WorldWideScience

Sample records for chitin biosynthesis revealed

  1. Different functions of the insect soluble and membrane-bound trehalase genes in chitin biosynthesis revealed by RNA interference.

    Directory of Open Access Journals (Sweden)

    Jie Chen

    Full Text Available BACKGROUND: Trehalase, an enzyme that hydrolyzes trehalose to yield two glucose molecules, plays a pivotal role in various physiological processes. In recent years, trehalase proteins have been purified from several insect species and are divided into soluble (Tre-1 and membrane-bound (Tre-2 trehalases. However, no functions of the two trehalases in chitin biosynthesis in insects have yet been reported. PRINCIPAL FINDINGS: The membrane-bound trehalase of Spodoptera exigua (SeTre-2 was characterized in our laboratory previously. In this study, we cloned the soluble trehalase gene (SeTre-1 and investigated the tissue distribution and developmental expression pattern of the two trehalase genes. SeTre-1 was expressed highly in cuticle and Malpighian tubules, while SeTre-2 was expressed in tracheae and fat body. In the midgut, the two trehalase genes were expressed in different locations. Additionally, the expression profiles of both trehalase mRNAs and their enzyme activities suggest that they may play different roles in chitin biosynthesis. The RNA interference (RNAi of either SeTre-1 or SeTre-2 was gene-specific and effective, with efficiency rates up to 83% at 72 h post injection. After RNAi of SeTre-1 and SeTre-2, significant higher mortality rates were observed during the larva-pupa stage and pupa-adult stage, and the lethal phenotypes were classified and analyzed. Additionally, the change trends of concentration of trehalose and glucose appeared reciprocally in RNAi-mutants. Moreover, knockdown of SeTre-1 gene largely inhibited the expression of chitin synthase gene A (CHSA and reduced the chitin content in the cuticle to two-thirds relative to the control insects. The chitin synthase gene B (CHSB expression, however, was inhibited more by the injection of dsRNA for SeTre-2, and the chitin content in the midgut decreased by about 25%. CONCLUSIONS: SeTre-1 plays a major role in CHSA expression and chitin synthesis in the cuticle, and SeTre-2

  2. Biosynthesis, Turnover, and Functions of Chitin in Insects.

    Science.gov (United States)

    Zhu, Kun Yan; Merzendorfer, Hans; Zhang, Wenqing; Zhang, Jianzhen; Muthukrishnan, Subbaratnam

    2016-03-11

    Chitin is a major component of the exoskeleton and the peritrophic matrix of insects. It forms complex structures in association with different assortments of cuticle and peritrophic matrix proteins to yield biocomposites with a wide range of physicochemical and mechanical properties. The growth and development of insects are intimately coupled with the biosynthesis, turnover, and modification of chitin. The genes encoding numerous enzymes of chitin metabolism and proteins that associate with and organize chitin have been uncovered by bioinformatics analyses. Many of these proteins are encoded by sets of large gene families. There is specialization among members within each family, which function in particular tissues or developmental stages. Chitin-containing matrices are dynamically modified at every developmental stage and are under developmental and/or physiological control. A thorough understanding of the diverse processes associated with the assembly and turnover of these chitinous matrices offers many strategies to achieve selective pest control. PMID:26982439

  3. A Selective Assay to Detect Chitin and Biologically Active Nano-Machineries for Chitin-Biosynthesis with Their Intrinsic Chitin-Synthase Molecules

    Directory of Open Access Journals (Sweden)

    Hildgund Schrempf

    2010-09-01

    Full Text Available A new assay system for chitin has been developed. It comprises the chitin-binding protein ChbB in fusion with a His-tag as well as with a Strep-tag, the latter of which was chemically coupled to horseradish peroxidase. With the resulting complex, minimal quantities of chitin are photometrically detectable. In addition, the assay allows rapid scoring of the activity of chitin-synthases. As a result, a refined procedure for the rapid purification of yeast chitosomes (nano-machineries for chitin biosynthesis has been established. Immuno-electronmicroscopical studies of purified chitosomes, gained from a yeast strain carrying a chitin-synthase gene fused to that for GFP (green-fluorescence protein, has led to the in situ localization of chitin-synthase-GFP molecules within chitosomes.

  4. Saccharomyces cerevisiae chitin biosynthesis activation by N-acetylchitooses depends on size and structure of chito-oligosaccharides

    Directory of Open Access Journals (Sweden)

    Piffeteau Annie

    2011-10-01

    Full Text Available Abstract Background To explore chitin synthesis initiation, the effect of addition of exogenous oligosaccharides on in vitro chitin synthesis was studied. Oligosaccharides of various natures and lengths were added to a chitin synthase assay performed on a Saccharomyces cerevisiae membrane fraction. Findings N-acetylchito-tetra, -penta and -octaoses resulted in 11 to 25% [14C]-GlcNAc incorporation into [14C]-chitin, corresponding to an increase in the initial velocity. The activation appeared specific to N-acetylchitooses as it was not observed with oligosaccharides in other series, such as beta-(1,4, beta-(1,3 or alpha-(1,6 glucooligosaccharides. Conclusions The effect induced by the N-acetylchitooses was a saturable phenomenon and did not interfere with free GlcNAc and trypsin which are two known activators of yeast chitin synthase activity in vitro. The magnitude of the activation was dependent on both oligosaccharide concentration and oligosaccharide size.

  5. The Plasmodiophora brassicae genome reveals insights in its life cycle and ancestry of chitin synthases.

    Science.gov (United States)

    Schwelm, Arne; Fogelqvist, Johan; Knaust, Andrea; Jülke, Sabine; Lilja, Tua; Bonilla-Rosso, German; Karlsson, Magnus; Shevchenko, Andrej; Dhandapani, Vignesh; Choi, Su Ryun; Kim, Hong Gi; Park, Ju Young; Lim, Yong Pyo; Ludwig-Müller, Jutta; Dixelius, Christina

    2015-01-01

    Plasmodiophora brassicae causes clubroot, a major disease of Brassica oil and vegetable crops worldwide. P. brassicae is a Plasmodiophorid, obligate biotrophic protist in the eukaryotic kingdom of Rhizaria. Here we present the 25.5 Mb genome draft of P. brassicae, developmental stage-specific transcriptomes and a transcriptome of Spongospora subterranea, the Plasmodiophorid causing powdery scab on potato. Like other biotrophic pathogens both Plasmodiophorids are reduced in metabolic pathways. Phytohormones contribute to the gall phenotypes of infected roots. We report a protein (PbGH3) that can modify auxin and jasmonic acid. Plasmodiophorids contain chitin in cell walls of the resilient resting spores. If recognized, chitin can trigger defense responses in plants. Interestingly, chitin-related enzymes of Plasmodiophorids built specific families and the carbohydrate/chitin binding (CBM18) domain is enriched in the Plasmodiophorid secretome. Plasmodiophorids chitin synthases belong to two families, which were present before the split of the eukaryotic Stramenopiles/Alveolates/Rhizaria/Plantae and Metazoa/Fungi/Amoebozoa megagroups, suggesting chitin synthesis to be an ancient feature of eukaryotes. This exemplifies the importance of genomic data from unexplored eukaryotic groups, such as the Plasmodiophorids, to decipher evolutionary relationships and gene diversification of early eukaryotes. PMID:26084520

  6. X-Ray Crystal Structure of the Full Length Human Chitotriosidase (CHIT1) Reveals Features of Its Chitin Binding Domain

    Science.gov (United States)

    Fadel, Firas; Zhao, Yuguang; Cousido-Siah, Alexandra; Ruiz, Francesc X.; Mitschler, André; Podjarny, Alberto

    2016-01-01

    Chitinases are enzymes that catalyze the hydrolysis of chitin. Human chitotriosidase (CHIT1) is one of the two active human chitinases, involved in the innate immune response and highly expressed in a variety of diseases. CHIT1 is composed of a catalytic domain linked by a hinge to its chitin binding domain (ChBD). This latter domain belongs to the carbohydrate-binding module family 14 (CBM14 family) and facilitates binding to chitin. So far, the available crystal structures of the human chitinase CHIT1 and the Acidic Mammalian Chitinase (AMCase) comprise only their catalytic domain. Here, we report a crystallization strategy combining cross-seeding and micro-seeding cycles which allowed us to obtain the first crystal structure of the full length CHIT1 (CHIT1-FL) at 1.95 Å resolution. The CHIT1 chitin binding domain (ChBDCHIT1) structure shows a distorted β-sandwich 3D fold, typical of CBM14 family members. Accordingly, ChBDCHIT1 presents six conserved cysteine residues forming three disulfide bridges and several exposed aromatic residues that probably are involved in chitin binding, including the highly conserved Trp465 in a surface- exposed conformation. Furthermore, ChBDCHIT1 presents a positively charged surface which may be involved in electrostatic interactions. Our data highlight the strong structural conservation of CBM14 family members and uncover the structural similarity between the human ChBDCHIT1, tachycitin and house mite dust allergens. Overall, our new CHIT1-FL structure, determined with an adapted crystallization approach, is one of the few complete bi-modular chitinase structures available and reveals the structural features of a human CBM14 domain. PMID:27111557

  7. Chitin Degradation In Marine Bacteria

    DEFF Research Database (Denmark)

    Paulsen, Sara; Machado, Henrique; Gram, Lone

    2015-01-01

    Introduction: Chitin is the most abundant polymer in the marine environment and the second most abundant in nature. Chitin does not accumulate on the ocean floor, because of microbial breakdown. Chitin degrading bacteria could have potential in the utilization of chitin as a renewable carbon and...... nitrogen source in the fermentation industry.Methods: Here, whole genome sequenced marine bacteria were screened for chitin degradation using phenotypic and in silico analyses.Results: The in silico analyses revealed the presence of three to nine chitinases in each strain, however the number of chitinases...... chitin regulatory system.Conclusions: This study has provided insight into the ecology of chitin degradation in marine bacteria. It also served as a basis for choosing a more efficient chitin degrading production strain e.g. for the use of chitin waste for large-scale fermentations....

  8. Bacterial communities in chitin-amended soil as revealed by 16S rRNA gene based pyrosequencing

    NARCIS (Netherlands)

    Cretoiu, Mariana Silvia; Kielak, Anna Maria; Schluter, Andreas; van Elsas, Jan Dirk

    2014-01-01

    Chitin and its derivatives are natural biopolymers that are often used as compounds for the control of soilborne plant pathogens. In spite of recent advances in agricultural practices involving chitin amendments, the microbial communities in chitin-amended soils remain poorly known. The objectives o

  9. Hydrogen and oxygen in brine shrimp chitin reflect environmental water and dietary isotopic composition

    Science.gov (United States)

    Nielson, Kristine E.; Bowen, Gabriel J.

    2010-03-01

    Hydrogen and oxygen isotope ratios of the common structural biopolymer chitin are a potential recorder of ecological and environmental information, but our understanding of the mechanisms of incorporation of H and O from environmental substrates into chitin is limited. We report the results of a set of experiments in which the isotopic compositions of environmental water and diet were varied independently in order to assess the contribution of these variables to the H and O isotopic composition of Artemia franciscana chitin. Hydrogen isotope ratios of chitin were strongly linearly correlated with both food and water, with approximately 26% of the hydrogen signal reflecting food and approximately 38% reflecting water. Oxygen isotopes were also strongly correlated with the isotopic composition of water and food, but whereas 69% of oxygen in chitin exchanged with environmental water, only 10% was derived from food. We propose that these observations reflect the position-specific, partial exchange of H and O atoms with brine shrimp body water during the processes of digestion and chitin biosynthesis. Comparison of culture experiments with a set of natural samples collected from the Great Salt Lake, UT in 2006 shows that, with some exceptions, oxygen isotope compositions of chitin track those of water, whereas hydrogen isotopes vary inversely with those of lake water. The different behavior of the two isotopic systems can be explained in terms of a dietary shift from allochthonous particulate matter with relatively higher δ 2H values in the early spring to autochthonous particulate matter with significantly lower δ 2H values in the late summer to autumn. These results suggest oxygen in chitin may be a valuable proxy for the oxygen isotopic composition of environmental water, whereas hydrogen isotope values from the same molecule may reveal ecological and biogeochemical changes within lakes.

  10. Characterization of a C3 Deoxygenation Pathway Reveals a Key Branch Point in Aminoglycoside Biosynthesis.

    Science.gov (United States)

    Lv, Meinan; Ji, Xinjian; Zhao, Junfeng; Li, Yongzhen; Zhang, Chen; Su, Li; Ding, Wei; Deng, Zixin; Yu, Yi; Zhang, Qi

    2016-05-25

    Apramycin is a clinically interesting aminoglycoside antibiotic (AGA) containing a highly unique bicyclic octose moiety, and this octose is deoxygenated at the C3 position. Although the biosynthetic pathways for most 2-deoxystreptamine-containing AGAs have been well characterized, the pathway for apramycin biosynthesis, including the C3 deoxygenation process, has long remained unknown. Here we report detailed investigation of apramycin biosynthesis by a series of genetic, biochemical and bioinformatical studies. We show that AprD4 is a novel radical S-adenosyl-l-methionine (SAM) enzyme, which uses a noncanonical CX3CX3C motif for binding of a [4Fe-4S] cluster and catalyzes the dehydration of paromamine, a pseudodisaccharide intermediate in apramycin biosynthesis. We also show that AprD3 is an NADPH-dependent reductase that catalyzes the reduction of the dehydrated product from AprD4-catalyzed reaction to generate lividamine, a C3' deoxygenated product of paromamine. AprD4 and AprD3 do not form a tight catalytic complex, as shown by protein complex immunoprecipitation and other assays. The AprD4/AprD3 enzyme system acts on different pseudodisaccharide substrates but does not catalyze the deoxygenation of oxyapramycin, an apramycin analogue containing a C3 hydroxyl group on the octose moiety, suggesting that oxyapramycin and apramycin are partitioned into two parallel pathways at an early biosynthetic stage. Functional dissection of the C6 dehydrogenase AprQ shows the crosstalk between different AGA biosynthetic gene clusters from the apramycin producer Streptomyces tenebrarius, and reveals the remarkable catalytic versatility of AprQ. Our study highlights the intriguing chemistry in apramycin biosynthesis and nature's ingenuity in combinatorial biosynthesis of natural products. PMID:27120352

  11. Transcriptome and biochemical analyses revealed a detailed proanthocyanidin biosynthesis pathway in brown cotton fiber.

    Directory of Open Access Journals (Sweden)

    Yue-Hua Xiao

    Full Text Available Brown cotton fiber is the major raw material for colored cotton industry. Previous studies have showed that the brown pigments in cotton fiber belong to proanthocyanidins (PAs. To clarify the details of PA biosynthesis pathway in brown cotton fiber, gene expression profiles in developing brown and white fibers were compared via digital gene expression profiling and qRT-PCR. Compared to white cotton fiber, all steps from phenylalanine to PA monomers (flavan-3-ols were significantly up-regulated in brown fiber. Liquid chromatography mass spectrometry analyses showed that most of free flavan-3-ols in brown fiber were in 2, 3-trans form (gallocatechin and catechin, and the main units of polymeric PAs were trihydroxylated on B ring. Consistent with monomeric composition, the transcript levels of flavonoid 3', 5'-hydroxylase and leucoanthocyanidin reductase in cotton fiber were much higher than their competing enzymes acting on the same substrates (dihydroflavonol 4-reductase and anthocyanidin synthase, respectively. Taken together, our data revealed a detailed PA biosynthesis pathway wholly activated in brown cotton fiber, and demonstrated that flavonoid 3', 5'-hydroxylase and leucoanthocyanidin reductase represented the primary flow of PA biosynthesis in cotton fiber.

  12. Heterologous Production of Fungal Maleidrides Reveals the Cryptic Cyclization Involved in their Biosynthesis.

    Science.gov (United States)

    Williams, Katherine; Szwalbe, Agnieszka J; Mulholland, Nicholas P; Vincent, Jason L; Bailey, Andrew M; Willis, Christine L; Simpson, Thomas J; Cox, Russell J

    2016-06-01

    Fungal maleidrides are an important family of bioactive secondary metabolites that consist of 7, 8, or 9-membered carbocycles with one or two fused maleic anhydride moieties. The biosynthesis of byssochlamic acid (a nonadride) and agnestadride A (a heptadride) was investigated through gene disruption and heterologous expression experiments. The results reveal that the precursors for cyclization are formed by an iterative highly reducing fungal polyketide synthase supported by a hydrolase, together with two citrate-processing enzymes. The enigmatic ring formation is catalyzed by two proteins with homology to ketosteroid isomerases, and assisted by two proteins with homology to phosphatidylethanolamine-binding proteins. PMID:27099957

  13. Molecular Mechanics of Chitin-Protein Interface: Terminus and Side Chain

    CERN Document Server

    Yu, Zechuan

    2016-01-01

    Chitin and protein are two main building blocks for many natural biomaterials. The interaction between chitin and protein critically determines the properties of the composite biological materials. As living organisms usually encounter complex ambient conditions like water, pH and ions are critical factors towards the structural integrity of biomaterials. It is therefore essential to study the chitin-protein interface under different environmental conditions. Here, an atomistic model consisting of a chitin substrate and a protein filament is constructed, which is regarded as a representative of the chitin-protein interface existing in many chitin-based biomaterials. Based on this model, the mechanical properties of chitin-protein interface under different moisture and pH values are investigated through molecular dynamics simulations. The results reveal a weakening effect of water towards the chitin-protein interface, as well as acidity, i.e. the protonated protein forms a stronger adhesion to chitin than that...

  14. Rapid ester biosynthesis screening reveals a high activity alcohol-O-acyltransferase (AATase) from tomato fruit.

    Science.gov (United States)

    Lin, Jyun-Liang; Zhu, Jie; Wheeldon, Ian

    2016-05-01

    Ethyl and acetate esters are naturally produced in various yeasts, plants, and bacteria. The biosynthetic pathways that produce these esters share a common reaction step, the condensation of acetyl/acyl-CoA with an alcohol by alcohol-O-acetyl/acyltransferase (AATase). Recent metabolic engineering efforts exploit AATase activity to produce fatty acid ethyl esters as potential diesel fuel replacements as well as short- and medium-chain volatile esters as fragrance and flavor compounds. These efforts have been limited by the lack of a rapid screen to quantify ester biosynthesis. Enzyme engineering efforts have also been limited by the lack of a high throughput screen for AATase activity. Here, we developed a high throughput assay for AATase activity and used this assay to discover a high activity AATase from tomato fruit, Solanum lycopersicum (Atf-S.l). Atf1-S.l exhibited broad specificity towards acyl-CoAs with chain length from C4 to C10 and was specific towards 1-pentanol. The AATase screen also revealed new acyl-CoA substrate specificities for Atf1, Atf2, Eht1, and Eeb1 from Saccharomyces cerevisiae, and Atf-C.m from melon fruit, Cucumis melo, thus increasing the pool of characterized AATases that can be used in ester biosynthesis of ester-based fragrance and flavor compounds as well as fatty acid ethyl ester biofuels. PMID:26814045

  15. Botrytis cinerea virulence is drastically reduced after disruption of chitin synthase class III gene (Bcchs3a).

    Science.gov (United States)

    Soulié, Marie-Christine; Perino, Claude; Piffeteau, Annie; Choquer, Mathias; Malfatti, Pierrette; Cimerman, Agnès; Kunz, Caroline; Boccara, Martine; Vidal-Cros, Anne

    2006-08-01

    Botrytis cinerea is an important phytopathogenic fungus requiring new methods of control. Chitin biosynthesis, which involves seven classes of chitin synthases, could be an attractive target. A fragment encoding one of the class III enzymes was used to disrupt the corresponding Bcchs3a gene in the B. cinerea genome. The resulting mutant exhibited a 39% reduction in its chitin content and an 89% reduction in its in vitro chitin synthase activity, compared with the wild-type strain. Bcchs3a mutant was not affected in its growth in liquid medium, neither in its production of sclerotia, micro- and macroconidia. In contrast, the mutant Bcchs3a was severely impaired in its growth on solid medium. Counterbalancing this defect in radial growth, Bcchs3a mutant presented a large increase in hyphal ramification, resulting in an enhanced aerial growth. Observations by different techniques of microscopy revealed a thick extracellular matrix around the hyphal tips. Moreover, Bcchs3a mutant had a largely reduced virulence on Vitis vinifera and Arabidopsis thaliana leaves. PMID:16882034

  16. Co-expression network analysis reveals transcription factors associated to cell wall biosynthesis in sugarcane.

    Science.gov (United States)

    Ferreira, Savio Siqueira; Hotta, Carlos Takeshi; Poelking, Viviane Guzzo de Carli; Leite, Debora Chaves Coelho; Buckeridge, Marcos Silveira; Loureiro, Marcelo Ehlers; Barbosa, Marcio Henrique Pereira; Carneiro, Monalisa Sampaio; Souza, Glaucia Mendes

    2016-05-01

    Sugarcane is a hybrid of Saccharum officinarum and Saccharum spontaneum, with minor contributions from other species in Saccharum and other genera. Understanding the molecular basis of cell wall metabolism in sugarcane may allow for rational changes in fiber quality and content when designing new energy crops. This work describes a comparative expression profiling of sugarcane ancestral genotypes: S. officinarum, S. spontaneum and S. robustum and a commercial hybrid: RB867515, linking gene expression to phenotypes to identify genes for sugarcane improvement. Oligoarray experiments of leaves, immature and intermediate internodes, detected 12,621 sense and 995 antisense transcripts. Amino acid metabolism was particularly evident among pathways showing natural antisense transcripts expression. For all tissues sampled, expression analysis revealed 831, 674 and 648 differentially expressed genes in S. officinarum, S. robustum and S. spontaneum, respectively, using RB867515 as reference. Expression of sugar transporters might explain sucrose differences among genotypes, but an unexpected differential expression of histones were also identified between high and low Brix° genotypes. Lignin biosynthetic genes and bioenergetics-related genes were up-regulated in the high lignin genotype, suggesting that these genes are important for S. spontaneum to allocate carbon to lignin, while S. officinarum allocates it to sucrose storage. Co-expression network analysis identified 18 transcription factors possibly related to cell wall biosynthesis while in silico analysis detected cis-elements involved in cell wall biosynthesis in their promoters. Our results provide information to elucidate regulatory networks underlying traits of interest that will allow the improvement of sugarcane for biofuel and chemicals production. PMID:26820137

  17. Chitin fulfilling a biomaterials promise

    CERN Document Server

    Khor, Eugene

    2001-01-01

    The second edition of Chitin underscores the important factors for standardizing chitin processing and characterization. It captures the essential interplay between chitin's assets and limitations as a biomaterial, placing the past promises of chitin in perspective, addressing its present realities and offering insight into what is required to realize chitin's destiny (including its derivative, chitosan) as a biomaterial of the twenty-first century. This book is an ideal guide for both industrialists and researchers with a vested interest in commercializing chitin.An upd

  18. Chitin synthases from Saprolegnia are involved in tip growth and represent a potential target for anti-oomycete drugs.

    Directory of Open Access Journals (Sweden)

    Gea Guerriero

    Full Text Available Oomycetes represent some of the most devastating plant and animal pathogens. Typical examples are Phytophthora infestans, which causes potato and tomato late blight, and Saprolegnia parasitica, responsible for fish diseases. Despite the economical and environmental importance of oomycete diseases, their control is difficult, particularly in the aquaculture industry. Carbohydrate synthases are vital for hyphal growth and represent interesting targets for tackling the pathogens. The existence of 2 different chitin synthase genes (SmChs1 and SmChs2 in Saprolegnia monoica was demonstrated using bioinformatics and molecular biology approaches. The function of SmCHS2 was unequivocally demonstrated by showing its catalytic activity in vitro after expression in Pichia pastoris. The recombinant SmCHS1 protein did not exhibit any activity in vitro, suggesting that it requires other partners or effectors to be active, or that it is involved in a different process than chitin biosynthesis. Both proteins contained N-terminal Microtubule Interacting and Trafficking domains, which have never been reported in any other known carbohydrate synthases. These domains are involved in protein recycling by endocytosis. Enzyme kinetics revealed that Saprolegnia chitin synthases are competitively inhibited by nikkomycin Z and quantitative PCR showed that their expression is higher in presence of the inhibitor. The use of nikkomycin Z combined with microscopy showed that chitin synthases are active essentially at the hyphal tips, which burst in the presence of the inhibitor, leading to cell death. S. parasitica was more sensitive to nikkomycin Z than S. monoica. In conclusion, chitin synthases with species-specific characteristics are involved in tip growth in Saprolegnia species and chitin is vital for the micro-organisms despite its very low abundance in the cell walls. Chitin is most likely synthesized transiently at the apex of the cells before cellulose, the major

  19. Comparative transcriptome and proteome analysis to reveal the biosynthesis of gold nanoparticles in Arabidopsis

    Science.gov (United States)

    Tiwari, Manish; Krishnamurthy, Sneha; Shukla, Devesh; Kiiskila, Jeffrey; Jain, Ajay; Datta, Rupali; Sharma, Nilesh; Sahi, Shivendra V.

    2016-01-01

    A large number of plants have been tested and exploited in search of a green chemistry approach for the fabrication of gold or other precious metal nanomaterials. Despite the potential of plant based methods, very little is known about the underlying biochemical reactions and genes involved in the biotransformation mechanism of AuCl4 into gold nanoparticles (AuNPs). In this research, we thus focused on studying the effect of Au on growth and nanoparticles formation by analyses of transcriptome, proteome and ionome shift in Arabidopsis. Au exposure favored the growth of Arabidopsis seedling and induced formation of nanoparticles in root and shoot, as indicated by optical and hyperspectral imaging. Root transcriptome analysis demonstrated the differential expression of the members of WRKY, MYB and BHLH gene families, which are involved in the Fe and other essential metals homeostasis. The proteome analysis revealed that Glutathione S-transferases were induced in the shoot and suggested its potential role in the biosynthesis AuNPs. This study also demonstrated the role of plant hormone auxin in determining the Au induced root system architecture. This is the first study using an integrated approach to understand the in planta biotransformation of KAuCl4 into AuNPs. PMID:26902325

  20. Early divergence, broad distribution, and high diversity of animal chitin synthases.

    Science.gov (United States)

    Zakrzewski, Anne-C; Weigert, Anne; Helm, Conrad; Adamski, Marcin; Adamska, Maja; Bleidorn, Christoph; Raible, Florian; Hausen, Harald

    2014-02-01

    Even though chitin is one of the most abundant biopolymers in nature, current knowledge on chitin formation is largely based only on data from fungi and insects. This study reveals unanticipated broad taxonomic distribution and extensive diversification of chitin synthases (CSs) in Metazoa, shedding new light on the relevance of chitin in animals and suggesting unforeseen complexity of chitin synthesis in many groups. We uncovered robust orthologs to insect type CSs in several representatives of deuterostomes, which generally are not thought to possess chitin. This suggests a broader distribution and function of chitin in this branch of the animal kingdom. We characterize a new CS type present not only in basal metazoans such as sponges and cnidarians but also in several bilaterian representatives. The most extensive diversification of CSs took place during emergence of lophotrochozoans, the third large group of protostomes next to arthropods and nematodes, resulting in coexistence of up to ten CS paralogs in molluscs. Independent fusion to different kinds of myosin motor domains in fungi and lophotrochozoans points toward high relevance of CS interaction with the cytoskeleton for fine-tuned chitin secretion. Given the fundamental role that chitin plays in the morphology of many animals, the here presented CS diversification reveals many evolutionary complexities. Our findings strongly suggest a very broad and multifarious occurrence of chitin and question an ancestral role as cuticular component. The molecular mechanisms underlying regulation of animal chitin synthesis are most likely far more complex and diverse than existing data from insects suggest. PMID:24443419

  1. Pyrolysis of chitin biomass

    DEFF Research Database (Denmark)

    Qiao, Yan; Chen, Shuai; Liu, Ying;

    2015-01-01

    The thermal degradation of chitin biomass with various molecular structures was investigated by thermogravimetric analysis (TG), and the gaseous products were analyzed by connected mass spectroscopy (MS). The chemical structure and morphology of char residues collected at 750°C using the model...

  2. Transcriptome profiling of a curdlan-producing Agrobacterium reveals conserved regulatory mechanisms of exopolysaccharide biosynthesis

    Directory of Open Access Journals (Sweden)

    Ruffing Anne M

    2012-02-01

    Full Text Available Abstract Background The ability to synthesize exopolysaccharides (EPS is widespread among microorganisms, and microbial EPS play important roles in biofilm formation, pathogen persistence, and applications in the food and medical industries. Although it is well established that EPS synthesis is invariably in response to environmental cues, it remains largely unknown how various environmental signals trigger activation of the biochemical synthesis machinery. Results We report here the transcriptome profiling of Agrobacterium sp. ATCC 31749, a microorganism that produces large amounts of a glucose polymer known as curdlan under nitrogen starvation. Transcriptome analysis revealed a nearly 100-fold upregulation of the curdlan synthesis operon upon transition to nitrogen starvation, thus establishing the prominent role that transcriptional regulation plays in the EPS synthesis. In addition to known mechanisms of EPS regulation such as activation by c-di-GMP, we identify novel mechanisms of regulation in ATCC 31749, including RpoN-independent NtrC regulation and intracellular pH regulation by acidocalcisomes. Furthermore, we show evidence that curdlan synthesis is also regulated by conserved cell stress responses, including polyphosphate accumulation and the stringent response. In fact, the stringent response signal, pppGpp, appears to be indispensible for transcriptional activation of curdlan biosynthesis. Conclusions This study identifies several mechanisms regulating the synthesis of curdlan, an EPS with numerous applications. These mechanisms are potential metabolic engineering targets for improving the industrial production of curdlan from Agrobacterium sp. ATCC 31749. Furthermore, many of the genes identified in this study are highly conserved across microbial genomes, and we propose that the molecular elements identified in this study may serve as universal regulators of microbial EPS synthesis.

  3. Transmembrane myosin chitin synthase involved in mollusc shell formation produced in Dictyostelium is active

    Energy Technology Data Exchange (ETDEWEB)

    Schoenitzer, Veronika [INM - Leibniz Institute for New Materials, Biomineralisation Group, Campus D2.2, D-66123 Saarbruecken (Germany); Universitaet Regensburg, Biochemie I, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Eichner, Norbert [Universitaet Regensburg, Biochemie I, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Clausen-Schaumann, Hauke [Munich University of Applied Sciences, Lothstrasse 34, D-80335 Muenchen, Germany, and Center for NanoScience (CeNS), Geschwister-Scholl-Platz 1, D-80539 Muenchen (Germany); Weiss, Ingrid M., E-mail: ingrid.weiss@inm-gmbh.de [INM - Leibniz Institute for New Materials, Biomineralisation Group, Campus D2.2, D-66123 Saarbruecken (Germany); Universitaet Regensburg, Biochemie I, Universitaetsstrasse 31, D-93053 Regensburg (Germany)

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Dictyostelium produces the 264 kDa myosin chitin synthase of bivalve mollusc Atrina. Black-Right-Pointing-Pointer Chitin synthase activity releases chitin, partly associated with the cell surface. Black-Right-Pointing-Pointer Membrane extracts of transgenic slime molds produce radiolabeled chitin in vitro. Black-Right-Pointing-Pointer Chitin producing Dictyostelium cells can be characterized by atomic force microscopy. Black-Right-Pointing-Pointer This model system enables us to study initial processes of chitin biomineralization. -- Abstract: Several mollusc shells contain chitin, which is formed by a transmembrane myosin motor enzyme. This protein could be involved in sensing mechanical and structural changes of the forming, mineralizing extracellular matrix. Here we report the heterologous expression of the transmembrane myosin chitin synthase Ar-CS1 of the bivalve mollusc Atrina rigida (2286 amino acid residues, M.W. 264 kDa/monomer) in Dictyostelium discoideum, a model organism for myosin motor proteins. Confocal laser scanning immunofluorescence microscopy (CLSM), chitin binding GFP detection of chitin on cells and released to the cell culture medium, and a radiochemical activity assay of membrane extracts revealed expression and enzymatic activity of the mollusc chitin synthase in transgenic slime mold cells. First high-resolution atomic force microscopy (AFM) images of Ar-CS1 transformed cellulose synthase deficient D. discoideumdcsA{sup -} cell lines are shown.

  4. First report on chitinous holdfast in sponges (Porifera).

    Science.gov (United States)

    Ehrlich, Hermann; Kaluzhnaya, Oksana V; Tsurkan, Mikhail V; Ereskovsky, Alexander; Tabachnick, Konstantin R; Ilan, Micha; Stelling, Allison; Galli, Roberta; Petrova, Olga V; Nekipelov, Serguei V; Sivkov, Victor N; Vyalikh, Denis; Born, René; Behm, Thomas; Ehrlich, Andre; Chernogor, Lubov I; Belikov, Sergei; Janussen, Dorte; Bazhenov, Vasilii V; Wörheide, Gert

    2013-07-01

    A holdfast is a root- or basal plate-like structure of principal importance that anchors aquatic sessile organisms, including sponges, to hard substrates. There is to date little information about the nature and origin of sponges' holdfasts in both marine and freshwater environments. This work, to our knowledge, demonstrates for the first time that chitin is an important structural component within holdfasts of the endemic freshwater demosponge Lubomirskia baicalensis. Using a variety of techniques (near-edge X-ray absorption fine structure, Raman, electrospray ionization mas spectrometry, Morgan-Elson assay and Calcofluor White staining), we show that chitin from the sponge holdfast is much closer to α-chitin than to β-chitin. Most of the three-dimensional fibrous skeleton of this sponge consists of spicule-containing proteinaceous spongin. Intriguingly, the chitinous holdfast is not spongin-based, and is ontogenetically the oldest part of the sponge body. Sequencing revealed the presence of four previously undescribed genes encoding chitin synthases in the L. baicalensis sponge. This discovery of chitin within freshwater sponge holdfasts highlights the novel and specific functions of this biopolymer within these ancient sessile invertebrates. PMID:23677340

  5. Transcriptomic Analysis Reveals Key Genes Related to Betalain Biosynthesis in Pulp Coloration of Hylocereus polyrhizus.

    Science.gov (United States)

    Qingzhu, Hua; Chengjie, Chen; Zhe, Chen; Pengkun, Chen; Yuewen, Ma; Jingyu, Wu; Jian, Zheng; Guibing, Hu; Jietang, Zhao; Yonghua, Qin

    2015-01-01

    Betalains have high nutritional value and bioactivities. Red pulp pitaya (Hylocereus polyrhizus) is the only fruit containing abundant betalains for consumer. However, no information is available about genes involved in betalain biosynthesis in H. polyrhizus. Herein, two cDNA libraries of pitaya pulps with two different coloration stages (white and red pulp stages) of Guanhuahong (H. polyrhizus) were constructed. A total of about 12 Gb raw RNA-Seq data was generated and was de novo assembled into 122,677 transcripts with an average length of 1183 bp and an N50 value of 2008. Approximately 99.99% of all transcripts were annotated based on seven public databases. A total of 8871 transcripts were significantly regulated. Thirty-three candidate transcripts related to betalain biosynthesis were obtained from the transcriptome data. Transcripts encoding enzymes involved in betalain biosynthesis were analyzed using RT-qPCR at the whole pulp coloration stages of H. polyrhizus (7-1) and H. undatus (132-4). Nine key transcripts of betalain biosynthesis were identified. They were assigned to four kinds of genes in betalain biosynthetic pathway, including tyrosinase, 4, 5-DOPA dioxygenase extradiol, cytochrome P450 and glucosyltransferase. Ultimately, a preliminary betalain biosynthetic pathway for pitaya was proposed based on betalain analyses, gene expression profiles and published documents. PMID:26779215

  6. Benzoylurea Chitin Synthesis Inhibitors.

    Science.gov (United States)

    Sun, Ranfeng; Liu, Chunjuan; Zhang, Hao; Wang, Qingmin

    2015-08-12

    Benzoylurea chitin synthesis inhibitors are widely used in integrated pest management (IPM) and insecticide resistance management (IRM) programs due to their low toxicity to mammals and predatory insects. In the past decades, a large number of benzoylurea derivatives have been synthesized, and 15 benzoylurea chitin synthesis inhibitors have been commercialized. This review focuses on the history of commercial benzolyphenylureas (BPUs), synthetic methods, structure-activity relationships (SAR), action mechanism research, environmental behaviors, and ecotoxicology. Furthermore, their disadvantages of high risk to aquatic invertebrates and crustaceans are pointed out. Finally, we propose that the para-substituents at anilide of benzoylphenylureas should be the functional groups, and bipartite model BPU analogues are discussed in an attempt to provide new insight for future development of BPUs. PMID:26168369

  7. Chitin-based Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    D.K.Polyakov; S.N.Chvalun

    2007-01-01

    1 Results The one of the promising development of biodegradable nanocomposites is using native polysaccharides which have pronounced fibril structure to provide not only excellent mechanical properties and biodegradability of produced material but also control the barrier properties, for example increasing selectivity of pervaporation membrane. Chitin is the most popular biopolymer in the nature after cellulose. It is the 2-acetoamido-derivative of cellulose and serves as the fibrous component of the sk...

  8. Identification of chitin as a structural component of Giardia cysts.

    OpenAIRE

    Ward, H D; Alroy, J.; Lev, B. I.; Keusch, G T; Pereira, M.E.

    1985-01-01

    The intestinal parasite Giardia lamblia is a significant cause of diarrheal disease, which is perpetuated by the infective cyst form of the parasite. Although a rational approach to the control of giardiasis would be to inhibit cyst formation, nothing is known of the chemical composition of the cyst wall or of its biosynthesis. In these studies, we have shown that chitin is a major structural component of G. lamblia and G. muris cyst walls. This conclusion is based on the finding that chitina...

  9. Characterization of 10-Hydroxygeraniol Dehydrogenase from Catharanthus roseus Reveals Cascaded Enzymatic Activity in Iridoid Biosynthesis

    OpenAIRE

    Ramakrishnan Krithika; Prabhakar Lal Srivastava; Bajaj Rani; Kolet, Swati P.; Manojkumar Chopade; Mantri Soniya; Hirekodathakallu V. Thulasiram

    2015-01-01

    Catharanthus roseus [L.] is a major source of the monoterpene indole alkaloids (MIAs), which are of significant interest due to their therapeutic value. These molecules are formed through an intermediate, cis-trans-nepetalactol, a cyclized product of 10-oxogeranial. One of the key enzymes involved in the biosynthesis of MIAs is an NAD(P)+ dependent oxidoreductase system, 10-hydroxygeraniol dehydrogenase (Cr10HGO), which catalyses the formation of 10-oxogeranial from 10-hydroxygeraniol via 10-...

  10. Transcriptomic Analysis Reveals Key Genes Related to Betalain Biosynthesis in Pulp Coloration of Hylocereus polyrhizus

    OpenAIRE

    Qingzhu, Hua; Chengjie, Chen; Zhe, Chen; Pengkun, Chen; Yuewen, Ma; Jingyu, Wu; Jian, Zheng; Guibing, Hu; Jietang, Zhao; Yonghua, Qin

    2016-01-01

    Betalains have high nutritional value and bioactivities. Red pulp pitaya (Hylocereus polyrhizus) is the only fruit containing abundant betalains for consumer. However, no information is available about genes involved in betalain biosynthesis in H. polyrhizus. Herein, two cDNA libraries of pitaya pulps with two different coloration stages (white and red pulp stages) of Guanhuahong (H. polyrhizus) were constructed. A total of about 12 Gb raw RNA-Seq data was generated and was de novo assembled ...

  11. Genomic Characterization Reveals Insights Into Patulin Biosynthesis and Pathogenicity in Penicillium Species.

    Science.gov (United States)

    Li, Boqiang; Zong, Yuanyuan; Du, Zhenglin; Chen, Yong; Zhang, Zhanquan; Qin, Guozheng; Zhao, Wenming; Tian, Shiping

    2015-06-01

    Penicillium species are fungal pathogens that infect crop plants worldwide. P. expansum differs from P. italicum and P. digitatum, all major postharvest pathogens of pome and citrus, in that the former is able to produce the mycotoxin patulin and has a broader host range. The molecular basis of host-specificity of fungal pathogens has now become the focus of recent research. The present report provides the whole genome sequence of P. expansum (33.52 Mb) and P. italicum (28.99 Mb) and identifies differences in genome structure, important pathogenic characters, and secondary metabolite (SM) gene clusters in Penicillium species. We identified a total of 55 gene clusters potentially related to secondary metabolism, including a cluster of 15 genes (named PePatA to PePatO), that may be involved in patulin biosynthesis in P. expansum. Functional studies confirmed that PePatL and PePatK play crucial roles in the biosynthesis of patulin and that patulin production is not related to virulence of P. expansum. Collectively, P. expansum contains more pathogenic genes and SM gene clusters, in particular, an intact patulin cluster, than P. italicum or P. digitatum. These findings provide important information relevant to understanding the molecular network of patulin biosynthesis and mechanisms of host-specificity in Penicillium species. PMID:25625822

  12. Elucidation of cladofulvin biosynthesis reveals a cytochrome P450 monooxygenase required for anthraquinone dimerization.

    Science.gov (United States)

    Griffiths, Scott; Mesarich, Carl H; Saccomanno, Benedetta; Vaisberg, Abraham; De Wit, Pierre J G M; Cox, Russell; Collemare, Jérôme

    2016-06-21

    Anthraquinones are a large family of secondary metabolites (SMs) that are extensively studied for their diverse biological activities. These activities are determined by functional group decorations and the formation of dimers from anthraquinone monomers. Despite their numerous medicinal qualities, very few anthraquinone biosynthetic pathways have been elucidated so far, including the enzymatic dimerization steps. In this study, we report the elucidation of the biosynthesis of cladofulvin, an asymmetrical homodimer of nataloe-emodin produced by the fungus Cladosporium fulvum A gene cluster of 10 genes controls cladofulvin biosynthesis, which begins with the production of atrochrysone carboxylic acid by the polyketide synthase ClaG and the β-lactamase ClaF. This compound is decarboxylated by ClaH to yield emodin, which is then converted to chrysophanol hydroquinone by the reductase ClaC and the dehydratase ClaB. We show that the predicted cytochrome P450 ClaM catalyzes the dimerization of nataloe-emodin to cladofulvin. Remarkably, such dimerization dramatically increases nataloe-emodin cytotoxicity against mammalian cell lines. These findings shed light on the enzymatic mechanisms involved in anthraquinone dimerization. Future characterization of the ClaM enzyme should facilitate engineering the biosynthesis of novel, potent, dimeric anthraquinones and structurally related compound families. PMID:27274078

  13. Comparative genomic analysis reveals a critical role of de novo nucleotide biosynthesis for Saccharomyces cerevisiae virulence.

    Directory of Open Access Journals (Sweden)

    Roberto Pérez-Torrado

    Full Text Available In recent years, the number of human infection cases produced by the food related species Saccharomyces cerevisiae has increased. Whereas many strains of this species are considered safe, other 'opportunistic' strains show a high degree of potential virulence attributes and can cause infections in immunocompromised patients. Here we studied the genetic characteristics of selected opportunistic strains isolated from dietary supplements and also from patients by array comparative genomic hybridization. Our results show increased copy numbers of IMD genes in opportunistic strains, which are implicated in the de novo biosynthesis of the purine nucleotides pathway. The importance of this pathway for virulence of S. cerevisiae was confirmed by infections in immunodeficient murine models using a GUA1 mutant, a key gene of this pathway. We show that exogenous guanine, an end product of this pathway in its triphosphorylated form, increases the survival of yeast strains in ex vivo blood infections. Finally, we show the importance of the DNA damage response that activates dNTP biosynthesis in yeast cells during ex vivo blood infections. We conclude that opportunistic yeasts may use an enhanced de novo biosynthesis of the purine nucleotides pathway to increase survival and favor infections in the host.

  14. Characterization of 10-hydroxygeraniol dehydrogenase from Catharanthus roseus reveals cascaded enzymatic activity in iridoid biosynthesis.

    Science.gov (United States)

    Krithika, Ramakrishnan; Srivastava, Prabhakar Lal; Rani, Bajaj; Kolet, Swati P; Chopade, Manojkumar; Soniya, Mantri; Thulasiram, Hirekodathakallu V

    2015-01-01

    Catharanthus roseus [L.] is a major source of the monoterpene indole alkaloids (MIAs), which are of significant interest due to their therapeutic value. These molecules are formed through an intermediate, cis-trans-nepetalactol, a cyclized product of 10-oxogeranial. One of the key enzymes involved in the biosynthesis of MIAs is an NAD(P)(+) dependent oxidoreductase system, 10-hydroxygeraniol dehydrogenase (Cr10HGO), which catalyses the formation of 10-oxogeranial from 10-hydroxygeraniol via 10-oxogeraniol or 10-hydroxygeranial. This work describes the cloning and functional characterization of Cr10HGO from C. roseus and its role in the iridoid biosynthesis. Substrate specificity studies indicated that, Cr10HGO has good activity on substrates such as 10-hydroxygeraniol, 10-oxogeraniol or 10-hydroxygeranial over monohydroxy linear terpene derivatives. Further it was observed that incubation of 10-hydroxygeraniol with Cr10HGO and iridoid synthase (CrIDS) in the presence of NADP(+) yielded a major metabolite, which was characterized as (1R, 4aS, 7S, 7aR)-nepetalactol by comparing its retention time, mass fragmentation pattern, and co-injection studies with that of the synthesized compound. These results indicate that there is concerted activity of Cr10HGO with iridoid synthase in the formation of (1R, 4aS, 7S, 7aR)-nepetalactol, an important intermediate in iridoid biosynthesis. PMID:25651761

  15. Characterization of type 2 diacylglycerol acyltransferases in Chlamydomonas reinhardtii reveals their distinct substrate specificities and functions in triacylglycerol biosynthesis.

    Science.gov (United States)

    Liu, Jin; Han, Danxiang; Yoon, Kangsup; Hu, Qiang; Li, Yantao

    2016-04-01

    Diacylglycerol acyltransferases (DGATs) catalyze a rate-limiting step of triacylglycerol (TAG) biosynthesis in higher plants and yeast. The genome of the green alga Chlamydomonas reinhardtii has multiple genes encoding type 2 DGATs (DGTTs). Here we present detailed functional and biochemical analyses of Chlamydomonas DGTTs. In vitro enzyme analysis using a radiolabel-free assay revealed distinct substrate specificities of three DGTTs: CrDGTT1 preferred polyunsaturated acyl CoAs, CrDGTT2 preferred monounsaturated acyl CoAs, and CrDGTT3 preferred C16 CoAs. When diacylglycerol was used as the substrate, CrDGTT1 preferred C16 over C18 in the sn-2 position of the glycerol backbone, but CrDGTT2 and CrDGTT3 preferred C18 over C16. In vivo knockdown of CrDGTT1, CrDGTT2 or CrDGTT3 resulted in 20-35% decreases in TAG content and a reduction of specific TAG fatty acids, in agreement with the findings of the in vitro assay and fatty acid feeding test. These results demonstrate that CrDGTT1, CrDGTT2 and CrDGTT3 possess distinct specificities toward acyl CoAs and diacylglycerols, and may work in concert spatially and temporally to synthesize diverse TAG species in C. reinhardtii. CrDGTT1 was shown to prefer prokaryotic lipid substrates and probably resides in both the endoplasmic reticulum and chloroplast envelope, indicating its role in prokaryotic and eukaryotic TAG biosynthesis. Based on these findings, we propose a working model for the role of CrDGTT1 in TAG biosynthesis. This work provides insight into TAG biosynthesis in C. reinhardtii, and paves the way for engineering microalgae for production of biofuels and high-value bioproducts. PMID:26919811

  16. Adsorption studies of iron(III) on chitin

    Indian Academy of Sciences (India)

    G Karthikeyan; N Muthulakshmi Andal; K Anbalagan

    2005-11-01

    Adsorption of ferric ions by chitin was studied by the batch equilibration method. The influence of particle size and dosage of the adsorbant, contact time, initial concentration of the adsorbate and temperature were experimentally verified. The effect of anions like chloride, nitrate and sulphate and also of cations like zinc, chromium and copper on the adsorption of iron(III) was determined. The time dependence of fraction of adsorption, , at varying particle sizes and doses of chitin and the intraparticle diffusion rate constants, , of the adsorption process were calculated. Thermodynamic and equilibrium parameters of the reaction were determined to understand the sorption behaviour of chitin. The results revealed that the adsorption of iron(III) by chitin is spontaneous, endothermic and favourable.

  17. Proteomic Dissection of Endosperm Starch Granule Associated Proteins Reveals a Network Coordinating Starch Biosynthesis and Amino Acid Metabolism and Glycolysis in Rice Endosperms

    Science.gov (United States)

    Yu, Huatao; Wang, Tai

    2016-01-01

    Starch biosynthesis and starch granule packaging in cereal endosperms involve a coordinated action of starch biosynthesis enzymes and coordination with other metabolisms. Because directly binding to starch granules, starch granule-associated proteins (SGAPs) are essential to understand the underlying mechanisms, however the information on SGAPs remains largely unknown. Here, we dissected developmentally changed SGAPs from developing rice endosperms from 10 to 20 days after flowering (DAF). Starch granule packaging was not completed at 10 DAF, and was finished in the central endosperm at 15 DAF and in the whole endosperm at 20 DAF. Proteomic analysis with two-dimensional differential in-gel electrophoresis and mass spectrometry revealed 115 developmentally changed SGAPs, representing 37 unique proteins. 65% of the unique proteins had isoforms. 39% of the identified SGAPs were involved in starch biosynthesis with main functions in polyglucan elongation and granule structure trimming. Almost all proteins involved in starch biosynthesis, amino acid biosynthesis, glycolysis, protein folding, and PPDK pathways increased abundance as the endosperm developed, and were predicted in an interaction network. The network represents an important mechanism to orchestrate carbon partitioning among starch biosynthesis, amino acid biosynthesis and glycolysis for efficient starch and protein storage. These results provide novel insights into mechanisms of starch biosynthesis and its coordination with amino acid metabolisms and glycolysis in cereal endosperms. PMID:27252723

  18. Phylogenetic and evolutionary patterns in microbial carotenoid biosynthesis are revealed by comparative genomics.

    Directory of Open Access Journals (Sweden)

    Jonathan L Klassen

    Full Text Available BACKGROUND: Carotenoids are multifunctional, taxonomically widespread and biotechnologically important pigments. Their biosynthesis serves as a model system for understanding the evolution of secondary metabolism. Microbial carotenoid diversity and evolution has hitherto been analyzed primarily from structural and biosynthetic perspectives, with the few phylogenetic analyses of microbial carotenoid biosynthetic proteins using either used limited datasets or lacking methodological rigor. Given the recent accumulation of microbial genome sequences, a reappraisal of microbial carotenoid biosynthetic diversity and evolution from the perspective of comparative genomics is warranted to validate and complement models of microbial carotenoid diversity and evolution based upon structural and biosynthetic data. METHODOLOGY/PRINCIPAL FINDINGS: Comparative genomics were used to identify and analyze in silico microbial carotenoid biosynthetic pathways. Four major phylogenetic lineages of carotenoid biosynthesis are suggested composed of: (i Proteobacteria; (ii Firmicutes; (iii Chlorobi, Cyanobacteria and photosynthetic eukaryotes; and (iv Archaea, Bacteroidetes and two separate sub-lineages of Actinobacteria. Using this phylogenetic framework, specific evolutionary mechanisms are proposed for carotenoid desaturase CrtI-family enzymes and carotenoid cyclases. Several phylogenetic lineage-specific evolutionary mechanisms are also suggested, including: (i horizontal gene transfer; (ii gene acquisition followed by differential gene loss; (iii co-evolution with other biochemical structures such as proteorhodopsins; and (iv positive selection. CONCLUSIONS/SIGNIFICANCE: Comparative genomics analyses of microbial carotenoid biosynthetic proteins indicate a much greater taxonomic diversity then that identified based on structural and biosynthetic data, and divides microbial carotenoid biosynthesis into several, well-supported phylogenetic lineages not evident

  19. Identification of Genes Putatively Involved in Chitin Metabolism and Insecticide Detoxification in the Rice Leaf Folder (Cnaphalocrocis medinalis Larvae through Transcriptomic Analysis

    Directory of Open Access Journals (Sweden)

    Hai-Zhong Yu

    2015-09-01

    Full Text Available The rice leaf roller (Cnaphalocrocis medinalis is one of the most destructive agricultural pests. Due to its migratory behavior, it is difficult to control worldwide. To date, little is known about major genes of C. medinalis involved in chitin metabolism and insecticide detoxification. In order to obtain a comprehensive genome dataset of C. medinalis, we conducted de novo transcriptome sequencing which focused on the major feeding stage of fourth-instar larvae, and our work revealed useful information on chitin metabolism and insecticide detoxification and target genes of C. medinalis. We acquired 29,367,797 Illumina reads and assembled these reads into 63,174 unigenes with an average length of 753 bp. Among these unigenes, 31,810 were annotated against the National Center for Biotechnology Information non-redundant (NCBI nr protein database, resulting in 24,246, 8669 and 18,176 assigned to Swiss-Prot, clusters of orthologous group (COG, and gene ontology (GO, respectively. We were able to map 10,043 unigenes into 285 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG. Specifically, 16 genes, including five chitin deacetylases, two chitin synthases, five chitinases and four other related enzymes, were identified to be putatively involved in chitin biosynthesis and degradation, whereas 360 genes, including cytochrome P450s, glutathione S-transferases, esterases, and acetylcholinesterases, were found to be potentially involved in insecticide detoxification or as insecticide targets. The reliability of the transcriptome data was determined by reverse transcription quantitative PCR (RT-qPCR for the selected genes. Our data serves as a new and valuable sequence resource for genomic studies on C. medinalis. The findings should improve our understanding of C. medinalis genetics and contribute to management of this important agricultural pest.

  20. Identification of Genes Putatively Involved in Chitin Metabolism and Insecticide Detoxification in the Rice Leaf Folder (Cnaphalocrocis medinalis) Larvae through Transcriptomic Analysis

    Science.gov (United States)

    Yu, Hai-Zhong; Wen, De-Fu; Wang, Wan-Lin; Geng, Lei; Zhang, Yan; Xu, Jia-Ping

    2015-01-01

    The rice leaf roller (Cnaphalocrocis medinalis) is one of the most destructive agricultural pests. Due to its migratory behavior, it is difficult to control worldwide. To date, little is known about major genes of C. medinalis involved in chitin metabolism and insecticide detoxification. In order to obtain a comprehensive genome dataset of C. medinalis, we conducted de novo transcriptome sequencing which focused on the major feeding stage of fourth-instar larvae, and our work revealed useful information on chitin metabolism and insecticide detoxification and target genes of C. medinalis. We acquired 29,367,797 Illumina reads and assembled these reads into 63,174 unigenes with an average length of 753 bp. Among these unigenes, 31,810 were annotated against the National Center for Biotechnology Information non-redundant (NCBI nr) protein database, resulting in 24,246, 8669 and 18,176 assigned to Swiss-Prot, clusters of orthologous group (COG), and gene ontology (GO), respectively. We were able to map 10,043 unigenes into 285 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG). Specifically, 16 genes, including five chitin deacetylases, two chitin synthases, five chitinases and four other related enzymes, were identified to be putatively involved in chitin biosynthesis and degradation, whereas 360 genes, including cytochrome P450s, glutathione S-transferases, esterases, and acetylcholinesterases, were found to be potentially involved in insecticide detoxification or as insecticide targets. The reliability of the transcriptome data was determined by reverse transcription quantitative PCR (RT-qPCR) for the selected genes. Our data serves as a new and valuable sequence resource for genomic studies on C. medinalis. The findings should improve our understanding of C. medinalis genetics and contribute to management of this important agricultural pest. PMID:26378520

  1. The transcriptome of Populus in elevated CO2 reveals increased anthocyanin biosynthesis during delayed autumnal senescence

    Energy Technology Data Exchange (ETDEWEB)

    Tallis, M.J.; Rogers, A.; Lin, Y.; Zhang, J.; Street, N. R.; Miglietta, F.; Karnosky, D. F.; Angelis, P. D.; Calfapietra, C.; Taylor, G.

    2010-03-01

    The delay in autumnal senescence that has occurred in recent decades has been linked to rising temperatures. Here, we suggest that increasing atmospheric CO{sub 2} may partly account for delayed autumnal senescence and for the first time, through transcriptome analysis, identify gene expression changes associated with this delay. Using a plantation of Populus x euramericana grown in elevated [CO{sub 2}] (e[CO{sub 2}]) with free-air CO{sub 2} enrichment (FACE) technology, we investigated the molecular and biochemical basis of this response. A Populus cDNA microarray was used to identify genes representing multiple biochemical pathways influenced by e[CO{sub 2}] during senescence. Gene expression changes were confirmed through real-time quantitative PCR, and leaf biochemical assays. Pathways for secondary metabolism and glycolysis were significantly up-regulated by e[CO{sub 2}] during senescence, in particular, those related to anthocyanin biosynthesis. Expressed sequence tags (ESTs) representing the two most significantly up-regulated transcripts in e[CO{sub 2}], LDOX (leucoanthocyanidin dioxgenase) and DFR (dihydroflavonol reductase), gave (e[CO{sub 2}]/ambient CO{sub 2} (a[CO{sub 2}])) expression ratios of 39.6 and 19.3, respectively. We showed that in e[CO{sub 2}] there was increased autumnal leaf sugar accumulation and up-regulation of genes determining anthocyanin biosynthesis which, we propose, prolongs leaf longevity during natural autumnal senescence.

  2. Pyrosequencing of the Camptotheca acuminata transcriptome reveals putative genes involved in camptothecin biosynthesis and transport

    Directory of Open Access Journals (Sweden)

    Sun Yongzhen

    2011-10-01

    Full Text Available Abstract Background Camptotheca acuminata is a Nyssaceae plant, often called the "happy tree", which is indigenous in Southern China. C. acuminata produces the terpenoid indole alkaloid, camptothecin (CPT, which exhibits clinical effects in various cancer treatments. Despite its importance, little is known about the transcriptome of C. acuminata and the mechanism of CPT biosynthesis, as only few nucleotide sequences are included in the GenBank database. Results From a constructed cDNA library of young C. acuminata leaves, a total of 30,358 unigenes, with an average length of 403 bp, were obtained after assembly of 74,858 high quality reads using GS De Novo assembler software. Through functional annotation, a total of 21,213 unigenes were annotated at least once against the NCBI nucleotide (Nt, non-redundant protein (Nr, Uniprot/SwissProt, Kyoto Encyclopedia of Genes and Genomes (KEGG, and Arabidopsis thaliana proteome (TAIR databases. Further analysis identified 521 ESTs representing 20 enzyme genes that are involved in the backbone of the CPT biosynthetic pathway in the library. Three putative genes in the upstream pathway, including genes for geraniol-10-hydroxylase (CaPG10H, secologanin synthase (CaPSCS, and strictosidine synthase (CaPSTR were cloned and analyzed. The expression level of the three genes was also detected using qRT-PCR in C. acuminata. With respect to the branch pathway of CPT synthesis, six cytochrome P450s transcripts were selected as candidate transcripts by detection of transcript expression in different tissues using qRT-PCR. In addition, one glucosidase gene was identified that might participate in CPT biosynthesis. For CPT transport, three of 21 transcripts for multidrug resistance protein (MDR transporters were also screened from the dataset by their annotation result and gene expression analysis. Conclusion This study produced a large amount of transcriptome data from C. acuminata by 454 pyrosequencing. According to

  3. Association with AflR in Endosomes Reveals New Functions for AflJ in Aflatoxin Biosynthesis

    Directory of Open Access Journals (Sweden)

    John E. Linz

    2012-12-01

    Full Text Available Aflatoxins are the most potent naturally occurring carcinogens of fungal origin. Biosynthesis of aflatoxin involves the coordinated expression of more than 25 genes. The function of one gene in the aflatoxin gene cluster, aflJ, is not entirely understood but, because previous studies demonstrated a physical interaction between the Zn2Cys6 transcription factor AflR and AflJ, AflJ was proposed to act as a transcriptional co-activator. Image analysis revealed that, in the absence of aflJ in A. parasiticus, endosomes cluster within cells and near septa. AflJ fused to yellow fluorescent protein complemented the mutation in A. parasiticus ΔaflJ and localized mainly in endosomes. We found that AflJ co-localizes with AflR both in endosomes and in nuclei. Chromatin immunoprecipitation did not detect AflJ binding at known AflR DNA recognition sites suggesting that AflJ either does not bind to these sites or binds to them transiently. Based on these data, we hypothesize that AflJ assists in AflR transport to or from the nucleus, thus controlling the availability of AflR for transcriptional activation of aflatoxin biosynthesis cluster genes. AflJ may also assist in directing endosomes to the cytoplasmic membrane for aflatoxin export.

  4. Revealing the Complex System of Starch Biosynthesis in Higher Plants Using Rice Mutants and Transformants

    International Nuclear Information System (INIS)

    Starch is the end product of photosynthesis and a primary material for food and industrial uses. Starch has a variety of distinct physico-chemical properties such as gelatinization and pasting properties, and these features are strongly related to the molecular structure of amylopectin and the formation of starch granules, whose morphology depends on the plant species. The multi-dimensional, unique structure of starch is achieved by concerted reactions catalyzed by multiple isozymes of a set of enzymes that include starch synthase, starch branching enzyme and starch debranching enzyme. The action mechanism of each of these isozymes is currently being studied. This paper summarizes recent results of biochemical and genetic analyses of starch biosynthesis in rice endosperm obtained from various mutants and transformants, and dis- cusses ideas about the regulation of starch biosynthesis in plants. Starch is glucose polymer with two α-glucosidic linkages, linearly linked α-1,4-glucosidic chains are branched by α-1,4-glucosidic linkages, and it comprises linear or rarely branched amylose and highly branched amylopectin. Amylopectin has a distinct highly ordered structure called a 'tandem-cluster structure', in which most of side chains are arranged in parallel and neighboring chains form double helices when linear portions of facing chains reach the length equivalent to degree of polymerization (DP) ≥ 10. The formation of double helices in the amylopectin cluster dramatically induces its hydrophobicity and crystallinity. These specific features of amylopectin fine structure are enabled by the localization of branch positions within the restricted region of the cluster. The starch synthesis system has developed during the evolution of plants and key enzymes involved in the construction of amylopectin tandem-cluster structure have differentiated into multiple isozymes with distinct functions, whereas in glycogen synthesizing organisms, such as bacteria and animals

  5. Cloning and sequencing of the kedarcidin biosynthetic gene cluster from Streptoalloteichus sp. ATCC 53650 revealing new insights into biosynthesis of the enediyne family of antitumor antibiotics†

    Science.gov (United States)

    Lohman, Jeremy R.; Huang, Sheng-Xiong; Horsman, Geoffrey P.; Dilfer, Paul E.; Huang, Tingting; Chen, Yihua; Wendt-Pienkowski, Evelyn; Shen, Ben

    2013-01-01

    Enediyne natural product biosynthesis is characterized by a convergence of multiple pathways, generating unique peripheral moieties that are appended onto the distinctive enediyne core. Kedarcidin (KED) possesses two unique peripheral moieties, a (R)-2-aza-3-chloro-β-tyrosine and an iso-propoxy-bearing 2-naphthonate moiety, as well as two deoxysugars. The appendage pattern of these peripheral moieties to the enediyne core in KED differs from the other enediynes studied to date with respect to stereochemical configuration. To investigate the biosynthesis of these moieties and expand our understanding of enediyne core formation, the biosynthetic gene cluster for KED was cloned from Streptoalloteichus sp. ATCC 53650 and sequenced. Bioinformatics analysis of the ked cluster revealed the presence of the conserved genes encoding for enediyne core biosynthesis, type I and type II polyketide synthase loci likely responsible for 2-aza-L-tyrosine and 3,6,8-trihydroxy-2-naphthonate formation, and enzymes known for deoxysugar biosynthesis. Genes homologous to those responsible for the biosynthesis, activation, and coupling of the L-tyrosine-derived moieties from C-1027 and maduropeptin and of the naphthonate moiety from neocarzinostatin are present in the ked cluster, supporting 2-aza-L-tyrosine and 3,6,8-trihydroxy-2-naphthoic acid as precursors, respectively, for the (R)-2-aza-3-chloro-β-tyrosine and the 2-naphthonate moieties in KED biosynthesis. PMID:23360970

  6. Cloning and sequencing of the kedarcidin biosynthetic gene cluster from Streptoalloteichus sp. ATCC 53650 revealing new insights into biosynthesis of the enediyne family of antitumor antibiotics.

    Science.gov (United States)

    Lohman, Jeremy R; Huang, Sheng-Xiong; Horsman, Geoffrey P; Dilfer, Paul E; Huang, Tingting; Chen, Yihua; Wendt-Pienkowski, Evelyn; Shen, Ben

    2013-03-01

    Enediyne natural product biosynthesis is characterized by a convergence of multiple pathways, generating unique peripheral moieties that are appended onto the distinctive enediyne core. Kedarcidin (KED) possesses two unique peripheral moieties, a (R)-2-aza-3-chloro-β-tyrosine and an iso-propoxy-bearing 2-naphthonate moiety, as well as two deoxysugars. The appendage pattern of these peripheral moieties to the enediyne core in KED differs from the other enediynes studied to date with respect to stereochemical configuration. To investigate the biosynthesis of these moieties and expand our understanding of enediyne core formation, the biosynthetic gene cluster for KED was cloned from Streptoalloteichus sp. ATCC 53650 and sequenced. Bioinformatics analysis of the ked cluster revealed the presence of the conserved genes encoding for enediyne core biosynthesis, type I and type II polyketide synthase loci likely responsible for 2-aza-l-tyrosine and 3,6,8-trihydroxy-2-naphthonate formation, and enzymes known for deoxysugar biosynthesis. Genes homologous to those responsible for the biosynthesis, activation, and coupling of the l-tyrosine-derived moieties from C-1027 and maduropeptin and of the naphthonate moiety from neocarzinostatin are present in the ked cluster, supporting 2-aza-l-tyrosine and 3,6,8-trihydroxy-2-naphthoic acid as precursors, respectively, for the (R)-2-aza-3-chloro-β-tyrosine and the 2-naphthonate moieties in KED biosynthesis. PMID:23360970

  7. A Venom Gland Extracellular Chitin-Binding-Like Protein from Pupal Endoparasitoid Wasps, Pteromalus Puparum, Selectively Binds Chitin

    Directory of Open Access Journals (Sweden)

    Yu Zhu

    2015-11-01

    Full Text Available Chitin-binding proteins (CBPs are present in many species and they act in a variety of biological processes. We analyzed a Pteromalus puparum venom apparatus proteome and transcriptome and identified a partial gene encoding a possible CBP. Here, we report cloning a full-length cDNA of a sequence encoding a chitin-binding-like protein (PpCBP from P. puparum, a pupal endoparasitoid of Pieris rapae. The cDNA encoded a 96-amino-acid protein, including a secretory signal peptide and a chitin-binding peritrophin-A domain. Phylogenetic analysis of chitin binding domains (CBDs of cuticle proteins and peritrophic matrix proteins in selected insects revealed that the CBD of PpCBP clustered with the CBD of Nasonia vitripennis. The PpCBP is specifically expressed in the venom apparatus of P. puparum, mostly in the venom gland. PpCBP expression was highest at day one after adult eclosion and much lower for the following five days. We produced a recombinant PpCBP and binding assays showed the recombinant protein selectively binds chitin but not cellulose in vitro. We infer that PpCBP serves a structural role in the venom reservoir, or may be injected into the host to help wound healing of the host exoskeleton.

  8. A Venom Gland Extracellular Chitin-Binding-Like Protein from Pupal Endoparasitoid Wasps, Pteromalus Puparum, Selectively Binds Chitin.

    Science.gov (United States)

    Zhu, Yu; Ye, Xin-Hai; Liu, Yang; Yan, Zhi-Chao; Stanley, David; Ye, Gong-Yin; Fang, Qi

    2015-12-01

    Chitin-binding proteins (CBPs) are present in many species and they act in a variety of biological processes. We analyzed a Pteromalus puparum venom apparatus proteome and transcriptome and identified a partial gene encoding a possible CBP. Here, we report cloning a full-length cDNA of a sequence encoding a chitin-binding-like protein (PpCBP) from P. puparum, a pupal endoparasitoid of Pieris rapae. The cDNA encoded a 96-amino-acid protein, including a secretory signal peptide and a chitin-binding peritrophin-A domain. Phylogenetic analysis of chitin binding domains (CBDs) of cuticle proteins and peritrophic matrix proteins in selected insects revealed that the CBD of PpCBP clustered with the CBD of Nasonia vitripennis. The PpCBP is specifically expressed in the venom apparatus of P. puparum, mostly in the venom gland. PpCBP expression was highest at day one after adult eclosion and much lower for the following five days. We produced a recombinant PpCBP and binding assays showed the recombinant protein selectively binds chitin but not cellulose in vitro. We infer that PpCBP serves a structural role in the venom reservoir, or may be injected into the host to help wound healing of the host exoskeleton. PMID:26633500

  9. Bacterial chitinolytic communities respond to chitin and pH alteration in soil

    DEFF Research Database (Denmark)

    Kielak, Anna; Cretoiu, Mariana; Semenov, Alexander; Sørensen, Søren Johannes; van Elsas, Jan

    2013-01-01

    Chitin amendment is a promising soil management strategy that may enhance the suppressiveness of soil toward plant pathogens. However, we understand very little of the effects of added chitin, including the putative successions that take place in the degradative process. We performed an experiment...... in moderately acid soil in which the level of chitin, next to the pH, was altered. Examination of chitinase activities revealed fast responses to the added crude chitin, with peaks of enzymatic activity occurring on day 7. PCR-denaturing gradient gel electrophoresis (DGGE)-based analyses of 16S r......RNA and chiA genes showed structural changes of the phylogenetically and functionally based bacterial communities following chitin addition and pH alteration. Pyrosequencing analysis indicated (i) that the diversity of chiA gene types in soil is enormous and (i) that different chiA gene types are selected...

  10. Mutations in four glycosyl hydrolases reveal a highly coordinated pathway for rhodopsin biosynthesis and N-glycan trimming in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Erica E Rosenbaum

    2014-05-01

    Full Text Available As newly synthesized glycoproteins move through the secretory pathway, the asparagine-linked glycan (N-glycan undergoes extensive modifications involving the sequential removal and addition of sugar residues. These modifications are critical for the proper assembly, quality control and transport of glycoproteins during biosynthesis. The importance of N-glycosylation is illustrated by a growing list of diseases that result from defects in the biosynthesis and processing of N-linked glycans. The major rhodopsin in Drosophila melanogaster photoreceptors, Rh1, is highly unique among glycoproteins, as the N-glycan appears to be completely removed during Rh1 biosynthesis and maturation. However, much of the deglycosylation pathway for Rh1 remains unknown. To elucidate the key steps in Rh1 deglycosylation in vivo, we characterized mutant alleles of four Drosophila glycosyl hydrolases, namely α-mannosidase-II (α-Man-II, α-mannosidase-IIb (α-Man-IIb, a β-N-acetylglucosaminidase called fused lobes (Fdl, and hexosaminidase 1 (Hexo1. We have demonstrated that these four enzymes play essential and unique roles in a highly coordinated pathway for oligosaccharide trimming during Rh1 biosynthesis. Our results reveal that α-Man-II and α-Man-IIb are not isozymes like their mammalian counterparts, but rather function at distinct stages in Rh1 maturation. Also of significance, our results indicate that Hexo1 has a biosynthetic role in N-glycan processing during Rh1 maturation. This is unexpected given that in humans, the hexosaminidases are typically lysosomal enzymes involved in N-glycan catabolism with no known roles in protein biosynthesis. Here, we present a genetic dissection of glycoprotein processing in Drosophila and unveil key steps in N-glycan trimming during Rh1 biosynthesis. Taken together, our results provide fundamental advances towards understanding the complex and highly regulated pathway of N-glycosylation in vivo and reveal novel insights

  11. Proteomic Stable Isotope Probing Reveals Biosynthesis Dynamics of Slow Growing Methane Based Microbial Communities

    Science.gov (United States)

    Marlow, Jeffrey J.; Skennerton, Connor T.; Li, Zhou; Chourey, Karuna; Hettich, Robert L.; Pan, Chongle; Orphan, Victoria J.

    2016-01-01

    demonstrates the active synthesis of a metabolically specific minority of enzymes, revealing the surprising longevity of most proteins over the course of an extended incubation experiment in an established, slow-growing, methane-impacted environmental system. PMID:27199908

  12. Biosynthesis of Antibiotic Leucinostatins in Bio-control Fungus Purpureocillium lilacinum and Their Inhibition on Phytophthora Revealed by Genome Mining

    Science.gov (United States)

    Li, Erfeng; Mao, Zhenchuan; Ling, Jian; Yang, Yuhong; Yin, Wen-Bing; Xie, Bingyan

    2016-01-01

    Purpureocillium lilacinum of Ophiocordycipitaceae is one of the most promising and commercialized agents for controlling plant parasitic nematodes, as well as other insects and plant pathogens. However, how the fungus functions at the molecular level remains unknown. Here, we sequenced two isolates (PLBJ-1 and PLFJ-1) of P. lilacinum from different places Beijing and Fujian. Genomic analysis showed high synteny of the two isolates, and the phylogenetic analysis indicated they were most related to the insect pathogen Tolypocladium inflatum. A comparison with other species revealed that this fungus was enriched in carbohydrate-active enzymes (CAZymes), proteases and pathogenesis related genes. Whole genome search revealed a rich repertoire of secondary metabolites (SMs) encoding genes. The non-ribosomal peptide synthetase LcsA, which is comprised of ten C-A-PCP modules, was identified as the core biosynthetic gene of lipopeptide leucinostatins, which was specific to P. lilacinum and T. ophioglossoides, as confirmed by phylogenetic analysis. Furthermore, gene expression level was analyzed when PLBJ-1 was grown in leucinostatin-inducing and non-inducing medium, and 20 genes involved in the biosynthesis of leucionostatins were identified. Disruption mutants allowed us to propose a putative biosynthetic pathway of leucinostatin A. Moreover, overexpression of the transcription factor lcsF increased the production (1.5-fold) of leucinostatins A and B compared to wild type. Bioassays explored a new bioactivity of leucinostatins and P. lilacinum: inhibiting the growth of Phytophthora infestans and P. capsici. These results contribute to our understanding of the biosynthetic mechanism of leucinostatins and may allow us to utilize P. lilacinum better as bio-control agent. PMID:27416025

  13. Quorum sensing-regulated chitin metabolism provides grazing resistance to Vibrio cholerae biofilms.

    Science.gov (United States)

    Sun, Shuyang; Tay, Qi Xiang Martin; Kjelleberg, Staffan; Rice, Scott A; McDougald, Diane

    2015-08-01

    Association of Vibrio cholerae with chitinous surfaces of zooplankton is important for its persistence in marine environments, as it provides accessibility to nutrients and resistance to stresses. Predation by heterotrophic protists has a major impact on the survival of V. cholerae. V. cholerae forms biofilms as its main defensive strategy, and quorum sensing (QS) additionally regulates the production of antiprotozoal factors. The role of chitin and QS regulation in V. cholerae grazing resistance was investigated by exposing V. cholerae wild-type (WT) and QS mutant biofilms grown on chitin flakes to the bacteriotrophic, surface-feeding flagellate Rhynchomonas nasuta. V. cholerae formed more biofilm biomass on chitin flakes compared with nonchitinous surfaces. The growth of R. nasuta was inhibited by WT biofilms grown on chitin flakes, whereas the inhibition was attenuated in QS mutant biofilms. The chitin-dependent toxicity was also observed when the V. cholerae biofilms were developed under continuous flow or grown on a natural chitin source, the exoskeleton of Artemia. In addition, the antiprotozoal activity and ammonium concentration of V. cholerae biofilm supernatants were quantified. The ammonium levels (3.5 mM) detected in the supernatants of V. cholerae WT biofilms grown on chitin flakes were estimated to reduce the number of R. nasuta by >80% in add-back experiments, and the supernatant of QS mutant biofilms was less toxic owing to a decrease in ammonium production. Transcriptomic analysis revealed that the majority of genes involved in chitin metabolism and chemotaxis were significantly downregulated in QS mutant biofilms when grown on chitin compared with the WT biofilms. PMID:25615438

  14. Transcriptome analysis reveals in vitro cultured Withania somnifera leaf and root tissues as a promising source for targeted withanolide biosynthesis

    OpenAIRE

    Senthil, Kalaiselvi; Jayakodi, Murukarthick; Thirugnanasambantham, Pankajavalli; Lee, Sang Choon; Duraisamy, Pradeepa; Purushotham, Preethi M; Rajasekaran, Kalaiselvi; Nancy Charles, Shobana; Mariam Roy, Irene; Nagappan, Arul Kumar; Kim, Gon Sup; Lee, Yun Sun; Natesan, Senthil; Min, Tae-Sun; Yang, Tae Jin

    2015-01-01

    Background The production of metabolites via in vitro culture is promoted by the availability of fully defined metabolic pathways. Withanolides, the major bioactive phytochemicals of Withania somnifera, have been well studied for their pharmacological activities. However, only a few attempts have been made to identify key candidate genes involved in withanolide biosynthesis. Understanding the steps involved in withanolide biosynthesis is essential for metabolic engineering of this plant to in...

