WorldWideScience

Sample records for chitin disaccharide glcnac2

  1. Efficient 1H-NMR Quantitation and Investigation of N-Acetyl-D-glucosamine (GlcNAc and N,N'-Diacetylchitobiose (GlcNAc2 from Chitin

    Directory of Open Access Journals (Sweden)

    Huey-Lang Yang

    2011-09-01

    Full Text Available A quantitative determination method of N-acetyl-D-glucosamine (GlcNAc and N,N'-diacetylchitobiose (GlcNAc2 is proposed using a proton nuclear magnetic resonance experiment. N-acetyl groups of GlcNAc and (GlcNAc2 are chosen as target signals, and the deconvolution technique is used to determine the concentration of the corresponding compound. Compared to the HPLC method, 1H-NMR spectroscopy is simple and fast. The method can be used for the analysis of chitin hydrolyzed products with real-time analysis, and for quantifying the content of products using internal standards without calibration curves. This method can be used to quickly evaluate chitinase activity. The temperature dependence of 1H-NMR spectra (VT-NMR is studied to monitor the chemical shift variation of acetyl peak. The acetyl groups of products are involved in intramolecular H-bonding with the OH group on anomeric sites. The rotation of the acetyl group is closely related to the intramolecular hydrogen bonding pattern, as suggested by the theoretical data (molecular modeling.

  2. Engineering the yeast Yarrowia lipolytica for the production of therapeutic proteins homogeneously glycosylated with Man8GlcNAc2 and Man5GlcNAc2

    Directory of Open Access Journals (Sweden)

    De Pourcq Karen

    2012-05-01

    Full Text Available Abstract Background Protein-based therapeutics represent the fastest growing class of compounds in the pharmaceutical industry. This has created an increasing demand for powerful expression systems. Yeast systems are widely used, convenient and cost-effective. Yarrowia lipolytica is a suitable host that is generally regarded as safe (GRAS. Yeasts, however, modify their glycoproteins with heterogeneous glycans containing mainly mannoses, which complicates downstream processing and often interferes with protein function in man. Our aim was to glyco-engineer Y. lipolytica to abolish the heterogeneous, yeast-specific glycosylation and to obtain homogeneous human high-mannose type glycosylation. Results We engineered Y. lipolytica to produce homogeneous human-type terminal-mannose glycosylated proteins, i.e. glycosylated with Man8GlcNAc2 or Man5GlcNAc2. First, we inactivated the yeast-specific Golgi α-1,6-mannosyltransferases YlOch1p and YlMnn9p; the former inactivation yielded a strain producing homogeneous Man8GlcNAc2 glycoproteins. We tested this strain by expressing glucocerebrosidase and found that the hypermannosylation-related heterogeneity was eliminated. Furthermore, detailed analysis of N-glycans showed that YlOch1p and YlMnn9p, despite some initial uncertainty about their function, are most likely the α-1,6-mannosyltransferases responsible for the addition of the first and second mannose residue, respectively, to the glycan backbone. Second, introduction of an ER-retained α-1,2-mannosidase yielded a strain producing proteins homogeneously glycosylated with Man5GlcNAc2. The use of the endogenous LIP2pre signal sequence and codon optimization greatly improved the efficiency of this enzyme. Conclusions We generated a Y. lipolytica expression platform for the production of heterologous glycoproteins that are homogenously glycosylated with either Man8GlcNAc2 or Man5GlcNAc2 N-glycans. This platform expands the utility of Y. lipolytica as a heterologous expression host and makes it possible to produce glycoproteins with homogeneously glycosylated N-glycans of the human high-mannose-type, which greatly broadens the application scope of these glycoproteins.

  3. Effect of sub- and supercritical water treatments on the physicochemical properties of crab shell chitin and its enzymatic degradation.

    Science.gov (United States)

    Osada, Mitsumasa; Miura, Chika; Nakagawa, Yuko S; Kaihara, Mikio; Nikaido, Mitsuru; Totani, Kazuhide

    2015-12-10

    This study examined the effects of sub- and supercritical water pretreatments on the physicochemical properties of crab shell α-chitin and its enzymatic degradation to obtain N,N'-diacetylchitobiose (GlcNAc)2. Following sub- and supercritical water pretreatments, the protein in the crab shell was removed and the residue of crab shell contained α-chitin and CaCO3. Prolonged pretreatment led to α-chitin decomposition. The reaction of pure α-chitin in sub- and supercritical water pretreatments was investigated separately; we observed lower mean molecular weight and weaker hydrogen bonds compared with untreated α-chitin. (GlcNAc)2 yields from enzymatic degradation of subcritical (350 °C, 7 min) and supercritical water (400 °C, 2.5 min) pretreated crab shell were 8% and 6%, compared with 0% without any pretreatment. This study shows that sub- and supercritical water pretreatments of crab shell provide to an alternative method to the use of acid and base for decalcification and deproteinization of crab shell required for (GlcNAc)2 production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Chitin deacetylase

    International Nuclear Information System (INIS)

    Ito, E.; Araki, Y.

    1988-01-01

    This paper discusses chitosan which is a unique polysaccharide in that it possesses free amino groups. The authors state that most of the amino sugar residing in naturally occurring polysaccharides is believed to be N-acylated. An enzyme catalyzing the conversion of chitin to chitosan was first demonstrated in an extract of Mucor rouxii. A similar enzyme was found in the culture filtrate of a plant pathogen, Colletotrichum lindemuthianum. They present the chitin deacetylase activity assayed by measuring the radioactivity of [ 3 H] acetic acid liberated from a water-soluble chitin derivative, glycol [acetyl- 3 H] chitin

  5. Calreticulin discriminates the proximal region at the N-glycosylation site of Glc1Man9GlcNAc2 ligand

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Makoto; Adachi, Yuka [Department of Materials and Life Science, Seikei University, 3-3-1 Kichijoji-kita, Musashino, Tokyo 180-8633 (Japan); Ito, Yukishige [Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); ERATO, Japan Science and Technology Agency, Ito Glycotrilogy Project, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Totani, Kiichiro, E-mail: ktotani@st.seikei.ac.jp [Department of Materials and Life Science, Seikei University, 3-3-1 Kichijoji-kita, Musashino, Tokyo 180-8633 (Japan)

    2015-10-23

    Calreticulin (CRT) is well known as a lectin-like chaperone that recognizes Glc1Man9GlcNAc2 (G1M9)-glycoproteins in the endoplasmic reticulum (ER). However, whether CRT can directly interact with the aglycone moiety (protein portion) of the glycoprotein remains controversial. To improve our understanding of CRT interactions, structure-defined G1M9-derivatives with different aglycones (–OH, –Gly–NH{sub 2}, and –Gly–Glu–{sup t}Bu) were used as CRT ligands, and their interactions with recombinant CRT were analyzed using thermal shift analysis. The results showed that CRT binds strongly to a G1M9-ligand in the order –Gly–Glu–{sup t}Bu > –Gly–NH{sub 2} > –OH, which is the same as that of the reglucosylation of Man9GlcNAc2 (M9)-derivatives by the folding sensor enzyme UGGT (UDP-glucose: glycoprotein glucosyltransferase). Our results indicate that, similar to UGGT, CRT discriminates the proximal region at the N-glycosylation site, suggesting a similar mechanism mediating the recognition of aglycone moieties in the ER glycoprotein quality control system. - Highlights: • Glc1Man9GlcNAc2 (G1M9) ligands with different aglycones were chemically prepared. • Calreticulin (CRT) discriminates the aglycone of Glc1Man9GlcNAc2 (G1M9) ligand. • CRT binds with G1M9 ligands in a similar manner to folding sensor enzyme.

  6. Chitin-induced T6SS in Vibrio cholerae is dependent on ChiS activation.

    Science.gov (United States)

    Chourashi, Rhishita; Das, Suman; Dhar, Debarpan; Okamoto, Keinosuke; Mukhopadhyay, Asish K; Chatterjee, Nabendu Sekhar

    2018-05-01

    Vibrio cholerae regularly colonizes the chitinous exoskeleton of crustacean shells in the aquatic region. The type 6 secretion system (T6SS) in V. cholerae is an interbacterial killing device. This system is thought to provide a competitive advantage to V. cholerae in a polymicrobial community of the aquatic region under nutrient-poor conditions. V. cholerae chitin sensing is known to be initiated by the activation of a two-component sensor histidine kinase ChiS in the presence of GlcNAc2 (N,N'-diacetylchitobiose) residues generated by the action of chitinases on chitin. It is known that T6SS in V. cholerae is generally induced by chitin. However, the effect of ChiS activation on T6SS is unknown. Here, we found that ChiS inactivation resulted in impaired bacterial killing and reduced expression of T6SS genes. Active ChiS positively affected T6SS-mediated natural transformation in V. cholerae. ChiS depletion or inactivation also resulted in reduced colonization on insoluble chitin surfaces. Therefore, we have shown that V. cholerae colonization on chitinous surfaces activates ChiS, which promotes T6SS-dependent bacterial killing and horizontal gene transfer. We also highlight the importance of chitinases in T6SS upregulation.

  7. Visualizing Structure and Dynamics of Disaccharide Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, J. F.; Beckham, G. T.; Himmel, M. E.; Crowley, M. F.

    2012-01-01

    We examine the effect of several solvent models on the conformational properties and dynamics of disaccharides such as cellobiose and lactose. Significant variation in timescale for large scale conformational transformations are observed. Molecular dynamics simulation provides enough detail to enable insight through visualization of multidimensional data sets. We present a new way to visualize conformational space for disaccharides with Ramachandran plots.

  8. Nonabsorbable disaccharides for hepatic encephalopathy

    DEFF Research Database (Denmark)

    Gluud, Lise Lotte; Vilstrup, Hendrik; Morgan, Marsha Y

    2016-01-01

    UNLABELLED: Nonabsorbable disaccharides (NADs) have been used to treat hepatic encephalopathy (HE) since 1966. However, a Cochrane Review, published in 2004, found insufficient evidence to recommend their use in this context. This updated systematic review evaluates the effects of the NADs...... primary/secondary prevention. Random-effects meta-analyses showed that, compared to placebo/no intervention, NADs had a beneficial effect on HE (relative risk [RR] = 0.63, 95% confidence interval [CI] 0.53-0.74, number needed to treat [NNT] = 4) and serious liver-related adverse events such as liver...... with minimal HE. Meta-analyses of the prevention randomized controlled trials showed that NADs prevented the development of HE (RR = 0.47, 95% CI 0.33-0.68, NNT = 6), the risk of developing serious liver-related adverse events (RR = 0.48, 95% CI 0.33-0.70, NNT = 6), and reduced mortality (RR = 0.63, 95% CI 0...

  9. Synthesis of Chitin Oligosaccharides Using Dried Stenotrophomonas maltophilia Cells Containing a Transglycosylation Reaction-Catalyzing β-N-Acetylhexosaminidase as a Whole-Cell Catalyst.

    Science.gov (United States)

    Uehara, Asaki; Takahashi, Narumi; Moriyama, Mei; Hirano, Takako; Hakamata, Wataru; Nishio, Toshiyuki

    2018-02-01

    Bacterial strain NYT501, which we previously isolated from soil, was identified as Stenotrophomonas maltophilia, and it was confirmed that this strain produces an intracellular β-N-acetylhexosaminidase exhibiting transglycosylation activity. Several properties of this enzyme were characterized using a partially purified enzyme preparation. Using N,N'-diacetylchitobiose (GlcNAc) 2 and N,N',N″-triacetylchitotriose (GlcNAc) 3 as substrates and dried cells of this bacterium as a whole-cell catalyst, chitin oligosaccharides of higher degrees of polymerization were synthesized. (GlcNAc) 3 was generated from (GlcNAc) 2 as the major transglycosylation product, and a certain amount of purified sample of the trisaccharide was obtained. By contrast, in the case of the reaction using (GlcNAc) 3 as a substrate, the yield of higher-degree polymerization oligosaccharides was comparatively low.

  10. Regulation of the chitin degradation and utilization system by the ChiX small RNA in Serratia marcescens 2170.

    Science.gov (United States)

    Suzuki, Kazushi; Shimizu, Mari; Sasaki, Naomi; Ogawa, Chisana; Minami, Haruka; Sugimoto, Hayuki; Watanabe, Takeshi

    2016-01-01

    Serratia marcescens 2170 produces three different types of chitinases and chitin-binding protein CBP21. We found that transposon insertion into the 5' untranslated region (5' UTR) of chiPQ-ctb led to defective chitinase and CBP21 production. ChiX small RNA possessed the complementary sequence of the 5' UTRs of the chiPQ-ctb and chiR and repressed the expression of chiP and chiR. ChiX was detected in a medium containing glucose, glycerol, GlcNAc, and (GlcNAc)2, but the expression of both chiP and chiR was only observed in a medium containing (GlcNAc)2. ∆chiX mutant produced chitinases, CBP21, and chitobiase without induction. chiP transcripts were more abundant than those of chiR or chiX in a medium containing (GlcNAc)2. These results suggest that the constitutively expressed ChiX binds to the highly abundant chiP 5' UTR, thereby leading to the induction of chiR mRNA translation and the subsequent expression of chitinases and CBP21.

  11. Microbial Biosensors for Selective Detection of Disaccharides

    Science.gov (United States)

    Seven microbial strains were screened for their ability to detect disaccharides as components of Clark-type oxygen biosensors. Sensors responded to varying degrees to maltose, cellobiose, sucrose, and melibiose, but none responded strongly to lactose. Although microbial sensors are relatively nons...

  12. Synthesis of a jojoba bean disaccharide.

    Science.gov (United States)

    Kornienko, A; Marnera, G; d'Alarcao, M

    1998-08-01

    A synthesis of the disaccharide recently isolated from jojoba beans, 2-O-alpha-D-galactopyranosyl-D-chiro-inositol, has been achieved. The suitably protected chiro-inositol unit was prepared by an enantiospecific synthesis from L-xylose utilizing SmI2-mediated pinacol coupling as a key step.

  13. Chitin Degradation In Marine Bacteria

    DEFF Research Database (Denmark)

    Paulsen, Sara; Machado, Henrique; Gram, Lone

    2015-01-01

    Introduction: Chitin is the most abundant polymer in the marine environment and the second most abundant in nature. Chitin does not accumulate on the ocean floor, because of microbial breakdown. Chitin degrading bacteria could have potential in the utilization of chitin as a renewable carbon...... and nitrogen source in the fermentation industry.Methods: Here, whole genome sequenced marine bacteria were screened for chitin degradation using phenotypic and in silico analyses.Results: The in silico analyses revealed the presence of three to nine chitinases in each strain, however the number of chitinases...... chitin regulatory system.Conclusions: This study has provided insight into the ecology of chitin degradation in marine bacteria. It also served as a basis for choosing a more efficient chitin degrading production strain e.g. for the use of chitin waste for large-scale fermentations....

  14. Chitin fulfilling a biomaterials promise

    CERN Document Server

    Khor, Eugene

    2001-01-01

    The second edition of Chitin underscores the important factors for standardizing chitin processing and characterization. It captures the essential interplay between chitin's assets and limitations as a biomaterial, placing the past promises of chitin in perspective, addressing its present realities and offering insight into what is required to realize chitin's destiny (including its derivative, chitosan) as a biomaterial of the twenty-first century. This book is an ideal guide for both industrialists and researchers with a vested interest in commercializing chitin.An upd

  15. Skin optical clearing potential of disaccharides

    Science.gov (United States)

    Feng, Wei; Shi, Rui; Ma, Ning; Tuchina, Daria K.; Tuchin, Valery V.; Zhu, Dan

    2016-08-01

    Skin optical clearing can significantly enhance the ability of biomedical optical imaging. Some alcohols and sugars have been selected to be optical clearing agents (OCAs). In this work, we paid attention to the optical clearing potential of disaccharides. Sucrose and maltose were chosen as typical disaccharides to compare with fructose, an excellent monosaccharide-OCA, by using molecular dynamics simulation and an ex vivo experiment. The experimental results indicated that the optical clearing efficacy of skin increases linearly with the concentration for each OCA. Both the theoretical predication and experimental results revealed that the two disaccharides exerted a better optical clearing potential than fructose at the same concentration, and sucrose is optimal. Since maltose has an extremely low saturation concentration, the other two OCAs with saturation concentrations were treated topically on rat skin in vivo, and optical coherence tomography imaging was applied to monitor the optical clearing process. The results demonstrated that sucrose could cause a more significant increase in imaging depth and signal intensity than fructose.

  16. Improved fluorescent labeling of chitin oligomers: Chitinolytic properties of acidic mammalian chitinase under somatic tissue pH conditions.

    Science.gov (United States)

    Wakita, Satoshi; Kimura, Masahiro; Kato, Naoki; Kashimura, Akinori; Kobayashi, Shunsuke; Kanayama, Naoto; Ohno, Misa; Honda, Shotaro; Sakaguchi, Masayoshi; Sugahara, Yasusato; Bauer, Peter O; Oyama, Fumitaka

    2017-05-15

    Acidic mammalian chitinase (AMCase) has been implicated in various pathophysiological conditions including asthma, allergic inflammation and food processing. AMCase is most active at pH 2.0, and its activity gradually decreases to up to pH 8. Here we analyzed chitin degradation by AMCase in weak acidic to neutral conditions by fluorophore-assisted carbohydrate electrophoresis established originally for oligosaccharides analysis. We found that specific fragments with slower-than-expected mobility as defined by chitin oligosaccharide markers were generated at pH 5.0∼8.0 as by-products of the reaction. We established an improved method for chitin oligosaccharides suppressing this side reaction by pre-acidification of the fluorophore-labeling reaction mixture. Our improved method specifically detects chitin oligosaccharides and warrants quantification of up to 50nmol of the material. Using this strategy, we found that AMCase produced dimer of N-acetyl-d-glucosamine (GlcNAc) at strong acidic to neutral condition. Moreover, we found that AMCase generates (GlcNAc) 2 as well as (GlcNAc) 3 under physiological conditions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Biopolymer chitin: extraction and characterization

    International Nuclear Information System (INIS)

    Andrade, Sania M.B. de; Ladchumananandasivam, Rasiah

    2011-01-01

    The biopolymers are materials made from renewable sources such as soybean, corn, cane sugar, cellulose and chitin. Chitin is the most abundant biopolymer found in nature, after cellulose. The chemical structure of chitin is distinguished by the hydroxyl group, of structure from cellulose, located at position C-2, which in the chitin is replaced by acetamine group. The objective of this study was to develop the chitin from exoskeletons of Litopenaeus vannamei shrimp, which are discarded as waste, causing pollutions, environmental problems and thus obtain better utilization of these raw materials. It also, show the extraction process and deacetylation of chitosan. The extraction of chitin followed steps of demineralization, desproteinization and deodorization. Chitin and chitosan were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and the thermals properties were analyzed by thermogravimetry (TG/DTG). (author)

  18. Pyrolysis of chitin biomass

    DEFF Research Database (Denmark)

    Qiao, Yan; Chen, Shuai; Liu, Ying

    2015-01-01

    The thermal degradation of chitin biomass with various molecular structures was investigated by thermogravimetric analysis (TG), and the gaseous products were analyzed by connected mass spectroscopy (MS). The chemical structure and morphology of char residues collected at 750°C using the model...

  19. Benzoylurea Chitin Synthesis Inhibitors.

    Science.gov (United States)

    Sun, Ranfeng; Liu, Chunjuan; Zhang, Hao; Wang, Qingmin

    2015-08-12

    Benzoylurea chitin synthesis inhibitors are widely used in integrated pest management (IPM) and insecticide resistance management (IRM) programs due to their low toxicity to mammals and predatory insects. In the past decades, a large number of benzoylurea derivatives have been synthesized, and 15 benzoylurea chitin synthesis inhibitors have been commercialized. This review focuses on the history of commercial benzolyphenylureas (BPUs), synthetic methods, structure-activity relationships (SAR), action mechanism research, environmental behaviors, and ecotoxicology. Furthermore, their disadvantages of high risk to aquatic invertebrates and crustaceans are pointed out. Finally, we propose that the para-substituents at anilide of benzoylphenylureas should be the functional groups, and bipartite model BPU analogues are discussed in an attempt to provide new insight for future development of BPUs.

  20. Selective tumor cell targeting by the disaccharide moiety of bleomycin.

    Science.gov (United States)

    Yu, Zhiqiang; Schmaltz, Ryan M; Bozeman, Trevor C; Paul, Rakesh; Rishel, Michael J; Tsosie, Krystal S; Hecht, Sidney M

    2013-02-27

    In a recent study, the well-documented tumor targeting properties of the antitumor agent bleomycin (BLM) were studied in cell culture using microbubbles that had been derivatized with multiple copies of BLM. It was shown that BLM selectively targeted MCF-7 human breast carcinoma cells but not the "normal" breast cell line MCF-10A. Furthermore, it was found that the BLM analogue deglycobleomycin, which lacks the disaccharide moiety of BLM, did not target either cell line, indicating that the BLM disaccharide moiety is necessary for tumor selectivity. Not resolved in the earlier study were the issues of whether the BLM disaccharide moiety alone is sufficient for tumor cell targeting and the possible cellular uptake of the disaccharide. In the present study, we conjugated BLM, deglycoBLM, and BLM disaccharide to the cyanine dye Cy5**. It was found that the BLM and BLM disaccharide conjugates, but not the deglycoBLM conjugate, bound selectively to MCF-7 cells and were internalized. The same was also true for the prostate cancer cell line DU-145 (but not for normal PZ-HPV-7 prostate cells) and for the pancreatic cancer cell line BxPC-3 (but not for normal SVR A221a pancreas cells). The targeting efficiency of the disaccharide was only slightly less than that of BLM in MCF-7 and DU-145 cells and comparable to that of BLM in BxPC-3 cells. These results establish that the BLM disaccharide is both necessary and sufficient for tumor cell targeting, a finding with obvious implications for the design of novel tumor imaging and therapeutic agents.

  1. The disaccharide moiety of bleomycin facilitates uptake by cancer cells.

    Science.gov (United States)

    Schroeder, Benjamin R; Ghare, M Imran; Bhattacharya, Chandrabali; Paul, Rakesh; Yu, Zhiqiang; Zaleski, Paul A; Bozeman, Trevor C; Rishel, Michael J; Hecht, Sidney M

    2014-10-01

    The disaccharide moiety is responsible for the tumor cell targeting properties of bleomycin (BLM). While the aglycon (deglycobleomycin) mediates DNA cleavage in much the same fashion as bleomycin, it exhibits diminished cytotoxicity in comparison to BLM. These findings suggested that BLM might be modular in nature, composed of tumor-seeking and tumoricidal domains. To explore this possibility, BLM analogues were prepared in which the disaccharide moiety was attached to deglycobleomycin at novel positions, namely, via the threonine moiety or C-terminal substituent. The analogues were compared with BLM and deglycoBLM for DNA cleavage, cancer cell uptake, and cytotoxic activity. BLM is more potent than deglycoBLM in supercoiled plasmid DNA relaxation, while the analogue having the disaccharide on threonine was less active than deglycoBLM and the analogue containing the C-terminal disaccharide was slightly more potent. While having unexceptional DNA cleavage potencies, both glycosylated analogues were more cytotoxic to cultured DU145 prostate cancer cells than deglycoBLM. Dye-labeled conjugates of the cytotoxic BLM aglycons were used in imaging experiments to determine the extent of cell uptake. The rank order of internalization efficiencies was the same as their order of cytotoxicities toward DU145 cells. These findings establish a role for the BLM disaccharide in tumor targeting/uptake and suggest that the disaccharide moiety may be capable of delivering other cytotoxins to cancer cells. While the mechanism responsible for uptake of the BLM disaccharide selectively by tumor cells has not yet been established, data are presented which suggest that the metabolic shift to glycolysis in cancer cells may provide the vehicle for selective internalization.

  2. PROPERTIES OF CHITIN REINFORCES COMPOSITES: A REVIEW

    African Journals Online (AJOL)

    user

    mechanical and thermal properties of chitin reinforced composites. ..... with crabyon fiber and normal viscose filaments. Also. Zhang et al.,[65] successfully blended chitin/cellulose using two different coagulating systems (immersed in 5.

  3. Vibrational studies on disaccharide/H{sub 2}O systems

    Energy Technology Data Exchange (ETDEWEB)

    Branca, C.; Magazu' , S.; Maisano, G.; Mangione, A.; Bennington, S.M.; Taylor, J

    2004-07-15

    Inelastic neutron scattering (INS) on pure water and on aqueous solutions of homologous disaccharides, such as trehalose and sucrose, are presented. Neutron spectra were collected by using the spectrometer MARI at the ISIS pulsed neutron source of the Rutheford Appleton Laboratory (Chilton, UK). The MARI spectrometer allowed us to get information on the hydrogen bond structural network in homologous disaccharide-water solutions by analysing the structural modifications induced by the presence of trehalose and sucrose on the main spectral features of pure water. Special emphasis was addressed to the intramolecular OH stretching mode.

  4. Kinetic modelling of reactions in heated disaccharide-casein systems

    NARCIS (Netherlands)

    Brands, C.M.J.; Boekel, van M.A.J.S.

    2003-01-01

    The reactions occurring in disaccharide-casein reaction mixtures during heating at 120 degreesC and pH 6.8 were studied. The existence of two main degradation routes were established: (1) Isomerisation of the aldose sugars lactose and maltose in their ketose isomers lactulose and maltulose,

  5. Determination of chitin in Claviceps

    Energy Technology Data Exchange (ETDEWEB)

    Schmauder, H P; Groeger, D [Akademie der Wissenschaften der DDR, Halle/Saale. Inst. fuer Biochemie der Pflanzen

    1978-01-01

    Preparations rich in chitin obtained from the cell walls of ergot fungi were studied by X-ray diffraction and IR-techniques. During the course of fermentation, the yield of chitin was determined using a modified procedure according to Ride and Drysdale (1972). A saprophytic ergotoxine-producing Claviceps purpurea strain (Pepty 695) was found to contain 7-9 ..mu..g glucosamine/mg dry weight of the mycelium in contrast to 3-5 ..mu..g glucosamine/mg dry weight of a non-alkaloid producing C. purpurea strain (PUR 212). There was no remarkable fluctuation of the glucosamine content in strain Pepty 695 during the course of fermentation.

  6. Chitin Scaffolds in Tissue Engineering

    Science.gov (United States)

    Jayakumar, Rangasamy; Chennazhi, Krishna Prasad; Srinivasan, Sowmya; Nair, Shantikumar V.; Furuike, Tetsuya; Tamura, Hiroshi

    2011-01-01

    Tissue engineering/regeneration is based on the hypothesis that healthy stem/progenitor cells either recruited or delivered to an injured site, can eventually regenerate lost or damaged tissue. Most of the researchers working in tissue engineering and regenerative technology attempt to create tissue replacements by culturing cells onto synthetic porous three-dimensional polymeric scaffolds, which is currently regarded as an ideal approach to enhance functional tissue regeneration by creating and maintaining channels that facilitate progenitor cell migration, proliferation and differentiation. The requirements that must be satisfied by such scaffolds include providing a space with the proper size, shape and porosity for tissue development and permitting cells from the surrounding tissue to migrate into the matrix. Recently, chitin scaffolds have been widely used in tissue engineering due to their non-toxic, biodegradable and biocompatible nature. The advantage of chitin as a tissue engineering biomaterial lies in that it can be easily processed into gel and scaffold forms for a variety of biomedical applications. Moreover, chitin has been shown to enhance some biological activities such as immunological, antibacterial, drug delivery and have been shown to promote better healing at a faster rate and exhibit greater compatibility with humans. This review provides an overview of the current status of tissue engineering/regenerative medicine research using chitin scaffolds for bone, cartilage and wound healing applications. We also outline the key challenges in this field and the most likely directions for future development and we hope that this review will be helpful to the researchers working in the field of tissue engineering and regenerative medicine. PMID:21673928

  7. Differentiations of chitin content and surface morphologies of chitins extracted from male and female grasshopper species.

    Directory of Open Access Journals (Sweden)

    Murat Kaya

    Full Text Available In this study, we used Fourier transform infrared spectroscopy (FT-IR, elemental analysis (EA, thermogravimetric analysis (TGA, X-ray diffractometry (XRD, and scanning electron microscopy (SEM to investigate chitin structure isolated from both sexes of four grasshopper species. FT-IR, EA, XRD, and TGA showed that the chitin was in the alpha form. With respect to gender, two main differences were observed. First, we observed that the quantity of chitin was greater in males than in females and the dry weight of chitin between species ranged from 4.71% to 11.84%. Second, using SEM, we observed that the male chitin surface structure contained 25-90 nm wide nanofibers and 90-250 nm nanopores, while no pores or nanofibers were observed in the chitin surface structure of the majority of females (nanofibers were observed only in M. desertus females. In contrast, the elemental analysis, thermal properties, and crystalline index values for chitin were similar in males and females. Also, we carried out enzymatic digestion of the isolated chitins using commercial chitinase from Streptomyces griseus. We observed that there were no big differences in digestion rate of the chitins from both sexes and commercial chitin. The digestion rates were for grasshoppers' chitins; 88.45-95.48% and for commercial chitin; 94.95%.

  8. Differentiations of chitin content and surface morphologies of chitins extracted from male and female grasshopper species.

    Science.gov (United States)

    Kaya, Murat; Lelešius, Evaldas; Nagrockaitė, Radvilė; Sargin, Idris; Arslan, Gulsin; Mol, Abbas; Baran, Talat; Can, Esra; Bitim, Betul

    2015-01-01

    In this study, we used Fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA), thermogravimetric analysis (TGA), X-ray diffractometry (XRD), and scanning electron microscopy (SEM) to investigate chitin structure isolated from both sexes of four grasshopper species. FT-IR, EA, XRD, and TGA showed that the chitin was in the alpha form. With respect to gender, two main differences were observed. First, we observed that the quantity of chitin was greater in males than in females and the dry weight of chitin between species ranged from 4.71% to 11.84%. Second, using SEM, we observed that the male chitin surface structure contained 25-90 nm wide nanofibers and 90-250 nm nanopores, while no pores or nanofibers were observed in the chitin surface structure of the majority of females (nanofibers were observed only in M. desertus females). In contrast, the elemental analysis, thermal properties, and crystalline index values for chitin were similar in males and females. Also, we carried out enzymatic digestion of the isolated chitins using commercial chitinase from Streptomyces griseus. We observed that there were no big differences in digestion rate of the chitins from both sexes and commercial chitin. The digestion rates were for grasshoppers' chitins; 88.45-95.48% and for commercial chitin; 94.95%.

  9. Chitin Degradation Proteins Produced by the Marine Bacterium Vibrio harveyi Growing on Different Forms of Chitin.

    Science.gov (United States)

    Svitil, A L; Chadhain, S; Moore, J A; Kirchman, D L

    1997-02-01

    Relatively little is known about the number, diversity, and function of chitinases produced by bacteria, even though chitin is one of the most abundant polymers in nature. Because of the importance of chitin, especially in marine environments, we examined chitin-degrading proteins in the marine bacterium Vibrio harveyi. This bacterium had a higher growth rate and more chitinase activity when grown on (beta)-chitin (isolated from squid pen) than on (alpha)-chitin (isolated from snow crab), probably because of the more open structure of (beta)-chitin. When exposed to different types of chitin, V. harveyi excreted several chitin-degrading proteins into the culture media. Some chitinases were present with all of the tested chitins, while others were unique to a particular chitin. We cloned and identified six separate chitinase genes from V. harveyi. These chitinases appear to be unique based on DNA restriction patterns, immunological data, and enzyme activity. This marine bacterium and probably others appear to synthesize separate chitinases for efficient utilization of different forms of chitin and chitin by-products.

  10. Chitin nanofiber elucidates the elicitor activity of polymeric chitin in plants

    Directory of Open Access Journals (Sweden)

    Mayumi eEgusa

    2015-12-01

    Full Text Available Chitin, an N-acetyl-D-glucosamine polymer, is a component of fungal cell walls and a microbe/pathogen-associated molecular pattern that elicits plant defense responses. As polymeric chitin is difficult to handle due to its insolubility in water, many studies on chitin-induced immune responses have used water-soluble low-molecular weight chitin instead. Thus, it is unclear if polymeric chitin can induce resistance. Here, we examined the elicitor activity of chitin nanofiber (CNF of submicron thickness prepared from polymeric chitin. CNF showed a high dispersing ability in water and induced both reactive oxygen species (ROS production and chitin-induced defense-related gene expression in Arabidopsis thaliana seedlings. The Arabidopsis chitin elicitor receptor kinase 1 (Atcerk1 mutant, which is impaired in chitin perception, also failed to respond to CNF. CNF exposure triggered ROS generation in suspension-cultured cells from Oryza sativa. Furthermore, pre-treatment of Arabidopsis leaves with CNF effectively reduced pathogen infection by both the fungus Alternaria brassicicola and the bacterium Pseudomonas syringae pv. tomato DC3000. These results demonstrate that CNF has elicitor activity and will help define the role of polymeric chitin in plant immune responses.

  11. "Chitin-specific" peroxidases in plants.

    Science.gov (United States)

    Maksimov, I V; Cherepanova, E A; Khairullin, R M

    2003-01-01

    The activity of various plant peroxidases and the ability of their individual isoforms to bind chitin was studied. Some increase in peroxidase activity was observed in crude extracts in the presence of chitin. Activated peroxidases of some species fell in the fraction not sorbed on chitin and those of other species can bind chitin. Only anionic isoperoxidases from oat (Avena sativa), rice (Oryza sativa), horseradish (Armoracia rusticana), garden radish (Raphanus sativus var. radicula), peanut (Arachis hypogaea), and tobacco (Nicotiana tabacum Link et Otto) were sorbed on chitin. Both anionic and cationic isoforms from pea (Pisum sativum), galega(Galega orientalis), cucumber (Cucumis sativus), and zucchini (Cucurbita pepo L.) were sorbed on chitin. Peroxidase activation under the influence of chitin was correlated to the processes that occur during hypersensitive reaction and lignification of sites, in which pathogenic fungus penetrates into a plant. The role of chitin-specific isoperoxidases in inhibition of fungal growth and connection of this phenomenon with structural characteristics of isoperoxidases are also discussed.

  12. Modification of chitin as substrates for chitinase

    African Journals Online (AJOL)

    sunny t

    2015-05-06

    May 6, 2015 ... Enzymes are able to bind to their substrates specifically at the active site. The proximity and ... the presence of chitin as a carbon source (Chernin et al.,. 1998). ... Possible rearrangement of chitin structure ... and form larger granules. .... Medium for Enumeration of Actinomycetes in Water and Soil. Appl.

  13. Calorimetric study of binding of some disaccharides with crown ethers

    Energy Technology Data Exchange (ETDEWEB)

    Davydova, Olga I.; Lebedeva, Nataliya Sh.; Parfenyuk, Elena V

    2004-11-01

    Isothermal titration calorimetry has been applied to the determination of the thermodynamic parameters of binding of {beta}-lactose, {alpha},{alpha}-trehalose and sucrose with 15-crown-5 and 18-crown-6 in water at 298.15 K. The formation of 1:1 molecular associates has been found for the systems studied except 18-crown-6 and {beta}-lactose. The associates are preferentially or completely entropy stabilized. The most stable associate is formed between {alpha},{alpha}-trehalose and 18-crown-6. The obtained values of thermodynamic parameters of binding are discussed from the point of view of solute-solvent interactions as well as conformational and structural peculiarities of the disaccharides (DS) and crown ethers (CE)

  14. Calorimetric study of binding of some disaccharides with crown ethers

    International Nuclear Information System (INIS)

    Davydova, Olga I.; Lebedeva, Nataliya Sh.; Parfenyuk, Elena V.

    2004-01-01

    Isothermal titration calorimetry has been applied to the determination of the thermodynamic parameters of binding of β-lactose, α,α-trehalose and sucrose with 15-crown-5 and 18-crown-6 in water at 298.15 K. The formation of 1:1 molecular associates has been found for the systems studied except 18-crown-6 and β-lactose. The associates are preferentially or completely entropy stabilized. The most stable associate is formed between α,α-trehalose and 18-crown-6. The obtained values of thermodynamic parameters of binding are discussed from the point of view of solute-solvent interactions as well as conformational and structural peculiarities of the disaccharides (DS) and crown ethers (CE)

  15. Synthesis and physicochemical characterization of chitin dihexanoate — A new biocompatible chitin derivative — In comparison to chitin dibutyrate

    Energy Technology Data Exchange (ETDEWEB)

    Skołucka-Szary, Karolina, E-mail: karolina.skolucka@celther.com [Department of Research and Development, Celther Poland Sp. z o.o. ul. Ostrzykowizna 14A, 05-170 Zakroczym (Poland); Ramięga, Aleksandra; Piaskowska, Wanda [Department of Research and Development, Celther Poland Sp. z o.o. ul. Ostrzykowizna 14A, 05-170 Zakroczym (Poland); Janicki, Bartosz [Silesian University of Technology, Faculty of Chemistry, Department of Physical Chemistry and Technology of Polymers, ul. M. Strzody 9, 44-100 Gliwice (Poland); Grala, Magdalena [Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz (Poland); Rieske, Piotr [Department of Research and Development, Celther Poland Sp. z o.o. ul. Ostrzykowizna 14A, 05-170 Zakroczym (Poland); Bartczak, Zbigniew [Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz (Poland); Piaskowski, Sylwester [Department of Research and Development, Celther Poland Sp. z o.o. ul. Ostrzykowizna 14A, 05-170 Zakroczym (Poland)

    2016-03-01

    Chitin dihexanoate (DHCH) is the novel biocompatible and technologically friendly highly substituted chitin diester. Here we described optimization of DHCH and chitin dibutyrate (dibutyryl chitin, DBC) synthesis conditions (temperature and reaction time) to obtain desired polymers with high reaction yield, high substitution degree (close to 2) and appropriately high molecular weights. A two-step procedure, employing acidic anhydrides (hexanoic or butyric anhydride) as the acylation agent and methanesulfonic acid both as the catalyst and the reaction medium, was applied. Chemical structures of DBC and DHCH were confirmed by NMR ({sup 1}H and {sup 13}C) and IR investigations. Mechanical properties, thermogravimetric analysis, differential scanning calorimetry and biocompatibility (Neutral red uptake assay, Skin Sensitization and Irritation Tests) were assessed. Both polymers proved highly biocompatible (non-cytotoxic in vitro, non-irritating and non-allergic to skin) and soluble in several organic solvents (dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, acetone, ethanol and others). It is worth emphasizing that DHCH and DBC can be easily processed by solvent casting method and the salt-leaching method, what gives the opportunity to prepare highly porous structures, which can be further successfully applied as the material for wound dressings and scaffolds for tissue engineering. - Highlights: • A new method for chitin dihexanoate (DHCH) synthesis was proposed. • DHCH physicochemical and biological properties were analyzed. • DHCH properties were compared with DBC characteristics. • For synthesis of both, DBC and DHCH methanesulfonic acid was used as the catalyst.

  16. A Selective Assay to Detect Chitin and Biologically Active Nano-Machineries for Chitin-Biosynthesis with Their Intrinsic Chitin-Synthase Molecules

    Directory of Open Access Journals (Sweden)

    Hildgund Schrempf

    2010-09-01

    Full Text Available A new assay system for chitin has been developed. It comprises the chitin-binding protein ChbB in fusion with a His-tag as well as with a Strep-tag, the latter of which was chemically coupled to horseradish peroxidase. With the resulting complex, minimal quantities of chitin are photometrically detectable. In addition, the assay allows rapid scoring of the activity of chitin-synthases. As a result, a refined procedure for the rapid purification of yeast chitosomes (nano-machineries for chitin biosynthesis has been established. Immuno-electronmicroscopical studies of purified chitosomes, gained from a yeast strain carrying a chitin-synthase gene fused to that for GFP (green-fluorescence protein, has led to the in situ localization of chitin-synthase-GFP molecules within chitosomes.

  17. Extraction and characterization of chitin and chitosan from Nigerian ...

    African Journals Online (AJOL)

    Chitin was synthesized from Nigerian brown shrimps by a chemical process involving demineralization and deproteinisation. Deacetylation of the chitin was conducted to obtain Chitosan. The chitin and chitosan were characterized using FTIR, XRD and SEM. Proximate and elemental analysis were also conducted.

  18. Chitin Adsorbents for Toxic Metals: A Review

    Directory of Open Access Journals (Sweden)

    Ioannis Anastopoulos

    2017-01-01

    Full Text Available Wastewater treatment is still a critical issue all over the world. Among examined methods for the decontamination of wastewaters, adsorption is a promising, cheap, environmentally friendly and efficient procedure. There are various types of adsorbents that have been used to remove different pollutants such as agricultural waste, compost, nanomaterials, algae, etc., Chitin (poly-β-(1,4-N-acetyl-d-glucosamine is the second most abundant natural biopolymer and it has attracted scientific attention as an inexpensive adsorbent for toxic metals. This review article provides information about the use of chitin as an adsorbent. A list of chitin adsorbents with maximum adsorption capacity and the best isotherm and kinetic fitting models are provided. Moreover, thermodynamic studies, regeneration studies, the mechanism of adsorption and the experimental conditions are also discussed in depth.

  19. Biodegradation of the chitin-protein complex in crustacean cuticle

    Science.gov (United States)

    Artur, Stankiewicz B.; Mastalerz, Maria; Hof, C.H.J.; Bierstedt, A.; Flannery, M.B.; Briggs, D.E.G.; Evershed, R.P.

    1998-01-01

    Arthropod cuticles consist predominantly of chitin cross-linked with proteins. While there is some experimental evidence that this chitin-protein complex may resist decay, the chemical changes that occur during degradation have not been investigated in detail. The stomatopod crustacean Neogonodactylus oerstedii was decayed in the laboratory under anoxic conditions. A combination of pyrolysis-gas chromatography/mass spectrometry and FTIR revealed extensive chemical changes after just 2 weeks that resulted in a cuticle composition dominated by chitin. Quantitative analysis of amino acids (by HPLC) and chitin showed that the major loss of proteins and chitin occurred between weeks 1 and 2. After 8 weeks tyrosine, tryptophan and valine are the most prominent amino acid moieties, showing their resistance to degradation. The presence of cyclic ketones in the pyrolysates indicates that mucopolysaccharides or other bound non-chitinous carbohydrates are also resistant to decay. There is no evidence of structural degradation of chitin prior to 8 weeks when FTIR revealed a reduction in chitin-specific bands. The chemical changes are paralleled by structural changes in the cuticle, which becomes an increasingly open structure consisting of loose chitinous fibres. The rapid rate of decay in the experiments suggests that where chitin and protein are preserved in fossil cuticles degradation must have been inhibited.Arthropod cuticles consist predominantly of chitin cross-linked with proteins. While there is some experimental evidence that this chitin-protein complex may resist decay, the chemical changes that occur during degradation have not been investigated in detail. The stomatopod crustacean Neogonodactylus oerstedii was decayed in the laboratory under anoxic conditions. A combination of pyrolysis-gas chromatography/mass spectrometry and FTIR revealed extensive chemical changes after just 2 weeks that resulted in a cuticle composition dominated by chitin. Quantitative

  20. Biopolymer chitin: extraction and characterization; Biopolimero quitina: extracao e caracterizacao

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The biopolymers are materials made from renewable sources such as soybean, corn, cane sugar, cellulose and chitin. Chitin is the most abundant biopolymer found in nature, after cellulose. The chemical structure of chitin is distinguished by the hydroxyl group, of structure from cellulose, located at position C-2, which in the chitin is replaced by acetamine group. The objective of this study was to develop the chitin from exoskeletons of Litopenaeus vannamei shrimp, which are discarded as waste, causing pollutions, environmental problems and thus obtain better utilization of these raw materials. It also, show the extraction process and deacetylation of chitosan. The extraction of chitin followed steps of demineralization, desproteinization and deodorization. Chitin and chitosan were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and the thermals properties were analyzed by thermogravimetry (TG/DTG). (author)

  1. Chitin: 'Forgotten' Source of Nitrogen: From Modern Chitin to Thermally Mature Kerogen: Lessons from Nitrogen Isotope Ratios

    Science.gov (United States)

    Schimmelmann, A.; Wintsch, R.P.; Lewan, M.D.; DeNiro, M.J.

    1998-01-01

    Chitinous biomass represents a major pool of organic nitrogen in living biota and is likely to have contributed some of the fossil organic nitrogen in kerogen. We review the nitrogen isotope biogeochemistry of chitin and present preliminary results suggesting interaction between kerogen and ammonium during thermal maturation. Modern arthropod chitin may shift its nitrogen isotope ratio by a few per mil depending on the chemical method of chitin preparation, mostly because N-containing non-amino-sugar components in chemically complex chitin cannot be removed quantitatively. Acid hydrolysis of chemically complex chitin and subsequent ion-chromatographic purification of the "deacetylated chitin-monomer" D-glucosamine (in hydrochloride form) provides a chemically well-defined, pure amino-sugar substrate for reproducible, high-precision determination of ??15N values in chitin. ??15N values of chitin exhibited a variability of about one per mil within an individual's exoskeleton. The nitrogen isotope ratio differed between old and new exoskeletons by up to 4 per mil. A strong dietary influence on the ??15N value of chitin is indicated by the observation of increasing ??15N values of chitin from marine crustaceans with increasing trophic level. Partial biodegradation of exoskeletons does not significantly influence ??15N values of remaining, chemically preserved amino sugar in chitin. Diagenesis and increasing thermal maturity of sedimentary organic matter, including chitin-derived nitrogen-rich moieties, result in humic compounds much different from chitin and may significantly change bulk ??15N values. Hydrous pyrolysis of immature source rocks at 330??C in contact with 15N-enriched NH4Cl, under conditions of artificial oil generation, demonstrates the abiogenic incorporation of inorganic nitrogen into carbon-bound nitrogen in kerogen. Not all organic nitrogen in natural, thermally mature kerogen is therefore necessarily derived from original organic matter, but may

  2. Investigations of homologous disaccharides by elastic incoherent neutron scattering and wavelet multiresolution analysis

    Energy Technology Data Exchange (ETDEWEB)

    Magazù, S.; Migliardo, F. [Dipartimento di Fisica e di Scienze della Terra dell’, Università degli Studi di Messina, Viale F. S. D’Alcontres 31, 98166 Messina (Italy); Vertessy, B.G. [Institute of Enzymology, Hungarian Academy of Science, Budapest (Hungary); Caccamo, M.T., E-mail: maccamo@unime.it [Dipartimento di Fisica e di Scienze della Terra dell’, Università degli Studi di Messina, Viale F. S. D’Alcontres 31, 98166 Messina (Italy)

    2013-10-16

    Highlights: • Innovative multiresolution wavelet analysis of elastic incoherent neutron scattering. • Elastic Incoherent Neutron Scattering measurements on homologues disaccharides. • EINS wavevector analysis. • EINS temperature analysis. - Abstract: In the present paper the results of a wavevector and thermal analysis of Elastic Incoherent Neutron Scattering (EINS) data collected on water mixtures of three homologous disaccharides through a wavelet approach are reported. The wavelet analysis allows to compare both the spatial properties of the three systems in the wavevector range of Q = 0.27 Å{sup −1} ÷ 4.27 Å{sup −1}. It emerges that, differently from previous analyses, for trehalose the scalograms are constantly lower and sharper in respect to maltose and sucrose, giving rise to a global spectral density along the wavevector range markedly less extended. As far as the thermal analysis is concerned, the global scattered intensity profiles suggest a higher thermal restrain of trehalose in respect to the other two homologous disaccharides.

  3. Structural features facilitating tumor cell targeting and internalization by bleomycin and its disaccharide.

    Science.gov (United States)

    Yu, Zhiqiang; Paul, Rakesh; Bhattacharya, Chandrabali; Bozeman, Trevor C; Rishel, Michael J; Hecht, Sidney M

    2015-05-19

    We have shown previously that the bleomycin (BLM) carbohydrate moiety can recapitulate the tumor cell targeting effects of the entire BLM molecule, that BLM itself is modular in nature consisting of a DNA-cleaving aglycone which is delivered selectively to the interior of tumor cells by its carbohydrate moiety, and that there are disaccharides structurally related to the BLM disaccharide which are more efficient than the natural disaccharide at tumor cell targeting/uptake. Because BLM sugars can deliver molecular cargoes selectively to tumor cells, and thus potentially form the basis for a novel antitumor strategy, it seemed important to consider additional structural features capable of affecting the efficiency of tumor cell recognition and delivery. These included the effects of sugar polyvalency and net charge (at physiological pH) on tumor cell recognition, internalization, and trafficking. Since these parameters have been shown to affect cell surface recognition, internalization, and distribution in other contexts, this study has sought to define the effects of these structural features on tumor cell recognition by bleomycin and its disaccharide. We demonstrate that both can have a significant effect on tumor cell binding/internalization, and present data which suggests that the metal ions normally bound by bleomycin following clinical administration may significantly contribute to the efficiency of tumor cell uptake, in addition to their characterized function in DNA cleavage. A BLM disaccharide-Cy5** conjugate incorporating the positively charged dipeptide d-Lys-d-Lys was found to associate with both the mitochondria and the nuclear envelope of DU145 cells, suggesting possible cellular targets for BLM disaccharide-cytotoxin conjugates.

  4. Chitovibrin: a chitin-binding lectin from Vibrio parahemolyticus.

    Science.gov (United States)

    Gildemeister, O S; Zhu, B C; Laine, R A

    1994-12-01

    A novel 134 kDa, calcium-independent chitin-binding lectin, 'chitovibrin', is secreted by the marine bacterium Vibrio parahemolyticus, inducible with chitin or chitin-oligomers. Chitovibrin shows no apparent enzymatic activity but exhibits a strong affinity for chitin and chito-oligomers > dp9. The protein has an isoelectric pH of 3.6, shows thermal tolerance, binds chitin with an optimum at pH 6 and is active in 0-4 M NaCl. Chitovibrin appears to be completely different from other reported Vibrio lectins and may function to bind V. parahemolyticus to chitin substrates, or to capture or sequester chito-oligomers. It may be a member of a large group of recently described proteins in Vibrios related to a complex chitinoclastic (chitinivorous) system.

  5. Harmonic-anharmonic transition in disaccharides/H{sub 2}O mixtures by EINS

    Energy Technology Data Exchange (ETDEWEB)

    Magazu, S.; Migliardo, F.; Mondelli, C

    2004-07-15

    This work furnishes new experimental findings on glass-forming systems, i.e. homologues disaccharides (trehalose, maltose, sucrose)/H{sub 2}O mixtures obtained by using elastic incoherent neutron scattering. Such a technique allows to characterize the different degree of 'strength' of the investigated systems by means of the analysis of both the elastic intensity and the mean square displacement behaviours as a function of temperature and Q. The better cryptoprotectant effectiveness of trehalose in comparison with the other disaccharides is ascribed to lower fragility of the matrix in which biostructures are immersed, i.e. of the trehalose/water mixture.

  6. Chitin and Chitosan as Direct Compression Excipients in Pharmaceutical Applications

    Science.gov (United States)

    Badwan, Adnan A.; Rashid, Iyad; Al Omari, Mahmoud M.H.; Darras, Fouad H.

    2015-01-01

    Despite the numerous uses of chitin and chitosan as new functional materials of high potential in various fields, they are still behind several directly compressible excipients already dominating pharmaceutical applications. There are, however, new attempts to exploit chitin and chitosan in co-processing techniques that provide a product with potential to act as a direct compression (DC) excipient. This review outlines the compression properties of chitin and chitosan in the context of DC pharmaceutical applications. PMID:25810109

  7. Dopamine-Mediated Sclerotization of Regenerated Chitin in Ionic Liquid

    OpenAIRE

    Oh, Dongyeop X.; Shin, Sara; Lim, Chanoong; Hwang, Dong Soo

    2013-01-01

    Chitin is a promising structural material for biomedical applications, due to its many advantageous properties and abundance in nature. However, its usage and development in the biomedical field have been stagnant, because of chitin’s poor mechanical properties in wet conditions and the difficulties in transforming it into an applicable form. To overcome these challenges, we created a novel biomimetic chitin composite. This regenerated chitin, prepared with ionic liquid, showed improved mecha...

  8. Chitin and Chitosan as Direct Compression Excipients in Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Adnan A. Badwan

    2015-03-01

    Full Text Available Despite the numerous uses of chitin and chitosan as new functional materials of high potential in various fields, they are still behind several directly compressible excipients already dominating pharmaceutical applications. There are, however, new attempts to exploit chitin and chitosan in co-processing techniques that provide a product with potential to act as a direct compression (DC excipient. This review outlines the compression properties of chitin and chitosan in the context of DC pharmaceutical applications.

  9. Isolation and characterization of chitin and chitosan from marine origin.

    Science.gov (United States)

    Nwe, Nitar; Furuike, Tetsuya; Tamura, Hiroshi

    2014-01-01

    Nowadays, chitin and chitosan are produced from the shells of crabs and shrimps, and bone plate of squid in laboratory to industrial scale. Production of chitosan involved deproteinization, demineralization, and deacetylation. The characteristics of chitin and chitosan mainly depend on production processes and conditions. The characteristics of these biopolymers such as appearance of polymer, turbidity of polymer solution, degree of deacetylation, and molecular weight are of major importance on applications of these polymers. This chapter addresses the production processes and conditions to produce chitin, chitosan, and chito-oligosaccharide and methods for characterization of chitin, chitosan, and chito-oligosaccharide. © 2014 Elsevier Inc. All rights reserved.

  10. Chondriotin sulfate disaccharides as a bioactive compound modified the murine gut microbiome under healthy and stressed conditions

    Science.gov (United States)

    Chondriotin sulfate (CS) has been widely used for medical and nutraceutical purposes due to its roles in maintaining tissue structural integrity. We investigated if CS disaccharides may act as a bioactive compound and modulate gut microbial composition in mice. Our data show that CS disaccharides su...

  11. Comparative solution and solid-phase glycosylations toward a disaccharide library

    DEFF Research Database (Denmark)

    Agoston, K.; Kröger, Lars; Agoston, Agnes

    2009-01-01

    A comparative study on solution-phase and solid-phase oligosaccharide synthesis was performed. A 16-member library containing all regioisomers of Glc-Glc, Glc-Gal, Gal-Glc, and Gal-Gal disaccharides was synthesized both in solution and on solid phase. The various reaction conditions for different...

  12. Conformational studies on pertrimethylsilyl derivatives of some mono- and disaccharides by 220 MHz PMR spectroscopy

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Streefkerk, D.G.; Bie, M.J.A. de

    1973-01-01

    The complete interpretation of 220 MHz PMR spectra and the accurate chemical shifts and coupling constants, obtained after computer simulation of the spectra, of a number of TMS-mono and -disaccharides are given. By means of an adapted Karplus equation the conformation of the derivatives has been

  13. RB4CD12 epitope expression and heparan sulfate disaccharide composition in brain vasculature.

    Science.gov (United States)

    Hosono-Fukao, Tomomi; Ohtake-Niimi, Shiori; Nishitsuji, Kazuchika; Hossain, Md Motarab; van Kuppevelt, Toin H; Michikawa, Makoto; Uchimura, Kenji

    2011-11-01

    RB4CD12 is a phage display antibody that recognizes a heparan sulfate (HS) glycosaminoglycan epitope. The epitope structure is proposed to contain a trisulfated disaccharide, [-IdoA(2-OSO(3))-GlcNSO(3) (6-OSO(3))-], which supports HS binding to various macromolecules such as growth factors and cytokines in central nervous tissues. Chemically modified heparins that lack the trisulfated disaccharides failed to inhibit the RB4CD12 recognition of HS chains. To determine the localization of the RB4CD12 anti-HS epitope in the brain, we performed an immunohistochemical analysis for cryocut sections of mouse brain. The RB4CD12 staining signals were colocalized with laminin and were detected abundantly in the vascular basement membrane. Bacterial heparinases eliminated the RB4CD12 staining signals. The RB4CD12 epitope localization was confirmed by immunoelectron microscopy. Western blotting analysis revealed that the size of a major RB4CD12-positive molecule is ∼460 kDa in a vessel-enriched fraction of the mouse brain. Disaccharide analysis with reversed-phase ion-pair HPLC showed that [-IdoA(2-OSO(3))-GlcNSO(3) (6-OSO(3))-] trisulfated disaccharide residues are present in HS purified from the vessel-enriched brain fraction. These results indicated that the RB4CD12 anti-HS epitope exists in large quantities in the brain vascular basement membrane. Copyright © 2011 Wiley-Liss, Inc.

  14. Effect of different monosaccharides and disaccharides on boar sperm quality after cryopreservation.

    Science.gov (United States)

    Gómez-Fernández, José; Gómez-Izquierdo, Emilio; Tomás, Cristina; Mocé, Eva; de Mercado, Eduardo

    2012-07-01

    The aim of the present study was to evaluate the cryoprotectant effect of different non-permeating sugars for boar sperm. Pooled semen from three boars was used for the experiments. In the first experiment, the sperm quality of boar sperm cryopreserved with an egg-yolk based extender supplemented with different monosaccharides (glucose, galactose or fructose) was compared to a control cryopreserved in lactose-egg yolk extender. In the second experiment, the effect of five disaccharides (lactose, sucrose, lactulose, trehalose or melibiose) on boar sperm cryosurvival was studied. Several sperm quality parameters were assessed by flow cytometry in samples incubated for 30 and 150 min at 37°C after thawing: percentages of sperm with intact plasma membrane (SIPM), sperm presenting high plasma membrane fluidity (HPMF), sperm with intracellular reactive oxygen substances production (IROSP) and apoptotic sperm (AS). In addition, the percentages of total motile (TMS) and progressively motile sperm (PMS) were assessed at the same incubation times with a computer-assisted sperm analysis system. Freezing extenders supplemented with each of the monosaccharide presented smaller cryoprotective effect than the control extender supplemented with lactose (Pextender supplemented with lactulose exhibited in general the lowest sperm quality, except for the percentage of capacitated sperm, which was highest (Pextender. Our results suggest that disaccharides have higher cryoprotective effect than monosaccharides, although the monosaccharide composition of the disaccharides is also important, since the best results were obtained with those disaccharides presenting glucose in their composition. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Sulfation and cation effects on the conformational properties of the glycan backbone of chondroitin sulfate disaccharides.

    Science.gov (United States)

    Faller, Christina E; Guvench, Olgun

    2015-05-21

    Chondroitin sulfate (CS) is one of several glycosaminoglycans that are major components of proteoglycans. A linear polymer consisting of repeats of the disaccharide -4GlcAβ1-3GalNAcβ1-, CS undergoes differential sulfation resulting in five unique sulfation patterns. Because of the dimer repeat, the CS glycosidic "backbone" has two distinct sets of conformational degrees of freedom defined by pairs of dihedral angles: (ϕ1, ψ1) about the β1-3 glycosidic linkage and (ϕ2, ψ2) about the β1-4 glycosidic linkage. Differential sulfation and the possibility of cation binding, combined with the conformational flexibility and biological diversity of CS, complicate experimental efforts to understand CS three-dimensional structures at atomic resolution. Therefore, all-atom explicit-solvent molecular dynamics simulations with Adaptive Biasing Force sampling of the CS backbone were applied to obtain high-resolution, high-precision free energies of CS disaccharides as a function of all possible backbone geometries. All 10 disaccharides (β1-3 vs β1-4 linkage × five different sulfation patterns) were studied; additionally, ion effects were investigated by considering each disaccharide in the presence of either neutralizing sodium or calcium cations. GlcAβ1-3GalNAc disaccharides have a single, broad, thermodynamically important free-energy minimum, whereas GalNAcβ1-4GlcA disaccharides have two such minima. Calcium cations but not sodium cations bind to the disaccharides, and binding is primarily to the GlcA -COO(-) moiety as opposed to sulfate groups. This binding alters the glycan backbone thermodynamics in instances where a calcium cation bound to -COO(-) can act to bridge and stabilize an interaction with an adjacent sulfate group, whereas, in the absence of this cation, the proximity of a sulfate group to -COO(-) results in two like charges being both desolvated and placed adjacent to each other and is found to be destabilizing. In addition to providing information

  16. Structural Features Facilitating Tumor Cell Targeting and Internalization by Bleomycin and Its Disaccharide

    Science.gov (United States)

    2016-01-01

    We have shown previously that the bleomycin (BLM) carbohydrate moiety can recapitulate the tumor cell targeting effects of the entire BLM molecule, that BLM itself is modular in nature consisting of a DNA-cleaving aglycone which is delivered selectively to the interior of tumor cells by its carbohydrate moiety, and that there are disaccharides structurally related to the BLM disaccharide which are more efficient than the natural disaccharide at tumor cell targeting/uptake. Because BLM sugars can deliver molecular cargoes selectively to tumor cells, and thus potentially form the basis for a novel antitumor strategy, it seemed important to consider additional structural features capable of affecting the efficiency of tumor cell recognition and delivery. These included the effects of sugar polyvalency and net charge (at physiological pH) on tumor cell recognition, internalization, and trafficking. Since these parameters have been shown to affect cell surface recognition, internalization, and distribution in other contexts, this study has sought to define the effects of these structural features on tumor cell recognition by bleomycin and its disaccharide. We demonstrate that both can have a significant effect on tumor cell binding/internalization, and present data which suggests that the metal ions normally bound by bleomycin following clinical administration may significantly contribute to the efficiency of tumor cell uptake, in addition to their characterized function in DNA cleavage. A BLM disaccharide-Cy5** conjugate incorporating the positively charged dipeptide d-Lys-d-Lys was found to associate with both the mitochondria and the nuclear envelope of DU145 cells, suggesting possible cellular targets for BLM disaccharide–cytotoxin conjugates. PMID:25905565

  17. [superscript 1]H NMR Spectroscopy-Based Configurational Analysis of Mono- and Disaccharides and Detection of ß-Glucosidase Activity: An Undergraduate Biochemistry Laboratory

    Science.gov (United States)

    Periyannan, Gopal R.; Lawrence, Barbara A.; Egan, Annie E.

    2015-01-01

    A [superscript 1]H NMR spectroscopy-based laboratory experiment explores mono- and disaccharide structural chemistry, and the enzyme-substrate specificity of glycosidic bond cleavage by ß-glucosidase towards cellobiose (ß-linked gluco-disaccharide) and maltose (a-linked gluco-disaccharide). Structural differences between cellobiose, maltose, and…

  18. Simultaneous extraction of chitin and astaxanthin from waste of ...

    African Journals Online (AJOL)

    This work investigates simple methods for simultaneous extraction of astaxanthin and chitin from industrial waste of the South African West Coast rock lobster Jasus lalandii. Removal of proteins from waste is the critical step to yield intact chitin and astaxanthin. Because common chemical methods destroy astaxanthin and ...

  19. STRUCTURAL FEATURES OF PLANT CHITINASES AND CHITIN-BINDING PROTEINS

    NARCIS (Netherlands)

    BEINTEMA, JJ

    1994-01-01

    Structural features of plant chitinases and chitin-binding proteins are discussed. Many of these proteins consist of multiple domains,of which the chitin-binding hevein domain is a predominant one. X-ray and NMR structures of representatives of the major classes of these proteins are available now,

  20. Thermal decomposition of natural polysaccharides: Chitin and chitosan

    Directory of Open Access Journals (Sweden)

    Kuchina Yu.A.

    2015-03-01

    Full Text Available The results of the thermal analysis of shrimp’s chitin and chitosan have been presented (samples of polysaccharide differed by the deacetylation degree have been studied. The thermal analysis has been carried out by differential thermogravimetry and differential scanning calorimetry. Activation energy of process of chitin and chitosan thermal destruction has been calculated

  1. Extraction and characterization of chitin and chitosan from ...

    African Journals Online (AJOL)

    Chitin has been extracted from two Tunisian crustacean species. The obtained chitin was transformed into the more useful soluble chitosan. These products were characterized by their biological activity as antimicrobial and antifungal properties. The tested bacterial strains were Escherichia coli American Type Cell Culture ...

  2. Chitin and chitosan as functional biopolymers for industrial applications

    NARCIS (Netherlands)

    kardas, I.; Struzczyk, M.H.; Kucharska, M.; Broek, van den L.A.M.; Dam, van J.E.G.

    2012-01-01

    Chitin research and development seems to be under intensive progress during the last years. Attractive properties of chitin and its derivative—chitosan, for example, biological behavior, and development of their applications caused increased interest of scientists and companies. More and more

  3. Obtention and characterization of chitin and chitosan from M. rosenbergii

    International Nuclear Information System (INIS)

    Battisti, Marcos V.; Campana Filho, Sergio P.

    2001-01-01

    Chitin was extracted from previously ground shells of Macrobrachium rosenbergii by applying acid and alkaline treatments, aiming at its demineralization and deprotenization, respectively. Its characteristics and properties were compared with those exhibited by commercial samples of chitin. Commercial chitosan and samples produced by the deacetylation of chitin obtained from M. rosenbergii shells were also compared. Average degrees of acetylation and intrinsic viscosities of the chitosan were determined by 1 H NMR spectroscopy and by capillary viscosimetry, respectively. The results show that the chitin extracted from Macrobrachium rosenbergii has a lower content of inorganic materials as compared to commercial samples but the chitosan obtained from the former chitin sample is very similar to commercial chitosan. (author)

  4. Applications of Chitin and Its Derivatives in Biological Medicine

    Directory of Open Access Journals (Sweden)

    Moon-Moo Kim

    2010-12-01

    Full Text Available Chitin and its derivatives—as a potential resource as well as multiple functional substrates—have generated attractive interest in various fields such as biomedical, pharmaceutical, food and environmental industries, since the first isolation of chitin in 1811. Moreover, chitosan and its chitooligosaccharides (COS are degraded products of chitin through enzymatic and acidic hydrolysis processes; and COS, in particular, is well suited for potential biological application, due to the biocompatibility and nontoxic nature of chitosan. In this review, we investigate the current bioactivities of chitin derivatives, which are all correlated with their biomedical properties. Several new and cutting edge insights here may provide a molecular basis for the mechanism of chitin, and hence may aid its use for medical and pharmaceutical applications.

  5. Chitin utilization by the insect-transmitted bacterium Xylella fastidiosa.

    Science.gov (United States)

    Killiny, Nabil; Prado, Simone S; Almeida, Rodrigo P P

    2010-09-01

    Xylella fastidiosa is an insect-borne bacterium that colonizes xylem vessels of a large number of host plants, including several crops of economic importance. Chitin is a polysaccharide present in the cuticle of leafhopper vectors of X. fastidiosa and may serve as a carbon source for this bacterium. Biological assays showed that X. fastidiosa reached larger populations in the presence of chitin. Additionally, chitin induced phenotypic changes in this bacterium, notably increasing adhesiveness. Quantitative PCR assays indicated transcriptional changes in the presence of chitin, and an enzymatic assay demonstrated chitinolytic activity by X. fastidiosa. An ortholog of the chitinase A gene (chiA) was identified in the X. fastidiosa genome. The in silico analysis revealed that the open reading frame of chiA encodes a protein of 351 amino acids with an estimated molecular mass of 40 kDa. chiA is in a locus that consists of genes implicated in polysaccharide degradation. Moreover, this locus was also found in the genomes of closely related bacteria in the genus Xanthomonas, which are plant but not insect associated. X. fastidiosa degraded chitin when grown on a solid chitin-yeast extract-agar medium and grew in liquid medium with chitin as the sole carbon source; ChiA was also determined to be secreted. The gene encoding ChiA was cloned into Escherichia coli, and endochitinase activity was detected in the transformant, showing that the gene is functional and involved in chitin degradation. The results suggest that X. fastidiosa may use its vectors' foregut surface as a carbon source. In addition, chitin may trigger X. fastidiosa's gene regulation and biofilm formation within vectors. Further work is necessary to characterize the role of chitin and its utilization in X. fastidiosa.

  6. Ultrasound stimulated release of gallic acid from chitin hydrogel matrix

    International Nuclear Information System (INIS)

    Jiang, Huixin; Kobayashi, Takaomi

    2017-01-01

    Ultrasound (US) stimulated drug release was examined in this study using a chitin hydrogel matrix loaded with gallic acid (GA), a drug used for wound healing and anticancer. Using phase inversion, GA-chitin hydrogels were prepared from chitin-dimethylacetamide (DMAc)/lithium chloride (LiCl) solution in the presence of GA, with 24 h exposure of the solution to water vapor. The GA release from the GA-chitin hydrogel was examined under different US powers of 0–30 W at 43 kHz. The effects of GA loading amounts in the hydrogels (0.54, 0.43, and 0.25 mg/cm 3 ) and chitin concentrations (0.1, 0.5, and 1 wt%) on the release behaviors were recorded under 43 kHz US exposure at 30 W. Results show that US accelerated the release efficiencies for all samples. Furthermore, the release efficiency increased concomitantly with increasing US power, GA loading amount, and decrease of the chitin concentration. The highest release rate of 0.74 μg/mL·min was obtained from 0.54 mg/cm 3 of GA-loaded hydrogel fabricated from a 0.1 wt% chitin mixture solution under 43 kHz US exposure at 30 W: nine times higher than that of the sample without US exposure. The hydrogel viscoelasticity demonstrated that the US irradiation rigidified the material. FT-IR showed that US can break the hydrogen bonds in the GA-chitin hydrogels. - Highlights: • Ultrasound (US) stimulated Gallic acid (GA) release from chitin hydrogel was studied. • The release efficiency of GA from chitin hydrogel increased nine times when irradiated by 43 kHz US compared with the sample without US. • Generalized 2D correlation and deconvolution study of FT-IR showed that US could promote the GA release by breaking hydrogen bonds.

  7. Ultrasound stimulated release of gallic acid from chitin hydrogel matrix

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Huixin; Kobayashi, Takaomi, E-mail: takaomi@nagaokaut.ac.jp

    2017-06-01

    Ultrasound (US) stimulated drug release was examined in this study using a chitin hydrogel matrix loaded with gallic acid (GA), a drug used for wound healing and anticancer. Using phase inversion, GA-chitin hydrogels were prepared from chitin-dimethylacetamide (DMAc)/lithium chloride (LiCl) solution in the presence of GA, with 24 h exposure of the solution to water vapor. The GA release from the GA-chitin hydrogel was examined under different US powers of 0–30 W at 43 kHz. The effects of GA loading amounts in the hydrogels (0.54, 0.43, and 0.25 mg/cm{sup 3}) and chitin concentrations (0.1, 0.5, and 1 wt%) on the release behaviors were recorded under 43 kHz US exposure at 30 W. Results show that US accelerated the release efficiencies for all samples. Furthermore, the release efficiency increased concomitantly with increasing US power, GA loading amount, and decrease of the chitin concentration. The highest release rate of 0.74 μg/mL·min was obtained from 0.54 mg/cm{sup 3} of GA-loaded hydrogel fabricated from a 0.1 wt% chitin mixture solution under 43 kHz US exposure at 30 W: nine times higher than that of the sample without US exposure. The hydrogel viscoelasticity demonstrated that the US irradiation rigidified the material. FT-IR showed that US can break the hydrogen bonds in the GA-chitin hydrogels. - Highlights: • Ultrasound (US) stimulated Gallic acid (GA) release from chitin hydrogel was studied. • The release efficiency of GA from chitin hydrogel increased nine times when irradiated by 43 kHz US compared with the sample without US. • Generalized 2D correlation and deconvolution study of FT-IR showed that US could promote the GA release by breaking hydrogen bonds.

  8. Preparation of Chitin, Study of Physicochemical Properties and Biopesticide Activities

    Directory of Open Access Journals (Sweden)

    Yuli Rohyami

    2013-08-01

    Full Text Available Chitin was preparated from shrimp shells by chemically method. Preparation was carried out by deproteination shrimp shells powder < 150 mesh with 1 - 2 M NaOH, demineralization followed by reaction with 1.0 M HCl and depigmentation with (1 : 2 : 4, v/v of chloroform : methanol : water. Physicochemical properties of chitin was determined from characterization of infrared spectra, ash value, loss on drying and total of nitrogen. Biopesticide activities of chitin was done to pest Bemisia tabaci at guava leaves with various concentration from 0.5 to 2.0 % chitin on 3 % v/v acetic acid. This study indicated that concentration of NaOH on deproteination process effected to its physicochemicals properties. Effectivity of 2 M NaOH on deproteination reaction was higher than 1 M NaOH . The degree of chitin deacetylation from 2 M NaOH was 13.61% and had lower molar ratio of total nitrogen. The degree of deacetylation of chitin from 1 M NaOH had lower and had higher molar ratio of total nitrogen. Physicochemicals properties of chitin quite an impact on its ability to reduce pest Bemisia tabaci. Biopesticide activity assay showed that treatment for 2 days on average mortality rate of 13.83%. Deacetylation of chitin which has a higher degree have a greaterability biopesticide with a mortality rate of up to 38.24%. This study the effect of deproteination process to biopesticide activities of chitin.Key Words : chitin, degree of deacetilation, molar ratio, biopesticide, Bemisia tabaci

  9. A Venom Gland Extracellular Chitin-Binding-Like Protein from Pupal Endoparasitoid Wasps, Pteromalus Puparum, Selectively Binds Chitin

    Science.gov (United States)

    Chitin-binding proteins (CBPs) existed in various species and involved in different biology processes. In the present study, we cloned a full length cDNA of chitin-binding protein-like (PpCBP-like) from Pteromalus puparum, a pupal endoparasitoid of Pieris rapae. PpCBP-like encoded a 96 putative amin...

  10. Fragility characterization of disaccharide/water glass-forming systems by QENS

    Energy Technology Data Exchange (ETDEWEB)

    Branca, C.; Magazu, S.; Maisano, G

    2003-08-01

    Up to now, the molecular mechanisms underlying the bioprotectant properties of trehalose are not fully understood. From the beginning of our research the attention has been mainly focused on the role played by the disaccharide/water interactions in unravelling the mechanisms which make trehalose, among disaccharides, the most effective bioprotector. In the present work, results of neutron scattering measurements performed on trehalose/H{sub 2}O and sucrose/H{sub 2}O mixtures are reported. A correlation between the temperature behaviour of the mean-square displacement evaluated by QENS and fragility is proposed. What emerges from this study is the stronger character of the trehalose/water mixture in comparison with the sucrose/water. This implies a greater ability of trehalose, in respect to sucrose, to encapsulate biomolecules into more rigid structures and hence a greater cryptobiotic effectiveness.

  11. Regioselective Galactofuranosylation for the Synthesis of Disaccharide Patterns Found in Pathogenic Microorganisms.

    Science.gov (United States)

    Legentil, Laurent; Cabezas, Yari; Tasseau, Olivier; Tellier, Charles; Daligault, Franck; Ferrières, Vincent

    2017-07-21

    Koenigs-Knorr glycosylation of acceptors with more than one free hydroxyl group by 2,3,5,6-tetrabenzoyl galactofuranosyl bromide was performed using diphenylborinic acid 2-aminoethyl ester (DPBA) as inducer of regioselectivity. High regioselectivity for the glycosylation on the equatorial hydroxyl group of the acceptor was obtained thanks to the transient formation of a borinate adduct of the corresponding 1,2-cis diol. Nevertheless formation of orthoester byproducts hampered the efficiency of the method. Interestingly electron-withdrawing groups on O-6 or on C-1 of the acceptor displaced the reaction in favor of the desired galactofuranosyl containing disaccharide. The best yield was obtained for the furanosylation of p-nitrophenyl 6-O-acetyl mannopyranoside. Precursors of other disaccharides, found in the glycocalix of some pathogens, were synthesized according to the same protocol with yields ranging from 45 to 86%. This is a good alternative for the synthesis of biologically relevant glycoconjugates.

  12. First report on chitinous holdfast in sponges (Porifera).

    Science.gov (United States)

    Ehrlich, Hermann; Kaluzhnaya, Oksana V; Tsurkan, Mikhail V; Ereskovsky, Alexander; Tabachnick, Konstantin R; Ilan, Micha; Stelling, Allison; Galli, Roberta; Petrova, Olga V; Nekipelov, Serguei V; Sivkov, Victor N; Vyalikh, Denis; Born, René; Behm, Thomas; Ehrlich, Andre; Chernogor, Lubov I; Belikov, Sergei; Janussen, Dorte; Bazhenov, Vasilii V; Wörheide, Gert

    2013-07-07

    A holdfast is a root- or basal plate-like structure of principal importance that anchors aquatic sessile organisms, including sponges, to hard substrates. There is to date little information about the nature and origin of sponges' holdfasts in both marine and freshwater environments. This work, to our knowledge, demonstrates for the first time that chitin is an important structural component within holdfasts of the endemic freshwater demosponge Lubomirskia baicalensis. Using a variety of techniques (near-edge X-ray absorption fine structure, Raman, electrospray ionization mas spectrometry, Morgan-Elson assay and Calcofluor White staining), we show that chitin from the sponge holdfast is much closer to α-chitin than to β-chitin. Most of the three-dimensional fibrous skeleton of this sponge consists of spicule-containing proteinaceous spongin. Intriguingly, the chitinous holdfast is not spongin-based, and is ontogenetically the oldest part of the sponge body. Sequencing revealed the presence of four previously undescribed genes encoding chitin synthases in the L. baicalensis sponge. This discovery of chitin within freshwater sponge holdfasts highlights the novel and specific functions of this biopolymer within these ancient sessile invertebrates.

  13. Preparation and characterization of α-chitin from cicada sloughs

    International Nuclear Information System (INIS)

    Sajomsang, Warayuth; Gonil, Pattarapond

    2010-01-01

    In this study, a new source of insect chitin was proposed. Insect chitin was extracted from cicada sloughs by 1 M HCl and 1 M NaOH treatment for demineralization and deproteinization, respectively. The brown color of this chitin from cicada sloughs was removed using 6% sodium hypochlorite as an oxidizing agent. It was found that the insect chitin extracted from the cicada sloughs has a higher percent recovery than the chitin from rice-field crab shells. The chemical structure and physicochemical properties of α-chitin from cicada sloughs were characterized using elemental analysis (EA), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), proton nuclear magnetic resonance spectroscopy ( 1 H NMR), solid-state 13 C cross-polarization magic-angle-spinning nuclear magnetic resonance (CP/MAS) NMR spectroscopy, X-ray diffractometry (XRD), and thermogravimetry (TG). The degree of acetylation (DA) was determined by EA, 1 H NMR, and 13 C CP/MAS NMR techniques. The DA values of chitin from cicada sloughs were in the range of 97% to 102% depending on each technique. Furthermore, it was found that the DA increased with an increasing thermal property and crystallinity.

