexes were measured using pGL-3 encoding luciferase as the foreign DNA, and the QCs/DNA complexes showed effective transfection efficiencies in 293T cells. These results revealed that the QCs prepared in NaOH/urea aqueous solutions could be used as promising non-viral gene carriers owing to their excellent characteristics. PMID:27312628

  9. Ancient pests: the season of the Santorini Minoan volcanic eruption and a date from insect chitin

    Science.gov (United States)

    Panagiotakopulu, Eva; Higham, Thomas; Sarpaki, Anaya; Buckland, Paul; Doumas, Christos

    2013-07-01

    Attributing a season and a date to the volcanic eruption of Santorini in the Aegean has become possible by using preserved remains of the bean weevil, Bruchus rufipes, pests of pulses, from the storage jars of the West House, in the Bronze Age settlement at Akrotiri. We have applied an improved pre-treatment methodology for dating the charred insects, and this provides a date of 1744-1538 BC. This date is within the range of others obtained from pulses from the same context and confirms the utility of chitin as a dating material. Based on the nature of the insect material and the life cycle of the species involved, we argue for a summer eruption, which took place after harvest, shortly after this material was transported into the West House storeroom.

  10. Effect of deletion of chitin synthase genes on mycelial morphology and culture viscosity in Aspergillus oryzae.

    Science.gov (United States)

    Müller, Christian; Hansen, Kim; Szabo, Peter; Nielsen, Jens

    2003-03-01

    The objective of this study was to quantify the effect of disrupting two chitin synthases, chsB and csmA, on the morphology and rheology during batch cultivation of Aspergillus oryzae. The rheological properties were characterized in batch cultivations at different biomass concentrations (from 3.4-22.5 g kg(-1) biomass) and the power-law model adequately described the rheological properties. In the cultivations there were pellets, clumps, and freely dispersed hyphal elements. The different morphological fractions were quantified using image analysis. The apparent viscosity of the fermentation broth was significantly affected by the biomass concentration, the morphology, and also by pH. The chsB disruption strain had lower consistency index K values for all biomass concentrations investigated, which is a desirable trait for industrial Aspergillus fermentations. PMID:12514801

  11. Tracking developmentally regulated post-synthetic processing of homogalacturonan and chitin using reciprocal oligosaccharide probes

    DEFF Research Database (Denmark)

    Mravec, Jozef; Kračun, Stjepan K.; Rydahl, Maja G.;

    2014-01-01

    limited by a lack of suitable molecular tools. Here, we report the development of a novel non-immunological approach for producing highly selective reciprocal oligosaccharide-based probes for chitosan (the product of chitin deacetylation) and for demethylesterified homogalacturonan. Specific reciprocal...... binding is mediated by the unique stereochemical arrangement of oppositely charged amino and carboxy groups. Conjugation of oligosaccharides to fluorophores or gold nanoparticles enables direct and rapid imaging of homogalacturonan and chitosan with unprecedented precision in diverse plant, fungal and...... animal systems. We demonstrated their potential for providing new biological insights by using them to study homogalacturonan processing during Arabidopsis thaliana root cap development and by analyzing sites of chitosan deposition in fungal cell walls and arthropod exoskeletons....

  12. Polyelectrolyte complex formation mediated immobilization of chitosan-invertase neoglycoconjugate on pectin-coated chitin.

    Science.gov (United States)

    Gómez, Leissy; Ramírez, Hector L; Neira-Carrillo, Andrónico; Villalonga, Reynaldo

    2006-05-01

    Saccharomyces cerevisiae invertase, chemically modified with chitosan, was immobilized on pectin-coated chitin support via polyelectrolyte complex formation. The yield of immobilized enzyme protein was determined as 85% and the immobilized biocatalyst retained 97% of the initial chitosan-invertase activity. The optimum temperature for invertase was increased by 10 degrees C and its thermostability was enhanced by about 10 degrees C after immobilization. The immobilized enzyme was stable against incubation in high ionic strength solutions and was 4-fold more resistant to thermal treatment at 65 degrees C than the native counterpart. The biocatalyst prepared retained 96 and 95% of the original catalytic activity after ten cycles of reuse and 74 h of continuous operational regime in a packed bed reactor, respectively. PMID:16775742

  13. Effects of chitin nano-whiskers on the gelatinization and retrogradation of maize and potato starches.

    Science.gov (United States)

    Ji, Na; Liu, Chengzhen; Zhang, Shuangling; Yu, Jing; Xiong, Liu; Sun, Qingjie

    2017-01-01

    Starch is very prone to retrogradation after gelatinization. Inhibition of starch retrogradation has been an important factor in improving the quality of food. For the first time, we investigated the effect of nano-materials, represented by chitin nano-whiskers (CNWs), on the short- and long-term retrogradation of maize and potato starches. Rapid Visco-Analyser results showed that the addition of CNWs significantly decreased the setback values of maize and potato starches, which suggested that CNWs could retard the short-term retrogradation of starch. Differential scanning calorimetry and X-ray diffraction results showed that the percentage of retrogradation of maize and potato starches significantly decreased (P<0.05), suggesting the inhibition of long-term retrogradation. The CNWs could be used as a new inhibitor of starch retrogradation to develop starch-based food with longer shelf life. PMID:27507508

  14. Self-assembled cardanol azo derivatives as antifungal agent with chitin-binding ability.

    Science.gov (United States)

    Mahata, Denial; Mandal, Santi M; Bharti, Rashmi; Gupta, Vinay Krishna; Mandal, Mahitosh; Nag, Ahindra; Nando, Golok B

    2014-08-01

    Cardanol is a non-isoprenoic phenolic lipid-mixture of distilled cashew nut shell liquid obtained from Anacardium occidentale. Herein, cardanol is purified from cashew nut shell liquid (CNSL) and synthesized to new compounds with different azo amphiphiles. These synthesized compounds are allowed to self-assembled in hydrophobic environment and checked antifungal activity against Candida albicans. Self-assembled structure of CABA showed higher antifungal activity (16μg/mL) and chitin-binding ability in comparison to CAP and CANB. Furthermore, the self-assembled azo amphiphiles are immobilized with silver ions to prepare hydrogel which showed eight folds enhanced antifungal activity. Toxicity is reduced by several folds of self-assembled or hydrogel structure in comparison to pure compounds. Thus, the self-assembled structure of amphiphiles and their hydrogels have been found to be new macromolecules of interest with potential use as antifungal drugs. PMID:24836571

  15. Recovery of astaxanthin from discharged wastewater during the production of chitin

    Science.gov (United States)

    Chen, Xiaolin; Yang, Shengfeng; Xing, Ronge; Yu, Huahua; Liu, Song; Li, Pengcheng

    2012-06-01

    In this paper, studies were carried out to extract astaxanthin from discharged wastewater during the production of chitin and to reveal the scavenging effect of the obtained pigment on 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical. Different ratios of dichloromethane/methanol (V/V) were used to extract astaxanthin. When the ratio of dichloromethane/methanol was 2:8 and the ratio between the mixed organic solvent (dichloromethane/methanol, 2:8, V/V) and wastewater was 1:1, the highest yield of pigment was obtained (8.4 mg/50 mL). The concentration of free astaxanthin in the obtained pigment analyzed by HPLC was 30.02%. The obtained pigment possessed strong scavenging ability on DPPH radical and IC50 was 0.84mg/ml.

  16. Effect of Fermented Chitin Nano whiskers on Properties of Polylactic Acid Bio composite Films

    International Nuclear Information System (INIS)

    The fermented chitin nano whiskers (FCNW) filled polylactic acid (PLA) bio composite films were successfully produced using solution casting method. The bio composite films were characterized in terms of tensile properties. The Young's modulus increased with increasing FCNW content while the tensile strength increased and reached the maximum value at 4 phr FCNW loading. Therefore it can be concluded that the optimum loading of FCNW is at 4 phr and further addition of FCNW may lead to agglomeration resulting in a decrease in tensile strength. The elongation at break of the bio composite films decreased rapidly upon addition of FCNW into PLA. From the Atomic Force Microscopy, the surface morphology of the PLA changed upon addition of FCNW and tendency for agglomeration of FCNW at high loading was observed. (author)

  17. Graphene oxide/chitin nanofibril composite foams as column adsorbents for aqueous pollutants.

    Science.gov (United States)

    Ma, Zhongshi; Liu, Dagang; Zhu, Yi; Li, Zehui; Li, Zhenxuan; Tian, Huafeng; Liu, Haiqing

    2016-06-25

    A novel graphene oxide/chitin nanofibrils (GO-CNF) composite foam as a column adsorbent was prepared for aqueous contaminant disposal. The structures, morphologies and properties of composite foams supported by nanofibrils were characterized. As a special case, the adsorption of methylene blue (MB) on GO-CNF was investigated regarding the static adsorption and column adsorption-desorption tests. Results from equilibrium adsorption isotherms indicated that the adsorption behavior was well-fitted to Langmuir model. The composite foams reinforced by CNF were dimensionally stable during the column adsorption process and could be reused after elution. The removal efficiency of MB was still nearly 90% after 3 cycles. Furthermore, other inorganic or organic pollutants adsorbed by composite foams were also explored. Therefore, this novel composite foam with remarkable properties such as dimensional stability, universal adsorbent for cationic pollutants, high adsorption capacity, and ease of regeneration was a desirable adsorbent in the future practical application of water pollutant treatment. PMID:27083813

  18. Metabolic engineering of the morphology of Aspergillus oryzae by altering chitin synthesis.

    Science.gov (United States)

    Müller, Christian; McIntyre, Mhairi; Hansen, Kim; Nielsen, Jens

    2002-04-01

    Morphology and alpha-amylase production during submerged cultivation were examined in a wild-type strain (A1560) and in strains of Aspergillus oryzae in which chitin synthase B (chsB) and chitin synthesis myosin A (csmA) have been disrupted (ChsB/G and CM101). In a flowthrough cell, the growth of submerged hyphal elements was studied online, making it possible to examine the growth kinetics of the three strains. The average tip extension rates of the CM101 and ChsB/G strains were 25 and 88% lower, respectively, than that of the wild type. The branching intensity in the CM101 strain was 25% lower than that in the wild type, whereas that in the ChsB/G strain was 188% higher. During batch cultivation, inseparable clumps were formed in the wild-type strain, while no or fewer large inseparable clumps existed in the cultivations of the ChsB/G and CM101 strains. The alpha-amylase productivity was not significantly different in the three strains. A strain in which the transcription of chsB could be controlled by the nitrogen source-regulated promoter niiA (NiiA1) was examined during chemostat cultivation, and it was found that the branching intensity could be regulated by regulating the promoter, signifying an important role for chsB in branching. However, the pattern of branching responded very slowly to the change in transcription, and increased branching did not affect alpha-amylase productivity. alpha-Amylase residing in the cell wall was stained by immunofluorescence, and the relationship between tip number and enzyme secretion is discussed. PMID:11916702

  19. Hemocyanin with phenoloxidase activity in the chitin matrix of the crayfish gastrolith.

    Science.gov (United States)

    Glazer, Lilah; Tom, Moshe; Weil, Simy; Roth, Ziv; Khalaila, Isam; Mittelman, Binyamin; Sagi, Amir

    2013-05-15

    Gastroliths are transient extracellular calcium deposits formed by the crayfish Cherax quadricarinatus von Martens on both sides of the stomach wall during pre-molt. Gastroliths are made of a rigid chitinous organic matrix, constructed as sclerotized chitin-protein microfibrils within which calcium carbonate is deposited. Although gastroliths share many characteristics with the exoskeleton, they are simpler in structure and relatively homogeneous in composition, making them an excellent cuticle-like model for the study of cuticular proteins. In searching for molt-related proteins involved in gastrolith formation, two integrated approaches were employed, namely the isolation and mass spectrometric analysis of proteins from the gastrolith matrix, and 454-sequencing of mRNAs from both the gastrolith-forming and sub-cuticular epithelia. SDS-PAGE separation of gastrolith proteins revealed a set of bands at apparent molecular masses of 75-85 kDa; mass spectrometry data matched peptide sequences from the deduced amino acid sequences of seven hemocyanin transcripts. This assignment was then examined by immunoblot analysis using anti-hemocyanin antibodies, also used to determine the spatial distribution of the proteins in situ. Apart from contributing to oxygen transport, crustacean hemocyanins were previously suggested to be involved in several aspects of the molt cycle, including hardening of the new post-molt exoskeleton via phenoloxidation. The phenoloxidase activity of gastrolith hemocyanins was demonstrated. It was also noted that hemocyanin transcript expression during pre-molt was specific to the hepatopancreas. Our results thus reflect a set of functionally versatile proteins, expressed in a remote metabolic tissue and dispersed via the hemolymph to perform different roles in various organs and structures. PMID:23393281

  20. IDENTIFICATION AND HORMONE INDUCTION OF PUTATIVE CHITIN SYNTHASE GENES AND SPLICE VARIANTS IN Leptinotarsa decemlineata (SAY).

    Science.gov (United States)

    Shi, Ji-Feng; Mu, Li-Li; Guo, Wen-Chao; Li, Guo-Qing

    2016-08-01

    Chitin synthase (ChS) plays a critical role in chitin synthesis and excretion. In this study, two ChS genes (LdChSA and LdChSB) were identified in Leptinotarsa decemlineata. LdChSA contains two splicing variants, LdChSAa and LdChSAb. Within the first, second, and third larval instars, the mRNA levels of LdChSAa, LdChSAb, and LdChSB coincide with the peaks of circulating 20-hydroxyecdysone (20E) and juvenile hormone (JH). In vitro culture of midguts and an in vivo bioassay revealed that 20E and an ecdysteroid agonist halofenozide stimulated the expression of the three LdChSs. Conversely, a reduction of 20E by RNA interference (RNAi) of an ecdysteroidogenesis gene LdSHD repressed the expression of these LdChSs, and ingestion of halofenozide by LdSHD RNAi larvae rescued the repression. Moreover, disruption of 20E signaling by RNAi of LdEcR, LdE75, LdHR3, and LdFTZ-F1 reduced the expression levels of these genes. Similarly, in vitro culture and an in vivo bioassay showed that exogenous JH and a JH analog methoprene activated the expression of the three LdChSs, whereas a decrease in JH by RNAi of a JH biosynthesis gene LdJHAMT downregulated these LdChSs. It seems that JH upregulates LdChSs at the early stage of each instar, whereas a 20E pulse triggers the transcription of LdChSs during molting in L. decemlineata. PMID:27030662

  1. Insectivorous bats digest chitin in the stomach using acidic mammalian chitinase.

    Science.gov (United States)

    Strobel, Sara; Roswag, Anna; Becker, Nina I; Trenczek, Tina E; Encarnação, Jorge A

    2013-01-01

    The gastrointestinal tract of animals is adapted to their primary source of food to optimize resource use and energy intake. Temperate bat species mainly feed on arthropods. These contain the energy-rich carbohydrate chitin, which is indigestible for the endogenous enzymes of a typical mammalian gastrointestinal tract. However, the gastrointestinal tract of bat species should be adapted to their diet and be able to digest chitin. We hypothesized that (i) European vespertilionid bat species have the digestive enzyme chitinase and that (ii) the chitinolytic activity is located in the intestine, as has been found for North American bat species. The gastrointestinal tracts of seven bat species (Pipistrellus pipistrellus, Plecotus auritus, Myotis bechsteinii, Myotis nattereri, Myotis daubentonii, Myotis myotis, and Nyctalus leisleri) were tested for chitinolytic activity by diffusion assay. Gastrointestinal tracts of P. pipistrellus, P. auritus, M. nattereri, M. myotis, and N. leisleri were examined for acidic mammalian chitinase by western blot analysis. Tissue sections of the gastrointestinal tract of P. pipistrellus were immunohistochemically analyzed to locate the acidic mammalian chitinase. Chitinolytic activity was detected in the stomachs of all bat species. Western blot analysis confirmed the acidic mammalian chitinase in stomach samples. Immunohistochemistry of the P. pipistrellus gastrointestinal tract indicated that acidic mammalian chitinase is located in the stomach chief cells at the base of the gastric glands. In conclusion, European vespertilionid bat species have acidic mammalian chitinase that is produced in the gastric glands of the stomach. Therefore, the gastrointestinal tracts of insectivorous bat species evolved an enzymatic adaptation to their diet. PMID:24019876

  2. Molecular Cloning, Characterization and mRNA Expression of a Chitin Synthase 2 Gene from the Oriental Fruit Fly, Bactrocera dorsalis (Diptera: Tephritidae

    Directory of Open Access Journals (Sweden)

    Kang-Kang Xu

    2013-08-01

    Full Text Available Chitin synthase (CHS, a potential target for eco-friendly insecticides, plays an essential role in chitin formation in insects. In this study, a full-length cDNA encoding chitin synthase 2 (BdCHS2 was cloned and characterized in the oriental fruit fly, Bactrocera dorsalis. The BdCHS2 cDNA had 4417 nucleotides, containing an open reading frame of 4122 nucleotides, which encoded 1373 amino acid residues with a predicted molecular weight of 158.5 kDa. Phylogenetic analysis with other insect CHSs suggested that BdCHS2 belongs to insect CHS2. The BdCHS2 transcript was predominately found in midgut but was detected at low levels in fat body, Malpighian tubules, integument, and trachea. Moreover, BdCHS2 was expressed in all developmental stages, and highly expressed in the feeding stages. There was a positive relationship between BdCHS2 expression and total chitin content during development. Furthermore, both the gene expression and chitin content in midgut decreased when the insect was fed for 24 h, then starved for 24 h, while they increased dramatically and rapidly under the condition of starvation for 24 h then feeding for 24 h. These results suggest that BdCHS2 may play an important role in regulating chitin content of the midgut, and subsequently affect the growth and development of B. dorsalis.

  3. Chitin nanofibrils suppress skin inflammation in atopic dermatitis-like skin lesions in NC/Nga mice.

    Science.gov (United States)

    Izumi, Ryotaro; Azuma, Kazuo; Izawa, Hironori; Morimoto, Minoru; Nagashima, Masaaki; Osaki, Tomohiro; Tsuka, Takeshi; Imagawa, Tomohiro; Ito, Norihiko; Okamoto, Yoshiharu; Saimoto, Hiroyuki; Ifuku, Shinsuke

    2016-08-01

    We evaluated the effect of chitin nanofibril (CNF) application via skin swabs on an experimental atopic dermatitis (AD) model. AD scores were lower, and hypertrophy and hyperkeratosis of the epidermis were suppressed after CNF treatment. Furthermore, inflammatory cell infiltration in both the epidermis and dermis was inhibited. CNFs also attenuated histological scores. The suppressive effects of CNFs were equal to those of corticosteroid application; however, chitin did not show these effects. CNF application might have anti-infllammatory effects via suppression of the activation of nuclear factor-kappa B, cyclooxygenase-2, and inducible nitric oxide synthase. In an early-stage model of experimental AD, CNFs suppressed AD progression to the same extent as corticosteroids. They also suppressed skin inflammation and IgE serum levels. Our findings indicate that CNF application could aid in the prevention or treatment of AD skin lesions. PMID:27112880

  4. The use of DSC curves to determine the acetylation deg.ree of chitin/chitosan samples

    International Nuclear Information System (INIS)

    The use of DSC curves is proposed as an alternative method to determine the deg.ree of N-acetylation (DA) in chitin/chitosan samples, based in both peak area and height of the decomposition signal. Samples with DA from 74 to 16% were prepared from a chitin commercial sample and the DA was determined by 1H NMR, 13C CP/MAS NMR and IR spectra. The effect of water content, heating rate, sample mass and gas flow on the DSC peaks were evaluated and optimized. Using optimized conditions a linear relationship between peak area and height with the DA could be achieved with linear correlation coefficients of -0.998 and -0.999 (n = 7), respectively. The calibration graphs were used to determine the DA of a commercial chitosan sample with relative errors ranging from 2 to 3% for both peak area and peak height, when compared with the DA determined by 1H NMR method

  5. Application of chitin and chitosan extracted from silkworm chrysalides in the treatment of textile effluents contaminated with remazol dyes

    Directory of Open Access Journals (Sweden)

    Julliana Isabelle Simionato

    2014-09-01

    Full Text Available Chitin extracted from silkworm chrysalides was used to prepare chitosan applied in this investigation. Adsorption studies were carried out in column and in aqueous suspension with two dyes, blue remazol (RN and black remazol 5 (RB. The study showed that adsorption is better in the chitosan-packed column than in the chitin-packed one. However, the comparison of the adsorption in column and in suspension revealed better results for the latter. The plotted Langmuir isotherm did not indicate significant difference in the theoretical capacity of saturation of the monolayer (Qo for either dye. The application of the adsorption process to actual conditions was evaluated by adsorption assays of actual textile effluents. In acid pH, chitosan adsorbed the dyes responsible for the effluent coloration completely. This study showed that the use of chitosan obtained from silkworm chrysalides is a viable alternative for the immobilization of dyes in textile industry effluents.

  6. Immobilization of Papain on Chitin and Chitosan and Recycling of Soluble Enzyme for Deflocculation of Saccharomyces cerevisiae from Bioethanol Distilleries

    OpenAIRE

    Douglas Fernandes Silva; Henrique Rosa; Ana Flavia Azevedo Carvalho; Pedro de Oliva-Neto

    2015-01-01

    Yeast flocculation (Saccharomyces cerevisiae) is one of the most important problems in fuel ethanol production. Yeast flocculation causes operational difficulties and increase in the ethanol cost. Proteolytic enzymes can solve this problem since it does not depend on these changes. The recycling of soluble papain and the immobilization of this enzyme on chitin or chitosan were studied. Some cross-linking agents were evaluated in the action of proteolytic activity of papain. The glutaraldehyde...

  7. Characterization and functional analysis of a chitin synthase gene (HcCS1) identified from the freshwater pearlmussel Hyriopsis cumingii.

    Science.gov (United States)

    Zheng, H F; Bai, Z Y; Lin, J Y; Wang, G L; Li, J L

    2015-01-01

    The triangle sail mussel, Hyriopsis cumingii, is the most important freshwater pearl mussel in China. However, the mechanisms underlying its chitin-mediated shell and nacre formation remain largely unknown. Here, we characterized a chitin synthase (CS) gene (HcCS1) in H. cumingii, and analyzed its possible physiological function. The complete ORF sequence of HcCS1 contained 6903 bp, encoding a 2300-amino acid protein (theoretical molecular mass = 264 kDa; isoelectric point = 6.22), and no putative signal peptide was predicted. A myosin motor head domain, a CS domain, and 12 transmembrane domains were found. The predicted spatial structures of the myosin head and CS domains were similar to the electron microscopic structure of the heavy meromyosin subfragment of chicken smooth muscle myosin and the crystal structure of bacterial cellulose synthase, respectively. This structural similarity indicates that the functions of these two domains might be conserved. Quantitative reverse transcription PCR results showed that HcCS1 was present in all detected tissues, with the highest expression levels detected in the mantle. The HcCS1 transcripts in the mantle were upregulated following shell damage from 12 to 24 h post-damage, and they peaked (approximately 1.5-fold increase) at 12 h after shell damage. These findings suggest that HcCS1 was involved in shell regeneration, and that it might participate in shell and nacre formation in this species via chitin synthesis. HcCS1 might also dynamically regulate chitin deposition during the process of shell and nacre formation with the help of its conserved myosin head domain. PMID:26782579

  8. Effect of triflumuron, a chitin synthesis inhibitor, on Aedes aegypti, Aedes albopictus and Culex quinquefasciatus under laboratory conditions

    OpenAIRE

    Belinato, Thiago Affonso; Martins, Ademir Jesus; Lima, José Bento Pereira; Valle, Denise

    2013-01-01

    Background Resistance to traditional insecticides represents a threat to the control of disease vectors. The insect growth regulators (IGR) are a potential alternative to control mosquitoes, including resistant populations. The chitin synthesis inhibitors (CSI) are IGRs, which interfere with the insect molting process and represent one major class of compounds against Aedes aegypti populations resistant to the larvicide organophosphate temephos. In the present study, we evaluated the efficacy...

  9. The efficacy of a chitin synthesis inhibitor against field populations of organophosphate-resistant Aedes aegypti in Brazil

    OpenAIRE

    Nathalia Giglio Fontoura; Diogo Fernandes Bellinato; Denise Valle; José Bento Pereira Lima

    2012-01-01

    The mosquito Aedes aegypti is the main focus of dengue control campaigns. Because of widespread resistance against conventional chemical insecticides, chitin synthesis inhibitors (CSIs) are considered control alternatives. We evaluated the resistance status of four Brazilian Ae. aegypti populations to both the organophosphate temephos and the pyrethroid deltamethrin, which are used in Brazil to control larvae and adults, respectively. All vector populations exhibited high levels of temephos r...

  10. Effects of chitin and salicylic acid on biological control activity of Pseudomonas spp. against damping off of pepper

    OpenAIRE

    M.Rajkumar; Lee, K. J.; Freitas, H.

    2008-01-01

    Fluorescent pseudomonads (SE21 and RD41) and resistance inducers (chitin and salicylic acid) were examined for plant growth promotion and biological control of damping off of pepper caused by Rhizoctonia solani. The antagonists SE21 and RD41 isolated from the rhizosphere of pepper were found to be effective in inhibiting the mycelial growth of R. solani in a dual culture assay and increasing the seedling vigour in a roll towel assay. Both antagonists were further characterized for biocontrol ...

  11. Evaluation of Three Chitin Metal Silicate Co-Precipitates as a Potential Multifunctional Single Excipient in Tablet Formulations

    OpenAIRE

    Rana Al-Shaikh Hamid; Faisal Al-Akayleh; Mohammad Shubair; Iyad Rashid; Mayyas Al Remawi; Adnan Badwan

    2010-01-01

    The performance of the novel chitin metal silicate (CMS) co-precipitates as a single multifunctional excipient in tablet formulation using direct compression and wet granulation methods is evaluated. The neutral, acidic, and basic drugs Spironolactone (SPL), ibuprofen (IBU) and metronidazole (MET), respectively, were used as model drugs. Commercial Aldactone®, Fleximex® and Dumazole® tablets containing SPL, IBU and MET, respectively, and tablets made using Avicel® 200, were used in the study ...

  12. Preparation of acrylic acid-modified chitin improved by an experimental design and its application in absorbing toxic organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chao-Ming, E-mail: charming@mail.ksu.edu.tw [Department of Materials Engineering, Kun Shan University, Tainan, Taiwan (China); Chen, Lung-Chuan, E-mail: lcchen@mail.ksu.edu.tw [Department of Materials Engineering, Kun Shan University, Tainan, Taiwan (China); Yang, Hui-Chia, E-mail: yang.junkdna@gmail.com [Department of Environmental Engineering, Kun Shan University, Tainan, Taiwan (China); Li, Min-Hsing, E-mail: a1487561a@yahoo.com.tw [Department of Environmental Engineering, Kun Shan University, Tainan, Taiwan (China); Pan, Ting-Chung, E-mail: tcpan@mail.ksu.edu.tw [Department of Environmental Engineering, Kun Shan University, Tainan, Taiwan (China)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Acrylic acid-modified chitin. Black-Right-Pointing-Pointer Experimental design. Black-Right-Pointing-Pointer Graft copolymerization. Black-Right-Pointing-Pointer Adsorption of toxic organic compounds. Black-Right-Pointing-Pointer Very high adsorption capacity. - Abstract: Chitin grafted poly (acrylic acid) (chi-g-PAA) is synthesized and characterized as an adsorbent of toxic organic compounds. Chi-g-PAA copolymers are prepared using of ammonium cerium (IV) nitrate (Ce{sup 4+}) as the initiator. The highest grafting percentage of AA in chitin obtained using the traditional technique is 163.1%. A maximum grafting percentage of 230.6% is obtained using central composite design (CCD). Experimental results are consistent with theoretical calculations. The grafted copolymer is characterized by Fourier transform Infrared spectroscopy and solid state {sup 13}C NMR. A representative chi-g-AA copolymer is hydrolyzed to a type of sodium salt (chi-g-PANa) and used in the adsorption of malachite green (MG), methyl violet (MV), and paraquat (PQ) in aqueous. The monolayer adsorption capacities of these substances are 285.7, 357.1, and 322.6 mg/g-adsorbent, respectively. Thermodynamic calculations show that the adsorption of MG, MV, and PQ are more favored at diluted solutions. The high adsorption capacity of chi-g-PANa for toxic matter indicates its potential in the treatment of wastewater and emergency treatment of PQ-poisoned patients.

  13. A novel chitin binding crayfish molar tooth protein with elasticity properties.

    Science.gov (United States)

    Tynyakov, Jenny; Bentov, Shmuel; Abehsera, Shai; Khalaila, Isam; Manor, Rivka; Katzir Abilevich, Lihie; Weil, Simy; Aflalo, Eliahu D; Sagi, Amir

    2015-01-01

    The molar tooth of the crayfish Cherax quadricarinatus is part of the mandible, and is covered by a layer of apatite (calcium phosphate). This tooth sheds and is regenerated during each molting cycle together with the rest of the exoskeleton. We discovered that molar calcification occurs at the pre-molt stage, unlike calcification of the rest of the new exoskeleton. We further identified a novel molar protein from C. quadricarinatus and cloned its transcript from the molar-forming epithelium. We termed this protein Cq-M13. The temporal level of transcription of Cq-M13 in an NGS library of molar-forming epithelium at different molt stages coincides with the assembly and mineralization pattern of the molar tooth. The predicted protein was found to be related to the pro-resilin family of cuticular proteins. Functionally, in vivo silencing of the transcript caused molt cycle delay and a recombinant version of the protein was found to bind chitin and exhibited elastic properties. PMID:26010981

  14. Direct conversion of chitin biomass to 5-hydroxymethylfurfural in concentrated ZnCl2 aqueous solution.

    Science.gov (United States)

    Wang, Yingxiong; Pedersen, Christian Marcus; Deng, Tiansheng; Qiao, Yan; Hou, Xianglin

    2013-09-01

    The direct conversion of chitin biomass to 5-hydroxymethylfurfural (5-HMF) in ZnCl2 aqueous solution was studied systemically. D-Glucosamine (GlcNH2) was chosen as the model compound to investigate the reaction, and 5-HMF could be obtained in 21.9% yield with 99% conversion of GlcNH2. Optimization of the reaction parameters including the screening of 8 co-catalysts was carried out. Among them, AlCl3 and B(OH)3 improved 5-HMF yield, whereas CdCl2, CuCl2 and NH4Cl had no effect. CrCl3, SnCl4 and SnCl2 showed negative effects, i.e. lower yields. Consequently, the optimal reaction conditions were found to be 67 wt.% ZnCl2 aqueous solution, at 120 °C without co-catalyst. The reactions were further studied by in situ NMR, and no intermediate or other byproducts, except humins, were observed. Finally, the substrate scope was expanded from GlcNH2 to N-acetyl-D-glucosamine and various chitosan polymers with different molecular weights, 5-HMF yield from polymers were generally lower than that from GlcNH2. PMID:23819974

  15. Characteristics of deacetylation and depolymerization of β-chitin from jumbo squid (Dosidicus gigas) pens.

    Science.gov (United States)

    Jung, Jooyeoun; Zhao, Yanyun

    2011-09-27

    This study evaluated the deacetylation characteristics of β-chitin from jumbo squid (Dosidicus gigas) pens by using strongly alkaline solutions of NaOH or KOH. Taguchi design was employed to investigate the effect of reagent concentration, temperature, time, and treatment step on molecular mass (MM) and degree of deacetylation (DDA) of the chitosan obtained. The optimal treatment conditions for achieving high MM and DDA of chitosan were identified as: 40% NaOH at 90°C for 6h with three separate steps (2h+2h+2h) or 50% NaOH at 90°C for 6h with one step, or 50% KOH at 90°C for 4h with three steps (1h+1h+2h) or 6h with one step. The most important factor affecting DDA and MM was temperature and time, respectively. The chitosan obtained was then further depolymerized by cellulase or lysozyme with cellulase giving a higher degradation ratio, lower relative viscosity, and a larger amount of reducing-end formations than that of lysozyme due to its higher susceptibility. This study demonstrated that jumbo squid pens are a good source of materials to produce β-chitosan with high DDA and a wide range of MM for various potential applications. PMID:21700271

  16. Chitin-lignin material as a novel matrix for enzyme immobilization.

    Science.gov (United States)

    Zdarta, Jakub; Klapiszewski, Łukasz; Wysokowski, Marcin; Norman, Małgorzata; Kołodziejczak-Radzimska, Agnieszka; Moszyński, Dariusz; Ehrlich, Hermann; Maciejewski, Hieronim; Stelling, Allison L; Jesionowski, Teofil

    2015-04-01

    Innovative materials were made via the combination of chitin and lignin, and the immobilization of lipase from Aspergillus niger. Analysis by techniques including FTIR, XPS and 13C CP MAS NMR confirmed the effective immobilization of the enzyme on the surface of the composite support. The electrokinetic properties of the resulting systems were also determined. Results obtained from elemental analysis and by the Bradford method enabled the determination of optimum parameters for the immobilization process. Based on the hydrolysis reaction of para-nitrophenyl palmitate, a determination was made of the catalytic activity, thermal and pH stability, and reusability. The systems with immobilized enzymes were found to have a hydrolytic activity of 5.72 mU, and increased thermal and pH stability compared with the native lipase. The products were also shown to retain approximately 80% of their initial catalytic activity, even after 20 reaction cycles. The immobilization process, using a cheap, non-toxic matrix of natural origin, leads to systems with potential applications in wastewater remediation processes and in biosensors. PMID:25903282

  17. The Correlation between Chitin and Acidic Mammalian Chitinase in Animal Models of Allergic Asthma

    Directory of Open Access Journals (Sweden)

    Chia-Rui Shen

    2015-11-01

    Full Text Available Asthma is the result of chronic inflammation of the airways which subsequently results in airway hyper-responsiveness and airflow obstruction. It has been shown that an elicited expression of acidic mammalian chitinase (AMCase may be involved in the pathogenesis of asthma. Our recent study has demonstrated that the specific suppression of elevated AMCase leads to reduced eosinophilia and Th2-mediated immune responses in an ovalbumin (OVA-sensitized mouse model of allergic asthma. In the current study, we show that the elicited expression of AMCase in the lung tissues of both ovalbumin- and Der P2-induced allergic asthma mouse models. The effects of allergic mediated molecules on AMCase expression were evaluated by utilizing promoter assay in the lung cells. In fact, the exposure of chitin, a polymerized sugar and the fundamental component of the major allergen mite and several of the inflammatory mediators, showed significant enhancement on AMCase expression. Such obtained results contribute to the basis of developing a promising therapeutic strategy for asthma by silencing AMCase expression.