  15. Comparative transcriptome analysis coupled to X-ray CT reveals sucrose supply and growth velocity as major determinants of potato tuber starch biosynthesis

    Directory of Open Access Journals (Sweden)

    Goldstein Ralf

    2010-02-01

    Full Text Available Abstract Background Even though the process of potato tuber starch biosynthesis is well understood, mechanisms regulating biosynthesis are still unclear. Transcriptome analysis provides valuable information as to how genes are regulated. Therefore, this work aimed at investigating transcriptional regulation of starch biosynthetic genes in leaves and tubers of potato plants under various conditions. More specifically we looked at gene expression diurnally in leaves and tubers, during tuber induction and in tubers growing at different velocities. To determine velocity of potato tuber growth a new method based on X-ray Computed Tomography (X-ray CT was established. Results Comparative transcriptome analysis between leaves and tubers revealed striking similarities with the same genes being differentially expressed in both tissues. In tubers, oscillation of granule bound starch synthase (GBSS expression was observed which could be linked to sucrose supply from source leaves. X-ray CT was used to determine time-dependent changes in tuber volume and the growth velocity was calculated. Although there is not a linear correlation between growth velocity and expression of starch biosynthetic genes, there are significant differences between growing and non-growing tubers. Co-expression analysis was used to identify transcription factors positively correlating with starch biosynthetic genes possibly regulating starch biosynthesis. Conclusion Most starch biosynthetic enzymes are encoded by gene families. Co-expression analysis revealed that the same members of these gene families are co-regulated in leaves and tubers. This suggests that regulation of transitory and storage starch biosynthesis in leaves and tubers, respectively, is surprisingly similar. X-ray CT can be used to monitor growth and development of belowground organs and allows to link tuber growth to changes in gene expression. Comparative transcriptome analysis provides a useful tool to identify

  16. An Integrated Bioinformatics Analysis Reveals Divergent Evolutionary Pattern of Oil Biosynthesis in High- and Low-Oil Plants

    Science.gov (United States)

    Zhang, Li; Wang, Shi-Bo; Li, Qi-Gang; Song, Jian; Hao, Yu-Qi; Zhou, Ling; Zheng, Huan-Quan; Dunwell, Jim M.; Zhang, Yuan-Ming

    2016-01-01

    Seed oils provide a renewable source of food, biofuel and industrial raw materials that is important for humans. Although many genes and pathways for acyl-lipid metabolism have been identified, little is known about whether there is a specific mechanism for high-oil content in high-oil plants. Based on the distinct differences in seed oil content between four high-oil dicots (20~50%) and three low-oil grasses (<3%), comparative genome, transcriptome and differential expression analyses were used to investigate this mechanism. Among 4,051 dicot-specific soybean genes identified from 252,443 genes in the seven species, 54 genes were shown to directly participate in acyl-lipid metabolism, and 93 genes were found to be associated with acyl-lipid metabolism. Among the 93 dicot-specific genes, 42 and 27 genes, including CBM20-like SBDs and GPT2, participate in carbohydrate degradation and transport, respectively. 40 genes highly up-regulated during seed oil rapid accumulation period are mainly involved in initial fatty acid synthesis, triacylglyceride assembly and oil-body formation, for example, ACCase, PP, DGAT1, PDAT1, OLEs and STEROs, which were also found to be differentially expressed between high- and low-oil soybean accessions. Phylogenetic analysis revealed distinct differences of oleosin in patterns of gene duplication and loss between high-oil dicots and low-oil grasses. In addition, seed-specific GmGRF5, ABI5 and GmTZF4 were predicted to be candidate regulators in seed oil accumulation. This study facilitates future research on lipid biosynthesis and potential genetic improvement of seed oil content. PMID:27159078

  17. Some ethylene biosynthesis and AP2/ERF genes reveal a specific pattern of expression during somatic embryogenesis in Hevea brasiliensis

    Directory of Open Access Journals (Sweden)

    Piyatrakul Piyanuch

    2012-12-01

    Full Text Available Abstract Background Ethylene production and signalling play an important role in somatic embryogenesis, especially for species that are recalcitrant in in vitro culture. The AP2/ERF superfamily has been identified and classified in Hevea brasiliensis. This superfamily includes the ERFs involved in response to ethylene. The relative transcript abundance of ethylene biosynthesis genes and of AP2/ERF genes was analysed during somatic embryogenesis for callus lines with different regeneration potential, in order to identify genes regulated during that process. Results The analysis of relative transcript abundance was carried out by real-time RT-PCR for 142 genes. The transcripts of ERFs from group I, VII and VIII were abundant at all stages of the somatic embryogenesis process. Forty genetic expression markers for callus regeneration capacity were identified. Fourteen markers were found for proliferating calli and 35 markers for calli at the end of the embryogenesis induction phase. Sixteen markers discriminated between normal and abnormal embryos and, lastly, there were 36 markers of conversion into plantlets. A phylogenetic analysis comparing the sequences of the AP2 domains of Hevea and Arabidopsis genes enabled us to predict the function of 13 expression marker genes. Conclusions This first characterization of the AP2/ERF superfamily in Hevea revealed dramatic regulation of the expression of AP2/ERF genes during the somatic embryogenesis process. The gene expression markers of proliferating callus capacity to regenerate plants by somatic embryogenesis should make it possible to predict callus lines suitable to be used for multiplication. Further functional characterization of these markers opens up prospects for discovering specific AP2/ERF functions in the Hevea species for which somatic embryogenesis is difficult.

  18. Mapping the Hsp90 Genetic Network Reveals Ergosterol Biosynthesis and Phosphatidylinositol-4-Kinase Signaling as Core Circuitry Governing Cellular Stress

    Science.gov (United States)

    O’Meara, Teresa R.; Valaei, Seyedeh Fereshteh; Diezmann, Stephanie; Cowen, Leah E.

    2016-01-01

    Candida albicans is a leading human fungal pathogen that causes life-threatening systemic infections. A key regulator of C. albicans stress response, drug resistance, morphogenesis, and virulence is the molecular chaperone Hsp90. Targeting Hsp90 provides a powerful strategy to treat fungal infections, however, the therapeutic utility of current inhibitors is compromised by toxicity due to inhibition of host Hsp90. To identify components of the Hsp90-dependent circuitry governing virulence and drug resistance that are sufficiently divergent for selective targeting in the pathogen, we pioneered chemical genomic profiling of the Hsp90 genetic network in C. albicans. Here, we screen mutant collections covering ~10% of the genome for hypersensitivity to Hsp90 inhibition in multiple environmental conditions. We identify 158 HSP90 chemical genetic interactors, most of which are important for growth only in specific environments. We discovered that the sterol C-22 desaturase gene ERG5 and the phosphatidylinositol-4-kinase (PI4K) gene STT4 are HSP90 genetic interactors under multiple conditions, suggesting a function upstream of Hsp90. By systematic analysis of the ergosterol biosynthetic cascade, we demonstrate that defects in ergosterol biosynthesis induce cellular stress that overwhelms Hsp90’s functional capacity. By analysis of the phosphatidylinositol pathway, we demonstrate that there is a genetic interaction between the PI4K Stt4 and Hsp90. We also establish that Stt4 is required for normal actin polarization through regulation of Wal1, and suggest a model in which defects in actin remodeling induces stress that creates a cellular demand for Hsp90 that exceeds its functional capacity. Consistent with this model, actin inhibitors are synergistic with Hsp90 inhibitors. We highlight new connections between Hsp90 and virulence traits, demonstrating that Erg5 and Stt4 enable activation of macrophage pyroptosis. This work uncovers novel circuitry regulating Hsp90

  19. Linkage mapping in the oilseed crop Jatropha curcas L. reveals a locus controlling the biosynthesis of phorbol esters which cause seed toxicity.

    Science.gov (United States)

    King, Andrew J; Montes, Luis R; Clarke, Jasper G; Affleck, Julie; Li, Yi; Witsenboer, Hanneke; van der Vossen, Edwin; van der Linde, Piet; Tripathi, Yogendra; Tavares, Evanilda; Shukla, Parul; Rajasekaran, Thirunavukkarasu; van Loo, Eibertus N; Graham, Ian A

    2013-10-01

    Current efforts to grow the tropical oilseed crop Jatropha curcas L. economically are hampered by the lack of cultivars and the presence of toxic phorbol esters (PE) within the seeds of most provenances. These PE restrict the conversion of seed cake into animal feed, although naturally occurring 'nontoxic' provenances exist which produce seed lacking PE. As an important step towards the development of genetically improved varieties of J. curcas, we constructed a linkage map from four F₂ mapping populations. The consensus linkage map contains 502 codominant markers, distributed over 11 linkage groups, with a mean marker density of 1.8 cM per unique locus. Analysis of the inheritance of PE biosynthesis indicated that this is a maternally controlled dominant monogenic trait. This maternal control is due to biosynthesis of the PE occurring only within maternal tissues. The trait segregated 3 : 1 within seeds collected from F₂ plants, and QTL analysis revealed that a locus on linkage group 8 was responsible for phorbol ester biosynthesis. By taking advantage of the draft genome assemblies of J. curcas and Ricinus communis (castor), a comparative mapping approach was used to develop additional markers to fine map this mutation within 2.3 cM. The linkage map provides a framework for the dissection of agronomic traits in J. curcas, and the development of improved varieties by marker-assisted breeding. The identification of the locus responsible for PE biosynthesis means that it is now possible to rapidly breed new nontoxic varieties. PMID:23898859

  20. IDENTIFICATION AND HORMONE INDUCTION OF PUTATIVE CHITIN SYNTHASE GENES AND SPLICE VARIANTS IN Leptinotarsa decemlineata (SAY).

    Science.gov (United States)

    Shi, Ji-Feng; Mu, Li-Li; Guo, Wen-Chao; Li, Guo-Qing

    2016-08-01

    Chitin synthase (ChS) plays a critical role in chitin synthesis and excretion. In this study, two ChS genes (LdChSA and LdChSB) were identified in Leptinotarsa decemlineata. LdChSA contains two splicing variants, LdChSAa and LdChSAb. Within the first, second, and third larval instars, the mRNA levels of LdChSAa, LdChSAb, and LdChSB coincide with the peaks of circulating 20-hydroxyecdysone (20E) and juvenile hormone (JH). In vitro culture of midguts and an in vivo bioassay revealed that 20E and an ecdysteroid agonist halofenozide stimulated the expression of the three LdChSs. Conversely, a reduction of 20E by RNA interference (RNAi) of an ecdysteroidogenesis gene LdSHD repressed the expression of these LdChSs, and ingestion of halofenozide by LdSHD RNAi larvae rescued the repression. Moreover, disruption of 20E signaling by RNAi of LdEcR, LdE75, LdHR3, and LdFTZ-F1 reduced the expression levels of these genes. Similarly, in vitro culture and an in vivo bioassay showed that exogenous JH and a JH analog methoprene activated the expression of the three LdChSs, whereas a decrease in JH by RNAi of a JH biosynthesis gene LdJHAMT downregulated these LdChSs. It seems that JH upregulates LdChSs at the early stage of each instar, whereas a 20E pulse triggers the transcription of LdChSs during molting in L. decemlineata. PMID:27030662

  1. Chitin enhances biocontrol of Rhodotorula mucilaginosa to postharvest decay of peaches.

    Science.gov (United States)

    Zhang, Hongyin; Yang, Qiya; Ge, Lingling; Zhang, Guochao; Zhang, Xiaoli; Zhang, Xiaoyun

    2016-07-01

    Biological control using microbial antagonists is a promising alternative approach to synthetic fungicides. However, effective biological control requires enhancing the consistency and efficacy of the antagonists used to control postharvest diseases. This study investigated the effect of chitin on the biocontrol efficacy of Rhodotorula mucilaginosa against blue mold and Rhizopus decay of peaches and on the protein expression profiles of R. mucilaginosa. The antagonistic activity of R. mucilaginosa harvested from the nutrient yeast dextrose broth (NYDB) with 0.5% chitin added was significantly improved compared with culture in NYDB without chitin. The R. mucilaginosa population cultured in chitin-supplement NYDB and nutrient yeast chitin borth (NYCB) harvested from peach wounds was more than that of R. mucilaginosa cultured in NYDB without chitin throughout the storage period except at 1 d. The protein expression profiles findings revealed that there were several differentially expressed proteins of R. mucilaginosa in the 0.5% chitin-supplemented NYDB and NYCB compared with that of R. mucilaginosa in NYDB. Most of these were cellular proteomes relating to the primary metabolic reactions such as glycoside hydrolases, phosphoribosyl pyrophosphate, and NADH dehydrogenases. Some proteins were also related to signal transmission and stress response. PMID:27064085

  2. Pyrolysis GC/MS and IR spectroscopy in chitin analysis of molluscan shells.

    Science.gov (United States)

    Furuhashi, Takeshi; Beran, Anton; Blazso, Marianne; Czegeny, Zsuzsanna; Schwarzinger, Clemens; Steiner, Gerhard

    2009-01-01

    Chitin is an insoluble component in the shells of several molluscan species. It is thought to play important roles, in biomineralization and shell structure. To date, however, reports are scarce and sometimes contradictory, and suffer from methodological problems. Only in a single cephalopod species has the chitin been identified as beta-chitin. We present data on chitin occurrence in 22 species of shell-bearing Mollusca (Conchifera) and Polyplacophora, including the first evidence for scaphopods, based on pyrolysis gas chromatography, mass spectrometry (GC-MS), and infrared spectroscopy (IR). Pyrolysis GC-MS detected chitin in every tested member of the Conchifera. IR spectroscopy before and after chitinase treatment revealed at least three distinct patterns of peak changes. The contents of the insoluble shell organics included not only chitin and proteins, but also insoluble polysaccharides, e.g., glucan. We conclude that chitin was present in the last common ancestor of the Conchifera and that its abundance in the shell matrix depends on the differentiation of the shell. PMID:19129649

  3. Integration of transcriptome, proteome and metabolism data reveals the alkaloids biosynthesis in Macleaya cordata and Macleaya microcarpa.

    Directory of Open Access Journals (Sweden)

    Jianguo Zeng

    Full Text Available BACKGROUND: The Macleaya spp., including Macleaya cordata and Macleaya microcarpa, are traditional anti-virus, inflammation eliminating, and insecticide herb medicines for their isoquinoline alkaloids. They are also known as the basis of the popular natural animal food addictive in Europe. However, few studies especially at genomics level were conducted on them. Hence, we performed the Macleaya spp. transcriptome and integrated it with iTRAQ proteome analysis in order to identify potential genes involved in alkaloids biosynthesis. METHODOLOGY AND PRINCIPAL FINDINGS: We elaborately designed the transcriptome, proteome and metabolism profiling for 10 samples of both species to explore their alkaloids biosynthesis. From the transcriptome data, we obtained 69367 and 78255 unigenes for M. cordata and M. microcarpa, in which about two thirds of them were similar to sequences in public databases. By metabolism profiling, reverse patterns for alkaloids sanguinarine, chelerythrine, protopine, and allocryptopine were observed in different organs of two species. We characterized the expressions of enzymes in alkaloid biosynthesis pathways. We also identified more than 1000 proteins from iTRAQ proteome data. Our results strongly suggest that the root maybe the organ for major alkaloids biosynthesis of Macleaya spp. Except for biosynthesis, the alkaloids storage and transport were also important for their accumulation. The ultrastructure of laticifers by SEM helps us to prove the alkaloids maybe accumulated in the mature roots. CONCLUSIONS/SIGNIFICANCE: To our knowledge this is the first study to elucidate the genetic makeup of Macleaya spp. This work provides clues to the identification of the potential modulate genes involved in alkaloids biosynthesis in Macleaya spp., and sheds light on researches for non-model medicinal plants by integrating different high-throughput technologies.

  4. In situ microscopic observation of chitin and fungal cells with chitinous cell walls in hydrothermal conditions

    OpenAIRE

    Shigeru Deguchi; Kaoru Tsujii; Koki Horikoshi

    2015-01-01

    Recent findings of intact chitin in fossil records suggest surprisingly high recalcitrance of this biopolymer during hydrothermal treatments. We also know in the experience of everyday life that mushroom, cells of which have chitinous cell walls, do not fall apart however long they are simmered. We used in situ optical microscopy to examine chitin and fungal cells with chitinous cell walls during hydrothermal treatments, and obtained direct evidence that they remained undegraded at temperatur...

  5. Physicochemical Characterization and the Comparison of Chitin and Chitin Modified with Maleic Anhydride

    OpenAIRE

    İlhan Uzun; Ömer Çelik

    2015-01-01

    Firstly, chitin was modified via ring-opening reaction with maleic anhydride in lithium chloride/N,N-dimethylacetamide. Then, both chitin and chitin modified with maleic anhydride (CMA) were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) method, ultraviolet-visible (UV-Vis) spectroscopy, and scanning electron microscopy (SEM). Thermogravimetric analysis (TGA) was performed to investigate the thermal stability of chitin and CMA. TGA results showed that...

  6. Determination of chitin in Claviceps

    International Nuclear Information System (INIS)

    Preparations rich in chitin obtained from the cell walls of ergot fungi were studied by X-ray diffraction and IR-techniques. During the course of fermentation the yield of chitin was determined using a modified procedure according to Ride and Drysdale (1972). A saprophytically ergotoxine producing Claviceps purpurea strain (Pepty 695) was found to contain 7-9 μg glucosamine/mg dry weight of the mycelium in contrast to 3-5 μg glucosamine/mg dry weight of a non-alkaloid producing C. purpurea strain (PUR 212). There was no remarkable fluctuation of the glucosamine content in strain Pepty 695 during the course of fermentation. (author)

  7. Chitin Degradation Proteins Produced by the Marine Bacterium Vibrio harveyi Growing on Different Forms of Chitin

    Science.gov (United States)

    Svitil, A. L.; Chadhain, S.; Moore, J. A.; Kirchman, D. L.

    1997-01-01

    Relatively little is known about the number, diversity, and function of chitinases produced by bacteria, even though chitin is one of the most abundant polymers in nature. Because of the importance of chitin, especially in marine environments, we examined chitin-degrading proteins in the marine bacterium Vibrio harveyi. This bacterium had a higher growth rate and more chitinase activity when grown on (beta)-chitin (isolated from squid pen) than on (alpha)-chitin (isolated from snow crab), probably because of the more open structure of (beta)-chitin. When exposed to different types of chitin, V. harveyi excreted several chitin-degrading proteins into the culture media. Some chitinases were present with all of the tested chitins, while others were unique to a particular chitin. We cloned and identified six separate chitinase genes from V. harveyi. These chitinases appear to be unique based on DNA restriction patterns, immunological data, and enzyme activity. This marine bacterium and probably others appear to synthesize separate chitinases for efficient utilization of different forms of chitin and chitin by-products. PMID:16535505

  8. Differentiations of chitin content and surface morphologies of chitins extracted from male and female grasshopper species.

    Directory of Open Access Journals (Sweden)

    Murat Kaya

    Full Text Available In this study, we used Fourier transform infrared spectroscopy (FT-IR, elemental analysis (EA, thermogravimetric analysis (TGA, X-ray diffractometry (XRD, and scanning electron microscopy (SEM to investigate chitin structure isolated from both sexes of four grasshopper species. FT-IR, EA, XRD, and TGA showed that the chitin was in the alpha form. With respect to gender, two main differences were observed. First, we observed that the quantity of chitin was greater in males than in females and the dry weight of chitin between species ranged from 4.71% to 11.84%. Second, using SEM, we observed that the male chitin surface structure contained 25-90 nm wide nanofibers and 90-250 nm nanopores, while no pores or nanofibers were observed in the chitin surface structure of the majority of females (nanofibers were observed only in M. desertus females. In contrast, the elemental analysis, thermal properties, and crystalline index values for chitin were similar in males and females. Also, we carried out enzymatic digestion of the isolated chitins using commercial chitinase from Streptomyces griseus. We observed that there were no big differences in digestion rate of the chitins from both sexes and commercial chitin. The digestion rates were for grasshoppers' chitins; 88.45-95.48% and for commercial chitin; 94.95%.

  9. AMINO ACID SUPPLEMENTATION REVEALS DIFFERENTIAL REGULATION OF AFLATOXIN BIOSYNTHESIS IN ASPERGILLUS FLAVUS NRRL 3357 AND ASPERGILLUS PARASITICUS SRRC 143

    Science.gov (United States)

    Aflatoxins are toxic and carcinogenic secondary metabolites produced by the fungi Aspergillus flavus and A. parasiticus. In order to better understand the molecular mechanisms that regulate aflatoxin production, the biosynthesis of the toxin in A. flavus and A. parasiticus grown in yeast extract su...

  10. Preparation of Chitin Nanofibers from Mushrooms

    Directory of Open Access Journals (Sweden)

    Hiroyuki Saimoto

    2011-08-01

    Full Text Available Chitin nanofibers were isolated from the cell walls of five different types of mushrooms by the removal of glucans, minerals, and proteins, followed by a simple grinding treatment under acidic conditions. The Chitin nanofibers thus obtained have a uniform structure and a long fiber length. The width of the nanofibers depended on the type of mushrooms and varied in the range 20 to 28 nm. The Chitin nanofibers were characterized by elemental analyses, FT-IR spectra, and X-ray diffraction profiles. The results showed that the α-chitin crystal structure was maintained and glucans remained on the nanofiber surface.

  11. Solid state characterization of {alpha}-chitin from Vanessa cardui Linnaeus wings

    Energy Technology Data Exchange (ETDEWEB)

    Schiffman, Jessica D. [Department of Materials Science and Engineering, Drexel University, Philadelphia, PA (United States); Schauer, Caroline L., E-mail: cschauer@coe.drexel.edu [Department of Materials Science and Engineering, Drexel University, Philadelphia, PA (United States)

    2009-05-05

    Material properties of the painted lady butterfly, Vanessa cardui Linnaeus were investigated using typical material science techniques. The examined butterflies were raised and hatched from the larvae stage and their chemical and crystalline structure evaluated and compared to that of crab shell ({alpha}-chitin) and squid pens from Notodarus sloanii and Loligo pealei ({beta}-chitin). Fourier transmission infrared spectroscopy (FTIR) and X-ray diffraction (XRD) revealed that the painted lady butterflies are composed of {alpha}-chitin. Additionally, macro- and microstructure characterization of the chitins was conducted utilizing digital photography and field emission scanning electron microscopy (FESEM). This work demonstrates that common characterization techniques combined with simple sample preparation of biological materials can yield successful material characterization, which could aide the fabrication of biomimetic materials.

  12. Chitin nanofiber elucidates the elicitor activity of polymeric chitin in plants

    Directory of Open Access Journals (Sweden)

    Mayumi eEgusa

    2015-12-01

    Full Text Available Chitin, an N-acetyl-D-glucosamine polymer, is a component of fungal cell walls and a microbe/pathogen-associated molecular pattern that elicits plant defense responses. As polymeric chitin is difficult to handle due to its insolubility in water, many studies on chitin-induced immune responses have used water-soluble low-molecular weight chitin instead. Thus, it is unclear if polymeric chitin can induce resistance. Here, we examined the elicitor activity of chitin nanofiber (CNF of submicron thickness prepared from polymeric chitin. CNF showed a high dispersing ability in water and induced both reactive oxygen species (ROS production and chitin-induced defense-related gene expression in Arabidopsis thaliana seedlings. The Arabidopsis chitin elicitor receptor kinase 1 (Atcerk1 mutant, which is impaired in chitin perception, also failed to respond to CNF. CNF exposure triggered ROS generation in suspension-cultured cells from Oryza sativa. Furthermore, pre-treatment of Arabidopsis leaves with CNF effectively reduced pathogen infection by both the fungus Alternaria brassicicola and the bacterium Pseudomonas syringae pv. tomato DC3000. These results demonstrate that CNF has elicitor activity and will help define the role of polymeric chitin in plant immune responses.

  13. Physicochemical Characterization and the Comparison of Chitin and Chitin Modified with Maleic Anhydride

    Directory of Open Access Journals (Sweden)

    İlhan Uzun

    2015-06-01

    Full Text Available Firstly, chitin was modified via ring-opening reaction with maleic anhydride in lithium chloride/N,N-dimethylacetamide. Then, both chitin and chitin modified with maleic anhydride (CMA were characterized by Fourier transform infrared (FTIR spectroscopy, X-ray diffraction (XRD method, ultraviolet-visible (UV-Vis spectroscopy, and scanning electron microscopy (SEM. Thermogravimetric analysis (TGA was performed to investigate the thermal stability of chitin and CMA. TGA results showed that chitin is thermally more stable than CMA. In addition, the electrical conductivity of chitin and CMA was also measured. Electrical conductivity measurement results showed that the electrical conductivity of CMA (4.3x10-4 S cm-1 is more than that of chitin (6.5x10-6 S cm-1.

  14. Large number of putative chemoreception and pheromone biosynthesis genes revealed by analyzing transcriptome from ovipositor-pheromone glands of Chilo suppressalis.

    Science.gov (United States)

    Xia, Yi-Han; Zhang, Ya-Nan; Hou, Xiao-Qing; Li, Fei; Dong, Shuang-Lin

    2015-01-01

    The chemoreception role of moth ovipositor has long been suggested, but its molecular mechanism is mostly unknown. By transcriptomic analysis of the female ovipositor-pheromone glands (OV-PG) of Chilo suppressalis, we obtained 31 putative chemoreception genes (9 OBPs, 10 CSPs, 2 ORs, 1 SNMP, 8 CXEs and 1 AOX), in addition to 32 genes related to sex pheromone biosynthesis (1 FAS, 6 Dess, 10 FARs, 2 ACOs, 1 ACC, 4 FATPs, 3 ACBPs and 5 ELOs). Tissue expression profiles further revealed that CsupCSP2 and CsupCSP10 were OV-PG biased, while most chemoreception genes were highly and preferably expressed in antennae. This suggests that OV-PG employs mostly the same chemoreception proteins as in antennae, although the physiological roles of these proteins might be different in OV-PG. Of the 32 pheromone biosynthesis related genes, CsupDes4, CsupDes5 and CsupFAR2 are strongly OV-PG biased, and clustered with functionally validated genes from other moths, strongly indicating their involvement in specific step of the pheromone biosynthesis. Our study for the first time identified a large number of putative chemoreception genes, and provided an important basis for exploring the chemoreception mechanisms of OV-PG in C. suppressalis, as well as other moth species. PMID:25601555

  15. AFM PeakForce QNM mode: Evidencing nanometre-scale mechanical properties of chitin-silica hybrid nanocomposites.

    Science.gov (United States)

    Smolyakov, G; Pruvost, S; Cardoso, L; Alonso, B; Belamie, E; Duchet-Rumeau, J

    2016-10-20

    PeakForce Quantitative Nanomechanical Mapping (QNM) AFM mode was used to explore the mechanical properties of textured chitin-silica hybrid films at the nanoscale. The influence of the force applied by the tip on the sample surface was studied for standard homogeneous samples, for chitin nanorods and for chitin-silica hybrid nanocomposites. Thick films of superimposed chitin nanorods showed a monotonous increase of DMT modulus (based on the Derjaguin-Muller-Toporov model) owing to an increase in modulus at the interface between nanorods due to geometrical constraints of the AFM acquisition. A similar variation of DMT modulus was obtained for chitin-silica hybrid thick films related to mechanical strengthening induced by the presence of silica. This work revealed the role of the organic-inorganic interface, at the nanoscale, in the mechanical behaviour of textured materials using PeakForce QNM mode, with optimized analysis conditions. PMID:27474579

  16. Revealing fosfomycin primary effect on Staphylococcus aureus transcriptome: modulation of cell envelope biosynthesis and phosphoenolpyruvate induced starvation

    Directory of Open Access Journals (Sweden)

    Gruden Kristina

    2010-06-01

    Full Text Available Abstract Background Staphylococcus aureus is a highly adaptable human pathogen and there is a constant search for effective antibiotics. Fosfomycin is a potent irreversible inhibitor of MurA, an enolpyruvyl transferase that uses phosphoenolpyruvate as substrate. The goal of this study was to identify the pathways and processes primarily affected by fosfomycin at the genome-wide transcriptome level to aid development of new drugs. Results S. aureus ATCC 29213 cells were treated with sub-MIC concentrations of fosfomycin and harvested at 10, 20 and 40 minutes after treatment. S. aureus GeneChip statistical data analysis was complemented by gene set enrichment analysis. A visualization tool for mapping gene expression data into biological pathways was developed in order to identify the metabolic processes affected by fosfomycin. We have shown that the number of significantly differentially expressed genes in treated cultures increased with time and with increasing fosfomycin concentration. The target pathway - peptidoglycan biosynthesis - was upregulated following fosfomycin treatment. Modulation of transport processes, cofactor biosynthesis, energy metabolism and nucleic acid biosynthesis was also observed. Conclusions Several pathways and genes downregulated by fosfomycin have been identified, in contrast to previously described cell wall active antibiotics, and was explained by starvation response induced by phosphoenolpyruvate accumulation. Transcriptomic profiling, in combination with meta-analysis, has been shown to be a valuable tool in determining bacterial response to a specific antibiotic.

  17. First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (demospongia: Porifera).

    Science.gov (United States)

    Ehrlich, Hermann; Maldonado, Manuel; Spindler, Klaus-Dieter; Eckert, Carsten; Hanke, Thomas; Born, René; Goebel, Caren; Simon, Paul; Heinemann, Sascha; Worch, Hartmut

    2007-07-15

    The Porifera (sponges) are often regarded as the oldest, extant metazoan phylum, also bearing the ancestral stage for most features occurring in higher animals. The absence of chitin in sponges, except for the wall of peculiar resistance bodies produced by a highly derived fresh-water group, is puzzling, since it points out chitin to be an autapomorphy for a particular sponge family rather than the ancestral condition within the metazoan lineage. By investigating the internal proteinaceous (spongin) skeleton of two demosponges (Aplysina sp. and Verongula gigantea) using a wide array of techniques (Fourier transform infrared (FTIR), Raman, X-ray, Calcofluor White Staining, Immunolabeling, and chitinase test), we show that chitin is a component of the outermost layer (cuticle) of the skeletal fibers of these demosponges. FTIR and Raman spectra, as well as X-ray difractograms consistently revealed that sponge chitin is much closer to the alpha-chitin known from other animals than to beta-chitin. These findings support the view that the occurrence of a chitin-producing system is the ancestral condition in Metazoa, and that the alpha-chitin is the primitive form in animals. PMID:17285638

  18. Comparison of 454-ESTs from Huperzia serrata and Phlegmariurus carinatus reveals putative genes involved in lycopodium alkaloid biosynthesis and developmental regulation

    Directory of Open Access Journals (Sweden)

    Steinmetz André

    2010-09-01

    Full Text Available Abstract Background Plants of the Huperziaceae family, which comprise the two genera Huperzia and Phlegmariurus, produce various types of lycopodium alkaloids that are used to treat a number of human ailments, such as contusions, swellings and strains. Huperzine A, which belongs to the lycodine type of lycopodium alkaloids, has been used as an anti-Alzheimer's disease drug candidate. Despite their medical importance, little genomic or transcriptomic data are available for the members of this family. We used massive parallel pyrosequencing on the Roche 454-GS FLX Titanium platform to generate a substantial EST dataset for Huperzia serrata (H. serrata and Phlegmariurus carinatus (P. carinatus as representative members of the Huperzia and Phlegmariurus genera, respectively. H. serrata and P. carinatus are important plants for research on the biosynthesis of lycopodium alkaloids. We focused on gene discovery in the areas of bioactive compound biosynthesis and transcriptional regulation as well as genetic marker detection in these species. Results For H. serrata, 36,763 unique putative transcripts were generated from 140,930 reads totaling over 57,028,559 base pairs; for P. carinatus, 31,812 unique putative transcripts were generated from 79,920 reads totaling over 30,498,684 base pairs. Using BLASTX searches of public databases, 16,274 (44.3% unique putative transcripts from H. serrata and 14,070 (44.2% from P. carinatus were assigned to at least one protein. Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG orthology annotations revealed that the functions of the unique putative transcripts from these two species cover a similarly broad set of molecular functions, biological processes and biochemical pathways. In particular, a total of 20 H. serrata candidate cytochrome P450 genes, which are more abundant in leaves than in roots and might be involved in lycopodium alkaloid biosynthesis, were found based on the comparison of H

  19. Chitin promotes Mycobacterium ulcerans growth.

    Science.gov (United States)

    Sanhueza, Daniel; Chevillon, Christine; Colwell, Rita; Babonneau, Jérémie; Marion, Estelle; Marsollier, Laurent; Guégan, Jean-François

    2016-06-01

    Mycobacterium ulcerans(MU) is the causative agent of Buruli ulcer, an emerging human infectious disease. However, both the ecology and life cycle of MU are poorly understood. The occurrence of MU has been linked to the aquatic environment, notably water bodies affected by human activities. It has been hypothesized that one or a combination of environmental factor(s) connected to human activities could favour growth of MU in aquatic systems. Here, we testedin vitrothe growth effect of two ubiquitous polysaccharides and five chemical components on MU at concentration ranges shown to occur in endemic regions. Real-time PCR showed that chitin increased MU growth significantly providing a nutrient source or environmental support for thebacillus, thereby, providing a focus on the association between MU and aquatic arthropods. Aquatic environments with elevated population of arthropods provide increased chitin availability and, thereby, enhanced multiplication of MU. If calcium very slightly enhanced MU growth, iron, zinc, sulphate and phosphate did not stimulate MU growth, and at the concentration ranges of this study would limit MU population in natural ecosystems. PMID:27020062

  20. Water stress responses of tomato mutants impaired in hormone biosynthesis reveal abscisic acid, jasmonic acid and salicylic acid interactions

    Directory of Open Access Journals (Sweden)

    Valeria eMuñoz

    2015-11-01

    Full Text Available To investigate the putative crosstalk between JA and ABA in Solanum lycopersicum plants in response to drought, suppressor of prosystemin-mediated responses2 (spr2, JA-deficient and flacca (flc, ABA-deficient mutants together with the naphthalene/salicylate hydroxylase (NahG transgenic (SA-deficient line were used. Hormone profiling and gene expression of key enzymes in ABA, JA and SA biosynthesis were analyzed during early stages of drought. ABA accumulation was comparable in spr2 and wild type (WT plants whereas expression of 9-cis-epoxycarotenoid dioxygenase 1 (NCED1 and NCED2 was different, implying a compensation mechanism between NCED genes and an organ-specific regulation of NCED1 expression. JA levels and 12-oxo-phytodienoic acid reductase 3 (OPR3 expression in flc plants suggest that ABA regulates the induction of the OPR3 gene in roots. By contrast, ABA treatment to flc plants leads to a reduction of JA and SA contents. Furthermore, different pattern of SA accumulation (and expression of isochorismate synthase and phenylalanine ammonia lyase 1 was observed between WT seedlings and mutants, suggesting that SA plays an important role on the early response of tomato plants to drought and also that JA and ABA modulate its biosynthesis. Finally, hormone profiling in spr2 and NahG plants indicate a crosstalk between JA and SA that could enhance tolerance of tomato to water stress.

  1. Water Stress Responses of Tomato Mutants Impaired in Hormone Biosynthesis Reveal Abscisic Acid, Jasmonic Acid and Salicylic Acid Interactions.

    Science.gov (United States)

    Muñoz-Espinoza, Valeria A; López-Climent, María F; Casaretto, José A; Gómez-Cadenas, Aurelio

    2015-01-01

    To investigate the putative crosstalk between JA and ABA in Solanum lycopersicum plants in response to drought, suppressor of prosystemin-mediated responses2 (spr2, JA-deficient) and flacca (flc, ABA-deficient) mutants together with the naphthalene/salicylate hydroxylase (NahG) transgenic (SA-deficient) line were used. Hormone profiling and gene expression of key enzymes in ABA, JA and SA biosynthesis were analyzed during early stages of drought. ABA accumulation was comparable in spr2 and wild type (WT) plants whereas expression of 9-cis-epoxycarotenoid dioxygenase 1 (NCED1) and NCED2 was different, implying a compensation mechanism between NCED genes and an organ-specific regulation of NCED1 expression. JA levels and 12-oxo-phytodienoic acid reductase 3 (OPR3) expression in flc plants suggest that ABA regulates the induction of the OPR3 gene in roots. By contrast, ABA treatment to flc plants leads to a reduction of JA and SA contents. Furthermore, different pattern of SA accumulation (and expression of isochorismate synthase and phenylalanine ammonia lyase 1) was observed between WT seedlings and mutants, suggesting that SA plays an important role on the early response of tomato plants to drought and also that JA and ABA modulate its biosynthesis. Finally, hormone profiling in spr2 and NahG plants indicate a crosstalk between JA and SA that could enhance tolerance of tomato to water stress. PMID:26635826

  2. Fabrication of optically transparent chitin nanocomposites

    Science.gov (United States)

    Shams, M. Iftekhar; Ifuku, Shinsuke; Nogi, Masaya; Oku, Takeshi; Yano, Hiroyuki

    2011-02-01

    This paper demonstrates the preparation of chitin nanofibers from crab shells using a simple mechanical treatment. The nanofibers are small enough to retain the transparency of neat acrylic resin. Possessing hydroxyl and amine/ N-acetyl functionalities, water suspension of chitin nanofibers was vacuum-filtered 9 times faster than cellulose nanofibers to prepare a nanofiber sheet of 90 mm in diameter. This is a prominent advantage of chitin nanofibers over cellulose nanofibers in terms of commercial application. Interestingly, chitin acrylic resin films exhibited much higher transparency than cellulose acrylic resin films owing to the close affinity between less hydrophilic chitin and hydrophobic resin. Furthermore, the incorporation of chitin nanofibers contributes to the significant improvement of the thermal expansion and mechanical properties of the neat acrylic resin. The properties of high light transmittance and low thermal expansion make chitin nanocomposites promising candidates for the substrate in a continuous roll-to-roll process in the manufacturing of various optoelectronic devices such as flat panel displays, bendable displays, and solar cells.

  3. Induction of Chitin-Binding Proteins during the Specific Attachment of the Marine Bacterium Vibrio harveyi to Chitin

    Science.gov (United States)

    Montgomery, Michael T.; Kirchman, David L.

    1994-01-01

    Previous work has shown that attachment of Vibrio harveyi to chitin is specific and involves at least two chitin-binding peptides. However, the roles and regulation of these chitin-binding peptides in attachment are still unclear. Here we show that preincubation with the oligomeric sugars composing chitin stimulated chitinase activity, cellular attachment to chitin, and production of chitin-binding peptides. One of these peptides, a 53-kDa peptide, is produced constitutively and appears to mediate initial attachment to chitin. Synthesis of another peptide, a 150-kDa chitin-binding peptide, is induced by chitin and thus may be involved in time-dependent attachment. Coordinated regulation of attachment and degradation of chitin may give bacteria like V. harveyi a selective advantage over other bacteria in nutrient-poor aquatic environments. Images PMID:16349455

  4. De novo RNA sequencing and transcriptome analysis of Colletotrichum gloeosporioides ES026 reveal genes related to biosynthesis of huperzine A.

    Science.gov (United States)

    Zhang, Guowei; Wang, Wenjuan; Zhang, Xiangmei; Xia, Qianqian; Zhao, Xinmei; Ahn, Youngjoon; Ahmed, Nevin; Cosoveanu, Andreea; Wang, Mo; Wang, Jialu; Shu, Shaohua

    2015-01-01

    Huperzine A is important in the treatment of Alzheimer's disease. There are major challenges for the mass production of huperzine A from plants due to the limited number of huperzine-A-producing plants, as well as the low content of huperzine A in these plants. Various endophytic fungi produce huperzine A. Colletotrichum gloeosporioides ES026 was previously isolated from a huperzine-A-producing plant Huperzia serrata, and this fungus also produces huperzine A. In this study, de novo RNA sequencing of C. gloeosporioides ES026 was carried out with an Illumina HiSeq2000. A total of 4,324,299,051 bp from 50,442,617 high-quality sequence reads of ES026 were obtained. These raw data were assembled into 24,998 unigenes, 40,536,684 residues and 19,790 genes. The majority of the unique sequences were assigned to corresponding putative functions based on BLAST searches of public databases. The molecular functions, biological processes and biochemical pathways of these unique sequences were determined using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) assignments. A gene encoding copper amine oxidase (CAO) (unigene 9322) was annotated for the conversion of cadaverine to 5-aminopentanal in the biosynthesis of huperzine A. This gene was also detected in the root, stem and leaf of H. serrata. Furthermore, a close relationship was observed between expression of the CAO gene (unigene 9322) and quantity of crude huperzine A extracted from ES026. Therefore, CAO might be involved in the biosynthesis of huperzine A and it most likely plays a key role in regulating the content of huperzine A in ES026. PMID:25799531

  5. The Transcript Profile of a Traditional Chinese Medicine, Atractylodes lancea, Revealing Its Sesquiterpenoid Biosynthesis of the Major Active Components

    Science.gov (United States)

    Ahmed, Shakeel; Zhan, Chuansong; Yang, Yanyan; Wang, Xuekui; Yang, Tewu; Zhao, Zeying; Zhang, Qiyun; Li, Xiaohua; Hu, Xuebo

    2016-01-01

    Atractylodes lancea (Thunb.) DC., named “Cangzhu” in China, which belongs to the Asteraceae family. In some countries of Southeast Asia (China, Thailand, Korea, Japan etc.) its rhizome, commonly called rhizoma atractylodis, is used to treat many diseases as it contains a variety of sesquiterpenoids and other components of medicinal importance. Despite its medicinal value, the information of the sesquiterpenoid biosynthesis is largely unknown. In this study, we investigated the transcriptome analysis of different tissues of non-model plant A. lancea by using short read sequencing technology (Illumina). We found 62,352 high quality unigenes with an average sequence length of 913 bp in the transcripts of A. Lancea. Among these, 43,049 (69.04%), 30,264 (48.53%), 26,233 (42.07%), 17,881 (28.67%) and 29,057(46.60%) unigenes showed significant similarity (E-value<1e-5) to known proteins in Nr, KEGG, SWISS-PROT, GO, and COG databases, respectively. Of the total 62,352 unigenes, 43,049 (Nr Database) open reading frames were predicted. On the basis of different bioinformatics tools we identify all the enzymes that take part in the terpenoid biosynthesis as well as five different known sesquiterpenoids via cytosolic mevalonic acid (MVA) pathway and plastidal methylerythritol phosphate (MEP) pathways. In our study, 6, 864 Simple Sequence Repeats (SSRs) were also found as great potential markers in A. lancea. This transcriptomic resource of A. lancea provides a great contribution in advancement of research for this specific medicinal plant and more specifically for the gene mining of different classes of terpenoids and other chemical compounds that have medicinal as well as economic importance. PMID:26990438

  6. Transcriptome profiling of khat (Catha edulis) and Ephedra sinica reveals gene candidates potentially involved in amphetamine-type alkaloid biosynthesis.

    Science.gov (United States)

    Groves, Ryan A; Hagel, Jillian M; Zhang, Ye; Kilpatrick, Korey; Levy, Asaf; Marsolais, Frédéric; Lewinsohn, Efraim; Sensen, Christoph W; Facchini, Peter J

    2015-01-01

    Amphetamine analogues are produced by plants in the genus Ephedra and by khat (Catha edulis), and include the widely used decongestants and appetite suppressants (1S,2S)-pseudoephedrine and (1R,2S)-ephedrine. The production of these metabolites, which derive from L-phenylalanine, involves a multi-step pathway partially mapped out at the biochemical level using knowledge of benzoic acid metabolism established in other plants, and direct evidence using khat and Ephedra species as model systems. Despite the commercial importance of amphetamine-type alkaloids, only a single step in their biosynthesis has been elucidated at the molecular level. We have employed Illumina next-generation sequencing technology, paired with Trinity and Velvet-Oases assembly platforms, to establish data-mining frameworks for Ephedra sinica and khat plants. Sequence libraries representing a combined 200,000 unigenes were subjected to an annotation pipeline involving direct searches against public databases. Annotations included the assignment of Gene Ontology (GO) terms used to allocate unigenes to functional categories. As part of our functional genomics program aimed at novel gene discovery, the databases were mined for enzyme candidates putatively involved in alkaloid biosynthesis. Queries used for mining included enzymes with established roles in benzoic acid metabolism, as well as enzymes catalyzing reactions similar to those predicted for amphetamine alkaloid metabolism. Gene candidates were evaluated based on phylogenetic relationships, FPKM-based expression data, and mechanistic considerations. Establishment of expansive sequence resources is a critical step toward pathway characterization, a goal with both academic and industrial implications. PMID:25806807

  7. Morphological study of chitin from Xiphopenaeus kroyeri exoskeletons by using atomic force microscopy (AFM) and CPMAS 13 C NMR

    International Nuclear Information System (INIS)

    A sample of α chitin was isolated from exoskeletons of Xiphopenaeus kroyeri. This sample ws dissolved in phosphoric acid and recovered as a fibrous precipitate. Atomic force microscopy was used in noncontact mode to obtain images of the native chitin sample. Different morphological features were observed, including rigid rod crystals 200-300 nm wide. Solid state 13 C NMR techniques were used to investigate chitin samples, and revealed molecular order in both samples. The differences observed in the proton spin-lattice relaxation times in the rotating frame, TH1p were attributed to the formation of hydrogen bonds in preferential sites in the samples. (author)

  8. Role of Chitin-Binding Proteins in the Specific Attachment of the Marine Bacterium Vibrio harveyi to Chitin

    Science.gov (United States)

    Montgomery, Michael T.; Kirchman, David L.

    1993-01-01

    We examined the mechanism of attachment of the marine bacterium Vibrio harveyi to chitin. Wheat germ agglutinin and chitinase bind to chitin and competitively inhibited the attachment of V. harveyi to chitin, but not to cellulose. Bovine serum albumin and cellulase do not bind to chitin and had no effect on bacterial attachment to chitin. These data suggest that this bacterium recognizes specific attachment sites on the chitin particle. The level of attachment of a chitinase-overproducing mutant of V. harveyi to chitin was about twice as much as that of the uninduced wild type. Detergent-extracted cell membranes inhibited attachment and contained a 53-kDa peptide that was overproduced by the chitinase-overproducing mutant. Three peptides (40, 53, and 150 kDa) were recovered from chitin which had been exposed to membrane extracts. Polyclonal antibodies raised against extracellular chitinase cross-reacted with the 53- and 150-kDa chitin-binding peptides and inhibited attachment, probably by sterically hindering interactions between the chitin-binding peptides and chitin. The 53- and 150-kDa chitin-binding peptides did not have chitinase activity. These results suggest that chitin-binding peptides, especially the 53-kDa chitin-binding peptide and chitinase and perhaps the 150-kDa peptide, mediate the specific attachment of V. harveyi to chitin. Images PMID:16348865

  9. Comparative genome-wide analysis reveals that Burkholderia contaminans MS14 possesses multiple antimicrobial biosynthesis genes but not major genetic loci required for pathogenesis.

    Science.gov (United States)

    Deng, Peng; Wang, Xiaoqiang; Baird, Sonya M; Showmaker, Kurt C; Smith, Leif; Peterson, Daniel G; Lu, Shien

    2016-06-01

    Burkholderia contaminans MS14 shows significant antimicrobial activities against plant and animal pathogenic fungi and bacteria. The antifungal agent occidiofungin produced by MS14 has great potential for development of biopesticides and pharmaceutical drugs. However, the use of Burkholderia species as biocontrol agent in agriculture is restricted due to the difficulties in distinguishing between plant growth-promoting bacteria and the pathogenic bacteria. The complete MS14 genome was sequenced and analyzed to find what beneficial and virulence-related genes it harbors. The phylogenetic relatedness of B. contaminans MS14 and other 17 Burkholderia species was also analyzed. To research MS14's potential virulence, the gene regions related to the antibiotic production, antibiotic resistance, and virulence were compared between MS14 and other Burkholderia genomes. The genome of B. contaminans MS14 was sequenced and annotated. The genomic analyses reveal the presence of multiple gene sets for antimicrobial biosynthesis, which contribute to its antimicrobial activities. BLAST results indicate that the MS14 genome harbors a large number of unique regions. MS14 is closely related to another plant growth-promoting Burkholderia strain B. lata 383 according to the average nucleotide identity data. Moreover, according to the phylogenetic analysis, plant growth-promoting species isolated from soils and mammalian pathogenic species are clustered together, respectively. MS14 has multiple antimicrobial activity-related genes identified from the genome, but it lacks key virulence-related gene loci found in the pathogenic strains. Additionally, plant growth-promoting Burkholderia species have one or more antimicrobial biosynthesis genes in their genomes as compared with nonplant growth-promoting soil-isolated Burkholderia species. On the other hand, pathogenic species harbor multiple virulence-associated gene loci that are not present in nonpathogenic Burkholderia species. The MS14

  10. Bacterial chitin degradation-mechanisms and ecophysiological strategies.

    Science.gov (United States)

    Beier, Sara; Bertilsson, Stefan

    2013-01-01

    Chitin is one the most abundant polymers in nature and interacts with both carbon and nitrogen cycles. Processes controlling chitin degradation are summarized in reviews published some 20 years ago, but the recent use of culture-independent molecular methods has led to a revised understanding of the ecology and biochemistry of this process and the organisms involved. This review summarizes different mechanisms and the principal steps involved in chitin degradation at a molecular level while also discussing the coupling of community composition to measured chitin hydrolysis activities and substrate uptake. Ecological consequences are then highlighted and discussed with a focus on the cross feeding associated with the different habitats that arise because of the need for extracellular hydrolysis of the chitin polymer prior to metabolic use. Principal environmental drivers of chitin degradation are identified which are likely to influence both community composition of chitin degrading bacteria and measured chitin hydrolysis activities. PMID:23785358

  11. Bacterial chitin degradation – mechanisms and ecophysiological strategies

    Directory of Open Access Journals (Sweden)

    StefanBertilsson

    2013-06-01

    Full Text Available Chitin is one the most abundant polymers in nature and interacts with both carbon and nitrogen cycles. Processes controlling chitin degradation are summarized in reviews published some 20 years ago, but the recent use of culture-independent molecular methods has led to a revised understanding of the ecology and biochemistry of this process and the organisms involved. This review summarizes different mechanisms and the principal steps involved in chitin degradation at a molecular level while also discussing the coupling of community composition to measured chitin hydrolysis activities and substrate uptake. Ecological consequences are then highlighted and discussed with a focus on the cross feeding associated with the different habitats that arise because of the need for extracellular hydrolysis of the chitin polymer prior to metabolic use. Principal environmental drivers of chitin degradation are identified which are likely to influence both community composition of chitin degrading bacteria and measured chitin hydrolysis activities.

  12. Target-specific identification and characterization of the putative gene cluster for brasilinolide biosynthesis revealing the mechanistic insights and combinatorial synthetic utility of 2-deoxy-l-fucose biosynthetic enzymes.

    Science.gov (United States)

    Chiu, Hsien-Tai; Weng, Chien-Pao; Lin, Yu-Chin; Chen, Kuan-Hung

    2016-02-14

    Brasilinolides exhibiting potent immunosuppressive and antifungal activities with remarkably low toxicity are structurally characterized by an unusual modified 2-deoxy-l-fucose (2dF) attached to a type I polyketide (PK-I) macrolactone. From the pathogenic producer Nocardia terpenica (Nocardia brasiliensis IFM-0406), a 210 kb genomic fragment was identified by target-specific degenerate primers and subsequently sequenced, revealing a giant nbr gene cluster harboring genes (nbrCDEF) required for TDP-2dF biosynthesis and those for PK-I biosynthesis, modification and regulation. The results showed that the genetic and domain arrangements of nbr PK-I synthases agreed colinearly with the PK-I structures of brasilinolides. Subsequent heterologous expression of nbrCDEF in Escherichia coli accomplished in vitro reconstitution of TDP-2dF biosynthesis. The catalytic functions and mechanisms of NbrCDEF enzymes were further characterized by systematic mix-and-match experiments. The enzymes were revealed to display remarkable substrate and partner promiscuity, leading to the establishment of in vitro hybrid deoxysugar biosynthetic pathways throughout an in situ one-pot (iSOP) method. This study represents the first demonstration of TDP-2dF biosynthesis at the enzyme and molecular levels, and provides new hope for expanding the structural diversity of brasilinolides by combinatorial biosynthesis. PMID:26754528

  13. Cytotoxicity and mechanical behavior of chitin-bentonite clay based polyurethane bio-nanocomposites.

    Science.gov (United States)

    Zia, Khalid Mahmood; Zuber, Mohammad; Barikani, Mehdi; Hussain, Rizwan; Jamil, Tahir; Anjum, Sohail

    2011-12-01

    Chitin based polyurethane bio-nanocomposites (PUBNC) were prepared using chitin, Delite HPS bentonite nanoclay enriched in montmorillonite (MMT), 4,4'-diphenylmethane diisocyanate (MDI) and polycaprolactone polyol CAPA 231 (3000 g/mol(-1)). The prepolymers having different concentration of Delite HPS bentonite nanoclay were extended with 2 moles of chitin. The structures of the resulted polymers were determined by FT-IR technique. The effect of nanoclay contents on mechanical properties and in vitro biocompatibility was investigated. The mechanical properties of the synthesized materials were improved with increase in the Delite HPS bentonite nanoclay contents. Optimum mechanical properties were obtained from the PU bio-nanocomposite samples having 4% Delite HPS bentonite nanoclay. The results revealed that the final PU bio-nanocomposite having 2% Delite HPS bentonite nanoclay contents is ideal contenders for surgical threads with on going investigations into their in vitro biocompatibility, non-toxicity, and mechanical properties. PMID:21945787

  14. Single polymer composites. Chitin-nanofibrils-reinforced chitosan films

    Czech Academy of Sciences Publication Activity Database

    Tishchenko, Galina; Peter, Jakub; Pavlova, Ewa; Brus, Jiří; Netopilík, Miloš; Pekárek, Michal; Sedláková, Zdeňka; Špírková, Milena; Rosova, E. Yu.; Elyashevich, G. K.

    Saint-Petersburg : Russian Chitin Society, 2011. s. 28. [International Conference of the European Chitin Society /10./. 20.05.2011-24.05.2011, Saint-Petersburg] R&D Projects: GA ČR(CZ) GA525/08/0803 Institutional research plan: CEZ:AV0Z40500505 Keywords : chitin nanofibrils * chitosan * composite films Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition

  15. Perspectives of Chitin and Chitosan Nanofibrous Scaffolds in Tissue Engineering

    OpenAIRE

    Jayakumar, R.; Nair, S. V.; Furuike, T.; Tamura, H.

    2010-01-01

    This review summarized the preparation and tissue engineering applications of chitin and chitosan based nanofibers. Additional studies are necessary before clinical applications and for commercialization of the chitin and chitosan based nanofibers. We hope that this review article will bring new innovative types of chitin and chitosan nanofibers for tissue engineering applications in the future.

  16. Migration of canine neutrophils to chitin and chitosan.

    Science.gov (United States)

    Usami, Y; Okamoto, Y; Minami, S; Matsuhashi, A; Kumazawa, N H; Tanioka, S; Shigemasa, Y

    1994-12-01

    Suspension of chitin and chitosan particles (mean size of 1 micron) were found to attract canine neutrophils chemotactically as determined by a checkerboard assay through polycarbonate filter with 5 microns pore size in Blind well chamber. Suspension of chitin induced chemokinetic migrations of the neutrophils. These evidences might reflect accumulation of neutrophils to chitin- and chitosan-implanted regions in dogs. PMID:7696425

  17. The glossyhead1 Allele of ACC1 Reveals a Principal Role for Multidomain Acetyl-Coenzyme A Carboxylase in the Biosynthesis of Cuticular Waxes by Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Lu, S.; Xu, C.; Zhao, H.; Parsons, E. P.; Kosma, D. K.; Xu, X.; Chao, D.; Lohrey, G.; Bangarusamy, D. K.; Wang, G.; Bressan, R. A.; Jenks, M. A.

    2011-11-01

    A novel mutant of Arabidopsis (Arabidopsis thaliana), having highly glossy inflorescence stems, postgenital fusion in floral organs, and reduced fertility, was isolated from an ethyl methanesulfonate-mutagenized population and designated glossyhead1 (gsd1). The gsd1 locus was mapped to chromosome 1, and the causal gene was identified as a new allele of Acetyl-Coenzyme A Carboxylase1 (ACC1), a gene encoding the main enzyme in cytosolic malonyl-coenzyme A synthesis. This, to our knowledge, is the first mutant allele of ACC1 that does not cause lethality at the seed or early germination stage, allowing for the first time a detailed analysis of ACC1 function in mature tissues. Broad lipid profiling of mature gsd1 organs revealed a primary role for ACC1 in the biosynthesis of the very-long-chain fatty acids (C{sub 20:0} or longer) associated with cuticular waxes and triacylglycerols. Unexpectedly, transcriptome analysis revealed that gsd1 has limited impact on any lipid metabolic networks but instead has a large effect on environmental stress-responsive pathways, especially senescence and ethylene synthesis determinants, indicating a possible role for the cytosolic malonyl-coenzyme A-derived lipids in stress response signaling.

  18. The glossyhead1 allele of acc1 reveals a principal role for multidomain acetyl-coenzyme a carboxylase in the biosynthesis of cuticular waxes by Arabidopsis

    KAUST Repository

    Lu, Shiyou

    2011-09-23

    A novel mutant of Arabidopsis (Arabidopsis thaliana), having highly glossy inflorescence stems, postgenital fusion in floral organs, and reduced fertility, was isolated from an ethyl methanesulfonate-mutagenized population and designated glossyhead1 (gsd1). The gsd1 locus was mapped to chromosome 1, and the causal gene was identified as a new allele of Acetyl-Coenzyme A Carboxylase1 (ACC1), a gene encoding the main enzyme in cytosolic malonyl-coenzyme A synthesis. This, to our knowledge, is the first mutant allele of ACC1 that does not cause lethality at the seed or early germination stage, allowing for the first time a detailed analysis of ACC1 function in mature tissues. Broad lipid profiling of mature gsd1 organs revealed a primary role for ACC1 in the biosynthesis of the very-long-chain fatty acids (C 20:0 or longer) associated with cuticular waxes and triacylglycerols. Unexpectedly, transcriptome analysis revealed that gsd1 has limited impact on any lipid metabolic networks but instead has a large effect on environmental stress-responsive pathways, especially senescence and ethylene synthesis determinants, indicating a possible role for the cytosolic malonyl-coenzyme A-derived lipids in stress response signaling. © 2011 American Society of Plant Biologists. All Rights Reserved.

  19. Structure reveals regulatory mechanisms of a MaoC-like hydratase from Phytophthora capsici involved in biosynthesis of polyhydroxyalkanoates (PHAs.

    Directory of Open Access Journals (Sweden)

    Huizheng Wang

    Full Text Available BACKGROUND: Polyhydroxyalkanoates (PHAs have attracted increasing attention as "green plastic" due to their biodegradable, biocompatible, thermoplastic, and mechanical properties, and considerable research has been undertaken to develop low cost/high efficiency processes for the production of PHAs. MaoC-like hydratase (MaoC, which belongs to (R-hydratase involved in linking the β-oxidation and the PHA biosynthetic pathways, has been identified recently. Understanding the regulatory mechanisms of (R-hydratase catalysis is critical for efficient production of PHAs that promise synthesis an environment-friendly plastic. METHODOLOGY/PRINCIPAL FINDINGS: We have determined the crystal structure of a new MaoC recognized from Phytophthora capsici. The crystal structure of the enzyme was solved at 2.00 Å resolution. The structure shows that MaoC has a canonical (R-hydratase fold with an N-domain and a C-domain. Supporting its dimerization observed in structure, MaoC forms a stable homodimer in solution. Mutations that disrupt the dimeric MaoC result in a complete loss of activity toward crotonyl-CoA, indicating that dimerization is required for the enzymatic activity of MaoC. Importantly, structure comparison reveals that a loop unique to MaoC interacts with an α-helix that harbors the catalytic residues of MaoC. Deletion of the loop enhances the enzymatic activity of MaoC, suggesting its inhibitory role in regulating the activity of MaoC. CONCLUSIONS/SIGNIFICANCE: The data in our study reveal the regulatory mechanism of an (R-hydratase, providing information on enzyme engineering to produce low cost PHAs.

  20. Preparation of chitin nanofibers by surface esterification of chitin with maleic anhydride and mechanical treatment.

    Science.gov (United States)

    Aklog, Yihun Fantahun; Nagae, Tomone; Izawa, Hironori; Morimoto, Minoru; Saimoto, Hiroyuki; Ifuku, Shinsuke

    2016-11-20

    Esterification with maleic anhydride significantly improved the mechanical disintegration of chitin into uniform 10-nm nanofibers. Nanofibers with 0.25° of esterification were homogeneously dispersed in basic water due to the carboxylate salt on the surface. Esterification proceeded on the surface and did not affect the relative crystallinity. A cast film of the esterified chitin nanofibers was highly transparent, since the film was free from light scattering. PMID:27561471

  1. Induced-fit upon ligand binding revealed by crystal structures of the hot-dog fold thioesterase in dynemicin biosynthesis.

    Science.gov (United States)

    Liew, Chong Wai; Sharff, Andrew; Kotaka, Masayo; Kong, Rong; Sun, Huihua; Qureshi, Insaf; Bricogne, Gérard; Liang, Zhao-Xun; Lescar, Julien

    2010-11-26

    Dynemicins are structurally related 10-membered enediyne natural products isolated from Micromonospora chernisa with potent antitumor and antibiotic activity. The early biosynthetic steps of the enediyne moiety of dynemicins are catalyzed by an iterative polyketide synthase (DynE8) and a thioesterase (DynE7). Recent studies indicate that the function of DynE7 is to off-load the linear biosynthetic intermediate assembled on DynE8. Here, we report crystal structures of DynE7 in its free form at 2.7 Å resolution and of DynE7 in complex with the DynE8-produced all-trans pentadecen-2-one at 2.1 Å resolution. These crystal structures reveal that upon ligand binding, significant conformational changes throughout the substrate-binding tunnel result in an expanded tunnel that traverses an entire monomer of the tetrameric DynE7 protein. The enlarged inner segment of the channel binds the carbonyl-conjugated polyene mainly through hydrophobic interactions, whereas the putative catalytic residues are located in the outer segment of the channel. The crystallographic information reinforces an unusual catalytic mechanism that involves a strictly conserved arginine residue for this subfamily of hot-dog fold thioesterases, distinct from the typical mechanism for hot-dog fold thioesterases that utilizes an acidic residue for catalysis. PMID:20888341

  2. Poriferan chitin as a template for hydrothermal zirconia deposition

    Science.gov (United States)

    Wysokowski, Marcin; Motylenko, Mykhaylo; Bazhenov, Vasilii V.; Stawski, Dawid; Petrenko, Iaroslav; Ehrlich, Andre; Behm, Thomas; Kljajic, Zoran; Stelling, Allison L.; Jesionowski, Teofil; Ehrlich, Hermann

    2013-09-01

    Chitin is a thermostable biopolymer found in various inorganic-organic skeletal structures of numerous invertebrates including sponges (Porifera). The occurrence of chitin within calcium- and silica-based biominerals in organisms living in extreme natural conditions has inspired development of new (extreme biomimetic) synthesis route of chitin-based hybrid materials in vitro. Here, we show for the first time that 3D-α-chitin scaffolds isolated from skeletons of the marine sponge Aplysina aerophoba can be effectively mineralized under hydrothermal conditions (150°C) using ammonium zirconium(IV) carbonate as a precursor of zirconia. Obtained chitin-ZrO2 hybrid materials were characterized by FT-IR, SEM, HRTEM, as well as light and confocal laser microscopy. We suggest that formation of chitin-ZrO2 hybrids occurs due to hydrogen bonds between chitin and ZrO2.

  3. Biopolymer chitin: extraction and characterization; Biopolimero quitina: extracao e caracterizacao

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The biopolymers are materials made from renewable sources such as soybean, corn, cane sugar, cellulose and chitin. Chitin is the most abundant biopolymer found in nature, after cellulose. The chemical structure of chitin is distinguished by the hydroxyl group, of structure from cellulose, located at position C-2, which in the chitin is replaced by acetamine group. The objective of this study was to develop the chitin from exoskeletons of Litopenaeus vannamei shrimp, which are discarded as waste, causing pollutions, environmental problems and thus obtain better utilization of these raw materials. It also, show the extraction process and deacetylation of chitosan. The extraction of chitin followed steps of demineralization, desproteinization and deodorization. Chitin and chitosan were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and the thermals properties were analyzed by thermogravimetry (TG/DTG). (author)

  4. De Novo Transcriptome and Expression Profile Analysis to Reveal Genes and Pathways Potentially Involved in Cantharidin Biosynthesis in the Blister Beetle Mylabris cichorii.

    Science.gov (United States)

    Huang, Yi; Wang, Zhongkang; Zha, Shenfang; Wang, Yu; Jiang, Wei; Liao, Yufeng; Song, Zhangyong; Qi, Zhaoran; Yin, Youping

    2016-01-01

    The dried body of Mylabris cichorii is well-known Chinese traditional medicine. The sesquiterpenoid cantharidin, which is secreted mostly by adult male beetles, has recently been used as an anti-cancer drug. However, little is known about the mechanisms of cantharidin biosynthesis. Furthermore, there is currently no genomic or transcriptomic information for M. cichorii. In this study, we performed de novo assembly transcriptome of M. cichorii using the Illumina Hiseq2000. A single run produced 9.19 Gb of clean nucleotides comprising 29,247 sequences, including 23,739 annotated sequences (about 81%). We also constructed two expression profile libraries (20-25 day-old adult males and 20-25 day-old adult females) and discovered 2,465 significantly differentially-expressed genes. Putative genes and pathways involved in the biosynthesis of cantharidin were then characterized. We also found that cantharidin biosynthesis in M. cichorii might only occur via the mevalonate (MVA) pathway, not via the methylerythritol 4-phosphate/deoxyxylulose 5-phosphate (MEP/DOXP) pathway or a mixture of these. Besides, we considered that cantharidin biosynthesis might be related to the juvenile hormone (JH) biosynthesis or degradation. The results of transcriptome and expression profiling analysis provide a comprehensive sequence resource for M. cichorii that could facilitate the in-depth study of candidate genes and pathways involved in cantharidin biosynthesis, and may thus help to improve our understanding of the mechanisms of cantharidin biosynthesis in blister beetles. PMID:26752526

  5. Exogenous feeding of immediate precursors reveals synergistic effect on picroside-I biosynthesis in shoot cultures of Picrorhiza kurroa Royle ex Benth

    Science.gov (United States)

    Kumar, Varun; Sharma, Neha; Sood, Hemant; Chauhan, Rajinder Singh

    2016-07-01

    In the current study, we asked how the supply of immediate biosynthetic precursors i.e. cinnamic acid (CA) and catalpol (CAT) influences the synthesis of picroside-I (P-I) in shoot cultures of P. kurroa. Our results revealed that only CA and CA+CAT stimulated P-I production with 1.6-fold and 4.2-fold, respectively at 2.5 mg/100 mL concentration treatment. Interestingly, feeding CA+CAT not only directed flux towards p-Coumaric acid (p-CA) production but also appeared to trigger the metabolic flux through both shikimate/phenylpropanoid and iridoid pathways by utilizing more of CA and CAT for P-I biosynthesis. However, a deficiency in the supply of either the iridoid or the phenylpropanoid precursor limits flux through the respective pathways as reflected by feedback inhibition effect on PAL and decreased transcripts expressions of rate limiting enzymes (DAHPS, CM, PAL, GS and G10H). It also appears that addition of CA alone directed flux towards both p-CA and P-I production. Based on precursor feeding and metabolic fluxes, a current hypothesis is that precursors from both the iridoid and shikimate/phenylpropanoid pathways are a flux limitation for P-I production in shoot cultures of P. kurroa plants. This work thus sets a stage for future endeavour to elevate production of P-I in cultured plant cells.

  6. Reinforcing of chitosan phase with chitin nanofibrils

    Czech Academy of Sciences Publication Activity Database

    Tishchenko, Galina; Kelnar, Ivan; Kaprálková, Ludmila; Pavlova, Ewa; Vacková, Taťana; Brožová, Libuše; Strachota, Adam; Špírková, Milena; Bastl, Zdeněk; Carezzi, F.; Morganti, P.

    Roma : AIRI/Nanotec IT, 2013. s. 105. ISBN 978-88-6140-152-5. [NanotechItaly 2013 - Key Enabling Technologies for Responsible Innovation. 27.11.2013-29.11.2013, Venice] EU Projects: European Commission(XE) 315233 - N-CHITOPACK Institutional support: RVO:61389013 ; RVO:61388955 Keywords : chitin nanofibers * chitosan * reinforcing effect Subject RIV: CD - Macromolecular Chemistry

  7. Transgenic analysis reveals LeACS-1 as a positive regulator of ethylene-induced shikonin biosynthesis in Lithospermum erythrorhizon hairy roots.

    Science.gov (United States)

    Fang, Rongjun; Wu, Fengyao; Zou, Ailan; Zhu, Yu; Zhao, Hua; Zhao, Hu; Liao, Yonghui; Tang, Ren-Jie; Yang, Tongyi; Pang, Yanjun; Wang, Xiaoming; Yang, Rongwu; Qi, Jinliang; Lu, Guihua; Yang, Yonghua

    2016-03-01

    The phytohormone ethylene (ET) is a crucial signaling molecule that induces the biosynthesis of shikonin and its derivatives in Lithospermum erythrorhizon shoot cultures. However, the molecular mechanism and the positive regulators involved in this physiological process are largely unknown. In this study, the function of LeACS-1, a key gene encoding the 1-aminocyclopropane-1-carboxylic acid synthase for ET biosynthesis in L. erythrorhizon hairy roots, was characterized by using overexpression and RNA interference (RNAi) strategies. The results showed that overexpression of LeACS-1 significantly increased endogenous ET concentration and shikonin production, consistent with the up-regulated genes involved in ET biosynthesis and transduction, as well as the genes related to shikonin biosynthesis. Conversely, RNAi of LeACS-1 effectively decreased endogenous ET concentration and shikonin production and down-regulated the expression level of above genes. Correlation analysis showed a significant positive linear relationship between ET concentration and shikonin production. All these results suggest that LeACS-1 acts as a positive regulator of ethylene-induced shikonin biosynthesis in L. erythrorhizon hairy roots. Our work not only gives new insights into the understanding of the relationship between ET and shikonin biosynthesis, but also provides an efficient genetic engineering target gene for secondary metabolite production in non-model plant L. erythrorhizon. PMID:26780904

  8. Auxin Biosynthesis

    OpenAIRE

    Zhao, Yunde

    2014-01-01

    lndole-3-acetic acid (IAA), the most important natural auxin in plants, is mainly synthesized from the amino acid tryptophan (Trp). Recent genetic and biochemical studies in Arabidopsis have unambiguously established the first complete Trp-dependent auxin biosynthesis pathway. The first chemical step of auxin biosynthesis is the removal of the amino group from Trp by the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) family of transaminases to generate indole-3-pyruvate (IPA). IPA then unde...

  9. Molecular cloning and expression of chitin deacetylase 1 gene from the gills of Penaeus monodon (black tiger shrimp).

    Science.gov (United States)

    Sarmiento, Katreena P; Panes, Vivian A; Santos, Mudjekeewis D

    2016-08-01

    Chitin deacetylases have been identified and studied in several fungi and insects but not in crustaceans. These glycoproteins function in catalyzing the conversion of chitin to chitosan by the hydrolysis of N-acetamido bonds of chitin. Here, for the first time, the full length cDNA of chitin deacetylase (CDA) gene from crustaceans was fully cloned using a partial fragment obtained from a transcriptome database of the gills of black tiger shrimp Penaeus monodon that survived White Spot Syndrome Virus (WSSV) infection employing Rapid Amplification of cDNA Ends (RACE) PCR. The shrimp CDA, named PmCDA1, was further characterized by in silico analysis, and its constitutive expression determined in apparently healthy shrimp through reverse transcription PCR (RT-PCR). Results revealed that the P. monodon chitin deacetylase (PmCDA1) is 2176 bp-long gene with an open reading frame (ORF) of 1596 bp encoding for 532 amino acids. Phylogenetic analysis revealed that PmCDA1 belongs to Group I CDAs together with CDA1 and CDA2 proteins found in insects. Moreover, PmCDA1 is composed of a conserved chitin-binding peritrophin-A domain (CBD), a low-density lipoprotein receptor class A domain (LDL-A) and a catalytic domain that is part of CE4 superfamily, all found in group I CDAs, which are known to serve critical immune function against WSSV. Finally, high expression of PmCDA1 gene in the gills of apparently healthy P. monodon was observed suggesting important basal function of the gene in this tissue. Taken together, this is a first report of the full chitin deacetylase 1 (CDA1) gene in crustaceans particularly in shrimp that exhibits putative immune function against WSSV and is distinctly highly expressed in the gills of shrimp. PMID:27335260

  10. Transcriptome profiling of a Sinorhizobium meliloti fadD mutant reveals the role of rhizobactin 1021 biosynthesis and regulation genes in the control of swarming

    Directory of Open Access Journals (Sweden)

    Olivares José

    2010-03-01

    Full Text Available Abstract Background Swarming is a multicellular phenomenom characterized by the coordinated and rapid movement of bacteria across semisolid surfaces. In Sinorhizobium meliloti this type of motility has been described in a fadD mutant. To gain insights into the mechanisms underlying the process of swarming in rhizobia, we compared the transcriptome of a S. meliloti fadD mutant grown under swarming inducing conditions (semisolid medium to those of cells grown under non-swarming conditions (broth and solid medium. Results More than a thousand genes were identified as differentially expressed in response to growth on agar surfaces including genes for several metabolic activities, iron uptake, chemotaxis, motility and stress-related genes. Under swarming-specific conditions, the most remarkable response was the up-regulation of iron-related genes. We demonstrate that the pSymA plasmid and specifically genes required for the biosynthesis of the siderophore rhizobactin 1021 are essential for swarming of a S. meliloti wild-type strain but not in a fadD mutant. Moreover, high iron conditions inhibit swarming of the wild-type strain but not in mutants lacking either the iron limitation response regulator RirA or FadD. Conclusions The present work represents the first transcriptomic study of rhizobium growth on surfaces including swarming inducing conditions. The results have revealed major changes in the physiology of S. meliloti cells grown on a surface relative to liquid cultures. Moreover, analysis of genes responding to swarming inducing conditions led to the demonstration that iron and genes involved in rhizobactin 1021 synthesis play a role in the surface motility shown by S. meliloti which can be circumvented in a fadD mutant. This work opens a way to the identification of new traits and regulatory networks involved in swarming by rhizobia.

