WorldWideScience

Sample records for chitin binding activity

  1. Chitovibrin: a chitin-binding lectin from Vibrio parahemolyticus.

    Science.gov (United States)

    Gildemeister, O S; Zhu, B C; Laine, R A

    1994-12-01

    A novel 134 kDa, calcium-independent chitin-binding lectin, 'chitovibrin', is secreted by the marine bacterium Vibrio parahemolyticus, inducible with chitin or chitin-oligomers. Chitovibrin shows no apparent enzymatic activity but exhibits a strong affinity for chitin and chito-oligomers > dp9. The protein has an isoelectric pH of 3.6, shows thermal tolerance, binds chitin with an optimum at pH 6 and is active in 0-4 M NaCl. Chitovibrin appears to be completely different from other reported Vibrio lectins and may function to bind V. parahemolyticus to chitin substrates, or to capture or sequester chito-oligomers. It may be a member of a large group of recently described proteins in Vibrios related to a complex chitinoclastic (chitinivorous) system.

  2. Analysis of expression and chitin-binding activity of the wing disc cuticle protein BmWCP4 in the silkworm, Bombyx mori.

    Science.gov (United States)

    Deng, Hui-Min; Li, Yong; Zhang, Jia-Ling; Liu, Lin; Feng, Qi-Li

    2016-12-01

    The insect exoskeleton is mainly composed of chitin filaments linked by cuticle proteins. When insects molt, the cuticle of the exoskeleton is renewed by degrading the old chitin and cuticle proteins and synthesizing new ones. In this study, chitin-binding activity of the wing disc cuticle protein BmWCP4 in Bombyx mori was studied. Sequence analysis showed that the protein had a conservative hydrophilic "R&R" chitin-binding domain (CBD). Western blotting showed that BmWCP4 was predominately expressed in the wing disc-containing epidermis during the late wandering and early pupal stages. The immunohistochemistry result showed that the BmWCP4 was mainly present in the wing disc tissues containing wing bud and trachea blast during day 2 of wandering stage. Recombinant full-length BmWCP4 protein, "R&R" CBD peptide (CBD), non-CBD peptide (BmWCP4-CBD - ), four single site-directed mutated peptides (M 1 , M 2 , M 3 and M 4 ) and four-sites-mutated peptide (M F ) were generated and purified, respectively, for in vitro chitin-binding assay. The results indicated that both the full-length protein and the "R&R" CBD peptide could bind with chitin, whereas the BmWCP4-CBD - could not bind with chitin. The single residue mutants M 1 , M 2 , M 3 and M 4 reduced but did not completely abolish the chitin-binding activity, while four-sites-mutated protein M F completely lost the chitin-binding activity. These data indicate that BmWCP4 protein plays a critical role by binding to the chitin filaments in the wing during larva-to-pupa transformation. The conserved aromatic amino acids are critical in the interaction between chitin and the cuticle protein. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  3. Characterization of a Chitin-Binding Protein from Bacillus thuringiensis HD-1.

    Directory of Open Access Journals (Sweden)

    Naresh Arora

    Full Text Available Strains of Bacillus thuringiensis produce insecticidal proteins. These strains have been isolated from diverse ecological niches, such as soil, phylloplane, insect cadavers and grain dust. To effectively propagate, these strains produce a range of molecules that facilitate its multiplication in a competing environment. In this report, we have examined synthesis of a chitin-binding protein and evaluated its effect on fungi encountered in environment and its interaction with insecticidal proteins synthesized by B. thuringiensis. The gene encoding chitin-binding protein has been cloned and expressed. The purified protein has been demonstrated to interact with Cry insecticidal protein, Cry1Ac by Circular Dichrosim spectroscopy (CD and in vitro pull down assays. The chitin-binding protein potentiates insecticidal activity of bacillar insecticidal protein, Cry1Ac. Further, chitin-binding protein was fungistatic against several soil fungi. The chitin binding protein is expressed in spore mother cell and deposited along with insecticidal protein, Cry1Ac. It interacts with Cry1Ac to potentiate its insecticidal activity and facilitate propagation of Bacillus strain in environment by inhibiting growth of certain fungi.

  4. A Venom Gland Extracellular Chitin-Binding-Like Protein from Pupal Endoparasitoid Wasps, Pteromalus Puparum, Selectively Binds Chitin

    Directory of Open Access Journals (Sweden)

    Yu Zhu

    2015-11-01

    Full Text Available Chitin-binding proteins (CBPs are present in many species and they act in a variety of biological processes. We analyzed a Pteromalus puparum venom apparatus proteome and transcriptome and identified a partial gene encoding a possible CBP. Here, we report cloning a full-length cDNA of a sequence encoding a chitin-binding-like protein (PpCBP from P. puparum, a pupal endoparasitoid of Pieris rapae. The cDNA encoded a 96-amino-acid protein, including a secretory signal peptide and a chitin-binding peritrophin-A domain. Phylogenetic analysis of chitin binding domains (CBDs of cuticle proteins and peritrophic matrix proteins in selected insects revealed that the CBD of PpCBP clustered with the CBD of Nasonia vitripennis. The PpCBP is specifically expressed in the venom apparatus of P. puparum, mostly in the venom gland. PpCBP expression was highest at day one after adult eclosion and much lower for the following five days. We produced a recombinant PpCBP and binding assays showed the recombinant protein selectively binds chitin but not cellulose in vitro. We infer that PpCBP serves a structural role in the venom reservoir, or may be injected into the host to help wound healing of the host exoskeleton.

  5. A Venom Gland Extracellular Chitin-Binding-Like Protein from Pupal Endoparasitoid Wasps, Pteromalus Puparum, Selectively Binds Chitin

    Science.gov (United States)

    Chitin-binding proteins (CBPs) existed in various species and involved in different biology processes. In the present study, we cloned a full length cDNA of chitin-binding protein-like (PpCBP-like) from Pteromalus puparum, a pupal endoparasitoid of Pieris rapae. PpCBP-like encoded a 96 putative amin...

  6. A Selective Assay to Detect Chitin and Biologically Active Nano-Machineries for Chitin-Biosynthesis with Their Intrinsic Chitin-Synthase Molecules

    Directory of Open Access Journals (Sweden)

    Hildgund Schrempf

    2010-09-01

    Full Text Available A new assay system for chitin has been developed. It comprises the chitin-binding protein ChbB in fusion with a His-tag as well as with a Strep-tag, the latter of which was chemically coupled to horseradish peroxidase. With the resulting complex, minimal quantities of chitin are photometrically detectable. In addition, the assay allows rapid scoring of the activity of chitin-synthases. As a result, a refined procedure for the rapid purification of yeast chitosomes (nano-machineries for chitin biosynthesis has been established. Immuno-electronmicroscopical studies of purified chitosomes, gained from a yeast strain carrying a chitin-synthase gene fused to that for GFP (green-fluorescence protein, has led to the in situ localization of chitin-synthase-GFP molecules within chitosomes.

  7. STRUCTURAL FEATURES OF PLANT CHITINASES AND CHITIN-BINDING PROTEINS

    NARCIS (Netherlands)

    BEINTEMA, JJ

    1994-01-01

    Structural features of plant chitinases and chitin-binding proteins are discussed. Many of these proteins consist of multiple domains,of which the chitin-binding hevein domain is a predominant one. X-ray and NMR structures of representatives of the major classes of these proteins are available now,

  8. Purification of a novel chitin-binding lectin with antimicrobial and antibiofilm activities from a bangladeshi cultivar of potato (Solanum tuberosum).

    Science.gov (United States)

    Hasan, Imtiaj; Ozeki, Yasuhiro; Kabir, Syed Rashel

    2014-04-01

    A new chitin-binding lectin was purified from a Bangladeshi cultivar 'Deshi' of potato (Solanum tuberosum L.) through anion-exchange and affinity chromatographies using a chitin column. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) showed the molecular mass of the lectin as 20,000 Daltons. This molecular mass was almost half of the molecular masses of chitin-binding lectins derived from other potatoes. The lectin showed both bactericidal and growth-inhibiting activities against Gram-positive (Listeria monocytogenes) and Gram-negative (Escherichia coli, Salmonella enteritidis and Shigella boydii) pathogenic bacteria. It also showed antifungal activity against Rhizopus spp., Penicillium spp. and Aspergillus niger. Biofilm produced by the bacterium Pseudomonas aeruginosa was dose-dependently reduced by 5-20% in 24 h after administration of the lectin, which was attributed to the glycan-binding property of the lectin having affinity to GlcNAc polymers. It was the first observation that any potato lectin prevented biofilm formation by P. aeruginosa and, therefore, could have possible applications in clinical microbiology and biomedical science.

  9. "Chitin-specific" peroxidases in plants.

    Science.gov (United States)

    Maksimov, I V; Cherepanova, E A; Khairullin, R M

    2003-01-01

    The activity of various plant peroxidases and the ability of their individual isoforms to bind chitin was studied. Some increase in peroxidase activity was observed in crude extracts in the presence of chitin. Activated peroxidases of some species fell in the fraction not sorbed on chitin and those of other species can bind chitin. Only anionic isoperoxidases from oat (Avena sativa), rice (Oryza sativa), horseradish (Armoracia rusticana), garden radish (Raphanus sativus var. radicula), peanut (Arachis hypogaea), and tobacco (Nicotiana tabacum Link et Otto) were sorbed on chitin. Both anionic and cationic isoforms from pea (Pisum sativum), galega(Galega orientalis), cucumber (Cucumis sativus), and zucchini (Cucurbita pepo L.) were sorbed on chitin. Peroxidase activation under the influence of chitin was correlated to the processes that occur during hypersensitive reaction and lignification of sites, in which pathogenic fungus penetrates into a plant. The role of chitin-specific isoperoxidases in inhibition of fungal growth and connection of this phenomenon with structural characteristics of isoperoxidases are also discussed.

  10. Fungal-type carbohydrate binding modules from the coccolithophore Emiliania huxleyi show binding affinity to cellulose and chitin.

    Science.gov (United States)

    Rooijakkers, Bart J M; Ikonen, Martina S; Linder, Markus B

    2018-01-01

    Six fungal-type cellulose binding domains were found in the genome of the coccolithophore Emiliania huxleyi and cloned and expressed in Escherichia coli. Sequence comparison indicate high similarity to fungal cellulose binding domains, raising the question of why these domains exist in coccolithophores. The proteins were tested for binding with cellulose and chitin as ligands, which resulted in the identification of two functional carbohydrate binding modules: EHUX2 and EHUX4. Compared to benchmark fungal cellulose binding domain Cel7A-CBM1 from Trichoderma reesei, these proteins showed slightly lower binding to birch and bacterial cellulose, but were more efficient chitin binders. Finally, a set of cellulose binding domains was created based on the shuffling of one well-functioning and one non-functional domain. These were characterized in order to get more information of the binding domain's sequence-function relationship, indicating characteristic differences between the molecular basis of cellulose versus chitin recognition. As previous reports have showed the presence of cellulose in coccoliths and here we find functional cellulose binding modules, a possible connection is discussed.

  11. Fungal-type carbohydrate binding modules from the coccolithophore Emiliania huxleyi show binding affinity to cellulose and chitin.

    Directory of Open Access Journals (Sweden)

    Bart J M Rooijakkers

    Full Text Available Six fungal-type cellulose binding domains were found in the genome of the coccolithophore Emiliania huxleyi and cloned and expressed in Escherichia coli. Sequence comparison indicate high similarity to fungal cellulose binding domains, raising the question of why these domains exist in coccolithophores. The proteins were tested for binding with cellulose and chitin as ligands, which resulted in the identification of two functional carbohydrate binding modules: EHUX2 and EHUX4. Compared to benchmark fungal cellulose binding domain Cel7A-CBM1 from Trichoderma reesei, these proteins showed slightly lower binding to birch and bacterial cellulose, but were more efficient chitin binders. Finally, a set of cellulose binding domains was created based on the shuffling of one well-functioning and one non-functional domain. These were characterized in order to get more information of the binding domain's sequence-function relationship, indicating characteristic differences between the molecular basis of cellulose versus chitin recognition. As previous reports have showed the presence of cellulose in coccoliths and here we find functional cellulose binding modules, a possible connection is discussed.

  12. Chitin nanofiber elucidates the elicitor activity of polymeric chitin in plants

    Directory of Open Access Journals (Sweden)

    Mayumi eEgusa

    2015-12-01

    Full Text Available Chitin, an N-acetyl-D-glucosamine polymer, is a component of fungal cell walls and a microbe/pathogen-associated molecular pattern that elicits plant defense responses. As polymeric chitin is difficult to handle due to its insolubility in water, many studies on chitin-induced immune responses have used water-soluble low-molecular weight chitin instead. Thus, it is unclear if polymeric chitin can induce resistance. Here, we examined the elicitor activity of chitin nanofiber (CNF of submicron thickness prepared from polymeric chitin. CNF showed a high dispersing ability in water and induced both reactive oxygen species (ROS production and chitin-induced defense-related gene expression in Arabidopsis thaliana seedlings. The Arabidopsis chitin elicitor receptor kinase 1 (Atcerk1 mutant, which is impaired in chitin perception, also failed to respond to CNF. CNF exposure triggered ROS generation in suspension-cultured cells from Oryza sativa. Furthermore, pre-treatment of Arabidopsis leaves with CNF effectively reduced pathogen infection by both the fungus Alternaria brassicicola and the bacterium Pseudomonas syringae pv. tomato DC3000. These results demonstrate that CNF has elicitor activity and will help define the role of polymeric chitin in plant immune responses.

  13. Morintides: cargo-free chitin-binding peptides from Moringa oleifera.

    Science.gov (United States)

    Kini, Shruthi G; Wong, Ka H; Tan, Wei Liang; Xiao, Tianshu; Tam, James P

    2017-03-31

    Hevein-like peptides are a family of cysteine-rich and chitin-binding peptides consisting of 29-45 amino acids. Their chitin-binding property is essential for plant defense against fungi. Based on the number of cysteine residues in their sequences, they are divided into three sub-families: 6C-, 8C- and 10C-hevein-like peptides. All three subfamilies contain a three-domain precursor comprising a signal peptide, a mature hevein-like peptide and a C-terminal domain comprising a hinge region with protein cargo in 8C- and 10C-hevein-like peptides. Here we report the isolation and characterization of two novel 8C-hevein-like peptides, designated morintides (mO1 and mO2), from the drumstick tree Moringa oleifera, a drought-resistant tree belonging to the Moringaceae family. Proteomic analysis revealed that morintides comprise 44 amino acid residues and are rich in cysteine, glycine and hydrophilic amino acid residues such as asparagine and glutamine. Morintides are resistant to thermal and enzymatic degradation, able to bind to chitin and inhibit the growth of phyto-pathogenic fungi. Transcriptomic analysis showed that they contain a three-domain precursor comprising an endoplasmic reticulum (ER) signal sequence, a mature peptide domain and a C-terminal domain. A striking feature distinguishing morintides from other 8C-hevein-like peptides is a short and protein-cargo-free C-terminal domain. Previously, a similar protein-cargo-free C-terminal domain has been observed only in ginkgotides, the 8C-hevein-like peptides from a gymnosperm Ginkgo biloba. Thus, morintides, with a cargo-free C-terminal domain, are a stand-alone class of 8C-hevein-like peptides from angiosperms. Our results expand the existing library of hevein-like peptides and shed light on molecular diversity within the hevein-like peptide family. Our work also sheds light on the anti-fungal activity and stability of 8C-hevein-like peptides.

  14. Analysis of chitin-binding proteins from Manduca sexta provides new insights into evolution of peritrophin A-type chitin-binding domains in insects.

    Science.gov (United States)

    Tetreau, Guillaume; Dittmer, Neal T; Cao, Xiaolong; Agrawal, Sinu; Chen, Yun-Ru; Muthukrishnan, Subbaratnam; Haobo, Jiang; Blissard, Gary W; Kanost, Michael R; Wang, Ping

    2015-07-01

    In insects, chitin is a major structural component of the cuticle and the peritrophic membrane (PM). In nature, chitin is always associated with proteins among which chitin-binding proteins (CBPs) are the most important for forming, maintaining and regulating the functions of these extracellular structures. In this study, a genome-wide search for genes encoding proteins with ChtBD2-type (peritrophin A-type) chitin-binding domains (CBDs) was conducted. A total of 53 genes encoding 56 CBPs were identified, including 15 CPAP1s (cuticular proteins analogous to peritrophins with 1 CBD), 11 CPAP3s (CPAPs with 3 CBDs) and 17 PMPs (PM proteins) with a variable number of CBDs, which are structural components of cuticle or of the PM. CBDs were also identified in enzymes of chitin metabolism including 6 chitinases and 7 chitin deacetylases encoded by 6 and 5 genes, respectively. RNA-seq analysis confirmed that PMP and CPAP genes have differential spatial expression patterns. The expression of PMP genes is midgut-specific, while CPAP genes are widely expressed in different cuticle forming tissues. Phylogenetic analysis of CBDs of proteins in insects belonging to different orders revealed that CPAP1s from different species constitute a separate family with 16 different groups, including 6 new groups identified in this study. The CPAP3s are clustered into a separate family of 7 groups present in all insect orders. Altogether, they reveal that duplication events of CBDs in CPAP1s and CPAP3s occurred prior to the evolutionary radiation of insect species. In contrast to the CPAPs, all CBDs from individual PMPs are generally clustered and distinct from other PMPs in the same species in phylogenetic analyses, indicating that the duplication of CBDs in each of these PMPs occurred after divergence of insect species. Phylogenetic analysis of these three CBP families showed that the CBDs in CPAP1s form a clearly separate family, while those found in PMPs and CPAP3s were clustered

  15. Slow Off-rates and Strong Product Binding Are Required for Processivity and Efficient Degradation of Recalcitrant Chitin by Family 18 Chitinases.

    Science.gov (United States)

    Kurašin, Mihhail; Kuusk, Silja; Kuusk, Piret; Sørlie, Morten; Väljamäe, Priit

    2015-11-27

    Processive glycoside hydrolases are the key components of enzymatic machineries that decompose recalcitrant polysaccharides, such as chitin and cellulose. The intrinsic processivity (P(Intr)) of cellulases has been shown to be governed by the rate constant of dissociation from polymer chain (koff). However, the reported koff values of cellulases are strongly dependent on the method used for their measurement. Here, we developed a new method for determining koff, based on measuring the exchange rate of the enzyme between a non-labeled and a (14)C-labeled polymeric substrate. The method was applied to the study of the processive chitinase ChiA from Serratia marcescens. In parallel, ChiA variants with weaker binding of the N-acetylglucosamine unit either in substrate-binding site -3 (ChiA-W167A) or the product-binding site +1 (ChiA-W275A) were studied. Both ChiA variants showed increased off-rates and lower apparent processivity on α-chitin. The rate of the production of insoluble reducing groups on the reduced α-chitin was an order of magnitude higher than koff, suggesting that the enzyme can initiate several processive runs without leaving the substrate. On crystalline chitin, the general activity of the wild type enzyme was higher, and the difference was magnifying with hydrolysis time. On amorphous chitin, the variants clearly outperformed the wild type. A model is proposed whereby strong interactions with polymer in the substrate-binding sites (low off-rates) and strong binding of the product in the product-binding sites (high pushing potential) are required for the removal of obstacles, like disintegration of chitin microfibrils. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Sugar-Binding Profiles of Chitin-Binding Lectins from the Hevein Family: A Comprehensive Study

    Directory of Open Access Journals (Sweden)

    Yoko Itakura

    2017-05-01

    Full Text Available Chitin-binding lectins form the hevein family in plants, which are defined by the presence of single or multiple structurally conserved GlcNAc (N-acetylglucosamine-binding domains. Although they have been used as probes for chito-oligosaccharides, their detailed specificities remain to be investigated. In this study, we analyzed six chitin-binding lectins, DSA, LEL, PWM, STL, UDA, and WGA, by quantitative frontal affinity chromatography. Some novel features were evident: WGA showed almost comparable affinity for pyridylaminated chitotriose and chitotetraose, while LEL and UDA showed much weaker affinity, and DSA, PWM, and STL had no substantial affinity for the former. WGA showed selective affinity for hybrid-type N-glycans harboring a bisecting GlcNAc residue. UDA showed extensive binding to high-mannose type N-glycans, with affinity increasing with the number of Man residues. DSA showed the highest affinity for highly branched N-glycans consisting of type II LacNAc (N-acetyllactosamine. Further, multivalent features of these lectins were investigated by using glycoconjugate and lectin microarrays. The lectins showed substantial binding to immobilized LacNAc as well as chito-oligosaccharides, although the extents to which they bound varied among them. WGA showed strong binding to heavily sialylated glycoproteins. The above observations will help interpret lectin-glycoprotein interactions in histochemical studies and glyco-biomarker investigations.

  17. Structural basis for new pattern of conserved amino acid residues related to chitin-binding in the antifungal peptide from the coconut rhinoceros beetle Oryctes rhinoceros.

    Science.gov (United States)

    Hemmi, Hikaru; Ishibashi, Jun; Tomie, Tetsuya; Yamakawa, Minoru

    2003-06-20

    Scarabaecin isolated from hemolymph of the coconut rhinoceros beetle Oryctes rhinoceros is a 36-residue polypeptide that has antifungal activity. The solution structure of scarabaecin has been determined from twodimensional 1H NMR spectroscopic data and hybrid distance geometry-simulated annealing protocol calculation. Based on 492 interproton and 10 hydrogen-bonding distance restraints and 36 dihedral angle restraints, we obtained 20 structures. The average backbone root-mean-square deviation for residues 4-35 is 0.728 +/- 0.217 A from the mean structure. The solution structure consists of a two-stranded antiparallel beta-sheet connected by a type-I beta-turn after a short helical turn. All secondary structures and a conserved disulfide bond are located in the C-terminal half of the peptide, residues 18-36. Overall folding is stabilized by a combination of a disulfide bond, seven hydrogen bonds, and numerous hydrophobic interactions. The structural motif of the C-terminal half shares a significant tertiary structural similarity with chitin-binding domains of plant and invertebrate chitin-binding proteins, even though scarabaecin has no overall sequence similarity to other peptide/polypeptides including chitin-binding proteins. The length of its primary structure, the number of disulfide bonds, and the pattern of conserved functional residues binding to chitin in scarabaecin differ from those of chitin-binding proteins in other invertebrates and plants, suggesting that scarabaecin does not share a common ancestor with them. These results are thought to provide further strong experimental evidence to the hypothesis that chitin-binding proteins of invertebrates and plants are correlated by a convergent evolution process.

  18. Cloning of cDNA sequences encoding cowpea (Vigna unguiculata) vicilins: Computational simulations suggest a binding mode of cowpea vicilins to chitin oligomers.

    Science.gov (United States)

    Rocha, Antônio J; Sousa, Bruno L; Girão, Matheus S; Barroso-Neto, Ito L; Monteiro-Júnior, José E; Oliveira, José T A; Nagano, Celso S; Carneiro, Rômulo F; Monteiro-Moreira, Ana C O; Rocha, Bruno A M; Freire, Valder N; Grangeiro, Thalles B

    2018-05-27

    Vicilins are 7S globulins which constitute the major seed storage proteins in leguminous species. Variant vicilins showing differential binding affinities for chitin have been implicated in the resistance and susceptibility of cowpea to the bruchid Callosobruchus maculatus. These proteins are members of the cupin superfamily, which includes a wide variety of enzymes and non-catalytic seed storage proteins. The cupin fold does not share similarity with any known chitin-biding domain. Therefore, it is poorly understood how these storage proteins bind to chitin. In this work, partial cDNA sequences encoding β-vignin, the major component of cowpea vicilins, were obtained from developing seeds. Three-dimensional molecular models of β-vignin showed the characteristic cupin fold and computational simulations revealed that each vicilin trimer contained 3 chitin-binding sites. Interaction models showed that chito-oligosaccharides bound to β-vignin were stabilized mainly by hydrogen bonds, a common structural feature of typical carbohydrate-binding proteins. Furthermore, many of the residues involved in the chitin-binding sites of β-vignin are conserved in other 7S globulins. These results support previous experimental evidences on the ability of vicilin-like proteins from cowpea and other leguminous species to bind in vitro to chitin as well as in vivo to chitinous structures of larval C. maculatus midgut. Copyright © 2018. Published by Elsevier B.V.

  19. Modification of chitin as substrates for chitinase

    African Journals Online (AJOL)

    sunny t

    2015-05-06

    May 6, 2015 ... Enzymes are able to bind to their substrates specifically at the active site. The proximity and ... the presence of chitin as a carbon source (Chernin et al.,. 1998). ... Possible rearrangement of chitin structure ... and form larger granules. .... Medium for Enumeration of Actinomycetes in Water and Soil. Appl.

  20. Characterization of FIBCD1 as an acetyl group-binding receptor that binds chitin

    DEFF Research Database (Denmark)

    Schlosser, Anders; Thomsen, Theresa; Moeller, Jesper B

    2009-01-01

    Chitin is a highly acetylated compound and the second most abundant biopolymer in the world next to cellulose. Vertebrates are exposed to chitin both through food ingestion and when infected with parasites, and fungi and chitin modulate the immune response in different directions. We have...... fragments. FIBCD1 may play an important role in controlling the exposure of intestine to chitin and chitin fragments, which is of great relevance for the immune defense against parasites and fungi and for immune response modulation....

  1. Albizia lebbeck Seed Coat Proteins Bind to Chitin and Act as a Defense against Cowpea Weevil Callosobruchus maculatus.

    Science.gov (United States)

    Silva, Nadia C M; De Sá, Leonardo F R; Oliveira, Eduardo A G; Costa, Monique N; Ferreira, Andre T S; Perales, Jonas; Fernandes, Kátia V S; Xavier-Filho, Jose; Oliveira, Antonia E A

    2016-05-11

    The seed coat is an external tissue that participates in defense against insects. In some nonhost seeds, including Albizia lebbeck, the insect Callosobruchus maculatus dies during seed coat penetration. We investigated the toxicity of A. lebbeck seed coat proteins to C. maculatus. A chitin-binding protein fraction was isolated from seed coat, and mass spectrometry showed similarity to a C1 cysteine protease. By ELM program an N-glycosylation interaction motif was identified in this protein, and by molecular docking the potential to interact with N-acetylglucosamine (NAG) was shown. The chitin-binding protein fraction was toxic to C. maculatus and was present in larval midgut and feces but not able to hydrolyze larval gut proteins. It did not interfere, though, with the intestinal cell permeability. These results indicate that the toxicity mechanism of this seed coat fraction may be related to its binding to chitin, present in the larvae gut, disturbing nutrient absorption.

  2. Preparation of Chitin, Study of Physicochemical Properties and Biopesticide Activities

    Directory of Open Access Journals (Sweden)

    Yuli Rohyami

    2013-08-01

    Full Text Available Chitin was preparated from shrimp shells by chemically method. Preparation was carried out by deproteination shrimp shells powder < 150 mesh with 1 - 2 M NaOH, demineralization followed by reaction with 1.0 M HCl and depigmentation with (1 : 2 : 4, v/v of chloroform : methanol : water. Physicochemical properties of chitin was determined from characterization of infrared spectra, ash value, loss on drying and total of nitrogen. Biopesticide activities of chitin was done to pest Bemisia tabaci at guava leaves with various concentration from 0.5 to 2.0 % chitin on 3 % v/v acetic acid. This study indicated that concentration of NaOH on deproteination process effected to its physicochemicals properties. Effectivity of 2 M NaOH on deproteination reaction was higher than 1 M NaOH . The degree of chitin deacetylation from 2 M NaOH was 13.61% and had lower molar ratio of total nitrogen. The degree of deacetylation of chitin from 1 M NaOH had lower and had higher molar ratio of total nitrogen. Physicochemicals properties of chitin quite an impact on its ability to reduce pest Bemisia tabaci. Biopesticide activity assay showed that treatment for 2 days on average mortality rate of 13.83%. Deacetylation of chitin which has a higher degree have a greaterability biopesticide with a mortality rate of up to 38.24%. This study the effect of deproteination process to biopesticide activities of chitin.Key Words : chitin, degree of deacetilation, molar ratio, biopesticide, Bemisia tabaci

  3. Salmonella biofilm formation on Aspergillus niger involves cellulose--chitin interactions.

    Directory of Open Access Journals (Sweden)

    Maria T Brandl

    Full Text Available Salmonella cycles between host and nonhost environments, where it can become an active member of complex microbial communities. The role of fungi in the environmental adaptation of enteric pathogens remains relatively unexplored. We have discovered that S. enterica Typhimurium rapidly attaches to and forms biofilms on the hyphae of the common fungus, Aspergillus niger. Several Salmonella enterica serovars displayed a similar interaction, whereas other bacterial species were unable to bind to the fungus. Bacterial attachment to chitin, a major constituent of fungal cell walls, mirrored this specificity. Pre-incubation of S. Typhimurium with N-acetylglucosamine, the monomeric component of chitin, reduced binding to chitin beads by as much as 727-fold and inhibited attachment to A. niger hyphae considerably. A cellulose-deficient mutant of S. Typhimurium failed to attach to chitin beads and to the fungus. Complementation of this mutant with the cellulose operon restored binding to chitin beads to 79% of that of the parental strain and allowed for attachment and biofilm formation on A. niger, indicating that cellulose is involved in bacterial attachment to the fungus via the chitin component of its cell wall. In contrast to cellulose, S. Typhimurium curli fimbriae were not required for attachment and biofilm development on the hyphae but were critical for its stability. Our results suggest that cellulose-chitin interactions are required for the production of mixed Salmonella-A. niger biofilms, and support the hypothesis that encounters with chitinaceous alternate hosts may contribute to the ecological success of human pathogens.

  4. Domain wise docking analyses of the modular chitin binding protein CBP50 from Bacillus thuringiensis serovar konkukian S4.

    Science.gov (United States)

    Sehar, Ujala; Mehmood, Muhammad Aamer; Hussain, Khadim; Nawaz, Salman; Nadeem, Shahid; Siddique, Muhammad Hussnain; Nadeem, Habibullah; Gull, Munazza; Ahmad, Niaz; Sohail, Iqra; Gill, Saba Shahid; Majeed, Summera

    2013-01-01

    This paper presents an in silico characterization of the chitin binding protein CBP50 from B. thuringiensis serovar konkukian S4 through homology modeling and molecular docking. The CBP50 has shown a modular structure containing an N-terminal CBM33 domain, two consecutive fibronectin-III (Fn-III) like domains and a C-terminal CBM5 domain. The protein presented a unique modular structure which could not be modeled using ordinary procedures. So, domain wise modeling using MODELLER and docking analyses using Autodock Vina were performed. The best conformation for each domain was selected using standard procedure. It was revealed that four amino acid residues Glu-71, Ser-74, Glu-76 and Gln-90 from N-terminal domain are involved in protein-substrate interaction. Similarly, amino acid residues Trp-20, Asn-21, Ser-23 and Val-30 of Fn-III like domains and Glu-15, Ala-17, Ser-18 and Leu-35 of C-terminal domain were involved in substrate binding. Site-directed mutagenesis of these proposed amino acid residues in future will elucidate the key amino acids involved in chitin binding activity of CBP50 protein.

  5. Structural analysis of group II chitinase (ChtII) catalysis completes the puzzle of chitin hydrolysis in insects.

    Science.gov (United States)

    Chen, Wei; Qu, Mingbo; Zhou, Yong; Yang, Qing

    2018-02-23

    Chitin is a linear homopolymer of N -acetyl-β-d-glucosamines and a major structural component of insect cuticles. Chitin hydrolysis involves glycoside hydrolase family 18 (GH18) chitinases. In insects, chitin hydrolysis is essential for periodic shedding of the old cuticle ecdysis and proceeds via a pathway different from that in the well studied bacterial chitinolytic system. Group II chitinase (ChtII) is a widespread chitinolytic enzyme in insects and contains the greatest number of catalytic domains and chitin-binding domains among chitinases. In Lepidopterans, ChtII and two other chitinases, ChtI and Chi-h, are essential for chitin hydrolysis. Although ChtI and Chi-h have been well studied, the role of ChtII remains elusive. Here, we investigated the structure and enzymology of Of ChtII, a ChtII derived from the insect pest Ostrinia furnacalis We present the crystal structures of two catalytically active domains of Of ChtII, Of ChtII-C1 and Of ChtII-C2, both in unliganded form and complexed with chitooligosaccharide substrates. We found that Of ChtII-C1 and Of ChtII-C2 both possess long, deep substrate-binding clefts with endochitinase activities. Of ChtII exhibited structural characteristics within the substrate-binding cleft similar to those in Of Chi-h and Of ChtI. However, Of ChtII lacked structural elements favoring substrate binding beyond the active sites, including an extra wall structure present in Of Chi-h. Nevertheless, the numerous domains in Of ChtII may compensate for this difference; a truncation containing one catalytic domain and three chitin-binding modules ( Of ChtII-B4C1) displayed activity toward insoluble polymeric substrates that was higher than those of Of Chi-h and Of ChtI. Our observations provide the last piece of the puzzle of chitin hydrolysis in insects. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Three-dimensional (3D) structure prediction and function analysis of the chitin-binding domain 3 protein HD73_3189 from Bacillus thuringiensis HD73.

    Science.gov (United States)

    Zhan, Yiling; Guo, Shuyuan

    2015-01-01

    Bacillus thuringiensis (Bt) is capable of producing a chitin-binding protein believed to be functionally important to bacteria during the stationary phase of its growth cycle. In this paper, the chitin-binding domain 3 protein HD73_3189 from B. thuringiensis has been analyzed by computer technology. Primary and secondary structural analyses demonstrated that HD73_3189 is negatively charged and contains several α-helices, aperiodical coils and β-strands. Domain and motif analyses revealed that HD73_3189 contains a signal peptide, an N-terminal chitin binding 3 domains, two copies of a fibronectin-like domain 3 and a C-terminal carbohydrate binding domain classified as CBM_5_12. Moreover, analysis predicted the protein's associated localization site to be the cell wall. Ligand site prediction determined that amino acid residues GLU-312, TRP-334, ILE-341 and VAL-382 exposed on the surface of the target protein exhibit polar interactions with the substrate.

  7. Characterization and role of a metalloprotease induced by chitin in Serratia sp. KCK.

    Science.gov (United States)

    Kim, Hyun-Soo; Golyshin, Peter N; Timmis, Kenneth N

    2007-11-01

    A metalloprotease induced by chitin in a new chitinolytic bacterium Serratia sp. Strain KCK was purified and characterized. Compared with other Serratia enzymes, it exhibited a rather broad pH activity range (pH 5.0-8.0), and thermostability. The cognate ORF, mpr, was cloned and expressed. Its deduced amino acid sequence showed high similarity to those of bacterial zinc-binding metalloproteases and a well-conserved serralysin family motif. Pretreatment of chitin with the Mpr protein promoted chitin degradation by chitinase A, which suggests that Mpr participates in, and facilitates, chitin degradation by this microorganism.

  8. Chitin deacetylase

    International Nuclear Information System (INIS)

    Ito, E.; Araki, Y.

    1988-01-01

    This paper discusses chitosan which is a unique polysaccharide in that it possesses free amino groups. The authors state that most of the amino sugar residing in naturally occurring polysaccharides is believed to be N-acylated. An enzyme catalyzing the conversion of chitin to chitosan was first demonstrated in an extract of Mucor rouxii. A similar enzyme was found in the culture filtrate of a plant pathogen, Colletotrichum lindemuthianum. They present the chitin deacetylase activity assayed by measuring the radioactivity of [ 3 H] acetic acid liberated from a water-soluble chitin derivative, glycol [acetyl- 3 H] chitin

  9. Chitin Degradation Proteins Produced by the Marine Bacterium Vibrio harveyi Growing on Different Forms of Chitin.

    Science.gov (United States)

    Svitil, A L; Chadhain, S; Moore, J A; Kirchman, D L

    1997-02-01

    Relatively little is known about the number, diversity, and function of chitinases produced by bacteria, even though chitin is one of the most abundant polymers in nature. Because of the importance of chitin, especially in marine environments, we examined chitin-degrading proteins in the marine bacterium Vibrio harveyi. This bacterium had a higher growth rate and more chitinase activity when grown on (beta)-chitin (isolated from squid pen) than on (alpha)-chitin (isolated from snow crab), probably because of the more open structure of (beta)-chitin. When exposed to different types of chitin, V. harveyi excreted several chitin-degrading proteins into the culture media. Some chitinases were present with all of the tested chitins, while others were unique to a particular chitin. We cloned and identified six separate chitinase genes from V. harveyi. These chitinases appear to be unique based on DNA restriction patterns, immunological data, and enzyme activity. This marine bacterium and probably others appear to synthesize separate chitinases for efficient utilization of different forms of chitin and chitin by-products.

  10. Preparation of Size-Controlled Silver Nanoparticles and Chitin-Based Composites and Their Antimicrobial Activities

    Directory of Open Access Journals (Sweden)

    Vinh Quang Nguyen

    2013-01-01

    Full Text Available A simple method for the preparation of size-controlled spherical silver nanoparticles (Ag NPs was reported for their generation by autoclaving a mixture of silver-containing glass powder and glucose. The particle size is regulated by the glucose concentration, with concentrations of 0.25, 1.0, and 4.0 wt% glucose providing small (3.48±1.83 nm in diameter, medium (6.53±1.78 nm, and large (12.9±2.5 nm particles, respectively. In this study, Ag NP/chitin composites were synthesized by mixing each of these three Ag NP suspensions with a <5% deacetylated (DAc chitin powder (pH 7.0 at room temperature. The Ag NPs were homogenously dispersed and stably adsorbed onto the chitin. The Ag NP/chitin composites were obtained as yellow or brown powders. Approximately 5, 15, and 20 μg of the small, medium, and large Ag NPs, respectively, were estimated to maximally adsorb onto 1 mg of chitin. The bactericidal and antifungal activities of the Ag NP/chitin composites increased as the amount of Ag NPs in the chitin increased. Furthermore, smaller Ag NPs (per weight in the chitin composites provided higher bactericidal and anti-fungal activities.

  11. Chitin-induced T6SS in Vibrio cholerae is dependent on ChiS activation.

    Science.gov (United States)

    Chourashi, Rhishita; Das, Suman; Dhar, Debarpan; Okamoto, Keinosuke; Mukhopadhyay, Asish K; Chatterjee, Nabendu Sekhar

    2018-05-01

    Vibrio cholerae regularly colonizes the chitinous exoskeleton of crustacean shells in the aquatic region. The type 6 secretion system (T6SS) in V. cholerae is an interbacterial killing device. This system is thought to provide a competitive advantage to V. cholerae in a polymicrobial community of the aquatic region under nutrient-poor conditions. V. cholerae chitin sensing is known to be initiated by the activation of a two-component sensor histidine kinase ChiS in the presence of GlcNAc2 (N,N'-diacetylchitobiose) residues generated by the action of chitinases on chitin. It is known that T6SS in V. cholerae is generally induced by chitin. However, the effect of ChiS activation on T6SS is unknown. Here, we found that ChiS inactivation resulted in impaired bacterial killing and reduced expression of T6SS genes. Active ChiS positively affected T6SS-mediated natural transformation in V. cholerae. ChiS depletion or inactivation also resulted in reduced colonization on insoluble chitin surfaces. Therefore, we have shown that V. cholerae colonization on chitinous surfaces activates ChiS, which promotes T6SS-dependent bacterial killing and horizontal gene transfer. We also highlight the importance of chitinases in T6SS upregulation.

  12. Yeast cell wall chitin reduces wine haze formation.

    Science.gov (United States)

    Ndlovu, Thulile; Divol, Benoit; Bauer, Florian F

    2018-04-27

    Protein haze formation in bottled wines is a significant concern for the global wine industry and wine clarification before bottling is therefore a common but expensive practice. Previous studies have shown that wine yeast strains can reduce haze formation through the secretion of certain mannoproteins, but it has been suggested that other yeast-dependent haze protective mechanisms exist. On the other hand, addition of chitin has been shown to reduce haze formation, likely because grape chitinases have been shown to be the major contributors to haze. In this study, Chardonnay grape must fermented by various yeast strains resulted in wines with different protein haze levels indicating differences in haze protective capacities of the strains. The cell wall chitin levels of these strains were determined, and a strong correlation between cell wall chitin levels and haze protection capability was observed. To further evaluate the mechanism of haze protection, Escherichia coli -produced GFP-tagged grape chitinase was shown to bind efficiently to yeast cell walls in a cell wall chitin concentration-dependent manner, while commercial chitinase was removed from synthetic wine in quantities also correlated with the cell wall chitin levels of the strains. Our findings suggest a new mechanism of reducing wine haze, and propose a strategy for optimizing wine yeast strains to improve wine clarification. Importance In this study, we establish a new mechanism by which wine yeast strains can impact on the protein haze formation of wines, and demonstrate that yeast cell wall chitin binds grape chitinase in a chitin-concentration dependent manner. We also show that yeast can remove this haze-forming protein from wine. Chitin has in the past been shown to efficiently reduce wine haze formation when added to the wine in high concentration as a clarifying agent. Our data suggest that the selection of yeast strains with high levels of cell wall chitin can reduce protein haze. We also

  13. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease

    NARCIS (Netherlands)

    Mentlak, T.A.; Kombrink, A.; Shinya, T.; Ryder, L.S.; Otomo, I.; Saitoh, H.; Terauchi, R.; Nishizawa, Y.; Shibuya, N.; Thomma, B.P.H.J.; Talbot, N.J.

    2012-01-01

    Plants use pattern recognition receptors to defend themselves from microbial pathogens. These receptors recognize pathogen-associated molecular patterns (PAMPs) and activate signaling pathways that lead to immunity. In rice (Oryza sativa), the chitin elicitor binding protein (CEBiP) recognizes

  14. The use of isothermal titration calorimetry to determine the thermodynamics of metal ion binding to low-cost sorbents

    International Nuclear Information System (INIS)

    Karlsen, Vigdis; Heggset, Ellinor Baevre; Sorlie, Morten

    2010-01-01

    The thermodynamics of Al 3+ , Cr 3+ , and Pb 2+ binding to the abundant biopolymer chitin have been determined using isothermal titration calorimetry (ITC) and compared to what is observed for binding to activated carbon. The use of ITC enables the detection of two distinct binding sites on chitin for all three metal ions. For the relative strong binding sites, free energy changes ranges from -37.6 kJ/mol to -41.8 kJ/mol while the same values are from -30.1 kJ/mol to -31.8 kJ/mol for the relative weak binding sites. All binding reactions to chitin are entropically driven. Interactions of the metal ions to activated carbon are best fitted as a single-site binding with relative weak binding with free energy changes from -26.3 kJ/mol to -26.8 kJ/mol.

  15. A chitin-binding lectin from Moringa oleifera seeds (WSMoL) impairs the digestive physiology of the Mediterranean flour larvae, Anagasta kuehniella.

    Science.gov (United States)

    de Oliveira, Caio Fernando Ramalho; de Moura, Maiara Celine; Napoleão, Thiago Henrique; Paiva, Patrícia Maria Guedes; Coelho, Luana Cassandra Breitenbach Barroso; Macedo, Maria Lígia Rodrigues

    2017-10-01

    Biotechnological techniques allow the investigation of alternatives to outdated chemical insecticides for crop protection; some investigations have focused on the identification of molecules tailored from nature for this purpose. We, herein, describe the negative effects of water-soluble lectin from Moringa oleifera seeds (WSMoL) on Anagasta kuehniella development. The chitin-binding lectin, WSMoL, impaired the larval weight gain by 50% and affected the activity of the pest's major digestive enzymes. The commitment of the digestive process became evident after controlled digestion studies, where the capacity of protein digestion was compromised by >90%. Upon acute exposure, the lectin was not resistant to digestion; however, chronic ingestion of WSMoL was able to reverse this feature. Thus, we show that resistance to digestion may not be a prerequisite for a lectin's ability to exert negative effects on larval physiology. The mechanism of action of WSMoL involves binding to chitin with possible disruption to the peritrophic membrane, causing disorder between the endo- and ectoperitrophic spaces. Additionally, results suggest that WSMoL may trigger apoptosis in gut cells, leading to the lower enzymatic activity observed in WSMoL-fed larvae. Although assays employing an artificial diet did not demonstrate effects of WSMoL on A. kuehniella mortality, this lectin may hold potential for exerting insecticide effects on other pest insects, as well for use in other experimental approaches, such as WSMoL-expressing plants. Moreover, the use of WSMoL with other biotechnological tools, such as 'pyramid' crops, may represent a strategy for delaying the evolution of pest resistance to transgenic crops, since its multiple site targets could act in synergism with other insecticide compounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. FIBCD1 Modulation of the Epithelial Immune Response Elicited by Chitin

    DEFF Research Database (Denmark)

    Hammond, Mark; Schlosser, Anders; Bak-Thomsen, Theresa Helene

    2010-01-01

    of NF-jB signalling and downstream synthesis of mucosal epithelial-derived cytokines, TSLP and IL-33, which shapes the local accumulation and activation of Th2 responses. Results: Initial experiments have focused on the establishment of stable FIBCD1 overexpression in HEK293, HCT-116 and A549 epithelial......Background: FIBCD1 is a type II transmembrane protein located on the brush border of intestinal epithelial cells. FIBCD1 binds specifically to acetylated compounds such as chitin through the C-terminal fibrinogen-related domain. Chitin is a highly acetylated homopolymeric b-1,4-N...... or the model ligand acetylated BSA, at different time intervals anddoses and using a luciferase reporter system detection of NFjB activation will be performed and cytokine expression will be quantified via qRT-PCR. Perspectives: Improved understanding of epithelialimmune and inflammatory modulation in response...

  17. Elevated Chitin Content Reduces the Susceptibility of Candida Species to Caspofungin

    Science.gov (United States)

    Walker, Louise A.; Gow, Neil A. R.

    2013-01-01

    The echinocandin antifungal drugs inhibit synthesis of the major fungal cell wall polysaccharide β(1,3)-glucan. Echinocandins have good efficacy against Candida albicans but reduced activity against other Candida species, in particular Candida parapsilosis and Candida guilliermondii. Treatment of Candida albicans with a sub-MIC level of caspofungin has been reported to cause a compensatory increase in chitin content and to select for sporadic echinocandin-resistant FKS1 point mutants that also have elevated cell wall chitin. Here we show that elevated chitin in response to caspofungin is a common response in various Candida species. Activation of chitin synthesis was observed in isolates of C. albicans, Candida tropicalis, C. parapsilosis, and C. guilliermondii and in some isolates of Candida krusei in response to caspofungin treatment. However, Candida glabrata isolates demonstrated no exposure-induced change in chitin content. Furthermore, isolates of C. albicans, C. krusei, C. parapsilosis, and C. guilliermondii which were stimulated to have higher chitin levels via activation of the calcineurin and protein kinase C (PKC) signaling pathways had reduced susceptibility to caspofungin. Isolates containing point mutations in the FKS1 gene generally had higher chitin levels and did not demonstrate a further compensatory increase in chitin content in response to caspofungin treatment. These results highlight the potential of increased chitin synthesis as a potential mechanism of tolerance to caspofungin for the major pathogenic Candida species. PMID:23089748

  18. Chitin Degradation In Marine Bacteria

    DEFF Research Database (Denmark)

    Paulsen, Sara; Machado, Henrique; Gram, Lone

    2015-01-01

    Introduction: Chitin is the most abundant polymer in the marine environment and the second most abundant in nature. Chitin does not accumulate on the ocean floor, because of microbial breakdown. Chitin degrading bacteria could have potential in the utilization of chitin as a renewable carbon...... and nitrogen source in the fermentation industry.Methods: Here, whole genome sequenced marine bacteria were screened for chitin degradation using phenotypic and in silico analyses.Results: The in silico analyses revealed the presence of three to nine chitinases in each strain, however the number of chitinases...... chitin regulatory system.Conclusions: This study has provided insight into the ecology of chitin degradation in marine bacteria. It also served as a basis for choosing a more efficient chitin degrading production strain e.g. for the use of chitin waste for large-scale fermentations....

  19. Chitin fulfilling a biomaterials promise

    CERN Document Server

    Khor, Eugene

    2001-01-01

    The second edition of Chitin underscores the important factors for standardizing chitin processing and characterization. It captures the essential interplay between chitin's assets and limitations as a biomaterial, placing the past promises of chitin in perspective, addressing its present realities and offering insight into what is required to realize chitin's destiny (including its derivative, chitosan) as a biomaterial of the twenty-first century. This book is an ideal guide for both industrialists and researchers with a vested interest in commercializing chitin.An upd

  20. Chitin utilization by the insect-transmitted bacterium Xylella fastidiosa.

    Science.gov (United States)

    Killiny, Nabil; Prado, Simone S; Almeida, Rodrigo P P

    2010-09-01

    Xylella fastidiosa is an insect-borne bacterium that colonizes xylem vessels of a large number of host plants, including several crops of economic importance. Chitin is a polysaccharide present in the cuticle of leafhopper vectors of X. fastidiosa and may serve as a carbon source for this bacterium. Biological assays showed that X. fastidiosa reached larger populations in the presence of chitin. Additionally, chitin induced phenotypic changes in this bacterium, notably increasing adhesiveness. Quantitative PCR assays indicated transcriptional changes in the presence of chitin, and an enzymatic assay demonstrated chitinolytic activity by X. fastidiosa. An ortholog of the chitinase A gene (chiA) was identified in the X. fastidiosa genome. The in silico analysis revealed that the open reading frame of chiA encodes a protein of 351 amino acids with an estimated molecular mass of 40 kDa. chiA is in a locus that consists of genes implicated in polysaccharide degradation. Moreover, this locus was also found in the genomes of closely related bacteria in the genus Xanthomonas, which are plant but not insect associated. X. fastidiosa degraded chitin when grown on a solid chitin-yeast extract-agar medium and grew in liquid medium with chitin as the sole carbon source; ChiA was also determined to be secreted. The gene encoding ChiA was cloned into Escherichia coli, and endochitinase activity was detected in the transformant, showing that the gene is functional and involved in chitin degradation. The results suggest that X. fastidiosa may use its vectors' foregut surface as a carbon source. In addition, chitin may trigger X. fastidiosa's gene regulation and biofilm formation within vectors. Further work is necessary to characterize the role of chitin and its utilization in X. fastidiosa.

  1. Biomedical Activity of Chitin/Chitosan Based Materials—Influence of Physicochemical Properties Apart from Molecular Weight and Degree of N-Acetylation

    Directory of Open Access Journals (Sweden)

    Mirko X. Weinhold

    2011-11-01

    Full Text Available The physicochemical nature of chitin and chitosan, which influences the biomedical activity of these compounds, is strongly related to the source of chitin and the conditions of the chitin/chitosan production process. Apart from widely described key factors such as weight-averaged molecular weight (MW and degree of N-acetylation (DA, other physicochemical parameters like polydispersity (MW/MN, crystallinity or the pattern of acetylation (PA have to be taken into consideration. From the biological point of view, these parameters affect a very important factor—the solubility of chitin and chitosan in water and organic solvents. The physicochemical properties of chitosan solutions can be controlled by manipulating solution conditions (temperature, pH, ionic strength, concentration, solvent. The degree of substitution of the hydroxyl and the amino groups or the degree of quaternization of the amino groups also influence the mechanical and biological properties of chitosan samples. Finally, a considerable research effort has been directed towards developing safe and efficient chitin/chitosan-based products because many factors, like the size of nanoparticles, can determine the biomedical characteristics of medicinal products. The influence of these factors on the biomedical activity of chitin/chitosan-based products is presented in this report in more detail.

  2. Differentiations of chitin content and surface morphologies of chitins extracted from male and female grasshopper species.