  18. Photothermal and Structural Comparative Analysis of Chitinous Exoskeletons of Marine Invertebrates

    Science.gov (United States)

    Juárez-de la Rosa, B. A.; Yañez-Limón, J. M.; Tiburcio-Moreno, J. A.; Zambrano, M.; Ardisson, P.-L.; Quintana, P.; Alvarado-Gil, J. J.

    2012-11-01

    Chitinous materials are common in nature and provide different functions including protection and support of many invertebrate animals. Exoskeletons in these organisms constitute the boundary regulating interaction between the animal and the external environment. For this reason, it is important to study the physical properties of these skeletons, in particular, thermal properties. The objective of this study is to investigate the thermal diffusivity of the skeletons of four species of marine invertebrates, Antipathes caribbeana (black coral), Panulinus argus (lobster), Callinectes sapidus (crab), and Limulus polyphemus (xiphosure). Thermal characterization is performed using photothermal radiometry (PTR) and laser-flash techniques. The measurements are complemented with structural characterization using X-ray diffraction. The results using both laser flash and PTR are consistent. These indicate that the thermal properties are strongly dependent on the presence of biogenic minerals (calcium and/or magnesium) and on the crystallinity index of the structure. The thermal-diffusivity values show an increase as a function of the crystallinity index.

  19. A Novel Chitin Binding Crayfish Molar Tooth Protein with Elasticity Properties

    Science.gov (United States)

    Tynyakov, Jenny; Bentov, Shmuel; Abehsera, Shai; Khalaila, Isam; Manor, Rivka; Katzir Abilevich, Lihie; Weil, Simy; Aflalo, Eliahu D.; Sagi, Amir

    2015-01-01

    The molar tooth of the crayfish Cherax quadricarinatus is part of the mandible, and is covered by a layer of apatite (calcium phosphate). This tooth sheds and is regenerated during each molting cycle together with the rest of the exoskeleton. We discovered that molar calcification occurs at the pre-molt stage, unlike calcification of the rest of the new exoskeleton. We further identified a novel molar protein from C. quadricarinatus and cloned its transcript from the molar-forming epithelium. We termed this protein Cq-M13. The temporal level of transcription of Cq-M13 in an NGS library of molar-forming epithelium at different molt stages coincides with the assembly and mineralization pattern of the molar tooth. The predicted protein was found to be related to the pro-resilin family of cuticular proteins. Functionally, in vivo silencing of the transcript caused molt cycle delay and a recombinant version of the protein was found to bind chitin and exhibited elastic properties. PMID:26010981

  20. Peptide Induced Crystallization of Calcium Carbonate on Wrinkle Patterned Substrate: Implications for Chitin Formation in Molluscs

    Directory of Open Access Journals (Sweden)

    Ingrid M. Weiss

    2013-06-01

    Full Text Available We here present the nucleation and growth of calcium carbonate under the influence of synthetic peptides on topographically patterned poly(dimethylsiloxane (PDMS substrates, which have a controlled density of defects between the wrinkles. Experiments with two lysine-rich peptides derived from the extracellular conserved domain E22 of the mollusc chitin synthase Ar-CS1, AKKKKKAS (AS8 and EEKKKKKES (ES9 on these substrates showed their influence on the calcium carbonate morphology. A transition from polycrystalline composites to single crystalline phases was achieved with the peptide AS8 by changing the pH of the buffer solution. We analyzed three different pH values as previous experiments showed that E22 interacts with aragonite biominerals more strongly at pH 7.75 than at pH 9.0. At any given pH, crystals appeared in characteristic morphologies only on wrinkled substrates, and did not occur on the flat, wrinkle-free PDMS substrate. These results suggest that these wrinkled substrates could be useful for controlling the morphologies of other mineral/peptide and mineral/protein composites. In nature, these templates are formed enzymatically by glycosyltransferases containing pH-sensitive epitopes, similar to the peptides investigated here. Our in vitro test systems may be useful to gain understanding of the formation of distinct 3D morphologies in mollusc shells in response to local pH shifts during the mineralization of organic templates.

  1. Efficacy of chitin synthesis inhibitors on nymphal German cockroaches (Dictyoptera: Blattellidae).

    Science.gov (United States)

    DeMark, J J; Bennett, G W

    1989-12-01

    Second- and fifth-instar Blattella germanica (L.), fed the chitin synthesis inhibitors triflumuron, chlorfluazuron, hexafluron, and UC 84572 (structure not disclosed) were examined for mortality and developmental abnormalities. All compounds were active against B. germanica (L.), with lower diet concentrations being required to kill second instars compared with fifth instars. Chlorfluazuron was significantly more active against second and fifth instars (LC50 = 0.000191 and 0.000363% AI, respectively for the second and fifth instars). UC 84572 also killed nymphs at extremely low concentrations (LC50 = 0.000508 and 0.000754% AI, respectively, for second and fifth instars). LC50's for hexafluron and triflumuron against fifth instars were more than 1,000 times higher than that for chlorfluazuron. Sensitive periods of exposure were determined by comparing effects when four different age classes of fifth instars (1-, 4-, 7-, and 10-d old) fed on the compounds for 3 d. Triflumuron was most effective when ingested during the first three age classes and hexafluron was most effective during the last three age classes. Chlorfluazuron and UC 84572 were most effective when ingested during the second age class (days 4-6). Adults surviving exposure during the fifth instar were often deformed and weak; they died at a greater rate than the controls. However, most surviving adults were able to reproduce normally. PMID:2607029

  2. Effect of the chitin synthesis inhibitor triflumuron on the development, viability and reproduction of Aedes aegypti.

    Science.gov (United States)

    Belinato, Thiago Affonso; Martins, Ademir Jesus; Lima, José Bento Pereira; Lima-Camara, Tamara Nunes de; Peixoto, Alexandre Afrânio; Valle, Denise

    2009-02-01

    The control of Aedes aegypti is impaired due to the development of resistance to chemical insecticides. Insect Growth Regulators (IGR) exhibit distinct mechanisms of action and are considered potential vector control alternatives. Studies regarding the effects of sublethal IGR doses on the viability of resulting adults will contribute to eval-uating their impact in the field. We analyzed several aspects of Ae. aegypti adults surviving exposure to a partially lethal dose of triflumuron, a chitin synthesis inhibitor. A highly significant difference in the proportion of males and females was noted in the triflumuron-exposed group (65.0% males) compared to the controls (50.2% males). Triflumuron affected adult longevity, particularly for females; after 16 days, only 29.2% of males and 13.8% of females were alive, in contrast with 94% survival of the control mosquitoes. The locomotor activity was reduced and the blood-feeding ability of the treated females was also affected (90.4% and 48.4% of the control and triflumuron-exposed females, respectively, successfully ingested blood). Triflumuron-surviving females ingested roughly 30% less blood and laid 25% fewer eggs than the control females. The treated males and females exhibited a diminished ability to copulate, resulting in less viable eggs. PMID:19274375

  3. Effect of the chitin synthesis inhibitor triflumuron on the development, viability and reproduction of Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Thiago Affonso Belinato

    2009-02-01

    Full Text Available The control of Aedes aegypti is impaired due to the development of resistance to chemical insecticides. Insect Growth Regulators (IGR exhibit distinct mechanisms of action and are considered potential vector control alternatives. Studies regarding the effects of sublethal IGR doses on the viability of resulting adults will contribute to eval-uating their impact in the field. We analyzed several aspects of Ae. aegypti adults surviving exposure to a partially lethal dose of triflumuron, a chitin synthesis inhibitor. A highly significant difference in the proportion of males and females was noted in the triflumuron-exposed group (65.0% males compared to the controls (50.2% males. Triflumuron affected adult longevity, particularly for females; after 16 days, only 29.2% of males and 13.8% of females were alive, in contrast with 94% survival of the control mosquitoes. The locomotor activity was reduced and the blood-feeding ability of the treated females was also affected (90.4% and 48.4% of the control and triflumuron-exposed females, respectively, successfully ingested blood. Triflumuron-surviving females ingested roughly 30% less blood and laid 25% fewer eggs than the control females. The treated males and females exhibited a diminished ability to copulate, resulting in less viable eggs.

  4. Chitin-Lignin Material as a Novel Matrix for Enzyme Immobilization

    Directory of Open Access Journals (Sweden)

    Jakub Zdarta

    2015-04-01

    Full Text Available Innovative materials were made via the combination of chitin and lignin, and the immobilization of lipase from Aspergillus niger. Analysis by techniques including FTIR, XPS and 13C CP MAS NMR confirmed the effective immobilization of the enzyme on the surface of the composite support. The electrokinetic properties of the resulting systems were also determined. Results obtained from elemental analysis and by the Bradford method enabled the determination of optimum parameters for the immobilization process. Based on the hydrolysis reaction of para-nitrophenyl palmitate, a determination was made of the catalytic activity, thermal and pH stability, and reusability. The systems with immobilized enzymes were found to have a hydrolytic activity of 5.72 mU, and increased thermal and pH stability compared with the native lipase. The products were also shown to retain approximately 80% of their initial catalytic activity, even after 20 reaction cycles. The immobilization process, using a cheap, non-toxic matrix of natural origin, leads to systems with potential applications in wastewater remediation processes and in biosensors.

  5. Novel chitin/chitosan-glucan wound dressing: Isolation, characterization, antibacterial activity and wound healing properties.

    Science.gov (United States)

    Abdel-Mohsen, A M; Jancar, J; Massoud, D; Fohlerova, Z; Elhadidy, H; Spotz, Z; Hebeish, A

    2016-08-20

    Chitin/chitosan-glucan complex (ChCsGC) was isolated from Schizophyllum commune (S. commune) and dissolved for the first time in precooled (-15°C) 8wt.% urea/6wt.% NaOH aqueous solution. Novel nonwoven microfiber mats were fabricated by wet-dry-spinning technique and evaluated the mechanical of fabrics mats and surface morphology. Isolated and nonwoven mat were characterized employing FTIR-ATR, Optical microscope, TGA, DSC, H/C NMR, SEM and XRD techniques. According to the physical/chemical characterization measurements we can assumed that, the net and the novel dressing mats have the same chemical structure with slightly changes in the thermal stability for the dressing mats.The biological activity of the nonwoven ChCsGC fabric was tested against different types of bacteria exhibiting excellent antibacterial activity. Cell viability of the plain complex and nonwovens mats were evaluated utilizing mouse fibroblast cell line varying concentrations and treatment time. ChCsGC did not show any cytotoxicity against mouse fibroblast cells and the cell-fabrics interaction was also investigated using fluorescence microscope. The novel ChCsGC nonwovens exhibited excellent surgical wound healing ability when tested using rat models. PMID:27265311

  6. A novel chitin binding crayfish molar tooth protein with elasticity properties.

    Directory of Open Access Journals (Sweden)

    Jenny Tynyakov

    Full Text Available The molar tooth of the crayfish Cherax quadricarinatus is part of the mandible, and is covered by a layer of apatite (calcium phosphate. This tooth sheds and is regenerated during each molting cycle together with the rest of the exoskeleton. We discovered that molar calcification occurs at the pre-molt stage, unlike calcification of the rest of the new exoskeleton. We further identified a novel molar protein from C. quadricarinatus and cloned its transcript from the molar-forming epithelium. We termed this protein Cq-M13. The temporal level of transcription of Cq-M13 in an NGS library of molar-forming epithelium at different molt stages coincides with the assembly and mineralization pattern of the molar tooth. The predicted protein was found to be related to the pro-resilin family of cuticular proteins. Functionally, in vivo silencing of the transcript caused molt cycle delay and a recombinant version of the protein was found to bind chitin and exhibited elastic properties.

  7. Hydroxyapatite-hybridized chitosan/chitin whisker bionanocomposite fibers for bone tissue engineering applications.

    Science.gov (United States)

    Pangon, Autchara; Saesoo, Somsak; Saengkrit, Nattika; Ruktanonchai, Uracha; Intasanta, Varol

    2016-06-25

    Biomimetic nanofibrous scaffolds derived from natural biopolymers for bone tissue engineering applications require good mechanical and biological performances including biomineralization. The present work proposes the utility of chitin whisker (CTWK) to enhance mechanical properties of chitosan/poly(vinyl alcohol) (CS/PVA) nanofibers and to offer osteoblast cell growth with hydroxyapatite (HA) mineralization. By using diacid as a solvent, electrospun CS/PVA nanofibrous membranes containing CTWK can be easily obtained. The dimension stability of nanofibrous CS/PVA/CTWK bionanocomposite is further controlled by exposing to glutaraldehyde vapor. The nanofibrous membranes obtained allow mineralization of HA in concentrated simulated body fluid resulting in an improvement of Young's modulus and tensile strength. The CTWK combined with HA in bionanocomposite is a key to promote osteoblast cell adhesion and proliferation. The present work, for the first time, demonstrates the use of CTWKs for bionanocomposite fibers of chitosan and its hydroxyapatite biomineralization with the function in osteoblast cell culture. These hydroxyapatite-hybridized CS/PVA/CTWK bionanocomposite fibers (CS/PVA/CTWK-HA) offer a great potential for bone tissue engineering applications. PMID:27083834

  8. Effect of corn steep liquor (CSL) and cassava wastewater (CW) on chitin and chitosan production by Cunninghamella elegans and their physicochemical characteristics and cytotoxicity.

    Science.gov (United States)

    Berger, Lúcia Raquel Ramos; Stamford, Thayza Christina Montenegro; Stamford-Arnaud, Thatiana Montenegro; de Oliveira Franco, Luciana; do Nascimento, Aline Elesbão; Cavalcante, Horacinna M de M; Macedo, Rui Oliveira; de Campos-Takaki, Galba Maria

    2014-01-01

    Microbiological processes were used for chitin and chitosan production with Cunninghamella elegans UCP/WFCC 0542 grown in different concentrations of two agro-industrial wastes, corn steep liquor (CSL) and cassava wastewater (CW) established using a 2² full factorial design. The polysaccharides were extracted by alkali-acid treatment and characterized by infrared spectroscopy, viscosity, thermal analysis, elemental analysis, scanning electron microscopy and X-ray diffraction. The cytotoxicity of chitosan was evaluated for signs of vascular change on the chorioallantoic membrane of chicken eggs. The highest biomass (9.93 g/L) was obtained in trial 3 (5% CW, 8% CSL), the greatest chitin and chitosan yields were 89.39 mg/g and 57.82 mg/g, respectively, and both were obtained in trial 2 (10% CW, 4% CSL). Chitin and chitosan showed a degree of deacetylation of 40.98% and 88.24%, and a crystalline index of 35.80% and 23.82%, respectively, and chitosan showed low molecular weight (LMW 5.2 × 10³ Da). Chitin and chitosan can be considered non-irritating, due to the fact they do not promote vascular change. It was demonstrated that CSL and CW are effective renewable agroindustrial alternative substrates for the production of chitin and chitosan. PMID:24590203

  9. KARAKTERISASI KITIN DEASETILASE TERMOSTABIL ISOLAT BAKTERI ASAL PANCURAN TUJUH, BATURADEN, JAWA TENGAH [Characterization of Thermostable Chitin Deacetylase from Bacteria Strain Pancuran Tujuh, Baturaden, Center of Java

    Directory of Open Access Journals (Sweden)

    Deuxianto Hendarsyah3

    2006-04-01

    Full Text Available Chitin deacetylase is the enzymes that has important role in converting chitin to chitosan. In nature, chitin is the second most abundant natural biopolymer after cellulose. Generally, chitin easily obtained from outer shell of crustaceans, arthropods, and also detectable on cell wall of some type of fungal (Zygomycetes. The chitin deacetylase was isolated from Bacillus sp PT2-3. It was found that the highest specific activity was attained at pH 8 60°C. The addition of 5 mM Zn2+ and 5 mM Mn2+ increased the specific activity of the enzyme, 4.39% and 7.8%, respectively, and the increase was only 2.19% when the addition was 2 mM Mn2+. On the contrary the addition of Ca2+, Mg2+ and Fe2+ decrease the specific activity 46.83%, 41.22% and 47.32%, respectively. The enzyme activity was relatively stable at 60°C for 60 minutes, while lengthen the time to 90 minutes, decreased the activity 15.05 %, and the decrease was 26.13% at temperature of 70°C for 180 minutes.

  10. Removal of dyes from water using chitosan hydrogel/SiO2 and chitin hydrogel/SiO2 hybrid materials obtained by the sol-gel method

    International Nuclear Information System (INIS)

    This work describes the synthesis of chitosan hydrogel/SiO2 and chitin hydrogel/SiO2 hybrid mesoporous materials obtained by the sol-gel method for their use as biosorbents. Their adsorption capabilities against four dyes (Remazol Black B, Erythrosine B, Neutral Red and Gentian Violet) were compared in order to evaluate chitin as a plausible replacement for chitosan considering its efficiency and lower cost. Both chitin and chitosan were used in the form of hydrogels. This allowed full compatibility with the ethanol release from tetraethoxysilane. The hybrid materials were characterized by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), Nitrogen Adsorption Isotherms and 13C solid-state Nuclear Magnetic Resonance. Adsorption experimental data were analyzed using Langmuir, Freundlich and Dubinin-Radushkevich isotherm models along with the evaluation of adsorption energy and standard free energy (ΔG0). The adsorption was observed to be pH dependent. The main mechanism of dye adsorption was found to be a spontaneous charge associated interaction, except for EB adsorption on chitin/SiO2 matrix, which showed to involve a lower energy physical adsorption interaction. Aside from highly charged dyes the chitin containing matrix has similar or higher adsorption capacity than the chitosan one.

  11. Emerging Biomedical Applications of Nano-Chitins and Nano-Chitosans Obtained via Advanced Eco-Friendly Technologies from Marine Resources

    Directory of Open Access Journals (Sweden)

    Riccardo A. A. Muzzarelli

    2014-11-01

    Full Text Available The present review article is intended to direct attention to the technological advances made in the 2010–2014 quinquennium for the isolation and manufacture of nanofibrillar chitin and chitosan. Otherwise called nanocrystals or whiskers, n-chitin and n-chitosan are obtained either by mechanical chitin disassembly and fibrillation optionally assisted by sonication, or by e-spinning of solutions of polysaccharides often accompanied by poly(ethylene oxide or poly(caprolactone. The biomedical areas where n-chitin may find applications include hemostasis and wound healing, regeneration of tissues such as joints and bones, cell culture, antimicrobial agents, and dermal protection. The biomedical applications of n-chitosan include epithelial tissue regeneration, bone and dental tissue regeneration, as well as protection against bacteria, fungi and viruses. It has been found that the nano size enhances the performances of chitins and chitosans in all cases considered, with no exceptions. Biotechnological approaches will boost the applications of the said safe, eco-friendly and benign nanomaterials not only in these fields, but also for biosensors and in targeted drug delivery areas.

  12. Reliable dn/dc Values of Cellulose, Chitin, and Cellulose Triacetate Dissolved in LiCl/N,N-Dimethylacetamide for Molecular Mass Analysis.

    Science.gov (United States)

    Ono, Yuko; Ishida, Takashi; Soeta, Hiroto; Saito, Tsuguyuki; Isogai, Akira

    2016-01-11

    Freeze-dried microfibrillated cellulose (MFC) was directly dissolved in 8.0% w/w lithium chloride/N,N-dimethylacetamide (LiCl/DMAc), and MFC/LiCl/DMAc solutions with accurate MFC concentrations were prepared. The different MFC solutions were diluted to 1.0% and 0.5% w/v LiCl/DMAc, and subjected to size-exclusion chromatography with multiangle laser-light scattering and refractive index analyses (SEC/MALLS/RI), and off-line RI analysis to determine their refractive index increments (dn/dc). Chitin, cellulose triacetate, a poly(styrene) standard, and cellobiose were used for comparison. Each of the two determination methods gave different dn/dc values for MFC and chitin but similar dn/dc values for cellulose triacetate and poly(styrene). The anomalously small dn/dc values of MFC and chitin were explainable in terms of stable cellulose-LiCl and chitin-LiCl structures (i.e., formation of apparent covalent bonds between hydroxyl groups and LiCl) in the solutions. Thus, the SEC/MALLS/RI method provides reliable molecular mass parameters for cellulose and chitin. PMID:26618937

  13. Fluorescence microscopical studies on chitin distribution in the cell wall of giant cells of Saccharomyces uvarum, grown following X-radiaiton treatment

    International Nuclear Information System (INIS)

    Teast cells are synchronized and modiated with X-rays (1.0 kGy) in the Cr, phase. Their growth behaviour is observed in suspension cultures and the formation of giant cells noted. The chitin structures are selectively stained with the fluorescent dye Calcofluor white. In the unradiated cells the chitin is deposited at the bud constriction site in the form of rings in the mother cell wall, whereas for irradiated cells only one chitin ring of normal appearance is formed between the mother cell and first bud equivalent. Between further bud equivalents an intensification of fluorescence is occasionally noted, however the organisation of the chitin into a regular ring arrangement is disturbed. In giant cells the facility for primary and secondary septa formation is missing and these are essential for successful cell division. By further experiments it was possible to identify the cause of disturbance in the cell cycle of irradiated cells. Giant cells only form one chitin ring because its DNA is replicated one time only. The major cause triggering the actual formation of giant cells must be considered the missing distribution of the once-rephicated DNA. All processes in the cell cycle dependent on this step are therefore stopped and only bud formation which occurs independently continues along its rhytmical path. (orig./MG)

  14. Effect of Corn Steep Liquor (CSL and Cassava Wastewater (CW on Chitin and Chitosan Production by Cunninghamella elegans and Their Physicochemical Characteristics and Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Lúcia Raquel Ramos Berger

    2014-02-01

    Full Text Available Microbiological processes were used for chitin and chitosan production with Cunninghamella elegans UCP/WFCC 0542 grown in different concentrations of two agro-industrial wastes, corn steep liquor (CSL and cassava wastewater (CW established using a 22 full factorial design. The polysaccharides were extracted by alkali-acid treatment and characterized by infrared spectroscopy, viscosity, thermal analysis, elemental analysis, scanning electron microscopy and X-ray diffraction. The cytotoxicity of chitosan was evaluated for signs of vascular change on the chorioallantoic membrane of chicken eggs. The highest biomass (9.93 g/L was obtained in trial 3 (5% CW, 8% CSL, the greatest chitin and chitosan yields were 89.39 mg/g and 57.82 mg/g, respectively, and both were obtained in trial 2 (10% CW, 4% CSL. Chitin and chitosan showed a degree of deacetylation of 40.98% and 88.24%, and a crystalline index of 35.80% and 23.82%, respectively, and chitosan showed low molecular weight (LMW 5.2 × 103 Da. Chitin and chitosan can be considered non-irritating, due to the fact they do not promote vascular change. It was demonstrated that CSL and CW are effective renewable agroindustrial alternative substrates for the production of chitin and chitosan.

  15. Vicilins (7S storage globulins of cowpea (Vigna unguiculata seeds bind to chitinous structures of the midgut of Callosobruchus maculatus (Coleoptera: Bruchidae larvae

    Directory of Open Access Journals (Sweden)

    Sales M.P.

    2001-01-01

    Full Text Available The presence of chitin in midgut structures of Callosobruchus maculatus larvae was shown by chemical and immunocytochemical methods. Detection by Western blotting of cowpea (Vigna unguiculata seed vicilins (7S storage proteins bound to these structures suggested that C. maculatus-susceptible vicilins presented less staining when compared to C. maculatus-resistant vicilins. Storage proteins present in the microvilli in the larval midgut of the bruchid were recognized by immunolabeling of vicilins in the appropriate sections with immunogold conjugates. These labeling sites coincided with the sites labeled by an anti-chitin antibody. These results, taken together with those previously published showing that the lower rates of hydrolysis of variant vicilins from C. maculatus-resistant seeds by the insect's midgut proteinases and those showing that vicilins bind to chitin matrices, may explain the detrimental effects of variant vicilins on the development of C. maculatus larvae.

  16. Bio-based epoxy/chitin nanofiber composites cured with amine-type hardeners containing chitosan.

    Science.gov (United States)

    Shibata, Mitsuhiro; Enjoji, Motohiro; Sakazume, Katsumi; Ifuku, Shinsuke

    2016-06-25

    Sorbitol polyglycidyl ether (SPE) which is a bio-based water-soluble epoxy resin was cured with chitosan (CS) and/or a commercial water-soluble polyamidoamine- or polyetheramine-type epoxy hardener (PAA or PEA). Furthermore, biocomposites of the CS-cured SPE (CS-SPE) and CS/PAA- or CS/PEA-cured SPE (SPE-CA or SPE-CE) biocomposites with chitin nanofiber (CNF) were prepared by casting and compression molding methods, respectively. The curing reaction of epoxy and amino groups of the reactants was confirmed by the FT-IR spectral analysis. SPE-CS and SPE-CA were almost transparent films, while SPE-CE was opaque. Transparency of SPE-CS/CNF and SPE-CA/CNF became a little worse with increasing CNF content. The tanδ peak temperature of SPE-CS was higher than those of SPE-PAA and SPE-PEA. SPE-CA or SPE-CE exhibited two tanδ peak temperatures related to glass transitions of the CS-rich and PAA-rich or PEA-rich moieties. The tanδ peak temperatures related to the CS-rich and PAA-rich moieties increased with increasing CNF content. A higher order of tensile strengths and moduli of the cured resins was SPE-CS≫SPE-CA>SPE-CE. The tensile strength and modulus of each sample were much improved by the addition of 3wt% CNF, while further addition of CNF caused a lowering of the strength and modulus. PMID:27083797

  17. Dual mesomorphic assemblage of chitin normal acylates and rapid enthalpy relaxation of their side chains.

    Science.gov (United States)

    Teramoto, Yoshikuni; Miyata, Tomoya; Nishio, Yoshiyuki

    2006-01-01

    Chitin derivatives having normalacyl groups (C(n)H(2n-1)O-; n = 4-20) were synthesized with pyridine, p-toluenesulfonyl chloride, and normal alkanoic acid in an N,N-dimethylacetamide-lithium chloride homogeneous system. The products (C(n)-ACs; degree of acyl substitution, DS = 1.7-1.9) showed an n-dependent thermal transition behavior: no evident transition (n = 4-10), a glass transition (n = 12 and 14), and a pseudo-first-order phase transition (n = 16-20), the latter two occurring usually below room temperature when examined by differential scanning calorimetry. Wide-angle X-ray diffractometry (WAXD) at 20 degrees C displayed a sharp diffraction peak (2theta = 2 degrees -7 degrees ) and a diffuse halo (2theta approximately 20 degrees ) for the respective C(n)-ACs. The former d-spacing (1.5-3.6 nm) increased with an increase in n to yield two stages of mutually different increasing rates, which reflects a systematic n-dependence of the period of a layered structure of the main chains. The molecular assembly of C(n)-ACs exhibited "dual mesomorphy"; nematic ordering for the semirigid carbohydrate trunk and smectic one for the flexible side chains. On the other hand, WAXD profiles of C(n)-ACs (n = 14-18) indicated almost no temperature dependence from -150 to +220 degrees C. Therefore, it was reasonably assumed that the pseudo-first-order transition observed in thermograms of C(n)-ACs (n = 16-20) was due to the enthalpy relaxation of the side-chain assemblage. An insight was provided into the kinetics of the characteristic aging behavior as a liquid-crystalline glass, in comparison with the corresponding data for other noncrystalline macromolecules. PMID:16398515

  18. Papain incorporated chitin dressings for wound debridement sterilized by gamma radiation

    International Nuclear Information System (INIS)

    Wound debridement is essential for the removal of necrotic or nonviable tissue from the wound surface to create an environment conducive to healing. Nonsurgical enzymatic debridement is an attractive method due to its effectiveness and ease of use. Papain is a proteolytic enzyme derived from the fruit of Carica papaya and is capable of breaking down a variety of necrotic tissue substrates. The present study was focused on the use of gamma radiation for sterilization of papain dressing with wound debriding activity. Membranes with papain were prepared using 0.5% chitin in lithium chloride/dimethylacetamide solvent and sterilized by gamma radiation. Fluid absorption capacity of chitin–papain membranes without glycerol was 14.30±6.57% in 6 h. Incorporation of glycerol resulted in significant (p2/24 h at 24 h. Gamma irradiation at 25 kGy was found suitable for sterilization of the dressings. Infrared (IR) spectral scanning has shown that papain was stable on gamma irradiation at 25–35 kGy. The irradiated chitin–papain membranes were impermeable to different bacterial strains and also exhibited strong bactericidal action against both Gram-positive and Gram-negative bacteria. The fluid handling characteristics and the antimicrobial properties of chitin–papain membranes sterilized by gamma radiation were found suitable for use as wound dressing with debriding activity. - Highlight: ► Use of gamma radiation for sterilization of papain wound dressing was studied. ► Fluid handling and antimicrobial properties of irradiated dressings was evaluated. ► Gamma irradiation at 25 kGy was found suitable for sterilization of the dressings.

  19. Synthesis of an antiviral drug precursor from chitin using a saprophyte as a whole-cell catalyst

    Directory of Open Access Journals (Sweden)

    Steiger Matthias G

    2011-12-01

    Full Text Available Abstract Background Recent incidents, such as the SARS and influenza epidemics, have highlighted the need for readily available antiviral drugs. One important precursor currently used for the production of Relenza, an antiviral product from GlaxoSmithKline, is N-acetylneuraminic acid (NeuNAc. This substance has a considerably high market price despite efforts to develop cost-reducing (biotechnological production processes. Hypocrea jecorina (Trichoderma reesei is a saprophyte noted for its abundant secretion of hydrolytic enzymes and its potential to degrade chitin to its monomer N-acetylglucosamine (GlcNAc. Chitin is considered the second most abundant biomass available on earth and therefore an attractive raw material. Results In this study, we introduced two enzymes from bacterial origin into Hypocrea, which convert GlcNAc into NeuNAc via N-acetylmannosamine. This enabled the fungus to produce NeuNAc from the cheap starting material chitin in liquid culture. Furthermore, we expressed the two recombinant enzymes as GST-fusion proteins and developed an enzyme assay for monitoring their enzymatic functionality. Finally, we demonstrated that Hypocrea does not metabolize NeuNAc and that no NeuNAc-uptake by the fungus occurs, which are important prerequisites for a potential production strategy. Conclusions This study is a proof of concept for the possibility to engineer in a filamentous fungus a bacterial enzyme cascade, which is fully functional. Furthermore, it provides the basis for the development of a process for NeuNAc production as well as a general prospective design for production processes that use saprophytes as whole-cell catalysts.

  20. Structure and interactions of calcite spherulites with {alpha}-chitin in the brown shrimp (Penaeus aztecus) shell

    Energy Technology Data Exchange (ETDEWEB)

    Heredia, A. [Instituto de Ciencias Nucleares, Departamento de Quimica de Radiaciones y Radioquimica, UNAM, Circuito Exterior C.U. Apdo., Postal 70-543, 04510 Mexico, D.F. (Mexico); Physikalisches Institut and Center for Nanotechnology, Universitaet Muenster, Gievenbecker Weg 11, 48149 Muenster (Germany); Aguilar-Franco, M. [Instituto de Fisica, Depto de Fisicoquimica, UNAM, Circuito Exterior s/n, Ciudad Universitaria Apartado Postal 20-364 01000 Mexico D.F. (Mexico); Magana, C. [Instituto de Fisica, Depto de Estado Solido, UNAM, Circuito Exterior s/n, Ciudad Universitaria Apartado Postal 20-364 01000 Mexico D.F. (Mexico); Flores, C. [Instituto de Investigaciones en Materiales, Depto de Estado Solido, Laboratorio de Biomateriales, UNAM, Circuito Exterior C.U. S/N CP 04510 Mexico, D.F. (Mexico); Pina, C. [Instituto de Investigaciones en Materiales, Depto de Estado Solido, Laboratorio de Biomateriales, UNAM, Circuito Exterior C.U. S/N CP 04510 Mexico, D.F. (Mexico); Velazquez, R. [Centro de Fisica Aplicada Tecnologia Avanzada, UNAM, Km. 15 Carretera Queretaro-San Luis Potosi, C.P. 76230, Queretaro, Qro. (Mexico); Schaeffer, T.E. [Physikalisches Institut and Center for Nanotechnology, Universitaet Muenster, Gievenbecker Weg 11, 48149 Muenster (Germany); Bucio, L. [Instituto de Fisica, Depto de Estado Solido, UNAM, Circuito Exterior s/n, Ciudad Universitaria Apartado Postal 20-364 01000 Mexico D.F. (Mexico); Basiuk, V.A. [Instituto de Ciencias Nucleares, Departamento de Quimica de Radiaciones y Radioquimica, UNAM, Circuito Exterior C.U. Apdo., Postal 70-543, 04510 Mexico, D.F. (Mexico)

    2007-01-15

    White spots form in the brown shrimp (Penaeus aztecus, Decapoda) shell during frozen storage. The mineral formed consists of calcite incorporated into an amorphous {alpha}-chitin matrix. We studied mechanisms of interaction of amorphous {alpha}-chitin macromolecules with hkl crystal planes to form highly ordered structures, as well as the role of specific sites in the biopolymer, which can be related to nucleation and spheroidal crystal growth. We used low vacuum scanning electron microscopy (LVSEM), X-ray powder diffraction (XRD), atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FT-IR), and molecular mechanics modeling (MM+ method). AFM images showed fingerprint distances in the biopolymer and a highly layered structure in the crystalline material. The presence of {alpha}-chitin, with a specific spatial distribution of radicals, is thought to be responsible for nucleation and to thermodynamically stabilize ions to form the spherulite crystalline phase, which are usually oval to spherical (0.10 to 200 {mu}m in diameter). Our models of crystal-biopolymer interaction found high affinity of CO{sub 3} {sup 2-} anions in the (104) crystalline plane (the main plane in calcite monocrystals) to NH- groups of the biopolymer, as well as of the C=O in the biopolymer to Ca{sup 2+} cations in the crystalline structure. These interactions explain the spherical growth and inhibition in some planes. The specific physicochemical interactions (docking of groups depending on their geometrical distribution) suggest that the biomineral structure is controlled by the biopolymer on a local scale. This information is useful for further design and improvement of (hybrid) materials for versatile application, from nanotechnology to biomedicine and engineering.

  1. Extensively deacetylated high molecular weight chitosan from the multistep ultrasound-assisted deacetylation of beta-chitin.