  11. Chitin and Chitosan as Direct Compression Excipients in Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Adnan A. Badwan

    2015-03-01

    Full Text Available Despite the numerous uses of chitin and chitosan as new functional materials of high potential in various fields, they are still behind several directly compressible excipients already dominating pharmaceutical applications. There are, however, new attempts to exploit chitin and chitosan in co-processing techniques that provide a product with potential to act as a direct compression (DC excipient. This review outlines the compression properties of chitin and chitosan in the context of DC pharmaceutical applications.

  12. Bacterial chitin degradation—mechanisms and ecophysiological strategies

    OpenAIRE

    StefanBertilsson; SaraBeier

    2013-01-01

    Chitin is one the most abundant polymers in nature and interacts with both carbon and nitrogen cycles. Processes controlling chitin degradation are summarized in reviews published some 20 years ago, but the recent use of culture-independent molecular methods has led to a revised understanding of the ecology and biochemistry of this process and the organisms involved. This review summarizes different mechanisms and the principal steps involved in chitin degradation at a molecular level while a...

  13. Cadmium sorption in solution by a chitin: effect of pH; Sorption du cadmium en solution par une chitine: effet du pH

    Energy Technology Data Exchange (ETDEWEB)

    Benguella, B.; Benaissa, H. [Universtie de Tlemcen, Lab. de Materiaux Sorbants et Traitement des Eaux, Dept. de Chimie, Faculte des Sciences, Tlemcen (Algeria)

    2001-07-01

    The pH is an essential factor to take into consideration in the sorption mechanisms of metals: it acts both on the metal speciation in solution and on the chemical behaviour of the surface of the sorbing material, and thus indirectly on the sorption mechanism. The effect of the initial pH of the solution on the cadmium sorption by raw state chitin has been studied in static conditions. The approach used is the determination of the sorption kinetics and equilibria for different values of initial pH (pH < 7-7.5). An increase of the initial pH value of the solution leads to an increase of the cadmium sorption capacity by chitin at the equilibrium. The Langmuir model has revealed to be convenient for a mathematical description of the sorption isotherms obtained. (J.S.)

  14. Highly expressed amino acid biosynthesis genes revealed by global gene expression analysis of Salmonella enterica serovar Enteritidis during growth in whole egg are not essential for this growth

    DEFF Research Database (Denmark)

    Jakočiūnė, Dzuiga; Herrero-Fresno, Ana; Jelsbak, Lotte;

    2016-01-01

    RNA was extracted from S. Enteritidis using a modified RNA-extraction protocol. Global gene expression during growth in whole egg was compared to growth in LB-medium using DNA array method. Twenty-six genes were significantly upregulated during growth in egg; these belonged to amino acid biosynthesis......, di/oligopeptide transport system, biotin synthesis, ferrous iron transport system, and type III secretion system. Significant downregulation of 15 genes related to formate hydrogenlyase (FHL) and trehalose metabolism was observed. The results suggested that S. Enteritidis is starved for amino......-acids, biotin and iron when growing in egg. However, site specific mutation of amino acid biosynthesis genes asnA (17.3 fold upregulated), asnB (18.6 fold upregulated), asnA/asnB and, serA (12.0 fold upregulated) and gdhA (3.7 fold upregulated), did not result in growth attenuation, suggesting that biosynthesis...

  15. Nonlinear microscopy of chitin and chitinous structures: a case study of two cave-dwelling insects

    Science.gov (United States)

    Rabasović, Mihailo D.; Pantelić, Dejan V.; Jelenković, Branislav M.; Ćurčić, Srećko B.; Rabasović, Maja S.; Vrbica, Maja D.; Lazović, Vladimir M.; Ćurčić, Božidar P. M.; Krmpot, Aleksandar J.

    2015-01-01

    We performed a study of the nonlinear optical properties of chemically purified chitin and insect cuticle using two-photon excited autofluorescence (TPEF) and second-harmonic generation (SHG) microscopy. Excitation spectrum, fluorescence time, polarization sensitivity, and bleaching speed were measured. We have found that the maximum autofluorescence signal requires an excitation wavelength below 850 nm. At longer wavelengths, we were able to penetrate more than 150-μm deep into the sample through the chitinous structures. The excitation power was kept below 10 mW (at the sample) in order to diminish bleaching. The SHG from the purified chitin was confirmed by spectral- and time-resolved measurements. Two cave-dwelling, depigmented, insect species were analyzed and three-dimensional images of the cuticular structures were obtained.

  16. La chitine dans le règne animal

    OpenAIRE

    Jeuniaux, Charles

    1982-01-01

    La chitine, haut polymère linéaire B-1,4 de la N-acétyl-D-glucosamine, est largement utilisée dans le règne animal comme trame organique de structures exosquelettiques et cuticulaires. Une méthode enzymatique, rigoureusement spécifique, permet de déceler la chitine, de mesurer son importance quantitative, et de reconnaître l'existence de liaisons avec d'autres constituants (chitine "masquée" et chitine "libre"). Elle se présente principalement sous forme de microfibrilles (complexes glycopro...

  17. Gene transcript profiles of the TIA biosynthetic pathway in response to ethylene and copper reveal their interactive role in modulating TIA biosynthesis in Catharanthus roseus.

    Science.gov (United States)

    Pan, Ya-Jie; Liu, Jia; Guo, Xiao-Rui; Zu, Yuan-Gang; Tang, Zhong-Hua

    2015-05-01

    Research on transcriptional regulation of terpenoid indole alkaloid (TIA) biosynthesis of the medicinal plant, Catharanthus roseus, has largely been focused on gene function and not clustering analysis of multiple genes at the transcript level. Here, more than ten key genes encoding key enzyme of alkaloid synthesis in TIA biosynthetic pathways were chosen to investigate the integrative responses to exogenous elicitor ethylene and copper (Cu) at both transcriptional and metabolic levels. The ethylene-induced gene transcripts in leaves and roots, respectively, were subjected to principal component analysis (PCA) and the results showed the overall expression of TIA pathway genes indicated as the Q value followed a standard normal distribution after ethylene treatments. Peak gene expression was at 15-30 μM of ethephon, and the pre-mature leaf had a higher Q value than the immature or mature leaf and root. Treatment with elicitor Cu found that Cu up-regulated overall TIA gene expression more in roots than in leaves. The combined effects of Cu and ethephon on TIA gene expression were stronger than their separate effects. It has been documented that TIA gene expression is tightly regulated by the transcriptional factor (TF) ethylene responsive factor (ERF) and mitogen-activated protein kinase (MAPK) cascade. The loading plot combination with correlation analysis for the genes of C. roseus showed that expression of the MPK gene correlated with strictosidine synthase (STR) and strictosidine b-D-glucosidase(SGD). In addition, ERF expression correlated with expression of secologanin synthase (SLS) and tryptophan decarboxylase (TDC), specifically in roots, whereas MPK and myelocytomatosis oncogene (MYC) correlated with STR and SGD genes. In conclusion, the ERF regulates the upstream pathway genes in response to heavy metal Cu mainly in C. roseus roots, while the MPK mainly participates in regulating the STR gene in response to ethylene in pre-mature leaf. Interestingly, the

  18. Enhanced levan production using chitin-binding domain fused levansucrase immobilized on chitin beads.

    Science.gov (United States)

    Chiang, Chung-Jen; Wang, Jen-You; Chen, Po-Ting; Chao, Yun-Peng

    2009-03-01

    Levan is a homopolymer of fructose which can be produced by the transfructosylation reaction of levansucrase (EC 2.4.1.10) from sucrose. In particular, levan synthesized by Zymomonas mobilis has found a wide and potential application in the food and pharmaceutical industry. In this study, the immobilization of Z. mobilis levansucrae (encoded by levU) was attempted for repeated production of levan. By fusion levU with the chitin-binding domain (ChBD), the hybrid protein was overproduced in a soluble form in Escherichia coli. After direct absorption of the protein mixture from E. coli onto chitin beads, levansucrase tagged with ChBD was found to specifically attach to the affinity matrix. Subsequent analysis indicated that the linkage between the enzyme and chitin beads was substantially stable. Furthermore, with 20% sucrose, the production of levan was enhanced by 60% to reach 83 g/l using the immobilized levansucrase as compared to that by the free counterpart. This production yield accounts for 41.5% conversion yield (g/g) on the basis of sucrose. After all, a total production of levan with 480 g/l was obtained by recycling of the immobilized enzyme for seven times. It is apparent that this approach offers a promising way for levan production by Z. mobilis levansucrase immobilized on chitin beads. PMID:19018526

  19. STRUCTURAL FEATURES OF PLANT CHITINASES AND CHITIN-BINDING PROTEINS

    NARCIS (Netherlands)

    BEINTEMA, JJ

    1994-01-01

    Structural features of plant chitinases and chitin-binding proteins are discussed. Many of these proteins consist of multiple domains,of which the chitin-binding hevein domain is a predominant one. X-ray and NMR structures of representatives of the major classes of these proteins are available now,

  20. Chitin and chitosan as functional biopolymers for industrial applications

    NARCIS (Netherlands)

    kardas, I.; Struzczyk, M.H.; Kucharska, M.; Broek, van den L.A.M.; Dam, van J.E.G.

    2012-01-01

    Chitin research and development seems to be under intensive progress during the last years. Attractive properties of chitin and its derivative—chitosan, for example, biological behavior, and development of their applications caused increased interest of scientists and companies. More and more practi

  1. Thermal decomposition of natural polysaccharides: Chitin and chitosan

    Directory of Open Access Journals (Sweden)

    Kuchina Yu.A.

    2015-03-01

    Full Text Available The results of the thermal analysis of shrimp’s chitin and chitosan have been presented (samples of polysaccharide differed by the deacetylation degree have been studied. The thermal analysis has been carried out by differential thermogravimetry and differential scanning calorimetry. Activation energy of process of chitin and chitosan thermal destruction has been calculated

  2. Chitin synthesis inhibitors: old molecules and new developments

    Institute of Scientific and Technical Information of China (English)

    Hans Merzendorfer

    2013-01-01

    Chitin is the most abundant natural aminopolysaccharide and serves as a structural component of extracellular matrices.It is found in fungal septa,spores,and cell walls,and in arthropod cuticles and peritrophic matrices,squid pens,mollusk shells,nematode egg shells,and some protozoan cyst walls.As prokaryotes,plants and vertebrates including humans do not produce chitin,its synthesis is considered as an attractive target site for fungicides,insecticides,and acaricides.Although no chitin synthesis inhibitor has been developed into a therapeutic drug to treat fungal infections in humans,a larger number of compounds have been successfully launched worldwide to combat arthropod pests in agriculture and forestry.This review summarizes the latest advances on the mode of action of chitin synthesis inhibitors with a special focus on those molecules that act on a postcatalytic step of chitin synthesis.

  3. Applications of Chitin and Its Derivatives in Biological Medicine

    Directory of Open Access Journals (Sweden)

    Moon-Moo Kim

    2010-12-01

    Full Text Available Chitin and its derivatives—as a potential resource as well as multiple functional substrates—have generated attractive interest in various fields such as biomedical, pharmaceutical, food and environmental industries, since the first isolation of chitin in 1811. Moreover, chitosan and its chitooligosaccharides (COS are degraded products of chitin through enzymatic and acidic hydrolysis processes; and COS, in particular, is well suited for potential biological application, due to the biocompatibility and nontoxic nature of chitosan. In this review, we investigate the current bioactivities of chitin derivatives, which are all correlated with their biomedical properties. Several new and cutting edge insights here may provide a molecular basis for the mechanism of chitin, and hence may aid its use for medical and pharmaceutical applications.

  4. Degradation and mineralization of chitin in an estuary

    International Nuclear Information System (INIS)

    A method for measuring microbial degradation and mineralization of radiolabeled native chitin is described. 14C-labeled chitin was synthesized in vivo by injecting shed blue crabs (Callinectes sapidus) with N-acetyl-D-[14C]-glucosamine, allowing for its incorporation into the exoskeleton. Rates of chitin degradation and mineralization in estuarine water and sediments were determined as functions of temperature, inoculum source, and oxygen condition. Significant differences in rates between temperature treatments were evident. Q10 values ranged from 1.2 to 2.5 for water and sediment, respectively. Increased incubation temperature also resulted in decreased lag times before onset of chitinoclastic bacterial growth and chitin degradation. The anaerobic pathway of chitin decomposition by chitinoclastic bacteria was examined with an emphasis on end product coupling to other bacterial types. Actively growing chitinoclastic bacterial isolates produced primarily acetate, hydrogen, and carbon dioxide in broth culture

  5. Granular chitin in the epidermis of nudibranch molluscs.

    Science.gov (United States)

    Martin, Rainer; Hild, Sabine; Walther, Paul; Ploss, Kerstin; Boland, Wilhelm; Tomaschko, Karl-Heinz

    2007-12-01

    Chitin is usually found in stiff extracellular coatings typified by the arthropod exoskeleton, and is not associated with the soft, flexible mollusc skin. Here, we show, however, that chitin in nudibranch gastropods (Opisthobranchia, Mollusca) occurs as intracellular granules that fill the epidermal cells of the skin and the epithelial cells of the stomach. In response to nematocysts fired by tentacles of prey Cnidaria, the epidermal cells of eolid nudibranchs (Aeolidacea) release masses of chitin granules, which then form aggregates with the nematocyst tubules, having the effect of insulating the animal from the deleterious action of the Cnidaria tentacles. Granular chitin, while protecting the animal, does not interfere with the suppleness and flexibility of the skin, in contrast to the stiffness of chitin armor. The specialized epidermis enables nudibranchs to live with and feed on Cnidaria. PMID:18083970

  6. Mapping of a Cellulose-Deficient Mutant Named dwarf1-1 in Sorghum bicolor to the Green Revolution Gene gibberellin20-oxidase Reveals a Positive Regulatory Association between Gibberellin and Cellulose Biosynthesis.

    Science.gov (United States)

    Petti, Carloalberto; Hirano, Ko; Stork, Jozsef; DeBolt, Seth

    2015-09-01

    Here, we show a mechanism for expansion regulation through mutations in the green revolution gene gibberellin20 (GA20)-oxidase and show that GAs control biosynthesis of the plants main structural polymer cellulose. Within a 12,000 mutagenized Sorghum bicolor plant population, we identified a single cellulose-deficient and male gametophyte-dysfunctional mutant named dwarf1-1 (dwf1-1). Through the Sorghum propinquum male/dwf1-1 female F2 population, we mapped dwf1-1 to a frameshift in GA20-oxidase. Assessment of GAs in dwf1-1 revealed ablation of GA. GA ablation was antagonistic to the expression of three specific cellulose synthase genes resulting in cellulose deficiency and growth dwarfism, which were complemented by exogenous bioactive gibberellic acid application. Using quantitative polymerase chain reaction, we found that GA was positively regulating the expression of a subset of specific cellulose synthase genes. To cross reference data from our mapped Sorghum sp. allele with another monocotyledonous plant, a series of rice (Oryza sativa) mutants involved in GA biosynthesis and signaling were isolated, and these too displayed cellulose deficit. Taken together, data support a model whereby suppressed expansion in green revolution GA genes involves regulation of cellulose biosynthesis. PMID:26198258

  7. Cloning and sequencing of the kedarcidin biosynthetic gene cluster from Streptoalloteichus sp. ATCC 53650 revealing new insights into biosynthesis of the enediyne family of antitumor antibiotics†

    OpenAIRE

    Lohman, Jeremy R.; Huang, Sheng-Xiong; Horsman, Geoffrey P.; Dilfer, Paul E.; Huang, Tingting; Chen, Yihua; Wendt-Pienkowski, Evelyn; Shen, Ben

    2013-01-01

    Enediyne natural product biosynthesis is characterized by a convergence of multiple pathways, generating unique peripheral moieties that are appended onto the distinctive enediyne core. Kedarcidin (KED) possesses two unique peripheral moieties, a (R)-2-aza-3-chloro-β-tyrosine and an iso-propoxy-bearing 2-naphthonate moiety, as well as two deoxysugars. The appendage pattern of these peripheral moieties to the enediyne core in KED differs from the other enediynes studied to date with respect to...

  8. Tissue specific analysis reveals a differential organization and regulation of both ethylene biosynthesis and E8 during climacteric ripening of tomato

    OpenAIRE

    Van de Poel, Bram; Vandenzavel, Nick; Smet, Cindy; Nicolay, Toon; Bulens, Inge; Mellidou, Ifigeneia; Vandoninck, Sandy; Hertog, Maarten LATM; Derua, Rita; Spaepen, Stijn; Vanderleyden, Jos; Waelkens, Etienne; De Proft, Maurice P; Nicolai, Bart M.; Geeraerd, Annemie H

    2014-01-01

    Background: Solanum lycopersicum or tomato is extensively studied with respect to the ethylene metabolism during climacteric ripening, focusing almost exclusively on fruit pericarp. In this work the ethylene biosynthesis pathway was examined in all major tomato fruit tissues: pericarp, septa, columella, placenta, locular gel and seeds. The tissue specific ethylene production rate was measured throughout fruit development, climacteric ripening and postharvest storage. All ethylene intermediate...

  9. Overexpression of ORCA3 and G10H in Catharanthus roseus Plants Regulated Alkaloid Biosynthesis and Metabolism Revealed by NMR-Metabolomics

    OpenAIRE

    Qifang Pan; Quan Wang; Fang Yuan; Shihai Xing; Jingya Zhao; Young Hae Choi; Robert Verpoorte; Yuesheng Tian; Guofeng Wang; Kexuan Tang

    2012-01-01

    In order to improve the production of the anticancer dimeric indole alkaloids in Catharanthuse roseus, much research has been dedicated to culturing cell lines, hairy roots, and efforts to elucidate the regulation of the monoterpenoid indole alkaloid (MIA) biosynthesis. In this study, the ORCA3 (Octadecanoid-derivative Responsive Catharanthus AP2-domain) gene alone or integrated with the G10H (geraniol 10-hydroxylase) gene were first introduced into C. roseus plants. Transgenic C. roseus plan...

  10. Heartwood-specific transcriptome and metabolite signatures of tropical sandalwood (Santalum album) reveal the final step of (Z)-santalol fragrance biosynthesis.

    Science.gov (United States)

    Celedon, Jose M; Chiang, Angela; Yuen, Macaire M S; Diaz-Chavez, Maria L; Madilao, Lufiani L; Finnegan, Patrick M; Barbour, Elizabeth L; Bohlmann, Jörg

    2016-05-01

    Tropical sandalwood (Santalum album) produces one of the world's most highly prized fragrances, which is extracted from mature heartwood. However, in some places such as southern India, natural populations of this slow-growing tree are threatened by over-exploitation. Sandalwood oil contains four major and fragrance-defining sesquiterpenols: (Z)-α-santalol, (Z)-β-santalol, (Z)-epi-β-santalol and (Z)-α-exo-bergamotol. The first committed step in their biosynthesis is catalyzed by a multi-product santalene/bergamotene synthase. Sandalwood cytochromes P450 of the CYP76F sub-family were recently shown to hydroxylate santalenes and bergamotene; however, these enzymes produced mostly (E)-santalols and (E)-α-exo-bergamotol. We hypothesized that different santalene/bergamotene hydroxylases evolved in S. album to stereo-selectively produce (E)- or (Z)-sesquiterpenols, and that genes encoding (Z)-specific P450s contribute to sandalwood oil formation if co-expressed in the heartwood with upstream genes of sesquiterpene biosynthesis. This hypothesis was validated by the discovery of a heartwood-specific transcriptome signature for sesquiterpenoid biosynthesis, including highly expressed SaCYP736A167 transcripts. We characterized SaCYP736A167 as a multi-substrate P450, which stereo-selectively produces (Z)-α-santalol, (Z)-β-santalol, (Z)-epi-β-santalol and (Z)-α-exo-bergamotol, matching authentic sandalwood oil. This work completes the discovery of the biosynthetic enzymes of key components of sandalwood fragrance, and highlights the evolutionary diversification of stereo-selective P450s in sesquiterpenoid biosynthesis. Bioengineering of microbial systems using SaCYP736A167, combined with santalene/bergamotene synthase, has potential for development of alternative industrial production systems for sandalwood oil fragrances. PMID:26991058

  11. Differential microRNA Analysis of Glandular Trichomes and Young Leaves in Xanthium strumarium L. Reveals Their Putative Roles in Regulating Terpenoid Biosynthesis

    OpenAIRE

    Rongyan Fan; Yuanjun Li; Changfu Li; Yansheng Zhang

    2015-01-01

    The medicinal plant Xanthium strumarium L. (X. strumarium) is covered with glandular trichomes, which are the sites for synthesizing pharmacologically active terpenoids such as xanthatin. MicroRNAs (miRNAs) are a class of 21-24 nucleotide (nt) non-coding RNAs, most of which are identified as regulators of plant growth development. Identification of miRNAs involved in the biosynthesis of plant secondary metabolites remains limited. In this study, high-throughput Illumina sequencing, combined w...

  12. Differential microRNA Analysis of Glandular Trichomes and Young Leaves in Xanthium strumarium L. Reveals Their Putative Roles in Regulating Terpenoid Biosynthesis.

    Directory of Open Access Journals (Sweden)

    Rongyan Fan

    Full Text Available The medicinal plant Xanthium strumarium L. (X. strumarium is covered with glandular trichomes, which are the sites for synthesizing pharmacologically active terpenoids such as xanthatin. MicroRNAs (miRNAs are a class of 21-24 nucleotide (nt non-coding RNAs, most of which are identified as regulators of plant growth development. Identification of miRNAs involved in the biosynthesis of plant secondary metabolites remains limited. In this study, high-throughput Illumina sequencing, combined with target gene prediction, was performed to discover novel and conserved miRNAs with potential roles in regulating terpenoid biosynthesis in X. strumarium glandular trichomes. Two small RNA libraries from leaves and glandular trichomes of X. strumarium were established. In total, 1,185 conserved miRNAs and 37 novel miRNAs were identified, with 494 conserved miRNAs and 18 novel miRNAs being differentially expressed between the two tissue sources. Based on the X. strumarium transcriptome data that we recently constructed, 3,307 annotated mRNA transcripts were identified as putative targets of the differentially expressed miRNAs. KEGG (Kyoto Encyclopedia of Genes and Genomes pathway analysis suggested that some of the differentially expressed miRNAs, including miR6435, miR5021 and miR1134, might be involved in terpenoid biosynthesis in the X. strumarium glandular trichomes. This study provides the first comprehensive analysis of miRNAs in X. strumarium, which forms the basis for further understanding of miRNA-based regulation on terpenoid biosynthesis.

  13. Differential microRNA Analysis of Glandular Trichomes and Young Leaves in Xanthium strumarium L. Reveals Their Putative Roles in Regulating Terpenoid Biosynthesis.

    Science.gov (United States)

    Fan, Rongyan; Li, Yuanjun; Li, Changfu; Zhang, Yansheng

    2015-01-01

    The medicinal plant Xanthium strumarium L. (X. strumarium) is covered with glandular trichomes, which are the sites for synthesizing pharmacologically active terpenoids such as xanthatin. MicroRNAs (miRNAs) are a class of 21-24 nucleotide (nt) non-coding RNAs, most of which are identified as regulators of plant growth development. Identification of miRNAs involved in the biosynthesis of plant secondary metabolites remains limited. In this study, high-throughput Illumina sequencing, combined with target gene prediction, was performed to discover novel and conserved miRNAs with potential roles in regulating terpenoid biosynthesis in X. strumarium glandular trichomes. Two small RNA libraries from leaves and glandular trichomes of X. strumarium were established. In total, 1,185 conserved miRNAs and 37 novel miRNAs were identified, with 494 conserved miRNAs and 18 novel miRNAs being differentially expressed between the two tissue sources. Based on the X. strumarium transcriptome data that we recently constructed, 3,307 annotated mRNA transcripts were identified as putative targets of the differentially expressed miRNAs. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis suggested that some of the differentially expressed miRNAs, including miR6435, miR5021 and miR1134, might be involved in terpenoid biosynthesis in the X. strumarium glandular trichomes. This study provides the first comprehensive analysis of miRNAs in X. strumarium, which forms the basis for further understanding of miRNA-based regulation on terpenoid biosynthesis. PMID:26406988

  14. Highly expressed amino acid biosynthesis genes revealed by global gene expression analysis of Salmonella enterica serovar Enteritidis during growth in whole egg are not essential for this growth.

    Science.gov (United States)

    Jakočiūnė, Džiuginta; Herrero-Fresno, Ana; Jelsbak, Lotte; Olsen, John Elmerdahl

    2016-05-01

    Salmonella enterica serovar Enteritidis (S. Enteritidis) is the most common cause of egg borne salmonellosis in many parts of the world. This study analyzed gene expression of this bacterium during growth in whole egg, and whether highly expressed genes were essential for the growth. High quality RNA was extracted from S. Enteritidis using a modified RNA-extraction protocol. Global gene expression during growth in whole egg was compared to growth in LB-medium using DNA array method. Twenty-six genes were significantly upregulated during growth in egg; these belonged to amino acid biosynthesis, di/oligopeptide transport system, biotin synthesis, ferrous iron transport system, and type III secretion system. Significant downregulation of 15 genes related to formate hydrogenlyase (FHL) and trehalose metabolism was observed. The results suggested that S. Enteritidis is starved for amino-acids, biotin and iron when growing in egg. However, site specific mutation of amino acid biosynthesis genes asnA (17.3 fold upregulated), asnB (18.6 fold upregulated), asnA/asnB and, serA (12.0 fold upregulated) and gdhA (3.7 fold upregulated), did not result in growth attenuation, suggesting that biosynthesis using the enzymes encoded from these genes may represent the first choice for S. Enteritidis when growing in egg, but when absent, the bacterium could use alternative ways to obtain the amino acids. PMID:26945769

  15. Preparation and characterization of α-chitin from cicada sloughs

    International Nuclear Information System (INIS)

    In this study, a new source of insect chitin was proposed. Insect chitin was extracted from cicada sloughs by 1 M HCl and 1 M NaOH treatment for demineralization and deproteinization, respectively. The brown color of this chitin from cicada sloughs was removed using 6% sodium hypochlorite as an oxidizing agent. It was found that the insect chitin extracted from the cicada sloughs has a higher percent recovery than the chitin from rice-field crab shells. The chemical structure and physicochemical properties of α-chitin from cicada sloughs were characterized using elemental analysis (EA), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), proton nuclear magnetic resonance spectroscopy (1H NMR), solid-state 13C cross-polarization magic-angle-spinning nuclear magnetic resonance (CP/MAS) NMR spectroscopy, X-ray diffractometry (XRD), and thermogravimetry (TG). The degree of acetylation (DA) was determined by EA, 1H NMR, and 13C CP/MAS NMR techniques. The DA values of chitin from cicada sloughs were in the range of 97% to 102% depending on each technique. Furthermore, it was found that the DA increased with an increasing thermal property and crystallinity.

  16. The apical plasma membrane of chitin-synthesizing epithelia

    Institute of Scientific and Technical Information of China (English)

    Bernard Moussian

    2013-01-01

    Chitin is the second most abundant polysaccharide on earth.It is produced at the apical side of epidermal,tracheal,fore-,and hindgut epithelial cells in insects as a central component of the protective and supporting extracellular cuticle.Chitin is also an important constituent of the midgut peritrophic matrix that encases the food supporting its digestion and protects the epithelium against invasion by possibly ingested pathogens.The enzyme producing chitin is a glycosyltransferase that resides in the apical plasma membrane forming a pore to extrude the chains of chitin into the extracellular space.The apical plasma membrane is not only a platform for chitin synthases but,probably through its shape and equipment with distinct factors,also plays an important role in orienting and organizing chitin fibers.Here,I review findings on the cellular and molecular constitution of the apical plasma membrane of chitin-producing epithelia mainly focusing on work done in the fruit fly Drosophila melanogaster.

  17. Absence of the cbb3 Terminal Oxidase Reveals an Active Oxygen-Dependent Cyclase Involved in Bacteriochlorophyll Biosynthesis in Rhodobacter sphaeroides

    Science.gov (United States)

    Chen, Guangyu E.; Martin, Elizabeth C.; Hunter, C. Neil

    2016-01-01

    ABSTRACT The characteristic green color associated with chlorophyll pigments results from the formation of an isocyclic fifth ring on the tetrapyrrole macrocycle during the biosynthesis of these important molecules. This reaction is catalyzed by two unrelated cyclase enzymes employing different chemistries. Oxygenic phototrophs such as plants and cyanobacteria utilize an oxygen-dependent enzyme, the major component of which is a diiron protein named AcsF, while BchE, an oxygen-sensitive [4Fe-4S] cluster protein, dominates in phototrophs inhabiting anoxic environments, such as the purple phototrophic bacterium Rhodobacter sphaeroides. We identify a potential acsF in this organism and assay for activity of the encoded protein in a strain lacking bchE under various aeration regimes. Initially, cells lacking bchE did not demonstrate AcsF activity under any condition tested. However, on removal of a gene encoding a subunit of the cbb3-type respiratory terminal oxidase, cells cultured under regimes ranging from oxic to micro-oxic exhibited cyclase activity, confirming the activity of the oxygen-dependent enzyme in this model organism. Potential reasons for the utilization of an oxygen-dependent enzyme in anoxygenic phototrophs are discussed. IMPORTANCE The formation of the E ring of bacteriochlorophyll pigments is the least well characterized step in their biosynthesis, remaining enigmatic for over 60 years. Two unrelated enzymes catalyze this cyclization step; O2-dependent and O2-independent forms dominate in oxygenic and anoxygenic phototrophs, respectively. We uncover the activity of an O2-dependent enzyme in the anoxygenic purple phototrophic bacterium Rhodobacter sphaeroides, initially by inactivation of the high-affinity terminal respiratory oxidase, cytochrome cbb3. We propose that the O2-dependent form allows for the biosynthesis of a low level of bacteriochlorophyll under oxic conditions, so that a rapid initiation of photosynthetic processes is possible for

  18. Transcriptome profiling reveals differential gene expression in proanthocyanidin biosynthesis associated with red/green skin color mutant of pear (Pyrus communis L.

    Directory of Open Access Journals (Sweden)

    Yanan eYang

    2015-09-01

    Full Text Available Anthocyanin concentration is the key determinant for red skin color in pear fruit. However, the molecular basis for development of red skin is complicated and has not been well understood thus far. ‘Starkrimson’ (Pyrus communis L., an introduced red pear cultivated in the north of China and its green mutant provides a desirable red/green pair for identification of candidate genes involved in color variation. Here, we sequenced and annotated the transcriptome for the red /green color mutant at three stages of development using Illumina RNA-seq technology. The total number of mapped reads ranged from 26 to 46 million in six libraries. About 70.11-71.95% of clean reads could be mapped to the reference genome. Compared with green colored fruit, a total of 2,230 differentially expressed genes (DEGs were identified in red fruit. Gene Ontology (GO terms were defined for 4,886 differential transcripts involved in 15 Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. Three DEGs were identified as candidate genes in the flavonoid pathway, LAR, ANR and C3H. Tellingly, higher expression was found for genes encoding ANR and LAR in the green color mutant, promoting the proanthocyanidin (PA pathway and leading to lower anthocyanin. MYB-binding cis-motifs were identified in the promoter region of LAR and ANR. Based on these findings, we speculate that the regulation of PA biosynthesis might be a key factor for this red/green color mutant. Besides the known MYB and MADS transcription families, two new families, AP2 and WRKY, were identified as having high correlation with anthocyanin biosynthesis in red skinned pear. In addition, qRT-PCR was used to confirm the transcriptome results for 17 DEGs, high correlation of gene expression, further proved that AP2 and WARK regulated the anthocyanin biosynthesis in red skinned ‘Starkrimson’, and ANR and LAR promote PA biosynthesis and contribute to the green skinned variant. This study can serve as a valuable

  19. Preparation and Grafting Functionalization of Self-Assembled Chitin Nanofiber Film

    Directory of Open Access Journals (Sweden)

    Jun-ichi Kadokawa

    2016-07-01

    Full Text Available Chitin is a representative biomass resource comparable to cellulose. Although considerable efforts have been devoted to extend novel applications to chitin, lack of solubility in water and common organic solvents causes difficulties in improving its processability and functionality. Ionic liquids have paid much attention as solvents for polysaccharides. However, little has been reported regarding the dissolution of chitin with ionic liquids. The author found that an ionic liquid, 1-allyl-3-methylimidazolium bromide (AMIMBr, dissolved chitin in concentrations up to ~4.8 wt % and the higher contents of chitin with AMIMBr gave ion gels. When the ion gel was soaked in methanol for the regeneration of chitin, followed by sonication, a chitin nanofiber dispersion was obtained. Filtration of the dispersion was subsequently carried out to give a chitin nanofiber film. A chitin nanofiber/poly(vinyl alcohol composite film was also obtained by co-regeneration approach. Chitin nanofiber-graft-synthetic polymer composite films were successfully prepared by surface-initiated graft polymerization technique. For example, the preparation of chitin nanofiber-graft-biodegradable polyester composite film was achieved by surface-initiated graft polymerization from the chitin nanofiber film. The similar procedure also gave chitin nanofiber-graft-polypeptide composite film. The surface-initiated graft atom transfer radical polymerization was conducted from a chitin macroinitiator film derived from the chitin nanofiber film.

  20. Overexpression of ORCA3 and G10H in Catharanthus roseus Plants Regulated Alkaloid Biosynthesis and Metabolism Revealed by NMR-Metabolomics

    Science.gov (United States)

    Pan, Qifang; Wang, Quan; Yuan, Fang; Xing, Shihai; Zhao, Jingya; Choi, Young Hae; Verpoorte, Robert; Tian, Yuesheng; Wang, Guofeng; Tang, Kexuan

    2012-01-01

    In order to improve the production of the anticancer dimeric indole alkaloids in Catharanthuse roseus, much research has been dedicated to culturing cell lines, hairy roots, and efforts to elucidate the regulation of the monoterpenoid indole alkaloid (MIA) biosynthesis. In this study, the ORCA3 (Octadecanoid-derivative Responsive Catharanthus AP2-domain) gene alone or integrated with the G10H (geraniol 10-hydroxylase) gene were first introduced into C. roseus plants. Transgenic C. roseus plants overexpressing ORCA3 alone (OR lines), or co-overexpressing G10H and ORCA3 (GO lines) were obtained by genetic modification. ORCA3 overexpression induced an increase of AS, TDC, STR and D4H transcripts but did not affect CRMYC2 and G10H transcription. G10H transcripts showed a significant increase under G10H and ORCA3 co-overexpression. ORCA3 and G10H overexpression significantly increased the accumulation of strictosidine, vindoline, catharanthine and ajmalicine but had limited effects on anhydrovinblastine and vinblastine levels. NMR-based metabolomics confirmed the higher accumulation of monomeric indole alkaloids in OR and GO lines. Multivariate data analysis of 1H NMR spectra showed change of amino acid, organic acid, sugar and phenylpropanoid levels in both OR and GO lines compared to the controls. The result indicated that enhancement of MIA biosynthesis by ORCA3 and G10H overexpression might affect other metabolic pathways in the plant metabolism of C. roseus. PMID:22916202

  1. Overexpression of ORCA3 and G10H in Catharanthus roseus plants regulated alkaloid biosynthesis and metabolism revealed by NMR-metabolomics.

    Directory of Open Access Journals (Sweden)

    Qifang Pan

    Full Text Available In order to improve the production of the anticancer dimeric indole alkaloids in Catharanthuse roseus, much research has been dedicated to culturing cell lines, hairy roots, and efforts to elucidate the regulation of the monoterpenoid indole alkaloid (MIA biosynthesis. In this study, the ORCA3 (Octadecanoid-derivative Responsive Catharanthus AP2-domain gene alone or integrated with the G10H (geraniol 10-hydroxylase gene were first introduced into C. roseus plants. Transgenic C. roseus plants overexpressing ORCA3 alone (OR lines, or co-overexpressing G10H and ORCA3 (GO lines were obtained by genetic modification. ORCA3 overexpression induced an increase of AS, TDC, STR and D4H transcripts but did not affect CRMYC2 and G10H transcription. G10H transcripts showed a significant increase under G10H and ORCA3 co-overexpression. ORCA3 and G10H overexpression significantly increased the accumulation of strictosidine, vindoline, catharanthine and ajmalicine but had limited effects on anhydrovinblastine and vinblastine levels. NMR-based metabolomics confirmed the higher accumulation of monomeric indole alkaloids in OR and GO lines. Multivariate data analysis of (1H NMR spectra showed change of amino acid, organic acid, sugar and phenylpropanoid levels in both OR and GO lines compared to the controls. The result indicated that enhancement of MIA biosynthesis by ORCA3 and G10H overexpression might affect other metabolic pathways in the plant metabolism of C. roseus.

  2. Thermal analysis and structural characterization of chitinous exoskeleton from two marine invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Juárez-de la Rosa, B.A., E-mail: balej05@yahoo.com.mx [Laboratory of Natural Polymers, CIAD – Coordinación Guaymas, Carretera al Varadero Nacional km. 6.6, Col. Las Playitas, 85480 Guaymas, Sonora (Mexico); Applied Physics Department, CINVESTAV-IPN Unidad Mérida, Carretera antigua a Progreso, km. 6. Apdo, Postal 73, Cordemex, 97310 Mérida, Yucatan (Mexico); May-Crespo, J.; Quintana-Owen, P.; Gónzalez-Gómez, W.S. [Applied Physics Department, CINVESTAV-IPN Unidad Mérida, Carretera antigua a Progreso, km. 6. Apdo, Postal 73, Cordemex, 97310 Mérida, Yucatan (Mexico); Yañez-Limón, J.M. [Materials and Engineering Science, CINVESTAV-IPN, Unidad Querétaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, 76230 Santiago de Querétaro, Querétaro (Mexico); Alvarado-Gil, J.J., E-mail: jjag@mda.cinvestav.mx [Applied Physics Department, CINVESTAV-IPN Unidad Mérida, Carretera antigua a Progreso, km. 6. Apdo, Postal 73, Cordemex, 97310 Mérida, Yucatan (Mexico)

    2015-06-20

    Highlights: • Thermal analysis of exoskeletons: Antipathes caribbeana and Limulus polyphemus. • DMTA revealed Limulus has a stronger structure with a stepper glass transition. • DSC measurements exhibited a much larger water holding capacity in Antipathes. • X-ray diffraction analysis shows a higher crystallinity index in Limulus • FTIR showed α-chitin structures and high temperature C–N groups prevalence. - ABSTRACT: Thermomechanical and structural properties of two marine species exoskeletons, Antipathes caribbeana (black coral) and Limulus polyphemus (xiphosure), were studied using dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). DMTA curves indicate the viscoelastic behavior and glass transition around 255 °C, black coral presented a second transition (175 °C) associated to the acetamide group attached to the α-chitin chain. DSC measurements showed a endothermic peak around 100 °C, with enthalpies of 4.02 and 118.04 J/g, indicating strong differences between exoskeletons respect to their water holding capacity and strength water–polymer interaction. A comparative analysis involving DSC and X-ray diffraction showed that lower values ΔH in xiphosure correspond to a material with a higher crystallinity (30), in contrast black coral exhibits higher values ΔH and a lower crystallinity (19). FTIR confirmed α-chitin based structure, at higher temperature diminishes the amide bands and a new one appears, related to C–N groups.

  3. Binary gene expression patterning of the molt cycle: the case of chitin metabolism.

    Science.gov (United States)

    Abehsera, Shai; Glazer, Lilah; Tynyakov, Jenny; Plaschkes, Inbar; Chalifa-Caspi, Vered; Khalaila, Isam; Aflalo, Eliahu D; Sagi, Amir

    2014-01-01

    In crustaceans, like all arthropods, growth is accompanied by a molting cycle. This cycle comprises major physiological events in which mineralized chitinous structures are built and degraded. These events are in turn governed by genes whose patterns of expression are presumably linked to the molting cycle. To study these genes we performed next generation sequencing and constructed a molt-related transcriptomic library from two exoskeletal-forming tissues of the crayfish Cherax quadricarinatus, namely the gastrolith and the mandible cuticle-forming epithelium. To simplify the study of such a complex process as molting, a novel approach, binary patterning of gene expression, was employed. This approach revealed that key genes involved in the synthesis and breakdown of chitin exhibit a molt-related pattern in the gastrolith-forming epithelium. On the other hand, the same genes in the mandible cuticle-forming epithelium showed a molt-independent pattern of expression. Genes related to the metabolism of glucosamine-6-phosphate, a chitin precursor synthesized from simple sugars, showed a molt-related pattern of expression in both tissues. The binary patterning approach unfolds typical patterns of gene expression during the molt cycle of a crustacean. The use of such a simplifying integrative tool for assessing gene patterning seems appropriate for the study of complex biological processes. PMID:25919476

  4. Thermal analysis and structural characterization of chitinous exoskeleton from two marine invertebrates

    International Nuclear Information System (INIS)

    Highlights: • Thermal analysis of exoskeletons: Antipathes caribbeana and Limulus polyphemus. • DMTA revealed Limulus has a stronger structure with a stepper glass transition. • DSC measurements exhibited a much larger water holding capacity in Antipathes. • X-ray diffraction analysis shows a higher crystallinity index in Limulus • FTIR showed α-chitin structures and high temperature C–N groups prevalence. - ABSTRACT: Thermomechanical and structural properties of two marine species exoskeletons, Antipathes caribbeana (black coral) and Limulus polyphemus (xiphosure), were studied using dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). DMTA curves indicate the viscoelastic behavior and glass transition around 255 °C, black coral presented a second transition (175 °C) associated to the acetamide group attached to the α-chitin chain. DSC measurements showed a endothermic peak around 100 °C, with enthalpies of 4.02 and 118.04 J/g, indicating strong differences between exoskeletons respect to their water holding capacity and strength water–polymer interaction. A comparative analysis involving DSC and X-ray diffraction showed that lower values ΔH in xiphosure correspond to a material with a higher crystallinity (30), in contrast black coral exhibits higher values ΔH and a lower crystallinity (19). FTIR confirmed α-chitin based structure, at higher temperature diminishes the amide bands and a new one appears, related to C–N groups

  5. Binary Gene Expression Patterning of the Molt Cycle: The Case of Chitin Metabolism

    Science.gov (United States)

    Abehsera, Shai; Glazer, Lilah; Tynyakov, Jenny; Plaschkes, Inbar; Chalifa-Caspi, Vered; Khalaila, Isam; Aflalo, Eliahu D.; Sagi, Amir

    2015-01-01

    In crustaceans, like all arthropods, growth is accompanied by a molting cycle. This cycle comprises major physiological events in which mineralized chitinous structures are built and degraded. These events are in turn governed by genes whose patterns of expression are presumably linked to the molting cycle. To study these genes we performed next generation sequencing and constructed a molt-related transcriptomic library from two exoskeletal-forming tissues of the crayfish Cherax quadricarinatus, namely the gastrolith and the mandible cuticle-forming epithelium. To simplify the study of such a complex process as molting, a novel approach, binary patterning of gene expression, was employed. This approach revealed that key genes involved in the synthesis and breakdown of chitin exhibit a molt-related pattern in the gastrolith-forming epithelium. On the other hand, the same genes in the mandible cuticle-forming epithelium showed a molt-independent pattern of expression. Genes related to the metabolism of glucosamine-6-phosphate, a chitin precursor synthesized from simple sugars, showed a molt-related pattern of expression in both tissues. The binary patterning approach unfolds typical patterns of gene expression during the molt cycle of a crustacean. The use of such a simplifying integrative tool for assessing gene patterning seems appropriate for the study of complex biological processes. PMID:25919476

  6. Binary gene expression patterning of the molt cycle: the case of chitin metabolism.

    Directory of Open Access Journals (Sweden)

    Shai Abehsera

    Full Text Available In crustaceans, like all arthropods, growth is accompanied by a molting cycle. This cycle comprises major physiological events in which mineralized chitinous structures are built and degraded. These events are in turn governed by genes whose patterns of expression are presumably linked to the molting cycle. To study these genes we performed next generation sequencing and constructed a molt-related transcriptomic library from two exoskeletal-forming tissues of the crayfish Cherax quadricarinatus, namely the gastrolith and the mandible cuticle-forming epithelium. To simplify the study of such a complex process as molting, a novel approach, binary patterning of gene expression, was employed. This approach revealed that key genes involved in the synthesis and breakdown of chitin exhibit a molt-related pattern in the gastrolith-forming epithelium. On the other hand, the same genes in the mandible cuticle-forming epithelium showed a molt-independent pattern of expression. Genes related to the metabolism of glucosamine-6-phosphate, a chitin precursor synthesized from simple sugars, showed a molt-related pattern of expression in both tissues. The binary patterning approach unfolds typical patterns of gene expression during the molt cycle of a crustacean. The use of such a simplifying integrative tool for assessing gene patterning seems appropriate for the study of complex biological processes.

  7. Morphological study of chitin from Xiphopenaeus kroyeri exoskeletons by using atomic force microscopy (AFM) and CPMAS {sup 13} C NMR; Estudo morfologico de quitina da exocuticula de Xiphopenaeus kroyeri por AFM e por CPMAS {sup 13} C NMR

    Energy Technology Data Exchange (ETDEWEB)

    Silva, K.M.; Tavares, M.I.; Andrade, C.T. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas; Simao, R.A. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Metalurgica e de Materiais

    1999-07-01

    A sample of {alpha} chitin was isolated from exoskeletons of Xiphopenaeus kroyeri. This sample ws dissolved in phosphoric acid and recovered as a fibrous precipitate. Atomic force microscopy was used in noncontact mode to obtain images of the native chitin sample. Different morphological features were observed, including rigid rod crystals 200-300 nm wide. Solid state {sup 13} C NMR techniques were used to investigate chitin samples, and revealed molecular order in both samples. The differences observed in the proton spin-lattice relaxation times in the rotating frame, T{sup H1}{sub p} were attributed to the formation of hydrogen bonds in preferential sites in the samples. (author)

  8. Biochemical characterization of chitin synthase activity and inhibition in the African malaria mosquito, Anopheles gambiae

    Institute of Scientific and Technical Information of China (English)

    Xin Zhang; Kun Yan Zhu

    2013-01-01

    Chitin synthase (CHS) is an important enzyme catalyzing the formation of chitin polymers in all chitin containing organisms and a potential target site for insect pest control.However,our understanding of biochemical properties of insect CHSs has been very limited.We here report enzymatic and inhibitory properties of CHS prepared from the African malaria mosquito,Anopheles gambiae.Our study,which represents the first time to use a nonradioactive method to assay CHS activity in an insect species,determined the optimal conditions for measuring the enzyme activity,including pH,temperature,and concentrations of the substrate uridine diphosphate N-acetyl-D-glucosamine (UDPGlcNAc) and Mg++.The optimal pH was about 6.5-7.0,and the highest activity was detected at temperatures between 37℃ and 44℃.Dithithreitol is required to prevent melanization of the enzyme extract.CHS activity was enhanced at low concentration of GlcNAc,but inhibited at high concentrations.Proteolytic activation of the activity is significant both in the 500×g supernatant and the 40 000×g pellet.Our study revealed only slight in vitro inhibition ofA.gambiae CHS activity by diflubenzuron and nikkomycin Z at the highest concentration (2.5μmol/L) examined.There was no in vitro inhibition by polyoxin D at any concentration examined.Furthermore,we did not observe any in vivo inhibition of CHS activity by any of these chemicals at any concentration examined.Our results suggest that the inhibition of chitin synthesis by these chemicals is not due to direct inhibition of CHS in A.gambiae.

  9. Application of chitin/chitosan in agriculture

    International Nuclear Information System (INIS)

    Chitosan is the deacetylated derivative of chitin and deacetylation degree is an important chemical characteristic which could be determined by HNMR or IR. spectroscopy. Chitosan of high deacetylation degree (87.37%) was oxidized by hydrogen peroxide at 0.6M concentration for 4 hours to obtain low molecular weight ∼ 6.0 x 104, further degradation was carried out by irradiation of chitosan in solution (4%, w/v) with gamma Co-60 rays, in the dose range from 10 kGy to 70 kGy. The test in the field for antifungus of Rhizoctonia Solani on rice plants was investigated. The antifungal effect of resultant chitosan at dose of 50 kGy and concentration of 80 ppm was most effective. (author)

  10. Emerging chitin and chitosan nanofibrous materials for biomedical applications

    Science.gov (United States)

    Ding, Fuyuan; Deng, Hongbing; Du, Yumin; Shi, Xiaowen; Wang, Qun

    2014-07-01

    Over the past several decades, we have witnessed significant progress in chitosan and chitin based nanostructured materials. The nanofibers from chitin and chitosan with appealing physical and biological features have attracted intense attention due to their excellent biological properties related to biodegradability, biocompatibility, antibacterial activity, low immunogenicity and wound healing capacity. Various methods, such as electrospinning, self-assembly, phase separation, mechanical treatment, printing, ultrasonication and chemical treatment were employed to prepare chitin and chitosan nanofibers. These nanofibrous materials have tremendous potential to be used as drug delivery systems, tissue engineering scaffolds, wound dressing materials, antimicrobial agents, and biosensors. This review article discusses the most recent progress in the preparation and application of chitin and chitosan based nanofibrous materials in biomedical fields.

  11. Transcriptome sequencing revealed the transcriptional organization at ribosome-mediated attenuation sites in Corynebacterium glutamicum and identified a novel attenuator involved in aromatic amino acid biosynthesis.

    Science.gov (United States)

    Neshat, Armin; Mentz, Almut; Rückert, Christian; Kalinowski, Jörn

    2014-11-20

    The Gram-positive bacterium Corynebacterium glutamicum belongs to the order Corynebacteriales and is used as a producer of amino acids at industrial scales. Due to its economic importance, gene expression and particularly the regulation of amino acid biosynthesis has been investigated extensively. Applying the high-resolution technique of transcriptome sequencing (RNA-seq), recently a vast amount of data has been generated that was used to comprehensively analyze the C. glutamicum transcriptome. By analyzing RNA-seq data from a small RNA cDNA library of C. glutamicum, short transcripts in the known transcriptional attenuators sites of the trp operon, the ilvBNC operon and the leuA gene were verified. Furthermore, whole transcriptome RNA-seq data were used to elucidate the transcriptional organization of these three amino acid biosynthesis operons. In addition, we discovered and analyzed the novel attenuator aroR, located upstream of the aroF gene (cg1129). The DAHP synthase encoded by aroF catalyzes the first step in aromatic amino acid synthesis. The AroR leader peptide contains the amino acid sequence motif F-Y-F, indicating a regulatory effect by phenylalanine and tyrosine. Analysis by real-time RT-PCR suggests that the attenuator regulates the transcription of aroF in dependence of the cellular amount of tRNA loaded with phenylalanine when comparing a phenylalanine-auxotrophic C. glutamicum mutant fed with limiting and excess amounts of a phenylalanine-containing dipeptide. Additionally, the very interesting finding was made that all analyzed attenuators are leaderless transcripts. PMID:24910972

  12. Homogeneous synthesis of quaternized chitin in NaOH/urea aqueous solution as a potential gene vector.

    Science.gov (United States)

    Peng, Na; Ai, Ziye; Fang, Zehong; Wang, Yanfeng; Xia, Zhiping; Zhong, Zibiao; Fan, Xiaoli; Ye, Qifa

    2016-10-01

    Water-soluble quaternized chitins (QCs) were homogeneously synthesized by reacting chitin with (3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHPTAC) in 8wt% NaOH/4wt% urea aqueous solutions. The chemical structure and solution properties of the quaternized chitins were characterized by (1)H NMR, FT-IR, elemental analysis, dynamic light scattering (DLS) and zeta potential measurements. The results demonstrated that the water-soluble QCs, with a degree of substitution (DS) values of 0.27-0.54, could be obtained by varying the concentration of chitin, the molar ratio of CHPTAC to chitin unit, and the reaction time at room temperature (25°C). Two QCs (DS=0.36 and 0.54) were selected and studied as gene carriers. Agarose gel retardation assay revealed that both QCs could condense DNA efficiently when N/P ratio>3. The results of particle size and zeta potential indicated that both QCs had a good ability of condensing plasmid DNA into compact nanoparticles with the size of 100-200nm and zeta potential of +18 to +36mV. Compared to polyethylenimine (PEI, 25kDa), the QCs exhibited outstanding low cytotoxicity. Transfection efficiencies of the QCs/DNA complexes were measured using pGL-3 encoding luciferase as the foreign DNA, and the QCs/DNA complexes showed effective transfection efficiencies in 293T cells. These results revealed that the QCs prepared in NaOH/urea aqueous solutions could be used as promising non-viral gene carriers owing to their excellent characteristics. PMID:27312628

  13. Protective Effect of Chitin Urocanate Nanofibers against Ultraviolet Radiation

    Directory of Open Access Journals (Sweden)

    Ikuko Ito

    2015-12-01

    Full Text Available Urocanic acid is a major ultraviolet (UV-absorbing chromophore. Chitins are highly crystalline structures that are found predominantly in crustacean shells. Alpha-chitin consists of microfibers that contain nanofibrils embedded in a protein matrix. Acid hydrolysis is a common method used to prepare chitin nanofibrils (NFs. We typically obtain NFs by hydrolyzing chitin with acetic acid. However, in the present study, we used urocanic acid to prepare urocanic acid chitin NFs (UNFs and examined its protective effect against UVB radiation. Hos: HR-1 mice coated with UNFs were UVB irradiated (302 nm, 150 mJ/cm2, and these mice showed markedly lower UVB radiation-induced cutaneous erythema than the control. Additionally, sunburn cells were rarely detected in the epidermis of UNFs-coated mice after UVB irradiation. Although the difference was not as significant as UNFs, the number of sunburn cells in mice treated with acetic acid chitin nanofibrils (ANFs tended to be lower than in control mice. These results demonstrate that ANFs have a protective effect against UVB and suggest that the anti-inflammatory and antioxidant effects of NFs influence the protective effect of ANFs against UVB radiation. The combination of NFs with other substances that possess UV-protective effects, such as urocanic acid, may provide an enhanced protective effect against UVB radiation.

  14. Digestibility of chitin in cod, Gadus morhua, in vivo

    Science.gov (United States)

    Danulat, Eva

    1987-12-01

    Sixteen cod, Gadus morhua (L.), were individually fed a single ration of shrimps, Crangon allmanni. Four fish were killed and examined 6, 12, 24 and 48 h after the fish had been fed. Chitinase activities were measured in the extracts of stomach contents, stomach tissue, pyloric caecae, intestinal contents and intestinal tissue. The level of enzyme activity in different parts of the digestive tract was shown to be dependent on the phase of the digestive process. High concentrations of the chitin degradation product N-acetyl-D-glucosamine were determined in the stomach and in the intestinal contents. Based on the chitin concentration in the food organisms and the individual food uptake, the amount of chitin consumed by each fish could be calculated. Only up to 9% of the ingested chitin was recovered from the intestinal contents of the fish at any given time after feeding (6, 12, 24 and 48 h). In addition, only 2.4% of the chitin consumed with the food could be recovered in the collected faeces of the fish. The 4 cod killed 48 h after feeding had completely emptied their stomach. Chitin digestion in these fish was calculated to have been 90%.

  15. Dopamine-Mediated Sclerotization of Regenerated Chitin in Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Dongyeop X. Oh

    2013-09-01

    Full Text Available Chitin is a promising structural material for biomedical applications, due to its many advantageous properties and abundance in nature. However, its usage and development in the biomedical field have been stagnant, because of chitin’s poor mechanical properties in wet conditions and the difficulties in transforming it into an applicable form. To overcome these challenges, we created a novel biomimetic chitin composite. This regenerated chitin, prepared with ionic liquid, showed improved mechanical properties in wet conditions by mimicking insect cuticle and squid beak sclerotization, i.e., catechol-meditated cross-linking. By ionic liquid-based heat treatment, dopamine oxidation produced melanin-like compounds and dopamine-meditated cross-links without any solvent evaporation and oxidant utilization. The dopamine-meditated sclerotization increased the ultimate tensile strength (UTS of the regenerated chitin by 2.52-fold, measured after six weeks of phosphate-buffered saline (PBS submersion. In addition, the linear swelling ratio (LSR of the chitin film was reduced by about 22%. This strategy raises a possibility of using regenerated chitin as an artificial hard tissue in wet conditions.

  16. Extraction and Characterization of Chitin from the Beetle Holotrichia parallela Motschulsky

    Directory of Open Access Journals (Sweden)

    Feng Zhu

    2012-04-01

    Full Text Available Insect chitin was isolated from adult Holotrichia parallela by treatment with 1 M HCl and 1 M NaOH, following by 1% potassium permanganate solution for decolorization. The yield of chitin from this species is 15%. This insect chitin was compared with the commercial a-chitin from shrimp, by infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and elemental analysis. Both chitins exhibited similar chemical structures and physicochemical properties. Adult H. parallela is thus a promising alternative source of chitin.

  17. Interspecies and Intraspecies Analysis of Trehalose Contents and the Biosynthesis Pathway Gene Family Reveals Crucial Roles of Trehalose in Osmotic-Stress Tolerance in Cassava

    Directory of Open Access Journals (Sweden)

    Bingying Han

    2016-07-01

    Full Text Available Trehalose is a nonreducing α,α-1,1-disaccharide in a wide range of organisms, and has diverse biological functions that range from serving as an energy source to acting as a protective/signal sugar. However, significant amounts of trehalose have rarely been detected in higher plants, and the function of trehalose in the drought-tolerant crop cassava (Manihot esculenta Crantz is unclear. We measured soluble sugar concentrations of nine plant species with differing levels of drought tolerance and 41 cassava varieties using high-performance liquid chromatography with evaporative light-scattering detector (HPLC-ELSD. Significantly high amounts of trehalose were identified in drought-tolerant crops cassava, Jatropha curcas, and castor bean (Ricinus communis. All cassava varieties tested contained high amounts of trehalose, although their concentrations varied from 0.23 to 1.29 mg·g−1 fresh weight (FW, and the trehalose level was highly correlated with dehydration stress tolerance of detached leaves of the varieties. Moreover, the trehalose concentrations in cassava leaves increased 2.3–5.5 folds in response to osmotic stress simulated by 20% PEG 6000. Through database mining, 24 trehalose pathway genes, including 12 trehalose-6-phosphate synthases (TPS, 10 trehalose-6-phosphate phosphatases (TPP, and two trehalases were identified in cassava. Phylogenetic analysis indicated that there were four cassava TPS genes (MeTPS1–4 that were orthologous to the solely active TPS gene (AtTPS1 and OsTPS1 in Arabidopsis and rice, and a new TPP subfamily was identified in cassava, suggesting that the trehalose biosynthesis activities in cassava had potentially been enhanced in evolutionary history. RNA-seq analysis indicated that MeTPS1 was expressed at constitutionally high level before and after osmotic stress, while other trehalose pathway genes were either up-regulated or down-regulated, which may explain why cassava accumulated high level of trehalose

  18. Interspecies and Intraspecies Analysis of Trehalose Contents and the Biosynthesis Pathway Gene Family Reveals Crucial Roles of Trehalose in Osmotic-Stress Tolerance in Cassava.

    Science.gov (United States)

    Han, Bingying; Fu, Lili; Zhang, Dan; He, Xiuquan; Chen, Qiang; Peng, Ming; Zhang, Jiaming

    2016-01-01

    Trehalose is a nonreducing α,α-1,1-disaccharide in a wide range of organisms, and has diverse biological functions that range from serving as an energy source to acting as a protective/signal sugar. However, significant amounts of trehalose have rarely been detected in higher plants, and the function of trehalose in the drought-tolerant crop cassava (Manihot esculenta Crantz) is unclear. We measured soluble sugar concentrations of nine plant species with differing levels of drought tolerance and 41 cassava varieties using high-performance liquid chromatography with evaporative light-scattering detector (HPLC-ELSD). Significantly high amounts of trehalose were identified in drought-tolerant crops cassava, Jatropha curcas, and castor bean (Ricinus communis). All cassava varieties tested contained high amounts of trehalose, although their concentrations varied from 0.23 to 1.29 mg·g(-1) fresh weight (FW), and the trehalose level was highly correlated with dehydration stress tolerance of detached leaves of the varieties. Moreover, the trehalose concentrations in cassava leaves increased 2.3-5.5 folds in response to osmotic stress simulated by 20% PEG 6000. Through database mining, 24 trehalose pathway genes, including 12 trehalose-6-phosphate synthases (TPS), 10 trehalose-6-phosphate phosphatases (TPP), and two trehalases were identified in cassava. Phylogenetic analysis indicated that there were four cassava TPS genes (MeTPS1-4) that were orthologous to the solely active TPS gene (AtTPS1 and OsTPS1) in Arabidopsis and rice, and a new TPP subfamily was identified in cassava, suggesting that the trehalose biosynthesis activities in cassava had potentially been enhanced in evolutionary history. RNA-seq analysis indicated that MeTPS1 was expressed at constitutionally high level before and after osmotic stress, while other trehalose pathway genes were either up-regulated or down-regulated, which may explain why cassava accumulated high level of trehalose under normal

  19. Squid pen chitin chitooligomers as food colorants absorbers.

    Science.gov (United States)

    Liang, Tzu-Wen; Huang, Chih-Ting; Dzung, Nguyen Anh; Wang, San-Lang

    2015-01-01

    One of the most promising applications of chitosanase is the conversion of chitinous biowaste into bioactive chitooligomers (COS). TKU033 chitosanase was induced from squid pen powder (SPP)-containing Bacillus cereus TKU033 medium and purified by ammonium sulfate precipitation and column chromatography. The enzyme was relatively more thermostable in the presence of the substrate and had an activity of 93% at 50 °C in a pH 5 buffer solution for 60 min. Furthermore, the enzyme used for the COS preparation was also studied. The enzyme products revealed various mixtures of COS that with different degrees of polymerization (DP), ranging from three to nine. In the culture medium, the fermented SPP was recovered, and it displayed a better adsorption rate (up to 96%) for the disperse dyes than the water-soluble food colorants, Allura Red AC (R40) and Tartrazne (Y4). Fourier transform-infrared spectroscopic (FT-IR) analysis proved that the adsorption of the dyes onto fermented SPP was a physical adsorption. Results also showed that fermented SPP was a favorable adsorber and could be employed as low-cost alternative for dye removal in wastewater treatment. PMID:25608726

  20. Chitosan-chitin nanocrystal composite scaffolds for tissue engineering.

    Science.gov (United States)

    Liu, Mingxian; Zheng, Huanjun; Chen, Juan; Li, Shuangli; Huang, Jianfang; Zhou, Changren

    2016-11-01

    Chitin nanocrystals (CNCs) with length and width of 300 and 20nm were uniformly dispersed in chitosan (CS) solution. The CS/CNCs composite scaffolds prepared utilizing a dispersion-based freeze dry approach exhibit significant enhancement in compressive strength and modulus compared with pure CS scaffold both in dry and wet state. A well-interconnected porous structure with size in the range of 100-200μm and over 80% porosity are found in the composite scaffolds. The crystal structure of CNCs is retained in the composite scaffolds. The incorporation of CNCs leads to increase in the scaffold density and decrease in the water swelling ratio. Moreover, the composite scaffolds are successfully applied as scaffolds for MC3T3-E1 osteoblast cells, showing their excellent biocompatibility and low cytotoxicity. The results of fluorescent micrographs images reveal that CNCs can markedly promote the cell adhesion and proliferation of the osteoblast on CS. The biocompatible composite scaffolds with enhanced mechanical properties have potential application in bone tissue engineering. PMID:27516335

  1. Squid Pen Chitin Chitooligomers as Food Colorants Absorbers

    Directory of Open Access Journals (Sweden)

    Tzu-Wen Liang

    2015-01-01

    Full Text Available One of the most promising applications of chitosanase is the conversion of chitinous biowaste into bioactive chitooligomers (COS. TKU033 chitosanase was induced from squid pen powder (SPP-containing Bacillus cereus TKU033 medium and purified by ammonium sulfate precipitation and column chromatography. The enzyme was relatively more thermostable in the presence of the substrate and had an activity of 93% at 50 °C in a pH 5 buffer solution for 60 min. Furthermore, the enzyme used for the COS preparation was also studied. The enzyme products revealed various mixtures of COS that with different degrees of polymerization (DP, ranging from three to nine. In the culture medium, the fermented SPP was recovered, and it displayed a better adsorption rate (up to 96% for the disperse dyes than the water-soluble food colorants, Allura Red AC (R40 and Tartrazne (Y4. Fourier transform-infrared spectroscopic (FT-IR analysis proved that the adsorption of the dyes onto fermented SPP was a physical adsorption. Results also showed that fermented SPP was a favorable adsorber and could be employed as low-cost alternative for dye removal in wastewater treatment.

  2. Gene expression analysis of the biocontrol fungus Trichoderma harzianum in the presence of tomato plants, chitin, or glucose using a high-density oligonucleotide microarray

    Directory of Open Access Journals (Sweden)

    Suárez M Belén

    2009-10-01

    Full Text Available Abstract Background It has recently been shown that the Trichoderma fungal species used for biocontrol of plant diseases are capable of interacting with plant roots directly, behaving as symbiotic microorganisms. With a view to providing further information at transcriptomic level about the early response of Trichoderma to a host plant, we developed a high-density oligonucleotide (HDO microarray encompassing 14,081 Expressed Sequence Tag (EST-based transcripts from eight Trichoderma spp. and 9,121 genome-derived transcripts of T. reesei, and we have used this microarray to examine the gene expression of T. harzianum either alone or in the presence of tomato plants, chitin, or glucose. Results Global microarray analysis revealed 1,617 probe sets showing differential expression in T. harzianum mycelia under at least one of the culture conditions tested as compared with one another. Hierarchical clustering and heat map representation showed that the expression patterns obtained in glucose medium clustered separately from the expression patterns observed in the presence of tomato plants and chitin. Annotations using the Blast2GO suite identified 85 of the 257 transcripts whose probe sets afforded up-regulated expression in response to tomato plants. Some of these transcripts were predicted to encode proteins related to Trichoderma-host (fungus or plant associations, such as Sm1/Elp1 protein, proteases P6281 and PRA1, enchochitinase CHIT42, or QID74 protein, although previously uncharacterized genes were also identified, including those responsible for the possible biosynthesis of nitric oxide, xenobiotic detoxification, mycelium development, or those related to the formation of infection structures in plant tissues. Conclusion The effectiveness of the Trichoderma HDO microarray to detect different gene responses under different growth conditions in the fungus T. harzianum strongly indicates that this tool should be useful for further assays that

  3. XRD studies of chitin-based polyurethane elastomers.

    Science.gov (United States)

    Zia, Khalid Mahmood; Bhatti, Ijaz Ahmad; Barikani, Mehdi; Zuber, Mohammad; Sheikh, Munir Ahmad

    2008-08-15

    Chitin-based polyurethane elastomers (PUEs) were synthesized by step growth polymerization techniques using poly(epsilon-caprolactone) (PCL) varying diisocyanate and chain extender structures. The viscosity average molecular weight (M(v)) of chitin was deduced from the intrinsic viscosity and found; M(v)=6.067 x 10(5). The conventional spectroscopic characterization of the samples with FTIR, (1)H NMR and (13)C NMR were in accordance with proposed PUEs structure. The crystalline behavior of the synthesized polymers were investigated by X-ray diffraction (XRD), differential scanning calorimetery (DSC) and loss tangent curves (tan delta peaks). The observed patterns of the crystalline peaks for the lower angle for chitin in the 2theta range were indexed as 9.39 degrees, 19.72 degrees, 20.73 degrees, 23.41 degrees and 26.39 degrees. Results showed that crystallinity of the synthesized PUEs samples was affected by varying the structure of the diisocyanate and chain extender. Crystallinity decreased from aliphatic to aromatic characters of the diisocyanates used in the final PU. The presence of chitin also favors the formation of more ordered structure, as higher peak intensities was obtained from the PU extended with chitin than 1,4-butane diol (BDO). The value of peak enthalpy (DeltaH) of chitin was found to be 47.13 J g(-1). The higher DeltaH value of 46.35 J g(-1) was found in the samples extended with chitin than BDO (39.73 J g(-1)). PMID:18495239

  4. Transcriptome sequence analysis of an ornamental plant, Ananas comosus var. bracteatus, revealed the potential unigenes involved in terpenoid and phenylpropanoid biosynthesis.

    Directory of Open Access Journals (Sweden)

    Jun Ma

    Full Text Available Ananas comosus var. bracteatus (Red Pineapple is an important ornamental plant for its colorful leaves and decorative red fruits. Because of its complex genome, it is difficult to understand the molecular mechanisms involved in the growth and development. Thus high-throughput transcriptome sequencing of Ananas comosus var. bracteatus is necessary to generate large quantities of transcript sequences for the purpose of gene discovery and functional genomic studies.The Ananas comosus var. bracteatus transcriptome was sequenced by the Illumina paired-end sequencing technology. We obtained a total of 23.5 million high quality sequencing reads, 1,555,808 contigs and 41,052 unigenes. In total 41,052 unigenes of Ananas comosus var. bracteatus, 23,275 unigenes were annotated in the NCBI non-redundant protein database and 23,134 unigenes were annotated in the Swiss-Port database. Out of these, 17,748 and 8,505 unigenes were assigned to gene ontology categories and clusters of orthologous groups, respectively. Functional annotation against Kyoto Encyclopedia of Genes and Genomes Pathway database identified 5,825 unigenes which were mapped to 117 pathways. The assembly predicted many unigenes that were previously unknown. The annotated unigenes were compared against pineapple, rice, maize, Arabidopsis, and sorghum. Unigenes that did not match any of those five sequence datasets are considered to be Ananas comosus var. bracteatus unique. We predicted unigenes encoding enzymes involved in terpenoid and phenylpropanoid biosynthesis.The sequence data provide the most comprehensive transcriptomic resource currently available for Ananas comosus var. bracteatus. To our knowledge; this is the first report on the de novo transcriptome sequencing of the Ananas comosus var. bracteatus. Unigenes obtained in this study, may help improve future gene expression, genetic and genomics studies in Ananas comosus var. bracteatus.

  5. ChtVis-Tomato, a genetic reporter for in vivo visualization of chitin deposition in Drosophila.

    Science.gov (United States)

    Sobala, Lukasz F; Wang, Ying; Adler, Paul N

    2015-11-15

    Chitin is a polymer of N-acetylglucosamine that is abundant and widely found in the biological world. It is an important constituent of the cuticular exoskeleton that plays a key role in the insect life cycle. To date, the study of chitin deposition during cuticle formation has been limited by the lack of a method to detect it in living organisms. To overcome this limitation, we have developed ChtVis-Tomato, an in vivo reporter for chitin in Drosophila. ChtVis-Tomato encodes a fusion protein that contains an apical secretion signal, a chitin-binding domain (CBD), a fluorescent protein and a cleavage site to release it from the plasma membrane. The chitin reporter allowed us to study chitin deposition in time lapse experiments and by using it we have identified unexpected deposits of chitin fibers in Drosophila pupae. ChtVis-Tomato should facilitate future studies on chitin in Drosophila and other insects. PMID:26395478

  6. Micro-CT Imaging of Denatured Chitin by Silver to Explore Honey Bee and Insect Pathologies

    OpenAIRE

    Butzloff, Peter R.

    2011-01-01

    BACKGROUND: Chitin and cuticle coatings are important to the environmental and immune defense of honey bees and insect pollinators. Pesticides or environmental effects may target the biochemistry of insect chitin and cuticle coating. Denaturing of chitin involves a combination of deacetylation, intercalation, oxidation, Schweiger-peeling, and the formation of amine hydrochloride salt. The term "denatured chitin" calls attention to structural and property changes to the internal membranes and ...

  7. Radiation grafting of acrylic acid onto partially deacetylated chitin for metal ion adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Quoc Hien [Research and Development Center for Radiation Technology, Vietnam Atomic Energy Commission, Truong tre Str., Linh xuan, Thu duc, Ho Chi Minh City (Viet Nam)]. E-mail: hiennq@hcm.vnn.vn; Dang Van Phu [Research and Development Center for Radiation Technology, Vietnam Atomic Energy Commission, Truong tre Str., Linh xuan, Thu duc, Ho Chi Minh City (Viet Nam); Nguyen Ngoc Duy [College of Natural Sciences, National University Ho Chi Minh City, 227 Nguyen Van Cu, Ho Chi Minh City (Viet Nam); Ha Thuc Huy [College of Natural Sciences, National University Ho Chi Minh City, 227 Nguyen Van Cu, Ho Chi Minh City (Viet Nam)

    2005-07-01

    Radiation processing technology is proved to be a useful tool for modification of polymer material including grafting of monomer onto polymer. In this study, partially deacetylated chitin (PD-chitin) was prepared by soaking chitin in NaOH solution with various concentrations from 10% to 50% (w/w) at room temperature for four days. The degree of deacetylation (DD%) of chitin samples was measured by IR spectroscopy method. Radiation grafting of acrylic acid (AAc) onto PD-chitin was carried out by immerging PD-chitin in AAc solution (5-20%v/v) for swelling two days. The swelled PD-chitin sample was filtered and irradiated with Co-60 radiation at dose of 4.8 kGy for grafting. The resulting product, so called PD-chitin-g-PAA was changed to sodium form, PD-chitin-g-PANa by treating with NaOH 1 N and used as metal ion adsorbent. The adsorption capacities of studied chitin samples for metal ion typically for Cu{sup 2+} was determined using atomic absorption spectrophotometer. The results showed that the adsorption capacities for Cu{sup 2+} were as the following order: chitin < PD-chitin < PD-chitin-g-PANa < chitosan (DD76%). In addition, equilibrium isotherms were well fitted by Langmuir equation with the constants K {sub L} = 15.5 and 19.4 (mg/g); b = 0.02 and 0.04 (L/mg) for PD-chitin and PD-chitin-g-PANa, respectively. The obtained product, PD-chitin-g-PANa can be produced on large scale with competitive cost and used as metal ion adsorbent for water purification as well as for other purposes such as for sorption of dyes and for immobilization of bioactive substances.