  14. Dopamine-Mediated Sclerotization of Regenerated Chitin in Ionic Liquid.

    Science.gov (United States)

    Oh, Dongyeop X; Shin, Sara; Lim, Chanoong; Hwang, Dong Soo

    2013-09-06

    Chitin is a promising structural material for biomedical applications, due to its many advantageous properties and abundance in nature. However, its usage and development in the biomedical field have been stagnant, because of chitin's poor mechanical properties in wet conditions and the difficulties in transforming it into an applicable form. To overcome these challenges, we created a novel biomimetic chitin composite. This regenerated chitin, prepared with ionic liquid, showed improved mechanical properties in wet conditions by mimicking insect cuticle and squid beak sclerotization, i.e. , catechol-meditated cross-linking. By ionic liquid-based heat treatment, dopamine oxidation produced melanin-like compounds and dopamine-meditated cross-links without any solvent evaporation and oxidant utilization. The dopamine-meditated sclerotization increased the ultimate tensile strength (UTS) of the regenerated chitin by 2.52-fold, measured after six weeks of phosphate-buffered saline (PBS) submersion. In addition, the linear swelling ratio (LSR) of the chitin film was reduced by about 22%. This strategy raises a possibility of using regenerated chitin as an artificial hard tissue in wet conditions.

  15. Wastewater treatment with ion-exchange chitin membrane

    International Nuclear Information System (INIS)

    Paulenova, A.; Fjeld, R. A.; Visacky, V.

    2001-01-01

    Chitin, poly(N-acetyl-D glucosamine) and chitosan, its deacetylated derivates have recently obtained attention as bio-sorbents, because they shown a great ability to accumulate heavy metals and other pollutants. It was found that recovery of metals is strongly affected by pH. At low acidic pH range 4-5 chitin membrane exhibits better selectivity for lead than for cadmium or zinc. Sorption preference for metals decreases in the order: Pb > Cd > Zn. For uranium, as well for strontium was observed significant increase of recovery at decrease of pH to slightly acidic, close to neutral value. It was shown that chemical behavior of chitin membrane is excellent; ion-exchange nature of chitin was not changed during chitin membrane manufacturing process. Using of chitin membrane instead of chitin flake column brings significant increasing of driving force of the separation process, limited in the case of column experimental design by diffusion coefficient, while in the case of membrane process only by mass transfer coefficient. (authors)

  16. Characterization of FIBCD1 as an acetyl group-binding receptor that binds chitin

    DEFF Research Database (Denmark)

    Schlosser, Anders; Thomsen, Theresa; Moeller, Jesper B

    2009-01-01

    Chitin is a highly acetylated compound and the second most abundant biopolymer in the world next to cellulose. Vertebrates are exposed to chitin both through food ingestion and when infected with parasites, and fungi and chitin modulate the immune response in different directions. We have...... fragments. FIBCD1 may play an important role in controlling the exposure of intestine to chitin and chitin fragments, which is of great relevance for the immune defense against parasites and fungi and for immune response modulation....

  17. Synthesis of disaccharides using β-glucosidases from Aspergillus niger, A. awamori and Prunus dulcis.

    Science.gov (United States)

    da Silva, Ayla Sant'Ana; Molina, Javier Freddy; Teixeira, Ricardo Sposina Sobral; Valdivieso Gelves, Luis G; Bon, Elba P S; Ferreira-Leitão, Viridiana S

    2017-11-01

    Glucose conversion into disaccharides was performed with β-glucosidases from Prunus dulcis (β-Pd), Aspergillus niger (β-An) and A. awamori (β-Aa), in reactions containing initial glucose of 700 and 900 g l -1 . The reactions' time courses were followed regarding glucose and product concentrations. In all cases, there was a predominant formation of gentiobiose over cellobiose and also of oligosaccharides with a higher molecular mass. For reactions containing 700 g glucose l -1 , the final substrate conversions were 33, 38, and 23.5% for β-An, β-Aa, and β-Pd, respectively. The use of β-An yielded 103 g gentiobiose l -1 (15.5% yield), which is the highest reported for a fungal β-glucosidase. The increase in glucose concentration to 900 g l -1 resulted in a significant increase in disaccharide synthesis by β-Pd, reaching 128 g gentiobiose l -1 (15% yield), while for β-An and β-Aa, there was a shift toward the synthesis of higher oligosaccharides. β-Pd and the fungal β-An and β-Aa β-glucosidases present quite dissimilar kinetics and selective properties regarding the synthesis of disaccharides; while β-Pd showed the highest productivity for gentiobiose synthesis, β-An presented the highest specificity.

  18. Antibodies against glucan, chitin, and Saccharomyces cerevisiae mannan as new biomarkers of Candida albicans infection that complement tests based on C. albicans mannan.

    Science.gov (United States)

    Sendid, B; Dotan, N; Nseir, S; Savaux, C; Vandewalle, P; Standaert, A; Zerimech, F; Guery, B P; Dukler, A; Colombel, J F; Poulain, D

    2008-12-01

    Antibodies against Saccharomyces cerevisiae mannan (ASCA) and antibodies against synthetic disaccharide fragments of glucans (ALCA) and chitin (ACCA) are biomarkers of Crohn's disease (CD). We previously showed that Candida albicans infection generates ASCA. Here, we explored ALCA and ACCA as possible biomarkers of invasive C. albicans infection (ICI). ASCA, ALCA, ACCA, and Candida mannan antigen and antibody detection tests were performed on 69 sera obtained sequentially from 18 patients with ICIs proven by blood culture, 59 sera from CD patients, 47 sera from hospitalized subjects colonized by Candida species (CZ), and 131 sera from healthy controls (HC). ASCA, ALCA, and ACCA levels in CD and ICI patients were significantly different from those in CZ and HC subjects (PACCA, and Platelia Candida tests, 100% of ICIs were detected, with the kinetics of the antibody response depending on the patient during the time course of infection. A large number of sera presented with more than three positive tests. This is the first evidence that the detection of antibodies against chitin and glucans has diagnostic value in fungal infections and that these tests can complement more specific tests. Future trials are necessary to assess the value of these tests in multiparametric analysis, as well as their pathophysiological relevance.

  19. Effects from additives on deacetylation of chitin

    International Nuclear Information System (INIS)

    Campana Filho, Sergio P.; Signini, Roberta

    2001-01-01

    Deacetylation reactions of commercial chitin were carried out in aqueous sodium hydroxide solution at 115 deg C for 6 hours. The effect from additives (sodium borohydride or anthraquinone) and of bubbling inert gas (nitrogen or argon) on the characteristics of deacetylated samples were evaluated. Average degrees of acetylation and intrinsic viscosity were determined by 1 H NMR spectroscopy and capillary viscometry, respectively. X-ray diffraction was employed to evaluate changes in crystallinity and infrared spectroscopy was used to monitor structural changes due to deacetylation. The bubbling of inert gas during the deacetylation reaction resulted in more crystalline samples of chitosan. Deacetylation carried out without any additive produced slightly more deacetylated chitosan but they were severely depolymerized. The depolymerization process was much less important when sodium borohydride was added to the reaction medium but the addition of anthraquinone and the bubbling of nitrogen, or argon, did not have any effect, this suggests that oxygen is not required for depolymerization. (author)

  20. Comparison of green method for chitin deacetylation

    Science.gov (United States)

    Anwar, Muslih; Anggraeni, Ayu Septi; Amin, M. Harisuddin Al

    2017-03-01

    Developing highly environmentally friendly and cost-effective approaches for the chitosan production has paramount important in the future technology. Deacetylation process is one of the most importing steps to classify the quality of chitosan. This research aimed to study the best method for deacetylation of chitin considered by several factors like the concentration of base, temperature, time and reaction method. From the green chemistry point of view, conventional refluxing method relatively wasted energy compared to another method such as maceration, grinding and sonication. The degree of deacetylation (DD) of chitosan was studied by sonication, resulted in slightly increasing of DD from 73.14 to 73.28% during the time from 0.5 h to 1 h. Deacetylation of chitin with various sodium hydroxide concentration 60, 70 and 80% gave 73.14, 76.36 and 77.88% of DD, respectively. Variation of temperature at 40, 60, and 80 °C was slightly affected on increasing DD from 67.53, 72.84 and 73.14%, respectively. The DD of chitosan significantly increased from 60.19, 74.27 and 81.20% respectively correspondent to varying NaOH concentration 60, 70 and 80% using the maceration method. Solid phase grinding method for half hour resulted in 79.49% of DD. The application of ultrasound grinding method not only was enhanced toward the deacetylation but also favoured the depolymerization process. Moreover, maceration for 7 days with 80% NaOH can be as an alternative method.

  1. Removal of hazardous dye Ponceau-S by using Chitin:

    African Journals Online (AJOL)

    Sr030111Bin Comp

    Key words: Chitin, Ponceau-S, organic bioadsorbent, colored organic, industrial effluents. ..... of cationic azo dye by TiO2/bentonite nanocomposite, J. Photochem. ... effluents to freshwater and estuarine algae, crustaceans and fishes. Environ.

  2. Preparation of Chitin-PLA laminated composite for implantable application

    Directory of Open Access Journals (Sweden)

    Romana Nasrin

    2017-12-01

    Full Text Available The present study explores the possibilities of using locally available inexpensive waste prawn shell derived chitin reinforced and bioabsorbable polylactic acid (PLA laminated composites to develop new materials with excellent mechanical and thermal properties for implantable application such as in bone or dental implant. Chitin at different concentration (1–20% of PLA reinforced PLA films (CTP were fabricated by solvent casting process and laminated chitin-PLA composites (LCTP were prepared by laminating PLA film (obtained by hot press method with CTP also by hot press method at 160 °C. The effect of variation of chitin concentration on the resulting laminated composite's behavior was investigated. The detailed physico-mechanical, surface morphology and thermal were assessed with different characterization technique such as FT-IR, XRD, SEM and TGA. The FTIR spectra showed the characteristic peaks for chitin and PLA in the composites. SEM images showed an excellent dispersion of chitin in the films and composites. Thermogravimetric analysis (TGA showed that the complete degradation of chitin, PLA film, 5% chitin reinforced PLA film (CTP2 and LCTP are 98%, 95%, 87% and 98% respectively at temperature of 500 °C. The tensile strength of the LCTP was found 25.09 MPa which is significantly higher than pure PLA film (18.55 MPa and CTP2 film (8.83 MPa. After lamination of pure PLA and CTP2 film, the composite (LCTP yielded 0.265–1.061% water absorption from 30 min to 24 h immerse in water that is much lower than PLA and CTP. The increased mechanical properties of the laminated films with the increase of chitin content indicated good dispersion of chitin into PLA and strong interfacial actions between the polymer and chitin. The improvement of mechanical properties and the results of antimicrobial and cytotoxicity of the composites also evaluated and revealed the composite would be a suitable candidate for implant application in biomedical

  3. Preparation of Chitin-PLA laminated composite for implantable application.

    Science.gov (United States)

    Nasrin, Romana; Biswas, Shanta; Rashid, Taslim Ur; Afrin, Sanjida; Jahan, Rumana Akhter; Haque, Papia; Rahman, Mohammed Mizanur

    2017-12-01

    The present study explores the possibilities of using locally available inexpensive waste prawn shell derived chitin reinforced and bioabsorbable polylactic acid (PLA) laminated composites to develop new materials with excellent mechanical and thermal properties for implantable application such as in bone or dental implant. Chitin at different concentration (1-20% of PLA) reinforced PLA films (CTP) were fabricated by solvent casting process and laminated chitin-PLA composites (LCTP) were prepared by laminating PLA film (obtained by hot press method) with CTP also by hot press method at 160 °C. The effect of variation of chitin concentration on the resulting laminated composite's behavior was investigated. The detailed physico-mechanical, surface morphology and thermal were assessed with different characterization technique such as FT-IR, XRD, SEM and TGA. The FTIR spectra showed the characteristic peaks for chitin and PLA in the composites. SEM images showed an excellent dispersion of chitin in the films and composites. Thermogravimetric analysis (TGA) showed that the complete degradation of chitin, PLA film, 5% chitin reinforced PLA film (CTP2) and LCTP are 98%, 95%, 87% and 98% respectively at temperature of 500 °C. The tensile strength of the LCTP was found 25.09 MPa which is significantly higher than pure PLA film (18.55 MPa) and CTP2 film (8.83 MPa). After lamination of pure PLA and CTP2 film, the composite (LCTP) yielded 0.265-1.061% water absorption from 30 min to 24 h immerse in water that is much lower than PLA and CTP. The increased mechanical properties of the laminated films with the increase of chitin content indicated good dispersion of chitin into PLA and strong interfacial actions between the polymer and chitin. The improvement of mechanical properties and the results of antimicrobial and cytotoxicity of the composites also evaluated and revealed the composite would be a suitable candidate for implant application in biomedical sector.

  4. Chitin Lengthens Power Production in a Sedimentary Microbial Fuel Cell

    Science.gov (United States)

    2014-01-01

    organic carbon sediments demonstrate that chitin enhances and lengthens power production. Keywords—chitin; MFC; microbiology ; iron-reducing bacteria...levels of organic content available as a food source for bacteria in the sediment. Dependent upon applications, there are scenarios where a SMFC...as ethanol, molasses, or vegetable oils. In the case of underwater marine sediment, options for carbon amendment are limited to solid carbon

  5. Protective Effect of Chitin Urocanate Nanofibers against Ultraviolet Radiation

    Directory of Open Access Journals (Sweden)

    Ikuko Ito

    2015-12-01

    Full Text Available Urocanic acid is a major ultraviolet (UV-absorbing chromophore. Chitins are highly crystalline structures that are found predominantly in crustacean shells. Alpha-chitin consists of microfibers that contain nanofibrils embedded in a protein matrix. Acid hydrolysis is a common method used to prepare chitin nanofibrils (NFs. We typically obtain NFs by hydrolyzing chitin with acetic acid. However, in the present study, we used urocanic acid to prepare urocanic acid chitin NFs (UNFs and examined its protective effect against UVB radiation. Hos: HR-1 mice coated with UNFs were UVB irradiated (302 nm, 150 mJ/cm2, and these mice showed markedly lower UVB radiation-induced cutaneous erythema than the control. Additionally, sunburn cells were rarely detected in the epidermis of UNFs-coated mice after UVB irradiation. Although the difference was not as significant as UNFs, the number of sunburn cells in mice treated with acetic acid chitin nanofibrils (ANFs tended to be lower than in control mice. These results demonstrate that ANFs have a protective effect against UVB and suggest that the anti-inflammatory and antioxidant effects of NFs influence the protective effect of ANFs against UVB radiation. The combination of NFs with other substances that possess UV-protective effects, such as urocanic acid, may provide an enhanced protective effect against UVB radiation.

  6. Dopamine-Mediated Sclerotization of Regenerated Chitin in Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Dongyeop X. Oh

    2013-09-01

    Full Text Available Chitin is a promising structural material for biomedical applications, due to its many advantageous properties and abundance in nature. However, its usage and development in the biomedical field have been stagnant, because of chitin’s poor mechanical properties in wet conditions and the difficulties in transforming it into an applicable form. To overcome these challenges, we created a novel biomimetic chitin composite. This regenerated chitin, prepared with ionic liquid, showed improved mechanical properties in wet conditions by mimicking insect cuticle and squid beak sclerotization, i.e., catechol-meditated cross-linking. By ionic liquid-based heat treatment, dopamine oxidation produced melanin-like compounds and dopamine-meditated cross-links without any solvent evaporation and oxidant utilization. The dopamine-meditated sclerotization increased the ultimate tensile strength (UTS of the regenerated chitin by 2.52-fold, measured after six weeks of phosphate-buffered saline (PBS submersion. In addition, the linear swelling ratio (LSR of the chitin film was reduced by about 22%. This strategy raises a possibility of using regenerated chitin as an artificial hard tissue in wet conditions.

  7. Squid pen-inspired chitinous functional materials: Hierarchical chitin fibers by centrifugal jet-spinning and transparent chitin fiber-reinforced composite

    Science.gov (United States)

    Jeong, Seung-Hwan; Kim, Joong-Kwon; Lim, Young-Woo; Hwang, Hyun-Bin; Kwon, Hee-Young; Bae, Byeong-Soo; Jin, Jungho

    2018-01-01

    Here, inspired by the fibrous composite structure of a squid pen, we introduce hierarchical chitin fibers (herein, termed "Chiber") and their transparent composites and demonstrate the potential of these chitinous functional materials as a sustainable separation-membrane and reinforcing filler for composites. We employ a centrifugal jet-spinning process to fabricate Chiber with aligned chitin nanofibrillar architectures, for which we discuss the processing-morphology relationship. A nonwoven fiber-mat made of Chiber exhibits excellent adsorbing performance for a toxic ionic dye (Congo Red), and has a low coefficient of thermal expansion comparable to that of glass fibers. Finally, we demonstrate a squid pen-mimetic transparent composite using Chiber and investigate its optical property.

  8. Extraction and Characterization of Chitin from the Beetle Holotrichia parallela Motschulsky

    Directory of Open Access Journals (Sweden)

    Feng Zhu

    2012-04-01

    Full Text Available Insect chitin was isolated from adult Holotrichia parallela by treatment with 1 M HCl and 1 M NaOH, following by 1% potassium permanganate solution for decolorization. The yield of chitin from this species is 15%. This insect chitin was compared with the commercial a-chitin from shrimp, by infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and elemental analysis. Both chitins exhibited similar chemical structures and physicochemical properties. Adult H. parallela is thus a promising alternative source of chitin.

  9. Yeast cell wall chitin reduces wine haze formation.

    Science.gov (United States)

    Ndlovu, Thulile; Divol, Benoit; Bauer, Florian F

    2018-04-27

    Protein haze formation in bottled wines is a significant concern for the global wine industry and wine clarification before bottling is therefore a common but expensive practice. Previous studies have shown that wine yeast strains can reduce haze formation through the secretion of certain mannoproteins, but it has been suggested that other yeast-dependent haze protective mechanisms exist. On the other hand, addition of chitin has been shown to reduce haze formation, likely because grape chitinases have been shown to be the major contributors to haze. In this study, Chardonnay grape must fermented by various yeast strains resulted in wines with different protein haze levels indicating differences in haze protective capacities of the strains. The cell wall chitin levels of these strains were determined, and a strong correlation between cell wall chitin levels and haze protection capability was observed. To further evaluate the mechanism of haze protection, Escherichia coli -produced GFP-tagged grape chitinase was shown to bind efficiently to yeast cell walls in a cell wall chitin concentration-dependent manner, while commercial chitinase was removed from synthetic wine in quantities also correlated with the cell wall chitin levels of the strains. Our findings suggest a new mechanism of reducing wine haze, and propose a strategy for optimizing wine yeast strains to improve wine clarification. Importance In this study, we establish a new mechanism by which wine yeast strains can impact on the protein haze formation of wines, and demonstrate that yeast cell wall chitin binds grape chitinase in a chitin-concentration dependent manner. We also show that yeast can remove this haze-forming protein from wine. Chitin has in the past been shown to efficiently reduce wine haze formation when added to the wine in high concentration as a clarifying agent. Our data suggest that the selection of yeast strains with high levels of cell wall chitin can reduce protein haze. We also

  10. Analysis of changes of vibrational properties of water in the presence of disaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Branca, C.; Magazu' , S.; Maisano, G.; Migliardo, F.; Romeo, G. [Dipartimento di Fisica and INFM, Universita' di Messina, PO Box 55, 98166 Messina (Italy); Bennington, S.M.; Fak, B. [Rutherford Appleton Laboratory, Chilton, Didcot, OX11 OQX (United Kingdom); Bellocco, E.; Lagana' , G. [Dipartimento di Chimica Organica Biologica,Universita' di Messina, PO Box 55, 98166 Messina (Italy)

    2002-07-01

    Results of inelastic neutron scattering (INS) measurements performed by the MARI spectrometer (ISIS, UK) on aqueous solutions of sucrose and {alpha},{alpha}-trehalose are reported. To get some insight into the effects of disaccharides on the hydrogen-bond network of water, we investigated the intramolecular O-H stretching modes. The obtained spectra show that, contrary to sucrose, the presence of trehalose affects significantly the pure-water O-H stretching mode. The observed changes can be related to the presence of heavier vibrating units, namely to the higher hydration number of trehalose with respect to sucrose. (orig.)

  11. Analysis of changes of vibrational properties of water in the presence of disaccharides

    CERN Document Server

    Branca, C; Maisano, G; Migliardo, F; Romeo, G; Bennington, S M; Fak, B; Bellocco, E; Lagana', G

    2002-01-01

    Results of inelastic neutron scattering (INS) measurements performed by the MARI spectrometer (ISIS, UK) on aqueous solutions of sucrose and alpha,alpha-trehalose are reported. To get some insight into the effects of disaccharides on the hydrogen-bond network of water, we investigated the intramolecular O-H stretching modes. The obtained spectra show that, contrary to sucrose, the presence of trehalose affects significantly the pure-water O-H stretching mode. The observed changes can be related to the presence of heavier vibrating units, namely to the higher hydration number of trehalose with respect to sucrose. (orig.)

  12. Glycoside bond cleavage in the radiolysis of aqueous solutions of methylglycosides and disaccharides

    International Nuclear Information System (INIS)

    Shadyro, O.I.; Kisel', R.M.

    2007-01-01

    The kinetics of formation of methylglycoside and disaccharide radiolysis products resulting from the O-glycoside bond cleavage under the action of 137 Cs γ-radiation (0-2.5 kGy radiation doses, 0.28 Gy/s dose rate) was studied, and the yields of these products were determined. It was found that oxygen inhibits these processes. The findings suggest that the fragmentation reaction of C' 2 radicals plays an important role in the formation of carbohydrate degradation products in the radiolysis of aqueous carbohydrate solutions [ru

  13. Preparation of chondroitin sulfate libraries containing disulfated disaccharide units and inhibition of thrombin by these chondroitin sulfates.

    Science.gov (United States)

    Numakura, Mario; Kusakabe, Noriko; Ishige, Kazuya; Ohtake-Niimi, Shiori; Habuchi, Hiroko; Habuchi, Osami

    2010-07-01

    Chondroitin sulfate (CS) containing GlcA-GalNAc(4,6-SO(4)) (E unit) and CS containing GlcA(2SO(4))-GalNAc(6SO(4)) (D unit) have been implicated in various physiological functions. However, it has been poorly understood how the structure and contents of disulfated disaccharide units in CS contribute to these functions. We prepared CS libraries containing E unit or D unit in various proportions by in vitro enzymatic reactions using recombinant GalNAc 4-sulfate 6-O-sulfotransferase and uronosyl 2-O-sulfotransferase, and examined their inhibitory activity toward thrombin. The in vitro sulfated CSs containing disulfated disaccharide units showed concentration-dependent direct inhibition of thrombin when the proportion of E unit or D unit in the CSs was above 15-17%. The CSs containing both E unit and D unit exhibited higher inhibitory activity toward thrombin than the CSs containing either E unit or D unit alone, if the proportion of the total disulfated disaccharide units of these CSs was comparable. The thrombin-catalyzed degradation of fibrinogen, a physiological substrate for thrombin, was also inhibited by the CS containing both E unit and D unit. These observations indicate that the enzymatically prepared CS libraries containing various amounts of disulfated disaccharide units appear to be useful for elucidating the physiological function of disulfated disaccharide units in CS.

  14. Short-Chain Chitin Oligomers: Promoters of Plant Growth

    Directory of Open Access Journals (Sweden)

    Alexander J. Winkler

    2017-02-01

    Full Text Available Chitin is the second most abundant biopolymer in nature after cellulose, and it forms an integral part of insect exoskeletons, crustacean shells, krill and the cell walls of fungal spores, where it is present as a high-molecular-weight molecule. In this study, we showed that a chitin oligosaccharide of lower molecular weight (tetramer induced genes in Arabidopsis that are principally related to vegetative growth, development and carbon and nitrogen metabolism. Based on plant responses to this chitin tetramer, a low-molecular-weight chitin mix (CHL enriched to 92% with dimers (2mer, trimers (3mer and tetramers (4mer was produced for potential use in biotechnological processes. Compared with untreated plants, CHL-treated plants had increased in vitro fresh weight (10%, radicle length (25% and total carbon and nitrogen content (6% and 8%, respectively. Our data show that low-molecular-weight forms of chitin might play a role in nature as bio-stimulators of plant growth, and they are also a known direct source of carbon and nitrogen for soil biomass. The biochemical properties of the CHL mix might make it useful as a non-contaminating bio-stimulant of plant growth and a soil restorer for greenhouses and fields.

  15. Chitin in the Silk Gland Ducts of the Spider Nephila edulis and the Silkworm Bombyx mori

    Science.gov (United States)

    Davies, Gwilym J. G.; Knight, David P.; Vollrath, Fritz

    2013-01-01

    Here we report the detection and localisation of chitin in the cuticle of the spinning ducts of both the spider Nephila edulis and the silkworm Bombyx mori. Our observations demonstrate that the duct walls of both animals contain chitin notwithstanding totally independent evolutionary pathways of the systems. We conclude that chitin may well be an essential component for the construction of spinning ducts; we further conclude that in both species chitin may indicate the evolutionary origin of the spinning ducts. PMID:24015298

  16. The use of flow cytometry to monitor chitin synthesis in regenerating protoplasts of Candida albicans.

    Science.gov (United States)

    Hector, R F; Braun, P C; Hart, J T; Kamarck, M E

    1990-01-01

    Flow cytometry was used to monitor chitin synthesis in regenerating protoplasts of the yeast Candida albicans. Comparisons of cells stained with Calcofluor White, a fluorochrome with known affinity for chitin, and cells incubated in the presence of N-[3H]-acetylglucosamine, the precursor substrate for chitin, showed a linear relationship between fluorescence and incorporation of label over time. Changes in both the fluorescence and light scatter of regenerating protoplasts treated with inhibitors of fungal chitin synthase were also quantitated by flow cytometry.

  17. Chitin stimulates production of the antibiotic andrimid in a Vibrio corallilyticus strain

    DEFF Research Database (Denmark)

    Wietz, Matthias; Månsson, Maria; Gram, Lone

    2011-01-01

    per cell was twofold higher. In cultures with Artemia as live chitin model system, S2052 reached up to 108 cells ml-1, produced andrimid and showed attachment to the exoskeleton and chitinous exuviae. The metabolic focus on andrimid production with chitin indicates that the antibiotic could serve...

  18. Response of the chitinolytic microbial community to chitin amendments of dune soils

    NARCIS (Netherlands)

    De Boer, W.; Gerards, S.; Klein Gunnewiek, P.J.A.; Modderman, R.

    1999-01-01

    The dynamics of culturable chitin-degrading microorganisms were studied during a 16-week incubation of chitin-amended coastal dune soils that differed in acidity. Soil samples were incubated at normal (5% Why) and high (15% w/w) moisture levels. More than half of the added chitin was decomposed

  19. A Venom Gland Extracellular Chitin-Binding-Like Protein from Pupal Endoparasitoid Wasps, Pteromalus Puparum, Selectively Binds Chitin

    Directory of Open Access Journals (Sweden)

    Yu Zhu

    2015-11-01

    Full Text Available Chitin-binding proteins (CBPs are present in many species and they act in a variety of biological processes. We analyzed a Pteromalus puparum venom apparatus proteome and transcriptome and identified a partial gene encoding a possible CBP. Here, we report cloning a full-length cDNA of a sequence encoding a chitin-binding-like protein (PpCBP from P. puparum, a pupal endoparasitoid of Pieris rapae. The cDNA encoded a 96-amino-acid protein, including a secretory signal peptide and a chitin-binding peritrophin-A domain. Phylogenetic analysis of chitin binding domains (CBDs of cuticle proteins and peritrophic matrix proteins in selected insects revealed that the CBD of PpCBP clustered with the CBD of Nasonia vitripennis. The PpCBP is specifically expressed in the venom apparatus of P. puparum, mostly in the venom gland. PpCBP expression was highest at day one after adult eclosion and much lower for the following five days. We produced a recombinant PpCBP and binding assays showed the recombinant protein selectively binds chitin but not cellulose in vitro. We infer that PpCBP serves a structural role in the venom reservoir, or may be injected into the host to help wound healing of the host exoskeleton.

  20. Effect of gamma radiation on chitin-nanosilver membranes

    International Nuclear Information System (INIS)

    Singh, Rita; Singh, Durgeshwer

    2014-01-01

    Antimicrobial wound dressings are indispensable for the effective healing of skin wounds such as burns and ulcers. Various synthetic and natural polymers with good biocompatibility have been used to develop wound dressings. Chitin possesses excellent properties that are advantageous for wound dressing namely biocompatibility, biodegradability and haemostatic activity. Chitin-nanosilver membranes were developed for use as an antimicrobial dressing for wound care. For clinical applications, the wound dressing should be assuredly free of microbial contamination. Gamma irradiation has well appreciated technological advantages and is the most suitable method for the sterilization of biomedical materials. The present study was carried out to evaluate the effect of gamma radiation on the chemical and functional characteristics of the chitin-nanosilver membranes

  1. Microscopic description of protein thermostabilization mechanisms with disaccharides from Raman spectroscopy investigations

    Energy Technology Data Exchange (ETDEWEB)

    Hedoux, A; Affouard, F; Descamps, M; Guinet, Y; Paccou, L [Laboratoire de Dynamique et Structure des Materiaux Moleculaires UMR CNRS 8024, Universite de Lille 1, UFR de Physique, Batiment P5, 59 655 Villeneuve d' Ascq Cedex (France)

    2007-05-23

    The mechanisms of protein thermostabilization by sugar were analysed for three disaccharides (maltose, sucrose and trehalose) characterized by the same chemical formula (C{sub 12}H{sub 22}O{sub 11}). Raman scattering investigations simultaneously carried out in the low-frequency range and in the amide I band region provide a microscopic description of the process of protein thermal denaturation. From this detailed description, the influence of sugar on this process was analysed. The principal effect of sugars is to stabilize the tertiary structure, in which the biomolecule preserves its native conformation, through a strengthening of O-H interactions. This study shows that the bioprotective properties of sugars are mainly based on interactions between water and sugar. The exceptional properties of trehalose to preserve the native state of lysozyme by heating can be associated with its capability to distort the tetra-bonded hydrogen bond network of water.

  2. Limitations in the description of conformational preferences of C-disaccharides: The (1 -> 3)-C-mannobiose case

    Czech Academy of Sciences Publication Activity Database

    Raich, I.; Lövyová, Z.; Trnka, L.; Parkan, Kamil; Kessler, Jiří; Pohl, Radek; Kaminský, Jakub

    2017-01-01

    Roč. 451, Nov 8 (2017), s. 42-50 ISSN 0008-6215 R&D Projects: GA ČR(CZ) GA16-00270S Institutional support: RVO:61388963 Keywords : C-disaccharides * mannosides * conformations * NMR * J-coupling constants * molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.096, year: 2016

  3. Fabrication of α-chitin whisker-reinforced poly(vinyl alcohol) nanocomposite nanofibres by electrospinning

    International Nuclear Information System (INIS)

    Junkasem, Jirawut; Rujiravanit, Ratana; Supaphol, Pitt

    2006-01-01

    The present contribution reports, for the first time, the successful fabrication of α-chitin whisker-reinforced poly(vinyl alcohol) (PVA) nanocomposite nanofibres by electrospinning. The α-chitin whiskers were prepared from α-chitin flakes from shrimp shells by acid hydrolysis. The as-prepared chitin whiskers exhibited lengths in the range 231-969 nm and widths in the range 12-65 nm, with the average length and width being about 549 and 31 nm, respectively. Successful incorporation of the chitin whiskers within the as-spun PVA/chitin whisker nanocomposite nanofibres was verified by infrared spectroscopic and thermogravimetric methods. The incorporation of chitin whiskers within the as-spun nanocomposite fibre mats increased the Young's modulus by about 4-8 times over that of the neat as-spun PVA fibre mat

  4. Rheological study of chitosan acetate solutions containing chitin nanofibrils

    Czech Academy of Sciences Publication Activity Database

    Mikešová, Jana; Hašek, Jindřich; Tishchenko, Galina; Morganti, P.

    2014-01-01

    Roč. 112, 4 November (2014), s. 753-757 ISSN 0144-8617 EU Projects: European Commission(XE) 315233 - N-CHITOPACK Institutional support: RVO:61389013 Keywords : rheology * chitosan solutions * chitin nanofibrils Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.074, year: 2014

  5. Chitin degrading potential of three aquatic actinomycetes and its ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-01

    Dec 1, 2009 ... chitinase production by all tested actinomycetes was at pH 8. S. canus and M. ... Chitin is the most abundant biopolymer next to cellulose. It is the β –1, ... Microorganisms, lower animals, birds, fungi and plants are known to ...

  6. Chitin elicitation of natural product production in marine bacteria

    DEFF Research Database (Denmark)

    Månsson, Maria; Wietz, Matthias; Larsen, Thomas Ostenfeld

    -negative bacteria (mainly Pseudoalteromonas and Vibrio), we found that some strains were capable of producing antibacterial compounds when grown on chitin, an N-acetyl-D-glucosamine polymer found in the exoskeleton of zooplankton.2 A strain of Vibrio coralliilyticus solely produced the antibiotic andrimid,3...

  7. Adsorption studies of iron(III) on chitin

    Indian Academy of Sciences (India)

    Unknown

    of particle size and dosage of the adsorbant, contact time, initial concentration of the adsorbate and tem- perature were experimentally ... Adsorption; chitin; variable parameters; fraction of adsorption; temperature effect. 1. Introduction. Iron is one of the ... about the presence of iron in drinking water is its ob- jectionable taste.

  8. Experimental evaluation of new chitin-chitosan graft for duraplasty.

    Science.gov (United States)

    Pogorielov, M; Kravtsova, A; Reilly, G C; Deineka, V; Tetteh, G; Kalinkevich, O; Pogorielova, O; Moskalenko, R; Tkach, G

    2017-02-01

    Natural materials such as collagen and alginate have promising applications as dural graft substitutes. These materials are able to restore the dural defect and create optimal conditions for the development of connective tissue at the site of injury. A promising material for biomedical applications is chitosan-a linear polysaccharide obtained by the deacetylation of chitin. It has been found to be nontoxic, biodegradable, biofunctional and biocompatible in addition to having antimicrobial characteristics. In this study we designed new chitin-chitosan substitutes for dura mater closure and evaluated their effectiveness and safety. Chitosan films were produced from 3 % of chitosan (molar mass-200, 500 or 700 kDa, deacetylation rate 80-90%) with addition of 20% of chitin. Antimicrobial effictively and cell viability were analysed for the different molar masses of chitosan. The film containing chitosan of molar mass 200 kDa, had the best antimicrobial and biological activity and was successfully used for experimental duraplasty in an in vivo model. In conclusion the chitin-chitosan membrane designed here met the requirements for a dura matter graft exhibiting the ability to support cell growth, inhibit microbial growth and biodegradade at an appropriate rate. Therefore this is a promising material for clinical duroplasty.

  9. Graft polymerization of acrylic acid onto chitin nanofiber to improve dispersibility in basic water.

    Science.gov (United States)

    Ifuku, Shinsuke; Iwasaki, Masayoshi; Morimoto, Minoru; Saimoto, Hiroyuki

    2012-09-01

    Graft copolymerization of acrylic acid (AA) on chitin nanofibers was carried out with potassium persulfate as a free radical initiator in an aqueous medium. The molar ratio of grafted AA increased with the AA concentration. The grafted chitin nanofibers were characterized by FT-IR, FE-SEM, UV-vis, XRD, and TGA. After polymerization, the characteristic morphology of chitin nanofibers was maintained. Chitin nanofibers grafted with AA were efficiently dissociated and dispersed homogeneously in basic water because of the electrostatic repulsion effect between nanofibers. AA was grafted on the surface and amorphous part of chitin nanofibers, and the original crystalline structure of α-chitin was maintained. At 330 °C, the weight residue of the graft copolymer increased with the grafted AA content. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Structure and Properties of Chitin Whisker Reinforced Papers for Food Packaging Application

    Directory of Open Access Journals (Sweden)

    Zhihan Li

    2015-04-01

    Full Text Available In recent years, concerns about environmental waste caused by petroleum-derived chemicals as well as the consumer's demand for high quality food products, have prompted people to pay more attention to developing biodegradable food packaging materials using natural resources such as cellulose fibers and chitin derivatives. In this study, chitin whiskers have been successfully generated by hydrolyzing the α-chitin sample. Then the synthesized nano-sized chitin whiskers were used at ratios from 0.1% to 2% (wt% for improving strength properties of paper sheets by the dip-coating method. Transmission electron microscopy (TEM and field emission scanning electron microscopy (FE-SEM were used to investigate the morphology of chitin whiskers and cellulose fiber compounds. The results showed that coating with chitin whiskers brought about an increase in tear strength, burst strength, and wet and dry tensile strength, with a decrease in Zeta-potential value.

  11. Customizing Properties of β-Chitin in Squid Pen (Gladius by Chemical Treatments

    Directory of Open Access Journals (Sweden)

    Alessandro Ianiro

    2014-12-01

    Full Text Available The squid pen (gladius from the Loligo vulgaris was used for preparation of β-chitin materials characterized by different chemical, micro- and nano-structural properties that preserved, almost completely the macrostructural and the mechanical ones. The β-chitin materials obtained by alkaline treatment showed porosity, wettability and swelling that are a function of the duration of the treatment. Microscopic, spectroscopic and synchrotron X-ray diffraction techniques showed that the chemical environment of the N-acetyl groups of the β-chitin chains changes after the thermal alkaline treatment. As a consequence, the crystalline packing of the β-chitin is modified, due to the intercalation of water molecules between β-chitin sheets. Potential applications of these β-chitin materials range from the nanotechnology to the regenerative medicine. The use of gladii, which are waste products of the fishing industry, has also important environmental implications.

  12. Effect of Acetyl Group on Mechanical Properties of Chitin/Chitosan Nanocrystal: A Molecular Dynamics Study

    Directory of Open Access Journals (Sweden)

    Junhe Cui

    2016-01-01

    Full Text Available Chitin fiber is the load-bearing component in natural chitin-based materials. In these materials, chitin is always partially deacetylated to different levels, leading to diverse material properties. In order to understand how the acetyl group enhances the fracture resistance capability of chitin fiber, we constructed atomistic models of chitin with varied acetylation degree and analyzed the hydrogen bonding pattern, fracture, and stress-strain behavior of these models. We notice that the acetyl group can contribute to the formation of hydrogen bonds that can stabilize the crystalline structure. In addition, it is found that the specimen with a higher acetylation degree presents a greater resistance against fracture. This study describes the role of the functional group, acetyl groups, in crystalline chitin. Such information could provide preliminary understanding of nanomaterials when similar functional groups are encountered.

  13. Surface morphology of chitin highly related with the isolated body part of butterfly (Argynnis pandora).

    Science.gov (United States)

    Kaya, Murat; Bitim, Betül; Mujtaba, Muhammad; Koyuncu, Turgay

    2015-11-01

    This study was conducted to understand the differences in the physicochemical properties of chitin samples isolated from the wings and the other body parts except the wings (OBP) of a butterfly species (Argynnis pandora). The same isolation method was used for obtaining chitin specimens from both types of body parts. The chitin content of the wings (22%) was recorded as being much higher than the OBP (8%). The extracted chitin samples were characterized via FT-IR, TGA, XRD, SEM, and elemental analysis techniques. Results of these characterizations revealed that the chitins from both structures (wings and OBP) were very similar, except for their surface morphologies. SEM results demonstrated one type of surface morphology for the wings and four different surface morphologies for the OBP. Therefore, it can be hypothesized that the surface morphology of the chitin is highly related with the body part. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Adsorption chromatography to purify Spacer disaccharide of Active Pharmaceutical Ingredient of QuimiHib vaccine

    International Nuclear Information System (INIS)

    Diaz, Belinda; Heynngnezz, Lazaro; Beldarrain, Alejandro

    2013-01-01

    In this paper we study the conditions of adsorption chromatography on Silica gel 60 for purification of Spacer disaccharide a component of Active Pharmaceutical Ingredient (API) of QuimiHib vaccine. For that, we made a scale down on an analytical scale that represented at 1.8% of industrial process, indicating reproducibility between two procedures in terms of packing efficiency, purity and recovery. Dynamic binding capacity of the resin Silicagel 60 by the DSE was roughly 125±0.2 mg /mL, 3.4 times the base process. The elution profile obtained, showed the possibility of collecting a unique fraction at range 195±2 and 260±2 minutes, if it is maintained a proper packing of the chromatography resin determined by asymmetry factor from 0.8 to 1.2, which ensures a recovery of 58.9±4.5% and high purity analyzed by Thin Layer Chromatography. Adjusting the adsorption conditions increases the productivity of chromatographic operation up to 3.5 fold, indicating that it is feasible in economic terms

  15. Evaluating the susceptibility of pyrolysis of monosaccharide, disaccharide, and polysaccharide to CO_2

    International Nuclear Information System (INIS)

    Lee, Jechan; Tsang, Yiu Fai; Oh, Jeong-Ik; Lee, Sang-Ryong; Kwon, Eilhann E.

    2017-01-01

    Highlights: • Two-stage pyrolyzer gives a deep insight into sensitivity of biomass structure to CO_2. • The influence of CO_2 in pyrolysis of biomass occurs selectively. • Hemicellulose and lignin are highly sensitive to CO_2 in pyrolysis. • Thermal cracking of VOCs can be expedited by using CO_2 in pyrolysis. - Abstract: This study is aiming at exploring the genuine role of CO_2 in pyrolysis of lignocellulosic biomass by investigating the susceptibility of pyrolysis of monosaccharide (e.g., xylose and glucose), disaccharide (e.g., sucrose), and polysaccharide (e.g., woody biomass) to CO_2. To do this, the thermal degradation of these four biomass samples was characterized in N_2 and CO_2. The thermal characterization results reveal that the physical aspects of biomass decomposition (i.e., thermal degradation rate and residual mass difference) associated with CO_2 were nearly the same; however, the chemical aspects were significantly different. In other words, CO_2 enhanced thermal cracking of volatile organic compounds (VOCs) generated from thermal degradation of biomass. In addition, our experiment results show that xylose (a major constituent of hemicellulose) and lignin exhibited a high sensitivity to CO_2 in pyrolysis.

  16. Transport and phosphorylation of disaccharides by the ruminal bacterium Streptococcus bovis

    International Nuclear Information System (INIS)

    Martin, S.A.; Russell, J.B.

    1987-01-01

    Toluene-treated cells of Streptococcus bovis JB1 phosphorylated cellobiose, glucose, maltose, and sucrose by the phosphoenolpyruvate-dependent phosphotransferase system. Glucose phosphorylation was constitutive, while all three disaccharide systems were inducible. Competition experiments, indicated that separate phosphotransferases systems existed for glucose, maltose, and sucrose. [ 14 C]maltose transport was inhibited by excess glucose and to a lesser extent by sucrose. [ 14 C]glucose and [ 14 C]sucrose transports were not inhibited by an excess of maltose. Since [ 14 C]maltose phosphorylation in triethanolamine buffer was increased 160-fold as the concentration of P/sub i/ was increased from 0 to 100 mM, a maltose phosphorylase was present, and this activity was inducible. Maltose was also hydrolyzed by an inducible maltase. Glucose 1-phosphate arising from the maltose phosphorylase was metabolized by a constitutive phosphoglucomutase that was specific for α-glucose 1-phosphate. Only sucrose-grown cells possessed sucrose hydrolase activity, and this activity was much lower than the sucrose phosphotransferase system and sucrose-phosphate hydrolase activities

  17. Fast screening of glycosaminoglycan disaccharides by fluorophore-assisted carbohydrate electrophoresis (FACE): applications to biologic samples and pharmaceutical formulations.

    Science.gov (United States)

    Karousou, Evgenia; Asimakopoulou, Athanasia P; Zafeiropoulou, Vassiliki; Viola, Manuela; Monti, Luca; Rossi, Antonio; Passi, Alberto; Karamanos, Nikos

    2015-01-01

    Hyaluronan (HA), chondroitin sulfate (CS), and heparan sulfate (HS) are glycosaminoglycans (GAGs) with a great importance in biological processes as they participate in functional cell properties, such as migration, adhesion, and proliferation. A perturbation of the quantity and/or the sulfation of GAGs is often associated with pathological conditions. In this chapter, we present valuable and validated protocols for the analysis of HA-, CS-, and HS-derived disaccharides after derivatization with 2-aminoacridone and by using the fluorophore-assisted carbohydrate electrophoresis (FACE). FACE is a well-known technique and a reliable tool for a fast screening of GAGs, as it is possible to analyze 16 samples at the same time with one electrophoretic apparatus. The protocols for the gel preparation are based on the variations of the acrylamide/bisacrylamide and buffer concentrations. Different approaches for the extraction and purification of the disaccharides of various biologic samples and pharmaceutical preparations are also stressed.

  18. Colloidal chitin nanogels: A plethora of applications under one shell.

    Science.gov (United States)

    Vishnu Priya, M; Sabitha, M; Jayakumar, R

    2016-01-20

    Chitin nanogels (CNGs) are a relatively new class of natural polymeric nanomaterials which have a large potential in the field of drug delivery and nanotherapeutics. These nanogels being very biocompatible are non-toxic when internalized by cells. In this review various properties, preparation techniques and applications of CNGs have been described. CNGs because of their nano-size possess certain unique properties which enable them to be used in a number of biomedical applications. CNGs are prepared by simple regeneration technique without using any cross-linkers. Various polymers, drugs and fluorescent dyes can be blended or incorporated or labelled with the chitin hydrogel network. Drugs and molecules encapsulated within CNGs can be used for targeted delivery, in vivo monitoring or even for therapeutic purposes. Here various applications of CNGs in the field of drug delivery, imaging, sensing and therapeutics have been discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Total synthesis of TMG-chitotriomycin based on an automated electrochemical assembly of a disaccharide building block.

    Science.gov (United States)

    Isoda, Yuta; Sasaki, Norihiko; Kitamura, Kei; Takahashi, Shuji; Manmode, Sujit; Takeda-Okuda, Naoko; Tamura, Jun-Ichi; Nokami, Toshiki; Itoh, Toshiyuki

    2017-01-01

    The total synthesis of TMG-chitotriomycin using an automated electrochemical synthesizer for the assembly of carbohydrate building blocks is demonstrated. We have successfully prepared a precursor of TMG-chitotriomycin, which is a structurally-pure tetrasaccharide with typical protecting groups, through the methodology of automated electrochemical solution-phase synthesis developed by us. The synthesis of structurally well-defined TMG-chitotriomycin has been accomplished in 10-steps from a disaccharide building block.

  20. Total synthesis of TMG-chitotriomycin based on an automated electrochemical assembly of a disaccharide building block

    Directory of Open Access Journals (Sweden)

    Yuta Isoda

    2017-05-01

    Full Text Available The total synthesis of TMG-chitotriomycin using an automated electrochemical synthesizer for the assembly of carbohydrate building blocks is demonstrated. We have successfully prepared a precursor of TMG-chitotriomycin, which is a structurally-pure tetrasaccharide with typical protecting groups, through the methodology of automated electrochemical solution-phase synthesis developed by us. The synthesis of structurally well-defined TMG-chitotriomycin has been accomplished in 10-steps from a disaccharide building block.

  1. On the function of chitin synthase extracellular domains in biomineralization.

    Science.gov (United States)

    Weiss, Ingrid M; Lüke, Florian; Eichner, Norbert; Guth, Christina; Clausen-Schaumann, Hauke

    2013-08-01

    Molluscs with various shell architectures evolved around 542-525 million years ago, as part of a larger phenomenon related to the diversification of metazoan phyla. Molluscs deposit minerals in a chitin matrix. The mollusc chitin is synthesized by transmembrane enzymes that contain several unique extracellular domains. Here we investigate the assembly mechanism of the chitin synthase Ar-CS1 via its extracellular domain ArCS1_E22. The corresponding transmembrane protein ArCS1_E22TM accumulates in membrane fractions of the expression host Dictyostelium discoideum. Soluble recombinant ArCS1_E22 proteins can be purified as monomers only at basic pH. According to confocal fluorescence microscopy experiments, immunolabeled ArCS1_E22 proteins adsorb preferably to aragonitic nacre platelets at pH 7.75. At pH 8.2 or pH 9.0 the fluorescence signal is less intense, indicating that protein-mineral interaction is reduced with increasing pH. Furthermore, ArCS1_E22 forms regular nanostructures on cationic substrates as revealed by atomic force microscopy (AFM) experiments on modified mica cleavage planes. These experiments suggest that the extracellular domain ArCS1_E22 is involved in regulating the multiple enzyme activities of Ar-CS1 such as chitin synthesis and myosin movements by interaction with mineral surfaces and eventually by protein assembly. The protein complexes could locally probe the status of mineralization according to pH unless ions and pCO2 are balanced with suitable buffer substances. Taking into account that the intact enzyme could act as a force sensor, the results presented here provide further evidence that shell formation is coordinated physiologically with precise adjustment of cellular activities to the structure, topography and stiffness at the mineralizing interface. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Biosorption of gold from computer microprocessor leachate solutions using chitin.

    Science.gov (United States)

    Côrtes, Letícia N; Tanabe, Eduardo H; Bertuol, Daniel A; Dotto, Guilherme L

    2015-11-01

    The biosorption of gold from discarded computer microprocessor (DCM) leachate solutions was studied using chitin as a biosorbent. The DCM components were leached with thiourea solutions, and two procedures were tested for recovery of gold from the leachates: (1) biosorption and (2) precipitation followed by biosorption. For each procedure, the biosorption was evaluated considering kinetic, equilibrium, and thermodynamic aspects. The general order model was able to represent the kinetic behavior, and the equilibrium was well represented by the BET model. The maximum biosorption capacities were around 35 mg g(-1) for both procedures. The biosorption of gold on chitin was a spontaneous, favorable, and exothermic process. It was found that precipitation followed by biosorption resulted in the best gold recovery, because other species were removed from the leachate solution in the precipitation step. This method enabled about 80% of the gold to be recovered, using 20 g L(-1) of chitin at 298 K for 4 h. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Evaluation of Chitin as Natural Coagulant in Water Treatment

    Directory of Open Access Journals (Sweden)

    V. Saritha

    2012-04-01

    Full Text Available The use of synthetic coagulants is not regarded as suitable due to health and economic considerations. The present study was aimed to investigate the effects of alum as coagulant in conjunction with chitin as coagulant aid on the removal of turbidity, hardness and Escherichia coli from water. A conventional jar test apparatus was employed for the tests. The experiment was conducted at three different pH conditions of 6, 7 and 8. The dosages chosen were 0.5, 1, 1.5 and 2mg/l. The results showed that turbidity decrease provided also a primary Escherichia coli reduction. Hardness removal efficiency was observed to be 93% at pH 7 with 1mg/l concentration by alum whereas chitin was stable at all the pH ranges showing highest removal at 1 and 1.5mg/l with pH 7. At low concentration chitin showed marginally better performance on hardness. In conclusion, using natural coagulants results in considerable savings in chemicals and sludge handling cost may be achieved.

  4. Non-absorbable disaccharides versus placebo/no intervention and lactulose versus lactitol for the prevention and treatment of hepatic encephalopathy in people with cirrhosis

    DEFF Research Database (Denmark)

    Gluud, Lise Lotte; Vilstrup, Hendrik; Morgan, Marsha Y

    2016-01-01

    BACKGROUND: Non-absorbable disaccharides (lactulose and lactitol) are recommended as first-line treatment for hepatic encephalopathy. The previous (second) version of this review included 10 randomised clinical trials (RCTs) evaluating non-absorbable disaccharides versus placebo/no intervention...... and eight RCTs evaluating lactulose versus lactitol for people with cirrhosis and hepatic encephalopathy. The review found no evidence to either support or refute the use of the non-absorbable disaccharides and no differences between lactulose versus lactitol. OBJECTIVES: To assess the beneficial...... and harmful effects of i) non-absorbable disaccharides versus placebo/no intervention and ii) lactulose versus lactitol in people with cirrhosis and hepatic encephalopathy. SEARCH METHODS: We carried out electronic searches of the Cochrane Hepato-Biliary Group Controlled Trials Register, the Cochrane Central...

  5. High similarity in physicochemical properties of chitin and chitosan from nymphs and adults of a grasshopper.

    Science.gov (United States)

    Erdogan, Sevil; Kaya, Murat

    2016-08-01

    This is the first study to explain the differences in the physicochemical properties of chitin and chitosan obtained from the nymphs and adults of Dociostaurus maroccanus using the same method. Fourier transform infrared spectroscopy, thermogravimetric analysis and x-ray diffraction analysis results demonstrated that the chitins from both the adults and nymphs were in the α-form. The chitin contents of the adults (14%) and nymphs (12%) were of the same order of magnitude. The crystalline index values of chitins from the adult and nymph grasshoppers were 71% and 74%, respectively. Thermal stabilities of the chitins and chitosans from adult and nymph grasshoppers were close to each other. Both the adult (7.2kDa) and nymph (5.6kDa) chitosans had low molar masses. Environmental scanning electron microscopy revealed that the surface morphologies of both chitins consisted of nanofibers and nanopores together, and they were very similar to each other. Consequently, it was determined that the physicochemical properties of the chitins and chitosans from adults and nymphs of D. maroccanus were not very different, so it can be hypothesized that the development of the chitin structure in the nymph has almost been completed and the nymph chitin has the same characteristics as the adult. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Comparison of Extraction Methods of Chitin from Ganoderma lucidum Mushroom Obtained in Submerged Culture

    Directory of Open Access Journals (Sweden)

    Sandra Patricia Ospina Álvarez

    2014-01-01

    Full Text Available The chitin was isolated from the Ganoderma lucidum submerged cultures mycelium as potential source of chitin under biotechnological processes. The extraction of chitin was carried out through 5 different assays which involved mainly three phases: pulverization of the mushroom, deproteinization of the mycelia with NaOH solution, and a process of decolorization with potassium permanganate and oxalic acid. The chitin contents extracted from 9-day mycelia were 413, 339, 87, 78, and 144 mg/g−1 (milligrams of chitin/grams of dry biomass for A1, A2, A3, A4, and A5, respectively. Obtained chitin was characterized by X-Ray Diffraction (XRD, by Fourier transform infrared spectroscopy (FTIR, and by thermal analysis (TGA. The results showed that Ganoderma lucidum chitin has similar characteristic of chitin from different fonts. The advantage of the biotechnological processes and the fact that Ganoderma lucidum fungus may be used as a potential raw material for chitin production were demonstrated.

  7. Facile nanofibrillation of chitin derivatives by gas bubbling and ultrasonic treatments in water.

    Science.gov (United States)

    Tanaka, Kohei; Yamamoto, Kazuya; Kadokawa, Jun-ichi

    2014-10-29

    In this paper, we report that nanofiber network structures were constructed from chitin derivatives by gas bubbling and ultrasonic treatments in water. When chitin was first subjected to N2 gas bubbling with ultrasonication in water, the SEM images of the product showed nanofiber network morphology. However, nanofiber network was not re-constructed by the same N2 gas bubbling and ultrasonic treatments after agglomeration. We then have paid attention to an amidine group to provide the agglomeration-nanofibrillation behavior of chitin derivatives. An amidinated chitin was synthesized by the reaction of the amino groups in a partially deacetylated chitin with N,N-dimethylacetamide dimethyl acetal, which was subjected to CO2 gas bubbling and ultrasonic treatments in water to convert into an amidinium chitin by protonation. The SEM images of the product clearly showed nanofiber network morphology. We further examined re-nanofibrillation of the agglomerated material, which was obtained by mixing the nanofibrillated amidinium chitin with water, followed by drying under reduced pressure. Consequently, the material was re-nanofibrillated by N2 gas bubbling with ultrasonication in water owing to electrostatic repulsion between the amidinium groups. Furthermore, deprotonation of the amidinium chitin and re-protonation of the resulting amidinated chitin were conducted by alkaline treatment and CO2 gas bubbling-ultrasonic treatments, respectively. The material showed the agglomeration-nanofibrillation behavior during the processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Elevated Chitin Content Reduces the Susceptibility of Candida Species to Caspofungin

    Science.gov (United States)

    Walker, Louise A.; Gow, Neil A. R.

    2013-01-01

    The echinocandin antifungal drugs inhibit synthesis of the major fungal cell wall polysaccharide β(1,3)-glucan. Echinocandins have good efficacy against Candida albicans but reduced activity against other Candida species, in particular Candida parapsilosis and Candida guilliermondii. Treatment of Candida albicans with a sub-MIC level of caspofungin has been reported to cause a compensatory increase in chitin content and to select for sporadic echinocandin-resistant FKS1 point mutants that also have elevated cell wall chitin. Here we show that elevated chitin in response to caspofungin is a common response in various Candida species. Activation of chitin synthesis was observed in isolates of C. albicans, Candida tropicalis, C. parapsilosis, and C. guilliermondii and in some isolates of Candida krusei in response to caspofungin treatment. However, Candida glabrata isolates demonstrated no exposure-induced change in chitin content. Furthermore, isolates of C. albicans, C. krusei, C. parapsilosis, and C. guilliermondii which were stimulated to have higher chitin levels via activation of the calcineurin and protein kinase C (PKC) signaling pathways had reduced susceptibility to caspofungin. Isolates containing point mutations in the FKS1 gene generally had higher chitin levels and did not demonstrate a further compensatory increase in chitin content in response to caspofungin treatment. These results highlight the potential of increased chitin synthesis as a potential mechanism of tolerance to caspofungin for the major pathogenic Candida species. PMID:23089748

  9. Characterization and role of a metalloprotease induced by chitin in Serratia sp. KCK.

    Science.gov (United States)

    Kim, Hyun-Soo; Golyshin, Peter N; Timmis, Kenneth N

    2007-11-01

    A metalloprotease induced by chitin in a new chitinolytic bacterium Serratia sp. Strain KCK was purified and characterized. Compared with other Serratia enzymes, it exhibited a rather broad pH activity range (pH 5.0-8.0), and thermostability. The cognate ORF, mpr, was cloned and expressed. Its deduced amino acid sequence showed high similarity to those of bacterial zinc-binding metalloproteases and a well-conserved serralysin family motif. Pretreatment of chitin with the Mpr protein promoted chitin degradation by chitinase A, which suggests that Mpr participates in, and facilitates, chitin degradation by this microorganism.

  10. Comparison of Extraction Methods of Chitin from Ganoderma lucidum Mushroom Obtained in Submerged Culture

    Science.gov (United States)

    Ospina Álvarez, Sandra Patricia; Ramírez Cadavid, David Alexander; Ossa Orozco, Claudia Patricia; Zapata Ocampo, Paola; Atehortúa, Lucía

    2014-01-01

    The chitin was isolated from the Ganoderma lucidum submerged cultures mycelium as potential source of chitin under biotechnological processes. The extraction of chitin was carried out through 5 different assays which involved mainly three phases: pulverization of the mushroom, deproteinization of the mycelia with NaOH solution, and a process of decolorization with potassium permanganate and oxalic acid. The chitin contents extracted from 9-day mycelia were 413, 339, 87, 78, and 144 mg/g−1 (milligrams of chitin/grams of dry biomass) for A1, A2, A3, A4, and A5, respectively. Obtained chitin was characterized by X-Ray Diffraction (XRD), by Fourier transform infrared spectroscopy (FTIR), and by thermal analysis (TGA). The results showed that Ganoderma lucidum chitin has similar characteristic of chitin from different fonts. The advantage of the biotechnological processes and the fact that Ganoderma lucidum fungus may be used as a potential raw material for chitin production were demonstrated. PMID:24551839

  11. A comparative study of sorption of chromium (III) onto chitin and chitosan

    Science.gov (United States)

    Singh, Pooja; Nagendran, R.

    2016-06-01

    Heavy metals have always been the most hazardous components in the wastewater of industries like electroplating, automobiles, mining facilities and fertilizer manufacturers. Treatment of heavy metal laden wastewater requires expensive operational and maintenance systems. Food processing industries create a huge amount of shell waste which is sold to poultry farms in powdered form but the quantity thus used is still not comparable to the left over waste. The shell contains chitin which acts as an adsorbent for the heavy metals and can be used to treat heavy metal wastewater. The paper presents a study on the use of chitin and its processed product, chitosan, to remove chromium. Shake flask experiment was conducted to compare the adsorptive capacity of chitin and chitosan for chromium removal from simulated solution and isotherm studies were carried out. The studies showed that the chitosan was a better adsorbent than chitin. Both chitin and chitosan gave best adsorption results at pH 3. Chitin exhibited maximum chromium removal of 49.98 % in 20 min, whereas chitosan showed 50 % removal efficiency at a contact time of 20 min showing higher adsorptive capacity for chromium than chitin. The Langmiur and Freundlich isotherm studies showed very good adsorption capacity and monolayer interaction according to the regression coefficient 0.973 for chitosan and 0.915 for chitin. The regression coefficient for Freundlich isotherm was 0.894 and 0.831 for chitosan and chitin, respectively.

  12. Physicochemical and antifungal properties of bio-nanocomposite film based on gelatin-chitin nanoparticles.

    Science.gov (United States)

    Sahraee, Samar; Milani, Jafar M; Ghanbarzadeh, Babak; Hamishehkar, Hamed

    2017-04-01

    The gelatin-based nanocomposite films containing chitin nanoparticles (N-chitin) with concentrations of 0, 3, 5 and 10% were prepared and their physical, thermal and anti-microbial properties were investigated. Scanning electron microscopy (SEM) micrographs showed that N-chitin size distribution was around 60-70nm which dispersed appropriately at low concentration in gelatin matrix. The results showed that incorporation of N-chitin significantly influenced apparent color and transparency of the gelatin films. The reduced water vapor permeability (WVP) and solubility and higher surface hydrophobicity of the nanocomposite films were obtained by enhancing N-chitin concentration in film formulation. The use of N-chitin up to 5% concentration in the gelatin based nanocomposite film led to improved mechanical properties. Also, the results of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) confirmed improved stability of nanocomposite films against melting and degradation at high temperatures in comparison to neat gelatin film. The well compatibility of chitin nanoparticles with gelatin polymer was concluded from Fourier transform infrared (FTIR) spectra and X-ray diffraction (XRD) plots. Finally, the gelatin based nanocomposite films had anti-fungal properties against Aspergillus niger in the contact surface zone. Increasing the concentration of N-chitin up to 5% enlarged inhibition zone diameter, but the nanocomposite film containing 10% N-chitin showed smaller inhibition zone. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. SEM characterization of anatomical variation in chitin organization in insect and arthropod cuticles.

    Science.gov (United States)

    Chandran, Rakkiyappan; Williams, Lee; Hung, Albert; Nowlin, Kyle; LaJeunesse, Dennis

    2016-03-01

    The cuticles of insects and arthropods have some of the most diverse material properties observed in nature, so much so that it is difficult to imagine that all cutciles are primarily composed of the same two materials: a fibrous chitin network and a matrix composed of cuticle proteins. Various factors contribute to the mechanical and optical properties of an insect or arthropod cuticle including the thickness and composition. In this paper, we also identified another factor that may contribute to the optical, surface, and mechanical properties of a cuticle, i.e. the organization of chitin nanofibers and chitin fiber bundles. Self-assembled chitin nanofibers serve as the foundation for all higher order chitin structures in the cuticles of insects and other arthropods via interactions with structural cuticle proteins. Using a technique that enables the characterization of chitin organization in the cuticle of intact insects and arthropod exoskeletons, we demonstrate a structure/function correlation of chitin organization with larger scale anatomical structures. The chitin scaffolds in cuticles display an extraordinarily diverse set of morphologies that may reflect specific mechanical or physical properties. After removal of the proteinaceous and mineral matrix of a cuticle, we observe using SEM diverse nanoscale and micro scale organization of in-situ chitin in the wing, head, eye, leg, and dorsal and ventral thoracic regions of the periodical cicada Magicicada septendecim and in other insects and arthropods. The organization of chitin also appears to have a significant role in the organization of nanoscale surface structures. While microscale bristles and hairs have long been known to be chitin based materials formed as cellular extensions, we have found a nanostructured layer of chitin in the cuticle of the wing of the dog day annual cicada Tibicen tibicens, which may be the scaffold for the nanocone arrays found on the wing. We also use this process to examine

  14. Preparation of Size-Controlled Silver Nanoparticles and Chitin-Based Composites and Their Antimicrobial Activities

    Directory of Open Access Journals (Sweden)

    Vinh Quang Nguyen

    2013-01-01

    Full Text Available A simple method for the preparation of size-controlled spherical silver nanoparticles (Ag NPs was reported for their generation by autoclaving a mixture of silver-containing glass powder and glucose. The particle size is regulated by the glucose concentration, with concentrations of 0.25, 1.0, and 4.0 wt% glucose providing small (3.48±1.83 nm in diameter, medium (6.53±1.78 nm, and large (12.9±2.5 nm particles, respectively. In this study, Ag NP/chitin composites were synthesized by mixing each of these three Ag NP suspensions with a <5% deacetylated (DAc chitin powder (pH 7.0 at room temperature. The Ag NPs were homogenously dispersed and stably adsorbed onto the chitin. The Ag NP/chitin composites were obtained as yellow or brown powders. Approximately 5, 15, and 20 μg of the small, medium, and large Ag NPs, respectively, were estimated to maximally adsorb onto 1 mg of chitin. The bactericidal and antifungal activities of the Ag NP/chitin composites increased as the amount of Ag NPs in the chitin increased. Furthermore, smaller Ag NPs (per weight in the chitin composites provided higher bactericidal and anti-fungal activities.

  15. Fabrication of free-standing replicas of fragile, laminar, chitinous biotemplates

    International Nuclear Information System (INIS)

    Lakhtakia, Akhlesh; Motyka, Michael A; MartIn-Palma, Raul J; Pantano, Carlo G

    2009-01-01

    The conformal-evaporated-film-by-rotation technique, followed by the dissolution of chitin in an aqueous solution of orthophosphoric acid, can be used to fabricate free-standing replicas of fragile, laminar, chitinous biotemplates. This novel approach was demonstrated using butterfly wings as biotemplates and GeSeSb chalcogenide glass for replicas. (communication)

  16. Fabrication of free-standing replicas of fragile, laminar, chitinous biotemplates

    Energy Technology Data Exchange (ETDEWEB)

    Lakhtakia, Akhlesh; Motyka, Michael A [Materials Research Institute and Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802 (United States); MartIn-Palma, Raul J; Pantano, Carlo G [Materials Research Institute and Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)], E-mail: akhlesh@psu.edu

    2009-09-01

    The conformal-evaporated-film-by-rotation technique, followed by the dissolution of chitin in an aqueous solution of orthophosphoric acid, can be used to fabricate free-standing replicas of fragile, laminar, chitinous biotemplates. This novel approach was demonstrated using butterfly wings as biotemplates and GeSeSb chalcogenide glass for replicas. (communication)

  17. Bacterial chitinolytic communities respond to chitin and pH alteration in soil

    NARCIS (Netherlands)

    Kielak-Butterbach, A.M.; Cretoiu, M.S.; Semenov, A.V.; Sørensen, S.J.; van Elsas, J.D.

    Chitin amendment is a promising soil management strategy that may enhance the suppressiveness of soil toward plant pathogens. However, we understand very little of the effects of added chitin, including the putative successions that take place in the degradative process. We performed an experiment

  18. A simple procedure for preparing chitin oligomers through acetone precipitation after hydrolysis in concentrated hydrochloric acid.

    Science.gov (United States)

    Kazami, Nao; Sakaguchi, Masayoshi; Mizutani, Daisuke; Masuda, Tatsuhiko; Wakita, Satoshi; Oyama, Fumitaka; Kawakita, Masao; Sugahara, Yasusato

    2015-11-05

    Chitin oligomers are of interest because of their numerous biologically relevant properties. To prepare chitin oligomers containing 4-6 GlcNAc units [(GlcNAc)4-6], α- and β-chitin were hydrolyzed with concentrated hydrochloric acid at 40 °C. The reactant was mixed with acetone to recover the acetone-insoluble material, and (GlcNAc)4-6 was efficiently recovered after subsequent water extraction. Composition analysis using gel permeation chromatography and MALDI-TOF mass spectrometry indicated that (GlcNAc)4-6 could be isolated from the acetone-insoluble material with recoveries of approximately 17% and 21% from the starting α-chitin and β-chitin, respectively. The acetone precipitation method is highly useful for recovering chitin oligomers from the acid hydrolysate of chitin. The changes in the molecular size and higher-order structure of chitin during the course of hydrolysis were also analyzed, and a model that explains the process of oligomer accumulation is proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Determination of chitin content in fungal cell wall: an alternative flow cytometric method.

    Science.gov (United States)

    Costa-de-Oliveira, Sofia; Silva, Ana P; Miranda, Isabel M; Salvador, Alexandre; Azevedo, Maria M; Munro, Carol A; Rodrigues, Acácio G; Pina-Vaz, Cidália

    2013-03-01

    The conventional methods used to evaluate chitin content in fungi, such as biochemical assessment of glucosamine release after acid hydrolysis or epifluorescence microscopy, are low throughput, laborious, time-consuming, and cannot evaluate a large number of cells. We developed a flow cytometric assay, efficient, and fast, based on Calcofluor White staining to measure chitin content in yeast cells. A staining index was defined, its value was directly related to chitin amount and taking into consideration the different levels of autofluorecence. Twenty-two Candida spp. and four Cryptococcus neoformans clinical isolates with distinct susceptibility profiles to caspofungin were evaluated. Candida albicans clinical isolate SC5314, and isogenic strains with deletions in chitin synthase 3 (chs3Δ/chs3Δ) and genes encoding predicted GlycosylPhosphatidylInositol (GPI)-anchored proteins (pga31Δ/Δ and pga62Δ/Δ), were used as controls. As expected, the wild-type strain displayed a significant higher chitin content (P relationship between chitin content and antifungal drug susceptibility phenotype was found, an association was established between the paradoxical growth effect in the presence of high caspofungin concentrations and the chitin content. This novel flow cytometry protocol revealed to be a simple and reliable assay to estimate cell wall chitin content of fungi. Copyright © 2013 International Society for Advancement of Cytometry.

  20. The structure and dynamics of chitin nanofibrils in an aqueous environment revealed by molecular dynamics simulations

    Czech Academy of Sciences Publication Activity Database

    Střelcová, Z.; Kulhánek, P.; Friák, Martin; Fabritius, H.; Petrov, M.; Neugebauer, J.; Koča, J.

    2016-01-01

    Roč. 6, č. 36 (2016), s. 30710-30721 ISSN 2046-2069 Institutional support: RVO:68081723 Keywords : FREE-ENERGY CALCULATIONS * PARTICLE MESH EWALD * ALPHA-CHITIN * CRYSTAL-STRUCTURE * INSECT CHITIN * SURFACE-AREA * AB-INITIO Subject RIV: BO - Biophysics Impact factor: 3.108, year: 2016

  1. Metabolic engineering of the morphology of Aspergillus oryzae by altering chitin synthesis

    DEFF Research Database (Denmark)

    Muller, C.; Mcintyre, Mhairi; Hansen, Kim

    2002-01-01

    Morphology and alpha-amylase production during submerged cultivation were examined in a wild-type strain (A1560) and in strains of Aspergillus oryzae in which chitin synthase B (chsB) and chitin synthesis myosin A (csmA) have been disrupted (ChsB/G and CM101). In a flowthrough cell, the growth...

  2. Bacterial chitinolytic communities respond to chitin and pH alteration in soil

    DEFF Research Database (Denmark)

    Kielak, Anna; Cretoiu, Mariana; Semenov, Alexander

    2013-01-01

    by the addition of chitin at different prevailing soil pH values. Interestingly, a major role of Gram-negative bacteria versus a minor one of Actinobacteria in the immediate response to the added chitin (based on 16S rRNA gene abundance and chiA gene types) was indicated. The results of this study enhance our...

  3. Altering the expression of two chitin synthase genes differentially affects the growth and morphology of Aspergillus oryzae

    DEFF Research Database (Denmark)

    Müller, Christian; Hjort, C.M.; Hansen, K.

    2002-01-01

    In Aspergillus oryzae, one full-length chitin synthase (chsB) and fragments of two other chitin synthases (csmA and chsC) were identified. The deduced amino acid sequence of chsB was similar (87% identity) to chsB from Aspergillus nidulans, which encodes a class III chitin synthase. The sequence...

  4. Bacterial communities in chitin-amended soil as revealed by 16S rRNA gene based pyrosequencing

    NARCIS (Netherlands)

    Cretoiu, M.S.; Kielak, A.M.; Schluter, A.; van Elsas, J.D.

    2014-01-01

    Chitin and its derivatives are natural biopolymers that are often used as compounds for the control of soil-borne plant pathogens. In spite of recent advances in agricultural practices involving chitin amendments, the microbial communities in chitin-amended soils remain poorly known. The objectives

  5. Bacterial communities in chitin-amended soil as revealed by 16S rRNA gene based pyrosequencing

    NARCIS (Netherlands)

    Cretoiu, Mariana Silvia; Kielak, Anna Maria; Schluter, Andreas; van Elsas, Jan Dirk

    Chitin and its derivatives are natural biopolymers that are often used as compounds for the control of soilborne plant pathogens. In spite of recent advances in agricultural practices involving chitin amendments, the microbial communities in chitin-amended soils remain poorly known. The objectives

  6. Chitin based polyurethanes using hydroxyl terminated polybutadiene, part III: surface characteristics.

    Science.gov (United States)

    Zia, Khalid Mahmood; Zuber, Mohammad; Saif, Muhammad Jawwad; Jawaid, Mohammad; Mahmood, Kashif; Shahid, Muhammad; Anjum, Muhammad Naveed; Ahmad, Mirza Nadeem

    2013-11-01

    Hydroxy terminated polybutadiene (HTPB)-chitin based polyurethanes (PUs) with controlled hydrophobicity were synthesized using HTPB and toluene diisocyanate (TDI). The prepolymer was extended with different mass ratios of chitin and 1,4-butane diol (BDO). The effect of chitin contents in chain extender (CE) proportions on surface properties was studied and investigated. Incorporation of chitin contents into the final PU showed decrease in contact angle value of water drop, water absorption (%) and swelling behavior. The antibacterial activity of the prepared samples was affected by varying the chitin contents in the chemical composition of the final PU. The results demonstrated that the use of prepared material can be suggested as non-absorbable suture. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. [In Vivo Study of Chitin in Fungal Hyphae Based on Confocal Raman Microscopy].

    Science.gov (United States)

    Li, Xiao-li; Luo, Liu-bin; Zhou, Bin-xiong; Hu, Xiao-qian; Sun, Chan-jun; He, Yong

    2016-01-01

    Chitin is an important structural polysaccharide of fungal cell wall. In this paper, aerial hyphae of Colletotrichum camelliae Massee was first studied by confocal Raman microscopy in vivo. Firstly, the optimal experimental parameters of hyphae for collecting the Raman spectra were determined, and the typical Raman spectra of hyphae, chitin standard and background were acquired. By comparing analysis, characteristic peaks of chitin were found in hyphae. Then, a region of interesting on hyphae was selected for Raman scanning. Through principal component analysis, the Raman signal of hyphae and background in the scanning area can be separated clearly. Combined with loading weight plot, two main characteristic peaks of hyphae were obtained, 1 622 cm(-1) was belong to chitin and 1 368 cm(-1) was assigned to pectic polysaccharide. Finally, two and three dimension chemical images of fungal hyphae were realized based on Raman fingerprint spectra of chitin in a nondestructive way.

  8. Salmonella biofilm formation on Aspergillus niger involves cellulose--chitin interactions.

    Directory of Open Access Journals (Sweden)

    Maria T Brandl

    Full Text Available Salmonella cycles between host and nonhost environments, where it can become an active member of complex microbial communities. The role of fungi in the environmental adaptation of enteric pathogens remains relatively unexplored. We have discovered that S. enterica Typhimurium rapidly attaches to and forms biofilms on the hyphae of the common fungus, Aspergillus niger. Several Salmonella enterica serovars displayed a similar interaction, whereas other bacterial species were unable to bind to the fungus. Bacterial attachment to chitin, a major constituent of fungal cell walls, mirrored this specificity. Pre-incubation of S. Typhimurium with N-acetylglucosamine, the monomeric component of chitin, reduced binding to chitin beads by as much as 727-fold and inhibited attachment to A. niger hyphae considerably. A cellulose-deficient mutant of S. Typhimurium failed to attach to chitin beads and to the fungus. Complementation of this mutant with the cellulose operon restored binding to chitin beads to 79% of that of the parental strain and allowed for attachment and biofilm formation on A. niger, indicating that cellulose is involved in bacterial attachment to the fungus via the chitin component of its cell wall. In contrast to cellulose, S. Typhimurium curli fimbriae were not required for attachment and biofilm development on the hyphae but were critical for its stability. Our results suggest that cellulose-chitin interactions are required for the production of mixed Salmonella-A. niger biofilms, and support the hypothesis that encounters with chitinaceous alternate hosts may contribute to the ecological success of human pathogens.

  9. Polycaprolactone-Chitin Nanofibrous Mats as Potential Scaffolds for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Min Sup Kim

    2012-01-01

    Full Text Available We describe here the preparation of poly(caprolactone (PCL-chitin nanofibrous mats by electrospinning from a blended solution of PCL and chitin dissolved in a cosolvent, 1,1,1,3,3,3-hexafluoro-2-propanol and trifluoroacetic acid. Scanning electron microscopy showed that the neutralized PCL-chitin nanofibrous mats were morphologically stable, with a mean diameter of 340.5±2.6 nm, compared with a diameter of 524.2±12.1 nm for PCL mats. The nanofibrous mats showed decreased water contact angles as the proportion of chitin increased. However, the tensile properties of nanofibrous mats containing 30~50% (wt/wt chitin were enhanced compared with PCL-only mats. In vitro studies showed that the viability of human dermal fibroblasts (HDFs for up to 7 days in culture was higher on composite (OD value: 1.42±0.09 than on PCL-only (0.51±0.14 nanofibrous mats, with viability correlated with chitin concentration. Together, our results suggest that PCL-chitin nanofibrous mats can be used as an implantable substrate to modulate HDF viability in tissue engineering.