    Science.gov (United States)

    Fiamingo, Anderson; Delezuk, Jorge Augusto de Moura; Trombotto, Stéphane; David, Laurent; Campana-Filho, Sergio Paulo

    2016-09-01

    High intensity ultrasound irradiation was used to convert beta-chitin (BCHt) into chitosan (CHs). Typically, beta-chitin was suspended in 40% (w/w) aqueous sodium hydroxide at a ratio 1/10 (gmL(-1)) and then submitted to ultrasound-assisted deacetylation (USAD) during 50min at 60°C and a fixed irradiation surface intensity (52.6Wcm(-2)). Hydrogen nuclear magnetic resonance spectroscopy and capillary viscometry were used to determine the average degree of acetylation (DA‾) and viscosity average degree of polymerization (DPv‾), respectively, of the parent beta-chitin (DA‾=80.7%; DPv‾=6865) and USAD chitosans. A first USAD reaction resulted in chitosan CHs1 (DA‾=36.7%; DPv‾=5838). Chitosans CHs2 (DA‾=15.0%; DPv‾=5128) and CHs3 (DA‾=4.3%; DPv‾=4889) resulted after repeating the USAD procedure to CHs1 consecutively once and twice, respectively. Size-exclusion chromatography analyzes allowed the determination of the weight average molecular weight (Mw‾) and dispersity (Ð) of CHs1 (Mw‾=1,260,000gmol(-1); Ð=1.4), CHs2 (Mw‾=1,137,000gmol(-1); Ð=1.4) and CHs3 (Mw‾=912,000gmol(-1); Ð=1.3). Such results revealed that, thanks to the action of high intensity ultrasound irradiation, the USAD process allowed the preparation of unusually high molecular weight, randomly deacetylated chitosan, an important breakthrough to the development of new high grade chitosan-based materials displaying superior mechanical properties. PMID:27150748

  2. Research Development in Chitin Deacetylase(CDA)%几丁质脱乙酰酶(CDA)的研究进展

    Institute of Scientific and Technical Information of China (English)

    闵婷; 倪孟祥

    2011-01-01

    从多种真菌可分离纯化得到几丁质脱乙酰酶(CDA),CDA催化水解几丁质分子中的乙酰基生成壳聚糖,CDA与传统的浓碱热化学法生产壳聚糖相比,酶法催化提供了一种脱乙酰位点可控的、几丁质主链不被降解的和对环境友好的反应过程,从而得到优质的壳聚糖或壳寡糖.CDA具有重要的生物物理功能和广阔的潜在应用价值.该综述着重介绍了真菌CDA的研究进展,包括CDA的来源、CDA的生理生化性质、底物特异性、生物学功能和潜在应用价值.%Chitin deacetylases(CDA) have been found from several fungi. The enzyme catalyses the hydrolysis of N-acetamido groups of N-acetyl-D-glucosa mine in chitin, converting it to chitosan. The use of CDA for the conversion of chitin to chitosan, in contrast to the presently used chemical procedure, offers the possibility of a controlled, non-degradable and environmentally-friendly process, resulting in the production of novel, well-defined chitosan oligomers and polymers. CDA have important biophysiological functions and immense potential applications. In recent years, researches on fungal CDA have made a rapid progress. The present review will focus on the recent research developments of fungal CDA, including their source, biochemistry property, substrate specificity, biological function and potential application.

  3. Single step synthesis of chitin/chitosan-based graphene oxide–ZnO hybrid composites for better electrical conductivity and optical properties

    International Nuclear Information System (INIS)

    Highlights: ► UV absorption at 260–360 nm confirmed strong binding of ZnO with chitosan–GO sheets. ► Chitin-based GO–ZnO shows higher electrical conductivity than chitosan-based GO–ZnO. ► Chitin-based GO–ZnO will useful in sensing, catalysis and energy storage applications. -- Abstract: We synthesized two composites/hybrid composites with a graphene oxide (GO)/mixed GO–ZnO filler using either a chitin or a chitosan matrix. Fourier transform infrared spectroscopy analysis confirmed that chitin had been converted to chitosan during matrix fabrication because only chitosan, ZnO and GO were shown to be present in the composites/hybrid composites. Raman spectroscopy indicated the display of D and G bands at 1345 cm−1 and 1584 cm−1, respectively. UV absorption peaks appeared at 260–360 nm and 201 nm in both hybrid composites, which indicate a strong binding of ZnO within the chitosan–GO sheets. High resolution scanning electron microscopy and atomic force microscopy studies demonstrated that on a molecular scale ZnO was well dispersed in the hybrid composites. Impedance spectroscopy and a four-probe resistivity method were used for room temperature electrical conductivity measurements. The electrical conductivity of the chitin-based GO–ZnO hybrid composites was estimated to be ∼5.94 × 106 S/cm and was greater than that of the chitosan-based GO–ZnO hybrid composite (∼4.13 × 106 S/cm). The chitin-based GO–ZnO hybrid composite had a higher optical band gap (3.4 eV) than the chitosan-based GO–ZnO hybrid composite (3.0 eV). The current–voltage measurement showed that electrical sheets resistance of the chitosan-based composites decreased with formation of ZnO

  4. Characterization of a novel Salmonella typhimurium chitinase which hydrolyzes chitin, chitooligosaccharides and an N-acetyllactosamine conjugate

    DEFF Research Database (Denmark)

    Larsen, Tanja; Petersen, Bent O.; Storgaard, Birgit Groth;

    2011-01-01

    Salmonella contain genes annotated as chitinases; however, their chitinolytic activities have never been verified. We now demonstrate such an activity for a chitinase assigned to glycoside hydrolase family 18 encoded by the SL0018 (chiA) gene in Salmonella enterica Typhimurium SL1344. A C...... carboxymethyl chitin Remazol Brilliant Violet but does not act on 4-nitrophenyl N-acetyl-ß-D-glucosaminide, peptidoglycan or 4-nitrophenyl ß-D-cellobioside. Enzyme activity was also characterized by directly monitoring product formation using (1)H-nuclear magnetic resonance which showed that chitin is a...

  5. CONDUCTIVITY METHOD APPLIED TO THE STUDY OF INTERACTION BETWEEN ADSORBENT AND ADSORBATE I.ADSORPTION OF LOW CONCENYRATION OF FREE ACID BY REGENERABLE CHITIN

    Institute of Scientific and Technical Information of China (English)

    ChenBingren; HeGuangping; 等

    1997-01-01

    The adsorption of low concentration of free acid by regenerable chitin is followed by electric conductance determination.The effect of acid concentratioin,content of functioinal amino groups,and ionic strength on adsorption was discussed.Experimental results indicate that the active centre of regenerable chitin is the free amino groups on ist surface ,and that the rate of adsorption of free acid was found to be affected by two factors:the interaction between the adsorbent and the adsorbate in solution and that between the adsorbate molecules or ions in solution.

  6. AN INTEGRATIVE WAY OF TEACHING MOLECULAR CELL BIOLOGY AND PROTEIN CHEMISTRY USING ACTIN IMMOBILIZATION ON CHITIN FOR PURIFYING MYOSIN II.

    Directory of Open Access Journals (Sweden)

    M.G. Souza

    2007-05-01

    Full Text Available Our intent is to present our experience on teaching Molecular Cell Biology andProtein Chemistry at UNIRIO through an innovative approach that includes myosin IIextraction and purification. We took advantage of the properties of muscle contractionand propose a simple method for purifying myosin II by affinity chromatography. Thisoriginal method is based on the preparation of an affinity column containing actinmolecules covalently bound to chitin particles. We propose a three-week syllabus thatincludes lectures and bench experimental work. The syllabus favors the activelearning of protein extraction and purification, as well as, of scientific concepts suchas muscle contraction, cytoskeleton structure and its importance for the living cell. Italso promotes the learning of the biotechnological applications of chitin and theapplications of protein immobilization in different industrial fields. Furthermore, theactivities also target the development of laboratorial technical abilities, thedevelopment of problem solving skills and the ability to write up a scientific reportfollowing the model of a scientific article. It is very important to mention that thissyllabus can be used even in places where a facility such as ultra-centrifugation islacking.

  7. A Preliminary Evaluation of Lyophilized Gelatin Sponges, Enhanced with Platelet-Rich Plasma, Hydroxyapatite and Chitin Whiskers for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Andrew J. Spence

    2013-04-01

    Full Text Available The purpose of this study was to perform a number of preliminary in vitro evaluations on an array of modified gelatin gel sponge scaffolds for use in a bone graft application. The gelatin gels were modified through the addition of a number of components which each possess unique properties conducive to the creation and regeneration of bone: a preparation rich in growth factors (PRGF, a bioactive, lyophilized form of platelet-rich plasma, hydroxyapatite, and chitin whiskers. Platelet-rich plasma therapy is an emerging practice that has proven effective in a number of clinical applications, including enhancing bone repair through improved deposition of new bony matrix and angiogenesis. As such, the inclusion of PRGF in our gelatin scaffolds was intended to significantly enhance scaffold bioactivity, while the addition of hydroxyapatite and chitin whiskers were anticipated to increase scaffold strength. Additionally, the gelatin sponges, which readily dissolve in aqueous solutions, were subjected to 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC cross-linking, either during or post-gelation, to control their rate of degradation. Scaffolds were evaluated in vitro with respect to compressive strength, mass loss/degradation, protein release, and cellular interaction, with results demonstrating the potential of the gelatin gel sponge scaffold for use in the regeneration of bone.

  8. 'Strengthening the fungal cell wall through chitin-glucan cross-links: effects on morphogenesis and cell integrity'.

    Science.gov (United States)

    Arroyo, Javier; Farkaš, Vladimír; Sanz, Ana Belén; Cabib, Enrico

    2016-09-01

    The cross-linking of polysaccharides to assemble new cell wall in fungi requires transglycosylation mechanisms by which preexisting glycosidic linkages are broken and new linkages are created between the polysaccharides. The molecular mechanisms for these processes, which are essential for fungal cell biology, are only now beginning to be elucidated. Recent development of in vivo and in vitro biochemical approaches has allowed characterization of important aspects about the formation of chitin-glucan covalent cell wall cross-links by cell wall transglycosylases of the CRH family and their biological function. Covalent linkages between chitin and glucan mediated by Crh proteins control morphogenesis and also play important roles in the remodeling of the fungal cell wall as part of the compensatory responses necessary to counterbalance cell wall stress. These enzymes are encoded by multigene families of redundant proteins very well conserved in fungal genomes but absent in mammalian cells. Understanding the molecular basis of fungal adaptation to cell wall stress through these and other cell wall remodeling enzymatic activities offers an opportunity to explore novel antifungal treatments and to identify potential fungal virulence factors. PMID:27185288

  9. Exposure to Diflubenzuron Results in an Up-Regulation of a Chitin Synthase 1 Gene in Citrus Red Mite, Panonychus citri (Acari: Tetranychidae

    Directory of Open Access Journals (Sweden)

    Wen-Kai Xia

    2014-02-01

    Full Text Available Chitin synthase synthesizes chitin, which is critical for the arthropod exoskeleton. In this study, we cloned the cDNA sequences of a chitin synthase 1 gene, PcCHS1, in the citrus red mite, Panonychus citri (McGregor, which is one of the most economically important pests of citrus worldwide. The full-length cDNA of PcCHS1 contains an open reading frame of 4605 bp of nucleotides, which encodes a protein of 1535 amino acid residues with a predicted molecular mass of 175.0 kDa. A phylogenetic analysis showed that PcCHS1 was most closely related to CHS1 from Tetranychus urticae. During P. citri development, PcCHS1 was constantly expressed in all stages but highly expressed in the egg stage (114.8-fold higher than in the adult. When larvae were exposed to diflubenzuron (DFB for 6 h, the mite had a significantly high mortality rate, and the mRNA expression levels of PcCHS1 were significantly enhanced. These results indicate a promising use of DFB to control P. citri, by possibly acting as an inhibitor in chitin synthesis as indicated by the up-regulation of PcCHS1 after exposure to DFB.

  10. Exposure to diflubenzuron results in an up-regulation of a chitin synthase 1 gene in citrus red mite, Panonychus citri (Acari: Tetranychidae).

    Science.gov (United States)

    Xia, Wen-Kai; Ding, Tian-Bo; Niu, Jin-Zhi; Liao, Chong-Yu; Zhong, Rui; Yang, Wen-Jia; Liu, Bin; Dou, Wei; Wang, Jin-Jun

    2014-01-01

    Chitin synthase synthesizes chitin, which is critical for the arthropod exoskeleton. In this study, we cloned the cDNA sequences of a chitin synthase 1 gene, PcCHS1, in the citrus red mite, Panonychus citri (McGregor), which is one of the most economically important pests of citrus worldwide. The full-length cDNA of PcCHS1 contains an open reading frame of 4605 bp of nucleotides, which encodes a protein of 1535 amino acid residues with a predicted molecular mass of 175.0 kDa. A phylogenetic analysis showed that PcCHS1 was most closely related to CHS1 from Tetranychus urticae. During P. citri development, PcCHS1 was constantly expressed in all stages but highly expressed in the egg stage (114.8-fold higher than in the adult). When larvae were exposed to diflubenzuron (DFB) for 6 h, the mite had a significantly high mortality rate, and the mRNA expression levels of PcCHS1 were significantly enhanced. These results indicate a promising use of DFB to control P. citri, by possibly acting as an inhibitor in chitin synthesis as indicated by the up-regulation of PcCHS1 after exposure to DFB. PMID:24590130

  11. Sequence analysis of the chitin synthase A gene of the Dutch elm pathogen Ophiostoma novo-ulmi indicates a close association with the human pathogen Sporothrix schenckii.

    Science.gov (United States)

    Hintz, W E

    1999-09-01

    Degenerate oligonucleotide primers were designed according to conserved regions of the chitin synthase gene family and used to amplify a 621 basepair (bp) fragment from genomic DNA of Ophiostoma novo-ulmi, the causal agent of Dutch elm disease. The amplification product was used as a hybridization probe to screen a library of genomic DNA sequences and to retrieve a full-length chitin synthase gene (chsA). The putative coding region of the gene was 2619 bp long, lacked introns, and encoded a polypeptide of 873 amino acids. Based on the similarity of the predicted amino acid sequence to the full-length chsC gene of Aspergillus nidulans and chsA gene of Ampelomyces quisqualis, the O. novo-ulmi chsA was classified as a Class I chitin synthase. The phylogenies constructed, according to a subregion of all available chitin synthases, showed that O. novo-ulmi consistently clustered most closely with the human pathogen Sporothrix schenckii, recently classified as a member of the mitosporic Ophiostomataceae. Disruption of the chsA gene locus had no obvious effects on the growth or morphology of the fungus. PMID:10524253

  12. Actin Immobilization on Chitin for Purifying Myosin II: A Laboratory Exercise That Integrates Concepts of Molecular Cell Biology and Protein Chemistry

    Science.gov (United States)

    de Souza, Marcelle Gomes; Grossi, Andre Luiz; Pereira, Elisangela Lima Bastos; da Cruz, Carolina Oliveira; Mendes, Fernanda Machado; Cameron, Luiz Claudio; Paiva, Carmen Lucia Antao

    2008-01-01

    This article presents our experience on teaching biochemical sciences through an innovative approach that integrates concepts of molecular cell biology and protein chemistry. This original laboratory exercise is based on the preparation of an affinity chromatography column containing F-actin molecules immobilized on chitin particles for purifying…

  13. A High Diversity in Chitinolytic and Chitosanolytic Species and Enzymes and Their Oligomeric Products Exist in Soil with a History of Chitin and Chitosan Exposure

    Directory of Open Access Journals (Sweden)

    Malathi Nampally

    2015-01-01

    Full Text Available Chitin is one of the most abundant biomolecules on earth, and its partially de-N-acetylated counterpart, chitosan, is one of the most promising biotechnological resources due to its diversity in structure and function. Recently, chitin and chitosan modifying enzymes (CCMEs have gained increasing interest as tools to engineer chitosans with specific functions and reliable performance in biotechnological and biomedical applications. In a search for novel CCME, we isolated chitinolytic and chitosanolytic microorganisms from soils with more than ten-years history of chitin and chitosan exposure and screened them for chitinase and chitosanase isoenzymes as well as for their patterns of oligomeric products by incubating their secretomes with chitosan polymers. Of the 60 bacterial strains isolated, only eight were chitinolytic and/or chitosanolytic, while 20 out of 25 fungal isolates were chitinolytic and/or chitosanolytic. The bacterial isolates produced rather similar patterns of chitinolytic and chitosanolytic enzymes, while the fungal isolates produced a much broader range of different isoenzymes. Furthermore, diverse mixtures of oligosaccharides were formed when chitosan polymers were incubated with the secretomes of select fungal species. Our study indicates that soils with a history of chitin and chitosan exposure are a good source of novel CCME for chitosan bioengineering.

  14. Influence of Functionalization Degree on the Rheological Properties of Isocyanate-Functionalized Chitin- and Chitosan-Based Chemical Oleogels for Lubricant Applications

    Directory of Open Access Journals (Sweden)

    Rocío Gallego

    2014-07-01

    Full Text Available This work deals with the influence of functionalization degree on the thermogravimetric and rheological behaviour of NCO-functionalized chitosan- and chitin-based oleogels. Chitosan and chitin were functionalized using different proportions of 1,6-hexamethylene diisocyanate (HMDI and subsequently dispersed in castor oil to promote the chemical reaction between the –NCO group of the modified biopolymer and the –OH group located in the ricinoleic fatty acid chain of castor oil, thus resulting in different oleogels with specific thermogravimetric and rheological characteristics. Biopolymers and oleogels were characterized through Fourier transform infrared spectroscopy (FTIR and thermogravimetric analysis (TGA. Small-amplitude oscillatory shear (SAOS measurements were performed on the oleogels. Oleogels presented suitable thermal resistance, despite the fact that the inclusion of HMDI moieties in the polymer structure led to a reduction in the onset temperature of thermal degradation. The insertion of low amounts of HMDI in both chitin and chitosan produces a drastic reduction in the values of oleogel viscoelastic functions but, above a critical threshold, they increase with the functionalization degree so that isocyanate functionalization results in a chemical tool to modulate oleogel rheological response. Several NCO-functionalized chitosan- and chitin-based oleogel formulations present suitable thermal resistance and rheological characteristics to be proposed as bio-based alternatives to traditional lubricating greases.

  15. Dynamics of Gram-negative bacteria population density in a soil in the course of the succession initiated by chitin and cellulose

    Science.gov (United States)

    Konstantin, Ivanov; Lubov, Polyanskaya

    2014-05-01

    The functions of actinomycetes in polymer destruction in soil traditionally considered as the dominant, compare to another groups of bacteria. Gram-positive bacteria also have ecological functions in destruction of soil organic matter. The role of Gram-negative bacteria has been researched in the microbial succession in terms of polymers destruction, which are widely spreads in soils: chitin and cellulose. The method with nalidixic acid as an inhibitor of DNA division of Gram-negative bacteria was modified. By modified method microbial succession of Gram-negative bacteria in the different horizons of a chernozem under aerobic and anaerobic conditions was researched. Chitin and cellulose as the source of nutrients with moistening was used in experiments. The introduction of chitin had no positive effect on the population density of Gram-negative bacteria in a chernozem, but it advanced the date of their appearance in microbial succession: the maximum of Gram-negative bacteria population density was registered on the 3rd- 7th day of the experiment with adding chitin. Compare to the control, which one was without any nutrient adding this dynamics registered much earlier. Consequently, the introduction of chitin as an additional source of nutrition promoted revealing of the Gram-negative bacteria in soil already at the early stages of the succession. In the course of the succession, when the fungal mycelium begins to die off, the actinomycetic mycelium increases in length, i.e., Gram-negative bacteria are replaced at this stage with Gram-positive ones, the leading role among which belongs to actinomycetes. The growth rate of Gram-negative bacteria is higher than that of actinomycetes, so they start chitin utilization at the early stages of the succession, whereas actinomycetes dominate at the late stages. The population density of Gram-negative bacteria was lower under the anaerobic conditions as compared with that in the aerobic ones. The population density of Gram

  16. Morphological study of chitin from Xiphopenaeus kroyeri exoskeletons by using atomic force microscopy (AFM) and CPMAS {sup 13} C NMR; Estudo morfologico de quitina da exocuticula de Xiphopenaeus kroyeri por AFM e por CPMAS {sup 13} C NMR

    Energy Technology Data Exchange (ETDEWEB)

    Silva, K.M.; Tavares, M.I.; Andrade, C.T. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas; Simao, R.A. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Metalurgica e de Materiais

    1999-07-01

    A sample of {alpha} chitin was isolated from exoskeletons of Xiphopenaeus kroyeri. This sample ws dissolved in phosphoric acid and recovered as a fibrous precipitate. Atomic force microscopy was used in noncontact mode to obtain images of the native chitin sample. Different morphological features were observed, including rigid rod crystals 200-300 nm wide. Solid state {sup 13} C NMR techniques were used to investigate chitin samples, and revealed molecular order in both samples. The differences observed in the proton spin-lattice relaxation times in the rotating frame, T{sup H1}{sub p} were attributed to the formation of hydrogen bonds in preferential sites in the samples. (author)

  17. Identification of Genes Putatively Involved in Chitin Metabolism and Insecticide Detoxification in the Rice Leaf Folder (Cnaphalocrocis medinalis Larvae through Transcriptomic Analysis

    Directory of Open Access Journals (Sweden)

    Hai-Zhong Yu

    2015-09-01

    Full Text Available The rice leaf roller (Cnaphalocrocis medinalis is one of the most destructive agricultural pests. Due to its migratory behavior, it is difficult to control worldwide. To date, little is known about major genes of C. medinalis involved in chitin metabolism and insecticide detoxification. In order to obtain a comprehensive genome dataset of C. medinalis, we conducted de novo transcriptome sequencing which focused on the major feeding stage of fourth-instar larvae, and our work revealed useful information on chitin metabolism and insecticide detoxification and target genes of C. medinalis. We acquired 29,367,797 Illumina reads and assembled these reads into 63,174 unigenes with an average length of 753 bp. Among these unigenes, 31,810 were annotated against the National Center for Biotechnology Information non-redundant (NCBI nr protein database, resulting in 24,246, 8669 and 18,176 assigned to Swiss-Prot, clusters of orthologous group (COG, and gene ontology (GO, respectively. We were able to map 10,043 unigenes into 285 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG. Specifically, 16 genes, including five chitin deacetylases, two chitin synthases, five chitinases and four other related enzymes, were identified to be putatively involved in chitin biosynthesis and degradation, whereas 360 genes, including cytochrome P450s, glutathione S-transferases, esterases, and acetylcholinesterases, were found to be potentially involved in insecticide detoxification or as insecticide targets. The reliability of the transcriptome data was determined by reverse transcription quantitative PCR (RT-qPCR for the selected genes. Our data serves as a new and valuable sequence resource for genomic studies on C. medinalis. The findings should improve our understanding of C. medinalis genetics and contribute to management of this important agricultural pest.

  18. Identification of Genes Putatively Involved in Chitin Metabolism and Insecticide Detoxification in the Rice Leaf Folder (Cnaphalocrocis medinalis) Larvae through Transcriptomic Analysis

    Science.gov (United States)

    Yu, Hai-Zhong; Wen, De-Fu; Wang, Wan-Lin; Geng, Lei; Zhang, Yan; Xu, Jia-Ping

    2015-01-01

    The rice leaf roller (Cnaphalocrocis medinalis) is one of the most destructive agricultural pests. Due to its migratory behavior, it is difficult to control worldwide. To date, little is known about major genes of C. medinalis involved in chitin metabolism and insecticide detoxification. In order to obtain a comprehensive genome dataset of C. medinalis, we conducted de novo transcriptome sequencing which focused on the major feeding stage of fourth-instar larvae, and our work revealed useful information on chitin metabolism and insecticide detoxification and target genes of C. medinalis. We acquired 29,367,797 Illumina reads and assembled these reads into 63,174 unigenes with an average length of 753 bp. Among these unigenes, 31,810 were annotated against the National Center for Biotechnology Information non-redundant (NCBI nr) protein database, resulting in 24,246, 8669 and 18,176 assigned to Swiss-Prot, clusters of orthologous group (COG), and gene ontology (GO), respectively. We were able to map 10,043 unigenes into 285 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG). Specifically, 16 genes, including five chitin deacetylases, two chitin synthases, five chitinases and four other related enzymes, were identified to be putatively involved in chitin biosynthesis and degradation, whereas 360 genes, including cytochrome P450s, glutathione S-transferases, esterases, and acetylcholinesterases, were found to be potentially involved in insecticide detoxification or as insecticide targets. The reliability of the transcriptome data was determined by reverse transcription quantitative PCR (RT-qPCR) for the selected genes. Our data serves as a new and valuable sequence resource for genomic studies on C. medinalis. The findings should improve our understanding of C. medinalis genetics and contribute to management of this important agricultural pest. PMID:26378520

  19. Preparation of High Purity, High Molecular-Weight Chitin from Ionic Liquids for Use as an Adsorbate for the Extraction of Uranium from Seawater

    International Nuclear Information System (INIS)

    Ensuring a domestic supply of uranium is a key issue facing the wider implementation of nuclear power. Uranium is mostly mined in Kazakhstan, Australia, and Canada, and there are few high-grade uranium reserves left worldwide. Therefore, one of the most appealing potential sources of uranium is the vast quantity dissolved in the oceans (estimated to be 4.4 billion tons worldwide). There have been research efforts centered on finding a means to extract uranium from seawater for decades, but so far none have resulted in an economically viable product, due in part to the fact that the materials that have been successfully demonstrated to date are too costly (in terms of money and energy) to produce on the necessary scale. Ionic Liquids (salts which melt below 100 deg C) can completely dissolve raw crustacean shells, leading to recovery of a high purity, high molecular weight chitin powder and to fibers and films which can be spun directly from the extract solution suggesting that continuous processing might be feasible. The work proposed here will utilize the unprecedented control this makes possible over the chitin fiber a) to prepare electrospun nanofibers of very high surface area and in specific architectures, b) to modify the fiber surfaces chemically with selective extractant capacity, and c) to demonstrate their utility in the direct extraction and recovery of uranium from seawater. This approach will 1) provide direct extraction of chitin from shellfish waste thus saving energy over the current industrial process for obtaining chitin; 2) allow continuous processing of nanofibers for very high surface area fibers in an economical operation; 3) provide a unique high molecular weight chitin not available from the current industrial process, leading to stronger, more durable fibers; and 4) allow easy chemical modification of the large surface areas of the fibers for appending uranyl selective functionality providing selectivity and ease of stripping. The resulting

  20. Preparation of High Purity, High Molecular-Weight Chitin from Ionic Liquids for Use as an Adsorbate for the Extraction of Uranium from Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Robin [Univ. of Alabama, Tuscaloosa, AL (United States)

    2013-12-21

    Ensuring a domestic supply of uranium is a key issue facing the wider implementation of nuclear power. Uranium is mostly mined in Kazakhstan, Australia, and Canada, and there are few high-grade uranium reserves left worldwide. Therefore, one of the most appealing potential sources of uranium is the vast quantity dissolved in the oceans (estimated to be 4.4 billion tons worldwide). There have been research efforts centered on finding a means to extract uranium from seawater for decades, but so far none have resulted in an economically viable product, due in part to the fact that the materials that have been successfully demonstrated to date are too costly (in terms of money and energy) to produce on the necessary scale. Ionic Liquids (salts which melt below 100{degrees}C) can completely dissolve raw crustacean shells, leading to recovery of a high purity, high molecular weight chitin powder and to fibers and films which can be spun directly from the extract solution suggesting that continuous processing might be feasible. The work proposed here will utilize the unprecedented control this makes possible over the chitin fiber a) to prepare electrospun nanofibers of very high surface area and in specific architectures, b) to modify the fiber surfaces chemically with selective extractant capacity, and c) to demonstrate their utility in the direct extraction and recovery of uranium from seawater. This approach will 1) provide direct extraction of chitin from shellfish waste thus saving energy over the current industrial process for obtaining chitin; 2) allow continuous processing of nanofibers for very high surface area fibers in an economical operation; 3) provide a unique high molecular weight chitin not available from the current industrial process, leading to stronger, more durable fibers; and 4) allow easy chemical modification of the large surface areas of the fibers for appending uranyl selective functionality providing selectivity and ease of stripping. The

  1. Mycelial development preceding basidioma formation in Moniliophthora perniciosa is associated to chitin, sugar and nutrient metabolism alterations involving autophagy.

    Science.gov (United States)

    Gomes, Dayane Santos; Lopes, Maíza Alves; Menezes, Sara Pereira; Ribeiro, Lidiane Figueredo; Dias, Cristiano Villela; Andrade, Bruno Silva; de Jesus, Raildo Mota; Pires, Acassia Benjamin Leal; Goes-Neto, Aristóteles; Micheli, Fabienne

    2016-01-01

    We identified and characterized two chitinases, named MpCHIT1 and MpCHIT2, from the fungus Moniliophthora perniciosa - the etiologic agent of witches' broom disease in cacao tree (Theobroma cacao L.) - during its development, mainly in the mycelia phases preceding the basidioma formation. The expression of MpCHIT1 and MpCHIT2, together with MpCHS and MpATG8 (chitin synthase and autophagy genes, respectively), was analyzed during the M. perniciosa growth and development on bran-based solid medium as well as in liquid medium containing H2O2 or rapamycin (oxidative and nutritional related-autophagy stress agents, respectively). In order to link the expression of chitin metabolism-related genes to nutritional composition influencing fungus development, we also quantified total and reduced sugars, as well as macro- and micronutrients in the bran-based solid medium. The expression analysis showed that the MpCHS expression increased through mycelial development and then decreased in the primordium and basidioma phases, while the expression of MpCHIT1 and MpCHIT2 was higher in basidioma and primordium phases, respectively. Moreover, the expression pattern of MpCHIT1 and MpCHIT2 is distinct, the second correlated with the MpATG8 expression pattern and possibly with autophagy process, while the first may be related to the basidioma formation. The quantification of total and reduced sugars, as well as macro- and micronutrients supported the idea that the cell wall restructuration due to MpCHS, MpCHIT1 and MpCHIT2 is related to stress and fungal nutrient reallocation, allowing the formation and development of the basidioma. Experiments involving M. perniciosa growth on liquid medium containing H2O2 or rapamycin showed that MpCHIT1 and MpCHIT2 were over-expressed in response to oxidative but also to nutritional related-autophagy stresses. Interestingly, the expression level of MpCHS, MpCHIT1 and MpCHIT2 in presence of rapamycin is similar to the one observed in the primordium

  2. Interactions of chitin nanocrystals with β-lactoglobulin at the oil-water interface, studied by drop shape tensiometry.

    Science.gov (United States)

    Gülseren, Ibrahim; Corredig, Milena

    2013-11-01

    Particle stabilized emulsions have been gaining increasing attention in the past few years, because of their unique interfacial properties. However, interactions between food grade particles and other surfactants at the interface still need to be understood. In this research, the interfacial properties of chitin nanocrystals (ChN) were studied in the presence of a surface active milk protein, β-lactoglobulin (β-lg), often used to stabilize oil-in-water emulsions. ChN were prepared by acid hydrolysis of chitin. At low pH (pH 3), ChN and β-lg do not interact, as demonstrated by light scattering measurements, and both components carry positive charge. The properties of the interface were tested using drop shape tensiometry. Addition of ChN or β-lg to the aqueous phase reduced the interfacial tension, and β-lg adsorption was characterized with an increase in the interfacial elasticity. When β-lg was added to a solution containing 0.1% ChN, the film elasticity increased first and then decreased with increasing β-lg concentration. The mixed film elasticity was the highest at a combination of 0.1% ChN+0.01% β-lg, when both molecules were simultaneously added to the aqueous phase. On the other hand, when β-lg was added after ChN, the protein did not affect the properties of the interface, indicating that the ChN (0.1%) equilibrated film was stable and that protein-protein interactions, normally resulting in an increase in the film elasticity, did not occur. PMID:23907056

  3. Cloning and identification of chitin binding proteins of tubeworm,Ridgeia piscesae, from hydrothermal vent%热液区管状蠕虫几丁质结合蛋白的克隆表达及功能鉴定

    Institute of Scientific and Technical Information of China (English)

    闫鑫富; 阮灵伟

    2012-01-01

    Hydrothermal vent tube worm is the one of the most typical hydrothermal species. In previous study,we constructed cDNA library of tube worm(Ridgeia piscesae) and sequencing result showed that it contains 23 chitin-binding proteins( CBPs). With high transcription level and diversity,each protein contains 1 ~3 different types of chitin binding domain ( s). In view of the important role in chitin degradation and the special habitats of the tube worms , we further studied the functional characterization of 4 typical chitin-binding proteins. After analyzed, the sequences of signal peptides were cut off and the fragments encoding chitin-binding proteins were amplified by PCR, inserted into pIZ-FLAG Vector and successfully expressed in Hi5 cells. In the chitin affinity assay,the results demonstrated that four FLAG-CBPs can bind to a-chitin respectively. Meanwhile, the supernatant of cell lysate including the expressed product FLAG-CBPs was able to enhance the activity of chitinase in the process of degrading a-chitin and β-chitin respectively. All the results suggest that four CBPs may act as a-chitin binding proteins and may enhance the activity of chitinase. In-depth study will be taken to verify other biological functions of chitin binding proteins and optimize their ability of catalyzation.%本文应用PCR技术对四种管状蠕虫几丁质结合蛋白进行了扩增,进而连接到pIZ-FLAG构建了重组表达载体,并在昆虫细胞中实现了几丁质结合蛋白的异源重组表达.我们对几丁质结合蛋白的功能进行了初步研究,亲和活性实验结果表明这四种几丁质结合蛋白对α-chitin具有亲和活性,并且可以辅助几丁质酶,对降解α-chitin和β-chitin均有不同程度的促进作用,且作用效果明显.结果表明,这四种几丁质结合蛋白均为α型,且可以促进几丁质酶的活性,对降解几丁质多糖具有巨大的应用潜力和应用价值.

  4. Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation

    OpenAIRE

    Feng Xue; Er-jun Wu; Pei-xun Zhang; Li-ya A; Yu-hui Kou; Xiao-feng Yin; Na Han

    2015-01-01

    We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive fo...

  5. Distribution of naphthoquinones, plumbagin, droserone, and 5-O-methyl droserone in chitin-induced and uninduced Nepenthes khasiana: molecular events in prey capture.