    Directory of Open Access Journals (Sweden)

    Murat Kaya

    Full Text Available In this study, we used Fourier transform infrared spectroscopy (FT-IR, elemental analysis (EA, thermogravimetric analysis (TGA, X-ray diffractometry (XRD, and scanning electron microscopy (SEM to investigate chitin structure isolated from both sexes of four grasshopper species. FT-IR, EA, XRD, and TGA showed that the chitin was in the alpha form. With respect to gender, two main differences were observed. First, we observed that the quantity of chitin was greater in males than in females and the dry weight of chitin between species ranged from 4.71% to 11.84%. Second, using SEM, we observed that the male chitin surface structure contained 25-90 nm wide nanofibers and 90-250 nm nanopores, while no pores or nanofibers were observed in the chitin surface structure of the majority of females (nanofibers were observed only in M. desertus females. In contrast, the elemental analysis, thermal properties, and crystalline index values for chitin were similar in males and females. Also, we carried out enzymatic digestion of the isolated chitins using commercial chitinase from Streptomyces griseus. We observed that there were no big differences in digestion rate of the chitins from both sexes and commercial chitin. The digestion rates were for grasshoppers' chitins; 88.45-95.48% and for commercial chitin; 94.95%.

  3. Differentiations of chitin content and surface morphologies of chitins extracted from male and female grasshopper species.

    Science.gov (United States)

    Kaya, Murat; Lelešius, Evaldas; Nagrockaitė, Radvilė; Sargin, Idris; Arslan, Gulsin; Mol, Abbas; Baran, Talat; Can, Esra; Bitim, Betul

    2015-01-01

    In this study, we used Fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA), thermogravimetric analysis (TGA), X-ray diffractometry (XRD), and scanning electron microscopy (SEM) to investigate chitin structure isolated from both sexes of four grasshopper species. FT-IR, EA, XRD, and TGA showed that the chitin was in the alpha form. With respect to gender, two main differences were observed. First, we observed that the quantity of chitin was greater in males than in females and the dry weight of chitin between species ranged from 4.71% to 11.84%. Second, using SEM, we observed that the male chitin surface structure contained 25-90 nm wide nanofibers and 90-250 nm nanopores, while no pores or nanofibers were observed in the chitin surface structure of the majority of females (nanofibers were observed only in M. desertus females). In contrast, the elemental analysis, thermal properties, and crystalline index values for chitin were similar in males and females. Also, we carried out enzymatic digestion of the isolated chitins using commercial chitinase from Streptomyces griseus. We observed that there were no big differences in digestion rate of the chitins from both sexes and commercial chitin. The digestion rates were for grasshoppers' chitins; 88.45-95.48% and for commercial chitin; 94.95%.

  4. Extraction and characterization of chitin and chitosan from ...

    African Journals Online (AJOL)

    Chitin has been extracted from two Tunisian crustacean species. The obtained chitin was transformed into the more useful soluble chitosan. These products were characterized by their biological activity as antimicrobial and antifungal properties. The tested bacterial strains were Escherichia coli American Type Cell Culture ...

  5. Biopolymer chitin: extraction and characterization

    International Nuclear Information System (INIS)

    Andrade, Sania M.B. de; Ladchumananandasivam, Rasiah

    2011-01-01

    The biopolymers are materials made from renewable sources such as soybean, corn, cane sugar, cellulose and chitin. Chitin is the most abundant biopolymer found in nature, after cellulose. The chemical structure of chitin is distinguished by the hydroxyl group, of structure from cellulose, located at position C-2, which in the chitin is replaced by acetamine group. The objective of this study was to develop the chitin from exoskeletons of Litopenaeus vannamei shrimp, which are discarded as waste, causing pollutions, environmental problems and thus obtain better utilization of these raw materials. It also, show the extraction process and deacetylation of chitosan. The extraction of chitin followed steps of demineralization, desproteinization and deodorization. Chitin and chitosan were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and the thermals properties were analyzed by thermogravimetry (TG/DTG). (author)

  6. ATL9, a RING zinc finger protein with E3 ubiquitin ligase activity implicated in chitin- and NADPH oxidase-mediated defense responses.

    Directory of Open Access Journals (Sweden)

    Marta Berrocal-Lobo

    2010-12-01

    Full Text Available Pathogen associated molecular patterns (PAMPs are signals detected by plants that activate basal defenses. One of these PAMPs is chitin, a carbohydrate present in the cell walls of fungi and in insect exoskeletons. Previous work has shown that chitin treatment of Arabidopsis thaliana induced defense-related genes in the absence of a pathogen and that the response was independent of the salicylic acid (SA, jasmonic acid (JA and ethylene (ET signaling pathways. One of these genes is ATL9 ( = ATL2G, which encodes a RING zinc-finger like protein. In the current work we demonstrate that ATL9 has E3 ubiquitin ligase activity and is localized to the endoplasmic reticulum. The expression pattern of ATL9 is positively correlated with basal defense responses against Golovinomyces cichoracearum, a biotrophic fungal pathogen. The basal levels of expression and the induction of ATL9 by chitin, in wild type plants, depends on the activity of NADPH oxidases suggesting that chitin-mediated defense response is NADPH oxidase dependent. Although ATL9 expression is not induced by treatment with known defense hormones (SA, JA or ET, full expression in response to chitin is compromised slightly in mutants where ET- or SA-dependent signaling is suppressed. Microarray analysis of the atl9 mutant revealed candidate genes that appear to act downstream of ATL9 in chitin-mediated defenses. These results hint at the complexity of chitin-mediated signaling and the potential interplay between elicitor-mediated signaling, signaling via known defense pathways and the oxidative burst.

  7. The Antifungal Activity of Functionalized Chitin Nanocrystals in Poly (Lactid Acid Films

    Directory of Open Access Journals (Sweden)

    Asier M. Salaberria

    2017-05-01

    Full Text Available As, in the market, poly (lactic acid (PLA is the most used polymer as an alternative to conventional plastics, and as functionalized chitin nanocrystals (CHNC can provide structural and bioactive properties, their combination sounds promising in the preparation of functional nanocomposite films for sustainable packaging. Chitin nanocrystals were successfully modified via acylation using anhydride acetic and dodecanoyl chloride acid to improve their compatibility with the matrix, PLA. The nanocomposite films were prepared by extrusion/compression approach using different concentrations of both sets of functionalized CHNC. This investigation brings forward that both sets of modified CHNC act as functional agents, i.e., they slightly improved the hydrophobic character of the PLA nanocomposite films, and, very importantly, they also enhanced their antifungal activity. Nonetheless, the nanocomposite films prepared with the CHNC modified with dodecanoyl chloride acid presented the best properties.

  8. Chitin: 'Forgotten' Source of Nitrogen: From Modern Chitin to Thermally Mature Kerogen: Lessons from Nitrogen Isotope Ratios

    Science.gov (United States)

    Schimmelmann, A.; Wintsch, R.P.; Lewan, M.D.; DeNiro, M.J.

    1998-01-01

    Chitinous biomass represents a major pool of organic nitrogen in living biota and is likely to have contributed some of the fossil organic nitrogen in kerogen. We review the nitrogen isotope biogeochemistry of chitin and present preliminary results suggesting interaction between kerogen and ammonium during thermal maturation. Modern arthropod chitin may shift its nitrogen isotope ratio by a few per mil depending on the chemical method of chitin preparation, mostly because N-containing non-amino-sugar components in chemically complex chitin cannot be removed quantitatively. Acid hydrolysis of chemically complex chitin and subsequent ion-chromatographic purification of the "deacetylated chitin-monomer" D-glucosamine (in hydrochloride form) provides a chemically well-defined, pure amino-sugar substrate for reproducible, high-precision determination of ??15N values in chitin. ??15N values of chitin exhibited a variability of about one per mil within an individual's exoskeleton. The nitrogen isotope ratio differed between old and new exoskeletons by up to 4 per mil. A strong dietary influence on the ??15N value of chitin is indicated by the observation of increasing ??15N values of chitin from marine crustaceans with increasing trophic level. Partial biodegradation of exoskeletons does not significantly influence ??15N values of remaining, chemically preserved amino sugar in chitin. Diagenesis and increasing thermal maturity of sedimentary organic matter, including chitin-derived nitrogen-rich moieties, result in humic compounds much different from chitin and may significantly change bulk ??15N values. Hydrous pyrolysis of immature source rocks at 330??C in contact with 15N-enriched NH4Cl, under conditions of artificial oil generation, demonstrates the abiogenic incorporation of inorganic nitrogen into carbon-bound nitrogen in kerogen. Not all organic nitrogen in natural, thermally mature kerogen is therefore necessarily derived from original organic matter, but may

  9. Thermal decomposition of natural polysaccharides: Chitin and chitosan

    Directory of Open Access Journals (Sweden)

    Kuchina Yu.A.

    2015-03-01

    Full Text Available The results of the thermal analysis of shrimp’s chitin and chitosan have been presented (samples of polysaccharide differed by the deacetylation degree have been studied. The thermal analysis has been carried out by differential thermogravimetry and differential scanning calorimetry. Activation energy of process of chitin and chitosan thermal destruction has been calculated

  10. The Plasmodiophora brassicae genome reveals insights in its life cycle and ancestry of chitin synthases.

    Science.gov (United States)

    Schwelm, Arne; Fogelqvist, Johan; Knaust, Andrea; Jülke, Sabine; Lilja, Tua; Bonilla-Rosso, German; Karlsson, Magnus; Shevchenko, Andrej; Dhandapani, Vignesh; Choi, Su Ryun; Kim, Hong Gi; Park, Ju Young; Lim, Yong Pyo; Ludwig-Müller, Jutta; Dixelius, Christina

    2015-06-18

    Plasmodiophora brassicae causes clubroot, a major disease of Brassica oil and vegetable crops worldwide. P. brassicae is a Plasmodiophorid, obligate biotrophic protist in the eukaryotic kingdom of Rhizaria. Here we present the 25.5 Mb genome draft of P. brassicae, developmental stage-specific transcriptomes and a transcriptome of Spongospora subterranea, the Plasmodiophorid causing powdery scab on potato. Like other biotrophic pathogens both Plasmodiophorids are reduced in metabolic pathways. Phytohormones contribute to the gall phenotypes of infected roots. We report a protein (PbGH3) that can modify auxin and jasmonic acid. Plasmodiophorids contain chitin in cell walls of the resilient resting spores. If recognized, chitin can trigger defense responses in plants. Interestingly, chitin-related enzymes of Plasmodiophorids built specific families and the carbohydrate/chitin binding (CBM18) domain is enriched in the Plasmodiophorid secretome. Plasmodiophorids chitin synthases belong to two families, which were present before the split of the eukaryotic Stramenopiles/Alveolates/Rhizaria/Plantae and Metazoa/Fungi/Amoebozoa megagroups, suggesting chitin synthesis to be an ancient feature of eukaryotes. This exemplifies the importance of genomic data from unexplored eukaryotic groups, such as the Plasmodiophorids, to decipher evolutionary relationships and gene diversification of early eukaryotes.

  11. Use of chitin and chitosan to produce new chitooligosaccharides by chitinase Chit42: enzymatic activity and structural basis of protein specificity.

    Science.gov (United States)

    Kidibule, Peter Elias; Santos-Moriano, Paloma; Jiménez-Ortega, Elena; Ramírez-Escudero, Mercedes; Limón, M Carmen; Remacha, Miguel; Plou, Francisco José; Sanz-Aparicio, Julia; Fernández-Lobato, María

    2018-03-22

    Chitinases are ubiquitous enzymes that have gained a recent biotechnological attention due to their ability to transform biological waste from chitin into valued chito-oligomers with wide agricultural, industrial or medical applications. The biological activity of these molecules is related to their size and acetylation degree. Chitinase Chit42 from Trichoderma harzianum hydrolyses chitin oligomers with a minimal of three N-acetyl-D-glucosamine (GlcNAc) units. Gene chit42 was previously characterized, and according to its sequence, the encoded protein included in the structural Glycoside Hydrolase family GH18. Chit42 was expressed in Pichia pastoris using fed-batch fermentation to about 3 g/L. Protein heterologously expressed showed similar biochemical properties to those expressed by the natural producer (42 kDa, optima pH 5.5-6.5 and 30-40 °C). In addition to hydrolyse colloidal chitin, this enzyme released reducing sugars from commercial chitosan of different sizes and acetylation degrees. Chit42 hydrolysed colloidal chitin at least 10-times more efficiently (defined by the k cat /K m ratio) than any of the assayed chitosan. Production of partially acetylated chitooligosaccharides was confirmed in reaction mixtures using HPAEC-PAD chromatography and mass spectrometry. Masses corresponding to (D-glucosamine) 1-8 -GlcNAc were identified from the hydrolysis of different substrates. Crystals from Chit42 were grown and the 3D structure determined at 1.8 Å resolution, showing the expected folding described for other GH18 chitinases, and a characteristic groove shaped substrate-binding site, able to accommodate at least six sugar units. Detailed structural analysis allows depicting the features of the Chit42 specificity, and explains the chemical nature of the partially acetylated molecules obtained from analysed substrates. Chitinase Chit42 was expressed in a heterologous system to levels never before achieved. The enzyme produced small partially acetylated

  12. Extraction and Characterization of Chitin and Chitosan from Blue Crab and Synthesis of Chitosan Cryogel Scaffolds

    Directory of Open Access Journals (Sweden)

    Nimet Bölgen

    2016-08-01

    Full Text Available Polymeric scaffolds produced by cryogelation technique have attracted increasing attention for tissue engineering applications. Cryogelation is a technique which enables to produce interconnected porous matrices from the frozen reaction mixtures of polymers or monomeric precursors. Chitosan is a biocompatible, biodegradable, nontoxic, antibacterial, antioxidant and antifungal natural polymer that is obtained by deacetylation of chitin, which is mostly found in the exoskeleton of many crustacean. In this study, chitin was isolated from the exoskeleton of blue crap (Callinectes sapidus using a chemical method. Callinectes sapidus samples were collected from a market, as a waste material after it has been consumed as food. Demineralization, deproteinization and decolorization steps were applied to the samples to obtain chitin. Chitosan was prepared from isolated chitin by deacetylation at high temperatures. The chemical compositon of crab shell, extracted chitin and chitosan were characterized with FTIR analyses. And also to determine the physicochemical and functional properties of the produced chitosan; solubility, water binding and fat binding analysis were performed. Chitosan cryogel scaffolds were prepared by crosslinking reaction at cryogenic conditions at constant amount of chitosan (1%, w/v with different ratios of glutaraldehyde (1, 3, and 6%, v/v as crosslinker. The chemical structure of the scaffolds were examined by FTIR. Also, the water uptake capacity of scaffolds have been determined. Collectively, the results suggested that the characterized chitosan cryogels can be potential scaffolds to be used in tissue engineering applications.

  13. Benzoylurea Chitin Synthesis Inhibitors.

    Science.gov (United States)

    Sun, Ranfeng; Liu, Chunjuan; Zhang, Hao; Wang, Qingmin

    2015-08-12

    Benzoylurea chitin synthesis inhibitors are widely used in integrated pest management (IPM) and insecticide resistance management (IRM) programs due to their low toxicity to mammals and predatory insects. In the past decades, a large number of benzoylurea derivatives have been synthesized, and 15 benzoylurea chitin synthesis inhibitors have been commercialized. This review focuses on the history of commercial benzolyphenylureas (BPUs), synthetic methods, structure-activity relationships (SAR), action mechanism research, environmental behaviors, and ecotoxicology. Furthermore, their disadvantages of high risk to aquatic invertebrates and crustaceans are pointed out. Finally, we propose that the para-substituents at anilide of benzoylphenylureas should be the functional groups, and bipartite model BPU analogues are discussed in an attempt to provide new insight for future development of BPUs.

  14. Chitin based polyurethanes using hydroxyl terminated polybutadiene, part III: surface characteristics.

    Science.gov (United States)

    Zia, Khalid Mahmood; Zuber, Mohammad; Saif, Muhammad Jawwad; Jawaid, Mohammad; Mahmood, Kashif; Shahid, Muhammad; Anjum, Muhammad Naveed; Ahmad, Mirza Nadeem

    2013-11-01

    Hydroxy terminated polybutadiene (HTPB)-chitin based polyurethanes (PUs) with controlled hydrophobicity were synthesized using HTPB and toluene diisocyanate (TDI). The prepolymer was extended with different mass ratios of chitin and 1,4-butane diol (BDO). The effect of chitin contents in chain extender (CE) proportions on surface properties was studied and investigated. Incorporation of chitin contents into the final PU showed decrease in contact angle value of water drop, water absorption (%) and swelling behavior. The antibacterial activity of the prepared samples was affected by varying the chitin contents in the chemical composition of the final PU. The results demonstrated that the use of prepared material can be suggested as non-absorbable suture. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Preparation, characterization, drug release and computational modelling studies of antibiotics loaded amorphous chitin nanoparticles.

    Science.gov (United States)

    Gayathri, N K; Aparna, V; Maya, S; Biswas, Raja; Jayakumar, R; Mohan, C Gopi

    2017-12-01

    We present a computational investigation of binding affinity of different types of drugs with chitin nanocarriers. Understanding the chitn polymer-drug interaction is important to design and optimize the chitin based drug delivery systems. The binding affinity of three different types of anti-bacterial drugs Ethionamide (ETA) Methacycline (MET) and Rifampicin (RIF) with amorphous chitin nanoparticles (AC-NPs) were studied by integrating computational and experimental techniques. The binding energies (BE) of hydrophobic ETA, hydrophilic MET and hydrophobic RIF were -7.3kcal/mol, -5.1kcal/mol and -8.1kcal/mol respectively, with respect to AC-NPs, using molecular docking studies. This theoretical result was in good correlation with the experimental studies of AC-drug loading and drug entrapment efficiencies of MET (3.5±0.1 and 25± 2%), ETA (5.6±0.02 and 45±4%) and RIF (8.9±0.20 and 53±5%) drugs respectively. Stability studies of the drug encapsulated nanoparticles showed stable values of size, zeta and polydispersity index at 6°C temperature. The correlation between computational BE and experimental drug entrapment efficiencies of RIF, ETA and MET drugs with four AC-NPs strands were 0.999 respectively, while that of the drug loading efficiencies were 0.854 respectively. Further, the molecular docking results predict the atomic level details derived from the electrostatic, hydrogen bonding and hydrophobic interactions of the drug and nanoparticle for its encapsulation and loading in the chitin-based host-guest nanosystems. The present results thus revealed the drug loading and drug delivery insights and has the potential of reducing the time and cost of processing new antibiotic drug delivery nanosystem optimization, development and discovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effect of gamma radiation on chitin-nanosilver membranes

    International Nuclear Information System (INIS)

    Singh, Rita; Singh, Durgeshwer

    2014-01-01

    Antimicrobial wound dressings are indispensable for the effective healing of skin wounds such as burns and ulcers. Various synthetic and natural polymers with good biocompatibility have been used to develop wound dressings. Chitin possesses excellent properties that are advantageous for wound dressing namely biocompatibility, biodegradability and haemostatic activity. Chitin-nanosilver membranes were developed for use as an antimicrobial dressing for wound care. For clinical applications, the wound dressing should be assuredly free of microbial contamination. Gamma irradiation has well appreciated technological advantages and is the most suitable method for the sterilization of biomedical materials. The present study was carried out to evaluate the effect of gamma radiation on the chemical and functional characteristics of the chitin-nanosilver membranes

  17. Chitins and Chitosans as Immunoadjuvants and Non-Allergenic Drug Carriers

    Directory of Open Access Journals (Sweden)

    Riccardo A. A. Muzzarelli

    2010-02-01

    Full Text Available Due to the fact that some individuals are allergic to crustaceans, the presumed relationship between allergy and the presence of chitin in crustaceans has been investigated. In vivo, chitin is part of complex structures with other organic and inorganic compounds: in arthropods chitin is covalently linked to proteins and tanned by quinones, in fungi it is covalently linked to glucans, while in bacteria chitin is diversely combined according to Gram(+/- classification. On the other hand, isolated, purified chitin is a plain polysaccharide that, at the nano level, presents itself as a highly associated structure, recently refined in terms of regularity, nature of bonds, crystallinity degree and unusual colloidal behavior. Chitins and modified chitins exert a number of beneficial actions, i.e., (i they stimulate macrophages by interacting with receptors on the macrophage surface that mediate the internalization of chitin particles to be degraded by lysozyme and N-acetyl-β-glucosaminidase (such as Nod-like, Toll-like, lectin, Dectin-1, leukotriene 134 and mannose receptors; (ii the macrophages produce cytokines and other compounds that confer non-specific host resistance against bacterial and viral infections, and anti-tumor activity; (iii chitin is a strong Th1 adjuvant that up-regulates Th1 immunity induced by heat-killed Mycobacterium bovis, while down- regulating Th2 immunity induced by mycobacterial protein; (iv direct intranasal application of chitin microparticles into the lung was also able to significantly down-regulate allergic response to Dermatophagoids pteronyssinus and Aspergillus fumigatus in a murine model of allergy; (v chitin microparticles had a beneficial effect in preventing and treating histopathologic changes in the airways of asthmatic mice; (vi authors support the fact that chitin depresses the development of adaptive type 2 allergic responses. Since the expression of chitinases, chitrotriosidase and chitinase-like proteins

  18. Chitins and chitosans as immunoadjuvants and non-allergenic drug carriers.

    Science.gov (United States)

    Muzzarelli, Riccardo A A

    2010-02-21

    Due to the fact that some individuals are allergic to crustaceans, the presumed relationship between allergy and the presence of chitin in crustaceans has been investigated. In vivo, chitin is part of complex structures with other organic and inorganic compounds: in arthropods chitin is covalently linked to proteins and tanned by quinones, in fungi it is covalently linked to glucans, while in bacteria chitin is diversely combined according to Gram(+/-) classification. On the other hand, isolated, purified chitin is a plain polysaccharide that, at the nano level, presents itself as a highly associated structure, recently refined in terms of regularity, nature of bonds, crystallinity degree and unusual colloidal behavior. Chitins and modified chitins exert a number of beneficial actions, i.e., (i) they stimulate macrophages by interacting with receptors on the macrophage surface that mediate the internalization of chitin particles to be degraded by lysozyme and N-acetyl-beta-glucosaminidase (such as Nod-like, Toll-like, lectin, Dectin-1, leukotriene 134 and mannose receptors); (ii) the macrophages produce cytokines and other compounds that confer non-specific host resistance against bacterial and viral infections, and anti-tumor activity; (iii) chitin is a strong Th1 adjuvant that up-regulates Th1 immunity induced by heat-killed Mycobacterium bovis, while down- regulating Th2 immunity induced by mycobacterial protein; (iv) direct intranasal application of chitin microparticles into the lung was also able to significantly down-regulate allergic response to Dermatophagoids pteronyssinus and Aspergillus fumigatus in a murine model of allergy; (v) chitin microparticles had a beneficial effect in preventing and treating histopathologic changes in the airways of asthmatic mice; (vi) authors support the fact that chitin depresses the development of adaptive type 2 allergic responses. Since the expression of chitinases, chitrotriosidase and chitinase-like proteins is greatly

  19. Squid pen-inspired chitinous functional materials: Hierarchical chitin fibers by centrifugal jet-spinning and transparent chitin fiber-reinforced composite

    Science.gov (United States)

    Jeong, Seung-Hwan; Kim, Joong-Kwon; Lim, Young-Woo; Hwang, Hyun-Bin; Kwon, Hee-Young; Bae, Byeong-Soo; Jin, Jungho

    2018-01-01

    Here, inspired by the fibrous composite structure of a squid pen, we introduce hierarchical chitin fibers (herein, termed "Chiber") and their transparent composites and demonstrate the potential of these chitinous functional materials as a sustainable separation-membrane and reinforcing filler for composites. We employ a centrifugal jet-spinning process to fabricate Chiber with aligned chitin nanofibrillar architectures, for which we discuss the processing-morphology relationship. A nonwoven fiber-mat made of Chiber exhibits excellent adsorbing performance for a toxic ionic dye (Congo Red), and has a low coefficient of thermal expansion comparable to that of glass fibers. Finally, we demonstrate a squid pen-mimetic transparent composite using Chiber and investigate its optical property.

  20. Synthesis and physicochemical characterization of chitin dihexanoate — A new biocompatible chitin derivative — In comparison to chitin dibutyrate

    Energy Technology Data Exchange (ETDEWEB)

    Skołucka-Szary, Karolina, E-mail: karolina.skolucka@celther.com [Department of Research and Development, Celther Poland Sp. z o.o. ul. Ostrzykowizna 14A, 05-170 Zakroczym (Poland); Ramięga, Aleksandra; Piaskowska, Wanda [Department of Research and Development, Celther Poland Sp. z o.o. ul. Ostrzykowizna 14A, 05-170 Zakroczym (Poland); Janicki, Bartosz [Silesian University of Technology, Faculty of Chemistry, Department of Physical Chemistry and Technology of Polymers, ul. M. Strzody 9, 44-100 Gliwice (Poland); Grala, Magdalena [Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz (Poland); Rieske, Piotr [Department of Research and Development, Celther Poland Sp. z o.o. ul. Ostrzykowizna 14A, 05-170 Zakroczym (Poland); Bartczak, Zbigniew [Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz (Poland); Piaskowski, Sylwester [Department of Research and Development, Celther Poland Sp. z o.o. ul. Ostrzykowizna 14A, 05-170 Zakroczym (Poland)

    2016-03-01

    Chitin dihexanoate (DHCH) is the novel biocompatible and technologically friendly highly substituted chitin diester. Here we described optimization of DHCH and chitin dibutyrate (dibutyryl chitin, DBC) synthesis conditions (temperature and reaction time) to obtain desired polymers with high reaction yield, high substitution degree (close to 2) and appropriately high molecular weights. A two-step procedure, employing acidic anhydrides (hexanoic or butyric anhydride) as the acylation agent and methanesulfonic acid both as the catalyst and the reaction medium, was applied. Chemical structures of DBC and DHCH were confirmed by NMR ({sup 1}H and {sup 13}C) and IR investigations. Mechanical properties, thermogravimetric analysis, differential scanning calorimetry and biocompatibility (Neutral red uptake assay, Skin Sensitization and Irritation Tests) were assessed. Both polymers proved highly biocompatible (non-cytotoxic in vitro, non-irritating and non-allergic to skin) and soluble in several organic solvents (dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, acetone, ethanol and others). It is worth emphasizing that DHCH and DBC can be easily processed by solvent casting method and the salt-leaching method, what gives the opportunity to prepare highly porous structures, which can be further successfully applied as the material for wound dressings and scaffolds for tissue engineering. - Highlights: • A new method for chitin dihexanoate (DHCH) synthesis was proposed. • DHCH physicochemical and biological properties were analyzed. • DHCH properties were compared with DBC characteristics. • For synthesis of both, DBC and DHCH methanesulfonic acid was used as the catalyst.

  1. Use of chitin and chitosan to produce new chitooligosaccharides by chitinase Chit42: enzymatic activity and structural basis of protein specificity

    OpenAIRE

    Kidibule, Peter E; Santos-Moriano, Paloma; Jiménez-Ortega, Elena; Ramírez-Escudero, Mercedes; Limón, M. Carmen; Remacha, Miguel; Plou Gasca, Francisco José; Sanz-Aparicio, J.; Fernández Lobato, María

    2018-01-01

    Abstract Background Chitinases are ubiquitous enzymes that have gained a recent biotechnological attention due to their ability to transform biological waste from chitin into valued chito-oligomers with wide agricultural, industrial or medical applications. The biological activity of these molecules is related to their size and acetylation degree. Chitinase Chit42 from Trichoderma harzianum hydrolyses chitin oligomers with a minimal of t...

  2. The demosponge Pseudoceratina purpurea as a new source of fibrous chitin.

    Science.gov (United States)

    Żółtowska-Aksamitowska, Sonia; Tsurkan, Mikhail V; Lim, Swee-Cheng; Meissner, Heike; Tabachnick, Konstantin; Shaala, Lamiaa A; Youssef, Diaa T A; Ivanenko, Viatcheslav N; Petrenko, Iaroslav; Wysokowski, Marcin; Bechmann, Nicole; Joseph, Yvonne; Jesionowski, Teofil; Ehrlich, Hermann

    2018-06-01

    Among marine demosponges (Porifera: Demospongiae), only representatives of the order Verongiida have been recognized to synthetize both biologically active substances as well as scaffolds-like fibrous skeletons made of structural aminopolysaccharide chitin. The unique 3D architecture of such scaffolds open perspectives for their applications in waste treatment, biomimetics and tissue engineering. Here, we focus special attention to the demosponge Pseudoceratina purpurea collected in the coastal waters of Singapore. For the first time the detailed description of the isolation of chitin from the skeleton of this sponge and its identification using diverse bioanalytical tools were carried out. Calcofluor white staining, FTIR analysis, electrospray ionization mass spectrometry (ESI-MS), SEM, and fluorescence microscopy as well as a chitinase digestion assay were applied in order to confirm with strong evidence the finding of alpha-chitin in the skeleton of P. purpurea. We suggest that the discovery of chitin within representatives of Pseudoceratinidae family is a perspective step in evaluation of these verongiid sponges as novel renewable sources for both chitin and biologically active metabolites, which are of prospective use for marine oriented biomedicine and pharmacology, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. The effect of rumen ciliates on chitinolytic activity, chitin content and the number of fungal zoospores in the rumen fluid of sheep.

    Science.gov (United States)

    Miltko, Renata; Bełżecki, Grzegorz; Herman, Andrzej; Kowalik, Barbara; Skomiał, Jacek

    2016-12-01

    The objective of this study was to investigate the effect of selected protozoa on the degradation and concentration of chitin and the numbers of fungal zoospores in the rumen fluid of sheep. Three adult ewes were fed a hay-concentrate diet, defaunated, then monofaunated with Entodinium caudatum or Diploplastron affine alone and refaunated with natural rumen fauna. The average density of the protozoa population varied from 6.1 · 10(4) (D. affine) to 42.2 · 10(4) cells/ml rumen fluid (natural rumen fauna). The inoculation of protozoa in the rumen of defaunated sheep increased the total activity of chitinolytic enzymes from 2.9 to 3.6 μmol N-acetylglucosamine/g dry matter (DM) of rumen fluid per min, the chitin concentration from 6.3 to 7.2 mg/g DM of rumen fluid and the number of fungal zoospores from 8.1 to 10.9 · 10(5) cells/ml rumen fluid. All examined indices showed diurnal variations. Ciliate population density was highest immediately prior to feeding and lowest at 4 h thereafter. The opposite effects were observed for the numbers of fungal zoospores, the chitin concentration and chitinolytic activity. Furthermore, it was found that chitin from zoospores may account for up to 95% of total microbial chitin in the rumen fluid of sheep. In summary, the examined ciliate species showed the ability of chitin degradation as well as a positive influence on the development of the ruminal fungal population.

  4. Chitin Scaffolds in Tissue Engineering

    Science.gov (United States)

    Jayakumar, Rangasamy; Chennazhi, Krishna Prasad; Srinivasan, Sowmya; Nair, Shantikumar V.; Furuike, Tetsuya; Tamura, Hiroshi

    2011-01-01

    Tissue engineering/regeneration is based on the hypothesis that healthy stem/progenitor cells either recruited or delivered to an injured site, can eventually regenerate lost or damaged tissue. Most of the researchers working in tissue engineering and regenerative technology attempt to create tissue replacements by culturing cells onto synthetic porous three-dimensional polymeric scaffolds, which is currently regarded as an ideal approach to enhance functional tissue regeneration by creating and maintaining channels that facilitate progenitor cell migration, proliferation and differentiation. The requirements that must be satisfied by such scaffolds include providing a space with the proper size, shape and porosity for tissue development and permitting cells from the surrounding tissue to migrate into the matrix. Recently, chitin scaffolds have been widely used in tissue engineering due to their non-toxic, biodegradable and biocompatible nature. The advantage of chitin as a tissue engineering biomaterial lies in that it can be easily processed into gel and scaffold forms for a variety of biomedical applications. Moreover, chitin has been shown to enhance some biological activities such as immunological, antibacterial, drug delivery and have been shown to promote better healing at a faster rate and exhibit greater compatibility with humans. This review provides an overview of the current status of tissue engineering/regenerative medicine research using chitin scaffolds for bone, cartilage and wound healing applications. We also outline the key challenges in this field and the most likely directions for future development and we hope that this review will be helpful to the researchers working in the field of tissue engineering and regenerative medicine. PMID:21673928

  5. Wastewater treatment with ion-exchange chitin membrane

    International Nuclear Information System (INIS)

    Paulenova, A.; Fjeld, R. A.; Visacky, V.

    2001-01-01

    Chitin, poly(N-acetyl-D glucosamine) and chitosan, its deacetylated derivates have recently obtained attention as bio-sorbents, because they shown a great ability to accumulate heavy metals and other pollutants. It was found that recovery of metals is strongly affected by pH. At low acidic pH range 4-5 chitin membrane exhibits better selectivity for lead than for cadmium or zinc. Sorption preference for metals decreases in the order: Pb > Cd > Zn. For uranium, as well for strontium was observed significant increase of recovery at decrease of pH to slightly acidic, close to neutral value. It was shown that chemical behavior of chitin membrane is excellent; ion-exchange nature of chitin was not changed during chitin membrane manufacturing process. Using of chitin membrane instead of chitin flake column brings significant increasing of driving force of the separation process, limited in the case of column experimental design by diffusion coefficient, while in the case of membrane process only by mass transfer coefficient. (authors)

  6. Chitin enhances biocontrol of Rhodotorula mucilaginosa to postharvest decay of peaches.

    Science.gov (United States)

    Zhang, Hongyin; Yang, Qiya; Ge, Lingling; Zhang, Guochao; Zhang, Xiaoli; Zhang, Xiaoyun

    2016-07-01

    Biological control using microbial antagonists is a promising alternative approach to synthetic fungicides. However, effective biological control requires enhancing the consistency and efficacy of the antagonists used to control postharvest diseases. This study investigated the effect of chitin on the biocontrol efficacy of Rhodotorula mucilaginosa against blue mold and Rhizopus decay of peaches and on the protein expression profiles of R. mucilaginosa. The antagonistic activity of R. mucilaginosa harvested from the nutrient yeast dextrose broth (NYDB) with 0.5% chitin added was significantly improved compared with culture in NYDB without chitin. The R. mucilaginosa population cultured in chitin-supplement NYDB and nutrient yeast chitin borth (NYCB) harvested from peach wounds was more than that of R. mucilaginosa cultured in NYDB without chitin throughout the storage period except at 1 d. The protein expression profiles findings revealed that there were several differentially expressed proteins of R. mucilaginosa in the 0.5% chitin-supplemented NYDB and NYCB compared with that of R. mucilaginosa in NYDB. Most of these were cellular proteomes relating to the primary metabolic reactions such as glycoside hydrolases, phosphoribosyl pyrophosphate, and NADH dehydrogenases. Some proteins were also related to signal transmission and stress response. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. β-Chitin and chitosan from squid gladius: Biological activities of chitosan and its application as clarifying agent for apple juice.

    Science.gov (United States)

    Abdelmalek, Baha Eddine; Sila, Assaâd; Haddar, Anissa; Bougatef, Ali; Ayadi, Mohamed Ali

    2017-11-01

    Chitin is the second most abundant polysaccharide in biomass after cellulose and the term chitosan usually refers to a family of polymers obtained after chitin deacetylation. The aim of this work was the preparation and the characterization of chitin and chitosan from the gladius (pen) of the European squid (Loligo vulgaris). A high level of deproteinization (more than 80%) was recorded using Alcalase ® with an enzyme/protein ratio of 10U/mg. The demineralization of the gladius was completely achieved within 8h at room temperature in HCl. 13 C NMR, FTIR, and XRD diffractograms of prepared chitin and chitosan were taken and then degree of deacetylation of chitosan was calculated using 13 C CP/MAS-NMR Spectroscopic. Further, in vitro antioxidant capacity of chitosan was evaluated on 1,1-diphenyl-2-picrylhydrazyl method (IC 50 =3.2mgmL -1 ) and the β-carotene bleaching assay (IC 50 =3.3mgmL -1 ). Antimicrobial activity was also investigated and assays indicated that prepared chitosan exhibited marked inhibitory activity against all microbial strains tested. Additionally, chitosan was tested such as clarifying agent for apple juice and showed powerful clarification capability, without affecting nutritional value. Furthermore, the results suggested that prepared chitosan could be used as alternative additive in pharmaceutical preparations and food industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Interaction of chitin/chitosan with salivary and other epithelial cells-An overview.

    Science.gov (United States)

    Patil, Sharvari Vijaykumar; Nanduri, Lalitha S Y

    2017-11-01

    Chitin and its deacetylated form, chitosan, have been widely used for tissue engineering of both epithelial and mesenchymal tissues. Epithelial cells characterised by their sheet-like tight cellular arrangement and polarised nature, constitute a major component in various organs and play a variety of roles including protection, secretion and maintenance of tissue homeostasis. Regeneration of damaged epithelial tissues has been studied using biomaterials such as chitin, chitosan, hyaluronan, gelatin and alginate. Chitin and chitosan are known to promote proliferation of various embryonic and adult epithelial cells. However it is not clearly understood how this activity is achieved or what are the mechanisms involved in the chitin/chitosan driven proliferation of epithelial cells. Mechanistic understanding of influence of chitin/chitosan on epithelial cells will guide us to develop more targeted regenerative scaffold/hydrogel systems. Therefore, current review attempts to elicit a mechanistic insight into how chitin and chitosan interact with salivary, mammary, skin, nasal, lung, intestinal and bladder epithelial cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. New insights into the structure and mode of action of Mo-CBP3, an antifungal chitin-binding protein of Moringa oleifera seeds.

    Directory of Open Access Journals (Sweden)

    Adelina B Batista

    Full Text Available Mo-CBP3 is a chitin-binding protein purified from Moringa oleifera Lam. seeds that displays inhibitory activity against phytopathogenic fungi. This study investigated the structural properties and the antifungal mode of action of this protein. To this end, circular dichroism spectroscopy, antifungal assays, measurements of the production of reactive oxygen species and microscopic analyses were utilized. Mo-CBP3 is composed of 30.3% α-helices, 16.3% β-sheets, 22.3% turns and 30.4% unordered forms. The Mo-CBP3 structure is highly stable and retains its antifungal activity regardless of temperature and pH. Fusarium solani was used as a model organism for studying the mechanisms by which this protein acts as an antifungal agent. Mo-CBP3 significantly inhibited spore germination and mycelial growth at 0.05 mg.mL-1. Mo-CBP3 has both fungistatic and fungicidal effects, depending on the concentration used. Binding of Mo-CBP3 to the fungal cell surface is achieved, at least in part, via electrostatic interactions, as salt was able to reduce its inhibitory effect. Mo-CBP3 induced the production of ROS and caused disorganization of both the cytoplasm and the plasma membrane in F. solani cells. Based on its high stability and specific toxicity, with broad-spectrum efficacy against important phytopathogenic fungi at low inhibitory concentrations but not to human cells, Mo-CBP3 has great potential for the development of new antifungal drugs or transgenic crops with enhanced resistance to phytopathogens.

  10. Biodegradation of the chitin-protein complex in crustacean cuticle

    Science.gov (United States)

    Artur, Stankiewicz B.; Mastalerz, Maria; Hof, C.H.J.; Bierstedt, A.; Flannery, M.B.; Briggs, D.E.G.; Evershed, R.P.

    1998-01-01

    Arthropod cuticles consist predominantly of chitin cross-linked with proteins. While there is some experimental evidence that this chitin-protein complex may resist decay, the chemical changes that occur during degradation have not been investigated in detail. The stomatopod crustacean Neogonodactylus oerstedii was decayed in the laboratory under anoxic conditions. A combination of pyrolysis-gas chromatography/mass spectrometry and FTIR revealed extensive chemical changes after just 2 weeks that resulted in a cuticle composition dominated by chitin. Quantitative analysis of amino acids (by HPLC) and chitin showed that the major loss of proteins and chitin occurred between weeks 1 and 2. After 8 weeks tyrosine, tryptophan and valine are the most prominent amino acid moieties, showing their resistance to degradation. The presence of cyclic ketones in the pyrolysates indicates that mucopolysaccharides or other bound non-chitinous carbohydrates are also resistant to decay. There is no evidence of structural degradation of chitin prior to 8 weeks when FTIR revealed a reduction in chitin-specific bands. The chemical changes are paralleled by structural changes in the cuticle, which becomes an increasingly open structure consisting of loose chitinous fibres. The rapid rate of decay in the experiments suggests that where chitin and protein are preserved in fossil cuticles degradation must have been inhibited.Arthropod cuticles consist predominantly of chitin cross-linked with proteins. While there is some experimental evidence that this chitin-protein complex may resist decay, the chemical changes that occur during degradation have not been investigated in detail. The stomatopod crustacean Neogonodactylus oerstedii was decayed in the laboratory under anoxic conditions. A combination of pyrolysis-gas chromatography/mass spectrometry and FTIR revealed extensive chemical changes after just 2 weeks that resulted in a cuticle composition dominated by chitin. Quantitative

  11. First Report on Chitin in a Non-Verongiid Marine Demosponge: The Mycale euplectellioides Case.

    Science.gov (United States)

    Żółtowska-Aksamitowska, Sonia; Shaala, Lamiaa A; Youssef, Diaa T A; Elhady, Sameh S; Tsurkan, Mikhail V; Petrenko, Iaroslav; Wysokowski, Marcin; Tabachnick, Konstantin; Meissner, Heike; Ivanenko, Viatcheslav N; Bechmann, Nicole; Joseph, Yvonne; Jesionowski, Teofil; Ehrlich, Hermann

    2018-02-20

    Sponges (Porifera) are recognized as aquatic multicellular organisms which developed an effective biochemical pathway over millions of years of evolution to produce both biologically active secondary metabolites and biopolymer-based skeletal structures. Among marine demosponges, only representatives of the Verongiida order are known to synthetize biologically active substances as well as skeletons made of structural polysaccharide chitin. The unique three-dimensional (3D) architecture of such chitinous skeletons opens the widow for their recent applications as adsorbents, as well as scaffolds for tissue engineering and biomimetics. This study has the ambitious goal of monitoring other orders beyond Verongiida demosponges and finding alternative sources of naturally prestructured chitinous scaffolds; especially in those demosponge species which can be cultivated at large scales using marine farming conditions. Special attention has been paid to the demosponge Mycale euplectellioides (Heteroscleromorpha: Poecilosclerida: Mycalidae) collected in the Red Sea. For the first time, we present here a detailed study of the isolation of chitin from the skeleton of this sponge, as well as its identification using diverse bioanalytical tools. Calcofluor white staining, Fourier-transform Infrared Spcetcroscopy (FTIR), electrospray ionization mass spectrometry (ESI-MS), scanning electron microscopy (SEM), and fluorescence microscopy, as well as a chitinase digestion assay were applied in order to confirm with strong evidence the finding of a-chitin in the skeleton of M. euplectellioides . We suggest that the discovery of chitin within representatives of the Mycale genus is a promising step in their evaluation of these globally distributed sponges as new renewable sources for both biologically active metabolites and chitin, which are of prospective use for pharmacology and biomaterials oriented biomedicine, respectively.

  12. First Report on Chitin in a Non-Verongiid Marine Demosponge: The Mycale euplectellioides Case

    Directory of Open Access Journals (Sweden)

    Sonia Żółtowska-Aksamitowska

    2018-02-01

    Full Text Available Sponges (Porifera are recognized as aquatic multicellular organisms which developed an effective biochemical pathway over millions of years of evolution to produce both biologically active secondary metabolites and biopolymer-based skeletal structures. Among marine demosponges, only representatives of the Verongiida order are known to synthetize biologically active substances as well as skeletons made of structural polysaccharide chitin. The unique three-dimensional (3D architecture of such chitinous skeletons opens the widow for their recent applications as adsorbents, as well as scaffolds for tissue engineering and biomimetics. This study has the ambitious goal of monitoring other orders beyond Verongiida demosponges and finding alternative sources of naturally prestructured chitinous scaffolds; especially in those demosponge species which can be cultivated at large scales using marine farming conditions. Special attention has been paid to the demosponge Mycale euplectellioides (Heteroscleromorpha: Poecilosclerida: Mycalidae collected in the Red Sea. For the first time, we present here a detailed study of the isolation of chitin from the skeleton of this sponge, as well as its identification using diverse bioanalytical tools. Calcofluor white staining, Fourier-transform Infrared Spcetcroscopy (FTIR, electrospray ionization mass spectrometry (ESI-MS, scanning electron microscopy (SEM, and fluorescence microscopy, as well as a chitinase digestion assay were applied in order to confirm with strong evidence the finding of a-chitin in the skeleton of M. euplectellioides. We suggest that the discovery of chitin within representatives of the Mycale genus is a promising step in their evaluation of these globally distributed sponges as new renewable sources for both biologically active metabolites and chitin, which are of prospective use for pharmacology and biomaterials oriented biomedicine, respectively.

  13. Single step synthesis of chitin/chitosan-based graphene oxide–ZnO hybrid composites for better electrical conductivity and optical properties

    International Nuclear Information System (INIS)

    Anandhavelu, S.; Thambidurai, S.

    2013-01-01

    Highlights: ► UV absorption at 260–360 nm confirmed strong binding of ZnO with chitosan–GO sheets. ► Chitin-based GO–ZnO shows higher electrical conductivity than chitosan-based GO–ZnO. ► Chitin-based GO–ZnO will useful in sensing, catalysis and energy storage applications. -- Abstract: We synthesized two composites/hybrid composites with a graphene oxide (GO)/mixed GO–ZnO filler using either a chitin or a chitosan matrix. Fourier transform infrared spectroscopy analysis confirmed that chitin had been converted to chitosan during matrix fabrication because only chitosan, ZnO and GO were shown to be present in the composites/hybrid composites. Raman spectroscopy indicated the display of D and G bands at 1345 cm −1 and 1584 cm −1 , respectively. UV absorption peaks appeared at 260–360 nm and 201 nm in both hybrid composites, which indicate a strong binding of ZnO within the chitosan–GO sheets. High resolution scanning electron microscopy and atomic force microscopy studies demonstrated that on a molecular scale ZnO was well dispersed in the hybrid composites. Impedance spectroscopy and a four-probe resistivity method were used for room temperature electrical conductivity measurements. The electrical conductivity of the chitin-based GO–ZnO hybrid composites was estimated to be ∼5.94 × 10 6 S/cm and was greater than that of the chitosan-based GO–ZnO hybrid composite (∼4.13 × 10 6 S/cm). The chitin-based GO–ZnO hybrid composite had a higher optical band gap (3.4 eV) than the chitosan-based GO–ZnO hybrid composite (3.0 eV). The current–voltage measurement showed that electrical sheets resistance of the chitosan-based composites decreased with formation of ZnO

  14. First report on chitinous holdfast in sponges (Porifera).

    Science.gov (United States)

    Ehrlich, Hermann; Kaluzhnaya, Oksana V; Tsurkan, Mikhail V; Ereskovsky, Alexander; Tabachnick, Konstantin R; Ilan, Micha; Stelling, Allison; Galli, Roberta; Petrova, Olga V; Nekipelov, Serguei V; Sivkov, Victor N; Vyalikh, Denis; Born, René; Behm, Thomas; Ehrlich, Andre; Chernogor, Lubov I; Belikov, Sergei; Janussen, Dorte; Bazhenov, Vasilii V; Wörheide, Gert

    2013-07-07

    A holdfast is a root- or basal plate-like structure of principal importance that anchors aquatic sessile organisms, including sponges, to hard substrates. There is to date little information about the nature and origin of sponges' holdfasts in both marine and freshwater environments. This work, to our knowledge, demonstrates for the first time that chitin is an important structural component within holdfasts of the endemic freshwater demosponge Lubomirskia baicalensis. Using a variety of techniques (near-edge X-ray absorption fine structure, Raman, electrospray ionization mas spectrometry, Morgan-Elson assay and Calcofluor White staining), we show that chitin from the sponge holdfast is much closer to α-chitin than to β-chitin. Most of the three-dimensional fibrous skeleton of this sponge consists of spicule-containing proteinaceous spongin. Intriguingly, the chitinous holdfast is not spongin-based, and is ontogenetically the oldest part of the sponge body. Sequencing revealed the presence of four previously undescribed genes encoding chitin synthases in the L. baicalensis sponge. This discovery of chitin within freshwater sponge holdfasts highlights the novel and specific functions of this biopolymer within these ancient sessile invertebrates.

  15. Chitin Extraction from Crustacean Shells Using Biological Methods – A Review

    Directory of Open Access Journals (Sweden)

    Wassila Arbia

    2013-01-01

    Full Text Available After cellulose, chitin is the most widespread biopolymer in nature. Chitin and its derivatives have great economic value because of their biological activities and their industrial and biomedical applications. It can be extracted from three sources, namely crustaceans, insects and microorganisms. However, the main commercial sources of chitin are shells of crustaceans such as shrimps, crabs, lobsters and krill that are supplied in large quantities by the shellfish processing industries. Extraction of chitin involves two steps, demineralisation and deproteinisation, which can be conducted by two methods, chemical or biological. The chemical method requires the use of acids and bases, while the biological method involves microorganisms. Although lactic acid bacteria are mainly applied, other microbial species including proteolytic bacteria have also been successfully implemented, as well as mixed cultures involving lactic acid-producing bacteria and proteolytic microorganisms. The produced lactic acid allows shell demineralisation, since lactic acid reacts with calcium carbonate, the main mineral component, to form calcium lactate.

  16. Characterization of a novel Salmonella typhimurium chitinase which hydrolyzes chitin, chitooligosaccharides and an N-acetyllactosamine conjugate

    DEFF Research Database (Denmark)

    Larsen, Tanja; Petersen, Bent O.; Storgaard, Birgit Groth

    2011-01-01

    Salmonella contain genes annotated as chitinases; however, their chitinolytic activities have never been verified. We now demonstrate such an activity for a chitinase assigned to glycoside hydrolase family 18 encoded by the SL0018 (chiA) gene in Salmonella enterica Typhimurium SL1344. A C......-terminal truncated form of chiA lacking a putative chitin-binding domain was amplified by PCR, cloned and expressed in Escherichia coli BL21 (DE3) with an N-terminal (His)(6) tag. The purified enzyme hydrolyzes 4-nitrophenyl N,N'-diacetyl-ß-D-chitobioside, 4-nitrophenyl ß...