  10. Construction of chitin/PVA composite hydrogels with jellyfish gel-like structure and their biocompatibility.

    Science.gov (United States)

    He, Meng; Wang, Zhenggang; Cao, Yan; Zhao, Yanteng; Duan, Bo; Chen, Yun; Xu, Min; Zhang, Lina

    2014-09-08

    High strength chitin/poly(vinyl alcohol) (PVA) composite hydrogels (RCP) were constructed by adding PVA into chitin dissolved in a NaOH/urea aqueous solution, and then by cross-linking with epichlorohydrin (ECH) and freezing-thawing process. The RCP hydrogels were characterized by field emission scanning electron microscopy, FTIR, differential scanning calorimetry, solid-state (13)C NMR, wide-angle X-ray diffraction, and compressive test. The results revealed that the repeated freezing/thawing cycles induced the bicrosslinked networks consisted of chitin and PVA crystals in the composite gels. Interestingly, a jellyfish gel-like structure occurred in the RCP75 gel with 25 wt % PVA content in which the amorphous and crystalline PVA were immobilized tightly in the chitin matrix through hydrogen bonding interaction. The freezing/thawing cycles played an important role in the formation of the layered porous PVA networks and the tight combining of PVA with the pore wall of chitin. The mechanical properties of RCP75 were much higher than the other RCP gels, and the compressive strength was 20× higher than that of pure chitin gels, as a result of broadly dispersing stress caused by the orderly multilayered networks. Furthermore, the cell culture tests indicated that the chitin/PVA composite hydrogels exhibited excellent biocompatibility and safety, showing potential applications in the field of tissue engineering.

  11. Chitin enhances biocontrol of Rhodotorula mucilaginosa to postharvest decay of peaches.

    Science.gov (United States)

    Zhang, Hongyin; Yang, Qiya; Ge, Lingling; Zhang, Guochao; Zhang, Xiaoli; Zhang, Xiaoyun

    2016-07-01

    Biological control using microbial antagonists is a promising alternative approach to synthetic fungicides. However, effective biological control requires enhancing the consistency and efficacy of the antagonists used to control postharvest diseases. This study investigated the effect of chitin on the biocontrol efficacy of Rhodotorula mucilaginosa against blue mold and Rhizopus decay of peaches and on the protein expression profiles of R. mucilaginosa. The antagonistic activity of R. mucilaginosa harvested from the nutrient yeast dextrose broth (NYDB) with 0.5% chitin added was significantly improved compared with culture in NYDB without chitin. The R. mucilaginosa population cultured in chitin-supplement NYDB and nutrient yeast chitin borth (NYCB) harvested from peach wounds was more than that of R. mucilaginosa cultured in NYDB without chitin throughout the storage period except at 1 d. The protein expression profiles findings revealed that there were several differentially expressed proteins of R. mucilaginosa in the 0.5% chitin-supplemented NYDB and NYCB compared with that of R. mucilaginosa in NYDB. Most of these were cellular proteomes relating to the primary metabolic reactions such as glycoside hydrolases, phosphoribosyl pyrophosphate, and NADH dehydrogenases. Some proteins were also related to signal transmission and stress response. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Surface modification of chitin and chitosan with poly(3-hexylthiophene) via oxidative polymerization

    Science.gov (United States)

    Hai, Thien An Phung; Sugimoto, Ryuichi

    2018-03-01

    In the present work, the modification of biomaterials such as chitin and chitosan were successfully prepared by directly grafting poly(3-hexylthiophene) (P3HT) to their surfaces using simple oxidative polymerization with FeCl3. The thermal stability and crystallinity of grafted chitin and chitosan changed upon grafting with P3HT. The build-up of π-π* structure from the P3HT on the surface of chitin and chitosan resulted in the appearance of UV-vis absorption and fluorescence emission peaks in the range from 500 to 600 nm. Introducing P3HT to the surface of chitin and chitosan improved significantly the electrical property of chitin and chitosan with the increase in conductivity from 10-9 to 10-7 S/cm. Furthermore, the usual behavior of hydrophilic surface of chitin and chitosan that turned to hydrophobic with water contact angle of 97.7° and 107.0°, respectively in the presence of P3HT. The mechanism for graft reaction of P3HT to chitin and chitosan was also proposed and discussed.

  13. Surface modification of chitin using ultrasound-assisted and supercritical CO{sub 2} technologies for cobalt adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Dotto, Guilherme L., E-mail: guilherme_dotto@yahoo.com.br; Cunha, Jeanine M., E-mail: jeaninecunha@gmail.com; Calgaro, Camila O., E-mail: camila.itepjr@gmail.com; Tanabe, Eduardo H., E-mail: edutanabe@yahoo.com.br; Bertuol, Daniel A., E-mail: dbertuol@gmail.com

    2015-09-15

    Highlights: • Chitin was modified by ultrasound-assisted (UA) and supercritical (SCO{sub 2}) technologies. • Chitin, UA-chitin and SCO{sub 2}-chitin were used as adsorbents for Co(II). • UA and SCO{sub 2} treatments provided increase of 20 and 3 times in chitin surface area. • The Co(II) adsorption capacity increased until 67.8%, using UA-chitin. - Abstract: Ultrasound-assisted (UA) and supercritical CO{sub 2} technologies (SCO{sub 2}) were used to modify the chitin surface and, improve its adsorption characteristics regarding to cobalt. Chitin, before and after the treatments, was characterized by N{sub 2} adsorption isotherms (BET), infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Unmodified and surface modified chitins were used as adsorbents to remove cobalt from aqueous solutions. The adsorption study was performed by equilibrium isotherms and kinetic curves. The chitin particle characteristics, such as, surface area, pore volume and porosity were improved by the UA and SCO{sub 2} treatments. The crystallinity index decreased after the UA and SCO{sub 2} treatments, and also, intense surface modifications were observed. Langmuir and Freundlich models were adequate to represent the adsorption equilibrium. The maximum adsorption capacities were 50.03, 83.94 and 63.08 mg g{sup −1} for unmodified chitin, UA surface modified chitin and SCO{sub 2} surface modified chitin. The adsorption kinetic curves were well represented by the pseudo-second order model. UA and SCO{sub 2} technologies are alternatives to modify the chitin surface and improve its adsorption characteristics.

  14. Development of Coprocessed Chitin-Calcium Carbonate as Multifunctional Tablet Excipient for Direct Compression.

    Science.gov (United States)

    Chaheen, Mohammad; Sanchez-Ballester, Noelia M; Bataille, Bernard; Yassine, Ahmad; Belamie, Emmanuel; Sharkawi, Tahmer

    2018-04-24

    Owing to the increasing interest in multifunctional excipients for tableting, coprocessing of individual excipients is regularly used to produce excipients of improved multifunctionality superior to individual excipients or their physical mix. The use of chitin as an excipient in tablet formulation is limited because of certain drawbacks such as poor flowability and low true density. The objective of this work is to improve these properties through coprocessing of chitin with calcium carbonate (CaCO 3 ) by precipitating CaCO 3 on chitin particles using different methods. In addition, optimization of the coprocessed chitin was carried out to improve the excipient's properties. Physicochemical (CaCO 3 content, true density, X-ray diffraction, infrared spectroscopy, and scanning electron microscopy) and functional testing (swelling force, flowability, tensile strength, deformation mechanism, and disintegration time) were used to characterize the coprocessed product. Results showed that the calcite CaCO 3 polymorph is precipitated on the chitin surface and that it interacts with chitin at carbonyl- and amide-group level. In addition, the coprocessed excipient has an improved true density and powder flowability, with CaCO 3 forming single layer on the chitin particles surface. Tableting studies showed that the coprocessed powder exhibited an intermediate deformation behavior between CaCO 3 (most brittle) and chitin (most plastic). Tablets showed acceptable tensile strength and rapid disintegration (2-4 s). These results show the potential use of coprocessed chitin-CaCO 3 as a multifunctional excipient for fast disintegration of tablets produced by direct compression. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  15. Chitins and Chitosans as Immunoadjuvants and Non-Allergenic Drug Carriers

    Directory of Open Access Journals (Sweden)

    Riccardo A. A. Muzzarelli

    2010-02-01

    Full Text Available Due to the fact that some individuals are allergic to crustaceans, the presumed relationship between allergy and the presence of chitin in crustaceans has been investigated. In vivo, chitin is part of complex structures with other organic and inorganic compounds: in arthropods chitin is covalently linked to proteins and tanned by quinones, in fungi it is covalently linked to glucans, while in bacteria chitin is diversely combined according to Gram(+/- classification. On the other hand, isolated, purified chitin is a plain polysaccharide that, at the nano level, presents itself as a highly associated structure, recently refined in terms of regularity, nature of bonds, crystallinity degree and unusual colloidal behavior. Chitins and modified chitins exert a number of beneficial actions, i.e., (i they stimulate macrophages by interacting with receptors on the macrophage surface that mediate the internalization of chitin particles to be degraded by lysozyme and N-acetyl-β-glucosaminidase (such as Nod-like, Toll-like, lectin, Dectin-1, leukotriene 134 and mannose receptors; (ii the macrophages produce cytokines and other compounds that confer non-specific host resistance against bacterial and viral infections, and anti-tumor activity; (iii chitin is a strong Th1 adjuvant that up-regulates Th1 immunity induced by heat-killed Mycobacterium bovis, while down- regulating Th2 immunity induced by mycobacterial protein; (iv direct intranasal application of chitin microparticles into the lung was also able to significantly down-regulate allergic response to Dermatophagoids pteronyssinus and Aspergillus fumigatus in a murine model of allergy; (v chitin microparticles had a beneficial effect in preventing and treating histopathologic changes in the airways of asthmatic mice; (vi authors support the fact that chitin depresses the development of adaptive type 2 allergic responses. Since the expression of chitinases, chitrotriosidase and chitinase-like proteins

  16. Chitins and chitosans as immunoadjuvants and non-allergenic drug carriers.

    Science.gov (United States)

    Muzzarelli, Riccardo A A

    2010-02-21

    Due to the fact that some individuals are allergic to crustaceans, the presumed relationship between allergy and the presence of chitin in crustaceans has been investigated. In vivo, chitin is part of complex structures with other organic and inorganic compounds: in arthropods chitin is covalently linked to proteins and tanned by quinones, in fungi it is covalently linked to glucans, while in bacteria chitin is diversely combined according to Gram(+/-) classification. On the other hand, isolated, purified chitin is a plain polysaccharide that, at the nano level, presents itself as a highly associated structure, recently refined in terms of regularity, nature of bonds, crystallinity degree and unusual colloidal behavior. Chitins and modified chitins exert a number of beneficial actions, i.e., (i) they stimulate macrophages by interacting with receptors on the macrophage surface that mediate the internalization of chitin particles to be degraded by lysozyme and N-acetyl-beta-glucosaminidase (such as Nod-like, Toll-like, lectin, Dectin-1, leukotriene 134 and mannose receptors); (ii) the macrophages produce cytokines and other compounds that confer non-specific host resistance against bacterial and viral infections, and anti-tumor activity; (iii) chitin is a strong Th1 adjuvant that up-regulates Th1 immunity induced by heat-killed Mycobacterium bovis, while down- regulating Th2 immunity induced by mycobacterial protein; (iv) direct intranasal application of chitin microparticles into the lung was also able to significantly down-regulate allergic response to Dermatophagoids pteronyssinus and Aspergillus fumigatus in a murine model of allergy; (v) chitin microparticles had a beneficial effect in preventing and treating histopathologic changes in the airways of asthmatic mice; (vi) authors support the fact that chitin depresses the development of adaptive type 2 allergic responses. Since the expression of chitinases, chitrotriosidase and chitinase-like proteins is greatly

  17. MICROBIAL FERMENTATION OF ABUNDANT BIOPOLYMERS: CELLULOSE AND CHITIN

    Energy Technology Data Exchange (ETDEWEB)

    Leschine, Susan

    2009-10-31

    Our research has dealt with seven major areas of investigation: i) characterization of cellulolytic members of microbial consortia, with special attention recently given to Clostridium phytofermentans, a bacterium that decomposes cellulose and produces uncommonly large amounts of ethanol, ii) investigations of the chitinase system of Cellulomonas uda; including the purification and characterization of ChiA, the major component of this enzyme system, iii) molecular cloning, sequence and structural analysis of the gene that encodes ChiA in C. uda, iv) biofilm formation by C. uda on nutritive surfaces, v) investigations of the effects of humic substances on cellulose degradation by anaerobic cellulolytic microbes, vi) studies of nitrogen metabolism in cellulolytic anaerobes, and vii) understanding the molecular architecture of the multicomplex cellulase-xylanase system of Clostridium papyrosolvens. Also, progress toward completing the research of more recent projects is briefly summarized. Major accomplishments include: 1. Characterization of Clostridium phytofermentans, a cellulose-fermenting, ethanol-producing bacterium from forest soil. The characterization of a new cellulolytic species isolated from a cellulose-decomposing microbial consortium from forest soil was completed. This bacterium is remarkable for the high concentrations of ethanol produced during cellulose fermentation, typically more than twice the concentration produced by other species of cellulolytic clostridia. 2. Examination of the use of chitin as a source of carbon and nitrogen by cellulolytic microbes. We discovered that many cellulolytic anaerobes and facultative aerobes are able to use chitin as a source of both carbon and nitrogen. This major discovery expands our understanding of the biology of cellulose-fermenting bacteria and may lead to new applications for these microbes. 3. Comparative studies of the cellulase and chitinase systems of Cellulomonas uda. Results of these studies indicate

  18. Cosmetics and Cosmeceutical Applications of Chitin, Chitosan and Their Derivatives

    Directory of Open Access Journals (Sweden)

    Inmaculada Aranaz

    2018-02-01

    Full Text Available Marine resources are well recognized for their biologically active substances with great potential applications in the cosmeceutical industry. Among the different compounds with a marine origin, chitin and its deacetylated derivative—chitosan—are of great interest to the cosmeceutical industry due to their unique biological and technological properties. In this review, we explore the different functional roles of chitosan as a skin care and hair care ingredient, as an oral hygiene agent and as a carrier for active compounds, among others. The importance of the physico-chemical properties of the polymer in its use in cosmetics are particularly highlighted. Moreover, we analyse the market perspectives of this polymer and the presence in the market of chitosan-based products.

  19. Three-dimensional chitin rings from body segments of a pet diplopod species: Characterization and protein interaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Murat, E-mail: muratkaya3806@yahoo.com [Department of Biotechnology and Molecular Biology, Faculty of Science and Letters, Aksaray University, 68100 Aksaray (Turkey); Mulerčikas, Povilas [Department of Biology and Plant Protection, Lithuanian University of Agriculture, LT-53361 (Lithuania); Sargin, Idris [Department of Chemistry, Faculty of Science, Selcuk University, 42075 Konya (Turkey); Kazlauskaitė, Sonata [Department of Biology and Plant Protection, Lithuanian University of Agriculture, LT-53361 (Lithuania); Baublys, Vykintas [Department of Biology, Vytautas Magnus University, LT-44404 Kaunas (Lithuania); Akyuz, Bahar; Bulut, Esra [Department of Biotechnology and Molecular Biology, Faculty of Science and Letters, Aksaray University, 68100 Aksaray (Turkey); Tubelytė, Vaida [Department of Biology, Vytautas Magnus University, LT-44404 Kaunas (Lithuania)

    2016-11-01

    Physicochemical characterization of new chitin isolates can provide valuable insights into designing of biomimetic materials. Chitin isolates with a definite three-dimensional (3D) structure can exhibit characteristics that distinguish them from other chitin specimens that are in form of powder or flakes without a definite and uniform shape. Herein, 3D chitin rings were produced from body segments of a diplopod (Archispirostreptus gigas) inhabiting tropical regions. This organism is cultured easily and can reach 38 cm in length, which makes it a suitable source for isolation of chitin. The chitin rings were characterized via TGA, FT-IR, SEM and XRD analyses. Enzymatic digestion test with chitinase demonstrated that chitin isolates had high purity (digestion rate: 97.4%). The source organism had high chitin content; 21.02 ± 2.23% on dry weight. Interactions of the chitin rings with bovine serum albumin (BSA) protein were studied under different conditions (pH: 4.0–8.0, chitin amount: 6–14 mg, contact time: 30–360 min, protein concentration: 0.2–1 mg/mL). The highest BSA adsorption was observed at pH 5.0 at 20 °C. The adsorption equilibrium data exhibited a better fit to Langmuir adsorption and the pseudo-first order kinetic models. The findings presented here can be useful for further studies aiming to develop biocompatible and nontoxic biomaterials. - Highlights: • Three-dimensional ring shaped chitin was produced from a pet diplopod species. • Archispirostreptus gigas has high chitin content; 21.02 ± 2.23% on dry weight. • Chitinase enzyme showed activity on the chitin rings with digestion rate of 97.4%. • The highest bovine serum albumin (BSA) adsorption was observed at pH 5.0 at 20 °C.

  20. Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan

    Directory of Open Access Journals (Sweden)

    Jolanta Kumirska

    2010-04-01

    Full Text Available Chitin, the second most important natural polymer in the world, and its N-deacetylated derivative chitosan, have been identified as versatile biopolymers for a broad range of applications in medicine, agriculture and the food industry. Two of the main reasons for this are firstly the unique chemical, physicochemical and biological properties of chitin and chitosan, and secondly the unlimited supply of raw materials for their production. These polymers exhibit widely differing physicochemical properties depending on the chitin source and the conditions of chitosan production. The presence of reactive functional groups as well as the polysaccharide nature of these biopolymers enables them to undergo diverse chemical modifications. A complete chemical and physicochemical characterization of chitin, chitosan and their derivatives is not possible without using spectroscopic techniques. This review focuses on the application of spectroscopic methods for the structural analysis of these compounds.

  1. Chitin biological absorbable catheters bridging sural nerve grafts transplanted into sciatic nerve defects promote nerve regeneration.

    Science.gov (United States)

    Wang, Zhi-Yong; Wang, Jian-Wei; Qin, Li-Hua; Zhang, Wei-Guang; Zhang, Pei-Xun; Jiang, Bao-Guo

    2018-06-01

    To investigate the efficacy of chitin biological absorbable catheters in a rat model of autologous nerve transplantation. A segment of sciatic nerve was removed to produce a sciatic nerve defect, and the sural nerve was cut from the ipsilateral leg and used as a graft to bridge the defect, with or without use of a chitin biological absorbable catheter surrounding the graft. The number and morphology of regenerating myelinated fibers, nerve conduction velocity, nerve function index, triceps surae muscle morphology, and sensory function were evaluated at 9 and 12 months after surgery. All of the above parameters were improved in rats in which the nerve graft was bridged with chitin biological absorbable catheters compared with rats without catheters. The results of this study indicate that use of chitin biological absorbable catheters to surround sural nerve grafts bridging sciatic nerve defects promotes recovery of structural, motor, and sensory function and improves muscle fiber morphology. © 2018 John Wiley & Sons Ltd.

  2. Chitin Extraction from Crustacean Shells Using Biological Methods – A Review

    Directory of Open Access Journals (Sweden)

    Wassila Arbia

    2013-01-01

    Full Text Available After cellulose, chitin is the most widespread biopolymer in nature. Chitin and its derivatives have great economic value because of their biological activities and their industrial and biomedical applications. It can be extracted from three sources, namely crustaceans, insects and microorganisms. However, the main commercial sources of chitin are shells of crustaceans such as shrimps, crabs, lobsters and krill that are supplied in large quantities by the shellfish processing industries. Extraction of chitin involves two steps, demineralisation and deproteinisation, which can be conducted by two methods, chemical or biological. The chemical method requires the use of acids and bases, while the biological method involves microorganisms. Although lactic acid bacteria are mainly applied, other microbial species including proteolytic bacteria have also been successfully implemented, as well as mixed cultures involving lactic acid-producing bacteria and proteolytic microorganisms. The produced lactic acid allows shell demineralisation, since lactic acid reacts with calcium carbonate, the main mineral component, to form calcium lactate.

  3. In vitro degradation of porous nano-hydroxyapatite/collagen/PLLA scaffold reinforced by chitin fibres

    International Nuclear Information System (INIS)

    Li Xiaoming; Feng Qingling; Cui Fuzhai

    2006-01-01

    In this paper, a novel porous scaffold for bone tissue engineering was prepared with nano-hydroxyapatite/collagen/Poly-L-lactic acid (PLLA) composite reinforced by chitin fibres. To enhance the strength of the scaffold further, PLLA was linked with chitin fibres by Dicyclohexylcarbodimide (DCC). The structures of the reinforced scaffold with and without linking were characterized by Scanning Electron Microscopy (SEM). The chemical characteristics of the chitin fibres with and without linking were evaluated by Fourier-transformed infrared (FTIR) spectroscopy. The mechanical performance during degradation in vitro was investigated. The results indicated that the nano-hydroxyapatite/collagen/PLLA composite reinforced by chitin fibres with linking kept better mechanical properties than that of the composite without linking. These results denoted that the stronger interfacial bonding strength of the scaffold with linking could decrease the degradation rate in vitro. The reinforced composite with the link-treatment can be severed as a scaffold for bone tissue engineering

  4. Solid state characterization of α-chitin from Vanessa cardui Linnaeus wings

    International Nuclear Information System (INIS)

    Schiffman, Jessica D.; Schauer, Caroline L.

    2009-01-01

    Material properties of the painted lady butterfly, Vanessa cardui Linnaeus were investigated using typical material science techniques. The examined butterflies were raised and hatched from the larvae stage and their chemical and crystalline structure evaluated and compared to that of crab shell (α-chitin) and squid pens from Notodarus sloanii and Loligo pealei (β-chitin). Fourier transmission infrared spectroscopy (FTIR) and X-ray diffraction (XRD) revealed that the painted lady butterflies are composed of α-chitin. Additionally, macro- and microstructure characterization of the chitins was conducted utilizing digital photography and field emission scanning electron microscopy (FESEM). This work demonstrates that common characterization techniques combined with simple sample preparation of biological materials can yield successful material characterization, which could aide the fabrication of biomimetic materials.

  5. Solid state characterization of {alpha}-chitin from Vanessa cardui Linnaeus wings

    Energy Technology Data Exchange (ETDEWEB)

    Schiffman, Jessica D. [Department of Materials Science and Engineering, Drexel University, Philadelphia, PA (United States); Schauer, Caroline L., E-mail: cschauer@coe.drexel.edu [Department of Materials Science and Engineering, Drexel University, Philadelphia, PA (United States)

    2009-05-05

    Material properties of the painted lady butterfly, Vanessa cardui Linnaeus were investigated using typical material science techniques. The examined butterflies were raised and hatched from the larvae stage and their chemical and crystalline structure evaluated and compared to that of crab shell ({alpha}-chitin) and squid pens from Notodarus sloanii and Loligo pealei ({beta}-chitin). Fourier transmission infrared spectroscopy (FTIR) and X-ray diffraction (XRD) revealed that the painted lady butterflies are composed of {alpha}-chitin. Additionally, macro- and microstructure characterization of the chitins was conducted utilizing digital photography and field emission scanning electron microscopy (FESEM). This work demonstrates that common characterization techniques combined with simple sample preparation of biological materials can yield successful material characterization, which could aide the fabrication of biomimetic materials.

  6. Application of chitin and zeolite adsorbents for treatment of low level radioactive liquid wastes

    International Nuclear Information System (INIS)

    Moattar, F.; Hayeripour, S.

    2004-01-01

    Two types of shrimp chitin derivatives and two types of Iranian natural zeolite derivates were studied for adsorption and treatment of low-level radioactive liquid waste. Chitin with lowers than 10% and chitosan with higher than 90% deacetylation factor were selected as neutral organic adsorbents. Natural clinoptilolite of Firuzkooh area and Na from derivates of it were selected as natural inorganic adsorbents. The static and dynamic ion exchange experimental results show that the ad adsorption efficiency depend on particle size, Ph, adsorbent type, deacetylation factor ( in chitin adsorbents) and cation type. The best Cs adsorption occurred in Na from clinoptilolite. Nevertheless chitin derivatives, particularly chitosan, are more efficient than zeolite adsorbents for removing of radionuclides such as 137 Cs, 54 Mn, 90 Sr and 60 Co. Adsorption performance was discussed and compared with each other

  7. Preparation of metal adsorbents from chitin/chitosan by radiation technology

    International Nuclear Information System (INIS)

    Nguyen Van Suc; Nguyen Quoc Hien; Ngo Quang Huy; Thai My Phe; Dao Van Hoang; Nguyen Van Hung

    2004-01-01

    The methods of preparation of metal adsorbents basing on chitin/chitosan were developed. That include the adsorbent from chitin grafted with acrylic acid by different irradiation doses; the clinging chitosan gel beads; the coagulable solution and the chitosan composite filter. The process of metal adsorption for each adsorbent was studied as adsorption kinetic, isothermal adsorption. The results have been applied for removal of some elements as Hg, Pb, Cd, U, Cu, ect. in the wastewater. (NHA)

  8. Production of High Viscosity Chitosan from Biologically Purified Chitin Isolated by Microbial Fermentation and Deproteinization

    Directory of Open Access Journals (Sweden)

    Ekkalak Ploydee

    2014-01-01

    Full Text Available The objective of this study was to produce high viscosity chitosan from shrimp chitin prepared by using a two-step biological treatment process: decalcification and deproteinization. Glucose was fermented with Lactobacillus pentosus L7 to lactic acid. At a pH of 3.9±0.1, the calcium carbonate of the shells was solubilized in 48 hours. The amounts of residual calcium in the form of ash (1.4±0.5% and crude protein (23.2±2.5% were further eliminated by the activity of proteolytic Bacillus thuringiensis SA. After decalcification and deproteinization of the shrimp shells, residual calcium and crude protein of shrimp chitin flakes were 1.7±0.4% and 3.8±1.3%, respectively. Chitin was deacetylated with 50% NaOH at 121°C for 5 hours. After deacetylation, the chitosan had residual calcium, crude protein content, and degree of acetylation of 1.6±0.6%, 0.4±0.3%, and 83.2±1.5%, respectively. The viscosity of chitosan prepared from chitin extracted by this two-step biological process was 1,007±14.7 mPa·s, whereas chitosan prepared from chemically processed chitin had a viscosity of 323±15.6   mPa·s, indicating that biologically purified chitin gave chitosan with a high quality.

  9. Interaction of chitin/chitosan with salivary and other epithelial cells-An overview.

    Science.gov (United States)

    Patil, Sharvari Vijaykumar; Nanduri, Lalitha S Y

    2017-11-01

    Chitin and its deacetylated form, chitosan, have been widely used for tissue engineering of both epithelial and mesenchymal tissues. Epithelial cells characterised by their sheet-like tight cellular arrangement and polarised nature, constitute a major component in various organs and play a variety of roles including protection, secretion and maintenance of tissue homeostasis. Regeneration of damaged epithelial tissues has been studied using biomaterials such as chitin, chitosan, hyaluronan, gelatin and alginate. Chitin and chitosan are known to promote proliferation of various embryonic and adult epithelial cells. However it is not clearly understood how this activity is achieved or what are the mechanisms involved in the chitin/chitosan driven proliferation of epithelial cells. Mechanistic understanding of influence of chitin/chitosan on epithelial cells will guide us to develop more targeted regenerative scaffold/hydrogel systems. Therefore, current review attempts to elicit a mechanistic insight into how chitin and chitosan interact with salivary, mammary, skin, nasal, lung, intestinal and bladder epithelial cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The Plasmodiophora brassicae genome reveals insights in its life cycle and ancestry of chitin synthases.

    Science.gov (United States)

    Schwelm, Arne; Fogelqvist, Johan; Knaust, Andrea; Jülke, Sabine; Lilja, Tua; Bonilla-Rosso, German; Karlsson, Magnus; Shevchenko, Andrej; Dhandapani, Vignesh; Choi, Su Ryun; Kim, Hong Gi; Park, Ju Young; Lim, Yong Pyo; Ludwig-Müller, Jutta; Dixelius, Christina

    2015-06-18

    Plasmodiophora brassicae causes clubroot, a major disease of Brassica oil and vegetable crops worldwide. P. brassicae is a Plasmodiophorid, obligate biotrophic protist in the eukaryotic kingdom of Rhizaria. Here we present the 25.5 Mb genome draft of P. brassicae, developmental stage-specific transcriptomes and a transcriptome of Spongospora subterranea, the Plasmodiophorid causing powdery scab on potato. Like other biotrophic pathogens both Plasmodiophorids are reduced in metabolic pathways. Phytohormones contribute to the gall phenotypes of infected roots. We report a protein (PbGH3) that can modify auxin and jasmonic acid. Plasmodiophorids contain chitin in cell walls of the resilient resting spores. If recognized, chitin can trigger defense responses in plants. Interestingly, chitin-related enzymes of Plasmodiophorids built specific families and the carbohydrate/chitin binding (CBM18) domain is enriched in the Plasmodiophorid secretome. Plasmodiophorids chitin synthases belong to two families, which were present before the split of the eukaryotic Stramenopiles/Alveolates/Rhizaria/Plantae and Metazoa/Fungi/Amoebozoa megagroups, suggesting chitin synthesis to be an ancient feature of eukaryotes. This exemplifies the importance of genomic data from unexplored eukaryotic groups, such as the Plasmodiophorids, to decipher evolutionary relationships and gene diversification of early eukaryotes.

  11. Nanosphere Lithography of Chitin and Chitosan with Colloidal and Self-Masking Patterning

    Directory of Open Access Journals (Sweden)

    Rakkiyappan Chandran

    2018-02-01

    Full Text Available Complex surface topographies control, define, and determine the properties of insect cuticles. In some cases, these nanostructured materials are a direct extension of chitin-based cuticles. The cellular mechanisms that generate these elaborate chitin-based structures are unknown, and involve complicated cellular and biochemical “bottom-up” processes. We demonstrated that a synthetic “top-down” fabrication technique—nanosphere lithography—generates surfaces of chitin or chitosan that mimic the arrangement of nanostructures found on the surface of certain insect wings and eyes. Chitin and chitosan are flexible and biocompatible abundant natural polymers, and are a sustainable resource. The fabrication of nanostructured chitin and chitosan materials enables the development of new biopolymer materials. Finally, we demonstrated that another property of chitin and chitosan—the ability to self-assemble nanosilver particles—enables a novel and powerful new tool for the nanosphere lithographic method: the ability to generate a self-masking thin film. The scalability of the nanosphere lithographic technique is a major limitation; however, the silver nanoparticle self-masking enables a one-step thin-film cast or masking process, which can be used to generate nanostructured surfaces over a wide range of surfaces and areas.

  12. Squid-derived chitin oligosaccharides are a chemotactic signal during colonization by Vibrio fischeri.

    Science.gov (United States)

    Mandel, Mark J; Schaefer, Amy L; Brennan, Caitlin A; Heath-Heckman, Elizabeth A C; Deloney-Marino, Cindy R; McFall-Ngai, Margaret J; Ruby, Edward G

    2012-07-01

    Chitin, a polymer of N-acetylglucosamine (GlcNAc), is noted as the second most abundant biopolymer in nature. Chitin serves many functions for marine bacteria in the family Vibrionaceae ("vibrios"), in some instances providing a physical attachment site, inducing natural genetic competence, and serving as an attractant for chemotaxis. The marine luminous bacterium Vibrio fischeri is the specific symbiont in the light-emitting organ of the Hawaiian bobtail squid, Euprymna scolopes. The bacterium provides the squid with luminescence that the animal uses in an antipredatory defense, while the squid supports the symbiont's nutritional requirements. V. fischeri cells are harvested from seawater during each host generation, and V. fischeri is the only species that can complete this process in nature. Furthermore, chitin is located in squid hemocytes and plays a nutritional role in the symbiosis. We demonstrate here that chitin oligosaccharides produced by the squid host serve as a chemotactic signal for colonizing bacteria. V. fischeri uses the gradient of host chitin to enter the squid light organ duct and colonize the animal. We provide evidence that chitin serves a novel function in an animal-bacterial mutualism, as an animal-produced bacterium-attracting synomone.

  13. Non-absorbable disaccharides versus placebo/no intervention and lactulose versus lactitol for the prevention and treatment of hepatic encephalopathy in people with cirrhosis

    DEFF Research Database (Denmark)

    Gluud, Lise Lotte; Vilstrup, Hendrik; Morgan, Marsha Y

    2016-01-01

    ; I(2) = 32%; moderate quality evidence). Additional analyses showed that non-absorbable disaccharides can help to reduce serious adverse events associated with the underlying liver disease including liver failure, hepatorenal syndrome, and variceal bleeding (RR 0.47, 95% CI 0.36 to 0.60; 1487...

  14. Influence of intramolecular hydrogen bonds on regioselectivity of glycosylation. Synthesis of lupane-type saponins bearing the OSW-1 saponin disaccharide unit and its isomers

    Czech Academy of Sciences Publication Activity Database

    Kuczynska, K.; Cmoch, P.; Rárová, L.; Oklešťková, Jana; Korda, A.; Pakulski, Z.; Strnad, Miroslav

    2016-01-01

    Roč. 423, MAR 24 (2016), s. 49-69 ISSN 0008-6215 R&D Projects: GA MŠk(CZ) LO1204; GA ČR GA14-19590S Institutional support: RVO:61389030 Keywords : OSW-1 disaccharide * Glycosylation * Lupane saponins Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.096, year: 2016

  15. The functions Of LysM Proteins And Chitin Tetra-Saccarides Signaling Pathway in Zebrafish Embryos

    DEFF Research Database (Denmark)

    Laroche, Fabrice Jean Francois

    Chitin is an ancient organic bio-polymer, found in abundance on land and at sea. However, knowledge on chitin functions in animals is lacking. In his research project, Fabrice Laroche studied responses to chitin in zebrafish embryos, and he described chitin signalling pathways. Proteins related...... to chitin responses are increasingly being associated with human diseases. Recently, several lysin motif (LysM)-containing proteins were highlighted for their molecular affinity to chitin-like compounds. Addressing these matters, Fabrice Laroche identified zebrafish and human lysin motif-encoding genes...... and studied their roles – at the cellular level and during zebrafish development. To improve the experimental methods, he developed nanotechnological strategies to genetically modify human embryonic kidney cells and zebrafish. The PhD degree was completed at the Department of Molecular Biology and Genetics...

  16. Identification and first insights into the structure and biosynthesis of chitin from the freshwater sponge Spongilla lacustris.

    Science.gov (United States)

    Ehrlich, Hermann; Kaluzhnaya, Oksana V; Brunner, Eike; Tsurkan, Mikhail V; Ereskovsky, Alexander; Ilan, Micha; Tabachnick, Konstantin R; Bazhenov, Vasilii V; Paasch, Silvia; Kammer, Martin; Born, René; Stelling, Allison; Galli, Roberta; Belikov, Sergei; Petrova, Olga V; Sivkov, Victor V; Vyalikh, Denis; Hunoldt, Sebastian; Wörheide, Gert

    2013-09-01

    This work demonstrates that chitin is an important structural component within the skeletal fibers of the freshwater sponge Spongilla lacustris. Using a variety of analytical techniques ((13)C solid state NMR, FT-IR, Raman, NEXAFS, ESI-MS, Morgan-Elson assay and Calcofluor White Staining); we show that this sponge chitin is much closer to α-chitin, known to be present in other animals, than to β-chitin. Genetic analysis confirmed the presence of chitin synthases, which are described for the first time in a sponge. The presence of chitin in both marine (demosponges and hexactinellids) and freshwater sponges indicates that this important structural biopolymer was already present in their common ancestor. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Fabrication of magnetic and fluorescent chitin and dibutyrylchitin sub-micron particles by oil-in-water emulsification.

    Science.gov (United States)

    Blanco-Fernandez, Barbara; Chakravarty, Shatadru; Nkansah, Michael K; Shapiro, Erik M

    2016-11-01

    Chitin is a carbohydrate polymer with unique pharmacological and immunological properties, however, because of its unwieldy chemistry, the synthesis of discreet sized sub-micron particles has not been well reported. This work describes a facile and flexible method to fabricate biocompatible chitin and dibutyrylchitin sub-micron particles. This technique is based on an oil-in-water emulsification/evaporation method and involves the hydrophobization of chitin by the addition of labile butyryl groups onto chitin, disrupting intermolecular hydrogen bonds and enabling solubility in the organic solvent used as the oil phase during fabrication. The subsequent removal of butyryl groups post-fabrication through alkaline saponification regenerates native chitin while keeping particles morphology intact. Examples of encapsulation of hydrophobic dyes and nanocrystals are demonstrated, specifically using iron oxide nanocrystals and coumarin 6. The prepared particles had diameters between 300-400nm for dibutyrylchitin and 500-600nm for chitin and were highly cytocompatible. Moreover, they were able to encapsulate high amounts of iron oxide nanocrystals and were able to label mammalian cells. We describe a technique to prepare sub-micron particles of highly acetylated chitin (>90%) and dibutyrylchitin and demonstrate their utility as carriers for imaging. Chitin is a polysaccharide capable of stimulating the immune system, a property that depends on the acetamide groups, but its insolubility limits its use. No method for sub-micron particle preparation with highly acetylated chitins have been published. The only approach for the preparation of sub-micron particles uses low acetylation chitins. Dibutyrylchitin, a soluble chitin derivative, was used to prepare particles by oil in water emulsification. Butyryl groups were then removed, forming chitin particles. These particles could be suitable for encapsulation of hydrophobic payloads for drug delivery and cell imaging, as well as

  18. The hard parts (trophi) of the rotifer mastax do contain chitin: evidence from studies on Brachionus plicatilis.

    Science.gov (United States)

    Klusemann, J; Kleinow, W; Peters, W

    1990-01-01

    The jaws (trophi) of the rotifer Brachionus plicatilis are soluble in strong acids but are resistant to long treatments by strong alkali. They show the same buoyant density as chitin and also as the chitin-containing layers of rotifer egg-shells. The presence of chitin in these structures was confirmed using the following techniques: chitosan-tests, thin-layer chromatography of trophi-hydrolysates which revealed glucosamine, by dissolving trophi with chitinase and electron microscopic WGA/gold-labelling. The content of chitin in the trophi was estimated by two different methods to be approx. 64% (50-75%).

  19. Deletion of a Chitin Synthase Gene in a Citric Acid Producing Strain of Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Rinker, Torri E.; Baker, Scott E.

    2007-01-29

    Citric acid production by the filamentous fungus Aspergillus niger is carried out in a process that causes the organism to drastically alter its morphology. This altered morphology includes hyphal swelling and highly limited polar growth resulting in clumps of swollen cells that eventually aggregate into pellets of approximately 100 microns in diameter. In this pelleted form, A. niger has increased citric acid production as compared to growth in filamentous form. Chitin is a crucial component of the cell wall of filamentous fungi. Alterations in the deposition or production of chitin may have profound effects on the morphology of the organism. In order to study the role of chitin synthesis in pellet formation we have deleted a chitin synthase gene (csmA) in Aspergillus niger strain ATCC 11414 using a PCR based deletion construct. This class of chitin synthases is only found in filamentous fungi and is not present in yeasts. The csmA genes contain a myosin motor domain at the N-terminus and a chitin synthesis domain at the C-terminus. They are believed to contribute to the specialized polar growth observed in filamentous fungi that is lacking in yeasts. The csmA deletion strain (csmAΔ) was subjected to minimal media with and without osmotic stabilizers as well as tested in citric acid production media. Without osmotic stabilizers, the mutant germlings were abnormally swollen, primarily in the subapical regions, and contained large vacuoles. However, this swelling is ultimately not inhibitory to growth as the germlings are able to recover and undergo polar growth. Colony formation was largely unaffected in the absence of osmotic stabilizers. In citric acid production media csmAΔ was observed to have a 2.5 fold increase in citric acid production. The controlled expression of this class of chitin synthases may be useful for improving production of organic acids in filamentous fungi.

  20. First Report on Chitin in a Non-Verongiid Marine Demosponge: The Mycale euplectellioides Case.

    Science.gov (United States)

    Żółtowska-Aksamitowska, Sonia; Shaala, Lamiaa A; Youssef, Diaa T A; Elhady, Sameh S; Tsurkan, Mikhail V; Petrenko, Iaroslav; Wysokowski, Marcin; Tabachnick, Konstantin; Meissner, Heike; Ivanenko, Viatcheslav N; Bechmann, Nicole; Joseph, Yvonne; Jesionowski, Teofil; Ehrlich, Hermann

    2018-02-20

    Sponges (Porifera) are recognized as aquatic multicellular organisms which developed an effective biochemical pathway over millions of years of evolution to produce both biologically active secondary metabolites and biopolymer-based skeletal structures. Among marine demosponges, only representatives of the Verongiida order are known to synthetize biologically active substances as well as skeletons made of structural polysaccharide chitin. The unique three-dimensional (3D) architecture of such chitinous skeletons opens the widow for their recent applications as adsorbents, as well as scaffolds for tissue engineering and biomimetics. This study has the ambitious goal of monitoring other orders beyond Verongiida demosponges and finding alternative sources of naturally prestructured chitinous scaffolds; especially in those demosponge species which can be cultivated at large scales using marine farming conditions. Special attention has been paid to the demosponge Mycale euplectellioides (Heteroscleromorpha: Poecilosclerida: Mycalidae) collected in the Red Sea. For the first time, we present here a detailed study of the isolation of chitin from the skeleton of this sponge, as well as its identification using diverse bioanalytical tools. Calcofluor white staining, Fourier-transform Infrared Spcetcroscopy (FTIR), electrospray ionization mass spectrometry (ESI-MS), scanning electron microscopy (SEM), and fluorescence microscopy, as well as a chitinase digestion assay were applied in order to confirm with strong evidence the finding of a-chitin in the skeleton of M. euplectellioides . We suggest that the discovery of chitin within representatives of the Mycale genus is a promising step in their evaluation of these globally distributed sponges as new renewable sources for both biologically active metabolites and chitin, which are of prospective use for pharmacology and biomaterials oriented biomedicine, respectively.

  1. First Report on Chitin in a Non-Verongiid Marine Demosponge: The Mycale euplectellioides Case

    Directory of Open Access Journals (Sweden)

    Sonia Żółtowska-Aksamitowska

    2018-02-01

    Full Text Available Sponges (Porifera are recognized as aquatic multicellular organisms which developed an effective biochemical pathway over millions of years of evolution to produce both biologically active secondary metabolites and biopolymer-based skeletal structures. Among marine demosponges, only representatives of the Verongiida order are known to synthetize biologically active substances as well as skeletons made of structural polysaccharide chitin. The unique three-dimensional (3D architecture of such chitinous skeletons opens the widow for their recent applications as adsorbents, as well as scaffolds for tissue engineering and biomimetics. This study has the ambitious goal of monitoring other orders beyond Verongiida demosponges and finding alternative sources of naturally prestructured chitinous scaffolds; especially in those demosponge species which can be cultivated at large scales using marine farming conditions. Special attention has been paid to the demosponge Mycale euplectellioides (Heteroscleromorpha: Poecilosclerida: Mycalidae collected in the Red Sea. For the first time, we present here a detailed study of the isolation of chitin from the skeleton of this sponge, as well as its identification using diverse bioanalytical tools. Calcofluor white staining, Fourier-transform Infrared Spcetcroscopy (FTIR, electrospray ionization mass spectrometry (ESI-MS, scanning electron microscopy (SEM, and fluorescence microscopy, as well as a chitinase digestion assay were applied in order to confirm with strong evidence the finding of a-chitin in the skeleton of M. euplectellioides. We suggest that the discovery of chitin within representatives of the Mycale genus is a promising step in their evaluation of these globally distributed sponges as new renewable sources for both biologically active metabolites and chitin, which are of prospective use for pharmacology and biomaterials oriented biomedicine, respectively.

  2. Extreme biomimetic approach for synthesis of nanocrystalline chitin-(Ti,Zr)O{sub 2} multiphase composites

    Energy Technology Data Exchange (ETDEWEB)

    Wysokowski, Marcin, E-mail: Marcin.Wysokowski@put.poznan.pl [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60965, Poznan (Poland); Motylenko, Mykhaylo; Rafaja, David [TU Bergakademie Freiberg, Institute of Materials Science, Gustav-Zeuner-Str. 5, 09596, Freiberg (Germany); Koltsov, Iwona [Laboratory of Nanostructures, Institute of High Pressure Physics of The Polish Academy of Sciences, Sokołowska 29/37, 01-142, Warsaw (Poland); Stöcker, Hartmut [TU Bergakademie Freiberg, Institute of Experimental Physics, Leipziger str. 23, 09596, Freiberg (Germany); Szalaty, Tadeusz J. [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60965, Poznan (Poland); Bazhenov, Vasilii V., E-mail: vasily.bazhenov@gmail.com [TU Bergakademie Freiberg, Institute of Experimental Physics, Leipziger str. 23, 09596, Freiberg (Germany); Stelling, Allison L. [Duke University, Department of Biochemistry, Durham, NC, 27708 (United States); Beyer, Jan; Heitmann, Johannes [TU Bergakademie Freiberg, Institute of Applied Physics, Leipziger str. 23, 09596, Freiberg (Germany); Jesionowski, Teofil [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60965, Poznan (Poland); Petovic, Slavica; Đurović, Mirko [Institute of Marine Biology, Dobrota, 85330, Kotor (Montenegro); Ehrlich, Hermann [TU Bergakademie Freiberg, Institute of Experimental Physics, Leipziger str. 23, 09596, Freiberg (Germany)

    2017-02-15

    This work presents an extreme biomimetics route for the modification of the surface of fibre-based scaffolds of poriferan origin by the creation of novel nanostructured multiphase biocomposites. The exceptional thermal stability of the nanostructured sponge chitin allowed for the formation of a novel nanocrystalline chitin-(Ti,Zr)O{sub 2} composite with a well-defined nanoscale structure under hydrothermal conditions (160 °C). Using a combination of experimental techniques, including X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy, EDX mapping and near-edge electron loss spectroscopy (ELNES) in TEM and thermogravimetry/differential scanning calorimetry coupled with mass spectrometry; we showed that this bioorganic scaffold facilitates selective crystallization of TiO{sub 2}, predominantly in form of anatase, over the monoclinic zirconium dioxide (baddeleyite). The control of the crystal morphology through the chitin templates is also demonstrated. Obtained samples were characterized in terms of their photoluminescent properties and photocatalytic performance. These data confirm the high potential of the extreme biomimetics approach for developing a new generation of multiphase biopolymer-based nanostructured materials. - Highlights: • Extreme biomimetically prepared chitin-(Ti,Zr)O{sub 2} and (Ti,Zr)O{sub 2} composites. • Chitin-(Ti,Zr)O{sub 2} composite contains anatase as the most inorganic component. • The mean crystallite size is (31.7 ± 0.3) nm for chitin-(Ti,Zr)O{sub 2} composite. • The mean crystallite size is (2.4 ± 0.5) nm for (Ti,Zr)O{sub 2} composite. • (Ti,Zr)O{sub 2} composite is 2 times more effective photocatalyst than chitin-(Ti,Zr)O{sub 2}.

  3. Study of Zn, Cd, and Pb Adsorption Using Chitin Extracted from Lobsters from Oman Sea

    Directory of Open Access Journals (Sweden)

    Alireza Sardashti

    2015-10-01

    Full Text Available Lobster shells from Konarak Port were collected in October 2002, purified, and dried for the purposes of the present study. Chitin was extracted from the shellsusing the common chemical processes of demineralization, proteinzation, and decolonization, beforepurificationwith 1% CH3COOH and 1% NaCl to obatin an extract containing 12% (w/w chitin. Chitin composition was determined using FT-IR, X-Ray powder diffraction, BET, and C.H.N.S analysis. The FT-IR spectrum of the extracted chitin was corresponded well to the Merck standard one, indicating that it is a linear polymer of N-acetyl-D- glucosamine on which metal ions can be adsorbed. Kinetic study of chitin’s reaction with Zn+2 at pH=6.75 and an ionic strength of 0.02 M indicated that adsorption equilibrium was reached within six hours of mixing. Adsorption Langmuir isotherms for a solution of Zn+2, Cd+2, and Pb+2 ions at an initial concentration of 2×10‒3 M were determined for an ionic strenght of 0.02 M, different pH levels, and at ambient temparature using the discontinued in-pot method. The maximum amounts of metal ions adsorbed on chitin at pH= 6.75 were measured to be 0.119 mol/kg for Cd+2, 0.714 mol/kg for Zn+2, and 1.630 mol/Kg for Pb+2. The overdyeing graphs, Cs= f (pH, show that the adsorption capacity of chitin is influenced by such factors as pH, reaction time, metal ion concantration, and adsorbent particle size. Thus, chitin as a non-toxic natural polymer may be highly recommended for water detoxification from heavy metal ions.

  4. Extreme biomimetic approach for synthesis of nanocrystalline chitin-(Ti,Zr)O2 multiphase composites

    International Nuclear Information System (INIS)

    Wysokowski, Marcin; Motylenko, Mykhaylo; Rafaja, David; Koltsov, Iwona; Stöcker, Hartmut; Szalaty, Tadeusz J.; Bazhenov, Vasilii V.; Stelling, Allison L.; Beyer, Jan; Heitmann, Johannes; Jesionowski, Teofil; Petovic, Slavica; Đurović, Mirko; Ehrlich, Hermann

    2017-01-01

    This work presents an extreme biomimetics route for the modification of the surface of fibre-based scaffolds of poriferan origin by the creation of novel nanostructured multiphase biocomposites. The exceptional thermal stability of the nanostructured sponge chitin allowed for the formation of a novel nanocrystalline chitin-(Ti,Zr)O 2 composite with a well-defined nanoscale structure under hydrothermal conditions (160 °C). Using a combination of experimental techniques, including X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy, EDX mapping and near-edge electron loss spectroscopy (ELNES) in TEM and thermogravimetry/differential scanning calorimetry coupled with mass spectrometry; we showed that this bioorganic scaffold facilitates selective crystallization of TiO 2 , predominantly in form of anatase, over the monoclinic zirconium dioxide (baddeleyite). The control of the crystal morphology through the chitin templates is also demonstrated. Obtained samples were characterized in terms of their photoluminescent properties and photocatalytic performance. These data confirm the high potential of the extreme biomimetics approach for developing a new generation of multiphase biopolymer-based nanostructured materials. - Highlights: • Extreme biomimetically prepared chitin-(Ti,Zr)O 2 and (Ti,Zr)O 2 composites. • Chitin-(Ti,Zr)O 2 composite contains anatase as the most inorganic component. • The mean crystallite size is (31.7 ± 0.3) nm for chitin-(Ti,Zr)O 2 composite. • The mean crystallite size is (2.4 ± 0.5) nm for (Ti,Zr)O 2 composite. • (Ti,Zr)O 2 composite is 2 times more effective photocatalyst than chitin-(Ti,Zr)O 2 .

  5. Analysis of chitin-binding proteins from Manduca sexta provides new insights into evolution of peritrophin A-type chitin-binding domains in insects.

    Science.gov (United States)

    Tetreau, Guillaume; Dittmer, Neal T; Cao, Xiaolong; Agrawal, Sinu; Chen, Yun-Ru; Muthukrishnan, Subbaratnam; Haobo, Jiang; Blissard, Gary W; Kanost, Michael R; Wang, Ping

    2015-07-01

    In insects, chitin is a major structural component of the cuticle and the peritrophic membrane (PM). In nature, chitin is always associated with proteins among which chitin-binding proteins (CBPs) are the most important for forming, maintaining and regulating the functions of these extracellular structures. In this study, a genome-wide search for genes encoding proteins with ChtBD2-type (peritrophin A-type) chitin-binding domains (CBDs) was conducted. A total of 53 genes encoding 56 CBPs were identified, including 15 CPAP1s (cuticular proteins analogous to peritrophins with 1 CBD), 11 CPAP3s (CPAPs with 3 CBDs) and 17 PMPs (PM proteins) with a variable number of CBDs, which are structural components of cuticle or of the PM. CBDs were also identified in enzymes of chitin metabolism including 6 chitinases and 7 chitin deacetylases encoded by 6 and 5 genes, respectively. RNA-seq analysis confirmed that PMP and CPAP genes have differential spatial expression patterns. The expression of PMP genes is midgut-specific, while CPAP genes are widely expressed in different cuticle forming tissues. Phylogenetic analysis of CBDs of proteins in insects belonging to different orders revealed that CPAP1s from different species constitute a separate family with 16 different groups, including 6 new groups identified in this study. The CPAP3s are clustered into a separate family of 7 groups present in all insect orders. Altogether, they reveal that duplication events of CBDs in CPAP1s and CPAP3s occurred prior to the evolutionary radiation of insect species. In contrast to the CPAPs, all CBDs from individual PMPs are generally clustered and distinct from other PMPs in the same species in phylogenetic analyses, indicating that the duplication of CBDs in each of these PMPs occurred after divergence of insect species. Phylogenetic analysis of these three CBP families showed that the CBDs in CPAP1s form a clearly separate family, while those found in PMPs and CPAP3s were clustered

  6. Chitin Fiber and Chitosan 3D Composite Rods

    International Nuclear Information System (INIS)

    Wang, Z.; Hu, Q.; Cai, L.

    2010-01-01

    Chitin fiber (CHF) and chitosan (CS) 3D composite rods with layer-by-layer structure were constructed by in situ precipitation method. CHF could not be dissolved in acetic acid aqueous solution, but CS could be dissolved due to the different deacetylation degree (D.D) between CHF and CS. CHF with undulate surfaces could be observed using SEM to demonstrate that the sufficiently rough surfaces and edges of the fiber could enhance the mechanical combining stress between fiber and matrix. XRD indicated that the crystallinity of CHF/CS composites decreased and CS crystal plane d-spacing of CHF/CS composites became larger than that of pure CS rod. TG analysis showed that mixing a little amount of CHF could enhance thermal stability of CS rod, but when the content of CHF was higher than the optimum amount, its thermal stability decreased. When 0.5% CHF was added into CS matrix, the bending strength and bending modulus of the composite rods arrived at 114.2 MPa and 5.2 GPa, respectively, increased by 23.6% and 26.8% compared with pure CS rods, indicating that CHF/CS composite rods could be a better candidate for bone fracture internal fixation.

  7. Chitin butyrate coated electrospun nylon-6 fibers for biomedical applications

    Science.gov (United States)

    Pant, Hem Raj; Kim, Han Joo; Bhatt, Lok Ranjan; Joshi, Mahesh Kumar; Kim, Eun Kyo; Kim, Jeong In; Abdal-hay, Abdalla; Hui, K. S.; Kim, Cheol Sang

    2013-11-01

    In this study, we describe the preparation and characterizations of chitin butyrate (CB) coated nylon-6 nanofibers using single-spinneret electrospinning of blends solution. The physicochemical properties of nylon-6 composite fibers with different proportions of CB to nylon-6 were determined using FE-SEM, TEM, FT-IR spectroscopy, and water contact angle measurement. FE-SEM and TEM images revealed that the nylon-6 and CB were immiscible in the as-spun nanofibers, and phase separated nanofiber morphology becomes more pronounced with increasing amounts of CB. The bone formation ability of composite fibers was evaluated by incubating in biomimetic simulated body fluid. In order to assay the cytocompatibility and cell behavior on the composite scaffolds, osteoblast cells were seeded on the matrix. Results suggest that the deposition of CB layer on the surface of nylon-6 could increase its cell compatibility and bone formation ability. Therefore, as-synthesized nanocomposite fibrous mat has great potentiality in hard tissue engineering.

  8. Chitin Fiber and Chitosan 3D Composite Rods

    Directory of Open Access Journals (Sweden)

    Zhengke Wang

    2010-01-01

    Full Text Available Chitin fiber (CHF and chitosan (CS 3D composite rods with layer-by-layer structure were constructed by in situ precipitation method. CHF could not be dissolved in acetic acid aqueous solution, but CS could be dissolved due to the different deacetylation degree (D.D between CHF and CS. CHF with undulate surfaces could be observed using SEM to demonstrate that the sufficiently rough surfaces and edges of the fiber could enhance the mechanical combining stress between fiber and matrix. XRD indicated that the crystallinity of CHF/CS composites decreased and CS crystal plane d-spacing of CHF/CS composites became larger than that of pure CS rod. TG analysis showed that mixing a little amount of CHF could enhance thermal stability of CS rod, but when the content of CHF was higher than the optimum amount, its thermal stability decreased. When 0.5% CHF was added into CS matrix, the bending strength and bending modulus of the composite rods arrived at 114.2 MPa and 5.2 GPa, respectively, increased by 23.6% and 26.8% compared with pure CS rods, indicating that CHF/CS composite rods could be a better candidate for bone fracture internal fixation.

  9. Thin-film Nanofibrous Composite Membranes Containing Cellulose or Chitin Barrier Layers Fabricated by Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    H Ma; B Hsiao; B Chu

    2011-12-31

    The barrier layer of high-flux ultrafiltration (UF) thin-film nanofibrous composite (TFNC) membranes for purification of wastewater (e.g., bilge water) have been prepared by using cellulose, chitin, and a cellulose-chitin blend, regenerated from an ionic liquid. The structures and properties of regenerated cellulose, chitin, and a cellulose-chitin blend were analyzed with thermogravimetric analysis (TGA) and wide-angle X-ray diffraction (WAXD). The surface morphology, pore size and pore size distribution of TFNC membranes were determined by SEM images and molecular weight cut-off (MWCO) methods. An oil/water emulsion, a model of bilge water, was used as the feed solution, and the permeation flux and rejection ratio of the membranes were investigated. TFNC membranes based on the cellulose-chitin blend exhibited 10 times higher permeation flux when compared with a commercial UF membrane (PAN10, Sepro) with a similar rejection ratio after filtration over a time period of up to 100 h, implying the practical feasibility of such membranes for UF applications.

  10. Characterization of a Chitin-Binding Protein from Bacillus thuringiensis HD-1.

    Directory of Open Access Journals (Sweden)

    Naresh Arora

    Full Text Available Strains of Bacillus thuringiensis produce insecticidal proteins. These strains have been isolated from diverse ecological niches, such as soil, phylloplane, insect cadavers and grain dust. To effectively propagate, these strains produce a range of molecules that facilitate its multiplication in a competing environment. In this report, we have examined synthesis of a chitin-binding protein and evaluated its effect on fungi encountered in environment and its interaction with insecticidal proteins synthesized by B. thuringiensis. The gene encoding chitin-binding protein has been cloned and expressed. The purified protein has been demonstrated to interact with Cry insecticidal protein, Cry1Ac by Circular Dichrosim spectroscopy (CD and in vitro pull down assays. The chitin-binding protein potentiates insecticidal activity of bacillar insecticidal protein, Cry1Ac. Further, chitin-binding protein was fungistatic against several soil fungi. The chitin binding protein is expressed in spore mother cell and deposited along with insecticidal protein, Cry1Ac. It interacts with Cry1Ac to potentiate its insecticidal activity and facilitate propagation of Bacillus strain in environment by inhibiting growth of certain fungi.

  11. The demosponge Pseudoceratina purpurea as a new source of fibrous chitin.

    Science.gov (United States)

    Żółtowska-Aksamitowska, Sonia; Tsurkan, Mikhail V; Lim, Swee-Cheng; Meissner, Heike; Tabachnick, Konstantin; Shaala, Lamiaa A; Youssef, Diaa T A; Ivanenko, Viatcheslav N; Petrenko, Iaroslav; Wysokowski, Marcin; Bechmann, Nicole; Joseph, Yvonne; Jesionowski, Teofil; Ehrlich, Hermann

    2018-06-01

    Among marine demosponges (Porifera: Demospongiae), only representatives of the order Verongiida have been recognized to synthetize both biologically active substances as well as scaffolds-like fibrous skeletons made of structural aminopolysaccharide chitin. The unique 3D architecture of such scaffolds open perspectives for their applications in waste treatment, biomimetics and tissue engineering. Here, we focus special attention to the demosponge Pseudoceratina purpurea collected in the coastal waters of Singapore. For the first time the detailed description of the isolation of chitin from the skeleton of this sponge and its identification using diverse bioanalytical tools were carried out. Calcofluor white staining, FTIR analysis, electrospray ionization mass spectrometry (ESI-MS), SEM, and fluorescence microscopy as well as a chitinase digestion assay were applied in order to confirm with strong evidence the finding of alpha-chitin in the skeleton of P. purpurea. We suggest that the discovery of chitin within representatives of Pseudoceratinidae family is a perspective step in evaluation of these verongiid sponges as novel renewable sources for both chitin and biologically active metabolites, which are of prospective use for marine oriented biomedicine and pharmacology, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Extraction and Characterization of Chitin and Chitosan from Blue Crab and Synthesis of Chitosan Cryogel Scaffolds

    Directory of Open Access Journals (Sweden)

    Nimet Bölgen

    2016-08-01

    Full Text Available Polymeric scaffolds produced by cryogelation technique have attracted increasing attention for tissue engineering applications. Cryogelation is a technique which enables to produce interconnected porous matrices from the frozen reaction mixtures of polymers or monomeric precursors. Chitosan is a biocompatible, biodegradable, nontoxic, antibacterial, antioxidant and antifungal natural polymer that is obtained by deacetylation of chitin, which is mostly found in the exoskeleton of many crustacean. In this study, chitin was isolated from the exoskeleton of blue crap (Callinectes sapidus using a chemical method. Callinectes sapidus samples were collected from a market, as a waste material after it has been consumed as food. Demineralization, deproteinization and decolorization steps were applied to the samples to obtain chitin. Chitosan was prepared from isolated chitin by deacetylation at high temperatures. The chemical compositon of crab shell, extracted chitin and chitosan were characterized with FTIR analyses. And also to determine the physicochemical and functional properties of the produced chitosan; solubility, water binding and fat binding analysis were performed. Chitosan cryogel scaffolds were prepared by crosslinking reaction at cryogenic conditions at constant amount of chitosan (1%, w/v with different ratios of glutaraldehyde (1, 3, and 6%, v/v as crosslinker. The chemical structure of the scaffolds were examined by FTIR. Also, the water uptake capacity of scaffolds have been determined. Collectively, the results suggested that the characterized chitosan cryogels can be potential scaffolds to be used in tissue engineering applications.

  13. Chitin's Functionality as a Novel Disintegrant: Benchmarking Against Commonly Used Disintegrants in Different Physicochemical Environments.

    Science.gov (United States)

    Chaheen, Mohammad; Soulairol, Ian; Bataille, Bernard; Yassine, Ahmad; Belamie, Emmanuel; Sharkawi, Tahmer

    2017-07-01

    Disintegrants are used as excipients to ensure rapid disintegration of pharmaceutical tablets and further ensure proper dissolution of the active pharmaceutical ingredient. This study investigates disintegration mechanisms of chitin and common disintegrants. Swelling assessment (swelling force and swelling ratio) in different media, and compaction behavior (pure or mixed with other excipients) tabletability, deformation (Heckel modeling), and compact disintegration times were investigated on the tested disintegrants (alginic acid calcium salt, crospovidone, sodium starch glycolate, croscarmellose sodium, and chitin). Results show that the physicochemical properties of the disintegration medium such as pH and ionic strength, as well as other formulation ingredients, affect the disintegrant functionalities. Heckel analysis using the mean yield pressure "Py" shows that alginic acid calcium salt is the most brittle among the studied disintegrants, while crospovidone has the most plastic deformation mechanism, followed by chitin. Chitin showed good tabletability and disintegration properties that were not influenced by the physicochemical formulation environment. Chitin is largely available and easily modifiable and thus a promising material that could be used as a multifunctional excipient in tablet formulation. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Properties of polymethyl methacrylate-based nanocomposites: Reinforced with ultra-long chitin nanofiber extracted from crab shells

    International Nuclear Information System (INIS)

    Chen, Chuchu; Li, Dagang; Hu, Qinqin; Wang, Ru

    2014-01-01

    Highlights: • Using waste crab shells to develop high-performance composites by simple method. • Combining the anatomic analysis of crab shell with the design of composite. • Introducing a 4-step all-mechanical treatment to prepare ultra-long chitin fiber. • Incorporation of chitin nanofiber improves properties of PMMA/Chitin composite. - Abstract: Ultra-long chitin nanofibers were incorporated into polymethyl methacrylate (PMMA) resin to prepared PMMA/Chitin nanocomposites with improved properties. Transmission electron microscopy (TEM) images showed that through the introduced 4-step all-mechanical treatment, the average aspect ratio of the obtained chitin fiber was up to 1000 with the length at dozens of micron range. Due to the laminated structure formed by “layer-by-layer” effect, tensile strength and Young’s modulus of the prepared composite were significantly enhanced after the filling of chitin nanofibers, as compared with neat PMMA. Light transmittance test indicated that increasing the fiber content causes little light scattering because the nano-scalar network which is smaller enough than the visible wavelength could well preserve the original transparency of PMMA. Furthermore, chitin nanofiber film with extremely low thermal expansion improved the thermal stability of PMMA in a great degree. This could lead to various commercial applications including flexible electronic printing, organic thin-film photovoltaic devices, and is a significantly environmental move towards the sustainable utilization of marine-river crab shell wastes

  15. Chitin amendment increases soil suppressiveness toward plant pathogens and modulates the actinobacterial and oxalobacteraceal communities in an experimental agricultural field

    NARCIS (Netherlands)

    Cretoiu, Mariana Silvia; Korthals, Gerard W.; Visser, Johnny H. M.; van Elsas, Jan Dirk

    A long-term experiment on the effect of chitin addition to soil on the suppression of soilborne pathogens was set up and monitored for 8 years in an experimental field, Vredepeel, The Netherlands. Chitinous matter obtained from shrimps was added to soil top layers on two different occasions, and the

  16. Fermentable oligosaccharide, disaccharide, monosaccharide and polyol content of foods commonly consumed by ethnic minority groups in the United Kingdom.

    Science.gov (United States)

    Prichard, Rebeca; Rossi, Megan; Muir, Jane; Yao, Ck; Whelan, Kevin; Lomer, Miranda

    2016-06-01

    Dietary restriction of fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAPs) is an effective management approach for functional bowel disorders; however, its application is limited by the paucity of food composition data available for ethnic minority groups. The aim was to identify and measure the FODMAP content of these commonly consumed foods. According to their perceived importance to clinical practise, the top 20 ranked foods underwent FODMAP analysis using validated analytical techniques (total fructans, Megazyme hexokinase (HK) assay; all others, high-performance liquid chromatography (HPLC) with evaporative light scattering detectors). Of the 20 foods analysed, five were identified as significant sources of at least one FODMAP. Fructans and galacto-oligosaccharides were the major FODMAPs in these foods, including channa dal (0.13 g/100 g; 0.36 g/100 g), fenugreek seeds (1.11 g/100 g; 1.27 g/100 g), guava (0.41 g/100 g; not detected), karela (not detected; 1.12 g/100 g) and tamarind (2.35 g/100 g; 0.02 g/100 g). Broadening the availability of FODMAP composition data will increase the cultural application of low FODMAP dietary advice.

  17. Fabrication and characterization of jute fabrics reinforced polypropylene-based composites: effects of ionizing radiation and disaccharide (sucrose)

    Science.gov (United States)

    Sahadat Hossain, Md.; Uddin, Muhammad B.; Razzak, Md.; Sarwaruddin Chowdhury, A. M.; Khan, Ruhul A.

    2017-12-01

    Composites were prepared successfully by compression molding technique using jute fabrics (reinforcing agent) and polypropylene (matrix). Jute fabrics were treated with disaccharide (sucrose) solution and composites were fabricated with the treated fabric and polypropylene. The fiber content of the prepared composites was 40% by weight. It was found that the sucrose (2% solution) decreased the tensile strength (TS) and elongation at break about 6% and 37%, respectively, but tensile modulus and impact strength improved about 27% and 32%, respectively. When gamma radiation was applied through the untreated and treated composites the mechanical properties were improved much higher in non-treated Jute/PP-based composites than that of sucrose treated composites. For 5.0 kGy gamma dose the highest mechanical properties were observed for non-treated composites. At 5.0 kGy gamma dose the improvement of TS was 14% and 2% for non-treated and sucrose treated composites, respectively. The water uptake property of the sucrose treated composites was performed up to 10 days and composites absorbed 18% water. The functional groups of the both composites were analyzed by Fourier transform infrared spectroscopy machine. The scanning electron microscopic images of the both composites were taken for the surface and fiber adhesion analysis.

  18. THE EFFECT OF PLASTICIZER CONTENT AND DISACCHARIDE TYPE ON THE MECHANICAL, BARRIER AND PHYSICAL PROPERTIES OF BOVINE GELATIN-BASED FILMS

    Directory of Open Access Journals (Sweden)

    PEDRO GUERRERO1

    2014-06-01

    Full Text Available Gelatins are regarded as alternative raw materials to prepare films for food packaging. However, the improvement of their mechanical and water barrier properties is necessary in order to obtain useful materials in service conditions. To improve these functional properties, two strategies have been carried out in this work. First, glycerol was added as plasticizer to increase the flexibility of the films. Second, lactose or sucrose was added to react with gelatin and increase water resistance of gelatin-based films. Commercial gelatin, glycerol and lactose or sucrose were employed in this work and processing of the films was carried out by solution casting. All gelatin films obtained were transparent and flexible. Moreover, the hydrophobic character of the films was increased and the film solubility was decreased by the addition of glycerol and disaccharides. As was observed via FTIR, the changes were due to the interactions between gelatin and glycerol and Maillard reaction between gelatin and disaccharides.

  19. Cytotoxicity and mechanical behavior of chitin-bentonite clay based polyurethane bio-nanocomposites.

    Science.gov (United States)

    Zia, Khalid Mahmood; Zuber, Mohammad; Barikani, Mehdi; Hussain, Rizwan; Jamil, Tahir; Anjum, Sohail

    2011-12-01

    Chitin based polyurethane bio-nanocomposites (PUBNC) were prepared using chitin, Delite HPS bentonite nanoclay enriched in montmorillonite (MMT), 4,4'-diphenylmethane diisocyanate (MDI) and polycaprolactone polyol CAPA 231 (3000 g/mol(-1)). The prepolymers having different concentration of Delite HPS bentonite nanoclay were extended with 2 moles of chitin. The structures of the resulted polymers were determined by FT-IR technique. The effect of nanoclay contents on mechanical properties and in vitro biocompatibility was investigated. The mechanical properties of the synthesized materials were improved with increase in the Delite HPS bentonite nanoclay contents. Optimum mechanical properties were obtained from the PU bio-nanocomposite samples having 4% Delite HPS bentonite nanoclay. The results revealed that the final PU bio-nanocomposite having 2% Delite HPS bentonite nanoclay contents is ideal contenders for surgical threads with on going investigations into their in vitro biocompatibility, non-toxicity, and mechanical properties. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Effects of Chitin and Its Derivative Chitosan on Postharvest Decay of Fruits: A Review

    Directory of Open Access Journals (Sweden)

    Weimin Liu

    2011-01-01

    Full Text Available Considerable economic losses to harvested fruits are caused by postharvest fungal decay during transportation and storage, which can be significantly controlled by synthetic fungicides. However, considering public concern over pesticide residues in food and the environment, there is a need for safer alternatives for the control of postharvest decay to substitute synthetic fungicides. As the second most abundant biopolymer renewable source in nature, chitin and its derivative chitosan are widely used in controlling postharvest decay of fruits. This review aims to introduce the effect of chitin and chitosan on postharvest decay in fruits and the possible modes of action involved. We found most of the actions discussed in these researches rest on physiological mechanisms. All of the mechanisms are summarized to lay the groundwork for further studies which should focus on the molecular mechanisms of chitin and chitosan in controlling postharvest decay of fruits.

  1. Micro-CT imaging of denatured chitin by silver to explore honey bee and insect pathologies.

    Directory of Open Access Journals (Sweden)

    Peter R Butzloff

    Full Text Available BACKGROUND: Chitin and cuticle coatings are important to the environmental and immune defense of honey bees and insect pollinators. Pesticides or environmental effects may target the biochemistry of insect chitin and cuticle coating. Denaturing of chitin involves a combination of deacetylation, intercalation, oxidation, Schweiger-peeling, and the formation of amine hydrochloride salt. The term "denatured chitin" calls attention to structural and property changes to the internal membranes and external carapace of organisms so that some properties affecting biological activities are diminished. METHODOLOGY/PRINCIPAL FINDINGS: A case study was performed on honey bees using silver staining and microscopic computer-tomographic x-ray radiography (micro-CT. Silver nitrate formed counter-ion complexes with labile ammonium cations and reacted with amine hydrochloride. Silver was concentrated in the peritrophic membrane, on the abdomen, in the glossa, at intersegmental joints (tarsi, at wing attachments, and in tracheal air sacs. Imaged mono-esters and fatty acids from cuticle coating on external surfaces were apparently reduced by an alcohol pretreatment. CONCLUSIONS/SIGNIFICANCE: The technique provides 3-dimensional and sectional images of individual honey bees consistent with the chemistries of silver reaction and complex formation with denatured chitin. Environmental exposures and influences such as gaseous nitric oxide intercalant, trace oxidants such as ozone gas, oligosachharide salt conversion, exposure to acid rain, and chemical or biochemical denaturing by pesticides may be studied using this technique. Peritrophic membranes, which protect against food abrasion, microorganisms, and permit efficient digestion, were imaged. Apparent surface damage to the corneal lenses of compound eyes by dilute acid exposure consistent with chitin amine hydrochloride formation was imaged. The technique can contribute to existing insect pathology research, and may

  2. Effect of disaccharide, gamma radiation and temperature on the physico-mechanical properties of jute fabrics reinforced unsaturated polyester resin-based composite

    Science.gov (United States)

    Sahadat Hossain, Md.; Chowdhury, A. M. Sarwaruddin; Khan, Ruhul A.

    2017-06-01

    The jute fabrics reinforced unsaturated polyester resin (jute/UPR)-based composites were prepared successfully by the hand-lay-up technique. The percentage of jute fabrics was kept constant at 40% fiber (by weight). The disaccharide percentage was also kept constant at 2% (by weight), but at this percentage the mechanical properties were lower than the untreated composites. Gamma radiation dose was varied at 0, 2.5, 5 and 7.5 kGy for jute/UPR-based composites. At 5.0 kGy gamma dose highest TS, TM and Eb were obtained. The jute/UPR-based composites were treated under 30°C, 50°C and -18°C for the measurement of mechanical properties. At low temperature (-18°C), the highest mechanical properties were observed. The water uptake properties were measured for disaccharide-treated and disaccharide-untreated composites up to 10 days, but no water was absorbed by the composites. The soil degradation test was carried out under 12 inch soil containing at least 25% water, but no significant decrease was observed for untreated and sucrose-treated composites. For the functional group analysis, FT-IR was carried out. For the fiber matrix adhesion analysis, the scanning electron microscopic image was taken.

  3. Characterization of chitin extracted from fish scales of marine fish species purchased from local markets in North Sulawesi, Indonesia

    Science.gov (United States)

    Rumengan, I. F. M.; Suptijah, P.; Wullur, S.; Talumepa, A.

    2017-10-01

    Chitin is a biodegradable biopolymer with a variety of commercial applications, including in the food food-supplement industries as a marine-derived nutraceutical. The purpose of this study was to characterize the molecular structure of chitin extracted from fish scales of important marine fish purchased from local markets in North Sulawesi. Chitin compound material was obtained from a specific fish scale, and then sequentially carrying out a boiling treatment to separate it from a complex with collagen. From the scales of two fish species, parrotfish (Chlorurus sordidus) and red snapper (Lutjanus argentimaculatus), the rendemen of chitin obtained were 45 % and 33%, respectively. Structural characteristics of the chitin were discussed by FTIR (Fourier Transform Infrared) analysis data. FTIR analysis was done using infrared spectroscopy, which is the resulting spectrum represents the molecular absorption and transmission, creating a molecular fingerprint of the sample. The molecular structure of chitin, C18H26N2O10, where the hydroxyl group on the second carbon replaced by acetyl amide, was shown by the infrared spectra. In the infrared spectra, chitin from parrot fish scales indicated the amide band at 1627.13 cm-1, and chitin from red snapper fish scales the amide band at 1648.09 cm-1 which are a typical one for marine chitin. The hydroxyl and amino bands at the ranged spectra up to 3500 cm-1. The yields of chitin isolated from fish scale were relatively huge. Some treatments are necessary to confirm the molecular conformation and deacetylation behavior. All products from the extraction of fish scales could be more accessible for structural modifications to develop biocompatible materials for pharmaceutical purposes.

  4. Towards the Shell Biorefinery: Sustainable Synthesis of the Anticancer Alkaloid Proximicin A from Chitin.

    Science.gov (United States)

    Sadiq, Alejandro D; Chen, Xi; Yan, Ning; Sperry, Jonathan

    2018-02-09

    A shell biorefinery would involve fractionation of crustacean shells and incorporation of the components into value-added products, particularly those that contain nitrogen. In a proof-of-concept study that validates this concept, the anticancer alkaloid proximicin A has been synthesized from the chitin-derived platform chemical 3-acetamido-5-acetylfuran (3A5AF). This study accentuates the leading role chitin is likely to play in the sustainable production of nitrogen-containing fine chemicals that are not directly attainable from lignocellulose. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Hierarchical Chitin Fibers with Aligned Nanofibrillar Architectures: A Nonwoven-Mat Separator for Lithium Metal Batteries.

    Science.gov (United States)

    Kim, Joong-Kwon; Kim, Do Hyeong; Joo, Se Hun; Choi, Byeongwook; Cha, Aming; Kim, Kwang Min; Kwon, Tae-Hyuk; Kwak, Sang Kyu; Kang, Seok Ju; Jin, Jungho

    2017-06-27

    Here, we introduce regenerated fibers of chitin (Chiber), the second most abundant biopolymer after cellulose, and propose its utility as a nonwoven fiber separator for lithium metal batteries (LMBs) that exhibits an excellent electrolyte-uptaking capability and Li-dendrite-mitigating performance. Chiber is produced by a centrifugal jet-spinning technique, which allows a simple and fast production of Chibers consisting of hierarchically aligned self-assembled chitin nanofibers. Following the scrutinization on the Chiber-Li-ion interaction via computational methods, we demonstrate the potential of Chiber as a nonwoven mat-type separator by monitoring it in Li-O 2 and Na-O 2 cells.

  6. Treatment of chitin-producing wastewater by micro-electrolysis-contact oxidization.

    Science.gov (United States)

    Yang, Yue-ping; Xu, Xin-hua; Chen, Hai-feng

    2004-04-01

    The technique of micro-electrolysis-contact oxidization was exploited to treat chitin-producing wastewater. Results showed that Fe-C micro-electrolysis can remove about 30% COD(cr), raise pH from 0.7 to 5.5. The COD(cr) removal efficiency by biochemical process can be more than 80%. During a half year's operation, the whole system worked very stably and had good results, as proved by the fact that every quality indicator of effluent met the expected discharge standards; which means that chitin wastewater can be treated by the technique of micro-electrolysis, contact oxidization.