    Science.gov (United States)

    Raj, Gopan; Kurup, Rajani; Hussain, Abdul Azeez; Baby, Sabulal

    2011-11-01

    Prey capture and digestion in Nepenthes spp. through their leaf-evolved biological traps involve a sequence of exciting events. Sugar-rich nectar, aroma chemicals, narcotic alkaloid secretions, slippery wax crystals, and other biochemicals take part in attracting, capturing, and digesting preys in Nepenthes pitchers. Here we report the distribution of three potent naphthoquinones in Nepenthes khasiana and their roles in prey capture. Plumbagin was first detected in N. khasiana, and its content (root: 1.33 ± 0.02%, dry wt.) was the highest found in any natural source. Chitin induction enhanced plumbagin levels in N. khasiana (root: 2.17 ± 0.02%, dry wt.). Potted N. khasiana plants with limited growth of roots and aerial parts, showed higher levels of plumbagin accumulation (root: 1.92 ± 0.02%; root, chitin induction: 3.30 ± 0.21%, dry wt.) compared with field plants. Plumbagin, a known toxin, insect ecdysis inhibitor, and antimicrobial, was also found embedded in the waxy layers at the top prey capture region of N. khasiana pitchers. Chitin induction, mimicking prey capture, produced droserone and 5-O-methyl droserone in N. khasiana pitcher fluid. Both these naphthoquinone derivatives provide antimicrobial protection to the pitcher fluid from visiting preys. A two-way barrier was found between plumbagin and its two derivatives. Plumbagin was never detected in the pitcher fluid whereas both its derivatives were only found in the pitcher fluid on chitin induction or prey capture. The three naphthoquinones, plumbagin, droserone, and 5-O-methyl droserone, act as molecular triggers in prey capture and digestion in the carnivorous plant, N. khasiana. PMID:21862483

  6. Identification of Genes Putatively Involved in Chitin Metabolism and Insecticide Detoxification in the Rice Leaf Folder (Cnaphalocrocis medinalis) Larvae through Transcriptomic Analysis

    OpenAIRE

    Hai-Zhong Yu; De-Fu Wen; Wan-Lin Wang; Lei Geng; Yan Zhang; Jia-Ping Xu

    2015-01-01

    The rice leaf roller (Cnaphalocrocis medinalis) is one of the most destructive agricultural pests. Due to its migratory behavior, it is difficult to control worldwide. To date, little is known about major genes of C. medinalis involved in chitin metabolism and insecticide detoxification. In order to obtain a comprehensive genome dataset of C. medinalis, we conducted de novo transcriptome sequencing which focused on the major feeding stage of fourth-instar larvae, and our work revealed usef...

  7. Extraction of Crude Chitinase from Higher Plants and their Chitin-Hydrolysis Activities; Kotosyokubutu yurai kichinaze no chusyutu to kichin bunkai kassei

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, K.; Harada, K.; Shibata, M.; Maeda, R. [Doshisha Univ., Kyoto (Japan). Faculty of Engineering

    1997-07-10

    To prepare a purified chitinase from higher plants, firstly, crude enzymes were extracted from six higher plants, namely, radish seeds, sunflower seeds, watermelon seeds, bamboo leaves, orange skin, and persimmon skin. Using these crude enzymes, pH dependencies of hydrolysis reaction of colloidal chitin are investigated. For radish seeds and bamboo leaves, which have relatively high activities, the kinetics of enzymatic reaction are studies. It is clear that these reactions obey Michaelis-Menten kinetics. 7 refs., 3 figs., 2 tabs.

  8. Paenibacillus larvae chitin-degrading protein PlCBP49 is a key virulence factor in American Foulbrood of honey bees.

    Science.gov (United States)

    Garcia-Gonzalez, Eva; Poppinga, Lena; Fünfhaus, Anne; Hertlein, Gillian; Hedtke, Kati; Jakubowska, Agata; Genersch, Elke

    2014-07-01

    Paenibacillus larvae, the etiological agent of the globally occurring epizootic American Foulbrood (AFB) of honey bees, causes intestinal infections in honey bee larvae which develop into systemic infections inevitably leading to larval death. Massive brood mortality might eventually lead to collapse of the entire colony. Molecular mechanisms of host-microbe interactions in this system and of differences in virulence between P. larvae genotypes are poorly understood. Recently, it was demonstrated that the degradation of the peritrophic matrix lining the midgut epithelium is a key step in pathogenesis of P. larvae infections. Here, we present the isolation and identification of PlCBP49, a modular, chitin-degrading protein of P. larvae and demonstrate that this enzyme is crucial for the degradation of the larval peritrophic matrix during infection. PlCBP49 contains a module belonging to the auxiliary activity 10 (AA10, formerly CBM33) family of lytic polysaccharide monooxygenases (LPMOs) which are able to degrade recalcitrant polysaccharides. Using chitin-affinity purified PlCBP49, we provide evidence that PlCBP49 degrades chitin via a metal ion-dependent, oxidative mechanism, as already described for members of the AA10 family. Using P. larvae mutants lacking PlCBP49 expression, we analyzed in vivo biological functions of PlCBP49. In the absence of PlCBP49 expression, peritrophic matrix degradation was markedly reduced and P. larvae virulence was nearly abolished. This indicated that PlCBP49 is a key virulence factor for the species P. larvae. The identification of the functional role of PlCBP49 in AFB pathogenesis broadens our understanding of this important family of chitin-binding and -degrading proteins, especially in those bacteria that can also act as entomopathogens. PMID:25080221

  9. Optimization of chitin yield from shrimp shell waste by Bacillus subtilis and impact of gamma irradiation on production of low molecular weight chitosan.

    Science.gov (United States)

    Gamal, Rawia F; El-Tayeb, Tarek S; Raffat, Enas I; Ibrahim, Haytham M M; Bashandy, A S

    2016-10-01

    Chitin and chitosan have been produced from the exoskeletons of crustacean shells such as shrimps. In this study, seventy bacterial isolates, isolated from soil, were tested for proteolytic enzymes production. The most efficient one, identified as Bacillus subtilis, was employed to extract chitin from shrimp shell waste (SSW). Following one-variable-at-a-time approach, the relevant factors affecting deproteinization (DP) and demineralization (DM) were sucrose concentration (10%, w/v), SSW concentration (5%, w/v), inoculum size (15%, v/v), and fermentation time (6days). These factors were optimized subsequently using Box-Behnken design and response surface methodology. Maximum DP (97.65%) and DM (82.94%) were predicted at sucrose concentration (5%), SSW concentration (12.5%), inoculum size (10%, containing 35×10(8) CFU/mL), and fermentation time (7days). The predicted optimum values were verified by additional experiment. The values of DP (96.0%) and DM (82.1%) obtained experimentally correlated to the predicted values which justify the authenticity of optimum points. Overall 1.3-fold increase in DP% and DM% was obtained compared with 75.27% and 63.50%, respectively, before optimization. Gamma-irradiation (35kGy) reduced deacetylation time of irradiated chitin by 4.5-fold compared with non-irradiated chitin. The molecular weight of chitosan was decreased from 1.9×10(6) (non-irradiated) to 3.7×10(4)g/mol (at 35kGy). PMID:27267572

  10. Purification of a novel chitin-binding lectin with antimicrobial and antibiofilm activities from a bangladeshi cultivar of potato (Solanum tuberosum).

    Science.gov (United States)

    Hasan, Imtiaj; Ozeki, Yasuhiro; Kabir, Syed Rashel

    2014-04-01

    A new chitin-binding lectin was purified from a Bangladeshi cultivar 'Deshi' of potato (Solanum tuberosum L.) through anion-exchange and affinity chromatographies using a chitin column. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) showed the molecular mass of the lectin as 20,000 Daltons. This molecular mass was almost half of the molecular masses of chitin-binding lectins derived from other potatoes. The lectin showed both bactericidal and growth-inhibiting activities against Gram-positive (Listeria monocytogenes) and Gram-negative (Escherichia coli, Salmonella enteritidis and Shigella boydii) pathogenic bacteria. It also showed antifungal activity against Rhizopus spp., Penicillium spp. and Aspergillus niger. Biofilm produced by the bacterium Pseudomonas aeruginosa was dose-dependently reduced by 5-20% in 24 h after administration of the lectin, which was attributed to the glycan-binding property of the lectin having affinity to GlcNAc polymers. It was the first observation that any potato lectin prevented biofilm formation by P. aeruginosa and, therefore, could have possible applications in clinical microbiology and biomedical science. PMID:24980018

  11. Ha83, a Chitin Binding Domain Encoding Gene, Is Important to Helicoverpa armigera Nucleopolyhedrovirus Budded Virus Production and Occlusion Body Assembling.

    Science.gov (United States)

    Yu, Huan; Xu, Jian; Liu, Qiang; Liu, Tong-Xian; Wang, Dun

    2015-01-01

    Helicoerpa armigera nucleopolyhedrovirus (HearNPV) ha83 is a late expressed gene that encodes a chitin binding protein. Chitin domain truncation studies revealed that the cysteine at the 128 amino acid position probably played an important role in both chitin binding ability and protein transmission of Ha83. In order to study the function of ha83 in the HearNPV infection cycle, an ha83 knockout HearNPV (Ha83KO) was constructed via homologous recombination. Viral growth and viral DNA replication curves showed that fewer budded virions were produced in Ha83KO transfected cells, while viral DNA replication was increased. Electron microscopy revealed that fewer nucleocapsids were transmitted from virogenic stroma in the Ha83KO transfected cell nucleus, and the morphology of occlusion bodies was prominently larger and cube-shaped. Furthermore, DNA quantity in occlusion bodies of Ha83KO was significantly lower than the occlusion bodies of HaWT. The transcription analysis indicated that these changes may be due to the decreased expression level of viral structural associated genes, such as polyhedrin, p10, pif-2, or cg30 in Ha83KO infected cells. Above results demonstrated that the cysteine at the 128 amino acid position in Ha83 might be the key amino acid, and Ha83 plays an important role in BVs production and OBs assembling. PMID:26057202

  12. Fluctuations in the population density of Gram-negative bacteria in a chernozem in the course of a succession initiated by moistening and chitin and cellulose introduction

    Science.gov (United States)

    Polyanskaya, L. M.; Ivanov, K. E.; Zvyagintsev, D. G.

    2012-10-01

    The role has been studied of Gram-negative bacteria in the destruction of polymers widely spread in soils: chitin and cellulose. The introduction of chitin had no positive effect on the population density of Gram-negative bacteria, but it advanced the date of their appearance: the maximum population density of Gram-negative bacteria was recorded not on the 7th-15th day as in the control but much earlier, on the 3rd-7th day of the experiment. Consequently, the introduction of chitin as an additional source of nutrition promoted revealing of the Gram-negative bacteria already at the early stages of the succession. In the course of the succession, when the fungal mycelium begins to die off, the actinomycetic mycelium increases in length, i.e., Gram-negative bacteria are replaced at this stage with Gram-positive ones, the leading role among which belongs to actinomycetes. The growth rate of Gram-negative bacteria is higher than that of actinomycetes, so they start chitin utilization at the early stages of the succession, whereas actinomycetes dominate at the late stages. The population density of Gram-negative bacteria was lower under the anaerobic conditions as compared with that in the aerobic ones. The population density of Gram-negative bacteria in the lower layer of the A horizon and in the B horizon was slightly higher only in the case of the chitin introduction. When cellulose was introduced into the soil under aerobic conditions, the population density of Gram-negative bacteria in all the layers of the A horizon was maximal from the 14th to the 22nd day of the experiment. Cellulose was utilized in the soil mostly by fungi, and this was suggested by the increase of the length of the fungal mycelium. Simultaneously, an increase in the length of the actinomycetal mycelium was observed, as these organisms also perform cellulose hydrolysis in soils. The Gram-negative bacteria began to develop at the stage of the fungal mycelium destruction, which indirectly

  13. Chitin hydrolysis assisted by cell wall degrading enzymes immobilized of Thichoderma asperellum on totally cinnamoylated D-sorbitol beads

    International Nuclear Information System (INIS)

    In this study, cell wall degrading enzymes produced by Thrichoderma asperellum (TCWDE) were immobilized on totally cinnamoylated D-sorbitol (TCNSO) beads and used for chitin hydrolysis. In order to optimize immobilization efficiency, the reaction time was varied from 2 to 12 h and reactions were conducted in the presence or absence of Na2SO4. Immobilized enzymes were analysed concerning to thermal and operational stability. Immobilization in presence of Na2SO4 was 54% more efficient than immobilization in absence of salt. After optimization, 32% of the total enzyme offered was immobilized, with 100% of bounding efficiency, measured as the relation between protein and enzyme immobilized. Free and TCNSO–TCWDE presented very similar kinetics with maximum hydrolysis reached at 90 min of reaction. Thermal stability of both free and TCNSO–TCWDE was similar, with losses in activity after 55 °C. Moreover, free and TCNSO–TCWDE retained 100% activity after 3 h incubation at 55 °C. TCNSO–TCWDE were used in a bath-wise reactor during 14 cycles, producing 1825 μg of N-acetylglucosamine (NAG) maintaining 83% of initial activity. - Highlights: • TCWDE immobilized on TCNSO, a support with highly hydrophobic character • New immobilization strategy for immobilization on a hydrophobic support • TCNSO–TCWDE were retained during washes and during incubation at 55 °C for 3 h

  14. Immobilization of Papain on Chitin and Chitosan and Recycling of Soluble Enzyme for Deflocculation of Saccharomyces cerevisiae from Bioethanol Distilleries

    Directory of Open Access Journals (Sweden)

    Douglas Fernandes Silva

    2015-01-01

    Full Text Available Yeast flocculation (Saccharomyces cerevisiae is one of the most important problems in fuel ethanol production. Yeast flocculation causes operational difficulties and increase in the ethanol cost. Proteolytic enzymes can solve this problem since it does not depend on these changes. The recycling of soluble papain and the immobilization of this enzyme on chitin or chitosan were studied. Some cross-linking agents were evaluated in the action of proteolytic activity of papain. The glutaraldehyde (0.1–10% w·v−1, polyethyleneimine (0.5% v·v−1, and tripolyphosphate (1–10% w·v−1 inactivated the enzyme in this range, respectively. Glutaraldehyde inhibited all treatments of papain immobilization. The chitosan cross-linked with TPP in 5 h of reaction showed the yield of active immobilized enzyme of 15.7% and 6.07% in chitosan treated with 0.1% PEI. Although these immobilizations have been possible, these levels have not been enough to cause deflocculation of yeast cells. Free enzyme was efficient for yeast deflocculation in dosages of 3 to 4 g·L−1. Recycling of soluble papain by centrifugation was effective for 14 cycles with yeast suspension in time perfectly compatible to industrial conditions. The reuse of proteases applied after yeast suspension by additional yeast centrifugation could be an alternative to cost reduction of these enzymes.

  15. Evaluation of Three Chitin Metal Silicate Co-Precipitates as a Potential Multifunctional Single Excipient in Tablet Formulations

    Directory of Open Access Journals (Sweden)

    Rana Al-Shaikh Hamid

    2010-05-01

    Full Text Available The performance of the novel chitin metal silicate (CMS co-precipitates as a single multifunctional excipient in tablet formulation using direct compression and wet granulation methods is evaluated. The neutral, acidic, and basic drugs Spironolactone (SPL, ibuprofen (IBU and metronidazole (MET, respectively, were used as model drugs. Commercial Aldactone®, Fleximex® and Dumazole® tablets containing SPL, IBU and MET, respectively, and tablets made using Avicel® 200, were used in the study for comparison purposes. Tablets of acceptable crushing strength (>40 N were obtained using CMS. The friability values for all tablets were well below the maximum 1% USP tolerance limit. CMS produced superdisintegrating tablets (disintegration time < 1 min with the three model drugs. Regarding the dissolution rate, the sequence was as follow: CMS > Fleximex® > Avicel® 200, CMS > Avicel® 200 > Dumazole® and Aldactone® > Avicel® 200 > CMS for IBU, MET and SPL, respectively. Compressional properties of formulations were analyzed using density measurements and the compression Kawakita equation as assessment parameters. On the basis of DSC results, CMS co precipitates were found to be compatible with the tested drugs. Conclusively, the CMS co-precipitates have the potential to be used as filler, binder, and superdisintegrant, all-in-one, in the design of tablets by the direct compression as well as wet granulation methods.

  16. Chitin-Hyaluronan Nanoparticles: A Multifunctional Carrier to Deliver Anti-Aging Active Ingredients through the Skin

    Directory of Open Access Journals (Sweden)

    Pierfrancesco Morganti

    2014-07-01

    Full Text Available The paper describes the process to produce Chitin Nanofibril-Hyaluronan nanoparticles (CN-HA, showing their ability to easily load active ingredients, facilitate penetration through the skin layers, and increase their effectiveness and safety as an anti-aging agent. Size and characterization of CN-HA nanoparticles were determined by Scanning Electron Microscopy (SEM and Zetasizer, while encapsulation efficiency and loading capacity of the entrapped ingredients were controlled by chromatographic and spectrophotometric methods. Safeness was evidenced on fibroblasts and keratinocytes culture viability by the MTT (Methylthiazol assay; anti-aging activity was evaluated in vitro measuring antioxidant capacity, anti-collagenase activity, and metalloproteinase and pro-inflammatory release; efficacy was shown in vivo by a double-blind vehicle-controlled study for 60 days on 60 women affected by photo-aging. In addition, the CN-HA nanoparticles have shown interesting possibility to be used as active ingredients, for designing and making advanced medication by the electrospinning technology, as well as to produce transparent films for food packaging, by the casting method, and can be used also in their dry form as tissues or films without adding preservatives. These unusual CN-HA nanoparticles obtained from the use of raw materials of waste origin may offer an unprecedented occasion for making innovative products, ameliorating the quality of life, reducing pollution and safeguarding the environment’s integrity.

  17. Electrospun composite nanofiber membrane of poly(l-lactide) and surface grafted chitin whiskers: Fabrication, mechanical properties and cytocompatibility.

    Science.gov (United States)

    Liu, Hua; Liu, Wenjun; Luo, Binghong; Wen, Wei; Liu, Mingxian; Wang, Xiaoying; Zhou, Changren

    2016-08-20

    To improve both the mechanical properties and cytocompatibility of poly(l-lactide) (PLLA), rod-like chitin whiskers (CHWs) were prepared, and subsequently surface modified with l-lactide to obtain grafted CHWs (g-CHWs). Then, CHWs and g-CHWs were further introduced into PLLA matrix to fabricate CHWs/PLLA and g-CHWs/PLLA nanofiber membranes by electrospinning technique. Morphologies and properties of the CHWs and g-CHWs were characterized. The surface-grafted PLLA chains played an important role in improving interfacial interaction between the whiskers and PLLA matrix. The g-CHWs dispersed more uniformly in matrix than CHWs, and the as-prepared g-CHWs/PLLA nanofiber membrane showed relative smooth and uniform fiber. As a result, the tensile strength and modulus of the g-CHWs/PLLA nanofiber membrane were obviously superior to those of the pure PLLA and CHWs/PLLA nanofiber membranes. Cells culture results indicated that g-CHWs/PLLA nanofiber membrane is more effectively in promoting MC3T3-E1 cells adhesion, spreading and proliferation than pure PLLA and CHWs/PLLA nanofiber membrane. PMID:27178927

  18. The efficacy of a chitin synthesis inhibitor against field populations of organophosphate-resistant Aedes aegypti in Brazil

    Directory of Open Access Journals (Sweden)

    Nathalia Giglio Fontoura

    2012-05-01

    Full Text Available The mosquito Aedes aegypti is the main focus of dengue control campaigns. Because of widespread resistance against conventional chemical insecticides, chitin synthesis inhibitors (CSIs are considered control alternatives. We evaluated the resistance status of four Brazilian Ae. aegypti populations to both the organophosphate temephos and the pyrethroid deltamethrin, which are used in Brazil to control larvae and adults, respectively. All vector populations exhibited high levels of temephos resistance and varying rates of alterations in their susceptibility to pyrethroids. The effect of the CSI novaluron on these populations was also investigated. Novaluron was effective against all populations under laboratory conditions. Field-simulated assays with partial water replacement were conducted to evaluate novaluron persistence. Bioassays were continued until an adult emergence inhibition of at least 70% was attained. We found a residual effect of eight weeks under indoor conditions and novaluron persisted for five-six weeks in assays conducted in an external area. Our data show that novaluron is effective against the Ae. aegypti populations tested, regardless of their resistance to conventional chemical insecticides.

  19. Purification of a thermostable chitinase from Bacillus cereus by chitin affinity and its application in microbial community changes in soil.

    Science.gov (United States)

    Liang, Tzu-Wen; Hsieh, Tung-Yen; Wang, San-Lang

    2014-06-01

    A thermostable chitinase was purified by chitin affinity from the culture supernatant of Bacillus cereus TKU028 with shrimp head powder (SHP) as the sole carbon/nitrogen source. TKU028 chitinase was purified using a one-step affinity adsorbent system, and the molecular mass of TKU028 chitinase (approximately 40 kDa) was then determined using SDS-PAGE. The enzyme was stable for 60 min at temperatures below 60 °C and stable over a broad pH range of 4-9 for 60 min. In addition, the temporal changes of a bacterial community in mangrove river sediment of the Tamsui River with added SHP were also analysed by PCR-denaturing gradient gel electrophoresis to investigate the effects of B. cereus TKU028 on the degradation of SHP. The 6-week incubation sample of SHP and B. cereus TKU028-amended mangrove river sediment displayed the highest amount of biomass, reducing sugar and total sugar, and some variance of bacterial community composition existed in the soils. PMID:24342954

  20. Control of some important soil-borne fungi by chitin associated with chilli (capsicum annuum l.) in lower sindh, pakistan

    International Nuclear Information System (INIS)

    Chilli (Capsicum annuum L.) belongs to the family Solanaceae is one of the most important cash crop of the southern parts of Pakistan. Capsicum is cultivated on a large scale in a lower region of Sindh, Pakistan. It is an important and profitable crop of Pakistan. Several biotic and abiotic stresses affect the productivity of chilli crop. It is infected by a number of diseases particularly soil-borne diseases. Surveys of soil-borne fungal diseases associated with chilli crop in different areas of lower Sindh, including, Hyderabad, Tando Allahyar, Mirpurkhas, Umerkot, Kunri, Samaro, Kot Ghulam uhammad and Digri, were conducted, and chilli plants showing symptoms of wilting were collected. A number of soil-borne root infecting fungi were isolated and identified, such as, Fusarium oxysporum, F. solani, Macrophomina phaseolina, Phytophthora capsici, Pythium sp., and Rhizoctonia solani, from collected disease plants. It was observed that all the major varieties of chillies (i.e., Sanam, Talhari, Ghotaki, Mexi), growing in lower Sindh, were highly susceptible to these fungi. The main objectives of the study were to examine the effectiveness of chitin for the management of soil-borne diseases of chilli plant by different methods, i.e., soil amendment and transplant root dip method. Results indicated that of the two methods, the soil amendment method was more effective while transplant root dip method was less effective. (author)

  1. Chitin hydrolysis assisted by cell wall degrading enzymes immobilized of Thichoderma asperellum on totally cinnamoylated D-sorbitol beads

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Kátia F., E-mail: katia@icb.ufg.br [Departamento de Bioquímica e Biologia Molecular, Instituo de Ciências Biológicas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970 Goiânia, GO (Brazil); Grupo de Química de Carbohidratos y Biotecnología de Alimentos (QCBA), Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, E-30100 Espinardo, Murcia (Spain); Cortijo-Triviño, David [Grupo de Química de Carbohidratos y Biotecnología de Alimentos (QCBA), Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, E-30100 Espinardo, Murcia (Spain); Batista, Karla A.; Ulhoa, Cirano J. [Departamento de Bioquímica e Biologia Molecular, Instituo de Ciências Biológicas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970 Goiânia, GO (Brazil); García-Ruiz, Pedro A. [Grupo de Química de Carbohidratos y Biotecnología de Alimentos (QCBA), Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, E-30100 Espinardo, Murcia (Spain)

    2013-07-01

    In this study, cell wall degrading enzymes produced by Thrichoderma asperellum (TCWDE) were immobilized on totally cinnamoylated D-sorbitol (TCNSO) beads and used for chitin hydrolysis. In order to optimize immobilization efficiency, the reaction time was varied from 2 to 12 h and reactions were conducted in the presence or absence of Na{sub 2}SO{sub 4}. Immobilized enzymes were analysed concerning to thermal and operational stability. Immobilization in presence of Na{sub 2}SO{sub 4} was 54% more efficient than immobilization in absence of salt. After optimization, 32% of the total enzyme offered was immobilized, with 100% of bounding efficiency, measured as the relation between protein and enzyme immobilized. Free and TCNSO–TCWDE presented very similar kinetics with maximum hydrolysis reached at 90 min of reaction. Thermal stability of both free and TCNSO–TCWDE was similar, with losses in activity after 55 °C. Moreover, free and TCNSO–TCWDE retained 100% activity after 3 h incubation at 55 °C. TCNSO–TCWDE were used in a bath-wise reactor during 14 cycles, producing 1825 μg of N-acetylglucosamine (NAG) maintaining 83% of initial activity. - Highlights: • TCWDE immobilized on TCNSO, a support with highly hydrophobic character • New immobilization strategy for immobilization on a hydrophobic support • TCNSO–TCWDE were retained during washes and during incubation at 55 °C for 3 h.

  2. Crystallization and preliminary X-ray diffraction analysis of a new chitin-binding protein from Parkia platycephala seeds

    International Nuclear Information System (INIS)

    Crystals of P. platycephala chintinase/lectin (PPL-2) belong to the orthorhombic space group P212121, with unit-cell parameters a = 55.19, b = 59.95, c = 76.60 Å. The preliminary cystal structure of PPL-2 was solved at a resolution of 1.73 Å by molecular replacement, presenting a correlation coefficient of 0.558 and an R factor of 0.439. A chitin-binding protein named PPL-2 was purified from Parkia platycephala seeds and crystallized. Crystals belong to the orthorhombic space group P212121, with unit-cell parameters a = 55.19, b = 59.95, c = 76.60 Å, and grew over several days at 293 K using the hanging-drop method. Using synchrotron radiation, a complete structural data set was collected to 1.73 Å resolution. The preliminary crystal structure of PPL-2, determined by molecular replacement, presents a correlation coefficient of 0.558 and an R factor of 0.439. Crystallographic refinement is in progress

  3. Stable isotope record of Holocene climate and ecological change from brine shrimp cyst chitin for the Great Salt Lake, UT

    Science.gov (United States)

    Nielson, K. E.; Bowen, G. J.

    2009-12-01

    We present a record of oxygen and hydrogen isotopes in brine shrimp cysts from the Great Salt Lake, a terminal lake in the Great Basin, US. Water balance for the region is influenced by strength of the El Niño in Pacific and by the strength of the summer monsoon. Brine shrimp cysts are a novel proxy for isotope reconstruction, and allow reconstruction of water isotopes (oxygen, hydrogen) and ecology (hydrogen). Oxygen isotopes in chitin respond to water, while both diet and growth water contribute to hydrogen isotopes, allowing reconstruction of both environmental and ecological information from a single molecule. Values of δ18O decrease from about +15‰ to about +11‰ over course of the 8000 year record. This may suggest the importance of snow melt increased over the Holocene, or it may suggest lake is larger today than it was in mid-Holocene. Hydrogen isotopes are relatively stable for most of record, fluctuating around -140‰. Modeled hydrogen isotopes in food, also stable in the beginning of the record at about -150‰, become much heavier, shifting toward about -75‰ starting about 5000 ybp. This may suggest a shift from a primarily aquatic diet in the Mid-Holocene to a diet with a greater contribution of terrestrial material later in the Holocene. These observations agree broadly with previous inferences of a warm Mid-Holocene and associated low terrestrial productivity, followed by a more moist, and consequently more productive Late Holocene.

  4. Purification of a PHA-like chitin-binding protein from Acacia farnesiana seeds: a time-dependent oligomerization protein.

    Science.gov (United States)

    Santi-Gadelha, T; Rocha, B A M; Oliveira, C C; Aragão, K S; Marinho, E S; Gadelha, C A A; Toyama, M H; Pinto, V P T; Nagano, C S; Delatorre, P; Martins, J L; Galvani, F R; Sampaio, A H; Debray, H; Cavada, B S

    2008-07-01

    A lectin-like protein from the seeds of Acacia farnesiana was isolated from the albumin fraction, characterized, and sequenced by tandem mass spectrometry. The albumin fraction was extracted with 0.5 M NaCl, and the lectin-like protein of A. farnesiana (AFAL) was purified by ion-exchange chromatography (Mono-Q) followed by chromatofocusing. AFAL agglutinated rabbit erythrocytes and did not agglutinate human ABO erythrocytes either native or treated with proteolytic enzymes. In sodium dodecyl sulfate gel electrophoresis under reducing and nonreducing conditions, AFAL separated into two bands with a subunit molecular mass of 35 and 50 kDa. The homogeneity of purified protein was confirmed by chromatofocusing with a pI = 4.0 +/- 0.5. Molecular exclusion chromatography confirmed time-dependent oligomerization in AFAL, in accordance with mass spectrometry analysis, which confers an alteration in AFAL affinity for chitin. The protein sequence was obtained by a liquid chromatography quadrupole time-of-flight experiment and showed that AFAL has 68% and 63% sequence similarity with lectins of Phaseolus vulgaris and Dolichos biflorus, respectively. PMID:18568300

  5. Removal of dyes from water using chitosan hydrogel/SiO{sub 2} and chitin hydrogel/SiO{sub 2} hybrid materials obtained by the sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Copello, Guillermo J. [Catedra de Quimica Analitica Instrumental, Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires (UBA), Junin 956, C1113AAD Buenos Aires (Argentina); IQUIMEFA (UBA-CONICET), Junin 956, C1113AAD Buenos Aires (Argentina); Mebert, Andrea M.; Raineri, M.; Pesenti, Mariela P. [Catedra de Quimica Analitica Instrumental, Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires (UBA), Junin 956, C1113AAD Buenos Aires (Argentina); Diaz, Luis E., E-mail: ldiaz@ffyb.uba.ar [Catedra de Quimica Analitica Instrumental, Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires (UBA), Junin 956, C1113AAD Buenos Aires (Argentina); IQUIMEFA (UBA-CONICET), Junin 956, C1113AAD Buenos Aires (Argentina)

    2011-02-15

    This work describes the synthesis of chitosan hydrogel/SiO{sub 2} and chitin hydrogel/SiO{sub 2} hybrid mesoporous materials obtained by the sol-gel method for their use as biosorbents. Their adsorption capabilities against four dyes (Remazol Black B, Erythrosine B, Neutral Red and Gentian Violet) were compared in order to evaluate chitin as a plausible replacement for chitosan considering its efficiency and lower cost. Both chitin and chitosan were used in the form of hydrogels. This allowed full compatibility with the ethanol release from tetraethoxysilane. The hybrid materials were characterized by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), Nitrogen Adsorption Isotherms and {sup 13}C solid-state Nuclear Magnetic Resonance. Adsorption experimental data were analyzed using Langmuir, Freundlich and Dubinin-Radushkevich isotherm models along with the evaluation of adsorption energy and standard free energy ({Delta}G{sup 0}). The adsorption was observed to be pH dependent. The main mechanism of dye adsorption was found to be a spontaneous charge associated interaction, except for EB adsorption on chitin/SiO{sub 2} matrix, which showed to involve a lower energy physical adsorption interaction. Aside from highly charged dyes the chitin containing matrix has similar or higher adsorption capacity than the chitosan one.

  6. Fluorescence microscopical studies on chitin distribution in the cell wall of giant cells of Saccharomyces uvarum, grown following X-radiaiton treatment. Fluoreszenzmikroskopische Untersuchungen zur Chitinverteilung in der Zellwand von Riesenzellen von Saccharomyces uvarum, gewachsen nach Roentgenbestrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Hoschka, L.

    1982-01-01

    Teast cells are synchronized and modiated with X-rays (1.0 kGy) in the Cr, phase. Their growth behaviour is observed in suspension cultures and the formation of giant cells noted. The chitin structures are selectively stained with the fluorescent dye Calcofluor white. In the unradiated cells the chitin is deposited at the bud constriction site in the form of rings in the mother cell wall, whereas for irradiated cells only one chitin ring of normal appearance is formed between the mother cell and first bud equivalent. Between further bud equivalents an intensification of fluorescence is occasionally noted, however the organisation of the chitin into a regular ring arrangement is disturbed. In giant cells the facility for primary and secondary septa formation is missing and these are essential for successful cell division. By further experiments it was possible to identify the cause of disturbance in the cell cycle of irradiated cells. Giant cells only form one chitin ring because its DNA is replicated one time only. The major cause triggering the actual formation of giant cells must be considered the missing distribution of the once-rephicated DNA. All processes in the cell cycle dependent on this step are therefore stopped and only bud formation which occurs independently continues along its rhytmical path.

  7. Possible transient liquid crystal phase during the laying out of connective tissues: {alpha}-chitin and collagen as models

    Energy Technology Data Exchange (ETDEWEB)

    Belamie, E; Mosser, G; Gobeaux, F; Giraud-Guille, M M [Laboratoire de Chimie de la Matiere Condensee, UMR 7574 CNRS, Universite Pierre and Marie Curie, Ecole Pratique des Hautes Etudes, 12 rue Cuvier, Paris, 75005 (France)

    2006-04-05

    Morphogenesis of extracellular matrices can be considered from different perspectives. One is that of ontogenesis, i.e., an organism's development, which is mostly concerned with the spatiotemporal regulation of genes, cell differentiation and migration. Complementary to this purely biological point of view, a physico-chemical approach can help in understanding complex mechanisms by highlighting specific events that do not require direct cellular control. Because of a structural similarity between some biological systems and liquid crystals, it was supposed that similar mechanisms could be involved. In this respect, it is important to determine the intrinsic self-assembly properties driving the ordering of biological macromolecules. Here we review in vitro studies of the condensed state of major biological macromolecules from extracellular matrices and related theories describing a mesophase transition in suspensions of rodlike particles. Dilute suspensions of collagen or chitin are isotropic, i.e., the macromolecules can take on any orientation in the fluid. Beyond a critical concentration, an ordered nematic phase appears with a higher volume fraction. The two-phase coexistence can be seen between crossed polarizers since the nematic phase is strongly birefringent and appears bright, whereas the isotropic phase remains dark. A widespread property of these structural macromolecular scaffolds is their chirality. Although the origin of chirality in colloidal suspensions is still a subject of debate, the helical nature of the cholesteric phase can be quantified. Small angle x-ray scattering performed on shear-aligned samples can help demonstrate the cholesteric nature of the anisotropic phase, inferred from optical observations. Liquid-like positional local order is revealed by the presence of broad interference peaks at low angle. The azimuthal profiles of these patterns are fitted to determine the value of the nematic order parameter at the transition. A few

  8. The Impact of Selection with Diflubenzuron, a Chitin Synthesis Inhibitor, on the Fitness of Two Brazilian Aedes aegypti Field Populations.