  8. Structural bases of feed-back control of arginine biosynthesis, revealed by the structures of two hexameric N-acetylglutamate kinases, from Thermotoga maritima and Pseudomonas aeruginosa.

    Science.gov (United States)

    Ramón-Maiques, Santiago; Fernández-Murga, María Leonor; Gil-Ortiz, Fernando; Vagin, Alexei; Fita, Ignacio; Rubio, Vicente

    2006-02-24

    N-Acetylglutamate kinase (NAGK) catalyses the second step in the route of arginine biosynthesis. In many organisms this enzyme is inhibited by the final product of the route, arginine, and thus plays a central regulatory role. In addition, in photosynthetic organisms NAGK is the target of the nitrogen-signalling protein PII. The 3-D structure of homodimeric, arginine-insensitive, Escherichia coli NAGK, clarified substrate binding and catalysis but shed no light on arginine inhibition of NAGK. We now shed light on arginine inhibition by determining the crystal structures, at 2.75 A and 2.95 A resolution, of arginine-complexed Thermotoga maritima and arginine-free Pseudomonas aeruginosa NAGKs, respectively. Both enzymes are highly similar ring-like hexamers having a central orifice of approximately 30 A diameter. They are formed by linking three E.coli NAGK-like homodimers through the interlacing of an N-terminal mobile kinked alpha-helix, which is absent from E.coli NAGK. Arginine is bound in each subunit of T.maritima NAGK, flanking the interdimeric junction, in a site formed between the N helix and the C lobe of the subunit. This site is also present, in variable conformations, in P.aeruginosa NAGK, but is missing from E.coli NAGK. Arginine, by gluing the C lobe of each subunit to the inter-dimeric junction, may stabilize an enlarged active centre conformation, hampering catalysis. Acetylglutamate counters arginine inhibition by promoting active centre closure. The hexameric architecture justifies the observed sigmoidal arginine inhibition kinetics with a high Hill coefficient (N approximately 4), and appears essential for arginine inhibition and for NAGK-PII complex formation, since this complex may involve binding of NAGK and PII with their 3-fold axes aligned. The NAGK structures allow identification of diagnostic sequence signatures for arginine inhibition. These signatures are found also in the homologous arginine-inhibited enzyme NAG synthase. The findings

  9. Chitin stimulates production of the antibiotic andrimid in a Vibrio corallilyticus strain

    DEFF Research Database (Denmark)

    Wietz, Matthias; Månsson, Maria; Gram, Lone

    2011-01-01

    per cell was twofold higher. In cultures with Artemia as live chitin model system, S2052 reached up to 108 cells ml-1, produced andrimid and showed attachment to the exoskeleton and chitinous exuviae. The metabolic focus on andrimid production with chitin indicates that the antibiotic could serve an...

  10. Microbial destruction of chitin in soils under different moisture conditions

    Science.gov (United States)

    Yaroslavtsev, A. M.; Manucharova, N. A.; Stepanov, A. L.; Zvyagintsev, D. G.; Sudnitsyn, I. I.

    2009-07-01

    The most favorable moisture conditions for the microbial destruction of chitin in soils are close to the total water capacity. The water content has the most pronounced effect on chitin destruction in soils in comparison with other studied substrates. It was found using gas-chromatographic and luminescent-microscopic methods that the maximum specific activity of the respiration of the chitinolytic community was at a rather low redox potential with the soil moisture close to the total water capacity. The range of moisture values under which the most intense microbial transformation of chitin occurred was wider in clayey and clay loamy soils as compared with sandy ones. The increase was observed due to the contribution of mycelial bacteria and actinomycetes in the chitinolytic complex as the soil moisture increased.

  11. Effect of gamma radiation on chitin-nanosilver membranes

    International Nuclear Information System (INIS)

    Antimicrobial wound dressings are indispensable for the effective healing of skin wounds such as burns and ulcers. Various synthetic and natural polymers with good biocompatibility have been used to develop wound dressings. Chitin possesses excellent properties that are advantageous for wound dressing namely biocompatibility, biodegradability and haemostatic activity. Chitin-nanosilver membranes were developed for use as an antimicrobial dressing for wound care. For clinical applications, the wound dressing should be assuredly free of microbial contamination. Gamma irradiation has well appreciated technological advantages and is the most suitable method for the sterilization of biomedical materials. The present study was carried out to evaluate the effect of gamma radiation on the chemical and functional characteristics of the chitin-nanosilver membranes

  12. Chitin elicitation of natural product production in marine bacteria

    DEFF Research Database (Denmark)

    Månsson, Maria; Wietz, Matthias; Larsen, Thomas Ostenfeld;

    glucose-based medium. The different phenotypic responses to a natural growth substrate may reflect different niche-adaptations or ecological functions of the compounds produced and it represents a fruitful approach for elicitation of natural product production in marine bacteria....... uncharacterized chemical potential of these organisms. As part of a new project on ecology-driven drug discovery at the Technical University of Denmark, we investigate the use of chitin to elicit or alter production of antibacterial compounds in marine bacteria. Within our large collection of Gram...... indicating that andrimid serves a function while growing on chitin-containing surfaces. In contrast, a Photobacterium halotolerans sustained production of all metabolites including the antibiotic holomycin. Furthermore, chitin stimulated the production of two potentially novel metabolites not observed on...

  13. Removal of Petroleum Spill in Water by Chitin and Chitosan

    OpenAIRE

    Francisco Cláudio de Freitas Barros; Luiz Constantino Grombone Vasconcellos; Técia Vieira Carvalho; Ronaldo Ferreira do Nascimento

    2014-01-01

    The present study was undertaken to evaluate the capacity of adsorption of crude oil spilled in seawater by chitin flakes, chitin powder, chitosan flakes, chitosan powder, and chitosan solution. The results showed that, although chitosan flakes had a better adsorption capacity by oil (0.379 ± 0.030 grams oil per gram of adsorbent), the biopolymer was sinking after adsorbing oil. Chitosan solution did not present such inconvenience, despite its lower adsorption capacity (0.013 ± 0.001 grams oi...

  14. Analysis of the Isoprenoid Biosynthesis Pathways in Listeria monocytogenes Reveals a Role for the Alternative 2-C-Methyl-d-Erythritol 4-Phosphate Pathway in Murine Infection▿

    OpenAIRE

    Begley, Máire; Bron, Peter A; Heuston, Sinead; Casey, Pat G.; Englert, Nadine; Wiesner, Jochen; Jomaa, Hassan; Gahan, Cormac G. M.; Hill, Colin

    2008-01-01

    Most bacteria synthesize isoprenoids through one of two essential pathways which provide the basic building block, isopentyl diphosphate (IPP): either the classical mevalonate pathway or the alternative non-mevalonate 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway. However, postgenomic analyses of the Listeria monocytogenes genome revealed that this pathogen possesses the genetic capacity to produce the complete set of enzymes involved in both pathways. The nonpathogenic species Listeria i...

  15. Application of chitin and chitosan extracted from silkworm chrysalides in the treatment of textile effluents contaminated with remazol dyes

    Directory of Open Access Journals (Sweden)

    Julliana Isabelle Simionato

    2014-09-01

    Full Text Available Chitin extracted from silkworm chrysalides was used to prepare chitosan applied in this investigation. Adsorption studies were carried out in column and in aqueous suspension with two dyes, blue remazol (RN and black remazol 5 (RB. The study showed that adsorption is better in the chitosan-packed column than in the chitin-packed one. However, the comparison of the adsorption in column and in suspension revealed better results for the latter. The plotted Langmuir isotherm did not indicate significant difference in the theoretical capacity of saturation of the monolayer (Qo for either dye. The application of the adsorption process to actual conditions was evaluated by adsorption assays of actual textile effluents. In acid pH, chitosan adsorbed the dyes responsible for the effluent coloration completely. This study showed that the use of chitosan obtained from silkworm chrysalides is a viable alternative for the immobilization of dyes in textile industry effluents.

  16. Thermoanalytical characterization of chitosan/chitin nanofibrils films

    Czech Academy of Sciences Publication Activity Database

    Kovářová, Jana; Tishchenko, Galina; Morganti, P.

    Pisa : University of Pisa, Department of Civil and Industrial Engineering, 2013, s. 92-93. [Workshop Green Chemistry and Nanotechnologies in Polymer Chemistry /4./. Pisa (IT), 04.09.2013-06.09.2013] EU Projects: European Commission(XE) 315233 - N-CHITOPACK Institutional support: RVO:61389013 Keywords : thermogravimetric analysis * chitosan * chitin nanofibrils Subject RIV: CD - Macromolecular Chemistry

  17. Biodegradable composite films from chitosan and chitin nanofibrils

    Czech Academy of Sciences Publication Activity Database

    Tishchenko, Galina; Kelnar, Ivan; Kaprálková, Ludmila; Pavlová, Eva; Kovářová, Jana; Mikešová, Jana; Brožová, Libuše; Strachota, Adam; Špírková, Milena; Kobera, Libor; Netopilík, Miloš; Bastl, Zdeněk; Carezzi, F.; Morganti, P.

    Pisa : University of Pisa, Department of Civil and Industrial Engineering, 2013, s. 58-59. [Workshop Green Chemistry and Nanotechnologies in Polymer Chemistry /4./. Pisa (IT), 04.09.2013-06.09.2013] EU Projects: European Commission(XE) 315233 - N-CHITOPACK Institutional support: RVO:61389013 ; RVO:61388955 Keywords : biodegradable films * chitosan chitin nanofibrils Subject RIV: CD - Macromolecular Chemistry

  18. Rheological properties of chitosan solutions filled with chitin nanofibrils

    Czech Academy of Sciences Publication Activity Database

    Mikešová, Jana; Tishchenko, Galina; Morganti, P.

    Pisa : University of Pisa, Department of Civil and Industrial Engineering, 2013, s. 44-45. [Workshop Green Chemistry and Nanotechnologies in Polymer Chemistry /4./. Pisa (IT), 04.09.2013-06.09.2013] EU Projects: European Commission(XE) 315233 - N-CHITOPACK Institutional support: RVO:61389013 Keywords : chitosan solution * chitin nanofibrils * rheology Subject RIV: CD - Macromolecular Chemistry

  19. Rheological study of chitosan acetate solutions containing chitin nanofibrils

    Czech Academy of Sciences Publication Activity Database

    Mikešová, Jana; Hašek, Jindřich; Tishchenko, Galina; Morganti, P.

    2014-01-01

    Roč. 112, 4 November (2014), s. 753-757. ISSN 0144-8617 EU Projects: European Commission(XE) 315233 - N-CHITOPACK Institutional support: RVO:61389013 Keywords : rheology * chitosan solutions * chitin nanofibrils Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.074, year: 2014

  20. Nanocomposite films based on chitosan and chitin nanofibrils

    Czech Academy of Sciences Publication Activity Database

    Tishchenko, Galina; Kelnar, Ivan; Morganti, P.; Carezzi, F.; Pavlova, Ewa; Hašek, Jindřich; Kaprálková, Ludmila; Brožová, Libuše; Kovářová, Jana; Mikešová, Jana; Pekárek, Michal; Kobera, Libor; Bastl, Zdeněk

    Moscow : Lomonosov Moscow State University, 2014. s. 521. [International Conference on Nanostructured Materials /12./ - NANO 2014. 13.07.2014-18.07.2014, Moscow] EU Projects: European Commission(XE) 315233 - N-CHITOPACK Institutional support: RVO:61389013 ; RVO:61388955 ; RVO:86652036 Keywords : chitin nanofibrils * chitosan * nanocomposite Subject RIV: CD - Macromolecular Chemistry

  1. Chitin purification from shrimp wastes by microbial deproteination and decalcification.

    Science.gov (United States)

    Xu, Y; Gallert, C; Winter, J

    2008-06-01

    Chitin was purified from Penaeus monodon and Crangon crangon shells using a two-stage fermentation process with anaerobic deproteination followed by decalcification through homofermentative lactic acid fermentation. Deproteinating enrichment cultures from sewage sludge and ground meat (GM) were used with a proteolytic activity of 59 and 61 mg N l(-1) h(-1) with dried and 26 and 35 mg N l(-1) h(-1) with wet P. monodon shells. With 100 g wet cells of proteolytic bacteria per liter, protein removal was obtained in 42 h. An anaerobic spore-forming bacterium HP1 was isolated from enrichment GM. Its proteolytic activity was 76 U ml(-1) compared to 44 U ml(-1) of the consortium. Glucose was fermented with Lactobacillus casei MRS1 to lactic acid. At a pH of 3.6, calcium carbonate of the shells was solubilised. After deproteination and decalcification of P. monodon or C. crangon shells, the protein content was 5.8% or 6.7%, and the calcium content was 0.3% or 0.4%, respectively. The viscosity of the chitin from P. monodon and C. crangon was 45 and 135 mPa s, respectively, whereas purchased crab shell chitin (practical grade) had a viscosity of 21 mPa s, indicating a higher quality of biologically purified chitin. PMID:18418590

  2. Radiation grafting of acrylic acid onto partially deacetylated chitin for metal ion adsorbent

    International Nuclear Information System (INIS)

    Radiation processing technology is proved to be a useful tool for modification of polymer material including grafting of monomer onto polymer. In this study, partially deacetylated chitin (PD-chitin) was prepared by soaking chitin in NaOH solution with various concentrations from 10% to 50% (w/w) at room temperature for four days. The degree of deacetylation (DD%) of chitin samples was measured by IR spectroscopy method. Radiation grafting of acrylic acid (AAc) onto PD-chitin was carried out by immerging PD-chitin in AAc solution (5-20%v/v) for swelling two days. The swelled PD-chitin sample was filtered and irradiated with Co-60 radiation at dose of 4.8 kGy for grafting. The resulting product, so called PD-chitin-g-PAA was changed to sodium form, PD-chitin-g-PANa by treating with NaOH 1 N and used as metal ion adsorbent. The adsorption capacities of studied chitin samples for metal ion typically for Cu2+ was determined using atomic absorption spectrophotometer. The results showed that the adsorption capacities for Cu2+ were as the following order: chitin L = 15.5 and 19.4 (mg/g); b = 0.02 and 0.04 (L/mg) for PD-chitin and PD-chitin-g-PANa, respectively. The obtained product, PD-chitin-g-PANa can be produced on large scale with competitive cost and used as metal ion adsorbent for water purification as well as for other purposes such as for sorption of dyes and for immobilization of bioactive substances

  3. La production de chitine par les crustacés dans les écosystèmes marins

    OpenAIRE

    Jeuniaux, Charles; Voss-Foucart, Marie-Françoise; Bussers, Jean-Claude

    1993-01-01

    Chitin is synthesized by numerous animal species, either unicellular organisms or metazoans, belonging mainly to zoological groups of the Coelomate Spiralia lineage. However, the produced chitin in marine ecosystems is principally by crustaceans. A comparative study of analytical data so far available allowed calculation of chitin biomass and chitin production values in some types of marine ecosystems, and thus estimation of the quantitative importance of chitin in the biogeochemical cycles o...

  4. Correlation-Based Network Analysis of Metabolite and Enzyme Profiles Reveals a Role of Citrate Biosynthesis in Modulating N and C Metabolism in Zea mays.

    Science.gov (United States)

    Toubiana, David; Xue, Wentao; Zhang, Nengyi; Kremling, Karl; Gur, Amit; Pilosof, Shai; Gibon, Yves; Stitt, Mark; Buckler, Edward S; Fernie, Alisdair R; Fait, Aaron

    2016-01-01

    To investigate the natural variability of leaf metabolism and enzymatic activity in a maize inbred population, statistical and network analyses were employed on metabolite and enzyme profiles. The test of coefficient of variation showed that sugars and amino acids displayed opposite trends in their variance within the population, consistently with their related enzymes. The overall higher CV values for metabolites as compared to the tested enzymes are indicative for their greater phenotypic plasticity. H(2) tests revealed galactinol (1) and asparagine (0.91) as the highest scorers among metabolites and nitrate reductase (0.73), NAD-glutamate dehydrogenase (0.52), and phosphoglucomutase (0.51) among enzymes. The overall low H(2) scores for metabolites and enzymes are suggestive for a great environmental impact or gene-environment interaction. Correlation-based network generation followed by community detection analysis, partitioned the network into three main communities and one dyad, (i) reflecting the different levels of phenotypic plasticity of the two molecular classes as observed for the CV values and (ii) highlighting the concerted changes between classes of chemically related metabolites. Community 1 is composed mainly of enzymes and specialized metabolites, community 2' is enriched in N-containing compounds and phosphorylated-intermediates. The third community contains mainly organic acids and sugars. Cross-community linkages are supported by aspartate, by the photorespiration amino acids glycine and serine, by the metabolically related GABA and putrescine, and by citrate. The latter displayed the strongest node-betweenness value (185.25) of all nodes highlighting its fundamental structural role in the connectivity of the network by linking between different communities and to the also strongly connected enzyme aldolase. PMID:27462343

  5. High prevalence of chitotriosidase deficiency in Peruvian Amerindians exposed to chitin-bearing food and enteroparasites

    Science.gov (United States)

    Manno, N.; Sherratt, S.; Boaretto, F.; Coico, F. Mejìa; Camus, C. Espinoza; Campos, C. Jara; Musumeci, S.; Battisti, A.; Quinnell, R.J.; León, J. Mostacero; Vazza, G.; Mostacciuolo, M.L.; Paoletti, M.G.; Falcone, F.H.

    2014-01-01

    The human genome encodes a gene for an enzymatically active chitinase (CHIT1) located in a single copy on Chromosome 1, which is highly expressed by activated macrophages and in other cells of the innate immune response. Several dysfunctional mutations are known in CHIT1, including a 24-bp duplication in Exon 10 causing catalytic deficiency. This duplication is a common variant conserved in many human populations, except in West and South Africans. Thus it has been proposed that human migration out of Africa and the consequent reduction of exposure to chitin from environmental factors may have enabled the conservation of dysfunctional mutations in human chitinases. Our data obtained from 85 indigenous Amerindians from Peru, representative of populations characterized by high prevalence of chitin-bearing enteroparasites and intense entomophagy, reveal a very high frequency of the 24-bp duplication (47.06%), and of other single nucleotide polymorphisms which are known to partially affect enzymatic activity (G102S: 42.7% and A442G/V: 25.5%). Our finding is in line with a founder effect, but appears to confute our previous hypothesis of a protective role against parasite infection and sustains the discussion on the redundancy of chitinolytic function. PMID:25256524

  6. Preparation Of Glucosamine Hydrochloride And Glucosamine Sulfate From Irradiated Chitin

    International Nuclear Information System (INIS)

    Glucosamine hydrochloride is an amino sugar which is incorporated into the structure of body tissues. It comprises about 80% glucosamine, a compound helpful in maintaining joint health in individuals suffering from degenerative conditions such as arthritis. When orally ingested, it is selectively taken up by joint tissues to exert beneficial effects. Glucosamine may also have other therapeutic effects such as antiviral, anti-cancer, anti-aging, immune boosting or cholesterol lowering activity. Glucosamine may be obtained by hydrolysis and deacetylation of chitin, a polymer of N-acetyl glucosamine with hydrochloric acid. In this work we prepare glucosamine hydrochloride and glucosamine sulfate from irradiated chitin in order to produce high-purity product with good yield. The method consists of the following steps: 1/ Grinding the chitin; 2/ Irradiation the chitin using gamma Co-60 source at 30 kGy; 3/ Digesting the chitin with prewarmed, concentrated HCl, by mixing the chitin with the HCl, and heating to 95oC for 2 hours to produce a slurry; 4/ Cooling the slurry to room temperature and filtering the precipitate; 5/ Dissolving the precipitate in hot water with activated charcoal at room temperature; 6/ Filtering the solution and discarding the solids; 7/ Evaporating the solution to recover glucosamine solids; 8/ Washing the glucosamine solids with ethanol; 9/ Drying the glucosamine solids. Glucosamine sulfate is very hygroscopic and degrades rapidly when exposed to moisture. To avoid this problem, glucosamine sulfate is made from glucosamine hydrochloride by adding potassium sulfate and co-crystallizing the resulting mixture. The method comprising the following steps:1/ Dissolving 25.9 g of glucosamine hydrochloride in 84 g of distilled water with stirring; 2/ Adding 10.6 g of potassium sulfate and stirring was continued for about one hour at temperature of from 35oC to 45oC to complete the reaction; 3/ Precipitating the stable crystalline form by addition of a

  7. CSD2, CSD3, and CSD4, genes required for chitin synthesis in Saccharomyces cerevisiae: the CSD2 gene product is related to chitin synthases and to developmentally regulated proteins in Rhizobium species and Xenopus laevis.

    OpenAIRE

    Bulawa, C E

    1992-01-01

    In Saccharomyces cerevisiae, chitin forms the primary division septum and the bud scar in the walls of vegetative cells. Three chitin synthetic activities have been detected. Two of them, chitin synthase I and chitin synthase II, are not required for synthesis of most of the chitin present in vivo. Using a novel screen, I have identified three mutations, designated csd2, csd3, and csd4, that reduce levels of chitin in vivo by as much as 10-fold without causing any obvious perturbation of cell...

  8. A comparison study of radiostrontium chelation with chitin, chitosan, EDTA and DTPA

    International Nuclear Information System (INIS)

    Chitin and chitosan are nontoxic natural chelators that chelate radiostrontium effectively. The purpose of this study was to compare radiostrontium chelation of chitin and chitosan with that of well known chemical chelators, namely EDTA and DTPA. The chelaton rates of chitin, chitosan, EDTA and DTPA were compared using a column chromatography method (Sephadex G-25M, Sweden). Three kinds of chitins and four kinds of chitosans were used. All of them were water soluble. Phosphated chitosan showed the highest chelation yield of 97% at pH 7. All of chitins, chitosans, EDTA and DTPA showed chelation yield of more than 90% independent of varing pH level. Chitin and chitosan have similar chelation rate as compared with EDTA and DTPA

  9. Self-bonded composite films based on cellulose nanofibers and chitin nanocrystals as antifungal materials.

    Science.gov (United States)

    Robles, Eduardo; Salaberria, Asier M; Herrera, Rene; Fernandes, Susana C M; Labidi, Jalel

    2016-06-25

    Cellulose nanofibers and chitin nanocrystals, two main components of agricultural and aquacultural by-products, were obtained from blue agave and yellow squat lobster industrial residues. Cellulose nanofibers were obtained using high pressure homogenization, while chitin nanocrystals were obtained by hydrolysis in acid medium. Cellulose nanofibers and chitin nanocrystals were characterized by X-ray diffraction, Atomic Force Microscopy and Infrared spectroscopy. Self-bonded composite films with different composition were fabricated by hot pressing and their properties were evaluated. Antifungal activity of chitin nanocrystals was studied using a Cellometer(®) cell count device, mechanical properties at tension were measured with a universal testing machine, water vapor permeability was evaluated with a thermohygrometer and surface tension with sessile drop contact angle method. The addition of chitin nanocrystals reduced slightly the mechanical properties of the composite. Presence of chitin nanocrystals influenced the growth of Aspergillus sp fungus in the surface of the composites as expected. PMID:27083791

  10. Effect of Acetyl Group on Mechanical Properties of Chitin/Chitosan Nanocrystal: A Molecular Dynamics Study

    Directory of Open Access Journals (Sweden)

    Junhe Cui

    2016-01-01

    Full Text Available Chitin fiber is the load-bearing component in natural chitin-based materials. In these materials, chitin is always partially deacetylated to different levels, leading to diverse material properties. In order to understand how the acetyl group enhances the fracture resistance capability of chitin fiber, we constructed atomistic models of chitin with varied acetylation degree and analyzed the hydrogen bonding pattern, fracture, and stress-strain behavior of these models. We notice that the acetyl group can contribute to the formation of hydrogen bonds that can stabilize the crystalline structure. In addition, it is found that the specimen with a higher acetylation degree presents a greater resistance against fracture. This study describes the role of the functional group, acetyl groups, in crystalline chitin. Such information could provide preliminary understanding of nanomaterials when similar functional groups are encountered.

  11. Effect of Acetyl Group on Mechanical Properties of Chitin/Chitosan Nanocrystal: A Molecular Dynamics Study

    Science.gov (United States)

    Cui, Junhe; Yu, Zechuan; Lau, Denvid

    2016-01-01

    Chitin fiber is the load-bearing component in natural chitin-based materials. In these materials, chitin is always partially deacetylated to different levels, leading to diverse material properties. In order to understand how the acetyl group enhances the fracture resistance capability of chitin fiber, we constructed atomistic models of chitin with varied acetylation degree and analyzed the hydrogen bonding pattern, fracture, and stress-strain behavior of these models. We notice that the acetyl group can contribute to the formation of hydrogen bonds that can stabilize the crystalline structure. In addition, it is found that the specimen with a higher acetylation degree presents a greater resistance against fracture. This study describes the role of the functional group, acetyl groups, in crystalline chitin. Such information could provide preliminary understanding of nanomaterials when similar functional groups are encountered. PMID:26742033

  12. Customizing Properties of β-Chitin in Squid Pen (Gladius by Chemical Treatments

    Directory of Open Access Journals (Sweden)

    Alessandro Ianiro

    2014-12-01

    Full Text Available The squid pen (gladius from the Loligo vulgaris was used for preparation of β-chitin materials characterized by different chemical, micro- and nano-structural properties that preserved, almost completely the macrostructural and the mechanical ones. The β-chitin materials obtained by alkaline treatment showed porosity, wettability and swelling that are a function of the duration of the treatment. Microscopic, spectroscopic and synchrotron X-ray diffraction techniques showed that the chemical environment of the N-acetyl groups of the β-chitin chains changes after the thermal alkaline treatment. As a consequence, the crystalline packing of the β-chitin is modified, due to the intercalation of water molecules between β-chitin sheets. Potential applications of these β-chitin materials range from the nanotechnology to the regenerative medicine. The use of gladii, which are waste products of the fishing industry, has also important environmental implications.

  13. Chitin and carbon nanotube composites as biocompatible scaffolds for neuron growth

    Science.gov (United States)

    Singh, Nandita; Chen, Jinhu; Koziol, Krzysztof K.; Hallam, Keith R.; Janas, Dawid; Patil, Avinash J.; Strachan, Ally; G. Hanley, Jonathan; Rahatekar, Sameer S.

    2016-04-01

    The design of biocompatible implants for neuron repair/regeneration ideally requires high cell adhesion as well as good electrical conductivity. Here, we have shown that plasma-treated chitin carbon nanotube composite scaffolds show very good neuron adhesion as well as support of synaptic function of neurons. The addition of carbon nanotubes to a chitin biopolymer improved the electrical conductivity and the assisted oxygen plasma treatment introduced more oxygen species onto the chitin nanotube scaffold surface. Neuron viability experiments showed excellent neuron attachment onto plasma-treated chitin nanotube composite scaffolds. The support of synaptic function was evident on chitin/nanotube composites, as confirmed by PSD-95 staining. The biocompatible and electrically-conducting chitin nanotube composite scaffold prepared in this study can be used for in vitro tissue engineering of neurons and, potentially, as an implantable electrode for stimulation and repair of neurons.

  14. Removal of Petroleum Spill in Water by Chitin and Chitosan

    Directory of Open Access Journals (Sweden)

    Francisco Cláudio de Freitas Barros

    2014-05-01

    Full Text Available The present study was undertaken to evaluate the capacity of adsorption of crude oil spilled in seawater by chitin flakes, chitin powder, chitosan flakes, chitosan powder, and chitosan solution. The results showed that, although chitosan flakes had a better adsorption capacity by oil (0.379 ± 0.030 grams oil per gram of adsorbent, the biopolymer was sinking after adsorbing oil. Chitosan solution did not present such inconvenience, despite its lower adsorption capacity (0.013 ± 0.001 grams oil per gram of adsorbent. It was able to form a polymeric film on the oil slick, which allowed to restrain and to remove the oil from the samples of sea water. The study also suggests that chitosan solution 0.5% has greater efficiency against oil spills in alkaline medium than acidic medium.

  15. Extraction of Chitin from Trash Crabs (Podophthalmus vigil) by an Eccentric Method

    OpenAIRE

    Sunita Das

    2010-01-01

    The present study was undertaken to extract chitin from trash crab (Podophthalmus vigil) inCuddalore landing center. Demineralization is an important step in chitin purification process from crabs. Thechemical method of demineralization includes the use of strong acid (HCl) that harms the physiochemicalproperties of chitin. In the present study, Lactobacillus plantarum produced organic acid w as used to substitutethe Hydrochloric acid and deproteinization was done by fungus Aspergillus niger....

  16. "Nonfibrillar" chitin associated with walls and septa of Trichophyton mentagrophytes arthrospores.

    OpenAIRE

    Pollack, J H; Lange, C F; Hashimoto, T

    1983-01-01

    Two morphologically distinct forms of chitin were found in the arthrospore walls and septa of Trichophyton mentagrophytes. Two-thirds of the total wall chitin was the microfibrillar and chitinase-sensitive form. The remaining chitin existed in a previously uncharacterized "nonfibrillar" form and was insensitive to the action of Streptomyces chitinase. Exhaustive digestion of the arthrospore walls and septa with beta (1 leads to 3)-glucanase and chitinase followed by extraction with NaOH (1 N,...

  17. Structure and Function of Chitosan (V). Conformations of Ethylene Glycol Derivatives of Chitin and Chitosan

    OpenAIRE

    YUI, Toshifumi; NAKATA, Kunihiko; OGAWA, Kozo

    1996-01-01

    Molecular structures of ethylene glycol derivatives of chitin and chitosan, where 0-6 of chitin chain was etherified and both 0-3 and 0-6 of chitosan were substituted, were studied by X-ray fiber diffraction methods coupled with conformational analyses. The extended two-fold helical conformations of both chitin and chitosan chains were retained even by the etherifications. Possible molecular conformations of these derivatives were proposed.

  18. Chitin, Chitosan, and Its Derivatives for Wound Healing: Old and New Materials

    OpenAIRE

    Kazuo Azuma; Ryotaro Izumi; Tomohiro Osaki; Shinsuke Ifuku; Minoru Morimoto; Hiroyuki Saimoto; Saburo Minami; Yoshiharu Okamoto

    2015-01-01

    Chitin (β-(1-4)-poly-N-acetyl-D-glucosamine) is widely distributed in nature and is the second most abundant polysaccharide after cellulose. It is often converted to its more deacetylated derivative, chitosan. Previously, many reports have indicated the accelerating effects of chitin, chitosan, and its derivatives on wound healing. More recently, chemically modified or nano-fibrous chitin and chitosan have been developed, and their effects on wound healing have been evaluated. In this review,...

  19. A transcriptional regulator linking quorum sensing and chitin induction to render Vibrio cholerae naturally transformable

    OpenAIRE

    Lo Scrudato, Mirella; Blokesch, Melanie

    2013-01-01

    The human pathogen Vibrio cholerae is an aquatic bacterium associated with zooplankton and their chitinous exoskeletons. On chitinous surfaces, V. cholerae initiates a developmental programme, known as natural competence, to mediate transformation, which is a mode of horizontal gene transfer. Competence facilitates the uptake of free DNA and recombination into the bacterial genome. Recent studies have indicated that chitin surfaces are required, but not sufficient to induce competence. Two ad...

  20. FIBCD1 Modulation of the Epithelial Immune Response Elicited by Chitin

    DEFF Research Database (Denmark)

    Hammond, Mark; Schlosser, Anders; Bak-Thomsen, Theresa Helene;

    2010-01-01

    Background: FIBCD1 is a type II transmembrane protein located on the brush border of intestinal epithelial cells. FIBCD1 binds specifically to acetylated compounds such as chitin through the C-terminal fibrinogen-related domain. Chitin is a highly acetylated homopolymeric b-1,4-N-acetylglucosamine ...... to chitin may provide new strategies for therapeutic intervention of allergic or parasitic disease....

  1. Biotechnological process of chitin recovery from shrimp waste using Lactobacillus plantarum NCDN4

    OpenAIRE

    Le, Thanh Ha; Nguyen, Thi Ha

    2015-01-01

    Chitin in shrimp waste is tightly associated with proteins, lipids, pigments and mineral deposits. Therefore, these source materials have to be pretreated to remove these components. For a long time, chemical process has been used widely for extraction of chitin from shrimp waste. The chemical process however led to severe environmental damage and low chitin quality. The biological process has been shown promising to replace the harsh chemical process to reduce the environment impact. In our ...

  2. BIOSYNTHESIS OF NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    S. Sen

    2011-11-01

    Full Text Available Biosynthesis of nanoparticles is reviewed in detail in this study. Comparison of different synthesis methods, namely physical, chemical and green methods giving emphasis to biological synthesis is documented here. This study also details limitations of the present techniques and envisages the future scope of nanoparticle biosynthesis. Important applications of nanoparticles are also discussed briefly in the present report.

  3. Chitin synthetase in encysting Giardia lamblia and Entamoeba invadens

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.; Gillin, F.D.

    1987-05-01

    Giardia lamblia (Gl) and Entamoeba invadens (Ei) are protozoan parasites with two morphologic stages in their life cycles. Motile trophozoites colonize the intestine of humans and reptiles respectively. Water resistant cysts, which can survive outside the host, transmit infection. In vitro cyst formation of Ei from trophozoites has been reported, and the authors have recently induced in vitro encystation of Gl. Although the cyst walls of both parasites contain chitin, it synthesis by encysting trophozoites has not been reported. The authors now show that encystation conditions greatly increase chitin synthetase (CS) specific activity (incorporation of /sup 3/H GlcNAc from UDP-GlcNAc into TCA-or alcohol-precipitable material). Extracts of encysting Gl incorporated 3.6 nmol/mg protein in 5 hr compared to < 0.005 in controls. Extracts of encysting Fi incorporated 4.8 n mol/mg protein, compared to 1.7 in the control. CS activity of both parasites requires preformed chitin. The Gl enzyme requires a reducing agent, is inhibited by digitonin and the CS inhibitors, polyoxin D and Nikkomycin, but not by tunicamycin. The product is digested by chitinase. Ei enzyme does not require a reducing agent and is stimulated by 1 mg/ml digitonin, but inhibited by higher concentrations. These studies demonstrate CS enzymes which may play important roles in encystation of Gl and Ei.

  4. Versatile carboxymethyl chitin and chitosan nanomaterials: a review.

    Science.gov (United States)

    Narayanan, Deepa; Jayakumar, R; Chennazhi, K P

    2014-01-01

    Biocompatibility, biodegradability, and low cost of chitin and chitosan have drawn immense attention in many fields including medicine, bioinspired material science, pharmaceuticals, and agriculture. Their handling and processing are difficult owing to its insolubility in neutral aqueous solution or organic solvents. One of the methods used to improve the solubility characteristics of chitin and chitosan is chemical modification. Introducing a carboxymethyl group is the most advantageous method of increasing the solubility of chitosan at neutral and alkaline pH. Carboxymethyl chitin (CMC) and carboxymethyl chitosan (CMCS) are water soluble derivatives formed by introducing CH₂COOH function into the polymer which endows it with better biological properties. The functional group makes CMC/CMCS nanoparticles (NPs) efficient vehicles for the delivery of DNA, proteins, and drugs. This review provides an overview of the characteristics of CMC/CMCS NPs as well as fulfills the task of describing and discussing its important roles primarily in cancer nanomedicine detailing the targeted drug delivery aspect. The application of these NPs in imaging, agriculture, and textiles has also been highlighted. The review also elaborates the advantages of using the CMC and CMCS NPs for drug and gene delivery. PMID:25266740

  5. Chitin dipentanoate as the new technologically usable biomaterial.

    Science.gov (United States)

    Skołucka-Szary, Karolina; Ramięga, Aleksandra; Piaskowska, Wanda; Janicki, Bartosz; Grala, Magdalena; Rieske, Piotr; Stoczyńska-Fidelus, Ewelina; Piaskowski, Sylwester

    2015-10-01

    In this article, the synthesis of novel biopolymer, chitin dipentanoate (Di-O-Valeryl Chitin, DVCH) has been described. DVCH is a chitin derivative esterified with two valeryl groups at positions 3 and 6 of the N-acetylglucosamine units and it is soluble in common organic solvents like ethanol, methanol, acetone, dichloromethane, 1,2-dichloroethane, N,N-dimethylmethanamide, N,N-dimethylacetamide and ethyl acetate. Highly efficient synthesis (degree of esterification close to 2) of DVCH was achieved by employing a huge excess of valeric anhydride used as both the acylation agent and the reaction medium in the presence of perchloric acid as catalyst. Studies on the DVCH synthesis were aimed at finding optimal conditions (temperature, reaction time) to obtain DVCH with high reaction yield and desirable physicochemical properties. Biological data demonstrate that DVCH is non-cytotoxic in vitro and doesn't exert irritating or allergic effects to animal skin. Thanks to its filmogenic properties, it can be used to manufacture threads, foils, foams and non-woven materials. Moreover, DVCH can be easily processed by salt-leaching method to prepare highly porous structures exhibiting open-cell architecture, that can be further employed in wound dressing therapies and scaffolds for tissue engineering. PMID:26117738

  6. Chitin synthetase in encysting Giardia lamblia and Entamoeba invadens

    International Nuclear Information System (INIS)

    Giardia lamblia (Gl) and Entamoeba invadens (Ei) are protozoan parasites with two morphologic stages in their life cycles. Motile trophozoites colonize the intestine of humans and reptiles respectively. Water resistant cysts, which can survive outside the host, transmit infection. In vitro cyst formation of Ei from trophozoites has been reported, and the authors have recently induced in vitro encystation of Gl. Although the cyst walls of both parasites contain chitin, it synthesis by encysting trophozoites has not been reported. The authors now show that encystation conditions greatly increase chitin synthetase (CS) specific activity (incorporation of 3H GlcNAc from UDP-GlcNAc into TCA-or alcohol-precipitable material). Extracts of encysting Gl incorporated 3.6 nmol/mg protein in 5 hr compared to < 0.005 in controls. Extracts of encysting Fi incorporated 4.8 n mol/mg protein, compared to 1.7 in the control. CS activity of both parasites requires preformed chitin. The Gl enzyme requires a reducing agent, is inhibited by digitonin and the CS inhibitors, polyoxin D and Nikkomycin, but not by tunicamycin. The product is digested by chitinase. Ei enzyme does not require a reducing agent and is stimulated by 1 mg/ml digitonin, but inhibited by higher concentrations. These studies demonstrate CS enzymes which may play important roles in encystation of Gl and Ei

  7. EUCHIS '99 : proceedings of the 3rd international conference of the European Chitin Society, Potsdam, Germany, Aug. 31 - Sept. 3, 1999

    OpenAIRE

    2010-01-01

    Contents: Production and Applications of Chitin and Chitosan Krill as a promising raw material for the production of chitin in Europe - Containerized plant for producing chitin - Preparation and characterization of chitosan from Mucorales - Chitosan from Absidia orchidis - Scaling up of lactic acid fermentation of prawn wastes in packed-bed column reactor for chitin recovery - Preparation of chitin by acetic acid fermentation - Inter-source reproducibility of the chitin deacetylation process ...

  8. Comparison of Extraction Methods of Chitin from Ganoderma lucidum Mushroom Obtained in Submerged Culture

    Directory of Open Access Journals (Sweden)

    Sandra Patricia Ospina Álvarez

    2014-01-01

    Full Text Available The chitin was isolated from the Ganoderma lucidum submerged cultures mycelium as potential source of chitin under biotechnological processes. The extraction of chitin was carried out through 5 different assays which involved mainly three phases: pulverization of the mushroom, deproteinization of the mycelia with NaOH solution, and a process of decolorization with potassium permanganate and oxalic acid. The chitin contents extracted from 9-day mycelia were 413, 339, 87, 78, and 144 mg/g−1 (milligrams of chitin/grams of dry biomass for A1, A2, A3, A4, and A5, respectively. Obtained chitin was characterized by X-Ray Diffraction (XRD, by Fourier transform infrared spectroscopy (FTIR, and by thermal analysis (TGA. The results showed that Ganoderma lucidum chitin has similar characteristic of chitin from different fonts. The advantage of the biotechnological processes and the fact that Ganoderma lucidum fungus may be used as a potential raw material for chitin production were demonstrated.

  9. A comparative study of sorption of chromium (III) onto chitin and chitosan

    Science.gov (United States)

    Singh, Pooja; Nagendran, R.

    2016-06-01

    Heavy metals have always been the most hazardous components in the wastewater of industries like electroplating, automobiles, mining facilities and fertilizer manufacturers. Treatment of heavy metal laden wastewater requires expensive operational and maintenance systems. Food processing industries create a huge amount of shell waste which is sold to poultry farms in powdered form but the quantity thus used is still not comparable to the left over waste. The shell contains chitin which acts as an adsorbent for the heavy metals and can be used to treat heavy metal wastewater. The paper presents a study on the use of chitin and its processed product, chitosan, to remove chromium. Shake flask experiment was conducted to compare the adsorptive capacity of chitin and chitosan for chromium removal from simulated solution and isotherm studies were carried out. The studies showed that the chitosan was a better adsorbent than chitin. Both chitin and chitosan gave best adsorption results at pH 3. Chitin exhibited maximum chromium removal of 49.98 % in 20 min, whereas chitosan showed 50 % removal efficiency at a contact time of 20 min showing higher adsorptive capacity for chromium than chitin. The Langmiur and Freundlich isotherm studies showed very good adsorption capacity and monolayer interaction according to the regression coefficient 0.973 for chitosan and 0.915 for chitin. The regression coefficient for Freundlich isotherm was 0.894 and 0.831 for chitosan and chitin, respectively.

  10. Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part I. Isolation and identification of chitin.

    Science.gov (United States)

    Ehrlich, H; Ilan, M; Maldonado, M; Muricy, G; Bavestrello, G; Kljajic, Z; Carballo, J L; Schiaparelli, S; Ereskovsky, A; Schupp, P; Born, R; Worch, H; Bazhenov, V V; Kurek, D; Varlamov, V; Vyalikh, D; Kummer, K; Sivkov, V V; Molodtsov, S L; Meissner, H; Richter, G; Steck, E; Richter, W; Hunoldt, S; Kammer, M; Paasch, S; Krasokhin, V; Patzke, G; Brunner, E

    2010-08-01

    Marine invertebrate organisms including sponges (Porifera) not only provide an abundant source of biologically active secondary metabolites but also inspire investigations to develop biomimetic composites, scaffolds and templates for practical use in materials science, biomedicine and tissue engineering. Here, we presented a detailed study of the structural and physico-chemical properties of three-dimensional skeletal scaffolds of the marine sponges Aiolochroia crassa, Aplysina aerophoba, A. cauliformis, A. cavernicola, and A. fulva (Verongida: Demospongiae). We show that these fibrous scaffolds have a multilayered design and are made of chitin. (13)C solid-state NMR spectroscopy, NEXAFS, and IR spectroscopy as well as chitinase digestion and test were applied in order to unequivocally prove the existence of alpha-chitin in all investigated species. PMID:20471418

  11. Dynamics of Gram-negative bacteria population density in a soil in the course of the succession initiated by chitin and cellulose

    Science.gov (United States)

    Konstantin, Ivanov; Lubov, Polyanskaya

    2014-05-01

    The functions of actinomycetes in polymer destruction in soil traditionally considered as the dominant, compare to another groups of bacteria. Gram-positive bacteria also have ecological functions in destruction of soil organic matter. The role of Gram-negative bacteria has been researched in the microbial succession in terms of polymers destruction, which are widely spreads in soils: chitin and cellulose. The method with nalidixic acid as an inhibitor of DNA division of Gram-negative bacteria was modified. By modified method microbial succession of Gram-negative bacteria in the different horizons of a chernozem under aerobic and anaerobic conditions was researched. Chitin and cellulose as the source of nutrients with moistening was used in experiments. The introduction of chitin had no positive effect on the population density of Gram-negative bacteria in a chernozem, but it advanced the date of their appearance in microbial succession: the maximum of Gram-negative bacteria population density was registered on the 3rd- 7th day of the experiment with adding chitin. Compare to the control, which one was without any nutrient adding this dynamics registered much earlier. Consequently, the introduction of chitin as an additional source of nutrition promoted revealing of the Gram-negative bacteria in soil already at the early stages of the succession. In the course of the succession, when the fungal mycelium begins to die off, the actinomycetic mycelium increases in length, i.e., Gram-negative bacteria are replaced at this stage with Gram-positive ones, the leading role among which belongs to actinomycetes. The growth rate of Gram-negative bacteria is higher than that of actinomycetes, so they start chitin utilization at the early stages of the succession, whereas actinomycetes dominate at the late stages. The population density of Gram-negative bacteria was lower under the anaerobic conditions as compared with that in the aerobic ones. The population density of Gram

  12. Recovery of astaxanthin from discharged wastewater during the production of chitin

    Science.gov (United States)

    Chen, Xiaolin; Yang, Shengfeng; Xing, Ronge; Yu, Huahua; Liu, Song; Li, Pengcheng

    2012-06-01

    In this paper, studies were carried out to extract astaxanthin from discharged wastewater during the production of chitin and to reveal the scavenging effect of the obtained pigment on 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical. Different ratios of dichloromethane/methanol (V/V) were used to extract astaxanthin. When the ratio of dichloromethane/methanol was 2:8 and the ratio between the mixed organic solvent (dichloromethane/methanol, 2:8, V/V) and wastewater was 1:1, the highest yield of pigment was obtained (8.4 mg/50 mL). The concentration of free astaxanthin in the obtained pigment analyzed by HPLC was 30.02%. The obtained pigment possessed strong scavenging ability on DPPH radical and IC50 was 0.84mg/ml.

  13. SEM characterization of anatomical variation in chitin organization in insect and arthropod cuticles.

    Science.gov (United States)

    Chandran, Rakkiyappan; Williams, Lee; Hung, Albert; Nowlin, Kyle; LaJeunesse, Dennis

    2016-03-01

    The cuticles of insects and arthropods have some of the most diverse material properties observed in nature, so much so that it is difficult to imagine that all cutciles are primarily composed of the same two materials: a fibrous chitin network and a matrix composed of cuticle proteins. Various factors contribute to the mechanical and optical properties of an insect or arthropod cuticle including the thickness and composition. In this paper, we also identified another factor that may contribute to the optical, surface, and mechanical properties of a cuticle, i.e. the organization of chitin nanofibers and chitin fiber bundles. Self-assembled chitin nanofibers serve as the foundation for all higher order chitin structures in the cuticles of insects and other arthropods via interactions with structural cuticle proteins. Using a technique that enables the characterization of chitin organization in the cuticle of intact insects and arthropod exoskeletons, we demonstrate a structure/function correlation of chitin organization with larger scale anatomical structures. The chitin scaffolds in cuticles display an extraordinarily diverse set of morphologies that may reflect specific mechanical or physical properties. After removal of the proteinaceous and mineral matrix of a cuticle, we observe using SEM diverse nanoscale and micro scale organization of in-situ chitin in the wing, head, eye, leg, and dorsal and ventral thoracic regions of the periodical cicada Magicicada septendecim and in other insects and arthropods. The organization of chitin also appears to have a significant role in the organization of nanoscale surface structures. While microscale bristles and hairs have long been known to be chitin based materials formed as cellular extensions, we have found a nanostructured layer of chitin in the cuticle of the wing of the dog day annual cicada Tibicen tibicens, which may be the scaffold for the nanocone arrays found on the wing. We also use this process to examine

  14. Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation

    OpenAIRE

    Feng Xue; Er-jun Wu; Pei-xun Zhang; Li-ya A; Yu-hui Kou; Xiao-feng Yin; Na Han

    2015-01-01

    We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive fo...

  15. Identification of Genes Putatively Involved in Chitin Metabolism and Insecticide Detoxification in the Rice Leaf Folder (Cnaphalocrocis medinalis) Larvae through Transcriptomic Analysis

    OpenAIRE

    Hai-Zhong Yu; De-Fu Wen; Wan-Lin Wang; Lei Geng; Yan Zhang; Jia-Ping Xu

    2015-01-01

    The rice leaf roller (Cnaphalocrocis medinalis) is one of the most destructive agricultural pests. Due to its migratory behavior, it is difficult to control worldwide. To date, little is known about major genes of C. medinalis involved in chitin metabolism and insecticide detoxification. In order to obtain a comprehensive genome dataset of C. medinalis, we conducted de novo transcriptome sequencing which focused on the major feeding stage of fourth-instar larvae, and our work revealed usef...

  16. Preparation of Size-Controlled Silver Nanoparticles and Chitin-Based Composites and Their Antimicrobial Activities

    International Nuclear Information System (INIS)

    A simple method for the preparation of size-controlled spherical silver nanoparticles (Ag NPs) was reported for their generation by autoclaving a mixture of silver-containing glass powder and glucose. The particle size is regulated by the glucose concentration, with concentrations of 0.25, 1.0, and 4.0 wt % glucose providing small (3.48±1.83 nm in diameter), medium (6.53±1.78 nm), and large (12.9 ±2.5 nm) particles, respectively. In this study, Ag NP/chitin composites were synthesized by mixing each of these three Ag NP suspensions with a <5% deacetylated (DAc) chitin powder (ph 7.0) at room temperature. The Ag NPs were homogeneously dispersed and stably adsorbed onto the chitin. The Ag NP/chitin composites were obtained as yellow or brown powders. Approximately 5, 15, and 20 μg of the small, medium, and large Ag NPs, respectively, were estimated to maximally adsorb onto 1 mg of chitin. The bactericidal and antifungal activities of the Ag NP/chitin composites increased as the amount of Ag NPs in the chitin increased. Furthermore, smaller Ag NPs (per weight) in the chitin composites provided higher bactericidal and anti-fungal activities.

  17. Hemocyanin with phenoloxidase activity in the chitin matrix of the crayfish gastrolith.

    Science.gov (United States)

    Glazer, Lilah; Tom, Moshe; Weil, Simy; Roth, Ziv; Khalaila, Isam; Mittelman, Binyamin; Sagi, Amir

    2013-05-15

    Gastroliths are transient extracellular calcium deposits formed by the crayfish Cherax quadricarinatus von Martens on both sides of the stomach wall during pre-molt. Gastroliths are made of a rigid chitinous organic matrix, constructed as sclerotized chitin-protein microfibrils within which calcium carbonate is deposited. Although gastroliths share many characteristics with the exoskeleton, they are simpler in structure and relatively homogeneous in composition, making them an excellent cuticle-like model for the study of cuticular proteins. In searching for molt-related proteins involved in gastrolith formation, two integrated approaches were employed, namely the isolation and mass spectrometric analysis of proteins from the gastrolith matrix, and 454-sequencing of mRNAs from both the gastrolith-forming and sub-cuticular epithelia. SDS-PAGE separation of gastrolith proteins revealed a set of bands at apparent molecular masses of 75-85 kDa; mass spectrometry data matched peptide sequences from the deduced amino acid sequences of seven hemocyanin transcripts. This assignment was then examined by immunoblot analysis using anti-hemocyanin antibodies, also used to determine the spatial distribution of the proteins in situ. Apart from contributing to oxygen transport, crustacean hemocyanins were previously suggested to be involved in several aspects of the molt cycle, including hardening of the new post-molt exoskeleton via phenoloxidation. The phenoloxidase activity of gastrolith hemocyanins was demonstrated. It was also noted that hemocyanin transcript expression during pre-molt was specific to the hepatopancreas. Our results thus reflect a set of functionally versatile proteins, expressed in a remote metabolic tissue and dispersed via the hemolymph to perform different roles in various organs and structures. PMID:23393281

  18. Preparation of monolithic silica-chitin composite under extreme biomimetic conditions.

    Science.gov (United States)

    Bazhenov, Vasilii V; Wysokowski, Marcin; Petrenko, Iaroslav; Stawski, Dawid; Sapozhnikov, Philipp; Born, René; Stelling, Allison L; Kaiser, Sabine; Jesionowski, Teofil

    2015-05-01

    Chitin is a widespread renewable biopolymer that is extensively distributed in the natural world. The high thermal stability of chitin provides an opportunity to develop novel inorganic-organic composites under hydrothermal synthesis conditions in vitro. For the first time, in this work we prepared monolithic silica-chitin composite under extreme biomimetic conditions (80°C and pH 1.5) using three dimensional chitinous matrices isolated from the marine sponge Aplysina cauliformis. The resulting material was studied using light and fluorescence microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy. A mechanism for the silica-chitin interaction after exposure to these hydrothermal conditions is proposed and discussed. PMID:25701776

  19. Chitin enhances serum IgE in Aspergillus fumigatus induced allergy in mice

    DEFF Research Database (Denmark)

    Dubey, Lalit Kumar; Moeller, Jesper Bonnet; Schlosser, Anders;

    2015-01-01

    Aspergillus fumigatus (A. fumigatus) is a ubiquitous fungus that activates, suppresses or modulates the immune response by changing its cell wall structure and by secreting proteases. In this study, we show that chitin acts as an adjuvant in a murine model of A. fumigatus protease induced allergy....... The mice were immunised intraperitoneally with A. fumigatus culture filtrate antigen either with or without chitin and were subsequently challenged with the culture filtrate antigen intranasally. Alum was used as an adjuvant control. Compared to alum, chitin induced a weaker inflammatory response in...... the lungs, measured as the total cell efflux in BAL, EPO and chitinase production. However, chitin enhanced the total IgE, specific IgE and specific IgG1 production as efficiently as alum. Pre-treatment with chitin but not with alum depressed the concentration of the Th2 cytokines IL-4 and IL-13 in...

  20. Biodegradable composite chitosan/chitin nanofibrils films for food packaging

    Czech Academy of Sciences Publication Activity Database

    Tishchenko, Galina; Špírková, Milena; Pavlová, Eva; Brus, Jiří; Kelnar, Ivan; Brožová, Libuše; Peter, Jakub; Pekárek, Michal; Dohnálek, Jan; Rosova, E. Yu.; Elyashevich, G. K.; Morganti, P.

    Praha : Česká společnost chemického inženýrství, 2012. 0786. ISBN 978-80-905035-1-9. [International Congress of Chemical and Process Engineering CHISA 2012 /20./ and Conference PRES 2012 /15./. 25.08.2012-29.08.2012, Praha] R&D Projects: GA ČR GA310/09/1407 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : chitosan * chitin nanofibrils * composite films Subject RIV: EE - Microbiology, Virology

  1. Microbial responses to chitin and chitosan in oxic and anoxic agricultural soil slurries

    Directory of Open Access Journals (Sweden)

    A. S. Wieczorek

    2014-02-01

    Full Text Available Chitin is the second most abundant biopolymer in terrestrial ecosystems and is subject to microbial degradation. Chitin can be deacetylated to chitosan or can be hydrolyzed to N,N′-diacetylchitobiose and oligomers of N-acetylglucosamine by aerobic and anaerobic microorganisms. Which pathway of chitin hydrolysis is preferred by soil microbial communities has previously been unknown. Supplementation of chitin stimulated microbial activity under oxic and anoxic conditions in agricultural soil slurries, whereas chitosan had no effect. Thus, the soil microbial community likely was more adapted to chitin as a substrate. In addition, this finding suggested that direct hydrolysis of chitin was preferred to the pathway that starts with deacetylation. Chitin was apparently degraded by aerobic respiration, ammonification, and nitrification to carbon dioxide and nitrate under oxic conditions. When oxygen was absent, fermentation products (acetate, butyrate, propionate, hydrogen, carbon dioxide and ammonia were detected, suggesting that butyric and propionic acid fermentation were along with ammonification likely responsible for apparent anaerobic chitin degradation. In total, 42 different chiA genotypes were detected of which twenty were novel at an amino acid sequence dissimilarity of >50%. Various chiA genotypes responded to chitin supplementation and affiliated with a novel deep-branching bacterial chiA genotype (anoxic conditions, genotypes of Beta- and Gammaproteobacteria (oxic and anoxic conditions, and Planctomycetes (oxic conditions. Thus, this study provides evidence that detected chitinolytic bacteria were catabolically diverse and occupied different ecological niches with regard to oxygen availability enabling chitin degradation under various redox conditions at the level of the community.

  2. Microbial responses to chitin and chitosan in oxic and anoxic agricultural soil slurries

    Science.gov (United States)

    Wieczorek, A. S.; Hetz, S. A.; Kolb, S.

    2014-06-01

    Microbial degradation of chitin in soil substantially contributes to carbon cycling in terrestrial ecosystems. Chitin is globally the second most abundant biopolymer after cellulose and can be deacetylated to chitosan or can be hydrolyzed to N,N'-diacetylchitobiose and oligomers of N-acetylglucosamine by aerobic and anaerobic microorganisms. Which pathway of chitin hydrolysis is preferred by soil microbial communities is unknown. Supplementation of chitin stimulated microbial activity under oxic and anoxic conditions in agricultural soil slurries, whereas chitosan had no effect. Thus, the soil microbial community likely was more adapted to chitin as a substrate. In addition, this finding suggested that direct hydrolysis of chitin was preferred to the pathway that starts with deacetylation. Chitin was apparently degraded by aerobic respiration, ammonification, and nitrification to carbon dioxide and nitrate under oxic conditions. When oxygen was absent, fermentation products (acetate, butyrate, propionate, hydrogen, and carbon dioxide) and ammonia were detected, suggesting that butyric and propionic acid fermentation, along with ammonification, were likely responsible for anaerobic chitin degradation. In total, 42 different chiA genotypes were detected of which twenty were novel at an amino acid sequence dissimilarity of less than 50%. Various chiA genotypes responded to chitin supplementation and affiliated with a novel deep-branching bacterial chiA genotype (anoxic conditions), genotypes of Beta- and Gammaproteobacteria (oxic and anoxic conditions), and Planctomycetes (oxic conditions). Thus, this study provides evidence that detected chitinolytic bacteria were catabolically diverse and occupied different ecological niches with regard to oxygen availability enabling chitin degradation under various redox conditions on community level.

  3. Histidine biosynthesis, its regulation and biotechnological application in Corynebacterium glutamicum

    OpenAIRE

    Kulis-Horn, Robert K; Persicke, Marcus; Kalinowski, Jörn

    2013-01-01

    l-Histidine biosynthesis is an ancient metabolic pathway present in bacteria, archaea, lower eukaryotes, and plants. For decades l-histidine biosynthesis has been studied mainly in Escherichia coli and Salmonella typhimurium, revealing fundamental regulatory processes in bacteria. Furthermore, in the last 15 years this pathway has been also investigated intensively in the industrial amino acid-producing bacterium Corynebacterium glutamicum, revealing similarities to E. coli and S. typhimurium...

  4. Extensively deacetylated high molecular weight chitosan from the multistep ultrasound-assisted deacetylation of beta-chitin.

    Science.gov (United States)

    Fiamingo, Anderson; Delezuk, Jorge Augusto de Moura; Trombotto, Stéphane; David, Laurent; Campana-Filho, Sergio Paulo

    2016-09-01

    High intensity ultrasound irradiation was used to convert beta-chitin (BCHt) into chitosan (CHs). Typically, beta-chitin was suspended in 40% (w/w) aqueous sodium hydroxide at a ratio 1/10 (gmL(-1)) and then submitted to ultrasound-assisted deacetylation (USAD) during 50min at 60°C and a fixed irradiation surface intensity (52.6Wcm(-2)). Hydrogen nuclear magnetic resonance spectroscopy and capillary viscometry were used to determine the average degree of acetylation (DA‾) and viscosity average degree of polymerization (DPv‾), respectively, of the parent beta-chitin (DA‾=80.7%; DPv‾=6865) and USAD chitosans. A first USAD reaction resulted in chitosan CHs1 (DA‾=36.7%; DPv‾=5838). Chitosans CHs2 (DA‾=15.0%; DPv‾=5128) and CHs3 (DA‾=4.3%; DPv‾=4889) resulted after repeating the USAD procedure to CHs1 consecutively once and twice, respectively. Size-exclusion chromatography analyzes allowed the determination of the weight average molecular weight (Mw‾) and dispersity (Ð) of CHs1 (Mw‾=1,260,000gmol(-1); Ð=1.4), CHs2 (Mw‾=1,137,000gmol(-1); Ð=1.4) and CHs3 (Mw‾=912,000gmol(-1); Ð=1.3). Such results revealed that, thanks to the action of high intensity ultrasound irradiation, the USAD process allowed the preparation of unusually high molecular weight, randomly deacetylated chitosan, an important breakthrough to the development of new high grade chitosan-based materials displaying superior mechanical properties. PMID:27150748

  5. Ha83, a Chitin Binding Domain Encoding Gene, Is Important to Helicoverpa armigera Nucleopolyhedrovirus Budded Virus Production and Occlusion Body Assembling.

    Science.gov (United States)

    Yu, Huan; Xu, Jian; Liu, Qiang; Liu, Tong-Xian; Wang, Dun

    2015-01-01

    Helicoerpa armigera nucleopolyhedrovirus (HearNPV) ha83 is a late expressed gene that encodes a chitin binding protein. Chitin domain truncation studies revealed that the cysteine at the 128 amino acid position probably played an important role in both chitin binding ability and protein transmission of Ha83. In order to study the function of ha83 in the HearNPV infection cycle, an ha83 knockout HearNPV (Ha83KO) was constructed via homologous recombination. Viral growth and viral DNA replication curves showed that fewer budded virions were produced in Ha83KO transfected cells, while viral DNA replication was increased. Electron microscopy revealed that fewer nucleocapsids were transmitted from virogenic stroma in the Ha83KO transfected cell nucleus, and the morphology of occlusion bodies was prominently larger and cube-shaped. Furthermore, DNA quantity in occlusion bodies of Ha83KO was significantly lower than the occlusion bodies of HaWT. The transcription analysis indicated that these changes may be due to the decreased expression level of viral structural associated genes, such as polyhedrin, p10, pif-2, or cg30 in Ha83KO infected cells. Above results demonstrated that the cysteine at the 128 amino acid position in Ha83 might be the key amino acid, and Ha83 plays an important role in BVs production and OBs assembling. PMID:26057202

  6. A reversible Renilla luciferase protein complementation assay for rapid identification of protein–protein interactions reveals the existence of an interaction network involved in xyloglucan biosynthesis in the plant Golgi apparatus

    OpenAIRE

    Lund, C. H.; Bromley, J. R.; Stenbaek, A.; Rasmussen, R. E.; Scheller, H. V.; Sakuragi, Y.

    2014-01-01

    A growing body of evidence suggests that protein–protein interactions (PPIs) occur amongst glycosyltransferases (GTs) required for plant glycan biosynthesis (e.g. cell wall polysaccharides and N-glycans) in the Golgi apparatus, and may control the functions of these enzymes. However, identification of PPIs in the endomembrane system in a relatively fast and simple fashion is technically challenging, hampering the progress in understanding the functional coordination of the enzymes in Golgi gl...

  7. Rheological Properties of Aqueous Suspensions of Chitin Crystallites

    Science.gov (United States)

    Li; Revol; Marchessault

    1996-11-10

    Rheologically, suspensions of chitin crystallites are found to behave as other molecular liquid crystalline polymers (LCPs). The average hydrodynamic diameter of the crystallites in the suspension at pH 4 is determined to be approximately 80 nm using dynamic light scattering. Conductimetric and pH titration results show that the pKa of the crystallites is 6.3, which is the same as that reported for chitosan. In combination with phase diagrams, flow properties of isotropic, biphasic, and anisotropic chitin suspensions were investigated. For isotropic suspensions, a classical shear thinning behavior of rodlike particles is observed. In the case of biphasic suspensions, a two-regime curve is observed where tactoids first orient, deform, and then break up under a shearing force. Similar to other LCPs, a three-regime flow curve is found for the anisotropic suspensions. The viscosity-concentration curve exhibits a maximum at the phase separation concentration, and this maximum is less distinct with a decrease of the ionic strength. Secondary electroviscous effects due to strong particle-particle interactions influence the viscosity of the suspensions at higher concentrations. PMID:8954679

  8. Global mRNA expression analysis in myosin II deficient strains of Saccharomyces cerevisiae reveals an impairment of cell integrity functions

    Directory of Open Access Journals (Sweden)

    Rivera-Molina Félix E

    2008-01-01

    Full Text Available Abstract Background The Saccharomyces cerevisiae MYO1 gene encodes the myosin II heavy chain (Myo1p, a protein required for normal cytokinesis in budding yeast. Myo1p deficiency in yeast (myo1Δ causes a cell separation defect characterized by the formation of attached cells, yet it also causes abnormal budding patterns, formation of enlarged and elongated cells, increased osmotic sensitivity, delocalized chitin deposition, increased chitin synthesis, and hypersensitivity to the chitin synthase III inhibitor Nikkomycin Z. To determine how differential expression of genes is related to these diverse cell wall phenotypes, we analyzed the global mRNA expression profile of myo1Δ strains. Results Global mRNA expression profiles of myo1Δ strains and their corresponding wild type controls were obtained by hybridization to yeast oligonucleotide microarrays. Results for selected genes were confirmed by real time RT-PCR. A total of 547 differentially expressed genes (p ≤ 0.01 were identified with 263 up regulated and 284 down regulated genes in the myo1Δ strains. Gene set enrichment analysis revealed the significant over-representation of genes in the protein biosynthesis and stress response categories. The SLT2/MPK1 gene was up regulated in the microarray, and a myo1Δslt2Δ double mutant was non-viable. Overexpression of ribosomal protein genes RPL30 and RPS31 suppressed the hypersensitivity to Nikkomycin Z and increased the levels of phosphorylated Slt2p in myo1Δ strains. Increased levels of phosphorylated Slt2p were also observed in wild type strains under these conditions. Conclusion Following this analysis of global mRNA expression in yeast myo1Δ strains, we conclude that 547 genes were differentially regulated in myo1Δ strains and that the stress response and protein biosynthesis gene categories were coordinately regulated in this mutant. The SLT2/MPK1 gene was confirmed to be essential for myo1Δ strain viability, supporting that the up

  9. Polycaprolactone-Chitin Nanofibrous Mats as Potential Scaffolds for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Min Sup Kim

    2012-01-01

    Full Text Available We describe here the preparation of poly(caprolactone (PCL-chitin nanofibrous mats by electrospinning from a blended solution of PCL and chitin dissolved in a cosolvent, 1,1,1,3,3,3-hexafluoro-2-propanol and trifluoroacetic acid. Scanning electron microscopy showed that the neutralized PCL-chitin nanofibrous mats were morphologically stable, with a mean diameter of 340.5±2.6 nm, compared with a diameter of 524.2±12.1 nm for PCL mats. The nanofibrous mats showed decreased water contact angles as the proportion of chitin increased. However, the tensile properties of nanofibrous mats containing 30~50% (wt/wt chitin were enhanced compared with PCL-only mats. In vitro studies showed that the viability of human dermal fibroblasts (HDFs for up to 7 days in culture was higher on composite (OD value: 1.42±0.09 than on PCL-only (0.51±0.14 nanofibrous mats, with viability correlated with chitin concentration. Together, our results suggest that PCL-chitin nanofibrous mats can be used as an implantable substrate to modulate HDF viability in tissue engineering.

  10. Salmonella biofilm formation on Aspergillus niger involves cellulose--chitin interactions.

    Science.gov (United States)

    Brandl, Maria T; Carter, Michelle Q; Parker, Craig T; Chapman, Matthew R; Huynh, Steven; Zhou, Yaguang

    2011-01-01

    Salmonella cycles between host and nonhost environments, where it can become an active member of complex microbial communities. The role of fungi in the environmental adaptation of enteric pathogens remains relatively unexplored. We have discovered that S. enterica Typhimurium rapidly attaches to and forms biofilms on the hyphae of the common fungus, Aspergillus niger. Several Salmonella enterica serovars displayed a similar interaction, whereas other bacterial species were unable to bind to the fungus. Bacterial attachment to chitin, a major constituent of fungal cell walls, mirrored this specificity. Pre-incubation of S. Typhimurium with N-acetylglucosamine, the monomeric component of chitin, reduced binding to chitin beads by as much as 727-fold and inhibited attachment to A. niger hyphae considerably. A cellulose-deficient mutant of S. Typhimurium failed to attach to chitin beads and to the fungus. Complementation of this mutant with the cellulose operon restored binding to chitin beads to 79% of that of the parental strain and allowed for attachment and biofilm formation on A. niger, indicating that cellulose is involved in bacterial attachment to the fungus via the chitin component of its cell wall. In contrast to cellulose, S. Typhimurium curli fimbriae were not required for attachment and biofilm development on the hyphae but were critical for its stability. Our results suggest that cellulose-chitin interactions are required for the production of mixed Salmonella-A. niger biofilms, and support the hypothesis that encounters with chitinaceous alternate hosts may contribute to the ecological success of human pathogens. PMID:22003399

  11. Description of a new surface morphology for chitin extracted from wings of cockroach (Periplaneta americana).

    Science.gov (United States)

    Kaya, Murat; Baran, Talat

    2015-04-01

    In this study a new morphology of chitin, which could find wide applications in the fields of medicine, pharmacy, agriculture, food and textiles, has been described. The chitin was isolated from the wings of Periplaneta americana employing a conventional method. Considering chitin isolation studies conducted previously, chitin has three surface morphologies, which are (1) hard and rough surface without pores or nanofibers, (2) surface solely composed of nanofibers and (3) surfaces with both pores and nanofibers. In this study, the surface of the chitin, examined with environmental scanning electron microscopy (ESEM), only has oval nanopores (230-510 nm) without nanofibers, and this is different from the above mentioned surface morphologies. The nanopores are not distributed on the chitin surface randomly. Typically, there is a pore in the center that is surrounded by six or seven other pores in an ordered manner. Structures similar to cell walls exist between the pores. Chitin with the new surface morphology was characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG), X-ray diffraction (XRD) and elemental analysis. PMID:25597430

  12. Salmonella biofilm formation on Aspergillus niger involves cellulose--chitin interactions.

    Directory of Open Access Journals (Sweden)

    Maria T Brandl

    Full Text Available Salmonella cycles between host and nonhost environments, where it can become an active member of complex microbial communities. The role of fungi in the environmental adaptation of enteric pathogens remains relatively unexplored. We have discovered that S. enterica Typhimurium rapidly attaches to and forms biofilms on the hyphae of the common fungus, Aspergillus niger. Several Salmonella enterica serovars displayed a similar interaction, whereas other bacterial species were unable to bind to the fungus. Bacterial attachment to chitin, a major constituent of fungal cell walls, mirrored this specificity. Pre-incubation of S. Typhimurium with N-acetylglucosamine, the monomeric component of chitin, reduced binding to chitin beads by as much as 727-fold and inhibited attachment to A. niger hyphae considerably. A cellulose-deficient mutant of S. Typhimurium failed to attach to chitin beads and to the fungus. Complementation of this mutant with the cellulose operon restored binding to chitin beads to 79% of that of the parental strain and allowed for attachment and biofilm formation on A. niger, indicating that cellulose is involved in bacterial attachment to the fungus via the chitin component of its cell wall. In contrast to cellulose, S. Typhimurium curli fimbriae were not required for attachment and biofilm development on the hyphae but were critical for its stability. Our results suggest that cellulose-chitin interactions are required for the production of mixed Salmonella-A. niger biofilms, and support the hypothesis that encounters with chitinaceous alternate hosts may contribute to the ecological success of human pathogens.

  13. Biosynthesis of tylophora alkaloids

    International Nuclear Information System (INIS)

    Using labelled precursors, biosynthesis of the tylophora alkaloids, tylophorine, tylophorinidine and tylophorinide has been investigated in Tylophora asthmatica plants. The radioactive precursors, phenylalanine-2-14C, benzoic acid-1-14C, benzoic acid-ring 14C, acetate-2-14C, ornithine-5-14C, acetate-2-14C, ornithine-5-14C and cinnamic acid-2-14C were administered to the plants individually by wick technique. Tylophorine was isolated in each case and assayed for its radioactivity to find out the incorporation of the label into it. The results indicate that: (1) phenylalanine via cinnamic acid is an important precursor in the biosynthesis of tylophorine (2) orinithine participates in tylophorine biosynthesis via pyrroline and (3) tylophorinidine may be a direct precursor of tylophorine. (M.G.B.)

  14. Mammalian cardiolipin biosynthesis.

    Science.gov (United States)

    Mejia, Edgard M; Nguyen, Hieu; Hatch, Grant M

    2014-04-01

    Cardiolipin is a major phospholipid in mitochondria and is involved in the generation of cellular energy in the form of ATP. In mammalian and eukaryotic cells it is synthesized via the cytidine-5'-diphosphate-1,2-diacyl-sn-glycerol phosphate pathway. This brief review will describe some of the more recent studies on mammalian cardiolipin biosynthesis and provide an overview of regulation of cardiolipin biosynthesis. In addition, the important role that this key phospholipid plays in disease processes including heart failure, diabetes, thyroid hormone disease and the genetic disease Barth Syndrome will be discussed. PMID:24144810

  15. Solvothermal synthesis of hydrophobic chitin-polyhedral oligomeric silsesquioxane (POSS) nanocomposites.

    Science.gov (United States)

    Wysokowski, Marcin; Materna, Katarzyna; Walter, Juliane; Petrenko, Iaroslav; Stelling, Allison L; Bazhenov, Vasilii V; Klapiszewski, Łukasz; Szatkowski, Tomasz; Lewandowska, Olga; Stawski, Dawid; Molodtsov, Serguei L; Maciejewski, Hieronim; Ehrlich, Hermann; Jesionowski, Teofil

    2015-01-01

    Chitinous scaffolds isolated from the skeleton of marine sponge Aplysina cauliformis were used as a template for the deposition of polyhedral oligomeric silsesquioxanes (POSS). These chitin-POSS based composites with hydrophobic properties were prepared for the first time using solvothermal synthesis (pH 3, temp 80 °C), and were thoroughly characterized. The resulting material was studied using scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and thermogravimetry. A mechanism for the chitin-POSS interaction after exposure to these solvothermal conditions is proposed and discussed. PMID:25889055

  16. Polycaprolactone-Chitin Nanofibrous Mats as Potential Scaffolds for Tissue Engineering

    OpenAIRE

    Min Sup Kim; Sang Jun Park; Bon Kang Gu; Chun-Ho Kim

    2012-01-01

    We describe here the preparation of poly(caprolactone) (PCL)-chitin nanofibrous mats by electrospinning from a blended solution of PCL and chitin dissolved in a cosolvent, 1,1,1,3,3,3-hexafluoro-2-propanol and trifluoroacetic acid. Scanning electron microscopy showed that the neutralized PCL-chitin nanofibrous mats were morphologically stable, with a mean diameter of 340.5±2.6 nm, compared with a diameter of 524.2±12.1 nm for PCL mats. The nanofibrous mats showed decreased water contact angle...