  7. Eco-Friendly Extraction of Biopolymer Chitin and Carotenoids from Shrimp Waste

    Science.gov (United States)

    Prameela, K.; Venkatesh, K.; Divya vani, K.; Sudesh Kumar, E.; Mohan, CH Murali

    2017-08-01

    Astaxanthin a nutraceutical and chitin a natural biopolymer present in shrimp waste. In current chemical extraction methods HCl and NaOH are used for extraction and these chemicals are introduced into aquatic ecosystems are spoiling aquatic flora and fauna, pollute the environment and destroy astaxanthin. Lactobacillus species were isolated from gut of Solenocera melantho and characterized phenotypically and genotypically. Initial screening experiments have shown to be an effective and identified as Lactobacillus plantaram based on morphological, biochemical characteristics and molecular analysis. Efficiency of fermentation has shown with good yield of astaxanthin and recovery of chitin. Hence this alternative microbial process is having advantage than existing hazardous, non-economical chemical process.

  8. Location on chitin in the cyst wall of Entamoeba invadens with colloidal gold tracers.

    Science.gov (United States)

    Arroyo-Begovich, A; Cárabez-Trejo, A

    1982-04-01

    Chitin was located in the cyst wall of Entamoeba invadens with colloidal gold-linked wheat germ agglutinin. Cysts stained differentially from trophozoites when encysting cultures were treated with the gold tracer; cysts acquired a wine-red coloration while, in general trophozoites remained unstained. Observation of cells with the electron microscope revealed that the tracer particles were bound specifically to the walls of the surface of the cyst when cells were exposed in suspension, and to the cyst wall cross-section, when cells were exposed to the tracer in thin section, indicating that chitin fibers were distributed on the surface as well as throughout the matrix of the cyst wall.

  9. Application of Chitin/Chitosan and Their Derivatives in the Papermaking Industry

    Directory of Open Access Journals (Sweden)

    Zhaoping Song

    2018-04-01

    Full Text Available Chitin/chitosan and their derivatives have become of great interest as functional materials in many fields within the papermaking industry. They have been employed in papermaking wet-end, paper surface coating, papermaking wastewater treatment, and other sections of the papermaking industry due to their structure and chemical properties. The purpose of this paper is to briefly discuss the application of chitin/chitosan and their derivatives in the papermaking industry. The development of their application in the papermaking area will be reviewed and summarized.

  10. Comparison of diarrhea induced by ingestion of fructooligosaccharide Idolax and disaccharide lactulose: role of osmolarity versus fermentation of malabsorbed carbohydrate.

    Science.gov (United States)

    Clausen, M R; Jørgensen, J; Mortensen, P B

    1998-12-01

    Whether carbohydrate malabsorption causes diarrhea probably depends on the balance between the osmotic force of the carbohydrate and the compensatory capacity of the colon to dispose of the carbohydrate by bacterial fermentation. The present study evaluated the specific role of the osmolarity by comparing the severity of diarrhea after ingestion of two nonabsorbable carbohydrates, the fructooligosaccharide Idolax and the disaccharide lactulose. Both carbohydrates are readily fermented by the colonic flora but differ in osmolarity, the osmotic force being twice as high for lactulose as for Idolax. Twelve subjects were given increasing doses (0, 20, 40, 80, 160 g/d) of Idolax and lactulose in a crossover design. Every dose level was administered for three days with intervals of one week. Stools were collected on the third day to determine 24-hr volume, concentrations of short-chain fatty acids, L- and D-lactate, residues of Idolax or lactulose, sodium, potassium, pH, osmolarity, and in vitro productions of organic acids. Measured by short-chain fatty acid and lactate formation in a fecal incubation system, the fermentation of Idolax and lactulose was identical and very rapid compared with a range of reference carbohydrates. A laxative effect of both Idolax and lactulose was demonstrated. The increment in fecal volume as a function of the dose administered was twice as high for lactulose (slope of the regression line = 7.3, r = 0.64, Pdiarrhea is proportional to the osmotic force of the malabsorbed saccharide, even though all or the majority of the saccharide is degraded by colonic bacteria. The capacity to modify the diarrhea varies considerably from person to person and is associated with colonic saccharide disposal, whereas the variation in response to isosmolar amounts of different saccharides is small within the same individual.

  11. Anti-natural octyl disaccharide-leprosy IDRI diagnostic (NDO-LID) antibodies as indicators of leprosy reactions and neuritis.

    Science.gov (United States)

    Serrano-Coll, Héctor; Muñoz, Mónica; Camilo Beltrán, Juan; Duthie, Malcolm S; Cardona-Castro, Nora

    2017-03-01

    Leprosy is a complex infectious and neurological disease caused by Mycobacterium leprae. Nerve damage is related to immunological hypersensitivity responses known as leprosy reactions (LRs). Diagnostic tools to predict LRs are not available. We hypothesized that natural octyl disaccharide-leprosy IDRI diagnostic (NDO-LID) would be helpful as an indicator of LRs and neuritis. To assess the utility of NDO-LID in indicating reactions, ELISA were used to detect specific antibodies in serum samples from 80 Colombian leprosy patients (40 with and 40 without history of LRs). Responses were detected using a range of detection reagents detecting IgG, IgM or both isotypes. Patients with a history of LRs had an increased seropositivity rate for anti-NDO-LID antibodies compared to patients without (anti-NDO-LID protein A [p=0.02], IgG anti-NDO-LID [p=0.01] and IgM anti-NDO-LID [p=0.01]). Further analyses of patients with a history of LRs indicated that both seropositivity rate and magnitude of responses were elevated among patients with neuritis versus those without neuritis (anti-NDO-LID protein A [p=0.03], IgG anti-NDO-LID [p=0.001] and IgM anti-NDO-LID [p=0.06]). Our data indicate that testing for serum anti-NDO-LID antibodies can be a useful screen to identify patients at risk of developing LRs and neuritis. © The Author 2017. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. A Review of the Applications of Chitin and Its Derivatives in Agriculture to Modify Plant-Microbial Interactions and Improve Crop Yields

    Directory of Open Access Journals (Sweden)

    Russell G. Sharp

    2013-11-01

    Full Text Available In recent decades, a greater knowledge of chitin chemistry, and the increased availability of chitin-containing waste materials from the seafood industry, have led to the testing and development of chitin-containing products for a wide variety of applications in the agriculture industry. A number of modes of action have been proposed for how chitin and its derivatives can improve crop yield. In addition to direct effects on plant nutrition and plant growth stimulation, chitin-derived products have also been shown to be toxic to plant pests and pathogens, induce plant defenses and stimulate the growth and activity of beneficial microbes. A repeating theme of the published studies is that chitin-based treatments augment and amplify the action of beneficial chitinolytic microbes. This article reviews the evidence for claims that chitin-based products can improve crop yields and the current understanding of the modes of action with a focus on plant-microbe interactions.

  13. Chitin Synthases with a Myosin Motor-Like Domain Control the Resistance of Aspergillus fumigatus to Echinocandins

    Science.gov (United States)

    Jiménez-Ortigosa, Cristina; Aimanianda, Vishukumar; Muszkieta, Laetitia; Mouyna, Isabelle; Alsteens, David; Pire, Stéphane; Beau, Remi; Krappmann, Sven; Beauvais, Anne; Dufrêne, Yves F.

    2012-01-01

    Aspergillus fumigatus has two chitin synthases (CSMA and CSMB) with a myosin motor-like domain (MMD) arranged in a head-to-head configuration. To understand the function of these chitin synthases, single and double csm mutant strains were constructed and analyzed. Although there was a slight reduction in mycelial growth of the mutants, the total chitin synthase activity and the cell wall chitin content were similar in the mycelium of all of the mutants and the parental strain. In the conidia, chitin content in the ΔcsmA strain cell wall was less than half the amount found in the parental strain. In contrast, the ΔcsmB mutant strain and, unexpectedly, the ΔcsmA/ΔcsmB mutant strain did not show any modification of chitin content in their conidial cell walls. In contrast to the hydrophobic conidia of the parental strain, conidia of all of the csm mutants were hydrophilic due to the presence of an amorphous material covering the hydrophobic surface-rodlet layer. The deletion of CSM genes also resulted in an increased susceptibility of resting and germinating conidia to echinocandins. These results show that the deletion of the CSMA and CSMB genes induced a significant disorganization of the cell wall structure, even though they contribute only weakly to the overall cell wall chitin synthesis. PMID:22964252

  14. Isolation of proteolytic bacteria from mealworm (Tenebrio molitor) exoskeletons to produce chitinous material.

    Science.gov (United States)

    da Silva, Fernanda Kerche Paes; Brück, Dieter W; Brück, Wolfram M

    2017-09-15

    The use of insects as a source of protein is becoming an important factor for feeding an increasing population. After protein extraction for food use, the insect exoskeleton may offer the possibility for the production of added value products. Here, the aim was to isolate bacteria from the surface of farmed mealworms (Tenebrio molitor Linnaeus, 1758) for the production of chitinous material from insect exoskeletons using microbial fermentation. Isolates were screened for proteases and acid production that may aid deproteination and demineralisation of insects through fermentation to produce chitin. Selected isolates were used single-step (isolated bacteria only) or two-step fermentations with Lactobacillus plantarum (DSM 20174). Two-step fermentations with isolates from mealworm exoskeletons resulted in a demineralisation of 97.9 and 98.5% from deproteinated mealworm fractions. Attenuated total reflectance-Fourier- transform infrared spectroscopy analysis showed that crude chitin was produced. However, further optimisation is needed before the process can be upscaled. This is, to our knowledge, the first report using microbial fermentation for the extraction of chitin from insects. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Current Status and New Perspectives on Chitin and Chitosan as Functional Biopolymers.

    Science.gov (United States)

    Philibert, Tuyishime; Lee, Byong H; Fabien, Nsanzabera

    2017-04-01

    The natural biopolymer chitin and its deacetylated product chitosan are found abundantly in nature as structural building blocks and are used in all sectors of human activities like materials science, nutrition, health care, and energy. Far from being fully recognized, these polymers are able to open opportunities for completely novel applications due to their exceptional properties which an economic value is intrinsically entrapped. On a commercial scale, chitosan is mainly obtained from crustacean shells rather than from the fungal and insect sources. Significant efforts have been devoted to commercialize chitosan extracted from fungal and insect sources to completely replace crustacean-derived chitosan. However, the traditional chitin extraction processes are laden with many disadvantages. The present review discusses the potential bioextraction of chitosan from fungal, insect, and crustacean as well as its superior physico-chemical properties. The different aspects of fungal, insects, and crustacean chitosan extraction methods and various parameters having an effect on the yield of chitin and chitosan are discussed in detail. In addition, this review also deals with essential attributes of chitosan for high value-added applications in different fields and highlighted new perspectives on the production of chitin and deacetylated chitosan from different sources with the concomitant reduction of the environmental impact.

  16. Novel chitin/chitosan-glucan wound dressing: Isolation, characterization, antibacterial activity and wound healing properties

    Czech Academy of Sciences Publication Activity Database

    Abdel-Mohsen, A. M.; Jancar, J.; Massoud, D.; Fohlerová, Z.; Elhadidy, Hassan; Spotz, Z.; Hebeish, A.

    2016-01-01

    Roč. 510, č. 1 (2016), s. 86-99 ISSN 0378-5173 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : Chitin/chitosan-glucan complex * Nonwoven mat * Surgical wound healing Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.649, year: 2016

  17. Concurrent protein synthesis is required for in vivo chitin synthesis in postmolt blue crabs

    International Nuclear Information System (INIS)

    Horst, M.N.

    1990-01-01

    Chitin synthesis in crustaceans involves the deposition of a protein-polysaccharide complex at the apical surface of epithelial cells which secrete the cuticle or exoskeleton. The present study involves an examination of in vivo incorporation of radiolabeled amino acids and amino sugars into the cuticle of postmolt blue crabs, Callinectes sapidus. Rates of incorporation of both 3H leucine and 3H threonine were linear with respect to time of incubation. Incorporation of 3H threonine into the endocuticle was inhibited greater than 90% in the presence of the protein synthesis inhibitor, puromycin. Linear incorporation of 14C glucosamine into the cuticle was also demonstrated; a significant improvement of radiolabeling was achieved by using 14C-N-acetylglucosamine as the labeled precursor. Incorporation of 3H-N-acetylglucosamine into the cuticle of postmolt blue crabs was inhibited 89% by puromycin, indicating that concurrent protein synthesis is required for the deposition of chitin in the blue crab. Autoradiographic analysis of control vs. puromycin-treated crabs indicates that puromycin totally blocks labeling of the new endocuticle with 3H glucosamine. These results are consistent with the notion that crustacean chitin is synthesized as a protein-polysaccharide complex. Analysis of the postmolt and intermolt blue crab cuticle indicates that the exoskeleton contains about 60% protein and 40% chitin. The predominant amino acids are arginine, glutamic acid, alanine, aspartic acid, and threonine

  18. Chitosan/chitin nanowhiskers composites: effect of plasticisers on the mechanical behaviour

    Czech Academy of Sciences Publication Activity Database

    Kelnar, Ivan; Kovářová, Jana; Tishchenko, Galina; Kaprálková, Ludmila; Pavlova, Ewa; Carezzi, F.; Morganti, P.

    2015-01-01

    Roč. 22, č. 2 (2015), 5_1-5_6 ISSN 1022-9760 R&D Projects: GA ČR(CZ) GA13-15255S EU Projects: European Commission(XE) 315233 - N-CHITOPACK Institutional support: RVO:61389013 Keywords : chitosan * chitin nanowhiskers * composite Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.969, year: 2015

  19. Electrospun chitosan-based nanocomposite mats reinforced with chitin nanocrystals for wound dressing

    CSIR Research Space (South Africa)

    Naseria, N

    2014-08-01

    Full Text Available The aim of this study was to develop electrospun chitosan/polyethylene oxide-based randomly oriented fiber mats reinforced with chitin nanocrystals (ChNC) for wound dressing. Microscopy studies showedporous mats of smooth and beadless fibers...

  20. Transforming nanostructured chitin from crustacean waste into beneficial health products: a must for our society

    Directory of Open Access Journals (Sweden)

    Morganti P

    2011-12-01

    Full Text Available P Morganti1, G Morganti2, A Morganti3,41Department of Dermatology, Second University of Naples, Naples, Italy; 2Centre of Nanoscience, Mavi Sud s.r.l, Aprilia, Italy; 3Max Planck Institute for Intellectual Property and Competition Law, Munich, Germany; 4Lextray, Milan, ItalyAbstract: Chitin, obtained principally from crustacean waste, is a sugar-like polymer that is available at low cost. It has been shown to be bio- and ecocompatible, and has a very low level of toxicity. Recently, it has become possible to industrially produce pure chitin crystals, named "chitin nanofibrils" (CN for their needle-like shape and nanostructured average size (240 × 5 × 7 nm. Due to their specific chemical and physical characteristics, CN may have a range of industrial applications, from its use in biomedical products and biomimetic cosmetics, to biotextiles and health foods. At present, world offshore disposal of this natural waste material is around 250 billion tons per year. It is an underutilized resource and has the potential to supply a wide range of useful products if suitably recycled, thus contributing to sustainable growth and a greener economy.Keywords: chitin nanofibrils, biomimetic cosmetics, biomedical products, food, nanotechnology, waste

  1. Papain incorporated chitin dressings for wound debridement sterilized by gamma radiation

    Science.gov (United States)

    Singh, Durgeshwer; Singh, Rita

    2012-11-01

    Wound debridement is essential for the removal of necrotic or nonviable tissue from the wound surface to create an environment conducive to healing. Nonsurgical enzymatic debridement is an attractive method due to its effectiveness and ease of use. Papain is a proteolytic enzyme derived from the fruit of Carica papaya and is capable of breaking down a variety of necrotic tissue substrates. The present study was focused on the use of gamma radiation for sterilization of papain dressing with wound debriding activity. Membranes with papain were prepared using 0.5% chitin in lithium chloride/dimethylacetamide solvent and sterilized by gamma radiation. Fluid absorption capacity of chitin-papain membranes without glycerol was 14.30±6.57% in 6 h. Incorporation of glycerol resulted in significant (p<0.001) increase in the absorption capacity. Moisture vapour transmission rate of the membranes was 4285.77±455.61 g/m2/24 h at 24 h. Gamma irradiation at 25 kGy was found suitable for sterilization of the dressings. Infrared (IR) spectral scanning has shown that papain was stable on gamma irradiation at 25-35 kGy. The irradiated chitin-papain membranes were impermeable to different bacterial strains and also exhibited strong bactericidal action against both Gram-positive and Gram-negative bacteria. The fluid handling characteristics and the antimicrobial properties of chitin-papain membranes sterilized by gamma radiation were found suitable for use as wound dressing with debriding activity.

  2. Morphological study of chitin from Xiphopenaeus kroyeri exoskeletons by using atomic force microscopy (AFM) and CPMAS 13 C NMR

    International Nuclear Information System (INIS)

    Silva, K.M.; Tavares, M.I.; Andrade, C.T.; Simao, R.A.

    1999-01-01

    A sample of α chitin was isolated from exoskeletons of Xiphopenaeus kroyeri. This sample ws dissolved in phosphoric acid and recovered as a fibrous precipitate. Atomic force microscopy was used in noncontact mode to obtain images of the native chitin sample. Different morphological features were observed, including rigid rod crystals 200-300 nm wide. Solid state 13 C NMR techniques were used to investigate chitin samples, and revealed molecular order in both samples. The differences observed in the proton spin-lattice relaxation times in the rotating frame, T H1 p were attributed to the formation of hydrogen bonds in preferential sites in the samples. (author)

  3. Micro-CT Imaging of Denatured Chitin by Silver to Explore Honey Bee and Insect Pathologies

    Science.gov (United States)

    Butzloff, Peter R.

    2011-01-01

    Background Chitin and cuticle coatings are important to the environmental and immune defense of honey bees and insect pollinators. Pesticides or environmental effects may target the biochemistry of insect chitin and cuticle coating. Denaturing of chitin involves a combination of deacetylation, intercalation, oxidation, Schweiger-peeling, and the formation of amine hydrochloride salt. The term “denatured chitin” calls attention to structural and property changes to the internal membranes and external carapace of organisms so that some properties affecting biological activities are diminished. Methodology/Principal Findings A case study was performed on honey bees using silver staining and microscopic computer-tomographic x-ray radiography (micro-CT). Silver nitrate formed counter-ion complexes with labile ammonium cations and reacted with amine hydrochloride. Silver was concentrated in the peritrophic membrane, on the abdomen, in the glossa, at intersegmental joints (tarsi), at wing attachments, and in tracheal air sacs. Imaged mono-esters and fatty acids from cuticle coating on external surfaces were apparently reduced by an alcohol pretreatment. Conclusions/Significance The technique provides 3-dimensional and sectional images of individual honey bees consistent with the chemistries of silver reaction and complex formation with denatured chitin. Environmental exposures and influences such as gaseous nitric oxide intercalant, trace oxidants such as ozone gas, oligosachharide salt conversion, exposure to acid rain, and chemical or biochemical denaturing by pesticides may be studied using this technique. Peritrophic membranes, which protect against food abrasion, microorganisms, and permit efficient digestion, were imaged. Apparent surface damage to the corneal lenses of compound eyes by dilute acid exposure consistent with chitin amine hydrochloride formation was imaged. The technique can contribute to existing insect pathology research, and may provide an

  4. Growth on Chitin Impacts the Transcriptome and Metabolite Profiles of Antibiotic-Producing Vibrio coralliilyticus S2052 and Photobacterium galatheae S2753

    DEFF Research Database (Denmark)

    Giubergia, Sonia; Phippen, Christopher; Nielsen, Kristian Fog

    2017-01-01

    Members of the Vibrionaceae family are often associated with chitin-containing organisms, and they are thought to play a major role in chitin degradation. The purpose of the present study was to determine how chitin affects the transcriptome and metabolome of two bioactive Vibrionaceae strains...... potentially involved in host colonization and/or infection. The expression of genes involved in secondary metabolism was also significantly affected by growth on chitin, in one case being 34-fold upregulated. This was reflected in the metabolome, where the antibiotics andrimid and holomycin were produced...... and that their secondary metabolites likely play a crucial role during chitin colonization. IMPORTANCE The bacterial family Vibrionaceae (vibrios) is considered a major player in the degradation of chitin, the most abundant polymer in the marine environment; however, the majority of studies on the topic have focused...

  5. FIBCD1 Modulation of the Epithelial Immune Response Elicited by Chitin

    DEFF Research Database (Denmark)

    Hammond, Mark; Schlosser, Anders; Bak-Thomsen, Theresa Helene

    2010-01-01

    of NF-jB signalling and downstream synthesis of mucosal epithelial-derived cytokines, TSLP and IL-33, which shapes the local accumulation and activation of Th2 responses. Results: Initial experiments have focused on the establishment of stable FIBCD1 overexpression in HEK293, HCT-116 and A549 epithelial......Background: FIBCD1 is a type II transmembrane protein located on the brush border of intestinal epithelial cells. FIBCD1 binds specifically to acetylated compounds such as chitin through the C-terminal fibrinogen-related domain. Chitin is a highly acetylated homopolymeric b-1,4-N...... or the model ligand acetylated BSA, at different time intervals anddoses and using a luciferase reporter system detection of NFjB activation will be performed and cytokine expression will be quantified via qRT-PCR. Perspectives: Improved understanding of epithelialimmune and inflammatory modulation in response...

  6. The Antifungal Activity of Functionalized Chitin Nanocrystals in Poly (Lactid Acid Films

    Directory of Open Access Journals (Sweden)

    Asier M. Salaberria

    2017-05-01

    Full Text Available As, in the market, poly (lactic acid (PLA is the most used polymer as an alternative to conventional plastics, and as functionalized chitin nanocrystals (CHNC can provide structural and bioactive properties, their combination sounds promising in the preparation of functional nanocomposite films for sustainable packaging. Chitin nanocrystals were successfully modified via acylation using anhydride acetic and dodecanoyl chloride acid to improve their compatibility with the matrix, PLA. The nanocomposite films were prepared by extrusion/compression approach using different concentrations of both sets of functionalized CHNC. This investigation brings forward that both sets of modified CHNC act as functional agents, i.e., they slightly improved the hydrophobic character of the PLA nanocomposite films, and, very importantly, they also enhanced their antifungal activity. Nonetheless, the nanocomposite films prepared with the CHNC modified with dodecanoyl chloride acid presented the best properties.

  7. Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route.

    Science.gov (United States)

    Mangalathillam, Sabitha; Rejinold, N Sanoj; Nair, Amrita; Lakshmanan, Vinoth-Kumar; Nair, Shantikumar V; Jayakumar, Rangasamy

    2012-01-07

    In this study, curcumin loaded chitin nanogels (CCNGs) were developed using biocompatible and biodegradable chitin with an anticancer curcumin drug. Chitin, as well as curcumin, is insoluble in water. However, the developed CCNGs form a very good and stable dispersion in water. The CCNGs were analyzed by DLS, SEM and FTIR and showed spherical particles in a size range of 70-80 nm. The CCNGs showed higher release at acidic pH compared to neutral pH. The cytotoxicity of the nanogels were analyzed on human dermal fibroblast cells (HDF) and A375 (human melanoma) cell lines and the results show that CCNGs have specific toxicity on melanoma in a concentration range of 0.1-1.0 mg mL(-1), but less toxicity towards HDF cells. The confocal analysis confirmed the uptake of CCNGs by A375. The apoptotic effect of CCNGs was analyzed by a flow-cytometric assay and the results indicate that CCNGs at the higher concentration of the cytotoxic range showed comparable apoptosis as the control curcumin, in which there was negligible apoptosis induced by the control chitin nanogels. The CCNGs showed a 4-fold increase in steady state transdermal flux of curcumin as compared to that of control curcumin solution. The histopathology studies of the porcine skin samples treated with the prepared materials showed loosening of the horny layer of the epidermis, facilitating penetration with no observed signs of inflammation. These results suggest that the formulated CCNGs offer specific advantage for the treatment of melanoma, the most common and serious type of skin cancer, by effective transdermal penetration.

  8. Preparation, characterization, drug release and computational modelling studies of antibiotics loaded amorphous chitin nanoparticles.

    Science.gov (United States)

    Gayathri, N K; Aparna, V; Maya, S; Biswas, Raja; Jayakumar, R; Mohan, C Gopi

    2017-12-01

    We present a computational investigation of binding affinity of different types of drugs with chitin nanocarriers. Understanding the chitn polymer-drug interaction is important to design and optimize the chitin based drug delivery systems. The binding affinity of three different types of anti-bacterial drugs Ethionamide (ETA) Methacycline (MET) and Rifampicin (RIF) with amorphous chitin nanoparticles (AC-NPs) were studied by integrating computational and experimental techniques. The binding energies (BE) of hydrophobic ETA, hydrophilic MET and hydrophobic RIF were -7.3kcal/mol, -5.1kcal/mol and -8.1kcal/mol respectively, with respect to AC-NPs, using molecular docking studies. This theoretical result was in good correlation with the experimental studies of AC-drug loading and drug entrapment efficiencies of MET (3.5±0.1 and 25± 2%), ETA (5.6±0.02 and 45±4%) and RIF (8.9±0.20 and 53±5%) drugs respectively. Stability studies of the drug encapsulated nanoparticles showed stable values of size, zeta and polydispersity index at 6°C temperature. The correlation between computational BE and experimental drug entrapment efficiencies of RIF, ETA and MET drugs with four AC-NPs strands were 0.999 respectively, while that of the drug loading efficiencies were 0.854 respectively. Further, the molecular docking results predict the atomic level details derived from the electrostatic, hydrogen bonding and hydrophobic interactions of the drug and nanoparticle for its encapsulation and loading in the chitin-based host-guest nanosystems. The present results thus revealed the drug loading and drug delivery insights and has the potential of reducing the time and cost of processing new antibiotic drug delivery nanosystem optimization, development and discovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Cloning and sequence analysis of chitin synthase gene fragments of Demodex mites*

    OpenAIRE

    Zhao, Ya-e; Wang, Zheng-hang; Xu, Yang; Xu, Ji-ru; Liu, Wen-yan; Wei, Meng; Wang, Chu-ying

    2012-01-01

    To our knowledge, few reports on Demodex studied at the molecular level are available at present. In this study our group, for the first time, cloned, sequenced and analyzed the chitin synthase (CHS) gene fragments of Demodex folliculorum, Demodex brevis, and Demodex canis (three isolates from each species) from Xi’an China, by designing specific primers based on the only partial sequence of the CHS gene of D. canis from Japan, retrieved from GenBank. Results show that amplification was succe...

  10. NATURAL POLYMERS: CELLULOSE, CHITIN, CHITOSAN, GELATIN, STARCH, CARRAGEENAN, XYLAN AND DEXTRAN

    Directory of Open Access Journals (Sweden)

    Fatma Zohra Benabid

    2016-12-01

    Full Text Available Biopolymers have been investigated for drug fields. They are widely being studied because of their non-toxic and biocompatible in nature. Biopolymers are used in industries as diverse as paper, plastics, food, textiles, pharmaceuticals, and cosmetics.This review covers different natural polymers, recent techniques applied in their processing and characterization. Advanced applications of natural polymers, including chitin, chitosan, alginate, etc., are discussed.

  11. In vitro bioconversion of chitin to pyruvate with thermophilic enzymes.

    Science.gov (United States)

    Honda, Kohsuke; Kimura, Keisuke; Ninh, Pham Huynh; Taniguchi, Hironori; Okano, Kenji; Ohtake, Hisao

    2017-09-01

    Chitin is the second most abundant organic compound on the planet and thus has been regarded as an alternative resource to petroleum feedstocks. One of the key challenges in the biological conversion of biomass-derived polysaccharides, such as cellulose and chitin, is to close the gap between optimum temperatures for enzymatic saccharification and microbial fermentation and to implement them in a single bioreactor. To address this issue, in the present study, we aimed to perform an in vitro, one-pot bioconversion of chitin to pyruvate, which is a precursor of a wide range of useful metabolites. Twelve thermophilic enzymes, including that for NAD + regeneration, were heterologously produced in Escherichia coli and semi-purified by heat treatment of the crude extract of recombinant cells. When the experimentally decided concentrations of enzymes were incubated with 0.5 mg mL -1 colloidal chitin (equivalent to 2.5 mM N-acetylglucosamine unit) and an adequate set of cofactors at 70°C, 0.62 mM pyruvate was produced in 5 h. Despite the use of a cofactor-balanced pathway, determination of the pool sizes of cofactors showed a rapid decrease in ATP concentration, most probably due to the thermally stable ATP-degrading enzyme(s) derived from the host cell. Integration of an additional enzyme set of thermophilic adenylate kinase and polyphosphate kinase led to the deceleration of ATP degradation, and the final product titer was improved to 2.1 mM. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Microbial Degradation of Lobster Shells to Extract Chitin Derivatives for Plant Disease Management

    Directory of Open Access Journals (Sweden)

    Gayathri Ilangumaran

    2017-05-01

    Full Text Available Biodegradation of lobster shells by chitinolytic microorganisms are an environment safe approach to utilize lobster processing wastes for chitin derivation. In this study, we report degradation activities of two microbes, “S223” and “S224” isolated from soil samples that had the highest rate of deproteinization, demineralization and chitinolysis among ten microorganisms screened. Isolates S223 and S224 had 27.3 and 103.8 protease units mg-1 protein and 12.3 and 11.2 μg ml-1 of calcium in their samples, respectively, after 1 week of incubation with raw lobster shells. Further, S223 contained 23.8 μg ml-1 of N-Acetylglucosamine on day 3, while S224 had 27.3 μg ml-1 on day 7 of incubation with chitin. Morphological observations and 16S rDNA sequencing suggested both the isolates were Streptomyces. The culture conditions were optimized for efficient degradation of lobster shells and chitinase (∼30 kDa was purified from crude extract by affinity chromatography. The digested lobster shell extracts induced disease resistance in Arabidopsis by induction of defense related genes (PR1 > 500-fold, PDF1.2 > 40-fold upon Pseudomonas syringae and Botrytis cinerea infection. The study suggests that soil microbes aid in sustainable bioconversion of lobster shells and extraction of chitin derivatives that could be applied in plant protection.

  13. Reinforcement of thermoplastic chitosan hydrogel using chitin whiskers optimized with response surface methodology.

    Science.gov (United States)

    Sun, Guohui; Zhang, Xin; Bao, Zixian; Lang, Xuqian; Zhou, Zhongzheng; Li, Yang; Feng, Chao; Chen, Xiguang

    2018-06-01

    To strengthen the mechanical strength of thermo-sensitive hydroxybutyl chitosan (HBC) hydrogel, chitin whiskers were used as sticker to fabricate reinforced HBC (HBCW) hydrogel by using response surface methodology. Unlike the intrinsic network of HBC hydrogel, HBCW hydrogel showed a laminar shape with firm structure. The preparation condition was optimized by three-factor-three-level Box-Behnken design. The maximum mechanical strength (1011.11 Pa) was achieved at 50 °C, when the concentrations of HBC and chitin whiskers were 5.1 wt% and 2.0 wt%, respectively. The effects of temperature, pH value and NaCl concentration on mechanical strength of HBCW hydrogels were investigated via the oscillatory stress sweeps. The results showed that HBCW hydrogel could reach the maximum stiffness (∼1126 Pa) at 37 °C pH 12.0. Low pH and high salty ions could decrease the stability of hydrogel, while chitin whiskers could increase the stress tolerance and related ruptured strain of HBCW hydrogels. Copyright © 2018. Published by Elsevier Ltd.

  14. In vitro evaluation of paclitaxel loaded amorphous chitin nanoparticles for colon cancer drug delivery.

    Science.gov (United States)

    Smitha, K T; Anitha, A; Furuike, T; Tamura, H; Nair, Shantikumar V; Jayakumar, R

    2013-04-01

    Chitin and its derivatives have been widely used in drug delivery applications due to its biocompatible, biodegradable and non-toxic nature. In this study, we have developed amorphous chitin nanoparticles (150±50 nm) and evaluated its potential as a drug delivery system. Paclitaxel (PTX), a major chemotherapeutic agent was loaded into amorphous chitin nanoparticles (AC NPs) through ionic cross-linking reaction using TPP. The prepared PTX loaded AC NPs had an average diameter of 200±50 nm. Physico-chemical characterization of the prepared nanoparticles was carried out. These nanoparticles were proven to be hemocompatible and in vitro drug release studies showed a sustained release of PTX. Cellular internalization of the NPs was confirmed by fluorescent microscopy as well as by flow cytometry. Anticancer activity studies proved the toxicity of PTX-AC NPs toward colon cancer cells. These preliminary results indicate the potential of PTX-AC NPs in colon cancer drug delivery. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Thermal analysis and structural characterization of chitinous exoskeleton from two marine invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Juárez-de la Rosa, B.A., E-mail: balej05@yahoo.com.mx [Laboratory of Natural Polymers, CIAD – Coordinación Guaymas, Carretera al Varadero Nacional km. 6.6, Col. Las Playitas, 85480 Guaymas, Sonora (Mexico); Applied Physics Department, CINVESTAV-IPN Unidad Mérida, Carretera antigua a Progreso, km. 6. Apdo, Postal 73, Cordemex, 97310 Mérida, Yucatan (Mexico); May-Crespo, J.; Quintana-Owen, P.; Gónzalez-Gómez, W.S. [Applied Physics Department, CINVESTAV-IPN Unidad Mérida, Carretera antigua a Progreso, km. 6. Apdo, Postal 73, Cordemex, 97310 Mérida, Yucatan (Mexico); Yañez-Limón, J.M. [Materials and Engineering Science, CINVESTAV-IPN, Unidad Querétaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, 76230 Santiago de Querétaro, Querétaro (Mexico); Alvarado-Gil, J.J., E-mail: jjag@mda.cinvestav.mx [Applied Physics Department, CINVESTAV-IPN Unidad Mérida, Carretera antigua a Progreso, km. 6. Apdo, Postal 73, Cordemex, 97310 Mérida, Yucatan (Mexico)

    2015-06-20

    Highlights: • Thermal analysis of exoskeletons: Antipathes caribbeana and Limulus polyphemus. • DMTA revealed Limulus has a stronger structure with a stepper glass transition. • DSC measurements exhibited a much larger water holding capacity in Antipathes. • X-ray diffraction analysis shows a higher crystallinity index in Limulus • FTIR showed α-chitin structures and high temperature C–N groups prevalence. - ABSTRACT: Thermomechanical and structural properties of two marine species exoskeletons, Antipathes caribbeana (black coral) and Limulus polyphemus (xiphosure), were studied using dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). DMTA curves indicate the viscoelastic behavior and glass transition around 255 °C, black coral presented a second transition (175 °C) associated to the acetamide group attached to the α-chitin chain. DSC measurements showed a endothermic peak around 100 °C, with enthalpies of 4.02 and 118.04 J/g, indicating strong differences between exoskeletons respect to their water holding capacity and strength water–polymer interaction. A comparative analysis involving DSC and X-ray diffraction showed that lower values ΔH in xiphosure correspond to a material with a higher crystallinity (30), in contrast black coral exhibits higher values ΔH and a lower crystallinity (19). FTIR confirmed α-chitin based structure, at higher temperature diminishes the amide bands and a new one appears, related to C–N groups.

  16. Cigarette Smoke-Exposed Candida albicans Increased Chitin Production and Modulated Human Fibroblast Cell Responses

    Directory of Open Access Journals (Sweden)

    Humidah Alanazi

    2014-01-01

    Full Text Available The predisposition of cigarette smokers for development of respiratory and oral bacterial infections is well documented. Cigarette smoke can also contribute to yeast infection. The aim of this study was to investigate the effect of cigarette smoke condensate (CSC on C. albicans transition, chitin content, and response to environmental stress and to examine the interaction between CSC-pretreated C. albicans and normal human gingival fibroblasts. Following exposure to CSC, C. albicans transition from blastospore to hyphal form increased. CSC-pretreated yeast cells became significantly (P<0.01 sensitive to oxidation but significantly (P<0.01 resistant to both osmotic and heat stress. CSC-pretreated C. albicans expressed high levels of chitin, with 2- to 8-fold recorded under hyphal conditions. CSC-pretreated C. albicans adhered better to the gingival fibroblasts, proliferated almost three times more and adapted into hyphae, while the gingival fibroblasts recorded a significantly (P<0.01 slow growth rate but a significantly higher level of IL-1β when in contact with CSC-pretreated C. albicans. CSC was thus able to modulate both C. albicans transition through the cell wall chitin content and the interaction between C. albicans and normal human gingival fibroblasts. These findings may be relevant to fungal infections in the oral cavity in smokers.

  17. Thermal analysis and structural characterization of chitinous exoskeleton from two marine invertebrates

    International Nuclear Information System (INIS)

    Juárez-de la Rosa, B.A.; May-Crespo, J.; Quintana-Owen, P.; Gónzalez-Gómez, W.S.; Yañez-Limón, J.M.; Alvarado-Gil, J.J.

    2015-01-01

    Highlights: • Thermal analysis of exoskeletons: Antipathes caribbeana and Limulus polyphemus. • DMTA revealed Limulus has a stronger structure with a stepper glass transition. • DSC measurements exhibited a much larger water holding capacity in Antipathes. • X-ray diffraction analysis shows a higher crystallinity index in Limulus • FTIR showed α-chitin structures and high temperature C–N groups prevalence. - ABSTRACT: Thermomechanical and structural properties of two marine species exoskeletons, Antipathes caribbeana (black coral) and Limulus polyphemus (xiphosure), were studied using dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). DMTA curves indicate the viscoelastic behavior and glass transition around 255 °C, black coral presented a second transition (175 °C) associated to the acetamide group attached to the α-chitin chain. DSC measurements showed a endothermic peak around 100 °C, with enthalpies of 4.02 and 118.04 J/g, indicating strong differences between exoskeletons respect to their water holding capacity and strength water–polymer interaction. A comparative analysis involving DSC and X-ray diffraction showed that lower values ΔH in xiphosure correspond to a material with a higher crystallinity (30), in contrast black coral exhibits higher values ΔH and a lower crystallinity (19). FTIR confirmed α-chitin based structure, at higher temperature diminishes the amide bands and a new one appears, related to C–N groups

  18. Natural waste materials containing chitin as adsorbents for textile dyestuffs: batch and continuous studies.

    Science.gov (United States)

    Figueiredo, S A; Loureiro, J M; Boaventura, R A

    2005-10-01

    In this work three natural waste materials containing chitin were used as adsorbents for textile dyestuffs, namely the Anodonta (Anodonta cygnea) shell, the Sepia (Sepia officinalis) and the Squid (Loligo vulgaris) pens. The selected dyestuffs were the Cibacron green T3G-E (CI reactive green 12), and the Solophenyl green BLE 155% (CI direct green 26), both from CIBA, commonly used in cellulosic fibres dyeing, the most used fibres in the textile industry. Batch equilibrium studies showed that the materials' adsorption capacities increase after a simple and inexpensive chemical treatment, which increases their porosity and chitin relative content. Kinetic studies suggested the existence of a high internal resistance in both systems. Fixed bed column experiments performed showed an improvement in adsorbents' behaviour after chemical treatment. However, in the column experiments, the biodegradation was the main mechanism of dyestuff removal, allowing the materials' bioregeneration. The adsorption was strongly reduced by the pore clogging effect of the biomass. The deproteinised Squid pen (grain size 0.500-1.41 mm) is the adsorbent with highest adsorption capacity (0.27 and 0.037 g/g, respectively, for the reactive and direct dyestuffs, at 20 degrees C), followed by the demineralised Sepia pen and Anodonta shell, behaving like pure chitin in all experiments, but showing inferior performances than the granular activated carbon tested in the column experiments.

  19. Co-Processed Chitin-Mannitol as a New Excipient for Oro-Dispersible Tablets

    Directory of Open Access Journals (Sweden)

    Nidal Daraghmeh

    2015-03-01

    Full Text Available This study describes the preparation, characterization and performance of a novel excipient for use in oro-dispersible tablets (ODT. The excipient (Cop–CM consists of chitin and mannitol. The excipient with optimal physicochemical properties was obtained at a chitin: mannitol ratio of 2:8 (w/w and produced by roll compaction (RC. Differential scanning calorimetry (DSC, Fourier transform-Infrared (FT-IR, X-ray powder diffraction (XRPD and scanning electron microscope (SEM techniques were used to characterize Cop–CM, in addition to characterization of its powder and ODT dosage form. The effect of particle size distribution of Cop–CM was investigated and found to have no significant influence on the overall tablet physical properties. The compressibility parameter (a for Cop–CM was calculated from a Kawakita plot and found to be higher (0.661 than that of mannitol (0.576 due to the presence of the highly compressible chitin (0.818. Montelukast sodium and domperidone ODTs produced, using Cop–CM, displayed excellent physicochemical properties. The exceptional binding, fast wetting and superdisintegration properties of Cop–CM, in comparison with commercially available co-processed ODT excipients, results in a unique multifunctional base which can successfully be used in the formulation of oro-dispersible and fast immediate release tablets.

  20. Chitinase and chitin synthase 1: counterbalancing activities in cell separation of Saccharomyces cerevisiae.

    Science.gov (United States)

    Cabib, E; Silverman, S J; Shaw, J A

    1992-01-01

    Previous results [E. Cabib, A. Sburlati, B. Bowers & S. J. Silverman (1989) Journal of Cell Biology 108, 1665-1672] strongly suggested that the lysis observed in daughter cells of Saccharomyces cerevisiae defective in chitin synthase 1 (Chs1) was caused by a chitinase that partially degrades the chitin septum in the process of cell separation. Consequently, it was proposed that in wild-type cells, Chs1 acts as a repair enzyme by replenishing chitin during cytokinesis. The chitinase requirement for lysis has been confirmed in two different ways: (a) demethylallosamidin, a more powerful chitinase inhibitor than the previously used allosamidin, is also a much better protector against lysis and (b) disruption of the chitinase gene in chs1 cells eliminates lysis. Reintroduction of a normal chitinase gene, by transformation of those cells with a suitable plasmid, restores lysis. The percentage of lysed cells in strains lacking Chs1 was not increased by elevating the chitinase level with high-copy-number plasmids carrying the hydrolase gene. Furthermore, the degree of lysis varied in different chs1 strains; lysis was abolished in chs1 mutants containing the scs1 suppressor. These results indicate that, in addition to chitinase, lysis requires other gene products that may become limiting.

  1. Environmental scanning electron microscopy analysis of Proteus mirabilis biofilms grown on chitin and stainless steel.

    Science.gov (United States)

    Fernández-Delgado, Milagro; Duque, Zoilabet; Rojas, Héctor; Suárez, Paula; Contreras, Monica; García-Amado, María A; Alciaturi, Carlos

    Proteus mirabilis is a human pathogen able to form biofilms on the surface of urinary catheters. Little is known about P. mirabilis biofilms on natural or industrial surfaces and the potential consequences for these settings. The main aim of this work was to assess and compare the adhesion and biofilm formation of P. mirabilis strains from different origins on chitin and stainless steel surfaces within 4 to 96 h. Using environmental scanning electron microscopy, the biofilms of a clinical strain grown on chitin at 4 h showed greater adhesion, aggregation, thickness, and extracellular matrix production than those grown on stainless steel, whereas biofilms of an environmental strain had less aggregation on both surfaces. Biofilms of both P. mirabilis strains developed different structures on chitin, such as pillars, mushrooms, channels, and crystalline-like precipitates between 24 and 96 h, in contrast with flat-layer biofilms produced on stainless steel. Significant differences ( p  biofilm formation. This represents the first study of P. mirabilis showing adhesion, biofilm formation, and development of different structures on surfaces found outside the human host.

  2. Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications

    Science.gov (United States)

    Younes, Islem; Rinaudo, Marguerite

    2015-01-01

    This review describes the most common methods for recovery of chitin from marine organisms. In depth, both enzymatic and chemical treatments for the step of deproteinization are compared, as well as different conditions for demineralization. The conditions of chitosan preparation are also discussed, since they significantly impact the synthesis of chitosan with varying degree of acetylation (DA) and molecular weight (MW). In addition, the main characterization techniques applied for chitin and chitosan are recalled, pointing out the role of their solubility in relation with the chemical structure (mainly the acetyl group distribution along the backbone). Biological activities are also presented, such as: antibacterial, antifungal, antitumor and antioxidant. Interestingly, the relationship between chemical structure and biological activity is demonstrated for chitosan molecules with different DA and MW and homogeneous distribution of acetyl groups for the first time. In the end, several selected pharmaceutical and biomedical applications are presented, in which chitin and chitosan are recognized as new biomaterials taking advantage of their biocompatibility and biodegradability. PMID:25738328

  3. Chitin/clay microspheres with hierarchical architecture for highly efficient removal of organic dyes.

    Science.gov (United States)

    Xu, Rui; Mao, Jie; Peng, Na; Luo, Xiaogang; Chang, Chunyu

    2018-05-15

    Numerous adsorbents have been reported for efficient removal of dye from water, but the high cost raw materials and complicated fabrication process limit their practical applications. Herein, novel nanocomposite microspheres were fabricated from chitin and clay by a simple thermally induced sol-gel transition. Clay nanosheets were uniformly embedded in a nanofiber weaved chitin microsphere matrix, leading to their hierarchical architecture. Benefiting from this unique structure, microspheres could efficiently remove methylene blue (MB) through a spontaneous physic-sorption process which fit well with pseudo-second-order and Langmuir isotherm models. The maximal values of adsorption capability obtained by calculation and experiment were 152.2 and 156.7 mg g -1 , respectively. Chitin/clay microspheres (CCM2) could remove 99.99% MB from its aqueous solution (10 mg g -1 ) within 20 min. These findings provide insight into a new strategy for fabrication of dye adsorbents with hierarchical structure from low cost raw materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. The fungicidal properties of the carbon materials obtained from chitin and chitosan promoted by copper salts

    Energy Technology Data Exchange (ETDEWEB)

    Ilnicka, Anna, E-mail: annakucinska@o2.pl; Walczyk, Mariusz; Lukaszewicz, Jerzy P.

    2015-07-01

    Renewable raw materials chitin and chitosan (N-deacetylated derivative of chitin) were subjected to action of different copper modifiers that were carbonized in the atmosphere of the N{sub 2} inert gas. As a result of the novel manufacturing procedure, a series of carbon materials was obtained with developed surface area and containing copper derivatives of differentiated form, size, and dispersion. The copper modifier and manufacturing procedure (concentration, carbonization temperature) influence the physical–chemical and fungicide properties of the carbons. The received carbons were chemically characterized using several methods like low-temperature adsorption of nitrogen, X-ray diffraction analysis, scanning electron microscopy, cyclic voltammetry, elemental analysis, and bioassay. Besides chemical testing, some biological tests were performed and let to select carbons with the highest fungicidal activity. Such carbons were characteristic of the specific form of copper derivatives occurring in them, i.e., nanocrystallites of Cu{sup 0} and/or Cu{sub 2}O of high dispersion on the surface of carbon. The carbons may find an application as effective contact fungistatic agents in cosmetology, medicine, food industry, etc. - Highlights: • The novel manufacturing procedure yields new functional carbon materials. • Two biopolymers chitin and chitosan can undergo copper(II) ion modification. • The Cu-modified carbon materials exhibit high fungicidal activity. • The fungicidal activity results from the presence of Cu{sup 0} and Cu{sub 2}O nano-crystallites.

  5. Isocyanate-functionalized chitin and chitosan as gelling agents of castor oil.

    Science.gov (United States)

    Gallego, Rocío; Arteaga, Jesús F; Valencia, Concepción; Franco, José M

    2013-06-03

    The main objective of this work was the incorporation of reactive isocyanate groups into chitin and chitosan in order to effectively use the products as reactive thickening agents in castor oil. The resulting gel-like dispersions could be potentially used as biodegradable lubricating greases. Three different NCO-functionalized polymers were obtained: two of them by promoting the reaction of chitosan with 1,6-hexamethylene diisocyanate (HMDI), and the other by using chitin instead of chitosan. These polymers were characterized through 1H-NMR, FTIR and thermogravimetric analysis (TGA). Thermal and rheological behaviours of the oleogels prepared by dispersing these polymers in castor oil were studied by means of TGA and small-amplitude oscillatory shear (SAOS) measurements. The evolution and values of the linear viscoelasticity functions with frequency for -NCO-functionalized chitosan- and chitin-based oleogels are quite similar to those found for standard lubricating greases. In relation to long-term stability of these oleogels, no phase separation was observed and the values of viscoelastic functions increase significantly during the first seven days of ageing, and then remain almost constant. TGA analysis showed that the degradation temperature of the resulting oleogels is higher than that found for traditional lubricating greases.

  6. Disruption of Bcchs4, Bcchs6 or Bcchs7 chitin synthase genes in Botrytis cinerea and the essential role of class VI chitin synthase (Bcchs6).

    Science.gov (United States)

    Morcx, Serena; Kunz, Caroline; Choquer, Mathias; Assie, Sébastien; Blondet, Eddy; Simond-Côte, Elisabeth; Gajek, Karina; Chapeland-Leclerc, Florence; Expert, Dominique; Soulie, Marie-Christine

    2013-03-01

    Chitin synthases play critical roles in hyphal development and fungal pathogenicity. Previous studies on Botrytis cinerea, a model organism for necrotrophic pathogens, have shown that disruption of Bcchs1 and more particularly Bcchs3a genes have a drastic impact on virulence (Soulié et al., 2003, 2006). In this work, we investigate the role of other CHS including BcCHS4, BcCHS6 and BcCHS7 during the life cycle of B. cinerea. Single deletions of corresponding genes were carried out. Phenotypic analysis indicates that: (i) BcCHS4 enzyme is not essential for development and pathogenicity of the fungus; (ii) BcCHS7 is required for pathogenicity in a host dependant manner. For Bcchs6 gene disruption, we obtained only heterokaryotic strains. Indeed, sexual or asexual purification assays were unsuccessful. We concluded that class VI chitin synthase could be essential for B. cinerea and therefore BcCHS6 represents a valuable antifungal target. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Analysis of expression and chitin-binding activity of the wing disc cuticle protein BmWCP4 in the silkworm, Bombyx mori.

    Science.gov (United States)

    Deng, Hui-Min; Li, Yong; Zhang, Jia-Ling; Liu, Lin; Feng, Qi-Li

    2016-12-01

    The insect exoskeleton is mainly composed of chitin filaments linked by cuticle proteins. When insects molt, the cuticle of the exoskeleton is renewed by degrading the old chitin and cuticle proteins and synthesizing new ones. In this study, chitin-binding activity of the wing disc cuticle protein BmWCP4 in Bombyx mori was studied. Sequence analysis showed that the protein had a conservative hydrophilic "R&R" chitin-binding domain (CBD). Western blotting showed that BmWCP4 was predominately expressed in the wing disc-containing epidermis during the late wandering and early pupal stages. The immunohistochemistry result showed that the BmWCP4 was mainly present in the wing disc tissues containing wing bud and trachea blast during day 2 of wandering stage. Recombinant full-length BmWCP4 protein, "R&R" CBD peptide (CBD), non-CBD peptide (BmWCP4-CBD - ), four single site-directed mutated peptides (M 1 , M 2 , M 3 and M 4 ) and four-sites-mutated peptide (M F ) were generated and purified, respectively, for in vitro chitin-binding assay. The results indicated that both the full-length protein and the "R&R" CBD peptide could bind with chitin, whereas the BmWCP4-CBD - could not bind with chitin. The single residue mutants M 1 , M 2 , M 3 and M 4 reduced but did not completely abolish the chitin-binding activity, while four-sites-mutated protein M F completely lost the chitin-binding activity. These data indicate that BmWCP4 protein plays a critical role by binding to the chitin filaments in the wing during larva-to-pupa transformation. The conserved aromatic amino acids are critical in the interaction between chitin and the cuticle protein. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  8. Aspergillus Cell Wall Chitin Induces Anti- and Proinflammatory Cytokines in Human PBMCs via the Fc-γ Receptor/Syk/PI3K Pathway

    Science.gov (United States)

    Becker, K. L.; Aimanianda, V.; Wang, X.; Gresnigt, M. S.; Ammerdorffer, A.; Jacobs, C. W.; Gazendam, R. P.; Joosten, L. A. B.; Netea, M. G.

    2016-01-01

    ABSTRACT Chitin is an important cell wall component of Aspergillus fumigatus conidia, of which hundreds are inhaled on a daily basis. Previous studies have shown that chitin has both anti- and proinflammatory properties; however the exact mechanisms determining the inflammatory signature of chitin are poorly understood, especially in human immune cells. Human peripheral blood mononuclear cells were isolated from healthy volunteers and stimulated with chitin from Aspergillus fumigatus. Transcription and production of the proinflammatory cytokine interleukin-1β (IL-1β) and the anti-inflammatory cytokine IL-1 receptor antagonist (IL-1Ra) were measured from the cell culture supernatant by quantitative PCR (qPCR) or enzyme-linked immunosorbent assay (ELISA), respectively. Chitin induced an anti-inflammatory signature characterized by the production of IL-1Ra in the presence of human serum, which was abrogated in immunoglobulin-depleted serum. Fc-γ-receptor-dependent recognition and phagocytosis of IgG-opsonized chitin was identified as a novel IL-1Ra-inducing mechanism by chitin. IL-1Ra production induced by chitin was dependent on Syk kinase and phosphatidylinositol 3-kinase (PI3K) activation. In contrast, costimulation of chitin with the pattern recognition receptor (PRR) ligands lipopolysaccharide, Pam3Cys, or muramyl dipeptide, but not β-glucan, had synergistic effects on the induction of proinflammatory cytokines by human peripheral blood mononuclear cells (PBMCs). In conclusion, chitin can have both pro- and anti-inflammatory properties, depending on the presence of pathogen-associated molecular patterns and immunoglobulins, thus explaining the various inflammatory signatures reported for chitin. PMID:27247234

  9. Phase distribution of products of radiation and post-radiation distillation of biopolymers: Cellulose, lignin and chitin

    International Nuclear Information System (INIS)

    Ponomarev, A.V.; Kholodkova, E.M.; Metreveli, A.K.; Metreveli, P.K.; Erasov, V.S.; Bludenko, A.V.; Chulkov, V.N.

    2011-01-01

    Influence of both the absorbed dose and the dose rate of 8 MeV electron-beam radiation on destruction of microcrystalline cellulose, pine lignin and krill chitin was investigated. Two conversion modes were compared: (1) post-radiation distillation PRD and (2) electron-beam distillation EBD. Cellulose, chitin and lignin demonstrate different responses to irradiation and distillation in PRD and EBD modes. Treatment in EBD mode transforms biopolymers to organic liquid more productively than conventional dry distillation and treatment in PRD mode. Both radiation heating and an irradiation without heating intensify chitin and cellulose decomposition and distillation. At the same time lignin decaying rather efficiently in EBD mode appears to be insensitive to a preliminary irradiation in PRD mode up to a dose of 2.4 MGy. - Highlights: → Direct conversion of cellulose, chitin and lignin to organic liquid is intensified by electron-beam irradiation. → Alternative approach to bio-oil production. → Both electron-beam distillation mode and post-radiation distillation mode are effective for cellulose and chitin conversion. → Electron-beam distillation mode is preferable for lignin conversion. → Preliminary deep dehydration of biopolymers is realizable at low dose rates.

  10. Influence of intramolecular hydrogen bonds on regioselectivity of glycosylation. Synthesis of lupane-type saponins bearing the OSW-1 saponin disaccharide unit and its isomers.

    Science.gov (United States)

    Kuczynska, Kinga; Cmoch, Piotr; Rárová, Lucie; Oklešťková, Jana; Korda, Anna; Pakulski, Zbigniew; Strnad, Miroslav

    2016-03-24

    A series of lupane-type saponins bearing OSW-1 disaccharide unit as well as its regio- and stereoisomers were prepared and used for the structure-activity relationships (SAR) study. Unexpected preference for 1→4-linked regioisomers and an unusual inversion of the conformation of the sugar rings were noted. Cytotoxic activity of new lupane compounds was evaluated in vitro and revealed that some saponins exhibited an interesting bioactivity profile against human cancer cell lines. Influence of the protecting groups on the cytotoxicity was investigated. These results open the way to the synthesis of various lupane-type triterpene and saponin derivatives as potential anticancer compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Direct evidence for the ring opening of monosaccharide anions in the gas phase: photodissociation of aldohexoses and aldohexoses derived from disaccharides using variable-wavelength infrared irradiation in the carbonyl stretch region

    NARCIS (Netherlands)

    Brown, D. J.; Stefan, S. E.; Berden, G.; Steill, J.D.; Oomens, J.; Eyler, J.R.; Bendiak, B.

    2011-01-01

    All eight d-aldohexoses and aldohexoses derived from the non-reducing end of disaccharides were investigated by variable-wavelength infrared multiple-photon dissociation (IRMPD) as anions in the negative-ion mode. Spectroscopic evidence supports the existence of a relatively abundant open-chain

  12. Direct evidence for the ring opening of monosaccharide anions in the gas phase: photodissociation of aldohexoses and aldohexoses derived from disaccharides using variable-wavelength infrared irradiation in the carbonyl stretch region

    NARCIS (Netherlands)

    Brown, D. J.; Stefan, S. E.; G. Berden,; Steill, J. D.; Oomens, J.; Eyler, J. R.; Bendiak, B.

    2011-01-01

    All eight D-aldohexoses and aldohexoses derived from the non-reducing end of disaccharides were investigated by variable-wavelength infrared multiple-photon dissociation (IRMPD) as anions in the negative-ion mode. Spectroscopic evidence supports the existence of a relatively abundant open-chain

  13. COMPARISON OF CHITIN STRUCTURES DERIVED FROM THREE COMMON WASP SPECIES (Vespa crabro LINNAEUS, 1758, Vespa orientalis LINNAEUS, 1771 and Vespula germanica (FABRICIUS, 1793)).

    Science.gov (United States)

    Kaya, Murat; Bağrıaçık, Nil; Seyyar, Osman; Baran, Talat

    2015-08-01

    There has been no study on the chitin structure of wasp species. Here, we selected the three most common wasp species belonging to the family Vespidae for chitin extraction and characterization. Chitin was isolated from each wasp species and characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffractometry (XRD), elemental analysis (EA), and scanning electron microscopy (SEM). The chitin contents of Vespa crabro, Vespa orientalis, and Vespula germanica were 8.3, 6.4, and 11.9%, respectively. The crystalline index (CrI) values for the chitin extracted from each species were 69.88, 53.92, and 50%, respectively. The most important finding of the study is that although the same method was used to extract chitin from each of the three wasp species, the degree of acetylation was different: for V. crabro and V. orientalis it was 96.85 and 99.82% (the chitin was extremely pure), respectively, whereas that for V. germanica the chitin was 79.83%. © 2015 Wiley Periodicals, Inc.

  14. Use of chitin and chitosan to produce new chitooligosaccharides by chitinase Chit42: enzymatic activity and structural basis of protein specificity

    OpenAIRE

    Kidibule, Peter E; Santos-Moriano, Paloma; Jiménez-Ortega, Elena; Ramírez-Escudero, Mercedes; Limón, M. Carmen; Remacha, Miguel; Plou Gasca, Francisco José; Sanz-Aparicio, J.; Fernández Lobato, María

    2018-01-01

    Abstract Background Chitinases are ubiquitous enzymes that have gained a recent biotechnological attention due to their ability to transform biological waste from chitin into valued chito-oligomers with wide agricultural, industrial or medical applications. The biological activity of these molecules is related to their size and acetylation degree. Chitinase Chit42 from Trichoderma harzianum hydrolyses chitin oligomers with a minimal of t...

  15. Surface-Initiated Graft Atom Transfer Radical Polymerization of Methyl Methacrylate from Chitin Nanofiber Macroinitiator under Dispersion Conditions

    Directory of Open Access Journals (Sweden)

    Ryo Endo

    2015-08-01

    Full Text Available Surface-initiated graft atom transfer radical polymerization (ATRP of methyl methacrylate (MMA from self-assembled chitin nanofibers (CNFs was performed under dispersion conditions. Self-assembled CNFs were initially prepared by regeneration from a chitin ion gel with 1-allyl-3-methylimidazolium bromide using methanol; the product was then converted into the chitin nanofiber macroinitiator by reaction with α-bromoisobutyryl bromide in a dispersion containing N,N-dimethylformamide. Surface-initiated graft ATRP of MMA from the initiating sites on the CNFs was subsequently carried out under dispersion conditions, followed by filtration to obtain the CNF-graft-polyMMA film. Analysis of the product confirmed the occurrence of the graft ATRP on the surface of the CNFs.

  16. Inhibition of chitin biosynthesis in cultured imaginal discs: Effects of alpha-amanitin, actinomycin-D, cycloheximide, and puromycin.

    Science.gov (United States)

    Oberlander, Herbert; Ferkovich, Stephen; Leach, Eddie; Van Essen, Frank

    1980-02-01

    Wing imaginal discs isolated from last instar larvae of the Indian meal moth,Plodia interpunctella, produced chitin when incubated in vitro with ≧2×10 -7 M 20-hydroxyecdysone. Chitin biosynthesis was initiated 8 h after the conclusion of a 24-h treatment with hormone. Simulataneous incubation of wing discs with 20-hydroxyecdysone and either inhibitors of RNA synthesis (alpha-amanitin, actinomycin-D) or inhibitors of protein systhesis (cycloheximide, puromycin) prevented chitin biosynthesis. We conclude from our results that RNA and protein synthesis must continue undiminished during the hormone-contact period, and that synthesis of protein, but not of new RNA is required during the posthormone culture period. Our findings are consistent with the hypothesis that ecdysteroids stimulate insect metamorphosis by promoting the synthesis of new RNA and protein during a hormone-dependent phase followed by hormone-independent protein synthesis.

  17. Bioremediation of crude oil polluted seawater by a hydrocarbon-degrading bacterial strain immobilized on chitin and chitosan flakes

    International Nuclear Information System (INIS)

    Gentili, A.R.; Cubitto, M.A.; Ferrero, M.; Rodriguez, M.S.

    2006-01-01

    In this laboratory-scale study, we examined the potential of chitin and chitosan flakes obtained from shrimp wastes as carrier material for a hydrocarbon-degrading bacterial strain. Flakes decontamination, immobilization conditions and the survival of the immobilized bacterial strain under different storage temperatures were evaluated. The potential of immobilized hydrocarbon-degrading bacterial strain for crude oil polluted seawater bioremediation was tested in seawater microcosms. In terms of removal percentage of crude oil after 15 days, the microcosms treated with the immobilized inoculants proved to be the most successful. The inoculants formulated with chitin and chitosan as carrier materials improved the survival and the activity of the immobilized strain. It is important to emphasize that the inoculants formulated with chitin showed the best performance during storage and seawater bioremediation. (author)

  18. Albizia lebbeck Seed Coat Proteins Bind to Chitin and Act as a Defense against Cowpea Weevil Callosobruchus maculatus.

    Science.gov (United States)

    Silva, Nadia C M; De Sá, Leonardo F R; Oliveira, Eduardo A G; Costa, Monique N; Ferreira, Andre T S; Perales, Jonas; Fernandes, Kátia V S; Xavier-Filho, Jose; Oliveira, Antonia E A

    2016-05-11

    The seed coat is an external tissue that participates in defense against insects. In some nonhost seeds, including Albizia lebbeck, the insect Callosobruchus maculatus dies during seed coat penetration. We investigated the toxicity of A. lebbeck seed coat proteins to C. maculatus. A chitin-binding protein fraction was isolated from seed coat, and mass spectrometry showed similarity to a C1 cysteine protease. By ELM program an N-glycosylation interaction motif was identified in this protein, and by molecular docking the potential to interact with N-acetylglucosamine (NAG) was shown. The chitin-binding protein fraction was toxic to C. maculatus and was present in larval midgut and feces but not able to hydrolyze larval gut proteins. It did not interfere, though, with the intestinal cell permeability. These results indicate that the toxicity mechanism of this seed coat fraction may be related to its binding to chitin, present in the larvae gut, disturbing nutrient absorption.

  19. Obtention and characterization of chitin and chitosan from M. rosenbergii; Obtencao e caracterizacao de quitina e quitosana a partr de M. rosenbergii

    Energy Technology Data Exchange (ETDEWEB)

    Battisti, Marcos V.; Campana Filho, Sergio P. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Quimica]. E-mail: scampana@iqsc.sc.usp.br

    2001-07-01

    Chitin was extracted from previously ground shells of Macrobrachium rosenbergii by applying acid and alkaline treatments, aiming at its demineralization and deprotenization, respectively. Its characteristics and properties were compared with those exhibited by commercial samples of chitin. Commercial chitosan and samples produced by the deacetylation of chitin obtained from M. rosenbergii shells were also compared. Average degrees of acetylation and intrinsic viscosities of the chitosan were determined by {sup 1}H NMR spectroscopy and by capillary viscosimetry, respectively. The results show that the chitin extracted from Macrobrachium rosenbergii has a lower content of inorganic materials as compared to commercial samples but the chitosan obtained from the former chitin sample is very similar to commercial chitosan. (author)

  20. Bio-responsive chitin-poly(L-lactic acid) composite nanogels for liver cancer.

    Science.gov (United States)

    Arunraj, T R; Sanoj Rejinold, N; Ashwin Kumar, N; Jayakumar, R

    2014-01-01

    Hepatic carcinoma (HCC) is one of the most common cancer and its treatment has been considered a therapeutic challenge. Doxorubicin (Dox) is one of the most important chemotherapeutic agents used in the treatment for liver cancer. However, the efficacy of Dox therapy is restricted by the dose-dependent toxic side effects. To overcome the cardiotoxicity of Dox as well as the current problems of conventional modality treatment of HCC, we developed a locally injectable, biodegradable, and pH sensitive composite nanogels for site specific delivery. Both control and Dox loaded composite nanogel systems were analyzed by DLS, SEM, FTIR and TG/DTA. The size ranges of the control composite nanogels and their drug loaded counterparts were found to be 90±20 and 270±20 nm, respectively. The control chitin-PLA CNGs and Dox-chitin-PLA CNGs showed higher swelling and degradation in acidic pH. Drug entrapment efficiency and in vitro drug release studies were carried out and showed a higher drug release at acidic pH compared to neutral pH. Cellular internalization of the nanogel systems was confirmed by fluorescent microscopy. The cytotoxicity of the composite nanogels was analyzed toward HepG2 (human liver cancer) cell lines. Furthermore, the results of in vitro hemolytic assay and coagulation assay substantiate the blood compatibility of the system. Overall Dox-chitin-PLA CNGs system could be a promising anticancer drug delivery system for liver cancer therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Resilin and chitinous cuticle form a composite structure for energy storage in jumping by froghopper insects

    Directory of Open Access Journals (Sweden)

    Shaw Stephen R

    2008-09-01

    Full Text Available Abstract Background Many insects jump by storing and releasing energy in elastic structures within their bodies. This allows them to release large amounts of energy in a very short time to jump at very high speeds. The fastest of the insect jumpers, the froghopper, uses a catapult-like elastic mechanism to achieve their jumping prowess in which energy, generated by the slow contraction of muscles, is released suddenly to power rapid and synchronous movements of the hind legs. How is this energy stored? Results The hind coxae of the froghopper are linked to the hinges of the ipsilateral hind wings by pleural arches, complex bow-shaped internal skeletal structures. They are built of chitinous cuticle and the rubber-like protein, resilin, which fluoresces bright blue when illuminated with ultra-violet light. The ventral and posterior end of this fluorescent region forms the thoracic part of the pivot with a hind coxa. No other structures in the thorax or hind legs show this blue fluorescence and it is not found in larvae which do not jump. Stimulating one trochanteral depressor muscle in a pattern that simulates its normal action, results in a distortion and forward movement of the posterior part of a pleural arch by 40 μm, but in natural jumping, the movement is at least 100 μm. Conclusion Calculations showed that the resilin itself could only store 1% to 2% of the energy required for jumping. The stiffer cuticular parts of the pleural arches could, however, easily meet all the energy storage needs. The composite structure therefore, combines the stiffness of the chitinous cuticle with the elasticity of resilin. Muscle contractions bend the chitinous cuticle with little deformation and therefore, store the energy needed for jumping, while the resilin rapidly returns its stored energy and thus restores the body to its original shape after a jump and allows repeated jumping.

  2. Slow food: insect prey and chitin induce phytohormone accumulation and gene expression in carnivorous Nepenthes plants.

    Science.gov (United States)

    Yilamujiang, Ayufu; Reichelt, Michael; Mithöfer, Axel

    2016-08-01

    Carnivorous Nepenthes plants use modified leaves forming pitfall traps to capture and digest prey, mainly insects, for additional nutrient supply. These traps, so called pitchers, contain a plant-derived fluid composed of many hydrolytic enzymes and defence-related proteins. In this study, the prey-induced induction of corresponding genes of those proteins and a role for phytohormones in this process was analysed. Tissue from insect prey-fed, chitin- and phytohormone-challenged pitchers was harvested and analysed for selected gene expressions by a quantitative PCR technique. Phytohormone levels were determined by LC-MS/MS. Nepenthesin proteolytic activities were measured in the digestive fluid using a fluorescence substrate. Insect prey in the pitchers induced the accumulation of phytohormones such as jasmonates as well as the transcription of studied genes encoding a chitinase 3 and a protease (nepenthesin I), whereas a defence-related protein (PR-1) gene was not induced. Treatment with chitin as a component of the insects' exoskeleton triggered the accumulation of jasmonates, the expression of nepenthesin I and chitinase 3 genes similar to jasmonic acid treatment, and induced protease activity in the fluid. All detectable responses were slowly induced. The results suggest that upon insect prey catch a sequence of signals is initiated: (1) insect-derived chitin, (2) jasmonate as endogenous phytohormone signal, (3) the induction of digestive gene expression and (4) protein expression. This resembles a similar hierarchy of events as described from plant pathogen/herbivore interactions, supporting the idea that carnivory evolved from plant defences. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. The chiral structure of porous chitin within the wing-scales of Callophrys rubi.

    Science.gov (United States)

    Schröder-Turk, G E; Wickham, S; Averdunk, H; Brink, F; Fitz Gerald, J D; Poladian, L; Large, M C J; Hyde, S T

    2011-05-01

    The structure of the porous three-dimensional reticulated pattern in the wing scales of the butterfly Callophrys rubi (the Green Hairstreak) is explored in detail, via scanning and transmission electron microscopy. A full 3D tomographic reconstruction of a section of this material reveals that the predominantly chitin material is assembled in the wing scale to form a structure whose geometry bears a remarkable correspondence to the srs net, well-known in solid state chemistry and soft materials science. The porous solid is bounded to an excellent approximation by a parallel surface to the Gyroid, a three-periodic minimal surface with cubic crystallographic symmetry I4₁32, as foreshadowed by Stavenga and Michielson. The scale of the structure is commensurate with the wavelength of visible light, with an edge of the conventional cubic unit cell of the parallel-Gyroid of approximately 310 nm. The genesis of this structure is discussed, and we suggest it affords a remarkable example of templating of a chiral material via soft matter, analogous to the formation of mesoporous silica via surfactant assemblies in solution. In the butterfly, the templating is achieved by the lipid-protein membranes within the smooth endoplasmic reticulum (while it remains in the chrysalis), that likely form cubic membranes, folded according to the form of the Gyroid. The subsequent formation of the chiral hard chitin framework is suggested to be driven by the gradual polymerisation of the chitin precursors, whose inherent chiral assembly in solution (during growth) promotes the formation of a single enantiomer. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Effect of plagiochin E, an antifungal macrocyclic bis(bibenzyl), on cell wall chitin synthesis in Candida albicans

    Institute of Scientific and Technical Information of China (English)

    Xiu-zhen WU; Ai-xia CHENG; Ling-mei SUN; Hong-xiang LOU

    2008-01-01

    Aim: To investigate the effect of plagiochin E (PLE), an antifungal macrocyclic bis(bibenzyl) isolated from liverwort Marchantia polymorpha L, on cell wall chitin synthesis in Candida albicans. Methods: The effect of PLE on chitin synthesis in Candida albicans was investigated at the cellular and molecular lev-els. First, the ultrastructural changes were observed under transmission electron microscopy (TEM). Second, the effects of PLE on chitin synthetase (Chs) activi-ties in vitro were assayed using 6-O-dansyl-N-acetylglucosamine as a fluorescent substrate, and its effect on chitin synthesis in situ was assayed by spheroplast regeneration. Finally, real-time RT-PCR was performed to assay its effect on the expression of Chs genes (CHS). Results: Observation under TEM showed that the structure of the cell wall in Candida albicans was seriously damaged, which suggested that the antifungal activity of PLE was associated with its effect on the cell wail. Enzymatic assays and spheroplast regeneration showed that PLE inhibited chitin synthesis in vitro and in situ. The results of the PCR showed that PLE significantly downregulated the expression of CHS1, and upregulated the expression of CHS2 and CHS3. Because different Chs is regulated at different stages of transcription and post-translation, the downregulation of CHS1 would decrease the level of Chs 1 and inhibit its activity, and the inhibitory effects of PLE on Chs2 and Chs3 would be at the post-translational level or by the inhibi-tion on the enzyme-active center. Conclusion: These results indicate that the antifungal activity of PLE would be attributed to its inhibitory effect on cell wall chitin synthesis in Candida albicans.

  5. From chitin to bioactive chitooligosaccharides and conjugates: access to lipochitooligosaccharides and the TMG-chitotriomycin.

    Science.gov (United States)

    Despras, Guillaume; Alix, Aurélien; Urban, Dominique; Vauzeilles, Boris; Beau, Jean-Marie

    2014-10-27

    The direct and chemoselective N-transacylation of peracetylated chitooligosaccharides (COSs), readily obtained from chitin, to give per-N-trifluoroacetyl derivatives offers an attractive route to size-defined COSs and derived glycoconjugates. It involves the use of various acceptor building blocks and trifluoromethyl oxazoline dimer donors prepared with efficiency and highly reactive in 1,2-trans glycosylation reactions. This method was applied to the preparation of the important symbiotic glycolipids which are highly active on plants and to the TMG-chitotriomycin, a potent and specific inhibitor of insect, fungal, and bacterial N-acetylglucosaminidases. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Identification and characterization of chitin deacetylase2 from the American white moth, Hyphantria cunea (Drury).

    Science.gov (United States)

    Yan, Xiaoping; Zhao, Dan; Zhang, Yakun; Guo, Wei; Wang, Wei; Zhao, Kunli; Gao, Yujie; Wang, Xiaoyun

    2018-05-26

    Chitin deacetylases (CDAs) are enzymes that catalyze the conversion of chitin into chitosan, thereby influence the mechanical and permeability properties of structures such as the cuticle and peritrophic matrices. The full length cDNAs of chitin deacetylase2 (CDA2) genes from Hyphantria cunea were fully cloned by PCR amplification. Two cDNA sequences of HcCDA2 were searched from transcriptome of H. cunea and named as HcCDA2a and HcCDA2b. The deduced protein sequences showed that HaCDA2a and HaCDA2b are synthesized as preproteins of 524 and 518 amino acid residues with an 18-amino acid signal peptide, respectively. HcCDA2a and HcCDA2b contained a chitin-binding domain (ChBD), a low-density lipoprotein receptor class A domain (LDLa) and a polysaccharide deacetylase-like catalytic domain (CDA). Gene expression analyses results showed that HcCDA2a and HcCDA2b were both expressed at the head, integument, foregut, midgut, hindgut, Malpighian tubules and fat body, as well as the 1st to 5th days of fifth instar larvae. Western blot analyses revealed that HcCDA2 protein was highly abundant in the head and integument, and the developmental expression result in the fifth instars showed that HcCDA2 was highly present at the first two days. Besides, RT-PCR results showed that HcCDA2a and HcCDA2b were both expressed in integument and head, whether in molting stage or feeding stage. No visiable phenotypic changes were observed after injection of dsHcCDA2b, while lethal phenotypes of cuticle shedding failure and high mortality were resulted from injection of dsHcCDA2a. The silence of HcCDA2a leads to the ecdysis failure and death of H. cunea. These results suggest that HcCDA2 plays an important role during insect development, and provide new candidate targets and basis for developing environment-friendly pesticides. Copyright © 2017. Published by Elsevier B.V.

  7. Effects of chitin nano-whiskers on the antibacterial and physicochemical properties of maize starch films.

    Science.gov (United States)

    Qin, Yang; Zhang, Shuangling; Yu, Jing; Yang, Jie; Xiong, Liu; Sun, Qingjie

    2016-08-20

    We investigated the effects of chitin nano-whiskers (CNWs) on the antibacterial and physiochemical properties of maize starch-based films. The microstructures, crystalline structures, and thermal, mechanical and barrier properties of the nanocomposite films were characterized by using transmission electron microscopy, X-ray diffraction analysis, thermogravimetric, differential scanning calorimeter, and texture profile analysis. The tensile strength of the maize starch films increased from 1.64MPa to 3.69MPa (Pstarch films. Furthermore, the nanocomposite films exhibited strong antimicrobial activity against Gram-positive Listeria monocytogenes but not against Gram-negative Escherichia coli. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Effect of deletion of chitin synthase genes on mycelial morphology and culture viscosity in Aspergillus oryzae

    DEFF Research Database (Denmark)

    Müller, Christian; Hansen, K.; Szabo, Peter

    2003-01-01

    The objective of this study was to quantify the effect of disrupting two chitin synthases, chsB and csmA, on the morphology and rheology during batch cultivation of Aspergillus oryzae. The rheological properties were characterized in batch cultivations at different biomass concentrations (from 3...... broth was significantly affected by the biomass concentration, the morphology, and also by pH. The chsB disruption strain had lower consistency index K values for all biomass concentrations investigated, which is a desirable trait for industrial Aspergillus fermentations. (C) 2003 Wiley Periodicals, Inc....