    Science.gov (United States)

    Belinato, Thiago Affonso; Valle, Denise

    2015-01-01

    Several Aedes aegypti field populations are resistant to neurotoxic insecticides, mainly organophoshates and pyrethroids, which are extensively used as larvicides and adulticides, respectively. Diflubenzuron (DFB), a chitin synthesis inhibitor (CSI), was recently approved for use in drinking water, and is presently employed in Brazil for Ae. aegypti control, against populations resistant to the organophosphate temephos. However, tests of DFB efficacy against field Ae. aegypti populations are lacking. In addition, information regarding the dynamics of CSI resistance, and characterization of any potential fitness effects that may arise in conjunction with resistance are essential for new Ae. aegypti control strategies. Here, the efficacy of DFB was evaluated for two Brazilian Ae. aegypti populations known to be resistant to both temephos and the pyrethroid deltamethrin. Laboratory selection for DFB resistance was then performed over six or seven generations, using a fixed dose of insecticide that inhibited 80% of adult emergence in the first generation. The selection process was stopped when adult emergence in the diflubenzuron-treated groups was equivalent to that of the control groups, kept without insecticide. Diflubenzuron was effective against the two Ae. aegypti field populations evaluated, regardless of their resistance level to neurotoxic insecticides. However, only a few generations of DFB selection were sufficient to change the susceptible status of both populations to this compound. Several aspects of mosquito biology were affected in both selected populations, indicating that diflubenzuron resistance acquisition is associated with a fitness cost. We believe that these results can significantly contribute to the design of control strategies involving the use of insect growth regulators. PMID:26107715

  9. The Impact of Selection with Diflubenzuron, a Chitin Synthesis Inhibitor, on the Fitness of Two Brazilian Aedes aegypti Field Populations.

    Directory of Open Access Journals (Sweden)

    Thiago Affonso Belinato

    Full Text Available Several Aedes aegypti field populations are resistant to neurotoxic insecticides, mainly organophoshates and pyrethroids, which are extensively used as larvicides and adulticides, respectively. Diflubenzuron (DFB, a chitin synthesis inhibitor (CSI, was recently approved for use in drinking water, and is presently employed in Brazil for Ae. aegypti control, against populations resistant to the organophosphate temephos. However, tests of DFB efficacy against field Ae. aegypti populations are lacking. In addition, information regarding the dynamics of CSI resistance, and characterization of any potential fitness effects that may arise in conjunction with resistance are essential for new Ae. aegypti control strategies. Here, the efficacy of DFB was evaluated for two Brazilian Ae. aegypti populations known to be resistant to both temephos and the pyrethroid deltamethrin. Laboratory selection for DFB resistance was then performed over six or seven generations, using a fixed dose of insecticide that inhibited 80% of adult emergence in the first generation. The selection process was stopped when adult emergence in the diflubenzuron-treated groups was equivalent to that of the control groups, kept without insecticide. Diflubenzuron was effective against the two Ae. aegypti field populations evaluated, regardless of their resistance level to neurotoxic insecticides. However, only a few generations of DFB selection were sufficient to change the susceptible status of both populations to this compound. Several aspects of mosquito biology were affected in both selected populations, indicating that diflubenzuron resistance acquisition is associated with a fitness cost. We believe that these results can significantly contribute to the design of control strategies involving the use of insect growth regulators.

  10. Effect of deacetylation degree and molecular weight of chitosan on mechanical and swelling properties of the chitin-whisker-reinforced composite membranes

    Czech Academy of Sciences Publication Activity Database

    Tishchenko, Galina; Peter, Jakub; Pavlova, Ewa; Brus, Jiří; Netopilík, Miloš; Pekárek, Michal; Sedláková, Zdeňka; Rosova, E. Yu.; Smirnov, M.; Elyashevich, G. K.

    Praha : Česká společnost chemického inženýrství, 2009 - (Halfar, R.). s. 129 ISBN 978-80-86059-51-8. [Konference chemického a procesního inženýrství CHISA 2009 /56./. 19.10.2009-22.10.2009, Srní, Šumava] R&D Projects: GA ČR(CZ) GA525/08/0803 Institutional research plan: CEZ:AV0Z40500505 Keywords : chitosan composite membranes * chitin whiskers * deacetylation degrese Subject RIV: CD - Macromolecular Chemistry

  11. Synthesis of chitin and chitosan stereoisomers by thermostable α-glucan phosphorylase-catalyzed enzymatic polymerization of α-D-glucosamine 1-phosphate.

    Science.gov (United States)

    Kadokawa, Jun-ichi; Shimohigoshi, Riko; Yamashita, Kento; Yamamoto, Kazuya

    2015-04-14

    The relationship between two aminopolysaccharide stereoisomers, namely α-(1→4)- and β-(1→4)-linked (N-acetyl)-D-glucosamine polymers, is of significant interest within the field of polysaccharide science, as they correspond to amino analogs of the representative abundant natural polysaccharides, viz. amylose and cellulose. While the latter glucosamine polymer is the basis of well-known natural polysaccharides, chitin and chitosan (linear polysaccharides composed of β-(1→4)-linked N-acetyl-D-glucosamine and D-glucosamine), to the best of our knowledge, the former (α-(1→4)-linked) has not been observed in nature. For the purpose of these studies, the synthesis of such non-natural aminopolysaccharides was performed by the thermostable α-glucan phosphorylase (from Aquifex aeolicus VF5)-catalyzed enzymatic polymerization of α-D-glucosamine 1-phosphate (GlcN-1-P), via successive α-glucosaminylations, in ammonia buffer containing Mg(2+) ions, resulting in the production of the α-(1→4)-linked D-glucosamine polymers, corresponding to the structure of the chitosan stereoisomer. Subsequent N-acetylation of the products gave the aminopolysaccharides, corresponding to the chitin stereoisomer. PMID:25766841

  12. Control Effects of Chitin and Oligosaccharides on Soybean Sclerotinia Stem Rot%甲壳质和低聚糖防治大豆菌核病初探

    Institute of Scientific and Technical Information of China (English)

    王仁杰; 谢丽华

    2011-01-01

    It was recommend that spayed respectively on soybean with 2% 1 500 mL·hm-2 in flowering and pod stage.The control efficacy was 63.7%,which equaled with that of 50% Ronilan(60.1%).Using 2% chitin 3 000 mL·hm-2 could significantly improve the soybean yield.The production of soybean increased by 11.7% compared with CK,and extremely significantly higher than yield of 50% Ronilan.It suggested that using chitin and Ronilan in the control could reduce the pesticide application and stabilize the biotic agent efficacy.%甲壳质、低聚糖对大豆菌核病的防治效果研究结果表明,2%甲壳质1 500 mL.hm-2在开花期、结荚期各喷洒一遍对大豆菌核病防治效果63.7%,与农利灵防治效果相当;2%甲壳质3 000 mL.hm-2大豆增产作用明显,增产11.7%,与农利灵差异极显著。建议在大豆菌核病防治中甲壳质与农利灵混合使用,以减少化学药剂用量,稳定生物药剂防效。

  13. Chitin-Prussian blue sponges for Cs(I) recovery: From synthesis to application in the treatment of accidental dumping of metal-bearing solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, C. [Ecole des mines d' Alès, Centre des Matériaux des Mines d' Alès, C2MA/MPA/BCI, 6 avenue de Clavières, F-30319 Alès Cedex (France); Commissariat à l' Energie Atomique, CEA Marcoule, DEN/DTCD/SPDE/LPSD,BP 17171, F-30207 Bagnols sur Cèze (France); Barré, Y. [Commissariat à l' Energie Atomique, CEA Marcoule, DEN/DTCD/SPDE/LPSD,BP 17171, F-30207 Bagnols sur Cèze (France); Vincent, T. [Ecole des mines d' Alès, Centre des Matériaux des Mines d' Alès, C2MA/MPA/BCI, 6 avenue de Clavières, F-30319 Alès Cedex (France); Taulemesse, J.-M. [Ecole des mines d' Alès, Center des Matériaux des Mines d' Alès, 6 avenue de Clavières, F-30319 Alès Cedex (France); Robitzer, M. [Institut Charles Gerhardt – UMR5253, CNRS-UM2-ENSCM-UM1, ICGM-MACS-R2M2, 8 rue de l' Ecole Normale, F-34296 Montpellier Cedex 05 (France); Guibal, E., E-mail: Eric.Guibal@mines-ales.fr [Ecole des mines d' Alès, Centre des Matériaux des Mines d' Alès, C2MA/MPA/BCI, 6 avenue de Clavières, F-30319 Alès Cedex (France)

    2015-04-28

    Highlights: • Prussian blue microparticles incorporated in chitin sponges. • Efficient Cs(I) sorption after water absorption by dry hybrid sponge. • Water draining after sorption for metal confinement and water decontamination. • High decontamination factors and distribution coefficients for Cs(I) and {sup 137}Cs(I). • Effect of freezing conditions on porous structure and textural characterization. - Abstract: Prussian blue (i.e., iron[III] hexacyanoferrate[II], PB) has been synthesized by reaction of iron(III) chloride with potassium hexacyanoferrate and further immobilized in chitosan sponge (cellulose fibers were added in some samples to evaluate their impact on mechanical resistance). The composite was finally re-acetylated to produce a chitin-PB sponge. Experimental conditions such as the freezing temperature, the content of PB, the concentration of the biopolymer and the presence of cellulose fibers have been varied in order to evaluate their effect on the porous structure of the sponge, its water absorption properties and finally its use for cesium(I) recovery. The concept developed with this system consists in the absorption of contaminated water by the composite sponge, the in situ binding of target metal on Prussian blue load and the centrifugation of the material to remove treated water from soaked sponge. This material is supposed to be useful for the fast treatment of accidental dumping of Cs-contaminated water.

  14. Chitinolytic Streptomyces vinaceusdrappus S5MW2 isolated from Chilika lake, India enhances plant growth and biocontrol efficacy through chitin supplementation against Rhizoctonia solani.

    Science.gov (United States)

    Yandigeri, Mahesh S; Malviya, Nityanand; Solanki, Manoj Kumar; Shrivastava, Pooja; Sivakumar, G

    2015-08-01

    A chitinolytic actinomycete Streptomyces vinaceusdrappus S5MW2 was isolated from water sample of Chilika lake, India and identified using 16S rRNA gene sequencing. It showed in vitro antifungal activity against the sclerotia producing pathogen Rhizoctonia solani in a dual culture assay and by chitinase enzyme production in a chitin supplemented minimal broth. Moreover, isolate S5MW2 was further characterized for biocontrol (BC) and plant growth promoting features in a greenhouse experiment with or without colloidal chitin (CC). Results of greenhouse experiment showed that CC supplementation with S5MW2 showed a significant growth of tomato plants and superior disease reduction as compared to untreated control and without CC treated plants. Moreover, higher accumulation of chitinase also recovered in the CC supplemented plants. Significant effect of CC also concurred with the Analysis of Variance of greenhouse parameters. These results show that the a marine antagonist S5MW2 has BC efficiency against R. solani and chitinase enzyme played important role in plant resistance. PMID:25982747

  15. Chitin-Prussian blue sponges for Cs(I) recovery: From synthesis to application in the treatment of accidental dumping of metal-bearing solutions

    International Nuclear Information System (INIS)

    Highlights: • Prussian blue microparticles incorporated in chitin sponges. • Efficient Cs(I) sorption after water absorption by dry hybrid sponge. • Water draining after sorption for metal confinement and water decontamination. • High decontamination factors and distribution coefficients for Cs(I) and 137Cs(I). • Effect of freezing conditions on porous structure and textural characterization. - Abstract: Prussian blue (i.e., iron[III] hexacyanoferrate[II], PB) has been synthesized by reaction of iron(III) chloride with potassium hexacyanoferrate and further immobilized in chitosan sponge (cellulose fibers were added in some samples to evaluate their impact on mechanical resistance). The composite was finally re-acetylated to produce a chitin-PB sponge. Experimental conditions such as the freezing temperature, the content of PB, the concentration of the biopolymer and the presence of cellulose fibers have been varied in order to evaluate their effect on the porous structure of the sponge, its water absorption properties and finally its use for cesium(I) recovery. The concept developed with this system consists in the absorption of contaminated water by the composite sponge, the in situ binding of target metal on Prussian blue load and the centrifugation of the material to remove treated water from soaked sponge. This material is supposed to be useful for the fast treatment of accidental dumping of Cs-contaminated water

  16. Up-regulation of genes involved in N-acetylglucosamine uptake and metabolism suggests a recycling mode of chitin in intraradical mycelium of arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Kobae, Yoshihiro; Kawachi, Miki; Saito, Katsuharu; Kikuchi, Yusuke; Ezawa, Tatsuhiro; Maeshima, Masayoshi; Hata, Shingo; Fujiwara, Toru

    2015-07-01

    Arbuscular mycorrhizal (AM) fungi colonize roots and form two kinds of mycelium, intraradical mycelium (IRM) and extraradical mycelium (ERM). Arbuscules are characteristic IRM structures that highly branch within host cells in order to mediate resource exchange between the symbionts. They are ephemeral structures and at the end of their life span, arbuscular branches collapse from the tip, fungal cytoplasm withdraws, and the whole arbuscule shrinks into fungal clumps. The exoskeleton of an arbuscule contains structured chitin, which is a polymer of N-acetylglucosamine (GlcNAc), whereas a collapsed arbuscule does not. The molecular mechanisms underlying the turnover of chitin in AM fungi remain unknown. Here, a GlcNAc transporter, RiNGT, was identified from the AM fungus Rhizophagus irregularis. Yeast mutants defective in endogenous GlcNAc uptake and expressing RiNGT took up (14)C-GlcNAc, and the optimum uptake was at acidic pH values (pH 4.0-4.5). The transcript levels of RiNGT in IRM in mycorrhizal Lotus japonicus roots were over 1000 times higher than those in ERM. GlcNAc-6-phosphate deacetylase (DAC1) and glucosamine-6-phosphate isomerase (NAG1) genes, which are related to the GlcNAc catabolism pathway, were also induced in IRM. Altogether, data suggest the existence of an enhanced recycling mode of GlcNAc in IRM of AM fungi. PMID:25564438

  17. Chitin and its derivatives inhibit scar formation%甲壳素及其衍生物抑制瘢痕形成:研究与进展

    Institute of Scientific and Technical Information of China (English)

    李天石; 曾文妮; 何君君

    2014-01-01

    背景:甲壳素及其衍生物抑制瘢痕形成方面的作用及机制成为近年来研究的热点。  目的:综述就近年来甲壳素及其衍生物抑制瘢痕形成的研究进展。  方法:应用计算机检索中国知网、万方数据库、维普数据库及PubMed数据库,检索有关甲壳素抑制瘢痕治疗进展的文献,检索中文关键词为“甲壳素,衍生物,瘢痕形成”,英文关键词为“Chitin; Derivatives; Scar Formation”。  结果与结论:甲壳素及其衍生物能直接或通过改变如生化因子、干扰素、肿瘤坏死因子、白细胞介素等各种因子,抑制瘢痕中成纤维细胞的增殖、分化及分泌功能;能改变伤口及瘢痕中免疫细胞的作用;能减少胶原形成,促进胶原降解;促进伤口肉芽血液循环的建立,减轻组织缺氧;促进表皮细胞和内皮细胞的生长,加速伤口愈合;抑制创面细菌繁殖,减轻感染,加速愈合。%BACKGROUND:In recent years, chitin and its derivatives have become a hotspot because of their action and mechanism of inhibiting scar formation. OBJECTIVE: To review the research progress in chitin and its derivatives that inhibit scar formation. METHODS:A computer-based search of CNKI, Wanfang, VIP and PubMed databases was performed for articles related to inhibitory effect of chitin on scar formation. The keywords were “chitin; derivatives; scar formation” in Chinese and English, respectively. RESULTS AND CONCLUSION:Chitin and its derivatives can inhibit fibroblast proliferation, differentiation and secretion in the scar directly or through altering different factors, such as biochemical factors, interferons, tumor necrosis factor, and interleukin; alter the role of immune cels in the wound and scar; reduce colagen formation and promote colagen degradation; promote the establishment of wound granulation blood circulation, thereby reducing tissue hypoxia; facilitate the growth

  18. A novel salt-tolerant chitobiosidase discovered by genetic screening of a metagenomic library derived from chitin-amended agricultural soil.

    Science.gov (United States)

    Cretoiu, Mariana Silvia; Berini, Francesca; Kielak, Anna Maria; Marinelli, Flavia; van Elsas, Jan Dirk

    2015-10-01

    Here, we report on the construction of a metagenomic library from a chitin-amended disease-suppressive agricultural soil and its screening for genes that encode novel chitinolytic enzymes. The library, constructed in fosmids in an Escherichia coli host, comprised 145,000 clones containing inserts of sizes of 21 to 40 kb, yielding a total of approximately 5.8 GB of cloned soil DNA. Using genetic screenings by repeated PCR cycles aimed to detect gene sequences of the bacterial chitinase A-class (hereby named chi A genes), we identified and characterized five fosmids carrying candidate genes for chitinolytic enzymes. The analysis thus allowed access to the genomic (fosmid-borne) context of these genes. Using the chiA-targeted PCR, which is based on degenerate primers, the five fosmids all produced amplicons, of which the sequences were related to predicted chitinolytic enzyme-encoding genes of four different host organisms, including Stenotrophomonas maltophilia. Sequencing and de novo annotation of the fosmid inserts confirmed that each one of these carried one or more open reading frames that were predicted to encode enzymes active on chitin, including one for a chitin deacetylase. Moreover, the genetic contexts in which the putative chitinolytic enzyme-encoding genes were located were unique per fosmid. Specifically, inserts from organisms related to Burkholderia sp., Acidobacterium sp., Aeromonas veronii, and the chloroflexi Nitrolancetus hollandicus and/or Ktedonobacter racemifer were obtained. Remarkably, the S. maltophilia chiA-like gene was found to occur in two different genetic contexts (related to N. hollandicus/K. racemifer), indicating the historical occurrence of genetic reshufflings in this part of the soil microbiota. One fosmid containing the insert composed of DNA from the N. hollandicus-like organism (denoted 53D1) was selected for further work. Using subcloning procedures, its putative gene for a chitinolytic enzyme was successfully brought to

  19. Characterization of chitinous polyaminoglycosides

    Czech Academy of Sciences Publication Activity Database

    Tishchenko, Galina; Šimůnek, Jiří; Brus, Jiří; Netopilík, Miloš; Walterová, Zuzana; Pekárek, Michal; Lenfeld, Jiří; Koppová, Ingrid

    2009-01-01

    Roč. 103, č. 9 (2009), s. 777. ISSN 0009-2770. [International Conference on Polysaccharides-Glycoscience /5./. 11.11.2009-13.11.2009, Praha] R&D Projects: GA ČR(CZ) GA525/08/0803 Institutional research plan: CEZ:AV0Z40500505 Keywords : chitooligosaccharides * low-molecular-weight chitosan * oxidative depolymerization Subject RIV: CD - Macromolecular Chemistry

  20. Efeito de Aditivos na Desacetilação de Quitina Effects from Additives on Deacetylation of Chitin

    Directory of Open Access Journals (Sweden)

    Sérgio P. Campana Fº

    2001-01-01

    Full Text Available Reações de desacetilação de quitina comercial em suspensão aquosa de hidróxido de sódio foram realizadas em etapa única de 6 horas a 115°C. Os efeitos de aditivos (boro hidreto de sódio ou antraquinona e de borbulhamento de gases inertes (nitrogênio ou argônio sobre as características das amostras desacetiladas foram avaliados. A espectroscopia de ressonância magnética nuclear de hidrogênio e viscosimetria capilar foram empregadas para determinações de graus médios de acetilação e de viscosidades intrínsecas de quitosanas, respectivamente. A difração de raiosX foi empregada para comparar as amostras quanto à cristalinidade e os espectros no infravermelho foram comparados para avaliar modificações estruturais decorrentes da reação de desacetilação. As quitosanas mais cristalinas foram obtidas quando um dos gases inertes foi borbulhado no meio durante a reação de desacetilação. Amostras ligeiramente mais desacetiladas foram obtidas na ausência de qualquer aditivo, mas severa despolimerização ocorreu nesses casos. A adição de boro hidreto de sódio ao meio reacional reduziu significativamente a despolimerização, mas a presença de antraquinona e o borbulhamento de nitrogênio, ou de argônio, não surtiu qualquer efeito, sugerindo que a presença de oxigênio não é um pré-requisito para a ocorrência de despolimerização.Deacetylation reactions of commercial chitin were carried out in aqueous sodium hydroxide solution at 115°C for 6 hours. The effect from additives (sodium borohydride or anthraquinone and of bubbling inert gas (nitrogen or argon on the characteristics of deacetylated samples were evaluated. Average degrees of acetylation and intrinsic viscosity were determined by ¹H NMR spectroscopy and capillary viscometry, respectively. X-ray diffraction was employed to evaluate changes in crystallinity and infrared spectroscopy was used to monitor structural changes due to deacetylation. The

  1. Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation

    Directory of Open Access Journals (Sweden)

    Feng Xue

    2015-01-01

    Full Text Available We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive for S100 (Schwann cell marker and glial fibrillary acidic protein (glial cell marker at 8 weeks. Retrograde tracing showed that more nerve fibers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our findings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvironment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury.

  2. Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation

    Institute of Scientific and Technical Information of China (English)

    Feng Xue; Er-jun Wu; Pei-xun Zhang; Li-ya A; Yu-hui Kou; Xiao-feng Yin; Na Han

    2015-01-01

    We examined the restorative effect of modiifed biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantationin vivo, and differentiated into cells double-positive for S100 (Schwann cell marker) and glial ifbrillary acidic protein (glial cell marker) at 8 weeks. Retrograde tracing showed that more nerve ifbers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our ifndings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvi-ronment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury.

  3. Oil-removal enhancement in media with keratinous or chitinous wastes by hydrocarbon-degrading bacteria isolated from oil-polluted soils.

    Science.gov (United States)

    Cervantes-González, E; Rojas-Avelizapa, N G; Cruz-Camarillo, R; García-Mena, J; Rojas-Avelizapa, L I

    2008-02-01

    The aim of this work was to isolate oil-degrading bacteria that use chitin or keratin as carbon sources from oil contaminated soils; and additionally to study if oil removal by these bacteria is enhanced when a chitinous or a keratinous waste is added to the culture media. To isolate the above-mentioned bacteria, 12 soil samples were collected close to an oil-well. Such soils showed unsuitable nutrients content, but their counts of heterotrophic bacteria ranged within 10(5)-10(8) CFU g(-1) soil, of which 0.1-77% corresponded to oil hydrocarbon-degrading ones. By sampling on plates, 109 oil-degrading bacterial isolates were obtained. Their keratinase and chitinase activities were then screened by plate assays and spectrophotometric methods, resulting in 13 isolates that were used to integrate two mixed cultures, one keratinolytic and the other chitinolytic. These mixed cultures were grown in media with oil, or oil supplemented with chicken-feathers or shrimp wastes. The oil-hydrocarbon removal was measured by gas chromatography. Results showed that keratinolytic bacteria were better enzyme producers than the chitinolytic ones, and that oil removal in the presence of chicken-feathers was 3.8 times greater than with shrimp wastes, and almost twice, in comparison with oil-only added cultures. Identification of microorganisms from the mixed cultures by 16S rDNA, indicated the presence of seven different bacterial genera; Stenotrophomonas, Pseudomonas, Brevibacillus, Bacillus, Micrococcus, Lysobacter and Nocardiodes. These findings suggest that the isolated microorganisms and the chicken-feather wastes could be applied to the cleaning of oil-contaminated environments, whether in soil or water. PMID:18613616

  4. Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of four fish pathogens

    OpenAIRE

    Askarian, Fatemeh; Zhou, Zhigang; Olsen, Rolf Erik; Sperstad, Sigmund; Ringø, Einar

    2011-01-01

    The present investigation evaluated the effect of chitin (5% supplementation) on the adherent aerobic intestinal microbiota of Atlantic salmon (Salmo salar L.). One hundred and seventy three isolates were isolated but 34 isolates died prior to positive identification. Sixty four out of 139 autochthonous gut bacteria were further identified by 16S rRNA gene sequencing and further tested for protease, amylase, cellulase, phytase, lipase and chitinase activities. Moreover, the most promising enz...

  5. Chitin sesame oil beeswax cream in promoting diabetes foot healing coagulant research progress%甲壳素麻油蜂蜡膏促进糖尿病足创面愈合的研究进展

    Institute of Scientific and Technical Information of China (English)

    李炳辉; 冯自波; 高瑞超

    2011-01-01

    It is an important clinical work to use appropriate dressings and good create wound healing environment were created for the chronic wounds. Years of clinical application showed that chitin sesame oil beeswax creams had the effect promoting chronic wounds healing ( including diabetes foot ulcer ). Chitin, sesame oil and beeswax could promote the surface wound healing effectively. Chitin sesame oil beeswax cream promote wound healing more effectively and its application would provide more choice for the clinical dressing.%慢性创面(包括糖尿病足溃疡)合适敷料的应用,创造良好的伤口愈合环境,是临床工作面临的课题.甲壳素、麻油、蜂蜡能有效促进体表创面的愈合,甲壳素麻油蜂蜡膏更能有效促进创面的愈合,为临床敷料的应用提供更多的选择.

  6. Gene expression analysis of the biocontrol fungus Trichoderma harzianum in the presence of tomato plants, chitin, or glucose using a high-density oligonucleotide microarray

    Directory of Open Access Journals (Sweden)

    Suárez M Belén

    2009-10-01

    Full Text Available Abstract Background It has recently been shown that the Trichoderma fungal species used for biocontrol of plant diseases are capable of interacting with plant roots directly, behaving as symbiotic microorganisms. With a view to providing further information at transcriptomic level about the early response of Trichoderma to a host plant, we developed a high-density oligonucleotide (HDO microarray encompassing 14,081 Expressed Sequence Tag (EST-based transcripts from eight Trichoderma spp. and 9,121 genome-derived transcripts of T. reesei, and we have used this microarray to examine the gene expression of T. harzianum either alone or in the presence of tomato plants, chitin, or glucose. Results Global microarray analysis revealed 1,617 probe sets showing differential expression in T. harzianum mycelia under at least one of the culture conditions tested as compared with one another. Hierarchical clustering and heat map representation showed that the expression patterns obtained in glucose medium clustered separately from the expression patterns observed in the presence of tomato plants and chitin. Annotations using the Blast2GO suite identified 85 of the 257 transcripts whose probe sets afforded up-regulated expression in response to tomato plants. Some of these transcripts were predicted to encode proteins related to Trichoderma-host (fungus or plant associations, such as Sm1/Elp1 protein, proteases P6281 and PRA1, enchochitinase CHIT42, or QID74 protein, although previously uncharacterized genes were also identified, including those responsible for the possible biosynthesis of nitric oxide, xenobiotic detoxification, mycelium development, or those related to the formation of infection structures in plant tissues. Conclusion The effectiveness of the Trichoderma HDO microarray to detect different gene responses under different growth conditions in the fungus T. harzianum strongly indicates that this tool should be useful for further assays that

  7. Liquid Chromatography with Electrospray Ionization and Tandem Mass Spectrometry Applied in the Quantitative Analysis of Chitin-Derived Glucosamine for a Rapid Estimation of Fungal Biomass in Soil.

    Science.gov (United States)

    Olofsson, Madelen A; Bylund, Dan

    2016-01-01

    This method employs liquid chromatography-tandem mass spectrometry to rapidly quantify chitin-derived glucosamine for estimating fungal biomass. Analyte retention was achieved using hydrophilic interaction liquid chromatography, with a zwitter-ionic stationary phase (ZIC-HILIC), and isocratic elution using 60% 5 mM ammonium formate buffer (pH 3.0) and 40% ACN. Inclusion of muramic acid and its chromatographic separation from glucosamine enabled calculation of the bacterial contribution to the latter. Galactosamine, an isobaric isomer to glucosamine, found in significant amounts in soil samples, was also investigated. The two isomers form the same precursor and product ions and could not be chromatographically separated using this rapid method. Instead, glucosamine and galactosamine were distinguished mathematically, using the linear relationships describing the differences in product ion intensities for the two analytes. The m/z transitions of 180 → 72 and 180 → 84 were applied for the detection of glucosamine and galactosamine and that of 252 → 126 for muramic acid. Limits of detection were in the nanomolar range for all included analytes. The total analysis time was 6 min, providing a high sample throughput method. PMID:26977151

  8. Liquid Chromatography with Electrospray Ionization and Tandem Mass Spectrometry Applied in the Quantitative Analysis of Chitin-Derived Glucosamine for a Rapid Estimation of Fungal Biomass in Soil

    Directory of Open Access Journals (Sweden)

    Madelen A. Olofsson

    2016-01-01

    Full Text Available This method employs liquid chromatography-tandem mass spectrometry to rapidly quantify chitin-derived glucosamine for estimating fungal biomass. Analyte retention was achieved using hydrophilic interaction liquid chromatography, with a zwitter-ionic stationary phase (ZIC-HILIC, and isocratic elution using 60% 5 mM ammonium formate buffer (pH 3.0 and 40% ACN. Inclusion of muramic acid and its chromatographic separation from glucosamine enabled calculation of the bacterial contribution to the latter. Galactosamine, an isobaric isomer to glucosamine, found in significant amounts in soil samples, was also investigated. The two isomers form the same precursor and product ions and could not be chromatographically separated using this rapid method. Instead, glucosamine and galactosamine were distinguished mathematically, using the linear relationships describing the differences in product ion intensities for the two analytes. The m/z transitions of 180 → 72 and 180 → 84 were applied for the detection of glucosamine and galactosamine and that of 252 → 126 for muramic acid. Limits of detection were in the nanomolar range for all included analytes. The total analysis time was 6 min, providing a high sample throughput method.

  9. Genetic Improvement of Bacillus licheniformis Strains for Efficient Deproteinization of Shrimp Shells and Production of High-Molecular-Mass Chitin and Chitosan ▿ †

    Science.gov (United States)

    Hoffmann, Kerstin; Daum, Gabriele; Köster, Marina; Kulicke, Werner-Michael; Meyer-Rammes, Heike; Bisping, Bernward; Meinhardt, Friedhelm

    2010-01-01

    By targeted deletion of the polyglutamate operon (pga) in Bacillus licheniformis F11, a derivative form, F11.1 (Δpga), was obtained that, along with lacking polyglutamate (PGA) formation, displayed enhanced proteolytic activities. The phenotypic properties were maintained in a strain in which the chiBA operon was additionally deleted: F11.4 (ΔchiBA Δpga). These genetically modified strains, carrying the Δpga deletion either alone (F11.1) or together with the ΔchiBA (F11.4) deletion, were used in fermentations (20-liter scale) aiming at the deproteinization of shrimp shells in order to obtain long-chain chitin. After chemical deacetylation, the resulting chitosan samples were analyzed by nuclear magnetic resonance spectroscopy, size exclusion chromatography, and viscometry and compared to a chitosan preparation that was produced in parallel by chemical methods by a commercial chitosan supplier (GSRmbH). Though faint lipid impurities were present in the fermented polysaccharides, the viscosity of the material produced with the double-deletion mutant F11.4 (Δpga ΔchiBA) was higher than that of the chemically produced and commercially available samples (Cognis GmbH). Thus, enhanced proteolytic activities and a lack of chitinase activity render the double mutant F11.4 a powerful tool for the production of long-chain chitosan. PMID:20971870

  10. Identification of Albizia lebbeck seed coat chitin-binding vicilins (7S globulins with high toxicity to the larvae of the bruchid Callosobruchus maculatus

    Directory of Open Access Journals (Sweden)

    A.J. Souza

    2012-02-01

    Full Text Available Seed coat is a specialized maternal tissue that interfaces the embryo and the external environment during embryogenesis, dormancy and germination. In addition, it is the first defensive barrier against penetration by pathogens and herbivores. Here we show that Albizia lebbeck seed coat dramatically compromises the oviposition, eclosion and development of the bruchid Callosobruchus maculatus. Dietary supplementation of bruchid larvae with A. lebbeck seed coat flour causes severe weight loss and reduces survival. By means of protein purification, mass spectrometry and bioinformatic analyses, we show that chitin-binding vicilins are the main source of A. lebbeck tegumental toxicity to C. maculatus. At concentrations as low as 0.1%, A. lebbeck vicilins reduce larval mass from 8.1 ± 1.7 (mass of control larvae to 1.8 ± 0.5 mg, which corresponds to a decrease of 78%. Seed coat toxicity constitutes an efficient defense mechanism, hindering insect predation and preventing embryo damage. We hypothesize that A. lebbeck vicilins are good candidates for the genetic transformation of crop legumes to enhance resistance to bruchid predation.

  11. A chitin deacetylase-like protein is a predominant constituent of tick peritrophic membrane that influences the persistence of Lyme disease pathogens within the vector.

    Directory of Open Access Journals (Sweden)

    Toru Kariu

    Full Text Available Ixodes scapularis is the specific arthropod vector for a number of globally prevalent infections, including Lyme disease caused by the bacterium Borrelia burgdorferi. A feeding-induced and acellular epithelial barrier, known as the peritrophic membrane (PM is detectable in I. scapularis. However, whether or how the PM influences the persistence of major tick-borne pathogens, such as B. burgdorferi, remains largely unknown. Mass spectrometry-based proteome analyses of isolated PM from fed ticks revealed that the membrane contains a few detectable proteins, including a predominant and immunogenic 60 kDa protein with homology to arthropod chitin deacetylase (CDA, herein termed I. scapularis CDA-like protein or IsCDA. Although IsCDA is primarily expressed in the gut and induced early during tick feeding, its silencing via RNA interference failed to influence either the occurrence of the PM or spirochete persistence, suggesting a redundant role of IsCDA in tick biology and host-pathogen interaction. However, treatment of ticks with antibodies against IsCDA, one of the most predominant protein components of PM, affected B. burgdorferi survival, significantly augmenting pathogen levels within ticks but without influencing the levels of total gut bacteria. These studies suggested a preferential role of tick PM in limiting persistence of B. burgdorferi within the vector. Further understanding of the mechanisms by which vector components contribute to pathogen survival may help the development of new strategies to interfere with the infection.

  12. Efficient 1H-NMR Quantitation and Investigation of N-Acetyl-D-glucosamine (GlcNAc and N,N'-Diacetylchitobiose (GlcNAc2 from Chitin

    Directory of Open Access Journals (Sweden)

    Huey-Lang Yang

    2011-09-01

    Full Text Available A quantitative determination method of N-acetyl-D-glucosamine (GlcNAc and N,N'-diacetylchitobiose (GlcNAc2 is proposed using a proton nuclear magnetic resonance experiment. N-acetyl groups of GlcNAc and (GlcNAc2 are chosen as target signals, and the deconvolution technique is used to determine the concentration of the corresponding compound. Compared to the HPLC method, 1H-NMR spectroscopy is simple and fast. The method can be used for the analysis of chitin hydrolyzed products with real-time analysis, and for quantifying the content of products using internal standards without calibration curves. This method can be used to quickly evaluate chitinase activity. The temperature dependence of 1H-NMR spectra (VT-NMR is studied to monitor the chemical shift variation of acetyl peak. The acetyl groups of products are involved in intramolecular H-bonding with the OH group on anomeric sites. The rotation of the acetyl group is closely related to the intramolecular hydrogen bonding pattern, as suggested by the theoretical data (molecular modeling.