  17. Chitins and Chitosans as Immunoadjuvants and Non-Allergenic Drug Carriers

    Directory of Open Access Journals (Sweden)

    Riccardo A. A. Muzzarelli

    2010-02-01

    Full Text Available Due to the fact that some individuals are allergic to crustaceans, the presumed relationship between allergy and the presence of chitin in crustaceans has been investigated. In vivo, chitin is part of complex structures with other organic and inorganic compounds: in arthropods chitin is covalently linked to proteins and tanned by quinones, in fungi it is covalently linked to glucans, while in bacteria chitin is diversely combined according to Gram(+/- classification. On the other hand, isolated, purified chitin is a plain polysaccharide that, at the nano level, presents itself as a highly associated structure, recently refined in terms of regularity, nature of bonds, crystallinity degree and unusual colloidal behavior. Chitins and modified chitins exert a number of beneficial actions, i.e., (i they stimulate macrophages by interacting with receptors on the macrophage surface that mediate the internalization of chitin particles to be degraded by lysozyme and N-acetyl-β-glucosaminidase (such as Nod-like, Toll-like, lectin, Dectin-1, leukotriene 134 and mannose receptors; (ii the macrophages produce cytokines and other compounds that confer non-specific host resistance against bacterial and viral infections, and anti-tumor activity; (iii chitin is a strong Th1 adjuvant that up-regulates Th1 immunity induced by heat-killed Mycobacterium bovis, while down- regulating Th2 immunity induced by mycobacterial protein; (iv direct intranasal application of chitin microparticles into the lung was also able to significantly down-regulate allergic response to Dermatophagoids pteronyssinus and Aspergillus fumigatus in a murine model of allergy; (v chitin microparticles had a beneficial effect in preventing and treating histopathologic changes in the airways of asthmatic mice; (vi authors support the fact that chitin depresses the development of adaptive type 2 allergic responses. Since the expression of chitinases, chitrotriosidase and chitinase-like proteins

  18. MICROBIAL FERMENTATION OF ABUNDANT BIOPOLYMERS: CELLULOSE AND CHITIN

    Energy Technology Data Exchange (ETDEWEB)

    Leschine, Susan

    2009-10-31

    Our research has dealt with seven major areas of investigation: i) characterization of cellulolytic members of microbial consortia, with special attention recently given to Clostridium phytofermentans, a bacterium that decomposes cellulose and produces uncommonly large amounts of ethanol, ii) investigations of the chitinase system of Cellulomonas uda; including the purification and characterization of ChiA, the major component of this enzyme system, iii) molecular cloning, sequence and structural analysis of the gene that encodes ChiA in C. uda, iv) biofilm formation by C. uda on nutritive surfaces, v) investigations of the effects of humic substances on cellulose degradation by anaerobic cellulolytic microbes, vi) studies of nitrogen metabolism in cellulolytic anaerobes, and vii) understanding the molecular architecture of the multicomplex cellulase-xylanase system of Clostridium papyrosolvens. Also, progress toward completing the research of more recent projects is briefly summarized. Major accomplishments include: 1. Characterization of Clostridium phytofermentans, a cellulose-fermenting, ethanol-producing bacterium from forest soil. The characterization of a new cellulolytic species isolated from a cellulose-decomposing microbial consortium from forest soil was completed. This bacterium is remarkable for the high concentrations of ethanol produced during cellulose fermentation, typically more than twice the concentration produced by other species of cellulolytic clostridia. 2. Examination of the use of chitin as a source of carbon and nitrogen by cellulolytic microbes. We discovered that many cellulolytic anaerobes and facultative aerobes are able to use chitin as a source of both carbon and nitrogen. This major discovery expands our understanding of the biology of cellulose-fermenting bacteria and may lead to new applications for these microbes. 3. Comparative studies of the cellulase and chitinase systems of Cellulomonas uda. Results of these studies indicate

  19. MICROBIAL FERMENTATION OF ABUNDANT BIOPOLYMERS: CELLULOSE AND CHITIN

    Energy Technology Data Exchange (ETDEWEB)

    Leschine, Susan

    2009-10-31

    Our research has dealt with seven major areas of investigation: i) characterization of cellulolytic members of microbial consortia, with special attention recently given to Clostridium phytofermentans, a bacterium that decomposes cellulose and produces uncommonly large amounts of ethanol, ii) investigations of the chitinase system of Cellulomonas uda; including the purification and characterization of ChiA, the major component of this enzyme system, iii) molecular cloning, sequence and structural analysis of the gene that encodes ChiA in C. uda, iv) biofilm formation by C. uda on nutritive surfaces, v) investigations of the effects of humic substances on cellulose degradation by anaerobic cellulolytic microbes, vi) studies of nitrogen metabolism in cellulolytic anaerobes, and vii) understanding the molecular architecture of the multicomplex cellulase-xylanase system of Clostridium papyrosolvens. Also, progress toward completing the research of more recent projects is briefly summarized. Major accomplishments include: 1. Characterization of Clostridium phytofermentans, a cellulose-fermenting, ethanol-producing bacterium from forest soil. The characterization of a new cellulolytic species isolated from a cellulose-decomposing microbial consortium from forest soil was completed. This bacterium is remarkable for the high concentrations of ethanol produced during cellulose fermentation, typically more than twice the concentration produced by other species of cellulolytic clostridia. 2. Examination of the use of chitin as a source of carbon and nitrogen by cellulolytic microbes. We discovered that many cellulolytic anaerobes and facultative aerobes are able to use chitin as a source of both carbon and nitrogen. This major discovery expands our understanding of the biology of cellulose-fermenting bacteria and may lead to new applications for these microbes. 3. Comparative studies of the cellulase and chitinase systems of Cellulomonas uda. Results of these studies indicate

  20. Three-dimensional chitin rings from body segments of a pet diplopod species: Characterization and protein interaction studies.

    Science.gov (United States)

    Kaya, Murat; Mulerčikas, Povilas; Sargin, Idris; Kazlauskaitė, Sonata; Baublys, Vykintas; Akyuz, Bahar; Bulut, Esra; Tubelytė, Vaida

    2016-11-01

    Physicochemical characterization of new chitin isolates can provide valuable insights into designing of biomimetic materials. Chitin isolates with a definite three-dimensional (3D) structure can exhibit characteristics that distinguish them from other chitin specimens that are in form of powder or flakes without a definite and uniform shape. Herein, 3D chitin rings were produced from body segments of a diplopod (Archispirostreptus gigas) inhabiting tropical regions. This organism is cultured easily and can reach 38cm in length, which makes it a suitable source for isolation of chitin. The chitin rings were characterized via TGA, FT-IR, SEM and XRD analyses. Enzymatic digestion test with chitinase demonstrated that chitin isolates had high purity (digestion rate: 97.4%). The source organism had high chitin content; 21.02±2.23% on dry weight. Interactions of the chitin rings with bovine serum albumin (BSA) protein were studied under different conditions (pH: 4.0-8.0, chitin amount: 6-14mg, contact time: 30-360min, protein concentration: 0.2-1mg/mL). The highest BSA adsorption was observed at pH5.0 at 20°C. The adsorption equilibrium data exhibited a better fit to Langmuir adsorption and the pseudo-first order kinetic models. The findings presented here can be useful for further studies aiming to develop biocompatible and nontoxic biomaterials. PMID:27524072

  1. Radiation processing and characterization of chitin and chitosan extracted from crab shells

    International Nuclear Information System (INIS)

    The extraction and characterization of Chitin and Chitosan from crab shells (Callinectes sp.) obtained locally in Ghana is presented. The shells were finely milled and soaked in 10 % dilute hydrochloric acid (HCI) for 48 hr followed by de-proteinization using 2M sodium hydroxide (NaOH) solution for 24 hr to obtain Chitin. The Chitin was refluxed at 100 (deg) C in 50 % NaOH for 7 hr to yield Chitosan. The Chitin and Chitosan were characterized by determining the de-acetylation, viscosity and average molecular weights. The degree of de-acetylation was determined to be 89.7 %. The viscosity of Chitosan in dilute acetic acid was measured and the average molecular weight estimated. The average molecular weight of dry gamma irradiated (up to 100kGy) Chitosan samples decreased with increasing dose. The results have been discussed in terms of radiation induced degradation of solids. (au)

  2. Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan

    Directory of Open Access Journals (Sweden)

    Jolanta Kumirska

    2010-04-01

    Full Text Available Chitin, the second most important natural polymer in the world, and its N-deacetylated derivative chitosan, have been identified as versatile biopolymers for a broad range of applications in medicine, agriculture and the food industry. Two of the main reasons for this are firstly the unique chemical, physicochemical and biological properties of chitin and chitosan, and secondly the unlimited supply of raw materials for their production. These polymers exhibit widely differing physicochemical properties depending on the chitin source and the conditions of chitosan production. The presence of reactive functional groups as well as the polysaccharide nature of these biopolymers enables them to undergo diverse chemical modifications. A complete chemical and physicochemical characterization of chitin, chitosan and their derivatives is not possible without using spectroscopic techniques. This review focuses on the application of spectroscopic methods for the structural analysis of these compounds.

  3. Infiltration of chitin by protein coacervates defines the squid beak mechanical gradient.

    Science.gov (United States)

    Tan, YerPeng; Hoon, Shawn; Guerette, Paul A; Wei, Wei; Ghadban, Ali; Hao, Cai; Miserez, Ali; Waite, J Herbert

    2015-07-01

    The beak of the jumbo squid Dosidicus gigas is a fascinating example of how seamlessly nature builds with mechanically mismatched materials. A 200-fold stiffness gradient begins in the hydrated chitin of the soft beak base and gradually increases to maximum stiffness in the dehydrated distal rostrum. Here, we combined RNA-Seq and proteomics to show that the beak contains two protein families. One family consists of chitin-binding proteins (DgCBPs) that physically join chitin chains, whereas the other family comprises highly modular histidine-rich proteins (DgHBPs). We propose that DgHBPs play multiple key roles during beak bioprocessing, first by forming concentrated coacervate solutions that diffuse into the DgCBP-chitin scaffold, and second by inducing crosslinking via an abundant GHG sequence motif. These processes generate spatially controlled desolvation, resulting in the impressive biomechanical gradient. Our findings provide novel molecular-scale strategies for designing functional gradient materials. PMID:26053298

  4. In vitro degradation of porous nano-hydroxyapatite/collagen/PLLA scaffold reinforced by chitin fibres

    International Nuclear Information System (INIS)

    In this paper, a novel porous scaffold for bone tissue engineering was prepared with nano-hydroxyapatite/collagen/Poly-L-lactic acid (PLLA) composite reinforced by chitin fibres. To enhance the strength of the scaffold further, PLLA was linked with chitin fibres by Dicyclohexylcarbodimide (DCC). The structures of the reinforced scaffold with and without linking were characterized by Scanning Electron Microscopy (SEM). The chemical characteristics of the chitin fibres with and without linking were evaluated by Fourier-transformed infrared (FTIR) spectroscopy. The mechanical performance during degradation in vitro was investigated. The results indicated that the nano-hydroxyapatite/collagen/PLLA composite reinforced by chitin fibres with linking kept better mechanical properties than that of the composite without linking. These results denoted that the stronger interfacial bonding strength of the scaffold with linking could decrease the degradation rate in vitro. The reinforced composite with the link-treatment can be severed as a scaffold for bone tissue engineering

  5. Chitin-Induced Airway Epithelial Cell Innate Immune Responses Are Inhibited by Carvacrol/Thymol

    Science.gov (United States)

    Erle, David J.

    2016-01-01

    Chitin is produced in large amounts by fungi, insects, and other organisms and has been implicated in the pathogenesis of asthma. Airway epithelial cells are in direct contact with environmental particles and serve as the first line of defense against inhaled allergens and pathogens. The potential contributions of airway epithelial cells to chitin-induced asthma remain poorly understood. We hypothesized that chitin directly stimulates airway epithelial cells to release cytokines that promote type 2 immune responses and to induce expression of molecules which are important in innate immune responses. We found that chitin exposure rapidly induced the expression of three key type 2-promoting cytokines, IL-25, IL-33 and TSLP, in BEAS-2B transformed human bronchial epithelial cells and in A549 and H292 lung carcinoma cells. Chitin also induced the expression of the key pattern recognition receptors TLR2 and TLR4. Chitin induced the expression of miR-155, miR-146a and miR-21, each of which is known to up-regulate the expression of pro-inflammatory cytokines. Also the expression of SOCS1 and SHIP1 which are known targets of miR-155 was repressed by chitin treatment. The monoterpene phenol carvacrol (Car) and its isomer thymol (Thy) are found in herbal essential oils and have been shown to inhibit allergic inflammation in asthma models. We found that Car/Thy inhibited the effects of chitin on type 2-promoting cytokine release and on the expression of TLRs, SOCS1, SHIP1, and miRNAs. Car/Thy could also efficiently reduce the protein levels of TLR4, inhibit the increase in TLR2 protein levels in chitin plus Car/Thy-treated cells and increase the protein levels of SHIP1 and SOCS1, which are negative regulators of TLR-mediated inflammatory responses. We conclude that direct effects of chitin on airway epithelial cells are likely to contribute to allergic airway diseases like asthma, and that Car/Thy directly inhibits epithelial cell pro-inflammatory responses to chitin. PMID

  6. Nanostructural Organization of Naturally Occurring Composites—Part II: Silica-Chitin-Based Biocomposites

    OpenAIRE

    VOURNAKIS, JOHN N.; Hartmut Worch; Thomas Hanke; Sascha Heinemann; René Born; Michael Mertig; Christiane Erler; Shapkin, Nikolay P.; Vasily V. Bazhenov; Paul Simon; Dorte Janussen; Hermann Ehrlich

    2008-01-01

    Investigations of the micro- and nanostructures and chemical composition of the sponge skeletons as examples for natural structural biocomposites are of fundamental scientific relevance. Recently, we show that some demosponges (Verongula gigantea, Aplysina sp.) and glass sponges (Farrea occa, Euplectella aspergillum) possess chitin as a component of their skeletons. The main practical approach we used for chitin isolation was based on alkali treatment of corresponding external layers of spicu...

  7. Insectivorous Bats Digest Chitin in the Stomach Using Acidic Mammalian Chitinase

    OpenAIRE

    Strobel, Sara; Roswag, Anna; Becker, Nina I.; Trenczek, Tina E.; Encarnação, Jorge A.

    2013-01-01

    The gastrointestinal tract of animals is adapted to their primary source of food to optimize resource use and energy intake. Temperate bat species mainly feed on arthropods. These contain the energy-rich carbohydrate chitin, which is indigestible for the endogenous enzymes of a typical mammalian gastrointestinal tract. However, the gastrointestinal tract of bat species should be adapted to their diet and be able to digest chitin. We hypothesized that (i) European vespertilionid bat species ha...

  8. Infiltration of chitin by protein coacervates defines the squid beak mechanical gradient

    OpenAIRE

    Y. Tan; Hoon, S; Guerette, PA; Wei, W; Ghadban, A; Hao, C; Miserez, A; Waite, JH

    2015-01-01

    © 2015 Nature America, Inc. All rights reserved. The beak of the jumbo squid Dosidicus gigas is a fascinating example of how seamlessly nature builds with mechanically mismatched materials. A 200-fold stiffness gradient begins in the hydrated chitin of the soft beak base and gradually increases to maximum stiffness in the dehydrated distal rostrum. Here, we combined RNA-Seq and proteomics to show that the beak contains two protein families. One family consists of chitin-binding proteins (DgCB...

  9. Chitin, Chitosan, and Glycated Chitosan Regulate Immune Responses: The Novel Adjuvants for Cancer Vaccine

    OpenAIRE

    Xiaosong Li; Min Min; Nan Du; Ying Gu; Tomas Hode; Mark Naylor; Dianjun Chen; Nordquist, Robert E.; Chen, Wei R.

    2013-01-01

    With the development of cancer immunotherapy, cancer vaccine has become a novel modality for cancer treatment, and the important role of adjuvant has been realized recently. Chitin, chitosan, and their derivatives have shown their advantages as adjuvants for cancer vaccine. In this paper, the adjuvant properties of chitin and chitosan were discussed, and some detailed information about glycated chitosan and chitosan nanoparticles was also presented to illustrate the trend for future development.

  10. Bridging peripheral nerves using a deacetyl chitin conduit combined with short-term electrical stimulation

    OpenAIRE

    Zhang, Zhongli; Xin LI; Zuo, Songjie; Xin, Jie; Zhang, Peixun

    2014-01-01

    Previous studies have demonstrated that deacetyl chitin conduit nerve bridging or electrical stimulation can effectively promote the regeneration of the injured peripheral nerve. We hypothesized that the combination of these two approaches could result in enhanced regeneration. Rats with right sciatic nerve injury were subjected to deacetyl chitin conduit bridging combined with electrical stimulation (0.1 ms, 3 V, 20 Hz, for 1 hour). At 6 and 12 weeks after treatment, nerve conduction velocit...

  11. Chitin-containing materials as sorbents for radioiodine from air-gas mixture

    International Nuclear Information System (INIS)

    It is shown the perspective of mushroom genesis chitin-chitosan materials for creation of screens entrapping joint of radioiodine from air-gas mixtures of NPP's workplace and on waste-handling spent nuclear fuel enterprises. Contrasted to traditional sorbents, chemical activity of natural chitin materials allows to increase immobilization in 3-5 times not only inorganic iodine, but also its organic derivatives

  12. Preparation of metal adsorbents from chitin/chitosan by radiation technology

    International Nuclear Information System (INIS)

    The methods of preparation of metal adsorbents basing on chitin/chitosan were developed. That include the adsorbent from chitin grafted with acrylic acid by different irradiation doses; the clinging chitosan gel beads; the coagulable solution and the chitosan composite filter. The process of metal adsorption for each adsorbent was studied as adsorption kinetic, isothermal adsorption. The results have been applied for removal of some elements as Hg, Pb, Cd, U, Cu, ect. in the wastewater. (NHA)

  13. Laboratory Evaluation of Five Chitin Synthesis Inhibitors Against the Colorado Potato Beetle, Leptinotarsa decemlineata

    OpenAIRE

    Karimzadeh, R.; Hejazi, M. J.; Rahimzadeh Khoei, F.; Moghaddam, M.

    2007-01-01

    Results of laboratory experiments are reported that tested the effects of five chitin synthesis inhibitors, diflubenzuron, cyromazine, lufenuron, hexaflumuron and triflumuron. on second instars of the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Crysomelidae), originally collected from potato fields of Bostanabaad, a town 66 km southeast of Tabriz, Iran. In bioassays, the larvae were fed potato leaves dipped in aqueous solutions containing chitin synthesis inhibitors. ...

  14. Extraction biotechnologique de la chitine pour la production de chitosane : caractérisation et application

    OpenAIRE

    Pacheco Lopez, Neith

    2010-01-01

    The chitin is one of the most abundant biopolymers in biomass. Its main industrial derivative is the chitosan. These two polysaccharides present an increasing interest thanks to their various interesting physicochemical and biological properties. Their potential applications concern diverse fields as the pharmacy, medicine, food industry and agriculture. Despite numerous advances in methods for the chemical production of chitin and chitosan, the use of concentrated solutions of acids and alka...

  15. Discussion remarks on the role of wood and chitin constituents during carbonization

    OpenAIRE

    Anna eIlnicka; Jerzy P Lukaszewicz

    2015-01-01

    Nature is a source of some biomaterials like wood and chitin which can be successfully transformed into chars of advanced structural/surface parameters. The manuscript is discursive and suggests that particular components of the materials (cellulose, lignin, hemicellulose, alfa-chitin fibrils, mineral-protein matrix) play a specific role in the manufacturing of porous chars. It is proposed that some of the components (hemicellulose and mineral-protein matrixes) behave like a natural soft temp...

  16. Discussion Remarks on the Role of Wood and Chitin Constituents during Carbonization

    OpenAIRE

    Ilnicka, Anna; Jerzy P Lukaszewicz

    2015-01-01

    Nature is a source of some biomaterials like wood and chitin, which can be successfully transformed into chars of advanced structural/surface parameters. The manuscript is discursive and suggests that particular components of the materials (cellulose, lignin, hemicellulose, alfa-chitin fibrils, mineral–protein matrix) play a specific role in the manufacturing of porous chars. It is proposed that some of the components (hemicellulose and mineral–protein matrixes) behave like a natural soft tem...

  17. Structural Investigations of Chitin and Chitosan Complexed with Iron or Tin

    Science.gov (United States)

    Gamblin, B. E.; Stevens, J. G.; Wilson, K. L.

    1998-12-01

    Chitin (N-acetyl-glucosamine) and its derivative chitosan (glucosamine) bind with most transition and main group metals, including iron and tin. Using 57Fe and 119Sn Mössbauer Spectroscopy it is determined that an oxidation reaction occurs during the metal uptake. Data also supports a structure with more than one metal bonding site and shows the ability of the chitin and chitosan polymers to bind large concentrations of iron.

  18. Preparation and Characterization of a Novel Co-processed Excipient of Chitin and Crystalline Mannitol

    OpenAIRE

    Daraghmeh, Nidal; Rashid, Iyad; Mahmoud M. H. Al Omari; Leharne, Stephen A.; Babur Z. Chowdhry; Badwan, Adnan

    2010-01-01

    A co-processed excipient was prepared from commercially available crystalline mannitol and α-chitin using direct compression as well as spray, wet, and dry granulation. The effect of the ratio of the two components, percentage of lubricant and particle size, on the properties of the prepared co-processed excipient has been investigated. α-Chitin forms non-hygroscopic, highly compactable, disintegrable compacts when co-processed with crystalline mannitol. The compaction properties of the co-pr...

  19. Co-Processed Chitin-Mannitol as a New Excipient for Oro-Dispersible Tablets

    OpenAIRE

    Nidal Daraghmeh; Babur Z. Chowdhry; Leharne, Stephen A.; Mahmoud M. H. Al Omari; Badwan, Adnan A.

    2015-01-01

    This study describes the preparation, characterization and performance of a novel excipient for use in oro-dispersible tablets (ODT). The excipient (Cop–CM) consists of chitin and mannitol. The excipient with optimal physicochemical properties was obtained at a chitin: mannitol ratio of 2:8 (w/w) and produced by roll compaction (RC). Differential scanning calorimetry (DSC), Fourier transform-Infrared (FT-IR), X-ray powder diffraction (XRPD) and scanning electron microscope (SEM) techniques we...

  20. Isocyanate-Functionalized Chitin and Chitosan as Gelling Agents of Castor Oil

    OpenAIRE

    Franco, José M.; Rocío Gallego; Jesús F. Arteaga; Concepción Valencia

    2013-01-01

    The main objective of this work was the incorporation of reactive isocyanate groups into chitin and chitosan in order to effectively use the products as reactive thickening agents in castor oil. The resulting gel-like dispersions could be potentially used as biodegradable lubricating greases. Three different NCO–functionalized polymers were obtained: two of them by promoting the reaction of chitosan with 1,6-hexamethylene diisocyanate (HMDI), and the other by using chitin instead of chitosan....

  1. Nature-Inspired One-Step Green Procedure for Enhancing the Antibacterial and Antioxidant Behavior of a Chitin Film: Controlled Interfacial Assembly of Tannic Acid onto a Chitin Film.

    Science.gov (United States)

    Wang, Yuntao; Li, Jing; Li, Bin

    2016-07-20

    The final goal of this study was to develop antimicrobial food-contact materials based on a natural phenolic compound (tannic acid) and chitin, which is the second most abundant polysaccharide on earth, using an interfacial assembly approach. Chitin film has poor antibacterial and antioxidant ability, which limits its application in industrial fields such as active packaging. Therefore, in this study, a novel one-step green procedure was applied to introduce antibacterial and antioxidant properties into a chitin film simultaneously by incorporation of tannic acid into the chitin film through interfacial assembly. The antibacterial and antioxidant behavior of chitin film has been greatly enhanced. Hydrogen bonds and hydrophobic interaction were found to be the main driving forces for interfacial assembly. Therefore, controlled interfacial assembly of tannic acid onto a chitin film demonstrated a good way to develop functional materials that can be potentially applied in industry. PMID:27378105

  2. Outlining eicosanoid biosynthesis in the crustacean Daphnia

    Directory of Open Access Journals (Sweden)

    Timmermans Martijn JTN

    2008-07-01

    Full Text Available Abstract Background Eicosanoids are biologically active, oxygenated metabolites of three C20 polyunsaturated fatty acids. They act as signalling molecules within the autocrine or paracrine system in both vertebrates and invertebrates mainly functioning as important mediators in reproduction, the immune system and ion transport. The biosynthesis of eicosanoids has been intensively studied in mammals and it is known that they are synthesised from the fatty acid, arachidonic acid, through either the cyclooxygenase (COX pathway; the lipoxygenase (LOX pathway; or the cytochrome P450 epoxygenase pathway. However, little is still known about the synthesis and structure of the pathway in invertebrates. Results Here, we show transcriptomic evidence from Daphnia magna (Crustacea: Branchiopoda together with a bioinformatic analysis of the D. pulex genome providing insight on the role of eicosanoids in these crustaceans as well as outlining a putative pathway of eicosanoid biosynthesis. Daphnia appear only to have one copy of the gene encoding the key enzyme COX, and phylogenetic analysis reveals that the predicted protein sequence of Daphnia COX clusters with other invertebrates. There is no current evidence of an epoxygenase pathway in Daphnia; however, LOX products are most certainly synthesised in daphnids. Conclusion We have outlined the structure of eicosanoid biosynthesis in Daphnia, a key genus in freshwater ecosystems. Improved knowledge of the function and synthesis of eicosanoids in Daphnia and other invertebrates could have important implications for several areas within ecology. This provisional overview of daphnid eicosanoid biosynthesis provides a guide on where to focus future research activities in this area.

  3. Unconventional Approach for Demineralization of Deproteinized Crustacean Shells for Chitin Production

    Directory of Open Access Journals (Sweden)

    N. S. Mahmoud

    2007-01-01

    Full Text Available Chitin is a versatile environmentally friendly modern material. It has a wide range of applications in areas such as water treatment, pulp and paper, biomedical devices and therapies, cosmetics, membrane technology and biotechnology and food applications. Crustacean waste is the most important chitin source for commercial use. Demineralization is an important step in the chitin purification process from crustacean waste. The conventional method of demineralization includes the use of strong acid (commonly HCl that harms the physiochemical properties of chitin, results in a harmful effluent wastewater and increases the cost of chitin purification process. The current study proposes the use of organic acids (lactic and acetic produced by cheese whey fermentation to demineralize microbially deproteinized shrimp shells. The effects of acid type, demineralization condition, retention time and shells to acid ratio were investigated. The study showed that the effectiveness of using lactic and/or acetic acids for demineralization of shrimp shells was comparable to that of using hydrochloric acid. Using organic acids for demineralization is a promising concept, since organic acids are less harmful to the environment, can preserve the characteristics of the purified chitin and can be produced from low cost biomass such as cheese whey. In addition, the resulted organic salts from the demineralization process can be used as a food preservative and/or an environmentally friendly de-icing/anti-icing agents.

  4. Nanostructural Organization of Naturally Occurring Composites—Part II: Silica-Chitin-Based Biocomposites

    Directory of Open Access Journals (Sweden)

    Hermann Ehrlich

    2008-01-01

    Full Text Available Investigations of the micro- and nanostructures and chemical composition of the sponge skeletons as examples for natural structural biocomposites are of fundamental scientific relevance. Recently, we show that some demosponges (Verongula gigantea, Aplysina sp. and glass sponges (Farrea occa, Euplectella aspergillum possess chitin as a component of their skeletons. The main practical approach we used for chitin isolation was based on alkali treatment of corresponding external layers of spicules sponge material with the aim of obtaining alkali-resistant compounds for detailed analysis. Here, we present a detailed study of the structural and physicochemical properties of spicules of the glass sponge Rossella fibulata. The structural similarity of chitin derived from this sponge to invertebrate alpha chitin has been confirmed by us unambiguously using physicochemical and biochemical methods. This is the first report of a silica-chitin composite biomaterial found in Rossella species. Finally, the present work includes a discussion related to strategies for the practical application of silica-chitin-based composites as biomaterials.

  5. RECOVERY OF CHITIN AND CHITOSAN FROM SHRIMP WASTE BY CHEMICAL AND MICROBIAL METHODS

    Directory of Open Access Journals (Sweden)

    A. Khanafari, R. Marandi, Sh. Sanatei

    2008-01-01

    Full Text Available Shrimp waste is the most important chitin source for commercial use. In this study chitin and chitosan were extracted from Penaeus semisulcatus waste collected from a shrimp processing landing center situated at Persian Gulf in south of Iran by chemical and microbial methods. Chitin and chitosan were extracted by alkali-acid treatment and the yields were 510 and 410mg/g, respectively. Demineralization is an important step in the chitin purification process from shrimp waste. Chemical extraction method included the use of NaOH solution and acetic acid. In microbial extraction, organic acids (lactic acid produced by probiotic bacteria was used to demineralize microbial deproteinized shrimp shells. The study showed that the effectiveness of using lactic acid bacteria especially added Fe (NO33 as extra nitrogen source for demineralization of shrimp shells than chemical method (1750 against 810mg/g. Chitin and chitosan extracted from shrimp waste by chemical and microbial methods was crystalline powder, non-harmful and odorless, white and off-white, respectively. The moisture content was calculated as 63.8%. The amount of Ca, Fe, Cu and Mn present in the shells was 168, 35.58, 38.28 and 6.72mg/L, obtained by atomic absorption spectroscopy, respectively. The amount of calcium in the shells was 25 times higher than manganese. The results suggested Lactobacillus plantarum (PTTC 1058 is an attractive source of recovery for chitin and chitosan.

  6. Facile route to produce chitin nanofibers as precursors for flexible and transparent gas barrier materials.

    Science.gov (United States)

    Wu, Jie; Zhang, Kuang; Girouard, Natalie; Meredith, J Carson

    2014-12-01

    Chitin is the second most abundant biopolymer in nature and has tremendous potential in renewable materials for packaging, energy storage, reinforced composites, and biomedical engineering. Despite attractive properties, including biodegradability, antibacterial activity, and high strength, chitin is not utilized widely due to strong molecular interactions, which make solubilization and processing difficult. We report a high pressure homogenization route to produce pure chitin nanofibers (ChNFs) starting with a mildly acidic aqueous dispersion of purified crab α-chitin. The well-dispersed ChNFs with diameter ∼20 nm do not form strong network structures under conditions explored herein and can be directly processed into useful materials, bypassing the need to dissolve the chitin. Dried ChNFs form pure self-standing chitin films with the lowest to-date reported O2 and CO2 permeabilities of 0.006 and 0.018 barrer, respectively. Combined with high flexibility and optical transparency, these materials are ideal candidates for sustainable barrier packaging. PMID:25483821

  7. A carnivorous sundew plant prefers protein over chitin as a source of nitrogen from its traps.

    Science.gov (United States)

    Pavlovič, Andrej; Krausko, Miroslav; Adamec, Lubomír

    2016-07-01

    Carnivorous plants have evolved in nutrient-poor wetland habitats. They capture arthropod prey, which is an additional source of plant growth limiting nutrients. One of them is nitrogen, which occurs in the form of chitin and proteins in prey carcasses. In this study, the nutritional value of chitin and protein and their digestion traits in the carnivorous sundew Drosera capensis L. were estimated using stable nitrogen isotope abundance. Plants fed on chitin derived 49% of the leaf nitrogen from chitin, while those fed on the protein bovine serum albumin (BSA) derived 70% of its leaf nitrogen from this. Moreover, leaf nitrogen content doubled in protein-fed in comparison to chitin-fed plants indicating that the proteins were digested more effectively in comparison to chitin and resulted in significantly higher chlorophyll contents. The surplus chlorophyll and absorbed nitrogen from the protein digestion were incorporated into photosynthetic proteins - the light harvesting antennae of photosystem II. The incorporation of insect nitrogen into the plant photosynthetic apparatus may explain the increased rate of photosynthesis and plant growth after feeding. This general response in many genera of carnivorous plants has been reported in many previous studies. PMID:26998942

  8. Structural characterization of chitin and chitosan obtained by biological and chemical methods.

    Science.gov (United States)

    Pacheco, Neith; Garnica-Gonzalez, Mónica; Gimeno, Miquel; Bárzana, Eduardo; Trombotto, Stéphane; David, Laurent; Shirai, Keiko

    2011-09-12

    Chitin production was biologically achieved by lactic acid fermentation (LAF) of shrimp waste (Litopenaeus vannameii) in a packed bed column reactor with maximal percentages of demineralization (D(MIN)) and deproteinization (D(PROT)) after 96 h of 92 and 94%, respectively. This procedure also afforded high free astaxanthin recovery with up to 2400 μg per gram of silage. Chitin product was also obtained from the shrimp waste by a chemical method using acid and alkali for comparison. The biologically obtained chitin (BIO-C) showed higher M(w) (1200 kDa) and crystallinity index (I(CR)) (86%) than the chemically extracted chitin (CH-C). A multistep freeze-pump-thaw (FPT) methodology was applied to obtain medium M(w) chitosan (400 kDa) with degree of acetylation (DA) ca. 10% from BIO-C, which was higher than that from CH-C. Additionally, I(CR) values showed the preservation of crystalline chitin structure in BIO-C derivatives at low DA (40-25%). Moreover, the FPT deacetylation of the attained BIO-C produced chitosans with bloc copolymer structure inherited from a coarse chitin crystalline morphology. Therefore, our LAF method combined with FPT proved to be an affective biological method to avoid excessive depolymerization and loss of crystallinity during chitosan production, which offers new perspective applications for this material. PMID:21790136

  9. Production of High Viscosity Chitosan from Biologically Purified Chitin Isolated by Microbial Fermentation and Deproteinization

    Directory of Open Access Journals (Sweden)

    Ekkalak Ploydee

    2014-01-01

    Full Text Available The objective of this study was to produce high viscosity chitosan from shrimp chitin prepared by using a two-step biological treatment process: decalcification and deproteinization. Glucose was fermented with Lactobacillus pentosus L7 to lactic acid. At a pH of 3.9±0.1, the calcium carbonate of the shells was solubilized in 48 hours. The amounts of residual calcium in the form of ash (1.4±0.5% and crude protein (23.2±2.5% were further eliminated by the activity of proteolytic Bacillus thuringiensis SA. After decalcification and deproteinization of the shrimp shells, residual calcium and crude protein of shrimp chitin flakes were 1.7±0.4% and 3.8±1.3%, respectively. Chitin was deacetylated with 50% NaOH at 121°C for 5 hours. After deacetylation, the chitosan had residual calcium, crude protein content, and degree of acetylation of 1.6±0.6%, 0.4±0.3%, and 83.2±1.5%, respectively. The viscosity of chitosan prepared from chitin extracted by this two-step biological process was 1,007±14.7 mPa·s, whereas chitosan prepared from chemically processed chitin had a viscosity of 323±15.6   mPa·s, indicating that biologically purified chitin gave chitosan with a high quality.

  10. Synthesis and utilization of chitin humic acid hybrid as sorbent for Cr(III)

    Science.gov (United States)

    Santosa, Sri Juari; Siswanta, Dwi; Sudiono, Sri; Sehol, Muhamad

    2007-11-01

    New types of hybrid material have been synthesized by using four different methods of immobilization of humic acid (HA) on chitin. The most stable hybrid material toward the change of medium acidity was then utilized as sorbent for Cr(III). The HA was extracted from peat soil of Gambut District, South Kalimantan, Indonesia, using the recommended procedure of International Humic Substances Society (IHSS), while the chitin was isolated from crab shell waste through deproteination using 3.5% (w/v) NaOH and followed by removal of inorganic impurities using 1 M HCl. The four methods of immobilization of HA on chitin were (i) Method A: chitin powder (4 g) was gently poured into the stirred solution of 0.4 g HA in 40 mL of 0.01 M NaOH. After overnight stirring, the solid was separated, washed with water, and dried in oven at 70 °C. (ii) Method B: gelatinous chitin (40 g) in 250 mL of 0.5 M HCl was reacted with HA (4 g) in 500 mL of 0.5 M NaOH and aged for 24 h. The product was washed with water and dried. (iii) Method C: HA powder (0.5 g) was mixed with the stirred gel of chitin (2.5 g) in 60 mL of CaCl 2 saturated methanol and the mixture was then washed with the mixed solution of 25 mL of 2 M sodium citrate and ethylene glycol 1:1. The solid was separated, washed with water, and dried. (iv) Method D: the solution of HA (0.056 g) in 10 mL of 0.01 M NaOH was reacted with the gel of chitin (0.2 g) in 10 mL of CaCl 2 saturated methanol. After 24 h stirring, the solid was separated from the reaction medium, washed with the mixed solution of 2 M sodium citrate and ethylene glycol 1:1, and followed by washing with water and drying. Parameters investigated in this study consisted of the stability test of the immobilized HA, as well as the rate constant ( k1), capacity ( b), and energy ( E) of sorption as well as the rate constant of desorption ( k-1). The k1 and k-1 were determined according to a kinetic model of first order sorption reaching equilibrium, while the b and E

  11. Xyloglucan and its biosynthesis

    Directory of Open Access Journals (Sweden)

    Olga A Zabotina

    2012-06-01

    Full Text Available The hemicellulosic polysaccharide xyloglucan (XyG, found in the primary cell walls of most plant tissues, is important for structural organization of the cell wall and regulation of growth and development. Significant recent progress in structural characterization of XyGs from different plant species has shed light on the diversification of XyG during plant evolution. Also, identification of XyG biosynthetic enzymes and examination of their interactions suggests the involvement of a multiprotein complex in XyG biosynthesis. This mini-review presents an updated overview of the diversity of XyG structures in plant taxa and recent findings on XyG biosynthesis.

  12. Identification of a Membrane-Bound Transcriptional Regulator That Links Chitin and Natural Competence in Vibrio cholerae

    OpenAIRE

    Dalia, Ankur B.; Lazinski, David W.; Camilli, Andrew

    2014-01-01

    ABSTRACT Vibrio cholerae is naturally competent when grown on chitin. It is known that expression of the major regulator of competence, TfoX, is controlled by chitin; however, the molecular mechanisms underlying this requirement for chitin have remained unclear. In the present study, we identify and characterize a membrane-bound transcriptional regulator that positively regulates the small RNA (sRNA) TfoR, which posttranscriptionally enhances tfoX translation. We show that this regulation of ...

  13. Glucose enhances indolic glucosinolate biosynthesis without reducing primary sulfur assimilation.

    Science.gov (United States)

    Miao, Huiying; Cai, Congxi; Wei, Jia; Huang, Jirong; Chang, Jiaqi; Qian, Hongmei; Zhang, Xin; Zhao, Yanting; Sun, Bo; Wang, Bingliang; Wang, Qiaomei

    2016-01-01

    The effect of glucose as a signaling molecule on induction of aliphatic glucosinolate biosynthesis was reported in our former study. Here, we further investigated the regulatory mechanism of indolic glucosinolate biosynthesis by glucose in Arabidopsis. Glucose exerted a positive influence on indolic glucosinolate biosynthesis, which was demonstrated by induced accumulation of indolic glucosinolates and enhanced expression of related genes upon glucose treatment. Genetic analysis revealed that MYB34 and MYB51 were crucial in maintaining the basal indolic glucosinolate accumulation, with MYB34 being pivotal in response to glucose signaling. The increased accumulation of indolic glucosinolates and mRNA levels of MYB34, MYB51, and MYB122 caused by glucose were inhibited in the gin2-1 mutant, suggesting an important role of HXK1 in glucose-mediated induction of indolic glucosinolate biosynthesis. In contrast to what was known on the function of ABI5 in glucose-mediated aliphatic glucosinolate biosynthesis, ABI5 was not required for glucose-induced indolic glucosinolate accumulation. In addition, our results also indicated that glucose-induced glucosinolate accumulation was due to enhanced sulfur assimilation instead of directed sulfur partitioning into glucosinolate biosynthesis. Thus, our data provide new insights into molecular mechanisms underlying glucose-regulated glucosinolate biosynthesis. PMID:27549907

  14. The functions Of LysM Proteins And Chitin Tetra-Saccarides Signaling Pathway in Zebrafish Embryos

    DEFF Research Database (Denmark)

    Laroche, Fabrice Jean Francois

    Chitin is an ancient organic bio-polymer, found in abundance on land and at sea. However, knowledge on chitin functions in animals is lacking. In his research project, Fabrice Laroche studied responses to chitin in zebrafish embryos, and he described chitin signalling pathways. Proteins related to...... studied their roles – at the cellular level and during zebrafish development. To improve the experimental methods, he developed nanotechnological strategies to genetically modify human embryonic kidney cells and zebrafish. The PhD degree was completed at the Department of Molecular Biology and Genetics......, Science and Technology, Aarhus University, and the Department of Molecular Cell Biology, Leiden University, The Netherlands...

  15. Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part II: Biomimetic potential and applications.

    Science.gov (United States)

    Ehrlich, H; Steck, E; Ilan, M; Maldonado, M; Muricy, G; Bavestrello, G; Kljajic, Z; Carballo, J L; Schiaparelli, S; Ereskovsky, A; Schupp, P; Born, R; Worch, H; Bazhenov, V V; Kurek, D; Varlamov, V; Vyalikh, D; Kummer, K; Sivkov, V V; Molodtsov, S L; Meissner, H; Richter, G; Hunoldt, S; Kammer, M; Paasch, S; Krasokhin, V; Patzke, G; Brunner, E; Richter, W

    2010-08-01

    In order to evaluate the biomedical potential of three-dimensional chitinous scaffolds of poriferan origin, chondrocyte culturing experiments were performed. It was shown for the first time that freshly isolated chondrocytes attached well to the chitin scaffold and synthesized an extracellular matrix similar to that found in other cartilage tissue engineering constructs. Chitin scaffolds also supported deposition of a proteoglycan-rich extracellular matrix of chondrocytes seeded bioconstructs in an in vivo environment. We suggest that chitin sponge scaffolds, apart from the demonstrated biomedical applications, are highly optimized structures for use as filtering systems, templates for biomineralization as well as metallization in order to produce catalysts. PMID:20478334

  16. Fluctuations in the population density of Gram-negative bacteria in a chernozem in the course of a succession initiated by moistening and chitin and cellulose introduction

    Science.gov (United States)

    Polyanskaya, L. M.; Ivanov, K. E.; Zvyagintsev, D. G.

    2012-10-01

    The role has been studied of Gram-negative bacteria in the destruction of polymers widely spread in soils: chitin and cellulose. The introduction of chitin had no positive effect on the population density of Gram-negative bacteria, but it advanced the date of their appearance: the maximum population density of Gram-negative bacteria was recorded not on the 7th-15th day as in the control but much earlier, on the 3rd-7th day of the experiment. Consequently, the introduction of chitin as an additional source of nutrition promoted revealing of the Gram-negative bacteria already at the early stages of the succession. In the course of the succession, when the fungal mycelium begins to die off, the actinomycetic mycelium increases in length, i.e., Gram-negative bacteria are replaced at this stage with Gram-positive ones, the leading role among which belongs to actinomycetes. The growth rate of Gram-negative bacteria is higher than that of actinomycetes, so they start chitin utilization at the early stages of the succession, whereas actinomycetes dominate at the late stages. The population density of Gram-negative bacteria was lower under the anaerobic conditions as compared with that in the aerobic ones. The population density of Gram-negative bacteria in the lower layer of the A horizon and in the B horizon was slightly higher only in the case of the chitin introduction. When cellulose was introduced into the soil under aerobic conditions, the population density of Gram-negative bacteria in all the layers of the A horizon was maximal from the 14th to the 22nd day of the experiment. Cellulose was utilized in the soil mostly by fungi, and this was suggested by the increase of the length of the fungal mycelium. Simultaneously, an increase in the length of the actinomycetal mycelium was observed, as these organisms also perform cellulose hydrolysis in soils. The Gram-negative bacteria began to develop at the stage of the fungal mycelium destruction, which indirectly

  17. Pre-irradiation grafting of acrylonitrile onto chitin for adsorption of arsenic in water

    International Nuclear Information System (INIS)

    Radiation-induced grafting is an effective technique for preparation of novel materials. In this study, partially deacetylated chitin with deacetylation degree (DDA) of about 40% was graft-copolymerized with acrylonitrile (AN) by a γ-ray pre-irradiation method. The maximal grafting degree of AN onto pre-irradiated chitin at 25±1.2 kGy was 114% for AN concentration in dimethylformamide of 40% (v/v) at 70 °C for 8 h. The mixture ratio of 0.1 N NH2OH·HCl to 0.1 N NaOH was selected to be 7:3 (v/v) for amidoxime conversion of cyano-groups on grafted chitin (Chi-g-AN). The characteristics of modified chitin were depicted by the FT-IR spectra, BET area and SEM images. Adsorption equilibrium of As(III) onto Chi-g-AN converted amidoxime (Chi-g-AN-C) fits with the Langmuir model and the maximal adsorption capacity was 19.724 mg/g. The break-through times of As(III) on Chi-g-AN-C in column adsorption experiments increased with the increase in bed depths. - Highlights: • Partially deacetylated chitin was used for grafting AN by pre-irradiation. • The maximal grafting degree of AN onto chitin was 114%. • The cyano- of AN was converted into amidoxime to enhance adsorption. • The adsorption capacity of As(III) onto modified chitin was 19.724 mg/g. • Removal of arsenic in groundwater samples was tested by continuous adsorption

  18. Embryonic desiccation resistance in Aedes aegypti: presumptive role of the chitinized Serosal Cuticle

    Directory of Open Access Journals (Sweden)

    Peixoto Alexandre

    2008-09-01

    Full Text Available Abstract Background One of the major problems concerning dengue transmission is that embryos of its main vector, the mosquito Aedes aegypti, resist desiccation, surviving several months under dry conditions. The serosal cuticle (SC contributes to mosquito egg desiccation resistance, but the kinetics of SC secretion during embryogenesis is unknown. It has been argued that mosquito SC contains chitin as one of its components, however conclusive evidence is still missing. Results We observed an abrupt acquisition of desiccation resistance during Ae. aegypti embryogenesis associated with serosal cuticle secretion, occurring at complete germ band extension, between 11 and 13 hours after egglaying. After SC formation embryos are viable on dry for at least several days. The presence of chitin as one of the SC constituents was confirmed through Calcofluor and WGA labeling and chitin quantitation. The Ae. aegypti Chitin Synthase A gene (AaCHS1 possesses two alternatively spliced variants, AaCHS1a and AaCHS1b, differentially expressed during Ae. aegypti embryonic development. It was verified that at the moment of serosal cuticle formation, AaCHS1a is the sole variant specifically expressed. Conclusion In addition to the peritrophic matrix and exoskeleton, these findings confirm chitin is also present in the mosquito serosal cuticle. They also point to the role of the chitinized SC in the desiccation resistance of Ae. aegypti eggs. AaCHS1a expression would be responsible for SC chitin synthesis. With this embryological approach we expect to shed new light regarding this important physiological process related to the Ae. aegypti life cycle.

  19. Chitin Fiber and Chitosan 3D Composite Rods

    Directory of Open Access Journals (Sweden)

    Zhengke Wang

    2010-01-01

    Full Text Available Chitin fiber (CHF and chitosan (CS 3D composite rods with layer-by-layer structure were constructed by in situ precipitation method. CHF could not be dissolved in acetic acid aqueous solution, but CS could be dissolved due to the different deacetylation degree (D.D between CHF and CS. CHF with undulate surfaces could be observed using SEM to demonstrate that the sufficiently rough surfaces and edges of the fiber could enhance the mechanical combining stress between fiber and matrix. XRD indicated that the crystallinity of CHF/CS composites decreased and CS crystal plane d-spacing of CHF/CS composites became larger than that of pure CS rod. TG analysis showed that mixing a little amount of CHF could enhance thermal stability of CS rod, but when the content of CHF was higher than the optimum amount, its thermal stability decreased. When 0.5% CHF was added into CS matrix, the bending strength and bending modulus of the composite rods arrived at 114.2 MPa and 5.2 GPa, respectively, increased by 23.6% and 26.8% compared with pure CS rods, indicating that CHF/CS composite rods could be a better candidate for bone fracture internal fixation.

  20. Immobilization of Candida cylindracea lipase on PVC, chitin and agarose

    Energy Technology Data Exchange (ETDEWEB)

    Chang, R.C.; Shaw, J.F.

    1987-01-01

    Candida cylindracea lipase was covalently coupled to PVC, chitin and agarose, which are abundant in Taiwan by several different methods. The agarose-dodecylene-diamine-glutaraldehyde (A-DDA-GA) system showed the highest relative loading enzyme activity, 118 mg soluble lipase per gram support. The chitosan-carbodiimide glutaraldehyde (CN-EDC-GA) systems immobilized 67 mg soluble lipase per gram support. The optimal pH of immobilized lipase was 8.5, which was one pH unit higher than that of soluble lipase. The optimal temperatures were in the range between 52-64/sup 0/C. The CN-EDC-GA system was the highest (64/sup 0/C), which was 27/sup 0/C higher than soluble lipase. The CH-EDC-GA system also had the best thermal stability (the half life at 55/sup 0/C was 29 h.) and operational stability at higher temperature (the half life at 40/sup 0/C was 495 h). However, the PVC-ethylenediamine-GA system appeared to have the best stability at lower temperature, the projected half life at 20/sup 0/C from Arrhenius plot was 31,802 h.

  1. Structural basis for phosphatidylinositol-phosphate biosynthesis

    Science.gov (United States)

    Clarke, Oliver B.; Tomasek, David; Jorge, Carla D.; Dufrisne, Meagan Belcher; Kim, Minah; Banerjee, Surajit; Rajashankar, Kanagalaghatta R.; Shapiro, Lawrence; Hendrickson, Wayne A.; Santos, Helena; Mancia, Filippo

    2015-10-01

    Phosphatidylinositol is critical for intracellular signalling and anchoring of carbohydrates and proteins to outer cellular membranes. The defining step in phosphatidylinositol biosynthesis is catalysed by CDP-alcohol phosphotransferases, transmembrane enzymes that use CDP-diacylglycerol as donor substrate for this reaction, and either inositol in eukaryotes or inositol phosphate in prokaryotes as the acceptor alcohol. Here we report the structures of a related enzyme, the phosphatidylinositol-phosphate synthase from Renibacterium salmoninarum, with and without bound CDP-diacylglycerol to 3.6 and 2.5 Å resolution, respectively. These structures reveal the location of the acceptor site, and the molecular determinants of substrate specificity and catalysis. Functional characterization of the 40%-identical ortholog from Mycobacterium tuberculosis, a potential target for the development of novel anti-tuberculosis drugs, supports the proposed mechanism of substrate binding and catalysis. This work therefore provides a structural and functional framework to understand the mechanism of phosphatidylinositol-phosphate biosynthesis.

  2. The crystal structure of Rv1347c, a putative antibiotic resistance protein from Mycobacterium tuberculosis, reveals a GCN5-related fold and suggests an alternative function in siderophore biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Card, G L; Peterson, N A; Smith, C A; Rupp, B; Schick, B M; Baker, E N

    2005-02-15

    Mycobacterium tuberculosis, the cause of TB, is a devastating human pathogen. The emergence of multi-drug resistance in recent years has prompted a search for new drug targets and for a better understanding of mechanisms of resistance. Here we focus on the gene product of an open reading frame from M. tuberculosis, Rv1347c, which is annotated as a putative aminoglycoside N-acetyltransferase. The Rv1347c protein does not show this activity, however, and we show from its crystal structure, coupled with functional and bioinformatic data, that its most likely role is in the biosynthesis of mycobactin, the M. tuberculosis siderophore. The crystal structure of Rv1347c was determined by MAD phasing from selenomethionine-substituted protein and refined at 2.2 {angstrom} resolution (R = 0.227, R{sub free} = 0.257). The protein is monomeric, with a fold that places it in the GCN5-related N-acetyltransferase (GNAT) family of acyltransferases. Features of the structure are an acylCoA binding site that is shared with other GNAT family members, and an adjacent hydrophobic channel leading to the surface that could accommodate long-chain acyl groups. Modeling the postulated substrate, the N{sup {var_epsilon}}-hydroxylysine side chain of mycobactin, into the acceptor substrate binding groove identifies two residues at the active site, His130 and Asp168, that have putative roles in substrate binding and catalysis.

  3. Terpene Biosynthesis: Modularity Rules

    OpenAIRE

    Oldfield, Eric; Lin, Fu-Yang

    2011-01-01

    Terpenes are the largest class of small molecule natural products on Earth, and the most abundant by mass. Here, we summarize recent developments in elucidating the structure and function of the proteins involved in their biosynthesis. There are 6 main building blocks or modules (α,β,γ,δ,ε and ζ) that make up the structures of these enzymes: the αα and αδ head-to-tail trans-prenyl transferases that produce trans-isoprenoid diphosphates from C5 precursors; the ε head-to-head prenyl transferase...

  4. Modification of Chitin with Kraft Lignin and Development of New Biosorbents for Removal of Cadmium(II and Nickel(II Ions

    Directory of Open Access Journals (Sweden)

    Marcin Wysokowski

    2014-04-01

    Full Text Available Novel, functional materials based on chitin of marine origin and lignin were prepared. The synthesized materials were subjected to physicochemical, dispersive-morphological and electrokinetic analysis. The results confirm the effectiveness of the proposed method of synthesis of functional chitin/lignin materials. Mechanism of chitin modification by lignin is based on formation of hydrogen bonds between chitin and lignin. Additionally, the chitin/lignin materials were studied from the perspective of waste water treatment. The synthetic method presented in this work shows an attractive and facile route for producing low-cost chitin/lignin biosorbents with high efficiency of nickel and cadmium adsorption (88.0% and 98.4%, respectively. The discovery of this facile method of synthesis of functional chitin/lignin materials will also have a significant impact on the problematic issue of the utilization of chitinous waste from the seafood industry, as well as lignin by-products from the pulp and paper industry.

  5. XRD studies of beta-chitin from squid pen with calcium solvent.

    Science.gov (United States)

    Nagahama, H; Higuchi, T; Jayakumar, R; Furuike, T; Tamura, H

    2008-05-01

    The crystalline structure of beta-chitin from squid pen was investigated by X-ray diffraction (XRD). The purified beta-chitin was prepared from bigfin reefsquid pen. beta-Chitin was treated with saturated calcium chloride dihydrate/alchohol (CaCl(2).2H(2)O/MeOH) solvent system at different conditions for XRD studies. The change of crystallinity of beta-chitin from squid pen was studied by using the fiber photographs on imaging plates. The results showed that the diffraction peak (010) was shifted. It means that the lattice plane (010) interplanarilly spreaded to 3.4A, when the squid pen was washed with water after treatment of Ca solvent. Furthermore, when the squid pen was dried after treatment of Ca solvent and washing with water, interplanar spacing of (010) inversely shrank to 1.1A. These results suggested that Ca solvent especially influences the plane (010) of beta-chitin structure. PMID:18036656

  6. Chitin particles induce size-dependent but carbohydrate-independent innate eosinophilia.

    Science.gov (United States)

    Kogiso, Mari; Nishiyama, Akihito; Shinohara, Tsutomu; Nakamura, Masataka; Mizoguchi, Emiko; Misawa, Yoshinori; Guinet, Elisabeth; Nouri-Shirazi, Mahyar; Dorey, C Kathleen; Henriksen, Ruth Ann; Shibata, Yoshimi

    2011-07-01

    Murine Mϕ that phagocytose CMP develop into M1; this response depends on the size and the chemical composition of the particles. In contrast, recent studies concluded that chitin particles induce M2 and eosinophil migration, promoting acquired Th2 immune responses against chitin-containing microbes or allergens. This study examined whether these apparently inconsistent responses to chitin could be induced by variation in the size and chemical composition of the chitin particles. We compared the responses of Mϕ with CMP, LCB, and Sephadex G-100 beads (>40 μm). Beads were given i.p. to WT mice and to mice deficient in a CRTH2, a receptor for the eosinophil chemoattractant PGD(2). In contrast to the M1 activation induced by CMP, i.p. administration of LCB or Sephadex beads induced within 24 h a CRTH2-dependent peritoneal eosinophilia, as well as CRTH2-independent activation of peritoneal Mϕ that expressed Arg I, an M2 phenotype. LCB-induced Mϕ exhibited elevated Arg I and a surface MR, reduced surface TLR2 levels, and no change in the levels of CHI3L1 or IL-10 production. Our results indicate that the effects of chitin in vivo are highly dependent on particle size and that large, nonphagocytosable beads, independent of their chemical composition, induce innate eosinophilia and activate Mϕ expressing several M2, but not M1, phenotypes. PMID:21447645

  7. Effects of nonsteroidal ecdysone agonist RH-5992 and chitin biosynthesis inhibitor lufenuron on Spodoptera littoralis (Boisduval, 1833)

    Czech Academy of Sciences Publication Activity Database

    Gelbič, Ivan; Adel, M. M.; Hussein, Hany

    2011-01-01

    Roč. 6, č. 5 (2011), s. 861-869. ISSN 1895-104X R&D Projects: GA ČR GA522/08/1407 Institutional research plan: CEZ:AV0Z50070508 Keywords : tebufenozide * mortality * sterility Subject RIV: ED - Physiology Impact factor: 1.000, year: 2011

  8. Chitin Amendment Increases Soil Suppressiveness toward Plant Pathogens and Modulates the Actinobacterial and Oxalobacteraceal Communities in an Experimental Agricultural Field

    NARCIS (Netherlands)

    Cretoiu, Mariana Silvia; Korthals, Gerard W.; Visser, Johnny H. M.; van Elsas, Jan Dirk

    2013-01-01

    A long-term experiment on the effect of chitin addition to soil on the suppression of soilborne pathogens was set up and monitored for 8 years in an experimental field, Vredepeel, The Netherlands. Chitinous matter obtained from shrimps was added to soil top layers on two different occasions, and the

  9. Properties of polymethyl methacrylate-based nanocomposites: Reinforced with ultra-long chitin nanofiber extracted from crab shells

    International Nuclear Information System (INIS)

    Highlights: • Using waste crab shells to develop high-performance composites by simple method. • Combining the anatomic analysis of crab shell with the design of composite. • Introducing a 4-step all-mechanical treatment to prepare ultra-long chitin fiber. • Incorporation of chitin nanofiber improves properties of PMMA/Chitin composite. - Abstract: Ultra-long chitin nanofibers were incorporated into polymethyl methacrylate (PMMA) resin to prepared PMMA/Chitin nanocomposites with improved properties. Transmission electron microscopy (TEM) images showed that through the introduced 4-step all-mechanical treatment, the average aspect ratio of the obtained chitin fiber was up to 1000 with the length at dozens of micron range. Due to the laminated structure formed by “layer-by-layer” effect, tensile strength and Young’s modulus of the prepared composite were significantly enhanced after the filling of chitin nanofibers, as compared with neat PMMA. Light transmittance test indicated that increasing the fiber content causes little light scattering because the nano-scalar network which is smaller enough than the visible wavelength could well preserve the original transparency of PMMA. Furthermore, chitin nanofiber film with extremely low thermal expansion improved the thermal stability of PMMA in a great degree. This could lead to various commercial applications including flexible electronic printing, organic thin-film photovoltaic devices, and is a significantly environmental move towards the sustainable utilization of marine-river crab shell wastes

  10. The chsA gene, encoding a class-I chitin synthase from Ampelomyces quisqualis.

    Science.gov (United States)

    Weiss, N; Sztejnberg, A; Yarden, O

    1996-02-01

    Degenerate oligodeoxyribonucleotide primers, designed on the basis of conserved regions of the chitin synthase gene family, were used to amplify a fragment of the Ampelomyces quisqualis (Aq) chsA gene. Subsequently, the PCR product was used as a probe in order to identify and isolate genomic clones harboring the entire chsA gene. Aq chsA is 2786-nt long, has one intron and encodes a 910-amino-acid polypeptide belonging to the class-I chitin synthases. Low-stringency Southern hybridizations to Aq genomic DNA provided evidence for the presence of additional DNA fragments resembling chsA in the fungal genome, suggesting the presence of a multigene family of chitin synthases in Aq. PMID:8626074

  11. Bridging peripheral nerves using a deacetyl chitin conduit combined with short-term electrical stimulation

    Institute of Scientific and Technical Information of China (English)

    Zhongli Zhang; Xin Li; Songjie Zuo; Jie Xin; Peixun Zhang

    2014-01-01

    Previous studies have demonstrated that deacetyl chitin conduit nerve bridging or electrical stimulation can effectively promote the regeneration of the injured peripheral nerve. We hypoth-esized that the combination of these two approaches could result in enhanced regeneration. Rats with right sciatic nerve injury were subjected to deacetyl chitin conduit bridging combined with electrical stimulation (0.1 ms, 3 V, 20 Hz, for 1 hour). At 6 and 12 weeks after treatment, nerve conduction velocity, myelinated axon number, ifber diameter, axon diameter and the thickness of the myelin sheath in the stimulation group were better than in the non-stimulation group. The results indicate that deacetyl chitin conduit bridging combined with temporary electrical stimu-lation can promote peripheral nerve repair.

  12. Bridging peripheral nerves using a deacetyl chitin conduit combined with short-term electrical stimulation.

    Science.gov (United States)

    Zhang, Zhongli; Li, Xin; Zuo, Songjie; Xin, Jie; Zhang, Peixun

    2014-05-15

    Previous studies have demonstrated that deacetyl chitin conduit nerve bridging or electrical stimulation can effectively promote the regeneration of the injured peripheral nerve. We hypothesized that the combination of these two approaches could result in enhanced regeneration. Rats with right sciatic nerve injury were subjected to deacetyl chitin conduit bridging combined with electrical stimulation (0.1 ms, 3 V, 20 Hz, for 1 hour). At 6 and 12 weeks after treatment, nerve conduction velocity, myelinated axon number, fiber diameter, axon diameter and the thickness of the myelin sheath in the stimulation group were better than in the non-stimulation group. The results indicate that deacetyl chitin conduit bridging combined with temporary electrical stimulation can promote peripheral nerve repair. PMID:25206762

  13. Role of Tyr-435 of Vibrio harveyi chitinase A in chitin utilization.

    Science.gov (United States)

    Sritho, Natchanok; Suginta, Wipa

    2012-03-01

    Vibrio harveyi chitinase A or VhChiA (EC.3.2.1.14) is a member of GH-18 chitinases that catalyzes chitin degradation from marine biomaterials. Our earlier structural data of VhChiA suggested that Tyr-435 marks the ending of subsite +2 and may influence binding of the interacting substrate at the aglycone binding sites. This study reports the effects of Tyr-435 using site-directed mutagenesis technique. Mutation of Tyr-435 to Ala (mutant Y435A) enhanced both binding and catalytic efficiency of VhChiA, whereas substitution of Tyr-435 to Trp (mutant Y435W) lessened the ability of the enzyme to bind and hydrolyze chitin substrates. The increased activity of Y435A can be explained by partial removal of a steric clash around subsite (+2), thereby allowing a chitin chain to move beyond or to access the enzyme's active site from the aglycone side more straightforwardly. PMID:22194054

  14. Effects of Chitin and Its Derivative Chitosan on Postharvest Decay of Fruits: A Review

    Directory of Open Access Journals (Sweden)

    Weimin Liu

    2011-01-01

    Full Text Available Considerable economic losses to harvested fruits are caused by postharvest fungal decay during transportation and storage, which can be significantly controlled by synthetic fungicides. However, considering public concern over pesticide residues in food and the environment, there is a need for safer alternatives for the control of postharvest decay to substitute synthetic fungicides. As the second most abundant biopolymer renewable source in nature, chitin and its derivative chitosan are widely used in controlling postharvest decay of fruits. This review aims to introduce the effect of chitin and chitosan on postharvest decay in fruits and the possible modes of action involved. We found most of the actions discussed in these researches rest on physiological mechanisms. All of the mechanisms are summarized to lay the groundwork for further studies which should focus on the molecular mechanisms of chitin and chitosan in controlling postharvest decay of fruits.

  15. Zinc ions alter morphology and chitin deposition in an ericoid fungus

    Directory of Open Access Journals (Sweden)

    L. Lanfranco

    2010-05-01

    Full Text Available A sterile mycelium PS IV, an ascomycete capable of establishing ericoid mycorrhizas, was used to investigate how zinc ions affect the cellular mechanisms of fungal growth. Asignificant reduction of the fungal biomass was observed in the presence of millimolar zinc concentrations; this mirrored conspicuous changes in hyphal morphology which led to apical swellings and increased branching in the subapical parts. Specific probes for fluorescence and electron microscopy localised chitin, the main cell wall polysaccharide, on the inner part of the fungal wall and on septa in control specimens. In Zn-treated mycelium, hyphal walls were thicker and a more intense chitin labelling was detected on the transverse walls. Aquantitative assay showed a significant increase in the amount of chitin in metal- treated hyphae.

  16. Ethylene biosynthesis-inducing protein from cellulysin is an endoxylanase.

    Science.gov (United States)

    Fuchs, Y; Saxena, A; Gamble, H R; Anderson, J D

    1989-01-01

    The proteinaceous ethylene biosynthesis-inducing factor (EIF) that was purified from Cellulysin was also shown to contain a xylanase activity. In all nondenaturing protein separation methods employed (Sephacryl S-200 chromatography, and preparative isoelectric focusing and agarose electrophoresis), xylanase activity copurified with the ethylene biosynthesis-inducing activity. Treatment with heat (60 degrees C) or proteases in 8 molar urea inhibited both ethylene-inducing and xylanase activities. Antibodies raised against purified EIF, which contains three polypeptides of 18, 14, and 10 kilodaltons, immunoprecipitated both ethylene biosynthesis-inducing and xylanase activities. The purified EIF contained no detectable cellulase, polygalacturonase, or protease activity. Other hydrolytic activities as estimated by using p-nitrophenyl derivatives of several sugars as substrates also were not detected. Different commercially available hydrolytic enzyme preparations were tested for both ethylene biosynthesis-inducing and xylanase activities. All enzymes tested contained xylanase activity, but only a few induced ethylene biosynthesis. Western blots of proteins separated by SDS-PAGE, using antibodies prepared against the non-denatured purified EIF, revealed two major bands of about 18 and 14 kilodaltons in EIF. These antibodies seem to be specific for these proteins from Trichoderma viride, because there was little cross-reactivity with the other proteins in Cellulysin and other commercial enzyme preparations. Based on these data, we suggest that EIF contains a specific xylanase activity which is involved in inducing ethylene biosynthesis. PMID:16666504

  17. Lipo-chitin oligosaccharides, plant symbiosis signalling molecules that modulate mammalian angiogenesis in vitro.

    Directory of Open Access Journals (Sweden)

    Michael A Djordjevic

    Full Text Available Lipochitin oligosaccharides (LCOs are signaling molecules required by ecologically and agronomically important bacteria and fungi to establish symbioses with diverse land plants. In plants, oligo-chitins and LCOs can differentially interact with different lysin motif (LysM receptors and affect innate immunity responses or symbiosis-related pathways. In animals, oligo-chitins also induce innate immunity and other physiological responses but LCO recognition has not been demonstrated. Here LCO and LCO-like compounds are shown to be biologically active in mammals in a structure dependent way through the modulation of angiogenesis, a tightly-regulated process involving the induction and growth of new blood vessels from existing vessels. The testing of 24 LCO, LCO-like or oligo-chitin compounds resulted in structure-dependent effects on angiogenesis in vitro leading to promotion, or inhibition or nil effects. Like plants, the mammalian LCO biological activity depended upon the presence and type of terminal substitutions. Un-substituted oligo-chitins of similar chain lengths were unable to modulate angiogenesis indicating that mammalian cells, like plant cells, can distinguish between LCOs and un-substituted oligo-chitins. The cellular mode-of-action of the biologically active LCOs in mammals was determined. The stimulation or inhibition of endothelial cell adhesion to vitronectin or fibronectin correlated with their pro- or anti-angiogenic activity. Importantly, novel and more easily synthesised LCO-like disaccharide molecules were also biologically active and de-acetylated chitobiose was shown to be the primary structural basis of recognition. Given this, simpler chitin disaccharides derivatives based on the structure of biologically active LCOs were synthesised and purified and these showed biological activity in mammalian cells. Since important chronic disease states are linked to either insufficient or excessive angiogenesis, LCO and LCO

  18. Micro-CT imaging of denatured chitin by silver to explore honey bee and insect pathologies.

    Directory of Open Access Journals (Sweden)

    Peter R Butzloff

    Full Text Available BACKGROUND: Chitin and cuticle coatings are important to the environmental and immune defense of honey bees and insect pollinators. Pesticides or environmental effects may target the biochemistry of insect chitin and cuticle coating. Denaturing of chitin involves a combination of deacetylation, intercalation, oxidation, Schweiger-peeling, and the formation of amine hydrochloride salt. The term "denatured chitin" calls attention to structural and property changes to the internal membranes and external carapace of organisms so that some properties affecting biological activities are diminished. METHODOLOGY/PRINCIPAL FINDINGS: A case study was performed on honey bees using silver staining and microscopic computer-tomographic x-ray radiography (micro-CT. Silver nitrate formed counter-ion complexes with labile ammonium cations and reacted with amine hydrochloride. Silver was concentrated in the peritrophic membrane, on the abdomen, in the glossa, at intersegmental joints (tarsi, at wing attachments, and in tracheal air sacs. Imaged mono-esters and fatty acids from cuticle coating on external surfaces were apparently reduced by an alcohol pretreatment. CONCLUSIONS/SIGNIFICANCE: The technique provides 3-dimensional and sectional images of individual honey bees consistent with the chemistries of silver reaction and complex formation with denatured chitin. Environmental exposures and influences such as gaseous nitric oxide intercalant, trace oxidants such as ozone gas, oligosachharide salt conversion, exposure to acid rain, and chemical or biochemical denaturing by pesticides may be studied using this technique. Peritrophic membranes, which protect against food abrasion, microorganisms, and permit efficient digestion, were imaged. Apparent surface damage to the corneal lenses of compound eyes by dilute acid exposure consistent with chitin amine hydrochloride formation was imaged. The technique can contribute to existing insect pathology research, and may

  19. Isolation and identification of chitin in three-dimensional skeleton of Aplysina fistularis marine sponge.

    Science.gov (United States)

    Wysokowski, Marcin; Bazhenov, Vasilii V; Tsurkan, Mikhail V; Galli, Roberta; Stelling, Allison L; Stöcker, Hartmut; Kaiser, Sabine; Niederschlag, Elke; Gärtner, Günter; Behm, Thomas; Ilan, Micha; Petrenko, Alexander Y; Jesionowski, Teofil; Ehrlich, Hermann

    2013-11-01

    The recent discovery of chitin within skeletons of numerous marine and freshwater sponges (Porifera) stimulates further experiments to identify this structural aminopolysaccharide in new species of these aquatical animals. Aplysina fistularis (Verongida: Demospongiae: Porifera) is well known to produce biologically active bromotyrosines. Here, we present a detailed study of the structural and physico-chemical properties of the three-dimensional skeletal scaffolds of this sponge. Calcofluor white staining, Raman and IR spectroscopy, ESI-MS as well as chitinase digestion test were applied in order to unequivocally prove the first discovery of α-chitin in skeleton of A. fistularis. PMID:23994783

  20. Effect of Chitin Biopolymer on Dyeing Polyester/Cotton Fabrics with Disperse/Reactive Dyes

    OpenAIRE

    Najafi, H.; M. Hajilari; M. Parvinzadeh

    2008-01-01

    In this research into the process of dyeing polyester/cotton fabrics using disperse/reactive dyestuffs in one method dyeing processes. In order to improve the adhesion of chitin to the surface of polyester/cotton fibers, pre-treatment in NaOH solutions was performed. The colour and rubbing fastness properties of the chitin-deposited polyester/cotton fabrics were assessed. The colour difference between the dyed blank samples and samples dyed in after NaOH and/or different viscosity chiti...

  1. Blue Chitin columns for the extraction of heterocyclic amines from urine samples

    DEFF Research Database (Denmark)

    Bang, J.; Frandsen, Henrik Lauritz; Skog, K.

    During normal cooking of meat, a class of mutagenic/carcinogenic compounds called heterocyclic amines is formed. Heterocyclic amines are rapidly absorbed and metabolised in the human body, and for estimation of the intake of heterocyclic amines, it is useful to determinate their levels in the urine....... Blue Chitin columns were used for the extraction and purification of heterocyclic amines from urine samples spiked with 14 different heterocyclic amines. The samples were analysed using LC-MS. The results show that Blue Chitin columns provide a straightforward and rapid means of extracting heterocyclic...

  2. Management of Plant-parasitic Nematodes with a Chitin-Urea Soil Amendment and Other Materials

    OpenAIRE

    Westerdahl, B. B.; Carlson, H. L.; Grant, J; Radewald, J. D.; Welch, N.; Anderson, C A; Darso, J.; Kirby, D.; Shibuya, F.

    1992-01-01

    Field trials were conducted with a chitin-urea soil amendment and several other nematicides on four crop-nematode combinations: tomato-Meloidogyne incognita; potato-Meloidogyne chitwoodi; walnut-Pratylenchus vulnus; and brussels sprouts-Heterodera schachtii. Significant (P ≤ 0.10) nematode population reductions were obtained with the chitin-urea soil amendment in the trims on potato and walnut. In the trials on brussels sprouts and on tomato, phytotoxicity occurred at rates of 1,868 and 1,093...

  3. Biosynthesis of plant sulfolipids

    International Nuclear Information System (INIS)

    The complete biosynthesis of sulfoquinovosyldiacylglycerol (SQDG) remains undetermined although dark synthesis of SQDG by chloroplasts supplied with AP35S, PAP35S or 35SO4 plus ATP suggests the sulfur moiety arises from either APS or sulfite (1). Sulfate incorporation into sulfolipids in isolated chloroplasts and in intact roots is reported here and compared to lipids labelled by 14C-acetate or 14C-glycerol. Several unknown 35S-labelled chloroform-soluble compounds were isolated from sterile roots. These 35S-labelled compounds differ from those of the chloroplast, identified as elemental sulfur forms. Identification of the unknown root compounds is in progress. Unlike chloroplast, isolated root plastids do not synthesis SQDG from sulfate plus ATP suggesting a requirement for an activated form of sulfate, such as APS or PAPS

  4. The Chlorella variabilis NC64A Genome Reveals Adaptation to Photosymbiosis, Coevolution with Viruses, and Cryptic Sex

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, Guillaume; Duncan, Garry A.; Agarakova, Irina; Borodovsky, Mark; Gurnon, James; Kuo, Alan; Lindquist, Erika; Lucas, Susan; Pangailinan, Jasmyn; Polle, Juergen; Salamov, Asaf; Terry, Astrid; Yamada, Takashi; Dunigan, David D.; Grigoriev, Igor V.; Claverie, Jean-Michel; Etten, James L. Van

    2010-05-06

    Chlorella variabilis NC64A, a unicellular photosynthetic green alga (Trebouxiophyceae), is an intracellular photobiont of Paramecium bursaria and a model system for studying virus/algal interactions. We sequenced its 46-Mb nuclear genome, revealing an expansion of protein families that could have participated in adaptation to symbiosis. NC64A exhibits variations in GC content across its genome that correlate with global expression level, average intron size, and codon usage bias. Although Chlorella species have been assumed to be asexual and nonmotile, the NC64A genome encodes all the known meiosis-specific proteins and a subset of proteins found in flagella. We hypothesize that Chlorella might have retained a flagella-derived structure that could be involved in sexual reproduction. Furthermore, a survey of phytohormone pathways in chlorophyte algae identified algal orthologs of Arabidopsis thaliana genes involved in hormone biosynthesis and signaling, suggesting that these functions were established prior to the evolution of land plants. We show that the ability of Chlorella to produce chitinous cell walls likely resulted from the capture of metabolic genes by horizontal gene transfer from algal viruses, prokaryotes, or fungi. Analysis of the NC64A genome substantially advances our understanding of the green lineage evolution, including the genomic interplay with viruses and symbiosis between eukaryotes.