  9. Biochemical and morphological responses to abiotc elicitor chitin in suspension-cultured sugarcane cells

    Directory of Open Access Journals (Sweden)

    Maria Izabel Gallão

    2010-04-01

    Full Text Available Cells of Saccharum officinarum submitted to hydrolyzated chitin for 1 to 8h produced phenolic compounds. These alterations were observed through cytochemical methods using Toluidine Blue and Phloroglucinol/HCl. After 4 h, besides cell wall change, there was a change in nuclear pattern of chitin treated cells. There was a 96% increase in nuclear area in 6 h chitin treated material, as observed by Feulgen reaction. The treated cells showed chromatin compacted regions and a degeneration process of nucleoli. In the outer areas of cell wall, there was a polysaccharide desagregation, confirming results obtained for different plants with the use of other elicitors. Peroxidase activity was maximal after 4 h and decreased progressively. PAL activity started to increase at 4 h of incubation. These results showed that chitin hydrolyzate stimulated a defense response in sugarcane cells.Células de Saccharum officinarum quando submetidas a quitina hidrolisada por 1 a 8h produziram material fenólico. Essas alterações foram observadas por meio de métodos citoquímicos como o Azul de Toluidina e Floroglucinol/HCl. Após 4 h, além das mudanças nas paredes celulares houve uma mudança no padrão nuclear das células tratadas com quitina. Por observação da reação de Feulgen, houve um aumento de 96% na área nuclear no material em 6h. Para as células tratadas foram observadas regiões de cromatina compactada e um processo de degeneração do nucléolo. Nas áreas externas da parede celular existia uma desagregação dos polisacarídios confirmando os resultados obtidos para diferentes plantas com o uso de outros elicitores. A atividade da peroxidase foi maxima após 4 h e então decresceu progressivamente. A atividade da PAL aumentou a partir de 4 h de incubação. Estes resultados mostram que o hidrolisado de quitina estimula as respostas de defesa em células de cana.

  10. Preparation of chitin–silica composites by in vitro silicification of two-dimensional Ianthella basta demosponge chitinous scaffolds under modified Stöber conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wysokowski, Marcin [Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, M. Skłodowskiej-Curie 2, PL-60965 Poznan (Poland); Behm, Thomas [Institute of Experimental Physics, TU Bergakademie Freiberg, Liepziger 23, 09599 Freiberg (Germany); Born, René [Institute of Materials Science, Dresden University of Technology, Helmholtzstraße 10, 01069 Dresden (Germany); Bazhenov, Vasilii V. [Institute of Experimental Physics, TU Bergakademie Freiberg, Liepziger 23, 09599 Freiberg (Germany); Meißner, Heike; Richter, Gert [Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, 01307 Dresden (Germany); Szwarc-Rzepka, Karolina [Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, M. Skłodowskiej-Curie 2, PL-60965 Poznan (Poland); Makarova, Anna; Vyalikh, Denis [Institute of Solid State Physics, Dresden University of Technology, Helmholtzstraße 10, 01069 Dresden (Germany); Schupp, Peter [Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Emsstr. 20, 26382 Wilhelmshaven (Germany); Jesionowski, Teofil, E-mail: teofil.jesionowski@put.poznan.pl [Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, M. Skłodowskiej-Curie 2, PL-60965 Poznan (Poland); Ehrlich, Hermann, E-mail: hermann.ehrlich@physik.tu-freiberg.de [Institute of Experimental Physics, TU Bergakademie Freiberg, Liepziger 23, 09599 Freiberg (Germany)

    2013-10-15

    Chitin is a biopolymer found in cell walls of various fungi and skeletal structures of numerous invertebrates. The occurrence of chitin within calcium- and silica-containing biominerals has inspired development of chitin-based hybrids and composites in vitro with specific physico-chemical and material properties. We show here for the first time that the two-dimensional α-chitin scaffolds isolated from the skeletons of marine demosponge Ianthella basta can be effectively silicified by the two-step method with the use of Stöber silica micro- and nanodispersions under Extreme Biomimetic conditions. The chitin–silica composites obtained at 120 °C were characterized by the presence of spherical SiO{sub 2} particles homogeneously distributed over the chitin fibers, which probably follows from the compatibility of Si–OH groups to the hydroxyl groups of chitin. The biocomposites obtained were characterized by various analytical techniques such as energy dispersive spectrometry, scanning electron microscopy, thermogravimetric/differential thermal analyses as well as X-ray photoelectron spectroscopy, Fourier transform infrared and Raman spectroscopy to determine possible interactions between silica and chitin molecule. The results presented proved that the character and course of the in vitro chitin silicification in Stöber dispersions depended considerably on the degree of hydrolysis of the SiO{sub 2} precursor. - Highlights: • 2D α-chitin scaffolds isolated from marine demosponge can be effectively silicified using Stöber silica. • The chitin–silica composites were obtained under Extreme Biomimetic conditions. • Character and course of the in vitro chitin silicification in Stöber dispersions is discussed.

  11. Different functions of the insect soluble and membrane-bound trehalase genes in chitin biosynthesis revealed by RNA interference.

    Directory of Open Access Journals (Sweden)

    Jie Chen

    Full Text Available BACKGROUND: Trehalase, an enzyme that hydrolyzes trehalose to yield two glucose molecules, plays a pivotal role in various physiological processes. In recent years, trehalase proteins have been purified from several insect species and are divided into soluble (Tre-1 and membrane-bound (Tre-2 trehalases. However, no functions of the two trehalases in chitin biosynthesis in insects have yet been reported. PRINCIPAL FINDINGS: The membrane-bound trehalase of Spodoptera exigua (SeTre-2 was characterized in our laboratory previously. In this study, we cloned the soluble trehalase gene (SeTre-1 and investigated the tissue distribution and developmental expression pattern of the two trehalase genes. SeTre-1 was expressed highly in cuticle and Malpighian tubules, while SeTre-2 was expressed in tracheae and fat body. In the midgut, the two trehalase genes were expressed in different locations. Additionally, the expression profiles of both trehalase mRNAs and their enzyme activities suggest that they may play different roles in chitin biosynthesis. The RNA interference (RNAi of either SeTre-1 or SeTre-2 was gene-specific and effective, with efficiency rates up to 83% at 72 h post injection. After RNAi of SeTre-1 and SeTre-2, significant higher mortality rates were observed during the larva-pupa stage and pupa-adult stage, and the lethal phenotypes were classified and analyzed. Additionally, the change trends of concentration of trehalose and glucose appeared reciprocally in RNAi-mutants. Moreover, knockdown of SeTre-1 gene largely inhibited the expression of chitin synthase gene A (CHSA and reduced the chitin content in the cuticle to two-thirds relative to the control insects. The chitin synthase gene B (CHSB expression, however, was inhibited more by the injection of dsRNA for SeTre-2, and the chitin content in the midgut decreased by about 25%. CONCLUSIONS: SeTre-1 plays a major role in CHSA expression and chitin synthesis in the cuticle, and SeTre-2

  12. Chitin synthases from Saprolegnia are involved in tip growth and represent a potential target for anti-oomycete drugs.

    Directory of Open Access Journals (Sweden)

    Gea Guerriero

    Full Text Available Oomycetes represent some of the most devastating plant and animal pathogens. Typical examples are Phytophthora infestans, which causes potato and tomato late blight, and Saprolegnia parasitica, responsible for fish diseases. Despite the economical and environmental importance of oomycete diseases, their control is difficult, particularly in the aquaculture industry. Carbohydrate synthases are vital for hyphal growth and represent interesting targets for tackling the pathogens. The existence of 2 different chitin synthase genes (SmChs1 and SmChs2 in Saprolegnia monoica was demonstrated using bioinformatics and molecular biology approaches. The function of SmCHS2 was unequivocally demonstrated by showing its catalytic activity in vitro after expression in Pichia pastoris. The recombinant SmCHS1 protein did not exhibit any activity in vitro, suggesting that it requires other partners or effectors to be active, or that it is involved in a different process than chitin biosynthesis. Both proteins contained N-terminal Microtubule Interacting and Trafficking domains, which have never been reported in any other known carbohydrate synthases. These domains are involved in protein recycling by endocytosis. Enzyme kinetics revealed that Saprolegnia chitin synthases are competitively inhibited by nikkomycin Z and quantitative PCR showed that their expression is higher in presence of the inhibitor. The use of nikkomycin Z combined with microscopy showed that chitin synthases are active essentially at the hyphal tips, which burst in the presence of the inhibitor, leading to cell death. S. parasitica was more sensitive to nikkomycin Z than S. monoica. In conclusion, chitin synthases with species-specific characteristics are involved in tip growth in Saprolegnia species and chitin is vital for the micro-organisms despite its very low abundance in the cell walls. Chitin is most likely synthesized transiently at the apex of the cells before cellulose, the major

  13. Cloning and sequence analysis of chitin synthase gene fragments of Demodex mites*

    Science.gov (United States)

    Zhao, Ya-e; Wang, Zheng-hang; Xu, Yang; Xu, Ji-ru; Liu, Wen-yan; Wei, Meng; Wang, Chu-ying

    2012-01-01

    To our knowledge, few reports on Demodex studied at the molecular level are available at present. In this study our group, for the first time, cloned, sequenced and analyzed the chitin synthase (CHS) gene fragments of Demodex folliculorum, Demodex brevis, and Demodex canis (three isolates from each species) from Xi’an China, by designing specific primers based on the only partial sequence of the CHS gene of D. canis from Japan, retrieved from GenBank. Results show that amplification was successful only in three D. canis isolates and one D. brevis isolate out of the nine Demodex isolates. The obtained fragments were sequenced to be 339 bp for D. canis and 338 bp for D. brevis. The CHS gene sequence similarities between the three Xi’an D. canis isolates and one Japanese D. canis isolate ranged from 99.7% to 100.0%, and those between four D. canis isolates and one D. brevis isolate were 99.1%–99.4%. Phylogenetic trees based on maximum parsimony (MP) and maximum likelihood (ML) methods shared the same clusters, according with the traditional classification. Two open reading frames (ORFs) were identified in each CHS gene sequenced, and their corresponding amino acid sequences were located at the catalytic domain. The relatively conserved sequences could be deduced to be a CHS class A gene, which is associated with chitin synthesis in the integument of Demodex mites. PMID:23024043

  14. Development and evaluation of 5-fluorouracil loaded chitin nanogels for treatment of skin cancer.

    Science.gov (United States)

    Sabitha, M; Sanoj Rejinold, N; Nair, Amrita; Lakshmanan, Vinoth-Kumar; Nair, Shantikumar V; Jayakumar, R

    2013-01-02

    This study focuses on development and evaluation of 5-fluorouracil (5-FU) loaded chitin nanogels (FCNGs). It formed good, stable aqueous dispersion with spherical particles in 120-140 nm size range and showed pH responsive swelling and drug release. The FCNGs showed toxicity on melanoma (A375) in a concentration range of 0.4-2.0mg/mL, but less toxicity toward human dermal fibroblast (HDF) cells by MTT assay. Confocal analysis revealed uptake of FCNGs by both cells. From skin permeation experiments, FCNGs showed almost same steady state flux as that of control 5-FU but the retention in the deeper layers of skin was found to be 4-5 times more from FCNGs. Histopathological evaluation revealed loosening of the horny layer of epidermis by interaction of cationically charged chitin, with no observed signs of inflammation and so FCNGs can be a good option for treatment of skin cancers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Cloning and sequence analysis of chitin synthase gene fragments of Demodex mites.

    Science.gov (United States)

    Zhao, Ya-e; Wang, Zheng-hang; Xu, Yang; Xu, Ji-ru; Liu, Wen-yan; Wei, Meng; Wang, Chu-ying

    2012-10-01

    To our knowledge, few reports on Demodex studied at the molecular level are available at present. In this study our group, for the first time, cloned, sequenced and analyzed the chitin synthase (CHS) gene fragments of Demodex folliculorum, Demodex brevis, and Demodex canis (three isolates from each species) from Xi'an China, by designing specific primers based on the only partial sequence of the CHS gene of D. canis from Japan, retrieved from GenBank. Results show that amplification was successful only in three D. canis isolates and one D. brevis isolate out of the nine Demodex isolates. The obtained fragments were sequenced to be 339 bp for D. canis and 338 bp for D. brevis. The CHS gene sequence similarities between the three Xi'an D. canis isolates and one Japanese D. canis isolate ranged from 99.7% to 100.0%, and those between four D. canis isolates and one D. brevis isolate were 99.1%-99.4%. Phylogenetic trees based on maximum parsimony (MP) and maximum likelihood (ML) methods shared the same clusters, according with the traditional classification. Two open reading frames (ORFs) were identified in each CHS gene sequenced, and their corresponding amino acid sequences were located at the catalytic domain. The relatively conserved sequences could be deduced to be a CHS class A gene, which is associated with chitin synthesis in the integument of Demodex mites.

  16. High prevalence of chitotriosidase deficiency in Peruvian Amerindians exposed to chitin-bearing food and enteroparasites.

    Science.gov (United States)

    Manno, N; Sherratt, S; Boaretto, F; Coico, F Mejìa; Camus, C Espinoza; Campos, C Jara; Musumeci, S; Battisti, A; Quinnell, R J; León, J Mostacero; Vazza, G; Mostacciuolo, M L; Paoletti, M G; Falcone, F H

    2014-11-26

    The human genome encodes a gene for an enzymatically active chitinase (CHIT1) located in a single copy on Chromosome 1, which is highly expressed by activated macrophages and in other cells of the innate immune response. Several dysfunctional mutations are known in CHIT1, including a 24-bp duplication in Exon 10 causing catalytic deficiency. This duplication is a common variant conserved in many human populations, except in West and South Africans. Thus it has been proposed that human migration out of Africa and the consequent reduction of exposure to chitin from environmental factors may have enabled the conservation of dysfunctional mutations in human chitinases. Our data obtained from 85 indigenous Amerindians from Peru, representative of populations characterized by high prevalence of chitin-bearing enteroparasites and intense entomophagy, reveal a very high frequency of the 24-bp duplication (47.06%), and of other single nucleotide polymorphisms which are known to partially affect enzymatic activity (G102S: 42.7% and A442G/V: 25.5%). Our finding is in line with a founder effect, but appears to confute our previous hypothesis of a protective role against parasite infection and sustains the discussion on the redundancy of chitinolytic function. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Chitin and Cellulose Processing in Low-Temperature Electron Beam Plasma

    Directory of Open Access Journals (Sweden)

    Tatiana Vasilieva

    2017-11-01

    Full Text Available Polysaccharide processing by means of low-temperature Electron Beam Plasma (EBP is a promising alternative to the time-consuming and environmentally hazardous chemical hydrolysis in oligosaccharide production. The present paper considers mechanisms of the EBP-stimulated destruction of crab shell chitin, cellulose sulfate, and microcrystalline cellulose, as well as characterization of the produced oligosaccharides. The polysaccharide powders were treated in oxygen EBP for 1–20 min at 40 °C in a mixing reactor placed in the zone of the EBP generation. The chemical structure and molecular mass of the oligosaccharides were analyzed by size exclusion and the reversed phase chromatography, FTIR-spectroscopy, XRD-, and NMR-techniques. The EBP action on original polysaccharides reduces their crystallinity index and polymerization degree. Water-soluble products with lower molecular weight chitooligosaccharides (weight-average molecular mass, Mw = 1000–2000 Da and polydispersity index 2.2 and cellulose oligosaccharides with polymerization degrees 3–10 were obtained. The 1H-NMR analysis revealed 25–40% deacetylation of the EBP-treated chitin and FTIR-spectroscopy detected an increase of carbonyl- and carboxyl-groups in the oligosaccharides produced. Possible reactions of β-1,4-glycosidic bonds’ destruction due to active oxygen species and high-energy electrons are given.

  18. Immobilization of metal hexa-cyanoferrates in chitin beads for cesium sorption: synthesis and characterization

    International Nuclear Information System (INIS)

    Vincent, T.; Guibal, E.; Vincent, C.; Barre, Y.; Guari, Y.; Le Saout, G.

    2014-01-01

    Five metal-potassium hexacyanoferrate/chitin composites (based on Cu, Ni, Zn, Co or Fe co-metal) have been prepared and characterized, using SEM-EDX, TEM, X-ray diffraction and FT-IR, before being compared for Cs(I) and 137 Cs(I) sorption. The Zn-ion exchanger was characterized by a much larger crystal size of about 250 nm compared with a few tens of nm for other ion-exchangers. The ion exchangers are well distributed in the whole mass of the composite and they are fully accessible to Cs(I), as evidenced by Cs(I) distribution after metal sorption. Uptake kinetics can be modeled using both the pseudo-second order rate equation and the Crank equation (resistance to intra-particle diffusion coefficient). Sorption isotherms showed substantial differences in the sorbents that can be ranked as Cu ≥ Ni ≥ Zn ≥ Co ≥ Fe. However, based on 137 Cs K d values, the sorbents can be ranked as Co≥≥Fe≥≥Cu≥≥Ni≥Zn. Taking into account the cost and toxicity of metals (both in terms of manufacturing and potential metal release) a Prussian Blue based sorbent (i.e., iron-potassium hexacyanoferrate/chitin composite) sounds to be a good composite for Cs(I) recovery from radionuclide-containing effluents. (authors)

  19. Chitin nanofibrils for rapid and efficient removal of metal ions from water system.

    Science.gov (United States)

    Liu, Dagang; Zhu, Yi; Li, Zehui; Tian, Donglin; Chen, Lei; Chen, Peng

    2013-10-15

    Joint mechanical defibrillation was successfully used to downsize chitin micro-particles (CMP) into nanofibrils without changing its chemical or crystalline structure. The fine chitin nanofibrils (CNF) bearing width of about 50 nm and length of more than 1 μm were then developed as heavy metal ion sorbents. The uptake performance of CNF dependent on pH, ionic concentration, time, and temperature was investigated. Results show that fixation amount of Cd(II), Ni(II), Cu(II), Zn(II), Pb(II), Cr(III) on CNF was up to 2.94, 2.30, 2.22, 2.06, 1.46, and 0.31 mmol/g, respectively, much higher than CMP due to high specific surface area and widely distributed pores of CNF. Adsorption kinetics of CMP and CNF followed pseudo-second-order model and Freundlich isotherm although CNF exhibited higher rate constant and sorption capacity than that of CMP. The defibrillated CNF is renewable, feasible, easily recyclable, and is thought as good candidate for heavy metal ion treatment due to their low sorption energy, rapid and efficient uptake capacity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Fabrication of thermoplastic ductile films of chitin butyrate/poly(ɛ-caprolactone) blends and their cytocompatibility.

    Science.gov (United States)

    Hashiwaki, Hiroki; Teramoto, Yoshikuni; Nishio, Yoshiyuki

    2014-12-19

    We fabricate thermoplastic films of chitin burtyrate (ChB)/poly(ɛ-caprolactone) (PCL) blends with different degree of miscibility (miscible (M), partially miscible (PM), and immiscible (IM)), and examined the feasibility as a cell scaffold system through evaluating mechanical properties and cytocompatibility. We found a remediation of the brittleness and an increase in ductility of ChB by blending PCL for the M and PM blends. The blend films were subjected to alkaline hydrolysis (2-M NaOH/37°C/48 h) with expectation of the improvement of the surface hydrophilicity and cell accessibility. ATR-FTIR spectroscopy of the alkaline-treated PM and IM films revealed that PCL component and ester side-chains of acyl chitin were selectively removed from the surface domain. L929 fibroblast cells well adhered and proliferated on these films. Therefore, the materials possess a great potential for the utilization as a thermoplastic cell scaffold in tissue engineering by adequate selection of the degree of miscibility and post treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Reclamation of Marine Chitinous Materials for the Production of α-Glucosidase Inhibitors via Microbial Conversion

    Directory of Open Access Journals (Sweden)

    Van Bon Nguyen

    2017-11-01

    Full Text Available Six kinds of chitinous materials have been used as sole carbon/nitrogen (C/N sources for producing α-glucosidase inhibitors (aGI by Paenibacillus sp. TKU042. The aGI productivity was found to be highest in the culture supernatants using demineralized crab shell powder (deCSP and demineralized shrimp shell powder (deSSP as the C/N source. The half maximal inhibitory concentration (IC50 and maximum aGI activity of fermented deCSP (38 µg/mL, 98%, deSSP (108 µg/mL, 89%, squid pen powder (SPP (422 µg/mL, 98%, and shrimp head powder (SHP (455 µg/mL, 92% were compared with those of fermented nutrient broth (FNB (81 µg/mL, 93% and acarbose (1095 µg/mL, 74%, a commercial antidiabetic drug. The result of the protein/chitin ratio on aGI production showed that the optimal ratio was 0.2/1. Fermented deCSP showed lower IC50 and higher maximum inhibitory activity than those of acarbose against rat intestinal α-glucosidase.

  2. Sugar-Binding Profiles of Chitin-Binding Lectins from the Hevein Family: A Comprehensive Study

    Directory of Open Access Journals (Sweden)

    Yoko Itakura

    2017-05-01

    Full Text Available Chitin-binding lectins form the hevein family in plants, which are defined by the presence of single or multiple structurally conserved GlcNAc (N-acetylglucosamine-binding domains. Although they have been used as probes for chito-oligosaccharides, their detailed specificities remain to be investigated. In this study, we analyzed six chitin-binding lectins, DSA, LEL, PWM, STL, UDA, and WGA, by quantitative frontal affinity chromatography. Some novel features were evident: WGA showed almost comparable affinity for pyridylaminated chitotriose and chitotetraose, while LEL and UDA showed much weaker affinity, and DSA, PWM, and STL had no substantial affinity for the former. WGA showed selective affinity for hybrid-type N-glycans harboring a bisecting GlcNAc residue. UDA showed extensive binding to high-mannose type N-glycans, with affinity increasing with the number of Man residues. DSA showed the highest affinity for highly branched N-glycans consisting of type II LacNAc (N-acetyllactosamine. Further, multivalent features of these lectins were investigated by using glycoconjugate and lectin microarrays. The lectins showed substantial binding to immobilized LacNAc as well as chito-oligosaccharides, although the extents to which they bound varied among them. WGA showed strong binding to heavily sialylated glycoproteins. The above observations will help interpret lectin-glycoprotein interactions in histochemical studies and glyco-biomarker investigations.

  3. Cloning of cDNA sequences encoding cowpea (Vigna unguiculata) vicilins: Computational simulations suggest a binding mode of cowpea vicilins to chitin oligomers.

    Science.gov (United States)

    Rocha, Antônio J; Sousa, Bruno L; Girão, Matheus S; Barroso-Neto, Ito L; Monteiro-Júnior, José E; Oliveira, José T A; Nagano, Celso S; Carneiro, Rômulo F; Monteiro-Moreira, Ana C O; Rocha, Bruno A M; Freire, Valder N; Grangeiro, Thalles B

    2018-05-27

    Vicilins are 7S globulins which constitute the major seed storage proteins in leguminous species. Variant vicilins showing differential binding affinities for chitin have been implicated in the resistance and susceptibility of cowpea to the bruchid Callosobruchus maculatus. These proteins are members of the cupin superfamily, which includes a wide variety of enzymes and non-catalytic seed storage proteins. The cupin fold does not share similarity with any known chitin-biding domain. Therefore, it is poorly understood how these storage proteins bind to chitin. In this work, partial cDNA sequences encoding β-vignin, the major component of cowpea vicilins, were obtained from developing seeds. Three-dimensional molecular models of β-vignin showed the characteristic cupin fold and computational simulations revealed that each vicilin trimer contained 3 chitin-binding sites. Interaction models showed that chito-oligosaccharides bound to β-vignin were stabilized mainly by hydrogen bonds, a common structural feature of typical carbohydrate-binding proteins. Furthermore, many of the residues involved in the chitin-binding sites of β-vignin are conserved in other 7S globulins. These results support previous experimental evidences on the ability of vicilin-like proteins from cowpea and other leguminous species to bind in vitro to chitin as well as in vivo to chitinous structures of larval C. maculatus midgut. Copyright © 2018. Published by Elsevier B.V.

  4. Characterization of a beta-glycosidase highly active on disaccharides and of a beta-galactosidase from Tenebrio molitor midgut lumen.

    Science.gov (United States)

    Ferreira, Alexandre H P; Terra, Walter R; Ferreira, Clélia

    2003-02-01

    The midgut of the yellow mealworm, Tenebrio molitor L. (Coleoptera: Tenebrionidae) larvae has four beta-glycosidases. The properties of two of these enzymes (betaGly1 and betaGly2) have been described elsewhere. In this paper, the characterization of the other two glycosidases (betaGly3 and betaGly4) is described. BetaGly3 has one active site, hydrolyzes disaccharides, cellodextrins, synthetic substrates and beta-glucosides produced by plants. The enzyme is inhibited by amygdalin, cellotriose, cellotetraose and cellopentaose in high concentrations, probably due to transglycosylation. betaGly3 hydrolyzes beta 1,4-glycosidic linkages with a catalytic rate independent of the substrate polymerization degree (k(int)) of 11.9 s(-1). Its active site is formed by four subsites, where subsites +1 and -1 bind glucose residues with higher affinity than subsite +2. The main role of betaGly3 seems to be disaccharide hydrolysis. BetaGly4 is a beta-galactosidase, since it has highest activity against beta-galactosides. It can also hydrolyze fucosides, but not glucosides, and has Triton X-100 as a non-essential activator (K(a)=15 microM, pH 4.5). betaGly4 has two active sites that can hydrolyze p-nitrophenyl beta-galactoside (NPbetaGal). The one hydrolyzing NPbetaGal with more efficiency is also active against methylumbellipheryl beta-D-galactoside and lactose. The other active site hydrolyzes NPbetaFucoside and binds NPbetaGal weakly. BetaGly4 hydrolyzes hydrophobic substrates with high catalytical efficiency and is able to bind octyl-beta-thiogalactoside in its active site with high affinity. The betaGly4 physiological role is supposed to be the hydrolysis of galactolipids that are found in membranes from vegetal tissues. As the enzyme has a hydrophobic site where Triton X-100 can bind, it might be activated by membrane lipids, thus becoming fully active only at the surface of cell membranes.

  5. Systematic dynamic viscoelasticity measurements for chitin nanofibers prepared with various concentrations, disintegration times, acidities, and crystalline structures.

    Science.gov (United States)

    Suenaga, Shin; Osada, Mitsumasa

    2018-04-17

    Dynamic viscoelasticities were measured for chitin nanofiber (ChNF) dispersions prepared with various concentrations, disintegration times, acidities, and crystalline structures. The 0.05 w/v% dispersions of pH neutral ChNFs continuously exhibited elastic behavior. The 0.05 w/v% dispersions of acidified ChNFs, on the other hand, transitioned from a colloidal dispersion to a critical gel and then exhibited elastic behavior with increasing ChNF concentration. A double-logarithmic chart of the concentration vs. the storage modulus was prepared and indicated the fractal dimension and the nanostructure in the dispersion. The results determined that the neutral α- and β-ChNFs were dispersed but showed some remaining aggregations and that the acidified β-ChNFs were completely individualized. In addition, the α-chitin steadily disintegrated with increasing disintegration time, and the aspect ratio of the β-chitin decreased as a result of the exscessive disintegration. The storage moduli of the ChNFs were greater than those of chitin solutions, nanorods, and nanowhiskers with the same solids concentrations. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Chitin-hyaluronan nanoparticles: a multifunctional carrier to deliver anti-aging active ingredients through the skin

    Czech Academy of Sciences Publication Activity Database

    Morganti, P.; Palombo, M.; Tishchenko, Galina; Yudin, V. E.; Guarneri, F.; Cardillo, M.; Del Ciotto, P.; Carezzi, F.; Morganti, G.; Fabrizi, G.

    2014-01-01

    Roč. 1, č. 3 (2014), s. 140-158 ISSN 2079-9284 EU Projects: European Commission(XE) 315233 - N-CHITOPACK Institutional support: RVO:61389013 Keywords : chitin nanofibrils * skin aging emulsions * innovative beauty masks Subject RIV: CD - Macromolecular Chemistry

  7. Films of chitin, chitosan and cellulose obtained from aqueous suspension treated by irradiation of high intensity ultrasound

    International Nuclear Information System (INIS)

    Almeida, Erika V.R.; Mariano, Mario S.; Campana-Filho, Sergio P.

    2011-01-01

    Films of chitin, chitin/chitosan and chitin/sisal cellulose were obtained by casting their aqueous suspensions previously treated with irradiation of high intensity ultrasound. The films were characterized for surface morphology by scanning electron microscopy and it is possible notice that the films containing chitosan are much more homogeneous. The thermal behavior of the films was evaluated by dynamic mechanical thermal analysis, differential scanning calorimetry, and thermogravimetric analysis and revealing similarity in comparison with the thermal behavior of polysaccharide isolated. The tensile strength was determined and the film containing chitosan showed the best result when compared to other films. The crystallinity index of the films analyzed by X-ray diffraction showed that the films are amorphous material. The analysis by infrared spectroscopy showed that treatment of aqueous suspensions of polysaccharides with irradiation of high intensity ultrasound did not change the chemical structure of polymers. The crystallinity index was determined by X-ray diffraction, revealing that the films are amorphous materials. The results of this study indicate the possibility of processing of chitin, chitosan and cellulose, polysaccharides whose solubilities are limited to a few solvent systems, by treating their aqueous suspensions with high intensity ultrasound. (author)

  8. Kinetic characterization of Aspergillus niger chitinase CfcI using a HPAEC-PAD method for native chitin oligosaccharides

    NARCIS (Netherlands)

    van Munster, Jolanda M.; Sanders, Peter; ten Kate, Geralt A.; Dijkhuizen, Lubbert; van der Maarel, Marc J. E. C.

    2015-01-01

    The abundant polymer chitin can be degraded by chitinases (EC 3.2.1.14) and beta-N-acetyl-hexosaminidases (EC 3.2.1.52) to oligosaccharides and N-acetyl-glucosamine (GlcNAc) monomers. Kinetic characterization of these enzymes requires product quantification by an assay method with a low detection

  9. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease

    NARCIS (Netherlands)

    Mentlak, T.A.; Kombrink, A.; Shinya, T.; Ryder, L.S.; Otomo, I.; Saitoh, H.; Terauchi, R.; Nishizawa, Y.; Shibuya, N.; Thomma, B.P.H.J.; Talbot, N.J.

    2012-01-01

    Plants use pattern recognition receptors to defend themselves from microbial pathogens. These receptors recognize pathogen-associated molecular patterns (PAMPs) and activate signaling pathways that lead to immunity. In rice (Oryza sativa), the chitin elicitor binding protein (CEBiP) recognizes

  10. Structural analysis of group II chitinase (ChtII) catalysis completes the puzzle of chitin hydrolysis in insects.

    Science.gov (United States)

    Chen, Wei; Qu, Mingbo; Zhou, Yong; Yang, Qing

    2018-02-23

    Chitin is a linear homopolymer of N -acetyl-β-d-glucosamines and a major structural component of insect cuticles. Chitin hydrolysis involves glycoside hydrolase family 18 (GH18) chitinases. In insects, chitin hydrolysis is essential for periodic shedding of the old cuticle ecdysis and proceeds via a pathway different from that in the well studied bacterial chitinolytic system. Group II chitinase (ChtII) is a widespread chitinolytic enzyme in insects and contains the greatest number of catalytic domains and chitin-binding domains among chitinases. In Lepidopterans, ChtII and two other chitinases, ChtI and Chi-h, are essential for chitin hydrolysis. Although ChtI and Chi-h have been well studied, the role of ChtII remains elusive. Here, we investigated the structure and enzymology of Of ChtII, a ChtII derived from the insect pest Ostrinia furnacalis We present the crystal structures of two catalytically active domains of Of ChtII, Of ChtII-C1 and Of ChtII-C2, both in unliganded form and complexed with chitooligosaccharide substrates. We found that Of ChtII-C1 and Of ChtII-C2 both possess long, deep substrate-binding clefts with endochitinase activities. Of ChtII exhibited structural characteristics within the substrate-binding cleft similar to those in Of Chi-h and Of ChtI. However, Of ChtII lacked structural elements favoring substrate binding beyond the active sites, including an extra wall structure present in Of Chi-h. Nevertheless, the numerous domains in Of ChtII may compensate for this difference; a truncation containing one catalytic domain and three chitin-binding modules ( Of ChtII-B4C1) displayed activity toward insoluble polymeric substrates that was higher than those of Of Chi-h and Of ChtI. Our observations provide the last piece of the puzzle of chitin hydrolysis in insects. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Extração, estruturas e propriedades de alfa- e beta-quitina Extraction, structures and properties of alpha- AND beta-chitin

    Directory of Open Access Journals (Sweden)

    Sergio P. Campana-Filho

    2007-06-01

    Full Text Available The fact that alpha- and beta-chitin adopt different arrays in the solid state is explored to emphasize their different properties and distinct spectral characteristics and X ray diffraction patterns. The methods for their extraction from the biomass in view of the preservation of their native structures and aiming to fulfill the claims of purity and uniformity for potential applications are discussed. The different arrays adopted by alpha- and beta-chitin also result in distinct reactivities toward the deacetylation reaction. Thus, the deacetylation of beta-chitin is more efficient owing to the better accessibility to amide groups due to the lower crystallinity of this polymorph.

  12. Effect of some biological factors on the chitin yield of two crustacean species inhabiting the Egyptian waters

    Directory of Open Access Journals (Sweden)

    Amira Talaat Abo-Hashesh

    2017-11-01

    Full Text Available Objective: To investigate the chitin yield of two commercial crustacean species that are exploited in the Suez Canal region, the Red Sea crab Charybdis natator (C. natator and the Mediterranean mantis shrimp Erugosquilla massavensis (E. massavensis, and to assess the effect of some biological factors such as sex, size and maturity stages of females' ovaries on this yield. Methods: A total of 64 specimens of crabs were collected from the Red Sea and 1 377 mantis shrimps were collected from the Mediterranean Sea. Chitin was obtained after the deproteinization, de-mineralization and de-colorization of 5 g oven dried exoskeletons and values were expressed as g/5 g and percentages. Results: Chitin yield was significantly higher in E. massavensis than C. natator (22.1%, 14.22%, respectively. No significant difference in the yield was recorded between males and females of C. natator (12.9%, 14.9%, respectively, while the yield in E. massavensis males was significantly higher than females (25.3%, 21.2%, respectively. Significant variations in the chitin yield were observed between the different sizes of E. massavensis with the maximum being from the individuals falling in the size range 90–130 mm body length. The yield was at its lowest in the immature stage of C. natator females' ovaries (9.29%. However, the values increased and remained constant for the remaining stages (≥ 18%. Conclusions: The study recommends the use of the mantis shrimp for the production of chitin on commercial scale particularly medium sized males.

  13. Resistance mutation conserved between insects and mites unravels the benzoylurea insecticide mode of action on chitin biosynthesis.

    Science.gov (United States)

    Douris, Vassilis; Steinbach, Denise; Panteleri, Rafaela; Livadaras, Ioannis; Pickett, John Anthony; Van Leeuwen, Thomas; Nauen, Ralf; Vontas, John

    2016-12-20

    Despite the major role of chitin biosynthesis inhibitors such as benzoylureas (BPUs) in the control of pests in agricultural and public health for almost four decades, their molecular mode of action (MoA) has in most cases remained elusive. BPUs interfere with chitin biosynthesis and were thought to interact with sulfonylurea receptors that mediate chitin vesicle transport. Here, we uncover a mutation (I1042M) in the chitin synthase 1 (CHS1) gene of BPU-resistant Plutella xylostella at the same position as the I1017F mutation reported in spider mites that confers etoxazole resistance. Using a genome-editing CRISPR/Cas9 approach coupled with homology-directed repair (HDR) in Drosophila melanogaster, we introduced both substitutions (I1056M/F) in the corresponding fly CHS1 gene (kkv). Homozygous lines bearing either of these mutations were highly resistant to etoxazole and all tested BPUs, as well as buprofezin-an important hemipteran chitin biosynthesis inhibitor. This provides compelling evidence that BPUs, etoxazole, and buprofezin share in fact the same molecular MoA and directly interact with CHS. This finding has immediate effects on resistance management strategies of major agricultural pests but also on mosquito vectors of serious human diseases such as Dengue and Zika, as diflubenzuron, the standard BPU, is one of the few effective larvicides in use. The study elaborates on how genome editing can directly, rapidly, and convincingly elucidate the MoA of bioactive molecules, especially when target sites are complex and hard to reconstitute in vitro.

  14. Chitin mixed in potting soil alters lettuce growth, the survival of zoonotic bacteria on the leaves and associated rhizosphere microbiology.

    Directory of Open Access Journals (Sweden)

    Jane eDebode

    2016-04-01

    Full Text Available Chitin is a promising soil amendment for improving soil quality, plant growth and plant resilience. The objectives of this study were twofold. First, to study the effect of chitin mixed in potting soil on lettuce growth and on the survival of two zoonotic bacterial pathogens, Escherichia coli O157:H7 and Salmonella enterica on the lettuce leaves. Second, to assess the related changes in the microbial lettuce rhizosphere, using phospholipid fatty acid (PLFA analysis and amplicon sequencing of a bacterial 16S rRNA gene fragment and the fungal ITS2. As a result of chitin addition, lettuce fresh yield weight was significantly increased. S. enterica survival in the lettuce phyllosphere was significantly reduced. The E. coli O157:H7 survival was also lowered, but not significantly. Moreover, significant changes were observed in the bacterial and fungal community of the lettuce rhizosphere. PLFA analysis showed a significant increase in fungal and bacterial biomass. Amplicon sequencing showed no increase in fungal and bacterial biodiversity, but relative abundances of the bacterial phyla Acidobacteria, Verrucomicrobia, Actinobacteria, Bacteroidetes, and Proteobacteria and the fungal phyla Ascomycota, Basidiomycota, and Zygomycota were significantly changed. More specifically, a more than tenfold increase was observed for operational taxonomic units (OTUs belonging to the bacterial genera Cellvibrio, Pedobacter, Dyadobacter, and Streptomyces and to the fungal genera Lecanicillium and Mortierella. These genera include several species previously reported to be involved in biocontrol, plant growth promotion, the nitrogen cycle and chitin degradation. These results enhance the understanding of the response of the rhizosphere microbiome to chitin amendment. Moreover, this is the first study to investigate the use of soil amendments to control the survival of S. enterica on plant leaves.

  15. Morintides: cargo-free chitin-binding peptides from Moringa oleifera.

    Science.gov (United States)

    Kini, Shruthi G; Wong, Ka H; Tan, Wei Liang; Xiao, Tianshu; Tam, James P

    2017-03-31

    Hevein-like peptides are a family of cysteine-rich and chitin-binding peptides consisting of 29-45 amino acids. Their chitin-binding property is essential for plant defense against fungi. Based on the number of cysteine residues in their sequences, they are divided into three sub-families: 6C-, 8C- and 10C-hevein-like peptides. All three subfamilies contain a three-domain precursor comprising a signal peptide, a mature hevein-like peptide and a C-terminal domain comprising a hinge region with protein cargo in 8C- and 10C-hevein-like peptides. Here we report the isolation and characterization of two novel 8C-hevein-like peptides, designated morintides (mO1 and mO2), from the drumstick tree Moringa oleifera, a drought-resistant tree belonging to the Moringaceae family. Proteomic analysis revealed that morintides comprise 44 amino acid residues and are rich in cysteine, glycine and hydrophilic amino acid residues such as asparagine and glutamine. Morintides are resistant to thermal and enzymatic degradation, able to bind to chitin and inhibit the growth of phyto-pathogenic fungi. Transcriptomic analysis showed that they contain a three-domain precursor comprising an endoplasmic reticulum (ER) signal sequence, a mature peptide domain and a C-terminal domain. A striking feature distinguishing morintides from other 8C-hevein-like peptides is a short and protein-cargo-free C-terminal domain. Previously, a similar protein-cargo-free C-terminal domain has been observed only in ginkgotides, the 8C-hevein-like peptides from a gymnosperm Ginkgo biloba. Thus, morintides, with a cargo-free C-terminal domain, are a stand-alone class of 8C-hevein-like peptides from angiosperms. Our results expand the existing library of hevein-like peptides and shed light on molecular diversity within the hevein-like peptide family. Our work also sheds light on the anti-fungal activity and stability of 8C-hevein-like peptides.

  16. Supplementary effects of higher levels of various disaccharides on processing yield, quality properties and sensory attributes of Chinese - style pork jerky.

    Science.gov (United States)

    Chen, Chih-Ming; Lin, Hsien-Tang

    2017-12-01

    This study evaluated the supplementary effect of higher concentrations of various disaccharides on processing yield, major physicochemical properties, and sensory attributes of Chinese-style pork jerky (CSPJ). CSPJ samples were prepared by marinating sliced ham (4 mm) with three dissaccharides, including sucrose, lactose, and maltose, at 0%, 15%, 18%, 21%, and 24%. Subsequently, the CSPJ samples were dried and roasted. The moisture content, water activity, crude protein, moisture-to-protein ratio, pH, processing yield, shear force, color, and sensory attributes of the CSPJ samples were evaluated. The quality characteristics of CSPJ samples prepared with sucrose were more acceptable. By contrast, CSPJ samples prepared with lactose showed the lowest scores. However, the processing yield and moisture content were the highest for CSPJ samples prepared with lactose, which may be associated with improved benefits for cost reduction. Furthermore, sucrose and lactose supplementation resulted in contrasting quality characteristics; for example, CSPJ samples with sucrose and maltose supplementation had higher sensory scores for color than samples with lactose supplementation. Additionally, most quality characteristics of CSPJ samples with sucrose supplementation contrasted with those of the samples with lactose supplementation; for example, the samples with sucrose supplementation had higher scores for sensory attributes than those with lactose supplementation. Sucrose supplementation up to 21% to 24% was associated with the highest overall acceptability scores (5.19 to 5.80), enhanced quality characteristics, increased processing yield, and reduced production cost.

  17. A new class of nitrosoureas. 4. Synthesis and antitumor activity of disaccharide derivatives of 3,3-disubstituted 1-(2-chloroethyl)-1-nitrosoureas.

    Science.gov (United States)

    Tsujihara, K; Ozeki, M; Morikawa, T; Kawamori, M; Akaike, Y; Arai, Y

    1982-04-01

    A series of 33 N-(2-chloroethyl)-N-nitrosocarbamoyl derivatives of N-substituted glycosylamines has been prepared and tested for antitumor activities. The compounds were obtained by reaction of glycosylamines with isocyanate, followed by nitrosation with N2O4. Structure-activity relationships of these trisubstituted nitrosoureas were investigated by varying the N-substituents and disaccharide groups and by comparing them with the corresponding disubstituted analogues. A large number of the nitrosoureas bearing a maltosyl group exhibited strong antitumor activities against leukemia L1210 and Ehrlich ascites carcinoma, and 60-day survivors against leukemia L1210 were found at the optimal dose for these derivatives. In contrast, the lactosyl and the melibiosyl derivatives were almost inactive. The most interesting compound in this series, the 3-isobutyl-3-maltosyl derivative (37), was tested against leukemia L1210 by single and multiple treatment. Its therapeutic ratio (96.3) obtained by multiple treatment is 3 times larger than that (31.5) obtained by single treatment, suggesting a possible clinical utility of 37 by multiple treatment. The favorable effect of a maltosyl moiety in this class of compounds is discussed.

  18. Supplementary effects of higher levels of various disaccharides on processing yield, quality properties and sensory attributes of Chinese - style pork jerky

    Directory of Open Access Journals (Sweden)

    Chih-Ming Chen

    2017-12-01

    Full Text Available Objective This study evaluated the supplementary effect of higher concentrations of various disaccharides on processing yield, major physicochemical properties, and sensory attributes of Chinese-style pork jerky (CSPJ. Methods CSPJ samples were prepared by marinating sliced ham (4 mm with three dissaccharides, including sucrose, lactose, and maltose, at 0%, 15%, 18%, 21%, and 24%. Subsequently, the CSPJ samples were dried and roasted. The moisture content, water activity, crude protein, moisture-to-protein ratio, pH, processing yield, shear force, color, and sensory attributes of the CSPJ samples were evaluated. Results The quality characteristics of CSPJ samples prepared with sucrose were more acceptable. By contrast, CSPJ samples prepared with lactose showed the lowest scores. However, the processing yield and moisture content were the highest for CSPJ samples prepared with lactose, which may be associated with improved benefits for cost reduction. Furthermore, sucrose and lactose supplementation resulted in contrasting quality characteristics; for example, CSPJ samples with sucrose and maltose supplementation had higher sensory scores for color than samples with lactose supplementation. Additionally, most quality characteristics of CSPJ samples with sucrose supplementation contrasted with those of the samples with lactose supplementation; for example, the samples with sucrose supplementation had higher scores for sensory attributes than those with lactose supplementation. Conclusion Sucrose supplementation up to 21% to 24% was associated with the highest overall acceptability scores (5.19 to 5.80, enhanced quality characteristics, increased processing yield, and reduced production cost.

  19. Altered Colonic Environment, a Possible Predisposition to Colorectal Cancer and Colonic Inflammatory Bowel Disease: Rationale of Dietary Manipulation with Emphasis on Disaccharides

    Directory of Open Access Journals (Sweden)

    A Szilagyi

    1998-01-01

    Full Text Available A recurrent theme in the schema of pathogenetic mechanisms attributed to colorectal cancer (CRC and inflammatory bowel disease (IBD is the interaction between genes and environment. Dietary and other environmental factors, and lower intestinal flora and their chemical interactions occur in the pathogenesis of both. Events at the mucosal surface may be influenced by factors in the luminal environment and by contributions of the host. In addition, both forms of IBD - Crohn's disease (CD and ulcerative colitis (UC - have distinctive associated host events. Even within CD and UC, different clinical patterns and prognoses may have different specific host mechanisms. Some of the current putative pathogenetic processes in CRC and IBD are reviewed. Particular attention is given to hypotheses relating to the role of dietetic substances, mainly fibre and dairy products, and how they may affect disease formation. It is argued that within the context of hypotheses proposed for possible beneficial effects of these two dietetic factors, CRC and IBD may be considered together. Further support is lent to arguments that similar and additional hypothetical features ascribed to beneficial effects of fibre may be attributed to disaccharides, lactose and its derivatives, lactulose and lactitol.

  20. Simultaneous analysis of heparan sulfate, chondroitin/dermatan sulfates, and hyaluronan disaccharides by glycoblotting-assisted sample preparation followed by single-step zwitter-ionic-hydrophilic interaction chromatography.

    Science.gov (United States)

    Takegawa, Yasuhiro; Araki, Kayo; Fujitani, Naoki; Furukawa, Jun-ichi; Sugiyama, Hiroaki; Sakai, Hideaki; Shinohara, Yasuro

    2011-12-15

    Glycosaminoglycans (GAGs) play important roles in cell adhesion and growth, maintenance of extracellular matrix (ECM) integrity, and signal transduction. To fully understand the biological functions of GAGs, there is a growing need for sensitive, rapid, and quantitative analysis of GAGs. The present work describes a novel analytical technique that enables high throughput cellular/tissue glycosaminoglycomics for all three families of uronic acid-containing GAGs, hyaluronan (HA), chondroitin sulfate (CS)/dermatan sulfate (DS), and heparan sulfate (HS). A one-pot purification and labeling procedure for GAG Δ-disaccharides was established by chemo-selective ligation of disaccharides onto high density hydrazide beads (glycoblotting) and subsequent labeling by fluorescence. The 17 most common disaccharides (eight comprising HS, eight CS/DS, and one comprising HA) could be separated with a single chromatography for the first time by employing a zwitter-ionic type of hydrophilic-interaction chromatography column. These novel analytical techniques were able to precisely characterize the glycosaminoglycome in various cell types including embryonal carcinoma cells and ocular epithelial tissues (cornea, conjunctiva, and limbus).

  1. Immobilization of Aspergillus niger. beta. -D-glucosidase on aminated chitin and alumina/alginate

    Energy Technology Data Exchange (ETDEWEB)

    Bon, E.; Freire, D.; Mendes, M.F.; Soares. V.F.

    1986-01-01

    The immobilization of ..beta..-glucosidase was studied by (a) covalent coupling to aminated chitin (IME-C) and (b) adsorption onto alumina followed by gel entrapment of the suspension with calcium alginate (IME-A). The levels of catalytic activity determined against salicin at 50 C were 23.0 U/g and 0.2 U/g for the IME-C and IMA-A respectively. The first system was shown to be quite stable with a loss of only 2% of the initial activity over 14 days. The IME-A system had a half life of 14 days. The activity of IME-C was studied using cellobiose and enzymatic hydrolysates of sugar cane bagasse at several cellobiose concentrations. The activities obtained with cellobiose were 104.0 U/g and 72.0 U/g respectively. 13 references.

  2. Ancient pests: the season of the Santorini Minoan volcanic eruption and a date from insect chitin

    Science.gov (United States)

    Panagiotakopulu, Eva; Higham, Thomas; Sarpaki, Anaya; Buckland, Paul; Doumas, Christos

    2013-07-01

    Attributing a season and a date to the volcanic eruption of Santorini in the Aegean has become possible by using preserved remains of the bean weevil, Bruchus rufipes, pests of pulses, from the storage jars of the West House, in the Bronze Age settlement at Akrotiri. We have applied an improved pre-treatment methodology for dating the charred insects, and this provides a date of 1744-1538 BC. This date is within the range of others obtained from pulses from the same context and confirms the utility of chitin as a dating material. Based on the nature of the insect material and the life cycle of the species involved, we argue for a summer eruption, which took place after harvest, shortly after this material was transported into the West House storeroom.

  3. Fabrication of chitin-chitosan/nano TiO2-composite scaffolds for tissue engineering applications.

    Science.gov (United States)

    Jayakumar, R; Ramachandran, Roshni; Divyarani, V V; Chennazhi, K P; Tamura, H; Nair, S V

    2011-03-01

    In this study, we prepared chitin-chitosan/nano TiO(2) composite scaffolds using lyophilization technique for bone tissue engineering. The prepared composite scaffold was characterized using SEM, XRD, FTIR and TGA. In addition, swelling, degradation and biomineralization capability of the composite scaffolds were evaluated. The developed composite scaffold showed controlled swelling and degradation when compared to the control scaffold. Cytocompatibility of the scaffold was assessed by MTT assay and cell attachment studies using osteoblast-like cells (MG-63), fibroblast cells (L929) and human mesenchymal stem cells (hMSCs). Results indicated no sign of toxicity and cells were found attached to the pore walls within the scaffolds. These results suggested that the developed composite scaffold possess the prerequisites for tissue engineering scaffolds and it can be used for tissue engineering applications. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. The prospect of using the chitin-melanin-glukancontaining materials in measures of radiating protection

    International Nuclear Information System (INIS)

    Senyuk, O.F.; Myshkovskij, N.M.; Ivchenko, V.G.; Kovalev, V.A.; Gorovoj, L.F.; Kosyakov, V.N.; Kurchenko, V.P.; Sushinskaya, N.V.; Gavrilenko, N.V.

    2004-01-01

    An installation for testing the efficiency of Petryanov fabrics in conditions of the maximal humidity is created. It was shown in research, that chitin-melanin-glukan-containing materials (ChMGM) from higher bazidial fungi has high sorptive ability in relation to isotopes of strontium, uranium, transuranic elements, in particular to americium, and also salts of heavy metals (copper, silver, lead, chromium). Main part of metal ions are quickly absorbed by these materials. The technique of processing them by ChMGM is developed with the purpose to estimate amplification the detaining ability of these filters. High concentration of salts of alkaline and alkaline-earth metals do not essentially influence the absorption level of ChMGM heavy metals and transuranic elements

  5. Effects from additives on deacetylation of chitin; Efeito de aditivos na desacetilacao de quitina

    Energy Technology Data Exchange (ETDEWEB)

    Campana Filho, Sergio P.; Signini, Roberta [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Quimica]. E-mail: scampana@iqsc.sc.usp.br

    2001-12-01

    Deacetylation reactions of commercial chitin were carried out in aqueous sodium hydroxide solution at 115 deg C for 6 hours. The effect from additives (sodium borohydride or anthraquinone) and of bubbling inert gas (nitrogen or argon) on the characteristics of deacetylated samples were evaluated. Average degrees of acetylation and intrinsic viscosity were determined by {sup 1}H NMR spectroscopy and capillary viscometry, respectively. X-ray diffraction was employed to evaluate changes in crystallinity and infrared spectroscopy was used to monitor structural changes due to deacetylation. The bubbling of inert gas during the deacetylation reaction resulted in more crystalline samples of chitosan. Deacetylation carried out without any additive produced slightly more deacetylated chitosan but they were severely depolymerized. The depolymerization process was much less important when sodium borohydride was added to the reaction medium but the addition of anthraquinone and the bubbling of nitrogen, or argon, did not have any effect, this suggests that oxygen is not required for depolymerization. (author)

  6. Optimized production of Serratia marcescens B742 mutants for preparing chitin from shrimp shells powders.

    Science.gov (United States)

    Zhang, Hongcai; Fang, Jiyang; Deng, Yun; Zhao, Yanyun

    2014-08-01

    To improve the deproteinization (DP) efficacy of shrimp shell powders (SSP) for preparing chitin, Serratia marcescens B742 mutants were prepared using 2% diethyl sulfate (DES), UV-irradiation, and/or microwave heating treatments. Both single-stage and multi-stage mutations were investigated for optimizing S. marcescens B742 mutation conditions. Under the optimized mutation conditions (2% DES treatment for 30min plus successive 20min UV-irradiation), the protease and chitosanase activity produced by mutant S. marcescens B742 was 240.15 and 170.6mU/mL, respectively, as compared with 212.58±1.51 and 83.75±6.51mU/mL, respectively, by wild S. marcescens B742. DP efficacy of SSP by mutant S. marcescens B742 reached 91.4±4.6% after 3d of submerged fermentation instead of 83.4±4.7% from the wild S. marcescens B742 after 4d of submerged fermentation. Molecular mass of chitosanase and protease was 41.20 and 47.10kDa, respectively, and both enzymes were verified by mass spectrometry analysis. The chitosanase from both wild and mutant S. marcescens B742 was activated by sodium dodecyl sulfate (SDS), Tween 20, Tween 40, and Triton-100, and the protease and chitosanase were strongly inhibited by ethylenediaminetetraacetic acid (EDTA). These results suggested that S. marcescens B742 mutants can be used in the biological production of chitin through deproteinization of SSP. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Chitin based heteroatom-doped porous carbon as electrode materials for supercapacitors.

    Science.gov (United States)

    Zhou, Jie; Bao, Li; Wu, Shengji; Yang, Wei; Wang, Hui

    2017-10-01

    Chitin biomass has received much attention as an amino-functional polysaccharide precursor for synthesis of carbon materials. Rich nitrogen and oxygen dual-doped porous carbon derived from cicada slough (CS), a renewable biomass mainly composed of chitin, was synthesized and employed as electrode materials for electrochemical capacitors, for the first time ever. The cicada slough-derived carbon (CSC) was prepared by a facile process via pre-carbonization in air, followed by KOH activation. The weight ratio of KOH and char plays an important role in fabricating the microporous structure and tuning the surface chemistry of CSC. The obtained CSC had a large specific surface area (1243-2217m 2 g -1 ), fairly high oxygen content (28.95-33.78 at%) and moderate nitrogen content (1.47-4.35 at%). The electrochemical performance of the CS char and CSC as electrodes for capacitors was evaluated in a three-electrode cell configuration with 6M KOH as the electrolyte. Electrochemical studies showed that the as-prepared CSC activated at the KOH-to-char weight ratio of 2 exhibited the highest specific capacitance (266.5Fg -1 at a current density of 0.5Ag -1 ) and excellent rate capability (196.2Fg -1 remained at 20Ag -1 ) and cycle durability. In addition, the CSC-2-based symmetrical device possessed the desirable energy density and power density of about 15.97Whkg -1 and 5000Wkg -1 at 5Ag -1 , respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Chitin stimulates expression of acidic mammalian chitinase and eotaxin-3 by human sinonasal epithelial cells in vitro.

    Science.gov (United States)

    Lalaker, Ashley; Nkrumah, Louis; Lee, Won-Kyung; Ramanathan, Murugappan; Lane, Andrew P

    2009-01-01

    Sinonasal epithelial cells participate in host defense by initiating innate immune mechanisms against potential pathogens. Antimicrobial innate mechanisms have been shown to involve Th1-like inflammatory responses. Although epithelial cells can also be induced by Th2 cytokines to express proeosinophilic mediators, no environmental agents have been identified that promote this effect. Human sinonasal epithelial cells from patients with chronic rhinosinusitis with nasal polyps (CRSwNPs) and controls were harvested and grown in primary culture. Cell cultures were exposed to a range of concentrations of chitin for 24 hours, and mRNA for acidic mammalian chitinase (AMCase), eotaxin-3, and thymic stromal-derived lymphopoietin (TSLP) were assessed. Other cultures were exposed to interleukin 4 (IL- 4) alone and in combination with dust-mite antigen (DMA) for 36 hours. Extracted mRNA and cell culture supernatant were analyzed for expression of AMCase and eotaxin-3. Chitin induced a dose-dependent expression of AMCase and eotaxin-3 mRNA but not TSLP. Patients with recalcitrant CRSwNPs showed lower baseline expression of AMCase when compared with treatment-responsive CRSwNP and less induction of AMCase expression by chitin. DMA did not directly induce expression of AMCase or eotaxin-3. Expression of eotaxin-3 was stimulated by IL-4 and further enhanced with the addition of DMA. Levels of AMCase were not significantly affected by either IL-4 or DMA exposure. In some cases, the combination of IL-4 and DMA was able to induce AMCase expression in cell cultures not producing AMCase at baseline. The abundant biopolymer chitin appears to be recognized by a yet uncharacterized receptor on sinonasal epithelial cells. Chitin stimulates production of AMCase and eotaxin-3, two pro-Th2 effector proteins. This finding suggests the existence of a novel innate immune pathway for local defense against chitin-containing organisms in the sinonasal tract. Dysregulation of this function could

  9. Population distribution of flexible molecules from maximum entropy analysis using different priors as background information: application to the Φ, Ψ-conformational space of the α-(1-->2)-linked mannose disaccharide present in N- and O-linked glycoproteins.

    Science.gov (United States)

    Säwén, Elin; Massad, Tariq; Landersjö, Clas; Damberg, Peter; Widmalm, Göran

    2010-08-21

    The conformational space available to the flexible molecule α-D-Manp-(1-->2)-α-D-Manp-OMe, a model for the α-(1-->2)-linked mannose disaccharide in N- or O-linked glycoproteins, is determined using experimental data and molecular simulation combined with a maximum entropy approach that leads to a converged population distribution utilizing different input information. A database survey of the Protein Data Bank where structures having the constituent disaccharide were retrieved resulted in an ensemble with >200 structures. Subsequent filtering removed erroneous structures and gave the database (DB) ensemble having three classes of mannose-containing compounds, viz., N- and O-linked structures, and ligands to proteins. A molecular dynamics (MD) simulation of the disaccharide revealed a two-state equilibrium with a major and a minor conformational state, i.e., the MD ensemble. These two different conformation ensembles of the disaccharide were compared to measured experimental spectroscopic data for the molecule in water solution. However, neither of the two populations were compatible with experimental data from optical rotation, NMR (1)H,(1)H cross-relaxation rates as well as homo- and heteronuclear (3)J couplings. The conformational distributions were subsequently used as background information to generate priors that were used in a maximum entropy analysis. The resulting posteriors, i.e., the population distributions after the application of the maximum entropy analysis, still showed notable deviations that were not anticipated based on the prior information. Therefore, reparameterization of homo- and heteronuclear Karplus relationships for the glycosidic torsion angles Φ and Ψ were carried out in which the importance of electronegative substituents on the coupling pathway was deemed essential resulting in four derived equations, two (3)J(COCC) and two (3)J(COCH) being different for the Φ and Ψ torsions, respectively. These Karplus relationships are denoted

  10. Biomedical Activity of Chitin/Chitosan Based Materials—Influence of Physicochemical Properties Apart from Molecular Weight and Degree of N-Acetylation

    Directory of Open Access Journals (Sweden)

    Mirko X. Weinhold

    2011-11-01

    Full Text Available The physicochemical nature of chitin and chitosan, which influences the biomedical activity of these compounds, is strongly related to the source of chitin and the conditions of the chitin/chitosan production process. Apart from widely described key factors such as weight-averaged molecular weight (MW and degree of N-acetylation (DA, other physicochemical parameters like polydispersity (MW/MN, crystallinity or the pattern of acetylation (PA have to be taken into consideration. From the biological point of view, these parameters affect a very important factor—the solubility of chitin and chitosan in water and organic solvents. The physicochemical properties of chitosan solutions can be controlled by manipulating solution conditions (temperature, pH, ionic strength, concentration, solvent. The degree of substitution of the hydroxyl and the amino groups or the degree of quaternization of the amino groups also influence the mechanical and biological properties of chitosan samples. Finally, a considerable research effort has been directed towards developing safe and efficient chitin/chitosan-based products because many factors, like the size of nanoparticles, can determine the biomedical characteristics of medicinal products. The influence of these factors on the biomedical activity of chitin/chitosan-based products is presented in this report in more detail.

  11. Experimental study of the microvascular architecture and bone formation when using a carboxymethyl-chitin for bone repair in extracted sockets

    International Nuclear Information System (INIS)

    Kinoshita, Tamotsu; Toda, Isumi; Ehara, Yuji; Nakanishi, Ko; Suwa, Fumihiko

    2011-01-01

    Chitin is an absorbable agent used to promote wound healing and hemostasis, and is also used in medical treatment. We investigated the effects of carboxymethyl-chitin (CM-chitin), a water-soluble derivative of chitin, on bone augmentation. Four maxillary incisors were extracted from 5 adult Crab-eating Macaques, then the extraction sockets on the subjects' right sides were immediately filled with CM-chitin (experimental sites), while the left sides were left unfilled (control). One, two, four, eight, and twelve weeks after the procedure, the animals were euthanized and acrylic resin was injected via the common carotid arteries. Bone-microvascular corrosion casts were made and observed using scanning electron microscopy to determine the volume ratio of newly-formed bone in each socket. After 1 week, newly-formed capillary networks were observed in the sockets of the experimental sites. After 2 weeks, the sockets in both the experimental and control sites were filled with newly-formed capillary networks. After 4 weeks, newly-formed bone was observed in the sockets of both sites and the sockets were also filled with newly-formed bone after 8 weeks. After 12 weeks, trabecular bone was thicker and more compressed than after 8 weeks. Image analysis showed that the volume ratio of newly-formed bone was not significantly different between the experimental and control sites. We concluded that CM-chitin does not obstruct bone augmentation in extracted tooth sockets and is useful to promote angiogenesis in the early stages. (author)

  12. Xyloside-primed Chondroitin Sulfate/Dermatan Sulfate from Breast Carcinoma Cells with a Defined Disaccharide Composition Has Cytotoxic Effects in Vitro.

    Science.gov (United States)

    Persson, Andrea; Tykesson, Emil; Westergren-Thorsson, Gunilla; Malmström, Anders; Ellervik, Ulf; Mani, Katrin

    2016-07-08

    We previously reported that the xyloside 2-(6-hydroxynaphthyl) β-d-xylopyranoside (XylNapOH), in contrast to 2-naphthyl β-d-xylopyranoside (XylNap), specifically reduces tumor growth both in vitro and in vivo Although there are indications that this could be mediated by the xyloside-primed glycosaminoglycans (GAGs) and that these differ in composition depending on xyloside and cell type, detailed knowledge regarding a structure-function relationship is lacking. In this study we isolated XylNapOH- and XylNap-primed GAGs from a breast carcinoma cell line, HCC70, and a breast fibroblast cell line, CCD-1095Sk, and demonstrated that both XylNapOH- and XylNap-primed chondroitin sulfate/dermatan sulfate GAGs derived from HCC70 cells had a cytotoxic effect on HCC70 cells and CCD-1095Sk cells. The cytotoxic effect appeared to be mediated by induction of apoptosis and was inhibited in a concentration-dependent manner by the XylNap-primed heparan sulfate GAGs. In contrast, neither the chondroitin sulfate/dermatan sulfate nor the heparan sulfate derived from CCD-1095Sk cells primed on XylNapOH or XylNap had any effect on the growth of HCC70 cells or CCD-105Sk cells. These observations were related to the disaccharide composition of the XylNapOH- and XylNap-primed GAGs, which differed between the two cell lines but was similar when the GAGs were derived from the same cell line. To our knowledge this is the first report on cytotoxic effects mediated by chondroitin sulfate/dermatan sulfate. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Long-term liquid storage and reproductive evaluation of an innovative boar semen extender (Formula12®) containing a non-reducing disaccharide and an enzymatic agent.

    Science.gov (United States)

    Bresciani, Carla; Bianchera, Annalisa; Bettini, Ruggero; Buschini, Annamaria; Marchi, Laura; Cabassi, Clotilde Silvia; Sabbioni, Alberto; Righi, Federico; Mazzoni, Claudio; Parmigiani, Enrico

    2017-05-01

    There are no reports of saccharolytic enzymes being used in the preparation of formulations for animal semen extenders. In the present study, the use of an innovative semen extender (Formula12 ® ) in the long-term liquid storage of boar semen at 17°C was evaluated. The formulation included use of a disaccharide (sucrose) as the energy source precursor coupled to an enzymatic agent (invertase). The innovative extender was evaluated and compared in vitro to a commercial extender (Vitasem LD ® ) for the following variables: Total Motility (TM), Forward Progressive Motility (FPM), sperm morphology, membrane integrity, acrosome integrity, and chromatin instability. Boar sperm diluted in Formula12 ® and stored for 12 days at 17°C maintained a commercially acceptable FPM (>70%). Using the results from the in vitro study, an AI field trial was performed. A total of 170 females were inseminated (135 with Formula12 ® and 35 with Vitasem LD ® ). The pregnancy rates were 97.8% compared with 91.4%, and the farrowing rates were 96.3% compared with 88.6% when Formula12 ® and Vitasem LD ® were used, respectively. The mean number of piglets born/sow were 14.92±0.46 compared with 13.83±0.70, and the number of piglets born alive/sow were 14.07±0.46 compared with 12.12±0.70 (Pextender allowed for meeting the metabolic requirements of boar sperm during storage at 17°C. It is suggested that there was a beneficial effect on fertilizing capacity of boar sperm in the female reproductive tract with use of these technologies. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The Effect of Poly (Glycerol Sebacate) Incorporation within Hybrid Chitin-Lignin Sol-Gel Nanofibrous Scaffolds.

    Science.gov (United States)

    Abudula, Tuerdimaimaiti; Gzara, Lassaad; Simonetti, Giovanna; Alshahrie, Ahmed; Salah, Numan; Morganti, Pierfrancesco; Chianese, Angelo; Fallahi, Afsoon; Tamayol, Ali; Bencherif, Sidi A; Memic, Adnan

    2018-03-19

    Chitin and lignin primarily accumulate as bio-waste resulting from byproducts of crustacean crusts and plant biomass. Recently, their use has been proposed for diverse and unique bioengineering applications, amongst others. However, their weak mechanical properties need to be improved in order to facilitate their industrial utilization. In this paper, we fabricated hybrid fibers composed of a chitin-lignin (CL)-based sol-gel mixture and elastomeric poly (glycerol sebacate) (PGS) using a standard electrospinning approach. Obtained results showed that PGS could be coherently blended with the sol-gel mixture to form a nanofibrous scaffold exhibiting remarkable mechanical performance and improved antibacterial and antifungal activity. The developed hybrid fibers showed promising potential in advanced biomedical applications such as wound care products. Ultimately, recycling these sustainable biopolymers and other bio-wastes alike could propel a "greener" economy.

  15. Virulence and the Environment: a Novel Role for Vibrio cholerae Toxin-Coregulated Pili in Biofilm Formation on Chitin

    Science.gov (United States)

    Reguera, Gemma; Kolter, Roberto

    2005-01-01

    The toxin-coregulated pilus (TCP) of Vibrio cholerae is required for intestinal colonization and cholera toxin acquisition. Here we report that TCP mediates bacterial interactions required for biofilm differentiation on chitinaceous surfaces. We also show that undifferentiated TCP− biofilms have reduced ecological fitness and, thus, that chitin colonization may represent an ecological setting outside the host in which selection for a host colonization factor may take place. PMID:15866944

  16. CHONDROPROTECTIVE ACTIVITY OF BEE-VENOM MELITTIN AND CRAB SHELL CHITIN ON PAPAIN INDUCED OSTEOARTHRITIS IN RABBITS

    OpenAIRE

    Ravindra Babu Sajja*, Prasad K, Eswar Kumar K and G.Phani C Reddy

    2018-01-01

    In the present study the chondroprotective effect of melittin and chitin from bee venom and crab shell was examined against papain induced osteoarthritis in rabbits. The leukocyte count in synovial fluid, X-ray radiography of ankle joints and histopathology of joint cartilage were performed to assess chondroprotective activity. There is a significant fall in leukocyte count of bee venom (1.2mg/kg, s.c) treated group when compared with osteoarthritic control and the standard groups. Histopatho...

  17. Various methods for determination of the degree of N-acetylation of chitin and chitosan: a review.

    Science.gov (United States)

    Kasaai, Mohammad R

    2009-03-11

    Chitin, chitosan, and their derivatives have been identified as versatile biopolymers for a broad range of agriculture and food applications. Up to now, several methods have been developed to determine degree of N-acetylation, DA, for chitin and chitosan. In this article, an effort has been made to review the available literature information on the DA determination. These methods are classified into three categories: (1) spectroscopy (IR, (1)H NMR, (13)C NMR, (15)N NMR, and UV); (2) conventional (various types of titration, conductometry, potentiometry, ninhydrin assay, adsorption of free amino groups of chitosan by pictric acid); (3) destructive (elemental analysis, acid or enzymatic hydrolysis of chitin/chitosan and followed by the DA measurement by colorimetry or high performance liquid chromatography, pyrolysis-gas chromatography, and thermal analysis using differential scanning calorimetry) methods. These methods have been compared for their performances and limitations as well as their advantages and disadvantages. The use of IR and NMR spectroscopy methods provides a number of advantages. They do not need long-term procedures to prepare samples, and they provide information on the chemical structure. (1)H NMR and UV techniques are more sensitive than IR, (13)C NMR, and (15)N NMR spectroscopy. The IR technique is mostly used for a qualitative evaluation and comparison studies. Conventional methods are not applicable for highly acetylated chitin. The results of the latter methods are affected by ionic strength of the solvent, pH, and temperature of solution. In destructive methods, longer times are needed for the measurements compared to spectroscopy and conventional methods, but they are applicable for the entire range of the DA.

  18. The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice.

    Science.gov (United States)

    Miyata, Kana; Kozaki, Toshinori; Kouzai, Yusuke; Ozawa, Kenjirou; Ishii, Kazuo; Asamizu, Erika; Okabe, Yoshihiro; Umehara, Yosuke; Miyamoto, Ayano; Kobae, Yoshihiro; Akiyama, Kohki; Kaku, Hanae; Nishizawa, Yoko; Shibuya, Naoto; Nakagawa, Tomomi

    2014-11-01

    Plants are constantly exposed to threats from pathogenic microbes and thus developed an innate immune system to protect themselves. On the other hand, many plants also have the ability to establish endosymbiosis with beneficial microbes such as arbuscular mycorrhizal (AM) fungi or rhizobial bacteria, which improves the growth of host plants. How plants evolved these systems managing such opposite plant-microbe interactions is unclear. We show here that knockout (KO) mutants of OsCERK1, a rice receptor kinase essential for chitin signaling, were impaired not only for chitin-triggered defense responses but also for AM symbiosis, indicating the bifunctionality of OsCERK1 in defense and symbiosis. On the other hand, a KO mutant of OsCEBiP, which forms a receptor complex with OsCERK1 and is essential for chitin-triggered immunity, established mycorrhizal symbiosis normally. Therefore, OsCERK1 but not chitin-triggered immunity is required for AM symbiosis. Furthermore, experiments with chimeric receptors showed that the kinase domains of OsCERK1 and homologs from non-leguminous, mycorrhizal plants could trigger nodulation signaling in legume-rhizobium interactions as the kinase domain of Nod factor receptor1 (NFR1), which is essential for triggering the nodulation program in leguminous plants, did. Because leguminous plants are believed to have developed the rhizobial symbiosis on the basis of AM symbiosis, our results suggest that the symbiotic function of ancestral CERK1 in AM symbiosis enabled the molecular evolution to leguminous NFR1 and resulted in the establishment of legume-rhizobia symbiosis. These results also suggest that OsCERK1 and homologs serve as a molecular switch that activates defense or symbiotic responses depending on the infecting microbes. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Fungal-type carbohydrate binding modules from the coccolithophore Emiliania huxleyi show binding affinity to cellulose and chitin.

    Science.gov (United States)

    Rooijakkers, Bart J M; Ikonen, Martina S; Linder, Markus B

    2018-01-01

    Six fungal-type cellulose binding domains were found in the genome of the coccolithophore Emiliania huxleyi and cloned and expressed in Escherichia coli. Sequence comparison indicate high similarity to fungal cellulose binding domains, raising the question of why these domains exist in coccolithophores. The proteins were tested for binding with cellulose and chitin as ligands, which resulted in the identification of two functional carbohydrate binding modules: EHUX2 and EHUX4. Compared to benchmark fungal cellulose binding domain Cel7A-CBM1 from Trichoderma reesei, these proteins showed slightly lower binding to birch and bacterial cellulose, but were more efficient chitin binders. Finally, a set of cellulose binding domains was created based on the shuffling of one well-functioning and one non-functional domain. These were characterized in order to get more information of the binding domain's sequence-function relationship, indicating characteristic differences between the molecular basis of cellulose versus chitin recognition. As previous reports have showed the presence of cellulose in coccoliths and here we find functional cellulose binding modules, a possible connection is discussed.

  20. Fungal-type carbohydrate binding modules from the coccolithophore Emiliania huxleyi show binding affinity to cellulose and chitin.

    Directory of Open Access Journals (Sweden)

    Bart J M Rooijakkers

    Full Text Available Six fungal-type cellulose binding domains were found in the genome of the coccolithophore Emiliania huxleyi and cloned and expressed in Escherichia coli. Sequence comparison indicate high similarity to fungal cellulose binding domains, raising the question of why these domains exist in coccolithophores. The proteins were tested for binding with cellulose and chitin as ligands, which resulted in the identification of two functional carbohydrate binding modules: EHUX2 and EHUX4. Compared to benchmark fungal cellulose binding domain Cel7A-CBM1 from Trichoderma reesei, these proteins showed slightly lower binding to birch and bacterial cellulose, but were more efficient chitin binders. Finally, a set of cellulose binding domains was created based on the shuffling of one well-functioning and one non-functional domain. These were characterized in order to get more information of the binding domain's sequence-function relationship, indicating characteristic differences between the molecular basis of cellulose versus chitin recognition. As previous reports have showed the presence of cellulose in coccoliths and here we find functional cellulose binding modules, a possible connection is discussed.

  1. Nano-fibrin stabilized CaSO4 crystals incorporated injectable chitin composite hydrogel for enhanced angiogenesis & osteogenesis.

    Science.gov (United States)

    Arun Kumar, R; Sivashanmugam, A; Deepthi, S; Bumgardner, Joel D; Nair, Shantikumar V; Jayakumar, R

    2016-04-20

    Calcium sulfate (CaSO4), an excellent biodegradable bone forming agent that is an ideal choice as additive in gels, however, its disadvantage being poor gel rheology and angiogenesis. Here, we have synthesized chitin-CaSO4-nano-fibrin based injectable gel system which shows improved rheology and angiogenic potential. Rheological studies showed that the composite gel was a shear thinning gel with elastic modulus of 15.4±0.275kPa; a 1.67 fold increase over chitin control. SEM and XRD analyses revealed the effect of nano-fibrin (nFibrin) in transforming CaSO4 crystal shape from needle to hexagonal. It also masked the retarding effect of CaSO4 towards in vitro early cell attachment and angiogenesis using rabbit adipose derived mesenchymal stem cells (rASCs) and HUVECs, respectively. rASCs osteogenesis was confirmed by spectrophotometric endpoint assay, which showed 6-fold early increase in alkaline phosphatase levels and immuno-cytochemistry analysis. These in vitro results highlight the potential of injectable chitin-CaSO4-nFibrin gel for osteo-regeneration via enhanced angiogenesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Fabrication of Chitin/Poly(butylene succinate/Chondroitin Sulfate Nanoparticles Ternary Composite Hydrogel Scaffold for Skin Tissue Engineering

    Directory of Open Access Journals (Sweden)

    S. Deepthi

    2014-12-01

    Full Text Available Skin loss is one of the oldest and still not totally resolved problems in the medical field. Since spontaneous healing of the dermal defects would not occur, the regeneration of full thickness of skin requires skin substitutes. Tissue engineering constructs would provide a three dimensional matrix for the reconstruction of skin tissue and the repair of damage. The aim of the present work is to develop a chitin based scaffold, by blending it with poly(butylene succinate (PBS, an aliphatic, biodegradable and biocompatible synthetic polymer with excellent mechanical properties. The presence of chondroitin sulfate nanoparticles (CSnp in the scaffold would favor cell adhesion. A chitin/PBS/CSnp composite hydrogel scaffold was developed and characterized by SEM (Scanning Electron Microscope, FTIR (Fourier Transform Infrared Spectroscopy, and swelling ratio of scaffolds were analyzed. The scaffolds were evaluated for the suitability for skin tissue engineering application by cytotoxicity, cell attachment, and cell proliferation studies using human dermal fibroblasts (HDF. The cytotoxicity and cell proliferation studies using HDF confirm the suitability of the scaffold for skin regeneration. In short, these results show promising applicability of the developed chitin/PBS/CSnps ternary composite hydrogel scaffolds for skin tissue regeneration.

  3. ATL9, a RING zinc finger protein with E3 ubiquitin ligase activity implicated in chitin- and NADPH oxidase-mediated defense responses.

    Directory of Open Access Journals (Sweden)

    Marta Berrocal-Lobo

    2010-12-01

    Full Text Available Pathogen associated molecular patterns (PAMPs are signals detected by plants that activate basal defenses. One of these PAMPs is chitin, a carbohydrate present in the cell walls of fungi and in insect exoskeletons. Previous work has shown that chitin treatment of Arabidopsis thaliana induced defense-related genes in the absence of a pathogen and that the response was independent of the salicylic acid (SA, jasmonic acid (JA and ethylene (ET signaling pathways. One of these genes is ATL9 ( = ATL2G, which encodes a RING zinc-finger like protein. In the current work we demonstrate that ATL9 has E3 ubiquitin ligase activity and is localized to the endoplasmic reticulum. The expression pattern of ATL9 is positively correlated with basal defense responses against Golovinomyces cichoracearum, a biotrophic fungal pathogen. The basal levels of expression and the induction of ATL9 by chitin, in wild type plants, depends on the activity of NADPH oxidases suggesting that chitin-mediated defense response is NADPH oxidase dependent. Although ATL9 expression is not induced by treatment with known defense hormones (SA, JA or ET, full expression in response to chitin is compromised slightly in mutants where ET- or SA-dependent signaling is suppressed. Microarray analysis of the atl9 mutant revealed candidate genes that appear to act downstream of ATL9 in chitin-mediated defenses. These results hint at the complexity of chitin-mediated signaling and the potential interplay between elicitor-mediated signaling, signaling via known defense pathways and the oxidative burst.