  13. A WDR Gene Is a Conserved Member of a Chitin Synthase Gene Cluster and Influences the Cell Wall in Aspergillus nidulans

    Science.gov (United States)

    Guerriero, Gea; Silvestrini, Lucia; Obersriebnig, Michael; Hausman, Jean-Francois; Strauss, Joseph; Ezcurra, Inés

    2016-01-01

    WD40 repeat (WDR) proteins are pleiotropic molecular hubs. We identify a WDR gene that is a conserved genomic neighbor of a chitin synthase gene in Ascomycetes. The WDR gene is unique to fungi and plants, and was called Fungal Plant WD (FPWD). FPWD is within a cell wall metabolism gene cluster in the Ascomycetes (Pezizomycotina) comprising chsD, a Chs activator and a GH17 glucanase. The FPWD, AN1556.2 locus was deleted in Aspergillus nidulans strain SAA.111 by gene replacement and only heterokaryon transformants were obtained. The re-annotation of Aspergilli genomes shows that AN1556.2 consists of two tightly linked separate genes, i.e., the WDR gene and a putative beta-flanking gene of unknown function. The WDR and the beta-flanking genes are conserved genomic neighbors localized within a recently identified metabolic cell wall gene cluster in genomes of Aspergilli. The heterokaryons displayed increased susceptibility to drugs affecting the cell wall, and their phenotypes, observed by optical, confocal, scanning electron and atomic force microscopy, suggest cell wall alterations. Quantitative real-time PCR shows altered expression of some cell wall-related genes. The possible implications on cell wall biosynthesis are discussed. PMID:27367684

  14. Optimization of the Extraction Process of Chitin from Shrimp Shell and Its Anti-diabetic Activity%虾壳甲壳素提取工艺优化及其辅助降血糖活性研究

    Institute of Scientific and Technical Information of China (English)

    孟凡欣; 吴丽艳; 徐盼菊; 滕利荣; 董媛

    2016-01-01

    In order to extract chitin from shrimp shell and investigate it's hypoglycemic effect , response surface method and desirability function were applied to optimism the extraction process of chitin from shrimp shell. Then the hypoglycemic effect of chitin was studied. The diabetic mice model was established by using alloxan. After one month's treatment,the hepoglycemic effects of chitin,metformin and chitin combined with metformin on the body weight,blood glucose and so on were studied. The optimum extraction condition of chitin was as fol-low:pH 11,EDTA concentration 11%,reaction time 2 h,solid-liquid ratio 1∶14 (g/mL),after filtration,dry-ing,hydrogen peroxide bleaching and drying,vested chitin extract. Compared verification tests with the model predictive value,the relative error was 2.8%which was improved by 20.3%. The hypoglycemic results showed that,compared with the model group,or the chitin and metformin alone,the combination of the two drugs could relieve the weight loss of mice induced by diabetes mellitus (P<0.05),and the serum total cholesterol,triglyc-eride,blood glucose levels were significantly reduced (P<0.01,P<0.01,P<0.01,P<0.01). The insulin expression increased (P<0.05). The mouse organ index showed that the combined administration of chitin and metformin could also relieve the damage to the pancreas tissue (P<0.05). Chitin can enhance the efficacy of metformin in lowering blood glucose and blood lipid ,and it has important significance in clinical application.%优化了虾壳中甲壳素提取工艺及其对糖尿病小鼠的影响。首先采用期望函数和响应面法优化了EDTA提取虾壳脱钙脱蛋白质工艺,并通过四氧嘧啶建立糖尿病小鼠模型,分别考察甲壳素、二甲双胍和二者联合给药1个月后,糖尿病小鼠的体重、血糖等指标的变化。最终确定最佳提取工艺为:EDTA脱钙条件pH 11,EDTA浓度11%,反应时间2 h,料液比1∶14(g/mL),之后过滤,烘干,双氧

  15. New insights into the structure and mode of action of Mo-CBP3, an antifungal chitin-binding protein of Moringa oleifera seeds.

    Directory of Open Access Journals (Sweden)

    Adelina B Batista

    Full Text Available Mo-CBP3 is a chitin-binding protein purified from Moringa oleifera Lam. seeds that displays inhibitory activity against phytopathogenic fungi. This study investigated the structural properties and the antifungal mode of action of this protein. To this end, circular dichroism spectroscopy, antifungal assays, measurements of the production of reactive oxygen species and microscopic analyses were utilized. Mo-CBP3 is composed of 30.3% α-helices, 16.3% β-sheets, 22.3% turns and 30.4% unordered forms. The Mo-CBP3 structure is highly stable and retains its antifungal activity regardless of temperature and pH. Fusarium solani was used as a model organism for studying the mechanisms by which this protein acts as an antifungal agent. Mo-CBP3 significantly inhibited spore germination and mycelial growth at 0.05 mg.mL-1. Mo-CBP3 has both fungistatic and fungicidal effects, depending on the concentration used. Binding of Mo-CBP3 to the fungal cell surface is achieved, at least in part, via electrostatic interactions, as salt was able to reduce its inhibitory effect. Mo-CBP3 induced the production of ROS and caused disorganization of both the cytoplasm and the plasma membrane in F. solani cells. Based on its high stability and specific toxicity, with broad-spectrum efficacy against important phytopathogenic fungi at low inhibitory concentrations but not to human cells, Mo-CBP3 has great potential for the development of new antifungal drugs or transgenic crops with enhanced resistance to phytopathogens.

  16. Identification of a Chitin-Induced Small RNA That Regulates Translation of the tfoX Gene, Encoding a Positive Regulator of Natural Competence in Vibrio cholerae▿†

    OpenAIRE

    Yamamoto, Shouji; Izumiya, Hidemasa; Mitobe, Jiro; Morita, Masatomo; Arakawa, Eiji; Ohnishi, Makoto; Watanabe, Haruo

    2011-01-01

    The tfoX (also called sxy) gene product is the central regulator of DNA uptake in the naturally competent bacteria Haemophilus influenzae and Vibrio cholerae. However, the mechanisms regulating tfoX gene expression in both organisms are poorly understood. Our previous studies revealed that in V. cholerae, chitin disaccharide (GlcNAc)2 is needed to activate the transcription and translation of V. cholerae tfoX (tfoXVC) to induce natural competence. In this study, we screened a multicopy librar...

  17. Heavy metal biosorption by chitin and chitosan isolated from Cunninghamella elegans (IFM 46109 Remoção de metais pesados por quitina e quitosana isoladas de Cunninghamella elegans (IFM 46109

    Directory of Open Access Journals (Sweden)

    Luciana de Oliveira Franco

    2004-09-01

    Full Text Available Chitin and chitosan were extracted from mycelial biomass of Cunninghamella elegans and the performance for copper, lead and iron biosorption in aqueous solution was evaluated. The growth curve of C. elegans was accomplished by determination of biomass, pH, glucose and nitrogen consumption. Chitin and chitosan were extracted by alkali-acid treatment and the yields were 23.8 and 7.8%, respectively. For the adsorption analysis, the process of heavy uptake metal sorption was evaluated using polysaccharides solutions (1% w/v. The rate of metallic biosorption was dependent upon the concentration and pH of metal solutions, and the best results were observed with pH 4.0. Chitosan showed the highest affinity for copper and chitin for iron adsorption. The results suggest that C. elegans (IFM 46109 is an attractive source of production of chitin and chitosan, with a great potential of heavy metals bioremediation in polluted environments.Quitina e quitosana foram extraídas a partir da massa micelial de Cunninghamella elegans (IFM 46109 e avaliou-se a aplicação destes polissacarídeos na remoção dos metais pesados cobre, chumbo e ferro preparados em solução aquosa. O crescimento de C. elegans foi acompanhado através da determinação de biomassa, pH, consumo de glicose e de nitrogênio. A extração de quitina e quitosana realizou-se através de tratamento álcali-ácido e a produção dos polissacarídeos foi de 23,8 e 7,8 %, respectivamente. A avaliação do processo de remoção dos metais pesados foi realizada utilizando-se os polissacarídeos em solução a 1% (p/v. Os níveis de biossorção de metais foram dependentes da concentração e do pH das soluções. Os melhores resultados foram obtidos em pH 4,0. A quitosana mostrou maior índice de biossorção para o íon cobre e a quitina para o ferro. Os resultados sugerem que C.elegans pode ser considerada uma fonte atrativa para a produção alternativa de quitina e quitosana, e que demonstra

  18. Simulated field evaluation of the efficacy of two formulations of diflubenzuron, a chitin synthesis inhibitor against larvae of Aedes aegypti (L.) (Diptera: Culicidae) in water-storage containers.

    Science.gov (United States)

    Thavara, Usavadee; Tawatsin, Apiwat; Chansang, Chitti; Asavadachanukorn, Preecha; Zaim, Morteza; Mulla, Mir S

    2007-03-01

    Tablet (40 mg a.i./tablet) and granular (2% a.i.) formulations of diflubenzuron, a chitin synthesis inhibitor, insect growth regulator, were evaluated for larvicidal efficacy against the larvae of Aedes aegypti (L.) in water-storage containers under field conditions in Thailand. Each formulation was applied to 200-1 clay jars at 5 different dosages (0.02, 0.05, 0.1, 0.5 and 1 mg/l a.i.). The jars were covered with solid celocrete sheets and placed in the shade under a roof. Another experiment was also carried out using 3 different dosages (0.1, 0.5 and 1 mg/l) where half the water in each treated jar and the control was removed and refilled weekly. Each treatment was replicated four times. The treatments were challenged by adding 25 3rd instar larvae/jar weekly. Assessments were made of each treatment through emergence inhibition (%EI) by removing and counting pupal skins one week after larval addition. Using these assessment techniques, a high degree of larvicidal efficacy (96-100%EI) was achieved with 4 dosages (0.05, 0.1, 0.5 and 1 mg/l) of both (tablet and granular) formulations for a period of 23 weeks post-treatment. The efficacy of the lowest dosage (0.02 mg/l) of tablet and granular formulations lasted for 21 and 22 weeks post-treatment, respectively. Under the conditions of water removal and weekly refilling, a high degree of larvicidal efficacy (96-100%El) at the 3 dosages was obtained with the tablet formulation 18 to 21 weeks post-treatment, whereas the efficacy of the granular formulation persisted 15 to 23 weeks post-treatment depending on the dosage. This study clearly demonstrates a high level of residual activity with both formulations of diflubenzuron against larvae of Ae. aegypti in water-storage containers. Considering environmental factors and water-use conditions, it is likely that dosages of 0.05 to 0.1 mg a.i./l are effective dosages providing long-lasting control for 3 to 4 months in the field. PMID:17539276

  19. Structure and Performance of Two Water-Soluble Chitin and SF Composite Membrane%两种水溶性甲壳素和丝素共混膜的结构与性能

    Institute of Scientific and Technical Information of China (English)

    张敏; 许小玲; 孟晓荣

    2012-01-01

    制备了两种水溶性甲壳素:N-乙酰化壳聚糖(N-ACTS,DS=0.55)和6-O-羟乙基甲壳素(6-O-GC,DS=1.0),将其分别与丝素(SF)混合,制备了水溶性均相混合的复合膜;红外光谱(FT-IR)证明了均相混合的复合膜中两种天然高分子官能团结构的变化,相互之间形成了氢键结合,成为均一的混合体,表明天然高分子之间具有良好的相容性;原子间力显微镜(AFM)表面形貌观察表明:均相混合复合膜的表面比单一丝素蛋白质和多糖螺旋立体构造分布均匀表面光滑;体外细胞培养实验表明:人皮肤纤维芽细胞在两种复合膜上均生长良好,具有良好的生物相容性和医学应用前景.%Water-soluble homogeneous mixed composite membranes were prepared by mixing two water-soluble chitin, nitrogen acylation chitosan (N-ACTS,DS =0.55) and 6-0-hydroxyethyl chitin (6-0-GC,DS = 1.0) respectively with silk fibroin (SF).The fourier transform infrared spectroscopy (FT-IR) demonstrated that the functional group structure on two kinds of natural polymer were changed, formed the hydrogen bond combination and a homogeneous mixture, indicated that the two kinds of natural polymer had good compatibility. The surface morphology of composite films were observed by the atomic force microscope ( AFM) , the results showed that the surface of the homogeneous mixed composite films were more uniform distributed and glossy than pure SF protein and polysaccharose spiral three-dimensional structure, people skin fiber buds cells on the two kinds of mixture membranes were nice in vitro cell culture experiment, indicated that N-ACTS/SF and 6-0-GC/SF composite films had good biocompatibility and medical application prospect.

  20. A study on the maximal nerve defect length bridgeable by a chitin conduit%甲壳质套管桥接周围神经长度极限的研究

    Institute of Scientific and Technical Information of China (English)

    张丞; 王艳华; 张培训; 姜保国

    2010-01-01

    Objective To investigate the maximal defect length of a peripheral nerve that can be effectively bridged by a chitin conduit by repairing rat sciatic nerve gaps of various lengths with a chitin tube. Methods The right sciatic nerve of 24 SPF-class healthy adult male SD rats was transected at 5 mm proximal to the bifurcation. A segment of nerve was removed to leave a gap of 2, 5, 8 and 10 mm in length according to group assignment. The gap was bridged by a chitin conduit. Eight weeks after the surgery, the nerve distal to the tube was harvested and stained with osmic acid to acquire number of myelinated nerve fibers, axon area and myelin sheath thickness. Wet weight of the gastrocnemius muscles was obtained as well. Results In the 2 mm gap group 80% nerve fibers had regenerated into the distal nerve stump 8 weeks postoperatively. This regeneration was significantly better than those in the other gap groups( P < 0.01). The longer the gap, the worse the regeneration. The percentage of nerve fibers that regenerated into the distal nerve stump was 60% for the 5 mm gap, 20% for the 8 mm gap, and 1% for the 10 mm gap. Each was significantly better than next size up in nerve defect. Conclusion When chitin conduits are used to bridge a rat sciatic nerve defect, the optimal length of the gap for nerve regeneration is around 2 mm. The longest bridgeable defect that allows functional recovery is 5 mm. Nerve regeneration is seriously affected when the gap is longer than 10 mm.%目的 通过采用不同间隙套接修复大鼠坐骨神经损伤的实验研究,探讨甲壳质套管桥接修复周围神经损伤的长度极限.方法 SPF级健康成年雄性SD大鼠24只,于大鼠右侧坐骨神经分叉处以上5 mm建立坐骨神经离断伤模型,部分切除坐骨神经后使用甲壳质套管桥接修复,使神经断端间留有2、5、8和10 mm间隙.8周后常规锇酸染色,镜下观察套管远端有髓神经纤维数目、轴突平均面积、髓鞘平均厚

  1. Sum-Up of Productive Technology of Deacetylated Chitin-Coated Endoplasm Slow-Release Fertilizers%壳聚糖包膜内质缓释肥料生产技术总结

    Institute of Scientific and Technical Information of China (English)

    徐文峰; 黄滨

    2012-01-01

    壳聚糖包膜内质缓释肥料是一种由内质型缓释肥与包膜型控释肥技术相结合而成的新型缓释肥料,以控制肥料养分释放、流失和挥发为切入点,工艺技术简单,易于嫁接现有肥料生产工艺.介绍了壳聚糖包膜内质缓释肥料的研发背景、生产工艺、形成机理、技术创新点、产品质量标准、产品特点.针对壳聚糖包膜内质缓释肥料尚存在的一些问题,提出今后进一步研究与应用的方向.%The deacetylated chitin-coated endoplasm slow-release fertilizer is a new type of slow-release fertilizer made by a combination of technologies for endoplasm slow-release fertilizers and coated control-release fertilizers, with the control of fertilizer nutrient release, loss and volatilization as the cut-in point, the process is simple and easily grafted to available fertilizer productive technology. A description is given of the research and development of the fertilizer, its production technology, formation mechanism, technological innovation, product quality standard, and product characteristics, In the light of some problems that still remain, the direction tor further research and application is proposed.

  2. Interspecific interactions of heterotrophic bacteria during chitin degradation

    OpenAIRE

    Jagmann, Nina

    2012-01-01

    In their natural habitats, bacteria live in multi-species microbial communities and are, thus, constantly interacting with bacteria of other phylogenetic groups. In order to prevail in these interspecific interactions, such as the competition for nutrients, bacteria have developed numerous strategies. During the degradation of polymers such interspecific interactions are likely to occur, because degradation starts as an extracellular process. In one possible interaction scenario, investor bac...

  3. Microbial synthesis of hyaluronan and chitin: New approaches.

    Science.gov (United States)

    Yamada, Takashi; Kawasaki, Takeru

    2005-06-01

    Hyaluronan (HA) is an important structural element in the vitreous humor of the eye, synovial fluid, and skin of vertebrates. Moreover, HA interacts with proteins such as CD44, RHAMM, and fibrinogen, thereby influencing many natural processes such as angiogenesis, cancer, cell motility, wound healing, and cell adhesion. Reflecting such a variety of functions, HA has attracted attention from a wide range of application fields such as medicine (including surgery), cosmetics, and health foods. Traditionally HA was extracted from rooster combs, but nowadays is produced by the fermentation of streptococci. At present, quality issues such as purity and molecular weight distribution, rather than quantity, have been the focus of strain and process development in HA production. To meet ever-increasing public demand, novel systems that can yield sufficient amounts of high-quality of HA and related materials are required. PMID:16233827

  4. Isolation and characterisation of chitin and chitosan from local sources

    International Nuclear Information System (INIS)

    In this study, indigenous shrimp (Gadus morhua) and blue crab (Portunus pelagius, male and female) from Karachi coastal area were collected. The flesh was extracted to use for eating and the discarded waste was converted to an environment-friendly value-added product chitosan in chemical process after minor modification of DMCPA protocol. Four chitosan samples of shrimp head shells, blue crab leg shells, claw shells and carapace were obtained. The physicochemical and functional properties i.e., colour, degree of deacetylation, moisture, ash contents, nitrogen, viscosity, water and fat binding capacities were evaluated. Comparative study showed good percentage yields of chitosan from crab leg and shrimp head shells as 25.67% and 22.06%, respectively. Moisture, ash and nitrogen contents were in acceptable ranges. The colour of blue crab leg shell was off-white, while other three were light-yellow. Difference in degree of deacetylation (DD) was significant. The DD was 77% in crab leg shell, 61.6% shrimp head shells, 25.5% crab claw shell and 20.4% for crab carapace chitosan samples. Viscosity values were low (41-116 cPs). Water and fat binding capacity were in range of 494-521 % and 378-428 %, respectively. (author)

  5. 甲壳素神经再生室注入聚乳酸-聚乙醇酸-重组人促红细胞生成素微球促进缺损周围神经的修复%Injection of polylactic acid-polyglycolic acid-recombinant human erythropoietin microspheres into chitin nerve regeneration chamber can promote sciatic nerve regeneration

    Institute of Scientific and Technical Information of China (English)

    黄亚洲; 陈清汉; 任明明

    2012-01-01

    背景:促红细胞生成素除了具有造血的作用以外,对神经系统损伤的修复也起着重要作用.目的:观察聚乳酸-聚乙醇酸-重组人促红细胞生成素微球对大鼠坐骨神经再生的作用.方法:雌性SD大鼠60只,随机分为3组.制备大鼠双侧坐骨神经缺损模型(1 cm缺损)以及可吸收甲壳素神经再生室.实验组室内注入聚乳酸-聚乙醇酸-重组人促红细胞生成素微球;对照组室内注入聚乳酸-聚乙醇酸微球;空白对照组室内注入等渗生理盐水.结果与结论:实验组再生神经的传导速度优于对照组及空白对照组,且12周优于6周,差异有显著性意义(P < 0.05).S-100 免疫组织化学及Loyez氏神经染色法显示:实验组神经纤维数量多于对照组及空白对照组,12周多于6周,差异有显著性意义(P < 0.05).结果提示聚乳酸-聚乙醇酸-重组人促红细胞生成素微球能够促进实验性坐骨神经缺损的再生和功能的恢复.%BACKGROUND: Erythropoietin (EPO) plays an important role in hematopoiesis as well as in the repair of nervous system injury. OBJECTIVE: To observe the effect of polylactic acid-polyglycolic acid-recombinant human erythropoietin microspheres on sciatic nerve regeneration. METHODS: Sixty female SD rats were randomly divided into three groups, 20 rats in each group. The bilateral sciatic nerve defect model was prepared (1 cm defect) and the absorbable chitin nerve regeneration chamber was prepared. The chambers of the rats in the experimental group were injected with polylactic acid-polyglycolic acid-recombinant human erythropoietin microspheres, chambers of the rats in the control group were injected with polylactic acid-polyglycolic acid microspheres and chambers of the rats in the blank control group were injected with normal saline in the same dose. RESULTS AND CONCLUSION: The conduction velocity of the regeneration nerve in the experimental group was better than that in the control group and

  6. Nanomechanics based investigation into interface -thermomechanics of collagen and chitin based biomaterials

    OpenAIRE

    Qu, Tao; Tomar, Vikas

    2014-01-01

    From the biological/chemical perspective, interface concepts related to cell surface/synthetic biomaterial interface and extracellular matrix/biomolecule interface have wide applications in medical and biological technology. Some findings regarding interfaces controlling biological reactions are like surfaces provide high accessibility for reaction, high surface area geometries that can be created to enhance reaction turnover rates, unique organic microenvironments that can enhance specific a...

  7. Effect of acid Lugol solution as preservative on two representative chitineous and gelatinous zooplankton groups

    DEFF Research Database (Denmark)

    Jaspers, Cornelia; Carstensen, Jacob

    2009-01-01

    The estimation of biomass from body lengths to carbon regressions is a common approach in plankton research. Several different chemicals for sample preservation are in use, and conversion factors to account for shrinkage effects exist, but to our knowledge the consequences of using potassium-iodi...

  8. Biosorption Of Heavy Metals From Mining Influenced Water Onto Chitin Products

    Science.gov (United States)

    Mining influenced water (MIW) emanating from mine sites poses a major environmental concern due to its impact on water contamination caused by low pH and the presence of high concentrations of toxic metals. Chitorem SC-20® (raw crushed crab shells containing 40% w/w C...

  9. Dried Fruit of the Luffa Sponge as a Source of Chitin for Applications as Skin Substitutes

    Directory of Open Access Journals (Sweden)

    Ping-Lun Jiang

    2014-01-01

    Full Text Available LUFFACHITIN obtained from the residue of the sponge-like dried fruit of Luffa aegyptiaca was developed as a weavable skin substitute in this study. A chemical analysis revealed that LUFFACHITIN was composed of a copolymer containing N-acetyl-glucosamine (~40% as a major monomer with a filamentary structure as demonstrated by both optical and scanning electron microscopy. The pulp-like white residue of the sponge-like dried fruit of Luffa aegyptiaca after treatment was then woven into a thin, porous membrane by filtration and lyophilization as a skin substitute for conducting wound-healing study on rats. The results indicated that the LUFFACHITIN membrane showed significant wound-healing enhancement (25 days to complete healing compared to cotton gauze (>30 days, but not inferior to that of SACCHACHITIN. Furthermore, the LUFFACHITIN membrane had advantages of having a high yield, better physical properties for fabrication, and a more attractive appearance.

  10. Dried fruit of the Luffa sponge as a source of chitin for applications as skin substitutes.

    Science.gov (United States)

    Jiang, Ping-Lun; Chien, Mei-Yin; Sheu, Ming-Thau; Huang, Yi-You; Chen, Meng-Hsun; Su, Ching-Hua; Liu, Der-Zen

    2014-01-01

    LUFFACHITIN obtained from the residue of the sponge-like dried fruit of Luffa aegyptiaca was developed as a weavable skin substitute in this study. A chemical analysis revealed that LUFFACHITIN was composed of a copolymer containing N-acetyl-glucosamine (~40%) as a major monomer with a filamentary structure as demonstrated by both optical and scanning electron microscopy. The pulp-like white residue of the sponge-like dried fruit of Luffa aegyptiaca after treatment was then woven into a thin, porous membrane by filtration and lyophilization as a skin substitute for conducting wound-healing study on rats. The results indicated that the LUFFACHITIN membrane showed significant wound-healing enhancement (25 days to complete healing) compared to cotton gauze (>30 days), but not inferior to that of SACCHACHITIN. Furthermore, the LUFFACHITIN membrane had advantages of having a high yield, better physical properties for fabrication, and a more attractive appearance. PMID:24812618

  11. Dried Fruit of the Luffa Sponge as a Source of Chitin for Applications as Skin Substitutes

    OpenAIRE

    Ping-Lun Jiang; Mei-Yin Chien; Ming-Thau Sheu; Yi-You Huang; Meng-Hsun Chen; Ching-Hua Su; Der-Zen Liu

    2014-01-01

    LUFFACHITIN obtained from the residue of the sponge-like dried fruit of Luffa aegyptiaca was developed as a weavable skin substitute in this study. A chemical analysis revealed that LUFFACHITIN was composed of a copolymer containing N-acetyl-glucosamine (~40%) as a major monomer with a filamentary structure as demonstrated by both optical and scanning electron microscopy. The pulp-like white residue of the sponge-like dried fruit of Luffa aegyptiaca after treatment was...

  12. Species-Specific Chitin-Binding Module 18 Expansion in the Amphibian Pathogen Batrachochytrium dendrobatidis

    OpenAIRE

    Abramyan, John; Stajich, Jason E.

    2012-01-01

    ABSTRACT Batrachochytrium dendrobatidis is the causative agent of chytridiomycosis, which is considered one of the driving forces behind the worldwide decline in populations of amphibians. As a member of the phylum Chytridiomycota, B. dendrobatidis has diverged significantly to emerge as the only pathogen of adult vertebrates. Such shifts in lifestyle are generally accompanied by various degrees of genomic modifications, yet neither its mode of pathogenicity nor any factors associated with it...

  13. Roles for GTP-binding proteins in Vigna unguiculata responding to Nod factors or chitin elicitors

    International Nuclear Information System (INIS)

    μNod factors are lipo-chito-oligosaccharides secreted by Rhizobium to initiate deformation of legume root hairs and other changes such as increases in intracellular calcium in responsive root hairs. We studied the effects of Nod factors and G-protein modulators on root hair deformation and found significant deformation of root hairs after 30 min exposure to the compounds. Since G-proteins have been implicated in the root hair response to Nod factors in vivo, we examined the GTP-binding profiles of root microsomal membrane fractions isolated from the nodulation competent zone of the legume Vigna unguiculata. GTP competitively binds to microsomal membrane fractions labelled with [35S]GTPγS with a high affinity, yielding a two-site displacement curve with displacement constants (Ki) of 0.58 μM and 0.16 μM. Competition with either ATP or GDP revealed a one-site displacement curve with Ki of 4.14 and 11.7 μM respectively. To test if exposure to Nod factors affect the GTP-binding profile, we isolated microsomal membrane fractions from roots pretreated with either NodNGR[S] (from Rhizobium sp. NGR234) or the four-sugar, tetracetylchitotetraose (TACT) backbone of Nod factors. Pretreatment with NodNGR[S] results in an increased affinity for GTP of several hundred-fold. Roots pretreated with TACT also showed a similar but slightly smaller increase in affinity for GTP. To begin identification of possible candidates microsomal proteins were separated by SDS-PAGE and GTP-binding proteins were probed with [35S]GTPγS. Microsomal membrane factions isolated from roots pretreated with NodNGR[S] revealed two proteins (27 kDa and 25 kDa) with a higher affinity for GTPγS. Western blotting of the microsomal membrane preparation with anti-Rac antibodies also showed changes in Rac associated signal in microsomal membranes prepared from either NodNGR[S] or TACT pretreated roots. These results provide further support for a role for small, monomeric G-proteins in the Nod factor signal transduction cascade

  14. Effect of deletion of chitin synthase genes on mycelial morphology and culture viscosity in Aspergillus oryzae

    DEFF Research Database (Denmark)

    Müller, Christian; Hansen, K.; Szabo, Peter;

    2003-01-01

    .4-22.5 g kg(-1) biomass) and the power-law model adequately described the rheological properties. In the cultivations there were pellets, clumps, and freely dispersed hyphal elements. The different morphological fractions were quantified using image analysis. The apparent viscosity of the fermentation...... broth was significantly affected by the biomass concentration, the morphology, and also by pH. The chsB disruption strain had lower consistency index K values for all biomass concentrations investigated, which is a desirable trait for industrial Aspergillus fermentations. (C) 2003 Wiley Periodicals, Inc....

  15. Metabolic engineering of the morphology of Aspergillus oryzae by altering chitin synthesis

    DEFF Research Database (Denmark)

    Muller, C.; Mcintyre, Mhairi; Hansen, Kim;

    2002-01-01

    not significantly different in the three strains. A strain in which the transcription of chsB could be controlled by the nitrogen source-regulated promoter niiA (NiiA1) was examined during chemostat cultivation, and it was found that the branching intensity could be regulated by regulating the...

  16. Stability of spray-dried chitosan salts derived from lobster chitin as a raw material

    Directory of Open Access Journals (Sweden)

    Nilia De la Paz

    2015-12-01

    Full Text Available Aim: The objective of this work was to develop and validate a method for determining the degree of molar deacetylation of chitosan acetate and chitosan lactate, as well as to study the stability of both salts. Materials and Methods: A spectrophotometric method was validated according to internationally-established quantitative techniques. Three industrial batches of chitosan acetate and chitosan lactate, obtained by spray drying, were stored under shelf life conditions for twelve months. Organoleptic characteristics, the degree of molar deacetylation, pH, loss on drying and microbiological count were determined at the beginning and end of the study. Results and Discussion: The statistical data proved that the two methods complied with international standards for the validation of analytical techniques. It was shown that the procedures developed were linear, specific, precise and accurate, so they can be used for the purposes of quality control and stability study of the polymer salts. Salts remained in powder form, with a light-yellow to dark-yellow coloration. Values of loss on drying (2.5 - 5.2 % of chitosan salt using acetic or lactic acid, as a solvent, indicated the good quality of spray-dried particles of chitosan. Similar behavior was obtained regarding pH. The two salts stayed within the parameters that determine their quality, both in the initial stage and after twelve months at room temperature. Conclusion: Spray drying chitosan acetate and chitosan lactate, stored at room temperature in a dry place, in double polyethylene bags and multilayer paper bags, kept their physical, chemical and microbiological characteristics for a period of twelve months.

  17. Degradation of barnacle nauplii: Implications to chitin regulation in the marine environment

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, L.; Gaonkar, C.C.; Desai, D.V.

    are extensively studied for their survival in marine environment (Huq et al. 1984; Byrd and Colwell 1990; Oliver et al. 1995). Members of the family Enterobacteraceae are common inhabitants of gut of humans to insects (Georgieva et al. 2003). Chitinivorous... on surface lining of the organisms, e.g. the gut wall, and displace other bacteria if they are present in high numbers (Moriarty 1998). Thus, any resistant bacteria cannot multiply or transfer resistance genes nor colonize on the zooplankton surface. In a...

  18. Effect of the chitin synthesis inhibitor triflumuron on the development, viability and reproduction of Aedes aegypti

    OpenAIRE

    Thiago Affonso Belinato; Ademir Jesus Martins; José Bento Pereira Lima; Tamara Nunes Lima-Camara; Alexandre Afrânio Peixoto; Denise Valle

    2009-01-01

    The control of Aedes aegypti is impaired due to the development of resistance to chemical insecticides. Insect Growth Regulators (IGR) exhibit distinct mechanisms of action and are considered potential vector control alternatives. Studies regarding the effects of sublethal IGR doses on the viability of resulting adults will contribute to eval-uating their impact in the field. We analyzed several aspects of Ae. aegypti adults surviving exposure to a partially lethal dose of triflumuron, a chit...

  19. Some physiological aspects of the insecticidal action of diflubenzuron, an inhibitor of chitin synthesis

    NARCIS (Netherlands)

    Grosscurt, A.C.

    1980-01-01

    Diflubenzuron is the common name for 1-(4-chlorophenyl)-3-(2,6-difluorobenzoyl)urea, the active ingredient of the insecticide Dimilin.Diflubenzuron was discovered in 1971 as a larvicide. Evidence was provided by several authors that the larvicidal effect of this compound was caused by its interferen

  20. Melanin Externalization in Candida albicans Depends on Cell Wall Chitin Structures▿

    OpenAIRE

    Walker, Claire A; Gómez, Beatriz L.; Mora-Montes, Héctor M.; Mackenzie, Kevin S; Munro, Carol A.; Brown, Alistair J. P.; Gow, Neil A. R.; Kibbler, Christopher C.; Odds, Frank C.

    2010-01-01

    The fungal pathogen Candida albicans produces dark-pigmented melanin after 3 to 4 days of incubation in medium containing l-3,4-dihydroxyphenylalanine (l-DOPA) as a substrate. Expression profiling of C. albicans revealed very few genes significantly up- or downregulated by growth in l-DOPA. We were unable to determine a possible role for melanin in the virulence of C. albicans. However, we showed that melanin was externalized from the fungal cells in the form of electron-dense melanosomes tha...

  1. Knickkopf protein protects and organizes chitin in the newly synthesized insect exoskeleton

    Science.gov (United States)

    New cuticle synthesis and molting are complex developmental processes that all insects must undergo to allow for growth. However, little is known about how insects regulate the selective degradation of the old cuticle while leaving the new one intact. In this study we show that in the red flour beet...

  2. Novel In Vivo-Degradable Cellulose-Chitin Copolymer from Metabolically Engineered Gluconacetobacter xylinus▿ †

    OpenAIRE

    Yadav, Vikas; Paniliatis, Bruce J.; Shi, Hai; Lee, Kyongbum; Cebe, Peggy; Kaplan, David L.

    2010-01-01

    Despite excellent biocompatibility and mechanical properties, the poor in vitro and in vivo degradability of cellulose has limited its biomedical and biomass conversion applications. To address this issue, we report a metabolic engineering-based approach to the rational redesign of cellular metabolites to introduce N-acetylglucosamine (GlcNAc) residues into cellulosic biopolymers during de novo synthesis from Gluconacetobacter xylinus. The cellulose produced from these engineered cells (modif...

  3. Potential role of chitinases and chitin-binding proteins in host-microbial interactions during the development of intestinal inflammation

    OpenAIRE

    Tran, Hoa T.; Barnich, Nicolas; Mizoguchi, Emiko

    2011-01-01

    The small and large intestines contain an abundance of luminal antigens derived from food products and enteric microorganisms. The function of intestinal epithelial cells is tightly regulated by several factors produced by enteric bacteria and the epithelial cells themselves. Epithelial cells actively participate in regulating the homeostasis of intestine, and failure of this function leads to abnormal and host-microbial interactions resulting in the development of intestinal inflammation. Ma...