  5. Dramatic increase in glycerol biosynthesis upon oxidative stress in the anaerobic protozoan parasite Entamoeba histolytica.

    Directory of Open Access Journals (Sweden)

    Afzal Husain

    Full Text Available Entamoeba histolytica, a microaerophilic enteric protozoan parasite, causes amebic colitis and extra intestinal abscesses in millions of inhabitants of endemic areas. Trophozoites of E. histolytica are exposed to a variety of reactive oxygen and nitrogen species during infection. Since E. histolytica lacks key components of canonical eukaryotic anti-oxidative defense systems, such as catalase and glutathione system, alternative not-yet-identified anti-oxidative defense strategies have been postulated to be operating in E. histolytica. In the present study, we investigated global metabolic responses in E. histolytica in response to H(2O(2- and paraquat-mediated oxidative stress by measuring charged metabolites on capillary electrophoresis and time-of-flight mass spectrometry. We found that oxidative stress caused drastic modulation of metabolites involved in glycolysis, chitin biosynthesis, and nucleotide and amino acid metabolism. Oxidative stress resulted in the inhibition of glycolysis as a result of inactivation of several key enzymes, leading to the redirection of metabolic flux towards glycerol production, chitin biosynthesis, and the non-oxidative branch of the pentose phosphate pathway. As a result of the repression of glycolysis as evidenced by the accumulation of glycolytic intermediates upstream of pyruvate, and reduced ethanol production, the levels of nucleoside triphosphates were decreased. We also showed for the first time the presence of functional glycerol biosynthetic pathway in E. histolytica as demonstrated by the increased production of glycerol 3-phosphate and glycerol upon oxidative stress. We proposed the significance of the glycerol biosynthetic pathway as a metabolic anti-oxidative defense system in E. histolytica.

  6. A Review of the Applications of Chitin and Its Derivatives in Agriculture to Modify Plant-Microbial Interactions and Improve Crop Yields

    Directory of Open Access Journals (Sweden)

    Russell G. Sharp

    2013-11-01

    Full Text Available In recent decades, a greater knowledge of chitin chemistry, and the increased availability of chitin-containing waste materials from the seafood industry, have led to the testing and development of chitin-containing products for a wide variety of applications in the agriculture industry. A number of modes of action have been proposed for how chitin and its derivatives can improve crop yield. In addition to direct effects on plant nutrition and plant growth stimulation, chitin-derived products have also been shown to be toxic to plant pests and pathogens, induce plant defenses and stimulate the growth and activity of beneficial microbes. A repeating theme of the published studies is that chitin-based treatments augment and amplify the action of beneficial chitinolytic microbes. This article reviews the evidence for claims that chitin-based products can improve crop yields and the current understanding of the modes of action with a focus on plant-microbe interactions.

  7. Phytoecdysteroids: Diversity, Biosynthesis and Distribution

    Czech Academy of Sciences Publication Activity Database

    Dinan, L.; Harmatha, Juraj; Volodin, V.; Lafont, R.

    Dordrecht : Springer Netherlands , 2009 - (Smagghe, G.), s. 3-45 ISBN 978-1-4020-9111-7 Institutional research plan: CEZ:AV0Z40550506 Keywords : ecdysteroid * phytosterol * structure * biosynthesis Subject RIV: CC - Organic Chemistry

  8. Identification and Characterization of Novel Chitin-Binding Proteins from the Larval Cuticle of Silkworm, Bombyx mori.

    Science.gov (United States)

    Dong, Zhaoming; Zhang, Weiwei; Zhang, Yan; Zhang, Xiaolu; Zhao, Ping; Xia, Qingyou

    2016-05-01

    Cuticle is mainly made of chitin filaments embedded in a matrix of cuticular proteins (CPs). Cuticular chitins have minor differences, whereas CPs are widely variable with respect to their sequences and structures. To understand the molecular basis underlying the mechanical properties of cuticle, it is necessary to know which CPs interact with chitin and how they are assembled into the cuticle structure. In the present study, a chitin-binding assay was performed followed by liquid chromatography-tandem mass spectrometry to identify the extracted proteins from the larval cuticle of silkworm, Bombyx mori. There were 463 proteins identified from the silkworm larval cuticle, 200 of which were recovered in the chitin-binding fraction. A total of 103 proteins were annotated as CPs, which were classified into 11 CP families based on their conserved motifs, including CPR, CPAP, CPT, CPF and CPFL, CPCFC, chitin_bind 3, BmCPH2 homologues, BmCPH9 homologues, BmCPG1 homologues, BmCPG20 homologues, and BmCPG21 homologues. A total of five CP families were newly identified in the chitin-binding fraction, thereby providing new information and insight into the composition, structure, and function of the silkworm larval cuticle. PMID:26972338

  9. Papain incorporated chitin dressings for wound debridement sterilized by gamma radiation

    Science.gov (United States)

    Singh, Durgeshwer; Singh, Rita

    2012-11-01

    Wound debridement is essential for the removal of necrotic or nonviable tissue from the wound surface to create an environment conducive to healing. Nonsurgical enzymatic debridement is an attractive method due to its effectiveness and ease of use. Papain is a proteolytic enzyme derived from the fruit of Carica papaya and is capable of breaking down a variety of necrotic tissue substrates. The present study was focused on the use of gamma radiation for sterilization of papain dressing with wound debriding activity. Membranes with papain were prepared using 0.5% chitin in lithium chloride/dimethylacetamide solvent and sterilized by gamma radiation. Fluid absorption capacity of chitin-papain membranes without glycerol was 14.30±6.57% in 6 h. Incorporation of glycerol resulted in significant (ppapain was stable on gamma irradiation at 25-35 kGy. The irradiated chitin-papain membranes were impermeable to different bacterial strains and also exhibited strong bactericidal action against both Gram-positive and Gram-negative bacteria. The fluid handling characteristics and the antimicrobial properties of chitin-papain membranes sterilized by gamma radiation were found suitable for use as wound dressing with debriding activity.

  10. Chitosan/chitin nanowhiskers composites: effect of plasticisers on the mechanical behaviour

    Czech Academy of Sciences Publication Activity Database

    Kelnar, Ivan; Kovářová, Jana; Tishchenko, Galina; Kaprálková, Ludmila; Pavlova, Ewa; Carezzi, F.; Morganti, P.

    2015-01-01

    Roč. 22, č. 2 (2015), 5_1-5_6. ISSN 1022-9760 R&D Projects: GA ČR(CZ) GA13-15255S EU Projects: European Commission(XE) 315233 - N-CHITOPACK Institutional support: RVO:61389013 Keywords : chitosan * chitin nanowhiskers * composite Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.920, year: 2014

  11. Chitin stimuůates development and sporulation of arbuscular mycorrhizal fungi

    Czech Academy of Sciences Publication Activity Database

    Gryndler, Milan; Jansa, Jan; Hršelová, Hana; Chvátalová, Irena; Vosátka, M.

    2003-01-01

    Roč. 22, - (2003), s. 283-287. ISSN 0929-1393 R&D Projects: GA ČR GA526/99/0895 Institutional research plan: CEZ:AV0Z5020903 Keywords : arbuscular mycorrhizal fungi * chitin Subject RIV: EE - Microbiology, Virology Impact factor: 1.483, year: 2003

  12. Effect of chitin nanofibrils/plasticizer combination on mechanical behaviour of chitosan-matrix films

    Czech Academy of Sciences Publication Activity Database

    Kelnar, Ivan; Tishchenko, Galina; Kaprálková, Ludmila; Strachota, Adam; Carezzi, F.; Morganti, P.

    Pisa : University of Pisa, Department of Civil and Industrial Engineering, 2013, s. 31. [Workshop Green Chemistry and Nanotechnologies in Polymer Chemistry /4./. Pisa (IT), 04.09.2013-06.09.2013] EU Projects: European Commission(XE) 315233 - N-CHITOPACK Institutional support: RVO:61389013 Keywords : chitosan * single polymer composite * chitin nanofibrils Subject RIV: CD - Macromolecular Chemistry

  13. Effect of plasticizers on behavior of chitosan/chitin nanofibrils composite

    Czech Academy of Sciences Publication Activity Database

    Kelnar, Ivan; Morganti, P.; Carezzi, F.; Tishchenko, Galina; Kovářová, Jana; Pavlova, Ewa

    Moscow : Lomonosov Moscow State University, 2014. s. 505. [International Conference on Nanostructured Materials /12./ - NANO 2014. 13.07.2014-18.07.2014, Moscow] EU Projects: European Commission(XE) 315233 - N-CHITOPACK Institutional support: RVO:61389013 Keywords : chitin nanofibrils * chitosan * nanocomposite Subject RIV: CD - Macromolecular Chemistry

  14. The effect of chitin synthesis inhibitors on the development of Brugia malayi in Aedes aegypti.

    Science.gov (United States)

    Mohapatra, R; Ranjit, M R; Dash, A P

    1996-09-01

    Two chitin synthesis inhibitors (CSIs) viz., triflumuron and hexaflumuron interfere++ with the development of Brugia malayi in Aedes aegypti (a black-eyed Liverpool strain). The development of B. malayi was slow in both the treated populations and the infection rate, infectivity rate and L3 load per mosquito decreased significantly (P triflumuron. PMID:8984113

  15. Transforming nanostructured chitin from crustacean waste into beneficial health products: a must for our society

    Directory of Open Access Journals (Sweden)

    Morganti P

    2011-12-01

    Full Text Available P Morganti1, G Morganti2, A Morganti3,41Department of Dermatology, Second University of Naples, Naples, Italy; 2Centre of Nanoscience, Mavi Sud s.r.l, Aprilia, Italy; 3Max Planck Institute for Intellectual Property and Competition Law, Munich, Germany; 4Lextray, Milan, ItalyAbstract: Chitin, obtained principally from crustacean waste, is a sugar-like polymer that is available at low cost. It has been shown to be bio- and ecocompatible, and has a very low level of toxicity. Recently, it has become possible to industrially produce pure chitin crystals, named "chitin nanofibrils" (CN for their needle-like shape and nanostructured average size (240 × 5 × 7 nm. Due to their specific chemical and physical characteristics, CN may have a range of industrial applications, from its use in biomedical products and biomimetic cosmetics, to biotextiles and health foods. At present, world offshore disposal of this natural waste material is around 250 billion tons per year. It is an underutilized resource and has the potential to supply a wide range of useful products if suitably recycled, thus contributing to sustainable growth and a greener economy.Keywords: chitin nanofibrils, biomimetic cosmetics, biomedical products, food, nanotechnology, waste

  16. In vitro lipid digestion of chitin nanocrystal stabilized o/w emulsions

    NARCIS (Netherlands)

    Tzoumaki, M.V.; Moschakis, T.; Scholten, E.; Biliaderis, C.G.

    2013-01-01

    Chitin nanocrystals (ChN) have been shown to form stable Pickering emulsions. These oil-in-water emulsions were compared with conventional milk (whey protein isolate, WPI, and sodium caseinate, SCn) protein-stabilized emulsions in terms of their lipid digestion kinetics using an in vitro enzymatic p

  17. Direct conversion of chitin biomass to 5-hydroxymethylfurfural in concentrated ZnCl2 aqueous solution

    DEFF Research Database (Denmark)

    Wang, Yingxiong; Pedersen, Christian Marcus; Deng, Tiansheng;

    2013-01-01

    The direct conversion of chitin biomass to 5-hydroxymethylfurfural (5-HMF) in ZnCl2 aqueous solution was studied systemically. D-Glucosamine (GlcNH2) was chosen as the model compound to investigate the reaction, and 5-HMF could be obtained in 21.9% yield with 99% conversion of GlcNH2. Optimization...

  18. Potential of chitosan (chemically-modified chitin) for extraction of lead-arsenate contaminated soils

    Science.gov (United States)

    Arsenic (As), phosphorous (P), and lead (Pb) contamination in soils represents a health risk to humans and the environment. Chitosan (poly-N-acetyl glucosamine) is a non-toxic and inexpensive food industry byproduct derived from chitin that has been used as an adsorbent of heavy metals. The object...

  19. MOLECULAR TRACERS FOR SMOKE FROM CHARRING/BURNING OF CHITIN BIOPOLYMER. (R823990)

    Science.gov (United States)

    AbstractMonosaccharide derivatives from the breakdown of cellulose are the major organic components of smoke particles emitted to the atmosphere from biomass burning. In urban areas a related biopolymer, chitin, may contribute markers to smoke from grilling/charring o...

  20. Characterization of organics consistent with β-chitin preserved in the Late Eocene cuttlefish Mississaepia mississippiensis.

    Directory of Open Access Journals (Sweden)

    Patricia G Weaver

    Full Text Available BACKGROUND: Preservation of original organic components in fossils across geological time is controversial, but the potential such molecules have for elucidating evolutionary processes and phylogenetic relationships is invaluable. Chitin is one such molecule. Ancient chitin has been recovered from both terrestrial and marine arthropods, but prior to this study had not been recovered from fossil marine mollusks. METHODOLOGY/PRINCIPAL FINDINGS: Organics consistent with β-chitin are recovered in cuttlebones of Mississaepia mississippiensis from the Late Eocene (34.36 million years ago marine clays of Hinds County, Mississippi, USA. These organics were determined and characterized through comparisons with extant taxa using Scanning Electron Microscopy/Energy Dispersive Spectrometry (SEM/EDS, Field Emission Scanning Electron Microscopy (Hyperprobe, Fourier Transmission Infrared Spectroscopy (FTIR and Immunohistochemistry (IHC. CONCLUSIONS/SIGNIFICANCE: Our study presents the first evidence for organics consistent with chitin from an ancient marine mollusk and discusses how these organics have been degraded over time. As mechanisms for their preservation, we propose that the inorganic/organic lamination of the cuttlebone, combined with a suboxic depositional environment with available free Fe(2+ ions, inhibited microbial or enzymatic degradation.

  1. Concurrent protein synthesis is required for in vivo chitin synthesis in postmolt blue crabs

    International Nuclear Information System (INIS)

    Chitin synthesis in crustaceans involves the deposition of a protein-polysaccharide complex at the apical surface of epithelial cells which secrete the cuticle or exoskeleton. The present study involves an examination of in vivo incorporation of radiolabeled amino acids and amino sugars into the cuticle of postmolt blue crabs, Callinectes sapidus. Rates of incorporation of both 3H leucine and 3H threonine were linear with respect to time of incubation. Incorporation of 3H threonine into the endocuticle was inhibited greater than 90% in the presence of the protein synthesis inhibitor, puromycin. Linear incorporation of 14C glucosamine into the cuticle was also demonstrated; a significant improvement of radiolabeling was achieved by using 14C-N-acetylglucosamine as the labeled precursor. Incorporation of 3H-N-acetylglucosamine into the cuticle of postmolt blue crabs was inhibited 89% by puromycin, indicating that concurrent protein synthesis is required for the deposition of chitin in the blue crab. Autoradiographic analysis of control vs. puromycin-treated crabs indicates that puromycin totally blocks labeling of the new endocuticle with 3H glucosamine. These results are consistent with the notion that crustacean chitin is synthesized as a protein-polysaccharide complex. Analysis of the postmolt and intermolt blue crab cuticle indicates that the exoskeleton contains about 60% protein and 40% chitin. The predominant amino acids are arginine, glutamic acid, alanine, aspartic acid, and threonine

  2. Serine biosynthesis and transport defects.

    Science.gov (United States)

    El-Hattab, Ayman W

    2016-07-01

    l-serine is a non-essential amino acid that is biosynthesized via the enzymes phosphoglycerate dehydrogenase (PGDH), phosphoserine aminotransferase (PSAT), and phosphoserine phosphatase (PSP). Besides its role in protein synthesis, l-serine is a potent neurotrophic factor and a precursor of a number of essential compounds including phosphatidylserine, sphingomyelin, glycine, and d-serine. Serine biosynthesis defects result from impairments of PGDH, PSAT, or PSP leading to systemic serine deficiency. Serine biosynthesis defects present in a broad phenotypic spectrum that includes, at the severe end, Neu-Laxova syndrome, a lethal multiple congenital anomaly disease, intermediately, infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end, the childhood disease with intellectual disability. A serine transport defect resulting from deficiency of the ASCT1, the main transporter for serine in the central nervous system, has been recently described in children with neurological manifestations that overlap with those observed in serine biosynthesis defects. l-serine therapy may be beneficial in preventing or ameliorating symptoms in serine biosynthesis and transport defects, if started before neurological damage occurs. Herein, we review serine metabolism and transport, the clinical, biochemical, and molecular aspects of serine biosynthesis and transport defects, the mechanisms of these diseases, and the potential role of serine therapy. PMID:27161889

  3. BIOSYNTHESIS OF STRESS ETHYLENE IN SOYBEAN SEEDLINGS: SIMILARITIES TO ENDOGENOUS ETHYLENE BIOSYNTHESIS

    Science.gov (United States)

    The similarity of stress ethylene biosynthesis in whole plants to endogenous ethylene biosynthesis was investigated using two inhibitors of ethylene biosynthesis, amino-ethoxyvinylglycine (AVG) and cobalt chloride (Co2+); and the intermediates, methionine, S-adenosylmethionine (S...

  4. Glycolipid biosynthesis in cyanobacteria

    International Nuclear Information System (INIS)

    The biosynthesis of monogalactosyldiacyl-glycerol (MGDG) was studied in five different cyanobacteria. Previous work has shown Anabaena variabilis to synthesize both MGDG and monoglucosyl-diacylglycerol (MG1cDG) with MG1cDG being the precursor of MGDG. They have examined four other cyanobacteria to determine if a similar relationship exists. The cyanobacteria studied were Anabaena variabilis, Chlorogloeopsis sp., Schizothrix calcicola, Anacystis nidulans, and Anacystis marina. Each were grown in liquid culture and lipids were labeled with 14C]CO2 for 20 min., 1.0 hr, 1.0 hr + 10 hr chase. Glycolipids were analyzed by initial separation of MGDG and MG1cDG by TLC followed by further analysis by HPLC. Complete separation of molecular species was obtained isocratically on an ODS column. All of the cyanobacteria labeled 16-C and 18-C fatty acids except for A. marina which labeled only 14-C and 16-C fatty acids. Desaturation of the fatty acids could be observed in the 1.0 hr and chase experiments. All were capable of labeling both MG1cDG and MGDG with the precursor-product relationship being observed. There does not appear to be a direct relationship between the epimerization of the sugar moiety and fatty acid desaturation

  5. Pseudopterosin Biosynthesis: Aromatization of the Diterpene Cyclase Product, Elisabethatriene

    Directory of Open Access Journals (Sweden)

    Amber C. Kohl

    2003-11-01

    Full Text Available Abstract: Putative precursors in pseudopterosin biosynthesis, the hydrocarbons isoelisabethatriene (10 and erogorgiaene (11, have been identified from an extract of Pseudopterogorgia elisabethae collected in the Florida Keys. Biosynthetic experiments designed to test the utilization of these compounds in pseudopterosin production revealed that erogorgiaene is transformed to pseudopterosins A-D. Together with our previous data, it is now apparent that early steps in pseudopterosin biosynthesis involve the cyclization of geranylgeranyl diphosphate to elisabethatriene followed by the dehydrogenation and aromatization to erogorgiaene.

  6. Topical problems in the biosynthesis of red blood pigment

    Energy Technology Data Exchange (ETDEWEB)

    Franck, B.

    1982-05-01

    Uroporphyrinogen III plays a key role in the biosynthesis of heme, the red pigment of blood. In vivo studies with specifically /sup 14/C- and /sup 3/H-labeled precursors have revealed that the formation of uroporphyrinogen III in the organism follows several primary and subsidiary pathways. Model experiments on the pattern of biosynthesis have led to simple and effective methods of synthesizing uroporphyrin analogs and have shown that their production is strongly favored thermodynamically. The biologically important porphyrins thus available permit a mechanistic explanation of the light-induced dermatoses in porphyria diseases and suggest promising medical applications in diagnosis and therapy.

  7. Topical problems in the biosynthesis of red blood pigment

    International Nuclear Information System (INIS)

    Uroporphyrinogen III plays a key role in the biosynthesis of heme, the red pigment of blood. In vivo studies with specifically 14C- and 3H-labeled precursors have revealed that the formation of uroporphyrinogen III in the organism follows several primary and subsidiary pathways. Model experiments on the pattern of biosynthesis have led to simple and effective methods of synthesizing uroporphyrin analogs and have shwon that their production is strongly favored thermodynamically, The biologically important porphyrins thus available permit a mechanistic explanantion of the light-induced dermatoses in porphyria diseases and suggest promising medical applications in diagnosis and therapy. (orig.)

  8. Electrochemical study of functionalization on the surface of a chitin/platinum-modified glassy carbon paste electrode.

    Science.gov (United States)

    Sugawara, Kazuharu; Yugami, Asako; Terui, Norifumi; Kuramitz, Hideki

    2009-11-01

    To functionalize chitin surfaces using proteins, we developed a glucose oxidase (GOD)-chitin/platinum-modified glassy carbon paste electrode (GCPE) as a model. In a weakly acidic solution, negatively charged GOD were immobilized by the protonated acetylamide groups on chitin. When the electrode was immersed in a solution containing GOD, the enzyme was readily immobilized due to the electrostatic interaction. In addition, measurements were performed using electrodes made with powders of different sizes because sensor performance depends on the particle sizes of glassy carbon powder. PMID:19907096

  9. Identification of a membrane-bound transcriptional regulator that links chitin and natural competence in Vibrio cholerae.

    Science.gov (United States)

    Dalia, Ankur B; Lazinski, David W; Camilli, Andrew

    2014-01-01

    Vibrio cholerae is naturally competent when grown on chitin. It is known that expression of the major regulator of competence, TfoX, is controlled by chitin; however, the molecular mechanisms underlying this requirement for chitin have remained unclear. In the present study, we identify and characterize a membrane-bound transcriptional regulator that positively regulates the small RNA (sRNA) TfoR, which posttranscriptionally enhances tfoX translation. We show that this regulation of the tfoR promoter is direct by performing electrophoretic mobility shift assays and by heterologous expression of this system in Escherichia coli. This transcriptional regulator was recently identified independently and was named "TfoS" (S. Yamamoto et al., Mol. Microbiol., in press, doi:10.1111/mmi.12462). Using a constitutively active form of TfoS, we demonstrate that the activity of this regulator is sufficient to promote competence in V. cholerae in the absence of chitin. Also, TfoS contains a large periplasmic domain, which we hypothesized interacts with chitin to regulate TfoS activity. In the heterologous host E. coli, we demonstrate that chitin oligosaccharides are sufficient to activate TfoS activity at the tfoR promoter. Collectively, these data characterize TfoS as a novel chitin-sensing transcriptional regulator that represents the direct link between chitin and natural competence in V. cholerae. IMPORTANCE Naturally competent bacteria can take up exogenous DNA from the environment and integrate it into their genome by homologous recombination. This ability to take up exogenous DNA is shared by diverse bacterial species and serves as a mechanism to acquire new genes to enhance the fitness of the organism. Several members of the family Vibrionaceae become naturally competent when grown on chitin; however, a molecular understanding of how chitin activates competence is lacking. Here, we identify a novel membrane-bound transcriptional regulator that is required for natural

  10. Unique synteny and alternate splicing of the chitin synthases in closely related heliothine moths.

    Science.gov (United States)

    Shirk, Paul D; Perera, Omaththage P; Shelby, Kent S; Furlong, Richard B; LoVullo, Eric D; Popham, Holly J R

    2015-12-10

    Chitin is an extracellular biopolymer that contributes to the cuticular structural matrix in arthropods. As a consequence of its rigid structure, the chitinous cuticle must be shed and replaced to accommodate growth. Two chitin synthase genes that encode for chitin synthase A (ChSA), which produces cuticular exoskeleton, and chitin synthase B (ChSB), which produces peritrophic membrane, were characterized in the genomes of two heliothine moths: the corn earworm/cotton bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) and the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). In both moths, the two genes were arranged in tandem with the same orientation on the same strand with ChSB located 5' of ChSA. Sequence comparisons showed that the coding sequences were highly conserved with homologues from other species but that the tandem juxtaposed genomic arrangement of the two genes was unique in these insects. The mechanism that has led to this arrangement is unclear but is most likely a recent recombinational event. Transcript mapping of HzChSB and HzChSA in H. zea demonstrated that both transcripts were differentially spliced in various tissues and larval stages. The identification of the HzChSB-E12b alternate spliced transcript is the first report of alternate splicing for the ChSB group. The importance of this splice form is not clear because the protein produced would lack any enzymatic activity but retain the membrane insertion motifs. As for other insects, these genes provide an important target for potential control through RNAi but also provide a subject for broad scale genomic recombinational events. PMID:26253161

  11. Alkali- or acid-induced changes in structure, moisture absorption ability and deacetylating reaction of β-chitin extracted from jumbo squid (Dosidicus gigas) pens.

    Science.gov (United States)

    Jung, Jooyeoun; Zhao, Yanyun

    2014-01-01

    Alkali- or acid-induced structural modifications in β-chitin from squid (Dosidicus gigas, d'Orbigny, 1835) pens and their moisture absorption ability (MAA) and deacetylating reaction were investigated and compared with α-chitin from shrimp shells. β-Chitin was converted into the α-form after 3h in 40% NaOH or 1-3 h in 40% HCl solution, and α-chitin obtained from NaOH treatment had higher MAA than had native α-chitin, due to polymorphic destructions. In contrast, induced α-chitin from acid treatment of β-chitin had few polymorphic modifications, showing no significant change (P>0.05) in MAA. β-Chitin was more susceptible to alkali deacetylation than was α-chitin, and required a lower concentration of NaOH and shorter reaction time. These results demonstrate that alkali- or acid-treated β-chitin retained high susceptibility toward solvents, which in turn resulted in good biological activity of β-chitosan for use as a natural antioxidant and antimicrobial substance or application as edible coatings and films for various food applications. PMID:24444948

  12. A WDR Gene Is a Conserved Member of a Chitin Synthase Gene Cluster and Influences the Cell Wall in Aspergillus nidulans

    Science.gov (United States)

    Guerriero, Gea; Silvestrini, Lucia; Obersriebnig, Michael; Hausman, Jean-Francois; Strauss, Joseph; Ezcurra, Inés

    2016-01-01

    WD40 repeat (WDR) proteins are pleiotropic molecular hubs. We identify a WDR gene that is a conserved genomic neighbor of a chitin synthase gene in Ascomycetes. The WDR gene is unique to fungi and plants, and was called Fungal Plant WD (FPWD). FPWD is within a cell wall metabolism gene cluster in the Ascomycetes (Pezizomycotina) comprising chsD, a Chs activator and a GH17 glucanase. The FPWD, AN1556.2 locus was deleted in Aspergillus nidulans strain SAA.111 by gene replacement and only heterokaryon transformants were obtained. The re-annotation of Aspergilli genomes shows that AN1556.2 consists of two tightly linked separate genes, i.e., the WDR gene and a putative beta-flanking gene of unknown function. The WDR and the beta-flanking genes are conserved genomic neighbors localized within a recently identified metabolic cell wall gene cluster in genomes of Aspergilli. The heterokaryons displayed increased susceptibility to drugs affecting the cell wall, and their phenotypes, observed by optical, confocal, scanning electron and atomic force microscopy, suggest cell wall alterations. Quantitative real-time PCR shows altered expression of some cell wall-related genes. The possible implications on cell wall biosynthesis are discussed. PMID:27367684

  13. Studies on sorption of uranium on Chitin- a solid state microextractant-application to preparation of uranium free ground water

    International Nuclear Information System (INIS)

    Studies were carried out to remove uranium based on the solid phase extraction of uranium by chitin from aqueous systems. Investigations were carried out to optimise the parameters like pH, contact time, and amount of chitin. The studies with synthetic samples and real water samples showed that U was easily sorbed on chitin at pH 5. The effects of other cations and anions, which are present in the water samples, were also studied. The method is simple, fast and environmental friendly and it is unaffected by the other ions present in the natural waters. The accuracy of the method was evaluated by applying the present method on ground water samples containing uranium in the range of 100-2200 ppb. The uranium remained in water samples is <20 ppb after treatment with chitin, which is below the WHO and AERB limits given for uranium in drinking water. (author)

  14. Chitin and Chitosan as Multipurpose Natural Polymers for Groundwater Arsenic Removal and As2O3 Delivery in Tumor Therapy

    Directory of Open Access Journals (Sweden)

    Letizia Da Sacco

    2010-04-01

    Full Text Available Chitin and chitosan are natural polysaccharide polymers. These polymers have been used in several agricultural, food protection and nutraceutical applications. Moreover, chitin and chitosan have been also used in biomedical and biotechnological applications as drug delivery systems or in pharmaceutical formulations. So far, there are only few studies dealing with arsenic (As removal from groundwater using chitin or chitosan and no evidence of the use of these natural polymers for arsenic trioxide (As2O3 delivery in tumor therapy. Here we suggest that chitin and/or chitosan might have the right properties to be employed as efficient polymers for such applications. Besides, nanotechnology offers suitable tools for the fabrication of novel nanostructured materials of natural origin. Since different nanostructured materials have already been employed successfully in various multidisciplinary fields, we expect that the integration of nanotechnology and natural polymer chemistry will further lead to innovative applications for environment and medicine.

  15. Isolierung und Charakterisierung der Chitin-basierten Skelette der marinen Schwämme Aplysina cavernicola und Ianthella basta

    OpenAIRE

    Ueberlein, Susanne

    2016-01-01

    Die Schwammskelette der Ordnung Verongida zeichnen sich durch das Fehlen mineralischer Komponenten aus. Stattdessen bestehen sie aus Spongin, einem kollagenartigen Protein, und Chitin. Im Rahmen der vorliegenden Arbeit wurden die aus solch einem Chitin-Protein-Komplex bestehenden Skelette der Schwammspezies Aplysina cavernicola und Ianthella basta aus der Ordnung Verongida untersucht. Aufgrund ihrer morphologischen Unterschiede wurde für jede Schwammart eine eigene Methode zur Isolierung der ...

  16. Enzymatic production of defined chitosan oligomers with a specific pattern of acetylation using a combination of chitin oligosaccharide deacetylases

    Science.gov (United States)

    Hamer, Stefanie Nicole; Cord-Landwehr, Stefan; Biarnés, Xevi; Planas, Antoni; Waegeman, Hendrik; Moerschbacher, Bruno Maria; Kolkenbrock, Stephan

    2015-03-01

    Chitin and chitosan oligomers have diverse biological activities with potentially valuable applications in fields like medicine, cosmetics, or agriculture. These properties may depend not only on the degrees of polymerization and acetylation, but also on a specific pattern of acetylation (PA) that cannot be controlled when the oligomers are produced by chemical hydrolysis. To determine the influence of the PA on the biological activities, defined chitosan oligomers in sufficient amounts are needed. Chitosan oligomers with specific PA can be produced by enzymatic deacetylation of chitin oligomers, but the diversity is limited by the low number of chitin deacetylases available. We have produced specific chitosan oligomers which are deacetylated at the first two units starting from the non-reducing end by the combined use of two different chitin deacetylases, namely NodB from Rhizobium sp. GRH2 that deacetylates the first unit and COD from Vibrio cholerae that deacetylates the second unit starting from the non-reducing end. Both chitin deacetylases accept the product of each other resulting in production of chitosan oligomers with a novel and defined PA. When extended to further chitin deacetylases, this approach has the potential to yield a large range of novel chitosan oligomers with a fully defined architecture.

  17. Alternate biosynthesis of valerenadiene and related sesquiterpenes.

    Science.gov (United States)

    Paknikar, Shashikumar K; Kadam, Shahuraj H; Ehrlich, April L; Bates, Robert B

    2013-09-01

    It is proposed that the biosynthesis of the sesquiterpene valerenadiene, a key intermediate in the biosynthesis of a sedative in valerian, involves cyclopropane and not cyclobutane intermediates and includes as a key step a cyclopropylcarbinylcation-cyclopropylcarbinylcation rearrangement analogous to the one observed in the conversion of presqualene to squalene in triterpene and steroid biosynthesis. Similar mechanisms are proposed for the biosynthesis of the related sesquiterpenes pacifigorgiol, tamariscene and (+)-pacifigorgia-1,10-diene. PMID:24273843

  18. Biosynthesis of nanoparticles using microbes- a review.

    Science.gov (United States)

    Hulkoti, Nasreen I; Taranath, T C

    2014-09-01

    The biosynthesis of nanoparticles by microorganism is a green and eco-friendly technology. This review focuses on the use of consortium of diverse microorganisms belonging to both prokaryotes and eukaryotes for the synthesis of metallic nanoparticles viz. silver, gold, platinum, zirconium, palladium, iron, cadmium and metal oxides such as titanium oxide, zinc oxide, etc. These microorganisms include bacteria, actinomycetes, fungi and algae. The synthesis of nanoparticles may be intracellular or extracellular. The several workers have reported that NADH dependent nitrate reductase enzyme plays a vital role in the conversion of metallic ions to nanoparticles. The FTIR study reveals that diverse biomolecules viz. carboxyl group, primary and secondary amines, amide I, II, and III bands etc serve as a tool for bioreduction and capping agents there by offering stability to particles by preventing agglomeration and growth. The size and shape of the nanoparticles vary with the organism employed and conditions employed during the synthesis which included pH, temperature and substrate concentration. The microorganisms provide diverse environment for biosynthesis of nanoparticles. These particles are safe and eco-friendly with a lot of applications in medicine, agriculture, cosmetic industry, drug delivery and biochemical sensors. The challenges for redressal include optimal production and minimal time to obtain desired size and shape, to enhance the stability of nanoparticles and optimization of specific microorganisms for specific application. PMID:25001188

  19. Synthesis of carboxymethyl chitin in aqueous solution and its thermo- and pH-sensitive behaviors.

    Science.gov (United States)

    Liu, Hui; Yang, Qizhi; Zhang, Lina; Zhuo, Renxi; Jiang, Xulin

    2016-02-10

    Homogenous modification of natural chitin offers the advantage of fair structure control. In this work, novel carboxymethyl chitins (CMCHs) with broad range of degree of substitution (DS: 0.035 to 0.74), high degree of acetylation (DA) and little de-polymerization were synthesized homogeneously in aqueous NaOH/urea solution. The simultaneous determination of DA, DS and carboxymethylation fraction at C3 and C6 for these CMCHs was achieved by proton NMR in acidic deuterated aqueous solution for the first time. Due to the good homogeneity, the prepared CMCH-4 with lower DS of carboxymethylation exhibited, for the first time to our knowledge, dual thermo- and pH-sensitive properties. The nontoxic thermo-sensitive polymer systems gel at body temperature (37 °C) in physiological condition, which is very useful as injectable hydrogels for drug delivery and tissue engineering. PMID:26686169

  20. Ovicidal activity of chitin synthesis inhibitors when fed to adult German cockroaches (Dictyoptera: Blattellidae).

    Science.gov (United States)

    DeMark, J J; Bennett, G W

    1990-07-01

    Ovicidal activity was observed in four adult groups (virgin males; virgin females; newly gravid females; and inseminated, reproducing females) of the German cockroach, Blattella germanica (L.), fed the chitin synthesis inhibitors triflumuron, chlorfluazuron, hexafluron, and UC 84572 (structure not disclosed) at the LC50's and LC95's determined from fifth-stage nymphs. All compounds were active only when fed to reproducing females (including the feeding period in which the ootheca is developing). Hexafluron and triflumuron at the LC50 caused 100% inhibition of hatch in reproducing females. Chlorfluazuron and UC 84572 at the LC50 had similar ovicidal activity (45.8 and 50.0% hatch, respectively). Female German cockroaches fed the chitin synthesis inhibitors before mating and after the ootheca had protruded from the abdomen were not affected. Reproductive capabilities of males were not affected, and males did not effectively transfer the compounds to untreated females during mating. PMID:2388230

  1. Genetic regulations of the biosynthesis of microbial surfactants: an overview.

    Science.gov (United States)

    Das, Palashpriya; Mukherjee, Soumen; Sen, Ramkrishna

    2008-01-01

    Microbial biosurfactants are surface active metabolites synthesized by microbes growing on a variety of substrates. In spite of having great potential for commercial, therapeutic and environmental applications, industrial level production has not been realized for their low yields and productivities. One vital factor determining their biosynthesis is the genetic makeup of the producer organisms. Studies on molecular genetics and biochemistry of the synthesis of several biosurfactants have revealed the operons, the enzymes and the metabolic pathways required for their extracellular production. Surfactin, a cyclic lipopeptide biosurfactant is a potent antimicrobial agent and is produced as a result of non-ribosomal biosynthesis catalyzed by a large multienzyme peptide synthetase complex called the surfactin synthetase. Pathways for the synthesis of other lipopeptides such as iturin, lichenysin and arthrofactin are also mediated by similar enzyme complexes. These non-ribosomal peptide synthetases (NRPSs) responsible for lipopeptide biosynthesis display a high degree of structural similarity among themselves even from distant microbial species. Plasmid-encoded- rhlA, B, R and I genes of rhl quorum sensing system are required for production of glycolipid biosurfactants by Pseudomonas species. Molecular genetics of biosynthesis of alasan and emulsan by Acinetobacter species and of the fungal biosurfactants such as mannosylerythritol lipids (MEL) and hydrophobins have been deciphered. However, limited genetic information is available about biosynthesis of other biosurfactants such as viscosin, amphisin and putisolvin produced by some strains of Pseudomonas species. Understanding of the genetic regulatory mechanisms would help to develop metabolically engineered hyper-producing strains with better product characteristics and acquired capability of utilizing cheap agro-industrial wastes as substrates. This article thus provides an overview of the role and importance of

  2. Chitin nanofibrils biomimetic products: nanoparticles and nanocomposite chitosan films in health care

    Czech Academy of Sciences Publication Activity Database

    Morganti, P.; Tishchenko, Galina; Palombo, M.; Kelnar, Ivan; Brožová, Libuše; Špírková, Milena; Pavlova, Ewa; Kobera, Libor; Carezzi, F.

    Boca Raton : CRC Press Taylor & Francis Group, 2013 - (Kim, S.), s. 681-716 ISBN 978-1-4665-0564-3 R&D Projects: GA ČR GA310/09/1407 Institutional support: RVO:61389013 Keywords : chitin nanofibrils * nanocomposite chitosan films * biomimetic products Subject RIV: EE - Microbiology, Virology http://www.crcnetbase.com/doi/abs/10.1201/b14723-39

  3. Enzyme-assisted modification of cellulose/chitin fibers with NIPAAm

    OpenAIRE

    IRIMIA, ANAMARIA; CSISZAR, EMILIA; DOBROMIR, MARIUS; Doroftei, Florica; Vasile, Cornelia

    2015-01-01

    Coating processes are applied in order to improve coating adhesion and resistance to degradation. Covalently bound organic coatings rather than merely physically bound ones assure stable modification. In this study a novel two-step process was developed to modify cellulose/chitin mix fibers consisting of enzymatic activation with a commercial cellulase, followed by a coupling reaction with N-isopropylacrylamide (or poly (N-isopropylacrylamide)) in the presence of 1-(3-dimethylaminopropyl)-3-e...

  4. Effects of Chitin and Its Derivative Chitosan on Postharvest Decay of Fruits: A Review

    OpenAIRE

    Weimin Liu; Hongyin Zhang; Renping Li

    2011-01-01

    Considerable economic losses to harvested fruits are caused by postharvest fungal decay during transportation and storage, which can be significantly controlled by synthetic fungicides. However, considering public concern over pesticide residues in food and the environment, there is a need for safer alternatives for the control of postharvest decay to substitute synthetic fungicides. As the second most abundant biopolymer renewable source in nature, chitin and its derivative chitosan are wide...

  5. Effect of applied electric field on structure and permeability of chitin nanofiber-reinforced chitosan membranes

    Czech Academy of Sciences Publication Activity Database

    Tishchenko, Galina; Peter, Jakub; Pavlova, Ewa; Brus, Jiří; Netopilík, Miloš; Pekárek, Michal; Sedláková, Zdeňka; Rosova, E. Yu.; Smirnov, M.; Elyashevich, G. K.

    Praha : Institute of Macromolecular Chemistry, 2009. s. 137. ISBN 978-80-85009-59-0. [Prague Meetings on Macromolecules /73./ New Frontiers in Macromolecular Science: From Macromolecular Concepts of Living Matter to Polymers for Better Quality of Life. 05.07.2009-09.07.2009, Prague] R&D Projects: GA ČR(CZ) GA525/08/0803 Institutional research plan: CEZ:AV0Z40500505 Keywords : chitosan membrane structure * permeability * electric field * chitin whiskers Subject RIV: CD - Macromolecular Chemistry

  6. Chitin whisker-reinforced chitosan films formed under applied electric field

    Czech Academy of Sciences Publication Activity Database

    Tishchenko, Galina; Peter, Jakub; Pavlova, Ewa; Brus, Jiří; Netopilík, Miloš; Pekárek, Michal; Sedláková, Zdeňka; Rosova, E. U.; Smirnov, M.; Elyashevich, G. K.

    Prague : Institute of Macromolecular Chemistry AS CR, v.v , 2009. s. 156. ISBN 978-80-85009-58-3. [International Conference Permea 2009. 07.06.2009-11.06.2009, Prague] R&D Projects: GA ČR(CZ) GA525/08/0803 Institutional research plan: CEZ:AV0Z40500505 Keywords : chitosan films * electric field * chitin whiskers Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition

  7. Chitin-Lignin Material as a Novel Matrix for Enzyme Immobilization

    OpenAIRE

    Jakub Zdarta; Łukasz Klapiszewski; Marcin Wysokowski; Małgorzata Norman; Agnieszka Kołodziejczak-Radzimska; Dariusz Moszyński; Hermann Ehrlich; Hieronim Maciejewski; Allison L Stelling; Teofil Jesionowski

    2015-01-01

    Innovative materials were made via the combination of chitin and lignin, and the immobilization of lipase from Aspergillus niger. Analysis by techniques including FTIR, XPS and 13C CP MAS NMR confirmed the effective immobilization of the enzyme on the surface of the composite support. The electrokinetic properties of the resulting systems were also determined. Results obtained from elemental analysis and by the Bradford method enabled the determination of optimum parameters for the immobiliza...

  8. Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route

    Science.gov (United States)

    Mangalathillam, Sabitha; Rejinold, N. Sanoj; Nair, Amrita; Lakshmanan, Vinoth-Kumar; Nair, Shantikumar V.; Jayakumar, Rangasamy

    2011-12-01

    In this study, curcumin loaded chitin nanogels (CCNGs) were developed using biocompatible and biodegradable chitin with an anticancer curcumin drug. Chitin, as well as curcumin, is insoluble in water. However, the developed CCNGs form a very good and stable dispersion in water. The CCNGs were analyzed by DLS, SEM and FTIR and showed spherical particles in a size range of 70-80 nm. The CCNGs showed higher release at acidic pH compared to neutral pH. The cytotoxicity of the nanogels were analyzed on human dermal fibroblast cells (HDF) and A375 (human melanoma) cell lines and the results show that CCNGs have specific toxicity on melanoma in a concentration range of 0.1-1.0 mg mL-1, but less toxicity towards HDF cells. The confocal analysis confirmed the uptake of CCNGs by A375. The apoptotic effect of CCNGs was analyzed by a flow-cytometric assay and the results indicate that CCNGs at the higher concentration of the cytotoxic range showed comparable apoptosis as the control curcumin, in which there was negligible apoptosis induced by the control chitin nanogels. The CCNGs showed a 4-fold increase in steady state transdermal flux of curcumin as compared to that of control curcumin solution. The histopathology studies of the porcine skin samples treated with the prepared materials showed loosening of the horny layer of the epidermis, facilitating penetration with no observed signs of inflammation. These results suggest that the formulated CCNGs offer specific advantage for the treatment of melanoma, the most common and serious type of skin cancer, by effective transdermal penetration.

  9. Effect of Chitin Addition to the Growth of Entomopathogenic fungi Penicillium sp.

    OpenAIRE

    Nurariaty, Agus; Ade, Sugiarti

    2014-01-01

    Penicillium sp. is one of the potentially entomopathogenic fungi to control the cacao pod borer (CPB). The study aims to determine the effect of chitin addition to the growth of entomopathogenic fungi Penicillium sp. Experiments was conducted in Pests Identification and Biological Control laboratory, Department of Plant Pest and Disease, Faculty of Agriculture, Hasanuddin University. The method was conducted that if the fungus Penicillium sp. has grown on PDA, then put in erlemeyer contai...

  10. Entamoeba histolytica Lectins Contain Unique 6-Cys or 8-Cys Chitin-Binding Domains

    OpenAIRE

    Van Dellen, Katrina; Ghosh, Sudip K.; Robbins, Phillips W.; Loftus, Brendan; Samuelson, John

    2002-01-01

    The Jacob lectin, the most abundant glycoprotein in the cyst wall of Entamoeba invadens, contains five unique 6-Cys chitin-binding domains (CBDs). We identified Entamoeba histolytica and Entamoeba dispar genes encoding Jacob homologues, each of which contains two predicted 6-Cys CBDs. A unique 8-Cys CBD was found at the N termini of the E. histolytica chitinase and three other predicted lectins, called Jessie 1 to Jessie 3. The CBDs of four E. histolytica lectins (Jacob, chitinase, and Jessie...

  11. The Evolution of Aflatoxin Biosynthesis

    Science.gov (United States)

    The biosynthesis of aflatoxin (AF) involves over 20 enzymatic reactions in a complex polyketide pathway that converts acetate and malonate to the intermediates sterigmatocystin (ST) and O-methylsterigmatocysin (OMST), the respective penultimate and ultimate precursors of AF. Although ST, OMST, and ...

  12. Co-Processed Chitin-Mannitol as a New Excipient for Oro-Dispersible Tablets

    Directory of Open Access Journals (Sweden)

    Nidal Daraghmeh

    2015-03-01

    Full Text Available This study describes the preparation, characterization and performance of a novel excipient for use in oro-dispersible tablets (ODT. The excipient (Cop–CM consists of chitin and mannitol. The excipient with optimal physicochemical properties was obtained at a chitin: mannitol ratio of 2:8 (w/w and produced by roll compaction (RC. Differential scanning calorimetry (DSC, Fourier transform-Infrared (FT-IR, X-ray powder diffraction (XRPD and scanning electron microscope (SEM techniques were used to characterize Cop–CM, in addition to characterization of its powder and ODT dosage form. The effect of particle size distribution of Cop–CM was investigated and found to have no significant influence on the overall tablet physical properties. The compressibility parameter (a for Cop–CM was calculated from a Kawakita plot and found to be higher (0.661 than that of mannitol (0.576 due to the presence of the highly compressible chitin (0.818. Montelukast sodium and domperidone ODTs produced, using Cop–CM, displayed excellent physicochemical properties. The exceptional binding, fast wetting and superdisintegration properties of Cop–CM, in comparison with commercially available co-processed ODT excipients, results in a unique multifunctional base which can successfully be used in the formulation of oro-dispersible and fast immediate release tablets.

  13. New photocatalyst based on graphene oxide/chitin for degradation of dyes under sunlight.

    Science.gov (United States)

    Wang, Yuntao; Pei, Yaqiong; Xiong, Wenfei; Liu, Tingguo; Li, Jing; Liu, Shilin; Li, Bin

    2015-11-01

    Sunlight photocatalyst was fabricated by in situ synthesis of Cu2O in the regenerated chitin (RC)/graphene oxide (GO) composite film, where the porous chitin film was used as the microreactor for the formation of nano Cu2O. Nano Cu2O was immobilized and evenly distributed in the matrix and Cu2O tended to grow on the GO sheets. Cu2O inside the matrix excite and generate free photoelectrons and electron holes, which was responsible for the degradation of dyes, while GO transferred the yielded photoelectrons to prevent the generation of local high potential zone and induce the chain degradation at more points. So it was found that the porous chitin film could load Cu2O and graphene at the same time, controlling the size of Cu2O and leading to easy recycle and reuse of the photocatalyst. Moreover, the introduction of GO has dramatically improved the photocatalytic activity of Cu2O in the Cu2O/GO/RC film, showing great potential application in wastewater treatment utilizing solar energy. PMID:26299711

  14. The fungicidal properties of the carbon materials obtained from chitin and chitosan promoted by copper salts

    Energy Technology Data Exchange (ETDEWEB)

    Ilnicka, Anna, E-mail: annakucinska@o2.pl; Walczyk, Mariusz; Lukaszewicz, Jerzy P.

    2015-07-01

    Renewable raw materials chitin and chitosan (N-deacetylated derivative of chitin) were subjected to action of different copper modifiers that were carbonized in the atmosphere of the N{sub 2} inert gas. As a result of the novel manufacturing procedure, a series of carbon materials was obtained with developed surface area and containing copper derivatives of differentiated form, size, and dispersion. The copper modifier and manufacturing procedure (concentration, carbonization temperature) influence the physical–chemical and fungicide properties of the carbons. The received carbons were chemically characterized using several methods like low-temperature adsorption of nitrogen, X-ray diffraction analysis, scanning electron microscopy, cyclic voltammetry, elemental analysis, and bioassay. Besides chemical testing, some biological tests were performed and let to select carbons with the highest fungicidal activity. Such carbons were characteristic of the specific form of copper derivatives occurring in them, i.e., nanocrystallites of Cu{sup 0} and/or Cu{sub 2}O of high dispersion on the surface of carbon. The carbons may find an application as effective contact fungistatic agents in cosmetology, medicine, food industry, etc. - Highlights: • The novel manufacturing procedure yields new functional carbon materials. • Two biopolymers chitin and chitosan can undergo copper(II) ion modification. • The Cu-modified carbon materials exhibit high fungicidal activity. • The fungicidal activity results from the presence of Cu{sup 0} and Cu{sub 2}O nano-crystallites.

  15. Role of Chitin and Chitinase/Chitinase-Like Proteins in Inflammation, Tissue Remodeling, and Injury

    Science.gov (United States)

    Lee, Chun Geun; Da Silva, Carla A.; Dela Cruz, Charles S.; Ahangari, Farida; Ma, Bing; Kang, Min-Jong; He, Chuan-Hua; Takyar, Seyedtaghi; Elias, Jack A.

    2013-01-01

    The 18 glycosyl hydrolase family of chitinases is an ancient gene family that is widely expressed from prokaryotes to eukaryotes. In mammals, despite the absence of endogenous chitin, a number of chitinases and chitinase-like proteins (C/CLPs) have been identified. However, their roles have only recently begun to be elucidated. Acidic mammalian chitinase (AMCase) inhibits chitin-induced innate inflammation; augments chitin-free, allergen-induced Th2 inflammation; and mediates effector functions of IL-13. The CLPs BRP-39/YKL-40 (also termed chitinase 3-like 1) inhibit oxidant-induced lung injury, augments adaptive Th2 immunity, regulates apoptosis, stimulates alternative macrophage activation, and contributes to fibrosis and wound healing. In accord with these findings, levels of YKL-40 in the lung and serum are increased in asthma and other inflammatory and remodeling disorders and often correlate with disease severity. Our understanding of the roles of C/CLPs in inflammation, tissue remodeling, and tissue injury in health and disease is reviewed below. PMID:21054166

  16. Cigarette Smoke-Exposed Candida albicans Increased Chitin Production and Modulated Human Fibroblast Cell Responses

    Directory of Open Access Journals (Sweden)

    Humidah Alanazi

    2014-01-01

    Full Text Available The predisposition of cigarette smokers for development of respiratory and oral bacterial infections is well documented. Cigarette smoke can also contribute to yeast infection. The aim of this study was to investigate the effect of cigarette smoke condensate (CSC on C. albicans transition, chitin content, and response to environmental stress and to examine the interaction between CSC-pretreated C. albicans and normal human gingival fibroblasts. Following exposure to CSC, C. albicans transition from blastospore to hyphal form increased. CSC-pretreated yeast cells became significantly (P<0.01 sensitive to oxidation but significantly (P<0.01 resistant to both osmotic and heat stress. CSC-pretreated C. albicans expressed high levels of chitin, with 2- to 8-fold recorded under hyphal conditions. CSC-pretreated C. albicans adhered better to the gingival fibroblasts, proliferated almost three times more and adapted into hyphae, while the gingival fibroblasts recorded a significantly (P<0.01 slow growth rate but a significantly higher level of IL-1β when in contact with CSC-pretreated C. albicans. CSC was thus able to modulate both C. albicans transition through the cell wall chitin content and the interaction between C. albicans and normal human gingival fibroblasts. These findings may be relevant to fungal infections in the oral cavity in smokers.

  17. Natural waste materials containing chitin as adsorbents for textile dyestuffs: batch and continuous studies.

    Science.gov (United States)

    Figueiredo, S A; Loureiro, J M; Boaventura, R A

    2005-10-01

    In this work three natural waste materials containing chitin were used as adsorbents for textile dyestuffs, namely the Anodonta (Anodonta cygnea) shell, the Sepia (Sepia officinalis) and the Squid (Loligo vulgaris) pens. The selected dyestuffs were the Cibacron green T3G-E (CI reactive green 12), and the Solophenyl green BLE 155% (CI direct green 26), both from CIBA, commonly used in cellulosic fibres dyeing, the most used fibres in the textile industry. Batch equilibrium studies showed that the materials' adsorption capacities increase after a simple and inexpensive chemical treatment, which increases their porosity and chitin relative content. Kinetic studies suggested the existence of a high internal resistance in both systems. Fixed bed column experiments performed showed an improvement in adsorbents' behaviour after chemical treatment. However, in the column experiments, the biodegradation was the main mechanism of dyestuff removal, allowing the materials' bioregeneration. The adsorption was strongly reduced by the pore clogging effect of the biomass. The deproteinised Squid pen (grain size 0.500-1.41 mm) is the adsorbent with highest adsorption capacity (0.27 and 0.037 g/g, respectively, for the reactive and direct dyestuffs, at 20 degrees C), followed by the demineralised Sepia pen and Anodonta shell, behaving like pure chitin in all experiments, but showing inferior performances than the granular activated carbon tested in the column experiments. PMID:16140355

  18. Molecular Dynamics Simulations of Hydration Effects on Solvation, Diffusivity, and Permeability in Chitosan/Chitin Films.

    Science.gov (United States)

    McDonnell, Marshall T; Greeley, Duncan A; Kit, Kevin M; Keffer, David J

    2016-09-01

    The effects of hydration on the solvation, diffusivity, solubility, and permeability of oxygen molecules in sustainable, biodegradable chitosan/chitin food packaging films were studied via molecular dynamics and confined random walk simulations. With increasing hydration, the membrane has a more homogeneous water distribution with the polymer chains being fully solvated. The diffusivity increased by a factor of 4 for oxygen molecules and by an order of magnitude for water with increasing the humidity. To calculate the Henry's constant and solubility of oxygen in the membranes with changing hydration, the excess chemical potential was calculated via free energy perturbation, thermodynamic integration and direct particle deletion methods. The simulations predicted a higher solubility and permeability for the lower humidity, in contradiction to experimental results. All three methods for calculating the solubility were in good agreement. It was found that the Coulombic interactions in the potential caused the oxygen to bind too strongly to the protonated amine group. Insight from this work will help guide molecular modeling of chitosan/chitin membranes, specifically permeability measurements for small solute molecules. Efforts to chemically tailor chitosan/chitin membranes to favor discrete as opposed to continuous aqueous domains could reduce oxygen permeability. PMID:27487964

  19. An investigation of carbon dioxide capture by chitin acetate/DMSO binary system.

    Science.gov (United States)

    Eftaiha, Ala'a F; Alsoubani, Fatima; Assaf, Khaleel I; Troll, Carsten; Rieger, Bernhard; Khaled, Aseel H; Qaroush, Abdussalam K

    2016-11-01

    Chitin is considered to be the second most abundant naturally-occurring polysaccharide. Also, dimethyl sulfoxide (DMSO) is the second highest dielectric constant polar solvent after water. Despite the low solubility of chitin in common organic solvents, and due to its high nitrogen content, it may serve as a potential scrubbing agent "wet scrubbing" for carbon dioxide (CO2) capturing as an alternative to monoethanolamine "renewables for renewables approach". Briefly, a detailed investigation for the utilization of low molecular weight, chitin-acetate (CA) in DMSO for the capturing of CO2 is reported. As carbonation process takes place, the formation of ionic alkylcarbonate was confirmed throughout spectroscopic and computational studies. Supramolecular chemisorption was proven throughout (1)H Nuclear Magnetic Resonance ((1)H NMR) together with the absence of sorption of CO2 by the monomeric repeating unit, glucosamine hydrochloride. Further, Density Functional Theory (DFT) calculations supported the formation of the CA/CO2 adduct through a newly formed supramolecular ionic interaction and hydrogen bonding along the oligosaccharide backbone between the neighboring ammonium ion and hydroxyl functional groups. The sorption capacity was measured volumetrically within an in situ Attenuated Total Reflectance-Fourier Transform Infrared coupled (in situ ATR-FTIR) autoclave at 25.0°C, and 4.0bar CO2, with a maximum sorption capacity of 3.63 [Formula: see text] /gsorbent at 10.0% (w/v). PMID:27516261

  20. Cigarette smoke-exposed Candida albicans increased chitin production and modulated human fibroblast cell responses.

    Science.gov (United States)

    Alanazi, Humidah; Semlali, Abdelhabib; Perraud, Laura; Chmielewski, Witold; Zakrzewski, Andrew; Rouabhia, Mahmoud

    2014-01-01

    The predisposition of cigarette smokers for development of respiratory and oral bacterial infections is well documented. Cigarette smoke can also contribute to yeast infection. The aim of this study was to investigate the effect of cigarette smoke condensate (CSC) on C. albicans transition, chitin content, and response to environmental stress and to examine the interaction between CSC-pretreated C. albicans and normal human gingival fibroblasts. Following exposure to CSC, C. albicans transition from blastospore to hyphal form increased. CSC-pretreated yeast cells became significantly (P < 0.01) sensitive to oxidation but significantly (P < 0.01) resistant to both osmotic and heat stress. CSC-pretreated C. albicans expressed high levels of chitin, with 2- to 8-fold recorded under hyphal conditions. CSC-pretreated C. albicans adhered better to the gingival fibroblasts, proliferated almost three times more and adapted into hyphae, while the gingival fibroblasts recorded a significantly (P < 0.01) slow growth rate but a significantly higher level of IL-1β when in contact with CSC-pretreated C. albicans. CSC was thus able to modulate both C. albicans transition through the cell wall chitin content and the interaction between C. albicans and normal human gingival fibroblasts. These findings may be relevant to fungal infections in the oral cavity in smokers. PMID:25302312

  1. Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications

    Directory of Open Access Journals (Sweden)

    Islem Younes

    2015-03-01

    Full Text Available This review describes the most common methods for recovery of chitin from marine organisms. In depth, both enzymatic and chemical treatments for the step of deproteinization are compared, as well as different conditions for demineralization. The conditions of chitosan preparation are also discussed, since they significantly impact the synthesis of chitosan with varying degree of acetylation (DA and molecular weight (MW. In addition, the main characterization techniques applied for chitin and chitosan are recalled, pointing out the role of their solubility in relation with the chemical structure (mainly the acetyl group distribution along the backbone. Biological activities are also presented, such as: antibacterial, antifungal, antitumor and antioxidant. Interestingly, the relationship between chemical structure and biological activity is demonstrated for chitosan molecules with different DA and MW and homogeneous distribution of acetyl groups for the first time. In the end, several selected pharmaceutical and biomedical applications are presented, in which chitin and chitosan are recognized as new biomaterials taking advantage of their biocompatibility and biodegradability.

  2. Nature, Strength, and Cooperativity of the Hydrogen-Bonding Network in α-Chitin.

    Science.gov (United States)

    Deringer, Volker L; Englert, Ulli; Dronskowski, Richard

    2016-03-14

    Chitin is an abundant biopolymer that stabilizes the exoskeleton of insects and gives structure to plants. Its macroscopic properties go back to an intricate network of hydrogen bonds that connect the polymer strands, and these intermolecular links have been under ongoing study. Here, we use atomistic simulations to explore hydrogen bonding in the most abundant form, α-chitin. The crystal structure exhibits disorder, and so discrete models are systematically derived as suitable approximants to the macroscopic material. These models then allow us to perform dispersion-corrected density-functional theory (DFT-D) simulations on the three-dimensional crystal network and on lower-dimensional fragments. Thereby, we rationalize the nature of hydrogen bonding and the role of crystallographic disorder for the stability of α-chitin, and complement previous, larger-scale molecular-dynamics (MD) simulations as well as recent fiber-diffraction experiments. Our results provide new, atomic-level insight into one of Nature's most abundant building materials, and the techniques and concepts are likely transferable to other biopolymers. PMID:26828306

  3. (-)-Menthol biosynthesis and molecular genetics

    Science.gov (United States)

    Croteau, Rodney B.; Davis, Edward M.; Ringer, Kerry L.; Wildung, Mark R.

    2005-12-01

    (-)-Menthol is the most familiar of the monoterpenes as both a pure natural product and as the principal and characteristic constituent of the essential oil of peppermint ( Mentha x piperita). In this paper, we review the biosynthesis and molecular genetics of (-)-menthol production in peppermint. In Mentha species, essential oil biosynthesis and storage is restricted to the peltate glandular trichomes (oil glands) on the aerial surfaces of the plant. A mechanical method for the isolation of metabolically functional oil glands, has provided a system for precursor feeding studies to elucidate pathway steps, as well as a highly enriched source of the relevant biosynthetic enzymes and of their corresponding transcripts with which cDNA libraries have been constructed to permit cloning and characterization of key structural genes. The biosynthesis of (-)-menthol from primary metabolism requires eight enzymatic steps, and involves the formation and subsequent cyclization of the universal monoterpene precursor geranyl diphosphate to the parent olefin (-)-(4 S)-limonene as the first committed reaction of the sequence. Following hydroxylation at C3, a series of four redox transformations and an isomerization occur in a general “allylic oxidation-conjugate reduction” scheme that installs three chiral centers on the substituted cyclohexanoid ring to yield (-)-(1 R, 3 R, 4 S)-menthol. The properties of each enzyme and gene of menthol biosynthesis are described, as are their probable evolutionary origins in primary metabolism. The organization of menthol biosynthesis is complex in involving four subcellular compartments, and regulation of the pathway appears to reside largely at the level of gene expression. Genetic engineering to up-regulate a flux-limiting step and down-regulate a side route reaction has led to improvement in the composition and yield of peppermint oil.

  4. Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation

    Directory of Open Access Journals (Sweden)

    Feng Xue

    2015-01-01

    Full Text Available We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive for S100 (Schwann cell marker and glial fibrillary acidic protein (glial cell marker at 8 weeks. Retrograde tracing showed that more nerve fibers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our findings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvironment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury.

  5. Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation

    Institute of Scientific and Technical Information of China (English)

    Feng Xue; Er-jun Wu; Pei-xun Zhang; Li-ya A; Yu-hui Kou; Xiao-feng Yin; Na Han

    2015-01-01

    We examined the restorative effect of modiifed biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantationin vivo, and differentiated into cells double-positive for S100 (Schwann cell marker) and glial ifbrillary acidic protein (glial cell marker) at 8 weeks. Retrograde tracing showed that more nerve ifbers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our ifndings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvi-ronment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury.

  6. Shedding light on ovothiol biosynthesis in marine metazoans

    Science.gov (United States)

    Castellano, Immacolata; Migliaccio, Oriana; D'Aniello, Salvatore; Merlino, Antonello; Napolitano, Alessandra; Palumbo, Anna

    2016-02-01

    Ovothiol, isolated from marine invertebrate eggs, is considered one of the most powerful antioxidant with potential for drug development. However, its biological functions in marine organisms still represent a matter of debate. In sea urchins, the most accepted view is that ovothiol protects the eggs by the high oxidative burst at fertilization. In this work we address the role of ovothiol during sea urchin development to give new insights on ovothiol biosynthesis in metazoans. The gene involved in ovothiol biosynthesis OvoA was identified in Paracentrotus lividus genome (PlOvoA). PlOvoA embryo expression significantly increased at the pluteus stage and was up-regulated by metals at concentrations mimicking polluted sea-water and by cyclic toxic algal blooms, leading to ovothiol biosynthesis. In silico analyses of the PlOvoA upstream region revealed metal and stress responsive elements. Structural protein models highlighted conserved active site residues likely responsible for ovothiol biosynthesis. Phylogenetic analyses indicated that OvoA evolved in most marine metazoans and was lost in bony vertebrates during the transition from the aquatic to terrestrial environment. These results highlight the crucial role of OvoA in protecting embryos released in seawater from environmental cues, thus allowing the survival under different conditions.

  7. Polyketides in Aspergillus terreus: biosynthesis pathway discovery and application.

    Science.gov (United States)

    Yin, Ying; Cai, Menghao; Zhou, Xiangshan; Li, Zhiyong; Zhang, Yuanxing

    2016-09-01

    The knowledge of biosynthesis gene clusters, production improving methods, and bioactivity mechanisms is very important for the development of filamentous fungi metabolites. Metabolic engineering and heterologous expression methods can be applied to improve desired metabolite production, when their biosynthesis pathways have been revealed. And, stable supplement is a necessary basis of bioactivity mechanism discovery and following clinical trial. Aspergillus terreus is an outstanding producer of many bioactive agents, and a large part of them are polyketides. In this review, we took polyketides from A. terreus as examples, focusing on 13 polyketide synthase (PKS) genes in A. terreus NIH 2624 genome. The biosynthesis pathways of nine PKS genes have been reported, and their downstream metabolites are lovastatin, terreic acid, terrein, geodin, terretonin, citreoviridin, and asperfuranone, respectively. Among them, lovastatin is a well-known hypolipidemic agent. Terreic acid, terrein, citreoviridin, and asperfuranone show good bioactivities, especially anticancer activities. On the other hand, geodin and terretonin are mycotoxins. So, biosynthesis gene cluster information is important for the production or elimination of them. We also predicted three possible gene clusters that contain four PKS genes by homologous gene alignment with other Aspergillus strains. We think that this is an effective way to mine secondary metabolic gene clusters. PMID:27455860

  8. Effect of Light on Flavonoids Biosynthesis in Red Rice Rdh

    Institute of Scientific and Technical Information of China (English)

    HAN Lei; DONG Bao-cheng; YANG Xiao-ji; HUANG Cheng-bin; WANG Xu-dong; WU Xian-jun

    2009-01-01

    The effect of light on flavonoids biosynthesis in red rice Rdh was studied.The panicles of red rice Rdh produced colorless caryopses after darkness treatment;and these colorless caryopses displayed bright-red after vanillin treatment,but did not display red color after light inducing for 15 days,suggesting that red rice Rdh could produce leucoanthocyanidin,but could not produce polyproanthocyanidins in darkness.Histological study revealed that the aleurone layers of Rdh colorless caryopses displayed bright-red after vanillin assay,but the pericarp and seed coat layers did not display color change,which indicated that the aleurone layers could accumulate precursors of polyproanthocyanidins in darkness,but the pericarp and seed coat could not.Additionally,color ofRdh caryopses changed from green in immaturity to red in maturity,and the green caryopses changed color from green to red gradually indoor for 7 days after harvest,suggesting that leucoanthocyanidins could synthesize polyproanthocyanidins.It was concluded that light was necessary for red pigment biosynthesis in red rice Rdh,leucoanthocyanidins biosyntheses in the aleurone layers did not need light,leucoanthocyanidins biosynthesis in pericarp and seed coat needed light inducing,the effect of leucoanthocyanidin biosynthesis in Rdh to light had tissue specificity.

  9. Identification of a Chitin-Induced Small RNA That Regulates Translation of the tfoX Gene, Encoding a Positive Regulator of Natural Competence in Vibrio cholerae▿†

    OpenAIRE

    Yamamoto, Shouji; Izumiya, Hidemasa; Mitobe, Jiro; Morita, Masatomo; Arakawa, Eiji; Ohnishi, Makoto; Watanabe, Haruo

    2011-01-01

    The tfoX (also called sxy) gene product is the central regulator of DNA uptake in the naturally competent bacteria Haemophilus influenzae and Vibrio cholerae. However, the mechanisms regulating tfoX gene expression in both organisms are poorly understood. Our previous studies revealed that in V. cholerae, chitin disaccharide (GlcNAc)2 is needed to activate the transcription and translation of V. cholerae tfoX (tfoXVC) to induce natural competence. In this study, we screened a multicopy librar...

  10. Tetrahydrobiopterin Biosynthesis as an Off-Target of Sulfa Drugs

    OpenAIRE

    Haruki, H.; Pedersen, M.G.; Gorska, K. I.; Pojer, F.; Johnsson, K.

    2013-01-01

    The introduction of sulfa drugs for the chemotherapy of bacterial infections in 1935 revolutionized medicine. Although their mechanism of action is understood, the molecular bases for most of their side effects remain obscure. Here, we report that sulfamethoxazole and other sulfa drugs interfere with tetrahydrobiopterin biosynthesis through inhibition of sepiapterin reductase. Crystal structures of sepiapterin reductase with bound sulfa drugs reveal how structurally diverse sulfa drugs achiev...

  11. Genome-guided investigation of plant natural product biosynthesis.

    Science.gov (United States)

    Kellner, Franziska; Kim, Jeongwoon; Clavijo, Bernardo J; Hamilton, John P; Childs, Kevin L; Vaillancourt, Brieanne; Cepela, Jason; Habermann, Marc; Steuernagel, Burkhard; Clissold, Leah; McLay, Kirsten; Buell, Carol Robin; O'Connor, Sarah E

    2015-05-01

    The medicinal plant Madagascar periwinkle, Catharanthus roseus (L.) G. Don, produces hundreds of biologically active monoterpene-derived indole alkaloid (MIA) metabolites and is the sole source of the potent, expensive anti-cancer compounds vinblastine and vincristine. Access to a genome sequence would enable insights into the biochemistry, control, and evolution of genes responsible for MIA biosynthesis. However, generation of a near-complete, scaffolded genome is prohibitive to small research communities due to the expense, time, and expertise required. In this study, we generated a genome assembly for C. roseus that provides a near-comprehensive representation of the genic space that revealed the genomic context of key points within the MIA biosynthetic pathway including physically clustered genes, tandem gene duplication, expression sub-functionalization, and putative neo-functionalization. The genome sequence also facilitated high resolution co-expression analyses that revealed three distinct clusters of co-expression within the components of the MIA pathway. Coordinated biosynthesis of precursors and intermediates throughout the pathway appear to be a feature of vinblastine/vincristine biosynthesis. The C. roseus genome also revealed localization of enzyme-rich genic regions and transporters near known biosynthetic enzymes, highlighting how even a draft genome sequence can empower the study of high-value specialized metabolites. PMID:25759247

  12. Biosynthesis of enediyne antitumor antibiotics.

    Science.gov (United States)

    Van Lanen, Steven G; Shen, Ben

    2008-01-01

    The enediyne polyketides are secondary metabolites isolated from a variety of Actinomycetes. All members share very potent anticancer and antibiotic activity, and prospects for the clinical application of the enediynes has been validated with the recent marketing of two enediyne derivatives as anticancer agents. The biosynthesis of these compounds is of interest because of the numerous structural features that are unique to the enediyne family. The gene cluster for five enediynes has now been cloned and sequenced, providing the foundation to understand natures' means to biosynthesize such complex, exotic molecules. Presented here is a review of the current progress in delineating the biosynthesis of the enediynes with an emphasis on the model enediyne, C-1027. PMID:18397168

  13. Lignification: Flexibility, Biosynthesis and Regulation.

    Science.gov (United States)

    Zhao, Qiao

    2016-08-01

    Lignin is a complex phenolic polymer that is deposited in the secondary cell wall of all vascular plants. The evolution of lignin is considered to be a critical event during vascular plant development, because lignin provides mechanical strength, rigidity, and hydrophobicity to secondary cell walls to allow plants to grow tall and transport water and nutrients over a long distance. In recent years, great research efforts have been made to genetically alter lignin biosynthesis to improve biomass degradability for the production of second-generation biofuels. This global focus on lignin research has significantly advanced our understanding of the lignification process. Based on these advances, here I provide an overview of lignin composition, the biosynthesis pathway and its regulation. PMID:27131502

  14. Phase distribution of products of radiation and post-radiation distillation of biopolymers: Cellulose, lignin and chitin

    Energy Technology Data Exchange (ETDEWEB)

    Ponomarev, A.V., E-mail: ponomarev@ipc.rssi.ru [A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prospect 31, 119991 Moscow (Russian Federation); Kholodkova, E.M.; Metreveli, A.K.; Metreveli, P.K.; Erasov, V.S.; Bludenko, A.V.; Chulkov, V.N. [A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prospect 31, 119991 Moscow (Russian Federation)

    2011-11-15

    Influence of both the absorbed dose and the dose rate of 8 MeV electron-beam radiation on destruction of microcrystalline cellulose, pine lignin and krill chitin was investigated. Two conversion modes were compared: (1) post-radiation distillation PRD and (2) electron-beam distillation EBD. Cellulose, chitin and lignin demonstrate different responses to irradiation and distillation in PRD and EBD modes. Treatment in EBD mode transforms biopolymers to organic liquid more productively than conventional dry distillation and treatment in PRD mode. Both radiation heating and an irradiation without heating intensify chitin and cellulose decomposition and distillation. At the same time lignin decaying rather efficiently in EBD mode appears to be insensitive to a preliminary irradiation in PRD mode up to a dose of 2.4 MGy. - Highlights: > Direct conversion of cellulose, chitin and lignin to organic liquid is intensified by electron-beam irradiation. > Alternative approach to bio-oil production. > Both electron-beam distillation mode and post-radiation distillation mode are effective for cellulose and chitin conversion. > Electron-beam distillation mode is preferable for lignin conversion. > Preliminary deep dehydration of biopolymers is realizable at low dose rates.