  4. WAFs lead molting retardation of naupliar stages with down-regulated expression profiles of chitin metabolic pathway and related genes in the copepod Tigriopus japonicus.

    Science.gov (United States)

    Hwang, Dae-Sik; Lee, Min-Chul; Kyung, Do-Hyun; Kim, Hui-Su; Han, Jeonghoon; Kim, Il-Chan; Puthumana, Jayesh; Lee, Jae-Seong

    2017-03-01

    Oil pollution is considered being disastrous to marine organisms and ecosystems. As molting is critical in the developmental process of arthropods in general and copepods, in particular, the impact will be adverse if the target of spilled oil is on molting. Thus, we investigated the harmful effects of water accommodated fractions (WAFs) of crude oil with an emphasis on inhibition of chitin metabolic pathways related genes and developmental retardation in the copepod Tigriopus japonicus. Also, we analysed the ontology and domain of chitin metabolic pathway genes and mRNA expression patterns of developmental stage-specific genes. Further, the developmental retardation followed by transcriptional modulations in nuclear receptor genes (NR) and chitin metabolic pathway-related genes were observed in the WAFs-exposed T. japonicus. As a result, the developmental time was found significantly (P<0.05) delayed in response to 40% WAFs in comparison with that of control. Moreover, the NR gene, HR3 and chitinases (CHT9 and CHT10) were up-regulated in N4-5 stages, while chitin synthase genes (CHS-1, CHS-2-1, and CHS-2-2) down-regulated in response to WAFs. In brief, a high concentration of WAFs repressed nuclear receptor genes but elicited activation of some of the transcription factors at low concentration of WAFs, resulting in suppression of chitin synthesis. Thus, we suggest that WAF can lead molting retardation of naupliar stages in T. japonicus through down-regulations of chitin metabolism. These findings will provide a better understanding of the mode of action of chitin biosynthesis associated with molting mechanism in WAF-exposed T. japonicus. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Conformational analysis of a Chlamydia-specific disaccharide {alpha}-Kdo-(2{sup {yields}}8)-{alpha}-Kdo-(2{sup {yields}}O)-allyl in aqueous solution and bound to a monoclonal antibody: Observation of intermolecular transfer NOEs

    Energy Technology Data Exchange (ETDEWEB)

    Sokolowski, Tobias; Haselhorst, Thomas; Scheffler, Karoline [Medizinische Universitaet, Institut fuer Chemie (Germany); Weisemann, Ruediger [Bruker Analytik GmbH, Silberstreifen (Germany); Kosma, Paul [Institut fuer Chemie der Universitaet fuer Bodenkultur Wien (Austria); Brade, Helmut; Brade, Lore [Forschungszentrum Borstel, Zentrum fuer Medizin und Biowissenschaften Parkallee 22 (Germany); Peters, Thomas [Medizinische Universitaet, Institut fuer Chemie (Germany)

    1998-07-15

    The disaccharide {alpha}-Kdo-(2{sup {yields}}8)-{alpha}-Kdo (Kdo: 3-deoxy-d-manno-oct-2-ulosonic acid) represents a genus-specific epitope of the lipopolysaccharide of the obligate intracellular human pathogen Chlamydia. The conformation of the synthetically derived disaccharide {alpha}-Kdo-(2{sup {yields}}8)-{alpha}-Kdo-(2{sup {yields}}O)-allyl was studied in aqueous solution, and complexed to a monoclonal antibody S25-2. Various NMR experiments based on the detection of NOEs (or transfer NOEs) and ROEs (or transfer ROEs) were performed. A major problem was the extensive overlap of almost all {sup 1}H NMR signals of {alpha}-Kdo-(2{sup {yields}}8)-{alpha}-Kdo-(2{sup {yields}}O)-allyl. To overcome this difficulty, HMQC-NOESY and HMQC-trNOESY experiments were employed. Spin diffusion effects were identified using trROESY experiments, QUIET-trNOESY experiments and MINSY experiments. It was found that protein protons contribute to the observed spin diffusion effects. At 800 MHz, intermolecular trNOEs were observed between ligand protons and aromatic protons in the antibody binding site. From NMR experiments and Metropolis Monte Carlo simulations, it was concluded that {alpha}-Kdo-(2{sup {yields}}8)-{alpha}-Kdo-(2{sup {yields}}O)-allyl in aqueous solution exists as a complex conformational mixture. Upon binding to the monoclonal antibody S25-2, only a limited range of conformations is available to {alpha}-Kdo-(2{sup {yields}}8)-{alpha}-Kdo-(2{sup {yields}}O)-allyl. These possible bound conformations were derived from a distance geometry analysis using transfer NOEs as experimental constraints. It is clear that a conformation is selected which lies within a part of the conformational space that is highly populated in solution. This conformational space also includes the conformation found in the crystal structure. Our results provide a basis for modeling studies of the antibody-disaccharide complex.

  6. Conformational analysis of a Chlamydia-specific disaccharide α-Kdo-(2→8)-α-Kdo-(2→O)-allyl in aqueous solution and bound to a monoclonal antibody: Observation of intermolecular transfer NOEs

    International Nuclear Information System (INIS)

    Sokolowski, Tobias; Haselhorst, Thomas; Scheffler, Karoline; Weisemann, Ruediger; Kosma, Paul; Brade, Helmut; Brade, Lore; Peters, Thomas

    1998-01-01

    The disaccharide α-Kdo-(2 → 8)-α-Kdo (Kdo: 3-deoxy-d-manno-oct-2-ulosonic acid) represents a genus-specific epitope of the lipopolysaccharide of the obligate intracellular human pathogen Chlamydia. The conformation of the synthetically derived disaccharide α-Kdo-(2 → 8)-α-Kdo-(2 → O)-allyl was studied in aqueous solution, and complexed to a monoclonal antibody S25-2. Various NMR experiments based on the detection of NOEs (or transfer NOEs) and ROEs (or transfer ROEs) were performed. A major problem was the extensive overlap of almost all 1 H NMR signals of α-Kdo-(2 → 8)-α-Kdo-(2 → O)-allyl. To overcome this difficulty, HMQC-NOESY and HMQC-trNOESY experiments were employed. Spin diffusion effects were identified using trROESY experiments, QUIET-trNOESY experiments and MINSY experiments. It was found that protein protons contribute to the observed spin diffusion effects. At 800 MHz, intermolecular trNOEs were observed between ligand protons and aromatic protons in the antibody binding site. From NMR experiments and Metropolis Monte Carlo simulations, it was concluded that α-Kdo-(2 → 8)-α-Kdo-(2 → O)-allyl in aqueous solution exists as a complex conformational mixture. Upon binding to the monoclonal antibody S25-2, only a limited range of conformations is available to α-Kdo-(2 → 8)-α-Kdo-(2 → O)-allyl. These possible bound conformations were derived from a distance geometry analysis using transfer NOEs as experimental constraints. It is clear that a conformation is selected which lies within a part of the conformational space that is highly populated in solution. This conformational space also includes the conformation found in the crystal structure. Our results provide a basis for modeling studies of the antibody-disaccharide complex

  7. [Basic Studies on Locoregional Injection of a Newly Designed Chitin Sol].

    Science.gov (United States)

    Chiba, Takehiro; Sugitachi, Akio; Kume, Kouhei; Segawa, Takenori; Nishinari, Yutaka; Ishida, Kaoru; Noda, Hironobu; Nishizuka, Satoshi; Kimura, Yusuke; Koeda, Keisuke; Sasaki, Akira

    2015-11-01

    Systemic chemotherapy in advanced cancer cases often provokes serious adverse events. We aimed to examine the fundamental properties and efficacy of a novel chitin sol, an anti-cancer agent with minor side effects designed to avoid the adverse effects of chemotherapy and enhance the QOL and ADL of patients. DAC-70 was used to create the novel agent termed DAC-70 sol. The anti-proliferative activity was assayed by the WST method using different types of cell lines. The anti-cancer efficacy of the novel agent was examined using cancer-bearing mice. DAC-70 sol was easily injectable through a 21-G needle. The sol suppressed proliferation of the cells in vitro. Intra-tumor injection of DAC-70 sol inhibited the rapid growth of solid tumors in the mice. CDDP-loaded DAC-70 sol, CDDP/DAC-70 sol, successfully controlled malignant ascites in the mice (psol and CDDP/DAC-70 sol is clinically useful as novel cancer chemotherapy for advanced cases. This warrants further clinical studies in cancer chemotherapy.

  8. Genetic basis of Spodoptera frugiperda (Lepidoptera: Noctuidae) resistance to the chitin synthesis inhibitor lufenuron.

    Science.gov (United States)

    do Nascimento, Antonio Rogério Bezerra; Farias, Juliano Ricardo; Bernardi, Daniel; Horikoshi, Renato Jun; Omoto, Celso

    2016-04-01

    An understanding of the genetic basis of insect resistance to insecticides is important for the establishment of insect resistance management (IRM) strategies. In this study we evaluated the inheritance pattern of resistance to the chitin synthesis inhibitor lufenuron in Spodoptera frugiperda. The LC50 values (95% CI) were 0.23 µg lufenuron mL(-1) water (ppm) (0.18-0.28) for the susceptible strain (SUS) and 210.6 µg mL(-1) (175.90-258.10) for the lufenuron-resistant strain (LUF-R), based on diet-overlay bioassay. The resistance ratio was ≈ 915-fold. The LC50 values for reciprocal crosses were 4.89 µg mL(-1) (3.79-5.97) for female LUF-R and male SUS and 5.74 µg mL(-1) (4.70-6.91) for female SUS and male LUF-R, indicating that the inheritance of S. frugiperda resistance to lufenuron is an autosomal, incompletely recessive trait. Backcrosses of the progeny of reciprocal crosses with the parental LUF-R showed a polygenic effect. The estimated minimum number of independent segregations was in the 11.02 range, indicating that resistance to lufenuron is associated with multiple genes in S. frugiperda. Based on genetic crosses, the inheritance pattern of lufenuron resistance in S. frugiperda was autosomal, incompletely recessive and polygenic. Implications of this finding to IRM are discussed in this paper. © 2015 Society of Chemical Industry.

  9. Delivery of rifampicin-chitin nanoparticles into the intracellular compartment of polymorphonuclear leukocytes.

    Science.gov (United States)

    Smitha, K T; Nisha, N; Maya, S; Biswas, Raja; Jayakumar, R

    2015-03-01

    Polymorphonuclear leukocytes (PMNs) provide the primary host defence against invading pathogens by producing reactive oxygen species (ROS) and microbicidal products. However, few pathogens can survive for a prolonged period of time within the PMNs. Additionally their intracellular lifestyle within the PMNs protect themselves from the additional lethal action of host immune systems such as antibodies and complements. Antibiotic delivery into the intracellular compartments of PMNs is a major challenge in the field of infectious diseases. In order to deliver antibiotics within the PMNs and for the better treatment of intracellular bacterial infections we synthesized rifampicin (RIF) loaded amorphous chitin nanoparticles (RIF-ACNPs) of 350±50 nm in diameter. RIF-ACNPs nanoparticles are found to be non-hemolytic and non-toxic against a variety of host cells. The release of rifampicin from the prepared nanoparticles was ∼60% in 24 h, followed by a sustained pattern till 72 h. The RIF-ACNPs nanoparticles showed 5-6 fold enhanced delivery of RIF into the intracellular compartments of PMNs. The RIF-ACNPs showed anti-microbial activity against Escherichia coli, Staphylococcus aureus and a variety of other bacteria. In summary, our results suggest that RIF-ACNPs could be used to treat a variety of intracellular bacterial infections. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Comparative anti-psoriatic efficacy studies of clobetasol loaded chitin nanogel and marketed cream.

    Science.gov (United States)

    Panonnummal, Rajitha; Jayakumar, R; Sabitha, M

    2017-01-01

    In the present study chitin nanogel loaded with anti-psoriatic drug clobetasol was developed (CLCNG) for its topical delivery in psoriasis. CLCNG had the particle size of 132±14nm, with gel like consistency, stability in refrigerator, having higher drug release properties at acidic pH. CLCNG exhibited significant toxicity towards HaCaT and THP-1cell lines by MTT assay. The uptake of nanogel by HaCaT cell lines was confirmed by fluorescent microscopy. CLCNG at 0.35mg/ml exhibited significant anti-inflammatory activity with an average of 65% and 70% inhibition in COX and LOX activities expressed in THP-1 cells. In vitro skin permeation studies revealed the increased transdermal flux with fragmented stratum corneum and loosened epidermal layers in CLCNG treated samples, compared with control drug solution. The in vivo anti-psoriatic studies done on imiquimod model confirmed the potential benefits of the nanogel for the topical delivery of clobetasol in psoriasis. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Effect of Moisture Content of Chitin-Calcium Silicate on Rate of Degradation of Cefotaxime Sodium.

    Science.gov (United States)

    Al-Nimry, Suhair S; Alkhamis, Khouloud A

    2018-04-01

    Assessment of incompatibilities between active pharmaceutical ingredient and pharmaceutical excipients is an important part of preformulation studies. The objective of the work was to assess the effect of moisture content of chitin calcium silicate of two size ranges (two specific surface areas) on the rate of degradation of cefotaxime sodium. The surface area of the excipient was determined using adsorption method. The effect of moisture content of a given size range on the stability of the drug was determined at 40°C in the solid state. The moisture content was determined at the beginning and the end of the kinetic study using TGA. The degradation in solution was studied for comparison. Increasing the moisture content of the excipient of size range 63-180 μm (surface area 7.2 m 2 /g) from 3.88 to 8.06% increased the rate of degradation of the drug more than two times (from 0.0317 to 0.0718 h -1 ). While an opposite trend was observed for the excipient of size range moisture content moisture content of 8.54%, and the degradation in solid state at both moisture contents was higher than that in solution (0.0871 h -1 ). In conclusion, the rate of degradation in solid should be studied taking into consideration the specific surface area and moisture content of the excipient at the storage condition and it may be higher than that in solution.

  12. Reinforcement of poly (vinyl alcohol films with alpha-chitin nanowhiskers

    Directory of Open Access Journals (Sweden)

    Hugo Lisboa

    2018-03-01

    Full Text Available Abstract Composites Films were produced using Poly (Vinyl Alcohol as the soft material and reinforced with Chitin Nanowhiskers(NWCH as the rigid material. The present work studies the reinforcing mechanisms of NWCH in PVA films, made through a solvent casting technique and characterized for their calorimetric, swelling and mechanical properties. DSC tests revealed a sharp increase of 45 °C in glass transition temperatures with only 1.5% NWCH, while melting temperature had a small increases suggesting an anti-plasticizing effect. Swelling tests revealed decreasing hygoscopy when NWCH volume fraction increases. Estimates for elastic tensile modulus using a model that predicts the formation of a percolating network were not consistent with the experimental data of tensile tests suggesting that contrary to the reinforcement with cellulose nanowhiskers the percolating network is not primarily responsible for the reinforcement of the films. By adjusting the Halpin-Tsai equations, modified by Nielsen it was found that the mechanical properties were mainly influenced by the packing of the NWCH.

  13. Chitin Oligosaccharide Modulates Gut Microbiota and Attenuates High-Fat-Diet-Induced Metabolic Syndrome in Mice

    Directory of Open Access Journals (Sweden)

    Junping Zheng

    2018-02-01

    Full Text Available Gut microbiota has been proved to be an indispensable link between nutrient excess and metabolic syndrome, and chitin oligosaccharide (NACOS has displayed therapeutic effects on multiple diseases such as cancer and gastritis. In this study, we aim to confirm whether NACOS can ameliorate high-fat diet (HFD-induced metabolic syndrome by rebuilding the structure of the gut microbiota community. Male C57BL/6J mice fed with HFD were treated with NACOS (1 mg/mL in drinking water for five months. The results indicate that NACOS improved glucose metabolic disorder in HFD-fed mice and suppressed mRNA expression of the protein regulators related to lipogenesis, gluconeogenesis, adipocyte differentiation, and inflammation in adipose tissues. Additionally, NACOS inhibited the destruction of the gut barrier in HFD-treated mice. Furthermore, 16S ribosome RNA sequencing of fecal samples demonstrates that NACOS promoted the growth of beneficial intestinal bacteria remarkably and decreased the abundance of inflammogenic taxa. In summary, NACOS partly rebuilt the microbial community and improved the metabolic syndrome of HFD-fed mice. These data confirm the preventive effects of NACOS on nutrient excess-related metabolic diseases.

  14. Halo(natronoarchaea isolated from hypersaline lakes utilize cellulose and chitin as growth substrates

    Directory of Open Access Journals (Sweden)

    Dimitry Y Sorokin

    2015-09-01

    Full Text Available Until recently, extremely halophilic euryarchaeota were considered mostly as aerobic heterotrophs utilizing simple organic compounds as growth substrates. Almost nothing is known on the ability of these prokaryotes to utilize complex polysaccharides as cellulose, xylan and chitin. Although few haloarchaeal cellulases and chitinases were recently characterized, the analysis of currently available haloarchaeal genomes deciphered numerous genes encoding glycosidases (GHs of various families including endoglucanases and chitinases. However, all these haloarchaea were isolated and cultivated on simple substrates and their ability to grow on polysaccharides in situ or in vitro is unknown. This study examines several halo(natronoarchaeal strains from geographically distant hypersaline lakes for the ability to grow on insoluble polymers as a sole growth substrate in salt-saturated mineral media. Some of them belonged to known taxa, while other represented novel phylogenetic lineages within the class Halobacteria. All isolates produced extracellular extremely salt tolerant cellulases or chitinases, either cell-free or cell-bound. Obtained results demonstrate a presence of diverse population of haloarchaeal cellulo/chitinotrophs in hypersaline habitats indicating that euryarchaea participate in aerobic mineralization of recalcitrant organic polymers in salt-saturated environments.

  15. The Correlation between Chitin and Acidic Mammalian Chitinase in Animal Models of Allergic Asthma

    Directory of Open Access Journals (Sweden)

    Chia-Rui Shen

    2015-11-01

    Full Text Available Asthma is the result of chronic inflammation of the airways which subsequently results in airway hyper-responsiveness and airflow obstruction. It has been shown that an elicited expression of acidic mammalian chitinase (AMCase may be involved in the pathogenesis of asthma. Our recent study has demonstrated that the specific suppression of elevated AMCase leads to reduced eosinophilia and Th2-mediated immune responses in an ovalbumin (OVA-sensitized mouse model of allergic asthma. In the current study, we show that the elicited expression of AMCase in the lung tissues of both ovalbumin- and Der P2-induced allergic asthma mouse models. The effects of allergic mediated molecules on AMCase expression were evaluated by utilizing promoter assay in the lung cells. In fact, the exposure of chitin, a polymerized sugar and the fundamental component of the major allergen mite and several of the inflammatory mediators, showed significant enhancement on AMCase expression. Such obtained results contribute to the basis of developing a promising therapeutic strategy for asthma by silencing AMCase expression.

  16. Injectable Shear-Thinning CaSO4/FGF-18-Incorporated Chitin-PLGA Hydrogel Enhances Bone Regeneration in Mice Cranial Bone Defect Model.

    Science.gov (United States)

    Sivashanmugam, A; Charoenlarp, Pornkawee; Deepthi, S; Rajendran, Arunkumar; Nair, Shantikumar V; Iseki, Sachiko; Jayakumar, R

    2017-12-13

    For craniofacial bone regeneration, shear-thinning injectable hydrogels are favored over conventional scaffolds because of their improved defect margin adaptability, easier handling, and ability to be injected manually into deeper tissues. The most accepted method, after autografting, is the use of recombinant human bone morphogenetic protein-2 (BMP-2); however, complications such as interindividual variations, edema, and poor cost-efficiency in supraphysiological doses have been reported. The endogenous synthesis of BMP-2 is desirable, and a molecule which induces this is fibroblast growth factor-18 (FGF-18) because it can upregulate the BMP-2 expression  by supressing noggin. We developed a chitin-poly(lactide-co-glycolide) (PLGA) composite hydrogel by regeneration chemistry and then incorporated CaSO 4 and FGF-18 for this purpose. Rheologically, a 7-fold increase in the elastic modulus was observed in the CaSO 4 -incorporated chitin-PLGA hydrogels as compared to the chitin-PLGA hydrogel. Shear-thinning Herschel-Bulkley fluid nature was observed for both hydrogels. Chitin-PLGA/CaSO 4 gel showed sustained release of FGF-18. In vitro osteogenic differentiation showed an enhanced alkaline phosphatase (ALP) expression in the FGF-18-containing chitin-PLGA/CaSO 4 gel when compared to cells alone. Further, it was confirmed by studying the expression of osteogenic genes [RUNX2, ALP, BMP-2, osteocalcin (OCN), and osteopontin (OPN)], immunofluorescence staining of BMP-2, OCN, and OPN, and alizarin red S staining. Incorporation of FGF-18 in the hydrogel increased the endothelial cell migration. Further, the regeneration potential of the prepared hydrogels was tested in vivo, and longitudinal live animal μ-CT was performed. FGF-18-loaded chitin-PLGA/CaSO 4 showed early and almost complete bone healing in comparison with chitin-PLGA/CaSO 4 , chitin-PLGA/FGF-18, chitin-PLGA, and sham control systems, as confirmed by hematoxylin and eosin and osteoid tetrachrome stainings

  17. Emerging Biomedical Applications of Nano-Chitins and Nano-Chitosans Obtained via Advanced Eco-Friendly Technologies from Marine Resources

    Science.gov (United States)

    Muzzarelli, Riccardo A. A.; El Mehtedi, Mohamad; Mattioli-Belmonte, Monica

    2014-01-01

    The present review article is intended to direct attention to the technological advances made in the 2010–2014 quinquennium for the isolation and manufacture of nanofibrillar chitin and chitosan. Otherwise called nanocrystals or whiskers, n-chitin and n-chitosan are obtained either by mechanical chitin disassembly and fibrillation optionally assisted by sonication, or by e-spinning of solutions of polysaccharides often accompanied by poly(ethylene oxide) or poly(caprolactone). The biomedical areas where n-chitin may find applications include hemostasis and wound healing, regeneration of tissues such as joints and bones, cell culture, antimicrobial agents, and dermal protection. The biomedical applications of n-chitosan include epithelial tissue regeneration, bone and dental tissue regeneration, as well as protection against bacteria, fungi and viruses. It has been found that the nano size enhances the performances of chitins and chitosans in all cases considered, with no exceptions. Biotechnological approaches will boost the applications of the said safe, eco-friendly and benign nanomaterials not only in these fields, but also for biosensors and in targeted drug delivery areas. PMID:25415349

  18. Fluorescence microscopical studies on chitin distribution in the cell wall of giant cells of Saccharomyces uvarum, grown following X-radiaiton treatment

    International Nuclear Information System (INIS)

    Hoschka, L.

    1982-01-01

    Teast cells are synchronized and modiated with X-rays (1.0 kGy) in the Cr, phase. Their growth behaviour is observed in suspension cultures and the formation of giant cells noted. The chitin structures are selectively stained with the fluorescent dye Calcofluor white. In the unradiated cells the chitin is deposited at the bud constriction site in the form of rings in the mother cell wall, whereas for irradiated cells only one chitin ring of normal appearance is formed between the mother cell and first bud equivalent. Between further bud equivalents an intensification of fluorescence is occasionally noted, however the organisation of the chitin into a regular ring arrangement is disturbed. In giant cells the facility for primary and secondary septa formation is missing and these are essential for successful cell division. By further experiments it was possible to identify the cause of disturbance in the cell cycle of irradiated cells. Giant cells only form one chitin ring because its DNA is replicated one time only. The major cause triggering the actual formation of giant cells must be considered the missing distribution of the once-rephicated DNA. All processes in the cell cycle dependent on this step are therefore stopped and only bud formation which occurs independently continues along its rhytmical path. (orig./MG) [de

  19. KARAKTERISASI KITIN DEASETILASE TERMOSTABIL ISOLAT BAKTERI ASAL PANCURAN TUJUH, BATURADEN, JAWA TENGAH [Characterization of Thermostable Chitin Deacetylase from Bacteria Strain Pancuran Tujuh, Baturaden, Center of Java

    Directory of Open Access Journals (Sweden)

    Deuxianto Hendarsyah3

    2006-04-01

    Full Text Available Chitin deacetylase is the enzymes that has important role in converting chitin to chitosan. In nature, chitin is the second most abundant natural biopolymer after cellulose. Generally, chitin easily obtained from outer shell of crustaceans, arthropods, and also detectable on cell wall of some type of fungal (Zygomycetes. The chitin deacetylase was isolated from Bacillus sp PT2-3. It was found that the highest specific activity was attained at pH 8 60°C. The addition of 5 mM Zn2+ and 5 mM Mn2+ increased the specific activity of the enzyme, 4.39% and 7.8%, respectively, and the increase was only 2.19% when the addition was 2 mM Mn2+. On the contrary the addition of Ca2+, Mg2+ and Fe2+ decrease the specific activity 46.83%, 41.22% and 47.32%, respectively. The enzyme activity was relatively stable at 60°C for 60 minutes, while lengthen the time to 90 minutes, decreased the activity 15.05 %, and the decrease was 26.13% at temperature of 70°C for 180 minutes.

  20. Effect of Corn Steep Liquor (CSL and Cassava Wastewater (CW on Chitin and Chitosan Production by Cunninghamella elegans and Their Physicochemical Characteristics and Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Lúcia Raquel Ramos Berger

    2014-02-01

    Full Text Available Microbiological processes were used for chitin and chitosan production with Cunninghamella elegans UCP/WFCC 0542 grown in different concentrations of two agro-industrial wastes, corn steep liquor (CSL and cassava wastewater (CW established using a 22 full factorial design. The polysaccharides were extracted by alkali-acid treatment and characterized by infrared spectroscopy, viscosity, thermal analysis, elemental analysis, scanning electron microscopy and X-ray diffraction. The cytotoxicity of chitosan was evaluated for signs of vascular change on the chorioallantoic membrane of chicken eggs. The highest biomass (9.93 g/L was obtained in trial 3 (5% CW, 8% CSL, the greatest chitin and chitosan yields were 89.39 mg/g and 57.82 mg/g, respectively, and both were obtained in trial 2 (10% CW, 4% CSL. Chitin and chitosan showed a degree of deacetylation of 40.98% and 88.24%, and a crystalline index of 35.80% and 23.82%, respectively, and chitosan showed low molecular weight (LMW 5.2 × 103 Da. Chitin and chitosan can be considered non-irritating, due to the fact they do not promote vascular change. It was demonstrated that CSL and CW are effective renewable agroindustrial alternative substrates for the production of chitin and chitosan.

  1. Structure and interactions of calcite spherulites with α-chitin in the brown shrimp (Penaeus aztecus) shell

    International Nuclear Information System (INIS)

    Heredia, A.; Aguilar-Franco, M.; Magana, C.; Flores, C.; Pina, C.; Velazquez, R.; Schaeffer, T.E.; Bucio, L.; Basiuk, V.A.

    2007-01-01

    White spots form in the brown shrimp (Penaeus aztecus, Decapoda) shell during frozen storage. The mineral formed consists of calcite incorporated into an amorphous α-chitin matrix. We studied mechanisms of interaction of amorphous α-chitin macromolecules with hkl crystal planes to form highly ordered structures, as well as the role of specific sites in the biopolymer, which can be related to nucleation and spheroidal crystal growth. We used low vacuum scanning electron microscopy (LVSEM), X-ray powder diffraction (XRD), atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FT-IR), and molecular mechanics modeling (MM+ method). AFM images showed fingerprint distances in the biopolymer and a highly layered structure in the crystalline material. The presence of α-chitin, with a specific spatial distribution of radicals, is thought to be responsible for nucleation and to thermodynamically stabilize ions to form the spherulite crystalline phase, which are usually oval to spherical (0.10 to 200 μm in diameter). Our models of crystal-biopolymer interaction found high affinity of CO 3 2- anions in the (104) crystalline plane (the main plane in calcite monocrystals) to NH- groups of the biopolymer, as well as of the C=O in the biopolymer to Ca 2+ cations in the crystalline structure. These interactions explain the spherical growth and inhibition in some planes. The specific physicochemical interactions (docking of groups depending on their geometrical distribution) suggest that the biomineral structure is controlled by the biopolymer on a local scale. This information is useful for further design and improvement of (hybrid) materials for versatile application, from nanotechnology to biomedicine and engineering

  2. Structure and interactions of calcite spherulites with {alpha}-chitin in the brown shrimp (Penaeus aztecus) shell

    Energy Technology Data Exchange (ETDEWEB)

    Heredia, A. [Instituto de Ciencias Nucleares, Departamento de Quimica de Radiaciones y Radioquimica, UNAM, Circuito Exterior C.U. Apdo., Postal 70-543, 04510 Mexico, D.F. (Mexico); Physikalisches Institut and Center for Nanotechnology, Universitaet Muenster, Gievenbecker Weg 11, 48149 Muenster (Germany); Aguilar-Franco, M. [Instituto de Fisica, Depto de Fisicoquimica, UNAM, Circuito Exterior s/n, Ciudad Universitaria Apartado Postal 20-364 01000 Mexico D.F. (Mexico); Magana, C. [Instituto de Fisica, Depto de Estado Solido, UNAM, Circuito Exterior s/n, Ciudad Universitaria Apartado Postal 20-364 01000 Mexico D.F. (Mexico); Flores, C. [Instituto de Investigaciones en Materiales, Depto de Estado Solido, Laboratorio de Biomateriales, UNAM, Circuito Exterior C.U. S/N CP 04510 Mexico, D.F. (Mexico); Pina, C. [Instituto de Investigaciones en Materiales, Depto de Estado Solido, Laboratorio de Biomateriales, UNAM, Circuito Exterior C.U. S/N CP 04510 Mexico, D.F. (Mexico); Velazquez, R. [Centro de Fisica Aplicada Tecnologia Avanzada, UNAM, Km. 15 Carretera Queretaro-San Luis Potosi, C.P. 76230, Queretaro, Qro. (Mexico); Schaeffer, T.E. [Physikalisches Institut and Center for Nanotechnology, Universitaet Muenster, Gievenbecker Weg 11, 48149 Muenster (Germany); Bucio, L. [Instituto de Fisica, Depto de Estado Solido, UNAM, Circuito Exterior s/n, Ciudad Universitaria Apartado Postal 20-364 01000 Mexico D.F. (Mexico); Basiuk, V.A. [Instituto de Ciencias Nucleares, Departamento de Quimica de Radiaciones y Radioquimica, UNAM, Circuito Exterior C.U. Apdo., Postal 70-543, 04510 Mexico, D.F. (Mexico)

    2007-01-15

    White spots form in the brown shrimp (Penaeus aztecus, Decapoda) shell during frozen storage. The mineral formed consists of calcite incorporated into an amorphous {alpha}-chitin matrix. We studied mechanisms of interaction of amorphous {alpha}-chitin macromolecules with hkl crystal planes to form highly ordered structures, as well as the role of specific sites in the biopolymer, which can be related to nucleation and spheroidal crystal growth. We used low vacuum scanning electron microscopy (LVSEM), X-ray powder diffraction (XRD), atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FT-IR), and molecular mechanics modeling (MM+ method). AFM images showed fingerprint distances in the biopolymer and a highly layered structure in the crystalline material. The presence of {alpha}-chitin, with a specific spatial distribution of radicals, is thought to be responsible for nucleation and to thermodynamically stabilize ions to form the spherulite crystalline phase, which are usually oval to spherical (0.10 to 200 {mu}m in diameter). Our models of crystal-biopolymer interaction found high affinity of CO{sub 3} {sup 2-} anions in the (104) crystalline plane (the main plane in calcite monocrystals) to NH- groups of the biopolymer, as well as of the C=O in the biopolymer to Ca{sup 2+} cations in the crystalline structure. These interactions explain the spherical growth and inhibition in some planes. The specific physicochemical interactions (docking of groups depending on their geometrical distribution) suggest that the biomineral structure is controlled by the biopolymer on a local scale. This information is useful for further design and improvement of (hybrid) materials for versatile application, from nanotechnology to biomedicine and engineering.

  3. Papain incorporated chitin dressings for wound debridement sterilized by gamma radiation

    International Nuclear Information System (INIS)

    Singh, Durgeshwer; Singh, Rita

    2012-01-01

    Wound debridement is essential for the removal of necrotic or nonviable tissue from the wound surface to create an environment conducive to healing. Nonsurgical enzymatic debridement is an attractive method due to its effectiveness and ease of use. Papain is a proteolytic enzyme derived from the fruit of Carica papaya and is capable of breaking down a variety of necrotic tissue substrates. The present study was focused on the use of gamma radiation for sterilization of papain dressing with wound debriding activity. Membranes with papain were prepared using 0.5% chitin in lithium chloride/dimethylacetamide solvent and sterilized by gamma radiation. Fluid absorption capacity of chitin–papain membranes without glycerol was 14.30±6.57% in 6 h. Incorporation of glycerol resulted in significant (p 2 /24 h at 24 h. Gamma irradiation at 25 kGy was found suitable for sterilization of the dressings. Infrared (IR) spectral scanning has shown that papain was stable on gamma irradiation at 25–35 kGy. The irradiated chitin–papain membranes were impermeable to different bacterial strains and also exhibited strong bactericidal action against both Gram-positive and Gram-negative bacteria. The fluid handling characteristics and the antimicrobial properties of chitin–papain membranes sterilized by gamma radiation were found suitable for use as wound dressing with debriding activity. - Highlight: ► Use of gamma radiation for sterilization of papain wound dressing was studied. ► Fluid handling and antimicrobial properties of irradiated dressings was evaluated. ► Gamma irradiation at 25 kGy was found suitable for sterilization of the dressings.

  4. The effect of rumen ciliates on chitinolytic activity, chitin content and the number of fungal zoospores in the rumen fluid of sheep.

    Science.gov (United States)

    Miltko, Renata; Bełżecki, Grzegorz; Herman, Andrzej; Kowalik, Barbara; Skomiał, Jacek

    2016-12-01

    The objective of this study was to investigate the effect of selected protozoa on the degradation and concentration of chitin and the numbers of fungal zoospores in the rumen fluid of sheep. Three adult ewes were fed a hay-concentrate diet, defaunated, then monofaunated with Entodinium caudatum or Diploplastron affine alone and refaunated with natural rumen fauna. The average density of the protozoa population varied from 6.1 · 10(4) (D. affine) to 42.2 · 10(4) cells/ml rumen fluid (natural rumen fauna). The inoculation of protozoa in the rumen of defaunated sheep increased the total activity of chitinolytic enzymes from 2.9 to 3.6 μmol N-acetylglucosamine/g dry matter (DM) of rumen fluid per min, the chitin concentration from 6.3 to 7.2 mg/g DM of rumen fluid and the number of fungal zoospores from 8.1 to 10.9 · 10(5) cells/ml rumen fluid. All examined indices showed diurnal variations. Ciliate population density was highest immediately prior to feeding and lowest at 4 h thereafter. The opposite effects were observed for the numbers of fungal zoospores, the chitin concentration and chitinolytic activity. Furthermore, it was found that chitin from zoospores may account for up to 95% of total microbial chitin in the rumen fluid of sheep. In summary, the examined ciliate species showed the ability of chitin degradation as well as a positive influence on the development of the ruminal fungal population.

  5. Slow Off-rates and Strong Product Binding Are Required for Processivity and Efficient Degradation of Recalcitrant Chitin by Family 18 Chitinases.

    Science.gov (United States)

    Kurašin, Mihhail; Kuusk, Silja; Kuusk, Piret; Sørlie, Morten; Väljamäe, Priit

    2015-11-27

    Processive glycoside hydrolases are the key components of enzymatic machineries that decompose recalcitrant polysaccharides, such as chitin and cellulose. The intrinsic processivity (P(Intr)) of cellulases has been shown to be governed by the rate constant of dissociation from polymer chain (koff). However, the reported koff values of cellulases are strongly dependent on the method used for their measurement. Here, we developed a new method for determining koff, based on measuring the exchange rate of the enzyme between a non-labeled and a (14)C-labeled polymeric substrate. The method was applied to the study of the processive chitinase ChiA from Serratia marcescens. In parallel, ChiA variants with weaker binding of the N-acetylglucosamine unit either in substrate-binding site -3 (ChiA-W167A) or the product-binding site +1 (ChiA-W275A) were studied. Both ChiA variants showed increased off-rates and lower apparent processivity on α-chitin. The rate of the production of insoluble reducing groups on the reduced α-chitin was an order of magnitude higher than koff, suggesting that the enzyme can initiate several processive runs without leaving the substrate. On crystalline chitin, the general activity of the wild type enzyme was higher, and the difference was magnifying with hydrolysis time. On amorphous chitin, the variants clearly outperformed the wild type. A model is proposed whereby strong interactions with polymer in the substrate-binding sites (low off-rates) and strong binding of the product in the product-binding sites (high pushing potential) are required for the removal of obstacles, like disintegration of chitin microfibrils. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Structural basis for new pattern of conserved amino acid residues related to chitin-binding in the antifungal peptide from the coconut rhinoceros beetle Oryctes rhinoceros.

    Science.gov (United States)

    Hemmi, Hikaru; Ishibashi, Jun; Tomie, Tetsuya; Yamakawa, Minoru

    2003-06-20

    Scarabaecin isolated from hemolymph of the coconut rhinoceros beetle Oryctes rhinoceros is a 36-residue polypeptide that has antifungal activity. The solution structure of scarabaecin has been determined from twodimensional 1H NMR spectroscopic data and hybrid distance geometry-simulated annealing protocol calculation. Based on 492 interproton and 10 hydrogen-bonding distance restraints and 36 dihedral angle restraints, we obtained 20 structures. The average backbone root-mean-square deviation for residues 4-35 is 0.728 +/- 0.217 A from the mean structure. The solution structure consists of a two-stranded antiparallel beta-sheet connected by a type-I beta-turn after a short helical turn. All secondary structures and a conserved disulfide bond are located in the C-terminal half of the peptide, residues 18-36. Overall folding is stabilized by a combination of a disulfide bond, seven hydrogen bonds, and numerous hydrophobic interactions. The structural motif of the C-terminal half shares a significant tertiary structural similarity with chitin-binding domains of plant and invertebrate chitin-binding proteins, even though scarabaecin has no overall sequence similarity to other peptide/polypeptides including chitin-binding proteins. The length of its primary structure, the number of disulfide bonds, and the pattern of conserved functional residues binding to chitin in scarabaecin differ from those of chitin-binding proteins in other invertebrates and plants, suggesting that scarabaecin does not share a common ancestor with them. These results are thought to provide further strong experimental evidence to the hypothesis that chitin-binding proteins of invertebrates and plants are correlated by a convergent evolution process.

  7. Aspergillus fumigatus Trehalose-Regulatory Subunit Homolog Moonlights To Mediate Cell Wall Homeostasis through Modulation of Chitin Synthase Activity

    Directory of Open Access Journals (Sweden)

    Arsa Thammahong

    2017-04-01

    Full Text Available Trehalose biosynthesis is found in fungi but not humans. Proteins involved in trehalose biosynthesis are essential for fungal pathogen virulence in humans and plants through multiple mechanisms. Loss of canonical trehalose biosynthesis genes in the human pathogen Aspergillus fumigatus significantly alters cell wall structure and integrity, though the mechanistic link between these virulence-associated pathways remains enigmatic. Here we characterize genes, called tslA and tslB, which encode proteins that contain domains similar to those corresponding to trehalose-6-phosphate phosphatase but lack critical catalytic residues for phosphatase activity. Loss of tslA reduces trehalose content in both conidia and mycelia, impairs cell wall integrity, and significantly alters cell wall structure. To gain mechanistic insights into the role that TslA plays in cell wall homeostasis, immunoprecipitation assays coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS were used to reveal a direct interaction between TslA and CsmA, a type V chitin synthase enzyme. TslA regulates not only chitin synthase activity but also CsmA sub-cellular localization. Loss of TslA impacts the immunopathogenesis of murine invasive pulmonary aspergillosis through altering cytokine production and immune cell recruitment. In conclusion, our data provide a novel model whereby proteins in the trehalose pathway play a direct role in fungal cell wall homeostasis and consequently impact fungus-host interactions.

  8. AN INTEGRATIVE WAY OF TEACHING MOLECULAR CELL BIOLOGY AND PROTEIN CHEMISTRY USING ACTIN IMMOBILIZATION ON CHITIN FOR PURIFYING MYOSIN II.

    Directory of Open Access Journals (Sweden)

    M.G. Souza

    2007-05-01

    Full Text Available Our intent is to present our experience on teaching Molecular Cell Biology andProtein Chemistry at UNIRIO through an innovative approach that includes myosin IIextraction and purification. We took advantage of the properties of muscle contractionand propose a simple method for purifying myosin II by affinity chromatography. Thisoriginal method is based on the preparation of an affinity column containing actinmolecules covalently bound to chitin particles. We propose a three-week syllabus thatincludes lectures and bench experimental work. The syllabus favors the activelearning of protein extraction and purification, as well as, of scientific concepts suchas muscle contraction, cytoskeleton structure and its importance for the living cell. Italso promotes the learning of the biotechnological applications of chitin and theapplications of protein immobilization in different industrial fields. Furthermore, theactivities also target the development of laboratorial technical abilities, thedevelopment of problem solving skills and the ability to write up a scientific reportfollowing the model of a scientific article. It is very important to mention that thissyllabus can be used even in places where a facility such as ultra-centrifugation islacking.

  9. Appropriate Usage Level of Shrimp Waste Meal as Chitin Source for Feeding Young Crayfish (Astacus leptodactylus Esch. 1823

    Directory of Open Access Journals (Sweden)

    Seval Bahadır Koca*, Nalan Ozgur Yigit, Arife Dulluc, Gonca Erol1, Nihal Cılbız1 and Ramazan Kucukkara1

    2011-06-01

    Full Text Available This study was conducted to determine effects of shrimp waste meal as natural chitin source at different rates (0 (control, 10, 20, 30 and 40% on growth, feed conversion ratio (FCR, survival of young crayfish (1.61±0.04 g and 3.74±0.03 cm for 60 days. Fifteen glass aquariums (70x30x40 cm were used in the experiment and 20 individuals were stocked per aquarium (95/m2. The highest of final weight and weight gain were obtained in feed with 10% shrimp waste meal group (3.29±0.23 and 1.66±0.23 g, while the lowest of final weight and weight gain was obtained in fed with 40% shrimp waste meal group (2.75±0.35 and 1.18±0.37 g, respectively. However, non-significant differences were found between final weight, weight gain, specific growth rate, final total length, feed conversion ratio, survival percentage among groups at the end of experimental period. It was concluded that shrimp waste meal as natural chitin source can be used in young crayfish diets up to 40% without adverse effect influence on growth.

  10. Evaluación analítica de óvulos de quitina Analytical evaluation of chitin pessaries

    Directory of Open Access Journals (Sweden)

    Yania Suárez Pérez

    2008-12-01

    Full Text Available Los óvulos de quitina constituyen nuevos productos en fase de investigación. Para la evaluación analítica de estos, se desarrolló un método gravimétrico directo para supositorios vaginales de diferente dosificación. La técnica se basa en la separación de la quitina de los demás componentes de la formulación según sus diferencias de solubilidad, con el empleo de la filtración al vacío. El método se validó para control de calidad, y se obtuvieron resultados satisfactorios en los parámetros evaluados: linealidad, precisión, exactitud y selectividad.Chitin pessaries are new products under research. For their analytical evaluation, a direct gravimetric method for vaginal suppositories of various dosing was designed. This technique was based on separation of chitin from the rest of the formulation components according to their solubility characteristics, by using vacuum filtering. The method was validated for quality control and the results were satisfactory in terms of the evaluated parameters such as linearity, precision, accuracy and selectivity.

  11. An integrated theoretical and experimental investigation of insensitive munition compounds adsorption on cellulose, cellulose triacetate, chitin and chitosan surfaces.

    Science.gov (United States)

    Gurtowski, Luke A; Griggs, Chris S; Gude, Veera G; Shukla, Manoj K

    2018-02-01

    This manuscript reports results of combined computational chemistry and batch adsorption investigation of insensitive munition compounds, 2,4-dinitroanisole (DNAN), triaminotrinitrobenzene (TATB), 1,1-diamino-2,2-dinitroethene (FOX-7) and nitroguanidine (NQ), and traditional munition compound 2,4,6-trinitrotoluene (TNT) on the surfaces of cellulose, cellulose triacetate, chitin and chitosan biopolymers. Cellulose, cellulose triacetate, chitin and chitosan were modeled as trimeric form of the linear chain of 4 C 1 chair conformation of β-d-glucopyranos, its triacetate form, β-N-acetylglucosamine and D-glucosamine, respectively, in the 1➔4 linkage. Geometries were optimized at the M062X functional level of the density functional theory (DFT) using the 6-31G(d,p) basis set in the gas phase and in the bulk water solution using the conductor-like polarizable continuum model (CPCM) approach. The nature of potential energy surfaces of the optimized geometries were ascertained through the harmonic vibrational frequency analysis. The basis set superposition error (BSSE) corrected interaction energies were obtained using the 6-311G(d,p) basis set at the same theoretical level. The computed BSSE in the gas phase was used to correct interaction energy in the bulk water solution. Computed and experimental results regarding the ability of considered surfaces in adsorbing the insensitive munitions compounds are discussed. Copyright © 2017. Published by Elsevier B.V.

  12. A Preliminary Evaluation of Lyophilized Gelatin Sponges, Enhanced with Platelet-Rich Plasma, Hydroxyapatite and Chitin Whiskers for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Andrew J. Spence

    2013-04-01

    Full Text Available The purpose of this study was to perform a number of preliminary in vitro evaluations on an array of modified gelatin gel sponge scaffolds for use in a bone graft application. The gelatin gels were modified through the addition of a number of components which each possess unique properties conducive to the creation and regeneration of bone: a preparation rich in growth factors (PRGF, a bioactive, lyophilized form of platelet-rich plasma, hydroxyapatite, and chitin whiskers. Platelet-rich plasma therapy is an emerging practice that has proven effective in a number of clinical applications, including enhancing bone repair through improved deposition of new bony matrix and angiogenesis. As such, the inclusion of PRGF in our gelatin scaffolds was intended to significantly enhance scaffold bioactivity, while the addition of hydroxyapatite and chitin whiskers were anticipated to increase scaffold strength. Additionally, the gelatin sponges, which readily dissolve in aqueous solutions, were subjected to 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC cross-linking, either during or post-gelation, to control their rate of degradation. Scaffolds were evaluated in vitro with respect to compressive strength, mass loss/degradation, protein release, and cellular interaction, with results demonstrating the potential of the gelatin gel sponge scaffold for use in the regeneration of bone.

  13. A Preliminary Evaluation of Lyophilized Gelatin Sponges, Enhanced with Platelet-Rich Plasma, Hydroxyapatite and Chitin Whiskers for Bone Regeneration

    Science.gov (United States)

    Rodriguez, Isaac A.; Sell, Scott A.; McCool, Jennifer M.; Saxena, Gunjan; Spence, Andrew J.; Bowlin, Gary L.

    2013-01-01

    The purpose of this study was to perform a number of preliminary in vitro evaluations on an array of modified gelatin gel sponge scaffolds for use in a bone graft application. The gelatin gels were modified through the addition of a number of components which each possess unique properties conducive to the creation and regeneration of bone: a preparation rich in growth factors (PRGF, a bioactive, lyophilized form of platelet-rich plasma), hydroxyapatite, and chitin whiskers. Platelet-rich plasma therapy is an emerging practice that has proven effective in a number of clinical applications, including enhancing bone repair through improved deposition of new bony matrix and angiogenesis. As such, the inclusion of PRGF in our gelatin scaffolds was intended to significantly enhance scaffold bioactivity, while the addition of hydroxyapatite and chitin whiskers were anticipated to increase scaffold strength. Additionally, the gelatin sponges, which readily dissolve in aqueous solutions, were subjected to 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) cross-linking, either during or post-gelation, to control their rate of degradation. Scaffolds were evaluated in vitro with respect to compressive strength, mass loss/degradation, protein release, and cellular interaction, with results demonstrating the potential of the gelatin gel sponge scaffold for use in the regeneration of bone. PMID:24709699

  14. Domain wise docking analyses of the modular chitin binding protein CBP50 from Bacillus thuringiensis serovar konkukian S4.

    Science.gov (United States)

    Sehar, Ujala; Mehmood, Muhammad Aamer; Hussain, Khadim; Nawaz, Salman; Nadeem, Shahid; Siddique, Muhammad Hussnain; Nadeem, Habibullah; Gull, Munazza; Ahmad, Niaz; Sohail, Iqra; Gill, Saba Shahid; Majeed, Summera

    2013-01-01

    This paper presents an in silico characterization of the chitin binding protein CBP50 from B. thuringiensis serovar konkukian S4 through homology modeling and molecular docking. The CBP50 has shown a modular structure containing an N-terminal CBM33 domain, two consecutive fibronectin-III (Fn-III) like domains and a C-terminal CBM5 domain. The protein presented a unique modular structure which could not be modeled using ordinary procedures. So, domain wise modeling using MODELLER and docking analyses using Autodock Vina were performed. The best conformation for each domain was selected using standard procedure. It was revealed that four amino acid residues Glu-71, Ser-74, Glu-76 and Gln-90 from N-terminal domain are involved in protein-substrate interaction. Similarly, amino acid residues Trp-20, Asn-21, Ser-23 and Val-30 of Fn-III like domains and Glu-15, Ala-17, Ser-18 and Leu-35 of C-terminal domain were involved in substrate binding. Site-directed mutagenesis of these proposed amino acid residues in future will elucidate the key amino acids involved in chitin binding activity of CBP50 protein.

  15. Hepatocyte Aggregate Formation on Chitin-Based Anisotropic Microstructures of Butterfly Wings

    Directory of Open Access Journals (Sweden)

    Abdelrahman Elbaz

    2018-01-01

    Full Text Available Scaffold nanotopography plays the most significant role in the mimicry of the in vivo microenvironment of the hepatocytes. Several attempts have been made to develop methods and substrates suited to growing hepatocytes into aggregates. Functional biomaterials, particularly biodegradable polymers, have been used in several studies aimed to develop improved scaffolds with ordered geometry and nanofibrous architecture for tissue engineering. However, there are still some limitation in their fabrication: it is not cost-efficient, is time-consuming, and exhibits some technological complications. The synthetic scaffolds are usually non-biodegradable and can be non-biocompatible compared to the naturally derived biomaterials. Here, we utilized a simple, cost-effective, and green method with two-step chemical treatment to get more selected hydrophilic butterfly wings from Morpho menelaus, Papilio ulysses telegonus, and Ornithoptera croesus lydius as a chitin-based natural scaffolds to growing hepatocyte aggregates. We established a three-dimensional (3D in vitro model for culture of HepG2 cells and aggregate formation that maintained the hepatocytes function on these natural anisotropic microstructures. Cells cultured on these substrates show higher viability than those cultured on a two-dimensional (2D culture plate. Methylthiazolyldiphenyl-tetrazolium bromide (MTT assay results revealed excellent viability of HepG2 cells on P. u. telegonus wings (fibrous area. The results also demonstrated appropriate cell activity, cell retention, and stable and functional expression in terms of albumin secretion and urea synthesis activity compared to the 2D monolayer culture of hepatocytes on the culture dish surface. With a slightly different degree, the other substrates also shown similar results. We anticipate that these natural anisotropic, biodegradable, and biocompatible substrates can maintain long-term hepatic culture as an in vitro 3D model for potential

  16. Species-specific chitin-binding module 18 expansion in the amphibian pathogen Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Abramyan, John; Stajich, Jason E

    2012-01-01

    Batrachochytrium dendrobatidis is the causative agent of chytridiomycosis, which is considered one of the driving forces behind the worldwide decline in populations of amphibians. As a member of the phylum Chytridiomycota, B. dendrobatidis has diverged significantly to emerge as the only pathogen of adult vertebrates. Such shifts in lifestyle are generally accompanied by various degrees of genomic modifications, yet neither its mode of pathogenicity nor any factors associated with it have ever been identified. Presented here is the identification and characterization of a unique expansion of the carbohydrate-binding module family 18 (CBM18), specific to B. dendrobatidis. CBM (chitin-binding module) expansions have been likened to the evolution of pathogenicity in a variety of fungus species, making this expanded group a prime candidate for the identification of potential pathogenicity factors. Furthermore, the CBM18 expansions are confined to three categories of genes, each having been previously implicated in host-pathogen interactions. These correlations highlight this specific domain expansion as a potential key player in the mode of pathogenicity in this unique fungus. The expansion of CBM18 in B. dendrobatidis is exceptional in its size and diversity compared to other pathogenic species of fungi, making this genomic feature unique in an evolutionary context as well as in pathogenicity. Amphibian populations are declining worldwide at an unprecedented rate. Although various factors are thought to contribute to this phenomenon, chytridiomycosis has been identified as one of the leading causes. This deadly fungal disease is cause by Batrachochytrium dendrobatidis, a chytrid fungus species unique in its pathogenicity and, furthermore, its specificity to amphibians. Despite more than two decades of research, the biology of this fungus species and its deadly interaction with amphibians had been notoriously difficult to unravel. Due to the alarming rate of worldwide

  17. Actin Immobilization on Chitin for Purifying Myosin II: A Laboratory Exercise That Integrates Concepts of Molecular Cell Biology and Protein Chemistry

    Science.gov (United States)

    de Souza, Marcelle Gomes; Grossi, Andre Luiz; Pereira, Elisangela Lima Bastos; da Cruz, Carolina Oliveira; Mendes, Fernanda Machado; Cameron, Luiz Claudio; Paiva, Carmen Lucia Antao

    2008-01-01

    This article presents our experience on teaching biochemical sciences through an innovative approach that integrates concepts of molecular cell biology and protein chemistry. This original laboratory exercise is based on the preparation of an affinity chromatography column containing F-actin molecules immobilized on chitin particles for purifying…

  18. A novel Arabidopsis CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) mutant with enhanced pathogen-induced cell death and altered receptor processing.

    Science.gov (United States)

    Petutschnig, Elena K; Stolze, Marnie; Lipka, Ulrike; Kopischke, Michaela; Horlacher, Juliane; Valerius, Oliver; Rozhon, Wilfried; Gust, Andrea A; Kemmerling, Birgit; Poppenberger, Brigitte; Braus, Gerhard H; Nürnberger, Thorsten; Lipka, Volker

    2014-12-01

    Plants detect pathogens by sensing microbe-associated molecular patterns (MAMPs) through pattern recognition receptors. Pattern recognition receptor complexes also have roles in cell death control, but the underlying mechanisms are poorly understood. Here, we report isolation of cerk1-4, a novel mutant allele of the Arabidopsis chitin receptor CERK1 with enhanced defense responses. We identified cerk1-4 in a forward genetic screen with barley powdery mildew and consequently characterized it by pathogen assays, mutant crosses and analysis of defense pathways. CERK1 and CERK1-4 proteins were analyzed biochemically. The cerk1-4 mutation causes an amino acid exchange in the CERK1 ectodomain. Mutant plants maintain chitin signaling capacity but exhibit hyper-inducible salicylic acid concentrations and deregulated cell death upon pathogen challenge. In contrast to chitin signaling, the cerk1-4 phenotype does not require kinase activity and is conferred by the N-terminal part of the receptor. CERK1 undergoes ectodomain shedding, a well-known process in animal cell surface proteins. Wild-type plants contain the full-length CERK1 receptor protein as well as a soluble form of the CERK1 ectodomain, whereas cerk1-4 plants lack the N-terminal shedding product. Our work suggests that CERK1 may have a chitin-independent role in cell death control and is the first report of ectodomain shedding in plants. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  19. A High Diversity in Chitinolytic and Chitosanolytic Species and Enzymes and Their Oligomeric Products Exist in Soil with a History of Chitin and Chitosan Exposure.

    Science.gov (United States)

    Nampally, Malathi; Rajulu, M B Govinda; Gillet, Dominique; Suryanarayanan, T S; Moerschbacher, Bruno B

    2015-01-01

    Chitin is one of the most abundant biomolecules on earth, and its partially de-N-acetylated counterpart, chitosan, is one of the most promising biotechnological resources due to its diversity in structure and function. Recently, chitin and chitosan modifying enzymes (CCMEs) have gained increasing interest as tools to engineer chitosans with specific functions and reliable performance in biotechnological and biomedical applications. In a search for novel CCME, we isolated chitinolytic and chitosanolytic microorganisms from soils with more than ten-years history of chitin and chitosan exposure and screened them for chitinase and chitosanase isoenzymes as well as for their patterns of oligomeric products by incubating their secretomes with chitosan polymers. Of the 60 bacterial strains isolated, only eight were chitinolytic and/or chitosanolytic, while 20 out of 25 fungal isolates were chitinolytic and/or chitosanolytic. The bacterial isolates produced rather similar patterns of chitinolytic and chitosanolytic enzymes, while the fungal isolates produced a much broader range of different isoenzymes. Furthermore, diverse mixtures of oligosaccharides were formed when chitosan polymers were incubated with the secretomes of select fungal species. Our study indicates that soils with a history of chitin and chitosan exposure are a good source of novel CCME for chitosan bioengineering.

  20. A novel salt-tolerant chitobiosidase discovered by genetic screening of a metagenomic library derived from chitin-amended agricultural soil

    NARCIS (Netherlands)

    Cretoiu, Mariana Silvia; Berini, Francesca; Kielak, Anna Maria; Marinelli, Flavia; van Elsas, Jan Dirk

    2015-01-01

    Here, we report on the construction of a metagenomic library from a chitin-amended disease-suppressive agricultural soil and its screening for genes that encode novel chitinolytic enzymes. The library, constructed in fosmids in an Escherichia coli host, comprised 145,000 clones containing inserts of

  1. β-Chitin and chitosan from squid gladius: Biological activities of chitosan and its application as clarifying agent for apple juice.

    Science.gov (United States)

    Abdelmalek, Baha Eddine; Sila, Assaâd; Haddar, Anissa; Bougatef, Ali; Ayadi, Mohamed Ali

    2017-11-01

    Chitin is the second most abundant polysaccharide in biomass after cellulose and the term chitosan usually refers to a family of polymers obtained after chitin deacetylation. The aim of this work was the preparation and the characterization of chitin and chitosan from the gladius (pen) of the European squid (Loligo vulgaris). A high level of deproteinization (more than 80%) was recorded using Alcalase ® with an enzyme/protein ratio of 10U/mg. The demineralization of the gladius was completely achieved within 8h at room temperature in HCl. 13 C NMR, FTIR, and XRD diffractograms of prepared chitin and chitosan were taken and then degree of deacetylation of chitosan was calculated using 13 C CP/MAS-NMR Spectroscopic. Further, in vitro antioxidant capacity of chitosan was evaluated on 1,1-diphenyl-2-picrylhydrazyl method (IC 50 =3.2mgmL -1 ) and the β-carotene bleaching assay (IC 50 =3.3mgmL -1 ). Antimicrobial activity was also investigated and assays indicated that prepared chitosan exhibited marked inhibitory activity against all microbial strains tested. Additionally, chitosan was tested such as clarifying agent for apple juice and showed powerful clarification capability, without affecting nutritional value. Furthermore, the results suggested that prepared chitosan could be used as alternative additive in pharmaceutical preparations and food industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A High Diversity in Chitinolytic and Chitosanolytic Species and Enzymes and Their Oligomeric Products Exist in Soil with a History of Chitin and Chitosan Exposure

    Science.gov (United States)

    Nampally, Malathi; Rajulu, M. B. Govinda; Gillet, Dominique; Suryanarayanan, T. S.; Moerschbacher, Bruno B.

    2015-01-01

    Chitin is one of the most abundant biomolecules on earth, and its partially de-N-acetylated counterpart, chitosan, is one of the most promising biotechnological resources due to its diversity in structure and function. Recently, chitin and chitosan modifying enzymes (CCMEs) have gained increasing interest as tools to engineer chitosans with specific functions and reliable performance in biotechnological and biomedical applications. In a search for novel CCME, we isolated chitinolytic and chitosanolytic microorganisms from soils with more than ten-years history of chitin and chitosan exposure and screened them for chitinase and chitosanase isoenzymes as well as for their patterns of oligomeric products by incubating their secretomes with chitosan polymers. Of the 60 bacterial strains isolated, only eight were chitinolytic and/or chitosanolytic, while 20 out of 25 fungal isolates were chitinolytic and/or chitosanolytic. The bacterial isolates produced rather similar patterns of chitinolytic and chitosanolytic enzymes, while the fungal isolates produced a much broader range of different isoenzymes. Furthermore, diverse mixtures of oligosaccharides were formed when chitosan polymers were incubated with the secretomes of select fungal species. Our study indicates that soils with a history of chitin and chitosan exposure are a good source of novel CCME for chitosan bioengineering. PMID:26273652

  3. Influence of Functionalization Degree on the Rheological Properties of Isocyanate-Functionalized Chitin- and Chitosan-Based Chemical Oleogels for Lubricant Applications

    Directory of Open Access Journals (Sweden)

    Rocío Gallego

    2014-07-01

    Full Text Available This work deals with the influence of functionalization degree on the thermogravimetric and rheological behaviour of NCO-functionalized chitosan- and chitin-based oleogels. Chitosan and chitin were functionalized using different proportions of 1,6-hexamethylene diisocyanate (HMDI and subsequently dispersed in castor oil to promote the chemical reaction between the –NCO group of the modified biopolymer and the –OH group located in the ricinoleic fatty acid chain of castor oil, thus resulting in different oleogels with specific thermogravimetric and rheological characteristics. Biopolymers and oleogels were characterized through Fourier transform infrared spectroscopy (FTIR and thermogravimetric analysis (TGA. Small-amplitude oscillatory shear (SAOS measurements were performed on the oleogels. Oleogels presented suitable thermal resistance, despite the fact that the inclusion of HMDI moieties in the polymer structure led to a reduction in the onset temperature of thermal degradation. The insertion of low amounts of HMDI in both chitin and chitosan produces a drastic reduction in the values of oleogel viscoelastic functions but, above a critical threshold, they increase with the functionalization degree so that isocyanate functionalization results in a chemical tool to modulate oleogel rheological response. Several NCO-functionalized chitosan- and chitin-based oleogel formulations present suitable thermal resistance and rheological characteristics to be proposed as bio-based alternatives to traditional lubricating greases.

  4. Morphological study of chitin from Xiphopenaeus kroyeri exoskeletons by using atomic force microscopy (AFM) and CPMAS {sup 13} C NMR; Estudo morfologico de quitina da exocuticula de Xiphopenaeus kroyeri por AFM e por CPMAS {sup 13} C NMR

    Energy Technology Data Exchange (ETDEWEB)

    Silva, K.M.; Tavares, M.I.; Andrade, C.T. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas; Simao, R.A. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Metalurgica e de Materiais

    1999-07-01

    A sample of {alpha} chitin was isolated from exoskeletons of Xiphopenaeus kroyeri. This sample ws dissolved in phosphoric acid and recovered as a fibrous precipitate. Atomic force microscopy was used in noncontact mode to obtain images of the native chitin sample. Different morphological features were observed, including rigid rod crystals 200-300 nm wide. Solid state {sup 13} C NMR techniques were used to investigate chitin samples, and revealed molecular order in both samples. The differences observed in the proton spin-lattice relaxation times in the rotating frame, T{sup H1}{sub p} were attributed to the formation of hydrogen bonds in preferential sites in the samples. (author)

  5. Presence of a large β(1-3)glucan linked to chitin at the Saccharomyces cerevisiae mother-bud neck suggests involvement in localized growth control.

    Science.gov (United States)

    Cabib, Enrico; Blanco, Noelia; Arroyo, Javier

    2012-04-01

    Previous results suggested that the chitin ring present at the yeast mother-bud neck, which is linked specifically to the nonreducing ends of β(1-3)glucan, may help to suppress cell wall growth at the neck by competing with β(1-6)glucan and thereby with mannoproteins for their attachment to the same sites. Here we explored whether the linkage of chitin to β(1-3)glucan may also prevent the remodeling of this polysaccharide that would be necessary for cell wall growth. By a novel mild procedure, β(1-3)glucan was isolated from cell walls, solubilized by carboxymethylation, and fractionated by size exclusion chromatography, giving rise to a very high-molecular-weight peak and to highly polydisperse material. The latter material, soluble in alkali, may correspond to glucan being remodeled, whereas the large-size fraction would be the final cross-linked structural product. In fact, the β(1-3)glucan of buds, where growth occurs, is solubilized by alkali. A gas1 mutant with an expected defect in glucan elongation showed a large increase in the polydisperse fraction. By a procedure involving sodium hydroxide treatment, carboxymethylation, fractionation by affinity chromatography on wheat germ agglutinin-agarose, and fractionation by size chromatography on Sephacryl columns, it was shown that the β(1-3)glucan attached to chitin consists mostly of high-molecular-weight material. Therefore, it appears that linkage to chitin results in a polysaccharide that cannot be further remodeled and does not contribute to growth at the neck. In the course of these experiments, the new finding was made that part of the chitin forms a noncovalent complex with β(1-3)glucan.

  6. ADSORPTION TO CHITIN – A VIABLE AND ORGANISM-PROTECTING METHOD FOR BIOMONITORING METALS PRESENT IN DIFFERENT ENVIRONMENTAL COMPARTMENTS GETTING CONTACTED WITH ARTHROPODS

    Directory of Open Access Journals (Sweden)

    S. Fränzle

    2015-04-01

    Full Text Available Among the various biopolymers which cover outer interfaces of organisms, chitin is the most abundant: each year several billion metric tons (possibly even much more are produced by arthropods and processed in soil and litter, wet sediment  (especially in moist soils while otherwise chitin samples can persist virtually unchanged for geological periods of time. Moreover, arthropods, among which Coleoptera are represented by some 400,000 species alone, inhabit almost all ecosystems, way beyond the ecological range of, say, mosses. Given that adsorption of metalliferous analytes (ions, volatile compounds, complexes of whatever net charge to chitin obtained from arthropods can be demonstrated (and it partly was already, it is feasible to obtain data on environmental element contents in all water, soil and gas phase (atmosphere by dissolving, analyzing outermost (part of exocuticle chitin layers. Data on relative uptake contributions/environmental burdens of either compartment can be obtained by both interspecies-comparisons and sampling of different parts of some larger arthropod (abdomen-, outer- and inner wing surfaces of sizable beetles. As just a very thin chitin layer (< 2 µm is ablated from the animal´s outer surface by dissolution using little toxic components, sampling will not cause harm to them, enabling a repeated sampling of the same specimen (e.g. for taking t = 0 starting values and b use of rare or/and protected species. Applications are with both biomonitoring and a better understanding of metal ion transport in ecosystems, e.g. concerning interfacial Mn+ binding to dying zooplankton then sinking below the chemokline of euxinic water bodies. An indirect metal levels monitoring of woody plants and underneath soils also appears feasible.

  7. Preparation of High Purity, High Molecular-Weight Chitin from Ionic Liquids for Use as an Adsorbate for the Extraction of Uranium from Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Robin [Univ. of Alabama, Tuscaloosa, AL (United States)

    2013-12-21

    Ensuring a domestic supply of uranium is a key issue facing the wider implementation of nuclear power. Uranium is mostly mined in Kazakhstan, Australia, and Canada, and there are few high-grade uranium reserves left worldwide. Therefore, one of the most appealing potential sources of uranium is the vast quantity dissolved in the oceans (estimated to be 4.4 billion tons worldwide). There have been research efforts centered on finding a means to extract uranium from seawater for decades, but so far none have resulted in an economically viable product, due in part to the fact that the materials that have been successfully demonstrated to date are too costly (in terms of money and energy) to produce on the necessary scale. Ionic Liquids (salts which melt below 100{degrees}C) can completely dissolve raw crustacean shells, leading to recovery of a high purity, high molecular weight chitin powder and to fibers and films which can be spun directly from the extract solution suggesting that continuous processing might be feasible. The work proposed here will utilize the unprecedented control this makes possible over the chitin fiber a) to prepare electrospun nanofibers of very high surface area and in specific architectures, b) to modify the fiber surfaces chemically with selective extractant capacity, and c) to demonstrate their utility in the direct extraction and recovery of uranium from seawater. This approach will 1) provide direct extraction of chitin from shellfish waste thus saving energy over the current industrial process for obtaining chitin; 2) allow continuous processing of nanofibers for very high surface area fibers in an economical operation; 3) provide a unique high molecular weight chitin not available from the current industrial process, leading to stronger, more durable fibers; and 4) allow easy chemical modification of the large surface areas of the fibers for appending uranyl selective functionality providing selectivity and ease of stripping. The

  8. Preparation of High Purity, High Molecular-Weight Chitin from Ionic Liquids for Use as an Adsorbate for the Extraction of Uranium from Seawater

    International Nuclear Information System (INIS)

    Rogers, Robin

    2013-01-01

    Ensuring a domestic supply of uranium is a key issue facing the wider implementation of nuclear power. Uranium is mostly mined in Kazakhstan, Australia, and Canada, and there are few high-grade uranium reserves left worldwide. Therefore, one of the most appealing potential sources of uranium is the vast quantity dissolved in the oceans (estimated to be 4.4 billion tons worldwide). There have been research efforts centered on finding a means to extract uranium from seawater for decades, but so far none have resulted in an economically viable product, due in part to the fact that the materials that have been successfully demonstrated to date are too costly (in terms of money and energy) to produce on the necessary scale. Ionic Liquids (salts which melt below 100 deg C) can completely dissolve raw crustacean shells, leading to recovery of a high purity, high molecular weight chitin powder and to fibers and films which can be spun directly from the extract solution suggesting that continuous processing might be feasible. The work proposed here will utilize the unprecedented control this makes possible over the chitin fiber a) to prepare electrospun nanofibers of very high surface area and in specific architectures, b) to modify the fiber surfaces chemically with selective extractant capacity, and c) to demonstrate their utility in the direct extraction and recovery of uranium from seawater. This approach will 1) provide direct extraction of chitin from shellfish waste thus saving energy over the current industrial process for obtaining chitin; 2) allow continuous processing of nanofibers for very high surface area fibers in an economical operation; 3) provide a unique high molecular weight chitin not available from the current industrial process, leading to stronger, more durable fibers; and 4) allow easy chemical modification of the large surface areas of the fibers for appending uranyl selective functionality providing selectivity and ease of stripping. The resulting

  9. Sequence and structural analysis of the chitinase insertion domain reveals two conserved motifs involved in chitin-binding.

    Directory of Open Access Journals (Sweden)

    Hai Li

    2010-01-01

    Full Text Available Chitinases are prevalent in life and are found in species including archaea, bacteria, fungi, plants, and animals. They break down chitin, which is the second most abundant carbohydrate in nature after cellulose. Hence, they are important for maintaining a balance between carbon and nitrogen trapped as insoluble chitin in biomass. Chitinases are classified into two families, 18 and 19 glycoside hydrolases. In addition to a catalytic domain, which is a triosephosphate isomerase barrel, many family 18 chitinases contain another module, i.e., chitinase insertion domain. While numerous studies focus on the biological role of the catalytic domain in chitinase activity, the function of the chitinase insertion domain is not completely understood. Bioinformatics offers an important avenue in which to facilitate understanding the role of residues within the chitinase insertion domain in chitinase function.Twenty-seven chitinase insertion domain sequences, which include four experimentally determined structures and span five kingdoms, were aligned and analyzed using a modified sequence entropy parameter. Thirty-two positions with conserved residues were identified. The role of these conserved residues was explored by conducting a structural analysis of a number of holo-enzymes. Hydrogen bonding and van der Waals calculations revealed a distinct subset of four conserved residues constituting two sequence motifs that interact with oligosaccharides. The other conserved residues may be key to the structure, folding, and stability of this domain.Sequence and structural studies of the chitinase insertion domains conducted within the framework of evolution identified four conserved residues which clearly interact with the substrates. Furthermore, evolutionary studies propose a link between the appearance of the chitinase insertion domain and the function of family 18 chitinases in the subfamily A.

  10. Evolution and functional insights of different ancestral orthologous clades of chitin synthase genes in the fungal tree of life

    Directory of Open Access Journals (Sweden)

    Mu eLi

    2016-02-01

    Full Text Available Chitin synthases (CHSs are key enzymes in the biosynthesis of chitin, an important structural component of fungal cell walls that can trigger innate immune responses in host plants and animals. Members of CHS gene family perform various functions in fungal cellular processes. Previous studies focused primarily on classifying diverse CHSs into different classes, regardless of their functional diversification, or on characterizing their functions in individual fungal species. A complete and systematic comparative analysis of CHS genes based on their orthologous relationships will be valuable for elucidating the evolution and functions of different CHS genes in fungi. Here, we identified and compared members of the CHS gene family across the fungal tree of life, including 18 divergent fungal lineages. Phylogenetic analysis revealed that the fungal CHS gene family is comprised of at least 10 ancestral orthologous clades, which have undergone multiple independent duplications and losses in different fungal lineages during evolution. Interestingly, one of these CHS clades (class III was expanded in plant or animal pathogenic fungi belonging to different fungal lineages. Two clades (classes VIb and VIc identified for the first time in this study occurred mainly in plant pathogenic fungi from Sordariomycetes and Dothideomycetes. Moreover, members of classes III and VIb were specifically up-regulated during plant infection, suggesting important roles in pathogenesis. In addition, CHS-associated networks conserved among plant pathogenic fungi are involved in various biological processes, including sexual reproduction and plant infection. We also identified specificity-determining sites, many of which are located at or adjacent to important structural and functional sites that are potentially responsible for functional divergence of different CHS classes. Overall, our results provide new insights into the evolution and function of members of CHS gene

  11. Single step synthesis of chitin/chitosan-based graphene oxide–ZnO hybrid composites for better electrical conductivity and optical properties

    International Nuclear Information System (INIS)

    Anandhavelu, S.; Thambidurai, S.

    2013-01-01

    Highlights: ► UV absorption at 260–360 nm confirmed strong binding of ZnO with chitosan–GO sheets. ► Chitin-based GO–ZnO shows higher electrical conductivity than chitosan-based GO–ZnO. ► Chitin-based GO–ZnO will useful in sensing, catalysis and energy storage applications. -- Abstract: We synthesized two composites/hybrid composites with a graphene oxide (GO)/mixed GO–ZnO filler using either a chitin or a chitosan matrix. Fourier transform infrared spectroscopy analysis confirmed that chitin had been converted to chitosan during matrix fabrication because only chitosan, ZnO and GO were shown to be present in the composites/hybrid composites. Raman spectroscopy indicated the display of D and G bands at 1345 cm −1 and 1584 cm −1 , respectively. UV absorption peaks appeared at 260–360 nm and 201 nm in both hybrid composites, which indicate a strong binding of ZnO within the chitosan–GO sheets. High resolution scanning electron microscopy and atomic force microscopy studies demonstrated that on a molecular scale ZnO was well dispersed in the hybrid composites. Impedance spectroscopy and a four-probe resistivity method were used for room temperature electrical conductivity measurements. The electrical conductivity of the chitin-based GO–ZnO hybrid composites was estimated to be ∼5.94 × 10 6 S/cm and was greater than that of the chitosan-based GO–ZnO hybrid composite (∼4.13 × 10 6 S/cm). The chitin-based GO–ZnO hybrid composite had a higher optical band gap (3.4 eV) than the chitosan-based GO–ZnO hybrid composite (3.0 eV). The current–voltage measurement showed that electrical sheets resistance of the chitosan-based composites decreased with formation of ZnO

  12. Preparation, characterization and environmental/electrochemical energy storage testing of low-cost biochar from natural chitin obtained via pyrolysis at mild conditions

    Science.gov (United States)

    Magnacca, Giuliana; Guerretta, Federico; Vizintin, Alen; Benzi, Paola; Valsania, Maria C.; Nisticò, Roberto

    2018-01-01

    Chitin (a biopolymer obtained from shellfish industry) was used as precursor for the production of biochars obtained via pyrolysis treatments performed at mild conditions (in the 290-540 °C range). Biochars were physicochemical characterized in order to evaluate the pyrolysis-induced effects in terms of both functional groups and material structure. Moreover, such carbonaceous materials were tested as adsorbent substrates for the removal of target molecules from aqueous environment as well as in solid-gas experiments, to measure the adsorption capacities and selectivity toward CO2. Lastly, biochars were also investigated as possible cathode materials in sustainable and low-cost electrochemical energy storage devices, such as lithium-sulphur (Li-S) batteries. Interestingly, experimental results evidenced that such chitin-derived biochars obtained via pyrolysis at mild conditions are sustainable, low-cost and easy scalable alternative materials suitable for both environmental and energetic applications.

  13. Extraction of Crude Chitinase from Higher Plants and their Chitin-Hydrolysis Activities; Kotosyokubutu yurai kichinaze no chusyutu to kichin bunkai kassei

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, K.; Harada, K.; Shibata, M.; Maeda, R. [Doshisha Univ., Kyoto (Japan). Faculty of Engineering

    1997-07-10

    To prepare a purified chitinase from higher plants, firstly, crude enzymes were extracted from six higher plants, namely, radish seeds, sunflower seeds, watermelon seeds, bamboo leaves, orange skin, and persimmon skin. Using these crude enzymes, pH dependencies of hydrolysis reaction of colloidal chitin are investigated. For radish seeds and bamboo leaves, which have relatively high activities, the kinetics of enzymatic reaction are studies. It is clear that these reactions obey Michaelis-Menten kinetics. 7 refs., 3 figs., 2 tabs.