  17. A Chitin-binding Protein Purified from Moringa oleifera Seeds Presents Anticandidal Activity by Increasing Cell Membrane Permeability and Reactive Oxygen Species Production

    Directory of Open Access Journals (Sweden)

    João X.S. Neto

    2017-06-01

    Full Text Available Candida species are opportunistic pathogens that infect immunocompromised and/or immunosuppressed patients, particularly in hospital facilities, that besides representing a significant threat to health increase the risk of mortality. Apart from echinocandins and triazoles, which are well tolerated, most of the antifungal drugs used for candidiasis treatment can cause side effects and lead to the development of resistant strains. A promising alternative to the conventional treatments is the use of plant proteins. M. oleifera Lam. is a plant with valuable medicinal properties, including antimicrobial activity. This work aimed to purify a chitin-binding protein from M. oleifera seeds and to evaluate its antifungal properties against Candida species. The purified protein, named Mo-CBP2, represented about 0.2% of the total seed protein and appeared as a single band on native PAGE. By mass spectrometry, Mo-CBP2 presented 13,309 Da. However, by SDS-PAGE, Mo-CBP2 migrated as a single band with an apparent molecular mass of 23,400 Da. Tricine-SDS-PAGE of Mo-CBP2 under reduced conditions revealed two protein bands with apparent molecular masses of 7,900 and 4,600 Da. Altogether, these results suggest that Mo-CBP2 exists in different oligomeric forms. Moreover, Mo-CBP2 is a basic glycoprotein (pI 10.9 with 4.1% (m/m sugar and it did not display hemagglutinating and hemolytic activities upon rabbit and human erythrocytes. A comparative analysis of the sequence of triptic peptides from Mo-CBP2 in solution, after LC-ESI-MS/MS, revealed similarity with other M. oleifera proteins, as the 2S albumin Mo-CBP3 and flocculating proteins, and 2S albumins from different species. Mo-CBP2 possesses in vitro antifungal activity against Candida albicans, C. parapsilosis, C. krusei, and C. tropicalis, with MIC50 and MIC90 values ranging between 9.45–37.90 and 155.84–260.29 μM, respectively. In addition, Mo-CBP2 (18.90 μM increased the cell membrane permeabilization

  18. Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications

    Science.gov (United States)

    Younes, Islem; Rinaudo, Marguerite

    2015-01-01

    This review describes the most common methods for recovery of chitin from marine organisms. In depth, both enzymatic and chemical treatments for the step of deproteinization are compared, as well as different conditions for demineralization. The conditions of chitosan preparation are also discussed, since they significantly impact the synthesis of chitosan with varying degree of acetylation (DA) and molecular weight (MW). In addition, the main characterization techniques applied for chitin and chitosan are recalled, pointing out the role of their solubility in relation with the chemical structure (mainly the acetyl group distribution along the backbone). Biological activities are also presented, such as: antibacterial, antifungal, antitumor and antioxidant. Interestingly, the relationship between chemical structure and biological activity is demonstrated for chitosan molecules with different DA and MW and homogeneous distribution of acetyl groups for the first time. In the end, several selected pharmaceutical and biomedical applications are presented, in which chitin and chitosan are recognized as new biomaterials taking advantage of their biocompatibility and biodegradability. PMID:25738328

  19. Experimental evaluation of new chitin-chitosan graft for duraplasty.

    Science.gov (United States)

    Pogorielov, M; Kravtsova, A; Reilly, G C; Deineka, V; Tetteh, G; Kalinkevich, O; Pogorielova, O; Moskalenko, R; Tkach, G

    2017-02-01

    Natural materials such as collagen and alginate have promising applications as dural graft substitutes. These materials are able to restore the dural defect and create optimal conditions for the development of connective tissue at the site of injury. A promising material for biomedical applications is chitosan-a linear polysaccharide obtained by the deacetylation of chitin. It has been found to be nontoxic, biodegradable, biofunctional and biocompatible in addition to having antimicrobial characteristics. In this study we designed new chitin-chitosan substitutes for dura mater closure and evaluated their effectiveness and safety. Chitosan films were produced from 3 % of chitosan (molar mass-200, 500 or 700 kDa, deacetylation rate 80-90%) with addition of 20% of chitin. Antimicrobial effictively and cell viability were analysed for the different molar masses of chitosan. The film containing chitosan of molar mass 200 kDa, had the best antimicrobial and biological activity and was successfully used for experimental duraplasty in an in vivo model. In conclusion the chitin-chitosan membrane designed here met the requirements for a dura matter graft exhibiting the ability to support cell growth, inhibit microbial growth and biodegradade at an appropriate rate. Therefore this is a promising material for clinical duroplasty.

  20. Dopamine-Mediated Sclerotization of Regenerated Chitin in Ionic Liquid.

    Science.gov (United States)

    Oh, Dongyeop X; Shin, Sara; Lim, Chanoong; Hwang, Dong Soo

    2013-09-06

    Chitin is a promising structural material for biomedical applications, due to its many advantageous properties and abundance in nature. However, its usage and development in the biomedical field have been stagnant, because of chitin's poor mechanical properties in wet conditions and the difficulties in transforming it into an applicable form. To overcome these challenges, we created a novel biomimetic chitin composite. This regenerated chitin, prepared with ionic liquid, showed improved mechanical properties in wet conditions by mimicking insect cuticle and squid beak sclerotization, i.e. , catechol-meditated cross-linking. By ionic liquid-based heat treatment, dopamine oxidation produced melanin-like compounds and dopamine-meditated cross-links without any solvent evaporation and oxidant utilization. The dopamine-meditated sclerotization increased the ultimate tensile strength (UTS) of the regenerated chitin by 2.52-fold, measured after six weeks of phosphate-buffered saline (PBS) submersion. In addition, the linear swelling ratio (LSR) of the chitin film was reduced by about 22%. This strategy raises a possibility of using regenerated chitin as an artificial hard tissue in wet conditions.

  1. Co-Processed Chitin-Mannitol as a New Excipient for Oro-Dispersible Tablets

    Directory of Open Access Journals (Sweden)

    Nidal Daraghmeh

    2015-03-01

    Full Text Available This study describes the preparation, characterization and performance of a novel excipient for use in oro-dispersible tablets (ODT. The excipient (Cop–CM consists of chitin and mannitol. The excipient with optimal physicochemical properties was obtained at a chitin: mannitol ratio of 2:8 (w/w and produced by roll compaction (RC. Differential scanning calorimetry (DSC, Fourier transform-Infrared (FT-IR, X-ray powder diffraction (XRPD and scanning electron microscope (SEM techniques were used to characterize Cop–CM, in addition to characterization of its powder and ODT dosage form. The effect of particle size distribution of Cop–CM was investigated and found to have no significant influence on the overall tablet physical properties. The compressibility parameter (a for Cop–CM was calculated from a Kawakita plot and found to be higher (0.661 than that of mannitol (0.576 due to the presence of the highly compressible chitin (0.818. Montelukast sodium and domperidone ODTs produced, using Cop–CM, displayed excellent physicochemical properties. The exceptional binding, fast wetting and superdisintegration properties of Cop–CM, in comparison with commercially available co-processed ODT excipients, results in a unique multifunctional base which can successfully be used in the formulation of oro-dispersible and fast immediate release tablets.

  2. PROPERTIES OF CHITIN REINFORCES COMPOSITES: A REVIEW

    African Journals Online (AJOL)

    user

    mechanical and thermal properties of chitin reinforced composites. ..... with crabyon fiber and normal viscose filaments. Also. Zhang et al.,[65] successfully blended chitin/cellulose using two different coagulating systems (immersed in 5.

  3. Biopolymer chitin: extraction and characterization; Biopolimero quitina: extracao e caracterizacao

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The biopolymers are materials made from renewable sources such as soybean, corn, cane sugar, cellulose and chitin. Chitin is the most abundant biopolymer found in nature, after cellulose. The chemical structure of chitin is distinguished by the hydroxyl group, of structure from cellulose, located at position C-2, which in the chitin is replaced by acetamine group. The objective of this study was to develop the chitin from exoskeletons of Litopenaeus vannamei shrimp, which are discarded as waste, causing pollutions, environmental problems and thus obtain better utilization of these raw materials. It also, show the extraction process and deacetylation of chitosan. The extraction of chitin followed steps of demineralization, desproteinization and deodorization. Chitin and chitosan were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and the thermals properties were analyzed by thermogravimetry (TG/DTG). (author)

  4. Extraction and Characterization of Chitin from the Beetle Holotrichia parallela Motschulsky

    Directory of Open Access Journals (Sweden)

    Feng Zhu

    2012-04-01

    Full Text Available Insect chitin was isolated from adult Holotrichia parallela by treatment with 1 M HCl and 1 M NaOH, following by 1% potassium permanganate solution for decolorization. The yield of chitin from this species is 15%. This insect chitin was compared with the commercial a-chitin from shrimp, by infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and elemental analysis. Both chitins exhibited similar chemical structures and physicochemical properties. Adult H. parallela is thus a promising alternative source of chitin.

  5. Extraction and characterization of chitin and chitosan from Nigerian ...

    African Journals Online (AJOL)

    Chitin was synthesized from Nigerian brown shrimps by a chemical process involving demineralization and deproteinisation. Deacetylation of the chitin was conducted to obtain Chitosan. The chitin and chitosan were characterized using FTIR, XRD and SEM. Proximate and elemental analysis were also conducted.

  6. Preparation of Chitin-PLA laminated composite for implantable application

    Directory of Open Access Journals (Sweden)

    Romana Nasrin

    2017-12-01

    Full Text Available The present study explores the possibilities of using locally available inexpensive waste prawn shell derived chitin reinforced and bioabsorbable polylactic acid (PLA laminated composites to develop new materials with excellent mechanical and thermal properties for implantable application such as in bone or dental implant. Chitin at different concentration (1–20% of PLA reinforced PLA films (CTP were fabricated by solvent casting process and laminated chitin-PLA composites (LCTP were prepared by laminating PLA film (obtained by hot press method with CTP also by hot press method at 160 °C. The effect of variation of chitin concentration on the resulting laminated composite's behavior was investigated. The detailed physico-mechanical, surface morphology and thermal were assessed with different characterization technique such as FT-IR, XRD, SEM and TGA. The FTIR spectra showed the characteristic peaks for chitin and PLA in the composites. SEM images showed an excellent dispersion of chitin in the films and composites. Thermogravimetric analysis (TGA showed that the complete degradation of chitin, PLA film, 5% chitin reinforced PLA film (CTP2 and LCTP are 98%, 95%, 87% and 98% respectively at temperature of 500 °C. The tensile strength of the LCTP was found 25.09 MPa which is significantly higher than pure PLA film (18.55 MPa and CTP2 film (8.83 MPa. After lamination of pure PLA and CTP2 film, the composite (LCTP yielded 0.265–1.061% water absorption from 30 min to 24 h immerse in water that is much lower than PLA and CTP. The increased mechanical properties of the laminated films with the increase of chitin content indicated good dispersion of chitin into PLA and strong interfacial actions between the polymer and chitin. The improvement of mechanical properties and the results of antimicrobial and cytotoxicity of the composites also evaluated and revealed the composite would be a suitable candidate for implant application in biomedical

  7. Preparation of Chitin-PLA laminated composite for implantable application.

    Science.gov (United States)

    Nasrin, Romana; Biswas, Shanta; Rashid, Taslim Ur; Afrin, Sanjida; Jahan, Rumana Akhter; Haque, Papia; Rahman, Mohammed Mizanur

    2017-12-01

    The present study explores the possibilities of using locally available inexpensive waste prawn shell derived chitin reinforced and bioabsorbable polylactic acid (PLA) laminated composites to develop new materials with excellent mechanical and thermal properties for implantable application such as in bone or dental implant. Chitin at different concentration (1-20% of PLA) reinforced PLA films (CTP) were fabricated by solvent casting process and laminated chitin-PLA composites (LCTP) were prepared by laminating PLA film (obtained by hot press method) with CTP also by hot press method at 160 °C. The effect of variation of chitin concentration on the resulting laminated composite's behavior was investigated. The detailed physico-mechanical, surface morphology and thermal were assessed with different characterization technique such as FT-IR, XRD, SEM and TGA. The FTIR spectra showed the characteristic peaks for chitin and PLA in the composites. SEM images showed an excellent dispersion of chitin in the films and composites. Thermogravimetric analysis (TGA) showed that the complete degradation of chitin, PLA film, 5% chitin reinforced PLA film (CTP2) and LCTP are 98%, 95%, 87% and 98% respectively at temperature of 500 °C. The tensile strength of the LCTP was found 25.09 MPa which is significantly higher than pure PLA film (18.55 MPa) and CTP2 film (8.83 MPa). After lamination of pure PLA and CTP2 film, the composite (LCTP) yielded 0.265-1.061% water absorption from 30 min to 24 h immerse in water that is much lower than PLA and CTP. The increased mechanical properties of the laminated films with the increase of chitin content indicated good dispersion of chitin into PLA and strong interfacial actions between the polymer and chitin. The improvement of mechanical properties and the results of antimicrobial and cytotoxicity of the composites also evaluated and revealed the composite would be a suitable candidate for implant application in biomedical sector.

  8. Preparation and characterization of α-chitin from cicada sloughs

    International Nuclear Information System (INIS)

    Sajomsang, Warayuth; Gonil, Pattarapond

    2010-01-01

    In this study, a new source of insect chitin was proposed. Insect chitin was extracted from cicada sloughs by 1 M HCl and 1 M NaOH treatment for demineralization and deproteinization, respectively. The brown color of this chitin from cicada sloughs was removed using 6% sodium hypochlorite as an oxidizing agent. It was found that the insect chitin extracted from the cicada sloughs has a higher percent recovery than the chitin from rice-field crab shells. The chemical structure and physicochemical properties of α-chitin from cicada sloughs were characterized using elemental analysis (EA), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), proton nuclear magnetic resonance spectroscopy ( 1 H NMR), solid-state 13 C cross-polarization magic-angle-spinning nuclear magnetic resonance (CP/MAS) NMR spectroscopy, X-ray diffractometry (XRD), and thermogravimetry (TG). The degree of acetylation (DA) was determined by EA, 1 H NMR, and 13 C CP/MAS NMR techniques. The DA values of chitin from cicada sloughs were in the range of 97% to 102% depending on each technique. Furthermore, it was found that the DA increased with an increasing thermal property and crystallinity.

  9. Species-specific chitin-binding module 18 expansion in the amphibian pathogen Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Abramyan, John; Stajich, Jason E

    2012-01-01

    Batrachochytrium dendrobatidis is the causative agent of chytridiomycosis, which is considered one of the driving forces behind the worldwide decline in populations of amphibians. As a member of the phylum Chytridiomycota, B. dendrobatidis has diverged significantly to emerge as the only pathogen of adult vertebrates. Such shifts in lifestyle are generally accompanied by various degrees of genomic modifications, yet neither its mode of pathogenicity nor any factors associated with it have ever been identified. Presented here is the identification and characterization of a unique expansion of the carbohydrate-binding module family 18 (CBM18), specific to B. dendrobatidis. CBM (chitin-binding module) expansions have been likened to the evolution of pathogenicity in a variety of fungus species, making this expanded group a prime candidate for the identification of potential pathogenicity factors. Furthermore, the CBM18 expansions are confined to three categories of genes, each having been previously implicated in host-pathogen interactions. These correlations highlight this specific domain expansion as a potential key player in the mode of pathogenicity in this unique fungus. The expansion of CBM18 in B. dendrobatidis is exceptional in its size and diversity compared to other pathogenic species of fungi, making this genomic feature unique in an evolutionary context as well as in pathogenicity. Amphibian populations are declining worldwide at an unprecedented rate. Although various factors are thought to contribute to this phenomenon, chytridiomycosis has been identified as one of the leading causes. This deadly fungal disease is cause by Batrachochytrium dendrobatidis, a chytrid fungus species unique in its pathogenicity and, furthermore, its specificity to amphibians. Despite more than two decades of research, the biology of this fungus species and its deadly interaction with amphibians had been notoriously difficult to unravel. Due to the alarming rate of worldwide

  10. Applications of Chitin and Its Derivatives in Biological Medicine

    Directory of Open Access Journals (Sweden)

    Moon-Moo Kim

    2010-12-01

    Full Text Available Chitin and its derivatives—as a potential resource as well as multiple functional substrates—have generated attractive interest in various fields such as biomedical, pharmaceutical, food and environmental industries, since the first isolation of chitin in 1811. Moreover, chitosan and its chitooligosaccharides (COS are degraded products of chitin through enzymatic and acidic hydrolysis processes; and COS, in particular, is well suited for potential biological application, due to the biocompatibility and nontoxic nature of chitosan. In this review, we investigate the current bioactivities of chitin derivatives, which are all correlated with their biomedical properties. Several new and cutting edge insights here may provide a molecular basis for the mechanism of chitin, and hence may aid its use for medical and pharmaceutical applications.

  11. Three-dimensional chitin rings from body segments of a pet diplopod species: Characterization and protein interaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Murat, E-mail: muratkaya3806@yahoo.com [Department of Biotechnology and Molecular Biology, Faculty of Science and Letters, Aksaray University, 68100 Aksaray (Turkey); Mulerčikas, Povilas [Department of Biology and Plant Protection, Lithuanian University of Agriculture, LT-53361 (Lithuania); Sargin, Idris [Department of Chemistry, Faculty of Science, Selcuk University, 42075 Konya (Turkey); Kazlauskaitė, Sonata [Department of Biology and Plant Protection, Lithuanian University of Agriculture, LT-53361 (Lithuania); Baublys, Vykintas [Department of Biology, Vytautas Magnus University, LT-44404 Kaunas (Lithuania); Akyuz, Bahar; Bulut, Esra [Department of Biotechnology and Molecular Biology, Faculty of Science and Letters, Aksaray University, 68100 Aksaray (Turkey); Tubelytė, Vaida [Department of Biology, Vytautas Magnus University, LT-44404 Kaunas (Lithuania)

    2016-11-01

    Physicochemical characterization of new chitin isolates can provide valuable insights into designing of biomimetic materials. Chitin isolates with a definite three-dimensional (3D) structure can exhibit characteristics that distinguish them from other chitin specimens that are in form of powder or flakes without a definite and uniform shape. Herein, 3D chitin rings were produced from body segments of a diplopod (Archispirostreptus gigas) inhabiting tropical regions. This organism is cultured easily and can reach 38 cm in length, which makes it a suitable source for isolation of chitin. The chitin rings were characterized via TGA, FT-IR, SEM and XRD analyses. Enzymatic digestion test with chitinase demonstrated that chitin isolates had high purity (digestion rate: 97.4%). The source organism had high chitin content; 21.02 ± 2.23% on dry weight. Interactions of the chitin rings with bovine serum albumin (BSA) protein were studied under different conditions (pH: 4.0–8.0, chitin amount: 6–14 mg, contact time: 30–360 min, protein concentration: 0.2–1 mg/mL). The highest BSA adsorption was observed at pH 5.0 at 20 °C. The adsorption equilibrium data exhibited a better fit to Langmuir adsorption and the pseudo-first order kinetic models. The findings presented here can be useful for further studies aiming to develop biocompatible and nontoxic biomaterials. - Highlights: • Three-dimensional ring shaped chitin was produced from a pet diplopod species. • Archispirostreptus gigas has high chitin content; 21.02 ± 2.23% on dry weight. • Chitinase enzyme showed activity on the chitin rings with digestion rate of 97.4%. • The highest bovine serum albumin (BSA) adsorption was observed at pH 5.0 at 20 °C.

  12. Effect of plagiochin E, an antifungal macrocyclic bis(bibenzyl), on cell wall chitin synthesis in Candida albicans

    Institute of Scientific and Technical Information of China (English)

    Xiu-zhen WU; Ai-xia CHENG; Ling-mei SUN; Hong-xiang LOU

    2008-01-01

    Aim: To investigate the effect of plagiochin E (PLE), an antifungal macrocyclic bis(bibenzyl) isolated from liverwort Marchantia polymorpha L, on cell wall chitin synthesis in Candida albicans. Methods: The effect of PLE on chitin synthesis in Candida albicans was investigated at the cellular and molecular lev-els. First, the ultrastructural changes were observed under transmission electron microscopy (TEM). Second, the effects of PLE on chitin synthetase (Chs) activi-ties in vitro were assayed using 6-O-dansyl-N-acetylglucosamine as a fluorescent substrate, and its effect on chitin synthesis in situ was assayed by spheroplast regeneration. Finally, real-time RT-PCR was performed to assay its effect on the expression of Chs genes (CHS). Results: Observation under TEM showed that the structure of the cell wall in Candida albicans was seriously damaged, which suggested that the antifungal activity of PLE was associated with its effect on the cell wail. Enzymatic assays and spheroplast regeneration showed that PLE inhibited chitin synthesis in vitro and in situ. The results of the PCR showed that PLE significantly downregulated the expression of CHS1, and upregulated the expression of CHS2 and CHS3. Because different Chs is regulated at different stages of transcription and post-translation, the downregulation of CHS1 would decrease the level of Chs 1 and inhibit its activity, and the inhibitory effects of PLE on Chs2 and Chs3 would be at the post-translational level or by the inhibi-tion on the enzyme-active center. Conclusion: These results indicate that the antifungal activity of PLE would be attributed to its inhibitory effect on cell wall chitin synthesis in Candida albicans.

  13. Dopamine-Mediated Sclerotization of Regenerated Chitin in Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Dongyeop X. Oh

    2013-09-01

    Full Text Available Chitin is a promising structural material for biomedical applications, due to its many advantageous properties and abundance in nature. However, its usage and development in the biomedical field have been stagnant, because of chitin’s poor mechanical properties in wet conditions and the difficulties in transforming it into an applicable form. To overcome these challenges, we created a novel biomimetic chitin composite. This regenerated chitin, prepared with ionic liquid, showed improved mechanical properties in wet conditions by mimicking insect cuticle and squid beak sclerotization, i.e., catechol-meditated cross-linking. By ionic liquid-based heat treatment, dopamine oxidation produced melanin-like compounds and dopamine-meditated cross-links without any solvent evaporation and oxidant utilization. The dopamine-meditated sclerotization increased the ultimate tensile strength (UTS of the regenerated chitin by 2.52-fold, measured after six weeks of phosphate-buffered saline (PBS submersion. In addition, the linear swelling ratio (LSR of the chitin film was reduced by about 22%. This strategy raises a possibility of using regenerated chitin as an artificial hard tissue in wet conditions.

  14. Chitinase and chitin synthase 1: counterbalancing activities in cell separation of Saccharomyces cerevisiae.

    Science.gov (United States)

    Cabib, E; Silverman, S J; Shaw, J A

    1992-01-01

    Previous results [E. Cabib, A. Sburlati, B. Bowers & S. J. Silverman (1989) Journal of Cell Biology 108, 1665-1672] strongly suggested that the lysis observed in daughter cells of Saccharomyces cerevisiae defective in chitin synthase 1 (Chs1) was caused by a chitinase that partially degrades the chitin septum in the process of cell separation. Consequently, it was proposed that in wild-type cells, Chs1 acts as a repair enzyme by replenishing chitin during cytokinesis. The chitinase requirement for lysis has been confirmed in two different ways: (a) demethylallosamidin, a more powerful chitinase inhibitor than the previously used allosamidin, is also a much better protector against lysis and (b) disruption of the chitinase gene in chs1 cells eliminates lysis. Reintroduction of a normal chitinase gene, by transformation of those cells with a suitable plasmid, restores lysis. The percentage of lysed cells in strains lacking Chs1 was not increased by elevating the chitinase level with high-copy-number plasmids carrying the hydrolase gene. Furthermore, the degree of lysis varied in different chs1 strains; lysis was abolished in chs1 mutants containing the scs1 suppressor. These results indicate that, in addition to chitinase, lysis requires other gene products that may become limiting.

  15. Chitin synthases from Saprolegnia are involved in tip growth and represent a potential target for anti-oomycete drugs.

    Directory of Open Access Journals (Sweden)

    Gea Guerriero

    Full Text Available Oomycetes represent some of the most devastating plant and animal pathogens. Typical examples are Phytophthora infestans, which causes potato and tomato late blight, and Saprolegnia parasitica, responsible for fish diseases. Despite the economical and environmental importance of oomycete diseases, their control is difficult, particularly in the aquaculture industry. Carbohydrate synthases are vital for hyphal growth and represent interesting targets for tackling the pathogens. The existence of 2 different chitin synthase genes (SmChs1 and SmChs2 in Saprolegnia monoica was demonstrated using bioinformatics and molecular biology approaches. The function of SmCHS2 was unequivocally demonstrated by showing its catalytic activity in vitro after expression in Pichia pastoris. The recombinant SmCHS1 protein did not exhibit any activity in vitro, suggesting that it requires other partners or effectors to be active, or that it is involved in a different process than chitin biosynthesis. Both proteins contained N-terminal Microtubule Interacting and Trafficking domains, which have never been reported in any other known carbohydrate synthases. These domains are involved in protein recycling by endocytosis. Enzyme kinetics revealed that Saprolegnia chitin synthases are competitively inhibited by nikkomycin Z and quantitative PCR showed that their expression is higher in presence of the inhibitor. The use of nikkomycin Z combined with microscopy showed that chitin synthases are active essentially at the hyphal tips, which burst in the presence of the inhibitor, leading to cell death. S. parasitica was more sensitive to nikkomycin Z than S. monoica. In conclusion, chitin synthases with species-specific characteristics are involved in tip growth in Saprolegnia species and chitin is vital for the micro-organisms despite its very low abundance in the cell walls. Chitin is most likely synthesized transiently at the apex of the cells before cellulose, the major

  16. Papain incorporated chitin dressings for wound debridement sterilized by gamma radiation

    Science.gov (United States)

    Singh, Durgeshwer; Singh, Rita

    2012-11-01

    Wound debridement is essential for the removal of necrotic or nonviable tissue from the wound surface to create an environment conducive to healing. Nonsurgical enzymatic debridement is an attractive method due to its effectiveness and ease of use. Papain is a proteolytic enzyme derived from the fruit of Carica papaya and is capable of breaking down a variety of necrotic tissue substrates. The present study was focused on the use of gamma radiation for sterilization of papain dressing with wound debriding activity. Membranes with papain were prepared using 0.5% chitin in lithium chloride/dimethylacetamide solvent and sterilized by gamma radiation. Fluid absorption capacity of chitin-papain membranes without glycerol was 14.30±6.57% in 6 h. Incorporation of glycerol resulted in significant (p<0.001) increase in the absorption capacity. Moisture vapour transmission rate of the membranes was 4285.77±455.61 g/m2/24 h at 24 h. Gamma irradiation at 25 kGy was found suitable for sterilization of the dressings. Infrared (IR) spectral scanning has shown that papain was stable on gamma irradiation at 25-35 kGy. The irradiated chitin-papain membranes were impermeable to different bacterial strains and also exhibited strong bactericidal action against both Gram-positive and Gram-negative bacteria. The fluid handling characteristics and the antimicrobial properties of chitin-papain membranes sterilized by gamma radiation were found suitable for use as wound dressing with debriding activity.

  17. Ultrasound stimulated release of gallic acid from chitin hydrogel matrix

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Huixin; Kobayashi, Takaomi, E-mail: takaomi@nagaokaut.ac.jp

    2017-06-01

    Ultrasound (US) stimulated drug release was examined in this study using a chitin hydrogel matrix loaded with gallic acid (GA), a drug used for wound healing and anticancer. Using phase inversion, GA-chitin hydrogels were prepared from chitin-dimethylacetamide (DMAc)/lithium chloride (LiCl) solution in the presence of GA, with 24 h exposure of the solution to water vapor. The GA release from the GA-chitin hydrogel was examined under different US powers of 0–30 W at 43 kHz. The effects of GA loading amounts in the hydrogels (0.54, 0.43, and 0.25 mg/cm{sup 3}) and chitin concentrations (0.1, 0.5, and 1 wt%) on the release behaviors were recorded under 43 kHz US exposure at 30 W. Results show that US accelerated the release efficiencies for all samples. Furthermore, the release efficiency increased concomitantly with increasing US power, GA loading amount, and decrease of the chitin concentration. The highest release rate of 0.74 μg/mL·min was obtained from 0.54 mg/cm{sup 3} of GA-loaded hydrogel fabricated from a 0.1 wt% chitin mixture solution under 43 kHz US exposure at 30 W: nine times higher than that of the sample without US exposure. The hydrogel viscoelasticity demonstrated that the US irradiation rigidified the material. FT-IR showed that US can break the hydrogen bonds in the GA-chitin hydrogels. - Highlights: • Ultrasound (US) stimulated Gallic acid (GA) release from chitin hydrogel was studied. • The release efficiency of GA from chitin hydrogel increased nine times when irradiated by 43 kHz US compared with the sample without US. • Generalized 2D correlation and deconvolution study of FT-IR showed that US could promote the GA release by breaking hydrogen bonds.

  18. Ultrasound stimulated release of gallic acid from chitin hydrogel matrix

    International Nuclear Information System (INIS)

    Jiang, Huixin; Kobayashi, Takaomi

    2017-01-01

    Ultrasound (US) stimulated drug release was examined in this study using a chitin hydrogel matrix loaded with gallic acid (GA), a drug used for wound healing and anticancer. Using phase inversion, GA-chitin hydrogels were prepared from chitin-dimethylacetamide (DMAc)/lithium chloride (LiCl) solution in the presence of GA, with 24 h exposure of the solution to water vapor. The GA release from the GA-chitin hydrogel was examined under different US powers of 0–30 W at 43 kHz. The effects of GA loading amounts in the hydrogels (0.54, 0.43, and 0.25 mg/cm 3 ) and chitin concentrations (0.1, 0.5, and 1 wt%) on the release behaviors were recorded under 43 kHz US exposure at 30 W. Results show that US accelerated the release efficiencies for all samples. Furthermore, the release efficiency increased concomitantly with increasing US power, GA loading amount, and decrease of the chitin concentration. The highest release rate of 0.74 μg/mL·min was obtained from 0.54 mg/cm 3 of GA-loaded hydrogel fabricated from a 0.1 wt% chitin mixture solution under 43 kHz US exposure at 30 W: nine times higher than that of the sample without US exposure. The hydrogel viscoelasticity demonstrated that the US irradiation rigidified the material. FT-IR showed that US can break the hydrogen bonds in the GA-chitin hydrogels. - Highlights: • Ultrasound (US) stimulated Gallic acid (GA) release from chitin hydrogel was studied. • The release efficiency of GA from chitin hydrogel increased nine times when irradiated by 43 kHz US compared with the sample without US. • Generalized 2D correlation and deconvolution study of FT-IR showed that US could promote the GA release by breaking hydrogen bonds.

  19. Obtention and characterization of chitin and chitosan from M. rosenbergii

    International Nuclear Information System (INIS)

    Battisti, Marcos V.; Campana Filho, Sergio P.

    2001-01-01

    Chitin was extracted from previously ground shells of Macrobrachium rosenbergii by applying acid and alkaline treatments, aiming at its demineralization and deprotenization, respectively. Its characteristics and properties were compared with those exhibited by commercial samples of chitin. Commercial chitosan and samples produced by the deacetylation of chitin obtained from M. rosenbergii shells were also compared. Average degrees of acetylation and intrinsic viscosities of the chitosan were determined by 1 H NMR spectroscopy and by capillary viscosimetry, respectively. The results show that the chitin extracted from Macrobrachium rosenbergii has a lower content of inorganic materials as compared to commercial samples but the chitosan obtained from the former chitin sample is very similar to commercial chitosan. (author)

  20. Polycaprolactone-Chitin Nanofibrous Mats as Potential Scaffolds for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Min Sup Kim

    2012-01-01

    Full Text Available We describe here the preparation of poly(caprolactone (PCL-chitin nanofibrous mats by electrospinning from a blended solution of PCL and chitin dissolved in a cosolvent, 1,1,1,3,3,3-hexafluoro-2-propanol and trifluoroacetic acid. Scanning electron microscopy showed that the neutralized PCL-chitin nanofibrous mats were morphologically stable, with a mean diameter of 340.5±2.6 nm, compared with a diameter of 524.2±12.1 nm for PCL mats. The nanofibrous mats showed decreased water contact angles as the proportion of chitin increased. However, the tensile properties of nanofibrous mats containing 30~50% (wt/wt chitin were enhanced compared with PCL-only mats. In vitro studies showed that the viability of human dermal fibroblasts (HDFs for up to 7 days in culture was higher on composite (OD value: 1.42±0.09 than on PCL-only (0.51±0.14 nanofibrous mats, with viability correlated with chitin concentration. Together, our results suggest that PCL-chitin nanofibrous mats can be used as an implantable substrate to modulate HDF viability in tissue engineering.

  1. CHONDROPROTECTIVE ACTIVITY OF BEE-VENOM MELITTIN AND CRAB SHELL CHITIN ON PAPAIN INDUCED OSTEOARTHRITIS IN RABBITS

    OpenAIRE

    Ravindra Babu Sajja*, Prasad K, Eswar Kumar K and G.Phani C Reddy

    2018-01-01

    In the present study the chondroprotective effect of melittin and chitin from bee venom and crab shell was examined against papain induced osteoarthritis in rabbits. The leukocyte count in synovial fluid, X-ray radiography of ankle joints and histopathology of joint cartilage were performed to assess chondroprotective activity. There is a significant fall in leukocyte count of bee venom (1.2mg/kg, s.c) treated group when compared with osteoarthritic control and the standard groups. Histopatho...

  2. Paenibacillus larvae chitin-degrading protein PlCBP49 is a key virulence factor in American Foulbrood of honey bees.

    Directory of Open Access Journals (Sweden)

    Eva Garcia-Gonzalez

    2014-07-01

    Full Text Available Paenibacillus larvae, the etiological agent of the globally occurring epizootic American Foulbrood (AFB of honey bees, causes intestinal infections in honey bee larvae which develop into systemic infections inevitably leading to larval death. Massive brood mortality might eventually lead to collapse of the entire colony. Molecular mechanisms of host-microbe interactions in this system and of differences in virulence between P. larvae genotypes are poorly understood. Recently, it was demonstrated that the degradation of the peritrophic matrix lining the midgut epithelium is a key step in pathogenesis of P. larvae infections. Here, we present the isolation and identification of PlCBP49, a modular, chitin-degrading protein of P. larvae and demonstrate that this enzyme is crucial for the degradation of the larval peritrophic matrix during infection. PlCBP49 contains a module belonging to the auxiliary activity 10 (AA10, formerly CBM33 family of lytic polysaccharide monooxygenases (LPMOs which are able to degrade recalcitrant polysaccharides. Using chitin-affinity purified PlCBP49, we provide evidence that PlCBP49 degrades chitin via a metal ion-dependent, oxidative mechanism, as already described for members of the AA10 family. Using P. larvae mutants lacking PlCBP49 expression, we analyzed in vivo biological functions of PlCBP49. In the absence of PlCBP49 expression, peritrophic matrix degradation was markedly reduced and P. larvae virulence was nearly abolished. This indicated that PlCBP49 is a key virulence factor for the species P. larvae. The identification of the functional role of PlCBP49 in AFB pathogenesis broadens our understanding of this important family of chitin-binding and -degrading proteins, especially in those bacteria that can also act as entomopathogens.

  3. Chitin Synthases with a Myosin Motor-Like Domain Control the Resistance of Aspergillus fumigatus to Echinocandins

    Science.gov (United States)

    Jiménez-Ortigosa, Cristina; Aimanianda, Vishukumar; Muszkieta, Laetitia; Mouyna, Isabelle; Alsteens, David; Pire, Stéphane; Beau, Remi; Krappmann, Sven; Beauvais, Anne; Dufrêne, Yves F.

    2012-01-01

    Aspergillus fumigatus has two chitin synthases (CSMA and CSMB) with a myosin motor-like domain (MMD) arranged in a head-to-head configuration. To understand the function of these chitin synthases, single and double csm mutant strains were constructed and analyzed. Although there was a slight reduction in mycelial growth of the mutants, the total chitin synthase activity and the cell wall chitin content were similar in the mycelium of all of the mutants and the parental strain. In the conidia, chitin content in the ΔcsmA strain cell wall was less than half the amount found in the parental strain. In contrast, the ΔcsmB mutant strain and, unexpectedly, the ΔcsmA/ΔcsmB mutant strain did not show any modification of chitin content in their conidial cell walls. In contrast to the hydrophobic conidia of the parental strain, conidia of all of the csm mutants were hydrophilic due to the presence of an amorphous material covering the hydrophobic surface-rodlet layer. The deletion of CSM genes also resulted in an increased susceptibility of resting and germinating conidia to echinocandins. These results show that the deletion of the CSMA and CSMB genes induced a significant disorganization of the cell wall structure, even though they contribute only weakly to the overall cell wall chitin synthesis. PMID:22964252

  4. Sequence and structural analysis of the chitinase insertion domain reveals two conserved motifs involved in chitin-binding.

    Directory of Open Access Journals (Sweden)

    Hai Li

    2010-01-01

    Full Text Available Chitinases are prevalent in life and are found in species including archaea, bacteria, fungi, plants, and animals. They break down chitin, which is the second most abundant carbohydrate in nature after cellulose. Hence, they are important for maintaining a balance between carbon and nitrogen trapped as insoluble chitin in biomass. Chitinases are classified into two families, 18 and 19 glycoside hydrolases. In addition to a catalytic domain, which is a triosephosphate isomerase barrel, many family 18 chitinases contain another module, i.e., chitinase insertion domain. While numerous studies focus on the biological role of the catalytic domain in chitinase activity, the function of the chitinase insertion domain is not completely understood. Bioinformatics offers an important avenue in which to facilitate understanding the role of residues within the chitinase insertion domain in chitinase function.Twenty-seven chitinase insertion domain sequences, which include four experimentally determined structures and span five kingdoms, were aligned and analyzed using a modified sequence entropy parameter. Thirty-two positions with conserved residues were identified. The role of these conserved residues was explored by conducting a structural analysis of a number of holo-enzymes. Hydrogen bonding and van der Waals calculations revealed a distinct subset of four conserved residues constituting two sequence motifs that interact with oligosaccharides. The other conserved residues may be key to the structure, folding, and stability of this domain.Sequence and structural studies of the chitinase insertion domains conducted within the framework of evolution identified four conserved residues which clearly interact with the substrates. Furthermore, evolutionary studies propose a link between the appearance of the chitinase insertion domain and the function of family 18 chitinases in the subfamily A.

  5. Dopamine-Mediated Sclerotization of Regenerated Chitin in Ionic Liquid

    OpenAIRE

    Oh, Dongyeop X.; Shin, Sara; Lim, Chanoong; Hwang, Dong Soo

    2013-01-01

    Chitin is a promising structural material for biomedical applications, due to its many advantageous properties and abundance in nature. However, its usage and development in the biomedical field have been stagnant, because of chitin’s poor mechanical properties in wet conditions and the difficulties in transforming it into an applicable form. To overcome these challenges, we created a novel biomimetic chitin composite. This regenerated chitin, prepared with ionic liquid, showed improved mecha...

  6. On the function of chitin synthase extracellular domains in biomineralization.

    Science.gov (United States)

    Weiss, Ingrid M; Lüke, Florian; Eichner, Norbert; Guth, Christina; Clausen-Schaumann, Hauke

    2013-08-01

    Molluscs with various shell architectures evolved around 542-525 million years ago, as part of a larger phenomenon related to the diversification of metazoan phyla. Molluscs deposit minerals in a chitin matrix. The mollusc chitin is synthesized by transmembrane enzymes that contain several unique extracellular domains. Here we investigate the assembly mechanism of the chitin synthase Ar-CS1 via its extracellular domain ArCS1_E22. The corresponding transmembrane protein ArCS1_E22TM accumulates in membrane fractions of the expression host Dictyostelium discoideum. Soluble recombinant ArCS1_E22 proteins can be purified as monomers only at basic pH. According to confocal fluorescence microscopy experiments, immunolabeled ArCS1_E22 proteins adsorb preferably to aragonitic nacre platelets at pH 7.75. At pH 8.2 or pH 9.0 the fluorescence signal is less intense, indicating that protein-mineral interaction is reduced with increasing pH. Furthermore, ArCS1_E22 forms regular nanostructures on cationic substrates as revealed by atomic force microscopy (AFM) experiments on modified mica cleavage planes. These experiments suggest that the extracellular domain ArCS1_E22 is involved in regulating the multiple enzyme activities of Ar-CS1 such as chitin synthesis and myosin movements by interaction with mineral surfaces and eventually by protein assembly. The protein complexes could locally probe the status of mineralization according to pH unless ions and pCO2 are balanced with suitable buffer substances. Taking into account that the intact enzyme could act as a force sensor, the results presented here provide further evidence that shell formation is coordinated physiologically with precise adjustment of cellular activities to the structure, topography and stiffness at the mineralizing interface. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Short-Chain Chitin Oligomers: Promoters of Plant Growth

    Directory of Open Access Journals (Sweden)

    Alexander J. Winkler

    2017-02-01

    Full Text Available Chitin is the second most abundant biopolymer in nature after cellulose, and it forms an integral part of insect exoskeletons, crustacean shells, krill and the cell walls of fungal spores, where it is present as a high-molecular-weight molecule. In this study, we showed that a chitin oligosaccharide of lower molecular weight (tetramer induced genes in Arabidopsis that are principally related to vegetative growth, development and carbon and nitrogen metabolism. Based on plant responses to this chitin tetramer, a low-molecular-weight chitin mix (CHL enriched to 92% with dimers (2mer, trimers (3mer and tetramers (4mer was produced for potential use in biotechnological processes. Compared with untreated plants, CHL-treated plants had increased in vitro fresh weight (10%, radicle length (25% and total carbon and nitrogen content (6% and 8%, respectively. Our data show that low-molecular-weight forms of chitin might play a role in nature as bio-stimulators of plant growth, and they are also a known direct source of carbon and nitrogen for soil biomass. The biochemical properties of the CHL mix might make it useful as a non-contaminating bio-stimulant of plant growth and a soil restorer for greenhouses and fields.

  8. Production of High Viscosity Chitosan from Biologically Purified Chitin Isolated by Microbial Fermentation and Deproteinization

    Directory of Open Access Journals (Sweden)

    Ekkalak Ploydee

    2014-01-01

    Full Text Available The objective of this study was to produce high viscosity chitosan from shrimp chitin prepared by using a two-step biological treatment process: decalcification and deproteinization. Glucose was fermented with Lactobacillus pentosus L7 to lactic acid. At a pH of 3.9±0.1, the calcium carbonate of the shells was solubilized in 48 hours. The amounts of residual calcium in the form of ash (1.4±0.5% and crude protein (23.2±2.5% were further eliminated by the activity of proteolytic Bacillus thuringiensis SA. After decalcification and deproteinization of the shrimp shells, residual calcium and crude protein of shrimp chitin flakes were 1.7±0.4% and 3.8±1.3%, respectively. Chitin was deacetylated with 50% NaOH at 121°C for 5 hours. After deacetylation, the chitosan had residual calcium, crude protein content, and degree of acetylation of 1.6±0.6%, 0.4±0.3%, and 83.2±1.5%, respectively. The viscosity of chitosan prepared from chitin extracted by this two-step biological process was 1,007±14.7 mPa·s, whereas chitosan prepared from chemically processed chitin had a viscosity of 323±15.6   mPa·s, indicating that biologically purified chitin gave chitosan with a high quality.

  9. A Review of the Applications of Chitin and Its Derivatives in Agriculture to Modify Plant-Microbial Interactions and Improve Crop Yields

    Directory of Open Access Journals (Sweden)

    Russell G. Sharp

    2013-11-01

    Full Text Available In recent decades, a greater knowledge of chitin chemistry, and the increased availability of chitin-containing waste materials from the seafood industry, have led to the testing and development of chitin-containing products for a wide variety of applications in the agriculture industry. A number of modes of action have been proposed for how chitin and its derivatives can improve crop yield. In addition to direct effects on plant nutrition and plant growth stimulation, chitin-derived products have also been shown to be toxic to plant pests and pathogens, induce plant defenses and stimulate the growth and activity of beneficial microbes. A repeating theme of the published studies is that chitin-based treatments augment and amplify the action of beneficial chitinolytic microbes. This article reviews the evidence for claims that chitin-based products can improve crop yields and the current understanding of the modes of action with a focus on plant-microbe interactions.

  10. Protective Effect of Chitin Urocanate Nanofibers against Ultraviolet Radiation

    Directory of Open Access Journals (Sweden)

    Ikuko Ito

    2015-12-01

    Full Text Available Urocanic acid is a major ultraviolet (UV-absorbing chromophore. Chitins are highly crystalline structures that are found predominantly in crustacean shells. Alpha-chitin consists of microfibers that contain nanofibrils embedded in a protein matrix. Acid hydrolysis is a common method used to prepare chitin nanofibrils (NFs. We typically obtain NFs by hydrolyzing chitin with acetic acid. However, in the present study, we used urocanic acid to prepare urocanic acid chitin NFs (UNFs and examined its protective effect against UVB radiation. Hos: HR-1 mice coated with UNFs were UVB irradiated (302 nm, 150 mJ/cm2, and these mice showed markedly lower UVB radiation-induced cutaneous erythema than the control. Additionally, sunburn cells were rarely detected in the epidermis of UNFs-coated mice after UVB irradiation. Although the difference was not as significant as UNFs, the number of sunburn cells in mice treated with acetic acid chitin nanofibrils (ANFs tended to be lower than in control mice. These results demonstrate that ANFs have a protective effect against UVB and suggest that the anti-inflammatory and antioxidant effects of NFs influence the protective effect of ANFs against UVB radiation. The combination of NFs with other substances that possess UV-protective effects, such as urocanic acid, may provide an enhanced protective effect against UVB radiation.

  11. Chitin's Functionality as a Novel Disintegrant: Benchmarking Against Commonly Used Disintegrants in Different Physicochemical Environments.

    Science.gov (United States)

    Chaheen, Mohammad; Soulairol, Ian; Bataille, Bernard; Yassine, Ahmad; Belamie, Emmanuel; Sharkawi, Tahmer

    2017-07-01

    Disintegrants are used as excipients to ensure rapid disintegration of pharmaceutical tablets and further ensure proper dissolution of the active pharmaceutical ingredient. This study investigates disintegration mechanisms of chitin and common disintegrants. Swelling assessment (swelling force and swelling ratio) in different media, and compaction behavior (pure or mixed with other excipients) tabletability, deformation (Heckel modeling), and compact disintegration times were investigated on the tested disintegrants (alginic acid calcium salt, crospovidone, sodium starch glycolate, croscarmellose sodium, and chitin). Results show that the physicochemical properties of the disintegration medium such as pH and ionic strength, as well as other formulation ingredients, affect the disintegrant functionalities. Heckel analysis using the mean yield pressure "Py" shows that alginic acid calcium salt is the most brittle among the studied disintegrants, while crospovidone has the most plastic deformation mechanism, followed by chitin. Chitin showed good tabletability and disintegration properties that were not influenced by the physicochemical formulation environment. Chitin is largely available and easily modifiable and thus a promising material that could be used as a multifunctional excipient in tablet formulation. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Structural and Thermodynamic Insights into Chitooligosaccharide Binding to Human Cartilage Chitinase 3-like Protein 2 (CHI3L2 or YKL-39)*

    Science.gov (United States)

    Ranok, Araya; Wongsantichon, Jantana; Robinson, Robert C.; Suginta, Wipa

    2015-01-01

    Four crystal structures of human YKL-39 were solved in the absence and presence of chitooligosaccharides. The structure of YKL-39 comprises a major (β/α)8 triose-phosphate isomerase barrel domain and a small α + β insertion domain. Structural analysis demonstrates that YKL-39 interacts with chitooligosaccharides through hydrogen bonds and hydrophobic interactions. The binding of chitin fragments induces local conformational changes that facilitate tight binding. Compared with other GH-18 members, YKL-39 has the least extended chitin-binding cleft, containing five subsites for sugars, namely (−3)(−2)(−1)(+1)(+2), with Trp-360 playing a prominent role in the sugar-protein interactions at the center of the chitin-binding cleft. Evaluation of binding affinities obtained from isothermal titration calorimetry and intrinsic fluorescence spectroscopy suggests that YKL-39 binds to chitooligosaccharides with Kd values in the micromolar concentration range and that the binding energies increase with the chain length. There were no significant differences between the Kd values of chitopentaose and chitohexaose, supporting the structural evidence for the five binding subsite topology. Thermodynamic analysis indicates that binding of chitooligosaccharide to YKL-39 is mainly driven by enthalpy. PMID:25477513

  13. Isolation and characterization of chitin and chitosan from marine origin.

    Science.gov (United States)

    Nwe, Nitar; Furuike, Tetsuya; Tamura, Hiroshi

    2014-01-01

    Nowadays, chitin and chitosan are produced from the shells of crabs and shrimps, and bone plate of squid in laboratory to industrial scale. Production of chitosan involved deproteinization, demineralization, and deacetylation. The characteristics of chitin and chitosan mainly depend on production processes and conditions. The characteristics of these biopolymers such as appearance of polymer, turbidity of polymer solution, degree of deacetylation, and molecular weight are of major importance on applications of these polymers. This chapter addresses the production processes and conditions to produce chitin, chitosan, and chito-oligosaccharide and methods for characterization of chitin, chitosan, and chito-oligosaccharide. © 2014 Elsevier Inc. All rights reserved.

  14. Purification, characterization, and antifungal activity of chitinases from pineapple (Ananas comosus) leaf.

    Science.gov (United States)

    Taira, Toki; Toma, Noriko; Ishihara, Masanobu

    2005-01-01

    Three chitinases, designated pineapple leaf chitinase (PL Chi)-A, -B, and -C were purified from the leaves of pineapple (Ananas comosus) using chitin affinity column chromatography followed by several column chromatographies. PL Chi-A is a class III chitinase having a molecular mass of 25 kDa and an isoelectric point of 4.4. PL Chi-B and -C are class I chitinases having molecular masses of 33 kDa and 39 kDa and isoelectric points of 7.9 and 4.6 respectively. PL Chi-C is a glycoprotein and the others are simple proteins. The optimum pHs of PL Chi-A, -B, and -C toward glycolchitin are pH 3, 4, and 9 respectively. The chitin-binding ability of PL Chi-C is higher than that of PL Chi-B, and PL Chi-A has lower chitin-binding ability than the others. At low ionic strength, PL Chi-B exhibits strong antifungal activity toward Trichoderma viride but the others do not. At high ionic strength, PL Chi-B and -C exhibit strong and weak antifungal activity respectively. PL Chi-A does not have antifungal activity.

  15. Fabrication of α-chitin whisker-reinforced poly(vinyl alcohol) nanocomposite nanofibres by electrospinning

    International Nuclear Information System (INIS)

    Junkasem, Jirawut; Rujiravanit, Ratana; Supaphol, Pitt

    2006-01-01

    The present contribution reports, for the first time, the successful fabrication of α-chitin whisker-reinforced poly(vinyl alcohol) (PVA) nanocomposite nanofibres by electrospinning. The α-chitin whiskers were prepared from α-chitin flakes from shrimp shells by acid hydrolysis. The as-prepared chitin whiskers exhibited lengths in the range 231-969 nm and widths in the range 12-65 nm, with the average length and width being about 549 and 31 nm, respectively. Successful incorporation of the chitin whiskers within the as-spun PVA/chitin whisker nanocomposite nanofibres was verified by infrared spectroscopic and thermogravimetric methods. The incorporation of chitin whiskers within the as-spun nanocomposite fibre mats increased the Young's modulus by about 4-8 times over that of the neat as-spun PVA fibre mat

  16. SEM characterization of anatomical variation in chitin organization in insect and arthropod cuticles.

    Science.gov (United States)

    Chandran, Rakkiyappan; Williams, Lee; Hung, Albert; Nowlin, Kyle; LaJeunesse, Dennis

    2016-03-01

    The cuticles of insects and arthropods have some of the most diverse material properties observed in nature, so much so that it is difficult to imagine that all cutciles are primarily composed of the same two materials: a fibrous chitin network and a matrix composed of cuticle proteins. Various factors contribute to the mechanical and optical properties of an insect or arthropod cuticle including the thickness and composition. In this paper, we also identified another factor that may contribute to the optical, surface, and mechanical properties of a cuticle, i.e. the organization of chitin nanofibers and chitin fiber bundles. Self-assembled chitin nanofibers serve as the foundation for all higher order chitin structures in the cuticles of insects and other arthropods via interactions with structural cuticle proteins. Using a technique that enables the characterization of chitin organization in the cuticle of intact insects and arthropod exoskeletons, we demonstrate a structure/function correlation of chitin organization with larger scale anatomical structures. The chitin scaffolds in cuticles display an extraordinarily diverse set of morphologies that may reflect specific mechanical or physical properties. After removal of the proteinaceous and mineral matrix of a cuticle, we observe using SEM diverse nanoscale and micro scale organization of in-situ chitin in the wing, head, eye, leg, and dorsal and ventral thoracic regions of the periodical cicada Magicicada septendecim and in other insects and arthropods. The organization of chitin also appears to have a significant role in the organization of nanoscale surface structures. While microscale bristles and hairs have long been known to be chitin based materials formed as cellular extensions, we have found a nanostructured layer of chitin in the cuticle of the wing of the dog day annual cicada Tibicen tibicens, which may be the scaffold for the nanocone arrays found on the wing. We also use this process to examine

  17. Comparison of Extraction Methods of Chitin from Ganoderma lucidum Mushroom Obtained in Submerged Culture

    Directory of Open Access Journals (Sweden)

    Sandra Patricia Ospina Álvarez

    2014-01-01

    Full Text Available The chitin was isolated from the Ganoderma lucidum submerged cultures mycelium as potential source of chitin under biotechnological processes. The extraction of chitin was carried out through 5 different assays which involved mainly three phases: pulverization of the mushroom, deproteinization of the mycelia with NaOH solution, and a process of decolorization with potassium permanganate and oxalic acid. The chitin contents extracted from 9-day mycelia were 413, 339, 87, 78, and 144 mg/g−1 (milligrams of chitin/grams of dry biomass for A1, A2, A3, A4, and A5, respectively. Obtained chitin was characterized by X-Ray Diffraction (XRD, by Fourier transform infrared spectroscopy (FTIR, and by thermal analysis (TGA. The results showed that Ganoderma lucidum chitin has similar characteristic of chitin from different fonts. The advantage of the biotechnological processes and the fact that Ganoderma lucidum fungus may be used as a potential raw material for chitin production were demonstrated.