  15. Phase distribution of products of radiation and post-radiation distillation of biopolymers: Cellulose, lignin and chitin

    International Nuclear Information System (INIS)

    Influence of both the absorbed dose and the dose rate of 8 MeV electron-beam radiation on destruction of microcrystalline cellulose, pine lignin and krill chitin was investigated. Two conversion modes were compared: (1) post-radiation distillation PRD and (2) electron-beam distillation EBD. Cellulose, chitin and lignin demonstrate different responses to irradiation and distillation in PRD and EBD modes. Treatment in EBD mode transforms biopolymers to organic liquid more productively than conventional dry distillation and treatment in PRD mode. Both radiation heating and an irradiation without heating intensify chitin and cellulose decomposition and distillation. At the same time lignin decaying rather efficiently in EBD mode appears to be insensitive to a preliminary irradiation in PRD mode up to a dose of 2.4 MGy. - Highlights: → Direct conversion of cellulose, chitin and lignin to organic liquid is intensified by electron-beam irradiation. → Alternative approach to bio-oil production. → Both electron-beam distillation mode and post-radiation distillation mode are effective for cellulose and chitin conversion. → Electron-beam distillation mode is preferable for lignin conversion. → Preliminary deep dehydration of biopolymers is realizable at low dose rates.

  16. Biosynthesis of Enediyne Antitumor Antibiotics

    OpenAIRE

    Van Lanen, Steven G.; Shen, Ben

    2008-01-01

    The enediyne polyketides are secondary metabolites isolated from a variety of Actinomycetes. All members share very potent anticancer and antibiotic activity, and prospects for the clinical application of the enediynes has been validated with the recent marketing of two enediyne derivatives as anticancer agents. The biosynthesis of these compounds is of interest because of the numerous structural features that are unique to the enediyne family. The gene cluster for five enediynes has now been...

  17. Fatty acid biosynthesis in actinomycetes

    OpenAIRE

    Gago, Gabriela; Diacovich, Lautaro; Arabolaza, Ana; Tsai, Shiou-Chuan; Gramajo, Hugo

    2011-01-01

    All organisms that produce fatty acids do so via a repeated cycle of reactions. In mammals and other animals, these reactions are catalyzed by a type I fatty acid synthase (FAS), a large multifunctional protein to which the growing chain is covalently attached. In contrast, most bacteria (and plants) contain a type II system in which each reaction is catalyzed by a discrete protein. The pathway of fatty acid biosynthesis in Escherichia coli is well established and has provided a foundation fo...

  18. Taxol biosynthesis and molecular genetics

    OpenAIRE

    Croteau, Rodney; Ketchum, Raymond E.B.; Long, Robert M.; Kaspera, Rüdiger; Wildung, Mark R.

    2006-01-01

    Biosynthesis of the anticancer drug Taxol in Taxus (yew) species involves 19 steps from the universal diterpenoid progenitor geranylgeranyl diphosphate derived by the plastidial methyl erythritol phosphate pathway for isoprenoid precursor supply. Following the committed cyclization to the taxane skeleton, eight cytochrome P450-mediated oxygenations, three CoA-dependent acyl/aroyl transfers, an oxidation at C9, and oxetane (D-ring) formation yield the intermediate baccatin III, to which the fu...

  19. The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis

    KAUST Repository

    Wang, Zhen-Yu

    2014-11-21

    Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1.

  20. Effect of CaCO₃/HCl pretreatment on the surface modification of chitin gel beads via graft copolymerization of 2-hydroxy ethyl methacrylate and 4-vinylpyridine.

    Science.gov (United States)

    Yalinca, Zulal; Mohammed, Dana Ali Kader; Hadi, Jihad M; Yilmaz, Elvan

    2016-01-01

    Although chitin, poly(N-acetylglucosamine), possesses considerable potential as a biomaterial, it has not been as thoroughly studied as its derivative chitosan. In this study, the potential of chitin gel beads has been evaluated for surface modification via vinyl polymer grafting. Grafting behavior of two well-established vinyl monomers, namely 2-hydroxyethylmethacrylate (HEMA) and 4-vinylpyridine (4-VP) were investigated using cerium (IV) ammonium nitrate as the redox initiator with the aim of obtaining chemically functionalized more hydrophilic chitin surfaces. The intractable nature of chitin, which is one of its primary drawbacks as a grafting substrate was overcome by applying a CaCO3 treatment during bead preparation. The maximum grafting percentage of poly(HEMA) onto chitin bead without CaCO3 treatment was found to be 65%, while the value for CaCO3 treated chitin beads was 515%. The maximum grafting yield of poly(4-VP) on to CaCO3 treated chitin powder was 380% at optimum conditions. The grafting system was extensively characterized before and after grafting by FT-IR, SEM, C-13 NMR and XRD analyses. Significant improvement on the swelling capacities of chitin based gel beads in aqueous acidic, basic and neutral media was obtained. An account of the pros and cons of the system has been presented. PMID:26500177

  1. Albizia lebbeck Seed Coat Proteins Bind to Chitin and Act as a Defense against Cowpea Weevil Callosobruchus maculatus.

    Science.gov (United States)

    Silva, Nadia C M; De Sá, Leonardo F R; Oliveira, Eduardo A G; Costa, Monique N; Ferreira, Andre T S; Perales, Jonas; Fernandes, Kátia V S; Xavier-Filho, Jose; Oliveira, Antonia E A

    2016-05-11

    The seed coat is an external tissue that participates in defense against insects. In some nonhost seeds, including Albizia lebbeck, the insect Callosobruchus maculatus dies during seed coat penetration. We investigated the toxicity of A. lebbeck seed coat proteins to C. maculatus. A chitin-binding protein fraction was isolated from seed coat, and mass spectrometry showed similarity to a C1 cysteine protease. By ELM program an N-glycosylation interaction motif was identified in this protein, and by molecular docking the potential to interact with N-acetylglucosamine (NAG) was shown. The chitin-binding protein fraction was toxic to C. maculatus and was present in larval midgut and feces but not able to hydrolyze larval gut proteins. It did not interfere, though, with the intestinal cell permeability. These results indicate that the toxicity mechanism of this seed coat fraction may be related to its binding to chitin, present in the larvae gut, disturbing nutrient absorption. PMID:27078512

  2. Enzymatic hydrolysis of chitin pretreated by rapid depressurization from supercritical 1,1,1,2-tetrafluoroethane toward highly acetylated oligosaccharides.

    Science.gov (United States)

    Villa-Lerma, Guadalupe; González-Márquez, Humberto; Gimeno, Miquel; Trombotto, Stéphane; David, Laurent; Ifuku, Shinsuke; Shirai, Keiko

    2016-06-01

    The hydrolysis of chitin treated under supercritical conditions was successfully carried out using chitinases obtained by an optimized fermentation of the fungus Lecanicillium lecanii. The biopolymer was subjected to a pretreatment based on suspension in supercritical 1,1,1,2-tetrafluoroethane (scR134a), which possesses a critical temperature and pressure of 101°C and 40bar, respectively, followed by rapid depressurization to atmospheric pressure and further fibrillation. This methodology was compared to control untreated chitins and chitin subjected to steam explosion showing improved production of reducing sugars (0.18mg/mL), enzymatic hydrolysis and high acetylation (FA of 0.45) in products with degrees of polymerization between 2 and 5. PMID:26970920

  3. A crayfish molar tooth protein with putative mineralized exoskeletal chitinous matrix properties.

    Science.gov (United States)

    Tynyakov, Jenny; Bentov, Shmuel; Abehsera, Shai; Yehezkel, Galit; Roth, Ziv; Khalaila, Isam; Weil, Simy; Berman, Amir; Plaschkes, Inbar; Tom, Moshe; Aflalo, Eliahu D; Sagi, Amir

    2015-11-01

    Some crustaceans possess exoskeletons that are reinforced with calcium carbonate. In the crayfish Cherax quadricarinatus, the molar tooth, which is part of the mandibular exoskeleton, contains an unusual crystalline enamel-like apatite layer. As this layer resembles vertebrate enamel in composition and function, it offers an interesting example of convergent evolution. Unlike other parts of the crayfish exoskeleton, which is periodically shed and regenerated during the molt cycle, molar mineral deposition takes place during the pre-molt stage. The molar mineral composition transforms continuously from fluorapatite through amorphous calcium phosphate to amorphous calcium carbonate and is mounted on chitin. The process of crayfish molar formation is entirely extracellular and presumably controlled by proteins, lipids, polysaccharides, low-molecular weight molecules and calcium salts. We have identified a novel molar protein termed Cq-M15 from C. quadricarinatus and cloned its transcript from the molar-forming epithelium. Its transcript and differential expression were confirmed by a next-generation sequencing library. The predicted acidic pI of Cq-M15 suggests its possible involvement in mineral arrangement. Cq-M15 is expressed in several exoskeletal tissues at pre-molt and its silencing is lethal. Like other arthropod cuticular proteins, Cq-M15 possesses a chitin-binding Rebers-Riddiford domain, with a recombinant version of the protein found to bind chitin. Cq-M15 was also found to interact with calcium ions in a concentration-dependent manner. This latter property might make Cq-M15 useful for bone and dental regenerative efforts. We suggest that, in the molar tooth, this protein might be involved in calcium phosphate and/or carbonate precipitation. PMID:26385331

  4. Resilin and chitinous cuticle form a composite structure for energy storage in jumping by froghopper insects

    Directory of Open Access Journals (Sweden)

    Shaw Stephen R

    2008-09-01

    Full Text Available Abstract Background Many insects jump by storing and releasing energy in elastic structures within their bodies. This allows them to release large amounts of energy in a very short time to jump at very high speeds. The fastest of the insect jumpers, the froghopper, uses a catapult-like elastic mechanism to achieve their jumping prowess in which energy, generated by the slow contraction of muscles, is released suddenly to power rapid and synchronous movements of the hind legs. How is this energy stored? Results The hind coxae of the froghopper are linked to the hinges of the ipsilateral hind wings by pleural arches, complex bow-shaped internal skeletal structures. They are built of chitinous cuticle and the rubber-like protein, resilin, which fluoresces bright blue when illuminated with ultra-violet light. The ventral and posterior end of this fluorescent region forms the thoracic part of the pivot with a hind coxa. No other structures in the thorax or hind legs show this blue fluorescence and it is not found in larvae which do not jump. Stimulating one trochanteral depressor muscle in a pattern that simulates its normal action, results in a distortion and forward movement of the posterior part of a pleural arch by 40 μm, but in natural jumping, the movement is at least 100 μm. Conclusion Calculations showed that the resilin itself could only store 1% to 2% of the energy required for jumping. The stiffer cuticular parts of the pleural arches could, however, easily meet all the energy storage needs. The composite structure therefore, combines the stiffness of the chitinous cuticle with the elasticity of resilin. Muscle contractions bend the chitinous cuticle with little deformation and therefore, store the energy needed for jumping, while the resilin rapidly returns its stored energy and thus restores the body to its original shape after a jump and allows repeated jumping.

  5. Effect of plagiochin E, an antifungal macrocyclic bis(bibenzyl), on cell wall chitin synthesis in Candida albicans

    Institute of Scientific and Technical Information of China (English)

    Xiu-zhen WU; Ai-xia CHENG; Ling-mei SUN; Hong-xiang LOU

    2008-01-01

    Aim: To investigate the effect of plagiochin E (PLE), an antifungal macrocyclic bis(bibenzyl) isolated from liverwort Marchantia polymorpha L, on cell wall chitin synthesis in Candida albicans. Methods: The effect of PLE on chitin synthesis in Candida albicans was investigated at the cellular and molecular lev-els. First, the ultrastructural changes were observed under transmission electron microscopy (TEM). Second, the effects of PLE on chitin synthetase (Chs) activi-ties in vitro were assayed using 6-O-dansyl-N-acetylglucosamine as a fluorescent substrate, and its effect on chitin synthesis in situ was assayed by spheroplast regeneration. Finally, real-time RT-PCR was performed to assay its effect on the expression of Chs genes (CHS). Results: Observation under TEM showed that the structure of the cell wall in Candida albicans was seriously damaged, which suggested that the antifungal activity of PLE was associated with its effect on the cell wail. Enzymatic assays and spheroplast regeneration showed that PLE inhibited chitin synthesis in vitro and in situ. The results of the PCR showed that PLE significantly downregulated the expression of CHS1, and upregulated the expression of CHS2 and CHS3. Because different Chs is regulated at different stages of transcription and post-translation, the downregulation of CHS1 would decrease the level of Chs 1 and inhibit its activity, and the inhibitory effects of PLE on Chs2 and Chs3 would be at the post-translational level or by the inhibi-tion on the enzyme-active center. Conclusion: These results indicate that the antifungal activity of PLE would be attributed to its inhibitory effect on cell wall chitin synthesis in Candida albicans.

  6. Radiosorbtive properties of chitin-melanin complexes and prospect of their use in radiation defence

    International Nuclear Information System (INIS)

    The results of study of sorption activity of chitin-melanin complexes of natural origin n relation to different actinoids are represented. The most characteristic nd ponderable for sorption there is a chelate mechanism on and these makromolekules, the adsorption besieging of insoluble salts of metals goes after. role of Van-der-vaal's forces and ionic mechanism in fastening of metals by the components of cellular all of Fungi is insignificant. The 'Mykoton' ability to destroy radionuclides and heavy metals from the human organism as shown on the group of people resident on territories contaminated by radiation

  7. Effects of chitin nano-whiskers on the antibacterial and physicochemical properties of maize starch films.

    Science.gov (United States)

    Qin, Yang; Zhang, Shuangling; Yu, Jing; Yang, Jie; Xiong, Liu; Sun, Qingjie

    2016-08-20

    We investigated the effects of chitin nano-whiskers (CNWs) on the antibacterial and physiochemical properties of maize starch-based films. The microstructures, crystalline structures, and thermal, mechanical and barrier properties of the nanocomposite films were characterized by using transmission electron microscopy, X-ray diffraction analysis, thermogravimetric, differential scanning calorimeter, and texture profile analysis. The tensile strength of the maize starch films increased from 1.64MPa to 3.69MPa (Pstarch films. Furthermore, the nanocomposite films exhibited strong antimicrobial activity against Gram-positive Listeria monocytogenes but not against Gram-negative Escherichia coli. PMID:27178943

  8. Spectrophotometric determination of deacetylation degree of chitinous materials dissolved in phosphoric acid.

    Science.gov (United States)

    Hsiao, Hsien-Yi; Tsai, Chih-Cheng; Chen, Suming; Hsieh, Bo-Chuan; Chen, Richie L C

    2004-10-20

    A simple spectrophotometric method is proposed for determining deacetylation degrees (DD) of chitinous materials using phosphoric acid as the UV-transparent solvent system. Calibrating by the extinction coefficients (A(210)) of D-glucosamine and N-acetyl-D-glucosamine, DD values (24-88%) were computed numerically. The results correlated well (R(2) = 0.9805, n = 50) with those obtained by solid-state (13)C NMR. Comparison of the results obtained by the proposed UV method and solid-state (13)C NMR. PMID:15490434

  9. Management of Plant-parasitic Nematodes with a Chitin-Urea Soil Amendment and Other Materials.

    Science.gov (United States)

    Westerdahl, B B; Carlson, H L; Grant, J; Radewald, J D; Welch, N; Anderson, C A; Darso, J; Kirby, D; Shibuya, F

    1992-12-01

    Field trials were conducted with a chitin-urea soil amendment and several other nematicides on four crop-nematode combinations: tomato-Meloidogyne incognita; potato-Meloidogyne chitwoodi; walnut-Pratylenchus vulnus; and brussels sprouts-Heterodera schachtii. Significant (P soil amendment in the trims on potato and walnut. In the trials on brussels sprouts and on tomato, phytotoxicity occurred at rates of 1,868 and 1,093 kg/ha, respectively. Significant (P Yucca extract on tomato; and dazomet granules on brussels sprouts. PMID:19283044

  10. Lignin biosynthesis and its molecular regulation

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Lignin biosynthesis has become increasingly highlighted because it plays an important role in the growth and development of plant, in the systematic evolution of plant and in the human life. Due to the progress in the field of lignin studies in recent years, the lignin biosynthesis pathway has been 修订日期:. Here we discuss some genetic engineering approaches on lignin biosynthesis, and conceive strategy to regulate lignin biosynthesis in order to use lignin resource more efficiently in agricultural and industrial productions.

  11. A phosphopantetheinylating polyketide synthase producing a linear polyene to initiate enediyne antitumor antibiotic biosynthesis.

    Science.gov (United States)

    Zhang, Jian; Van Lanen, Steven G; Ju, Jianhua; Liu, Wen; Dorrestein, Pieter C; Li, Wenli; Kelleher, Neil L; Shen, Ben

    2008-02-01

    The enediynes, unified by their unique molecular architecture and mode of action, represent some of the most potent anticancer drugs ever discovered. The biosynthesis of the enediyne core has been predicted to be initiated by a polyketide synthase (PKS) that is distinct from all known PKSs. Characterization of the enediyne PKS involved in C-1027 (SgcE) and neocarzinostatin (NcsE) biosynthesis has now revealed that (i) the PKSs contain a central acyl carrier protein domain and C-terminal phosphopantetheinyl transferase domain; (ii) the PKSs are functional in heterologous hosts, and coexpression with an enediyne thioesterase gene produces the first isolable compound, 1,3,5,7,9,11,13-pentadecaheptaene, in enediyne core biosynthesis; and (iii) the findings for SgcE and NcsE are likely shared among all nine-membered enediynes, thereby supporting a common mechanism to initiate enediyne biosynthesis. PMID:18223152

  12. Preparation of chitin–silica composites by in vitro silicification of two-dimensional Ianthella basta demosponge chitinous scaffolds under modified Stöber conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wysokowski, Marcin [Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, M. Skłodowskiej-Curie 2, PL-60965 Poznan (Poland); Behm, Thomas [Institute of Experimental Physics, TU Bergakademie Freiberg, Liepziger 23, 09599 Freiberg (Germany); Born, René [Institute of Materials Science, Dresden University of Technology, Helmholtzstraße 10, 01069 Dresden (Germany); Bazhenov, Vasilii V. [Institute of Experimental Physics, TU Bergakademie Freiberg, Liepziger 23, 09599 Freiberg (Germany); Meißner, Heike; Richter, Gert [Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, 01307 Dresden (Germany); Szwarc-Rzepka, Karolina [Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, M. Skłodowskiej-Curie 2, PL-60965 Poznan (Poland); Makarova, Anna; Vyalikh, Denis [Institute of Solid State Physics, Dresden University of Technology, Helmholtzstraße 10, 01069 Dresden (Germany); Schupp, Peter [Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Emsstr. 20, 26382 Wilhelmshaven (Germany); Jesionowski, Teofil, E-mail: teofil.jesionowski@put.poznan.pl [Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, M. Skłodowskiej-Curie 2, PL-60965 Poznan (Poland); Ehrlich, Hermann, E-mail: hermann.ehrlich@physik.tu-freiberg.de [Institute of Experimental Physics, TU Bergakademie Freiberg, Liepziger 23, 09599 Freiberg (Germany)

    2013-10-15

    Chitin is a biopolymer found in cell walls of various fungi and skeletal structures of numerous invertebrates. The occurrence of chitin within calcium- and silica-containing biominerals has inspired development of chitin-based hybrids and composites in vitro with specific physico-chemical and material properties. We show here for the first time that the two-dimensional α-chitin scaffolds isolated from the skeletons of marine demosponge Ianthella basta can be effectively silicified by the two-step method with the use of Stöber silica micro- and nanodispersions under Extreme Biomimetic conditions. The chitin–silica composites obtained at 120 °C were characterized by the presence of spherical SiO{sub 2} particles homogeneously distributed over the chitin fibers, which probably follows from the compatibility of Si–OH groups to the hydroxyl groups of chitin. The biocomposites obtained were characterized by various analytical techniques such as energy dispersive spectrometry, scanning electron microscopy, thermogravimetric/differential thermal analyses as well as X-ray photoelectron spectroscopy, Fourier transform infrared and Raman spectroscopy to determine possible interactions between silica and chitin molecule. The results presented proved that the character and course of the in vitro chitin silicification in Stöber dispersions depended considerably on the degree of hydrolysis of the SiO{sub 2} precursor. - Highlights: • 2D α-chitin scaffolds isolated from marine demosponge can be effectively silicified using Stöber silica. • The chitin–silica composites were obtained under Extreme Biomimetic conditions. • Character and course of the in vitro chitin silicification in Stöber dispersions is discussed.

  13. Plant-like biosynthesis of isoquinoline alkaloids in Aspergillus fumigatus.

    Science.gov (United States)

    Baccile, Joshua A; Spraker, Joseph E; Le, Henry H; Brandenburger, Eileen; Gomez, Christian; Bok, Jin Woo; Macheleidt, Juliane; Brakhage, Axel A; Hoffmeister, Dirk; Keller, Nancy P; Schroeder, Frank C

    2016-06-01

    Natural product discovery efforts have focused primarily on microbial biosynthetic gene clusters (BGCs) containing large multimodular polyketide synthases and nonribosomal peptide synthetases; however, sequencing of fungal genomes has revealed a vast number of BGCs containing smaller NRPS-like genes of unknown biosynthetic function. Using comparative metabolomics, we show that a BGC in the human pathogen Aspergillus fumigatus named fsq, which contains an NRPS-like gene lacking a condensation domain, produces several new isoquinoline alkaloids known as the fumisoquins. These compounds derive from carbon-carbon bond formation between two amino acid-derived moieties followed by a sequence that is directly analogous to isoquinoline alkaloid biosynthesis in plants. Fumisoquin biosynthesis requires the N-methyltransferase FsqC and the FAD-dependent oxidase FsqB, which represent functional analogs of coclaurine N-methyltransferase and berberine bridge enzyme in plants. Our results show that BGCs containing incomplete NRPS modules may reveal new biosynthetic paradigms and suggest that plant-like isoquinoline biosynthesis occurs in diverse fungi. PMID:27065235

  14. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Lei [Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403 (United States); Xiao, Yongsheng [Department of Chemistry, University of California, Riverside, CA 92521-0403 (United States); Wang, Yinsheng, E-mail: yinsheng.wang@ucr.edu [Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403 (United States); Department of Chemistry, University of California, Riverside, CA 92521-0403 (United States)

    2014-05-15

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA

  15. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts

    International Nuclear Information System (INIS)

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA

  16. Possible transient liquid crystal phase during the laying out of connective tissues: {alpha}-chitin and collagen as models

    Energy Technology Data Exchange (ETDEWEB)

    Belamie, E; Mosser, G; Gobeaux, F; Giraud-Guille, M M [Laboratoire de Chimie de la Matiere Condensee, UMR 7574 CNRS, Universite Pierre and Marie Curie, Ecole Pratique des Hautes Etudes, 12 rue Cuvier, Paris, 75005 (France)

    2006-04-05

    Morphogenesis of extracellular matrices can be considered from different perspectives. One is that of ontogenesis, i.e., an organism's development, which is mostly concerned with the spatiotemporal regulation of genes, cell differentiation and migration. Complementary to this purely biological point of view, a physico-chemical approach can help in understanding complex mechanisms by highlighting specific events that do not require direct cellular control. Because of a structural similarity between some biological systems and liquid crystals, it was supposed that similar mechanisms could be involved. In this respect, it is important to determine the intrinsic self-assembly properties driving the ordering of biological macromolecules. Here we review in vitro studies of the condensed state of major biological macromolecules from extracellular matrices and related theories describing a mesophase transition in suspensions of rodlike particles. Dilute suspensions of collagen or chitin are isotropic, i.e., the macromolecules can take on any orientation in the fluid. Beyond a critical concentration, an ordered nematic phase appears with a higher volume fraction. The two-phase coexistence can be seen between crossed polarizers since the nematic phase is strongly birefringent and appears bright, whereas the isotropic phase remains dark. A widespread property of these structural macromolecular scaffolds is their chirality. Although the origin of chirality in colloidal suspensions is still a subject of debate, the helical nature of the cholesteric phase can be quantified. Small angle x-ray scattering performed on shear-aligned samples can help demonstrate the cholesteric nature of the anisotropic phase, inferred from optical observations. Liquid-like positional local order is revealed by the presence of broad interference peaks at low angle. The azimuthal profiles of these patterns are fitted to determine the value of the nematic order parameter at the transition. A few

  17. Metabolic engineering of the morphology of Aspergillus oryzae by altering chitin synthesis

    DEFF Research Database (Denmark)

    Muller, C.; Mcintyre, Mhairi; Hansen, Kim; Nielsen, Jens

    2002-01-01

    than that in the wild type., whereas that in the ChsB/G strain was 188% higher. During batch cultivation, inseparable clumps were formed in the wild-type strain., while no or fewer large inseparable clumps existed in the cultivations of the ChsB/G and CM101 strains. The alpha-amylase productivity was......Morphology and alpha-amylase production during submerged cultivation were examined in a wild-type strain (A1560) and in strains of Aspergillus oryzae in which chitin synthase B (chsB) and chitin synthesis myosin A (csmA) have been disrupted (ChsB/G and CM101). In a flowthrough cell, the growth of...... not significantly different in the three strains. A strain in which the transcription of chsB could be controlled by the nitrogen source-regulated promoter niiA (NiiA1) was examined during chemostat cultivation, and it was found that the branching intensity could be regulated by regulating the...

  18. Laboratory evaluation of five chitin synthesis inhibitors against the colorado potato beetle, Leptinotarsa decemlineata.

    Science.gov (United States)

    Karimzadeh, R; Hejazi, M J; Rahimzadeh Khoei, F; Moghaddam, M

    2007-01-01

    Results of laboratory experiments are reported that tested the effects of five chitin synthesis inhibitors, diflubenzuron, cyromazine, lufenuron, hexaflumuron and triflumuron. on second instars of the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Crysomelidae), originally collected from potato fields of Bostanabaad, a town 66 km southeast of Tabriz, Iran. In bioassays, the larvae were fed potato leaves dipped in aqueous solutions containing chitin synthesis inhibitors. The mortalities and abnormalities of the treated larvae were recorded 72 hours after treatments. LC(50) values were 58.6, 69.6, 27.3, 0.79 and 81.4 mg ai/ L for diflubenzuron, cyromazine, lufenuron, hexaflumuron and triflumuron, respectively. Compared with phosalone, which is one of the common insecticides used for controlling this pest in Iran, lufenuron and hexaflumuron seem to be much more potent, and if they perform equally well in the field, they would be suitable candidates to be considered as reduced risk insecticides in management programs for L. decemlineata due to much wider margin of safety for mammals and considerably fewer undesirable environmental side effects. PMID:20345285

  19. Interaction of chitosan and chitin with Ni, Cu and Zn ions: A computational study

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Interaction of Ni, Cu and Zn cations with glucosamine and N-acetylglucosamine. • Enthalpies of interaction for monovalent ions decrease from Ni to Cu to Zn. • Enthalpies of interaction for divalent ions decrease from Cu to Ni to Zn. • Hydrated divalent metal complexes bind neighbouring amino and hydroxyl groups. - Abstract: The interaction of chitosan and chitin with monovalent and divalent late transition metal ions was studied by means of density functional theory. The calculations were performed at the B3LYP/6-31+G∗∗ level of theory using glucosamine and N-acetylglucosamine monomers as models of chitosan and chitin, respectively, in the absence and in the presence of a few water molecules. The calculations suggest that N-acetylglucosamine is more acidic than glucosamine and that the most stable metal complexes with each of these two molecules have similar stabilities. In the case of the interaction of these two molecules with monovalent cations, the most stable complexes are those with Ni(I). In the case of the divalent cations, complexes with Cu(II) are more favourable, which is in good agreement with the available experimental data

  20. Fusarium verticillioides chitin synthases CHS5 and CHS7 are required for normal growth and pathogenicity.

    Science.gov (United States)

    Larson, Troy M; Kendra, David F; Busman, Mark; Brown, Daren W

    2011-06-01

    Fusarium verticillioides is both an endophyte and a pathogen of maize and is a health threat in many areas of the world because it can contaminate maize with fumonisins, a toxic secondary metabolite. We identified eight putative chitin synthase (CHS) genes in F. verticillioides genomic sequence, and phylogenetic evidence shows that they group into seven established CHS gene classes. We targeted two CHSs (CHS5 and CHS7) for deletion analysis and found that both are required for normal hyphal growth and maximal disease of maize seedlings and ears. CHS5 and CHS7 encode a putative class V and class VII fungal chitin synthase, respectively; they are located adjacent to each other and are divergently transcribed. Fluorescent microscopy found that both CHS deficient strains produce balloon-shaped hyphae, while growth assays indicated that they were more sensitive to cell wall stressing compounds (e.g., the antifungal compound Nikkomycin Z) than wild type. Pathogenicity assays on maize seedlings and ears indicated that both strains were significantly reduced in their ability to cause disease. Our results demonstrate that both CHS5 and CHS7 are necessary for proper hyphal growth and pathogenicity of F. verticillioides on maize. PMID:21246198

  1. Oleic acid biosynthesis in cyanobacteria

    International Nuclear Information System (INIS)

    The biosynthesis of fatty acids in cyanobacteria is very similar to the well characterized system found in green plants. However, the initial desaturation of stearic acid in cyanobacteria appears to represent a significant departure from plant systems in which stearoyl-ACP is the exclusive substrate for desaturation. In Anabaena variabilis, the substrate appears to be monoglucosyldiacylglycerol, a lipid not found in plants. The authors examined five different cyanobacteria to determine if the pathway in A. variabilis was generally present in other cyanobacteria. The cyanobacteria studied were A. variabilis, Chlorogloeopsis sp., Schizothrix calcicola, Anacystis marina, and Anacystis nidulans. Each were grown in liquid culture, harvested, and examined for stearoyl-ACP desaturase activity or incubated with 14CO2. None of the cyanobacteria contained any stearoyl-ACP desaturase activity in whole homogenates or 105,000g supernatants. All were capable of incorporating 14CO2 into monoglucosyldiacylglycerol and results from incubations of 20 min, 1 hr, 1 hr + 10 hr chase were consistent with monoglucosyldiacylglycerol serving as precursor for monogalctosyldiacylglycerol. Thus, initial evidence is consistent with oleic acid biosynthesis occurring by desaturation of stearoyl-monoglucosyldiacylglycerol in all cyanobacteria

  2. Methane production and growth of microorganisms under different moisture conditions in soils with added chitin and without it

    Science.gov (United States)

    Manucharova, N. A.; Yaroslavtsev, A. M.; Kornyushenko, E. G.; Stepanov, A. L.; Smagin, A. V.; Zvyagintsev, D. G.; Sudnitsyn, I. I.

    2007-08-01

    The limits of soil moisture providing the possibility of methane production and growth of microorganisms in soils with added chitin and without it were determined. Samples of gray forest, soddy-podzolic, gley taiga, chestnut, and chernozemic soils were studied. It was found that methane emission increases significantly under a high soil moisture content in the presence of chitin. The increase of the soil moisture up to the maximum water-holding capacity enhanced the emission of methane by two-six times. The dynamics of the methane emission from the soils in the course of microbial successions initiated by the addition of chitin or by the soil moistening to different levels were studied by the gas-chromatographic method. The population density and biomass of fungal, bacterial, and actinomycetic complexes under different moister levels were studied by the method of luminescent microscopy. It was determined that many microorganisms participate in the transformation of chitin in the soil under conditions of oxygen deficiency (upon the increased moisture content). Prokaryotes dominated by actinomycetes were the group that increased its biomass most actively (the biomass doubling took place).

  3. Sexual Dichromatism of the Damselfly Calopteryx japonica Caused by a Melanin-Chitin Multilayer in the Male Wing Veins

    NARCIS (Netherlands)

    Stavenga, Doekele G.; Leertouwer, Hein L.; Hariyama, Takahiko; De Raedt, Hans A.; Wilts, Bodo D.; Zeil, Jochen

    2012-01-01

    Mature male Calopteryx japonica damselflies have dark-blue wings, due to darkly coloured wing membranes and blue reflecting veins. The membranes contain a high melanin concentration and the veins have a multilayer of melanin and chitin. Female and immature C. japonica damselflies have brown wings. W

  4. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease

    NARCIS (Netherlands)

    Mentlak, T.A.; Kombrink, A.; Shinya, T.; Ryder, L.S.; Otomo, I.; Saitoh, H.; Terauchi, R.; Nishizawa, Y.; Shibuya, N.; Thomma, B.P.H.J.; Talbot, N.J.

    2012-01-01

    Plants use pattern recognition receptors to defend themselves from microbial pathogens. These receptors recognize pathogen-associated molecular patterns (PAMPs) and activate signaling pathways that lead to immunity. In rice (Oryza sativa), the chitin elicitor binding protein (CEBiP) recognizes chiti

  5. Chitin-hyaluronan nanoparticles: a multifunctional carrier to deliver anti-aging active ingredients through the skin

    Czech Academy of Sciences Publication Activity Database

    Morganti, P.; Palombo, M.; Tishchenko, Galina; Yudin, V. E.; Guarneri, F.; Cardillo, M.; Del Ciotto, P.; Carezzi, F.; Morganti, G.; Fabrizi, G.

    2014-01-01

    Roč. 1, č. 3 (2014), s. 140-158. ISSN 2079-9284 EU Projects: European Commission(XE) 315233 - N-CHITOPACK Institutional support: RVO:61389013 Keywords : chitin nanofibrils * skin aging emulsions * innovative beauty masks Subject RIV: CD - Macromolecular Chemistry

  6. Exposure to Diflubenzuron Results in an Up-Regulation of a Chitin Synthase 1 Gene in Citrus Red Mite, Panonychus citri (Acari: Tetranychidae)

    OpenAIRE

    Wen-Kai Xia; Tian-Bo Ding; Jin-Zhi Niu; Chong-Yu Liao; Rui Zhong; Wen-Jia Yang; Bin Liu; Wei Dou; Jin-Jun Wang

    2014-01-01

    Chitin synthase synthesizes chitin, which is critical for the arthropod exoskeleton. In this study, we cloned the cDNA sequences of a chitin synthase 1 gene, PcCHS1, in the citrus red mite, Panonychus citri (McGregor), which is one of the most economically important pests of citrus worldwide. The full-length cDNA of PcCHS1 contains an open reading frame of 4605 bp of nucleotides, which encodes a protein of 1535 amino acid residues with a predicted molecular mass of 175.0 kDa. A phylogenetic ...

  7. Chitin and L(+)-lactic acid production from crab (Callinectes bellicosus) wastes by fermentation of Lactobacillus sp. B2 using sugar cane molasses as carbon source.

    Science.gov (United States)

    Flores-Albino, Belem; Arias, Ladislao; Gómez, Jorge; Castillo, Alberto; Gimeno, Miquel; Shirai, Keiko

    2012-09-01

    Crab wastes are employed for simultaneous production of chitin and L(+)-lactic acid by submerged fermentation of Lactobacillus sp. B2 using sugar cane molasses as carbon source. Response surface methodology was applied to design the culture media considering demineralization. Fermentations in stirred tank reactor (2L) using selected conditions produced 88% demineralization and 56% deproteinization with 34% yield of chitin and 19.5 gL(-1) of lactic acid (77% yield). The chitin purified from fermentation displayed 95% degree of acetylation and 0.81 and 1 ± 0.125% of residual ash and protein contents, respectively. PMID:22367529

  8. Chitin Mixed in Potting Soil Alters Lettuce Growth, the Survival of Zoonotic Bacteria on the Leaves and Associated Rhizosphere Microbiology.

    Science.gov (United States)

    Debode, Jane; De Tender, Caroline; Soltaninejad, Saman; Van Malderghem, Cinzia; Haegeman, Annelies; Van der Linden, Inge; Cottyn, Bart; Heyndrickx, Marc; Maes, Martine

    2016-01-01

    Chitin is a promising soil amendment for improving soil quality, plant growth, and plant resilience. The objectives of this study were twofold. First, to study the effect of chitin mixed in potting soil on lettuce growth and on the survival of two zoonotic bacterial pathogens, Escherichia coli O157:H7 and Salmonella enterica on the lettuce leaves. Second, to assess the related changes in the microbial lettuce rhizosphere, using phospholipid fatty acid (PLFA) analysis and amplicon sequencing of a bacterial 16S rRNA gene fragment and the fungal ITS2. As a result of chitin addition, lettuce fresh yield weight was significantly increased. S. enterica survival in the lettuce phyllosphere was significantly reduced. The E. coli O157:H7 survival was also lowered, but not significantly. Moreover, significant changes were observed in the bacterial and fungal community of the lettuce rhizosphere. PLFA analysis showed a significant increase in fungal and bacterial biomass. Amplicon sequencing showed no increase in fungal and bacterial biodiversity, but relative abundances of the bacterial phyla Acidobacteria, Verrucomicrobia, Actinobacteria, Bacteroidetes, and Proteobacteria and the fungal phyla Ascomycota, Basidiomycota, and Zygomycota were significantly changed. More specifically, a more than 10-fold increase was observed for operational taxonomic units belonging to the bacterial genera Cellvibrio, Pedobacter, Dyadobacter, and Streptomyces and to the fungal genera Lecanicillium and Mortierella. These genera include several species previously reported to be involved in biocontrol, plant growth promotion, the nitrogen cycle and chitin degradation. These results enhance the understanding of the response of the rhizosphere microbiome to chitin amendment. Moreover, this is the first study to investigate the use of soil amendments to control the survival of S. enterica on plant leaves. PMID:27148242

  9. Glycoprotein biosynthesis by human normal platelets

    International Nuclear Information System (INIS)

    Incorporation of radioactive Man, Gal, Fuc, Glc-N, and NANA into washed human normal platelets and endogenous glycoproteins has been found. Both parameters were time dependent. Analysis of hydrolyzed labeled glycoproteins by paper chromatography revealed that the radioactive monosaccharide incubated with the platelets had not been converted into other sugars. Acid hydrolysis demonstrates the presence of a glycosidic linkage. All the effort directed to the demonstration of the existence of a lipid-sugar intermediate in intact human platelets yielded negative results for Man and Glc-N used as precursors. The incorporation of these sugars into glycoproteins is insensitive to bacitracin, suggesting no involvement of lipid-linked saccharides in the synthesis of glycoproteins in human blood platelets. The absence of inhibition of the glycosylation process in the presence of cycloheximide suggests that the sugars are added to proteins present in the intact platelets. These results support the contention that glycoprotein biosynthesis in human blood platelets observed under our experimental conditions is effected through direct sugar nucleotide glycosylation

  10. Biosynthesis of myristic acid in luminescent bacteria

    International Nuclear Information System (INIS)

    In vivo pulse-label studies have demonstrated that luminescent bacteria can provide myritic acid (14:0) required for the synthesis of the luciferase substrate myristyl aldehyde. Luminescent wild type Vibrio harveyi incubated with [14C] acetate in a nutrient-depleted medium accumulated substantial tree [14C]fatty acid (up to 20% of the total lipid label). Radio-gas chromatography revealed that > 75% of the labeled fatty acid is 14:0. No free fatty acid was detected in wild type cells labeled prior to the development of bioluminescence in the exponential growth phase, or in a dark mutant of V. harveyi (mutant M17) that requires exogenous 14:0 for light emission. The preferential accumulation of 14:0 was not observed when wild type cells were labeled with [14C]acetate in regular growth medium. Moreover, all V. harveyi strains exhibited similar fatty acid mass compositions regardless of the state of bioluminescence. Since earlier work has shown that a luminescence-related acyltransferase (defective in the M17 mutant) can catalyze the deacylation of fatty acyl-acyl carrier protein in vitro, the present results are consistent with a model in which this enzyme diverts 14:0 to the luminescence system during fatty acid biosynthesis. Under normal conditions, the supply of 14:0 by this pathway is tightly regulated such that bioluminescence development does not significantly alter the total fatty acid composition

  11. Acylphloroglucinol Biosynthesis in Strawberry Fruit.

    Science.gov (United States)

    Song, Chuankui; Ring, Ludwig; Hoffmann, Thomas; Huang, Fong-Chin; Slovin, Janet; Schwab, Wilfried

    2015-11-01

    Phenolics have health-promoting properties and are a major group of metabolites in fruit crops. Through reverse genetic analysis of the functions of four ripening-related genes in the octoploid strawberry (Fragaria × ananassa), we discovered four acylphloroglucinol (APG)-glucosides as native Fragaria spp. fruit metabolites whose levels were differently regulated in the transgenic fruits. The biosynthesis of the APG aglycones was investigated by examination of the enzymatic properties of three recombinant Fragaria vesca chalcone synthase (FvCHS) proteins. CHS is involved in anthocyanin biosynthesis during ripening. The F. vesca enzymes readily catalyzed the condensation of two intermediates in branched-chain amino acid metabolism, isovaleryl-Coenzyme A (CoA) and isobutyryl-CoA, with three molecules of malonyl-CoA to form phlorisovalerophenone and phlorisobutyrophenone, respectively, and formed naringenin chalcone when 4-coumaroyl-CoA was used as starter molecule. Isovaleryl-CoA was the preferred starter substrate of FvCHS2-1. Suppression of CHS activity in both transient and stable CHS-silenced fruit resulted in a substantial decrease of APG glucosides and anthocyanins and enhanced levels of volatiles derived from branched-chain amino acids. The proposed APG pathway was confirmed by feeding isotopically labeled amino acids. Thus, Fragaria spp. plants have the capacity to synthesize pharmaceutically important APGs using dual functional CHS/(phloriso)valerophenone synthases that are expressed during fruit ripening. Duplication and adaptive evolution of CHS is the most probable scenario and might be generally applicable to other plants. The results highlight that important promiscuous gene function may be missed when annotation relies solely on in silico analysis. PMID:26169681

  12. Evolution of catalase activity during nystatin biosynthesis

    Directory of Open Access Journals (Sweden)

    Cristina Bota

    2009-03-01

    Full Text Available The research studies focused on the dynamics of catalase during nystatin biosynthesis by Streptomyces noursei. The catalase activity was determined by growing a pure culture of Streptomyces noursei from the strain collection owned by the company S.C. Antibiotice Iasi on biosynthesis medium. The test was performed on two experimental models of biosynthesis, one using sunflower oil, while the other soybean oil as basic nutrients. Special attention was paid to the connection between the evolution of the biomass and the level of catalase activity.

  13. Ancient pests: the season of the Santorini Minoan volcanic eruption and a date from insect chitin

    Science.gov (United States)

    Panagiotakopulu, Eva; Higham, Thomas; Sarpaki, Anaya; Buckland, Paul; Doumas, Christos

    2013-07-01

    Attributing a season and a date to the volcanic eruption of Santorini in the Aegean has become possible by using preserved remains of the bean weevil, Bruchus rufipes, pests of pulses, from the storage jars of the West House, in the Bronze Age settlement at Akrotiri. We have applied an improved pre-treatment methodology for dating the charred insects, and this provides a date of 1744-1538 BC. This date is within the range of others obtained from pulses from the same context and confirms the utility of chitin as a dating material. Based on the nature of the insect material and the life cycle of the species involved, we argue for a summer eruption, which took place after harvest, shortly after this material was transported into the West House storeroom.

  14. Effect of deletion of chitin synthase genes on mycelial morphology and culture viscosity in Aspergillus oryzae.

    Science.gov (United States)

    Müller, Christian; Hansen, Kim; Szabo, Peter; Nielsen, Jens

    2003-03-01

    The objective of this study was to quantify the effect of disrupting two chitin synthases, chsB and csmA, on the morphology and rheology during batch cultivation of Aspergillus oryzae. The rheological properties were characterized in batch cultivations at different biomass concentrations (from 3.4-22.5 g kg(-1) biomass) and the power-law model adequately described the rheological properties. In the cultivations there were pellets, clumps, and freely dispersed hyphal elements. The different morphological fractions were quantified using image analysis. The apparent viscosity of the fermentation broth was significantly affected by the biomass concentration, the morphology, and also by pH. The chsB disruption strain had lower consistency index K values for all biomass concentrations investigated, which is a desirable trait for industrial Aspergillus fermentations. PMID:12514801

  15. Tracking developmentally regulated post-synthetic processing of homogalacturonan and chitin using reciprocal oligosaccharide probes

    DEFF Research Database (Denmark)

    Mravec, Jozef; Kračun, Stjepan K.; Rydahl, Maja G.;

    2014-01-01

    limited by a lack of suitable molecular tools. Here, we report the development of a novel non-immunological approach for producing highly selective reciprocal oligosaccharide-based probes for chitosan (the product of chitin deacetylation) and for demethylesterified homogalacturonan. Specific reciprocal...... binding is mediated by the unique stereochemical arrangement of oppositely charged amino and carboxy groups. Conjugation of oligosaccharides to fluorophores or gold nanoparticles enables direct and rapid imaging of homogalacturonan and chitosan with unprecedented precision in diverse plant, fungal and...... animal systems. We demonstrated their potential for providing new biological insights by using them to study homogalacturonan processing during Arabidopsis thaliana root cap development and by analyzing sites of chitosan deposition in fungal cell walls and arthropod exoskeletons....

  16. Polyelectrolyte complex formation mediated immobilization of chitosan-invertase neoglycoconjugate on pectin-coated chitin.

    Science.gov (United States)

    Gómez, Leissy; Ramírez, Hector L; Neira-Carrillo, Andrónico; Villalonga, Reynaldo

    2006-05-01

    Saccharomyces cerevisiae invertase, chemically modified with chitosan, was immobilized on pectin-coated chitin support via polyelectrolyte complex formation. The yield of immobilized enzyme protein was determined as 85% and the immobilized biocatalyst retained 97% of the initial chitosan-invertase activity. The optimum temperature for invertase was increased by 10 degrees C and its thermostability was enhanced by about 10 degrees C after immobilization. The immobilized enzyme was stable against incubation in high ionic strength solutions and was 4-fold more resistant to thermal treatment at 65 degrees C than the native counterpart. The biocatalyst prepared retained 96 and 95% of the original catalytic activity after ten cycles of reuse and 74 h of continuous operational regime in a packed bed reactor, respectively. PMID:16775742

  17. Effects of chitin nano-whiskers on the gelatinization and retrogradation of maize and potato starches.

    Science.gov (United States)

    Ji, Na; Liu, Chengzhen; Zhang, Shuangling; Yu, Jing; Xiong, Liu; Sun, Qingjie

    2017-01-01

    Starch is very prone to retrogradation after gelatinization. Inhibition of starch retrogradation has been an important factor in improving the quality of food. For the first time, we investigated the effect of nano-materials, represented by chitin nano-whiskers (CNWs), on the short- and long-term retrogradation of maize and potato starches. Rapid Visco-Analyser results showed that the addition of CNWs significantly decreased the setback values of maize and potato starches, which suggested that CNWs could retard the short-term retrogradation of starch. Differential scanning calorimetry and X-ray diffraction results showed that the percentage of retrogradation of maize and potato starches significantly decreased (P<0.05), suggesting the inhibition of long-term retrogradation. The CNWs could be used as a new inhibitor of starch retrogradation to develop starch-based food with longer shelf life. PMID:27507508

  18. Self-assembled cardanol azo derivatives as antifungal agent with chitin-binding ability.

    Science.gov (United States)

    Mahata, Denial; Mandal, Santi M; Bharti, Rashmi; Gupta, Vinay Krishna; Mandal, Mahitosh; Nag, Ahindra; Nando, Golok B

    2014-08-01

    Cardanol is a non-isoprenoic phenolic lipid-mixture of distilled cashew nut shell liquid obtained from Anacardium occidentale. Herein, cardanol is purified from cashew nut shell liquid (CNSL) and synthesized to new compounds with different azo amphiphiles. These synthesized compounds are allowed to self-assembled in hydrophobic environment and checked antifungal activity against Candida albicans. Self-assembled structure of CABA showed higher antifungal activity (16μg/mL) and chitin-binding ability in comparison to CAP and CANB. Furthermore, the self-assembled azo amphiphiles are immobilized with silver ions to prepare hydrogel which showed eight folds enhanced antifungal activity. Toxicity is reduced by several folds of self-assembled or hydrogel structure in comparison to pure compounds. Thus, the self-assembled structure of amphiphiles and their hydrogels have been found to be new macromolecules of interest with potential use as antifungal drugs. PMID:24836571

  19. Effect of Fermented Chitin Nano whiskers on Properties of Polylactic Acid Bio composite Films

    International Nuclear Information System (INIS)

    The fermented chitin nano whiskers (FCNW) filled polylactic acid (PLA) bio composite films were successfully produced using solution casting method. The bio composite films were characterized in terms of tensile properties. The Young's modulus increased with increasing FCNW content while the tensile strength increased and reached the maximum value at 4 phr FCNW loading. Therefore it can be concluded that the optimum loading of FCNW is at 4 phr and further addition of FCNW may lead to agglomeration resulting in a decrease in tensile strength. The elongation at break of the bio composite films decreased rapidly upon addition of FCNW into PLA. From the Atomic Force Microscopy, the surface morphology of the PLA changed upon addition of FCNW and tendency for agglomeration of FCNW at high loading was observed. (author)

  20. Graphene oxide/chitin nanofibril composite foams as column adsorbents for aqueous pollutants.

    Science.gov (United States)

    Ma, Zhongshi; Liu, Dagang; Zhu, Yi; Li, Zehui; Li, Zhenxuan; Tian, Huafeng; Liu, Haiqing

    2016-06-25

    A novel graphene oxide/chitin nanofibrils (GO-CNF) composite foam as a column adsorbent was prepared for aqueous contaminant disposal. The structures, morphologies and properties of composite foams supported by nanofibrils were characterized. As a special case, the adsorption of methylene blue (MB) on GO-CNF was investigated regarding the static adsorption and column adsorption-desorption tests. Results from equilibrium adsorption isotherms indicated that the adsorption behavior was well-fitted to Langmuir model. The composite foams reinforced by CNF were dimensionally stable during the column adsorption process and could be reused after elution. The removal efficiency of MB was still nearly 90% after 3 cycles. Furthermore, other inorganic or organic pollutants adsorbed by composite foams were also explored. Therefore, this novel composite foam with remarkable properties such as dimensional stability, universal adsorbent for cationic pollutants, high adsorption capacity, and ease of regeneration was a desirable adsorbent in the future practical application of water pollutant treatment. PMID:27083813

  1. Lipid-based transfection reagents can interfere with cholesterol biosynthesis.

    Science.gov (United States)

    Danielli, Mauro; Marinelli, Raúl A

    2016-02-15

    Lipid-based transfection reagents are widely used for delivery of small interfering RNA into cells. We examined whether the commonly used commercial transfection reagents DharmaFECT-4 and Lipofectamine 2000 can interfere with lipid metabolism by studying cholesterogenesis. Cholesterol de novo synthesis from [(14)C]acetate was assessed in human hepatocyte-derived Huh-7 cells. The results revealed that DharmaFECT, but not Lipofectamine, markedly inhibited cholesterol biosynthesis by approximately 70%. Cell viability was not significantly altered. These findings suggest that caution is required in the choice of certain lipid-based transfection reagents for gene silencing experiments, particularly when assessing cholesterol metabolism. PMID:26656923

  2. Metabolic engineering of the morphology of Aspergillus oryzae by altering chitin synthesis.

    Science.gov (United States)

    Müller, Christian; McIntyre, Mhairi; Hansen, Kim; Nielsen, Jens

    2002-04-01

    Morphology and alpha-amylase production during submerged cultivation were examined in a wild-type strain (A1560) and in strains of Aspergillus oryzae in which chitin synthase B (chsB) and chitin synthesis myosin A (csmA) have been disrupted (ChsB/G and CM101). In a flowthrough cell, the growth of submerged hyphal elements was studied online, making it possible to examine the growth kinetics of the three strains. The average tip extension rates of the CM101 and ChsB/G strains were 25 and 88% lower, respectively, than that of the wild type. The branching intensity in the CM101 strain was 25% lower than that in the wild type, whereas that in the ChsB/G strain was 188% higher. During batch cultivation, inseparable clumps were formed in the wild-type strain, while no or fewer large inseparable clumps existed in the cultivations of the ChsB/G and CM101 strains. The alpha-amylase productivity was not significantly different in the three strains. A strain in which the transcription of chsB could be controlled by the nitrogen source-regulated promoter niiA (NiiA1) was examined during chemostat cultivation, and it was found that the branching intensity could be regulated by regulating the promoter, signifying an important role for chsB in branching. However, the pattern of branching responded very slowly to the change in transcription, and increased branching did not affect alpha-amylase productivity. alpha-Amylase residing in the cell wall was stained by immunofluorescence, and the relationship between tip number and enzyme secretion is discussed. PMID:11916702

  3. Insectivorous bats digest chitin in the stomach using acidic mammalian chitinase.

    Science.gov (United States)

    Strobel, Sara; Roswag, Anna; Becker, Nina I; Trenczek, Tina E; Encarnação, Jorge A

    2013-01-01

    The gastrointestinal tract of animals is adapted to their primary source of food to optimize resource use and energy intake. Temperate bat species mainly feed on arthropods. These contain the energy-rich carbohydrate chitin, which is indigestible for the endogenous enzymes of a typical mammalian gastrointestinal tract. However, the gastrointestinal tract of bat species should be adapted to their diet and be able to digest chitin. We hypothesized that (i) European vespertilionid bat species have the digestive enzyme chitinase and that (ii) the chitinolytic activity is located in the intestine, as has been found for North American bat species. The gastrointestinal tracts of seven bat species (Pipistrellus pipistrellus, Plecotus auritus, Myotis bechsteinii, Myotis nattereri, Myotis daubentonii, Myotis myotis, and Nyctalus leisleri) were tested for chitinolytic activity by diffusion assay. Gastrointestinal tracts of P. pipistrellus, P. auritus, M. nattereri, M. myotis, and N. leisleri were examined for acidic mammalian chitinase by western blot analysis. Tissue sections of the gastrointestinal tract of P. pipistrellus were immunohistochemically analyzed to locate the acidic mammalian chitinase. Chitinolytic activity was detected in the stomachs of all bat species. Western blot analysis confirmed the acidic mammalian chitinase in stomach samples. Immunohistochemistry of the P. pipistrellus gastrointestinal tract indicated that acidic mammalian chitinase is located in the stomach chief cells at the base of the gastric glands. In conclusion, European vespertilionid bat species have acidic mammalian chitinase that is produced in the gastric glands of the stomach. Therefore, the gastrointestinal tracts of insectivorous bat species evolved an enzymatic adaptation to their diet. PMID:24019876

  4. Monoterpene biosynthesis potential of plant subcellular compartments

    NARCIS (Netherlands)

    Dong, L.; Jongedijk, E.J.; Bouwmeester, H.J.; Krol, van der A.R.

    2016-01-01

    Subcellular monoterpene biosynthesis capacity based on local geranyl diphosphate (GDP) availability or locally boosted GDP production was determined for plastids, cytosol and mitochondria. A geraniol synthase (GES) was targeted to plastids, cytosol, or mitochondria. Transient expression in Nicotiana

  5. Antibacterial Targets in Fatty Acid Biosynthesis

    OpenAIRE

    Wright, H. Tonie; Reynolds, Kevin A.

    2007-01-01

    The fatty acid biosynthesis pathway is an attractive but still largely unexploited target for development of new anti-bacterial agents. The extended use of the anti-tuberculosis drug isoniazid and the antiseptic triclosan, which are inhibitors of fatty acid biosynthesis, validates this pathway as a target for anti-bacterial development. Differences in subcellular organization of the bacterial and eukaryotic multi-enzyme fatty acid synthase systems offer the prospect of inhibitors with host vs...

  6. Biosynthesis of monoterpene scent compounds in roses

    OpenAIRE

    Magnard, Jean-Louis; Roccia, Aymeric; Caissard, Jean-Claude; Vergne, Philippe; Sun, Pulu; Hecquet, Romain; Dubois, Annick; Hibrand-Saint Oyant, Laurence; Jullien, Frederic; Nicolè, Florence; Raymond, Olivier; Huguet, Stephanie; Baltenweck-Guyot, Raymonde; Meyer, Sophie; Claudel, Patricia

    2015-01-01

    The scent of roses (Rosa x hybrida) is composed of hundreds of volatile molecules. Monoterpenes represent up to 70% percent of the scent content in some cultivars, such as the Papa Meilland rose. Monoterpene biosynthesis in plants relies on plastid-localized terpene synthases. Combining transcriptomic and genetic approaches, we show that the Nudix hydrolase RhNUDX1, localized in the cytoplasm, is part of a pathway for the biosynthesis of free monoterpene alcohols that contribut...

  7. Molecular Cloning, Characterization and mRNA Expression of a Chitin Synthase 2 Gene from the Oriental Fruit Fly, Bactrocera dorsalis (Diptera: Tephritidae

    Directory of Open Access Journals (Sweden)

    Kang-Kang Xu

    2013-08-01

    Full Text Available Chitin synthase (CHS, a potential target for eco-friendly insecticides, plays an essential role in chitin formation in insects. In this study, a full-length cDNA encoding chitin synthase 2 (BdCHS2 was cloned and characterized in the oriental fruit fly, Bactrocera dorsalis. The BdCHS2 cDNA had 4417 nucleotides, containing an open reading frame of 4122 nucleotides, which encoded 1373 amino acid residues with a predicted molecular weight of 158.5 kDa. Phylogenetic analysis with other insect CHSs suggested that BdCHS2 belongs to insect CHS2. The BdCHS2 transcript was predominately found in midgut but was detected at low levels in fat body, Malpighian tubules, integument, and trachea. Moreover, BdCHS2 was expressed in all developmental stages, and highly expressed in the feeding stages. There was a positive relationship between BdCHS2 expression and total chitin content during development. Furthermore, both the gene expression and chitin content in midgut decreased when the insect was fed for 24 h, then starved for 24 h, while they increased dramatically and rapidly under the condition of starvation for 24 h then feeding for 24 h. These results suggest that BdCHS2 may play an important role in regulating chitin content of the midgut, and subsequently affect the growth and development of B. dorsalis.

  8. The plant cuticle is required for osmotic stress regulation of abscisic acid biosynthesis and osmotic stress tolerance in Arabidopsis

    KAUST Repository

    Wang, Zhenyu

    2011-05-01

    Osmotic stress activates the biosynthesis of abscisic acid (ABA). One major step in ABA biosynthesis is the carotenoid cleavage catalyzed by a 9-cis epoxycarotenoid dioxygenase (NCED). To understand the mechanism for osmotic stress activation of ABA biosynthesis, we screened for Arabidopsis thaliana mutants that failed to induce the NCED3 genee xpression in response to osmotic stress treatments. The ced1 (for 9-cis epoxycarotenoid dioxy genase defective 1) mutant isolated in this study showed markedly reduced expression of NCED3 in response to osmotic stress (polyethylene glycol)treatments compared with the wild type. Other ABA biosynthesis genes are also greatly reduced in ced1 under osmotic stress. ced1 mutant plants are very sensitive to even mild osmotic stress. Map-based cloning revealed unexpectedly thatCED1 encodes a putative a/b hydrolase domain-containing protein and is allelic to the BODYGUARD gene that was recently shown to be essential for cuticle biogenesis. Further studies discovered that other cut in biosynthesis mutants are also impaired in osmotic stress induction of ABA biosynthesis genes and are sensitive to osmotic stress. Our work demonstrates that the cuticle functions not merely as a physical barrier to minimize water loss but also mediates osmotic stress signaling and tolerance by regulating ABA biosynthesis and signaling. © 2011 American Society of Plant Biologists. All rights reserved.

  9. Carotenoid Biosynthesis in Daucus carota.

    Science.gov (United States)

    Simpson, Kevin; Cerda, Ariel; Stange, Claudia

    2016-01-01

    Carrot (Daucus carota) is one of the most important vegetable cultivated worldwide and the main source of dietary provitamin A. Contrary to other plants, almost all carrot varieties accumulate massive amounts of carotenoids in the root, resulting in a wide variety of colors, including those with purple, yellow, white, red and orange roots. During the first weeks of development the root, grown in darkness, is thin and pale and devoid of carotenoids. At the second month, the thickening of the root and the accumulation of carotenoids begins, and it reaches its highest level at 3 months of development. This normal root thickening and carotenoid accumulation can be completely altered when roots are grown in light, in which chromoplasts differentiation is redirected to chloroplasts development in accordance with an altered carotenoid profile. Here we discuss the current evidence on the biosynthesis of carotenoid in carrot roots in response to environmental cues that has contributed to our understanding of the mechanism that regulates the accumulation of carotenoids, as well as the carotenogenic gene expression and root development in D. carota. PMID:27485223

  10. Chitin nanofibrils suppress skin inflammation in atopic dermatitis-like skin lesions in NC/Nga mice.

    Science.gov (United States)

    Izumi, Ryotaro; Azuma, Kazuo; Izawa, Hironori; Morimoto, Minoru; Nagashima, Masaaki; Osaki, Tomohiro; Tsuka, Takeshi; Imagawa, Tomohiro; Ito, Norihiko; Okamoto, Yoshiharu; Saimoto, Hiroyuki; Ifuku, Shinsuke

    2016-08-01

    We evaluated the effect of chitin nanofibril (CNF) application via skin swabs on an experimental atopic dermatitis (AD) model. AD scores were lower, and hypertrophy and hyperkeratosis of the epidermis were suppressed after CNF treatment. Furthermore, inflammatory cell infiltration in both the epidermis and dermis was inhibited. CNFs also attenuated histological scores. The suppressive effects of CNFs were equal to those of corticosteroid application; however, chitin did not show these effects. CNF application might have anti-infllammatory effects via suppression of the activation of nuclear factor-kappa B, cyclooxygenase-2, and inducible nitric oxide synthase. In an early-stage model of experimental AD, CNFs suppressed AD progression to the same extent as corticosteroids. They also suppressed skin inflammation and IgE serum levels. Our findings indicate that CNF application could aid in the prevention or treatment of AD skin lesions. PMID:27112880

  11. The use of DSC curves to determine the acetylation deg.ree of chitin/chitosan samples

    International Nuclear Information System (INIS)

    The use of DSC curves is proposed as an alternative method to determine the deg.ree of N-acetylation (DA) in chitin/chitosan samples, based in both peak area and height of the decomposition signal. Samples with DA from 74 to 16% were prepared from a chitin commercial sample and the DA was determined by 1H NMR, 13C CP/MAS NMR and IR spectra. The effect of water content, heating rate, sample mass and gas flow on the DSC peaks were evaluated and optimized. Using optimized conditions a linear relationship between peak area and height with the DA could be achieved with linear correlation coefficients of -0.998 and -0.999 (n = 7), respectively. The calibration graphs were used to determine the DA of a commercial chitosan sample with relative errors ranging from 2 to 3% for both peak area and peak height, when compared with the DA determined by 1H NMR method

  12. Immobilization of Papain on Chitin and Chitosan and Recycling of Soluble Enzyme for Deflocculation of Saccharomyces cerevisiae from Bioethanol Distilleries

    OpenAIRE

    Douglas Fernandes Silva; Henrique Rosa; Ana Flavia Azevedo Carvalho; Pedro de Oliva-Neto

    2015-01-01

    Yeast flocculation (Saccharomyces cerevisiae) is one of the most important problems in fuel ethanol production. Yeast flocculation causes operational difficulties and increase in the ethanol cost. Proteolytic enzymes can solve this problem since it does not depend on these changes. The recycling of soluble papain and the immobilization of this enzyme on chitin or chitosan were studied. Some cross-linking agents were evaluated in the action of proteolytic activity of papain. The glutaraldehyde...

  13. Characterization and functional analysis of a chitin synthase gene (HcCS1) identified from the freshwater pearlmussel Hyriopsis cumingii.

    Science.gov (United States)

    Zheng, H F; Bai, Z Y; Lin, J Y; Wang, G L; Li, J L

    2015-01-01

    The triangle sail mussel, Hyriopsis cumingii, is the most important freshwater pearl mussel in China. However, the mechanisms underlying its chitin-mediated shell and nacre formation remain largely unknown. Here, we characterized a chitin synthase (CS) gene (HcCS1) in H. cumingii, and analyzed its possible physiological function. The complete ORF sequence of HcCS1 contained 6903 bp, encoding a 2300-amino acid protein (theoretical molecular mass = 264 kDa; isoelectric point = 6.22), and no putative signal peptide was predicted. A myosin motor head domain, a CS domain, and 12 transmembrane domains were found. The predicted spatial structures of the myosin head and CS domains were similar to the electron microscopic structure of the heavy meromyosin subfragment of chicken smooth muscle myosin and the crystal structure of bacterial cellulose synthase, respectively. This structural similarity indicates that the functions of these two domains might be conserved. Quantitative reverse transcription PCR results showed that HcCS1 was present in all detected tissues, with the highest expression levels detected in the mantle. The HcCS1 transcripts in the mantle were upregulated following shell damage from 12 to 24 h post-damage, and they peaked (approximately 1.5-fold increase) at 12 h after shell damage. These findings suggest that HcCS1 was involved in shell regeneration, and that it might participate in shell and nacre formation in this species via chitin synthesis. HcCS1 might also dynamically regulate chitin deposition during the process of shell and nacre formation with the help of its conserved myosin head domain. PMID:26782579

  14. Effect of triflumuron, a chitin synthesis inhibitor, on Aedes aegypti, Aedes albopictus and Culex quinquefasciatus under laboratory conditions

    OpenAIRE

    Belinato, Thiago Affonso; Martins, Ademir Jesus; Lima, José Bento Pereira; Valle, Denise

    2013-01-01

    Background Resistance to traditional insecticides represents a threat to the control of disease vectors. The insect growth regulators (IGR) are a potential alternative to control mosquitoes, including resistant populations. The chitin synthesis inhibitors (CSI) are IGRs, which interfere with the insect molting process and represent one major class of compounds against Aedes aegypti populations resistant to the larvicide organophosphate temephos. In the present study, we evaluated the efficacy...

  15. The efficacy of a chitin synthesis inhibitor against field populations of organophosphate-resistant Aedes aegypti in Brazil

    OpenAIRE

    Nathalia Giglio Fontoura; Diogo Fernandes Bellinato; Denise Valle; José Bento Pereira Lima

    2012-01-01

    The mosquito Aedes aegypti is the main focus of dengue control campaigns. Because of widespread resistance against conventional chemical insecticides, chitin synthesis inhibitors (CSIs) are considered control alternatives. We evaluated the resistance status of four Brazilian Ae. aegypti populations to both the organophosphate temephos and the pyrethroid deltamethrin, which are used in Brazil to control larvae and adults, respectively. All vector populations exhibited high levels of temephos r...

  16. Effects of chitin and salicylic acid on biological control activity of Pseudomonas spp. against damping off of pepper

    OpenAIRE

    M.Rajkumar; Lee, K. J.; Freitas, H.

    2008-01-01

    Fluorescent pseudomonads (SE21 and RD41) and resistance inducers (chitin and salicylic acid) were examined for plant growth promotion and biological control of damping off of pepper caused by Rhizoctonia solani. The antagonists SE21 and RD41 isolated from the rhizosphere of pepper were found to be effective in inhibiting the mycelial growth of R. solani in a dual culture assay and increasing the seedling vigour in a roll towel assay. Both antagonists were further characterized for biocontrol ...

  17. Evaluation of Three Chitin Metal Silicate Co-Precipitates as a Potential Multifunctional Single Excipient in Tablet Formulations

    OpenAIRE

    Rana Al-Shaikh Hamid; Faisal Al-Akayleh; Mohammad Shubair; Iyad Rashid; Mayyas Al Remawi; Adnan Badwan

    2010-01-01

    The performance of the novel chitin metal silicate (CMS) co-precipitates as a single multifunctional excipient in tablet formulation using direct compression and wet granulation methods is evaluated. The neutral, acidic, and basic drugs Spironolactone (SPL), ibuprofen (IBU) and metronidazole (MET), respectively, were used as model drugs. Commercial Aldactone®, Fleximex® and Dumazole® tablets containing SPL, IBU and MET, respectively, and tablets made using Avicel® 200, were used in the study ...

  18. Isolation and characterization of Arabidopsis mutants defective in the induction of ethylene biosynthesis by cytokinin

    Science.gov (United States)

    Vogel, J. P.; Schuerman, P.; Woeste, K.; Brandstatter, I.; Kieber, J. J.; Evans, M. L. (Principal Investigator)

    1998-01-01

    Cytokinins elevate ethylene biosynthesis in etiolated Arabidopsis seedlings via a post-transcriptional modification of one isoform of the key biosynthetic enzyme ACC synthase. In order to begin to dissect the signaling events leading from cytokinin perception to this modification, we have isolated a series of mutants that lack the ethylene-mediated triple response in the presence of cytokinin due to their failure to increase ethylene biosynthesis. Analysis of genetic complementation and mapping revealed that these Cin mutants (cytokinin-insensitive) represent four distinct complementation groups, one of which, cin4, is allelic to the constitutive photomorphogenic mutant fus9/cop10. The Cin mutants have subtle effects on the morphology of adult plants. We further characterized the Cin mutants by analyzing ethylene biosynthesis in response to various other inducers and in adult tissues, as well as by assaying additional cytokinin responses. The cin3 mutant did not disrupt ethylene biosynthesis under any other conditions, nor did it disrupt any other cytokinin responses. Only cin2 disrupted ethylene biosynthesis in multiple circumstances. cin1 and cin2 made less anthocyanin in response to cytokinin. cin1 also displayed reduced shoot initiation in tissue culture in response to cytokinin, suggesting that it affects a cytokinin signaling element.

  19. Preparation of acrylic acid-modified chitin improved by an experimental design and its application in absorbing toxic organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chao-Ming, E-mail: charming@mail.ksu.edu.tw [Department of Materials Engineering, Kun Shan University, Tainan, Taiwan (China); Chen, Lung-Chuan, E-mail: lcchen@mail.ksu.edu.tw [Department of Materials Engineering, Kun Shan University, Tainan, Taiwan (China); Yang, Hui-Chia, E-mail: yang.junkdna@gmail.com [Department of Environmental Engineering, Kun Shan University, Tainan, Taiwan (China); Li, Min-Hsing, E-mail: a1487561a@yahoo.com.tw [Department of Environmental Engineering, Kun Shan University, Tainan, Taiwan (China); Pan, Ting-Chung, E-mail: tcpan@mail.ksu.edu.tw [Department of Environmental Engineering, Kun Shan University, Tainan, Taiwan (China)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Acrylic acid-modified chitin. Black-Right-Pointing-Pointer Experimental design. Black-Right-Pointing-Pointer Graft copolymerization. Black-Right-Pointing-Pointer Adsorption of toxic organic compounds. Black-Right-Pointing-Pointer Very high adsorption capacity. - Abstract: Chitin grafted poly (acrylic acid) (chi-g-PAA) is synthesized and characterized as an adsorbent of toxic organic compounds. Chi-g-PAA copolymers are prepared using of ammonium cerium (IV) nitrate (Ce{sup 4+}) as the initiator. The highest grafting percentage of AA in chitin obtained using the traditional technique is 163.1%. A maximum grafting percentage of 230.6% is obtained using central composite design (CCD). Experimental results are consistent with theoretical calculations. The grafted copolymer is characterized by Fourier transform Infrared spectroscopy and solid state {sup 13}C NMR. A representative chi-g-AA copolymer is hydrolyzed to a type of sodium salt (chi-g-PANa) and used in the adsorption of malachite green (MG), methyl violet (MV), and paraquat (PQ) in aqueous. The monolayer adsorption capacities of these substances are 285.7, 357.1, and 322.6 mg/g-adsorbent, respectively. Thermodynamic calculations show that the adsorption of MG, MV, and PQ are more favored at diluted solutions. The high adsorption capacity of chi-g-PANa for toxic matter indicates its potential in the treatment of wastewater and emergency treatment of PQ-poisoned patients.

  20. A chitin deacetylase-like protein is a predominant constituent of tick peritrophic membrane that influences the persistence of Lyme disease pathogens within the vector.

    Directory of Open Access Journals (Sweden)

    Toru Kariu

    Full Text Available Ixodes scapularis is the specific arthropod vector for a number of globally prevalent infections, including Lyme disease caused by the bacterium Borrelia burgdorferi. A feeding-induced and acellular epithelial barrier, known as the peritrophic membrane (PM is detectable in I. scapularis. However, whether or how the PM influences the persistence of major tick-borne pathogens, such as B. burgdorferi, remains largely unknown. Mass spectrometry-based proteome analyses of isolated PM from fed ticks revealed that the membrane contains a few detectable proteins, including a predominant and immunogenic 60 kDa protein with homology to arthropod chitin deacetylase (CDA, herein termed I. scapularis CDA-like protein or IsCDA. Although IsCDA is primarily expressed in the gut and induced early during tick feeding, its silencing via RNA interference failed to influence either the occurrence of the PM or spirochete persistence, suggesting a redundant role of IsCDA in tick biology and host-pathogen interaction. However, treatment of ticks with antibodies against IsCDA, one of the most predominant protein components of PM, affected B. burgdorferi survival, significantly augmenting pathogen levels within ticks but without influencing the levels of total gut bacteria. These studies suggested a preferential role of tick PM in limiting persistence of B. burgdorferi within the vector. Further understanding of the mechanisms by which vector components contribute to pathogen survival may help the development of new strategies to interfere with the infection.