  14. Paenibacillus larvae chitin-degrading protein PlCBP49 is a key virulence factor in American Foulbrood of honey bees.

    Directory of Open Access Journals (Sweden)

    Eva Garcia-Gonzalez

    2014-07-01

    Full Text Available Paenibacillus larvae, the etiological agent of the globally occurring epizootic American Foulbrood (AFB of honey bees, causes intestinal infections in honey bee larvae which develop into systemic infections inevitably leading to larval death. Massive brood mortality might eventually lead to collapse of the entire colony. Molecular mechanisms of host-microbe interactions in this system and of differences in virulence between P. larvae genotypes are poorly understood. Recently, it was demonstrated that the degradation of the peritrophic matrix lining the midgut epithelium is a key step in pathogenesis of P. larvae infections. Here, we present the isolation and identification of PlCBP49, a modular, chitin-degrading protein of P. larvae and demonstrate that this enzyme is crucial for the degradation of the larval peritrophic matrix during infection. PlCBP49 contains a module belonging to the auxiliary activity 10 (AA10, formerly CBM33 family of lytic polysaccharide monooxygenases (LPMOs which are able to degrade recalcitrant polysaccharides. Using chitin-affinity purified PlCBP49, we provide evidence that PlCBP49 degrades chitin via a metal ion-dependent, oxidative mechanism, as already described for members of the AA10 family. Using P. larvae mutants lacking PlCBP49 expression, we analyzed in vivo biological functions of PlCBP49. In the absence of PlCBP49 expression, peritrophic matrix degradation was markedly reduced and P. larvae virulence was nearly abolished. This indicated that PlCBP49 is a key virulence factor for the species P. larvae. The identification of the functional role of PlCBP49 in AFB pathogenesis broadens our understanding of this important family of chitin-binding and -degrading proteins, especially in those bacteria that can also act as entomopathogens.

  15. Ochratoxin A removal from red wine by several oenological fining agents: bentonite, egg albumin, allergen-free adsorbents, chitin and chitosan.

    Science.gov (United States)

    Quintela, S; Villarán, M C; López De Armentia, I; Elejalde, E

    2012-01-01

    The ability of several oenological fining agents to remove ochratoxin A (OTA) from red wine was studied. The adsorbents tested were activated sodium bentonite, egg albumin, allergen-free adsorbents (complex PVPP, plant protein and amorphous silica (complex) and high molecular weight gelatine), and the non-toxic biodegradable polymers (chitin and chitosan). Several dosages within the oenological use range were tested and the wine pH, colour parameters and polyphenol concentration impact associated with each fining agent were studied. Generally, OTA removal achieved in all treatments was higher when the adsorbent dosage increased, but the impact on wine quality also was higher. Chitin at 50 g hl(-1) removed 18% the OTA without affecting significantly the wine-quality parameters. At the highest dosage tested the gelatine and complex treatments achieved greater OTA removal (up to 39-40%) compared with bentonite, egg albumin and chitin. Moreover, the gelatine and the complex had a lower impact on colour parameters and polyphenol concentration compared with chitosan, whilst OTA was reduced to around 40%. Chitosan achieved the greatest OTA removal (67%), but it strongly affected the wine-quality parameters. Otherwise, bentonite showed a relative efficiency to remove OTA, but the CI value decreased considerably. The egg albumin treatment only removed OTA up to 16% and moreover affected strongly the CI value and CIELab parameters. The results of this survey showed that the non-toxic chitin adsorbent and the allergen-free adsorbents tested could be considered as alternative fining agents to reduce OTA in red wine.

  16. Insight into the adsorption profiles of the Saprolegnia monoica chitin synthase MIT domain on POPA and POPC membranes by molecular dynamics simulation studies.

    Science.gov (United States)

    Kuang, Guanglin; Liang, Lijun; Brown, Christian; Wang, Qi; Bulone, Vincent; Tu, Yaoquan

    2016-02-21

    The critical role of chitin synthases in oomycete hyphal tip growth has been established. A microtubule interacting and trafficking (MIT) domain was discovered in the chitin synthases of the oomycete model organism, Saprolegnia monoica. MIT domains have been identified in diverse proteins and may play a role in intracellular trafficking. The structure of the Saprolegnia monoica chitin synthase 1 (SmChs1) MIT domain has been recently determined by our group. However, although our in vitro assay identified increased strength in interactions between the MIT domain and phosphatidic acid (PA) relative to other phospholipids including phosphatidylcholine (PC), the mechanism used by the MIT domain remains unknown. In this work, the adsorption behavior of the SmChs1 MIT domain on POPA and POPC membranes was systematically investigated by molecular dynamics simulations. Our results indicate that the MIT domain can adsorb onto the tested membranes in varying orientations. Interestingly, due to the specific interactions between MIT residues and lipid molecules, the binding affinity to the POPA membrane is much higher than that to the POPC membrane. A binding hotspot, which is critical for the adsorption of the MIT domain onto the POPA membrane, was also identified. The lower binding affinity to the POPC membrane can be attributed to the self-saturated membrane surface, which is unfavorable for hydrogen-bond and electrostatic interactions. The present study provides insight into the adsorption profile of SmChs1 and additionally has the potential to improve our understanding of other proteins containing MIT domains.

  17. Three-dimensional (3D) structure prediction and function analysis of the chitin-binding domain 3 protein HD73_3189 from Bacillus thuringiensis HD73.

    Science.gov (United States)

    Zhan, Yiling; Guo, Shuyuan

    2015-01-01

    Bacillus thuringiensis (Bt) is capable of producing a chitin-binding protein believed to be functionally important to bacteria during the stationary phase of its growth cycle. In this paper, the chitin-binding domain 3 protein HD73_3189 from B. thuringiensis has been analyzed by computer technology. Primary and secondary structural analyses demonstrated that HD73_3189 is negatively charged and contains several α-helices, aperiodical coils and β-strands. Domain and motif analyses revealed that HD73_3189 contains a signal peptide, an N-terminal chitin binding 3 domains, two copies of a fibronectin-like domain 3 and a C-terminal carbohydrate binding domain classified as CBM_5_12. Moreover, analysis predicted the protein's associated localization site to be the cell wall. Ligand site prediction determined that amino acid residues GLU-312, TRP-334, ILE-341 and VAL-382 exposed on the surface of the target protein exhibit polar interactions with the substrate.

  18. Adsorption of TNT, DNAN, NTO, FOX7, and NQ onto cellulose, chitin, and cellulose triacetate. Insights from Density Functional Theory calculations

    Science.gov (United States)

    Todde, Guido; Jha, Sanjiv K.; Subramanian, Gopinath; Shukla, Manoj K.

    2018-02-01

    Insensitive munitions (IM) compounds such as DNAN (2,4-dinitroanisole), NTO (3-nitro-1,2,4-triazol-5-one), NQ (nitroguanidine), and FOX7 (1,1-diamino-2,2-dinitroethene) reduce the risk of accidental explosions due to shock and high temperature exposure. These compounds are being used as replacements for sensitive munition compounds such as TNT (2,4,6-trinitromethylbenzene) and RDX (1,3,5-hexahydro-1,3,5-trinitro-1,3,5-triazine). NTO and NQ in IM compounds are more soluble than TNT or RDX, hence they can easily spread in the environment and get dissolved if exposed to precipitation. DNAN solubility is comparable to TNT solubility. Cellulosic biomass, due to its abundance in the environment and its chemical structure, has a high probability of adsorbing these IM compounds, and thus, it is important to investigate the interactions between cellulose and cellulose like biopolymers (e.g. cellulose triacetate and chitin) with IM compounds. Using Density Functional Theory methods, we have studied the adsorption of TNT, DNAN, NTO, NQ, and FOX7 onto cellulose Iα and Iβ, chitin, and cellulose triacetate I (CTA I). Solvent effects on the adsorption were also investigated. Our results show that all contaminants are more strongly adsorbed onto chitin and cellulose Iα than onto CTA I and cellulose Iβ. Dispersion forces were found to be the predominant contribution to the adsorption energies of all contaminants.

  19. Purification of a novel chitin-binding lectin with antimicrobial and antibiofilm activities from a bangladeshi cultivar of potato (Solanum tuberosum).

    Science.gov (United States)

    Hasan, Imtiaj; Ozeki, Yasuhiro; Kabir, Syed Rashel

    2014-04-01

    A new chitin-binding lectin was purified from a Bangladeshi cultivar 'Deshi' of potato (Solanum tuberosum L.) through anion-exchange and affinity chromatographies using a chitin column. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) showed the molecular mass of the lectin as 20,000 Daltons. This molecular mass was almost half of the molecular masses of chitin-binding lectins derived from other potatoes. The lectin showed both bactericidal and growth-inhibiting activities against Gram-positive (Listeria monocytogenes) and Gram-negative (Escherichia coli, Salmonella enteritidis and Shigella boydii) pathogenic bacteria. It also showed antifungal activity against Rhizopus spp., Penicillium spp. and Aspergillus niger. Biofilm produced by the bacterium Pseudomonas aeruginosa was dose-dependently reduced by 5-20% in 24 h after administration of the lectin, which was attributed to the glycan-binding property of the lectin having affinity to GlcNAc polymers. It was the first observation that any potato lectin prevented biofilm formation by P. aeruginosa and, therefore, could have possible applications in clinical microbiology and biomedical science.

  20. Proteomic analysis of the crayfish gastrolith chitinous extracellular matrix reveals putative protein complexes and a central role for GAP 65.

    Science.gov (United States)

    Glazer, Lilah; Roth, Ziv; Weil, Simy; Aflalo, Eliahu D; Khalaila, Isam; Sagi, Amir

    2015-10-14

    Chitin is a major component of arthropod cuticles, where it forms a three-dimensional network that constitutes the scaffold upon which cuticles form. The chitin fibers that form this network are closely associated with specific structural proteins, while the cuticular matrix contains many additional structural, enzymatic and other proteins. We study the crayfish gastrolith as a simple model for the assembly of calcified cuticular structures, with particular focus on the proteins involved in this process. The present study integrates a gastrolith-forming epithelium transcriptomic library with data from mass spectrometry analysis of proteins extracted from the gastrolith matrix to obtain a near-complete picture of gastrolith protein content. Using native protein separation we identified 24 matrix proteins, of which 14 are novel. Further analysis led to discovery of three putative protein complexes, all containing GAP 65 the most abundant gastrolith structural protein. Using immunological methods we further studied the role of GAP 65 in the gastrolith matrix and forming epithelium, as well as in the newly identified protein complexes. We propose that gastrolith matrix construction is a sequential process in which protein complexes are dynamically assembled and disassembled around GAP 65, thus changing their functional properties to perform each step in the construction process. The scientific interest on which this study is based arises from three main features of gastroliths: (1) Gastroliths possess partial analogy to cuticles both in structural and molecular properties, and may be regarded, with the appropriate reservations (see Introduction), as simple models for cuticle assembly. At the same time, gastroliths are terminally assembled during a well-defined period, which can be controlled in the laboratory, making them significantly easier to study than cuticles. (2) Gastroliths, like the crayfish exoskeleton, contain stable amorphous calcium carbonate (ACC) rather

  1. Electrospun composite nanofiber membrane of poly(l-lactide) and surface grafted chitin whiskers: Fabrication, mechanical properties and cytocompatibility.

    Science.gov (United States)

    Liu, Hua; Liu, Wenjun; Luo, Binghong; Wen, Wei; Liu, Mingxian; Wang, Xiaoying; Zhou, Changren

    2016-08-20

    To improve both the mechanical properties and cytocompatibility of poly(l-lactide) (PLLA), rod-like chitin whiskers (CHWs) were prepared, and subsequently surface modified with l-lactide to obtain grafted CHWs (g-CHWs). Then, CHWs and g-CHWs were further introduced into PLLA matrix to fabricate CHWs/PLLA and g-CHWs/PLLA nanofiber membranes by electrospinning technique. Morphologies and properties of the CHWs and g-CHWs were characterized. The surface-grafted PLLA chains played an important role in improving interfacial interaction between the whiskers and PLLA matrix. The g-CHWs dispersed more uniformly in matrix than CHWs, and the as-prepared g-CHWs/PLLA nanofiber membrane showed relative smooth and uniform fiber. As a result, the tensile strength and modulus of the g-CHWs/PLLA nanofiber membrane were obviously superior to those of the pure PLLA and CHWs/PLLA nanofiber membranes. Cells culture results indicated that g-CHWs/PLLA nanofiber membrane is more effectively in promoting MC3T3-E1 cells adhesion, spreading and proliferation than pure PLLA and CHWs/PLLA nanofiber membrane. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Chitin-Hyaluronan Nanoparticles: A Multifunctional Carrier to Deliver Anti-Aging Active Ingredients through the Skin

    Directory of Open Access Journals (Sweden)

    Pierfrancesco Morganti

    2014-07-01

    Full Text Available The paper describes the process to produce Chitin Nanofibril-Hyaluronan nanoparticles (CN-HA, showing their ability to easily load active ingredients, facilitate penetration through the skin layers, and increase their effectiveness and safety as an anti-aging agent. Size and characterization of CN-HA nanoparticles were determined by Scanning Electron Microscopy (SEM and Zetasizer, while encapsulation efficiency and loading capacity of the entrapped ingredients were controlled by chromatographic and spectrophotometric methods. Safeness was evidenced on fibroblasts and keratinocytes culture viability by the MTT (Methylthiazol assay; anti-aging activity was evaluated in vitro measuring antioxidant capacity, anti-collagenase activity, and metalloproteinase and pro-inflammatory release; efficacy was shown in vivo by a double-blind vehicle-controlled study for 60 days on 60 women affected by photo-aging. In addition, the CN-HA nanoparticles have shown interesting possibility to be used as active ingredients, for designing and making advanced medication by the electrospinning technology, as well as to produce transparent films for food packaging, by the casting method, and can be used also in their dry form as tissues or films without adding preservatives. These unusual CN-HA nanoparticles obtained from the use of raw materials of waste origin may offer an unprecedented occasion for making innovative products, ameliorating the quality of life, reducing pollution and safeguarding the environment’s integrity.

  3. Control of some important soil-borne fungi by chitin associated with chilli (capsicum annuum l.) in lower sindh, pakistan

    International Nuclear Information System (INIS)

    Hussain, F.; Abid, M.; Farzana, A.; Akbar, M.; Shaukat, S.S.

    2013-01-01

    Chilli (Capsicum annuum L.) belongs to the family Solanaceae is one of the most important cash crop of the southern parts of Pakistan. Capsicum is cultivated on a large scale in a lower region of Sindh, Pakistan. It is an important and profitable crop of Pakistan. Several biotic and abiotic stresses affect the productivity of chilli crop. It is infected by a number of diseases particularly soil-borne diseases. Surveys of soil-borne fungal diseases associated with chilli crop in different areas of lower Sindh, including, Hyderabad, Tando Allahyar, Mirpurkhas, Umerkot, Kunri, Samaro, Kot Ghulam uhammad and Digri, were conducted, and chilli plants showing symptoms of wilting were collected. A number of soil-borne root infecting fungi were isolated and identified, such as, Fusarium oxysporum, F. solani, Macrophomina phaseolina, Phytophthora capsici, Pythium sp., and Rhizoctonia solani, from collected disease plants. It was observed that all the major varieties of chillies (i.e., Sanam, Talhari, Ghotaki, Mexi), growing in lower Sindh, were highly susceptible to these fungi. The main objectives of the study were to examine the effectiveness of chitin for the management of soil-borne diseases of chilli plant by different methods, i.e., soil amendment and transplant root dip method. Results indicated that of the two methods, the soil amendment method was more effective while transplant root dip method was less effective. (author)

  4. Influence of chitosan-chitin nanofiber composites on cytoskeleton structure and the proliferation of rat bone marrow stromal cells.

    Science.gov (United States)

    Kiroshka, Victoria V; Petrova, Valentina A; Chernyakov, Daniil D; Bozhkova, Yulia O; Kiroshka, Katerina V; Baklagina, Yulia G; Romanov, Dmitry P; Kremnev, Roman V; Skorik, Yury A

    2017-01-01

    Chitosan scaffolds have gained much attention in various tissue engineering applications, but the effect of their microstructure on cell-material spatial interactions remains unclear. Our objective was to evaluate the effect of chitosan-based matrices doping with chitin nano-whiskers (CNW) on adhesion, spreading, cytoskeleton structure, and proliferation of rat bone marrow stromal cells (BMSCs). The behavior of BMSCs during culture on chitosan-CNW films was determined by the molecular mass, hydrophobicity, porosity, crosslinking degree, protonation degree and molecular structure of the composite chitosan-CNW films. The shape, spreading area, cytoskeleton structure, and proliferation of BMSCs on chitosan matrices with a crystalline structure and high porosity were similar to that observed for BMSCs cultured on polystyrene tissue culture plates. The amorphous polymer structure and high swelling led to a decrease in the spreading area and cell proliferation. Thus, we can control the behavior of cells in culture (adhesion, spreading, and proliferation) by changing the physico-chemical properties of the chitosan-CNW films.

  5. Chitin hydrolysis assisted by cell wall degrading enzymes immobilized of Thichoderma asperellum on totally cinnamoylated D-sorbitol beads

    International Nuclear Information System (INIS)

    Fernandes, Kátia F.; Cortijo-Triviño, David; Batista, Karla A.; Ulhoa, Cirano J.; García-Ruiz, Pedro A.

    2013-01-01

    In this study, cell wall degrading enzymes produced by Thrichoderma asperellum (TCWDE) were immobilized on totally cinnamoylated D-sorbitol (TCNSO) beads and used for chitin hydrolysis. In order to optimize immobilization efficiency, the reaction time was varied from 2 to 12 h and reactions were conducted in the presence or absence of Na 2 SO 4 . Immobilized enzymes were analysed concerning to thermal and operational stability. Immobilization in presence of Na 2 SO 4 was 54% more efficient than immobilization in absence of salt. After optimization, 32% of the total enzyme offered was immobilized, with 100% of bounding efficiency, measured as the relation between protein and enzyme immobilized. Free and TCNSO–TCWDE presented very similar kinetics with maximum hydrolysis reached at 90 min of reaction. Thermal stability of both free and TCNSO–TCWDE was similar, with losses in activity after 55 °C. Moreover, free and TCNSO–TCWDE retained 100% activity after 3 h incubation at 55 °C. TCNSO–TCWDE were used in a bath-wise reactor during 14 cycles, producing 1825 μg of N-acetylglucosamine (NAG) maintaining 83% of initial activity. - Highlights: • TCWDE immobilized on TCNSO, a support with highly hydrophobic character • New immobilization strategy for immobilization on a hydrophobic support • TCNSO–TCWDE were retained during washes and during incubation at 55 °C for 3 h

  6. Immobilization of Papain on Chitin and Chitosan and Recycling of Soluble Enzyme for Deflocculation of Saccharomyces cerevisiae from Bioethanol Distilleries

    Directory of Open Access Journals (Sweden)

    Douglas Fernandes Silva

    2015-01-01

    Full Text Available Yeast flocculation (Saccharomyces cerevisiae is one of the most important problems in fuel ethanol production. Yeast flocculation causes operational difficulties and increase in the ethanol cost. Proteolytic enzymes can solve this problem since it does not depend on these changes. The recycling of soluble papain and the immobilization of this enzyme on chitin or chitosan were studied. Some cross-linking agents were evaluated in the action of proteolytic activity of papain. The glutaraldehyde (0.1–10% w·v−1, polyethyleneimine (0.5% v·v−1, and tripolyphosphate (1–10% w·v−1 inactivated the enzyme in this range, respectively. Glutaraldehyde inhibited all treatments of papain immobilization. The chitosan cross-linked with TPP in 5 h of reaction showed the yield of active immobilized enzyme of 15.7% and 6.07% in chitosan treated with 0.1% PEI. Although these immobilizations have been possible, these levels have not been enough to cause deflocculation of yeast cells. Free enzyme was efficient for yeast deflocculation in dosages of 3 to 4 g·L−1. Recycling of soluble papain by centrifugation was effective for 14 cycles with yeast suspension in time perfectly compatible to industrial conditions. The reuse of proteases applied after yeast suspension by additional yeast centrifugation could be an alternative to cost reduction of these enzymes.

  7. Effects of the chitin synthesis inhibitor buprofezin on survival and development of immatures of Chrysoperla rufilabris (Neuroptera: Chrysopidae).

    Science.gov (United States)

    Liu, T X; Chen, T Y

    2000-04-01

    Effects of buprofezin (Applaud), a chitin synthesis inhibitor, on survival and development of eggs, three instars, and pupae of Chrysoperla rufilabris (Burmeister) were determined in the laboratory. Buprofezin at three tested concentrations (100, 500, and 1,000 mg [AI]/liter) did not affect the viability and development of eggs when the eggs were treated, or third instars and pupae when those stages were treated. Although the degree of effects by buprofezin on larvae varied with instar, buprofezin at the higher concentrations (500 and 1,000 mg [AI]/liter) reduced survival rates 17-47% and prolonged the overall development from first instars to adult emergence by 2 or 3 d when first instars were treated, indicating that the first instar is the most vulnerable stage. When second instars were treated, the survival of C. rufilabris from second instars to pupae was not significantly affected. However, the developmental time from second instar to adult emergence was longer in the treatments with the highest concentration (1,000 mg [AI]/liter) than that with the lowest concentration (100 mg [AI]/liter). The compatibility of buprofezin with natural enemies in integrated pest management programs is discussed.

  8. Chitin hydrolysis assisted by cell wall degrading enzymes immobilized of Thichoderma asperellum on totally cinnamoylated D-sorbitol beads

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Kátia F., E-mail: katia@icb.ufg.br [Departamento de Bioquímica e Biologia Molecular, Instituo de Ciências Biológicas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970 Goiânia, GO (Brazil); Grupo de Química de Carbohidratos y Biotecnología de Alimentos (QCBA), Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, E-30100 Espinardo, Murcia (Spain); Cortijo-Triviño, David [Grupo de Química de Carbohidratos y Biotecnología de Alimentos (QCBA), Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, E-30100 Espinardo, Murcia (Spain); Batista, Karla A.; Ulhoa, Cirano J. [Departamento de Bioquímica e Biologia Molecular, Instituo de Ciências Biológicas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970 Goiânia, GO (Brazil); García-Ruiz, Pedro A. [Grupo de Química de Carbohidratos y Biotecnología de Alimentos (QCBA), Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, E-30100 Espinardo, Murcia (Spain)

    2013-07-01

    In this study, cell wall degrading enzymes produced by Thrichoderma asperellum (TCWDE) were immobilized on totally cinnamoylated D-sorbitol (TCNSO) beads and used for chitin hydrolysis. In order to optimize immobilization efficiency, the reaction time was varied from 2 to 12 h and reactions were conducted in the presence or absence of Na{sub 2}SO{sub 4}. Immobilized enzymes were analysed concerning to thermal and operational stability. Immobilization in presence of Na{sub 2}SO{sub 4} was 54% more efficient than immobilization in absence of salt. After optimization, 32% of the total enzyme offered was immobilized, with 100% of bounding efficiency, measured as the relation between protein and enzyme immobilized. Free and TCNSO–TCWDE presented very similar kinetics with maximum hydrolysis reached at 90 min of reaction. Thermal stability of both free and TCNSO–TCWDE was similar, with losses in activity after 55 °C. Moreover, free and TCNSO–TCWDE retained 100% activity after 3 h incubation at 55 °C. TCNSO–TCWDE were used in a bath-wise reactor during 14 cycles, producing 1825 μg of N-acetylglucosamine (NAG) maintaining 83% of initial activity. - Highlights: • TCWDE immobilized on TCNSO, a support with highly hydrophobic character • New immobilization strategy for immobilization on a hydrophobic support • TCNSO–TCWDE were retained during washes and during incubation at 55 °C for 3 h.

  9. Morphological changes of the filamentous fungus Mucor mucedo and inhibition of chitin synthase activity induced by anethole.

    Science.gov (United States)

    Yutani, Masahiro; Hashimoto, Yukie; Ogita, Akira; Kubo, Isao; Tanaka, Toshio; Fujita, Ken-ichi

    2011-11-01

    trans-Anethole (anethole), a major component of anise oil, has a broad antimicrobial spectrum with antimicrobial activity relatively weaker than those of well-known antibiotics, and significantly enhances the antifungal activity of polygodial and dodecanol against the baker's yeast Saccharomyces cerevisiae and human pathogenic yeast Candida albicans. However, the antifungal mechanism of anethole is unresolved. Anethole demonstrated antifungal activity against the filamentous fungus, Mucor mucedo IFO 7684, accompanied by hyphal morphological changes such as swollen hyphae at the tips. Its minimum growth inhibitory concentration was 0.625 mM. A hyperosmotic condition (1.2 M sorbitol) restricted the induction of morphological changes, while hypoosmotic treatment (distilled water) induced bursting of hyphal tips and leakage of cytoplasmic constituents. Furthermore, anethole dose-dependently inhibited chitin synthase (CHS) activity in permeabilized hyphae in an uncompetitive manner. These results suggest that the morphological changes of M. mucedo could be explained by the fragility of cell walls caused by CHS inhibition. Copyright © 2011 John Wiley & Sons, Ltd.

  10. Evaluation of Three Chitin Metal Silicate Co-Precipitates as a Potential Multifunctional Single Excipient in Tablet Formulations

    Directory of Open Access Journals (Sweden)

    Rana Al-Shaikh Hamid

    2010-05-01

    Full Text Available The performance of the novel chitin metal silicate (CMS co-precipitates as a single multifunctional excipient in tablet formulation using direct compression and wet granulation methods is evaluated. The neutral, acidic, and basic drugs Spironolactone (SPL, ibuprofen (IBU and metronidazole (MET, respectively, were used as model drugs. Commercial Aldactone®, Fleximex® and Dumazole® tablets containing SPL, IBU and MET, respectively, and tablets made using Avicel® 200, were used in the study for comparison purposes. Tablets of acceptable crushing strength (>40 N were obtained using CMS. The friability values for all tablets were well below the maximum 1% USP tolerance limit. CMS produced superdisintegrating tablets (disintegration time < 1 min with the three model drugs. Regarding the dissolution rate, the sequence was as follow: CMS > Fleximex® > Avicel® 200, CMS > Avicel® 200 > Dumazole® and Aldactone® > Avicel® 200 > CMS for IBU, MET and SPL, respectively. Compressional properties of formulations were analyzed using density measurements and the compression Kawakita equation as assessment parameters. On the basis of DSC results, CMS co precipitates were found to be compatible with the tested drugs. Conclusively, the CMS co-precipitates have the potential to be used as filler, binder, and superdisintegrant, all-in-one, in the design of tablets by the direct compression as well as wet granulation methods.

  11. Fluorescence microscopical studies on chitin distribution in the cell wall of giant cells of Saccharomyces uvarum, grown following X-radiaiton treatment. Fluoreszenzmikroskopische Untersuchungen zur Chitinverteilung in der Zellwand von Riesenzellen von Saccharomyces uvarum, gewachsen nach Roentgenbestrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Hoschka, L

    1982-01-01

    Teast cells are synchronized and modiated with X-rays (1.0 kGy) in the Cr, phase. Their growth behaviour is observed in suspension cultures and the formation of giant cells noted. The chitin structures are selectively stained with the fluorescent dye Calcofluor white. In the unradiated cells the chitin is deposited at the bud constriction site in the form of rings in the mother cell wall, whereas for irradiated cells only one chitin ring of normal appearance is formed between the mother cell and first bud equivalent. Between further bud equivalents an intensification of fluorescence is occasionally noted, however the organisation of the chitin into a regular ring arrangement is disturbed. In giant cells the facility for primary and secondary septa formation is missing and these are essential for successful cell division. By further experiments it was possible to identify the cause of disturbance in the cell cycle of irradiated cells. Giant cells only form one chitin ring because its DNA is replicated one time only. The major cause triggering the actual formation of giant cells must be considered the missing distribution of the once-rephicated DNA. All processes in the cell cycle dependent on this step are therefore stopped and only bud formation which occurs independently continues along its rhytmical path.

  12. Fluorescence microscopical studies on chitin distribution in the cell wall of giant cells of Saccharomyces uvarum, grown following X-radiation treatment. Fluoreszenzmikroskopische Untersuchungen zur Chitinverteilung in der Zellwand von Riesenzellen von Saccharomyces uvarum, gewachsen nach Roentgenbestrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Hoschka, L

    1982-01-01

    Yeast cells are synchronized and modiated with X-rays (1.0 kGy) in the Cr, phase. Their growth behaviour is observed in suspension cultures and the formation of giant cells noted. The chitin structures are selectively stained with the fluorescent dye Calcofluor white. In the unradiated cells the chitin is deposited at the bud constriction site in the form of rings in the mother cell wall, whereas for irradiated cells only one chitin ring of normal appearance is formed between the mother cell and first bud equivalent. Between further bud equivalents an intensification of fluorescence is occasionally noted, however the organisation of the chitin into a regular ring arrangement is disturbed. In giant cells the facility for primary and secondary septa formation is missing and these are essential for successful cell division. By further experiments it was possible to identify the cause of disturbance in the cell cycle of irradiated cells. Giant cells only form one chitin ring because its DNA is replicated one time only. The major cause triggering the actual formation of giant cells must be considered the missing distribution of the once-rephicated DNA. All processes in the cell cycle dependent on this step are therefore stopped and only bud formation which occurs independently continues along its rhythmical path.

  13. Obtenção e caracterização de α-quitina e quitosanas de cascas de Macrobrachium rosembergii Preparation and characterization of α-chitin and chitosan from the shells of Macrobrachium rosembergii

    Directory of Open Access Journals (Sweden)

    Marcos Valério Battisti

    2008-01-01

    Full Text Available The shells of Macrobrachium rosenbergii were submitted to deproteinization (Dp and demineralization (Dm aiming the extraction of α-chitin. The different parts of the shells were processed independently by carrying out sequence 1 (Dp/Dm and sequence 2 (Dm/Dp. Both sequences allowed the extraction of chitins with low contents of calcium and magnesium, regardless of the part being processed. The sequence 1 lead to higher extraction yields while sequence 2 resulted in lower contents of inorganic compounds. Extensively deacetylated chitosans (GA<10% of medium molecular weight (0,9 x 10(5 < Mv < 2 x 10(5 g/mol resulted from the deacetylation of chitin.

  14. 3D printing human induced pluripotent stem cells with novel hydroxypropyl chitin bioink: scalable expansion and uniform aggregation.

    Science.gov (United States)

    Li, Yang; Jiang, Xulin; Li, Ling; Chen, Zhi-Nan; Gao, Ge; Yao, Rui; Sun, Wei

    2018-06-28

    Human induced pluripotent stem cells (hiPSCs) are more likely to successfully avoid the immunological rejection and ethical problems that are often encountered by human embryonic stem cells in various stem cell studies and applications. To transfer hiPSCs from the laboratory to clinical applications, researchers must obtain sufficient cell numbers. In this study, 3D cell printing was used as a novel method for iPSC scalable expansion. Hydroxypropyl chitin (HPCH), utilized as a new type of bioink, and a set of optimized printing parameters were shown to achieve high cell survival (> 90%) after the printing process and high proliferation efficiency (~ 32.3 folds) during subsequent 10-day culture. After the culture, high levels of pluripotency maintenance were recognized by both qualitative and quantitative detections. Compared with static suspension (SS) culture, hiPSC aggregates formed in 3D printed constructs showed a higher uniformity in size. Using novel dual-fluorescent labelling method, hiPSC aggregates in the constructs were found more inclined to form by in situ proliferation rather than multicellular aggregation. This study revealed unique advantages of non-ionic crosslinking bioink material HPCH, including high gel strength and rapid temperature response in hiPSC printing, and achieved primed state hiPSC printing for the first time. Features achieved in this study, such as high cell yield, high pluripotency maintenance and uniform aggregation provide good foundations for further hiPSC studies on 3D micro-tissue differentiation and drug screening. © 2018 IOP Publishing Ltd.

  15. The Impact of Selection with Diflubenzuron, a Chitin Synthesis Inhibitor, on the Fitness of Two Brazilian Aedes aegypti Field Populations

    Science.gov (United States)

    Belinato, Thiago Affonso; Valle, Denise

    2015-01-01

    Several Aedes aegypti field populations are resistant to neurotoxic insecticides, mainly organophoshates and pyrethroids, which are extensively used as larvicides and adulticides, respectively. Diflubenzuron (DFB), a chitin synthesis inhibitor (CSI), was recently approved for use in drinking water, and is presently employed in Brazil for Ae. aegypti control, against populations resistant to the organophosphate temephos. However, tests of DFB efficacy against field Ae. aegypti populations are lacking. In addition, information regarding the dynamics of CSI resistance, and characterization of any potential fitness effects that may arise in conjunction with resistance are essential for new Ae. aegypti control strategies. Here, the efficacy of DFB was evaluated for two Brazilian Ae. aegypti populations known to be resistant to both temephos and the pyrethroid deltamethrin. Laboratory selection for DFB resistance was then performed over six or seven generations, using a fixed dose of insecticide that inhibited 80% of adult emergence in the first generation. The selection process was stopped when adult emergence in the diflubenzuron-treated groups was equivalent to that of the control groups, kept without insecticide. Diflubenzuron was effective against the two Ae. aegypti field populations evaluated, regardless of their resistance level to neurotoxic insecticides. However, only a few generations of DFB selection were sufficient to change the susceptible status of both populations to this compound. Several aspects of mosquito biology were affected in both selected populations, indicating that diflubenzuron resistance acquisition is associated with a fitness cost. We believe that these results can significantly contribute to the design of control strategies involving the use of insect growth regulators. PMID:26107715

  16. Characterization of a novel Salmonella typhimurium chitinase which hydrolyzes chitin, chitooligosaccharides and an N-acetyllactosamine conjugate

    DEFF Research Database (Denmark)

    Larsen, Tanja; Petersen, Bent O.; Storgaard, Birgit Groth

    2011-01-01

    Salmonella contain genes annotated as chitinases; however, their chitinolytic activities have never been verified. We now demonstrate such an activity for a chitinase assigned to glycoside hydrolase family 18 encoded by the SL0018 (chiA) gene in Salmonella enterica Typhimurium SL1344. A C......-terminal truncated form of chiA lacking a putative chitin-binding domain was amplified by PCR, cloned and expressed in Escherichia coli BL21 (DE3) with an N-terminal (His)(6) tag. The purified enzyme hydrolyzes 4-nitrophenyl N,N'-diacetyl-ß-D-chitobioside, 4-nitrophenyl ß...

  17. Use of chitin and chitosan to produce new chitooligosaccharides by chitinase Chit42: enzymatic activity and structural basis of protein specificity.

    Science.gov (United States)

    Kidibule, Peter Elias; Santos-Moriano, Paloma; Jiménez-Ortega, Elena; Ramírez-Escudero, Mercedes; Limón, M Carmen; Remacha, Miguel; Plou, Francisco José; Sanz-Aparicio, Julia; Fernández-Lobato, María

    2018-03-22

    Chitinases are ubiquitous enzymes that have gained a recent biotechnological attention due to their ability to transform biological waste from chitin into valued chito-oligomers with wide agricultural, industrial or medical applications. The biological activity of these molecules is related to their size and acetylation degree. Chitinase Chit42 from Trichoderma harzianum hydrolyses chitin oligomers with a minimal of three N-acetyl-D-glucosamine (GlcNAc) units. Gene chit42 was previously characterized, and according to its sequence, the encoded protein included in the structural Glycoside Hydrolase family GH18. Chit42 was expressed in Pichia pastoris using fed-batch fermentation to about 3 g/L. Protein heterologously expressed showed similar biochemical properties to those expressed by the natural producer (42 kDa, optima pH 5.5-6.5 and 30-40 °C). In addition to hydrolyse colloidal chitin, this enzyme released reducing sugars from commercial chitosan of different sizes and acetylation degrees. Chit42 hydrolysed colloidal chitin at least 10-times more efficiently (defined by the k cat /K m ratio) than any of the assayed chitosan. Production of partially acetylated chitooligosaccharides was confirmed in reaction mixtures using HPAEC-PAD chromatography and mass spectrometry. Masses corresponding to (D-glucosamine) 1-8 -GlcNAc were identified from the hydrolysis of different substrates. Crystals from Chit42 were grown and the 3D structure determined at 1.8 Å resolution, showing the expected folding described for other GH18 chitinases, and a characteristic groove shaped substrate-binding site, able to accommodate at least six sugar units. Detailed structural analysis allows depicting the features of the Chit42 specificity, and explains the chemical nature of the partially acetylated molecules obtained from analysed substrates. Chitinase Chit42 was expressed in a heterologous system to levels never before achieved. The enzyme produced small partially acetylated

  18. A glycosylphosphatidylinositol anchor is required for membrane localization but dispensable for cell wall association of chitin deacetylase 2 in Cryptococcus neoformans.

    Science.gov (United States)

    Gilbert, Nicole M; Baker, Lorina G; Specht, Charles A; Lodge, Jennifer K

    2012-01-01

    Cell wall proteins (CWPs) mediate important cellular processes in fungi, including adhesion, invasion, biofilm formation, and flocculation. The current model of fungal cell wall organization includes a major class of CWPs covalently bound to β-1,6-glucan via a remnant of a glycosylphosphatidylinositol (GPI) anchor. This model was established by studies of ascomycetes more than a decade ago, and relatively little work has been done with other fungi, although the presumption has been that proteins identified in the cell wall which contain a predicted GPI anchor are covalently linked to cell wall glucans. The pathogenic basidiomycete Cryptococcus neoformans encodes >50 putatively GPI-anchored proteins, some of which have been identified in the cell wall. One of these proteins is chitin deacetylase 2 (Cda2), an enzyme responsible for converting chitin to chitosan, a cell wall polymer recently established as a virulence factor for C. neoformans infection of mammalian hosts. Using a combination of biochemistry, molecular biology, and genetics, we show that Cda2 is GPI anchored to membranes but noncovalently associated with the cell wall by means independent of both its GPI anchor and β-1,6-glucan. We also show that Cda2 produces chitosan when localized to the plasma membrane, but association with the cell wall is not essential for this process, thereby providing insight into the mechanism of chitosan biosynthesis. These results increase our understanding of the surface of C. neoformans and provide models of cell walls likely applicable to other undercharacterized basidiomycete pathogenic fungi. The surface of a pathogenic microbe is a major interface with its host. In fungi, the outer surface consists of a complex matrix known as the cell wall, which includes polysaccharides, proteins, and other molecules. The mammalian host recognizes many of these surface molecules and mounts appropriate responses to combat the microbial infection. Cryptococcus neoformans is a

  19. Chitin-Prussian blue sponges for Cs(I) recovery: From synthesis to application in the treatment of accidental dumping of metal-bearing solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, C. [Ecole des mines d' Alès, Centre des Matériaux des Mines d' Alès, C2MA/MPA/BCI, 6 avenue de Clavières, F-30319 Alès Cedex (France); Commissariat à l' Energie Atomique, CEA Marcoule, DEN/DTCD/SPDE/LPSD,BP 17171, F-30207 Bagnols sur Cèze (France); Barré, Y. [Commissariat à l' Energie Atomique, CEA Marcoule, DEN/DTCD/SPDE/LPSD,BP 17171, F-30207 Bagnols sur Cèze (France); Vincent, T. [Ecole des mines d' Alès, Centre des Matériaux des Mines d' Alès, C2MA/MPA/BCI, 6 avenue de Clavières, F-30319 Alès Cedex (France); Taulemesse, J.-M. [Ecole des mines d' Alès, Center des Matériaux des Mines d' Alès, 6 avenue de Clavières, F-30319 Alès Cedex (France); Robitzer, M. [Institut Charles Gerhardt – UMR5253, CNRS-UM2-ENSCM-UM1, ICGM-MACS-R2M2, 8 rue de l' Ecole Normale, F-34296 Montpellier Cedex 05 (France); Guibal, E., E-mail: Eric.Guibal@mines-ales.fr [Ecole des mines d' Alès, Centre des Matériaux des Mines d' Alès, C2MA/MPA/BCI, 6 avenue de Clavières, F-30319 Alès Cedex (France)

    2015-04-28

    Highlights: • Prussian blue microparticles incorporated in chitin sponges. • Efficient Cs(I) sorption after water absorption by dry hybrid sponge. • Water draining after sorption for metal confinement and water decontamination. • High decontamination factors and distribution coefficients for Cs(I) and {sup 137}Cs(I). • Effect of freezing conditions on porous structure and textural characterization. - Abstract: Prussian blue (i.e., iron[III] hexacyanoferrate[II], PB) has been synthesized by reaction of iron(III) chloride with potassium hexacyanoferrate and further immobilized in chitosan sponge (cellulose fibers were added in some samples to evaluate their impact on mechanical resistance). The composite was finally re-acetylated to produce a chitin-PB sponge. Experimental conditions such as the freezing temperature, the content of PB, the concentration of the biopolymer and the presence of cellulose fibers have been varied in order to evaluate their effect on the porous structure of the sponge, its water absorption properties and finally its use for cesium(I) recovery. The concept developed with this system consists in the absorption of contaminated water by the composite sponge, the in situ binding of target metal on Prussian blue load and the centrifugation of the material to remove treated water from soaked sponge. This material is supposed to be useful for the fast treatment of accidental dumping of Cs-contaminated water.

  20. Control of the Root-Knot Nematode (Meloidogyne spp. on Cucumber by a Liquid Bio-Formulation Containing Chitinolytic Bacteria, Chitin and Their Products

    Directory of Open Access Journals (Sweden)

    Woo Jong Ha

    2014-06-01

    Full Text Available A liquid bio-formulation containing chitinolytic bacteria, chitin and their products was assessed for its potential biological control against root-knot nematodes on cucumber. The bio-formulation was prepared by cultures of three chitinolytic bacteria, Chromobacterium sp. strain C-61, Lysobacter engymogenes and Serratia plymuthica in minimal medium supplemented with chitin. Under pot conditions, the bio-formulation showed better growth of cucumber plants, and less root galls and population density of Meloidogyne spp. than control media without the bio-formulation. In a greenhouse, 75-fold diluted bio-formulations were treated instead of water around cucumber plants through hoses for drip irrigation six times at 5-day intervals from the transplanting date. After 30 and 60 days, the treatment provided about 7% and 10% enhancement in the plant height and about 78% and 69% reduction in population density of Meloidogyne spp. in the rhizosphere, respectively. In addition, the experiments showed that the control effects occurred only in the soils contacted with the bio-formulation. Undiluted bio-formulations were drenched three times at 10-day intervals around cucumber plants severely infested with Meloidogyne spp. The treatment showed about 37% plant enhancement without dead plants compared with 37% death in the untreated control, and about 82% nematode reduction. These results suggest that the bio-formulation can be practically used to control the root-knot nematode on cucumber.

  1. Chitinolytic Streptomyces vinaceusdrappus S5MW2 isolated from Chilika lake, India enhances plant growth and biocontrol efficacy through chitin supplementation against Rhizoctonia solani.

    Science.gov (United States)

    Yandigeri, Mahesh S; Malviya, Nityanand; Solanki, Manoj Kumar; Shrivastava, Pooja; Sivakumar, G

    2015-08-01

    A chitinolytic actinomycete Streptomyces vinaceusdrappus S5MW2 was isolated from water sample of Chilika lake, India and identified using 16S rRNA gene sequencing. It showed in vitro antifungal activity against the sclerotia producing pathogen Rhizoctonia solani in a dual culture assay and by chitinase enzyme production in a chitin supplemented minimal broth. Moreover, isolate S5MW2 was further characterized for biocontrol (BC) and plant growth promoting features in a greenhouse experiment with or without colloidal chitin (CC). Results of greenhouse experiment showed that CC supplementation with S5MW2 showed a significant growth of tomato plants and superior disease reduction as compared to untreated control and without CC treated plants. Moreover, higher accumulation of chitinase also recovered in the CC supplemented plants. Significant effect of CC also concurred with the Analysis of Variance of greenhouse parameters. These results show that the a marine antagonist S5MW2 has BC efficiency against R. solani and chitinase enzyme played important role in plant resistance.

  2. Nitrogen and sulfur dual-doped chitin-derived carbon/graphene composites as effective metal-free electrocatalysts for dye sensitized solar cells

    Science.gov (United States)

    Di, Yi; Xiao, Zhanhai; Yan, Xiaoshuang; Ru, Geying; Chen, Bing; Feng, Jiwen

    2018-05-01

    The photovoltaic performance of dye-sensitized solar cell (DSSC) is strongly influenced by the electrocatalytic ability of its counter electrode (CE) materials. To obtain the affordable and high-performance electrocatalysts, the N/S dual-doped chitin-derived carbon materials SCCh were manufactured via in-situ S-doped method in the annealing process, where richer active sites are created compared to the pristine chitin-derived carbon matrix CCh, thus enhancing the intrinsic catalytic activity of carbon materials. When SCCh is incorporated with graphene, the yielded composites hold a further boosted catalytic activity due to facilitating the electronic fast transfer. The DSSC assembled with the optimizing rGO-SCCh-3 composite CE shows a favourable power conversion efficiency of 6.36%, which is comparable with that of the Pt-sputtering electrode (6.30%), indicate of the outstanding I3- reduction ability of the composite material. The electrochemical characterizations demonstrate that the low charge transfer resistance and excellent electrocatalytic activity all contribute to the superior photovoltaic performance. More importantly, the composite CE exhibits good electrochemical stability in the practical operation. In consideration of the low cost and the simple preparation procedure, the present metal-free carbonaceous composites could be used as a promising counter electrode material in future large scale production of DSSCs.

  3. In roots of Arabidopsis thaliana, the damage-associated molecular pattern AtPep1 is a stronger elicitor of immune signalling than flg22 or the chitin heptamer.

    Directory of Open Access Journals (Sweden)

    Lorenzo Poncini

    Full Text Available Plants interpret their immediate environment through perception of small molecules. Microbe-associated molecular patterns (MAMPs such as flagellin and chitin are likely to be more abundant in the rhizosphere than plant-derived damage-associated molecular patterns (DAMPs. We investigated how the Arabidopsis thaliana root interprets MAMPs and DAMPs as danger signals. We monitored root development during exposure to increasing concentrations of the MAMPs flg22 and the chitin heptamer as well as of the DAMP AtPep1. The tissue-specific expression of defence-related genes in roots was analysed using a toolkit of promoter::YFPN lines reporting jasmonic acid (JA-, salicylic acid (SA-, ethylene (ET- and reactive oxygen species (ROS- dependent signalling. Finally, marker responses were analysed during invasion by the root pathogen Fusarium oxysporum. The DAMP AtPep1 triggered a stronger activation of the defence markers compared to flg22 and the chitin heptamer. In contrast to the tested MAMPs, AtPep1 induced SA- and JA-signalling markers in the root and caused a severe inhibition of root growth. Fungal attack resulted in a strong activation of defence genes in tissues close to the invading fungal hyphae. The results collectively suggest that AtPep1 presents a stronger danger signal to the Arabidopsis root than the MAMPs flg22 and chitin heptamer.

  4. Films of chitin, chitosan and cellulose obtained from aqueous suspension treated by irradiation of high intensity ultrasound; Filmes de quitina, quitosana e celullose de sisal obtidos a partir de suspensoes aquosas tratadas com irradiacao de ultrassom de alta intensidade

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Erika V.R.; Mariano, Mario S.; Campana-Filho, Sergio P., E-mail: erikavi@iqsc.usp.br [Universidade de Sao Paulo (IQSC/USP), Instituto de Quimica de Sao Carlos, Sao Carlos, SP (Brazil)

    2011-07-01

    Films of chitin, chitin/chitosan and chitin/sisal cellulose were obtained by casting their aqueous suspensions previously treated with irradiation of high intensity ultrasound. The films were characterized for surface morphology by scanning electron microscopy and it is possible notice that the films containing chitosan are much more homogeneous. The thermal behavior of the films was evaluated by dynamic mechanical thermal analysis, differential scanning calorimetry, and thermogravimetric analysis and revealing similarity in comparison with the thermal behavior of polysaccharide isolated. The tensile strength was determined and the film containing chitosan showed the best result when compared to other films. The crystallinity index of the films analyzed by X-ray diffraction showed that the films are amorphous material. The analysis by infrared spectroscopy showed that treatment of aqueous suspensions of polysaccharides with irradiation of high intensity ultrasound did not change the chemical structure of polymers. The crystallinity index was determined by X-ray diffraction, revealing that the films are amorphous materials. The results of this study indicate the possibility of processing of chitin, chitosan and cellulose, polysaccharides whose solubilities are limited to a few solvent systems, by treating their aqueous suspensions with high intensity ultrasound. (author)

  5. The cell wall stress response in Aspergillus niger involves increased expression of the glutamine: Fructose-6-phosphate amidotransferase-encoding gene (gfaA) and increased deposition of chitin in the cell wall

    NARCIS (Netherlands)

    Ram, A.F.J.; Arentshorst, M.; Damveld, R.A.; Kuyk, P.A. van; Klis, F.M.; Hondel, C.A.M.J.J. van den

    2004-01-01

    Perturbation of cell wall synthesis in Saccharomyces cerevisiae, either by mutations in cell wall synthesis-related genes or by adding compounds that interfere with normal cell wall assembly, triggers a compensatory response to ensure cell wall integrity. This response includes an increase in chitin

  6. Characterization of chitinous polyaminoglycosides

    Czech Academy of Sciences Publication Activity Database

    Tishchenko, Galina; Šimůnek, Jiří; Brus, Jiří; Netopilík, Miloš; Walterová, Zuzana; Pekárek, Michal; Lenfeld, Jiří; Koppová, Ingrid

    2009-01-01

    Roč. 103, č. 9 (2009), s. 777 ISSN 0009-2770. [International Conference on Polysaccharides-Glycoscience /5./. 11.11.2009-13.11.2009, Praha] R&D Projects: GA ČR(CZ) GA525/08/0803 Institutional research plan: CEZ:AV0Z40500505 Keywords : chitooligosaccharides * low-molecular-weight chitosan * oxidative depolymerization Subject RIV: CD - Macromolecular Chemistry

  7. Efeito de Aditivos na Desacetilação de Quitina Effects from Additives on Deacetylation of Chitin

    Directory of Open Access Journals (Sweden)

    Sérgio P. Campana Fº

    2001-01-01

    Full Text Available Reações de desacetilação de quitina comercial em suspensão aquosa de hidróxido de sódio foram realizadas em etapa única de 6 horas a 115°C. Os efeitos de aditivos (boro hidreto de sódio ou antraquinona e de borbulhamento de gases inertes (nitrogênio ou argônio sobre as características das amostras desacetiladas foram avaliados. A espectroscopia de ressonância magnética nuclear de hidrogênio e viscosimetria capilar foram empregadas para determinações de graus médios de acetilação e de viscosidades intrínsecas de quitosanas, respectivamente. A difração de raiosX foi empregada para comparar as amostras quanto à cristalinidade e os espectros no infravermelho foram comparados para avaliar modificações estruturais decorrentes da reação de desacetilação. As quitosanas mais cristalinas foram obtidas quando um dos gases inertes foi borbulhado no meio durante a reação de desacetilação. Amostras ligeiramente mais desacetiladas foram obtidas na ausência de qualquer aditivo, mas severa despolimerização ocorreu nesses casos. A adição de boro hidreto de sódio ao meio reacional reduziu significativamente a despolimerização, mas a presença de antraquinona e o borbulhamento de nitrogênio, ou de argônio, não surtiu qualquer efeito, sugerindo que a presença de oxigênio não é um pré-requisito para a ocorrência de despolimerização.Deacetylation reactions of commercial chitin were carried out in aqueous sodium hydroxide solution at 115°C for 6 hours. The effect from additives (sodium borohydride or anthraquinone and of bubbling inert gas (nitrogen or argon on the characteristics of deacetylated samples were evaluated. Average degrees of acetylation and intrinsic viscosity were determined by ¹H NMR spectroscopy and capillary viscometry, respectively. X-ray diffraction was employed to evaluate changes in crystallinity and infrared spectroscopy was used to monitor structural changes due to deacetylation. The

  8. High electrochemical capacitor performance of oxygen and nitrogen enriched activated carbon derived from the pyrolysis and activation of squid gladius chitin

    Science.gov (United States)

    Raj, C. Justin; Rajesh, Murugesan; Manikandan, Ramu; Yu, Kook Hyun; Anusha, J. R.; Ahn, Jun Hwan; Kim, Dong-Won; Park, Sang Yeup; Kim, Byung Chul

    2018-05-01

    Activated carbon containing nitrogen functionalities exhibits excellent electrochemical property which is more interesting for several renewable energy storage and catalytic applications. Here, we report the synthesis of microporous oxygen and nitrogen doped activated carbon utilizing chitin from the gladius of squid fish. The activated carbon has large surface area of 1129 m2 g-1 with microporous network and possess ∼4.04% of nitrogen content in the form of pyridinic/pyrrolic-N, graphitic-N and N-oxide groups along with oxygen and carbon species. The microporous oxygen/nitrogen doped activated carbon is utilize for the fabrication of aqueous and flexible supercapacitor electrodes, which presents excellent electrochemical performance with maximum specific capacitance of 204 Fg-1 in 1 M H2SO4 electrolyte and 197 Fg-1 as a flexible supercapacitor. Moreover, the device displays 100% of specific capacitance retention after 25,000 subsequent charge/discharge cycles in 1 M H2SO4 electrolyte.

  9. Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation

    Directory of Open Access Journals (Sweden)

    Feng Xue

    2015-01-01

    Full Text Available We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive for S100 (Schwann cell marker and glial fibrillary acidic protein (glial cell marker at 8 weeks. Retrograde tracing showed that more nerve fibers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our findings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvironment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury.

  10. Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation

    Science.gov (United States)

    Xue, Feng; Wu, Er-jun; Zhang, Pei-xun; Li-ya, A; Kou, Yu-hui; Yin, Xiao-feng; Han, Na

    2015-01-01

    We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive for S100 (Schwann cell marker) and glial fibrillary acidic protein (glial cell marker) at 8 weeks. Retrograde tracing showed that more nerve fibers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our findings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvironment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury. PMID:25788929

  11. Identification of GIG1, a GlcNAc-induced gene in Candida albicans needed for normal sensitivity to the chitin synthase inhibitor nikkomycin Z.

    Science.gov (United States)

    Gunasekera, Angelo; Alvarez, Francisco J; Douglas, Lois M; Wang, Hong X; Rosebrock, Adam P; Konopka, James B

    2010-10-01

    The amino sugar N-acetylglucosamine (GlcNAc) is known to be an important structural component of cells from bacteria to humans, but its roles in cell signaling are less well understood. GlcNAc induces two pathways in the human fungal pathogen Candida albicans. One activates cyclic AMP (cAMP) signaling, which stimulates the formation of hyphal cells and the expression of virulence genes, and the other pathway induces genes needed to catabolize GlcNAc. Microarray analysis of gene expression was carried out under four different conditions in order to characterize the transcriptional changes induced by GlcNAc. The most highly induced genes include those that encode a GlcNAc transporter (NGT1) and the GlcNAc catabolic enzymes (HXK1, DAC1, and NAG1). GlcNAc also activated most of the genes whose expression is increased when cells are triggered with other stimuli to form hyphae. Surprisingly, GlcNAc also induced a subset of genes that are regulated by galactose (GAL1, GAL7, and GAL10), which may be due to cross talk between signaling pathways. A novel GlcNAc-induced gene, GIG1, which is not essential for GlcNAc catabolism or the induction of hyphae, was identified. However, a Gig1-green fluorescent protein (GFP) fusion protein was specifically induced by GlcNAc, and not by other sugars. Gig1-GFP localized to the cytoplasm, where GlcNAc metabolism occurs. Significantly, a gig1Δ mutant displayed increased resistance to nikkomycin Z, which inhibits chitin synthase from converting UDP-GlcNAc into cell wall chitin. Gig1 is highly conserved in fungi, especially those that contain GlcNAc catabolic genes. These results implicate Gig1 in GlcNAc metabolism.

  12. A chitin-binding lectin from Moringa oleifera seeds (WSMoL) impairs the digestive physiology of the Mediterranean flour larvae, Anagasta kuehniella.

    Science.gov (United States)

    de Oliveira, Caio Fernando Ramalho; de Moura, Maiara Celine; Napoleão, Thiago Henrique; Paiva, Patrícia Maria Guedes; Coelho, Luana Cassandra Breitenbach Barroso; Macedo, Maria Lígia Rodrigues

    2017-10-01

    Biotechnological techniques allow the investigation of alternatives to outdated chemical insecticides for crop protection; some investigations have focused on the identification of molecules tailored from nature for this purpose. We, herein, describe the negative effects of water-soluble lectin from Moringa oleifera seeds (WSMoL) on Anagasta kuehniella development. The chitin-binding lectin, WSMoL, impaired the larval weight gain by 50% and affected the activity of the pest's major digestive enzymes. The commitment of the digestive process became evident after controlled digestion studies, where the capacity of protein digestion was compromised by >90%. Upon acute exposure, the lectin was not resistant to digestion; however, chronic ingestion of WSMoL was able to reverse this feature. Thus, we show that resistance to digestion may not be a prerequisite for a lectin's ability to exert negative effects on larval physiology. The mechanism of action of WSMoL involves binding to chitin with possible disruption to the peritrophic membrane, causing disorder between the endo- and ectoperitrophic spaces. Additionally, results suggest that WSMoL may trigger apoptosis in gut cells, leading to the lower enzymatic activity observed in WSMoL-fed larvae. Although assays employing an artificial diet did not demonstrate effects of WSMoL on A. kuehniella mortality, this lectin may hold potential for exerting insecticide effects on other pest insects, as well for use in other experimental approaches, such as WSMoL-expressing plants. Moreover, the use of WSMoL with other biotechnological tools, such as 'pyramid' crops, may represent a strategy for delaying the evolution of pest resistance to transgenic crops, since its multiple site targets could act in synergism with other insecticide compounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. MicroRNA and dsRNA targeting chitin synthase A reveal a great potential for pest management of the hemipteran insect Nilaparvata lugens.

    Science.gov (United States)

    Li, Tengchao; Chen, Jie; Fan, Xiaobin; Chen, Weiwen; Zhang, Wenqing

    2017-07-01

    Two RNA silencing pathways in insects are known to exist that are mediated by short interfering RNAs (siRNAs) and microRNAs (miRNAs), which have been hypothesised to be promising methods for insect pest control. However, a comparison between miRNA and siRNA in pest control is still unavailable, particularly in targeting chitin synthase gene A (CHSA). The dsRNA for Nilaparvata lugens CHSA (dsNlCHSA) and the microR-2703 (miR-2703) mimic targeting NlCHSA delivered via feeding affected the development of nymphs, reduced their chitin content and led to lethal phenotypes. The protein level of NlCHSA was downregulated after female adults were injected with dsNlCHSA or the miR-2703 mimic, but there were no significant differences in vitellogenin (NlVg) expression or in total oviposition relative to the control group. However, 90.68 and 46.13% of the eggs laid by the females injected with dsNlCHSA and miR-2703 mimic were unable to hatch, respectively. In addition, a second-generation miRNA and RNAi effect on N. lugens was observed. Ingested miR-2703 seems to be a good option for killing N. lugens nymphs, while NlCHSA may be a promising target for RNAi-based pest management. These findings provide important evidence for applications of small non-coding RNAs (snRNAs) in insect pest management. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Down-regulation of a chitin synthase a gene by RNA interference enhances pathogenicity of Beauveria bassiana ANU1 against Spodoptera exigua (HÜBNER).

    Science.gov (United States)

    Lee, Jung-Bok; Kim, Hyun Soo; Park, Youngjin

    2017-02-01

    Chitin synthase (CHS) is an important enzymatic component, which is required for chitin formation in the cuticles and cuticular linings of other tissues in insects. CHSs have been divided into two classes, classes A and B, based on their amino acid sequence similarities and functions. Class A CHS (CHS-A) is specifically expressed in the epidermis and related ectodermal cells such as tracheal cells, while class B CHS (CHS-B) is expressed in gut epithelial cells that produce peritrophic matrices. In this study, we cloned the CHS-A gene from the beet armyworm, Spodoptera exigua (SeCHS-A). The SeCHS-A contains an open reading frame of 4,698 nucleotides, encoding a protein of 1,565 amino acids with a predicted molecular mass of approximately 177.8 kDa. The SeCHS-A mRNA was expressed in all developmental stages and specifically in the epidermis and tracheae tissue by quantitative real-time-PCR analysis. Expression of SeCHS-A gene was suppressed by feeding double-stranded RNA (dsCHS-A, 400 ng/larva) in the third instar larvae of S. exigua. Suppression of the SeCHS-A gene expression significantly increased 35% of mortality on pupation of S. exigua. Also, the third instar larvae fed with dsCHS-A significantly increased susceptibility to entomopathogenic fungi, Beauveria bassiana ANU1 at 3 days after treatment. These results suggest that the SeCHS-A gene plays an important role in development of S. exigua and RNA interference may apply to effective pest control with B. bassiana. © 2017 Wiley Periodicals, Inc.

  15. Identification of GIG1, a GlcNAc-Induced Gene in Candida albicans Needed for Normal Sensitivity to the Chitin Synthase Inhibitor Nikkomycin Z▿§

    Science.gov (United States)

    Gunasekera, Angelo; Alvarez, Francisco J.; Douglas, Lois M.; Wang, Hong X.; Rosebrock, Adam P.; Konopka, James B.

    2010-01-01

    The amino sugar N-acetylglucosamine (GlcNAc) is known to be an important structural component of cells from bacteria to humans, but its roles in cell signaling are less well understood. GlcNAc induces two pathways in the human fungal pathogen Candida albicans. One activates cyclic AMP (cAMP) signaling, which stimulates the formation of hyphal cells and the expression of virulence genes, and the other pathway induces genes needed to catabolize GlcNAc. Microarray analysis of gene expression was carried out under four different conditions in order to characterize the transcriptional changes induced by GlcNAc. The most highly induced genes include those that encode a GlcNAc transporter (NGT1) and the GlcNAc catabolic enzymes (HXK1, DAC1, and NAG1). GlcNAc also activated most of the genes whose expression is increased when cells are triggered with other stimuli to form hyphae. Surprisingly, GlcNAc also induced a subset of genes that are regulated by galactose (GAL1, GAL7, and GAL10), which may be due to cross talk between signaling pathways. A novel GlcNAc-induced gene, GIG1, which is not essential for GlcNAc catabolism or the induction of hyphae, was identified. However, a Gig1-green fluorescent protein (GFP) fusion protein was specifically induced by GlcNAc, and not by other sugars. Gig1-GFP localized to the cytoplasm, where GlcNAc metabolism occurs. Significantly, a gig1Δ mutant displayed increased resistance to nikkomycin Z, which inhibits chitin synthase from converting UDP-GlcNAc into cell wall chitin. Gig1 is highly conserved in fungi, especially those that contain GlcNAc catabolic genes. These results implicate Gig1 in GlcNAc metabolism. PMID:20675577

  16. Traffic of chitin synthase 1 (CHS-1) to the Spitzenkörper and developing septa in hyphae of Neurospora crassa: actin dependence and evidence of distinct microvesicle populations.

    Science.gov (United States)

    Sánchez-León, Eddy; Verdín, Jorge; Freitag, Michael; Roberson, Robert W; Bartnicki-Garcia, Salomon; Riquelme, Meritxell

    2011-05-01

    We describe the subcellular location of chitin synthase 1 (CHS-1), one of seven chitin synthases in Neurospora crassa. Laser scanning confocal microscopy of growing hyphae showed CHS-1-green fluorescent protein (GFP) localized conspicuously in regions of active wall synthesis, namely, the core of the Spitzenkörper (Spk), the apical cell surface, and developing septa. It was also present in numerous fine particles throughout the cytoplasm plus some large vacuoles in distal hyphal regions. Although the same general subcellular distribution was observed previously for CHS-3 and CHS-6, they did not fully colocalize. Dual labeling showed that the three different chitin synthases were contained in different vesicular compartments, suggesting the existence of a different subpopulation of chitosomes for each CHS. CHS-1-GFP persisted in the Spk during hyphal elongation but disappeared from the septum after its development was completed. Wide-field fluorescence microscopy and total internal reflection fluorescence microscopy revealed subapical clouds of particles, suggestive of chitosomes moving continuously toward the Spk. Benomyl had no effect on CHS-1-GFP localization, indicating that microtubules are not strictly required for CHS trafficking to the hyphal apex. Conversely, actin inhibitors caused severe mislocalization of CHS-1-GFP, indicating that actin plays a major role in the orderly traffic and localization of CHS-1 at the apex.

  17. Gene expression analysis of the biocontrol fungus Trichoderma harzianum in the presence of tomato plants, chitin, or glucose using a high-density oligonucleotide microarray.

    Science.gov (United States)

    Samolski, Ilanit; de Luis, Alberto; Vizcaíno, Juan Antonio; Monte, Enrique; Suárez, M Belén

    2009-10-13

    It has recently been shown that the Trichoderma fungal species used for biocontrol of plant diseases are capable of interacting with plant roots directly, behaving as symbiotic microorganisms. With a view to providing further information at transcriptomic level about the early response of Trichoderma to a host plant, we developed a high-density oligonucleotide (HDO) microarray encompassing 14,081 Expressed Sequence Tag (EST)-based transcripts from eight Trichoderma spp. and 9,121 genome-derived transcripts of T. reesei, and we have used this microarray to examine the gene expression of T. harzianum either alone or in the presence of tomato plants, chitin, or glucose. Global microarray analysis revealed 1,617 probe sets showing differential expression in T. harzianum mycelia under at least one of the culture conditions tested as compared with one another. Hierarchical clustering and heat map representation showed that the expression patterns obtained in glucose medium clustered separately from the expression patterns observed in the presence of tomato plants and chitin. Annotations using the Blast2GO suite identified 85 of the 257 transcripts whose probe sets afforded up-regulated expression in response to tomato plants. Some of these transcripts were predicted to encode proteins related to Trichoderma-host (fungus or plant) associations, such as Sm1/Elp1 protein, proteases P6281 and PRA1, enchochitinase CHIT42, or QID74 protein, although previously uncharacterized genes were also identified, including those responsible for the possible biosynthesis of nitric oxide, xenobiotic detoxification, mycelium development, or those related to the formation of infection structures in plant tissues. The effectiveness of the Trichoderma HDO microarray to detect different gene responses under different growth conditions in the fungus T. harzianum strongly indicates that this tool should be useful for further assays that include different stages of plant colonization, as well as

  18. Study on the Effect of Wing Bud Chitin Metabolism and Its Developmental Network Genes in the Brown Planthopper, Nilaparvata lugens, by Knockdown of TRE Gene

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    2017-09-01

    Full Text Available The brown planthopper, Nilaparvata lugens is one of the most serious pests of rice, and there is so far no effective way to manage this pest. However, RNA interference not only can be used to study gene function, but also provide potential opportunities for novel pest management. The development of wing plays a key role in insect physiological activities and mainly involves chitin. Hence, the regulating role of trehalase (TRE genes on wing bud formation has been studied by RNAi. In this paper, the activity levels of TRE and the contents of the two sugars trehalose and glucose were negatively correlated indicating the potential role of TRE in the molting process. In addition, NlTRE1-1 and NlTRE2 were expressed at higher levels in wing bud tissue than in other tissues, and abnormal molting and wing deformity or curling were noted 48 h after the insect was injected with any double-stranded TRE (dsTRE, even though different TREs have compensatory functions. The expression levels of NlCHS1b, NlCht1, NlCht2, NlCht6, NlCht7, NlCht8, NlCht10, NlIDGF, and NlENGase decreased significantly 48 h after the insect was injected with a mixture of three kinds of dsTREs. Similarly, the TRE inhibitor validamycin can inhibit NlCHS1 and NlCht gene expression. However, the wing deformity was the result of the NlIDGF, NlENGase, NlAP, and NlTSH genes being inhibited when a single dsTRE was injected. These results demonstrate that silencing of TRE gene expression can lead to wing deformities due to the down-regulation of the AP and TSH genes involved in wing development and that the TRE inhibitor validamycin can co-regulate chitin metabolism and the expression of wing development-related genes in wing bud tissue. The results provide a new approach for the prevention and management of N. lugens.

  19. Study on the Effect of Wing Bud Chitin Metabolism and Its Developmental Network Genes in the Brown Planthopper, Nilaparvata lugens, by Knockdown of TRE Gene.

    Science.gov (United States)

    Zhang, Lu; Qiu, Ling-Yu; Yang, Hui-Li; Wang, Hui-Juan; Zhou, Min; Wang, Shi-Gui; Tang, Bin

    2017-01-01

    The brown planthopper, Nilaparvata lugens is one of the most serious pests of rice, and there is so far no effective way to manage this pest. However, RNA interference not only can be used to study gene function, but also provide potential opportunities for novel pest management. The development of wing plays a key role in insect physiological activities and mainly involves chitin. Hence, the regulating role of trehalase (TRE) genes on wing bud formation has been studied by RNAi. In this paper, the activity levels of TRE and the contents of the two sugars trehalose and glucose were negatively correlated indicating the potential role of TRE in the molting process. In addition, NlTRE1-1 and NlTRE2 were expressed at higher levels in wing bud tissue than in other tissues, and abnormal molting and wing deformity or curling were noted 48 h after the insect was injected with any double-stranded TRE ( dsTRE ), even though different TREs have compensatory functions. The expression levels of NlCHS1b, NlCht1, NlCht2, NlCht6, NlCht7, NlCht8, NlCht10, NlIDGF , and NlENGase decreased significantly 48 h after the insect was injected with a mixture of three kinds of dsTREs . Similarly, the TRE inhibitor validamycin can inhibit NlCHS1 and NlCht gene expression. However, the wing deformity was the result of the NlIDGF, NlENGase, NlAP , and NlTSH genes being inhibited when a single dsTRE was injected. These results demonstrate that silencing of TRE gene expression can lead to wing deformities due to the down-regulation of the AP and TSH genes involved in wing development and that the TRE inhibitor validamycin can co-regulate chitin metabolism and the expression of wing development-related genes in wing bud tissue. The results provide a new approach for the prevention and management of N. lugens .

  20. Effect of low shear modeled microgravity on phenotypic and central chitin metabolism in the filamentous fungi Aspergillus niger and Penicillium chrysogenum.

    Science.gov (United States)

    Sathishkumar, Yesupatham; Velmurugan, Natarajan; Lee, Hyun Mi; Rajagopal, Kalyanaraman; Im, Chan Ki; Lee, Yang Soo

    2014-08-01

    Phenotypic and genotypic changes in Aspergillus niger and Penicillium chrysogenum, spore forming filamentous fungi, with respect to central chitin metabolism were studied under low shear modeled microgravity, normal gravity and static conditions. Low shear modeled microgravity (LSMMG) response showed a similar spore germination rate with normal gravity and static conditions. Interestingly, high ratio of multiple germ tube formation of A. niger in LSMMG condition was observed. Confocal laser scanning microscopy images of calcofluor flurophore stained A. niger and P. chrysogenum showed no significant variations between different conditions tested. Transmission electron microscopy images revealed number of mitochondria increased in P. chrysogenum in low shear modeled microgravity condition but no stress related-woronin bodies in fungal hyphae were observed. To gain additional insight into the cell wall integrity under different conditions, transcription level of a key gene involved in cell wall integrity gfaA, encoding the glutamine: fructose-6-phosphate amidotransferase enzyme, was evaluated using qRT-PCR. The transcription level showed no variation among different conditions. Overall, the results collectively indicate that the LSMMG has shown no significant stress on spore germination, mycelial growth, cell wall integrity of potentially pathogenic fungi, A. niger and P. chrysogenum.

  1. In vivo anti-psoriatic activity, biodistribution, sub-acute and sub-chronic toxicity studies of orally administered methotrexate loaded chitin nanogel in comparison with methotrexate tablet.

    Science.gov (United States)

    Panonnummal, Rajitha; Jayakumar, R; Anjaneyan, Gopikrishnan; Sabitha, M

    2018-04-15

    The anti-psoriatic efficacy of orally administered methotrexate loaded chitin nanogel (MCNG) was evaluated (two doses- 2.715 mg/kg and 5.143 mg/kg) and compared against orally administered methotrexate tablet MTX (5.143 mg/kg). MCNG at both dose levels of 2.715 mg/kg and 5.143 mg/kg exhibited significant anti-psoriatic activity which is very much comparable with MTX, caused normalization of histological features and inflammatory score associated with induced psoriasis. Biodistribution studies revealed the presence of drug in serum and in vital organs at all the three cases with highest amount in MCNG at 5.143 mg/kg dose, followed by MTX tablet and are lowest in MCNG at 2.715 mg/kg dose. MCNG at the highest dose of 5.143 mg/kg caused liver, lung and kidney toxicities on sub acute toxicity studies and MTX tablet was found to be toxic on liver and lung on sub chronic toxicity studies. MCNG 2.715 mg/kg was found to be safe on both sub acute and sub chronic administrations, suggesting that it can provide sufficient serum and tissue level of methotrexate necessary to clear psoriatic lesions, without inducing systemic toxicity and expected to be a better alternative for orally administered conventional methotrexate tablet for patients who need systemic medications for psoriasis. Copyright © 2018. Published by Elsevier B.V.

  2. Preparation of silver nano-particles immobilized onto chitin nano-crystals and their application to cellulose paper for imparting antimicrobial activity.

    Science.gov (United States)

    Li, Zhihan; Zhang, Ming; Cheng, Dong; Yang, Rendang

    2016-10-20

    Immobilized silver nano-particles (Ag NPs) possess excellent antimicrobial properties due to their unique surface characteristics. In this paper, immobilized silver nano-particles were synthesized in the presence of chitin nano-crystals (CNC) based on the Tollens mechanism (reduction of silver ion by aldehydes in the chitosan oligosaccharides (COS)) under microwave-assisted conditions. The prepared Ag NPs-loaded CNC nano-composites were then applied onto the paper surface via coating for the preparation of antibacterial paper. Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) results confirmed that the Ag NPs were immobilized onto the CNC. The transmission electron microscope (TEM) and scanning electron microscopy (SEM) results further revealed that the spherical Ag NPs (5-12nm) were well dispersed on the surface of CNC. The coated paper made from the Ag NPs-loaded CNC nano-composites exhibited a high effectiveness of the antibacterial activity against E. coli or S. aureus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Liquid Chromatography with Electrospray Ionization and Tandem Mass Spectrometry Applied in the Quantitative Analysis of Chitin-Derived Glucosamine for a Rapid Estimation of Fungal Biomass in Soil

    Directory of Open Access Journals (Sweden)

    Madelen A. Olofsson

    2016-01-01

    Full Text Available This method employs liquid chromatography-tandem mass spectrometry to rapidly quantify chitin-derived glucosamine for estimating fungal biomass. Analyte retention was achieved using hydrophilic interaction liquid chromatography, with a zwitter-ionic stationary phase (ZIC-HILIC, and isocratic elution using 60% 5 mM ammonium formate buffer (pH 3.0 and 40% ACN. Inclusion of muramic acid and its chromatographic separation from glucosamine enabled calculation of the bacterial contribution to the latter. Galactosamine, an isobaric isomer to glucosamine, found in significant amounts in soil samples, was also investigated. The two isomers form the same precursor and product ions and could not be chromatographically separated using this rapid method. Instead, glucosamine and galactosamine were distinguished mathematically, using the linear relationships describing the differences in product ion intensities for the two analytes. The m/z transitions of 180 → 72 and 180 → 84 were applied for the detection of glucosamine and galactosamine and that of 252 → 126 for muramic acid. Limits of detection were in the nanomolar range for all included analytes. The total analysis time was 6 min, providing a high sample throughput method.

  4. Identification of Albizia lebbeck seed coat chitin-binding vicilins (7S globulins) with high toxicity to the larvae of the bruchid Callosobruchus maculatus.

    Science.gov (United States)

    Souza, A J; Ferreira, A T S; Perales, J; Beghini, D G; Fernandes, K V S; Xavier-Filho, J; Venancio, T M; Oliveira, A E A

    2012-02-01

    Seed coat is a specialized maternal tissue that interfaces the embryo and the external environment during embryogenesis, dormancy and germination. In addition, it is the first defensive barrier against penetration by pathogens and herbivores. Here we show that Albizia lebbeck seed coat dramatically compromises the oviposition, eclosion and development of the bruchid Callosobruchus maculatus. Dietary supplementation of bruchid larvae with A. lebbeck seed coat flour causes severe weight loss and reduces survival. By means of protein purification, mass spectrometry and bioinformatic analyses, we show that chitin-binding vicilins are the main source of A. lebbeck tegumental toxicity to C. maculatus. At concentrations as low as 0.1%, A. lebbeck vicilins reduce larval mass from 8.1 ± 1.7 (mass of control larvae) to 1.8 ± 0.5 mg, which corresponds to a decrease of 78%. Seed coat toxicity constitutes an efficient defense mechanism, hindering insect predation and preventing embryo damage. We hypothesize that A. lebbeck vicilins are good candidates for the genetic transformation of crop legumes to enhance resistance to bruchid predation.

  5. Bioactivity-Guided Metabolite Profiling of Feijoa ( Acca sellowiana) Cultivars Identifies 4-Cyclopentene-1,3-dione as a Potent Antifungal Inhibitor of Chitin Synthesis.

    Science.gov (United States)

    Mokhtari, Mona; Jackson, Michael D; Brown, Alistair S; Ackerley, David F; Ritson, Nigel J; Keyzers, Robert A; Munkacsi, Andrew B

    2018-06-06

    Pathogenic fungi continue to develop resistance against current antifungal drugs. To explore the potential of agricultural waste products as a source of novel antifungal compounds, we obtained an unbiased GC-MS profile of 151 compounds from 16 commercial and experimental cultivars of feijoa peels. Multivariate analysis correlated 93% of the compound profiles with antifungal bioactivities. Of the 18 compounds that significantly correlated with antifungal activity, 5 had not previously been described from feijoa. Two novel cultivars were the most bioactive, and the compound 4-cyclopentene-1,3-dione, detected in these cultivars, was potently antifungal (IC 50 = 1-2 μM) against human-pathogenic Candida species. Haploinsufficiency and fluorescence microscopy analyses determined that the synthesis of chitin, a fungal-cell-wall polysaccharide, was the target of 4-cyclopentene-1,3-dione. This fungal-specific mechanism was consistent with a 22-70-fold reduction in antibacterial activity. Overall, we identified the agricultural waste product of specific cultivars of feijoa peels as a source of potential high-value antifungal compounds.

  6. Chitin Oligosaccharide (COS) Reduces Antibiotics Dose and Prevents Antibiotics-Caused Side Effects in Adolescent Idiopathic Scoliosis (AIS) Patients with Spinal Fusion Surgery.