  4. Degradation of chitin and chitosan by a recombinant chitinase derived from a virulent Aeromonas hydrophila isolated from diseased channel catfish

    Science.gov (United States)

    A chitinase was identified in extracellular products of a virulent Aeromonas hydrophila isolated from diseased channel catfish (Ictalurus punctatus). Bioactive recombinant chitinase (rChi-Ah) was produced in Escherichia coli. Purified rChi-Ah had optimal activity at temperature of 42°C and pH 6.5. T...

  5. A phosphatidylcholine hyaluronic acid chitin–nanofibrils complex for a fast skin remodeling and a rejuvenating look

    OpenAIRE

    Morganti, Pierfrancesco

    2012-01-01

    Pierfrancesco Morganti,1 Paolo Palombo,2 Marco Palombo,3 Giuseppe Fabrizi,4 Antonio Cardillo,5 Fabiano Svolacchia,5 Luis Guevara,6 Paolo Mezzana71Department of Applied Cosmetic Dermatology, University of Naples Federico II, Naples, Italy; 2Department of Plastic, Reconstructive and Aesthetic Surgery, Saint Eugenio Hospital, Rome, Italy; 3Department of Plastic, Reconstructive and Aesthetic Surgery, CTO Hospital, Rome, Italy; 4Department of Dermatology, University of Parma, Parma, Italy; 5Centre...

  6. USER Friendly Cloning Coupled with Chitin-Based Natural Transformation Enables Rapid Mutagenesis of Vibrio vulnificus▿ †

    OpenAIRE

    Paul A. Gulig; Tucker, Matthew S.; Thiaville, Patrick C.; Joseph, Jennifer L.; Brown, Roslyn N.

    2009-01-01

    Vibrio vulnificus is a bacterial contaminant of shellfish and causes highly lethal sepsis and destructive wound infections. A definitive identification of virulence factors using the molecular version of Koch's postulates has been hindered because of difficulties in performing molecular genetic analysis of this opportunistic pathogen. For example, conjugation is required to introduce plasmid DNA, and allelic exchange suicide vectors that rely on sucrose sensitivity for counterselection are no...

  7. The Syntaxin Tlg1p Mediates Trafficking of Chitin Synthase III to Polarized Growth Sites in Yeast

    OpenAIRE

    Holthuis, Joost C.M.; Nichols, Benjamin J.; Pelham, Hugh R.B.

    1998-01-01

    Tlg1p and Tlg2p, members of the syntaxin family of SNAREs in yeast, have been implicated in both endocytosis and the retention of late Golgi markers. We have investigated the functions of these and the other endocytic syntaxins Pep12p and Vam3p. Remarkably, growth is possible in the absence of all four proteins. In the absence of the others, Pep12p and Tlg1p can each create endosomes accessible to the endocytic tracer dye FM4-64. However, although Pep12p is require...

  8. Effects of nonsteroidal ecdysone agonist RH-5992 and chitin biosynthesis inhibitor lufenuron on Spodoptera littoralis (Boisduval, 1833)

    Czech Academy of Sciences Publication Activity Database

    Gelbič, Ivan; Adel, M. M.; Hussein, Hany

    2011-01-01

    Roč. 6, č. 5 (2011), s. 861-869. ISSN 1895-104X R&D Projects: GA ČR GA522/08/1407 Institutional research plan: CEZ:AV0Z50070508 Keywords : tebufenozide * mortality * sterility Subject RIV: ED - Physiology Impact factor: 1.000, year: 2011

  9. Studi Karakterisasi Pembuatan Kitin Dan Kitosan Dari Cangkang Belangkas (Tachypleus Gigas) Untuk Penentuan Berat Molekul

    OpenAIRE

    Noviary, Harry

    2011-01-01

    Research of the characterization study of the manufacture and modification of chitin and chitosan from crab shells (tachipleus gigas) for molecular weight determination. Chitin is modified to obtain phases that produce chitin crab I and II. Cshitin crab I used to produce chitosan crab I, so did the king crab chitin II is used to produce chitosan crab II. Characterization of chitin and chitosan involves determining the water content, ash content, total nitrogen, protein content, elemental anal...

  10. Identification and characterization of a chitin-binding protein purified from coelomic fluid of the lugworm Arenicola marina defining a novel protein sequence family

    DEFF Research Database (Denmark)

    Vitashenkova, Nina; Moeller, Jesper Bonnet; Leth-Larsen, Rikke; Schlosser, Anders; Lund, Kit Peiter; Tornøe, Ida; Vitved, Lars; Hansen, Søren; Willis, Anthony; Kharazova, Alexandra D; Skjødt, Karsten; Sorensen, Grith Lykke; Holmskov, Uffe

    2012-01-01

    We have isolated a novel type of lectin named Arenicola marina lectin-1 (AML-1) from the lugworm Arenicola marina. The lectin was purified from the coelomic fluid by affinity chromatography on a GlcNAc-derivatized column and eluted with GlcNAc. On SDS-PAGE, AML-1 showed an apparent molecular mass...

  11. Identification of Albizia lebbeck seed coat chitin-binding vicilins (7S globulins) with high toxicity to the larvae of the bruchid Callosobruchus maculatus

    Energy Technology Data Exchange (ETDEWEB)

    Souza, A.J. [Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ (Brazil); Ferreira, A.T.S.; Perales, J.; Beghini, D.G. [Laboratório de Toxinologia, Departamento de Fisiologia e Farmacodinâmica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ (Brazil); Fernandes, K.V.S.; Xavier-Filho, J.; Venancio, T.M.; Oliveira, A.E.A. [Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ (Brazil)

    2011-01-27

    Seed coat is a specialized maternal tissue that interfaces the embryo and the external environment during embryogenesis, dormancy and germination. In addition, it is the first defensive barrier against penetration by pathogens and herbivores. Here we show that Albizia lebbeck seed coat dramatically compromises the oviposition, eclosion and development of the bruchid Callosobruchus maculatus. Dietary supplementation of bruchid larvae with A. lebbeck seed coat flour causes severe weight loss and reduces survival. By means of protein purification, mass spectrometry and bioinformatic analyses, we show that chitinbinding vicilins are the main source of A. lebbeck tegumental toxicity to C. maculatus. At concentrations as low as 0.1%, A. lebbeck vicilins reduce larval mass from 8.1 ± 1.7 (mass of control larvae) to 1.8 ± 0.5 mg, which corresponds to a decrease of 78%. Seed coat toxicity constitutes an efficient defense mechanism, hindering insect predation and preventing embryo damage. We hypothesize that A. lebbeck vicilins are good candidates for the genetic transformation of crop legumes to enhance resistance to bruchid predation.

  12. Impact on Bacterial Community in Midguts of the Asian Corn Borer Larvae by Transgenic Trichoderma Strain Overexpressing a Heterologous chit42 Gene with Chitin-Binding Domain

    OpenAIRE

    Li, Yingying; Fu, Kehe; Gao, Shigang; WU Qiong; Fan, Lili; Li, Yaqian; Chen, Jie

    2013-01-01

    This paper is the first report of the impact on the bacterial community in the midgut of the Asian corn borer (Ostrinia furnacalis) by the chitinase from the transgenic Trichoderma strain. In this study, we detected a change of the bacterial community in the midgut of the fourth instar larvae by using a culture-independent method. Results suggested that Proteobacteria and Firmicutes were the most highly represented phyla, being present in all the midgut bacterial communities. The observed spe...

  13. Impact on bacterial community in midguts of the Asian corn borer larvae by transgenic Trichoderma strain overexpressing a heterologous chit42 gene with chitin-binding domain.

    Directory of Open Access Journals (Sweden)

    Yingying Li

    Full Text Available This paper is the first report of the impact on the bacterial community in the midgut of the Asian corn borer (Ostrinia furnacalis by the chitinase from the transgenic Trichoderma strain. In this study, we detected a change of the bacterial community in the midgut of the fourth instar larvae by using a culture-independent method. Results suggested that Proteobacteria and Firmicutes were the most highly represented phyla, being present in all the midgut bacterial communities. The observed species richness was simple, ranging from four to five of all the 16S rRNA clone libraries. When using Trichoderma fermentation liquids as additives, the percentages of the dominant flora in the total bacterial community in larval midgut changed significantly. The community of the genus Ochrobactrum in the midgut decreased significantly when the larvae were fed with the fermentation liquids of the transgenic Trichoderma strain Mc4. However, the Enterococcus community increased and then occupied the vacated niche of the Ochrobactrum members. Furthermore, the Shannon-Wiener (H and the Simpson (1-D indexes of the larval midgut bacterial library treated by feeding fermentation liquids of the transgenic Trichoderma strain Mc4 was the lowest compared with the culture medium, fermentation liquids of the wild type strain T30, and the sterile artificial diet. The Enterococcus sp. strain was isolated and characterized from the healthy larvae midgut of the Asian corn borer. An infection study of the Asian corn borer larvae using Enterococcus sp. ACB-1 revealed that a correlation existed between the increased Enterococcus community in the larval midgut and larval mortality. These results demonstrated that the transgenic Trichoderma strain could affect the composition of the midgut bacterial community. The change of the midgut bacterial community might be viewed as one of the factors resulting in the increased mortality of the Asian corn borer larvae.

  14. 用丰年虫卵壳制备甲壳素和壳聚糖%Producing chitin and chitosan from the eggs shell of brine shrimp

    Institute of Scientific and Technical Information of China (English)

    孙文敏; 李铮; 李久红

    2008-01-01

    介绍了用丰年虫卵壳制备甲壳素及壳聚糖的方法及过程,通过傅立叶变换红外光谱仪的检测并与美国标准谱图库检索出的用蟹壳制备的壳聚糖光谱图对照,证实丰年虫卵壳制备的壳聚糖.

  15. Application of Chitinous Materials in Production and Purification of a Poly(l-lactic acid) Depolymerase from Pseudomonas tamsuii TKU015

    OpenAIRE

    Tzu-Wen Liang; Shan-Ni Jen; Anh Dzung Nguyen; San-Lang Wang

    2016-01-01

    The management of fishery residues and plastics is considered to be a vital strategy for conserving resources and maintaining the quality of the environment. Poly(l-lactic acid) (PLA) is a commercially promising, renewable, and biodegradable plastic. In this study, a PLA depolymerase was produced in a squid pen powder (SPP) and recycled plastic waste (PLA powder)-containing medium by Pseudomonas tamsuii TKU015, a bacterial strain isolated from Taiwanese soil. This PLA depolymerase had a molec...

  16. Application of Chitinous Materials in Production and Purification of a Poly(l-lactic acid Depolymerase from Pseudomonas tamsuii TKU015

    Directory of Open Access Journals (Sweden)

    Tzu-Wen Liang

    2016-03-01

    Full Text Available The management of fishery residues and plastics is considered to be a vital strategy for conserving resources and maintaining the quality of the environment. Poly(l-lactic acid (PLA is a commercially promising, renewable, and biodegradable plastic. In this study, a PLA depolymerase was produced in a squid pen powder (SPP and recycled plastic waste (PLA powder-containing medium by Pseudomonas tamsuii TKU015, a bacterial strain isolated from Taiwanese soil. This PLA depolymerase had a molecular weight of 58 kDa and was purified to homogeneity from the supernatant of a TKU015 culture. The optimum pH of TKU015 PLA depolymerase is 10, and the optimal temperature of the enzyme is 60 °C. In addition to PLA, TKU015 PLA depolymerase degraded fibrinogen and tributyrin, but did not hydrolyze casein, triolein, and poly(β-hydroxybutyrate. Taken together, these data demonstrate that P. tamsuii TKU015 produces a PLA depolymerase to utilize SPP and polylactide as carbon/nitrogen sources.

  17. Changes of exoskeleton surface roughness and expression of crucial participation genes for chitin formation and digestion in the mud crab (Macrophthalmus japonicus) following the antifouling biocide irgarol.

    Science.gov (United States)

    Park, Kiyun; Nikapitiya, Chamilani; Kim, Won-Seok; Kwak, Tae-Soo; Kwak, Ihn-Sil

    2016-10-01

    Irgarol is a common antifoulant present in coastal sediment. The mud crab Macrophthalmus japonicus is one of the most abundant of the macrobenthos in the costal environment, and its exoskeleton has a protective function against various environmental threats. We evaluated the effects of irgarol toxicity on the exoskeleton of M. japonicus, which is the outer layer facing the environment. We analyzed transcriptional expression of exoskeleton, molting, and proteolysis-related genes in the gill and hepatopancreas of these exposed M. japonicus. In addition, changes in survival and exoskeleton surface characteristics were investigated. In the hepatopancreas, mRNA expression of chitinase 1 (Mj-chi1), chitinase 4 (Mj-chi4), and chitinase 5 (Mj-chi5) increased in M. japonicus exposed to all concentrations of irgarol. Mj-chi1 and Mj-chi4 expressions from 1 to 10μgL(-1) were dose- and time-dependent. Ecdysteroid receptor (Mj-EcR), trypsin (Mj-Tryp), and serine proteinase (Mj-SP) in the hepatopancreas were upregulated in response to different exposure levels of irgarol at day 1, 4, or 7. In contrast, gill Mj-chi5, Mj-Tryp, and Mj-SP exhibited late upregulated responses to 10μgL(-1) irgarol compared to the control at day 7. Mj-chi1 showed early upregulation upon exposure to 10μgL(-1) irgarol and Mj-chi4 showed no changes in transcription in the gill. Gill Mj-EcR presented generally downregulated expression patterns. In addition, decreased survival and change of exoskeleton surface roughness were observed in M. japonicus exposed to the three concentrations of irgarol. These results suggest that exposure to irgarol induces changes in the exoskeleton, molting, and proteolysis metabolism of M. japonicus. PMID:27318560

  18. Model for the mechanism and regulation of chitosan synthesis in Mucor rouxii

    International Nuclear Information System (INIS)

    The cell walls of mucoraceous fungi are characterized by the joint occurrence of chitosan and chitin, the β-1,4-linked polysaccharides of G1cN and G1cNAc, respectively. It has been proposed that chitosan is made from chitin by enzymatic deacetylation, but the evidence is inconclusive since the deacetylase isolated from Mucor rouxii is effective against glycol chitin, but not against genuine chitin; consequently, chitosan synthesis in vitro was not achieved. The authors discovered that the same deacetylase can deacetylate chitin efficiently if it is allowed to act on chitin chains as they are being formed; i.e. the simultaneous presence and operation of chitin synthetase and chitin deacetylase is required for chitosan synthesis. Subsequent studies on the effect of digitonin on chitosan synthesis were the basis for a model the authors have developed for the regulation of chitosan and chitin syntheses in vivo

  19. Vibrational spectroscopy for structural characterization of bioactive compounds

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, K.S.; Majik, M.S.; Tilvi, S.

    and cosmetics [24-26]. 6.4.1.1. Chitin and chitosan Chitin is the second most abundant biopolymer found in nature and most widespread aminopolysaccharides widely distributed in crustaceans (shrimps, crabs and lobsters). They are isolated from...

  20. Chitooligosaccharide and Its Derivatives: Preparation and Biological Applications

    Directory of Open Access Journals (Sweden)

    Gaurav Lodhi

    2014-01-01

    Full Text Available Chitin is a natural polysaccharide of major importance. This biopolymer is synthesized by an enormous number of living organisms; considering the amount of chitin produced annually in the world, it is the most abundant polymer after cellulose. The most important derivative of chitin is chitosan, obtained by partial deacetylation of chitin under alkaline conditions or by enzymatic hydrolysis. Chitin and chitosan are known to have important functional activities but poor solubility makes them difficult to use in food and biomedicinal applications. Chitooligosaccharides (COS are the degraded products of chitosan or chitin prepared by enzymatic or chemical hydrolysis of chitosan. The greater solubility and low viscosity of COS have attracted the interest of many researchers to utilize COS and their derivatives for various biomedical applications. In light of the recent interest in the biomedical applications of chitin, chitosan, and their derivatives, this review focuses on the preparation and biological activities of chitin, chitosan, COS, and their derivatives.

  1. Enhancing Biological Wastewater Treatment with Chitosan

    Institute of Scientific and Technical Information of China (English)

    陈亮; 陈东辉; 朱珺

    2003-01-01

    Chitin and chitosan have been applied to biological wastewater treatment.From a number of parallel comparison experiments,it can be concluded that the application of chitin and chitosan can both enhance the biological treatment,besides which chitosan is more efficient than chitin.The study on the enhancement mechanism reveals the difference between the two additives:chitosan improves the sludge structure and settlibility,while chitin acts as a kind of carrier for microorganism in the biological treatment system.

  2. NCBI nr-aa BLAST: CBRC-PMAR-01-0383 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PMAR-01-0383 ref|NP_001034492.1| chitin synthase 2 [Tribolium castaneum] gb|AA...Q55061.1| chitin synthase CHS2 [Tribolium castaneum] gb|AAQ62692.1| chitin synthase [Tribolium castaneum] NP_001034492.1 0.021 22% ...

  3. NCBI nr-aa BLAST: CBRC-PMAR-01-0127 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PMAR-01-0127 ref|NP_001034492.1| chitin synthase 2 [Tribolium castaneum] gb|AA...Q55061.1| chitin synthase CHS2 [Tribolium castaneum] gb|AAQ62692.1| chitin synthase [Tribolium castaneum] NP_001034492.1 0.007 21% ...

  4. PREPARASI DAN KARAKTERISASI KITIN DARI KULIT UDANG PUTIH (Litophenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Mardiyah Kurniasih

    2007-11-01

    Full Text Available Chitin is one of the most abundant natural polysaccharides produced by many living organisms; it is usually found as a component of crustacean shells. In this paper, Chitin have been isolated from white shrimp (Litophenaeus vannamei. The preparation of chitin using chemical products to deproteinize and demineralize the source material. Characterization included determination of water, ash, fat and protein degree; moreover chitin powder characterize with FTIR and XRD spectroscopy. The result showed that process efficiency of chitin from white shrimp (Litophenaeus vannamei was 20.95%, with degree of water, ash, fat and protein were 5.39, 2.66, 1.54 and 36.16%, respectively.

  5. The Research of Abstracting Chitin Used Artificial Raising Maggot and Pupa of Musca Domestica%人工饲养家蝇蛆和蛹提取几丁质的研究

    Institute of Scientific and Technical Information of China (English)

    苏水莲; 李娟; 胡雅琼; 谢学斌; 廖华

    2002-01-01

    目的:提取蝇蛆表皮和蛹壳的几丁质.方法:在实验室内人工饲养家蝇48天,传代饲养3代,用人工竹筛分离收集蝇蛆和蛹,并用清洗、脱钙、脱脂、漂白、脱乙酰基、干燥的方法初步提取了几丁质.结果:获得蝇蛆表皮几丁质0.8g和蛹壳几丁质2g.结论:用人工饲养家蝇所得到的家蝇蛆表皮和蛹壳的几丁质含量分别为60%~70%.

  6. Radiation induced formation of giant cells (Saccharomyces uvarum). Pt. 1

    International Nuclear Information System (INIS)

    X-irradiated yeast cells (Saccharomyces uvarum) grown in liquid media stop mitosis and form giant cells. Chitin ring formation, being a prerequisite for cell separation, was studied by fluorescence microscopy using Calcofluor White, a chitin specific dye. Experiments with inhibitors of DNA synthesis (hydroxyurea) and chitin synthesis (polyoxin D) demonstrate chitin ring formation to be dependent on DNA synthesis, whereas bud formation is independent of DNA synthesis and chitin ring formation respectively. Basing on these results the formation of X-ray induced giant cells implies one DNA replication which in turn induces the formation of only one chitin ring between mother cell and giant bud. Obviously no septum can be formed. Thus cell separation does not occur, but the bud already formed, produces another bud demonstrating that bud formation itself is independent of DNA synthesis. (orig.)

  7. Chitinases: An update

    OpenAIRE

    Rifat Hamid; Minhaj A Khan; Mahboob Ahmad; Malik Mobeen Ahmad; Malik Zainul Abdin; Javed Musarrat; Saleem Javed

    2013-01-01

    Chitin, the second most abundant polysaccharide in nature after cellulose, is found in the exoskeleton of insects, fungi, yeast, and algae, and in the internal structures of other vertebrates. Chitinases are enzymes that degrade chitin. Chitinases contribute to the generation of carbon and nitrogen in the ecosystem. Chitin and chitinolytic enzymes are gaining importance for their biotechnological applications, especially the chitinases exploited in agriculture fields to control pathogens. Chi...

  8. Compositions and methods for removal of toxic metals and radionuclides

    Science.gov (United States)

    Cuero, Raul G. (Inventor); McKay, David S. (Inventor)

    2007-01-01

    The present invention relates to compositions and methods for the removal of toxic metals or radionuclides from source materials. Toxic metals may be removed from source materials using a clay, such as attapulgite or highly cationic bentonite, and chitin or chitosan. Toxic metals may also be removed using volcanic ash alone or in combination with chitin or chitosan. Radionuclides may be removed using volcanic ash alone or in combination with chitin or chitosan.

  9. 生分解性材料としてのキトサンフィルムの物性と抗菌活性

    OpenAIRE

    中島, 照夫

    2009-01-01

    [Synopsis] Chitin, chitosan and quaternary chitosan films were prepared, and the physical properties and the antibacterial activities of chitosan and quaternary chitosan films were evaluated. The tensile strength of chitin films was 30~40% lower than that of chitosan films, but the crystallinity of chitin film was much higher than that of chitosan films. The crystallinity and orientation of crystallites were hardly affected by the four kinds of solvent chosen to cast chitosan films, but a de...

  10. A simple fibril and lectin model for cyst walls of Entamoeba and perhaps Giardia

    OpenAIRE

    Samuelson, John; Robbins, Phillips

    2011-01-01

    Cyst walls of Entamoeba and Giardia protect them from environmental insults, stomach acids, and intestinal proteases. Each cyst wall contains a sugar homopolymer: chitin in Entamoeba and a unique N-acetylgalactosamine (GalNAc) homopolymer in Giardia. Entamoeba cyst wall proteins include Jacob lectins (carbohydrate-binding proteins) that cross-link chitin, chitinases that degrade chitin, and Jessie lectins that make walls impermeable. Giardia cyst wall proteins are also lectins that bind fibri...

  11. The Technology of Extracting from Waste Mycelia

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Hong

    2001-01-01

    Chitin is one of the most abundant natural resources. chitosan is deacetylated from chitin. As natural organisms, chitosan is easier to be decomposed with organisms and eatable. So chitosan is wildly used in biology, medicine, foodstuff, cosmetics and so on[1,2] Chitin is a sort of natural glucosamine compound with wealthy resources, but a large amount of chitin is prepared from crab shell and crayfish shell. Some research works have carried on the preparation of chitosan from other resources, such as silkworm pupa, waste mycelia etc.[3,4]  ……

  12. The Technology of Extracting from Waste Mycelia

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Chitin is one of the most abundant natural resources. chitosan is deacetylated from chitin. As natural organisms, chitosan is easier to be decomposed with organisms and eatable. So chitosan is wildly used in biology, medicine, foodstuff, cosmetics and so on[1,2] Chitin is a sort of natural glucosamine compound with wealthy resources, but a large amount of chitin is prepared from crab shell and crayfish shell. Some research works have carried on the preparation of chitosan from other resources, such as silkworm pupa, waste mycelia etc.[3,4

  13. Yeast Interacting Proteins Database: YGR189C, YDL100C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available to beta(1-6)glucan; localizes to sites of polarized growth; expression is induced under cell wall stress conditi... to beta(1-6)glucan; localizes to sites of polarized growth; expression is induced under cell wall stress cond...YGR189C CRH1 Putative chitin transglycosidase, cell wall protein that functions in the transfer of chitin...nit of the GET complex, which is involved in Golgi to ER trafficking and insertion of proteins into the ER m...on Putative chitin transglycosidase, cell wall protein that functions in the transfer of chitin

  14. Electron-beam distillation of natural polymers

    International Nuclear Information System (INIS)

    Pyrolysis of cellulose, lignin, and chitin may be upgraded by the use of an electron-beam irradiation. The radiation-thermal destruction mode does more probable production of liquid low-molecular-weight products instead of solid pyrolitic oligomers. Furans, methoxyphenols, and pyridines are dominant products of high-temperature radiolysis of cellulose, lignin, and chitin, respectively. The mechanism of chain destruction of natural polymers is considered. - Highlights: • Pyrolysis of cellulose, lignin, and chitin upgraded by electron-beam distillation. • Distillation of cellulose results in furans obtaining. • Phenols and pyridines are dominant products from lignin and chitin, respectively

  15. Chitinase Expression in Listeria monocytogenes Is Positively Regulated by the Agr System

    DEFF Research Database (Denmark)

    Paspaliari, Dafni Katerina; Mollerup, Maria Storm; Kallipolitis, Birgitte H.;

    2014-01-01

    The food-borne pathogen Listeria monocytogenes encodes two chitinases, ChiA and ChiB, which allow the bacterium to hydrolyze chitin, the second most abundant polysaccharide in nature. Intriguingly, despite the absence of chitin in human and mammalian hosts, both of the chitinases have been deemed...

  16. Synthesis and Characterization of a Chitosan Derivative for Electro-Optical Applications

    Science.gov (United States)

    Prastofer, Thomas

    1996-01-01

    Chitin is a naturally occurring polymer of alpha(1-4) poly N-acetylglucosamine found primarily in the shells of crustaceans and insects. This polymer is chemically and thermally stable and physically durable as a consequence of hydrogen bonding which causes the alignment and ordering of the polymer chains into microcrystals which aggregate into sheets with chiral nematic order. Industry has attempted to take advantage of chitin's properties and low cost (chitin is a waste product of the shellfish industry) to produce durable fibers and other products. This has been largely unsuccessful because of chitin's non reactivity and insolubility. Chitosan is the deacetylation product of chitin and retains many of the structural properties of chitin. Unlike chitin, chitosan is soluble in aqueous solution at reduced pH making it easier to be processed into fibers and films than chitin. Chitosan and its derivatives are now used in such commercial applications as wound dressings, waste water treatment, and in pharmaceuticals. In this study, we have synthesized a chitosan derivative, N-para-nitrophenyl chitosan (NPNPC), as a model material with potential applications in electro optics.

  17. Sequence Classification: 889339 [TMBETA-GENOME[Archive

    Lifescience Database Archive (English)

    Full Text Available Non-TMB TMH Non-TMB Non-TMB Non-TMB Non-TMB >gi|6319497|ref|NP_009579.1| Chitin synthase III, ca ... e chitin ring during bud emergence, and spore wall chitosan ; Chs3p || http://www.ncbi.nlm.nih.gov/protein/6319 ...

  18. NCBI nr-aa BLAST: CBRC-CJAC-01-0704 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CJAC-01-0704 ref|XP_001387417.2| protein involved in chitin synthesis ... [Pichia stipitis CBS ... 6054] gb|EAZ63394.2| protein involved in chitin synthesis ... [Pichia stipitis CBS 6054] XP_001387417.2 1.0 19% ...

  19. The chitinolytic activity of Listeria monocytogenes EGD is regulated by carbohydrates but also by the virulence regulator PrfA

    DEFF Research Database (Denmark)

    Larsen, Marianne Halberg; Leisner, Jørgen; Ingmer, Hanne

    2010-01-01

    Chitin, an insoluble polymer of N-acetyl-D-glucosamine (GlcNAc), is one of the most abundant carbohydrate polymers in marine and terrestrial environments. Chitin hydrolysis by Listeria monocytogenes depends on two chitinase-encoding genes, chiA and chiB, and the aim of this study was to investigate...

  20. Gıda Endüstrisinde Kitosanın Kullanımı

    OpenAIRE

    Koç, Betül Erkan; Özkan, Mehmet

    2011-01-01

     Chitosan is a modified, natural carbohydrate polymer derived by partial deacetylation of chitin. Chitosan has received considerable attention in recent years because of its biological activities such as antitumor, immunostimulatory, antibacterial, antifungal and hypocholesterolemic functions. In addition to these functions, chitin and chitosan possess several important technological properties such as thickening, flocculating, absorbing, emulsifying, clarifying, gelling and water or dye bind...

  1. Conferring Natural-Derived Porous Microspheres with Surface Multifunctionality through Facile Coordination-Enabled Self-Assembly Process.

    Science.gov (United States)

    Han, Pingping; Shi, Jiafu; Nie, Teng; Zhang, Shaohua; Wang, Xueyan; Yang, Pengfei; Wu, Hong; Jiang, Zhongyi

    2016-03-01

    In this study, multifunctional chitin microspheres are synthesized and utilized as a platform for multiple potential applications in enzyme immobilization, catalytic reduction and adsorption. Porous chitin microspheres with an average diameter of 111.5 μm and a porous architecture are fabricated through a thermally induced phase separation method. Then, the porous chitin microspheres are conferred with surface multifunctionality through facile coordination-enabled self-assembly of tannic acid (TA) and titanium (Ti(IV)) bis(ammonium lactate)dihydroxide (Ti-BALDH). The multipoint hydrogen bonds between TA and chitin microspheres confer the TA-Ti(IV) coating with high adhesion capability to adhere firmly to the surface of the chitin microspheres. In view of the biocompatibility, porosity and surface activity, the multifunctional chitin microspheres are used as carriers for enzyme immobilization. The enzyme-conjugated multifunctional porous microspheres exhibit high catalytic performance (102.8 U·mg(-1) yeast alcohol dehydrogenase). Besides, the multifunctional chitin microspheres also find potential applications in the catalytic reduction (e.g., reduction of silver ions to silver nanoparticles) and efficient adsorption of heavy metal ions (e.g., Pb(2+)) taking advantages of their porosity, reducing capability and chelation property. PMID:26963907

  2. Deproteination of shrimp shell wastes using immobilized marine associated pseudomonad Amet1776

    Digital Repository Service at National Institute of Oceanography (India)

    Bhagat, J.; Venkatramani, M.; Hussain, A. J.; Jayaprakashvel, M.

    ).Chitin and its product has a wide application in the field of waste water treatment (No &Hur, 1998; Lora & Brennan, 2009), cosmetics (Felse& Panda, 1999), 212 BHAGAT et al., Biosci., Biotech. Res. Asia, Vol. 11(Spl. Edn. 1), 211-220 (2014) health care...). We have obtained an appreciable amount (22.8 g) of chitin from 80 g of the shrimp shell powder with an efficiency of 28.5%. Similar trend was reported by Nair and Madhavan, 20.5% chitin in body shell of crab Scylla serrata. Thirunavukkarasu et al...

  3. Use of Low-cost Adsorbents to Chlorophenols and Organic Matter Removal of Petrochemical Wastewater

    Directory of Open Access Journals (Sweden)

    Aretha Moreira de Oliveira

    2013-11-01

    Full Text Available The removal of 2,4 diclorophenol (2,4-DCF and 2,4,6 trichlorophenol (2,4,6 TCF present in  petrochemical wastewater was evaluated using low-cost adsorbents, such as chitin, chitosan and coconut shells. Batch studies showed that the absorption efficiency for 2,4 DCF and 2,4,6 TCF follow the order: chitosan > chitin > coconut shells. Langmuir and Freundlich models have been applied to experimental isotherms data, to better understand the adsorption mechanisms. Petrochemical wastewater treatment with fixed bed column system using chitinous adsorbents showed a removal of COD (75% , TOG (90% and turbidity (74-89%.

  4. Study on the character of chitinase produced by Trichoderna spp.with measuring reducing sugar

    Institute of Scientific and Technical Information of China (English)

    LIU Kai-qi; XIANG Mei-mei; LIU Ren; ZENG Yong-san; LI Hua; JIANG Xin-yin; ZHANG Yue-li

    2004-01-01

    @@ A trusty and intuitionistic method for screening chitinase produced by Trichoderma spp. was developed. 38 isolates of Trichoderma spp. were cultured in liquid medium with chitin or colloidal chitin as the sole carbon source for 4 days. The supernatant of the fermented broth was mixed with colloidal chitin and heated in water-bath at 37℃ for 30 min, then 3,5-dinitrosalicylic acid reagent (DNS) was added to the mixture, and let them react for 10 min in water-bath. According to the different colour of the mixture, the isolates of Trichoderma spp. which can produce chitinase could be screened.

  5. Pengaruh Tepung Cangkang Rajungan (Portunus pelagicus) dalam Ransum terhadap Kadar Kolesterol Serum dan Pertambahan Bobot Badan Tikus Putih (Rattus norvegicus)

    OpenAIRE

    I. U. Warsono; M. Fattah W.; A Parakkasi

    2004-01-01

    Crab shells contain the highest percentage of chitin. Chitin and its derivatives have many properties that make them attractive for a wide variety of applications. This study was conducted to determine the effect of crab (Portunus pelagicus) shells as a source of chitin in ration on serum cholesterol and weight gain of rats (Rattus norvegicus). The study was carried out in a factorial experiment 2 x 5 with 3 replications. The first factor is sex and the second factor is crab shells of 5 leve...

  6. Etude de la rémanence du triflumuron, inhibiteur de la synthèse de la chitine, selon la nature du tissu à l'égard de la mouche tsé-tsé Glossina palpalis gambiensis, dans une perspective de lutte autocide

    OpenAIRE

    Dabiré, R.; Ouédraogo, PA.; Bancé, AZ.

    2006-01-01

    Study of Remanence of Triflumuron, Synthesis Inhibitor, According to the Nature of Cloth with Regard to Tsetse Fly Glossina palpalis gambiensis in View of Self-killed Fight. The objective of this study is to assess the persistence of triflumuron impregated at a dosis of 9,7 g.m-2 on blue cotton, polyester and polypropylene material in comparison with the reference material made of 67% polyester and 33% cotton used in the control of tsetse fly. Impregnated materials were exposed to field condi...

  7. Etude de la rémanence du triflumuron, inhibiteur de la synthèse de la chitine, selon la nature du tissu à l'égard de la mouche tsé-tsé Glossina palpalis gambiensis, dans une perspective de lutte autocide

    Directory of Open Access Journals (Sweden)

    Dabiré, R.