  18. Comparison of Extraction Methods of Chitin from Ganoderma lucidum Mushroom Obtained in Submerged Culture

    Science.gov (United States)

    Ospina Álvarez, Sandra Patricia; Ramírez Cadavid, David Alexander; Ossa Orozco, Claudia Patricia; Zapata Ocampo, Paola; Atehortúa, Lucía

    2014-01-01

    The chitin was isolated from the Ganoderma lucidum submerged cultures mycelium as potential source of chitin under biotechnological processes. The extraction of chitin was carried out through 5 different assays which involved mainly three phases: pulverization of the mushroom, deproteinization of the mycelia with NaOH solution, and a process of decolorization with potassium permanganate and oxalic acid. The chitin contents extracted from 9-day mycelia were 413, 339, 87, 78, and 144 mg/g−1 (milligrams of chitin/grams of dry biomass) for A1, A2, A3, A4, and A5, respectively. Obtained chitin was characterized by X-Ray Diffraction (XRD), by Fourier transform infrared spectroscopy (FTIR), and by thermal analysis (TGA). The results showed that Ganoderma lucidum chitin has similar characteristic of chitin from different fonts. The advantage of the biotechnological processes and the fact that Ganoderma lucidum fungus may be used as a potential raw material for chitin production were demonstrated. PMID:24551839

  19. Current Status and New Perspectives on Chitin and Chitosan as Functional Biopolymers.

    Science.gov (United States)

    Philibert, Tuyishime; Lee, Byong H; Fabien, Nsanzabera

    2017-04-01

    The natural biopolymer chitin and its deacetylated product chitosan are found abundantly in nature as structural building blocks and are used in all sectors of human activities like materials science, nutrition, health care, and energy. Far from being fully recognized, these polymers are able to open opportunities for completely novel applications due to their exceptional properties which an economic value is intrinsically entrapped. On a commercial scale, chitosan is mainly obtained from crustacean shells rather than from the fungal and insect sources. Significant efforts have been devoted to commercialize chitosan extracted from fungal and insect sources to completely replace crustacean-derived chitosan. However, the traditional chitin extraction processes are laden with many disadvantages. The present review discusses the potential bioextraction of chitosan from fungal, insect, and crustacean as well as its superior physico-chemical properties. The different aspects of fungal, insects, and crustacean chitosan extraction methods and various parameters having an effect on the yield of chitin and chitosan are discussed in detail. In addition, this review also deals with essential attributes of chitosan for high value-added applications in different fields and highlighted new perspectives on the production of chitin and deacetylated chitosan from different sources with the concomitant reduction of the environmental impact.

  20. Chitin Adsorbents for Toxic Metals: A Review

    Directory of Open Access Journals (Sweden)

    Ioannis Anastopoulos

    2017-01-01

    Full Text Available Wastewater treatment is still a critical issue all over the world. Among examined methods for the decontamination of wastewaters, adsorption is a promising, cheap, environmentally friendly and efficient procedure. There are various types of adsorbents that have been used to remove different pollutants such as agricultural waste, compost, nanomaterials, algae, etc., Chitin (poly-β-(1,4-N-acetyl-d-glucosamine is the second most abundant natural biopolymer and it has attracted scientific attention as an inexpensive adsorbent for toxic metals. This review article provides information about the use of chitin as an adsorbent. A list of chitin adsorbents with maximum adsorption capacity and the best isotherm and kinetic fitting models are provided. Moreover, thermodynamic studies, regeneration studies, the mechanism of adsorption and the experimental conditions are also discussed in depth.

  1. Determination of chitin in Claviceps

    Energy Technology Data Exchange (ETDEWEB)

    Schmauder, H P; Groeger, D [Akademie der Wissenschaften der DDR, Halle/Saale. Inst. fuer Biochemie der Pflanzen

    1978-01-01

    Preparations rich in chitin obtained from the cell walls of ergot fungi were studied by X-ray diffraction and IR-techniques. During the course of fermentation, the yield of chitin was determined using a modified procedure according to Ride and Drysdale (1972). A saprophytic ergotoxine-producing Claviceps purpurea strain (Pepty 695) was found to contain 7-9 ..mu..g glucosamine/mg dry weight of the mycelium in contrast to 3-5 ..mu..g glucosamine/mg dry weight of a non-alkaloid producing C. purpurea strain (PUR 212). There was no remarkable fluctuation of the glucosamine content in strain Pepty 695 during the course of fermentation.

  2. A comparative study of sorption of chromium (III) onto chitin and chitosan

    Science.gov (United States)

    Singh, Pooja; Nagendran, R.

    2016-06-01

    Heavy metals have always been the most hazardous components in the wastewater of industries like electroplating, automobiles, mining facilities and fertilizer manufacturers. Treatment of heavy metal laden wastewater requires expensive operational and maintenance systems. Food processing industries create a huge amount of shell waste which is sold to poultry farms in powdered form but the quantity thus used is still not comparable to the left over waste. The shell contains chitin which acts as an adsorbent for the heavy metals and can be used to treat heavy metal wastewater. The paper presents a study on the use of chitin and its processed product, chitosan, to remove chromium. Shake flask experiment was conducted to compare the adsorptive capacity of chitin and chitosan for chromium removal from simulated solution and isotherm studies were carried out. The studies showed that the chitosan was a better adsorbent than chitin. Both chitin and chitosan gave best adsorption results at pH 3. Chitin exhibited maximum chromium removal of 49.98 % in 20 min, whereas chitosan showed 50 % removal efficiency at a contact time of 20 min showing higher adsorptive capacity for chromium than chitin. The Langmiur and Freundlich isotherm studies showed very good adsorption capacity and monolayer interaction according to the regression coefficient 0.973 for chitosan and 0.915 for chitin. The regression coefficient for Freundlich isotherm was 0.894 and 0.831 for chitosan and chitin, respectively.

  3. Chitin and chitosan as functional biopolymers for industrial applications

    NARCIS (Netherlands)

    kardas, I.; Struzczyk, M.H.; Kucharska, M.; Broek, van den L.A.M.; Dam, van J.E.G.

    2012-01-01

    Chitin research and development seems to be under intensive progress during the last years. Attractive properties of chitin and its derivative—chitosan, for example, biological behavior, and development of their applications caused increased interest of scientists and companies. More and more

  4. Structure and Properties of Chitin Whisker Reinforced Papers for Food Packaging Application

    Directory of Open Access Journals (Sweden)

    Zhihan Li

    2015-04-01

    Full Text Available In recent years, concerns about environmental waste caused by petroleum-derived chemicals as well as the consumer's demand for high quality food products, have prompted people to pay more attention to developing biodegradable food packaging materials using natural resources such as cellulose fibers and chitin derivatives. In this study, chitin whiskers have been successfully generated by hydrolyzing the α-chitin sample. Then the synthesized nano-sized chitin whiskers were used at ratios from 0.1% to 2% (wt% for improving strength properties of paper sheets by the dip-coating method. Transmission electron microscopy (TEM and field emission scanning electron microscopy (FE-SEM were used to investigate the morphology of chitin whiskers and cellulose fiber compounds. The results showed that coating with chitin whiskers brought about an increase in tear strength, burst strength, and wet and dry tensile strength, with a decrease in Zeta-potential value.

  5. Customizing Properties of β-Chitin in Squid Pen (Gladius by Chemical Treatments

    Directory of Open Access Journals (Sweden)

    Alessandro Ianiro

    2014-12-01

    Full Text Available The squid pen (gladius from the Loligo vulgaris was used for preparation of β-chitin materials characterized by different chemical, micro- and nano-structural properties that preserved, almost completely the macrostructural and the mechanical ones. The β-chitin materials obtained by alkaline treatment showed porosity, wettability and swelling that are a function of the duration of the treatment. Microscopic, spectroscopic and synchrotron X-ray diffraction techniques showed that the chemical environment of the N-acetyl groups of the β-chitin chains changes after the thermal alkaline treatment. As a consequence, the crystalline packing of the β-chitin is modified, due to the intercalation of water molecules between β-chitin sheets. Potential applications of these β-chitin materials range from the nanotechnology to the regenerative medicine. The use of gladii, which are waste products of the fishing industry, has also important environmental implications.

  6. Chitin and Chitosan as Direct Compression Excipients in Pharmaceutical Applications

    Science.gov (United States)

    Badwan, Adnan A.; Rashid, Iyad; Al Omari, Mahmoud M.H.; Darras, Fouad H.

    2015-01-01

    Despite the numerous uses of chitin and chitosan as new functional materials of high potential in various fields, they are still behind several directly compressible excipients already dominating pharmaceutical applications. There are, however, new attempts to exploit chitin and chitosan in co-processing techniques that provide a product with potential to act as a direct compression (DC) excipient. This review outlines the compression properties of chitin and chitosan in the context of DC pharmaceutical applications. PMID:25810109

  7. Chitin and Chitosan as Direct Compression Excipients in Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Adnan A. Badwan

    2015-03-01

    Full Text Available Despite the numerous uses of chitin and chitosan as new functional materials of high potential in various fields, they are still behind several directly compressible excipients already dominating pharmaceutical applications. There are, however, new attempts to exploit chitin and chitosan in co-processing techniques that provide a product with potential to act as a direct compression (DC excipient. This review outlines the compression properties of chitin and chitosan in the context of DC pharmaceutical applications.

  8. Insight into the adsorption profiles of the Saprolegnia monoica chitin synthase MIT domain on POPA and POPC membranes by molecular dynamics simulation studies.

    Science.gov (United States)

    Kuang, Guanglin; Liang, Lijun; Brown, Christian; Wang, Qi; Bulone, Vincent; Tu, Yaoquan

    2016-02-21

    The critical role of chitin synthases in oomycete hyphal tip growth has been established. A microtubule interacting and trafficking (MIT) domain was discovered in the chitin synthases of the oomycete model organism, Saprolegnia monoica. MIT domains have been identified in diverse proteins and may play a role in intracellular trafficking. The structure of the Saprolegnia monoica chitin synthase 1 (SmChs1) MIT domain has been recently determined by our group. However, although our in vitro assay identified increased strength in interactions between the MIT domain and phosphatidic acid (PA) relative to other phospholipids including phosphatidylcholine (PC), the mechanism used by the MIT domain remains unknown. In this work, the adsorption behavior of the SmChs1 MIT domain on POPA and POPC membranes was systematically investigated by molecular dynamics simulations. Our results indicate that the MIT domain can adsorb onto the tested membranes in varying orientations. Interestingly, due to the specific interactions between MIT residues and lipid molecules, the binding affinity to the POPA membrane is much higher than that to the POPC membrane. A binding hotspot, which is critical for the adsorption of the MIT domain onto the POPA membrane, was also identified. The lower binding affinity to the POPC membrane can be attributed to the self-saturated membrane surface, which is unfavorable for hydrogen-bond and electrostatic interactions. The present study provides insight into the adsorption profile of SmChs1 and additionally has the potential to improve our understanding of other proteins containing MIT domains.

  9. Structural and thermodynamic insights into chitooligosaccharide binding to human cartilage chitinase 3-like protein 2 (CHI3L2 or YKL-39).

    Science.gov (United States)

    Ranok, Araya; Wongsantichon, Jantana; Robinson, Robert C; Suginta, Wipa

    2015-01-30

    Four crystal structures of human YKL-39 were solved in the absence and presence of chitooligosaccharides. The structure of YKL-39 comprises a major (β/α)8 triose-phosphate isomerase barrel domain and a small α + β insertion domain. Structural analysis demonstrates that YKL-39 interacts with chitooligosaccharides through hydrogen bonds and hydrophobic interactions. The binding of chitin fragments induces local conformational changes that facilitate tight binding. Compared with other GH-18 members, YKL-39 has the least extended chitin-binding cleft, containing five subsites for sugars, namely (-3)(-2)(-1)(+1)(+2), with Trp-360 playing a prominent role in the sugar-protein interactions at the center of the chitin-binding cleft. Evaluation of binding affinities obtained from isothermal titration calorimetry and intrinsic fluorescence spectroscopy suggests that YKL-39 binds to chitooligosaccharides with Kd values in the micromolar concentration range and that the binding energies increase with the chain length. There were no significant differences between the Kd values of chitopentaose and chitohexaose, supporting the structural evidence for the five binding subsite topology. Thermodynamic analysis indicates that binding of chitooligosaccharide to YKL-39 is mainly driven by enthalpy. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Physicochemical and antifungal properties of bio-nanocomposite film based on gelatin-chitin nanoparticles.

    Science.gov (United States)

    Sahraee, Samar; Milani, Jafar M; Ghanbarzadeh, Babak; Hamishehkar, Hamed

    2017-04-01

    The gelatin-based nanocomposite films containing chitin nanoparticles (N-chitin) with concentrations of 0, 3, 5 and 10% were prepared and their physical, thermal and anti-microbial properties were investigated. Scanning electron microscopy (SEM) micrographs showed that N-chitin size distribution was around 60-70nm which dispersed appropriately at low concentration in gelatin matrix. The results showed that incorporation of N-chitin significantly influenced apparent color and transparency of the gelatin films. The reduced water vapor permeability (WVP) and solubility and higher surface hydrophobicity of the nanocomposite films were obtained by enhancing N-chitin concentration in film formulation. The use of N-chitin up to 5% concentration in the gelatin based nanocomposite film led to improved mechanical properties. Also, the results of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) confirmed improved stability of nanocomposite films against melting and degradation at high temperatures in comparison to neat gelatin film. The well compatibility of chitin nanoparticles with gelatin polymer was concluded from Fourier transform infrared (FTIR) spectra and X-ray diffraction (XRD) plots. Finally, the gelatin based nanocomposite films had anti-fungal properties against Aspergillus niger in the contact surface zone. Increasing the concentration of N-chitin up to 5% enlarged inhibition zone diameter, but the nanocomposite film containing 10% N-chitin showed smaller inhibition zone. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Cellulose binding domain proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  12. Response of the chitinolytic microbial community to chitin amendments of dune soils

    NARCIS (Netherlands)

    De Boer, W.; Gerards, S.; Klein Gunnewiek, P.J.A.; Modderman, R.

    1999-01-01

    The dynamics of culturable chitin-degrading microorganisms were studied during a 16-week incubation of chitin-amended coastal dune soils that differed in acidity. Soil samples were incubated at normal (5% Why) and high (15% w/w) moisture levels. More than half of the added chitin was decomposed

  13. Chitin stimulates production of the antibiotic andrimid in a Vibrio corallilyticus strain

    DEFF Research Database (Denmark)

    Wietz, Matthias; Månsson, Maria; Gram, Lone

    2011-01-01

    per cell was twofold higher. In cultures with Artemia as live chitin model system, S2052 reached up to 108 cells ml-1, produced andrimid and showed attachment to the exoskeleton and chitinous exuviae. The metabolic focus on andrimid production with chitin indicates that the antibiotic could serve...

  14. Aspergillus Cell Wall Chitin Induces Anti- and Proinflammatory Cytokines in Human PBMCs via the Fc-γ Receptor/Syk/PI3K Pathway

    Science.gov (United States)

    Becker, K. L.; Aimanianda, V.; Wang, X.; Gresnigt, M. S.; Ammerdorffer, A.; Jacobs, C. W.; Gazendam, R. P.; Joosten, L. A. B.; Netea, M. G.

    2016-01-01

    ABSTRACT Chitin is an important cell wall component of Aspergillus fumigatus conidia, of which hundreds are inhaled on a daily basis. Previous studies have shown that chitin has both anti- and proinflammatory properties; however the exact mechanisms determining the inflammatory signature of chitin are poorly understood, especially in human immune cells. Human peripheral blood mononuclear cells were isolated from healthy volunteers and stimulated with chitin from Aspergillus fumigatus. Transcription and production of the proinflammatory cytokine interleukin-1β (IL-1β) and the anti-inflammatory cytokine IL-1 receptor antagonist (IL-1Ra) were measured from the cell culture supernatant by quantitative PCR (qPCR) or enzyme-linked immunosorbent assay (ELISA), respectively. Chitin induced an anti-inflammatory signature characterized by the production of IL-1Ra in the presence of human serum, which was abrogated in immunoglobulin-depleted serum. Fc-γ-receptor-dependent recognition and phagocytosis of IgG-opsonized chitin was identified as a novel IL-1Ra-inducing mechanism by chitin. IL-1Ra production induced by chitin was dependent on Syk kinase and phosphatidylinositol 3-kinase (PI3K) activation. In contrast, costimulation of chitin with the pattern recognition receptor (PRR) ligands lipopolysaccharide, Pam3Cys, or muramyl dipeptide, but not β-glucan, had synergistic effects on the induction of proinflammatory cytokines by human peripheral blood mononuclear cells (PBMCs). In conclusion, chitin can have both pro- and anti-inflammatory properties, depending on the presence of pathogen-associated molecular patterns and immunoglobulins, thus explaining the various inflammatory signatures reported for chitin. PMID:27247234

  15. Simultaneous extraction of chitin and astaxanthin from waste of ...

    African Journals Online (AJOL)

    This work investigates simple methods for simultaneous extraction of astaxanthin and chitin from industrial waste of the South African West Coast rock lobster Jasus lalandii. Removal of proteins from waste is the critical step to yield intact chitin and astaxanthin. Because common chemical methods destroy astaxanthin and ...

  16. Facile nanofibrillation of chitin derivatives by gas bubbling and ultrasonic treatments in water.

    Science.gov (United States)

    Tanaka, Kohei; Yamamoto, Kazuya; Kadokawa, Jun-ichi

    2014-10-29

    In this paper, we report that nanofiber network structures were constructed from chitin derivatives by gas bubbling and ultrasonic treatments in water. When chitin was first subjected to N2 gas bubbling with ultrasonication in water, the SEM images of the product showed nanofiber network morphology. However, nanofiber network was not re-constructed by the same N2 gas bubbling and ultrasonic treatments after agglomeration. We then have paid attention to an amidine group to provide the agglomeration-nanofibrillation behavior of chitin derivatives. An amidinated chitin was synthesized by the reaction of the amino groups in a partially deacetylated chitin with N,N-dimethylacetamide dimethyl acetal, which was subjected to CO2 gas bubbling and ultrasonic treatments in water to convert into an amidinium chitin by protonation. The SEM images of the product clearly showed nanofiber network morphology. We further examined re-nanofibrillation of the agglomerated material, which was obtained by mixing the nanofibrillated amidinium chitin with water, followed by drying under reduced pressure. Consequently, the material was re-nanofibrillated by N2 gas bubbling with ultrasonication in water owing to electrostatic repulsion between the amidinium groups. Furthermore, deprotonation of the amidinium chitin and re-protonation of the resulting amidinated chitin were conducted by alkaline treatment and CO2 gas bubbling-ultrasonic treatments, respectively. The material showed the agglomeration-nanofibrillation behavior during the processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Pyrolysis of chitin biomass

    DEFF Research Database (Denmark)

    Qiao, Yan; Chen, Shuai; Liu, Ying

    2015-01-01

    The thermal degradation of chitin biomass with various molecular structures was investigated by thermogravimetric analysis (TG), and the gaseous products were analyzed by connected mass spectroscopy (MS). The chemical structure and morphology of char residues collected at 750°C using the model...

  18. Surface modification of chitin and chitosan with poly(3-hexylthiophene) via oxidative polymerization

    Science.gov (United States)

    Hai, Thien An Phung; Sugimoto, Ryuichi

    2018-03-01

    In the present work, the modification of biomaterials such as chitin and chitosan were successfully prepared by directly grafting poly(3-hexylthiophene) (P3HT) to their surfaces using simple oxidative polymerization with FeCl3. The thermal stability and crystallinity of grafted chitin and chitosan changed upon grafting with P3HT. The build-up of π-π* structure from the P3HT on the surface of chitin and chitosan resulted in the appearance of UV-vis absorption and fluorescence emission peaks in the range from 500 to 600 nm. Introducing P3HT to the surface of chitin and chitosan improved significantly the electrical property of chitin and chitosan with the increase in conductivity from 10-9 to 10-7 S/cm. Furthermore, the usual behavior of hydrophilic surface of chitin and chitosan that turned to hydrophobic with water contact angle of 97.7° and 107.0°, respectively in the presence of P3HT. The mechanism for graft reaction of P3HT to chitin and chitosan was also proposed and discussed.

  19. Surface modification of chitin using ultrasound-assisted and supercritical CO{sub 2} technologies for cobalt adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Dotto, Guilherme L., E-mail: guilherme_dotto@yahoo.com.br; Cunha, Jeanine M., E-mail: jeaninecunha@gmail.com; Calgaro, Camila O., E-mail: camila.itepjr@gmail.com; Tanabe, Eduardo H., E-mail: edutanabe@yahoo.com.br; Bertuol, Daniel A., E-mail: dbertuol@gmail.com

    2015-09-15

    Highlights: • Chitin was modified by ultrasound-assisted (UA) and supercritical (SCO{sub 2}) technologies. • Chitin, UA-chitin and SCO{sub 2}-chitin were used as adsorbents for Co(II). • UA and SCO{sub 2} treatments provided increase of 20 and 3 times in chitin surface area. • The Co(II) adsorption capacity increased until 67.8%, using UA-chitin. - Abstract: Ultrasound-assisted (UA) and supercritical CO{sub 2} technologies (SCO{sub 2}) were used to modify the chitin surface and, improve its adsorption characteristics regarding to cobalt. Chitin, before and after the treatments, was characterized by N{sub 2} adsorption isotherms (BET), infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Unmodified and surface modified chitins were used as adsorbents to remove cobalt from aqueous solutions. The adsorption study was performed by equilibrium isotherms and kinetic curves. The chitin particle characteristics, such as, surface area, pore volume and porosity were improved by the UA and SCO{sub 2} treatments. The crystallinity index decreased after the UA and SCO{sub 2} treatments, and also, intense surface modifications were observed. Langmuir and Freundlich models were adequate to represent the adsorption equilibrium. The maximum adsorption capacities were 50.03, 83.94 and 63.08 mg g{sup −1} for unmodified chitin, UA surface modified chitin and SCO{sub 2} surface modified chitin. The adsorption kinetic curves were well represented by the pseudo-second order model. UA and SCO{sub 2} technologies are alternatives to modify the chitin surface and improve its adsorption characteristics.

  20. Aspergillus fumigatus Trehalose-Regulatory Subunit Homolog Moonlights To Mediate Cell Wall Homeostasis through Modulation of Chitin Synthase Activity

    Directory of Open Access Journals (Sweden)

    Arsa Thammahong

    2017-04-01

    Full Text Available Trehalose biosynthesis is found in fungi but not humans. Proteins involved in trehalose biosynthesis are essential for fungal pathogen virulence in humans and plants through multiple mechanisms. Loss of canonical trehalose biosynthesis genes in the human pathogen Aspergillus fumigatus significantly alters cell wall structure and integrity, though the mechanistic link between these virulence-associated pathways remains enigmatic. Here we characterize genes, called tslA and tslB, which encode proteins that contain domains similar to those corresponding to trehalose-6-phosphate phosphatase but lack critical catalytic residues for phosphatase activity. Loss of tslA reduces trehalose content in both conidia and mycelia, impairs cell wall integrity, and significantly alters cell wall structure. To gain mechanistic insights into the role that TslA plays in cell wall homeostasis, immunoprecipitation assays coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS were used to reveal a direct interaction between TslA and CsmA, a type V chitin synthase enzyme. TslA regulates not only chitin synthase activity but also CsmA sub-cellular localization. Loss of TslA impacts the immunopathogenesis of murine invasive pulmonary aspergillosis through altering cytokine production and immune cell recruitment. In conclusion, our data provide a novel model whereby proteins in the trehalose pathway play a direct role in fungal cell wall homeostasis and consequently impact fungus-host interactions.

  1. KARAKTERISASI KITIN DEASETILASE TERMOSTABIL ISOLAT BAKTERI ASAL PANCURAN TUJUH, BATURADEN, JAWA TENGAH [Characterization of Thermostable Chitin Deacetylase from Bacteria Strain Pancuran Tujuh, Baturaden, Center of Java

    Directory of Open Access Journals (Sweden)

    Deuxianto Hendarsyah3

    2006-04-01

    Full Text Available Chitin deacetylase is the enzymes that has important role in converting chitin to chitosan. In nature, chitin is the second most abundant natural biopolymer after cellulose. Generally, chitin easily obtained from outer shell of crustaceans, arthropods, and also detectable on cell wall of some type of fungal (Zygomycetes. The chitin deacetylase was isolated from Bacillus sp PT2-3. It was found that the highest specific activity was attained at pH 8 60°C. The addition of 5 mM Zn2+ and 5 mM Mn2+ increased the specific activity of the enzyme, 4.39% and 7.8%, respectively, and the increase was only 2.19% when the addition was 2 mM Mn2+. On the contrary the addition of Ca2+, Mg2+ and Fe2+ decrease the specific activity 46.83%, 41.22% and 47.32%, respectively. The enzyme activity was relatively stable at 60°C for 60 minutes, while lengthen the time to 90 minutes, decreased the activity 15.05 %, and the decrease was 26.13% at temperature of 70°C for 180 minutes.

  2. Development of Coprocessed Chitin-Calcium Carbonate as Multifunctional Tablet Excipient for Direct Compression.

    Science.gov (United States)

    Chaheen, Mohammad; Sanchez-Ballester, Noelia M; Bataille, Bernard; Yassine, Ahmad; Belamie, Emmanuel; Sharkawi, Tahmer

    2018-04-24

    Owing to the increasing interest in multifunctional excipients for tableting, coprocessing of individual excipients is regularly used to produce excipients of improved multifunctionality superior to individual excipients or their physical mix. The use of chitin as an excipient in tablet formulation is limited because of certain drawbacks such as poor flowability and low true density. The objective of this work is to improve these properties through coprocessing of chitin with calcium carbonate (CaCO 3 ) by precipitating CaCO 3 on chitin particles using different methods. In addition, optimization of the coprocessed chitin was carried out to improve the excipient's properties. Physicochemical (CaCO 3 content, true density, X-ray diffraction, infrared spectroscopy, and scanning electron microscopy) and functional testing (swelling force, flowability, tensile strength, deformation mechanism, and disintegration time) were used to characterize the coprocessed product. Results showed that the calcite CaCO 3 polymorph is precipitated on the chitin surface and that it interacts with chitin at carbonyl- and amide-group level. In addition, the coprocessed excipient has an improved true density and powder flowability, with CaCO 3 forming single layer on the chitin particles surface. Tableting studies showed that the coprocessed powder exhibited an intermediate deformation behavior between CaCO 3 (most brittle) and chitin (most plastic). Tablets showed acceptable tensile strength and rapid disintegration (2-4 s). These results show the potential use of coprocessed chitin-CaCO 3 as a multifunctional excipient for fast disintegration of tablets produced by direct compression. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. Determination of chitin content in fungal cell wall: an alternative flow cytometric method.

    Science.gov (United States)

    Costa-de-Oliveira, Sofia; Silva, Ana P; Miranda, Isabel M; Salvador, Alexandre; Azevedo, Maria M; Munro, Carol A; Rodrigues, Acácio G; Pina-Vaz, Cidália

    2013-03-01

    The conventional methods used to evaluate chitin content in fungi, such as biochemical assessment of glucosamine release after acid hydrolysis or epifluorescence microscopy, are low throughput, laborious, time-consuming, and cannot evaluate a large number of cells. We developed a flow cytometric assay, efficient, and fast, based on Calcofluor White staining to measure chitin content in yeast cells. A staining index was defined, its value was directly related to chitin amount and taking into consideration the different levels of autofluorecence. Twenty-two Candida spp. and four Cryptococcus neoformans clinical isolates with distinct susceptibility profiles to caspofungin were evaluated. Candida albicans clinical isolate SC5314, and isogenic strains with deletions in chitin synthase 3 (chs3Δ/chs3Δ) and genes encoding predicted GlycosylPhosphatidylInositol (GPI)-anchored proteins (pga31Δ/Δ and pga62Δ/Δ), were used as controls. As expected, the wild-type strain displayed a significant higher chitin content (P relationship between chitin content and antifungal drug susceptibility phenotype was found, an association was established between the paradoxical growth effect in the presence of high caspofungin concentrations and the chitin content. This novel flow cytometry protocol revealed to be a simple and reliable assay to estimate cell wall chitin content of fungi. Copyright © 2013 International Society for Advancement of Cytometry.

  4. Improved fluorescent labeling of chitin oligomers: Chitinolytic properties of acidic mammalian chitinase under somatic tissue pH conditions.

    Science.gov (United States)

    Wakita, Satoshi; Kimura, Masahiro; Kato, Naoki; Kashimura, Akinori; Kobayashi, Shunsuke; Kanayama, Naoto; Ohno, Misa; Honda, Shotaro; Sakaguchi, Masayoshi; Sugahara, Yasusato; Bauer, Peter O; Oyama, Fumitaka

    2017-05-15

    Acidic mammalian chitinase (AMCase) has been implicated in various pathophysiological conditions including asthma, allergic inflammation and food processing. AMCase is most active at pH 2.0, and its activity gradually decreases to up to pH 8. Here we analyzed chitin degradation by AMCase in weak acidic to neutral conditions by fluorophore-assisted carbohydrate electrophoresis established originally for oligosaccharides analysis. We found that specific fragments with slower-than-expected mobility as defined by chitin oligosaccharide markers were generated at pH 5.0∼8.0 as by-products of the reaction. We established an improved method for chitin oligosaccharides suppressing this side reaction by pre-acidification of the fluorophore-labeling reaction mixture. Our improved method specifically detects chitin oligosaccharides and warrants quantification of up to 50nmol of the material. Using this strategy, we found that AMCase produced dimer of N-acetyl-d-glucosamine (GlcNAc) at strong acidic to neutral condition. Moreover, we found that AMCase generates (GlcNAc) 2 as well as (GlcNAc) 3 under physiological conditions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Solid state characterization of α-chitin from Vanessa cardui Linnaeus wings

    International Nuclear Information System (INIS)

    Schiffman, Jessica D.; Schauer, Caroline L.

    2009-01-01

    Material properties of the painted lady butterfly, Vanessa cardui Linnaeus were investigated using typical material science techniques. The examined butterflies were raised and hatched from the larvae stage and their chemical and crystalline structure evaluated and compared to that of crab shell (α-chitin) and squid pens from Notodarus sloanii and Loligo pealei (β-chitin). Fourier transmission infrared spectroscopy (FTIR) and X-ray diffraction (XRD) revealed that the painted lady butterflies are composed of α-chitin. Additionally, macro- and microstructure characterization of the chitins was conducted utilizing digital photography and field emission scanning electron microscopy (FESEM). This work demonstrates that common characterization techniques combined with simple sample preparation of biological materials can yield successful material characterization, which could aide the fabrication of biomimetic materials.

  6. Solid state characterization of {alpha}-chitin from Vanessa cardui Linnaeus wings

    Energy Technology Data Exchange (ETDEWEB)

    Schiffman, Jessica D. [Department of Materials Science and Engineering, Drexel University, Philadelphia, PA (United States); Schauer, Caroline L., E-mail: cschauer@coe.drexel.edu [Department of Materials Science and Engineering, Drexel University, Philadelphia, PA (United States)

    2009-05-05

    Material properties of the painted lady butterfly, Vanessa cardui Linnaeus were investigated using typical material science techniques. The examined butterflies were raised and hatched from the larvae stage and their chemical and crystalline structure evaluated and compared to that of crab shell ({alpha}-chitin) and squid pens from Notodarus sloanii and Loligo pealei ({beta}-chitin). Fourier transmission infrared spectroscopy (FTIR) and X-ray diffraction (XRD) revealed that the painted lady butterflies are composed of {alpha}-chitin. Additionally, macro- and microstructure characterization of the chitins was conducted utilizing digital photography and field emission scanning electron microscopy (FESEM). This work demonstrates that common characterization techniques combined with simple sample preparation of biological materials can yield successful material characterization, which could aide the fabrication of biomimetic materials.

  7. Graft polymerization of acrylic acid onto chitin nanofiber to improve dispersibility in basic water.

    Science.gov (United States)

    Ifuku, Shinsuke; Iwasaki, Masayoshi; Morimoto, Minoru; Saimoto, Hiroyuki

    2012-09-01

    Graft copolymerization of acrylic acid (AA) on chitin nanofibers was carried out with potassium persulfate as a free radical initiator in an aqueous medium. The molar ratio of grafted AA increased with the AA concentration. The grafted chitin nanofibers were characterized by FT-IR, FE-SEM, UV-vis, XRD, and TGA. After polymerization, the characteristic morphology of chitin nanofibers was maintained. Chitin nanofibers grafted with AA were efficiently dissociated and dispersed homogeneously in basic water because of the electrostatic repulsion effect between nanofibers. AA was grafted on the surface and amorphous part of chitin nanofibers, and the original crystalline structure of α-chitin was maintained. At 330 °C, the weight residue of the graft copolymer increased with the grafted AA content. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Cellulose binding domain fusion proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  9. Nanosphere Lithography of Chitin and Chitosan with Colloidal and Self-Masking Patterning

    Directory of Open Access Journals (Sweden)

    Rakkiyappan Chandran

    2018-02-01

    Full Text Available Complex surface topographies control, define, and determine the properties of insect cuticles. In some cases, these nanostructured materials are a direct extension of chitin-based cuticles. The cellular mechanisms that generate these elaborate chitin-based structures are unknown, and involve complicated cellular and biochemical “bottom-up” processes. We demonstrated that a synthetic “top-down” fabrication technique—nanosphere lithography—generates surfaces of chitin or chitosan that mimic the arrangement of nanostructures found on the surface of certain insect wings and eyes. Chitin and chitosan are flexible and biocompatible abundant natural polymers, and are a sustainable resource. The fabrication of nanostructured chitin and chitosan materials enables the development of new biopolymer materials. Finally, we demonstrated that another property of chitin and chitosan—the ability to self-assemble nanosilver particles—enables a novel and powerful new tool for the nanosphere lithographic method: the ability to generate a self-masking thin film. The scalability of the nanosphere lithographic technique is a major limitation; however, the silver nanoparticle self-masking enables a one-step thin-film cast or masking process, which can be used to generate nanostructured surfaces over a wide range of surfaces and areas.

  10. Chitin-hyaluronan nanoparticles: a multifunctional carrier to deliver anti-aging active ingredients through the skin

    Czech Academy of Sciences Publication Activity Database

    Morganti, P.; Palombo, M.; Tishchenko, Galina; Yudin, V. E.; Guarneri, F.; Cardillo, M.; Del Ciotto, P.; Carezzi, F.; Morganti, G.; Fabrizi, G.

    2014-01-01

    Roč. 1, č. 3 (2014), s. 140-158 ISSN 2079-9284 EU Projects: European Commission(XE) 315233 - N-CHITOPACK Institutional support: RVO:61389013 Keywords : chitin nanofibrils * skin aging emulsions * innovative beauty masks Subject RIV: CD - Macromolecular Chemistry

  11. In vitro evaluation of paclitaxel loaded amorphous chitin nanoparticles for colon cancer drug delivery.

    Science.gov (United States)

    Smitha, K T; Anitha, A; Furuike, T; Tamura, H; Nair, Shantikumar V; Jayakumar, R

    2013-04-01

    Chitin and its derivatives have been widely used in drug delivery applications due to its biocompatible, biodegradable and non-toxic nature. In this study, we have developed amorphous chitin nanoparticles (150±50 nm) and evaluated its potential as a drug delivery system. Paclitaxel (PTX), a major chemotherapeutic agent was loaded into amorphous chitin nanoparticles (AC NPs) through ionic cross-linking reaction using TPP. The prepared PTX loaded AC NPs had an average diameter of 200±50 nm. Physico-chemical characterization of the prepared nanoparticles was carried out. These nanoparticles were proven to be hemocompatible and in vitro drug release studies showed a sustained release of PTX. Cellular internalization of the NPs was confirmed by fluorescent microscopy as well as by flow cytometry. Anticancer activity studies proved the toxicity of PTX-AC NPs toward colon cancer cells. These preliminary results indicate the potential of PTX-AC NPs in colon cancer drug delivery. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Novel chitin/chitosan-glucan wound dressing: Isolation, characterization, antibacterial activity and wound healing properties

    Czech Academy of Sciences Publication Activity Database

    Abdel-Mohsen, A. M.; Jancar, J.; Massoud, D.; Fohlerová, Z.; Elhadidy, Hassan; Spotz, Z.; Hebeish, A.

    2016-01-01

    Roč. 510, č. 1 (2016), s. 86-99 ISSN 0378-5173 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : Chitin/chitosan-glucan complex * Nonwoven mat * Surgical wound healing Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.649, year: 2016

  13. Micro-CT imaging of denatured chitin by silver to explore honey bee and insect pathologies.

    Directory of Open Access Journals (Sweden)

    Peter R Butzloff

    Full Text Available BACKGROUND: Chitin and cuticle coatings are important to the environmental and immune defense of honey bees and insect pollinators. Pesticides or environmental effects may target the biochemistry of insect chitin and cuticle coating. Denaturing of chitin involves a combination of deacetylation, intercalation, oxidation, Schweiger-peeling, and the formation of amine hydrochloride salt. The term "denatured chitin" calls attention to structural and property changes to the internal membranes and external carapace of organisms so that some properties affecting biological activities are diminished. METHODOLOGY/PRINCIPAL FINDINGS: A case study was performed on honey bees using silver staining and microscopic computer-tomographic x-ray radiography (micro-CT. Silver nitrate formed counter-ion complexes with labile ammonium cations and reacted with amine hydrochloride. Silver was concentrated in the peritrophic membrane, on the abdomen, in the glossa, at intersegmental joints (tarsi, at wing attachments, and in tracheal air sacs. Imaged mono-esters and fatty acids from cuticle coating on external surfaces were apparently reduced by an alcohol pretreatment. CONCLUSIONS/SIGNIFICANCE: The technique provides 3-dimensional and sectional images of individual honey bees consistent with the chemistries of silver reaction and complex formation with denatured chitin. Environmental exposures and influences such as gaseous nitric oxide intercalant, trace oxidants such as ozone gas, oligosachharide salt conversion, exposure to acid rain, and chemical or biochemical denaturing by pesticides may be studied using this technique. Peritrophic membranes, which protect against food abrasion, microorganisms, and permit efficient digestion, were imaged. Apparent surface damage to the corneal lenses of compound eyes by dilute acid exposure consistent with chitin amine hydrochloride formation was imaged. The technique can contribute to existing insect pathology research, and may

  14. Identification of Albizia lebbeck seed coat chitin-binding vicilins (7S globulins) with high toxicity to the larvae of the bruchid Callosobruchus maculatus.

    Science.gov (United States)

    Souza, A J; Ferreira, A T S; Perales, J; Beghini, D G; Fernandes, K V S; Xavier-Filho, J; Venancio, T M; Oliveira, A E A

    2012-02-01

    Seed coat is a specialized maternal tissue that interfaces the embryo and the external environment during embryogenesis, dormancy and germination. In addition, it is the first defensive barrier against penetration by pathogens and herbivores. Here we show that Albizia lebbeck seed coat dramatically compromises the oviposition, eclosion and development of the bruchid Callosobruchus maculatus. Dietary supplementation of bruchid larvae with A. lebbeck seed coat flour causes severe weight loss and reduces survival. By means of protein purification, mass spectrometry and bioinformatic analyses, we show that chitin-binding vicilins are the main source of A. lebbeck tegumental toxicity to C. maculatus. At concentrations as low as 0.1%, A. lebbeck vicilins reduce larval mass from 8.1 ± 1.7 (mass of control larvae) to 1.8 ± 0.5 mg, which corresponds to a decrease of 78%. Seed coat toxicity constitutes an efficient defense mechanism, hindering insect predation and preventing embryo damage. We hypothesize that A. lebbeck vicilins are good candidates for the genetic transformation of crop legumes to enhance resistance to bruchid predation.

  15. Identification of Albizia lebbeck seed coat chitin-binding vicilins (7S globulins with high toxicity to the larvae of the bruchid Callosobruchus maculatus

    Directory of Open Access Journals (Sweden)

    A.J. Souza

    2012-02-01

    Full Text Available Seed coat is a specialized maternal tissue that interfaces the embryo and the external environment during embryogenesis, dormancy and germination. In addition, it is the first defensive barrier against penetration by pathogens and herbivores. Here we show that Albizia lebbeck seed coat dramatically compromises the oviposition, eclosion and development of the bruchid Callosobruchus maculatus. Dietary supplementation of bruchid larvae with A. lebbeck seed coat flour causes severe weight loss and reduces survival. By means of protein purification, mass spectrometry and bioinformatic analyses, we show that chitin-binding vicilins are the main source of A. lebbeck tegumental toxicity to C. maculatus. At concentrations as low as 0.1%, A. lebbeck vicilins reduce larval mass from 8.1 ± 1.7 (mass of control larvae to 1.8 ± 0.5 mg, which corresponds to a decrease of 78%. Seed coat toxicity constitutes an efficient defense mechanism, hindering insect predation and preventing embryo damage. We hypothesize that A. lebbeck vicilins are good candidates for the genetic transformation of crop legumes to enhance resistance to bruchid predation.

  16. A simple procedure for preparing chitin oligomers through acetone precipitation after hydrolysis in concentrated hydrochloric acid.

    Science.gov (United States)

    Kazami, Nao; Sakaguchi, Masayoshi; Mizutani, Daisuke; Masuda, Tatsuhiko; Wakita, Satoshi; Oyama, Fumitaka; Kawakita, Masao; Sugahara, Yasusato

    2015-11-05

    Chitin oligomers are of interest because of their numerous biologically relevant properties. To prepare chitin oligomers containing 4-6 GlcNAc units [(GlcNAc)4-6], α- and β-chitin were hydrolyzed with concentrated hydrochloric acid at 40 °C. The reactant was mixed with acetone to recover the acetone-insoluble material, and (GlcNAc)4-6 was efficiently recovered after subsequent water extraction. Composition analysis using gel permeation chromatography and MALDI-TOF mass spectrometry indicated that (GlcNAc)4-6 could be isolated from the acetone-insoluble material with recoveries of approximately 17% and 21% from the starting α-chitin and β-chitin, respectively. The acetone precipitation method is highly useful for recovering chitin oligomers from the acid hydrolysate of chitin. The changes in the molecular size and higher-order structure of chitin during the course of hydrolysis were also analyzed, and a model that explains the process of oligomer accumulation is proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Characterization of the Carbohydrate Binding Module 18 gene family in the amphibian pathogen Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Liu, Peng; Stajich, Jason E

    2015-04-01

    Batrachochytrium dendrobatidis (Bd) is the causative agent of chytridiomycosis responsible for worldwide decline in amphibian populations. Previous analysis of the Bd genome revealed a unique expansion of the carbohydrate-binding module family 18 (CBM18) predicted to be a sub-class of chitin recognition domains. CBM expansions have been linked to the evolution of pathogenicity in a variety of fungal species by protecting the fungus from the host. Based on phylogenetic analysis and presence of additional protein domains, the gene family can be classified into 3 classes: Tyrosinase-, Deacetylase-, and Lectin-like. Examination of the mRNA expression levels from sporangia and zoospores of nine of the cbm18 genes found that the Lectin-like genes had the highest expression while the Tyrosinase-like genes showed little expression, especially in zoospores. Heterologous expression of GFP-tagged copies of four CBM18 genes in Saccharomyces cerevisiae demonstrated that two copies containing secretion signal peptides are trafficked to the cell boundary. The Lectin-like genes cbm18-ll1 and cbm18-ll2 co-localized with the chitinous cell boundaries visualized by staining with calcofluor white. In vitro assays of the full length and single domain copies from CBM18-LL1 demonstrated chitin binding and no binding to cellulose or xylan. Expressed CBM18 domain proteins were demonstrated to protect the fungus, Trichoderma reeseii, in vitro against hydrolysis from exogenously added chitinase, likely by binding and limiting exposure of fungal chitin. These results demonstrate that cbm18 genes can play a role in fungal defense and expansion of their copy number may be an important pathogenicity factor of this emerging infectious disease of amphibians. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Scarabaecin, a novel cysteine-containing antifungal peptide from the rhinoceros beetle, Oryctes rhinoceros.

    Science.gov (United States)

    Tomie, Tetsuya; Ishibashi, Jun; Furukawa, Seiichi; Kobayashi, Satoe; Sawahata, Ryoko; Asaoka, Ai; Tagawa, Michito; Yamakawa, Minoru

    2003-07-25

    A novel antifungal peptide, scarabaecin (4080Da), was isolated from the coconut rhinoceros beetle, Oryctes rhinoceros. Scarabaecin cDNA was cloned by reverse transcriptase-polymerase chain reactions (RT-PCR) using a primer based on the N-terminal amino acid sequence. The amino acid sequence deduced from scarabaecin cDNA showed no significant similarity to those of reported proteins. Chemically synthesized scarabaecin indicated antifungal activity against phytopathogenic fungi such as Pyricularia oryzae, Rhizoctonia solani, and Botrytis cinerea, but not against phytopathogenic bacteria. It showed weak activity against Bauberia bassiana, an insect pathogenic fungus, and Staphylococcus aureus, a pathogenic bacterium. Scarabaecin showed chitin binding property and its K(d) was 1.315 microM. A comparison of putative chitin-binding domains among scarabaecin, invertebrate, and plant chitin-binding proteins suggests that scarabaecin is a new member of chitin-binding antimicrobial proteins.

  19. Production in Pichia pastoris, antifungal activity and crystal structure of a class I chitinase from cowpea (Vigna unguiculata): Insights into sugar binding mode and hydrolytic action.

    Science.gov (United States)

    Landim, Patrícia G Castro; Correia, Tuana O; Silva, Fredy D A; Nepomuceno, Denise R; Costa, Helen P S; Pereira, Humberto M; Lobo, Marina D P; Moreno, Frederico B M B; Brandão-Neto, José; Medeiros, Suelen C; Vasconcelos, Ilka M; Oliveira, José T A; Sousa, Bruno L; Barroso-Neto, Ito L; Freire, Valder N; Carvalho, Cristina P S; Monteiro-Moreira, Ana C O; Grangeiro, Thalles B

    2017-04-01

    A cowpea class I chitinase (VuChiI) was expressed in the methylotrophic yeast P. pastoris. The recombinant protein was secreted into the culture medium and purified by affinity chromatography on a chitin matrix. The purified chitinase migrated on SDS-polyacrylamide gel electrophoresis as two closely-related bands with apparent molecular masses of 34 and 37 kDa. The identity of these bands as VuChiI was demonstrated by mass spectrometry analysis of tryptic peptides and N-terminal amino acid sequencing. The recombinant chitinase was able to hydrolyze colloidal chitin but did not exhibit enzymatic activity toward synthetic substrates. The highest hydrolytic activity of the cowpea chitinase toward colloidal chitin was observed at pH 5.0. Furthermore, most VuChiI activity (approximately 92%) was retained after heating to 50 °C for 30 min, whereas treatment with 5 mM Cu 2+ caused a reduction of 67% in the enzyme's chitinolytic activity. The recombinant protein had antifungal activity as revealed by its ability to inhibit the spore germination and mycelial growth of Penicillium herquei. The three-dimensional structure of VuChiI was resolved at a resolution of 1.55 Å by molecular replacement. The refined model had 245 amino acid residues and 381 water molecules, and the final R-factor and R free values were 14.78 and 17.22%, respectively. The catalytic domain of VuChiI adopts an α-helix-rich fold, stabilized by 3 disulfide bridges and possessing a wide catalytic cleft. Analysis of the crystallographic model and molecular docking calculations using chito-oligosaccharides provided evidences about the VuChiI residues involved in sugar binding and catalysis, and a possible mechanism of antifungal action is suggested. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  20. Fabrication of free-standing replicas of fragile, laminar, chitinous biotemplates

    Energy Technology Data Exchange (ETDEWEB)

    Lakhtakia, Akhlesh; Motyka, Michael A [Materials Research Institute and Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802 (United States); MartIn-Palma, Raul J; Pantano, Carlo G [Materials Research Institute and Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)], E-mail: akhlesh@psu.edu

    2009-09-01

    The conformal-evaporated-film-by-rotation technique, followed by the dissolution of chitin in an aqueous solution of orthophosphoric acid, can be used to fabricate free-standing replicas of fragile, laminar, chitinous biotemplates. This novel approach was demonstrated using butterfly wings as biotemplates and GeSeSb chalcogenide glass for replicas. (communication)

  1. Fabrication of free-standing replicas of fragile, laminar, chitinous biotemplates

    International Nuclear Information System (INIS)

    Lakhtakia, Akhlesh; Motyka, Michael A; MartIn-Palma, Raul J; Pantano, Carlo G

    2009-01-01

    The conformal-evaporated-film-by-rotation technique, followed by the dissolution of chitin in an aqueous solution of orthophosphoric acid, can be used to fabricate free-standing replicas of fragile, laminar, chitinous biotemplates. This novel approach was demonstrated using butterfly wings as biotemplates and GeSeSb chalcogenide glass for replicas. (communication)

  2. The functions Of LysM Proteins And Chitin Tetra-Saccarides Signaling Pathway in Zebrafish Embryos

    DEFF Research Database (Denmark)

    Laroche, Fabrice Jean Francois

    Chitin is an ancient organic bio-polymer, found in abundance on land and at sea. However, knowledge on chitin functions in animals is lacking. In his research project, Fabrice Laroche studied responses to chitin in zebrafish embryos, and he described chitin signalling pathways. Proteins related...... to chitin responses are increasingly being associated with human diseases. Recently, several lysin motif (LysM)-containing proteins were highlighted for their molecular affinity to chitin-like compounds. Addressing these matters, Fabrice Laroche identified zebrafish and human lysin motif-encoding genes...... and studied their roles – at the cellular level and during zebrafish development. To improve the experimental methods, he developed nanotechnological strategies to genetically modify human embryonic kidney cells and zebrafish. The PhD degree was completed at the Department of Molecular Biology and Genetics...