  1. Mitochondrial respiration without ubiquinone biosynthesis.

    Science.gov (United States)

    Wang, Ying; Hekimi, Siegfried

    2013-12-01

    Ubiquinone (UQ), a.k.a. coenzyme Q, is a redox-active lipid that participates in several cellular processes, in particular mitochondrial electron transport. Primary UQ deficiency is a rare but severely debilitating condition. Mclk1 (a.k.a. Coq7) encodes a conserved mitochondrial enzyme that is necessary for UQ biosynthesis. We engineered conditional Mclk1 knockout models to study pathogenic effects of UQ deficiency and to assess potential therapeutic agents for the treatment of UQ deficiencies. We found that Mclk1 knockout cells are viable in the total absence of UQ. The UQ biosynthetic precursor DMQ9 accumulates in these cells and can sustain mitochondrial respiration, albeit inefficiently. We demonstrated that efficient rescue of the respiratory deficiency in UQ-deficient cells by UQ analogues is side chain length dependent, and that classical UQ analogues with alkyl side chains such as idebenone and decylUQ are inefficient in comparison with analogues with isoprenoid side chains. Furthermore, Vitamin K2, which has an isoprenoid side chain, and has been proposed to be a mitochondrial electron carrier, had no efficacy on UQ-deficient mouse cells. In our model with liver-specific loss of Mclk1, a large depletion of UQ in hepatocytes caused only a mild impairment of respiratory chain function and no gross abnormalities. In conjunction with previous findings, this surprisingly small effect of UQ depletion indicates a nonlinear dependence of mitochondrial respiratory capacity on UQ content. With this model, we also showed that diet-derived UQ10 is able to functionally rescue the electron transport deficit due to severe endogenous UQ deficiency in the liver, an organ capable of absorbing exogenous UQ. PMID:23847050

  2. Biosynthesis of gold nanoparticles: A green approach.

    Science.gov (United States)

    Ahmed, Shakeel; Annu; Ikram, Saiqa; Yudha S, Salprima

    2016-08-01

    Nanotechnology is an immensely developing field due to its extensive range of applications in different areas of technology and science. Different types of methods are employed for synthesis of nanoparticles due to their wide applications. The conventional chemical methods have certain limitations with them either in the form of chemical contaminations during their syntheses procedures or in later applications and use of higher energy. During the last decade research have been focussed on developing simple, clean, non-toxic, cost effective and eco-friendly protocols for synthesis of nanoparticles. In order to get this objective, biosynthesis methods have been developed in order to fill this gap. The biosynthesis of nanoparticles is simple, single step, eco-friendly and a green approach. The biochemical processes in biological agents reduce the dissolved metal ions into nano metals. The various biological agents like plant tissues, fungi, bacteria, etc. are used for biosynthesis for metal nanoparticles. In this review article, we summarised recent literature on biosynthesis of gold nanoparticles which have revolutionised technique of synthesis for their applications in different fields. Due to biocompatibility of gold nanoparticles, it has find its applications in biomedical applications. The protocol and mechanism of biosynthesis of gold nanoparticles along with various applications have also been discussed. PMID:27236049

  3. Triterpenoid biosynthesis in Euphorbia lathyris latex

    International Nuclear Information System (INIS)

    The structures of triterpenols, not previously been known, from Euphorbia lathyris latex are reported. A method for quantifying very small amounts of these compounds was developed. Concerning the biochemistry of the latex, no exogenous cofactors were required for the biosynthesis and the addition of compounds such as NADPAH and ATP do not stimulate the biosynthesis. The addition of DTE or a similar anti-oxidant was found to help reduce the oxidation of the latex, thus increasing the length of time that the latex remains active. The requirement of a divalent cation and the preference for Mn in the pellet was observed. The effect of several inhibitors on the biosynthesis of the triterpenoids was examined. Mevinolin was found to inhibit the biosynthesis of the triterpenoids from acetate, but not mevalonate. A dixon plot of the inhibition of acetate incorporation showed an I50 concentration of 3.2 μM. Fenpropimorph was found to have little or no effect on the biosynthesis. Tridemorph was found to inhibit the biosynthesis of all of the triterpenoids with an I50 of 4 μM. It was also observed that the cyclopropyl containing triterpenols, cycloartenol and 24-methylenecycloartenol were inhibited much more strongly than those containing an 8-9 double bond, lanosterol and 24-methylenelanosterol. The evidence indicates, but does not definetely prove, that lanosterol and 24-methylenelanosterol are not made from cycloartenol and 24-methylenecycloartenol via a ring-opening enzyme such as cycloeucalenol-obtusifoliol isomerase. The possibilty that cycloartenol is made via lanosterol was investigated by synthesizing 4-R-4-3H-mevalonic acid and incubating latex with a mixture of this and 14C-mevalonic acid. From the 3H/14C ratio it was shown that cycloartenol and 24-methylenecycloartenol are not made via an intermediate containing as 8-9 double bond. 88 refs., 15 figs., 30 tabs

  4. Triterpenoid biosynthesis in Euphorbia lathyris latex

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, D.R.

    1987-11-01

    The structures of triterpenols, not previously been known, from Euphorbia lathyris latex are reported. A method for quantifying very small amounts of these compounds was developed. Concerning the biochemistry of the latex, no exogenous cofactors were required for the biosynthesis and the addition of compounds such as NADPAH and ATP do not stimulate the biosynthesis. The addition of DTE or a similar anti-oxidant was found to help reduce the oxidation of the latex, thus increasing the length of time that the latex remains active. The requirement of a divalent cation and the preference for Mn in the pellet was observed. The effect of several inhibitors on the biosynthesis of the triterpenoids was examined. Mevinolin was found to inhibit the biosynthesis of the triterpenoids from acetate, but not mevalonate. A dixon plot of the inhibition of acetate incorporation showed an I/sub 50/ concentration of 3.2 ..mu..M. Fenpropimorph was found to have little or no effect on the biosynthesis. Tridemorph was found to inhibit the biosynthesis of all of the triterpenoids with an I/sub 50/ of 4 ..mu..M. It was also observed that the cyclopropyl containing triterpenols, cycloartenol and 24-methylenecycloartenol were inhibited much more strongly than those containing an 8-9 double bond, lanosterol and 24-methylenelanosterol. The evidence indicates, but does not definetely prove, that lanosterol and 24-methylenelanosterol are not made from cycloartenol and 24-methylenecycloartenol via a ring-opening enzyme such as cycloeucalenol-obtusifoliol isomerase. The possibilty that cycloartenol is made via lanosterol was investigated by synthesizing 4-R-4-/sup 3/H-mevalonic acid and incubating latex with a mixture of this and /sup 14/C-mevalonic acid. From the /sup 3/H//sup 14/C ratio it was shown that cycloartenol and 24-methylenecycloartenol are not made via an intermediate containing as 8-9 double bond. 88 refs., 15 figs., 30 tabs.

  5. A novel chitin binding crayfish molar tooth protein with elasticity properties.

    Science.gov (United States)

    Tynyakov, Jenny; Bentov, Shmuel; Abehsera, Shai; Khalaila, Isam; Manor, Rivka; Katzir Abilevich, Lihie; Weil, Simy; Aflalo, Eliahu D; Sagi, Amir

    2015-01-01

    The molar tooth of the crayfish Cherax quadricarinatus is part of the mandible, and is covered by a layer of apatite (calcium phosphate). This tooth sheds and is regenerated during each molting cycle together with the rest of the exoskeleton. We discovered that molar calcification occurs at the pre-molt stage, unlike calcification of the rest of the new exoskeleton. We further identified a novel molar protein from C. quadricarinatus and cloned its transcript from the molar-forming epithelium. We termed this protein Cq-M13. The temporal level of transcription of Cq-M13 in an NGS library of molar-forming epithelium at different molt stages coincides with the assembly and mineralization pattern of the molar tooth. The predicted protein was found to be related to the pro-resilin family of cuticular proteins. Functionally, in vivo silencing of the transcript caused molt cycle delay and a recombinant version of the protein was found to bind chitin and exhibited elastic properties. PMID:26010981

  6. Direct conversion of chitin biomass to 5-hydroxymethylfurfural in concentrated ZnCl2 aqueous solution.

    Science.gov (United States)

    Wang, Yingxiong; Pedersen, Christian Marcus; Deng, Tiansheng; Qiao, Yan; Hou, Xianglin

    2013-09-01

    The direct conversion of chitin biomass to 5-hydroxymethylfurfural (5-HMF) in ZnCl2 aqueous solution was studied systemically. D-Glucosamine (GlcNH2) was chosen as the model compound to investigate the reaction, and 5-HMF could be obtained in 21.9% yield with 99% conversion of GlcNH2. Optimization of the reaction parameters including the screening of 8 co-catalysts was carried out. Among them, AlCl3 and B(OH)3 improved 5-HMF yield, whereas CdCl2, CuCl2 and NH4Cl had no effect. CrCl3, SnCl4 and SnCl2 showed negative effects, i.e. lower yields. Consequently, the optimal reaction conditions were found to be 67 wt.% ZnCl2 aqueous solution, at 120 °C without co-catalyst. The reactions were further studied by in situ NMR, and no intermediate or other byproducts, except humins, were observed. Finally, the substrate scope was expanded from GlcNH2 to N-acetyl-D-glucosamine and various chitosan polymers with different molecular weights, 5-HMF yield from polymers were generally lower than that from GlcNH2. PMID:23819974

  7. Characteristics of deacetylation and depolymerization of β-chitin from jumbo squid (Dosidicus gigas) pens.

    Science.gov (United States)

    Jung, Jooyeoun; Zhao, Yanyun

    2011-09-27

    This study evaluated the deacetylation characteristics of β-chitin from jumbo squid (Dosidicus gigas) pens by using strongly alkaline solutions of NaOH or KOH. Taguchi design was employed to investigate the effect of reagent concentration, temperature, time, and treatment step on molecular mass (MM) and degree of deacetylation (DDA) of the chitosan obtained. The optimal treatment conditions for achieving high MM and DDA of chitosan were identified as: 40% NaOH at 90°C for 6h with three separate steps (2h+2h+2h) or 50% NaOH at 90°C for 6h with one step, or 50% KOH at 90°C for 4h with three steps (1h+1h+2h) or 6h with one step. The most important factor affecting DDA and MM was temperature and time, respectively. The chitosan obtained was then further depolymerized by cellulase or lysozyme with cellulase giving a higher degradation ratio, lower relative viscosity, and a larger amount of reducing-end formations than that of lysozyme due to its higher susceptibility. This study demonstrated that jumbo squid pens are a good source of materials to produce β-chitosan with high DDA and a wide range of MM for various potential applications. PMID:21700271

  8. Chitin-lignin material as a novel matrix for enzyme immobilization.

    Science.gov (United States)

    Zdarta, Jakub; Klapiszewski, Łukasz; Wysokowski, Marcin; Norman, Małgorzata; Kołodziejczak-Radzimska, Agnieszka; Moszyński, Dariusz; Ehrlich, Hermann; Maciejewski, Hieronim; Stelling, Allison L; Jesionowski, Teofil

    2015-04-01

    Innovative materials were made via the combination of chitin and lignin, and the immobilization of lipase from Aspergillus niger. Analysis by techniques including FTIR, XPS and 13C CP MAS NMR confirmed the effective immobilization of the enzyme on the surface of the composite support. The electrokinetic properties of the resulting systems were also determined. Results obtained from elemental analysis and by the Bradford method enabled the determination of optimum parameters for the immobilization process. Based on the hydrolysis reaction of para-nitrophenyl palmitate, a determination was made of the catalytic activity, thermal and pH stability, and reusability. The systems with immobilized enzymes were found to have a hydrolytic activity of 5.72 mU, and increased thermal and pH stability compared with the native lipase. The products were also shown to retain approximately 80% of their initial catalytic activity, even after 20 reaction cycles. The immobilization process, using a cheap, non-toxic matrix of natural origin, leads to systems with potential applications in wastewater remediation processes and in biosensors. PMID:25903282

  9. The Correlation between Chitin and Acidic Mammalian Chitinase in Animal Models of Allergic Asthma

    Directory of Open Access Journals (Sweden)

    Chia-Rui Shen

    2015-11-01

    Full Text Available Asthma is the result of chronic inflammation of the airways which subsequently results in airway hyper-responsiveness and airflow obstruction. It has been shown that an elicited expression of acidic mammalian chitinase (AMCase may be involved in the pathogenesis of asthma. Our recent study has demonstrated that the specific suppression of elevated AMCase leads to reduced eosinophilia and Th2-mediated immune responses in an ovalbumin (OVA-sensitized mouse model of allergic asthma. In the current study, we show that the elicited expression of AMCase in the lung tissues of both ovalbumin- and Der P2-induced allergic asthma mouse models. The effects of allergic mediated molecules on AMCase expression were evaluated by utilizing promoter assay in the lung cells. In fact, the exposure of chitin, a polymerized sugar and the fundamental component of the major allergen mite and several of the inflammatory mediators, showed significant enhancement on AMCase expression. Such obtained results contribute to the basis of developing a promising therapeutic strategy for asthma by silencing AMCase expression.

  10. Photothermal and Structural Comparative Analysis of Chitinous Exoskeletons of Marine Invertebrates

    Science.gov (United States)

    Juárez-de la Rosa, B. A.; Yañez-Limón, J. M.; Tiburcio-Moreno, J. A.; Zambrano, M.; Ardisson, P.-L.; Quintana, P.; Alvarado-Gil, J. J.

    2012-11-01

    Chitinous materials are common in nature and provide different functions including protection and support of many invertebrate animals. Exoskeletons in these organisms constitute the boundary regulating interaction between the animal and the external environment. For this reason, it is important to study the physical properties of these skeletons, in particular, thermal properties. The objective of this study is to investigate the thermal diffusivity of the skeletons of four species of marine invertebrates, Antipathes caribbeana (black coral), Panulinus argus (lobster), Callinectes sapidus (crab), and Limulus polyphemus (xiphosure). Thermal characterization is performed using photothermal radiometry (PTR) and laser-flash techniques. The measurements are complemented with structural characterization using X-ray diffraction. The results using both laser flash and PTR are consistent. These indicate that the thermal properties are strongly dependent on the presence of biogenic minerals (calcium and/or magnesium) and on the crystallinity index of the structure. The thermal-diffusivity values show an increase as a function of the crystallinity index.

  11. A Novel Chitin Binding Crayfish Molar Tooth Protein with Elasticity Properties

    Science.gov (United States)

    Tynyakov, Jenny; Bentov, Shmuel; Abehsera, Shai; Khalaila, Isam; Manor, Rivka; Katzir Abilevich, Lihie; Weil, Simy; Aflalo, Eliahu D.; Sagi, Amir

    2015-01-01

    The molar tooth of the crayfish Cherax quadricarinatus is part of the mandible, and is covered by a layer of apatite (calcium phosphate). This tooth sheds and is regenerated during each molting cycle together with the rest of the exoskeleton. We discovered that molar calcification occurs at the pre-molt stage, unlike calcification of the rest of the new exoskeleton. We further identified a novel molar protein from C. quadricarinatus and cloned its transcript from the molar-forming epithelium. We termed this protein Cq-M13. The temporal level of transcription of Cq-M13 in an NGS library of molar-forming epithelium at different molt stages coincides with the assembly and mineralization pattern of the molar tooth. The predicted protein was found to be related to the pro-resilin family of cuticular proteins. Functionally, in vivo silencing of the transcript caused molt cycle delay and a recombinant version of the protein was found to bind chitin and exhibited elastic properties. PMID:26010981

  12. Peptide Induced Crystallization of Calcium Carbonate on Wrinkle Patterned Substrate: Implications for Chitin Formation in Molluscs

    Directory of Open Access Journals (Sweden)

    Ingrid M. Weiss

    2013-06-01

    Full Text Available We here present the nucleation and growth of calcium carbonate under the influence of synthetic peptides on topographically patterned poly(dimethylsiloxane (PDMS substrates, which have a controlled density of defects between the wrinkles. Experiments with two lysine-rich peptides derived from the extracellular conserved domain E22 of the mollusc chitin synthase Ar-CS1, AKKKKKAS (AS8 and EEKKKKKES (ES9 on these substrates showed their influence on the calcium carbonate morphology. A transition from polycrystalline composites to single crystalline phases was achieved with the peptide AS8 by changing the pH of the buffer solution. We analyzed three different pH values as previous experiments showed that E22 interacts with aragonite biominerals more strongly at pH 7.75 than at pH 9.0. At any given pH, crystals appeared in characteristic morphologies only on wrinkled substrates, and did not occur on the flat, wrinkle-free PDMS substrate. These results suggest that these wrinkled substrates could be useful for controlling the morphologies of other mineral/peptide and mineral/protein composites. In nature, these templates are formed enzymatically by glycosyltransferases containing pH-sensitive epitopes, similar to the peptides investigated here. Our in vitro test systems may be useful to gain understanding of the formation of distinct 3D morphologies in mollusc shells in response to local pH shifts during the mineralization of organic templates.

  13. Efficacy of chitin synthesis inhibitors on nymphal German cockroaches (Dictyoptera: Blattellidae).

    Science.gov (United States)

    DeMark, J J; Bennett, G W

    1989-12-01

    Second- and fifth-instar Blattella germanica (L.), fed the chitin synthesis inhibitors triflumuron, chlorfluazuron, hexafluron, and UC 84572 (structure not disclosed) were examined for mortality and developmental abnormalities. All compounds were active against B. germanica (L.), with lower diet concentrations being required to kill second instars compared with fifth instars. Chlorfluazuron was significantly more active against second and fifth instars (LC50 = 0.000191 and 0.000363% AI, respectively for the second and fifth instars). UC 84572 also killed nymphs at extremely low concentrations (LC50 = 0.000508 and 0.000754% AI, respectively, for second and fifth instars). LC50's for hexafluron and triflumuron against fifth instars were more than 1,000 times higher than that for chlorfluazuron. Sensitive periods of exposure were determined by comparing effects when four different age classes of fifth instars (1-, 4-, 7-, and 10-d old) fed on the compounds for 3 d. Triflumuron was most effective when ingested during the first three age classes and hexafluron was most effective during the last three age classes. Chlorfluazuron and UC 84572 were most effective when ingested during the second age class (days 4-6). Adults surviving exposure during the fifth instar were often deformed and weak; they died at a greater rate than the controls. However, most surviving adults were able to reproduce normally. PMID:2607029

  14. Effect of the chitin synthesis inhibitor triflumuron on the development, viability and reproduction of Aedes aegypti.

    Science.gov (United States)

    Belinato, Thiago Affonso; Martins, Ademir Jesus; Lima, José Bento Pereira; Lima-Camara, Tamara Nunes de; Peixoto, Alexandre Afrânio; Valle, Denise

    2009-02-01

    The control of Aedes aegypti is impaired due to the development of resistance to chemical insecticides. Insect Growth Regulators (IGR) exhibit distinct mechanisms of action and are considered potential vector control alternatives. Studies regarding the effects of sublethal IGR doses on the viability of resulting adults will contribute to eval-uating their impact in the field. We analyzed several aspects of Ae. aegypti adults surviving exposure to a partially lethal dose of triflumuron, a chitin synthesis inhibitor. A highly significant difference in the proportion of males and females was noted in the triflumuron-exposed group (65.0% males) compared to the controls (50.2% males). Triflumuron affected adult longevity, particularly for females; after 16 days, only 29.2% of males and 13.8% of females were alive, in contrast with 94% survival of the control mosquitoes. The locomotor activity was reduced and the blood-feeding ability of the treated females was also affected (90.4% and 48.4% of the control and triflumuron-exposed females, respectively, successfully ingested blood). Triflumuron-surviving females ingested roughly 30% less blood and laid 25% fewer eggs than the control females. The treated males and females exhibited a diminished ability to copulate, resulting in less viable eggs. PMID:19274375

  15. Effect of the chitin synthesis inhibitor triflumuron on the development, viability and reproduction of Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Thiago Affonso Belinato

    2009-02-01

    Full Text Available The control of Aedes aegypti is impaired due to the development of resistance to chemical insecticides. Insect Growth Regulators (IGR exhibit distinct mechanisms of action and are considered potential vector control alternatives. Studies regarding the effects of sublethal IGR doses on the viability of resulting adults will contribute to eval-uating their impact in the field. We analyzed several aspects of Ae. aegypti adults surviving exposure to a partially lethal dose of triflumuron, a chitin synthesis inhibitor. A highly significant difference in the proportion of males and females was noted in the triflumuron-exposed group (65.0% males compared to the controls (50.2% males. Triflumuron affected adult longevity, particularly for females; after 16 days, only 29.2% of males and 13.8% of females were alive, in contrast with 94% survival of the control mosquitoes. The locomotor activity was reduced and the blood-feeding ability of the treated females was also affected (90.4% and 48.4% of the control and triflumuron-exposed females, respectively, successfully ingested blood. Triflumuron-surviving females ingested roughly 30% less blood and laid 25% fewer eggs than the control females. The treated males and females exhibited a diminished ability to copulate, resulting in less viable eggs.

  16. Chitin-Lignin Material as a Novel Matrix for Enzyme Immobilization

    Directory of Open Access Journals (Sweden)

    Jakub Zdarta

    2015-04-01

    Full Text Available Innovative materials were made via the combination of chitin and lignin, and the immobilization of lipase from Aspergillus niger. Analysis by techniques including FTIR, XPS and 13C CP MAS NMR confirmed the effective immobilization of the enzyme on the surface of the composite support. The electrokinetic properties of the resulting systems were also determined. Results obtained from elemental analysis and by the Bradford method enabled the determination of optimum parameters for the immobilization process. Based on the hydrolysis reaction of para-nitrophenyl palmitate, a determination was made of the catalytic activity, thermal and pH stability, and reusability. The systems with immobilized enzymes were found to have a hydrolytic activity of 5.72 mU, and increased thermal and pH stability compared with the native lipase. The products were also shown to retain approximately 80% of their initial catalytic activity, even after 20 reaction cycles. The immobilization process, using a cheap, non-toxic matrix of natural origin, leads to systems with potential applications in wastewater remediation processes and in biosensors.

  17. Novel chitin/chitosan-glucan wound dressing: Isolation, characterization, antibacterial activity and wound healing properties.

    Science.gov (United States)

    Abdel-Mohsen, A M; Jancar, J; Massoud, D; Fohlerova, Z; Elhadidy, H; Spotz, Z; Hebeish, A

    2016-08-20

    Chitin/chitosan-glucan complex (ChCsGC) was isolated from Schizophyllum commune (S. commune) and dissolved for the first time in precooled (-15°C) 8wt.% urea/6wt.% NaOH aqueous solution. Novel nonwoven microfiber mats were fabricated by wet-dry-spinning technique and evaluated the mechanical of fabrics mats and surface morphology. Isolated and nonwoven mat were characterized employing FTIR-ATR, Optical microscope, TGA, DSC, H/C NMR, SEM and XRD techniques. According to the physical/chemical characterization measurements we can assumed that, the net and the novel dressing mats have the same chemical structure with slightly changes in the thermal stability for the dressing mats.The biological activity of the nonwoven ChCsGC fabric was tested against different types of bacteria exhibiting excellent antibacterial activity. Cell viability of the plain complex and nonwovens mats were evaluated utilizing mouse fibroblast cell line varying concentrations and treatment time. ChCsGC did not show any cytotoxicity against mouse fibroblast cells and the cell-fabrics interaction was also investigated using fluorescence microscope. The novel ChCsGC nonwovens exhibited excellent surgical wound healing ability when tested using rat models. PMID:27265311

  18. A novel chitin binding crayfish molar tooth protein with elasticity properties.

    Directory of Open Access Journals (Sweden)

    Jenny Tynyakov

    Full Text Available The molar tooth of the crayfish Cherax quadricarinatus is part of the mandible, and is covered by a layer of apatite (calcium phosphate. This tooth sheds and is regenerated during each molting cycle together with the rest of the exoskeleton. We discovered that molar calcification occurs at the pre-molt stage, unlike calcification of the rest of the new exoskeleton. We further identified a novel molar protein from C. quadricarinatus and cloned its transcript from the molar-forming epithelium. We termed this protein Cq-M13. The temporal level of transcription of Cq-M13 in an NGS library of molar-forming epithelium at different molt stages coincides with the assembly and mineralization pattern of the molar tooth. The predicted protein was found to be related to the pro-resilin family of cuticular proteins. Functionally, in vivo silencing of the transcript caused molt cycle delay and a recombinant version of the protein was found to bind chitin and exhibited elastic properties.

  19. Hydroxyapatite-hybridized chitosan/chitin whisker bionanocomposite fibers for bone tissue engineering applications.

    Science.gov (United States)

    Pangon, Autchara; Saesoo, Somsak; Saengkrit, Nattika; Ruktanonchai, Uracha; Intasanta, Varol

    2016-06-25

    Biomimetic nanofibrous scaffolds derived from natural biopolymers for bone tissue engineering applications require good mechanical and biological performances including biomineralization. The present work proposes the utility of chitin whisker (CTWK) to enhance mechanical properties of chitosan/poly(vinyl alcohol) (CS/PVA) nanofibers and to offer osteoblast cell growth with hydroxyapatite (HA) mineralization. By using diacid as a solvent, electrospun CS/PVA nanofibrous membranes containing CTWK can be easily obtained. The dimension stability of nanofibrous CS/PVA/CTWK bionanocomposite is further controlled by exposing to glutaraldehyde vapor. The nanofibrous membranes obtained allow mineralization of HA in concentrated simulated body fluid resulting in an improvement of Young's modulus and tensile strength. The CTWK combined with HA in bionanocomposite is a key to promote osteoblast cell adhesion and proliferation. The present work, for the first time, demonstrates the use of CTWKs for bionanocomposite fibers of chitosan and its hydroxyapatite biomineralization with the function in osteoblast cell culture. These hydroxyapatite-hybridized CS/PVA/CTWK bionanocomposite fibers (CS/PVA/CTWK-HA) offer a great potential for bone tissue engineering applications. PMID:27083834

  20. Ethylene biosynthesis. 7. Secondary isotope effects

    International Nuclear Information System (INIS)

    In a continuing investigation of the mechanism of the biosynthesis of ethylene, the plant ripening hormone, from 1-amino-cyclopropanecarboxylic acid, the study of isotope effects was undertaken in order to provide insight into the rates of various bond-breaking steps. While the applicability of the concept of rate-limiting step to enzymatic reactions has been questioned and redefined (and there is little doubt an ethylene-forming enzyme exists), such studies were expected to elucidate some mechanistic detail as well as measure the validity of a model for ethylene biosynthesis

  1. The structural biology of phenazine biosynthesis.

    Science.gov (United States)

    Blankenfeldt, Wulf; Parsons, James F

    2014-12-01

    The phenazines are a class of over 150 nitrogen-containing aromatic compounds of bacterial and archeal origin. Their redox properties not only explain their activity as broad-specificity antibiotics and virulence factors but also enable them to function as respiratory pigments, thus extending their importance to the primary metabolism of phenazine-producing species. Despite their discovery in the mid-19th century, the molecular mechanisms behind their biosynthesis have only been unraveled in the last decade. Here, we review the contribution of structural biology that has led to our current understanding of phenazine biosynthesis. PMID:25215885

  2. BODYGUARD is required for the biosynthesis of cutin in Arabidopsis.

    Science.gov (United States)

    Jakobson, Liina; Lindgren, Leif Ove; Verdier, Gaëtan; Laanemets, Kristiina; Brosché, Mikael; Beisson, Fred; Kollist, Hannes

    2016-07-01

    The cuticle plays a critical role in plant survival during extreme drought conditions. There are, however, surprisingly, many gaps in our understanding of cuticle biosynthesis. An Arabidopsis thaliana T-DNA mutant library was screened for mutants with enhanced transpiration using a simple condensation spot method. Five mutants, named cool breath (cb), were isolated. The cb5 mutant was found to be allelic to bodyguard (bdg), which is affected in an α/β-hydrolase fold protein important for cuticle structure. The analysis of cuticle components in cb5 (renamed as bdg-6) and another T-DNA mutant allele (bdg-7) revealed no impairment in wax synthesis, but a strong decrease in total cutin monomer load in young leaves and flowers. Root suberin content was also reduced. Overexpression of BDG increased total leaf cutin monomer content nearly four times by affecting preferentially C18 polyunsaturated ω-OH fatty acids and dicarboxylic acids. Whole-plant gas exchange analysis showed that bdg-6 had higher cuticular conductance and rate of transpiration; however, plant lines overexpressing BDG resembled the wild-type with regard to these characteristics. This study identifies BDG as an important component of the cutin biosynthesis machinery in Arabidopsis. We also show that, using BDG, cutin can be greatly modified without altering the cuticular water barrier properties and transpiration. PMID:26990896

  3. Effect of corn steep liquor (CSL) and cassava wastewater (CW) on chitin and chitosan production by Cunninghamella elegans and their physicochemical characteristics and cytotoxicity.

    Science.gov (United States)

    Berger, Lúcia Raquel Ramos; Stamford, Thayza Christina Montenegro; Stamford-Arnaud, Thatiana Montenegro; de Oliveira Franco, Luciana; do Nascimento, Aline Elesbão; Cavalcante, Horacinna M de M; Macedo, Rui Oliveira; de Campos-Takaki, Galba Maria

    2014-01-01

    Microbiological processes were used for chitin and chitosan production with Cunninghamella elegans UCP/WFCC 0542 grown in different concentrations of two agro-industrial wastes, corn steep liquor (CSL) and cassava wastewater (CW) established using a 2² full factorial design. The polysaccharides were extracted by alkali-acid treatment and characterized by infrared spectroscopy, viscosity, thermal analysis, elemental analysis, scanning electron microscopy and X-ray diffraction. The cytotoxicity of chitosan was evaluated for signs of vascular change on the chorioallantoic membrane of chicken eggs. The highest biomass (9.93 g/L) was obtained in trial 3 (5% CW, 8% CSL), the greatest chitin and chitosan yields were 89.39 mg/g and 57.82 mg/g, respectively, and both were obtained in trial 2 (10% CW, 4% CSL). Chitin and chitosan showed a degree of deacetylation of 40.98% and 88.24%, and a crystalline index of 35.80% and 23.82%, respectively, and chitosan showed low molecular weight (LMW 5.2 × 10³ Da). Chitin and chitosan can be considered non-irritating, due to the fact they do not promote vascular change. It was demonstrated that CSL and CW are effective renewable agroindustrial alternative substrates for the production of chitin and chitosan. PMID:24590203

  4. KARAKTERISASI KITIN DEASETILASE TERMOSTABIL ISOLAT BAKTERI ASAL PANCURAN TUJUH, BATURADEN, JAWA TENGAH [Characterization of Thermostable Chitin Deacetylase from Bacteria Strain Pancuran Tujuh, Baturaden, Center of Java

    Directory of Open Access Journals (Sweden)

    Deuxianto Hendarsyah3

    2006-04-01

    Full Text Available Chitin deacetylase is the enzymes that has important role in converting chitin to chitosan. In nature, chitin is the second most abundant natural biopolymer after cellulose. Generally, chitin easily obtained from outer shell of crustaceans, arthropods, and also detectable on cell wall of some type of fungal (Zygomycetes. The chitin deacetylase was isolated from Bacillus sp PT2-3. It was found that the highest specific activity was attained at pH 8 60°C. The addition of 5 mM Zn2+ and 5 mM Mn2+ increased the specific activity of the enzyme, 4.39% and 7.8%, respectively, and the increase was only 2.19% when the addition was 2 mM Mn2+. On the contrary the addition of Ca2+, Mg2+ and Fe2+ decrease the specific activity 46.83%, 41.22% and 47.32%, respectively. The enzyme activity was relatively stable at 60°C for 60 minutes, while lengthen the time to 90 minutes, decreased the activity 15.05 %, and the decrease was 26.13% at temperature of 70°C for 180 minutes.

  5. Removal of dyes from water using chitosan hydrogel/SiO2 and chitin hydrogel/SiO2 hybrid materials obtained by the sol-gel method

    International Nuclear Information System (INIS)

    This work describes the synthesis of chitosan hydrogel/SiO2 and chitin hydrogel/SiO2 hybrid mesoporous materials obtained by the sol-gel method for their use as biosorbents. Their adsorption capabilities against four dyes (Remazol Black B, Erythrosine B, Neutral Red and Gentian Violet) were compared in order to evaluate chitin as a plausible replacement for chitosan considering its efficiency and lower cost. Both chitin and chitosan were used in the form of hydrogels. This allowed full compatibility with the ethanol release from tetraethoxysilane. The hybrid materials were characterized by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), Nitrogen Adsorption Isotherms and 13C solid-state Nuclear Magnetic Resonance. Adsorption experimental data were analyzed using Langmuir, Freundlich and Dubinin-Radushkevich isotherm models along with the evaluation of adsorption energy and standard free energy (ΔG0). The adsorption was observed to be pH dependent. The main mechanism of dye adsorption was found to be a spontaneous charge associated interaction, except for EB adsorption on chitin/SiO2 matrix, which showed to involve a lower energy physical adsorption interaction. Aside from highly charged dyes the chitin containing matrix has similar or higher adsorption capacity than the chitosan one.

  6. Emerging Biomedical Applications of Nano-Chitins and Nano-Chitosans Obtained via Advanced Eco-Friendly Technologies from Marine Resources

    Directory of Open Access Journals (Sweden)

    Riccardo A. A. Muzzarelli

    2014-11-01

    Full Text Available The present review article is intended to direct attention to the technological advances made in the 2010–2014 quinquennium for the isolation and manufacture of nanofibrillar chitin and chitosan. Otherwise called nanocrystals or whiskers, n-chitin and n-chitosan are obtained either by mechanical chitin disassembly and fibrillation optionally assisted by sonication, or by e-spinning of solutions of polysaccharides often accompanied by poly(ethylene oxide or poly(caprolactone. The biomedical areas where n-chitin may find applications include hemostasis and wound healing, regeneration of tissues such as joints and bones, cell culture, antimicrobial agents, and dermal protection. The biomedical applications of n-chitosan include epithelial tissue regeneration, bone and dental tissue regeneration, as well as protection against bacteria, fungi and viruses. It has been found that the nano size enhances the performances of chitins and chitosans in all cases considered, with no exceptions. Biotechnological approaches will boost the applications of the said safe, eco-friendly and benign nanomaterials not only in these fields, but also for biosensors and in targeted drug delivery areas.

  7. Reliable dn/dc Values of Cellulose, Chitin, and Cellulose Triacetate Dissolved in LiCl/N,N-Dimethylacetamide for Molecular Mass Analysis.

    Science.gov (United States)

    Ono, Yuko; Ishida, Takashi; Soeta, Hiroto; Saito, Tsuguyuki; Isogai, Akira

    2016-01-11

    Freeze-dried microfibrillated cellulose (MFC) was directly dissolved in 8.0% w/w lithium chloride/N,N-dimethylacetamide (LiCl/DMAc), and MFC/LiCl/DMAc solutions with accurate MFC concentrations were prepared. The different MFC solutions were diluted to 1.0% and 0.5% w/v LiCl/DMAc, and subjected to size-exclusion chromatography with multiangle laser-light scattering and refractive index analyses (SEC/MALLS/RI), and off-line RI analysis to determine their refractive index increments (dn/dc). Chitin, cellulose triacetate, a poly(styrene) standard, and cellobiose were used for comparison. Each of the two determination methods gave different dn/dc values for MFC and chitin but similar dn/dc values for cellulose triacetate and poly(styrene). The anomalously small dn/dc values of MFC and chitin were explainable in terms of stable cellulose-LiCl and chitin-LiCl structures (i.e., formation of apparent covalent bonds between hydroxyl groups and LiCl) in the solutions. Thus, the SEC/MALLS/RI method provides reliable molecular mass parameters for cellulose and chitin. PMID:26618937

  8. Fluorescence microscopical studies on chitin distribution in the cell wall of giant cells of Saccharomyces uvarum, grown following X-radiaiton treatment

    International Nuclear Information System (INIS)

    Teast cells are synchronized and modiated with X-rays (1.0 kGy) in the Cr, phase. Their growth behaviour is observed in suspension cultures and the formation of giant cells noted. The chitin structures are selectively stained with the fluorescent dye Calcofluor white. In the unradiated cells the chitin is deposited at the bud constriction site in the form of rings in the mother cell wall, whereas for irradiated cells only one chitin ring of normal appearance is formed between the mother cell and first bud equivalent. Between further bud equivalents an intensification of fluorescence is occasionally noted, however the organisation of the chitin into a regular ring arrangement is disturbed. In giant cells the facility for primary and secondary septa formation is missing and these are essential for successful cell division. By further experiments it was possible to identify the cause of disturbance in the cell cycle of irradiated cells. Giant cells only form one chitin ring because its DNA is replicated one time only. The major cause triggering the actual formation of giant cells must be considered the missing distribution of the once-rephicated DNA. All processes in the cell cycle dependent on this step are therefore stopped and only bud formation which occurs independently continues along its rhytmical path. (orig./MG)

  9. Effect of Corn Steep Liquor (CSL and Cassava Wastewater (CW on Chitin and Chitosan Production by Cunninghamella elegans and Their Physicochemical Characteristics and Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Lúcia Raquel Ramos Berger

    2014-02-01

    Full Text Available Microbiological processes were used for chitin and chitosan production with Cunninghamella elegans UCP/WFCC 0542 grown in different concentrations of two agro-industrial wastes, corn steep liquor (CSL and cassava wastewater (CW established using a 22 full factorial design. The polysaccharides were extracted by alkali-acid treatment and characterized by infrared spectroscopy, viscosity, thermal analysis, elemental analysis, scanning electron microscopy and X-ray diffraction. The cytotoxicity of chitosan was evaluated for signs of vascular change on the chorioallantoic membrane of chicken eggs. The highest biomass (9.93 g/L was obtained in trial 3 (5% CW, 8% CSL, the greatest chitin and chitosan yields were 89.39 mg/g and 57.82 mg/g, respectively, and both were obtained in trial 2 (10% CW, 4% CSL. Chitin and chitosan showed a degree of deacetylation of 40.98% and 88.24%, and a crystalline index of 35.80% and 23.82%, respectively, and chitosan showed low molecular weight (LMW 5.2 × 103 Da. Chitin and chitosan can be considered non-irritating, due to the fact they do not promote vascular change. It was demonstrated that CSL and CW are effective renewable agroindustrial alternative substrates for the production of chitin and chitosan.

  10. Cellular oxido-reductive proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Barwal Indu

    2011-12-01

    Full Text Available Abstract Background Elucidation of molecular mechanism of silver nanoparticles (SNPs biosynthesis is important to control its size, shape and monodispersity. The evaluation of molecular mechanism of biosynthesis of SNPs is of prime importance for the commercialization and methodology development for controlling the shape and size (uniform distribution of SNPs. The unicellular algae Chlamydomonas reinhardtii was exploited as a model system to elucidate the role of cellular proteins in SNPs biosynthesis. Results The C. reinhardtii cell free extract (in vitro and in vivo cells mediated synthesis of silver nanoparticles reveals SNPs of size range 5 ± 1 to 15 ± 2 nm and 5 ± 1 to 35 ± 5 nm respectively. In vivo biosynthesized SNPs were localized in the peripheral cytoplasm and at one side of flagella root, the site of pathway of ATP transport and its synthesis related enzymes. This provides an evidence for the involvement of oxidoreductive proteins in biosynthesis and stabilization of SNPs. Alteration in size distribution and decrease of synthesis rate of SNPs in protein-depleted fractions confirmed the involvement of cellular proteins in SNPs biosynthesis. Spectroscopic and SDS-PAGE analysis indicate the association of various proteins on C. reinhardtii mediated in vivo and in vitro biosynthesized SNPs. We have identified various cellular proteins associated with biosynthesized (in vivo and in vitro SNPs by using MALDI-MS-MS, like ATP synthase, superoxide dismutase, carbonic anhydrase, ferredoxin-NADP+ reductase, histone etc. However, these proteins were not associated on the incubation of pre-synthesized silver nanoparticles in vitro. Conclusion Present study provides the indication of involvement of molecular machinery and various cellular proteins in the biosynthesis of silver nanoparticles. In this report, the study is mainly focused towards understanding the role of diverse cellular protein in the synthesis and capping of silver

  11. Identification of Environmental Quaternary Ammonium Compounds as Direct Inhibitors of Cholesterol Biosynthesis.

    Science.gov (United States)

    Herron, Josi; Reese, Rosalyn C; Tallman, Keri A; Narayanaswamy, Rohini; Porter, Ned A; Xu, Libin

    2016-06-01

    In this study, we aim to identify environmental molecules that can inhibit cholesterol biosynthesis, potentially leading to the same biochemical defects as observed in cholesterol biosynthesis disorders, which are often characterized by congenital malformations and developmental delay. Using the Distributed Structure-Searchable Toxicity (DSSTox) Database Network developed by EPA, we first carried out in silico screening of environmental molecules that display structures similar to AY9944, a known potent inhibitor of 3β-hydroxysterol-Δ(7)-reductase (DHCR7)-the last step of cholesterol biosynthesis. Molecules that display high similarity to AY9944 were subjected to test in mouse and human neuroblastoma cells for their effectiveness in inhibiting cholesterol biosynthesis by analyzing cholesterol and its precursor using gas chromatography-mass spectrometry. We found that a common disinfectant mixture, benzalkonium chlorides (BACs), exhibits high potency in inhibiting DHCR7, as suggested by greatly elevated levels of the cholesterol precursor, 7-dehydrocholesterol (7-DHC). Subsequent structure-activity studies suggested that the potency of BACs as Dhcr7 inhibitors decrease with the length of their hydrocarbon chain: C10 > C12 ≫ C14 > C16. Real-time qPCR analysis revealed upregulation of the genes related to cholesterol biosynthesis and downregulation of the genes related to cholesterol efflux, suggesting a feedback response to the inhibition. Furthermore, an oxidative metabolite of 7-DHC that was previously identified as a biomarker in vivo was also found in cells exposed to BACs by liquid chromatography-mass spectrometry. Our findings suggest that certain environmental molecules could potently inhibit cholesterol biosynthesis, which could be a new link between environment and developmental disorders. PMID:26919959

  12. Comparative analysis of transcription factor gene families from Papaver somniferum: identification of regulatory factors involved in benzylisoquinoline alkaloid biosynthesis.

    Science.gov (United States)

    Agarwal, Parul; Pathak, Sumya; Lakhwani, Deepika; Gupta, Parul; Asif, Mehar Hasan; Trivedi, Prabodh Kumar

    2016-05-01

    Opium poppy (Papaver somniferum L.), known for biosynthesis of several therapeutically important benzylisoquinoline alkaloids (BIAs), has emerged as the premier organism to study plant alkaloid metabolism. The most prominent molecules produced in opium poppy include narcotic analgesic morphine, the cough suppressant codeine, the muscle relaxant papaverine and the anti-microbial agent sanguinarine and berberine. Despite several health benefits, biosynthesis of some of these molecules is very low due to tight temporal and spatial regulation of the genes committed to their biosynthesis. Transcription factors, one of the prime regulators of secondary plant product biosynthesis, might be involved in controlled biosynthesis of BIAs in P. somniferum. In this study, identification of members of different transcription factor gene families using transcriptome datasets of 10 cultivars of P. somniferum with distinct chemoprofile has been carried out. Analysis suggests that most represented transcription factor gene family in all the poppy cultivars is WRKY. Comparative transcriptome analysis revealed differential expression pattern of the members of a set of transcription factor gene families among 10 cultivars. Through analysis, two members of WRKY and one member of C3H gene family were identified as potential candidates which might regulate thebaine and papaverine biosynthesis, respectively, in poppy. PMID:26108744

  13. Combinatorial biosynthesis of medicinal plant secondary metabolites

    NARCIS (Netherlands)

    Julsing, Mattijs K.; Koulman, Albert; Woerdenbag, Herman J.; Quax, Wim J.; Kayser, Oliver

    2006-01-01

    Combinatorial biosynthesis is a new tool in the generation of novel natural products and for the production of rare and expensive natural products. The basic concept is combining metabolic pathways in different organisms on a genetic level. As a consequence heterologous organisms provide precursors

  14. Biosynthesis and metabolic pathways of pivalic acid

    Czech Academy of Sciences Publication Activity Database

    Řezanka, Tomáš; Kolouchová, I.; Čejková, A.; Sigler, Karel

    2012-01-01

    Roč. 95, č. 6 (2012), s. 1371-1376. ISSN 0175-7598 R&D Projects: GA ČR(CZ) GAP503/11/0215 Institutional support: RVO:61388971 Keywords : Pivalic acid * Isooctane * Biosynthesis Subject RIV: EE - Microbiology, Virology Impact factor: 3.689, year: 2012

  15. Unedoside derivatives in Nuxia and their biosynthesis

    DEFF Research Database (Denmark)

    Jensen, Søren Rosendal; Ravnkilde, Lene; Schripsema, Jan

    1998-01-01

    isolated, while from N. oppositifolia 2 "-acetyl-3 "-benzoyl-nuxioside was obtained. Both plants contained verbascoside. The biosynthesis of unedoside in N. floribunda was investigated and deoxyloganic acid was found to be a precursor, similar to wh;lt was found for the eight-carbon iridoids in Thunbergia...

  16. Bile acid biosynthesis and its regulation

    Directory of Open Access Journals (Sweden)

    Areta Hebanowska

    2010-10-01

    Full Text Available Bile acid biosynthesis is the main pathway of cholesterol catabolism. Bile acids are more soluble than cholesterol so are easier to excrete. As amphipathic molecules they participate in lipid digestion and absorption in the intestine and they help to excrete free cholesterol with bile. They are also ligands for nuclear receptors regulating the expression of genes involved in cholesterol metabolism. Interconversion of cholesterol into bile acids is an important point of its homeostasis. Seventeen enzymes are engaged in this process and many of them are cytochromes P450. Bile acid synthesis initiation may proceed with the “classical” pathway (starting with cholesterol hydroxylation at the C7α position or the “alternative” pathway (starting with cholesterol hydroxylation at the C27 position. Two additional pathways are possible, though their quantitative significance is small (initiated with cholesterol hydroxylations of C24 and C25 positions. Oxysterols produced are not only intermediates of bile acid biosynthesis but also important regulators of metabolism. Bile acid biosynthesis takes place in the liver, but some enzymes are also present in other organs, where they participate in regulation of cholesterol metabolism. Those enzymes are potential targets for new drugs against cholesterol metabolism disturbances. This article is a brief description of the bile acid biosynthesis pathway and participating enzymes.

  17. Vicilins (7S storage globulins of cowpea (Vigna unguiculata seeds bind to chitinous structures of the midgut of Callosobruchus maculatus (Coleoptera: Bruchidae larvae

    Directory of Open Access Journals (Sweden)

    Sales M.P.

    2001-01-01

    Full Text Available The presence of chitin in midgut structures of Callosobruchus maculatus larvae was shown by chemical and immunocytochemical methods. Detection by Western blotting of cowpea (Vigna unguiculata seed vicilins (7S storage proteins bound to these structures suggested that C. maculatus-susceptible vicilins presented less staining when compared to C. maculatus-resistant vicilins. Storage proteins present in the microvilli in the larval midgut of the bruchid were recognized by immunolabeling of vicilins in the appropriate sections with immunogold conjugates. These labeling sites coincided with the sites labeled by an anti-chitin antibody. These results, taken together with those previously published showing that the lower rates of hydrolysis of variant vicilins from C. maculatus-resistant seeds by the insect's midgut proteinases and those showing that vicilins bind to chitin matrices, may explain the detrimental effects of variant vicilins on the development of C. maculatus larvae.

  18. Bio-based epoxy/chitin nanofiber composites cured with amine-type hardeners containing chitosan.

    Science.gov (United States)

    Shibata, Mitsuhiro; Enjoji, Motohiro; Sakazume, Katsumi; Ifuku, Shinsuke

    2016-06-25

    Sorbitol polyglycidyl ether (SPE) which is a bio-based water-soluble epoxy resin was cured with chitosan (CS) and/or a commercial water-soluble polyamidoamine- or polyetheramine-type epoxy hardener (PAA or PEA). Furthermore, biocomposites of the CS-cured SPE (CS-SPE) and CS/PAA- or CS/PEA-cured SPE (SPE-CA or SPE-CE) biocomposites with chitin nanofiber (CNF) were prepared by casting and compression molding methods, respectively. The curing reaction of epoxy and amino groups of the reactants was confirmed by the FT-IR spectral analysis. SPE-CS and SPE-CA were almost transparent films, while SPE-CE was opaque. Transparency of SPE-CS/CNF and SPE-CA/CNF became a little worse with increasing CNF content. The tanδ peak temperature of SPE-CS was higher than those of SPE-PAA and SPE-PEA. SPE-CA or SPE-CE exhibited two tanδ peak temperatures related to glass transitions of the CS-rich and PAA-rich or PEA-rich moieties. The tanδ peak temperatures related to the CS-rich and PAA-rich moieties increased with increasing CNF content. A higher order of tensile strengths and moduli of the cured resins was SPE-CS≫SPE-CA>SPE-CE. The tensile strength and modulus of each sample were much improved by the addition of 3wt% CNF, while further addition of CNF caused a lowering of the strength and modulus. PMID:27083797

  19. Dual mesomorphic assemblage of chitin normal acylates and rapid enthalpy relaxation of their side chains.

    Science.gov (United States)

    Teramoto, Yoshikuni; Miyata, Tomoya; Nishio, Yoshiyuki

    2006-01-01

    Chitin derivatives having normalacyl groups (C(n)H(2n-1)O-; n = 4-20) were synthesized with pyridine, p-toluenesulfonyl chloride, and normal alkanoic acid in an N,N-dimethylacetamide-lithium chloride homogeneous system. The products (C(n)-ACs; degree of acyl substitution, DS = 1.7-1.9) showed an n-dependent thermal transition behavior: no evident transition (n = 4-10), a glass transition (n = 12 and 14), and a pseudo-first-order phase transition (n = 16-20), the latter two occurring usually below room temperature when examined by differential scanning calorimetry. Wide-angle X-ray diffractometry (WAXD) at 20 degrees C displayed a sharp diffraction peak (2theta = 2 degrees -7 degrees ) and a diffuse halo (2theta approximately 20 degrees ) for the respective C(n)-ACs. The former d-spacing (1.5-3.6 nm) increased with an increase in n to yield two stages of mutually different increasing rates, which reflects a systematic n-dependence of the period of a layered structure of the main chains. The molecular assembly of C(n)-ACs exhibited "dual mesomorphy"; nematic ordering for the semirigid carbohydrate trunk and smectic one for the flexible side chains. On the other hand, WAXD profiles of C(n)-ACs (n = 14-18) indicated almost no temperature dependence from -150 to +220 degrees C. Therefore, it was reasonably assumed that the pseudo-first-order transition observed in thermograms of C(n)-ACs (n = 16-20) was due to the enthalpy relaxation of the side-chain assemblage. An insight was provided into the kinetics of the characteristic aging behavior as a liquid-crystalline glass, in comparison with the corresponding data for other noncrystalline macromolecules. PMID:16398515

  20. Papain incorporated chitin dressings for wound debridement sterilized by gamma radiation

    International Nuclear Information System (INIS)

    Wound debridement is essential for the removal of necrotic or nonviable tissue from the wound surface to create an environment conducive to healing. Nonsurgical enzymatic debridement is an attractive method due to its effectiveness and ease of use. Papain is a proteolytic enzyme derived from the fruit of Carica papaya and is capable of breaking down a variety of necrotic tissue substrates. The present study was focused on the use of gamma radiation for sterilization of papain dressing with wound debriding activity. Membranes with papain were prepared using 0.5% chitin in lithium chloride/dimethylacetamide solvent and sterilized by gamma radiation. Fluid absorption capacity of chitin–papain membranes without glycerol was 14.30±6.57% in 6 h. Incorporation of glycerol resulted in significant (p2/24 h at 24 h. Gamma irradiation at 25 kGy was found suitable for sterilization of the dressings. Infrared (IR) spectral scanning has shown that papain was stable on gamma irradiation at 25–35 kGy. The irradiated chitin–papain membranes were impermeable to different bacterial strains and also exhibited strong bactericidal action against both Gram-positive and Gram-negative bacteria. The fluid handling characteristics and the antimicrobial properties of chitin–papain membranes sterilized by gamma radiation were found suitable for use as wound dressing with debriding activity. - Highlight: ► Use of gamma radiation for sterilization of papain wound dressing was studied. ► Fluid handling and antimicrobial properties of irradiated dressings was evaluated. ► Gamma irradiation at 25 kGy was found suitable for sterilization of the dressings.

  1. Synthesis of an antiviral drug precursor from chitin using a saprophyte as a whole-cell catalyst

    Directory of Open Access Journals (Sweden)

    Steiger Matthias G

    2011-12-01

    Full Text Available Abstract Background Recent incidents, such as the SARS and influenza epidemics, have highlighted the need for readily available antiviral drugs. One important precursor currently used for the production of Relenza, an antiviral product from GlaxoSmithKline, is N-acetylneuraminic acid (NeuNAc. This substance has a considerably high market price despite efforts to develop cost-reducing (biotechnological production processes. Hypocrea jecorina (Trichoderma reesei is a saprophyte noted for its abundant secretion of hydrolytic enzymes and its potential to degrade chitin to its monomer N-acetylglucosamine (GlcNAc. Chitin is considered the second most abundant biomass available on earth and therefore an attractive raw material. Results In this study, we introduced two enzymes from bacterial origin into Hypocrea, which convert GlcNAc into NeuNAc via N-acetylmannosamine. This enabled the fungus to produce NeuNAc from the cheap starting material chitin in liquid culture. Furthermore, we expressed the two recombinant enzymes as GST-fusion proteins and developed an enzyme assay for monitoring their enzymatic functionality. Finally, we demonstrated that Hypocrea does not metabolize NeuNAc and that no NeuNAc-uptake by the fungus occurs, which are important prerequisites for a potential production strategy. Conclusions This study is a proof of concept for the possibility to engineer in a filamentous fungus a bacterial enzyme cascade, which is fully functional. Furthermore, it provides the basis for the development of a process for NeuNAc production as well as a general prospective design for production processes that use saprophytes as whole-cell catalysts.

  2. Structure and interactions of calcite spherulites with {alpha}-chitin in the brown shrimp (Penaeus aztecus) shell

    Energy Technology Data Exchange (ETDEWEB)

    Heredia, A. [Instituto de Ciencias Nucleares, Departamento de Quimica de Radiaciones y Radioquimica, UNAM, Circuito Exterior C.U. Apdo., Postal 70-543, 04510 Mexico, D.F. (Mexico); Physikalisches Institut and Center for Nanotechnology, Universitaet Muenster, Gievenbecker Weg 11, 48149 Muenster (Germany); Aguilar-Franco, M. [Instituto de Fisica, Depto de Fisicoquimica, UNAM, Circuito Exterior s/n, Ciudad Universitaria Apartado Postal 20-364 01000 Mexico D.F. (Mexico); Magana, C. [Instituto de Fisica, Depto de Estado Solido, UNAM, Circuito Exterior s/n, Ciudad Universitaria Apartado Postal 20-364 01000 Mexico D.F. (Mexico); Flores, C. [Instituto de Investigaciones en Materiales, Depto de Estado Solido, Laboratorio de Biomateriales, UNAM, Circuito Exterior C.U. S/N CP 04510 Mexico, D.F. (Mexico); Pina, C. [Instituto de Investigaciones en Materiales, Depto de Estado Solido, Laboratorio de Biomateriales, UNAM, Circuito Exterior C.U. S/N CP 04510 Mexico, D.F. (Mexico); Velazquez, R. [Centro de Fisica Aplicada Tecnologia Avanzada, UNAM, Km. 15 Carretera Queretaro-San Luis Potosi, C.P. 76230, Queretaro, Qro. (Mexico); Schaeffer, T.E. [Physikalisches Institut and Center for Nanotechnology, Universitaet Muenster, Gievenbecker Weg 11, 48149 Muenster (Germany); Bucio, L. [Instituto de Fisica, Depto de Estado Solido, UNAM, Circuito Exterior s/n, Ciudad Universitaria Apartado Postal 20-364 01000 Mexico D.F. (Mexico); Basiuk, V.A. [Instituto de Ciencias Nucleares, Departamento de Quimica de Radiaciones y Radioquimica, UNAM, Circuito Exterior C.U. Apdo., Postal 70-543, 04510 Mexico, D.F. (Mexico)

    2007-01-15

    White spots form in the brown shrimp (Penaeus aztecus, Decapoda) shell during frozen storage. The mineral formed consists of calcite incorporated into an amorphous {alpha}-chitin matrix. We studied mechanisms of interaction of amorphous {alpha}-chitin macromolecules with hkl crystal planes to form highly ordered structures, as well as the role of specific sites in the biopolymer, which can be related to nucleation and spheroidal crystal growth. We used low vacuum scanning electron microscopy (LVSEM), X-ray powder diffraction (XRD), atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FT-IR), and molecular mechanics modeling (MM+ method). AFM images showed fingerprint distances in the biopolymer and a highly layered structure in the crystalline material. The presence of {alpha}-chitin, with a specific spatial distribution of radicals, is thought to be responsible for nucleation and to thermodynamically stabilize ions to form the spherulite crystalline phase, which are usually oval to spherical (0.10 to 200 {mu}m in diameter). Our models of crystal-biopolymer interaction found high affinity of CO{sub 3} {sup 2-} anions in the (104) crystalline plane (the main plane in calcite monocrystals) to NH- groups of the biopolymer, as well as of the C=O in the biopolymer to Ca{sup 2+} cations in the crystalline structure. These interactions explain the spherical growth and inhibition in some planes. The specific physicochemical interactions (docking of groups depending on their geometrical distribution) suggest that the biomineral structure is controlled by the biopolymer on a local scale. This information is useful for further design and improvement of (hybrid) materials for versatile application, from nanotechnology to biomedicine and engineering.

  3. Research Development in Chitin Deacetylase(CDA)%几丁质脱乙酰酶(CDA)的研究进展

    Institute of Scientific and Technical Information of China (English)

    闵婷; 倪孟祥

    2011-01-01

    从多种真菌可分离纯化得到几丁质脱乙酰酶(CDA),CDA催化水解几丁质分子中的乙酰基生成壳聚糖,CDA与传统的浓碱热化学法生产壳聚糖相比,酶法催化提供了一种脱乙酰位点可控的、几丁质主链不被降解的和对环境友好的反应过程,从而得到优质的壳聚糖或壳寡糖.CDA具有重要的生物物理功能和广阔的潜在应用价值.该综述着重介绍了真菌CDA的研究进展,包括CDA的来源、CDA的生理生化性质、底物特异性、生物学功能和潜在应用价值.%Chitin deacetylases(CDA) have been found from several fungi. The enzyme catalyses the hydrolysis of N-acetamido groups of N-acetyl-D-glucosa mine in chitin, converting it to chitosan. The use of CDA for the conversion of chitin to chitosan, in contrast to the presently used chemical procedure, offers the possibility of a controlled, non-degradable and environmentally-friendly process, resulting in the production of novel, well-defined chitosan oligomers and polymers. CDA have important biophysiological functions and immense potential applications. In recent years, researches on fungal CDA have made a rapid progress. The present review will focus on the recent research developments of fungal CDA, including their source, biochemistry property, substrate specificity, biological function and potential application.

  4. Single step synthesis of chitin/chitosan-based graphene oxide–ZnO hybrid composites for better electrical conductivity and optical properties

    International Nuclear Information System (INIS)

    Highlights: ► UV absorption at 260–360 nm confirmed strong binding of ZnO with chitosan–GO sheets. ► Chitin-based GO–ZnO shows higher electrical conductivity than chitosan-based GO–ZnO. ► Chitin-based GO–ZnO will useful in sensing, catalysis and energy storage applications. -- Abstract: We synthesized two composites/hybrid composites with a graphene oxide (GO)/mixed GO–ZnO filler using either a chitin or a chitosan matrix. Fourier transform infrared spectroscopy analysis confirmed that chitin had been converted to chitosan during matrix fabrication because only chitosan, ZnO and GO were shown to be present in the composites/hybrid composites. Raman spectroscopy indicated the display of D and G bands at 1345 cm−1 and 1584 cm−1, respectively. UV absorption peaks appeared at 260–360 nm and 201 nm in both hybrid composites, which indicate a strong binding of ZnO within the chitosan–GO sheets. High resolution scanning electron microscopy and atomic force microscopy studies demonstrated that on a molecular scale ZnO was well dispersed in the hybrid composites. Impedance spectroscopy and a four-probe resistivity method were used for room temperature electrical conductivity measurements. The electrical conductivity of the chitin-based GO–ZnO hybrid composites was estimated to be ∼5.94 × 106 S/cm and was greater than that of the chitosan-based GO–ZnO hybrid composite (∼4.13 × 106 S/cm). The chitin-based GO–ZnO hybrid composite had a higher optical band gap (3.4 eV) than the chitosan-based GO–ZnO hybrid composite (3.0 eV). The current–voltage measurement showed that electrical sheets resistance of the chitosan-based composites decreased with formation of ZnO

  5. Metabolic engineering of cottonseed oil biosynthesis pathway via RNA interference.

    Science.gov (United States)

    Xu, Zhongping; Li, Jingwen; Guo, Xiaoping; Jin, Shuangxia; Zhang, Xianlong

    2016-01-01

    Cottonseed oil is recognized as an important oil in food industry for its unique characters: low flavor reversion and the high level of antioxidants (VitaminE) as well as unsaturated fatty acid. However, the cottonseed oil content of cultivated cotton (Gossypium hirsutum) is only around 20%. In this study, we modified the accumulation of oils by the down-regulation of phosphoenolpyruvate carboxylase 1 (GhPEPC1) via RNA interference in transgenic cotton plants. The qRT-PCR and enzyme activity assay revealed that the transcription and expression of GhPEPC1 was dramatically down-regulated in transgenic lines. Consequently, the cottonseed oil content in several transgenic lines showed a significant (P information for cottonseed oil biosynthesis pathway and shows the potential of creating high cottonseed oil germplasm by RNAi strategy for cotton breeding. PMID:27620452

  6. Purine biosynthesis in archaea: variations on a theme

    Directory of Open Access Journals (Sweden)

    Brown Anne M

    2011-12-01

    Full Text Available Abstract Background The ability to perform de novo biosynthesis of purines is present in organisms in all three domains of life, reflecting the essentiality of these molecules to life. Although the pathway is quite similar in eukaryotes and bacteria, the archaeal pathway is more variable. A careful manual curation of genes in this pathway demonstrates the value of manual curation in archaea, even in pathways that have been well-studied in other domains. Results We searched the Integrated Microbial Genome system (IMG for the 17 distinct genes involved in the 11 steps of de novo purine biosynthesis in 65 sequenced archaea, finding 738 predicted proteins with sequence similarity to known purine biosynthesis enzymes. Each sequence was manually inspected for the presence of active site residues and other residues known or suspected to be required for function. Many apparently purine-biosynthesizing archaea lack evidence for a single enzyme, either glycinamide ribonucleotide formyltransferase or inosine monophosphate cyclohydrolase, suggesting that there are at least two more gene variants in the purine biosynthetic pathway to discover. Variations in domain arrangement of formylglycinamidine ribonucleotide synthetase and substantial problems in aminoimidazole carboxamide ribonucleotide formyltransferase and inosine monophosphate cyclohydrolase assignments were also identified. Manual curation revealed some overly specific annotations in the IMG gene product name, with predicted proteins without essential active site residues assigned product names implying enzymatic activity (21 proteins, 2.8% of proteins inspected or Enzyme Commission (E. C. numbers (57 proteins, 7.7%. There were also 57 proteins (7.7% assigned overly generic names and 78 proteins (10.6% without E.C. numbers as part of the assigned name when a specific enzyme name and E. C. number were well-justified. Conclusions The patchy distribution of purine biosynthetic genes in archaea is

  7. Characterization of a novel Salmonella typhimurium chitinase which hydrolyzes chitin, chitooligosaccharides and an N-acetyllactosamine conjugate

    DEFF Research Database (Denmark)

    Larsen, Tanja; Petersen, Bent O.; Storgaard, Birgit Groth;

    2011-01-01

    Salmonella contain genes annotated as chitinases; however, their chitinolytic activities have never been verified. We now demonstrate such an activity for a chitinase assigned to glycoside hydrolase family 18 encoded by the SL0018 (chiA) gene in Salmonella enterica Typhimurium SL1344. A C...... carboxymethyl chitin Remazol Brilliant Violet but does not act on 4-nitrophenyl N-acetyl-ß-D-glucosaminide, peptidoglycan or 4-nitrophenyl ß-D-cellobioside. Enzyme activity was also characterized by directly monitoring product formation using (1)H-nuclear magnetic resonance which showed that chitin is a...

  8. CONDUCTIVITY METHOD APPLIED TO THE STUDY OF INTERACTION BETWEEN ADSORBENT AND ADSORBATE I.ADSORPTION OF LOW CONCENYRATION OF FREE ACID BY REGENERABLE CHITIN

    Institute of Scientific and Technical Information of China (English)

    ChenBingren; HeGuangping; 等

    1997-01-01

    The adsorption of low concentration of free acid by regenerable chitin is followed by electric conductance determination.The effect of acid concentratioin,content of functioinal amino groups,and ionic strength on adsorption was discussed.Experimental results indicate that the active centre of regenerable chitin is the free amino groups on ist surface ,and that the rate of adsorption of free acid was found to be affected by two factors:the interaction between the adsorbent and the adsorbate in solution and that between the adsorbate molecules or ions in solution.

  9. AtTHIC, a gene involved in thiamine biosynthesis in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Danyu Kong; Yuxing Zhu; Huilan Wu; Xudong Cheng; Hui Liang; Hong-Qing Ling

    2008-01-01

    Thiamine (vitamin B1) is an essential compound for organisms.It contains a pyrimidine ring structure and a thiazole ring structure.These two moieties of thiamine are synthesized independently and then coupled together.Here we report the molecular characterization of AtTHIC,which is involved in thiamine biosynthesis in Arabidopsis.AtTHIC is similar to Escherichia coil ThiC,which is involved in pyrimidine biosynthesis in prokaryotes.Heterologous expression of AtTHIC could functionally complement the thiC knock-out mutant of E.coll.Downregulation of AtTHIC expression by T-DNA insertion at its promoter region resulted in a drastic reduction of thiamine content in plants and the knock-down mutant thicl showed albino (white leaves) and lethal phenotypes under the normal culture conditions.The thicl mutant could be rescued by supplementation of thiamine and its defect functions could be complemented by expression ofAtTHIC cDNA.Transient expression analysis revealed that the AtTHIC protein targets plastids and chloroplasts.AtTHIC was strongly expressed in leaves,flowers and siliques and the transcription of AtTHIC was downregulated by extrinsic thiamine.In conclusion,AtTHIC is a gene involved in pyrimidine synthesis in the thiamine biosynthesis pathway of Arabidopsis,and our results provide some new clues for elucidating the pathway of thiamine biosynthesis in plants.

  10. Classical galactosaemia: novel insights in IgG N-glycosylation and N-glycan biosynthesis.

    Science.gov (United States)

    Maratha, Ashwini; Stockmann, Henning; Coss, Karen P; Estela Rubio-Gozalbo, M; Knerr, Ina; Fitzgibbon, Maria; McVeigh, Terri P; Foley, Patricia; Moss, Catherine; Colhoun, Hugh-Owen; van Erven, Britt; Stephens, Kelly; Doran, Peter; Rudd, Pauline; Treacy, Eileen

    2016-07-01

    Classical galactosaemia (OMIM #230400), a rare disorder of carbohydrate metabolism, is caused by a deficient activity of galactose-1-phosphate uridyltransferase (EC 2.7.7.12). The pathophysiology of the long-term complications, mainly cognitive, neurological and female fertility problems remains poorly understood. The lack of validated biomarkers to determine prognosis, monitor disease progression and responses to new therapies, pose a huge challenge. We report the detailed analysis of an automated robotic hydrophilic interaction ultra-performance liquid chromatography N-glycan analytical method of high glycan peak resolution applied to serum IgG. This has revealed specific N-glycan processing defects observed in 40 adult galactosaemia patients (adults and adolescents), in comparison with 81 matched healthy controls. We have identified a significant increase in core fucosylated neutral glycans (Pperipheral blood mononuclear cells from 32 adult galactosaemia patients. We have noted significant dysregulation of two key N-glycan biosynthesis genes: ALG9 upregulated (P<0.001) and MGAT1 downregulated (P<0.01) in galactosaemia patients, which may contribute to its ongoing pathophysiology. Our data suggest that the use of IgG N-glycosylation analysis with matched N-glycan biosynthesis gene profiles may provide useful biomarkers for monitoring response to therapy and interventions. They also indicate potential gene modifying steps in this N-glycan biosynthesis pathway, of relevance to galactosaemia and related N-glycan biosynthesis disorders. PMID:26733289

  11. Identification of a gene cluster for biosynthesis of mannosylerythritol lipids in the basidiomycetous fungus Ustilago maydis.

    Science.gov (United States)

    Hewald, Sandra; Linne, Uwe; Scherer, Mario; Marahiel, Mohamed A; Kämper, Jörg; Bölker, Michael

    2006-08-01

    Many microorganisms produce surface-active substances that enhance the availability of water-insoluble substrates. Although many of these biosurfactants have interesting potential applications, very little is known about their biosynthesis. The basidiomycetous fungus Ustilago maydis secretes large amounts of mannosylerythritol lipids (MELs) under conditions of nitrogen starvation. We recently described a putative glycosyltransferase, Emt1, which is essential for MEL biosynthesis and whose expression is strongly induced by nitrogen limitation. We used DNA microarray analysis to identify additional genes involved in MEL biosynthesis. Here we show that emt1 is part of a gene cluster which comprises five open reading frames. Three of the newly identified proteins, Mac1, Mac2, and Mat1, contain short sequence motifs characteristic for acyl- and acetyltransferases. Mutational analysis revealed that Mac1 and Mac2 are essential for MEL production, which suggests that they are involved in the acylation of mannosylerythritol. Deletion of mat1 resulted in the secretion of completely deacetylated MELs, as determined by mass spectrometry. We overexpressed Mat1 in Escherichia coli and demonstrated that this enzyme acts as an acetyl coenzyme A-dependent acetyltransferase. Remarkably, Mat1 displays relaxed regioselectivity and is able to acetylate mannosylerythritol at both the C-4 and C-6 hydroxyl groups. Based on these results, we propose a biosynthesis pathway for the generation of mannosylerythritol lipids in U. maydis. PMID:16885300

  12. Rice Brittleness Mutants: A Way to Open the 'Black Box' of Monocot Cell Wall Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    Baocai Zhang; Yihua Zhou

    2011-01-01

    Rice is a model organism for studying the mechanism of cell wall biosynthesis and remolding in Gramineae.Mechanical strength is an important agronomy trait of rice(Oryza sativa L.)plants that affects crop lodging and grain yield.As a prominent physical property of cell walls,mechanical strength reflects upon the structure of different wall polymers and how they interact.Studies on the mechanisms that regulate the mechanical strength therefore consequently results in uncovering the genes functioning in cell wall biosynthesis and remodeling.Our group focuses on the study of isolation of brittle culm(bc)mutants and characterization of their corresponding genes.To date,several bc mutants have been reported.The identified genes have covered several pathways of cell wall biosynthesis,revealing many secrets of monocot cell wall biosynthesis.Here,we review the progress achieved in this research field and also highlight the perspectives in expectancy.All of those lend new insights into mechanisms of cell wall formation and are helpful for harnessing the waste rice straws for biofuel production.

  13. Binary stress induces an increase in indole alkaloid biosynthesis in Catharanthus roseus

    OpenAIRE

    Wei ZHU; Yang, Bingxian; Komatsu, Setsuko; Lu, Xiaoping; Li, Ximin; Tian, Jingkui

    2015-01-01

    Catharanthus roseus is an important medicinal plant, which produces a variety of indole alkaloids of significant pharmaceutical relevance. In the present study, we aimed to investigate the potential stress-induced increase of indole alkaloid biosynthesis in C. roseus using proteomic technique. The contents of the detectable alkaloids ajmalicine, vindoline, catharanthine, and strictosidine in C. roseus were significantly increased under binary stress. Proteomic analysis revealed that the abund...

  14. Binary Stress Induces an Increase in Indole Alkaloid Biosynthesis in Catharanthus roseus

    OpenAIRE

    Wei eZhu; Bingxian eYang; Setsuko eKomatsu; Xiaoping eLu; Ximin eLi; Jingkui eTian

    2015-01-01

    Catharanthus roseus is an important medicinal plant, which produces a variety of indole alkaloids of significant pharmaceutical relevance. In the present study, we aimed to investigate the potential stress-induced increase of indole alkaloid biosynthesis in C. roseus using proteomic technique. The contents of the detectable alkaloids ajmalicine, vindoline, catharanthine, and strictosidine in C. roseus were significantly increased under binary stress. Proteomic analysis revealed that the abund...

  15. A comparative genomics approach to understanding the biosynthesis of the sunscreen scytonemin in cyanobacteria

    OpenAIRE

    Potrafka Ruth M; Gao Qunjie; Palmer Kendra; Soule Tanya; Stout Valerie; Garcia-Pichel Ferran

    2009-01-01

    Abstract Background The extracellular sunscreen scytonemin is the most common and widespread indole-alkaloid among cyanobacteria. Previous research using the cyanobacterium Nostoc punctiforme ATCC 29133 revealed a unique 18-gene cluster (NpR1276 to NpR1259 in the N. punctiforme genome) involved in the biosynthesis of scytonemin. We provide further genomic characterization of these genes in N. punctiforme and extend it to homologous regions in other cyanobacteria. Results Six putative genes in...

  16. The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation

    DEFF Research Database (Denmark)

    Harris, Abigail K P; Williamson, Neil R; Slater, Holly;

    2004-01-01

    from Str. coelicolor A3(2) revealed some important differences. A modified scheme for the biosynthesis of prodigiosin, based on the pathway recently suggested for the synthesis of undecylprodigiosin, is proposed. The distribution of the pig cluster within several Serratia sp. isolates is demonstrated...

  17. Plant Terpenoids: Biosynthesis and Ecological Functions

    Institute of Scientific and Technical Information of China (English)

    Ai-Xia Cheng; Yong-Gen Lou; Ying-Bo Mao; Shan Lu; Ling-Jian Wang; Xiao-Ya Chen

    2007-01-01

    Among plant secondary metabolites terpenoids are a structurally most diverse group; they function as phytoalexins in plant direct defense, or as signals in indirect defense responses which involves herbivores and their natural enemies. In recent years, more and more attention has been paid to the investigation of the ecological role of plant terpenoids. The biosynthesis pathways of monoterpenes, sesquiterpenes, and diterpenes include the synthesis of C5 precursor isopentenyl diphosphate (IPP) and its allylic isomer dimethylallyl diphosphate (DMAPP), the synthesis of the immediate diphosphate precursors, and the formation of the diverse terpenoids. Terpene synthases (TPSs) play a key role in volatile terpene synthesis. By expression of the TPS genes, significant achievements have been made on metabolic engineering to increase terpenoid production. This review mainly summarizes the recent research progress in elucidating the ecological role of terpenoids and characterization of the enzymes involved in the terpenoid biosynthesis. Spatial and temporal regulations of terpenoids metabolism are also discussed.

  18. Carotenoid Metabolism: Biosynthesis, Regulation,and Beyond

    Institute of Scientific and Technical Information of China (English)

    Shan Lu; Li Li

    2008-01-01

    Carotenoids are Indispensable to plants and play a critical role in human nutrition and health. Significant progress has been made in our understanding of carotenoid metabolism in plants. The biosynthetic pathway has been extensively studied.Nearly all the genes encoding the biosynthetic enzymes have been isolated and characterized from various organisms. In recent years, there is an increasing body of work on the signaling pathways and plastid development, which might provide global control of carotenoid biosynthesis and accumulation. Herein, we will highlight recent progress on the biosynthesis,regulation, and metabolic engineering of carotenoids in plants, as well as the future research towards elucidating the regulatory mechanisms and metabolic network that control carotenoid metabolism.

  19. Triterpenoid biosynthesis in Euphorbia lathyris latex

    International Nuclear Information System (INIS)

    The structures of those tetracyclic triterpenols in Euphorbia lathyris latex which had not previously been known were elucidated. Many times dependent incubations were done, investigating the stability of the whole latex system and the re-suspended pellet systems. The effects of centrifugation on the biosynthesis were examined. The partitioning of the triterpenoid pool as a function of when the compounds were made was examined. A number of incubations were performed in the hopes of observing some interconversion of the individual triterpenols. The effect of several inhibitors on the biosynthesis of the triterpenoids was examined. The effects of the morpholine based fungicides, tridemorph and fenpropimorph were examined. The possibility that cycloartenol is made via lanosterol was investigated by synthesizing 4-R-4-3 H-mevalonic acid and incubating the latex with a mixture of this and 14C-mevalonic acid

  20. Efficiency of Lignin Biosynthesis: a Quantitative Analysis

    OpenAIRE

    Amthor, Jeffrey S.

    2003-01-01

    Lignin is derived mainly from three alcohol monomers: p‐coumaryl alcohol, coniferyl alcohol and sinapyl alcohol. Biochemical reactions probably responsible for synthesizing these three monomers from sucrose, and then polymerizing the monomers into lignin, were analysed to estimate the amount of sucrose required to produce a unit of lignin. Included in the calculations were amounts of respiration required to provide NADPH (from NADP+) and ATP (from ADP) for lignin biosynthesis. Two pathways in...