    2006-01-01

    Full Text Available Study of Remanence of Triflumuron, Synthesis Inhibitor, According to the Nature of Cloth with Regard to Tsetse Fly Glossina palpalis gambiensis in View of Self-killed Fight. The objective of this study is to assess the persistence of triflumuron impregated at a dosis of 9,7 g.m-2 on blue cotton, polyester and polypropylene material in comparison with the reference material made of 67% polyester and 33% cotton used in the control of tsetse fly. Impregnated materials were exposed to field conditions during six months. One sample of each material was monthly taken and tsetse flies were exposed to it to assess the effects on the reproduction parameters of contaminated flies. Two types of contamination were evaluated: 20 days old females were contaminated by exposure to impregnated tissues while teneral females (3 days old were contaminated through the mating with males contaminated like the old females. Measured parameters were: the abortions, the pupa production, the non viable pupa and the hatching. The results from the old females showed that impregnated polypropylene material significantly reduced the average of hatching rate during six months (1 1.4% in comparison with impregnated reference material (15.14 21%, cotton material (14 25% and polyester one (21.5 34.3%. For young females the same tendencies were observed. During the six months period of investigation, triflumuron persistence was better on the polypropylene material than on the reference material for the control of tsetse flies by self sterilisation.

  8. INFLUENCE OF CHITIN AND CHEMICAL FUNGICIDES ON GROWTH AND ACTIVITY OF BIOCONTROL AGENTS AGAINST COTTON DISEASES%几丁质和杀菌剂对生物防治菌生长及其防治棉花病害效果的影响

    Institute of Scientific and Technical Information of China (English)

    杨合同; 唐文华; 王加宁; 徐砚珂; 肖斌

    2002-01-01

    研究了化学杀菌剂对木霉菌生长的影响,探讨了几丁质添加物对绿色木霉菌菌株LR、LTR-2、哈茨木霉菌菌株Q1、Q2和粉红粘帚霉菌菌株GLR防治棉花病害效果的影响.多菌灵、苯菌灵和甲基硫菌灵在1.66μg/ml时可以完全抑制Q1和Q2的生长,但在2.68μg/ml时才能完全抑制LR和LTR-2的生长.几丁质添加物使LTR-2和Q1防治棉花立枯病的效果完全丧失,但是能使LR从没有防治效果提高到防治效果为34.6%,而对粉红粘帚霉菌的防治效果没有显著影响;对于防治棉花黄萎病来说,几丁质添加物使木霉菌LR、LTR-2和GLR的防治效果降低,但是提高了Q1的防治效果;对于防治棉花枯萎病来说,几丁质添加物能提高所有测定菌株的防治效果.说明不同的生物防治菌株、添加物和病害组合对于获得良好的防治效果是重要的.

  9. NUTRITIONAL VALUE OF THE FIELD CRICKET (GRYLLUS TESTACEUS WALKER)

    Institute of Scientific and Technical Information of China (English)

    DunWang; Yao-yuBai; Jiang-hongLi; Chuan-xiZhang

    2004-01-01

    The chemical composition and the nutritional quality of protein, fatty acids and chitin of adult field cricket Gryllus testaceus Walker were investigated. The adult insect contalned: crude protein 58.3 %; fat 10.3 %, chitin 8.7 % and ash 2.96 % on dry matter basis respectively. The essential amino acid profile compared well with FAO/WHO recommended pattern except for cysteine and methionine. The fatty acid analysis showed unsaturated acid of the field cricket to be present in high quantities, and the total percentage of oleic acid, linolic acid and linolenic acid was 77.51%. The chitin content of the insect was 8.7 % with a better quality than the commercial chitin that was prepared from shells of shrimp and crab. Therefore the chemical composition of the field cricket indicates the insect to be a good supplement to nutrition for food and feed, even a raw material for medicine.

  10. Polysaccharide biopolymers modified with titanium or nickel nanoparticles for removal of radionuclides from aqueous solutions

    Czech Academy of Sciences Publication Activity Database

    Pospěchová, J.; Brynych, V.; Štengl, Václav; Tolasz, Jakub; Langecker, Jens; Bubeníková, M.; Szatmary, L.

    2016-01-01

    Roč. 307, č. 2 (2016), s. 1303-1314. ISSN 0236-5731 Institutional support: RVO:61388980 Keywords : cellulose * chitin * composite nanomaterial Subject RIV: CA - Inorganic Chemistry Impact factor: 1.034, year: 2014

  11. Listeria monocytogenes has a functional chitinolytic system and an active lytic polysaccharide monooxygenase

    DEFF Research Database (Denmark)

    Paspaliari, Dafni Katerina; Loose, Jennifer S. M.; Larsen, Marianne Halberg;

    2015-01-01

    Chitinases and chitin-active lytic polysaccharide monooxygenases (LPMOs) are most commonly associated with chitin metabolism, but are also reported as virulence factors in pathogenic bacteria. Listeria monocytogenes, a well-known virulent bacterium, possesses two chitinases (ChiA and ChiB) and a...... demonstrate that L. monocytogenes has a fully functional chitinolytic system. Both chitinases show substrate degradation rates similar to those of the nonprocessive endo-chitinase SmChiC from Serratia marcescens. Compared to the S. marcescens LPMO chitin-binding protein CBP21, LmLPMO10 shows a similar rate...... (chitooligosaccharide aldonic acids) with a degree of polymerization below four (ChiA and SmChiC) or three (ChiB). Gene transcription and protein expression analysis showed that LmLPMO10 is neither highly transcribed, nor abundantly secreted during the growth of L. monocytogenes in a chitin-containing medium. The...

  12. Chitosan functionalized poly(vinyl alcohol) for prospects biomedical and industrial applications: A review.

    Science.gov (United States)

    Rafique, Ammara; Mahmood Zia, Khalid; Zuber, Mohammad; Tabasum, Shazia; Rehman, Saima

    2016-06-01

    Chitin and chitosan are amino polysaccharides having multidimensional properties, such as biocompatibility, biodegradability, antibacterial properties and non-toxicity, muco-adhesivity, adsorption properties, etc., and thus they can be widely used in variety of areas. Although human history mainly relies on the biopolymers, however synthetic materials like polyvinyl alcohol (PVA) have good mechanical, chemical and physical properties. Functionalization of PVA with chitin and chitosan is considered very appropriate for the development of well-designed biomaterials such as biodegradable films, for membrane separation, for tissue engineering, for food packaging, for wound healing and dressing, hydro gels formation, gels formation, etc. Considering versatile properties of the chitin and chitosan, and wide industrial and biomedical applications of PVA, this review sheds a light on chitin and chitosan based PVA materials with their potential applications especially focusing the bio-medical field. All the technical scientific issues have been addressed highlighting the recent advancement. PMID:26893051

  13. Chitinases: An update

    Directory of Open Access Journals (Sweden)

    Rifat Hamid

    2013-01-01

    Full Text Available Chitin, the second most abundant polysaccharide in nature after cellulose, is found in the exoskeleton of insects, fungi, yeast, and algae, and in the internal structures of other vertebrates. Chitinases are enzymes that degrade chitin. Chitinases contribute to the generation of carbon and nitrogen in the ecosystem. Chitin and chitinolytic enzymes are gaining importance for their biotechnological applications, especially the chitinases exploited in agriculture fields to control pathogens. Chitinases have a use in human health care, especially in human diseases like asthma. Chitinases have wide-ranging applications including the preparation of pharmaceutically important chitooligosaccharides and N-acetyl D glucosamine, preparation of single-cell protein, isolation of protoplasts from fungi and yeast, control of pathogenic fungi, treatment of chitinous waste, mosquito control and morphogenesis, etc. In this review, the various types of chitinases and the chitinases found in different organisms such as bacteria, plants, fungi, and mammals are discussed.

  14. Community structure of actively growing bacterial populations in plant pathogen suppressive soil

    NARCIS (Netherlands)

    Hjort, K.; Lembke, A.; Speksnijder, A.G.C.L.; Smalla, K.; Jansson, J.K.

    2007-01-01

    The bacterial community in soil was screened by using various molecular approaches for bacterial populations that were activated upon addition of different supplements. Plasmodiophora brassicae spores, chitin, sodium acetate, and cabbage plants were added to activate specific bacterial populations a

  15. Mass spectrometry looks into the structure of beta-N-acetylhexosaminidase

    Czech Academy of Sciences Publication Activity Database

    Pompach, Petr; Man, Petr; Plíhal, Ondřej; Sklenář, Jan; Ettrich, R.; Bezouška, Karel; Havlíček, Vladimír

    Edinburgh, 2003, s. -. [International Mass Spectrometry Conference /16./. Edinburgh (GB), 31.08.2003-05.09.2003] Institutional research plan: CEZ:AV0Z5020903; CEZ:MSM 113100001 Keywords : glcnac * chitin * basidiomycetes Subject RIV: EE - Microbiology, Virology

  16. Endochitinase from wheat germ

    International Nuclear Information System (INIS)

    This paper discusses the chitinase that can be assayed by the liberation of tritiated oligosaccharides from [acetyl-3H]chitin,3 with phosphate buffer at pH 6, final concentration in the reaction mixture, 0.05 M

  17. Chitosan in Plant Protection

    OpenAIRE

    Abdelbasset El Hadrami; Adam, Lorne R.; Ismail El Hadrami; Fouad Daayf

    2010-01-01

    Chitin and chitosan are naturally-occurring compounds that have potential in agriculture with regard to controlling plant diseases. These molecules were shown to display toxicity and inhibit fungal growth and development. They were reported to be active against viruses, bacteria and other pests. Fragments from chitin and chitosan are known to have eliciting activities leading to a variety of defense responses in host plants in response to microbial infections, including the accumulation of ph...

  18. Preparation and Characteristics of Chitosan Grafted byγ-methyl L-glutamate

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionGraft polymers based on chitosan or chitin are considered to be useful as biocompatible materials, membrane materials, and supports for bioactive species as well as models for naturally occurring chitin, which has covalently linked polypeptide chains at some of the amino groups.In this paper, new solvent system was applied in graft copolymerization of γ-methyl L-glutamate NCA onto chitosan under heterogeneous conditions. The characteristics of the chitosan derivatives with side chains were stu...

  19. ISOLATION AND CHARACTERIZATION OF CHITINASE GENE FROM THE UNTRADITIONAL PLANT SPECIES

    OpenAIRE

    Dominika Ďurechová; Ildikó Matušíková; Jana Moravčíková; Martin Jopčík; Jana Libantová

    2013-01-01

    Round-leaf sundew (Drosera rotundifolia L.) from Droseraceae family belongs among a few plant species with strong antifungal potential. It was previously shown that chitinases of carnivorous plant species may play role during the insect prey digestion, when hard chitin skeleton is being decomposed. As many phytopathogenic fungi contain chitin in their cell wall our attention in this work was focused on isolation and in silico characterization of genomic DNA sequence of sundew chitinase gene. ...

  20. In vitro and in vivo application of RNA interference for targeting genes involved in peritrophic matrix synthesis in a lepidopteran system

    Institute of Scientific and Technical Information of China (English)

    Umut Toprak; Doug Baldwin; Martin Erlandson; Cedric Gillott; Stephanie Harris; Dwayne D.Hegedus

    2013-01-01

    The midgut of most insects is lined with a semipermeable acellular tube,the peritrophic matrix(PM),composed of chitin and proteins.Although various genes encoding PM proteins have been characterized,our understanding of their roles in PM structure and function is very limited.One promising approach for obtaining functional information is RNA interference,which has been used to reduce the levels of specific mRNAs using double-stranded RNAs administered to larvae by either injection or feeding.Although this method is well documented in dipterans and coleopterans,reports of its success in lepidopterans are varied.In the current study,the silencing midgut genes encoding PM proteins(insect intestinal mucin 1,insect intestinal mucin 4,PM protein l)and the chitin biosynthetic or modifying enzymes(chitin synthase-B and chitin deacetylase 1)in a noctuid lepidopteran,Mamestra configurata,was examined in vitro and in vivo.In vitro studies in primary midgut epithelial cell preparations revealed an acute and rapid silencing(by 24 h)for the gene encoding chitin deacetylase 1 and a slower rate of silencing(by 72 h)for the gene encoding PM protein 1.Genes encoding insect intestinal mucins were slightly silenced by 72 h,whereas no silencing was detected for the gene encoding chitin synthase-B.In vivo experiments focused on chitin deacetylase 1,as the gene was silenced to the greatest extent in vitro.Continuous feeding of neonates and fourth instar larvae with double-stranded RNA resulted in silencing of chitin deacetylase 1 by 24 and 36 h,respectively.Feeding a single dose to neonates also resulted in silencing by 24 h.The current study demonstrates that genes encoding PM proteins can be silenced and outlines conditions for RNA interference by per os feeding in lepidopterans.

  1. Pseudoaffinity chromatography of chitinolytic enzymes of human intestinal bacterium Clostridium paraputrificum J4

    Czech Academy of Sciences Publication Activity Database

    Tishchenko, Galina; Šimůnek, Jiří; Dohnálek, Jan; Dušková, Jarmila; Koppová, Ingrid; Rozhetsky, K.

    Saint-Petersburg : Russian Chitin Society, 2011. s. 156. [International Conference of the European Chitin Society /10./. 20.05.2011-24.05.2011, Saint-Petersburg] R&D Projects: GA ČR GA310/09/1407 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z50450515 Keywords : pseudoaffinity chromatography * chitinases * low-molecular-weight chitosan Subject RIV: EE - Microbiology, Virology

  2. Tentacles of in vitro-grown round-leaf sundew (Drosera rotundifolia L.) show induction of chitinase activity upon mimicking the presence of prey

    OpenAIRE

    Matusikova, I.; Salaj, J.; Moravcikova, J.; Mlynarova, L.; Nap, J.P.H.; Libantova, J.

    2005-01-01

    Induction of plant-derived chitinases in the leaves of a carnivorous plant was demonstrated using aseptically grown round-leaf sundew (Drosera rotundifolia L.). The presence of insect prey was mimicked by placing the chemical inducers gelatine, salicylic acid and crustacean chitin on leaves. In addition, mechanical stirring of tentacles was performed. Chitinase activity was markedly increased in leaf exudates upon application of notably chitin. Application of gelatine increased the proteolyti...

  3. Chitinolytic Bacteria Isolated from Chili Rhizosphere: Chitinase Characterization and Its Application as Biocontrol for Whitefly (Bemisia tabaci Genn.)

    OpenAIRE

    NISA R MUBARIK; Irni Mahagiani; Amaryllis Anindyaputri; Sugeng Santoso; Iman Rusmana

    2010-01-01

    Problem statement: Chitin, a common constituent of insect exoskeleton, could be hydrolyzed by chitinase. The research was conducted to screen chitinolytic rhizobacteria isolated from rhizosphere of chilli pepper and to determine their chitinase activity in degrading chitin of whitefly, Bemisia tabaci Genn. (Hemiptera: Aleyrodidae). Whitefly is recognized as an important pest on many crops including chilli pepper. Approach: Screening and molecular identification based on 16...

  4. The Psychrotolerant Antarctic Fungus Lecanicillium muscarium CCFEE 5003: A Powerful Producer of Cold-Tolerant Chitinolytic Enzymes

    OpenAIRE

    Massimiliano Fenice

    2016-01-01

    Lecanicillium muscarium CCFEE 5003, isolated in Continental Antarctica, is a powerful producer of extracellular cold-tolerant enzymes. Chitin-hydrolyzing enzymes seems to be the principal extracellular catalytic activities of this psychrotolerant fungus. The production of chitinolytic activities is induced by chitin and other polysaccharides and is submitted to catabolite repression. The chitinolytic system of L. muscarium consists of a number of different proteins having various molecular we...

  5. Doubly curved nanofiber-reinforced optically transparent composites

    Science.gov (United States)

    Shams, Md. Iftekhar; Yano, Hiroyuki

    2015-11-01

    Doubly curved nanofiber-reinforced optically transparent composites with low thermal expansion of 15 ppm/k are prepared by hot pressing vacuum-filtered Pickering emulsions of hydrophobic acrylic resin monomer, hydrophilic chitin nanofibers and water. The coalescence of acrylic monomer droplets in the emulsion is prevented by the chitin nanofibers network. This transparent composite has 3D shape moldability, making it attractive for optical precision parts.

  6. DNA interaction, antitumor and antimicrobial activities of three-dimensional chitosan ring produced from the body segments of a diplopod.

    Science.gov (United States)

    Kaya, Murat; Akyuz, Bahar; Bulut, Esra; Sargin, Idris; Tan, Gamze; Erdonmez, Demet; Maheta, Mansi; Satkauskas, Saulius; Mickevičius, Saulius

    2016-08-01

    Commercially available chitins and the chitin isolated from mushrooms, insect cuticles, shells of shrimp, crab and crayfish reported in the literature are in forms of powder, flake or granule. Three-dimensional chitins have been only known from the sponges but still three-dimensional chitosan has not been reported yet. In this study, we produced three-dimensional chitin and chitosan rings from the body segments of a diplopod species (Julus terrestris). Obtained chitin and chitosan rings were characterized (by FT-IR, SEM, TGA, XRD, dilute solution viscometry and EA) and compared with commercial chitin and chitosan. The interactions with plasmid DNA was studied at varying concentrations of chitosan (0.04, 0.4 and 4mg/mL). Antitumor activity tests were conducted (L929 and HeLa), low cytotoxicity and high antiproliferative activity was observed. Antimicrobial activities of J. terrestris chitosan were investigated on twelve microorganisms and maximum inhibition (15.6±1.154mm) was recorded for common human pathogen Staphylococcus aureus. PMID:27112853

  7. Chitinolytic Bacteria Isolated from Chili Rhizosphere: Chitinase Characterization and Application as Biocontrol for Aphis gossypii

    Directory of Open Access Journals (Sweden)

    TARUNI SRI PRAWASTI

    2010-12-01

    Full Text Available Chitin, a common constituent of insect exoskeleton, could be hydrolyzed by chitinase. This research was conducted to select rhizobacteria isolated from the rhizosphere of chili pepper that produced chitinase and to examine their chitinase activity in degrading chitin of the Aphis gossypii. A total of 25 rhizobacteria isolates formed a clear zone when grown on chitin agar. Three of them had the highest chitinolytic index and were identified as Bacillus sp. strain I.5, I.21, and II.14. The II.14 was chosen for characterization of chitinase activity. The isolate showed maximum chitinase activity at 48-h-incubation. Maximum temperature and pH of the chitinase activity were 55°C and 7.0, respectively. The cell culture and the enzyme crude extract of the above three isolates were tested against A. gossypii and the result was compared to the control through microscopic observation. Hydrolytic analysis showed that the enzyme crude extract of these isolates were able to degrade chitin of insect exoskeleton since the first 3-h-incubation. Meanwhile, the cell culture treatment on the chitin showed degrading activity after 12 h (Bacillus sp. strain I.21 and II.14, and 9 h (Bacillus sp. strain I.5. Chitin degradation of A. gossypii exoskeleton by enzyme crude extract was better than the cell culture treatment. Chitinases produced by Bacillus sp. strains I.5, I.21, and II.14 are potential as biocontrol agents for A. gossypii.

  8. Mode of action of etoxazole.

    Science.gov (United States)

    Nauen, Ralf; Smagghe, Guy

    2006-05-01

    The mode of action of the 2,4-diphenyl-1,3-oxazoline acaricide/insecticide etoxazole has been argued to be moulting inhibition, but experimental results supporting this hypothesis are lacking. This study investigated the effect of etoxazole on chitin biosynthesis in the fall armyworm, Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae). Etoxazole induced moulting defects in fall armyworm larvae similar, if not identical, to those caused by benzoylphenylureas, a well-known class of insecticidal chitin biosynthesis inhibitors. Furthermore, in contrast to untreated larvae, the chitin content in the integuments of larvae several days after treatment did not differ from that in freshly ecdysed individuals, thus suggesting strong chitin biosynthesis inhibition in vivo. A more detailed investigation of the inhibitory potential by incubating cultured integument pieces from larvae of S. frugiperda with [14C]N-acetyl-D-glucosamine, a radiolabelled chitin precursor, revealed I50 values of 2.95 and 0.071 microM for etoxazole and triflumuron respectively. The incorporation of radiolabel into potassium hydroxide-resistant material was inhibited by etoxazole in a dose-dependent manner. Based on these results, it is concluded that the acaricidal and insecticidal mode of action of etoxazole is chitin biosynthesis inhibition. PMID:16555232

  9. Multifunctional layered magnetic composites

    Directory of Open Access Journals (Sweden)

    Maria Siglreitmeier

    2015-01-01

    Full Text Available A fabrication method of a multifunctional hybrid material is achieved by using the insoluble organic nacre matrix of the Haliotis laevigata shell infiltrated with gelatin as a confined reaction environment. Inside this organic scaffold magnetite nanoparticles (MNPs are synthesized. The amount of MNPs can be controlled through the synthesis protocol therefore mineral loadings starting from 15 wt % up to 65 wt % can be realized. The demineralized organic nacre matrix is characterized by small-angle and very-small-angle neutron scattering (SANS and VSANS showing an unchanged organic matrix structure after demineralization compared to the original mineralized nacre reference. Light microscopy and confocal laser scanning microscopy studies of stained samples show the presence of insoluble proteins at the chitin surface but not between the chitin layers. Successful and homogeneous gelatin infiltration in between the chitin layers can be shown. The hybrid material is characterized by TEM and shows a layered structure filled with MNPs with a size of around 10 nm. Magnetic analysis of the material demonstrates superparamagnetic behavior as characteristic for the particle size. Simulation studies show the potential of collagen and chitin to act as nucleators, where there is a slight preference of chitin over collagen as a nucleator for magnetite. Colloidal-probe AFM measurements demonstrate that introduction of a ferrogel into the chitin matrix leads to a certain increase in the stiffness of the composite material.

  10. Purification and characterization of chitinase from Bacillus circulans No.4.1.

    Science.gov (United States)

    Wiwat, C; Siwayaprahm, P; Bhumiratana, A

    1999-09-01

    Bacillus circulans No.4.1 produced a high level of chitinase when cells were grown in tryptic soy broth supplemented with 0.3% colloidal chitin at 35 degrees C for 5 days. Purification was carried out by protein precipitation with 80% saturation ammonium sulfate, anion-exchange chromatography with DEAE-Sephacel, and gel filtration with Sephadex G-100, sequentially. The purified enzyme could be demonstrated as a single band on SDS-PAGE, estimated to be 45 kDa. This enzyme could hydrolyze colloidal chitin, purified chitin, glycol chitin, carboxymethyl-chitin (CM-chitin), and 4-methylumbelliferyl-beta-D-N,N'-diacetylchitobioside [4-MU-(GlcNAc)(2)]. The optimal conditions for this chitinase were pH 8.0 and 40 degrees C. The isoelectric point of the chitinase was 5.1. The amino acid composition of the purified chitinase was determined. The initial 20 amino acid residues of the N-terminal were found to be alanine (A), proline (P), tryptophan (W), asparagine (N), serine (S), lysine (K), glycine (G), asparagine (N), tyrosine (Y), alanine (A), leucine (L), proline (P), tyrosine (Y), tyrosine (Y), arginine (R), glycine (G), alanine (A), tryptophan (W), alanine (A), and valine (V). Knowledge of these properties of chitinase from B. circulans No. 4.1 should be useful in the development of genetically engineered Bacillus sp. as biopesticides. PMID:10441726

  11. Marine microbial community response to inorganic and organic sediment amendments in laboratory mesocosms.

    Science.gov (United States)

    Kan, Jinjun; Wang, Yanbing; Obraztsova, Anna; Rosen, Gunther; Leather, James; Scheckel, Kirk G; Nealson, Kenneth H; Arias-Thode, Y Meriah

    2011-10-01

    Sediment amendments provide promising strategies of enhancing sequestration of heavy metals and degradation of organic contaminants. The impacts of sediment amendments for metal and organic remediation including apatite, organoclay (and apatite and organoclay in geotextile mats), acetate, and chitin on environmental microbial communities in overlying water and sediment profiles are reported here. These experiments were performed concurrent with an ecotoxicity evaluation (data submitted in companion paper) and X-ray absorption spectroscopy of zinc speciation post apatite amendments. X-ray absorption spectra showed that a modest modification of zinc speciation occurred in amended treatments. Significant changes in both bacterial cell densities and populations were observed in response to amendments of apatite+organoclay, chitin, and acetate. The enriched bacteria and breakdown of these amendments were likely attributed to water quality degradation (e.g. ammonia and dissolved oxygen). Molecular fingerprints of bacterial communities by denaturant gradient gel electrophoresis (DGGE) showed that distinct bacterial populations occurred in overlying waters from different amendments: apatite+organoclay led to the dominance of Gammaproteobacteria, acetate enriched Alphaproteobacteria, and chitin treatment led to a dominance of Bacteroidetes and Alphaproteobacteria. In amended sediments, Firmicutes, Bacteroidetes, and Deltaproteobacteria (Desulfovibrio) were commonly found with chitin and apatite+chitin treatments. Finally, sulfate-reducing bacteria (e.g. Desulfovibrio) and metal-reducing bacteria were also recovered with most probable number (MPN) analyses in treatments with acetate, chitin, and apatite+chitin. These geochemically important bacteria were stimulated by amendments and may play critical functional roles in the metal and organic contaminant remediation process for future investigations of contaminated sediments. PMID:21784523

  12. The eggshell is required for meiotic fidelity, polar-body extrusion and polarization of the C. elegans embryo

    Directory of Open Access Journals (Sweden)

    Dennis James W

    2006-10-01

    Full Text Available Abstract Background Fertilization restores the diploid state and begins the process by which the single-cell oocyte is converted into a polarized, multicellular organism. In the nematode, Caenorhabditis elegans, two of the earliest events following fertilization are secretion of the chitinous eggshell and completion of meiosis, and in this report we demonstrate that the eggshell is essential for multiple developmental events at the one-cell stage. Results We show that the GLD (Germline differentiation abnormal-1-regulated hexosamine pathway enzyme, glucosamine-6-phosphate N-acetyltransferase (GNA-2, is required for synthesis of uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc, the substrate for eggshell chitin synthesis by chitin synthase-1 (CHS-1. Furthermore, while chs-1(RNAi or combined RNAi with the chitin-binding proteins, CEJ-1 and B0280.5, does not interfere with normal meiotic timing, lagging chromosomes are observed at meiosis, and polar-body extrusion fails. We also demonstrate that chitin, and either CEJ-1 or B0280.5, are essential for the osmotic/permeability barrier and for movement of the sperm pronucleus/centrosome complex to the cortex, which is associated with the initiation of polarization. Conclusion Our results indicate that the eggshell is required in single-cell C. elegans development, playing an essential role in multiple actin-dependent early events. Furthermore, the earliest meiotic roles precede osmotic barrier formation, indicating that the role of the eggshell is not limited to generation of the osmotic barrier.

  13. Synthesis of hydroxyapatite in the presence of biologically significant molecules

    International Nuclear Information System (INIS)

    In bone mineralization non-collagenous phosphoproteins containing polycarboxylate sequences are thought to control crystal nucleation and to subsequently modify crystal growth. Invertebrate calcified tissues may also contain significant amounts of phosphoserine and/or acidic amino acid residues together with chitin (a polysaccharide). The present study investigated the effect of synthetic phosphorylated compounds as well as monomeric/polymeric carboxylic acid compounds on the formation of hydroxyapatite (HAp) under conditions of physiological pH, temperature and ionic strength. Poly-L-sodium aspartate was found to have the greatest inhibitory effect; only octacalcium phosphate (a known precursor of hydroxyapatite) could be detected in the presence of this polymer. Resultant minerals showed a variety of aggregation states. The biomimetically formed calcium phosphate minerals were identified and characterised by a variety of analytical thechniques, including laser Raman, Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy and x-ray diffraction analysis. In addition, a series of experiments were performed to induce the formation of HAp on biogenic substrates, such as chitin and its derivatives, chitosan, reconstituted chitin and phosphorylated chitin. Granular aggregates of hydroxyapatite could be induced to form directly on phosphorylated chitin surfaces, but not on other biogenically-derived substrates. Copyright (2000) The Australian Ceramic Society

  14. Co-delivery of cell-wall-forming enzymes in the same vesicle for coordinated fungal cell wall formation.

    Science.gov (United States)

    Schuster, Martin; Martin-Urdiroz, Magdalena; Higuchi, Yujiro; Hacker, Christian; Kilaru, Sreedhar; Gurr, Sarah J; Steinberg, Gero

    2016-01-01

    Fungal cells are surrounded by an extracellular cell wall. This complex matrix of proteins and polysaccharides protects against adverse stresses and determines the shape of fungal cells. The polysaccharides of the fungal wall include 1,3-β-glucan and chitin, which are synthesized by membrane-bound synthases at the growing cell tip. A hallmark of filamentous fungi is the class V chitin synthase, which carries a myosin-motor domain. In the corn smut fungus Ustilago maydis, the myosin-chitin synthase Mcs1 moves to the plasma membrane in secretory vesicles, being delivered by kinesin-1 and myosin-5. The myosin domain of Mcs1 enhances polar secretion by tethering vesicles at the site of exocytosis. It remains elusive, however, how other cell-wall-forming enzymes are delivered and how their activity is coordinated post secretion. Here, we show that the U. maydis class VII chitin synthase and 1,3-β-glucan synthase travel in Mcs1-containing vesicles, and that their apical secretion depends on Mcs1. Once in the plasma membrane, anchorage requires enzyme activity, which suggests co-synthesis of chitin and 1,3-β-glucan polysaccharides at sites of exocytosis. Thus, delivery of cell-wall-forming enzymes in Mcs1 vesicles ensures local foci of fungal cell wall formation. PMID:27563844

  15. Chitinases from Bacteria to Human: Properties, Applications, and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Abhishek Singh Rathore

    2015-01-01

    Full Text Available Chitin is the second most plenteous polysaccharide in nature after cellulose, present in cell walls of several fungi, exoskeletons of insects, and crustacean shells. Chitin does not accumulate in the environment due to presence of bacterial chitinases, despite its abundance. These enzymes are able to degrade chitin present in the cell walls of fungi as well as the exoskeletons of insect. They have shown being the potential agents for biological control of the plant diseases caused by various pathogenic fungi and insect pests and thus can be used as an alternative to chemical pesticides. There has been steady increase in demand of chitin derivatives, obtained by action of chitinases on chitin polymer for various industrial, clinical, and pharmaceutical purposes. Hence, this review focuses on properties and applications of chitinases starting from bacteria, followed by fungi, insects, plants, and vertebrates. Designing of chitinase by applying directed laboratory evolution and rational approaches for improved catalytic activity for cost-effective field applications has also been explored.

  16. The Chitinolytic Activities of Streptomyces sp. TH-11

    Directory of Open Access Journals (Sweden)

    Chun-Yi Liau

    2010-12-01

    Full Text Available Chitin is an abundant biopolymer composed of units of N-acetyl-D-glucosamine linked by b-1,4 glycosidic bonds. Chitin is the main component of the shells of mollusks, the cell wall of fungi and yeast and of the exoskeleton of crustaceans and insects. The degradation of chitin is catalyzed by chitinases that occur in a wide range of organisms. Among them, the chitinases from microorganisms are extremely important for the degradation and recycling of the carbon and nitrogen trapped in the large amount of insoluble chitin in nature. Streptomyces sp. TH-11 was isolated from the sediment of the Tou-Chien River, Taiwan. The chitinolytic enzyme activities were detected using a rapid in-gel detection method from the cell-free preparation of the culture medium of TH-11. The chitinolytic enzyme activity during prolonged liquid culturing was also analyzed by direct measurement of the chitin consumption. Decomposition of the exoskeleton of shrimps was demonstrated using electron microscopy and atomic force microscopy.

  17. Purification and characterization of thermostable chitinase from a novel S. maltophilia strain

    Directory of Open Access Journals (Sweden)

    Javed, S.

    2013-01-01

    Full Text Available Aims: The presents study examines the purification and characterization of a chitinase from S. maltophilia SJ602 strainisolated from a soil sample collected from Jamia Hamdard, New Delhi.Methodology and Results: The purification steps included chitin affinity using colloidal chitin as the affinity matrix andcolumn chromatography using Sephadex G-100. The chitinase was purified to 66 fold having a yield of 17%. The molecular weight of the chitinase was found to be around 29 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE. The pH and temperature optima of the purified chitinase were found to be at pH 5.5 and60 °C, respectively. Conclusion, Significance and Impact of the study: Besides showing a significant yield, the enzyme has a highthermal stability which has its applicability in the recycling of chitin waste.

  18. Marine Vibrionaceae as a source of bioactive natural products

    DEFF Research Database (Denmark)

    Månsson, Maria; Wietz, Matthias; Gram, Lone;

    Vibrionaceae are Gram-negative bacteria found widespread in the marine environment where they are particularly abundant on the surface of marine macroorganisms. Production of antibacterial compounds appears to be common among vibrios, yet vibrios are largely underexplored for their proclivity to...... that some strains were capable of producing antibacterial compounds when grown on natural substrates such as chitin or seaweed. One Vibrio coralliilyticus strain was capable of producing the antibacterial compound when using chitin as the sole carbon source and in a live chitin model system, suggesting...... an ecological function. Using chemical profiling, vibrio strains were compared on a global scale, revealing that the production of certain compounds is a conserved feature independent of sample locations. Chemical screening techniques such as explorative solid-phase extraction led to the isolation of...

  19. Evaluation of physical, chemical and irradiation parameters on crab shell's chitosan obtention process

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Maiara S.; Moura, Eduardo de; Geraldo, Aurea B.C., E-mail: maiaraferreira@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Chitin it is found in exoskeletons of crustaceans and in the cellular wall of fungi. Chitosan is obtained through the stages of deproteinization, demineralization and deacetylation. Specially, crab shells present in their composition 15-20% of chitin, 25-40% of proteins and 40-55% calcium carbonate. The demineralization step aims to reduce the inorganic ions content and is realized under hydrochloric acid dissolution. The deproteinization has the function of reducing the proteins and aminoacids by sodium hydroxide solution added to the raw material. In this work, the experimental design used to determine the best steps conditions for the production of final product - chitosan from chitin of crab shells - had been time (10, 30, 60 and 120 minutes), concentration, relation reagent solution/raw material quantity and irradiation parameters (radiation font, dose and dose rate). The results are discussed in terms of total inorganic materials and proteins quantification and of thermal analysis. (author)

  20. Production of chitinolytic enzymes with Trichoderma longibrachiatum IMI 92027 in solid substrate fermentation

    Institute of Scientific and Technical Information of China (English)

    Krisztina Kovacs; Gyorgy Szakacs; Tunde Pusztahelyi; Ashok Pandey

    2004-01-01

    @@ Thirty Trichoderna strains representing 15 species within the genus have been screened for extracellular production of chitinolytic enzymes in solid substrate fermentation (SSF). T.longibrachiatum IMI 92027 ( = ATCC 36838) gave the highest yield (5.0 IU/g dry matter of substrate) after 3 days of fermentation on wheat bran-crude chitin (9:1 mixture) medium. The optimum moisture content (66.7 %), chitin content (20 %), initial pH of the medium (2-5) and time course (5 d) of SSF were determined for strain IMI 92027. No significant effect of different N and P additives was found on the chitinase yield in wheat bran-chitin mixture medium.