  3. ADSORPTION TO CHITIN – A VIABLE AND ORGANISM-PROTECTING METHOD FOR BIOMONITORING METALS PRESENT IN DIFFERENT ENVIRONMENTAL COMPARTMENTS GETTING CONTACTED WITH ARTHROPODS

    Directory of Open Access Journals (Sweden)

    S. Fränzle

    2015-04-01

    Full Text Available Among the various biopolymers which cover outer interfaces of organisms, chitin is the most abundant: each year several billion metric tons (possibly even much more are produced by arthropods and processed in soil and litter, wet sediment  (especially in moist soils while otherwise chitin samples can persist virtually unchanged for geological periods of time. Moreover, arthropods, among which Coleoptera are represented by some 400,000 species alone, inhabit almost all ecosystems, way beyond the ecological range of, say, mosses. Given that adsorption of metalliferous analytes (ions, volatile compounds, complexes of whatever net charge to chitin obtained from arthropods can be demonstrated (and it partly was already, it is feasible to obtain data on environmental element contents in all water, soil and gas phase (atmosphere by dissolving, analyzing outermost (part of exocuticle chitin layers. Data on relative uptake contributions/environmental burdens of either compartment can be obtained by both interspecies-comparisons and sampling of different parts of some larger arthropod (abdomen-, outer- and inner wing surfaces of sizable beetles. As just a very thin chitin layer (< 2 µm is ablated from the animal´s outer surface by dissolution using little toxic components, sampling will not cause harm to them, enabling a repeated sampling of the same specimen (e.g. for taking t = 0 starting values and b use of rare or/and protected species. Applications are with both biomonitoring and a better understanding of metal ion transport in ecosystems, e.g. concerning interfacial Mn+ binding to dying zooplankton then sinking below the chemokline of euxinic water bodies. An indirect metal levels monitoring of woody plants and underneath soils also appears feasible.

  4. Fabrication of magnetic and fluorescent chitin and dibutyrylchitin sub-micron particles by oil-in-water emulsification.

    Science.gov (United States)

    Blanco-Fernandez, Barbara; Chakravarty, Shatadru; Nkansah, Michael K; Shapiro, Erik M

    2016-11-01

    Chitin is a carbohydrate polymer with unique pharmacological and immunological properties, however, because of its unwieldy chemistry, the synthesis of discreet sized sub-micron particles has not been well reported. This work describes a facile and flexible method to fabricate biocompatible chitin and dibutyrylchitin sub-micron particles. This technique is based on an oil-in-water emulsification/evaporation method and involves the hydrophobization of chitin by the addition of labile butyryl groups onto chitin, disrupting intermolecular hydrogen bonds and enabling solubility in the organic solvent used as the oil phase during fabrication. The subsequent removal of butyryl groups post-fabrication through alkaline saponification regenerates native chitin while keeping particles morphology intact. Examples of encapsulation of hydrophobic dyes and nanocrystals are demonstrated, specifically using iron oxide nanocrystals and coumarin 6. The prepared particles had diameters between 300-400nm for dibutyrylchitin and 500-600nm for chitin and were highly cytocompatible. Moreover, they were able to encapsulate high amounts of iron oxide nanocrystals and were able to label mammalian cells. We describe a technique to prepare sub-micron particles of highly acetylated chitin (>90%) and dibutyrylchitin and demonstrate their utility as carriers for imaging. Chitin is a polysaccharide capable of stimulating the immune system, a property that depends on the acetamide groups, but its insolubility limits its use. No method for sub-micron particle preparation with highly acetylated chitins have been published. The only approach for the preparation of sub-micron particles uses low acetylation chitins. Dibutyrylchitin, a soluble chitin derivative, was used to prepare particles by oil in water emulsification. Butyryl groups were then removed, forming chitin particles. These particles could be suitable for encapsulation of hydrophobic payloads for drug delivery and cell imaging, as well as

  5. Squid-derived chitin oligosaccharides are a chemotactic signal during colonization by Vibrio fischeri.

    Science.gov (United States)

    Mandel, Mark J; Schaefer, Amy L; Brennan, Caitlin A; Heath-Heckman, Elizabeth A C; Deloney-Marino, Cindy R; McFall-Ngai, Margaret J; Ruby, Edward G

    2012-07-01

    Chitin, a polymer of N-acetylglucosamine (GlcNAc), is noted as the second most abundant biopolymer in nature. Chitin serves many functions for marine bacteria in the family Vibrionaceae ("vibrios"), in some instances providing a physical attachment site, inducing natural genetic competence, and serving as an attractant for chemotaxis. The marine luminous bacterium Vibrio fischeri is the specific symbiont in the light-emitting organ of the Hawaiian bobtail squid, Euprymna scolopes. The bacterium provides the squid with luminescence that the animal uses in an antipredatory defense, while the squid supports the symbiont's nutritional requirements. V. fischeri cells are harvested from seawater during each host generation, and V. fischeri is the only species that can complete this process in nature. Furthermore, chitin is located in squid hemocytes and plays a nutritional role in the symbiosis. We demonstrate here that chitin oligosaccharides produced by the squid host serve as a chemotactic signal for colonizing bacteria. V. fischeri uses the gradient of host chitin to enter the squid light organ duct and colonize the animal. We provide evidence that chitin serves a novel function in an animal-bacterial mutualism, as an animal-produced bacterium-attracting synomone.

  6. Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan

    Directory of Open Access Journals (Sweden)

    Jolanta Kumirska

    2010-04-01

    Full Text Available Chitin, the second most important natural polymer in the world, and its N-deacetylated derivative chitosan, have been identified as versatile biopolymers for a broad range of applications in medicine, agriculture and the food industry. Two of the main reasons for this are firstly the unique chemical, physicochemical and biological properties of chitin and chitosan, and secondly the unlimited supply of raw materials for their production. These polymers exhibit widely differing physicochemical properties depending on the chitin source and the conditions of chitosan production. The presence of reactive functional groups as well as the polysaccharide nature of these biopolymers enables them to undergo diverse chemical modifications. A complete chemical and physicochemical characterization of chitin, chitosan and their derivatives is not possible without using spectroscopic techniques. This review focuses on the application of spectroscopic methods for the structural analysis of these compounds.

  7. High electrochemical capacitor performance of oxygen and nitrogen enriched activated carbon derived from the pyrolysis and activation of squid gladius chitin

    Science.gov (United States)

    Raj, C. Justin; Rajesh, Murugesan; Manikandan, Ramu; Yu, Kook Hyun; Anusha, J. R.; Ahn, Jun Hwan; Kim, Dong-Won; Park, Sang Yeup; Kim, Byung Chul

    2018-05-01

    Activated carbon containing nitrogen functionalities exhibits excellent electrochemical property which is more interesting for several renewable energy storage and catalytic applications. Here, we report the synthesis of microporous oxygen and nitrogen doped activated carbon utilizing chitin from the gladius of squid fish. The activated carbon has large surface area of 1129 m2 g-1 with microporous network and possess ∼4.04% of nitrogen content in the form of pyridinic/pyrrolic-N, graphitic-N and N-oxide groups along with oxygen and carbon species. The microporous oxygen/nitrogen doped activated carbon is utilize for the fabrication of aqueous and flexible supercapacitor electrodes, which presents excellent electrochemical performance with maximum specific capacitance of 204 Fg-1 in 1 M H2SO4 electrolyte and 197 Fg-1 as a flexible supercapacitor. Moreover, the device displays 100% of specific capacitance retention after 25,000 subsequent charge/discharge cycles in 1 M H2SO4 electrolyte.

  8. [In Vivo Study of Chitin in Fungal Hyphae Based on Confocal Raman Microscopy].

    Science.gov (United States)

    Li, Xiao-li; Luo, Liu-bin; Zhou, Bin-xiong; Hu, Xiao-qian; Sun, Chan-jun; He, Yong

    2016-01-01

    Chitin is an important structural polysaccharide of fungal cell wall. In this paper, aerial hyphae of Colletotrichum camelliae Massee was first studied by confocal Raman microscopy in vivo. Firstly, the optimal experimental parameters of hyphae for collecting the Raman spectra were determined, and the typical Raman spectra of hyphae, chitin standard and background were acquired. By comparing analysis, characteristic peaks of chitin were found in hyphae. Then, a region of interesting on hyphae was selected for Raman scanning. Through principal component analysis, the Raman signal of hyphae and background in the scanning area can be separated clearly. Combined with loading weight plot, two main characteristic peaks of hyphae were obtained, 1 622 cm(-1) was belong to chitin and 1 368 cm(-1) was assigned to pectic polysaccharide. Finally, two and three dimension chemical images of fungal hyphae were realized based on Raman fingerprint spectra of chitin in a nondestructive way.

  9. High similarity in physicochemical properties of chitin and chitosan from nymphs and adults of a grasshopper.

    Science.gov (United States)

    Erdogan, Sevil; Kaya, Murat

    2016-08-01

    This is the first study to explain the differences in the physicochemical properties of chitin and chitosan obtained from the nymphs and adults of Dociostaurus maroccanus using the same method. Fourier transform infrared spectroscopy, thermogravimetric analysis and x-ray diffraction analysis results demonstrated that the chitins from both the adults and nymphs were in the α-form. The chitin contents of the adults (14%) and nymphs (12%) were of the same order of magnitude. The crystalline index values of chitins from the adult and nymph grasshoppers were 71% and 74%, respectively. Thermal stabilities of the chitins and chitosans from adult and nymph grasshoppers were close to each other. Both the adult (7.2kDa) and nymph (5.6kDa) chitosans had low molar masses. Environmental scanning electron microscopy revealed that the surface morphologies of both chitins consisted of nanofibers and nanopores together, and they were very similar to each other. Consequently, it was determined that the physicochemical properties of the chitins and chitosans from adults and nymphs of D. maroccanus were not very different, so it can be hypothesized that the development of the chitin structure in the nymph has almost been completed and the nymph chitin has the same characteristics as the adult. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Effect of Acetyl Group on Mechanical Properties of Chitin/Chitosan Nanocrystal: A Molecular Dynamics Study

    Directory of Open Access Journals (Sweden)

    Junhe Cui

    2016-01-01

    Full Text Available Chitin fiber is the load-bearing component in natural chitin-based materials. In these materials, chitin is always partially deacetylated to different levels, leading to diverse material properties. In order to understand how the acetyl group enhances the fracture resistance capability of chitin fiber, we constructed atomistic models of chitin with varied acetylation degree and analyzed the hydrogen bonding pattern, fracture, and stress-strain behavior of these models. We notice that the acetyl group can contribute to the formation of hydrogen bonds that can stabilize the crystalline structure. In addition, it is found that the specimen with a higher acetylation degree presents a greater resistance against fracture. This study describes the role of the functional group, acetyl groups, in crystalline chitin. Such information could provide preliminary understanding of nanomaterials when similar functional groups are encountered.

  11. Different functions of the insect soluble and membrane-bound trehalase genes in chitin biosynthesis revealed by RNA interference.

    Directory of Open Access Journals (Sweden)

    Jie Chen

    Full Text Available BACKGROUND: Trehalase, an enzyme that hydrolyzes trehalose to yield two glucose molecules, plays a pivotal role in various physiological processes. In recent years, trehalase proteins have been purified from several insect species and are divided into soluble (Tre-1 and membrane-bound (Tre-2 trehalases. However, no functions of the two trehalases in chitin biosynthesis in insects have yet been reported. PRINCIPAL FINDINGS: The membrane-bound trehalase of Spodoptera exigua (SeTre-2 was characterized in our laboratory previously. In this study, we cloned the soluble trehalase gene (SeTre-1 and investigated the tissue distribution and developmental expression pattern of the two trehalase genes. SeTre-1 was expressed highly in cuticle and Malpighian tubules, while SeTre-2 was expressed in tracheae and fat body. In the midgut, the two trehalase genes were expressed in different locations. Additionally, the expression profiles of both trehalase mRNAs and their enzyme activities suggest that they may play different roles in chitin biosynthesis. The RNA interference (RNAi of either SeTre-1 or SeTre-2 was gene-specific and effective, with efficiency rates up to 83% at 72 h post injection. After RNAi of SeTre-1 and SeTre-2, significant higher mortality rates were observed during the larva-pupa stage and pupa-adult stage, and the lethal phenotypes were classified and analyzed. Additionally, the change trends of concentration of trehalose and glucose appeared reciprocally in RNAi-mutants. Moreover, knockdown of SeTre-1 gene largely inhibited the expression of chitin synthase gene A (CHSA and reduced the chitin content in the cuticle to two-thirds relative to the control insects. The chitin synthase gene B (CHSB expression, however, was inhibited more by the injection of dsRNA for SeTre-2, and the chitin content in the midgut decreased by about 25%. CONCLUSIONS: SeTre-1 plays a major role in CHSA expression and chitin synthesis in the cuticle, and SeTre-2

  12. Identification and characterization of chitin deacetylase2 from the American white moth, Hyphantria cunea (Drury).

    Science.gov (United States)

    Yan, Xiaoping; Zhao, Dan; Zhang, Yakun; Guo, Wei; Wang, Wei; Zhao, Kunli; Gao, Yujie; Wang, Xiaoyun

    2018-05-26

    Chitin deacetylases (CDAs) are enzymes that catalyze the conversion of chitin into chitosan, thereby influence the mechanical and permeability properties of structures such as the cuticle and peritrophic matrices. The full length cDNAs of chitin deacetylase2 (CDA2) genes from Hyphantria cunea were fully cloned by PCR amplification. Two cDNA sequences of HcCDA2 were searched from transcriptome of H. cunea and named as HcCDA2a and HcCDA2b. The deduced protein sequences showed that HaCDA2a and HaCDA2b are synthesized as preproteins of 524 and 518 amino acid residues with an 18-amino acid signal peptide, respectively. HcCDA2a and HcCDA2b contained a chitin-binding domain (ChBD), a low-density lipoprotein receptor class A domain (LDLa) and a polysaccharide deacetylase-like catalytic domain (CDA). Gene expression analyses results showed that HcCDA2a and HcCDA2b were both expressed at the head, integument, foregut, midgut, hindgut, Malpighian tubules and fat body, as well as the 1st to 5th days of fifth instar larvae. Western blot analyses revealed that HcCDA2 protein was highly abundant in the head and integument, and the developmental expression result in the fifth instars showed that HcCDA2 was highly present at the first two days. Besides, RT-PCR results showed that HcCDA2a and HcCDA2b were both expressed in integument and head, whether in molting stage or feeding stage. No visiable phenotypic changes were observed after injection of dsHcCDA2b, while lethal phenotypes of cuticle shedding failure and high mortality were resulted from injection of dsHcCDA2a. The silence of HcCDA2a leads to the ecdysis failure and death of H. cunea. These results suggest that HcCDA2 plays an important role during insect development, and provide new candidate targets and basis for developing environment-friendly pesticides. Copyright © 2017. Published by Elsevier B.V.

  13. Chitin Lengthens Power Production in a Sedimentary Microbial Fuel Cell

    Science.gov (United States)

    2014-01-01

    organic carbon sediments demonstrate that chitin enhances and lengthens power production. Keywords—chitin; MFC; microbiology ; iron-reducing bacteria...levels of organic content available as a food source for bacteria in the sediment. Dependent upon applications, there are scenarios where a SMFC...as ethanol, molasses, or vegetable oils. In the case of underwater marine sediment, options for carbon amendment are limited to solid carbon

  14. The use of flow cytometry to monitor chitin synthesis in regenerating protoplasts of Candida albicans.

    Science.gov (United States)

    Hector, R F; Braun, P C; Hart, J T; Kamarck, M E

    1990-01-01

    Flow cytometry was used to monitor chitin synthesis in regenerating protoplasts of the yeast Candida albicans. Comparisons of cells stained with Calcofluor White, a fluorochrome with known affinity for chitin, and cells incubated in the presence of N-[3H]-acetylglucosamine, the precursor substrate for chitin, showed a linear relationship between fluorescence and incorporation of label over time. Changes in both the fluorescence and light scatter of regenerating protoplasts treated with inhibitors of fungal chitin synthase were also quantitated by flow cytometry.

  15. Bioremediation of crude oil polluted seawater by a hydrocarbon-degrading bacterial strain immobilized on chitin and chitosan flakes

    International Nuclear Information System (INIS)

    Gentili, A.R.; Cubitto, M.A.; Ferrero, M.; Rodriguez, M.S.

    2006-01-01

    In this laboratory-scale study, we examined the potential of chitin and chitosan flakes obtained from shrimp wastes as carrier material for a hydrocarbon-degrading bacterial strain. Flakes decontamination, immobilization conditions and the survival of the immobilized bacterial strain under different storage temperatures were evaluated. The potential of immobilized hydrocarbon-degrading bacterial strain for crude oil polluted seawater bioremediation was tested in seawater microcosms. In terms of removal percentage of crude oil after 15 days, the microcosms treated with the immobilized inoculants proved to be the most successful. The inoculants formulated with chitin and chitosan as carrier materials improved the survival and the activity of the immobilized strain. It is important to emphasize that the inoculants formulated with chitin showed the best performance during storage and seawater bioremediation. (author)

  16. Surface morphology of chitin highly related with the isolated body part of butterfly (Argynnis pandora).

    Science.gov (United States)

    Kaya, Murat; Bitim, Betül; Mujtaba, Muhammad; Koyuncu, Turgay

    2015-11-01

    This study was conducted to understand the differences in the physicochemical properties of chitin samples isolated from the wings and the other body parts except the wings (OBP) of a butterfly species (Argynnis pandora). The same isolation method was used for obtaining chitin specimens from both types of body parts. The chitin content of the wings (22%) was recorded as being much higher than the OBP (8%). The extracted chitin samples were characterized via FT-IR, TGA, XRD, SEM, and elemental analysis techniques. Results of these characterizations revealed that the chitins from both structures (wings and OBP) were very similar, except for their surface morphologies. SEM results demonstrated one type of surface morphology for the wings and four different surface morphologies for the OBP. Therefore, it can be hypothesized that the surface morphology of the chitin is highly related with the body part. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Construction of chitin/PVA composite hydrogels with jellyfish gel-like structure and their biocompatibility.

    Science.gov (United States)

    He, Meng; Wang, Zhenggang; Cao, Yan; Zhao, Yanteng; Duan, Bo; Chen, Yun; Xu, Min; Zhang, Lina

    2014-09-08

    High strength chitin/poly(vinyl alcohol) (PVA) composite hydrogels (RCP) were constructed by adding PVA into chitin dissolved in a NaOH/urea aqueous solution, and then by cross-linking with epichlorohydrin (ECH) and freezing-thawing process. The RCP hydrogels were characterized by field emission scanning electron microscopy, FTIR, differential scanning calorimetry, solid-state (13)C NMR, wide-angle X-ray diffraction, and compressive test. The results revealed that the repeated freezing/thawing cycles induced the bicrosslinked networks consisted of chitin and PVA crystals in the composite gels. Interestingly, a jellyfish gel-like structure occurred in the RCP75 gel with 25 wt % PVA content in which the amorphous and crystalline PVA were immobilized tightly in the chitin matrix through hydrogen bonding interaction. The freezing/thawing cycles played an important role in the formation of the layered porous PVA networks and the tight combining of PVA with the pore wall of chitin. The mechanical properties of RCP75 were much higher than the other RCP gels, and the compressive strength was 20× higher than that of pure chitin gels, as a result of broadly dispersing stress caused by the orderly multilayered networks. Furthermore, the cell culture tests indicated that the chitin/PVA composite hydrogels exhibited excellent biocompatibility and safety, showing potential applications in the field of tissue engineering.

  18. Identification and first insights into the structure and biosynthesis of chitin from the freshwater sponge Spongilla lacustris.

    Science.gov (United States)

    Ehrlich, Hermann; Kaluzhnaya, Oksana V; Brunner, Eike; Tsurkan, Mikhail V; Ereskovsky, Alexander; Ilan, Micha; Tabachnick, Konstantin R; Bazhenov, Vasilii V; Paasch, Silvia; Kammer, Martin; Born, René; Stelling, Allison; Galli, Roberta; Belikov, Sergei; Petrova, Olga V; Sivkov, Victor V; Vyalikh, Denis; Hunoldt, Sebastian; Wörheide, Gert

    2013-09-01

    This work demonstrates that chitin is an important structural component within the skeletal fibers of the freshwater sponge Spongilla lacustris. Using a variety of analytical techniques ((13)C solid state NMR, FT-IR, Raman, NEXAFS, ESI-MS, Morgan-Elson assay and Calcofluor White Staining); we show that this sponge chitin is much closer to α-chitin, known to be present in other animals, than to β-chitin. Genetic analysis confirmed the presence of chitin synthases, which are described for the first time in a sponge. The presence of chitin in both marine (demosponges and hexactinellids) and freshwater sponges indicates that this important structural biopolymer was already present in their common ancestor. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Morphological changes of the filamentous fungus Mucor mucedo and inhibition of chitin synthase activity induced by anethole.

    Science.gov (United States)

    Yutani, Masahiro; Hashimoto, Yukie; Ogita, Akira; Kubo, Isao; Tanaka, Toshio; Fujita, Ken-ichi

    2011-11-01

    trans-Anethole (anethole), a major component of anise oil, has a broad antimicrobial spectrum with antimicrobial activity relatively weaker than those of well-known antibiotics, and significantly enhances the antifungal activity of polygodial and dodecanol against the baker's yeast Saccharomyces cerevisiae and human pathogenic yeast Candida albicans. However, the antifungal mechanism of anethole is unresolved. Anethole demonstrated antifungal activity against the filamentous fungus, Mucor mucedo IFO 7684, accompanied by hyphal morphological changes such as swollen hyphae at the tips. Its minimum growth inhibitory concentration was 0.625 mM. A hyperosmotic condition (1.2 M sorbitol) restricted the induction of morphological changes, while hypoosmotic treatment (distilled water) induced bursting of hyphal tips and leakage of cytoplasmic constituents. Furthermore, anethole dose-dependently inhibited chitin synthase (CHS) activity in permeabilized hyphae in an uncompetitive manner. These results suggest that the morphological changes of M. mucedo could be explained by the fragility of cell walls caused by CHS inhibition. Copyright © 2011 John Wiley & Sons, Ltd.

  20. Nucleic acids encoding a cellulose binding domain

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1996-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  1. Bacterial communities in chitin-amended soil as revealed by 16S rRNA gene based pyrosequencing

    NARCIS (Netherlands)

    Cretoiu, Mariana Silvia; Kielak, Anna Maria; Schluter, Andreas; van Elsas, Jan Dirk

    Chitin and its derivatives are natural biopolymers that are often used as compounds for the control of soilborne plant pathogens. In spite of recent advances in agricultural practices involving chitin amendments, the microbial communities in chitin-amended soils remain poorly known. The objectives

  2. The fungicidal properties of the carbon materials obtained from chitin and chitosan promoted by copper salts

    Energy Technology Data Exchange (ETDEWEB)

    Ilnicka, Anna, E-mail: annakucinska@o2.pl; Walczyk, Mariusz; Lukaszewicz, Jerzy P.

    2015-07-01

    Renewable raw materials chitin and chitosan (N-deacetylated derivative of chitin) were subjected to action of different copper modifiers that were carbonized in the atmosphere of the N{sub 2} inert gas. As a result of the novel manufacturing procedure, a series of carbon materials was obtained with developed surface area and containing copper derivatives of differentiated form, size, and dispersion. The copper modifier and manufacturing procedure (concentration, carbonization temperature) influence the physical–chemical and fungicide properties of the carbons. The received carbons were chemically characterized using several methods like low-temperature adsorption of nitrogen, X-ray diffraction analysis, scanning electron microscopy, cyclic voltammetry, elemental analysis, and bioassay. Besides chemical testing, some biological tests were performed and let to select carbons with the highest fungicidal activity. Such carbons were characteristic of the specific form of copper derivatives occurring in them, i.e., nanocrystallites of Cu{sup 0} and/or Cu{sub 2}O of high dispersion on the surface of carbon. The carbons may find an application as effective contact fungistatic agents in cosmetology, medicine, food industry, etc. - Highlights: • The novel manufacturing procedure yields new functional carbon materials. • Two biopolymers chitin and chitosan can undergo copper(II) ion modification. • The Cu-modified carbon materials exhibit high fungicidal activity. • The fungicidal activity results from the presence of Cu{sup 0} and Cu{sub 2}O nano-crystallites.

  3. Bacterial chitinolytic communities respond to chitin and pH alteration in soil

    NARCIS (Netherlands)

    Kielak-Butterbach, A.M.; Cretoiu, M.S.; Semenov, A.V.; Sørensen, S.J.; van Elsas, J.D.

    Chitin amendment is a promising soil management strategy that may enhance the suppressiveness of soil toward plant pathogens. However, we understand very little of the effects of added chitin, including the putative successions that take place in the degradative process. We performed an experiment

  4. Bacterial communities in chitin-amended soil as revealed by 16S rRNA gene based pyrosequencing

    NARCIS (Netherlands)

    Cretoiu, M.S.; Kielak, A.M.; Schluter, A.; van Elsas, J.D.

    2014-01-01

    Chitin and its derivatives are natural biopolymers that are often used as compounds for the control of soil-borne plant pathogens. In spite of recent advances in agricultural practices involving chitin amendments, the microbial communities in chitin-amended soils remain poorly known. The objectives

  5. Properties of polymethyl methacrylate-based nanocomposites: Reinforced with ultra-long chitin nanofiber extracted from crab shells

    International Nuclear Information System (INIS)

    Chen, Chuchu; Li, Dagang; Hu, Qinqin; Wang, Ru

    2014-01-01

    Highlights: • Using waste crab shells to develop high-performance composites by simple method. • Combining the anatomic analysis of crab shell with the design of composite. • Introducing a 4-step all-mechanical treatment to prepare ultra-long chitin fiber. • Incorporation of chitin nanofiber improves properties of PMMA/Chitin composite. - Abstract: Ultra-long chitin nanofibers were incorporated into polymethyl methacrylate (PMMA) resin to prepared PMMA/Chitin nanocomposites with improved properties. Transmission electron microscopy (TEM) images showed that through the introduced 4-step all-mechanical treatment, the average aspect ratio of the obtained chitin fiber was up to 1000 with the length at dozens of micron range. Due to the laminated structure formed by “layer-by-layer” effect, tensile strength and Young’s modulus of the prepared composite were significantly enhanced after the filling of chitin nanofibers, as compared with neat PMMA. Light transmittance test indicated that increasing the fiber content causes little light scattering because the nano-scalar network which is smaller enough than the visible wavelength could well preserve the original transparency of PMMA. Furthermore, chitin nanofiber film with extremely low thermal expansion improved the thermal stability of PMMA in a great degree. This could lead to various commercial applications including flexible electronic printing, organic thin-film photovoltaic devices, and is a significantly environmental move towards the sustainable utilization of marine-river crab shell wastes

  6. Micro-CT Imaging of Denatured Chitin by Silver to Explore Honey Bee and Insect Pathologies

    Science.gov (United States)

    Butzloff, Peter R.

    2011-01-01

    Background Chitin and cuticle coatings are important to the environmental and immune defense of honey bees and insect pollinators. Pesticides or environmental effects may target the biochemistry of insect chitin and cuticle coating. Denaturing of chitin involves a combination of deacetylation, intercalation, oxidation, Schweiger-peeling, and the formation of amine hydrochloride salt. The term “denatured chitin” calls attention to structural and property changes to the internal membranes and external carapace of organisms so that some properties affecting biological activities are diminished. Methodology/Principal Findings A case study was performed on honey bees using silver staining and microscopic computer-tomographic x-ray radiography (micro-CT). Silver nitrate formed counter-ion complexes with labile ammonium cations and reacted with amine hydrochloride. Silver was concentrated in the peritrophic membrane, on the abdomen, in the glossa, at intersegmental joints (tarsi), at wing attachments, and in tracheal air sacs. Imaged mono-esters and fatty acids from cuticle coating on external surfaces were apparently reduced by an alcohol pretreatment. Conclusions/Significance The technique provides 3-dimensional and sectional images of individual honey bees consistent with the chemistries of silver reaction and complex formation with denatured chitin. Environmental exposures and influences such as gaseous nitric oxide intercalant, trace oxidants such as ozone gas, oligosachharide salt conversion, exposure to acid rain, and chemical or biochemical denaturing by pesticides may be studied using this technique. Peritrophic membranes, which protect against food abrasion, microorganisms, and permit efficient digestion, were imaged. Apparent surface damage to the corneal lenses of compound eyes by dilute acid exposure consistent with chitin amine hydrochloride formation was imaged. The technique can contribute to existing insect pathology research, and may provide an

  7. Chitin in the Silk Gland Ducts of the Spider Nephila edulis and the Silkworm Bombyx mori

    Science.gov (United States)

    Davies, Gwilym J. G.; Knight, David P.; Vollrath, Fritz

    2013-01-01

    Here we report the detection and localisation of chitin in the cuticle of the spinning ducts of both the spider Nephila edulis and the silkworm Bombyx mori. Our observations demonstrate that the duct walls of both animals contain chitin notwithstanding totally independent evolutionary pathways of the systems. We conclude that chitin may well be an essential component for the construction of spinning ducts; we further conclude that in both species chitin may indicate the evolutionary origin of the spinning ducts. PMID:24015298

  8. Extraction of Crude Chitinase from Higher Plants and their Chitin-Hydrolysis Activities; Kotosyokubutu yurai kichinaze no chusyutu to kichin bunkai kassei

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, K.; Harada, K.; Shibata, M.; Maeda, R. [Doshisha Univ., Kyoto (Japan). Faculty of Engineering

    1997-07-10

    To prepare a purified chitinase from higher plants, firstly, crude enzymes were extracted from six higher plants, namely, radish seeds, sunflower seeds, watermelon seeds, bamboo leaves, orange skin, and persimmon skin. Using these crude enzymes, pH dependencies of hydrolysis reaction of colloidal chitin are investigated. For radish seeds and bamboo leaves, which have relatively high activities, the kinetics of enzymatic reaction are studies. It is clear that these reactions obey Michaelis-Menten kinetics. 7 refs., 3 figs., 2 tabs.

  9. Extreme biomimetic approach for synthesis of nanocrystalline chitin-(Ti,Zr)O2 multiphase composites

    International Nuclear Information System (INIS)

    Wysokowski, Marcin; Motylenko, Mykhaylo; Rafaja, David; Koltsov, Iwona; Stöcker, Hartmut; Szalaty, Tadeusz J.; Bazhenov, Vasilii V.; Stelling, Allison L.; Beyer, Jan; Heitmann, Johannes; Jesionowski, Teofil; Petovic, Slavica; Đurović, Mirko; Ehrlich, Hermann

    2017-01-01

    This work presents an extreme biomimetics route for the modification of the surface of fibre-based scaffolds of poriferan origin by the creation of novel nanostructured multiphase biocomposites. The exceptional thermal stability of the nanostructured sponge chitin allowed for the formation of a novel nanocrystalline chitin-(Ti,Zr)O 2 composite with a well-defined nanoscale structure under hydrothermal conditions (160 °C). Using a combination of experimental techniques, including X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy, EDX mapping and near-edge electron loss spectroscopy (ELNES) in TEM and thermogravimetry/differential scanning calorimetry coupled with mass spectrometry; we showed that this bioorganic scaffold facilitates selective crystallization of TiO 2 , predominantly in form of anatase, over the monoclinic zirconium dioxide (baddeleyite). The control of the crystal morphology through the chitin templates is also demonstrated. Obtained samples were characterized in terms of their photoluminescent properties and photocatalytic performance. These data confirm the high potential of the extreme biomimetics approach for developing a new generation of multiphase biopolymer-based nanostructured materials. - Highlights: • Extreme biomimetically prepared chitin-(Ti,Zr)O 2 and (Ti,Zr)O 2 composites. • Chitin-(Ti,Zr)O 2 composite contains anatase as the most inorganic component. • The mean crystallite size is (31.7 ± 0.3) nm for chitin-(Ti,Zr)O 2 composite. • The mean crystallite size is (2.4 ± 0.5) nm for (Ti,Zr)O 2 composite. • (Ti,Zr)O 2 composite is 2 times more effective photocatalyst than chitin-(Ti,Zr)O 2 .

  10. Methods of use of cellulose binding domain proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1997-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  11. Amino Groups of Chitosan Are Crucial for Binding to a Family 32 Carbohydrate Binding Module of a Chitosanase from Paenibacillus elgii*

    Science.gov (United States)

    Das, Subha Narayan; Wagenknecht, Martin; Nareddy, Pavan Kumar; Bhuvanachandra, Bhoopal; Niddana, Ramana; Balamurugan, Rengarajan; Swamy, Musti J.; Moerschbacher, Bruno M.; Podile, Appa Rao

    2016-01-01

    We report here the role and mechanism of specificity of a family 32 carbohydrate binding module (CBM32) of a glycoside hydrolase family 8 chitosanase from Paenibacillus elgii (PeCsn). Both the activity and mode of action of PeCsn toward soluble chitosan polymers were not different with/without the CBM32 domain of P. elgii (PeCBM32). The decreased activity of PeCsn without PeCBM32 on chitosan powder suggested that PeCBM32 increases the relative concentration of enzyme on the substrate and thereby enhanced enzymatic activity. PeCBM32 specifically bound to polymeric and oligomeric chitosan and showed very weak binding to chitin and cellulose. In isothermal titration calorimetry, the binding stoichiometry of 2 and 1 for glucosamine monosaccharide (GlcN) and disaccharide (GlcN)2, respectively, was indicative of two binding sites in PeCBM32. A three-dimensional model-guided site-directed mutagenesis and the use of defined disaccharides varying in the pattern of acetylation suggested that the amino groups of chitosan and the polar residues Glu-16 and Glu-38 of PeCBM32 play a crucial role for the observed binding. The specificity of CBM32 has been further elucidated by a generated fusion protein PeCBM32-eGFP that binds to the chitosan exposing endophytic infection structures of Puccinia graminis f. sp. tritici. Phylogenetic analysis showed that CBM32s appended to chitosanases are highly conserved across different chitosanase families suggesting their role in chitosan recognition and degradation. We have identified and characterized a chitosan-specific CBM32 useful for in situ staining of chitosans in the fungal cell wall during plant-fungus interaction. PMID:27405759

  12. Preparation of metal adsorbents from chitin/chitosan by radiation technology

    International Nuclear Information System (INIS)

    Nguyen Van Suc; Nguyen Quoc Hien; Ngo Quang Huy; Thai My Phe; Dao Van Hoang; Nguyen Van Hung

    2004-01-01

    The methods of preparation of metal adsorbents basing on chitin/chitosan were developed. That include the adsorbent from chitin grafted with acrylic acid by different irradiation doses; the clinging chitosan gel beads; the coagulable solution and the chitosan composite filter. The process of metal adsorption for each adsorbent was studied as adsorption kinetic, isothermal adsorption. The results have been applied for removal of some elements as Hg, Pb, Cd, U, Cu, ect. in the wastewater. (NHA)

  13. Metabolic engineering of the morphology of Aspergillus oryzae by altering chitin synthesis

    DEFF Research Database (Denmark)

    Muller, C.; Mcintyre, Mhairi; Hansen, Kim

    2002-01-01

    Morphology and alpha-amylase production during submerged cultivation were examined in a wild-type strain (A1560) and in strains of Aspergillus oryzae in which chitin synthase B (chsB) and chitin synthesis myosin A (csmA) have been disrupted (ChsB/G and CM101). In a flowthrough cell, the growth...

  14. Evaluation of Chitin as Natural Coagulant in Water Treatment

    Directory of Open Access Journals (Sweden)

    V. Saritha

    2012-04-01

    Full Text Available The use of synthetic coagulants is not regarded as suitable due to health and economic considerations. The present study was aimed to investigate the effects of alum as coagulant in conjunction with chitin as coagulant aid on the removal of turbidity, hardness and Escherichia coli from water. A conventional jar test apparatus was employed for the tests. The experiment was conducted at three different pH conditions of 6, 7 and 8. The dosages chosen were 0.5, 1, 1.5 and 2mg/l. The results showed that turbidity decrease provided also a primary Escherichia coli reduction. Hardness removal efficiency was observed to be 93% at pH 7 with 1mg/l concentration by alum whereas chitin was stable at all the pH ranges showing highest removal at 1 and 1.5mg/l with pH 7. At low concentration chitin showed marginally better performance on hardness. In conclusion, using natural coagulants results in considerable savings in chemicals and sludge handling cost may be achieved.

  15. Thin-film Nanofibrous Composite Membranes Containing Cellulose or Chitin Barrier Layers Fabricated by Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    H Ma; B Hsiao; B Chu

    2011-12-31

    The barrier layer of high-flux ultrafiltration (UF) thin-film nanofibrous composite (TFNC) membranes for purification of wastewater (e.g., bilge water) have been prepared by using cellulose, chitin, and a cellulose-chitin blend, regenerated from an ionic liquid. The structures and properties of regenerated cellulose, chitin, and a cellulose-chitin blend were analyzed with thermogravimetric analysis (TGA) and wide-angle X-ray diffraction (WAXD). The surface morphology, pore size and pore size distribution of TFNC membranes were determined by SEM images and molecular weight cut-off (MWCO) methods. An oil/water emulsion, a model of bilge water, was used as the feed solution, and the permeation flux and rejection ratio of the membranes were investigated. TFNC membranes based on the cellulose-chitin blend exhibited 10 times higher permeation flux when compared with a commercial UF membrane (PAN10, Sepro) with a similar rejection ratio after filtration over a time period of up to 100 h, implying the practical feasibility of such membranes for UF applications.

  16. Application of chitin and zeolite adsorbents for treatment of low level radioactive liquid wastes

    International Nuclear Information System (INIS)

    Moattar, F.; Hayeripour, S.

    2004-01-01

    Two types of shrimp chitin derivatives and two types of Iranian natural zeolite derivates were studied for adsorption and treatment of low-level radioactive liquid waste. Chitin with lowers than 10% and chitosan with higher than 90% deacetylation factor were selected as neutral organic adsorbents. Natural clinoptilolite of Firuzkooh area and Na from derivates of it were selected as natural inorganic adsorbents. The static and dynamic ion exchange experimental results show that the ad adsorption efficiency depend on particle size, Ph, adsorbent type, deacetylation factor ( in chitin adsorbents) and cation type. The best Cs adsorption occurred in Na from clinoptilolite. Nevertheless chitin derivatives, particularly chitosan, are more efficient than zeolite adsorbents for removing of radionuclides such as 137 Cs, 54 Mn, 90 Sr and 60 Co. Adsorption performance was discussed and compared with each other

  17. Bacterial chitinolytic communities respond to chitin and pH alteration in soil

    DEFF Research Database (Denmark)

    Kielak, Anna; Cretoiu, Mariana; Semenov, Alexander

    2013-01-01

    by the addition of chitin at different prevailing soil pH values. Interestingly, a major role of Gram-negative bacteria versus a minor one of Actinobacteria in the immediate response to the added chitin (based on 16S rRNA gene abundance and chiA gene types) was indicated. The results of this study enhance our...

  18. Biosorption of gold from computer microprocessor leachate solutions using chitin.

    Science.gov (United States)

    Côrtes, Letícia N; Tanabe, Eduardo H; Bertuol, Daniel A; Dotto, Guilherme L

    2015-11-01

    The biosorption of gold from discarded computer microprocessor (DCM) leachate solutions was studied using chitin as a biosorbent. The DCM components were leached with thiourea solutions, and two procedures were tested for recovery of gold from the leachates: (1) biosorption and (2) precipitation followed by biosorption. For each procedure, the biosorption was evaluated considering kinetic, equilibrium, and thermodynamic aspects. The general order model was able to represent the kinetic behavior, and the equilibrium was well represented by the BET model. The maximum biosorption capacities were around 35 mg g(-1) for both procedures. The biosorption of gold on chitin was a spontaneous, favorable, and exothermic process. It was found that precipitation followed by biosorption resulted in the best gold recovery, because other species were removed from the leachate solution in the precipitation step. This method enabled about 80% of the gold to be recovered, using 20 g L(-1) of chitin at 298 K for 4 h. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Microbial Degradation of Lobster Shells to Extract Chitin Derivatives for Plant Disease Management

    Directory of Open Access Journals (Sweden)

    Gayathri Ilangumaran

    2017-05-01

    Full Text Available Biodegradation of lobster shells by chitinolytic microorganisms are an environment safe approach to utilize lobster processing wastes for chitin derivation. In this study, we report degradation activities of two microbes, “S223” and “S224” isolated from soil samples that had the highest rate of deproteinization, demineralization and chitinolysis among ten microorganisms screened. Isolates S223 and S224 had 27.3 and 103.8 protease units mg-1 protein and 12.3 and 11.2 μg ml-1 of calcium in their samples, respectively, after 1 week of incubation with raw lobster shells. Further, S223 contained 23.8 μg ml-1 of N-Acetylglucosamine on day 3, while S224 had 27.3 μg ml-1 on day 7 of incubation with chitin. Morphological observations and 16S rDNA sequencing suggested both the isolates were Streptomyces. The culture conditions were optimized for efficient degradation of lobster shells and chitinase (∼30 kDa was purified from crude extract by affinity chromatography. The digested lobster shell extracts induced disease resistance in Arabidopsis by induction of defense related genes (PR1 > 500-fold, PDF1.2 > 40-fold upon Pseudomonas syringae and Botrytis cinerea infection. The study suggests that soil microbes aid in sustainable bioconversion of lobster shells and extraction of chitin derivatives that could be applied in plant protection.

  20. Altering the expression of two chitin synthase genes differentially affects the growth and morphology of Aspergillus oryzae

    DEFF Research Database (Denmark)

    Müller, Christian; Hjort, C.M.; Hansen, K.

    2002-01-01

    In Aspergillus oryzae, one full-length chitin synthase (chsB) and fragments of two other chitin synthases (csmA and chsC) were identified. The deduced amino acid sequence of chsB was similar (87% identity) to chsB from Aspergillus nidulans, which encodes a class III chitin synthase. The sequence...

  1. Biochemical and morphological responses to abiotc elicitor chitin in suspension-cultured sugarcane cells

    Directory of Open Access Journals (Sweden)

    Maria Izabel Gallão

    2010-04-01

    Full Text Available Cells of Saccharum officinarum submitted to hydrolyzated chitin for 1 to 8h produced phenolic compounds. These alterations were observed through cytochemical methods using Toluidine Blue and Phloroglucinol/HCl. After 4 h, besides cell wall change, there was a change in nuclear pattern of chitin treated cells. There was a 96% increase in nuclear area in 6 h chitin treated material, as observed by Feulgen reaction. The treated cells showed chromatin compacted regions and a degeneration process of nucleoli. In the outer areas of cell wall, there was a polysaccharide desagregation, confirming results obtained for different plants with the use of other elicitors. Peroxidase activity was maximal after 4 h and decreased progressively. PAL activity started to increase at 4 h of incubation. These results showed that chitin hydrolyzate stimulated a defense response in sugarcane cells.Células de Saccharum officinarum quando submetidas a quitina hidrolisada por 1 a 8h produziram material fenólico. Essas alterações foram observadas por meio de métodos citoquímicos como o Azul de Toluidina e Floroglucinol/HCl. Após 4 h, além das mudanças nas paredes celulares houve uma mudança no padrão nuclear das células tratadas com quitina. Por observação da reação de Feulgen, houve um aumento de 96% na área nuclear no material em 6h. Para as células tratadas foram observadas regiões de cromatina compactada e um processo de degeneração do nucléolo. Nas áreas externas da parede celular existia uma desagregação dos polisacarídios confirmando os resultados obtidos para diferentes plantas com o uso de outros elicitores. A atividade da peroxidase foi maxima após 4 h e então decresceu progressivamente. A atividade da PAL aumentou a partir de 4 h de incubação. Estes resultados mostram que o hidrolisado de quitina estimula as respostas de defesa em células de cana.

  2. The hard parts (trophi) of the rotifer mastax do contain chitin: evidence from studies on Brachionus plicatilis.

    Science.gov (United States)

    Klusemann, J; Kleinow, W; Peters, W

    1990-01-01

    The jaws (trophi) of the rotifer Brachionus plicatilis are soluble in strong acids but are resistant to long treatments by strong alkali. They show the same buoyant density as chitin and also as the chitin-containing layers of rotifer egg-shells. The presence of chitin in these structures was confirmed using the following techniques: chitosan-tests, thin-layer chromatography of trophi-hydrolysates which revealed glucosamine, by dissolving trophi with chitinase and electron microscopic WGA/gold-labelling. The content of chitin in the trophi was estimated by two different methods to be approx. 64% (50-75%).

  3. Extreme biomimetic approach for synthesis of nanocrystalline chitin-(Ti,Zr)O{sub 2} multiphase composites

    Energy Technology Data Exchange (ETDEWEB)

    Wysokowski, Marcin, E-mail: Marcin.Wysokowski@put.poznan.pl [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60965, Poznan (Poland); Motylenko, Mykhaylo; Rafaja, David [TU Bergakademie Freiberg, Institute of Materials Science, Gustav-Zeuner-Str. 5, 09596, Freiberg (Germany); Koltsov, Iwona [Laboratory of Nanostructures, Institute of High Pressure Physics of The Polish Academy of Sciences, Sokołowska 29/37, 01-142, Warsaw (Poland); Stöcker, Hartmut [TU Bergakademie Freiberg, Institute of Experimental Physics, Leipziger str. 23, 09596, Freiberg (Germany); Szalaty, Tadeusz J. [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60965, Poznan (Poland); Bazhenov, Vasilii V., E-mail: vasily.bazhenov@gmail.com [TU Bergakademie Freiberg, Institute of Experimental Physics, Leipziger str. 23, 09596, Freiberg (Germany); Stelling, Allison L. [Duke University, Department of Biochemistry, Durham, NC, 27708 (United States); Beyer, Jan; Heitmann, Johannes [TU Bergakademie Freiberg, Institute of Applied Physics, Leipziger str. 23, 09596, Freiberg (Germany); Jesionowski, Teofil [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60965, Poznan (Poland); Petovic, Slavica; Đurović, Mirko [Institute of Marine Biology, Dobrota, 85330, Kotor (Montenegro); Ehrlich, Hermann [TU Bergakademie Freiberg, Institute of Experimental Physics, Leipziger str. 23, 09596, Freiberg (Germany)

    2017-02-15

    This work presents an extreme biomimetics route for the modification of the surface of fibre-based scaffolds of poriferan origin by the creation of novel nanostructured multiphase biocomposites. The exceptional thermal stability of the nanostructured sponge chitin allowed for the formation of a novel nanocrystalline chitin-(Ti,Zr)O{sub 2} composite with a well-defined nanoscale structure under hydrothermal conditions (160 °C). Using a combination of experimental techniques, including X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy, EDX mapping and near-edge electron loss spectroscopy (ELNES) in TEM and thermogravimetry/differential scanning calorimetry coupled with mass spectrometry; we showed that this bioorganic scaffold facilitates selective crystallization of TiO{sub 2}, predominantly in form of anatase, over the monoclinic zirconium dioxide (baddeleyite). The control of the crystal morphology through the chitin templates is also demonstrated. Obtained samples were characterized in terms of their photoluminescent properties and photocatalytic performance. These data confirm the high potential of the extreme biomimetics approach for developing a new generation of multiphase biopolymer-based nanostructured materials. - Highlights: • Extreme biomimetically prepared chitin-(Ti,Zr)O{sub 2} and (Ti,Zr)O{sub 2} composites. • Chitin-(Ti,Zr)O{sub 2} composite contains anatase as the most inorganic component. • The mean crystallite size is (31.7 ± 0.3) nm for chitin-(Ti,Zr)O{sub 2} composite. • The mean crystallite size is (2.4 ± 0.5) nm for (Ti,Zr)O{sub 2} composite. • (Ti,Zr)O{sub 2} composite is 2 times more effective photocatalyst than chitin-(Ti,Zr)O{sub 2}.

  4. Characterization of chitin extracted from fish scales of marine fish species purchased from local markets in North Sulawesi, Indonesia

    Science.gov (United States)

    Rumengan, I. F. M.; Suptijah, P.; Wullur, S.; Talumepa, A.

    2017-10-01

    Chitin is a biodegradable biopolymer with a variety of commercial applications, including in the food food-supplement industries as a marine-derived nutraceutical. The purpose of this study was to characterize the molecular structure of chitin extracted from fish scales of important marine fish purchased from local markets in North Sulawesi. Chitin compound material was obtained from a specific fish scale, and then sequentially carrying out a boiling treatment to separate it from a complex with collagen. From the scales of two fish species, parrotfish (Chlorurus sordidus) and red snapper (Lutjanus argentimaculatus), the rendemen of chitin obtained were 45 % and 33%, respectively. Structural characteristics of the chitin were discussed by FTIR (Fourier Transform Infrared) analysis data. FTIR analysis was done using infrared spectroscopy, which is the resulting spectrum represents the molecular absorption and transmission, creating a molecular fingerprint of the sample. The molecular structure of chitin, C18H26N2O10, where the hydroxyl group on the second carbon replaced by acetyl amide, was shown by the infrared spectra. In the infrared spectra, chitin from parrot fish scales indicated the amide band at 1627.13 cm-1, and chitin from red snapper fish scales the amide band at 1648.09 cm-1 which are a typical one for marine chitin. The hydroxyl and amino bands at the ranged spectra up to 3500 cm-1. The yields of chitin isolated from fish scale were relatively huge. Some treatments are necessary to confirm the molecular conformation and deacetylation behavior. All products from the extraction of fish scales could be more accessible for structural modifications to develop biocompatible materials for pharmaceutical purposes.

  5. Chitin-Hyaluronan Nanoparticles: A Multifunctional Carrier to Deliver Anti-Aging Active Ingredients through the Skin

    Directory of Open Access Journals (Sweden)

    Pierfrancesco Morganti

    2014-07-01

    Full Text Available The paper describes the process to produce Chitin Nanofibril-Hyaluronan nanoparticles (CN-HA, showing their ability to easily load active ingredients, facilitate penetration through the skin layers, and increase their effectiveness and safety as an anti-aging agent. Size and characterization of CN-HA nanoparticles were determined by Scanning Electron Microscopy (SEM and Zetasizer, while encapsulation efficiency and loading capacity of the entrapped ingredients were controlled by chromatographic and spectrophotometric methods. Safeness was evidenced on fibroblasts and keratinocytes culture viability by the MTT (Methylthiazol assay; anti-aging activity was evaluated in vitro measuring antioxidant capacity, anti-collagenase activity, and metalloproteinase and pro-inflammatory release; efficacy was shown in vivo by a double-blind vehicle-controlled study for 60 days on 60 women affected by photo-aging. In addition, the CN-HA nanoparticles have shown interesting possibility to be used as active ingredients, for designing and making advanced medication by the electrospinning technology, as well as to produce transparent films for food packaging, by the casting method, and can be used also in their dry form as tissues or films without adding preservatives. These unusual CN-HA nanoparticles obtained from the use of raw materials of waste origin may offer an unprecedented occasion for making innovative products, ameliorating the quality of life, reducing pollution and safeguarding the environment’s integrity.