    Science.gov (United States)

    Qu, Yang; Xu, Jinyu; Zhou, Haohan; Dong, Rongpeng; Kang, Mingyang; Zhao, Jianwu

    2017-03-14

    Antibiotics are always considered for surgical site infection (SSI) in adolescent idiopathic scoliosis (AIS) surgery. However, the use of antibiotics often causes the antibiotic resistance of pathogens and side effects. Thus, it is necessary to explore natural products as drug candidates. Chitin Oligosaccharide (COS) has anti-inflammation and anti-bacteria functions. The effects of COS on surgical infection in AIS surgery were investigated. A total of 312 AIS patients were evenly and randomly assigned into control group (CG, each patient took one-gram alternative Azithromycin/Erythromycin/Cloxacillin/Aztreonam/Ceftazidime or combined daily), experiment group (EG, each patient took 20 mg COS and half-dose antibiotics daily), and placebo group (PG, each patient took 20 mg placebo and half-dose antibiotics daily). The average follow-up was one month, and infection severity and side effects were analyzed. The effects of COS on isolated pathogens were analyzed. SSI rates were 2%, 3% and 8% for spine wounds and 1%, 2% and 7% for iliac wound in CG, EG and PG ( p antibiotics ( p antibiotics dose and antibiotics-caused side effects in AIS patients with spinal fusion surgery by improving antioxidant and anti-inflammatory activities. COS should be developed as potential adjuvant for antibiotics therapies.

  7. Identification of Albizia lebbeck seed coat chitin-binding vicilins (7S globulins with high toxicity to the larvae of the bruchid Callosobruchus maculatus

    Directory of Open Access Journals (Sweden)

    A.J. Souza

    2012-02-01

    Full Text Available Seed coat is a specialized maternal tissue that interfaces the embryo and the external environment during embryogenesis, dormancy and germination. In addition, it is the first defensive barrier against penetration by pathogens and herbivores. Here we show that Albizia lebbeck seed coat dramatically compromises the oviposition, eclosion and development of the bruchid Callosobruchus maculatus. Dietary supplementation of bruchid larvae with A. lebbeck seed coat flour causes severe weight loss and reduces survival. By means of protein purification, mass spectrometry and bioinformatic analyses, we show that chitin-binding vicilins are the main source of A. lebbeck tegumental toxicity to C. maculatus. At concentrations as low as 0.1%, A. lebbeck vicilins reduce larval mass from 8.1 ± 1.7 (mass of control larvae to 1.8 ± 0.5 mg, which corresponds to a decrease of 78%. Seed coat toxicity constitutes an efficient defense mechanism, hindering insect predation and preventing embryo damage. We hypothesize that A. lebbeck vicilins are good candidates for the genetic transformation of crop legumes to enhance resistance to bruchid predation.

  8. Chitin Oligosaccharide (COS Reduces Antibiotics Dose and Prevents Antibiotics-Caused Side Effects in Adolescent Idiopathic Scoliosis (AIS Patients with Spinal Fusion Surgery

    Directory of Open Access Journals (Sweden)

    Yang Qu

    2017-03-01

    Full Text Available Antibiotics are always considered for surgical site infection (SSI in adolescent idiopathic scoliosis (AIS surgery. However, the use of antibiotics often causes the antibiotic resistance of pathogens and side effects. Thus, it is necessary to explore natural products as drug candidates. Chitin Oligosaccharide (COS has anti-inflammation and anti-bacteria functions. The effects of COS on surgical infection in AIS surgery were investigated. A total of 312 AIS patients were evenly and randomly assigned into control group (CG, each patient took one-gram alternative Azithromycin/Erythromycin/Cloxacillin/Aztreonam/Ceftazidime or combined daily, experiment group (EG, each patient took 20 mg COS and half-dose antibiotics daily, and placebo group (PG, each patient took 20 mg placebo and half-dose antibiotics daily. The average follow-up was one month, and infection severity and side effects were analyzed. The effects of COS on isolated pathogens were analyzed. SSI rates were 2%, 3% and 8% for spine wounds and 1%, 2% and 7% for iliac wound in CG, EG and PG (p < 0.05, respectively. COS reduces the side effects caused by antibiotics (p < 0.05. COS improved biochemical indexes and reduced the levels of interleukin (IL-6 and tumor necrosis factor (TNF alpha. COS reduced the antibiotics dose and antibiotics-caused side effects in AIS patients with spinal fusion surgery by improving antioxidant and anti-inflammatory activities. COS should be developed as potential adjuvant for antibiotics therapies.

  9. Characterization of an exo-chitinase from a Citrobacter strain isolated from the intestine content of large yellow croakers.

    Science.gov (United States)

    Xu, Jie; Yang, Yalin; Liu, Yang; Ran, Chao; Li, Juan; He, Suxu; Xu, Li; Ai, Xhunxiang; Zhou, Zhigang

    2016-07-04

    We isolated bacterial strains with chitin-degrading activity from the digesta of large yellow croakers (Pseudosciaena crocea) fed with chitin-enriched trash fish, and characterized potential chitinases thereof. Chitin-degrading strains were screened with colloidal chitin agar from the digesta of P. crocea fed with trash fish. The chitinase gene (chi-X) was cloned and expressed in Escherichia coli, and the enzymatic properties of the chitinase (CHI-X) were characterized. A Citrobacter freundii strain with chitin-degrading activity was isolated. The chitinase gene encodes a protein containing 493 amino acid residues, with a proposed glycoside hydrolase family-18 catalytic domain. CHI-X could hydrolyze colloidal chitin. The optimal pH for CHI-X was 4.0 at optimal temperature (60 ℃). CHI-X was active over a broad pH range, with around 90% of the activity maintained after incubation at pH between 3.0 and 11 for 1 h. The enzymatic activity of CHI-X was stimulated by Mn2+, Li+, and K+, but inhibited by Ag+. The enzyme was stable after treatment by proteases and grouper intestinal juice. CHI-X hydrolyzes colloidal chitin into GlcNAc and (GlcNAc)2. Furthermore, an synergic effect was observed between CHIX and ChiB565 (a chitinase from Aeromonas veronii B565) on colloidal chitin. CHI-X from intestinal bacterium may be potentially used as feed additive enzyme for warm water marine fish.

  10. Desarrollo y validación de un nuevo método para estimar la deshomogenización de quitina en supositorios Development and validation of a new method for chitin dehomogenization estimation in suppositories

    Directory of Open Access Journals (Sweden)

    Oscar García Pulpeiro

    2005-12-01

    Full Text Available Se trató por primera vez el desarrollo de un método alternativo sencillo para determinar la deshomogenización de quitina en supositorios rectales. El método propuesto se basa en la determinación de la deshomogenización a partir de la relación de la densidad de quitina presente en la punta y en la base del supositorio. Para el cálculo de la densidad por desplazamiento se tuvo en cuenta el factor de desalojo, así como varios cálculos matemáticos. El método se validó para control de calidad, resultó satisfactorio y se aplicó a 11 formulaciones diferentes. Se comprobó que el aumento del tamaño de partícula y de la dosis de quitina en el supositorio favorece la sedimentación hacia la punta del supositorio. En el intervalo analizado los valores de deshomogenización se consideran mínimos, por lo que no se afectó la calidad tecnológica de las formulaciones estudiadas.For the first time, the development of a simple alternative method to determine chitin dehomogenization in rectal suppositories was addressed in this paper. The suggested method is based on determination of dehomogenization from the ratio of chitin density of the tip and of the base of suppository. For estimation of the sliding density, the clearing factor as well as various mathematical calculations were taken into consideration. The method was validated for quality control, it was satisfactory and applied in 11 formulations. It was proved that the increase in chitin particle size and dose in suppository favors sedimentation to the tip of suppository. In the analyzed interval, the dehomogenization values were considered minimal, so the technological quality of the studied formulations was not affected.

  11. New insights into the structure and mode of action of Mo-CBP3, an antifungal chitin-binding protein of Moringa oleifera seeds.

    Directory of Open Access Journals (Sweden)

    Adelina B Batista

    Full Text Available Mo-CBP3 is a chitin-binding protein purified from Moringa oleifera Lam. seeds that displays inhibitory activity against phytopathogenic fungi. This study investigated the structural properties and the antifungal mode of action of this protein. To this end, circular dichroism spectroscopy, antifungal assays, measurements of the production of reactive oxygen species and microscopic analyses were utilized. Mo-CBP3 is composed of 30.3% α-helices, 16.3% β-sheets, 22.3% turns and 30.4% unordered forms. The Mo-CBP3 structure is highly stable and retains its antifungal activity regardless of temperature and pH. Fusarium solani was used as a model organism for studying the mechanisms by which this protein acts as an antifungal agent. Mo-CBP3 significantly inhibited spore germination and mycelial growth at 0.05 mg.mL-1. Mo-CBP3 has both fungistatic and fungicidal effects, depending on the concentration used. Binding of Mo-CBP3 to the fungal cell surface is achieved, at least in part, via electrostatic interactions, as salt was able to reduce its inhibitory effect. Mo-CBP3 induced the production of ROS and caused disorganization of both the cytoplasm and the plasma membrane in F. solani cells. Based on its high stability and specific toxicity, with broad-spectrum efficacy against important phytopathogenic fungi at low inhibitory concentrations but not to human cells, Mo-CBP3 has great potential for the development of new antifungal drugs or transgenic crops with enhanced resistance to phytopathogens.

  12. Heavy metal biosorption by chitin and chitosan isolated from Cunninghamella elegans (IFM 46109 Remoção de metais pesados por quitina e quitosana isoladas de Cunninghamella elegans (IFM 46109

    Directory of Open Access Journals (Sweden)

    Luciana de Oliveira Franco

    2004-09-01

    Full Text Available Chitin and chitosan were extracted from mycelial biomass of Cunninghamella elegans and the performance for copper, lead and iron biosorption in aqueous solution was evaluated. The growth curve of C. elegans was accomplished by determination of biomass, pH, glucose and nitrogen consumption. Chitin and chitosan were extracted by alkali-acid treatment and the yields were 23.8 and 7.8%, respectively. For the adsorption analysis, the process of heavy uptake metal sorption was evaluated using polysaccharides solutions (1% w/v. The rate of metallic biosorption was dependent upon the concentration and pH of metal solutions, and the best results were observed with pH 4.0. Chitosan showed the highest affinity for copper and chitin for iron adsorption. The results suggest that C. elegans (IFM 46109 is an attractive source of production of chitin and chitosan, with a great potential of heavy metals bioremediation in polluted environments.Quitina e quitosana foram extraídas a partir da massa micelial de Cunninghamella elegans (IFM 46109 e avaliou-se a aplicação destes polissacarídeos na remoção dos metais pesados cobre, chumbo e ferro preparados em solução aquosa. O crescimento de C. elegans foi acompanhado através da determinação de biomassa, pH, consumo de glicose e de nitrogênio. A extração de quitina e quitosana realizou-se através de tratamento álcali-ácido e a produção dos polissacarídeos foi de 23,8 e 7,8 %, respectivamente. A avaliação do processo de remoção dos metais pesados foi realizada utilizando-se os polissacarídeos em solução a 1% (p/v. Os níveis de biossorção de metais foram dependentes da concentração e do pH das soluções. Os melhores resultados foram obtidos em pH 4,0. A quitosana mostrou maior índice de biossorção para o íon cobre e a quitina para o ferro. Os resultados sugerem que C.elegans pode ser considerada uma fonte atrativa para a produção alternativa de quitina e quitosana, e que demonstra

  13. Carboxymethyl chitin-glucan (CM-CG) protects human HepG2 and HeLa cells against oxidative DNA lesions and stimulates DNA repair of lesions induced by alkylating agents.

    Science.gov (United States)

    Slamenová, Darina; Kováciková, Ines; Horváthová, Eva; Wsólová, Ladislava; Navarová, Jana

    2010-10-01

    A large number of functional foods, including those that contain β-d-glucans, have been shown to prevent human DNA against genotoxic effects and associated development of cancer and other chronic diseases. In this paper, carboxymethyl chitin-glucan (CM-CG) isolated from Aspergillus niger was investigated from two standpoints: (1) DNA-protective effects against oxidative DNA damage induced by H(2)O(2) and alkylating DNA damage induced by MMS and MNNG, and (2) a potential effect on rejoining of MMS- and MNNG-induced single strand DNA breaks. The results obtained by the comet assay in human cells cultured in vitro showed that CM-CG reduced significantly the level of oxidative DNA lesions induced by H(2)O(2) but did not change the level of alkylating DNA lesions induced by MMS or MNNG. On the other side, the efficiency of DNA-rejoining of single strand DNA breaks induced by MMS and MNNG was significantly higher in HepG2 cells pre-treated with CM-CG. The antioxidative activity of carboxymethyl chitin-glucan was confirmed by the DPPH assay. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. A Chitin-binding Protein Purified from Moringa oleifera Seeds Presents Anticandidal Activity by Increasing Cell Membrane Permeability and Reactive Oxygen Species Production

    Directory of Open Access Journals (Sweden)

    João X.S. Neto

    2017-06-01

    Full Text Available Candida species are opportunistic pathogens that infect immunocompromised and/or immunosuppressed patients, particularly in hospital facilities, that besides representing a significant threat to health increase the risk of mortality. Apart from echinocandins and triazoles, which are well tolerated, most of the antifungal drugs used for candidiasis treatment can cause side effects and lead to the development of resistant strains. A promising alternative to the conventional treatments is the use of plant proteins. M. oleifera Lam. is a plant with valuable medicinal properties, including antimicrobial activity. This work aimed to purify a chitin-binding protein from M. oleifera seeds and to evaluate its antifungal properties against Candida species. The purified protein, named Mo-CBP2, represented about 0.2% of the total seed protein and appeared as a single band on native PAGE. By mass spectrometry, Mo-CBP2 presented 13,309 Da. However, by SDS-PAGE, Mo-CBP2 migrated as a single band with an apparent molecular mass of 23,400 Da. Tricine-SDS-PAGE of Mo-CBP2 under reduced conditions revealed two protein bands with apparent molecular masses of 7,900 and 4,600 Da. Altogether, these results suggest that Mo-CBP2 exists in different oligomeric forms. Moreover, Mo-CBP2 is a basic glycoprotein (pI 10.9 with 4.1% (m/m sugar and it did not display hemagglutinating and hemolytic activities upon rabbit and human erythrocytes. A comparative analysis of the sequence of triptic peptides from Mo-CBP2 in solution, after LC-ESI-MS/MS, revealed similarity with other M. oleifera proteins, as the 2S albumin Mo-CBP3 and flocculating proteins, and 2S albumins from different species. Mo-CBP2 possesses in vitro antifungal activity against Candida albicans, C. parapsilosis, C. krusei, and C. tropicalis, with MIC50 and MIC90 values ranging between 9.45–37.90 and 155.84–260.29 μM, respectively. In addition, Mo-CBP2 (18.90 μM increased the cell membrane permeabilization

  15. A Serendipitous Formation of a Cysteine-bridged Disaccharide

    African Journals Online (AJOL)

    NICO

    O-acetyl-b-D-glucopyranosylisothiouronium salt and the iodide or tosyl derivatives of L-serine,3 the desulfurization of disulfide- linked glycosyl cysteine derivatives,4 Lewis acid-catalyzed glycosylation,5,6 and solid phase glycosylation.7. Glycosylation of amino acids has previously relied on the use of amino acids protected ...

  16. Moisture sorption in mixtures of biopolymer, disaccharides and water

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    2013-01-01

    The moisture sorption of ternary mixtures of biopolymer, sugar and water is investigated by means of the Free-Volume-Flory-Huggins (FVFH) theory. The earlier FVFH theory developed for binary mixtures of biopolymer/water and sugar/water has to be modified to account for two effects: 1) the change in

  17. Hydroxyester disaccharides from fruits of cape gooseberry (Physalis peruviana).

    Science.gov (United States)

    Mayorga, Humberto; Duque, Carmenza; Knapp, Holger; Winterhalter, Peter

    2002-02-01

    The 3-O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranoside of ethyl 3-hydroxyoctanoate and the diastereomeric 3-O-alpha-L-arabinopyranosyl-(1-->6)-beta-D-glucopyranosides of (3R) and (3S)-butyl 3-hydroxybutanoate, respectively, were isolated by chromatographic methods from fruits of cape gooseberry (Physalis peruviana) harvested in Colombia. Their structures were identified by ESI-MS/MS and NMR spectroscopy. The three glycoconjugates can be considered as immediate precursors of ethyl 3-hydroxyoctanoate and butyl 3-hydroxybutanoate, which are important aroma volatiles found in the fruit.

  18. Candidacy of a chitin-inducible gibberellin-responsive gene for a major locus affecting plant height in rice that is closely linked to Green Revolution gene sd1.

    Science.gov (United States)

    Kovi, Mallikarjuna Rao; Zhang, Yushan; Yu, Sibin; Yang, Gaiyu; Yan, Wenhao; Xing, Yongzhong

    2011-09-01

    Appropriate plant height is crucial for lodging resistance to improve the rice crop yield. The application of semi-dwarf 1 led to the green revolution in the 1960s, by predominantly increasing the rice yield. However, the frequent use of single sd1 gene sources may cause genetic vulnerability to pests and diseases. Identifying useful novel semi-dwarf genes is important for the genetic manipulation of plant architecture in practical rice breeding. In this study, introgression lines derived from two parents contrasting in plant height, Zhenshan 97 and Pokkali were employed to locate a gene with a large effect on plant height by the bulk segregant analysis method. A major gene, ph1, was mapped to a region closely linked to sd1 on chromosome 1; the additive effects of ph1 were more than 50 cm on the plant height and 2 days on the heading date in a BC(4)F(2) population and its progeny. ph1 was then fine mapped to BAC AP003227. Gene annotation indicated that LOC_OS01g65990 encoding a chitin-inducible gibberellin-responsive protein (CIGR), which belongs to the GRAS family, might be the right candidate gene of ph1. Co-segregation analysis of the candidate gene-derived marker finally confirmed its identity as the candidate gene. A higher expression level of the CIGR was detected in all the tested tissues in tall plants compared to those of short plants, especially in the young leaf sheath containing elongating tissues, which indicated its importance role in regulating plant height. ph1 showed a tremendous genetic effect on plant height, which is distinct from sd1 and could be a new resource for breeding semi-dwarf varieties.

  19. Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa zea larval development and pupation.

    Science.gov (United States)

    Jin, Shuangxia; Singh, Nameirakpam D; Li, Lebin; Zhang, Xianlong; Daniell, Henry

    2015-04-01

    In the past two decades, chloroplast genetic engineering has been advanced to achieve high-level protein accumulation but not for down-regulation of targeted genes. Therefore, in this report, lepidopteran chitin synthase (Chi), cytochrome P450 monooxygenase (P450) and V-ATPase dsRNAs were expressed via the chloroplast genome to study RNA interference (RNAi) of target genes in intended hosts. PCR and Southern blot analysis confirmed homoplasmy and site-specific integration of transgene cassettes into the chloroplast genomes. Northern blots and real-time qRT-PCR confirmed abundant processed and unprocessed dsRNA transcripts (up to 3.45 million copies of P450 dsRNAs/μg total RNA); the abundance of cleaved dsRNA was greater than the endogenous psbA transcript. Feeding of leaves expressing P450, Chi and V-ATPase dsRNA decreased transcription of the targeted gene to almost undetectable levels in the insect midgut, likely after further processing of dsRNA in their gut. Consequently, the net weight of larvae, growth and pupation rates were significantly reduced by chloroplast-derived dsRNAs. Taken together, successful expression of dsRNAs via the chloroplast genome for the first time opens the door to study RNA interference/processing within plastids. Most importantly, dsRNA expressed in chloroplasts can be utilized for gene inactivation to confer desired agronomic traits or for various biomedical applications, including down-regulation of dysfunctional genes in cancer or autoimmune disorders, after oral delivery of dsRNA bioencapsulated within plant cells. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Diseño y desarrollo de dos mascarillas faciales para el acné con quitina como sustancia bioactiva Design and development of two face packs for the acne where chitin is the bioactive substance

    Directory of Open Access Journals (Sweden)

    Jessy Pavón Pérez

    2011-06-01

    Full Text Available La industria cosmética brinda importancia al logro de un cosmético más completo, un cosmecéutico, que represente seguridad en el mantenimiento de la salud y la belleza. En este trabajo se diseñaron y desarrollaron 2 mascarillas faciales para el acné con quitina al 2 % como sustancia activa. Este polímero de origen marino posee propiedades hidratantes, filmógenas, ha sido demostrada su acción cicatrizante y antimicrobiana. Se realizaron 2 diseños de experimentos con mezcla D-optimal, y se estudió la incidencia de 3 componentes en ambas mascarillas: polyquaternium-7 (salcare SC91® en una de las variantes a ensayar y carboximetil celulosa sódica (CMC en la otra, propilenglicol y agua en ambos casos. Se analizaron en el tiempo el pH y la extensibilidad; resultó óptima la variante 4 del diseño (salcare SC91 2 %, propilenglicol 2 % y agua al 91,6 % en el caso de la formulación con salcare y la variante 5 (CMC 2 %, propilenglicol 4 % y agua 89,6 % en la formulación con CMC.The cosmetics industry attaches importance to the achievement of a more complete cosmetic, a cosmoceutic representing safety in health and beauty maintenance. In present paper were designed and developed two face packs for acne using 2 % chitin as active substance. This polymer of marine origin has phylmogen and hydration properties and a demonstrated healing and antimicrobial action. Two experimental designs were carried out with a D-optimal mixture and also the study of incidence of three components of both face packs, polyquaaterium-7 (salcare SC91® in one of the variants be assayed and sodium cellulose carboxymethyl (SCC in the other one, 2 % propylene glycol and 91.6 % water in the case of salcare formula and the 5 variant (2 % SCC, 4 % propylene glycol and 89.6 % water in SCC formula.

  1. A glycosynthase derived from an inverting GH19 chitinase from the moss Bryum coronatum.

    Science.gov (United States)

    Ohnuma, Takayuki; Fukuda, Tatsuya; Dozen, Satoshi; Honda, Yuji; Kitaoka, Motomitsu; Fukamizo, Tamo

    2012-06-15

    BcChi-A, a GH19 chitinase from the moss Bryum coronatum, is an endo-acting enzyme that hydrolyses the glycosidic bonds of chitin, (GlcNAc)(n) [a β-1,4-linked polysaccharide of GlcNAc (N-acetylglucosamine) with a polymerization degree of n], through an inverting mechanism. When the wild-type enzyme was incubated with α-(GlcNAc)2-F [α-(GlcNAc)(2) fluoride] in the absence or presence of (GlcNAc)(2), (GlcNAc)(2) and hydrogen fluoride were found to be produced through the Hehre resynthesis-hydrolysis mechanism. To convert BcChi-A into a glycosynthase, we employed the strategy reported by Honda et al. [(2006) J. Biol. Chem. 281, 1426-1431; (2008) Glycobiology 18, 325-330] of mutating Ser(102), which holds a nucleophilic water molecule, and Glu(70), which acts as a catalytic base, producing S102A, S102C, S102D, S102G, S102H, S102T, E70G and E70Q. In all of the mutated enzymes, except S102T, hydrolytic activity towards (GlcNAc)(6) was not detected under the conditions we used. Among the inactive BcChi-A mutants, S102A, S102C, S102G and E70G were found to successfully synthesize (GlcNAc)(4) as a major product from α-(GlcNAc)(2)-F in the presence of (GlcNAc)(2). The S102A mutant showed the greatest glycosynthase activity owing to its enhanced F(-) releasing activity and its suppressed hydrolytic activity. This is the first report on a glycosynthase that employs amino sugar fluoride as a donor substrate.

  2. Chitin and stress induced protein kinase activation

    DEFF Research Database (Denmark)

    Kenchappa, Chandra Shekar; Azevedo da Silva, Raquel; Bressendorff, Simon

    2017-01-01

    The assays described here are pertinent to protein kinase studies in any plant. They include an immunoblot phosphorylation/activation assay and an in-gel activity assay for MAP kinases (MPKs) using the general protein kinase substrate myelin basic protein. They also include a novel in-gel peptide...... substrate assay for Snf1-related kinase family 2 members (SnRK2s). This kinase family-specific assay overcomes some limitations of in-gel assays and permits the identification of different types of kinase activities in total protein extracts....

  3. Diseño y validación de un nuevo método para estimar reductores hidrosolubles asociados con la quitina Design and validation of a new method for estimation of water-soluble reducers associated with chitin

    Directory of Open Access Journals (Sweden)

    Yania Suárez Pérez

    2005-12-01

    Full Text Available Se desarrolló por primera vez un método espectrofotométrico para estimar reductores hidrosolubles asociados con la quitina materia prima. Para el ajuste del método se utilizó glucosamina como sustancia de referencia. Las determinaciones se realizaron a 330 nm que fue la longitud de onda de máxima absorción. Se seleccionó como tiempo óptimo de calentamiento 5 min y se verificó la selectividad de la respuesta analítica. Se demostró el cumplimiento de la ley de Lambert-Beer en el intervalo de 100-300 mg/mL. Se obtuvo un extracto acuoso a partir de quitina materia prima procesado para eliminar posibles interferencias, el cual se empleó como control en la validación del método. El método fue lineal, exacto y preciso en el intervalo estudiado. El límite de detección fue de 25,21 mg/mL y el de cuantificación de 65,45 mg/mL.For the first time, a spectrophotometric method to estimate water-soluble reducers associated with raw material chitin was developed. For the purpose of adjusting the method, glucosamine as a reference substance was used. The estimations were made at 330 nm that was the wavelength of maximum absorption. The selected optimal heating time was 5 min; the selectivity of analytical response was checked. The Lambert-Beer law was demonstrated in the 100-300 mg/mL interval. An aqueous extract from raw material chitin was obtained and then processed to eliminate possible interference and be used as a control for the method validation. The method was linear, exact and accurate in the studied interval. The detection limit was 25,21 mg/mL and the quantification limit was 65,45 mg/mL.

  4. Functional Properties of Mouse Chitotriosidase Expressed in the Periplasmic Space of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Masahiro Kimura

    Full Text Available Chitotriosidase (Chit1 is an enzyme associated with various diseases, including Gaucher disease, chronic obstructive pulmonary disease, Alzheimer disease and cystic fibrosis. In this study, we first expressed mouse mature Chit1 fused with V5 and (His6 tags at the C-terminus (Chit1-V5-His in the cytoplasm of Escherichia coli and found that most of the expressed protein was insoluble. In contrast, Chit1 tagged with Protein A at the N-terminus and V5-His at the C-terminus, was expressed in the periplasmic space of E. coli as a soluble protein and successfully purified. We evaluated the chitinolytic properties of the recombinant enzyme using 4-nitrophenyl N,N'-diacetyl-β-D-chitobioside [4NP-chitobioside, 4NP-(GlcNAc2] and found that its activity was comparable to CHO cells-expressed Chit1-V5-His. Optimal conditions for the E. coli-produced Chit1 were pH ~5.0 at 50°C. Chit1 was stable after 1 h incubation at pH 5.0~11.0 on ice and its chitinolytic activity was lost at pH 2.0, although the affinity to chitin remained unchanged. Chit1 efficiently cleaved crystalline and colloidal chitin substrates as well as oligomers of N-acetyl-D-glucosamine (GlcNAc releasing primarily (GlcNAc2 fragments at pH 5.0. On the other hand, (GlcNAc3 was relatively resistant to digestion by Chit1. The degradation of 4NP-(GlcNAc2 and (GlcNAc3 was less evident at pH 7.0~8.0, while (GlcNAc2 production from colloidal chitin and (GlcNAc6 at these pH conditions remained strong at the neutral conditions. Our results indicate that Chit1 degrades chitin substrates under physiological conditions and suggest its important pathophysiological roles in vivo.

  5. Porphyrins with directly meso-attached disaccharide moieties: Synthesis, self-assembly and cellular study

    Czech Academy of Sciences Publication Activity Database

    Malachowska, M.; Sperduto, C.; Darmostuk, M.; Monti, D.; Venanzi, M.; Mancini, G.; D'Acunto, C.W.; Králová, Jarmila; Ruml, T.; Wimmer, Zdeněk; Drasar, P.

    2016-01-01

    Roč. 20, č. 7 (2016), s. 773-784 ISSN 1088-4246 Institutional support: RVO:61389030 ; RVO:68378050 Keywords : derivatives * aggregation * steroids * sucrose * porphyrinoids * carbohydrates * self-assembly * cellular localisation * liposomes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.043, year: 2016

  6. Production and application of a rare disaccharide using sucrose phosphorylase from Leuconostoc mesenteroides.

    Science.gov (United States)

    Morimoto, Kenji; Yoshihara, Akihide; Furumoto, Toshio; Takata, Goro

    2015-06-01

    Sucrose phosphorylase (SPase) from Leuconostoc mesenteroides exhibited activity towards eight ketohexoses, which behaved as D-glucosyl acceptors, and α-D-glucose-1-phosphate (G1P), which behaved as a donor. All eight of these ketohexoses were subsequently transformed into the corresponding d-glucosyl-ketohexoses. Of the eight ketohexoses evaluated in the current study, d-allulose behaved as the best substrate for SPase, and the resulting d-glucosyl-d-alluloside product was found to be a non-reducing sugar with a specific optical rotation of [α]D(20) + 74.36°. D-Glucosyl-D-alluloside was identified as α-D-glucopyranosyl-(1→2)-β-D-allulofuranoside by NMR analysis. D-Glucosyl-D-alluloside exhibited an inhibitory activity towards an invertase from yeast with a Km value of 50 mM, where it behaved as a competitive inhibitor with a Ki value of 9.2 mM. D-Glucosyl-D-alluloside was also successfully produced from sucrose using SPase and D-tagatose 3-epimerase. This process also allowed for the production of G1P from sucrose and d-allulose from D-fructose, which suggested that this method could be used to prepare d-glucosyl-d-alluloside without the need for expensive reagents such as G1P and d-allulose. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Charged Hexosaminides as New Substrates for β-N-Acetylhexosaminidase-Catalyzed Synthesis of Immunomodulatory Disaccharides

    Czech Academy of Sciences Publication Activity Database

    Bojarová, Pavla; Slámová, Kristýna; Křenek, Karel; Gažák, Radek; Kulik, Natallia; Ettrich, Rüdiger; Pelantová, Helena; Kuzma, Marek; Riva, S.; Adámek, David; Bezouška, Karel; Křen, Vladimír

    2011-01-01

    Roč. 353, č. 13 (2011), s. 2409-2420 ISSN 1615-4150 R&D Projects: GA ČR GP203/09/P024; GA ČR GD305/09/H008; GA ČR GA303/09/0477; GA ČR(CZ) GAP207/11/0629; GA MŠk(CZ) LC06010 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z60870520 Keywords : beta-N-acetylhexosaminidase * biotransformations * charged glycosides Subject RIV: CC - Organic Chemistry Impact factor: 6.048, year: 2011

  8. Chronic lactose intake modifies the gastric emptying of monosaccharides but not of disaccharides in weanling rats

    Directory of Open Access Journals (Sweden)

    da-Costa-Pinto E.A.L.

    1997-01-01

    Full Text Available Ninety-six weanling male Wistar rats were fed for four weeks one of two different chows: a normal rat chow containing 55.5% (w/w starch (control group, N = 48 or a rat chow in which starch was partially replaced by lactose, in such a way that the experimental group (N = 48 received 35.5% (w/w starch and 20% (w/w lactose. The gastric emptying of fluid was then studied by measuring the gastric retention of four test meals containing lactose (5% or 10%, w/v or glucose + galactose (5% or 10%, w/v. Homogenates of the small intestine were assayed for lactase activity. The gastric retention values were obtained 15 min after orogastric infusion of the liquid meals. The median values for gastric retention of the 5% lactose solutions were 37.7% for the control group and 37.0% for the experimental group (P>0.02. For the 10% lactose solution the median values were 51.2% and 47.9% (P>0.02 for the control and experimental groups, respectively. However, for the 2.5% glucose + 2.5% galactose meal the median gastric retention was lower (P<0.02 in the group fed a lactose-enriched chow (38.5% than in the control group (41.6%. For the 5% glucose + 5% galactose solution the median values were not statistically different between groups, 65.0% for the control group and 58.8% for the experimental group. The median values of the specific lactase activity in the small intestine homogenate was 0.74 U/g in the control group and 0.91 U/g in the experimental group. These values were not statistically different (P>0.05. These results suggest that the prolonged ingestion of lactose by young adult rats changes the gastric emptying of a solution containing 5% monosaccharides. This adaptation may reflect the desensitization of intestinal nutrient receptors, possibly by an osmotic effect of lactose present in the chow.

  9. Solid acid catalysed formation of ethyl levulinate and ethyl glucopyranoside from mono- and disaccharides

    DEFF Research Database (Denmark)

    Shunmugavel, Saravanamurugan; Riisager, Anders

    2012-01-01

    Sulfonic acid functionalised SBA-15 (SO3H-SBA-15), sulfated zirconia and beta, Y, ZSM-5 and mordenite zeolite catalysts have been applied for the dehydration of sugars to ethyl levulinate and ethyl-D-glucopyranoside (EDGP) using ethanol as solvent and reactant. The SO3H-SBA-15 catalyst showed...

  10. Fluorescence resonance energy transfer sensors for quantitative monitoring of pentose and disaccharide accumulation in bacteria

    Directory of Open Access Journals (Sweden)

    Looger Loren L

    2008-06-01

    Full Text Available Abstract Background Engineering microorganisms to improve metabolite flux requires detailed knowledge of the concentrations and flux rates of metabolites and metabolic intermediates in vivo. Fluorescence resonance energy transfer sensors represent a promising technology for measuring metabolite levels and corresponding rate changes in live cells. These sensors have been applied successfully in mammalian and plant cells but potentially could also be used to monitor steady-state levels of metabolites in microorganisms using fluorimetric assays. Sensors for hexose and pentose carbohydrates could help in the development of fermentative microorganisms, for example, for biofuels applications. Arabinose is one of the carbohydrates to be monitored during biofuels production from lignocellulose, while maltose is an important degradation product of starch that is relevant for starch-derived biofuels production. Results An Escherichia coli expression vector compatible with phage λ recombination technology was constructed to facilitate sensor construction and was used to generate a novel fluorescence resonance energy transfer sensor for arabinose. In parallel, a strategy for improving the sensor signal was applied to construct an improved maltose sensor. Both sensors were expressed in the cytosol of E. coli and sugar accumulation was monitored using a simple fluorimetric assay of E. coli cultures in microtiter plates. In the case of both nanosensors, the addition of the respective ligand led to concentration-dependent fluorescence resonance energy transfer responses allowing quantitative analysis of the intracellular sugar levels at given extracellular supply levels as well as accumulation rates. Conclusion The nanosensor destination vector combined with the optimization strategy for sensor responses should help to accelerate the development of metabolite sensors. The new carbohydrate fluorescence resonance energy transfer sensors can be used for in vivo monitoring of sugar levels in prokaryotes, demonstrating the potential of such sensors as reporter tools in the development of metabolically engineered microbial strains or for real-time monitoring of intracellular metabolite during fermentation.

  11. Effect of Acid Hydrolysis on Tableting Properties of Chitin Obtained ...

    African Journals Online (AJOL)

    Department of Pharmacy, School of Pharmaceutical Chemistry, The University of Antioquia, Medellin, Columbia, Cll 67 # 53-. 108, off. ... Methods: The effect of acid hydrolysis conditions such as reaction temperature (46, 60, 80, 100, ... preparation of compacts with good tensile strength and moderate disintegration time.

  12. Salmonella biofilm formation on Aspergillus niger involves cellulose - chitin interactions

    Science.gov (United States)

    Salmonella cycles between host and nonhost environments, where it can become an active member of complex microbial communities. The role of fungi in the environmental adaptation of enteric pathogens remains relatively unexplored. We have discovered that S. enterica Typhimurium rapidly attaches to an...

  13. Effect of Acid Hydrolysis on Tableting Properties of Chitin Obtained ...

    African Journals Online (AJOL)

    The degree of crystallinity degree and its compact tensile strength were determined by x-ray and Fell & Newton methods, respectively. Results: The combined effect of high temperature (> 80 oC), HCl concentration (> 2 M) and reaction time (> 4 h) led to high depolymerization, reduction in degree of acetylation, crystallinity, ...

  14. Isolation and characterisation of chitin and chitosan from local sources

    International Nuclear Information System (INIS)

    Iqbal, M.K.; Khan, R.A.

    2014-01-01

    In this study, indigenous shrimp (Gadus morhua) and blue crab (Portunus pelagius, male and female) from Karachi coastal area were collected. The flesh was extracted to use for eating and the discarded waste was converted to an environment-friendly value-added product chitosan in chemical process after minor modification of DMCPA protocol. Four chitosan samples of shrimp head shells, blue crab leg shells, claw shells and carapace were obtained. The physicochemical and functional properties i.e., colour, degree of deacetylation, moisture, ash contents, nitrogen, viscosity, water and fat binding capacities were evaluated. Comparative study showed good percentage yields of chitosan from crab leg and shrimp head shells as 25.67% and 22.06%, respectively. Moisture, ash and nitrogen contents were in acceptable ranges. The colour of blue crab leg shell was off-white, while other three were light-yellow. Difference in degree of deacetylation (DD) was significant. The DD was 77% in crab leg shell, 61.6% shrimp head shells, 25.5% crab claw shell and 20.4% for crab carapace chitosan samples. Viscosity values were low (41-116 cPs). Water and fat binding capacity were in range of 494-521 % and 378-428 %, respectively. (author)

  15. The chitinous mandibles or beaks of cephalopods are characterized ...

    African Journals Online (AJOL)

    spamer

    V. HERNÁNDEZ-GARCÍA*, U. PIATKOWSKI† and M. R. CLARKE‡. Beaks of 133 specimens of Todarodes sagittatus caught in the central East Atlantic were studied. Relationships between several measurements of the upper and lower beaks and dorsal mantle length (DML) and total mass were calculated. The darkening ...

  16. Synthetic emmprin peptides with chitobiose substitution stimulate MMP-2 production by fibroblasts

    Directory of Open Access Journals (Sweden)

    Suzumiya Junji

    2011-07-01

    Full Text Available Abstract Background Emmprin, a glycoprotein containing two Ig domains, is enriched on tumor cell surfaces and stimulates matrix metalloproteinase (MMP production by adjacent stromal cells. Its first Ig domain (ECI contains the biologically active site. The dependence of emmprin activity on N-glycosylation is controversial. We investigated whether synthetic ECI with the shortest sugar is functionally active. Methods The whole ECI peptides carrying sugar chains, a chitobiose unit or N-linked core pentasaccharide, were synthesized by the thioester method and added to fibroblasts to examine whether they stimulate MMP-2 production. Results ECI carrying a chitobiose unit, ECI-(GlcNAc 2, but not ECI without a chitobiose unit or the chitobiose unit alone, dose-dependently stimulated MMP-2 production by fibroblasts. ECI with longer chitobiose units, ECI-[(Man3(GlcNAc2], also stimulated MMP-2 production, but the extent of its stimulation was lower than that of ECI-(GlcNAc2. Conclusions Our results indicate that ECI can mimic emmprin activity when substituted with chitobiose, the disaccharide with which N-glycosylation starts.

  17. The S-Layer Glycoprotein of the Crenarchaeote Sulfolobus acidocaldarius Is Glycosylated at Multiple Sites with Chitobiose-Linked N-Glycans

    Directory of Open Access Journals (Sweden)

    Elham Peyfoon

    2010-01-01

    Full Text Available Glycosylation of the S-layer of the crenarchaea Sulfolobus acidocaldarius has been investigated using glycoproteomic methodologies. The mature protein is predicted to contain 31 N-glycosylation consensus sites with approximately one third being found in the C-terminal domain spanning residues L1004-Q1395. Since this domain is rich in Lys and Arg and therefore relatively tractable to glycoproteomic analysis, this study has focused on mapping its N-glycosylation. Our analysis identified nine of the 11 consensus sequence sites, and all were found to be glycosylated. This constitutes a remarkably high glycosylation density in the C-terminal domain averaging one site for each stretch of 30–40 residues. Each of the glycosylation sites observed was shown to be modified with a heterogeneous family of glycans, with the largest having a composition Glc1Man2GlcNAc2 plus 6-sulfoquinovose (QuiS, consistent with the tribranched hexasaccharide previously reported in the cytochrome b558/566 of S. acidocaldarius. S. acidocaldarius is the only archaeal species whose N-glycans are known to be linked via the chitobiose core disaccharide that characterises the N-linked glycans of Eukarya.

  18. Upper Extremity Multifocal Neuropathy in a 10-Year-Old Boy Associated With NS6S Disaccharide Antibodies.

    Science.gov (United States)

    Edelman, Frederick; Naddaf, Elie; Waclawik, Andrew J

    2015-06-01

    We present a 10-year-old boy with a predominantly motor multifocal neuropathy with demyelinating and axonal changes with sensory involvement, affecting only one upper extremity. Laboratory studies revealed an elevated titer of immunoglobulin M (IgM) antibodies against the NS6S antigen. He responded to treatment with high dose intravenous immunoglobulins. Focal or multifocal immune-mediated neuropathies are not common in children and may be underdiagnosed. © The Author(s) 2014.

  19. The versatile enzyme Araf51 allowed efficient synthesis of rare pathogen-related beta-D-galactofuranosyl-pyranoside disaccharides

    Czech Academy of Sciences Publication Activity Database

    Chlubnová, I.; Králová, B.; Dvořáková, H.; Hošek, P.; Spiwok, V.; Filipp, Dominik; Nugier-Chauvin, C.; Daniellou, R.; Ferrieres, V.

    2014-01-01

    Roč. 12, č. 19 (2014), s. 3080-3089 ISSN 1477-0520 Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:68378050 Keywords : Galactofuranosyl-pyranoside dipeptides * Araf51 enzymatic synthesis * computer modelling Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.562, year: 2014

  20. Triglycerides, fatty acids, sterols, mono- and disaccharides and sugar alcohols in human milk and current types of infant formula milk

    NARCIS (Netherlands)

    Huisman, M; vanBeusekom, CM; Nijeboer, HJ; Muskiet, FAJ; Boersma, ER

    Objective: To investigate differences in the fatty acid composition, sterols, minor carbohydrates and sugar alcohols between human and formula milk. Design: We analyzed the concentrations of triglycerides, sterols, di- and monosaccharides and sugar alcohols, as well as the fatty acid composition of

  1. Heparan sulfate and dermatan sulfate derived disaccharides are sensitive markers for newborn screening for mucopolysaccharidoses types I, II and III

    DEFF Research Database (Denmark)

    de Ruijter, Jessica; de Ru, Minke H; Wagemans, Tom

    2012-01-01

    Mucopolysaccharidoses (MPSs) are a group of lysosomal storage disorders (LSDs) caused by a defect in the degradation of glycosaminoglycans (GAGs). The accumulation of GAGs in MPS patients results in extensive, severe and progressive disease. Disease modifying therapy is available for three...

  2. Combined engineering of disaccharide transport and phosphorolysis for enhanced ATP yield from sucrose fermentation in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Marques, Wesley Leoricy; Mans, Robert; Henderson, Ryan K; Marella, Eko Roy; Horst, Jolanda Ter; Hulster, Erik de; Poolman, Bert; Daran, Jean-Marc; Pronk, Jack T; Gombert, Andreas K; van Maris, Antonius J A

    Anaerobic industrial fermentation processes do not require aeration and intensive mixing and the accompanying cost savings are beneficial for production of chemicals and fuels. However, the free-energy conservation of fermentative pathways is often insufficient for the production and export of the

  3. Divergent Synthesis of Chondroitin Sulfate Disaccharides and Identification of Sulfate Motifs that Inhibit Triple Negative Breast Cancer

    Science.gov (United States)

    Wei Poh, Zhong; Heng Gan, Chin; Lee, Eric J.; Guo, Suxian; Yip, George W.; Lam, Yulin

    2015-09-01

    Glycosaminoglycans (GAGs) regulate many important physiological processes. A pertinent issue to address is whether GAGs encode important functional information via introduction of position specific sulfate groups in the GAG structure. However, procurement of pure, homogenous GAG motifs to probe the “sulfation code” is a challenging task due to isolation difficulty and structural complexity. To this end, we devised a versatile synthetic strategy to obtain all the 16 theoretically possible sulfation patterns in the chondroitin sulfate (CS) repeating unit; these include rare but potentially important sulfated motifs which have not been isolated earlier. Biological evaluation indicated that CS sulfation patterns had differing effects for different breast cancer cell types, and the greatest inhibitory effect was observed for the most aggressive, triple negative breast cancer cell line MDA-MB-231.

  4. Variations in the Peritrophic Matrix Composition of Heparan Sulphate from the Tsetse Fly, Glossina morsitans morsitans

    Directory of Open Access Journals (Sweden)

    Evelyn Rogerson

    2018-03-01

    Full Text Available Tsetse flies are the principal insect vectors of African trypanosomes—sleeping sickness in humans and Nagana in cattle. One of the tsetse fly species, Glossina morsitans morsitans, is host to the parasite, Trypanosoma brucei, a major cause of African trypanosomiasis. Precise details of the life cycle have yet to be established, but the parasite life cycle involves crossing the insect peritrophic matrix (PM. The PM consists of the polysaccharide chitin, several hundred proteins, and both glycosamino- and galactosaminoglycan (GAG polysaccharides. Owing to the technical challenges of detecting small amounts of GAG polysaccharides, their conclusive identification and composition have not been possible until now. Following removal of PMs from the insects and the application of heparinases (bacterial lyase enzymes that are specific for heparan sulphate (HS GAG polysaccharides, dot blots with a HS-specific antibody showed heparan sulphate proteoglycans (HSPGs to be present, consistent with Glossina morsitans morsitans genome analysis, as well as the likely expression of the HSPGs syndecan and perlecan. Exhaustive HS digestion with heparinases, fluorescent labeling of the resulting disaccharides with BODIPY fluorophore, and separation by strong anion exchange chromatography then demonstrated the presence of HS for the first time and provided the disaccharide composition. There were no significant differences in the type of disaccharide species present between genders or between ages (24 vs. 48 h post emergence, although the HS from female flies was more heavily sulphated overall. Significant differences, which may relate to differences in infection between genders or ages, were evident, however, in overall levels of 2-O-sulphation between sexes and, for females, between 24 and 48 h post-emergence, implying a change in expression or activity for the 2-O-sulphotransferase enzyme. The presence of significant quantities of disaccharides containing the

  5. Interaction of sodium monoborate and boric acid with some mono- and disaccharides in aqueous solutions (from data on isomolar solutions method)

    International Nuclear Information System (INIS)

    Shvarts, E.M.; Ignash, R.T.; Belousova, R.G.

    2000-01-01

    Interaction of sodium monoborate Na[B(OH) 4 ] and boric acid with D-glucose, D-fructose, D-saccharose and D-lactose in aqueous solution depending on the solution total concentration is studied through the method of isomolar solutions with application of conductometry and polarimetry. It is shown by the D-glucose and D-fructose examples that the method of isomolar solutions leads to results compatible with the data obtained by other methods and it may be applied to other saccharides [ru

  6. Altered Colonic Environment, a Possible Predisposition to Colorectal Cancer and Colonic Inflammatory Bowel Disease: Rationale of Dietary Manipulation with Emphasis on Disaccharides

    OpenAIRE

    Szilagyi, A

    1998-01-01

    A recurrent theme in the schema of pathogenetic mechanisms attributed to colorectal cancer (CRC) and inflammatory bowel disease (IBD) is the interaction between genes and environment. Dietary and other environmental factors, and lower intestinal flora and their chemical interactions occur in the pathogenesis of both. Events at the mucosal surface may be influenced by factors in the luminal environment and by contributions of the host. In addition, both forms of IBD - Crohn's disease (CD) and ...

  7. Efficient one-pot enzymatic synthesis of alpha-(1 -> 4)-glucosidic disaccharides through a coupled reaction catalysed by Lactobacillus acidophilus NCFM maltose phosphorylase

    DEFF Research Database (Denmark)

    Nakai, Hiroyuki; Dilokpimol, Adiphol; Abou Hachem, Maher

    2010-01-01

    Lactobacillus acidophilus NCFM maltose phosphorylase (LaMalP) of glycoside hydrolase family 65 catalysed enzymatic synthesis of alpha-(1 -> 4)-glucostdic disacchandes from maltose and five monosacchandes in a coupled phosphorolysis/reverse phosphorolysis one-pot reaction Thus phosphorolysis...

  8. Lactitol, a second-generation disaccharide for treatment of chronic portal-systemic encephalopathy. A double-blind, crossover, randomized clinical trial.

    Science.gov (United States)

    Uribe, M; Toledo, H; Perez, F; Vargas, F; Gil, S; Garcia-Ramos, G; Ravelli, G P; Guevara, L

    1987-12-01

    A double-blind crossover trial was performed to test the therapeutic usefulness and safety of lactitol, a beta-galactoside sorbitol, against lactose in 18 patients with chronic portal-systemic encephalopathy (PSE). The study included four periods: two for washout and two for lactitol and lactose administration. During washout periods, which lasted two weeks each, patients were stabilized with neomycin plus milk of magnesia. Lactitol and lactose were administered during four weeks each. Ten patients were randomly assigned to receive lactose (group A) and eight patients to receive lactitol (group B) first. PSE parameters, ie, mental state, number connection test performance, asterixis and blood ammonia levels were assessed fortnightly. Electroencephalographic tracings and stool pHs were evaluated at the end of each study period. After the first administration of lactose and lactitol, no statistically significant differences in PSE parameters were found. At the same stage, a significant stool acidification (P less than 0.05) was detected. It is concluded that lactitol seems to be safe and efficacious in treating patients with chronic PSE.

  9. Structure of a lectin with antitumoral properties in king bolete (Boletus edulis) mushrooms.

    Science.gov (United States)

    Bovi, Michele; Carrizo, Maria E; Capaldi, Stefano; Perduca, Massimiliano; Chiarelli, Laurent R; Galliano, Monica; Monaco, Hugo L

    2011-08-01

    A novel lectin has been isolated from the fruiting bodies of the common edible mushroom Boletus edulis (king bolete, penny bun, porcino or cep) by affinity chromatography on a chitin column. We propose for the lectin the name BEL (B. edulis lectin). BEL inhibits selectively the proliferation of several malignant cell lines and binds the neoplastic cell-specific T-antigen disaccharide, Galβ1-3GalNAc. The lectin was structurally characterized: the molecule is a homotetramer and the 142-amino acid sequence of the chains was determined. The protein belongs to the saline-soluble family of mushroom fruiting body-specific lectins. BEL was also crystallized and its three-dimensional structure was determined by X-ray diffraction to 1.15 Å resolution. The structure is similar to that of Agaricus bisporus lectin. Using the appropriate co-crystals, the interactions of BEL with specific mono- and disaccharides were also studied by X-ray diffraction. The six structures of carbohydrate complexes reported here provide details of the interactions of the ligands with the lectin and shed light on the selectivity of the two distinct binding sites present in each protomer.

  10. Structural insights into cellulolytic and chitinolytic enzymes revealing crucial residues of insect β-N-acetyl-D-hexosaminidase.

    Directory of Open Access Journals (Sweden)

    Tian Liu

    Full Text Available The chemical similarity of cellulose and chitin supports the idea that their corresponding hydrolytic enzymes would bind β-1,4-linked glucose residues in a similar manner. A structural and mutational analysis was performed for the plant cellulolytic enzyme BGlu1 from Oryza sativa and the insect chitinolytic enzyme OfHex1 from Ostrinia furnacalis. Although BGlu1 shows little amino-acid sequence or topological similarity with OfHex1, three residues (Trp(490, Glu(328, Val(327 in OfHex1, and Trp(358, Tyr(131 and Ile(179 in BGlu1 were identified as being conserved in the +1 sugar binding site. OfHex1 Glu(328 together with Trp(490 was confirmed to be necessary for substrate binding. The mutant E328A exhibited a 8-fold increment in K(m for (GlcNAc(2 and a 42-fold increment in K(i for TMG-chitotriomycin. A crystal structure of E328A in complex with TMG-chitotriomycin was resolved at 2.5 Å, revealing the obvious conformational changes of the catalytic residues (Glu(368 and Asp(367 and the absence of the hydrogen bond between E328A and the C3-OH of the +1 sugar. V327G exhibited the same activity as the wild-type, but acquired the ability to efficiently hydrolyse β-1,2-linked GlcNAc in contrast to the wild-type. Thus, Glu(328 and Val(327 were identified as important for substrate-binding and as glycosidic-bond determinants. A structure-based sequence alignment confirmed the spatial conservation of these three residues in most plant cellulolytic, insect and bacterial chitinolytic enzymes.

  11. Some physiological aspects of the insecticidal action of diflubenzuron, an inhibitor of chitin synthesis

    NARCIS (Netherlands)

    Grosscurt, A.C.

    1980-01-01

    Diflubenzuron is the common name for 1-(4-chlorophenyl)-3-(2,6-difluorobenzoyl)urea, the active ingredient of the insecticide Dimilin.

    Diflubenzuron was discovered in 1971 as a larvicide. Evidence was provided by several authors that the larvicidal effect of this compound was caused by its

  12. 1 In vitro Bioactivity Studies of Larnite and Larnite/Chitin Composites ...

    Indian Academy of Sciences (India)

    65

    decomposing and in this duration there will be a microbial growth on its surface .... in the range of 848 cm-1 to 893 cm-1 indicate symmetric stretching modes of Si-O bond. ..... Grants for Engineering, Management and Science (VITRGEMS).

  13. In vitro bioactivity studies of larnite and larnite/chitin composites ...

    Indian Academy of Sciences (India)

    decomposing and in this duration, there will be a microbial growth on its surface with foul .... symmetric stretching modes of Si–O bond. The stretching. Figure 1. ..... of Technology Research Grants for Engineering, Management and Science ...

  14. Response of Ustilago maydis against the Stress Caused by Three Polycationic Chitin Derivatives

    Directory of Open Access Journals (Sweden)

    Dario Rafael Olicón-Hernández

    2017-12-01

    Full Text Available Chitosan is a stressing molecule that affects the cells walls and plasma membrane of fungi. For chitosan derivatives, the action mode is not clear. In this work, we used the yeast Ustilago maydis to study the effects of these molecules on the plasma membrane, focusing on physiologic and stress responses to chitosan (CH, oligochitosan (OCH, and glycol-chitosan (GCH. Yeasts were cultured with each of these molecules at 1 mg·mL−1 in minimal medium. To compare plasma membrane damage, cells were cultivated in isosmolar medium. Membrane potential (Δψ as well as oxidative stress were measured. Changes in the total plasma membrane phospholipid and protein profiles were analyzed using standard methods, and fluorescence-stained mitochondria were observed. High osmolarity did not protect against CH inhibition and neither affected membrane potential. The OCH did produce higher oxidative stress. The effects of these molecules were evidenced by modifications in the plasma membrane protein profile. Also, mitochondrial damage was evident for CH and OCH, while GCH resulted in thicker cells with fewer mitochondria and higher glycogen accumulation.

  15. Biosorption Of Heavy Metals From Mining Influenced Water Onto Chitin Products

    Science.gov (United States)

    Mining influenced water (MIW) emanating from mine sites poses a major environmental concern due to its impact on water contamination caused by low pH and the presence of high concentrations of toxic metals. Chitorem SC-20® (raw crushed crab shells containing 40% w/w C...

  16. Apatite and Chitin Amendments Promote Microbial Activity and Augment Metal Removal in Marine Sediments

    Science.gov (United States)

    2013-07-01

    remedial history at met- als contaminated soils sites [10,13,14]. Apatite’s use in sediment remediation is more recent [15]. The DoD (Navy) is currently...ABSTRACT In situ amendments are a promising approach to enhance removal of metal contaminants from diverse environments including soil , groundwater... Soil Treatments to Reduce the Phyto and Bioavailability of Lead, Zinc, and Cadmium ,” Journal of Environmental Quality, Vol. 33, No. 2, 2004, pp. 522

  17. Mechanisms and Effectivity of Sulfate Reducing Bioreactors Using a Chitinous Substrate in Treating Mining Influenced Water

    Science.gov (United States)

    Mining-influenced water (MIW) is the main environmental challenge associated with the mining industry. Passive MIW remediation can be achieved through microbial activity in sulfate-reducing bioreactors (SRBRs), but their actual removal rates depend on different factors, one of wh...

  18. Degradation of barnacle nauplii: Implications to chitin regulation in the marine environment

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, L.; Gaonkar, C.C.; Desai, D.V.

    in the treatment time. Bacterial abundance of the chitinase treated nauplii increased with the increase in enzyme concentration. Pathogenic bacteria such as Vibrio cholerae, V. alginolyticus, V. parahaemolyticus which were initially associated with the exoskeleton...

  19. Tracking developmentally regulated post-synthetic processing of homogalacturonan and chitin using reciprocal oligosaccharide probes

    DEFF Research Database (Denmark)

    Mravec, Jozef; Kračun, Stjepan K.; Rydahl, Maja G.

    2014-01-01

    Polysaccharides are major components of extracellular matrices and are often extensively modified post-synthetically to suit local requirements and developmental programmes. However, our current understanding of the spatiotemporal dynamics and functional significance of these modifications is lim...... and animal systems. We demonstrated their potential for providing new biological insights by using them to study homogalacturonan processing during Arabidopsis thaliana root cap development and by analyzing sites of chitosan deposition in fungal cell walls and arthropod exoskeletons....

  20. Knickkopf protein protects and organizes chitin in the newly synthesized insect exoskeleton

    Science.gov (United States)

    New cuticle synthesis and molting are complex developmental processes that all insects must undergo to allow for growth. However, little is known about how insects regulate the selective degradation of the old cuticle while leaving the new one intact. In this study we show that in the red flour beet...

  1. Efficacy of diflubenzuron, a chitin synthesis inhibitor, against Culex pipiens larvae in septic tank water.

    Science.gov (United States)

    Cetin, H; Yanikoglu, A; Cilek, J E

    2006-06-01

    The mosquito Culex pipiens L. is an important pest in urban and suburban areas in many parts of the world. Septic tanks are the most important habitats supporting the production of this species in the city of Antalya, southwestern Turkey. Diflubenzuron, in a 25% wettable powder (Du-dim 25 WP), and a 4% granular formulation (Du-dim 4 G) was evaluated against late 2nd to early 3rd instars of Cx. pipiens in single-family septic tanks. Both formulations were tested at 0.01, 0.02, and 0.03 mg (AI)/liter. The results indicated that both formulations applied at the rate of 0.02 and 0.03 mg (AI)/liter achieved 100% adult inhibition, at intervals of 7, 14, 21, and 28 days after treatment. Septic tanks treated with 0.01 mg (AI)/liter WP formulation resulted in complete (100%) adult inhibition through 14 days, whereas the G formulation gave the same effect through 21 days posttreatment at this rate.

  2. Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy

    NARCIS (Netherlands)

    Leertouwer, Hein L.; Wilts, Bodo D.; Stavenga, Doekele G.

    2011-01-01

    Using Jamin-Lebedeff interference microscopy, we measured the wavelength dependence of the refractive index of butterfly wing scales and bird feathers. The refractive index values of the glass scales of the butterfly Graphium sarpedon are, at wavelengths 400, 500 and 600 nm, 1.572, 1.552 and 1.541,

  3. Effect of acid Lugol solution as preservative on two representative chitineous and gelatinous zooplankton groups

    DEFF Research Database (Denmark)

    Jaspers, Cornelia; Carstensen, Jacob

    2009-01-01

    The estimation of biomass from body lengths to carbon regressions is a common approach in plankton research. Several different chemicals for sample preservation are in use, and conversion factors to account for shrinkage effects exist, but to our knowledge the consequences of using potassium......-iodide and iodine (Lugol solution) as preservative on body sizes of different mesozooplankton groups have not been investigated. We tested the effect of 2% acidified Lugol solution on body sizes over time on two major marine mesozooplankton groups, namely larvaceans and copepods, which are representatives...

  4. Studies on electrospun chitosan based nanofibres reinforced with cellulose and chitin nanowhiskers

    CSIR Research Space (South Africa)

    Jacobs, V

    2010-09-01

    Full Text Available Spinning: A New Method to Produce Micro- and Nanofibers from Polymer Solutions, Journal of Applied Polymer Science, 2009, 113, 2322–2330. 4. Subbiah, T.; Bhat, G. S.; Tock, R. W.; Parameswaran, S.; Ramkumar, S. S. Electrospinning of Nanofibers, Journal...

  5. Blue Chitin columns for the extraction of heterocyclic amines from urine samples

    DEFF Research Database (Denmark)

    Bang, J.; Frandsen, Henrik Lauritz; Skog, K.

    2004-01-01

    During normal cooking of meat, a class of mutagenic/carcinogenic compounds called heterocyclic amines is formed. Heterocyclic amines are rapidly absorbed and metabolised in the human body, and for estimation of the intake of heterocyclic amines, it is useful to determinate their levels in the uri...

  6. Effets d'un inhibiteur de la synthèse de la chitine, le diflubenzuron ...

    African Journals Online (AJOL)

    SF9) de Spodoptera frugiperda (Lépidoptère), les cellules (PID2) des disques imaginaux des ailes de Plodia interpunctella (Lépidoptère) et des cellules (S2) embryonnaires de Drosophila melanogaster (Diptére). Les résultats obtenus montrent ...

  7. Dried fruit of the Luffa sponge as a source of chitin for applications as skin substitutes.

    Science.gov (United States)

    Jiang, Ping-Lun; Chien, Mei-Yin; Sheu, Ming-Thau; Huang, Yi-You; Chen, Meng-Hsun; Su, Ching-Hua; Liu, Der-Zen

    2014-01-01

    LUFFACHITIN obtained from the residue of the sponge-like dried fruit of Luffa aegyptiaca was developed as a weavable skin substitute in this study. A chemical analysis revealed that LUFFACHITIN was composed of a copolymer containing N-acetyl-glucosamine (~40%) as a major monomer with a filamentary structure as demonstrated by both optical and scanning electron microscopy. The pulp-like white residue of the sponge-like dried fruit of Luffa aegyptiaca after treatment was then woven into a thin, porous membrane by filtration and lyophilization as a skin substitute for conducting wound-healing study on rats. The results indicated that the LUFFACHITIN membrane showed significant wound-healing enhancement (25 days to complete healing) compared to cotton gauze (>30 days), but not inferior to that of SACCHACHITIN. Furthermore, the LUFFACHITIN membrane had advantages of having a high yield, better physical properties for fabrication, and a more attractive appearance.

  8. Dried Fruit of the Luffa Sponge as a Source of Chitin for Applications as Skin Substitutes

    OpenAIRE

    Jiang, Ping-Lun; Chien, Mei-Yin; Sheu, Ming-Thau; Huang, Yi-You; Chen, Meng-Hsun; Su, Ching-Hua; Liu, Der-Zen

    2014-01-01

    LUFFACHITIN obtained from the residue of the sponge-like dried fruit of Luffa aegyptiaca was developed as a weavable skin substitute in this study. A chemical analysis revealed that LUFFACHITIN was composed of a copolymer containing N-acetyl-glucosamine (~40%) as a major monomer with a filamentary structure as demonstrated by both optical and scanning electron microscopy. The pulp-like white residue of the sponge-like dried fruit of Luffa aegyptiaca after treatment was...

  9. Dried Fruit of the Luffa Sponge as a Source of Chitin for Applications as Skin Substitutes

    Directory of Open Access Journals (Sweden)

    Ping-Lun Jiang

    2014-01-01

    Full Text Available LUFFACHITIN obtained from the residue of the sponge-like dried fruit of Luffa aegyptiaca was developed as a weavable skin substitute in this study. A chemical analysis revealed that LUFFACHITIN was composed of a copolymer containing N-acetyl-glucosamine (~40% as a major monomer with a filamentary structure as demonstrated by both optical and scanning electron microscopy. The pulp-like white residue of the sponge-like dried fruit of Luffa aegyptiaca after treatment was then woven into a thin, porous membrane by filtration and lyophilization as a skin substitute for conducting wound-healing study on rats. The results indicated that the LUFFACHITIN membrane showed significant wound-healing enhancement (25 days to complete healing compared to cotton gauze (>30 days, but not inferior to that of SACCHACHITIN. Furthermore, the LUFFACHITIN membrane had advantages of having a high yield, better physical properties for fabrication, and a more attractive appearance.

  10. N-Glycosylation analysis of yeast Carboxypeptidase Y reveals the ultimate removal of phosphate from glycans at Asn368.

    Science.gov (United States)

    B S, Gnanesh Kumar; Surolia, Avadhesha

    2017-05-01

    Carboxypeptidase Y from Saccharomyces cerivisiae was characterized for its site specific N-glycosylation through mass spectrometry. The N-glycopeptides were derived using non specific proteases and are analysed directly on liquid chromatography coupled to ion trap mass spectrometer in tandem mode. The evaluation of glycan fragment ions and the Y 1 ions (peptide+HexNAc) +n revealed the glycan sequence and the corresponding site of attachment. We observed the microheterogeneity in N-glycans such as Man 11-15 GlcNAc 2 at Asn 13 , Man 8-12 GlcNAc 2 at Asn 87 , Man 9-14 GlcNAc 2 at Asn 168 and phosphorylated Man 12-17 GlcNAc 2 as well as Man 11-16 GlcNAc 2 at Asn 368 . The presence of N-glycans with Man <18 GlcNAc 2 indicated that in vacuoles the steady release of mannose/phospho mannose residues from glycans occurs initially at Asn 13 or Asn 168 followed by at Asn 368 . However, glycans at Asn 87 which comprises Man 8-12 residues as reported earlier remain intact suggesting its inaccessibility for a similar processing. This in turn indicates the interaction of the glycan at Asn 87 with the polypeptide chain implicating it in the folding of the protein. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Amino Groups of Chitosan Are Crucial for Binding to a Family 32 Carbohydrate Binding Module of a Chitosanase from Paenibacillus elgii*

    Science.gov (United States)

    Das, Subha Narayan; Wagenknecht, Martin; Nareddy, Pavan Kumar; Bhuvanachandra, Bhoopal; Niddana, Ramana; Balamurugan, Rengarajan; Swamy, Musti J.; Moerschbacher, Bruno M.; Podile, Appa Rao

    2016-01-01

    We report here the role and mechanism of specificity of a family 32 carbohydrate binding module (CBM32) of a glycoside hydrolase family 8 chitosanase from Paenibacillus elgii (PeCsn). Both the activity and mode of action of PeCsn toward soluble chitosan polymers were not different with/without the CBM32 domain of P. elgii (PeCBM32). The decreased activity of PeCsn without PeCBM32 on chitosan powder suggested that PeCBM32 increases the relative concentration of enzyme on the substrate and thereby enhanced enzymatic activity. PeCBM32 specifically bound to polymeric and oligomeric chitosan and showed very weak binding to chitin and cellulose. In isothermal titration calorimetry, the binding stoichiometry of 2 and 1 for glucosamine monosaccharide (GlcN) and disaccharide (GlcN)2, respectively, was indicative of two binding sites in PeCBM32. A three-dimensional model-guided site-directed mutagenesis and the use of defined disaccharides varying in the pattern of acetylation suggested that the amino groups of chitosan and the polar residues Glu-16 and Glu-38 of PeCBM32 play a crucial role for the observed binding. The specificity of CBM32 has been further elucidated by a generated fusion protein PeCBM32-eGFP that binds to the chitosan exposing endophytic infection structures of Puccinia graminis f. sp. tritici. Phylogenetic analysis showed that CBM32s appended to chitosanases are highly conserved across different chitosanase families suggesting their role in chitosan recognition and degradation. We have identified and characterized a chitosan-specific CBM32 useful for in situ staining of chitosans in the fungal cell wall during plant-fungus interaction. PMID:27405759

  12. The predominant molecular state of bound enzyme determines the strength and type of product inhibition in the hydrolysis of recalcitrant polysaccharides by processive enzymes.

    Science.gov (United States)

    Kuusk, Silja; Sørlie, Morten; Väljamäe, Priit

    2015-05-01

    Processive enzymes are major components of the efficient enzyme systems that are responsible for the degradation of the recalcitrant polysaccharides cellulose and chitin. Despite intensive research, there is no consensus on which step is rate-limiting for these enzymes. Here, we performed a comparative study of two well characterized enzymes, the cellobiohydrolase Cel7A from Hypocrea jecorina and the chitinase ChiA from Serratia marcescens. Both enzymes were inhibited by their disaccharide product, namely chitobiose for ChiA and cellobiose for Cel7A. The products behaved as noncompetitive inhibitors according to studies using the (14)C-labeled crystalline polymeric substrates (14)C chitin nanowhiskers and (14)C-labeled bacterial microcrystalline cellulose for ChiA and Cel7A, respectively. The resulting observed Ki (obs) values were 0.45 ± 0.08 mm for ChiA and 0.17 ± 0.02 mm for Cel7A. However, in contrast to ChiA, the Ki (obs) of Cel7A was an order of magnitude higher than the true Ki value governed by the thermodynamic stability of the enzyme-inhibitor complex. Theoretical analysis of product inhibition suggested that the inhibition strength and pattern can be accounted for by assuming different rate-limiting steps for ChiA and Cel7A. Measuring the population of enzymes whose active site was occupied by a polymer chain revealed that Cel7A was bound predominantly via its active site. Conversely, the active-site-mediated binding of ChiA was slow, and most ChiA exhibited a free active site, even when the substrate concentration was saturating for the activity. Collectively, our data suggest that complexation with the polymer chain is rate-limiting for ChiA, whereas Cel7A is limited by dissociation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Progress in antimicrobial activities of chitin, chitosan and its oligosaccharides: a systematic study needs for food applications.

    Science.gov (United States)

    Dutta, J; Tripathi, S; Dutta, P K

    2012-02-01

    In recent years, active biomolecules such as chitosan and its derivatives are undergoing a significant and very fast development in food application area. Due to recent outbreaks of contaminations associated with food products, there have been growing concerns regarding the negative environmental impact of packaging materials of antimicrobial biofilms, which have been studied. Chitosan has a great potential for a wide range of applications due to its biodegradability, biocompatibility, antimicrobial activity, nontoxicity and versatile chemical and physical properties. It can be formed into fibers, films, gels, sponges, beads or nanoparticles. Chitosan films have been used as a packaging material for the quality preservation of a variety of foods. Chitosan has high antimicrobial activities against a wide variety of pathogenic and spoilage microorganisms, including fungi, and Gram-positive and Gram-negative bacteria. A tremendous effort has been made over the past decade to develop and test films with antimicrobial properties to improve food safety and shelf-life. This review highlights the preparation, mechanism, antimicrobial activity, optimization of biocide properties of chitosan films and applications including biocatalysts for the improvement of quality and shelf-life of foods.

  14. Estabilidad de la glucosa oxidasa en sistemas amorfos formados por los disacáridos sacarosa, maltosa y trehalosa Glucose oxidase stability in amorphous systems formed by saccharose, maltose and trehalose disaccharides

    Directory of Open Access Journals (Sweden)

    Hans L. D. Valenzuela

    2007-01-01

    Full Text Available Glucose-oxidase (GOD, suffers conformational change during freeze-drying. In order to determine the protection level granted by amorphous matrices (AM of saccharose, maltose, trehalose and their combinations, the thermal inactivation constants (K D of GOD trapped in these systems were determined. For its evaluation, GOD samples were balanced at different water activities and heated up to 30, 50 and 70 ºC. The best AM found for GOD stability was saccharose-trehalose (5/10% p/v. The K D values (K D.10-4 at a w = 0.0 were 3 at 30 ºC and 6 at 70 ºC. For non-protected GOD under the same conditions these values were 48 at 30 ºC and 257 at 70 ºC.

  15. Periodate Oxidation for Sulfated Glycosaminoglycans, with Special Reference to the Position of Extra Sulfate Groups in Chondroitin Polysulfates, Chondroitin Sulfate D and Chondroitin Sulfate K

    OpenAIRE

    Seno, Nobuko; Murakami, Keiko; Shibusawa, Haru

    1981-01-01

    The optimum conditions for periodate oxidation of sulfated disaccharides were investigated to determine the position of extra sulfate groups on the saturated disulfated disaccharides obtained from chondroitin polysulfates, chondroitin sulfates D and K. Under the conditions: 2mM saturated disulfated disaccharide with 20mM sodium periodate at 37°in the dark, the uronic acid residue in the disulfated disaccharide from chondroitin sulfate D was rapidly and completely destroyed, whereas that in th...

  16. Identification of high-mannose and multiantennary complex-type N-linked glycans containing alpha-galactose epitopes from Nurse shark IgM heavy chain.

    Science.gov (United States)

    Harvey, David J; Crispin, Max; Moffatt, Beryl E; Smith, Sylvia L; Sim, Robert B; Rudd, Pauline M; Dwek, Raymond A

    2009-11-01

    MALDI-TOF mass spectrometry, negative ion nano-electrospray MS/MS and exoglycosidase digestion were used to identify 36 N-linked glycans from 19S IgM heavy chain derived from the nurse shark (Ginglymostoma cirratum). The major glycan was the high-mannose compound, Man(6)GlcNAc(2) accompanied by small amounts of Man(5)GlcNAc(2), Man(7)GlcNAc(2) and Man(8)GlcNAc(2). Bi- and tri-antennary (isomer with a branched 3-antenna) complex-type glycans were also abundant, most contained a bisecting GlcNAc residue (beta1-->4-linked to the central mannose) and with varying numbers of alpha-galactose residues capping the antennae. Small amounts of monosialylated glycans were also found. This appears to be the first comprehensive study of glycosylation in this species of animal. The glycosylation pattern has implications for the mechanism of activation of the complement system by nurse shark IgM.

  17. Chitinase Production by Serratia marcescens GG5

    OpenAIRE

    SINGH, Gursharan; SHARMA, Joginder Ram; HOONDAL, Gurinder Singh

    2008-01-01

    Swollen chitin, flake chitin, powder chitin, and mushroom paste were used as substrates for chitinase production by Serratia marcescens GG5 in submerged fermentation. Enzyme production was 0.3 U/ml when the organism was grown in M9 medium supplemented with 0.5% swollen chitin and 0.5% soluble starch. Scanning electron microscopy revealed that Serratia marcescens GG5 digested the chitin flakes by producing chitinase.

  18. In-depth glycoproteomic characterization of γ-conglutin by high-resolution accurate mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Silvia Schiarea

    Full Text Available The molecular characterization of bioactive food components is necessary for understanding the mechanisms of their beneficial or detrimental effects on human health. This study focused on γ-conglutin, a well-known lupin seed N-glycoprotein with health-promoting properties and controversial allergenic potential. Given the importance of N-glycosylation for the functional and structural characteristics of proteins, we studied the purified protein by a mass spectrometry-based glycoproteomic approach able to identify the structure, micro-heterogeneity and attachment site of the bound N-glycan(s, and to provide extensive coverage of the protein sequence. The peptide/N-glycopeptide mixtures generated by enzymatic digestion (with or without N-deglycosylation were analyzed by high-resolution accurate mass liquid chromatography-multi-stage mass spectrometry. The four main micro-heterogeneous variants of the single N-glycan bound to γ-conglutin were identified as Man2(Xyl (Fuc GlcNAc2, Man3(Xyl (Fuc GlcNAc2, GlcNAcMan3(Xyl (Fuc GlcNAc2 and GlcNAc 2Man3(Xyl (Fuc GlcNAc2. These carry both core β1,2-xylose and core α1-3-fucose (well known Cross-Reactive Carbohydrate Determinants, but corresponding fucose-free variants were also identified as minor components. The N-glycan was proven to reside on Asn131, one of the two potential N-glycosylation sites. The extensive coverage of the γ-conglutin amino acid sequence suggested three alternative N-termini of the small subunit, that were later confirmed by direct-infusion Orbitrap mass spectrometry analysis of the intact subunit.

  19. Characteristics of an β-N-Acetylhexosaminidase from Bacillus sp. CH11, Including its Transglycosylation Activity.

    Science.gov (United States)

    Kurakake, Masahiro; Amai, Yukari; Konishi, Mizuki; Ikehira, Kaho

    2018-04-06

    β-N-Acetylhexosaminidase was identified from Bacillus sp. CH11 and found to have relatively high transferring activity. In this study, its enzymatic properties and transglycosylation activity including its acceptor specificity were investigated. Its molecular weight was estimated to be 90 kDa by SDS-PAGE and its optimal pH was approximately 7 with good stability from pH 6 to 8. Its optimal temperature was 40 °C, and its activity was stable at temperatures of up to 40 °C. To analyze its acceptor specificity for transglycosylation, N, N'-diacetylchitobiose was used as a donor substrate and alcohols, sugar alcohols, sugars and polyphenols were used as acceptors. Dialcohols, which have 2 hydroxyl groups on the outside of the carbon chains, were good acceptors. The molecular size of the acceptor did not influence the transglycosylation up to at least 1,5-pentanediol (carbon number: C5). Glycerin (C3), erythritol (C4), and xylitol (C5), all small molecular weight sugar alcohols, had high acceptor specificity. Transglycosylation to mono- and disaccharides and polyphenols was not observed except for L-fucose. For the β-N-acetylhexosaminidase-catalyzed transglycosylation of chitin oligosaccharides and xylitol, the transfer product was identified as 1-O-β-D-N-acetylglucosaminyl xylitol. The optimal ratio of xylitol was 24% to 2% N, N'-diacetylchitobiose and 226 mg per 1 g N, N'-diacetylchitobiose was produced. CH11 β-N-acetylhexosaminidase efficiently produced 1-O-β-D-N-acetylglucosaminyl xylitol via transglycosylation. The new transfer products including 1-O-β-D-N-acetylglucosaminyl xylitol are attractive compounds for their potential physiological functions. 1-O-β-D-N-Acetylglucosaminyl xylitol was produced effectively from chitin-oligosaccharides and xylitol by β-N-acetylhexosaminidase from Bacillus sp. CH11. This enzyme may be useful for the development of food materials for health-related applications such as oligosaccharides with intestinal functions and

  20. Identification and characterization of a chitin-binding protein purified from coelomic fluid of the lugworm Arenicola marina defining a novel protein sequence family

    DEFF Research Database (Denmark)

    Vitashenkova, Nina; Moeller, Jesper Bonnet; Leth-Larsen, Rikke

    2012-01-01

    by coelomocytes, in the nephridium and in round cells in epidermis and in eggs. Moreover, AML-1 expression was up-regulated in response to a parasitic infection. We conclude that AML-1 purified from coelomic fluid is encoded by AML-1b and represents a novel type of protein family that binds acetylated components....