  6. The Effect of Poly (Glycerol Sebacate) Incorporation within Hybrid Chitin-Lignin Sol-Gel Nanofibrous Scaffolds.

    Science.gov (United States)

    Abudula, Tuerdimaimaiti; Gzara, Lassaad; Simonetti, Giovanna; Alshahrie, Ahmed; Salah, Numan; Morganti, Pierfrancesco; Chianese, Angelo; Fallahi, Afsoon; Tamayol, Ali; Bencherif, Sidi A; Memic, Adnan

    2018-03-19

    Chitin and lignin primarily accumulate as bio-waste resulting from byproducts of crustacean crusts and plant biomass. Recently, their use has been proposed for diverse and unique bioengineering applications, amongst others. However, their weak mechanical properties need to be improved in order to facilitate their industrial utilization. In this paper, we fabricated hybrid fibers composed of a chitin-lignin (CL)-based sol-gel mixture and elastomeric poly (glycerol sebacate) (PGS) using a standard electrospinning approach. Obtained results showed that PGS could be coherently blended with the sol-gel mixture to form a nanofibrous scaffold exhibiting remarkable mechanical performance and improved antibacterial and antifungal activity. The developed hybrid fibers showed promising potential in advanced biomedical applications such as wound care products. Ultimately, recycling these sustainable biopolymers and other bio-wastes alike could propel a "greener" economy.

  7. Methods of detection using a cellulose binding domain fusion product

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1999-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  8. In vitro degradation of porous nano-hydroxyapatite/collagen/PLLA scaffold reinforced by chitin fibres

    International Nuclear Information System (INIS)

    Li Xiaoming; Feng Qingling; Cui Fuzhai

    2006-01-01

    In this paper, a novel porous scaffold for bone tissue engineering was prepared with nano-hydroxyapatite/collagen/Poly-L-lactic acid (PLLA) composite reinforced by chitin fibres. To enhance the strength of the scaffold further, PLLA was linked with chitin fibres by Dicyclohexylcarbodimide (DCC). The structures of the reinforced scaffold with and without linking were characterized by Scanning Electron Microscopy (SEM). The chemical characteristics of the chitin fibres with and without linking were evaluated by Fourier-transformed infrared (FTIR) spectroscopy. The mechanical performance during degradation in vitro was investigated. The results indicated that the nano-hydroxyapatite/collagen/PLLA composite reinforced by chitin fibres with linking kept better mechanical properties than that of the composite without linking. These results denoted that the stronger interfacial bonding strength of the scaffold with linking could decrease the degradation rate in vitro. The reinforced composite with the link-treatment can be severed as a scaffold for bone tissue engineering

  9. Characterization of a chitinase with antifungal activity from a native Serratia marcescens B4A

    Directory of Open Access Journals (Sweden)

    Mandana Zarei

    2011-09-01

    Full Text Available Chitinases have the ability of chitin digestion that constitutes a main compound of the cell wall in many of the phytopathogens such as fungi. In the following investigation, a novel chitinase with antifungal activity was characterized from a native Serratia marcescens B4A. Partially purified enzyme had an apparent molecular mass of 54 kDa. It indicated an optimum activity in pH 5 at 45ºC. Enzyme was stable in 55ºC for 20 min and at a pH range of 3-9 for 90 min at 25ºC. When the temperature was raised to 60ºC, it might affect the structure of enzymes lead to reduction of chitinase activity. Moreover, the Km and Vmax values for chitin were 8.3 mg/ml and 2.4 mmol/min, respectively. Additionally, the effect of some cations and chemical compounds were found to stimulate the chitinase activity. In addition, Iodoacetamide and Idoacetic acid did not inhibit enzyme activity, indicating that cysteine residues are not part of the catalytic site of chitinase. Finally, chitinase activity was further monitored by scanning electronic microscopy data in which progressive changes in chitin porosity appeared upon treatment with chitinase. This enzyme exhibited antifungal activity against Rhizoctonia solani, Bipolaris sp, Alternaria raphani, Alternaria brassicicola, revealing a potential application for the industry with potentially exploitable significance. Fungal chitin shows some special features, in particular with respect to chemical structure. Difference in chitinolytic ability must result from the subsite structure in the enzyme binding cleft. This implies that why the enzyme didn't have significant antifungal activity against other Fungi.

  10. Study of Zn, Cd, and Pb Adsorption Using Chitin Extracted from Lobsters from Oman Sea

    Directory of Open Access Journals (Sweden)

    Alireza Sardashti

    2015-10-01

    Full Text Available Lobster shells from Konarak Port were collected in October 2002, purified, and dried for the purposes of the present study. Chitin was extracted from the shellsusing the common chemical processes of demineralization, proteinzation, and decolonization, beforepurificationwith 1% CH3COOH and 1% NaCl to obatin an extract containing 12% (w/w chitin. Chitin composition was determined using FT-IR, X-Ray powder diffraction, BET, and C.H.N.S analysis. The FT-IR spectrum of the extracted chitin was corresponded well to the Merck standard one, indicating that it is a linear polymer of N-acetyl-D- glucosamine on which metal ions can be adsorbed. Kinetic study of chitin’s reaction with Zn+2 at pH=6.75 and an ionic strength of 0.02 M indicated that adsorption equilibrium was reached within six hours of mixing. Adsorption Langmuir isotherms for a solution of Zn+2, Cd+2, and Pb+2 ions at an initial concentration of 2×10‒3 M were determined for an ionic strenght of 0.02 M, different pH levels, and at ambient temparature using the discontinued in-pot method. The maximum amounts of metal ions adsorbed on chitin at pH= 6.75 were measured to be 0.119 mol/kg for Cd+2, 0.714 mol/kg for Zn+2, and 1.630 mol/Kg for Pb+2. The overdyeing graphs, Cs= f (pH, show that the adsorption capacity of chitin is influenced by such factors as pH, reaction time, metal ion concantration, and adsorbent particle size. Thus, chitin as a non-toxic natural polymer may be highly recommended for water detoxification from heavy metal ions.

  11. Deletion of a Chitin Synthase Gene in a Citric Acid Producing Strain of Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Rinker, Torri E.; Baker, Scott E.

    2007-01-29

    Citric acid production by the filamentous fungus Aspergillus niger is carried out in a process that causes the organism to drastically alter its morphology. This altered morphology includes hyphal swelling and highly limited polar growth resulting in clumps of swollen cells that eventually aggregate into pellets of approximately 100 microns in diameter. In this pelleted form, A. niger has increased citric acid production as compared to growth in filamentous form. Chitin is a crucial component of the cell wall of filamentous fungi. Alterations in the deposition or production of chitin may have profound effects on the morphology of the organism. In order to study the role of chitin synthesis in pellet formation we have deleted a chitin synthase gene (csmA) in Aspergillus niger strain ATCC 11414 using a PCR based deletion construct. This class of chitin synthases is only found in filamentous fungi and is not present in yeasts. The csmA genes contain a myosin motor domain at the N-terminus and a chitin synthesis domain at the C-terminus. They are believed to contribute to the specialized polar growth observed in filamentous fungi that is lacking in yeasts. The csmA deletion strain (csmAΔ) was subjected to minimal media with and without osmotic stabilizers as well as tested in citric acid production media. Without osmotic stabilizers, the mutant germlings were abnormally swollen, primarily in the subapical regions, and contained large vacuoles. However, this swelling is ultimately not inhibitory to growth as the germlings are able to recover and undergo polar growth. Colony formation was largely unaffected in the absence of osmotic stabilizers. In citric acid production media csmAΔ was observed to have a 2.5 fold increase in citric acid production. The controlled expression of this class of chitin synthases may be useful for improving production of organic acids in filamentous fungi.

  12. WAFs lead molting retardation of naupliar stages with down-regulated expression profiles of chitin metabolic pathway and related genes in the copepod Tigriopus japonicus.

    Science.gov (United States)

    Hwang, Dae-Sik; Lee, Min-Chul; Kyung, Do-Hyun; Kim, Hui-Su; Han, Jeonghoon; Kim, Il-Chan; Puthumana, Jayesh; Lee, Jae-Seong

    2017-03-01

    Oil pollution is considered being disastrous to marine organisms and ecosystems. As molting is critical in the developmental process of arthropods in general and copepods, in particular, the impact will be adverse if the target of spilled oil is on molting. Thus, we investigated the harmful effects of water accommodated fractions (WAFs) of crude oil with an emphasis on inhibition of chitin metabolic pathways related genes and developmental retardation in the copepod Tigriopus japonicus. Also, we analysed the ontology and domain of chitin metabolic pathway genes and mRNA expression patterns of developmental stage-specific genes. Further, the developmental retardation followed by transcriptional modulations in nuclear receptor genes (NR) and chitin metabolic pathway-related genes were observed in the WAFs-exposed T. japonicus. As a result, the developmental time was found significantly (P<0.05) delayed in response to 40% WAFs in comparison with that of control. Moreover, the NR gene, HR3 and chitinases (CHT9 and CHT10) were up-regulated in N4-5 stages, while chitin synthase genes (CHS-1, CHS-2-1, and CHS-2-2) down-regulated in response to WAFs. In brief, a high concentration of WAFs repressed nuclear receptor genes but elicited activation of some of the transcription factors at low concentration of WAFs, resulting in suppression of chitin synthesis. Thus, we suggest that WAF can lead molting retardation of naupliar stages in T. japonicus through down-regulations of chitin metabolism. These findings will provide a better understanding of the mode of action of chitin biosynthesis associated with molting mechanism in WAF-exposed T. japonicus. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Natural waste materials containing chitin as adsorbents for textile dyestuffs: batch and continuous studies.

    Science.gov (United States)

    Figueiredo, S A; Loureiro, J M; Boaventura, R A

    2005-10-01

    In this work three natural waste materials containing chitin were used as adsorbents for textile dyestuffs, namely the Anodonta (Anodonta cygnea) shell, the Sepia (Sepia officinalis) and the Squid (Loligo vulgaris) pens. The selected dyestuffs were the Cibacron green T3G-E (CI reactive green 12), and the Solophenyl green BLE 155% (CI direct green 26), both from CIBA, commonly used in cellulosic fibres dyeing, the most used fibres in the textile industry. Batch equilibrium studies showed that the materials' adsorption capacities increase after a simple and inexpensive chemical treatment, which increases their porosity and chitin relative content. Kinetic studies suggested the existence of a high internal resistance in both systems. Fixed bed column experiments performed showed an improvement in adsorbents' behaviour after chemical treatment. However, in the column experiments, the biodegradation was the main mechanism of dyestuff removal, allowing the materials' bioregeneration. The adsorption was strongly reduced by the pore clogging effect of the biomass. The deproteinised Squid pen (grain size 0.500-1.41 mm) is the adsorbent with highest adsorption capacity (0.27 and 0.037 g/g, respectively, for the reactive and direct dyestuffs, at 20 degrees C), followed by the demineralised Sepia pen and Anodonta shell, behaving like pure chitin in all experiments, but showing inferior performances than the granular activated carbon tested in the column experiments.

  14. Treatment of chitin-producing wastewater by micro-electrolysis-contact oxidization.

    Science.gov (United States)

    Yang, Yue-ping; Xu, Xin-hua; Chen, Hai-feng

    2004-04-01

    The technique of micro-electrolysis-contact oxidization was exploited to treat chitin-producing wastewater. Results showed that Fe-C micro-electrolysis can remove about 30% COD(cr), raise pH from 0.7 to 5.5. The COD(cr) removal efficiency by biochemical process can be more than 80%. During a half year's operation, the whole system worked very stably and had good results, as proved by the fact that every quality indicator of effluent met the expected discharge standards; which means that chitin wastewater can be treated by the technique of micro-electrolysis, contact oxidization.

  15. Application of Chitin/Chitosan and Their Derivatives in the Papermaking Industry

    Directory of Open Access Journals (Sweden)

    Zhaoping Song

    2018-04-01

    Full Text Available Chitin/chitosan and their derivatives have become of great interest as functional materials in many fields within the papermaking industry. They have been employed in papermaking wet-end, paper surface coating, papermaking wastewater treatment, and other sections of the papermaking industry due to their structure and chemical properties. The purpose of this paper is to briefly discuss the application of chitin/chitosan and their derivatives in the papermaking industry. The development of their application in the papermaking area will be reviewed and summarized.

  16. Adsorption studies of iron(III) on chitin

    Indian Academy of Sciences (India)

    Unknown

    of particle size and dosage of the adsorbant, contact time, initial concentration of the adsorbate and tem- perature were experimentally ... Adsorption; chitin; variable parameters; fraction of adsorption; temperature effect. 1. Introduction. Iron is one of the ... about the presence of iron in drinking water is its ob- jectionable taste.

  17. Chitin and Cellulose Processing in Low-Temperature Electron Beam Plasma

    Directory of Open Access Journals (Sweden)

    Tatiana Vasilieva

    2017-11-01

    Full Text Available Polysaccharide processing by means of low-temperature Electron Beam Plasma (EBP is a promising alternative to the time-consuming and environmentally hazardous chemical hydrolysis in oligosaccharide production. The present paper considers mechanisms of the EBP-stimulated destruction of crab shell chitin, cellulose sulfate, and microcrystalline cellulose, as well as characterization of the produced oligosaccharides. The polysaccharide powders were treated in oxygen EBP for 1–20 min at 40 °C in a mixing reactor placed in the zone of the EBP generation. The chemical structure and molecular mass of the oligosaccharides were analyzed by size exclusion and the reversed phase chromatography, FTIR-spectroscopy, XRD-, and NMR-techniques. The EBP action on original polysaccharides reduces their crystallinity index and polymerization degree. Water-soluble products with lower molecular weight chitooligosaccharides (weight-average molecular mass, Mw = 1000–2000 Da and polydispersity index 2.2 and cellulose oligosaccharides with polymerization degrees 3–10 were obtained. The 1H-NMR analysis revealed 25–40% deacetylation of the EBP-treated chitin and FTIR-spectroscopy detected an increase of carbonyl- and carboxyl-groups in the oligosaccharides produced. Possible reactions of β-1,4-glycosidic bonds’ destruction due to active oxygen species and high-energy electrons are given.

  18. Isolation of proteolytic bacteria from mealworm (Tenebrio molitor) exoskeletons to produce chitinous material.

    Science.gov (United States)

    da Silva, Fernanda Kerche Paes; Brück, Dieter W; Brück, Wolfram M

    2017-09-15

    The use of insects as a source of protein is becoming an important factor for feeding an increasing population. After protein extraction for food use, the insect exoskeleton may offer the possibility for the production of added value products. Here, the aim was to isolate bacteria from the surface of farmed mealworms (Tenebrio molitor Linnaeus, 1758) for the production of chitinous material from insect exoskeletons using microbial fermentation. Isolates were screened for proteases and acid production that may aid deproteination and demineralisation of insects through fermentation to produce chitin. Selected isolates were used single-step (isolated bacteria only) or two-step fermentations with Lactobacillus plantarum (DSM 20174). Two-step fermentations with isolates from mealworm exoskeletons resulted in a demineralisation of 97.9 and 98.5% from deproteinated mealworm fractions. Attenuated total reflectance-Fourier- transform infrared spectroscopy analysis showed that crude chitin was produced. However, further optimisation is needed before the process can be upscaled. This is, to our knowledge, the first report using microbial fermentation for the extraction of chitin from insects. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Reclamation of Marine Chitinous Materials for the Production of α-Glucosidase Inhibitors via Microbial Conversion

    Directory of Open Access Journals (Sweden)

    Van Bon Nguyen

    2017-11-01

    Full Text Available Six kinds of chitinous materials have been used as sole carbon/nitrogen (C/N sources for producing α-glucosidase inhibitors (aGI by Paenibacillus sp. TKU042. The aGI productivity was found to be highest in the culture supernatants using demineralized crab shell powder (deCSP and demineralized shrimp shell powder (deSSP as the C/N source. The half maximal inhibitory concentration (IC50 and maximum aGI activity of fermented deCSP (38 µg/mL, 98%, deSSP (108 µg/mL, 89%, squid pen powder (SPP (422 µg/mL, 98%, and shrimp head powder (SHP (455 µg/mL, 92% were compared with those of fermented nutrient broth (FNB (81 µg/mL, 93% and acarbose (1095 µg/mL, 74%, a commercial antidiabetic drug. The result of the protein/chitin ratio on aGI production showed that the optimal ratio was 0.2/1. Fermented deCSP showed lower IC50 and higher maximum inhibitory activity than those of acarbose against rat intestinal α-glucosidase.

  20. COMPARISON OF CHITIN STRUCTURES DERIVED FROM THREE COMMON WASP SPECIES (Vespa crabro LINNAEUS, 1758, Vespa orientalis LINNAEUS, 1771 and Vespula germanica (FABRICIUS, 1793)).

    Science.gov (United States)

    Kaya, Murat; Bağrıaçık, Nil; Seyyar, Osman; Baran, Talat

    2015-08-01

    There has been no study on the chitin structure of wasp species. Here, we selected the three most common wasp species belonging to the family Vespidae for chitin extraction and characterization. Chitin was isolated from each wasp species and characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffractometry (XRD), elemental analysis (EA), and scanning electron microscopy (SEM). The chitin contents of Vespa crabro, Vespa orientalis, and Vespula germanica were 8.3, 6.4, and 11.9%, respectively. The crystalline index (CrI) values for the chitin extracted from each species were 69.88, 53.92, and 50%, respectively. The most important finding of the study is that although the same method was used to extract chitin from each of the three wasp species, the degree of acetylation was different: for V. crabro and V. orientalis it was 96.85 and 99.82% (the chitin was extremely pure), respectively, whereas that for V. germanica the chitin was 79.83%. © 2015 Wiley Periodicals, Inc.

  1. Phase distribution of products of radiation and post-radiation distillation of biopolymers: Cellulose, lignin and chitin

    International Nuclear Information System (INIS)

    Ponomarev, A.V.; Kholodkova, E.M.; Metreveli, A.K.; Metreveli, P.K.; Erasov, V.S.; Bludenko, A.V.; Chulkov, V.N.

    2011-01-01

    Influence of both the absorbed dose and the dose rate of 8 MeV electron-beam radiation on destruction of microcrystalline cellulose, pine lignin and krill chitin was investigated. Two conversion modes were compared: (1) post-radiation distillation PRD and (2) electron-beam distillation EBD. Cellulose, chitin and lignin demonstrate different responses to irradiation and distillation in PRD and EBD modes. Treatment in EBD mode transforms biopolymers to organic liquid more productively than conventional dry distillation and treatment in PRD mode. Both radiation heating and an irradiation without heating intensify chitin and cellulose decomposition and distillation. At the same time lignin decaying rather efficiently in EBD mode appears to be insensitive to a preliminary irradiation in PRD mode up to a dose of 2.4 MGy. - Highlights: → Direct conversion of cellulose, chitin and lignin to organic liquid is intensified by electron-beam irradiation. → Alternative approach to bio-oil production. → Both electron-beam distillation mode and post-radiation distillation mode are effective for cellulose and chitin conversion. → Electron-beam distillation mode is preferable for lignin conversion. → Preliminary deep dehydration of biopolymers is realizable at low dose rates.

  2. Removal of hazardous dye Ponceau-S by using Chitin:

    African Journals Online (AJOL)

    Sr030111Bin Comp

    Key words: Chitin, Ponceau-S, organic bioadsorbent, colored organic, industrial effluents. ..... of cationic azo dye by TiO2/bentonite nanocomposite, J. Photochem. ... effluents to freshwater and estuarine algae, crustaceans and fishes. Environ.

  3. Growth on Chitin Impacts the Transcriptome and Metabolite Profiles of Antibiotic-Producing Vibrio coralliilyticus S2052 and Photobacterium galatheae S2753

    DEFF Research Database (Denmark)

    Giubergia, Sonia; Phippen, Christopher; Nielsen, Kristian Fog

    2017-01-01

    Members of the Vibrionaceae family are often associated with chitin-containing organisms, and they are thought to play a major role in chitin degradation. The purpose of the present study was to determine how chitin affects the transcriptome and metabolome of two bioactive Vibrionaceae strains...... potentially involved in host colonization and/or infection. The expression of genes involved in secondary metabolism was also significantly affected by growth on chitin, in one case being 34-fold upregulated. This was reflected in the metabolome, where the antibiotics andrimid and holomycin were produced...... and that their secondary metabolites likely play a crucial role during chitin colonization. IMPORTANCE The bacterial family Vibrionaceae (vibrios) is considered a major player in the degradation of chitin, the most abundant polymer in the marine environment; however, the majority of studies on the topic have focused...

  4. In vitro bioconversion of chitin to pyruvate with thermophilic enzymes.

    Science.gov (United States)

    Honda, Kohsuke; Kimura, Keisuke; Ninh, Pham Huynh; Taniguchi, Hironori; Okano, Kenji; Ohtake, Hisao

    2017-09-01

    Chitin is the second most abundant organic compound on the planet and thus has been regarded as an alternative resource to petroleum feedstocks. One of the key challenges in the biological conversion of biomass-derived polysaccharides, such as cellulose and chitin, is to close the gap between optimum temperatures for enzymatic saccharification and microbial fermentation and to implement them in a single bioreactor. To address this issue, in the present study, we aimed to perform an in vitro, one-pot bioconversion of chitin to pyruvate, which is a precursor of a wide range of useful metabolites. Twelve thermophilic enzymes, including that for NAD + regeneration, were heterologously produced in Escherichia coli and semi-purified by heat treatment of the crude extract of recombinant cells. When the experimentally decided concentrations of enzymes were incubated with 0.5 mg mL -1 colloidal chitin (equivalent to 2.5 mM N-acetylglucosamine unit) and an adequate set of cofactors at 70°C, 0.62 mM pyruvate was produced in 5 h. Despite the use of a cofactor-balanced pathway, determination of the pool sizes of cofactors showed a rapid decrease in ATP concentration, most probably due to the thermally stable ATP-degrading enzyme(s) derived from the host cell. Integration of an additional enzyme set of thermophilic adenylate kinase and polyphosphate kinase led to the deceleration of ATP degradation, and the final product titer was improved to 2.1 mM. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Cytotoxicity and mechanical behavior of chitin-bentonite clay based polyurethane bio-nanocomposites.

    Science.gov (United States)

    Zia, Khalid Mahmood; Zuber, Mohammad; Barikani, Mehdi; Hussain, Rizwan; Jamil, Tahir; Anjum, Sohail

    2011-12-01

    Chitin based polyurethane bio-nanocomposites (PUBNC) were prepared using chitin, Delite HPS bentonite nanoclay enriched in montmorillonite (MMT), 4,4'-diphenylmethane diisocyanate (MDI) and polycaprolactone polyol CAPA 231 (3000 g/mol(-1)). The prepolymers having different concentration of Delite HPS bentonite nanoclay were extended with 2 moles of chitin. The structures of the resulted polymers were determined by FT-IR technique. The effect of nanoclay contents on mechanical properties and in vitro biocompatibility was investigated. The mechanical properties of the synthesized materials were improved with increase in the Delite HPS bentonite nanoclay contents. Optimum mechanical properties were obtained from the PU bio-nanocomposite samples having 4% Delite HPS bentonite nanoclay. The results revealed that the final PU bio-nanocomposite having 2% Delite HPS bentonite nanoclay contents is ideal contenders for surgical threads with on going investigations into their in vitro biocompatibility, non-toxicity, and mechanical properties. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Toxicity tests, antioxidant activity, and antimicrobial activity of chitosan

    Science.gov (United States)

    Kurniasih, M.; Purwati; Dewi, R. S.

    2018-04-01

    Chitosan is a naturally occurring cationic biopolymer, obtained by alkaline deacetylation of chitin. This research aims to investigate the toxicity, antioxidant activity and antibacterial activity of chitosan from shrimp chitin. In this study, chitin extracted from shrimp waste material. Chitin is then deacetylation with 60% NaOH so that chitosan produced. Degrees of deacetylation, molecular weight, toxicity test, antioxidant activity and antimicrobial activity of chitosan then evaluated. Toxicity test using Brine Shrimp Lethality Test. The antioxidant analysis was performed using DPPH method (2, 2-diphenyl-1-picrylhydrazyl) and FTC method (ferric thiocyanate) in which the radical formed will reduce Ferro to Ferri resulting in a complex with thiocyanate. To determine the antibacterial activity of Staphylococcus aureus, antifungal in Candida albicans and Aspergillus niger by measuring antimicrobial effects and minimum inhibitory concentrations (MIC). Based on the result of research, the value of degrees of deacetylation, molecular weight, and LC50 values of chitosan synthesis was 94,32, 1052.93 g/mol and 1364.41 ppm, respectively. In general, the antioxidative activities increased as the concentration of chitosan increased. MIC value of chitosan against S. aureus, C. albicans, and A. niger was 10 ppm, 15.6 ppm, and 5 ppm, respectively.

  7. The structure and dynamics of chitin nanofibrils in an aqueous environment revealed by molecular dynamics simulations

    Czech Academy of Sciences Publication Activity Database

    Střelcová, Z.; Kulhánek, P.; Friák, Martin; Fabritius, H.; Petrov, M.; Neugebauer, J.; Koča, J.

    2016-01-01

    Roč. 6, č. 36 (2016), s. 30710-30721 ISSN 2046-2069 Institutional support: RVO:68081723 Keywords : FREE-ENERGY CALCULATIONS * PARTICLE MESH EWALD * ALPHA-CHITIN * CRYSTAL-STRUCTURE * INSECT CHITIN * SURFACE-AREA * AB-INITIO Subject RIV: BO - Biophysics Impact factor: 3.108, year: 2016

  8. Cosmetics and Cosmeceutical Applications of Chitin, Chitosan and Their Derivatives

    Directory of Open Access Journals (Sweden)

    Inmaculada Aranaz

    2018-02-01

    Full Text Available Marine resources are well recognized for their biologically active substances with great potential applications in the cosmeceutical industry. Among the different compounds with a marine origin, chitin and its deacetylated derivative—chitosan—are of great interest to the cosmeceutical industry due to their unique biological and technological properties. In this review, we explore the different functional roles of chitosan as a skin care and hair care ingredient, as an oral hygiene agent and as a carrier for active compounds, among others. The importance of the physico-chemical properties of the polymer in its use in cosmetics are particularly highlighted. Moreover, we analyse the market perspectives of this polymer and the presence in the market of chitosan-based products.

  9. High prevalence of chitotriosidase deficiency in Peruvian Amerindians exposed to chitin-bearing food and enteroparasites.

    Science.gov (United States)

    Manno, N; Sherratt, S; Boaretto, F; Coico, F Mejìa; Camus, C Espinoza; Campos, C Jara; Musumeci, S; Battisti, A; Quinnell, R J; León, J Mostacero; Vazza, G; Mostacciuolo, M L; Paoletti, M G; Falcone, F H

    2014-11-26

    The human genome encodes a gene for an enzymatically active chitinase (CHIT1) located in a single copy on Chromosome 1, which is highly expressed by activated macrophages and in other cells of the innate immune response. Several dysfunctional mutations are known in CHIT1, including a 24-bp duplication in Exon 10 causing catalytic deficiency. This duplication is a common variant conserved in many human populations, except in West and South Africans. Thus it has been proposed that human migration out of Africa and the consequent reduction of exposure to chitin from environmental factors may have enabled the conservation of dysfunctional mutations in human chitinases. Our data obtained from 85 indigenous Amerindians from Peru, representative of populations characterized by high prevalence of chitin-bearing enteroparasites and intense entomophagy, reveal a very high frequency of the 24-bp duplication (47.06%), and of other single nucleotide polymorphisms which are known to partially affect enzymatic activity (G102S: 42.7% and A442G/V: 25.5%). Our finding is in line with a founder effect, but appears to confute our previous hypothesis of a protective role against parasite infection and sustains the discussion on the redundancy of chitinolytic function. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Chitin biological absorbable catheters bridging sural nerve grafts transplanted into sciatic nerve defects promote nerve regeneration.

    Science.gov (United States)

    Wang, Zhi-Yong; Wang, Jian-Wei; Qin, Li-Hua; Zhang, Wei-Guang; Zhang, Pei-Xun; Jiang, Bao-Guo

    2018-06-01

    To investigate the efficacy of chitin biological absorbable catheters in a rat model of autologous nerve transplantation. A segment of sciatic nerve was removed to produce a sciatic nerve defect, and the sural nerve was cut from the ipsilateral leg and used as a graft to bridge the defect, with or without use of a chitin biological absorbable catheter surrounding the graft. The number and morphology of regenerating myelinated fibers, nerve conduction velocity, nerve function index, triceps surae muscle morphology, and sensory function were evaluated at 9 and 12 months after surgery. All of the above parameters were improved in rats in which the nerve graft was bridged with chitin biological absorbable catheters compared with rats without catheters. The results of this study indicate that use of chitin biological absorbable catheters to surround sural nerve grafts bridging sciatic nerve defects promotes recovery of structural, motor, and sensory function and improves muscle fiber morphology. © 2018 John Wiley & Sons Ltd.

  11. Isocyanate-functionalized chitin and chitosan as gelling agents of castor oil.

    Science.gov (United States)

    Gallego, Rocío; Arteaga, Jesús F; Valencia, Concepción; Franco, José M

    2013-06-03

    The main objective of this work was the incorporation of reactive isocyanate groups into chitin and chitosan in order to effectively use the products as reactive thickening agents in castor oil. The resulting gel-like dispersions could be potentially used as biodegradable lubricating greases. Three different NCO-functionalized polymers were obtained: two of them by promoting the reaction of chitosan with 1,6-hexamethylene diisocyanate (HMDI), and the other by using chitin instead of chitosan. These polymers were characterized through 1H-NMR, FTIR and thermogravimetric analysis (TGA). Thermal and rheological behaviours of the oleogels prepared by dispersing these polymers in castor oil were studied by means of TGA and small-amplitude oscillatory shear (SAOS) measurements. The evolution and values of the linear viscoelasticity functions with frequency for -NCO-functionalized chitosan- and chitin-based oleogels are quite similar to those found for standard lubricating greases. In relation to long-term stability of these oleogels, no phase separation was observed and the values of viscoelastic functions increase significantly during the first seven days of ageing, and then remain almost constant. TGA analysis showed that the degradation temperature of the resulting oleogels is higher than that found for traditional lubricating greases.

  12. Emerging Biomedical Applications of Nano-Chitins and Nano-Chitosans Obtained via Advanced Eco-Friendly Technologies from Marine Resources

    Science.gov (United States)

    Muzzarelli, Riccardo A. A.; El Mehtedi, Mohamad; Mattioli-Belmonte, Monica

    2014-01-01

    The present review article is intended to direct attention to the technological advances made in the 2010–2014 quinquennium for the isolation and manufacture of nanofibrillar chitin and chitosan. Otherwise called nanocrystals or whiskers, n-chitin and n-chitosan are obtained either by mechanical chitin disassembly and fibrillation optionally assisted by sonication, or by e-spinning of solutions of polysaccharides often accompanied by poly(ethylene oxide) or poly(caprolactone). The biomedical areas where n-chitin may find applications include hemostasis and wound healing, regeneration of tissues such as joints and bones, cell culture, antimicrobial agents, and dermal protection. The biomedical applications of n-chitosan include epithelial tissue regeneration, bone and dental tissue regeneration, as well as protection against bacteria, fungi and viruses. It has been found that the nano size enhances the performances of chitins and chitosans in all cases considered, with no exceptions. Biotechnological approaches will boost the applications of the said safe, eco-friendly and benign nanomaterials not only in these fields, but also for biosensors and in targeted drug delivery areas. PMID:25415349

  13. Eco-Friendly Extraction of Biopolymer Chitin and Carotenoids from Shrimp Waste

    Science.gov (United States)

    Prameela, K.; Venkatesh, K.; Divya vani, K.; Sudesh Kumar, E.; Mohan, CH Murali

    2017-08-01

    Astaxanthin a nutraceutical and chitin a natural biopolymer present in shrimp waste. In current chemical extraction methods HCl and NaOH are used for extraction and these chemicals are introduced into aquatic ecosystems are spoiling aquatic flora and fauna, pollute the environment and destroy astaxanthin. Lactobacillus species were isolated from gut of Solenocera melantho and characterized phenotypically and genotypically. Initial screening experiments have shown to be an effective and identified as Lactobacillus plantaram based on morphological, biochemical characteristics and molecular analysis. Efficiency of fermentation has shown with good yield of astaxanthin and recovery of chitin. Hence this alternative microbial process is having advantage than existing hazardous, non-economical chemical process.

  14. Preparation of chitin–silica composites by in vitro silicification of two-dimensional Ianthella basta demosponge chitinous scaffolds under modified Stöber conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wysokowski, Marcin [Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, M. Skłodowskiej-Curie 2, PL-60965 Poznan (Poland); Behm, Thomas [Institute of Experimental Physics, TU Bergakademie Freiberg, Liepziger 23, 09599 Freiberg (Germany); Born, René [Institute of Materials Science, Dresden University of Technology, Helmholtzstraße 10, 01069 Dresden (Germany); Bazhenov, Vasilii V. [Institute of Experimental Physics, TU Bergakademie Freiberg, Liepziger 23, 09599 Freiberg (Germany); Meißner, Heike; Richter, Gert [Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, 01307 Dresden (Germany); Szwarc-Rzepka, Karolina [Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, M. Skłodowskiej-Curie 2, PL-60965 Poznan (Poland); Makarova, Anna; Vyalikh, Denis [Institute of Solid State Physics, Dresden University of Technology, Helmholtzstraße 10, 01069 Dresden (Germany); Schupp, Peter [Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Emsstr. 20, 26382 Wilhelmshaven (Germany); Jesionowski, Teofil, E-mail: teofil.jesionowski@put.poznan.pl [Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, M. Skłodowskiej-Curie 2, PL-60965 Poznan (Poland); Ehrlich, Hermann, E-mail: hermann.ehrlich@physik.tu-freiberg.de [Institute of Experimental Physics, TU Bergakademie Freiberg, Liepziger 23, 09599 Freiberg (Germany)

    2013-10-15

    Chitin is a biopolymer found in cell walls of various fungi and skeletal structures of numerous invertebrates. The occurrence of chitin within calcium- and silica-containing biominerals has inspired development of chitin-based hybrids and composites in vitro with specific physico-chemical and material properties. We show here for the first time that the two-dimensional α-chitin scaffolds isolated from the skeletons of marine demosponge Ianthella basta can be effectively silicified by the two-step method with the use of Stöber silica micro- and nanodispersions under Extreme Biomimetic conditions. The chitin–silica composites obtained at 120 °C were characterized by the presence of spherical SiO{sub 2} particles homogeneously distributed over the chitin fibers, which probably follows from the compatibility of Si–OH groups to the hydroxyl groups of chitin. The biocomposites obtained were characterized by various analytical techniques such as energy dispersive spectrometry, scanning electron microscopy, thermogravimetric/differential thermal analyses as well as X-ray photoelectron spectroscopy, Fourier transform infrared and Raman spectroscopy to determine possible interactions between silica and chitin molecule. The results presented proved that the character and course of the in vitro chitin silicification in Stöber dispersions depended considerably on the degree of hydrolysis of the SiO{sub 2} precursor. - Highlights: • 2D α-chitin scaffolds isolated from marine demosponge can be effectively silicified using Stöber silica. • The chitin–silica composites were obtained under Extreme Biomimetic conditions. • Character and course of the in vitro chitin silicification in Stöber dispersions is discussed.

  15. Slow food: insect prey and chitin induce phytohormone accumulation and gene expression in carnivorous Nepenthes plants.

    Science.gov (United States)

    Yilamujiang, Ayufu; Reichelt, Michael; Mithöfer, Axel

    2016-08-01

    Carnivorous Nepenthes plants use modified leaves forming pitfall traps to capture and digest prey, mainly insects, for additional nutrient supply. These traps, so called pitchers, contain a plant-derived fluid composed of many hydrolytic enzymes and defence-related proteins. In this study, the prey-induced induction of corresponding genes of those proteins and a role for phytohormones in this process was analysed. Tissue from insect prey-fed, chitin- and phytohormone-challenged pitchers was harvested and analysed for selected gene expressions by a quantitative PCR technique. Phytohormone levels were determined by LC-MS/MS. Nepenthesin proteolytic activities were measured in the digestive fluid using a fluorescence substrate. Insect prey in the pitchers induced the accumulation of phytohormones such as jasmonates as well as the transcription of studied genes encoding a chitinase 3 and a protease (nepenthesin I), whereas a defence-related protein (PR-1) gene was not induced. Treatment with chitin as a component of the insects' exoskeleton triggered the accumulation of jasmonates, the expression of nepenthesin I and chitinase 3 genes similar to jasmonic acid treatment, and induced protease activity in the fluid. All detectable responses were slowly induced. The results suggest that upon insect prey catch a sequence of signals is initiated: (1) insect-derived chitin, (2) jasmonate as endogenous phytohormone signal, (3) the induction of digestive gene expression and (4) protein expression. This resembles a similar hierarchy of events as described from plant pathogen/herbivore interactions, supporting the idea that carnivory evolved from plant defences. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Rheological study of chitosan acetate solutions containing chitin nanofibrils

    Czech Academy of Sciences Publication Activity Database

    Mikešová, Jana; Hašek, Jindřich; Tishchenko, Galina; Morganti, P.

    2014-01-01

    Roč. 112, 4 November (2014), s. 753-757 ISSN 0144-8617 EU Projects: European Commission(XE) 315233 - N-CHITOPACK Institutional support: RVO:61389013 Keywords : rheology * chitosan solutions * chitin nanofibrils Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.074, year: 2014

  17. Obtention and characterization of chitin and chitosan from M. rosenbergii; Obtencao e caracterizacao de quitina e quitosana a partr de M. rosenbergii

    Energy Technology Data Exchange (ETDEWEB)

    Battisti, Marcos V.; Campana Filho, Sergio P. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Quimica]. E-mail: scampana@iqsc.sc.usp.br

    2001-07-01

    Chitin was extracted from previously ground shells of Macrobrachium rosenbergii by applying acid and alkaline treatments, aiming at its demineralization and deprotenization, respectively. Its characteristics and properties were compared with those exhibited by commercial samples of chitin. Commercial chitosan and samples produced by the deacetylation of chitin obtained from M. rosenbergii shells were also compared. Average degrees of acetylation and intrinsic viscosities of the chitosan were determined by {sup 1}H NMR spectroscopy and by capillary viscosimetry, respectively. The results show that the chitin extracted from Macrobrachium rosenbergii has a lower content of inorganic materials as compared to commercial samples but the chitosan obtained from the former chitin sample is very similar to commercial chitosan. (author)

  18. Chitin based heteroatom-doped porous carbon as electrode materials for supercapacitors.

    Science.gov (United States)

    Zhou, Jie; Bao, Li; Wu, Shengji; Yang, Wei; Wang, Hui

    2017-10-01

    Chitin biomass has received much attention as an amino-functional polysaccharide precursor for synthesis of carbon materials. Rich nitrogen and oxygen dual-doped porous carbon derived from cicada slough (CS), a renewable biomass mainly composed of chitin, was synthesized and employed as electrode materials for electrochemical capacitors, for the first time ever. The cicada slough-derived carbon (CSC) was prepared by a facile process via pre-carbonization in air, followed by KOH activation. The weight ratio of KOH and char plays an important role in fabricating the microporous structure and tuning the surface chemistry of CSC. The obtained CSC had a large specific surface area (1243-2217m 2 g -1 ), fairly high oxygen content (28.95-33.78 at%) and moderate nitrogen content (1.47-4.35 at%). The electrochemical performance of the CS char and CSC as electrodes for capacitors was evaluated in a three-electrode cell configuration with 6M KOH as the electrolyte. Electrochemical studies showed that the as-prepared CSC activated at the KOH-to-char weight ratio of 2 exhibited the highest specific capacitance (266.5Fg -1 at a current density of 0.5Ag -1 ) and excellent rate capability (196.2Fg -1 remained at 20Ag -1 ) and cycle durability. In addition, the CSC-2-based symmetrical device possessed the desirable energy density and power density of about 15.97Whkg -1 and 5000Wkg -1 at 5Ag -1 , respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Chitin/clay microspheres with hierarchical architecture for highly efficient removal of organic dyes.

    Science.gov (United States)

    Xu, Rui; Mao, Jie; Peng, Na; Luo, Xiaogang; Chang, Chunyu

    2018-05-15

    Numerous adsorbents have been reported for efficient removal of dye from water, but the high cost raw materials and complicated fabrication process limit their practical applications. Herein, novel nanocomposite microspheres were fabricated from chitin and clay by a simple thermally induced sol-gel transition. Clay nanosheets were uniformly embedded in a nanofiber weaved chitin microsphere matrix, leading to their hierarchical architecture. Benefiting from this unique structure, microspheres could efficiently remove methylene blue (MB) through a spontaneous physic-sorption process which fit well with pseudo-second-order and Langmuir isotherm models. The maximal values of adsorption capability obtained by calculation and experiment were 152.2 and 156.7 mg g -1 , respectively. Chitin/clay microspheres (CCM2) could remove 99.99% MB from its aqueous solution (10 mg g -1 ) within 20 min. These findings provide insight into a new strategy for fabrication of dye adsorbents with hierarchical structure from low cost raw materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route.

    Science.gov (United States)

    Mangalathillam, Sabitha; Rejinold, N Sanoj; Nair, Amrita; Lakshmanan, Vinoth-Kumar; Nair, Shantikumar V; Jayakumar, Rangasamy

    2012-01-07

    In this study, curcumin loaded chitin nanogels (CCNGs) were developed using biocompatible and biodegradable chitin with an anticancer curcumin drug. Chitin, as well as curcumin, is insoluble in water. However, the developed CCNGs form a very good and stable dispersion in water. The CCNGs were analyzed by DLS, SEM and FTIR and showed spherical particles in a size range of 70-80 nm. The CCNGs showed higher release at acidic pH compared to neutral pH. The cytotoxicity of the nanogels were analyzed on human dermal fibroblast cells (HDF) and A375 (human melanoma) cell lines and the results show that CCNGs have specific toxicity on melanoma in a concentration range of 0.1-1.0 mg mL(-1), but less toxicity towards HDF cells. The confocal analysis confirmed the uptake of CCNGs by A375. The apoptotic effect of CCNGs was analyzed by a flow-cytometric assay and the results indicate that CCNGs at the higher concentration of the cytotoxic range showed comparable apoptosis as the control curcumin, in which there was negligible apoptosis induced by the control chitin nanogels. The CCNGs showed a 4-fold increase in steady state transdermal flux of curcumin as compared to that of control curcumin solution. The histopathology studies of the porcine skin samples treated with the prepared materials showed loosening of the horny layer of the epidermis, facilitating penetration with no observed signs of inflammation. These results suggest that the formulated CCNGs offer specific advantage for the treatment of melanoma, the most common and serious type of skin cancer, by effective transdermal penetration.

  1. Effect of sub- and supercritical water treatments on the physicochemical properties of crab shell chitin and its enzymatic degradation.

    Science.gov (United States)

    Osada, Mitsumasa; Miura, Chika; Nakagawa, Yuko S; Kaihara, Mikio; Nikaido, Mitsuru; Totani, Kazuhide

    2015-12-10

    This study examined the effects of sub- and supercritical water pretreatments on the physicochemical properties of crab shell α-chitin and its enzymatic degradation to obtain N,N'-diacetylchitobiose (GlcNAc)2. Following sub- and supercritical water pretreatments, the protein in the crab shell was removed and the residue of crab shell contained α-chitin and CaCO3. Prolonged pretreatment led to α-chitin decomposition. The reaction of pure α-chitin in sub- and supercritical water pretreatments was investigated separately; we observed lower mean molecular weight and weaker hydrogen bonds compared with untreated α-chitin. (GlcNAc)2 yields from enzymatic degradation of subcritical (350 °C, 7 min) and supercritical water (400 °C, 2.5 min) pretreated crab shell were 8% and 6%, compared with 0% without any pretreatment. This study shows that sub- and supercritical water pretreatments of crab shell provide to an alternative method to the use of acid and base for decalcification and deproteinization of crab shell required for (GlcNAc)2 production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. In roots of Arabidopsis thaliana, the damage-associated molecular pattern AtPep1 is a stronger elicitor of immune signalling than flg22 or the chitin heptamer.

    Directory of Open Access Journals (Sweden)

    Lorenzo Poncini

    Full Text Available Plants interpret their immediate environment through perception of small molecules. Microbe-associated molecular patterns (MAMPs such as flagellin and chitin are likely to be more abundant in the rhizosphere than plant-derived damage-associated molecular patterns (DAMPs. We investigated how the Arabidopsis thaliana root interprets MAMPs and DAMPs as danger signals. We monitored root development during exposure to increasing concentrations of the MAMPs flg22 and the chitin heptamer as well as of the DAMP AtPep1. The tissue-specific expression of defence-related genes in roots was analysed using a toolkit of promoter::YFPN lines reporting jasmonic acid (JA-, salicylic acid (SA-, ethylene (ET- and reactive oxygen species (ROS- dependent signalling. Finally, marker responses were analysed during invasion by the root pathogen Fusarium oxysporum. The DAMP AtPep1 triggered a stronger activation of the defence markers compared to flg22 and the chitin heptamer. In contrast to the tested MAMPs, AtPep1 induced SA- and JA-signalling markers in the root and caused a severe inhibition of root growth. Fungal attack resulted in a strong activation of defence genes in tissues close to the invading fungal hyphae. The results collectively suggest that AtPep1 presents a stronger danger signal to the Arabidopsis root than the MAMPs flg22 and chitin heptamer.

  3. Chitin degrading potential of three aquatic actinomycetes and its ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-01

    Dec 1, 2009 ... chitinase production by all tested actinomycetes was at pH 8. S. canus and M. ... Chitin is the most abundant biopolymer next to cellulose. It is the β –1, ... Microorganisms, lower animals, birds, fungi and plants are known to ...

  4. Chitin elicitation of natural product production in marine bacteria

    DEFF Research Database (Denmark)

    Månsson, Maria; Wietz, Matthias; Larsen, Thomas Ostenfeld

    -negative bacteria (mainly Pseudoalteromonas and Vibrio), we found that some strains were capable of producing antibacterial compounds when grown on chitin, an N-acetyl-D-glucosamine polymer found in the exoskeleton of zooplankton.2 A strain of Vibrio coralliilyticus solely produced the antibiotic andrimid,3...

  5. Effects of Chitin and Its Derivative Chitosan on Postharvest Decay of Fruits: A Review

    Directory of Open Access Journals (Sweden)

    Weimin Liu

    2011-01-01

    Full Text Available Considerable economic losses to harvested fruits are caused by postharvest fungal decay during transportation and storage, which can be significantly controlled by synthetic fungicides. However, considering public concern over pesticide residues in food and the environment, there is a need for safer alternatives for the control of postharvest decay to substitute synthetic fungicides. As the second most abundant biopolymer renewable source in nature, chitin and its derivative chitosan are widely used in controlling postharvest decay of fruits. This review aims to introduce the effect of chitin and chitosan on postharvest decay in fruits and the possible modes of action involved. We found most of the actions discussed in these researches rest on physiological mechanisms. All of the mechanisms are summarized to lay the groundwork for further studies which should focus on the molecular mechanisms of chitin and chitosan in controlling postharvest decay of fruits.

  6. A novel Arabidopsis CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) mutant with enhanced pathogen-induced cell death and altered receptor processing.

    Science.gov (United States)

    Petutschnig, Elena K; Stolze, Marnie; Lipka, Ulrike; Kopischke, Michaela; Horlacher, Juliane; Valerius, Oliver; Rozhon, Wilfried; Gust, Andrea A; Kemmerling, Birgit; Poppenberger, Brigitte; Braus, Gerhard H; Nürnberger, Thorsten; Lipka, Volker

    2014-12-01

    Plants detect pathogens by sensing microbe-associated molecular patterns (MAMPs) through pattern recognition receptors. Pattern recognition receptor complexes also have roles in cell death control, but the underlying mechanisms are poorly understood. Here, we report isolation of cerk1-4, a novel mutant allele of the Arabidopsis chitin receptor CERK1 with enhanced defense responses. We identified cerk1-4 in a forward genetic screen with barley powdery mildew and consequently characterized it by pathogen assays, mutant crosses and analysis of defense pathways. CERK1 and CERK1-4 proteins were analyzed biochemically. The cerk1-4 mutation causes an amino acid exchange in the CERK1 ectodomain. Mutant plants maintain chitin signaling capacity but exhibit hyper-inducible salicylic acid concentrations and deregulated cell death upon pathogen challenge. In contrast to chitin signaling, the cerk1-4 phenotype does not require kinase activity and is conferred by the N-terminal part of the receptor. CERK1 undergoes ectodomain shedding, a well-known process in animal cell surface proteins. Wild-type plants contain the full-length CERK1 receptor protein as well as a soluble form of the CERK1 ectodomain, whereas cerk1-4 plants lack the N-terminal shedding product. Our work suggests that CERK1 may have a chitin-independent role in cell death control and is the first report of ectodomain shedding in plants. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  7. Concurrent protein synthesis is required for in vivo chitin synthesis in postmolt blue crabs

    International Nuclear Information System (INIS)

    Horst, M.N.

    1990-01-01

    Chitin synthesis in crustaceans involves the deposition of a protein-polysaccharide complex at the apical surface of epithelial cells which secrete the cuticle or exoskeleton. The present study involves an examination of in vivo incorporation of radiolabeled amino acids and amino sugars into the cuticle of postmolt blue crabs, Callinectes sapidus. Rates of incorporation of both 3H leucine and 3H threonine were linear with respect to time of incubation. Incorporation of 3H threonine into the endocuticle was inhibited greater than 90% in the presence of the protein synthesis inhibitor, puromycin. Linear incorporation of 14C glucosamine into the cuticle was also demonstrated; a significant improvement of radiolabeling was achieved by using 14C-N-acetylglucosamine as the labeled precursor. Incorporation of 3H-N-acetylglucosamine into the cuticle of postmolt blue crabs was inhibited 89% by puromycin, indicating that concurrent protein synthesis is required for the deposition of chitin in the blue crab. Autoradiographic analysis of control vs. puromycin-treated crabs indicates that puromycin totally blocks labeling of the new endocuticle with 3H glucosamine. These results are consistent with the notion that crustacean chitin is synthesized as a protein-polysaccharide complex. Analysis of the postmolt and intermolt blue crab cuticle indicates that the exoskeleton contains about 60% protein and 40% chitin. The predominant amino acids are arginine, glutamic acid, alanine, aspartic acid, and threonine

  8. Ochratoxin A removal from red wine by several oenological fining agents: bentonite, egg albumin, allergen-free adsorbents, chitin and chitosan.

    Science.gov (United States)

    Quintela, S; Villarán, M C; López De Armentia, I; Elejalde, E

    2012-01-01

    The ability of several oenological fining agents to remove ochratoxin A (OTA) from red wine was studied. The adsorbents tested were activated sodium bentonite, egg albumin, allergen-free adsorbents (complex PVPP, plant protein and amorphous silica (complex) and high molecular weight gelatine), and the non-toxic biodegradable polymers (chitin and chitosan). Several dosages within the oenological use range were tested and the wine pH, colour parameters and polyphenol concentration impact associated with each fining agent were studied. Generally, OTA removal achieved in all treatments was higher when the adsorbent dosage increased, but the impact on wine quality also was higher. Chitin at 50 g hl(-1) removed 18% the OTA without affecting significantly the wine-quality parameters. At the highest dosage tested the gelatine and complex treatments achieved greater OTA removal (up to 39-40%) compared with bentonite, egg albumin and chitin. Moreover, the gelatine and the complex had a lower impact on colour parameters and polyphenol concentration compared with chitosan, whilst OTA was reduced to around 40%. Chitosan achieved the greatest OTA removal (67%), but it strongly affected the wine-quality parameters. Otherwise, bentonite showed a relative efficiency to remove OTA, but the CI value decreased considerably. The egg albumin treatment only removed OTA up to 16% and moreover affected strongly the CI value and CIELab parameters. The results of this survey showed that the non-toxic chitin adsorbent and the allergen-free adsorbents tested could be considered as alternative fining agents to reduce OTA in red wine.

  9. Injectable Shear-Thinning CaSO4/FGF-18-Incorporated Chitin-PLGA Hydrogel Enhances Bone Regeneration in Mice Cranial Bone Defect Model.

    Science.gov (United States)

    Sivashanmugam, A; Charoenlarp, Pornkawee; Deepthi, S; Rajendran, Arunkumar; Nair, Shantikumar V; Iseki, Sachiko; Jayakumar, R

    2017-12-13

    For craniofacial bone regeneration, shear-thinning injectable hydrogels are favored over conventional scaffolds because of their improved defect margin adaptability, easier handling, and ability to be injected manually into deeper tissues. The most accepted method, after autografting, is the use of recombinant human bone morphogenetic protein-2 (BMP-2); however, complications such as interindividual variations, edema, and poor cost-efficiency in supraphysiological doses have been reported. The endogenous synthesis of BMP-2 is desirable, and a molecule which induces this is fibroblast growth factor-18 (FGF-18) because it can upregulate the BMP-2 expression  by supressing noggin. We developed a chitin-poly(lactide-co-glycolide) (PLGA) composite hydrogel by regeneration chemistry and then incorporated CaSO 4 and FGF-18 for this purpose. Rheologically, a 7-fold increase in the elastic modulus was observed in the CaSO 4 -incorporated chitin-PLGA hydrogels as compared to the chitin-PLGA hydrogel. Shear-thinning Herschel-Bulkley fluid nature was observed for both hydrogels. Chitin-PLGA/CaSO 4 gel showed sustained release of FGF-18. In vitro osteogenic differentiation showed an enhanced alkaline phosphatase (ALP) expression in the FGF-18-containing chitin-PLGA/CaSO 4 gel when compared to cells alone. Further, it was confirmed by studying the expression of osteogenic genes [RUNX2, ALP, BMP-2, osteocalcin (OCN), and osteopontin (OPN)], immunofluorescence staining of BMP-2, OCN, and OPN, and alizarin red S staining. Incorporation of FGF-18 in the hydrogel increased the endothelial cell migration. Further, the regeneration potential of the prepared hydrogels was tested in vivo, and longitudinal live animal μ-CT was performed. FGF-18-loaded chitin-PLGA/CaSO 4 showed early and almost complete bone healing in comparison with chitin-PLGA/CaSO 4 , chitin-PLGA/FGF-18, chitin-PLGA, and sham control systems, as confirmed by hematoxylin and eosin and osteoid tetrachrome stainings

  10. Reinforcement of thermoplastic chitosan hydrogel using chitin whiskers optimized with response surface methodology.

    Science.gov (United States)

    Sun, Guohui; Zhang, Xin; Bao, Zixian; Lang, Xuqian; Zhou, Zhongzheng; Li, Yang; Feng, Chao; Chen, Xiguang

    2018-06-01

    To strengthen the mechanical strength of thermo-sensitive hydroxybutyl chitosan (HBC) hydrogel, chitin whiskers were used as sticker to fabricate reinforced HBC (HBCW) hydrogel by using response surface methodology. Unlike the intrinsic network of HBC hydrogel, HBCW hydrogel showed a laminar shape with firm structure. The preparation condition was optimized by three-factor-three-level Box-Behnken design. The maximum mechanical strength (1011.11 Pa) was achieved at 50 °C, when the concentrations of HBC and chitin whiskers were 5.1 wt% and 2.0 wt%, respectively. The effects of temperature, pH value and NaCl concentration on mechanical strength of HBCW hydrogels were investigated via the oscillatory stress sweeps. The results showed that HBCW hydrogel could reach the maximum stiffness (∼1126 Pa) at 37 °C pH 12.0. Low pH and high salty ions could decrease the stability of hydrogel, while chitin whiskers could increase the stress tolerance and related ruptured strain of HBCW hydrogels. Copyright © 2018. Published by Elsevier Ltd.

  11. Transforming nanostructured chitin from crustacean waste into beneficial health products: a must for our society

    Directory of Open Access Journals (Sweden)

    Morganti P

    2011-12-01

    Full Text Available P Morganti1, G Morganti2, A Morganti3,41Department of Dermatology, Second University of Naples, Naples, Italy; 2Centre of Nanoscience, Mavi Sud s.r.l, Aprilia, Italy; 3Max Planck Institute for Intellectual Property and Competition Law, Munich, Germany; 4Lextray, Milan, ItalyAbstract: Chitin, obtained principally from crustacean waste, is a sugar-like polymer that is available at low cost. It has been shown to be bio- and ecocompatible, and has a very low level of toxicity. Recently, it has become possible to industrially produce pure chitin crystals, named "chitin nanofibrils" (CN for their needle-like shape and nanostructured average size (240 × 5 × 7 nm. Due to their specific chemical and physical characteristics, CN may have a range of industrial applications, from its use in biomedical products and biomimetic cosmetics, to biotextiles and health foods. At present, world offshore disposal of this natural waste material is around 250 billion tons per year. It is an underutilized resource and has the potential to supply a wide range of useful products if suitably recycled, thus contributing to sustainable growth and a greener economy.Keywords: chitin nanofibrils, biomimetic cosmetics, biomedical products, food, nanotechnology, waste

  12. The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice.

    Science.gov (United States)

    Miyata, Kana; Kozaki, Toshinori; Kouzai, Yusuke; Ozawa, Kenjirou; Ishii, Kazuo; Asamizu, Erika; Okabe, Yoshihiro; Umehara, Yosuke; Miyamoto, Ayano; Kobae, Yoshihiro; Akiyama, Kohki; Kaku, Hanae; Nishizawa, Yoko; Shibuya, Naoto; Nakagawa, Tomomi

    2014-11-01

    Plants are constantly exposed to threats from pathogenic microbes and thus developed an innate immune system to protect themselves. On the other hand, many plants also have the ability to establish endosymbiosis with beneficial microbes such as arbuscular mycorrhizal (AM) fungi or rhizobial bacteria, which improves the growth of host plants. How plants evolved these systems managing such opposite plant-microbe interactions is unclear. We show here that knockout (KO) mutants of OsCERK1, a rice receptor kinase essential for chitin signaling, were impaired not only for chitin-triggered defense responses but also for AM symbiosis, indicating the bifunctionality of OsCERK1 in defense and symbiosis. On the other hand, a KO mutant of OsCEBiP, which forms a receptor complex with OsCERK1 and is essential for chitin-triggered immunity, established mycorrhizal symbiosis normally. Therefore, OsCERK1 but not chitin-triggered immunity is required for AM symbiosis. Furthermore, experiments with chimeric receptors showed that the kinase domains of OsCERK1 and homologs from non-leguminous, mycorrhizal plants could trigger nodulation signaling in legume-rhizobium interactions as the kinase domain of Nod factor receptor1 (NFR1), which is essential for triggering the nodulation program in leguminous plants, did. Because leguminous plants are believed to have developed the rhizobial symbiosis on the basis of AM symbiosis, our results suggest that the symbiotic function of ancestral CERK1 in AM symbiosis enabled the molecular evolution to leguminous NFR1 and resulted in the establishment of legume-rhizobia symbiosis. These results also suggest that OsCERK1 and homologs serve as a molecular switch that activates defense or symbiotic responses depending on the infecting microbes. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Systematic dynamic viscoelasticity measurements for chitin nanofibers prepared with various concentrations, disintegration times, acidities, and crystalline structures.

    Science.gov (United States)

    Suenaga, Shin; Osada, Mitsumasa

    2018-04-17

    Dynamic viscoelasticities were measured for chitin nanofiber (ChNF) dispersions prepared with various concentrations, disintegration times, acidities, and crystalline structures. The 0.05 w/v% dispersions of pH neutral ChNFs continuously exhibited elastic behavior. The 0.05 w/v% dispersions of acidified ChNFs, on the other hand, transitioned from a colloidal dispersion to a critical gel and then exhibited elastic behavior with increasing ChNF concentration. A double-logarithmic chart of the concentration vs. the storage modulus was prepared and indicated the fractal dimension and the nanostructure in the dispersion. The results determined that the neutral α- and β-ChNFs were dispersed but showed some remaining aggregations and that the acidified β-ChNFs were completely individualized. In addition, the α-chitin steadily disintegrated with increasing disintegration time, and the aspect ratio of the β-chitin decreased as a result of the exscessive disintegration. The storage moduli of the ChNFs were greater than those of chitin solutions, nanorods, and nanowhiskers with the same solids concentrations. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Surface-Initiated Graft Atom Transfer Radical Polymerization of Methyl Methacrylate from Chitin Nanofiber Macroinitiator under Dispersion Conditions

    Directory of Open Access Journals (Sweden)

    Ryo Endo

    2015-08-01

    Full Text Available Surface-initiated graft atom transfer radical polymerization (ATRP of methyl methacrylate (MMA from self-assembled chitin nanofibers (CNFs was performed under dispersion conditions. Self-assembled CNFs were initially prepared by regeneration from a chitin ion gel with 1-allyl-3-methylimidazolium bromide using methanol; the product was then converted into the chitin nanofiber macroinitiator by reaction with α-bromoisobutyryl bromide in a dispersion containing N,N-dimethylformamide. Surface-initiated graft ATRP of MMA from the initiating sites on the CNFs was subsequently carried out under dispersion conditions, followed by filtration to obtain the CNF-graft-polyMMA film. Analysis of the product confirmed the occurrence of the graft ATRP on the surface of the CNFs.

  15. Immobilization of Aspergillus niger. beta. -D-glucosidase on aminated chitin and alumina/alginate

    Energy Technology Data Exchange (ETDEWEB)

    Bon, E.; Freire, D.; Mendes, M.F.; Soares. V.F.

    1986-01-01

    The immobilization of ..beta..-glucosidase was studied by (a) covalent coupling to aminated chitin (IME-C) and (b) adsorption onto alumina followed by gel entrapment of the suspension with calcium alginate (IME-A). The levels of catalytic activity determined against salicin at 50 C were 23.0 U/g and 0.2 U/g for the IME-C and IMA-A respectively. The first system was shown to be quite stable with a loss of only 2% of the initial activity over 14 days. The IME-A system had a half life of 14 days. The activity of IME-C was studied using cellobiose and enzymatic hydrolysates of sugar cane bagasse at several cellobiose concentrations. The activities obtained with cellobiose were 104.0 U/g and 72.0 U/g respectively. 13 references.

  16. Regulation of the chitin degradation and utilization system by the ChiX small RNA in Serratia marcescens 2170.

    Science.gov (United States)

    Suzuki, Kazushi; Shimizu, Mari; Sasaki, Naomi; Ogawa, Chisana; Minami, Haruka; Sugimoto, Hayuki; Watanabe, Takeshi

    2016-01-01

    Serratia marcescens 2170 produces three different types of chitinases and chitin-binding protein CBP21. We found that transposon insertion into the 5' untranslated region (5' UTR) of chiPQ-ctb led to defective chitinase and CBP21 production. ChiX small RNA possessed the complementary sequence of the 5' UTRs of the chiPQ-ctb and chiR and repressed the expression of chiP and chiR. ChiX was detected in a medium containing glucose, glycerol, GlcNAc, and (GlcNAc)2, but the expression of both chiP and chiR was only observed in a medium containing (GlcNAc)2. ∆chiX mutant produced chitinases, CBP21, and chitobiase without induction. chiP transcripts were more abundant than those of chiR or chiX in a medium containing (GlcNAc)2. These results suggest that the constitutively expressed ChiX binds to the highly abundant chiP 5' UTR, thereby leading to the induction of chiR mRNA translation and the subsequent expression of chitinases and CBP21.

  17. Structure-dependent binding and activation of perfluorinated compounds on human peroxisome proliferator-activated receptor γ

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lianying [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Beijing 100085 (China); College of Life Science, Dezhou University, Dezhou 253023 (China); Ren, Xiao-Min; Wan, Bin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Beijing 100085 (China); Guo, Liang-Hong, E-mail: LHGuo@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Beijing 100085 (China)

    2014-09-15

    Perfluorinated compounds (PFCs) have been shown to disrupt lipid metabolism and even induce cancer in rodents through activation of peroxisome proliferator-activated receptors (PPARs). Lines of evidence showed that PPARα was activated by PFCs. However, the information on the binding interactions between PPARγ and PFCs and subsequent alteration of PPARγ activity is still limited and sometimes inconsistent. In the present study, in vitro binding of 16 PFCs to human PPARγ ligand binding domain (hPPARγ-LBD) and their activity on the receptor in cells were investigated. The results showed that the binding affinity was strongly dependent on their carbon number and functional group. For the eleven perfluorinated carboxylic acids (PFCAs), the binding affinity increased with their carbon number from 4 to 11, and then decreased slightly. The binding affinity of the three perfluorinated sulfonic acids (PFSAs) was stronger than their PFCA counterparts. No binding was detected for the two fluorotelomer alcohols (FTOHs). Circular dichroim spectroscopy showed that PFC binding induced distinctive structural change of the receptor. In dual luciferase reporter assays using transiently transfected Hep G2 cells, PFCs acted as hPPARγ agonists, and their potency correlated with their binding affinity with hPPARγ-LBD. Molecular docking showed that PFCs with different chain length bind with the receptor in different geometry, which may contribute to their differences in binding affinity and transcriptional activity. - Highlights: • Binding affinity between PFCs and PPARγ was evaluated for the first time. • The binding strength was dependent on fluorinated carbon chain and functional group. • PFC binding induced distinctive structural change of the receptor. • PFCs could act as hPPARγ agonists in Hep G2 cells.

  18. Colloidal chitin nanogels: A plethora of applications under one shell.

    Science.gov (United States)

    Vishnu Priya, M; Sabitha, M; Jayakumar, R

    2016-01-20

    Chitin nanogels (CNGs) are a relatively new class of natural polymeric nanomaterials which have a large potential in the field of drug delivery and nanotherapeutics. These nanogels being very biocompatible are non-toxic when internalized by cells. In this review various properties, preparation techniques and applications of CNGs have been described. CNGs because of their nano-size possess certain unique properties which enable them to be used in a number of biomedical applications. CNGs are prepared by simple regeneration technique without using any cross-linkers. Various polymers, drugs and fluorescent dyes can be blended or incorporated or labelled with the chitin hydrogel network. Drugs and molecules encapsulated within CNGs can be used for targeted delivery, in vivo monitoring or even for therapeutic purposes. Here various applications of CNGs in the field of drug delivery, imaging, sensing and therapeutics have been discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Towards the Shell Biorefinery: Sustainable Synthesis of the Anticancer Alkaloid Proximicin A from Chitin.

    Science.gov (United States)

    Sadiq, Alejandro D; Chen, Xi; Yan, Ning; Sperry, Jonathan

    2018-02-09

    A shell biorefinery would involve fractionation of crustacean shells and incorporation of the components into value-added products, particularly those that contain nitrogen. In a proof-of-concept study that validates this concept, the anticancer alkaloid proximicin A has been synthesized from the chitin-derived platform chemical 3-acetamido-5-acetylfuran (3A5AF). This study accentuates the leading role chitin is likely to play in the sustainable production of nitrogen-containing fine chemicals that are not directly attainable from lignocellulose. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Experimental study of the microvascular architecture and bone formation when using a carboxymethyl-chitin for bone repair in extracted sockets

    International Nuclear Information System (INIS)

    Kinoshita, Tamotsu; Toda, Isumi; Ehara, Yuji; Nakanishi, Ko; Suwa, Fumihiko

    2011-01-01

    Chitin is an absorbable agent used to promote wound healing and hemostasis, and is also used in medical treatment. We investigated the effects of carboxymethyl-chitin (CM-chitin), a water-soluble derivative of chitin, on bone augmentation. Four maxillary incisors were extracted from 5 adult Crab-eating Macaques, then the extraction sockets on the subjects' right sides were immediately filled with CM-chitin (experimental sites), while the left sides were left unfilled (control). One, two, four, eight, and twelve weeks after the procedure, the animals were euthanized and acrylic resin was injected via the common carotid arteries. Bone-microvascular corrosion casts were made and observed using scanning electron microscopy to determine the volume ratio of newly-formed bone in each socket. After 1 week, newly-formed capillary networks were observed in the sockets of the experimental sites. After 2 weeks, the sockets in both the experimental and control sites were filled with newly-formed capillary networks. After 4 weeks, newly-formed bone was observed in the sockets of both sites and the sockets were also filled with newly-formed bone after 8 weeks. After 12 weeks, trabecular bone was thicker and more compressed than after 8 weeks. Image analysis showed that the volume ratio of newly-formed bone was not significantly different between the experimental and control sites. We concluded that CM-chitin does not obstruct bone augmentation in extracted tooth sockets and is useful to promote angiogenesis in the early stages. (author)

  1. Films of chitin, chitosan and cellulose obtained from aqueous suspension treated by irradiation of high intensity ultrasound

    International Nuclear Information System (INIS)

    Almeida, Erika V.R.; Mariano, Mario S.; Campana-Filho, Sergio P.

    2011-01-01

    Films of chitin, chitin/chitosan and chitin/sisal cellulose were obtained by casting their aqueous suspensions previously treated with irradiation of high intensity ultrasound. The films were characterized for surface morphology by scanning electron microscopy and it is possible notice that the films containing chitosan are much more homogeneous. The thermal behavior of the films was evaluated by dynamic mechanical thermal analysis, differential scanning calorimetry, and thermogravimetric analysis and revealing similarity in comparison with the thermal behavior of polysaccharide isolated. The tensile strength was determined and the film containing chitosan showed the best result when compared to other films. The crystallinity index of the films analyzed by X-ray diffraction showed that the films are amorphous material. The analysis by infrared spectroscopy showed that treatment of aqueous suspensions of polysaccharides with irradiation of high intensity ultrasound did not change the chemical structure of polymers. The crystallinity index was determined by X-ray diffraction, revealing that the films are amorphous materials. The results of this study indicate the possibility of processing of chitin, chitosan and cellulose, polysaccharides whose solubilities are limited to a few solvent systems, by treating their aqueous suspensions with high intensity ultrasound. (author)

  2. Abnormal prefrontal and parietal activity linked to deficient active binding in working memory in schizophrenia.

    Science.gov (United States)

    Grot, Stéphanie; Légaré, Virginie Petel; Lipp, Olivier; Soulières, Isabelle; Dolcos, Florin; Luck, David

    2017-10-01

    Working memory deficits have been widely reported in schizophrenia, and may result from inefficient binding processes. These processes, and their neural correlates, remain understudied in schizophrenia. Thus, we designed an FMRI study aimed at investigating the neural correlates of both passive and active binding in working memory in schizophrenia. Nineteen patients with schizophrenia and 23 matched controls were recruited to perform a working memory binding task, in which they were instructed to memorize three letters and three spatial locations. In the passive binding condition, letters and spatial locations were directly presented as bound. Conversely, in the active binding condition, words and spatial locations were presented as separated, and participants were instructed to intentionally create associations between them. Patients exhibited a similar performance to the controls for the passive binding condition, but a significantly lower performance for the active binding. FMRI analyses revealed that this active binding deficit was related to aberrant activity in the posterior parietal cortex and the ventrolateral prefrontal cortex. This study provides initial evidence of a specific deficit for actively binding information in schizophrenia, which is linked to dysfunctions in the neural networks underlying attention, manipulation of information, and encoding strategies. Together, our results suggest that all these dysfunctions may be targets for neuromodulation interventions known to improve cognitive deficits in schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Resistance mutation conserved between insects and mites unravels the benzoylurea insecticide mode of action on chitin biosynthesis.

    Science.gov (United States)

    Douris, Vassilis; Steinbach, Denise; Panteleri, Rafaela; Livadaras, Ioannis; Pickett, John Anthony; Van Leeuwen, Thomas; Nauen, Ralf; Vontas, John

    2016-12-20

    Despite the major role of chitin biosynthesis inhibitors such as benzoylureas (BPUs) in the control of pests in agricultural and public health for almost four decades, their molecular mode of action (MoA) has in most cases remained elusive. BPUs interfere with chitin biosynthesis and were thought to interact with sulfonylurea receptors that mediate chitin vesicle transport. Here, we uncover a mutation (I1042M) in the chitin synthase 1 (CHS1) gene of BPU-resistant Plutella xylostella at the same position as the I1017F mutation reported in spider mites that confers etoxazole resistance. Using a genome-editing CRISPR/Cas9 approach coupled with homology-directed repair (HDR) in Drosophila melanogaster, we introduced both substitutions (I1056M/F) in the corresponding fly CHS1 gene (kkv). Homozygous lines bearing either of these mutations were highly resistant to etoxazole and all tested BPUs, as well as buprofezin-an important hemipteran chitin biosynthesis inhibitor. This provides compelling evidence that BPUs, etoxazole, and buprofezin share in fact the same molecular MoA and directly interact with CHS. This finding has immediate effects on resistance management strategies of major agricultural pests but also on mosquito vectors of serious human diseases such as Dengue and Zika, as diflubenzuron, the standard BPU, is one of the few effective larvicides in use. The study elaborates on how genome editing can directly, rapidly, and convincingly elucidate the MoA of bioactive molecules, especially when target sites are complex and hard to reconstitute in vitro.

  4. Effect of some biological factors on the chitin yield of two crustacean species inhabiting the Egyptian waters

    Directory of Open Access Journals (Sweden)

    Amira Talaat Abo-Hashesh

    2017-11-01

    Full Text Available Objective: To investigate the chitin yield of two commercial crustacean species that are exploited in the Suez Canal region, the Red Sea crab Charybdis natator (C. natator and the Mediterranean mantis shrimp Erugosquilla massavensis (E. massavensis, and to assess the effect of some biological factors such as sex, size and maturity stages of females' ovaries on this yield. Methods: A total of 64 specimens of crabs were collected from the Red Sea and 1 377 mantis shrimps were collected from the Mediterranean Sea. Chitin was obtained after the deproteinization, de-mineralization and de-colorization of 5 g oven dried exoskeletons and values were expressed as g/5 g and percentages. Results: Chitin yield was significantly higher in E. massavensis than C. natator (22.1%, 14.22%, respectively. No significant difference in the yield was recorded between males and females of C. natator (12.9%, 14.9%, respectively, while the yield in E. massavensis males was significantly higher than females (25.3%, 21.2%, respectively. Significant variations in the chitin yield were observed between the different sizes of E. massavensis with the maximum being from the individuals falling in the size range 90–130 mm body length. The yield was at its lowest in the immature stage of C. natator females' ovaries (9.29%. However, the values increased and remained constant for the remaining stages (≥ 18%. Conclusions: The study recommends the use of the mantis shrimp for the production of chitin on commercial scale particularly medium sized males.

  5. Chitin stimulates expression of acidic mammalian chitinase and eotaxin-3 by human sinonasal epithelial cells in vitro.

    Science.gov (United States)

    Lalaker, Ashley; Nkrumah, Louis; Lee, Won-Kyung; Ramanathan, Murugappan; Lane, Andrew P

    2009-01-01

    Sinonasal epithelial cells participate in host defense by initiating innate immune mechanisms against potential pathogens. Antimicrobial innate mechanisms have been shown to involve Th1-like inflammatory responses. Although epithelial cells can also be induced by Th2 cytokines to express proeosinophilic mediators, no environmental agents have been identified that promote this effect. Human sinonasal epithelial cells from patients with chronic rhinosinusitis with nasal polyps (CRSwNPs) and controls were harvested and grown in primary culture. Cell cultures were exposed to a range of concentrations of chitin for 24 hours, and mRNA for acidic mammalian chitinase (AMCase), eotaxin-3, and thymic stromal-derived lymphopoietin (TSLP) were assessed. Other cultures were exposed to interleukin 4 (IL- 4) alone and in combination with dust-mite antigen (DMA) for 36 hours. Extracted mRNA and cell culture supernatant were analyzed for expression of AMCase and eotaxin-3. Chitin induced a dose-dependent expression of AMCase and eotaxin-3 mRNA but not TSLP. Patients with recalcitrant CRSwNPs showed lower baseline expression of AMCase when compared with treatment-responsive CRSwNP and less induction of AMCase expression by chitin. DMA did not directly induce expression of AMCase or eotaxin-3. Expression of eotaxin-3 was stimulated by IL-4 and further enhanced with the addition of DMA. Levels of AMCase were not significantly affected by either IL-4 or DMA exposure. In some cases, the combination of IL-4 and DMA was able to induce AMCase expression in cell cultures not producing AMCase at baseline. The abundant biopolymer chitin appears to be recognized by a yet uncharacterized receptor on sinonasal epithelial cells. Chitin stimulates production of AMCase and eotaxin-3, two pro-Th2 effector proteins. This finding suggests the existence of a novel innate immune pathway for local defense against chitin-containing organisms in the sinonasal tract. Dysregulation of this function could

  6. Labelling of pneumococcal penicillin-binding proteins with [3H]propionyl-ampicillin. A rapid method for monitoring penicillin-binding activity

    International Nuclear Information System (INIS)

    Hakenbeck, R.; Kohiyama, M.

    1982-01-01

    Penicillin-binding proteins (PBPs) are membrane components ubiquitous to all bacteria examined so far. Some of them are present in only a few copies per cell. The conventional method of visualizing these proteins consists in binding of radioactive penicillin to the fractions containing PBPs followed by SDS-PAGE and finally fluorography. Although this procedure is laborious, it is necessary for the determination of the identity as well as for the quantification of each PBP. On the other hand, when penicillin-binding conditions are to be examined or binding activity has to be followed through fractionation and purification of PBPs, no fast monitoring device for these proteins has been available. The authors developed a rapid and easy assay for penicillin-binding activity with a filter-binding technique using [ 3 H]propionyl ampicillin ( 3 H-PA) of high specific activity. As little 2μg of crude membranes obtained from the highly penicillin-sensitive, β-lactamase-negative organism Streptococcus pneumoniae, are sufficient to detect binding activity. In this paper they describe optimum conditions for the assay of PBPs and show that this binding activity correlates with the presence of native penicillin-binding proteins. (Auth.)

  7. Chitinolytic activity of highly halotolerant Streptomyces tendae ...

    African Journals Online (AJOL)

    User

    many plant diseases by degrading the chitin polymer in ... Chitin in soil can be degraded by a wide variety of microorganisms including fungal and bacterial species. .... fraction contained chitinolytic activity was dialyzed using plastic.

  8. Morphological study of chitin from Xiphopenaeus kroyeri exoskeletons by using atomic force microscopy (AFM) and CPMAS 13 C NMR

    International Nuclear Information System (INIS)

    Silva, K.M.; Tavares, M.I.; Andrade, C.T.; Simao, R.A.

    1999-01-01

    A sample of α chitin was isolated from exoskeletons of Xiphopenaeus kroyeri. This sample ws dissolved in phosphoric acid and recovered as a fibrous precipitate. Atomic force microscopy was used in noncontact mode to obtain images of the native chitin sample. Different morphological features were observed, including rigid rod crystals 200-300 nm wide. Solid state 13 C NMR techniques were used to investigate chitin samples, and revealed molecular order in both samples. The differences observed in the proton spin-lattice relaxation times in the rotating frame, T H1 p were attributed to the formation of hydrogen bonds in preferential sites in the samples. (author)

  9. Aminoglycosylation can enhance the G-quadruplex binding activity of epigallocatechin.

    Directory of Open Access Journals (Sweden)

    Li-Ping Bai

    Full Text Available With the aim of enhancing G-quadruplex binding activity, two new glucosaminosides (16, 18 of penta-methylated epigallocatechin were synthesized by chemical glycosylation. Subsequent ESI-TOF-MS analysis demonstrated that these two glucosaminoside derivatives exhibit much stronger binding activity to human telomeric DNA and RNA G-quadruplexes than their parent structure (i.e., methylated EGC (14 as well as natural epigallocatechin (EGC, 6. The DNA G-quadruplex binding activity of 16 and 18 is even more potent than strong G-quadruplex binder quercetin, which has a more planar structure. These two synthetic compounds also showed a higher binding strength to human telomeric RNA G-quadruplex than its DNA counterpart. Analysis of the structure-activity relationship revealed that the more basic compound, 16, has a higher binding capacity with DNA and RNA G-quadruplexes than its N-acetyl derivative, 18, suggesting the importance of the basicity of the aminoglycoside for G-quadruplex binding activity. Molecular docking simulation predicted that the aromatic ring of 16 π-stacks with the aromatic ring of guanine nucleotides, with the glucosamine moiety residing in the groove of G-quadruplex. This research indicates that glycosylation of natural products with aminosugar can significantly enhance their G-quadruplex binding activities, thus is an effective way to generate small molecules targeting G-quadruplexes in nucleic acids. In addition, this is the first report that green tea catechin can bind to nucleic acid G-quadruplex structures.

  10. Nitrogen and sulfur dual-doped chitin-derived carbon/graphene composites as effective metal-free electrocatalysts for dye sensitized solar cells

    Science.gov (United States)

    Di, Yi; Xiao, Zhanhai; Yan, Xiaoshuang; Ru, Geying; Chen, Bing; Feng, Jiwen

    2018-05-01

    The photovoltaic performance of dye-sensitized solar cell (DSSC) is strongly influenced by the electrocatalytic ability of its counter electrode (CE) materials. To obtain the affordable and high-performance electrocatalysts, the N/S dual-doped chitin-derived carbon materials SCCh were manufactured via in-situ S-doped method in the annealing process, where richer active sites are created compared to the pristine chitin-derived carbon matrix CCh, thus enhancing the intrinsic catalytic activity of carbon materials. When SCCh is incorporated with graphene, the yielded composites hold a further boosted catalytic activity due to facilitating the electronic fast transfer. The DSSC assembled with the optimizing rGO-SCCh-3 composite CE shows a favourable power conversion efficiency of 6.36%, which is comparable with that of the Pt-sputtering electrode (6.30%), indicate of the outstanding I3- reduction ability of the composite material. The electrochemical characterizations demonstrate that the low charge transfer resistance and excellent electrocatalytic activity all contribute to the superior photovoltaic performance. More importantly, the composite CE exhibits good electrochemical stability in the practical operation. In consideration of the low cost and the simple preparation procedure, the present metal-free carbonaceous composites could be used as a promising counter electrode material in future large scale production of DSSCs.

  11. Thermal analysis and structural characterization of chitinous exoskeleton from two marine invertebrates

    International Nuclear Information System (INIS)

    Juárez-de la Rosa, B.A.; May-Crespo, J.; Quintana-Owen, P.; Gónzalez-Gómez, W.S.; Yañez-Limón, J.M.; Alvarado-Gil, J.J.

    2015-01-01

    Highlights: • Thermal analysis of exoskeletons: Antipathes caribbeana and Limulus polyphemus. • DMTA revealed Limulus has a stronger structure with a stepper glass transition. • DSC measurements exhibited a much larger water holding capacity in Antipathes. • X-ray diffraction analysis shows a higher crystallinity index in Limulus • FTIR showed α-chitin structures and high temperature C–N groups prevalence. - ABSTRACT: Thermomechanical and structural properties of two marine species exoskeletons, Antipathes caribbeana (black coral) and Limulus polyphemus (xiphosure), were studied using dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). DMTA curves indicate the viscoelastic behavior and glass transition around 255 °C, black coral presented a second transition (175 °C) associated to the acetamide group attached to the α-chitin chain. DSC measurements showed a endothermic peak around 100 °C, with enthalpies of 4.02 and 118.04 J/g, indicating strong differences between exoskeletons respect to their water holding capacity and strength water–polymer interaction. A comparative analysis involving DSC and X-ray diffraction showed that lower values ΔH in xiphosure correspond to a material with a higher crystallinity (30), in contrast black coral exhibits higher values ΔH and a lower crystallinity (19). FTIR confirmed α-chitin based structure, at higher temperature diminishes the amide bands and a new one appears, related to C–N groups

  12. Thermal analysis and structural characterization of chitinous exoskeleton from two marine invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Juárez-de la Rosa, B.A., E-mail: balej05@yahoo.com.mx [Laboratory of Natural Polymers, CIAD – Coordinación Guaymas, Carretera al Varadero Nacional km. 6.6, Col. Las Playitas, 85480 Guaymas, Sonora (Mexico); Applied Physics Department, CINVESTAV-IPN Unidad Mérida, Carretera antigua a Progreso, km. 6. Apdo, Postal 73, Cordemex, 97310 Mérida, Yucatan (Mexico); May-Crespo, J.; Quintana-Owen, P.; Gónzalez-Gómez, W.S. [Applied Physics Department, CINVESTAV-IPN Unidad Mérida, Carretera antigua a Progreso, km. 6. Apdo, Postal 73, Cordemex, 97310 Mérida, Yucatan (Mexico); Yañez-Limón, J.M. [Materials and Engineering Science, CINVESTAV-IPN, Unidad Querétaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, 76230 Santiago de Querétaro, Querétaro (Mexico); Alvarado-Gil, J.J., E-mail: jjag@mda.cinvestav.mx [Applied Physics Department, CINVESTAV-IPN Unidad Mérida, Carretera antigua a Progreso, km. 6. Apdo, Postal 73, Cordemex, 97310 Mérida, Yucatan (Mexico)

    2015-06-20

    Highlights: • Thermal analysis of exoskeletons: Antipathes caribbeana and Limulus polyphemus. • DMTA revealed Limulus has a stronger structure with a stepper glass transition. • DSC measurements exhibited a much larger water holding capacity in Antipathes. • X-ray diffraction analysis shows a higher crystallinity index in Limulus • FTIR showed α-chitin structures and high temperature C–N groups prevalence. - ABSTRACT: Thermomechanical and structural properties of two marine species exoskeletons, Antipathes caribbeana (black coral) and Limulus polyphemus (xiphosure), were studied using dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). DMTA curves indicate the viscoelastic behavior and glass transition around 255 °C, black coral presented a second transition (175 °C) associated to the acetamide group attached to the α-chitin chain. DSC measurements showed a endothermic peak around 100 °C, with enthalpies of 4.02 and 118.04 J/g, indicating strong differences between exoskeletons respect to their water holding capacity and strength water–polymer interaction. A comparative analysis involving DSC and X-ray diffraction showed that lower values ΔH in xiphosure correspond to a material with a higher crystallinity (30), in contrast black coral exhibits higher values ΔH and a lower crystallinity (19). FTIR confirmed α-chitin based structure, at higher temperature diminishes the amide bands and a new one appears, related to C–N groups.

  13. Changes in the binding of concanavalin A after mouse lymphocyte activation

    Energy Technology Data Exchange (ETDEWEB)

    Draber, P; Draber, P [Czechoslovak Academy of Sciences, Prague. Institute of Molecular Genetics

    1982-01-01

    Binding /sup 63/Ni-concanavalin A (/sup 63/Ni-Con A) to the cell surface of freshly prepared (non-activated) and Con A-activated spleen cells and the inhibitory effect of pea lectin (PsA) on this binding was investigated. Binding of /sup 63/Ni-Con A to activated cells was much greater as compared with non-activated cells. In the presence of PsA the binding of /sup 63/Ni-Con A was inhibited. 51% of non-activated cells, 3a% of Con A-activated cells and 7 to 14% of permanently transformed cells (myeloma cells NS-1, cells of sarcoma Sa-1 and fibroblasts L-A9) were inhibited by PsA. The results indicate changes (either qualitative or topographic) in the binding sites for Con A in the course of cell activation.

  14. Inhibition of chitin biosynthesis in cultured imaginal discs: Effects of alpha-amanitin, actinomycin-D, cycloheximide, and puromycin.

    Science.gov (United States)

    Oberlander, Herbert; Ferkovich, Stephen; Leach, Eddie; Van Essen, Frank

    1980-02-01

    Wing imaginal discs isolated from last instar larvae of the Indian meal moth,Plodia interpunctella, produced chitin when incubated in vitro with ≧2×10 -7 M 20-hydroxyecdysone. Chitin biosynthesis was initiated 8 h after the conclusion of a 24-h treatment with hormone. Simulataneous incubation of wing discs with 20-hydroxyecdysone and either inhibitors of RNA synthesis (alpha-amanitin, actinomycin-D) or inhibitors of protein systhesis (cycloheximide, puromycin) prevented chitin biosynthesis. We conclude from our results that RNA and protein synthesis must continue undiminished during the hormone-contact period, and that synthesis of protein, but not of new RNA is required during the posthormone culture period. Our findings are consistent with the hypothesis that ecdysteroids stimulate insect metamorphosis by promoting the synthesis of new RNA and protein during a hormone-dependent phase followed by hormone-independent protein synthesis.

  15. Comparison of green method for chitin deacetylation

    Science.gov (United States)

    Anwar, Muslih; Anggraeni, Ayu Septi; Amin, M. Harisuddin Al

    2017-03-01

    Developing highly environmentally friendly and cost-effective approaches for the chitosan production has paramount important in the future technology. Deacetylation process is one of the most importing steps to classify the quality of chitosan. This research aimed to study the best method for deacetylation of chitin considered by several factors like the concentration of base, temperature, time and reaction method. From the green chemistry point of view, conventional refluxing method relatively wasted energy compared to another method such as maceration, grinding and sonication. The degree of deacetylation (DD) of chitosan was studied by sonication, resulted in slightly increasing of DD from 73.14 to 73.28% during the time from 0.5 h to 1 h. Deacetylation of chitin with various sodium hydroxide concentration 60, 70 and 80% gave 73.14, 76.36 and 77.88% of DD, respectively. Variation of temperature at 40, 60, and 80 °C was slightly affected on increasing DD from 67.53, 72.84 and 73.14%, respectively. The DD of chitosan significantly increased from 60.19, 74.27 and 81.20% respectively correspondent to varying NaOH concentration 60, 70 and 80% using the maceration method. Solid phase grinding method for half hour resulted in 79.49% of DD. The application of ultrasound grinding method not only was enhanced toward the deacetylation but also favoured the depolymerization process. Moreover, maceration for 7 days with 80% NaOH can be as an alternative method.

  16. Disruption of Bcchs4, Bcchs6 or Bcchs7 chitin synthase genes in Botrytis cinerea and the essential role of class VI chitin synthase (Bcchs6).

    Science.gov (United States)

    Morcx, Serena; Kunz, Caroline; Choquer, Mathias; Assie, Sébastien; Blondet, Eddy; Simond-Côte, Elisabeth; Gajek, Karina; Chapeland-Leclerc, Florence; Expert, Dominique; Soulie, Marie-Christine

    2013-03-01

    Chitin synthases play critical roles in hyphal development and fungal pathogenicity. Previous studies on Botrytis cinerea, a model organism for necrotrophic pathogens, have shown that disruption of Bcchs1 and more particularly Bcchs3a genes have a drastic impact on virulence (Soulié et al., 2003, 2006). In this work, we investigate the role of other CHS including BcCHS4, BcCHS6 and BcCHS7 during the life cycle of B. cinerea. Single deletions of corresponding genes were carried out. Phenotypic analysis indicates that: (i) BcCHS4 enzyme is not essential for development and pathogenicity of the fungus; (ii) BcCHS7 is required for pathogenicity in a host dependant manner. For Bcchs6 gene disruption, we obtained only heterokaryotic strains. Indeed, sexual or asexual purification assays were unsuccessful. We concluded that class VI chitin synthase could be essential for B. cinerea and therefore BcCHS6 represents a valuable antifungal target. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Environmental scanning electron microscopy analysis of Proteus mirabilis biofilms grown on chitin and stainless steel.

    Science.gov (United States)

    Fernández-Delgado, Milagro; Duque, Zoilabet; Rojas, Héctor; Suárez, Paula; Contreras, Monica; García-Amado, María A; Alciaturi, Carlos

    Proteus mirabilis is a human pathogen able to form biofilms on the surface of urinary catheters. Little is known about P. mirabilis biofilms on natural or industrial surfaces and the potential consequences for these settings. The main aim of this work was to assess and compare the adhesion and biofilm formation of P. mirabilis strains from different origins on chitin and stainless steel surfaces within 4 to 96 h. Using environmental scanning electron microscopy, the biofilms of a clinical strain grown on chitin at 4 h showed greater adhesion, aggregation, thickness, and extracellular matrix production than those grown on stainless steel, whereas biofilms of an environmental strain had less aggregation on both surfaces. Biofilms of both P. mirabilis strains developed different structures on chitin, such as pillars, mushrooms, channels, and crystalline-like precipitates between 24 and 96 h, in contrast with flat-layer biofilms produced on stainless steel. Significant differences ( p  biofilm formation. This represents the first study of P. mirabilis showing adhesion, biofilm formation, and development of different structures on surfaces found outside the human host.

  18. Location on chitin in the cyst wall of Entamoeba invadens with colloidal gold tracers.

    Science.gov (United States)

    Arroyo-Begovich, A; Cárabez-Trejo, A

    1982-04-01

    Chitin was located in the cyst wall of Entamoeba invadens with colloidal gold-linked wheat germ agglutinin. Cysts stained differentially from trophozoites when encysting cultures were treated with the gold tracer; cysts acquired a wine-red coloration while, in general trophozoites remained unstained. Observation of cells with the electron microscope revealed that the tracer particles were bound specifically to the walls of the surface of the cyst when cells were exposed in suspension, and to the cyst wall cross-section, when cells were exposed to the tracer in thin section, indicating that chitin fibers were distributed on the surface as well as throughout the matrix of the cyst wall.

  19. An intermolecular binding mechanism involving multiple LysM domains mediates carbohydrate recognition by an endopeptidase

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Jaslyn E. M. M. [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus (Denmark); Midtgaard, Søren Roi [University of Copenhagen, Universitetsparken 5, 2100 Copenhagen (Denmark); Gysel, Kira [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus (Denmark); Thygesen, Mikkel B.; Sørensen, Kasper K.; Jensen, Knud J. [University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Stougaard, Jens; Thirup, Søren; Blaise, Mickaël, E-mail: mickael.blaise@cpbs.cnrs.fr [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus (Denmark)

    2015-03-01

    The crystal and solution structures of the T. thermophilus NlpC/P60 d, l-endopeptidase as well as the co-crystal structure of its N-terminal LysM domains bound to chitohexaose allow a proposal to be made regarding how the enzyme recognizes peptidoglycan. LysM domains, which are frequently present as repetitive entities in both bacterial and plant proteins, are known to interact with carbohydrates containing N-acetylglucosamine (GlcNAc) moieties, such as chitin and peptidoglycan. In bacteria, the functional significance of the involvement of multiple LysM domains in substrate binding has so far lacked support from high-resolution structures of ligand-bound complexes. Here, a structural study of the Thermus thermophilus NlpC/P60 endopeptidase containing two LysM domains is presented. The crystal structure and small-angle X-ray scattering solution studies of this endopeptidase revealed the presence of a homodimer. The structure of the two LysM domains co-crystallized with N-acetyl-chitohexaose revealed a new intermolecular binding mode that may explain the differential interaction between LysM domains and short or long chitin oligomers. By combining the structural information with the three-dimensional model of peptidoglycan, a model suggesting how protein dimerization enhances the recognition of peptidoglycan is proposed.

  20. Chitin amendment increases soil suppressiveness toward plant pathogens and modulates the actinobacterial and oxalobacteraceal communities in an experimental agricultural field

    NARCIS (Netherlands)

    Cretoiu, Mariana Silvia; Korthals, Gerard W.; Visser, Johnny H. M.; van Elsas, Jan Dirk

    A long-term experiment on the effect of chitin addition to soil on the suppression of soilborne pathogens was set up and monitored for 8 years in an experimental field, Vredepeel, The Netherlands. Chitinous matter obtained from shrimps was added to soil top layers on two different occasions, and the

  1. Preparation of silver nano-particles immobilized onto chitin nano-crystals and their application to cellulose paper for imparting antimicrobial activity.

    Science.gov (United States)

    Li, Zhihan; Zhang, Ming; Cheng, Dong; Yang, Rendang

    2016-10-20

    Immobilized silver nano-particles (Ag NPs) possess excellent antimicrobial properties due to their unique surface characteristics. In this paper, immobilized silver nano-particles were synthesized in the presence of chitin nano-crystals (CNC) based on the Tollens mechanism (reduction of silver ion by aldehydes in the chitosan oligosaccharides (COS)) under microwave-assisted conditions. The prepared Ag NPs-loaded CNC nano-composites were then applied onto the paper surface via coating for the preparation of antibacterial paper. Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) results confirmed that the Ag NPs were immobilized onto the CNC. The transmission electron microscope (TEM) and scanning electron microscopy (SEM) results further revealed that the spherical Ag NPs (5-12nm) were well dispersed on the surface of CNC. The coated paper made from the Ag NPs-loaded CNC nano-composites exhibited a high effectiveness of the antibacterial activity against E. coli or S. aureus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Hierarchical Chitin Fibers with Aligned Nanofibrillar Architectures: A Nonwoven-Mat Separator for Lithium Metal Batteries.

    Science.gov (United States)

    Kim, Joong-Kwon; Kim, Do Hyeong; Joo, Se Hun; Choi, Byeongwook; Cha, Aming; Kim, Kwang Min; Kwon, Tae-Hyuk; Kwak, Sang Kyu; Kang, Seok Ju; Jin, Jungho

    2017-06-27

    Here, we introduce regenerated fibers of chitin (Chiber), the second most abundant biopolymer after cellulose, and propose its utility as a nonwoven fiber separator for lithium metal batteries (LMBs) that exhibits an excellent electrolyte-uptaking capability and Li-dendrite-mitigating performance. Chiber is produced by a centrifugal jet-spinning technique, which allows a simple and fast production of Chibers consisting of hierarchically aligned self-assembled chitin nanofibers. Following the scrutinization on the Chiber-Li-ion interaction via computational methods, we demonstrate the potential of Chiber as a nonwoven mat-type separator by monitoring it in Li-O 2 and Na-O 2 cells.

  3. Bio-responsive chitin-poly(L-lactic acid) composite nanogels for liver cancer.

    Science.gov (United States)

    Arunraj, T R; Sanoj Rejinold, N; Ashwin Kumar, N; Jayakumar, R

    2014-01-01

    Hepatic carcinoma (HCC) is one of the most common cancer and its treatment has been considered a therapeutic challenge. Doxorubicin (Dox) is one of the most important chemotherapeutic agents used in the treatment for liver cancer. However, the efficacy of Dox therapy is restricted by the dose-dependent toxic side effects. To overcome the cardiotoxicity of Dox as well as the current problems of conventional modality treatment of HCC, we developed a locally injectable, biodegradable, and pH sensitive composite nanogels for site specific delivery. Both control and Dox loaded composite nanogel systems were analyzed by DLS, SEM, FTIR and TG/DTA. The size ranges of the control composite nanogels and their drug loaded counterparts were found to be 90±20 and 270±20 nm, respectively. The control chitin-PLA CNGs and Dox-chitin-PLA CNGs showed higher swelling and degradation in acidic pH. Drug entrapment efficiency and in vitro drug release studies were carried out and showed a higher drug release at acidic pH compared to neutral pH. Cellular internalization of the nanogel systems was confirmed by fluorescent microscopy. The cytotoxicity of the composite nanogels was analyzed toward HepG2 (human liver cancer) cell lines. Furthermore, the results of in vitro hemolytic assay and coagulation assay substantiate the blood compatibility of the system. Overall Dox-chitin-PLA CNGs system could be a promising anticancer drug delivery system for liver cancer therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Electrospun chitosan-based nanocomposite mats reinforced with chitin nanocrystals for wound dressing

    CSIR Research Space (South Africa)

    Naseria, N

    2014-08-01

    Full Text Available The aim of this study was to develop electrospun chitosan/polyethylene oxide-based randomly oriented fiber mats reinforced with chitin nanocrystals (ChNC) for wound dressing. Microscopy studies showedporous mats of smooth and beadless fibers...

  5. A broad pH range and processive chitinase from a metagenome library

    Directory of Open Access Journals (Sweden)

    S.S. Thimoteo

    Full Text Available Chitinases are hydrolases that degrade chitin, a polymer of N-acetylglucosamine linked β(1-4 present in the exoskeleton of crustaceans, insects, nematodes and fungal cell walls. A metagenome fosmid library from a wastewater-contaminated soil was functionally screened for chitinase activity leading to the isolation and identification of a chitinase gene named metachi18A. The metachi18A gene was subcloned and overexpressed in Escherichia coli BL21 and the MetaChi18A chitinase was purified by affinity chromatography as a 6xHis-tagged fusion protein. The MetaChi18A enzyme is a 92-kDa protein with a conserved active site domain of glycosyl hydrolases family 18. It hydrolyses colloidal chitin with an optimum pH of 5 and temperature of 50°C. Moreover, the enzyme retained at least 80% of its activity in the pH range from 4 to 9 and 98% at 600 mM NaCl. Thin layer chromatography analyses identified chitobiose as the main product of MetaChi18A on chitin polymers as substrate. Kinetic analysis showed inhibition of MetaChi18A activity at high concentrations of colloidal chitin and 4-methylumbelliferyl N,N′-diacetylchitobiose and sigmoid kinetics at low concentrations of colloidal chitin, indicating a possible conformational change to lead the chitin chain from the chitin-binding to the catalytic domain. The observed stability and activity of MetaChi18A over a wide range of conditions suggest that this chitinase, now characterized, may be suitable for application in the industrial processing of chitin.

  6. Chitin-Prussian blue sponges for Cs(I) recovery: From synthesis to application in the treatment of accidental dumping of metal-bearing solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, C. [Ecole des mines d' Alès, Centre des Matériaux des Mines d' Alès, C2MA/MPA/BCI, 6 avenue de Clavières, F-30319 Alès Cedex (France); Commissariat à l' Energie Atomique, CEA Marcoule, DEN/DTCD/SPDE/LPSD,BP 17171, F-30207 Bagnols sur Cèze (France); Barré, Y. [Commissariat à l' Energie Atomique, CEA Marcoule, DEN/DTCD/SPDE/LPSD,BP 17171, F-30207 Bagnols sur Cèze (France); Vincent, T. [Ecole des mines d' Alès, Centre des Matériaux des Mines d' Alès, C2MA/MPA/BCI, 6 avenue de Clavières, F-30319 Alès Cedex (France); Taulemesse, J.-M. [Ecole des mines d' Alès, Center des Matériaux des Mines d' Alès, 6 avenue de Clavières, F-30319 Alès Cedex (France); Robitzer, M. [Institut Charles Gerhardt – UMR5253, CNRS-UM2-ENSCM-UM1, ICGM-MACS-R2M2, 8 rue de l' Ecole Normale, F-34296 Montpellier Cedex 05 (France); Guibal, E., E-mail: Eric.Guibal@mines-ales.fr [Ecole des mines d' Alès, Centre des Matériaux des Mines d' Alès, C2MA/MPA/BCI, 6 avenue de Clavières, F-30319 Alès Cedex (France)

    2015-04-28

    Highlights: • Prussian blue microparticles incorporated in chitin sponges. • Efficient Cs(I) sorption after water absorption by dry hybrid sponge. • Water draining after sorption for metal confinement and water decontamination. • High decontamination factors and distribution coefficients for Cs(I) and {sup 137}Cs(I). • Effect of freezing conditions on porous structure and textural characterization. - Abstract: Prussian blue (i.e., iron[III] hexacyanoferrate[II], PB) has been synthesized by reaction of iron(III) chloride with potassium hexacyanoferrate and further immobilized in chitosan sponge (cellulose fibers were added in some samples to evaluate their impact on mechanical resistance). The composite was finally re-acetylated to produce a chitin-PB sponge. Experimental conditions such as the freezing temperature, the content of PB, the concentration of the biopolymer and the presence of cellulose fibers have been varied in order to evaluate their effect on the porous structure of the sponge, its water absorption properties and finally its use for cesium(I) recovery. The concept developed with this system consists in the absorption of contaminated water by the composite sponge, the in situ binding of target metal on Prussian blue load and the centrifugation of the material to remove treated water from soaked sponge. This material is supposed to be useful for the fast treatment of accidental dumping of Cs-contaminated water.

  7. Inter-domain Synergism Is Required for Efficient Feeding of Cellulose Chain into Active Site of Cellobiohydrolase Cel7A*

    OpenAIRE

    Kont, Riin; Kari, Jeppe; Borch, Kim; Westh, Peter; Väljamäe, Priit

    2016-01-01

    Structural polysaccharides like cellulose and chitin are abundant and their enzymatic degradation to soluble sugars is an important route in green chemistry. Processive glycoside hydrolases (GHs), like cellobiohydrolase Cel7A of Trichoderma reesei (TrCel7A) are key components of efficient enzyme systems. TrCel7A consists of a catalytic domain (CD) and a smaller carbohydrate-binding module (CBM) connected through the glycosylated linker peptide. A tunnel-shaped active site rests in the CD and ...

  8. From chitin to bioactive chitooligosaccharides and conjugates: access to lipochitooligosaccharides and the TMG-chitotriomycin.

    Science.gov (United States)

    Despras, Guillaume; Alix, Aurélien; Urban, Dominique; Vauzeilles, Boris; Beau, Jean-Marie

    2014-10-27

    The direct and chemoselective N-transacylation of peracetylated chitooligosaccharides (COSs), readily obtained from chitin, to give per-N-trifluoroacetyl derivatives offers an attractive route to size-defined COSs and derived glycoconjugates. It involves the use of various acceptor building blocks and trifluoromethyl oxazoline dimer donors prepared with efficiency and highly reactive in 1,2-trans glycosylation reactions. This method was applied to the preparation of the important symbiotic glycolipids which are highly active on plants and to the TMG-chitotriomycin, a potent and specific inhibitor of insect, fungal, and bacterial N-acetylglucosaminidases. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Extração, estruturas e propriedades de alfa- e beta-quitina Extraction, structures and properties of alpha- AND beta-chitin

    Directory of Open Access Journals (Sweden)

    Sergio P. Campana-Filho

    2007-06-01

    Full Text Available The fact that alpha- and beta-chitin adopt different arrays in the solid state is explored to emphasize their different properties and distinct spectral characteristics and X ray diffraction patterns. The methods for their extraction from the biomass in view of the preservation of their native structures and aiming to fulfill the claims of purity and uniformity for potential applications are discussed. The different arrays adopted by alpha- and beta-chitin also result in distinct reactivities toward the deacetylation reaction. Thus, the deacetylation of beta-chitin is more efficient owing to the better accessibility to amide groups due to the lower crystallinity of this polymorph.

  10. Cigarette Smoke-Exposed Candida albicans Increased Chitin Production and Modulated Human Fibroblast Cell Responses

    Directory of Open Access Journals (Sweden)

    Humidah Alanazi

    2014-01-01

    Full Text Available The predisposition of cigarette smokers for development of respiratory and oral bacterial infections is well documented. Cigarette smoke can also contribute to yeast infection. The aim of this study was to investigate the effect of cigarette smoke condensate (CSC on C. albicans transition, chitin content, and response to environmental stress and to examine the interaction between CSC-pretreated C. albicans and normal human gingival fibroblasts. Following exposure to CSC, C. albicans transition from blastospore to hyphal form increased. CSC-pretreated yeast cells became significantly (P<0.01 sensitive to oxidation but significantly (P<0.01 resistant to both osmotic and heat stress. CSC-pretreated C. albicans expressed high levels of chitin, with 2- to 8-fold recorded under hyphal conditions. CSC-pretreated C. albicans adhered better to the gingival fibroblasts, proliferated almost three times more and adapted into hyphae, while the gingival fibroblasts recorded a significantly (P<0.01 slow growth rate but a significantly higher level of IL-1β when in contact with CSC-pretreated C. albicans. CSC was thus able to modulate both C. albicans transition through the cell wall chitin content and the interaction between C. albicans and normal human gingival fibroblasts. These findings may be relevant to fungal infections in the oral cavity in smokers.

  11. Fluorescence microscopical studies on chitin distribution in the cell wall of giant cells of Saccharomyces uvarum, grown following X-radiaiton treatment

    International Nuclear Information System (INIS)

    Hoschka, L.

    1982-01-01

    Teast cells are synchronized and modiated with X-rays (1.0 kGy) in the Cr, phase. Their growth behaviour is observed in suspension cultures and the formation of giant cells noted. The chitin structures are selectively stained with the fluorescent dye Calcofluor white. In the unradiated cells the chitin is deposited at the bud constriction site in the form of rings in the mother cell wall, whereas for irradiated cells only one chitin ring of normal appearance is formed between the mother cell and first bud equivalent. Between further bud equivalents an intensification of fluorescence is occasionally noted, however the organisation of the chitin into a regular ring arrangement is disturbed. In giant cells the facility for primary and secondary septa formation is missing and these are essential for successful cell division. By further experiments it was possible to identify the cause of disturbance in the cell cycle of irradiated cells. Giant cells only form one chitin ring because its DNA is replicated one time only. The major cause triggering the actual formation of giant cells must be considered the missing distribution of the once-rephicated DNA. All processes in the cell cycle dependent on this step are therefore stopped and only bud formation which occurs independently continues along its rhytmical path. (orig./MG) [de

  12. Increased serum cortisol binding in chronic active hepatitis

    International Nuclear Information System (INIS)

    Orbach, O.; Schussler, G.C.

    1989-01-01

    A high serum cortisol concentration, apparently due to increased cortisol-binding globulin (CBG), was found in a patient (index case) with chronic active hepatitis (CAH). We therefore performed further studies to determine whether increased cortisol binding is generally associated with CAH. Serum samples were obtained from 15 hospitalized patients with long-term liver function test elevations but no evidence of cirrhosis, 15 normal subjects without a history of hepatitis, four healthy pregnant women, and 10 alcoholic patients with stigmata of cirrhosis. Serum cortisol binding was measured by an adaptation of a previously described charcoal uptake method. Thyroxine-binding globulin (TBG) and sex hormone-binding globulin were determined by radioimmunoassays. Charcoal uptake of 125I cortisol from sera of normal subjects and additional patients with CAH revealed that increased serum cortisol binding by a saturable site, presumably CBG, was associated with CAH. Cortisol binding was significantly correlated with immunoassayable TBG, suggesting that in CAH, similar mechanisms may be responsible for increasing the serum concentrations of CBG and TBG

  13. Structural and functional analysis of yeast Crh1 and Crh2 transglycosylases.

    Science.gov (United States)

    Blanco, Noelia; Sanz, Ana B; Rodríguez-Peña, Jose M; Nombela, César; Farkaš, Vladimír; Hurtado-Guerrero, Ramón; Arroyo, Javier

    2015-02-01

    Covalent cross-links between chitin and glucan at the yeast cell wall are created by the transglycosylase activity of redundant proteins Crh1 and Crh2, with cleavage of β-1,4 linkages of the chitin backbone and transfer of the generated molecule containing newly created reducing end onto the glucan acceptor. A three-dimensional structure of Crh1 was generated by homology modeling based on the crystal structure of bacterial 1,3-1,4-β-d-glucanase, followed by site-directed mutagenesis to obtain molecular insights into how these enzymes achieve catalysis. The residues of both proteins that are involved in their catalytic and binding activities have been characterized by measuring the ability of yeast cells expressing different versions of these proteins to transglycosylate oligosaccharides derived from β-1,3-glucan, β-1,6-glucan and chitin to the chitin at the cell wall. Within the catalytic site, residues E134 and E138 of Crh1, as well as E166 and E170 of Crh2, corresponding to the nucleophile and general acid/base, and also the auxiliary D136 and D168 of Crh1 and Crh2, respectively, are shown to be essential for catalysis. Mutations of aromatic residues F152, Y160 and W219, located within the carbohydrate-binding cleft of the Crh1 model, also affect the transglycosylase activity. Unlike Crh1, Crh2 contains a putative carbohydrate-binding module (CBM18) of unknown function. Modeling and functional analysis of site-directed mutant residues of this CBM identified essential amino acids for protein folding and stability, as well as residues that tune the catalytic activity of Crh2. © 2014 FEBS.

  14. Chitosan/chitin nanowhiskers composites: effect of plasticisers on the mechanical behaviour

    Czech Academy of Sciences Publication Activity Database

    Kelnar, Ivan; Kovářová, Jana; Tishchenko, Galina; Kaprálková, Ludmila; Pavlova, Ewa; Carezzi, F.; Morganti, P.

    2015-01-01

    Roč. 22, č. 2 (2015), 5_1-5_6 ISSN 1022-9760 R&D Projects: GA ČR(CZ) GA13-15255S EU Projects: European Commission(XE) 315233 - N-CHITOPACK Institutional support: RVO:61389013 Keywords : chitosan * chitin nanowhiskers * composite Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.969, year: 2015

  15. Characterization of breakpoint cluster region kinase and SH2-binding activities.

    Science.gov (United States)

    Afar, D E; Witte, O N

    1995-01-01

    BCR is an interesting signaling protein, whose cellular function is currently unknown. Its biochemical properties include serine kinase activity, SH2-binding activity, and a GTPase-activating activity. The SH2-binding activity is particularly interesting because it may link BCR to signaling pathways involving SH2-containing molecules. Since tyrosine phosphorylation of BCR has been detected in CML-derived cell lines and since tyrosine-phosphorylated BCR shows increased affinity toward certain SH2 domains, it seems particularly important to further characterize this activity. This chapter described a simple purification scheme for partial purification of BCR, which can be used to assess in vitro kinase and SH2-binding activities.

  16. Optimized production of Serratia marcescens B742 mutants for preparing chitin from shrimp shells powders.

    Science.gov (United States)

    Zhang, Hongcai; Fang, Jiyang; Deng, Yun; Zhao, Yanyun

    2014-08-01

    To improve the deproteinization (DP) efficacy of shrimp shell powders (SSP) for preparing chitin, Serratia marcescens B742 mutants were prepared using 2% diethyl sulfate (DES), UV-irradiation, and/or microwave heating treatments. Both single-stage and multi-stage mutations were investigated for optimizing S. marcescens B742 mutation conditions. Under the optimized mutation conditions (2% DES treatment for 30min plus successive 20min UV-irradiation), the protease and chitosanase activity produced by mutant S. marcescens B742 was 240.15 and 170.6mU/mL, respectively, as compared with 212.58±1.51 and 83.75±6.51mU/mL, respectively, by wild S. marcescens B742. DP efficacy of SSP by mutant S. marcescens B742 reached 91.4±4.6% after 3d of submerged fermentation instead of 83.4±4.7% from the wild S. marcescens B742 after 4d of submerged fermentation. Molecular mass of chitosanase and protease was 41.20 and 47.10kDa, respectively, and both enzymes were verified by mass spectrometry analysis. The chitosanase from both wild and mutant S. marcescens B742 was activated by sodium dodecyl sulfate (SDS), Tween 20, Tween 40, and Triton-100, and the protease and chitosanase were strongly inhibited by ethylenediaminetetraacetic acid (EDTA). These results suggested that S. marcescens B742 mutants can be used in the biological production of chitin through deproteinization of SSP. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. The repertoire of glycosphingolipids recognized by Vibrio cholerae.

    Directory of Open Access Journals (Sweden)

    John Benktander

    Full Text Available The binding of cholera toxin to the ganglioside GM1 as the initial step in the process leading to diarrhea is nowadays textbook knowledge. In contrast, the knowledge about the mechanisms for attachment of Vibrio cholerae bacterial cells to the intestinal epithelium is limited. In order to clarify this issue, a large number of glycosphingolipid mixtures were screened for binding of El Tor V. cholerae. Several specific interactions with minor complex non-acid glycosphingolipids were thereby detected. After isolation of binding-active glycosphingolipids, characterization by mass spectrometry and proton NMR, and comparative binding studies, three distinct glycosphingolipid binding patterns were defined. Firstly, V. cholerae bound to complex lacto/neolacto glycosphingolipids with the GlcNAcβ3Galβ4GlcNAc sequence as the minimal binding epitope. Secondly, glycosphingolipids with a terminal Galα3Galα3Gal moiety were recognized, and the third specificity was the binding to lactosylceramide and related compounds. V. cholerae binding to lacto/neolacto glycosphingolipids, and to the other classes of binding-active compounds, remained after deletion of the chitin binding protein GbpA. Thus, the binding of V. cholerae to chitin and to lacto/neolacto containing glycosphingolipids represents two separate binding specificities.

  18. Effects of chitin nano-whiskers on the antibacterial and physicochemical properties of maize starch films.

    Science.gov (United States)

    Qin, Yang; Zhang, Shuangling; Yu, Jing; Yang, Jie; Xiong, Liu; Sun, Qingjie

    2016-08-20

    We investigated the effects of chitin nano-whiskers (CNWs) on the antibacterial and physiochemical properties of maize starch-based films. The microstructures, crystalline structures, and thermal, mechanical and barrier properties of the nanocomposite films were characterized by using transmission electron microscopy, X-ray diffraction analysis, thermogravimetric, differential scanning calorimeter, and texture profile analysis. The tensile strength of the maize starch films increased from 1.64MPa to 3.69MPa (Pstarch films. Furthermore, the nanocomposite films exhibited strong antimicrobial activity against Gram-positive Listeria monocytogenes but not against Gram-negative Escherichia coli. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Transthyretin-binding activity of contaminants in blood from polar bear (Ursus maritimus) cubs.

    Science.gov (United States)

    Bytingsvik, Jenny; Simon, Eszter; Leonards, Pim E G; Lamoree, Marja; Lie, Elisabeth; Aars, Jon; Derocher, Andrew E; Wiig, Oystein; Jenssen, Bjørn M; Hamers, Timo

    2013-05-07

    We determined the transthyretin (TTR)-binding activity of blood-accumulating contaminants in blood plasma samples of approximately 4-months-old polar bear (Ursus maritimus) cubs from Svalbard sampled in 1998 and 2008. The TTR-binding activity was measured as thyroxine (T4)-like equivalents (T4-EQMeas). Our findings show that the TTR-binding activity related to contaminant levels was significantly lower (45%) in 2008 than in 1998 (mean ± standard error of mean: 1998, 2265 ± 231 nM; 2008, 1258 ± 170 nM). Although we cannot exclude a potential influence of between-year differences in capture location and cub body mass, our findings most likely reflect reductions of TTR-binding contaminants or their precursors in the arctic environment (e.g., polychlorinated biphenyls [PCBs]). The measured TTR-binding activity correlated positively with the cubs' plasma levels of hydroxylated PCBs (OH-PCBs). No such association was found between TTR-binding activity and the plasma levels of perfluoroalkyl substances (PFASs). The OH-PCBs explained 60 ± 7% and 54 ± 4% of the TTR-binding activity in 1998 and 2008, respectively, and PFASs explained ≤1.2% both years. Still, almost half the TTR-binding activity could not be explained by the contaminants we examined. The considerable levels of TTR-binding contaminants warrant further effect directed analysis (EDA) to identify the contaminants responsible for the unexplained part of the observed TTR-binding activity.

  20. Understanding mercury binding on activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Padak, B.; Wilcox, J. [Stanford University, Stanford, CA (United States)

    2009-10-15

    Understanding the mechanism by which mercury adsorbs on activated carbon is crucial to the design and fabrication of effective capture technologies. In this study, the possible binding mechanism of mercury (Hg) and its species, i.e., HgCl and HgCl{sub 2} on activated carbon is investigated using ab initio-based energetic calculations. The activated carbon surface is modeled by a single graphene layer in which the edge atoms on the upper side are unsaturated in order to simulate the active sites. in some cases, chlorine atoms are placed at the edge sites to examine the effect of chlorine on the binding of Hg, HgCl and HgCl{sub 2}. It has been concluded that both HgCl and HgCl{sub 2} can be adsorbed dissociatively or non-dissociatively. In the case of dissociative adsorption, it is energetically favorable for atomic Hg to desorb and energetically favorable for it to remain on the surface in the Hg{sup 1+} state, HgCl. The Hg{sup 2+}, oxidized compound, HgCl2 was not found to be stable on the surface. The most probable mercury species on the surface was found to be HgCl.

  1. Various methods for determination of the degree of N-acetylation of chitin and chitosan: a review.

    Science.gov (United States)

    Kasaai, Mohammad R

    2009-03-11

    Chitin, chitosan, and their derivatives have been identified as versatile biopolymers for a broad range of agriculture and food applications. Up to now, several methods have been developed to determine degree of N-acetylation, DA, for chitin and chitosan. In this article, an effort has been made to review the available literature information on the DA determination. These methods are classified into three categories: (1) spectroscopy (IR, (1)H NMR, (13)C NMR, (15)N NMR, and UV); (2) conventional (various types of titration, conductometry, potentiometry, ninhydrin assay, adsorption of free amino groups of chitosan by pictric acid); (3) destructive (elemental analysis, acid or enzymatic hydrolysis of chitin/chitosan and followed by the DA measurement by colorimetry or high performance liquid chromatography, pyrolysis-gas chromatography, and thermal analysis using differential scanning calorimetry) methods. These methods have been compared for their performances and limitations as well as their advantages and disadvantages. The use of IR and NMR spectroscopy methods provides a number of advantages. They do not need long-term procedures to prepare samples, and they provide information on the chemical structure. (1)H NMR and UV techniques are more sensitive than IR, (13)C NMR, and (15)N NMR spectroscopy. The IR technique is mostly used for a qualitative evaluation and comparison studies. Conventional methods are not applicable for highly acetylated chitin. The results of the latter methods are affected by ionic strength of the solvent, pH, and temperature of solution. In destructive methods, longer times are needed for the measurements compared to spectroscopy and conventional methods, but they are applicable for the entire range of the DA.

  2. Nano-fibrin stabilized CaSO4 crystals incorporated injectable chitin composite hydrogel for enhanced angiogenesis & osteogenesis.

    Science.gov (United States)

    Arun Kumar, R; Sivashanmugam, A; Deepthi, S; Bumgardner, Joel D; Nair, Shantikumar V; Jayakumar, R

    2016-04-20

    Calcium sulfate (CaSO4), an excellent biodegradable bone forming agent that is an ideal choice as additive in gels, however, its disadvantage being poor gel rheology and angiogenesis. Here, we have synthesized chitin-CaSO4-nano-fibrin based injectable gel system which shows improved rheology and angiogenic potential. Rheological studies showed that the composite gel was a shear thinning gel with elastic modulus of 15.4±0.275kPa; a 1.67 fold increase over chitin control. SEM and XRD analyses revealed the effect of nano-fibrin (nFibrin) in transforming CaSO4 crystal shape from needle to hexagonal. It also masked the retarding effect of CaSO4 towards in vitro early cell attachment and angiogenesis using rabbit adipose derived mesenchymal stem cells (rASCs) and HUVECs, respectively. rASCs osteogenesis was confirmed by spectrophotometric endpoint assay, which showed 6-fold early increase in alkaline phosphatase levels and immuno-cytochemistry analysis. These in vitro results highlight the potential of injectable chitin-CaSO4-nFibrin gel for osteo-regeneration via enhanced angiogenesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. DNA-binding activity of TNF-α inducing protein from Helicobacter pylori

    International Nuclear Information System (INIS)

    Kuzuhara, T.; Suganuma, M.; Oka, K.; Fujiki, H.

    2007-01-01

    Tumor necrosis factor-α (TNF-α) inducing protein (Tipα) is a carcinogenic factor secreted from Helicobacter pylori (H. pylori), mediated through both enhanced expression of TNF-α and chemokine genes and activation of nuclear factor-κB. Since Tipα enters gastric cancer cells, the Tipα binding molecules in the cells should be investigated. The direct DNA-binding activity of Tipα was observed by pull down assay using single- and double-stranded genomic DNA cellulose. The surface plasmon resonance assay, indicating an association between Tipα and DNA, revealed that the affinity of Tipα for (dGdC)10 is 2400 times stronger than that of del-Tipα, an inactive Tipα. This suggests a strong correlation between DNA-binding activity and carcinogenic activity of Tipα. And the DNA-binding activity of Tipα was first demonstrated with a molecule secreted from H. pylori

  4. LRRK2 kinase activity is dependent on LRRK2 GTP binding capacity but independent of LRRK2 GTP binding.

    Directory of Open Access Journals (Sweden)

    Jean-Marc Taymans

    Full Text Available Leucine rich repeat kinase 2 (LRRK2 is a Parkinson's disease (PD gene that encodes a large multidomain protein including both a GTPase and a kinase domain. GTPases often regulate kinases within signal transduction cascades, where GTPases act as molecular switches cycling between a GTP bound "on" state and a GDP bound "off" state. It has been proposed that LRRK2 kinase activity may be increased upon GTP binding at the LRRK2 Ras of complex proteins (ROC GTPase domain. Here we extensively test this hypothesis by measuring LRRK2 phosphorylation activity under influence of GDP, GTP or non-hydrolyzable GTP analogues GTPγS or GMPPCP. We show that autophosphorylation and lrrktide phosphorylation activity of recombinant LRRK2 protein is unaltered by guanine nucleotides, when co-incubated with LRRK2 during phosphorylation reactions. Also phosphorylation activity of LRRK2 is unchanged when the LRRK2 guanine nucleotide binding pocket is previously saturated with various nucleotides, in contrast to the greatly reduced activity measured for the guanine nucleotide binding site mutant T1348N. Interestingly, when nucleotides were incubated with cell lysates prior to purification of LRRK2, kinase activity was slightly enhanced by GTPγS or GMPPCP compared to GDP, pointing to an upstream guanine nucleotide binding protein that may activate LRRK2 in a GTP-dependent manner. Using metabolic labeling, we also found that cellular phosphorylation of LRRK2 was not significantly modulated by nucleotides, although labeling is significantly reduced by guanine nucleotide binding site mutants. We conclude that while kinase activity of LRRK2 requires an intact ROC-GTPase domain, it is independent of GDP or GTP binding to ROC.

  5. Effect of Corn Steep Liquor (CSL and Cassava Wastewater (CW on Chitin and Chitosan Production by Cunninghamella elegans and Their Physicochemical Characteristics and Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Lúcia Raquel Ramos Berger

    2014-02-01

    Full Text Available Microbiological processes were used for chitin and chitosan production with Cunninghamella elegans UCP/WFCC 0542 grown in different concentrations of two agro-industrial wastes, corn steep liquor (CSL and cassava wastewater (CW established using a 22 full factorial design. The polysaccharides were extracted by alkali-acid treatment and characterized by infrared spectroscopy, viscosity, thermal analysis, elemental analysis, scanning electron microscopy and X-ray diffraction. The cytotoxicity of chitosan was evaluated for signs of vascular change on the chorioallantoic membrane of chicken eggs. The highest biomass (9.93 g/L was obtained in trial 3 (5% CW, 8% CSL, the greatest chitin and chitosan yields were 89.39 mg/g and 57.82 mg/g, respectively, and both were obtained in trial 2 (10% CW, 4% CSL. Chitin and chitosan showed a degree of deacetylation of 40.98% and 88.24%, and a crystalline index of 35.80% and 23.82%, respectively, and chitosan showed low molecular weight (LMW 5.2 × 103 Da. Chitin and chitosan can be considered non-irritating, due to the fact they do not promote vascular change. It was demonstrated that CSL and CW are effective renewable agroindustrial alternative substrates for the production of chitin and chitosan.

  6. The chiral structure of porous chitin within the wing-scales of Callophrys rubi.

    Science.gov (United States)

    Schröder-Turk, G E; Wickham, S; Averdunk, H; Brink, F; Fitz Gerald, J D; Poladian, L; Large, M C J; Hyde, S T

    2011-05-01

    The structure of the porous three-dimensional reticulated pattern in the wing scales of the butterfly Callophrys rubi (the Green Hairstreak) is explored in detail, via scanning and transmission electron microscopy. A full 3D tomographic reconstruction of a section of this material reveals that the predominantly chitin material is assembled in the wing scale to form a structure whose geometry bears a remarkable correspondence to the srs net, well-known in solid state chemistry and soft materials science. The porous solid is bounded to an excellent approximation by a parallel surface to the Gyroid, a three-periodic minimal surface with cubic crystallographic symmetry I4₁32, as foreshadowed by Stavenga and Michielson. The scale of the structure is commensurate with the wavelength of visible light, with an edge of the conventional cubic unit cell of the parallel-Gyroid of approximately 310 nm. The genesis of this structure is discussed, and we suggest it affords a remarkable example of templating of a chiral material via soft matter, analogous to the formation of mesoporous silica via surfactant assemblies in solution. In the butterfly, the templating is achieved by the lipid-protein membranes within the smooth endoplasmic reticulum (while it remains in the chrysalis), that likely form cubic membranes, folded according to the form of the Gyroid. The subsequent formation of the chiral hard chitin framework is suggested to be driven by the gradual polymerisation of the chitin precursors, whose inherent chiral assembly in solution (during growth) promotes the formation of a single enantiomer. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Inter-domain synergism is required for efficient feeding of cellulose chain into active site of cellobiohydrolase Cel7A

    DEFF Research Database (Denmark)

    Kont, Riin; Kari, Jeppe; Borch, Kim

    2016-01-01

    systems. TrCel7A consists of catalytic domain (CD) and a smaller carbohydrate binding module (CBM) connected through the glycosylated linker peptide. A tunnel shaped active site rests in the CD and contains 10 glucose unit binding sites. The active site of TrCel7A is lined with four Trp residues with two...... to Ala substitution on on-rates was strongly dependent on the presence of the CBM-linker. This compensation between CBM-linker and Trp-38 indicates synergism between CBM-linker and CD in feeding the cellulose chain into the active site. The inter-domain synergism was pre-requisite for the efficient......Structural polysaccharides like cellulose and chitin are abundant and their enzymatic degradation to soluble sugars is an important route in green chemistry. Processive glycoside hydrolases (GHs), like cellobiohydrolase Cel7A of Trichoderma reesei (TrCel7A) are key components of efficient enzyme...

  8. Thermodynamic compensation upon binding to exosite 1 and the active site of thrombin.

    Science.gov (United States)

    Treuheit, Nicholas A; Beach, Muneera A; Komives, Elizabeth A

    2011-05-31

    Several lines of experimental evidence including amide exchange and NMR suggest that ligands binding to thrombin cause reduced backbone dynamics. Binding of the covalent inhibitor dPhe-Pro-Arg chloromethyl ketone to the active site serine, as well as noncovalent binding of a fragment of the regulatory protein, thrombomodulin, to exosite 1 on the back side of the thrombin molecule both cause reduced dynamics. However, the reduced dynamics do not appear to be accompanied by significant conformational changes. In addition, binding of ligands to the active site does not change the affinity of thrombomodulin fragments binding to exosite 1; however, the thermodynamic coupling between exosite 1 and the active site has not been fully explored. We present isothermal titration calorimetry experiments that probe changes in enthalpy and entropy upon formation of binary ligand complexes. The approach relies on stringent thrombin preparation methods and on the use of dansyl-l-arginine-(3-methyl-1,5-pantanediyl)amide and a DNA aptamer as ligands with ideal thermodynamic signatures for binding to the active site and to exosite 1. Using this approach, the binding thermodynamic signatures of each ligand alone as well as the binding signatures of each ligand when the other binding site was occupied were measured. Different exosite 1 ligands with widely varied thermodynamic signatures cause a similar reduction in ΔH and a concomitantly lower entropy cost upon DAPA binding at the active site. The results suggest a general phenomenon of enthalpy-entropy compensation consistent with reduction of dynamics/increased folding of thrombin upon ligand binding to either the active site or exosite 1.

  9. Decorin binds myostatin and modulates its activity to muscle cells

    International Nuclear Information System (INIS)

    Miura, Takayuki; Kishioka, Yasuhiro; Wakamatsu, Jun-ichi; Hattori, Akihito; Hennebry, Alex; Berry, Carole J.; Sharma, Mridula; Kambadur, Ravi; Nishimura, Takanori

    2006-01-01

    Myostatin, a member of TGF-β superfamily of growth factors, acts as a negative regulator of skeletal muscle mass. The mechanism whereby myostatin controls the proliferation and differentiation of myogenic cells is mostly clarified. However, the regulation of myostatin activity to myogenic cells after its secretion in the extracellular matrix (ECM) is still unknown. Decorin, a small leucine-rich proteoglycan, binds TGF-β and regulates its activity in the ECM. Thus, we hypothesized that decorin could also bind to myostatin and participate in modulation of its activity to myogenic cells. In order to test the hypothesis, we investigated the interaction between myostatin and decorin by surface plasmon assay. Decorin interacted with mature myostatin in the presence of concentrations of Zn 2+ greater than 10 μM, but not in the absence of Zn 2+ . Kinetic analysis with a 1:1 binding model resulted in dissociation constants (K D ) of 2.02 x 10 -8 M and 9.36 x 10 -9 M for decorin and the core protein of decorin, respectively. Removal of the glycosaminoglycan chain by chondroitinase ABC digestion did not affect binding, suggesting that decorin could bind to myostatin with its core protein. Furthermore, we demonstrated that immobilized decorin could rescue the inhibitory effect of myostatin on myoblast proliferation in vitro. These results suggest that decorin could trap myostatin and modulate its activity to myogenic cells in the ECM

  10. Listeria monocytogenes has a functional chitinolytic system and an active lytic polysaccharide monooxygenase

    DEFF Research Database (Denmark)

    Paspaliari, Dafni Katerina; Loose, Jennifer S. M.; Larsen, Marianne Halberg

    2015-01-01

    Chitinases and chitin-active lytic polysaccharide monooxygenases (LPMOs) are most commonly associated with chitin metabolism, but are also reported as virulence factors in pathogenic bacteria. Listeria monocytogenes, a well-known virulent bacterium, possesses two chitinases (ChiA and ChiB) and a ......Chitinases and chitin-active lytic polysaccharide monooxygenases (LPMOs) are most commonly associated with chitin metabolism, but are also reported as virulence factors in pathogenic bacteria. Listeria monocytogenes, a well-known virulent bacterium, possesses two chitinases (ChiA and Chi...... but different product profiles depending on the substrate. In LPMO-chitinase synergy experiments, CBP21 is able to boost the activity of both ChiA and ChiB more than LmLPMO10. Product analysis of the synergy assays revealed that the chitinases were unable to efficiently hydrolyse the LPMO products...... (chitooligosaccharide aldonic acids) with a degree of polymerization below four (ChiA and SmChiC) or three (ChiB). Gene transcription and protein expression analysis showed that LmLPMO10 is neither highly transcribed, nor abundantly secreted during the growth of L. monocytogenes in a chitin-containing medium...

  11. Complement-mediated bactericidal activity of anti-factor H binding protein monoclonal antibodies against the meningococcus relies upon blocking factor H binding.

    Science.gov (United States)

    Giuntini, Serena; Reason, Donald C; Granoff, Dan M

    2011-09-01

    Binding of the complement-downregulating protein factor H (fH) to the surface of the meningococcus is important for survival of the organism in human serum. The meningococcal vaccine candidate factor H binding protein (fHbp) is an important ligand for human fH. While some fHbp-specific monoclonal antibodies (MAbs) block binding of fH to fHbp, the stoichiometry of blocking in the presence of high serum concentrations of fH and its effect on complement-mediated bactericidal activity are unknown. To investigate this question, we constructed chimeric antibodies in which the human IgG1 constant region was paired with three murine fHbp-specific binding domains designated JAR 3, JAR 5, and MAb502. By surface plasmon resonance, the association rates for binding of all three MAbs to immobilized fHbp were >50-fold higher than that for binding of fH to fHbp, and the MAb dissociation rates were >500-fold lower than that for fH. While all three MAbs elicited similar C1q-dependent C4b deposition on live bacteria (classical complement pathway), only those antibodies that inhibited binding of fH to fHbp (JAR 3 and JAR 5) had bactericidal activity with human complement. MAb502, which did not inhibit fH binding, had complement-mediated bactericidal activity only when tested with fH-depleted human complement. When an IgG1 anti-fHbp MAb binds to sparsely exposed fHbp on the bacterial surface, there appears to be insufficient complement activation for bacteriolysis unless fH binding also is inhibited. The ability of fHbp vaccines to elicit protective antibodies, therefore, is likely to be enhanced if the antibody repertoire is of high avidity and includes fH-blocking activity.

  12. Fabrication of Chitin/Poly(butylene succinate/Chondroitin Sulfate Nanoparticles Ternary Composite Hydrogel Scaffold for Skin Tissue Engineering

    Directory of Open Access Journals (Sweden)

    S. Deepthi

    2014-12-01

    Full Text Available Skin loss is one of the oldest and still not totally resolved problems in the medical field. Since spontaneous healing of the dermal defects would not occur, the regeneration of full thickness of skin requires skin substitutes. Tissue engineering constructs would provide a three dimensional matrix for the reconstruction of skin tissue and the repair of damage. The aim of the present work is to develop a chitin based scaffold, by blending it with poly(butylene succinate (PBS, an aliphatic, biodegradable and biocompatible synthetic polymer with excellent mechanical properties. The presence of chondroitin sulfate nanoparticles (CSnp in the scaffold would favor cell adhesion. A chitin/PBS/CSnp composite hydrogel scaffold was developed and characterized by SEM (Scanning Electron Microscope, FTIR (Fourier Transform Infrared Spectroscopy, and swelling ratio of scaffolds were analyzed. The scaffolds were evaluated for the suitability for skin tissue engineering application by cytotoxicity, cell attachment, and cell proliferation studies using human dermal fibroblasts (HDF. The cytotoxicity and cell proliferation studies using HDF confirm the suitability of the scaffold for skin regeneration. In short, these results show promising applicability of the developed chitin/PBS/CSnps ternary composite hydrogel scaffolds for skin tissue regeneration.

  13. Chitin mixed in potting soil alters lettuce growth, the survival of zoonotic bacteria on the leaves and associated rhizosphere microbiology.

    Directory of Open Access Journals (Sweden)

    Jane eDebode

    2016-04-01

    Full Text Available Chitin is a promising soil amendment for improving soil quality, plant growth and plant resilience. The objectives of this study were twofold. First, to study the effect of chitin mixed in potting soil on lettuce growth and on the survival of two zoonotic bacterial pathogens, Escherichia coli O157:H7 and Salmonella enterica on the lettuce leaves. Second, to assess the related changes in the microbial lettuce rhizosphere, using phospholipid fatty acid (PLFA analysis and amplicon sequencing of a bacterial 16S rRNA gene fragment and the fungal ITS2. As a result of chitin addition, lettuce fresh yield weight was significantly increased. S. enterica survival in the lettuce phyllosphere was significantly reduced. The E. coli O157:H7 survival was also lowered, but not significantly. Moreover, significant changes were observed in the bacterial and fungal community of the lettuce rhizosphere. PLFA analysis showed a significant increase in fungal and bacterial biomass. Amplicon sequencing showed no increase in fungal and bacterial biodiversity, but relative abundances of the bacterial phyla Acidobacteria, Verrucomicrobia, Actinobacteria, Bacteroidetes, and Proteobacteria and the fungal phyla Ascomycota, Basidiomycota, and Zygomycota were significantly changed. More specifically, a more than tenfold increase was observed for operational taxonomic units (OTUs belonging to the bacterial genera Cellvibrio, Pedobacter, Dyadobacter, and Streptomyces and to the fungal genera Lecanicillium and Mortierella. These genera include several species previously reported to be involved in biocontrol, plant growth promotion, the nitrogen cycle and chitin degradation. These results enhance the understanding of the response of the rhizosphere microbiome to chitin amendment. Moreover, this is the first study to investigate the use of soil amendments to control the survival of S. enterica on plant leaves.

  14. NATURAL POLYMERS: CELLULOSE, CHITIN, CHITOSAN, GELATIN, STARCH, CARRAGEENAN, XYLAN AND DEXTRAN

    Directory of Open Access Journals (Sweden)

    Fatma Zohra Benabid

    2016-12-01

    Full Text Available Biopolymers have been investigated for drug fields. They are widely being studied because of their non-toxic and biocompatible in nature. Biopolymers are used in industries as diverse as paper, plastics, food, textiles, pharmaceuticals, and cosmetics.This review covers different natural polymers, recent techniques applied in their processing and characterization. Advanced applications of natural polymers, including chitin, chitosan, alginate, etc., are discussed.

  15. Synthesis, DNA Binding, and Antiproliferative Activity of Novel Acridine-Thiosemicarbazone Derivatives

    Directory of Open Access Journals (Sweden)

    Sinara Mônica Vitalino de Almeida

    2015-06-01

    Full Text Available In this work, the acridine nucleus was used as a lead-compound for structural modification by adding different substituted thiosemicarbazide moieties. Eight new (Z-2-(acridin-9-ylmethylene-N-phenylhydrazinecarbothioamide derivatives (3a–h were synthesized, their antiproliferative activities were evaluated, and DNA binding properties were performed with calf thymus DNA (ctDNA by electronic absorption and fluorescence spectroscopies. Both hyperchromic and hypochromic effects, as well as red or blue shifts were demonstrated by addition of ctDNA to the derivatives. The calculated binding constants ranged from 1.74 × 104 to 1.0 × 106 M−1 and quenching constants from −0.2 × 104 to 2.18 × 104 M−1 indicating high affinity to ctDNA base pairs. The most efficient compound in binding to ctDNA in vitro was (Z-2-(acridin-9-ylmethylene-N- (4-chlorophenyl hydrazinecarbothioamide (3f, while the most active compound in antiproliferative assay was (Z-2-(acridin-9-ylmethylene-N-phenylhydrazinecarbothioamide (3a. There was no correlation between DNA-binding and in vitro antiproliferative activity, but the results suggest that DNA binding can be involved in the biological activity mechanism. This study may guide the choice of the size and shape of the intercalating part of the ligand and the strategic selection of substituents that increase DNA-binding or antiproliferative properties.

  16. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes

    DEFF Research Database (Denmark)

    Cockburn, Darrell; Wilkens, Casper; Dilokpimol, Adiphol

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical...

  17. Histochemistry of lectin-binding sites in Halicryptus spinulosus (Priapulida).

    Science.gov (United States)

    Busch, A; Schumacher, U; Storch, V

    2001-02-01

    Priapulida represent one of the phylogenetically oldest multicellular animal groups. In multicellular animals (Metazoa) cell-to-cell and cell-to-matrix interactions are often mediated by carbohydrate residues of glycoconjugates. To analyze the carbohydrate composition of a phylogenetically old species, lectin histochemistry was employed on 5 specimens of the priapulid Halicryptus spinulosus. Many lectins bound to the chitin-containing cuticle, including those specific for carbohydrates other than N-acetylglucosamine, the principle building block of chitin. The connective tissue of the animals contained both N-acetylglucosamine and N-acetylgalactosamine. Mannose residues were widely distributed with the exception of the cuticle, but complex type carbohydrates were not present in the entire animal. Sialic acid residues were only detected in the cuticle and brush border of the intestinal epithelium, while fucose was limited to the cuticle. Thus, the lectin-binding pattern indicated that sugars typical for the linking region of both N- and O-glycoproteins in mammals are also present in H. spinulosus. Carbohydrate residues that are typical for the complex type of N-linked glycans in vertebrates are not present as are carbohydrate residues typical for the termination of O-linked carbohydrate chains. Hence, a truncated form of both N- and O-linked glycosylation is present in H. spinulosus indicating that more complex patterns of glycosylation developed later during evolution.

  18. Chitosan from shrimp shell ( Crangon crangon ) and fish scales ...

    African Journals Online (AJOL)

    Chitosan is a naturally available biopolymer. It has been prepared by alkaline N deacetylation process of shrimp (Crangon crangon) chitin and fish (Labeorohita) chitin. The physico-chemical properties such as the degree of deacetylation (DD), solubility, water binding capacity, fat binding capacity and chitosan yield have ...

  19. Influence of Functionalization Degree on the Rheological Properties of Isocyanate-Functionalized Chitin- and Chitosan-Based Chemical Oleogels for Lubricant Applications

    Directory of Open Access Journals (Sweden)

    Rocío Gallego

    2014-07-01

    Full Text Available This work deals with the influence of functionalization degree on the thermogravimetric and rheological behaviour of NCO-functionalized chitosan- and chitin-based oleogels. Chitosan and chitin were functionalized using different proportions of 1,6-hexamethylene diisocyanate (HMDI and subsequently dispersed in castor oil to promote the chemical reaction between the –NCO group of the modified biopolymer and the –OH group located in the ricinoleic fatty acid chain of castor oil, thus resulting in different oleogels with specific thermogravimetric and rheological characteristics. Biopolymers and oleogels were characterized through Fourier transform infrared spectroscopy (FTIR and thermogravimetric analysis (TGA. Small-amplitude oscillatory shear (SAOS measurements were performed on the oleogels. Oleogels presented suitable thermal resistance, despite the fact that the inclusion of HMDI moieties in the polymer structure led to a reduction in the onset temperature of thermal degradation. The insertion of low amounts of HMDI in both chitin and chitosan produces a drastic reduction in the values of oleogel viscoelastic functions but, above a critical threshold, they increase with the functionalization degree so that isocyanate functionalization results in a chemical tool to modulate oleogel rheological response. Several NCO-functionalized chitosan- and chitin-based oleogel formulations present suitable thermal resistance and rheological characteristics to be proposed as bio-based alternatives to traditional lubricating greases.

  20. Molecular, Structural and Immunological Characterization of Der p 18, a Chitinase-Like House Dust Mite Allergen.

    Directory of Open Access Journals (Sweden)

    Yvonne Resch

    Full Text Available The house dust mite (HDM allergen Der p 18 belongs to the glycoside hydrolase family 18 chitinases. The relevance of Der p 18 for house dust mite allergic patients has only been partly investigated.To perform a detailed characterization of Der p 18 on a molecular, structural and immunological level.Der p 18 was expressed in E. coli, purified to homogeneity, tested for chitin-binding activity and its secondary structure was analyzed by circular dichroism. Der p 18-specific IgG antibodies were produced in rabbits to localize the allergen in mites using immunogold electron microscopy and to search for cross-reactive allergens in other allergen sources (i.e. mites, crustacea, mollusca and insects. IgE reactivity of rDer p 18 was tested with sera from clinically well characterized HDM-allergic patients (n = 98 and its allergenic activity was analyzed in basophil activation experiments.Recombinant Der p 18 was expressed and purified as a folded, biologically active protein. It shows weak chitin-binding activity and partial cross-reactivity with Der f 18 from D. farinae but not with proteins from the other tested allergen sources. The allergen was mainly localized in the peritrophic matrix of the HDM gut and to a lower extent in fecal pellets. Der p 18 reacted with IgE from 10% of mite allergic patients from Austria and showed allergenic activity when tested for basophil activation in Der p 18-sensitized patients.Der p 18 is a rather genus-specific minor allergen with weak chitin-binding activity but exhibits allergenic activity and therefore should be included in diagnostic test panels for HDM allergy.

  1. Cupryphans, metal-binding, redox-active, redesigned conopeptides.

    Science.gov (United States)

    Barba, Marco; Sobolev, Anatoli P; Romeo, Cristina; Schininà, M Eugenia; Pietraforte, Donatella; Mannina, Luisa; Musci, Giovanni; Polticelli, Fabio

    2009-03-01

    Contryphans are bioactive peptides, isolated from the venom of marine snails of the genus Conus, which are characterized by the short length of the polypeptide chain and the high degree of unusual post-translational modifications. The cyclization of the polypeptide chain through a single disulphide bond, the presence of two conserved Pro residues, and the epimerization of a Trp/Leu residue confer to Contryphans a stable and well-defined structure in solution, conserved in all members of the family, and tolerant to multiple substitutions. The potential of Contryphans as scaffolds for the design of redox-active (macro)molecules was tested by engineering a copper-binding site on two different variants of the natural peptide Contryphan-Vn. The binding site was designed by computational modeling, and the redesigned peptides were synthesized and characterized by optical, fluorescence, electron spin resonance, and nuclear magnetic resonance spectroscopy. The novel peptides, named Cupryphan and Arg-Cupryphan, bind Cu(2+) ions with a 1:1 stoichiometry and a K(d) in the 100 nM range. Other divalent metals (e.g., Zn(2+) and Mg(2+)) are bound with much lower affinity. In addition, Cupryphans catalyze the dismutation of superoxide anions with an activity comparable to other nonpeptidic superoxide dismutase mimics. We conclude that the Contryphan motif represents a natural robust scaffold which can be engineered to perform different functions, providing additional means for the design of catalytically active mini metalloproteins.

  2. Chitinase activity of Pseudomonas stutzeri PT5 in different fermentation condition

    Science.gov (United States)

    Chalidah, N.; Khotimah, I. N.; Hakim, A. R.; Meata, B. A.; Puspita, I. D.; Nugraheni, P. S.; Ustadi; Pudjiraharti, S.

    2018-03-01

    This study aimed to determine the incubation condition of Pseudomonas stutzeri PT5 in producing chitin degrading enzyme in various pH and temperatures; to compare the production of chitin degrading enzyme in chitin medium supplemented with additional nitrogen, carbon and a mixture of nitrogen and carbon sources and to observe the production of chitin degrading enzyme in 250 mL-shake flasks and 2 L-fermentor. The parameters tested during production were chitinase activity (U·mL-1) of culture supernatant and N-acetylglucosamine concentration (μg·mL-1) in the medium. The results showed that Pseudomonas stutzeri PT5 was able to produce the highest chitinase activity at pH 6 and temperature of 37 °C (0.024 U·mL-1). The addition of 0.1 % of ammonium phosphate and 0.1 % of maltose, increased the chitinase activity of Pseudomonas stutzeri PT5 by 3.24 and 8.08 folds, respectively, compared to the control. The addition of 0.1 % ammonium phosphate and 0.1 % maltose mixture to chitin medium resulted in the shorter time of chitinase production compared to the addition of sole nutrition. The production of chitinase using 2 L-fermentor shows that the highest chitinase activity produced by Pseudomonas stutzeri PT5 was reached at 1-day incubation (0.0283 U·mL-1), which was shorter than in 250 mL-shake flasks.

  3. DNA Mismatch Binding and Antiproliferative Activity of Rhodium Metalloinsertors

    Science.gov (United States)

    Ernst, Russell J.; Song, Hang; Barton, Jacqueline K.

    2009-01-01

    Deficiencies in mismatch repair (MMR) are associated with carcinogenesis. Rhodium metalloinsertors bind to DNA base mismatches with high specificity and inhibit cellular proliferation preferentially in MMR-deficient cells versus MMR-proficient cells. A family of chrysenequinone diimine complexes of rhodium with varying ancillary ligands that serve as DNA metalloinsertors has been synthesized, and both DNA mismatch binding affinities and antiproliferative activities against the human colorectal carcinoma cell lines HCT116N and HCT116O, an isogenic model system for MMR deficiency, have been determined. DNA photocleavage experiments reveal that all complexes bind to the mismatch sites with high specificities; DNA binding affinities to oligonucleotides containing single base CA and CC mismatches, obtained through photocleavage titration or competition, vary from 104 to 108 M−1 for the series of complexes. Significantly, binding affinities are found to be inversely related to ancillary ligand size and directly related to differential inhibition of the HCT116 cell lines. The observed trend in binding affinity is consistent with the metalloinsertion mode where the complex binds from the minor groove with ejection of mismatched base pairs. The correlation between binding affinity and targeting of the MMR-deficient cell line suggests that rhodium metalloinsertors exert their selective biological effects on MMR-deficient cells through mismatch binding in vivo. PMID:19175313

  4. A versatile non-radioactive assay for DNA methyltransferase activity and DNA binding

    Science.gov (United States)

    Frauer, Carina; Leonhardt, Heinrich

    2009-01-01

    We present a simple, non-radioactive assay for DNA methyltransferase activity and DNA binding. As most proteins are studied as GFP fusions in living cells, we used a GFP binding nanobody coupled to agarose beads (GFP nanotrap) for rapid one-step purification. Immobilized GFP fusion proteins were subsequently incubated with different fluorescently labeled DNA substrates. The absolute amounts and molar ratios of GFP fusion proteins and bound DNA substrates were determined by fluorescence spectroscopy. In addition to specific DNA binding of GFP fusion proteins, the enzymatic activity of DNA methyltransferases can also be determined by using suicide DNA substrates. These substrates contain the mechanism-based inhibitor 5-aza-dC and lead to irreversible covalent complex formation. We obtained covalent complexes with mammalian DNA methyltransferase 1 (Dnmt1), which were resistant to competition with non-labeled canonical DNA substrates, allowing differentiation between methyltransferase activity and DNA binding. By comparison, the Dnmt1C1229W catalytic site mutant showed DNA-binding activity, but no irreversible covalent complex formation. With this assay, we could also confirm the preference of Dnmt1 for hemimethylated CpG sequences. The rapid optical read-out in a multi-well format and the possibility to test several different substrates in direct competition allow rapid characterization of sequence-specific binding and enzymatic activity. PMID:19129216

  5. MICROBIAL FERMENTATION OF ABUNDANT BIOPOLYMERS: CELLULOSE AND CHITIN

    Energy Technology Data Exchange (ETDEWEB)

    Leschine, Susan

    2009-10-31

    Our research has dealt with seven major areas of investigation: i) characterization of cellulolytic members of microbial consortia, with special attention recently given to Clostridium phytofermentans, a bacterium that decomposes cellulose and produces uncommonly large amounts of ethanol, ii) investigations of the chitinase system of Cellulomonas uda; including the purification and characterization of ChiA, the major component of this enzyme system, iii) molecular cloning, sequence and structural analysis of the gene that encodes ChiA in C. uda, iv) biofilm formation by C. uda on nutritive surfaces, v) investigations of the effects of humic substances on cellulose degradation by anaerobic cellulolytic microbes, vi) studies of nitrogen metabolism in cellulolytic anaerobes, and vii) understanding the molecular architecture of the multicomplex cellulase-xylanase system of Clostridium papyrosolvens. Also, progress toward completing the research of more recent projects is briefly summarized. Major accomplishments include: 1. Characterization of Clostridium phytofermentans, a cellulose-fermenting, ethanol-producing bacterium from forest soil. The characterization of a new cellulolytic species isolated from a cellulose-decomposing microbial consortium from forest soil was completed. This bacterium is remarkable for the high concentrations of ethanol produced during cellulose fermentation, typically more than twice the concentration produced by other species of cellulolytic clostridia. 2. Examination of the use of chitin as a source of carbon and nitrogen by cellulolytic microbes. We discovered that many cellulolytic anaerobes and facultative aerobes are able to use chitin as a source of both carbon and nitrogen. This major discovery expands our understanding of the biology of cellulose-fermenting bacteria and may lead to new applications for these microbes. 3. Comparative studies of the cellulase and chitinase systems of Cellulomonas uda. Results of these studies indicate

  6. Eel calcitonin binding site distribution and antinociceptive activity in rats

    International Nuclear Information System (INIS)

    Guidobono, F.; Netti, C.; Sibilia, V.; Villa, I.; Zamboni, A.; Pecile, A.

    1986-01-01

    The distribution of binding site for [ 125 I]-eel-calcitonin (ECT) to rat central nervous system, studied by an autoradiographic technique, showed concentrations of binding in the diencephalon, the brain stem and the spinal cord. Large accumulations of grains were seen in the hypothalamus, the amygdala, in the fasciculus medialis prosencephali, in the fasciculus longitudinalis medialis, in the ventrolateral part of the periventricular gray matter, in the lemniscus medialis and in the raphe nuclei. The density of grains in the reticular formation and in the nucleus tractus spinalis nervi trigemini was more moderate. In the spinal cord, grains were scattered throughout the dorsal horns. Binding of the ligand was displaced equally by cold ECT and by salmon CT(sCT), indicating that both peptides bind to the same receptors. Human CT was much weaker than sCT in displacing [ 125 I]-ECT binding. The administration of ECT into the brain ventricles of rats dose-dependently induced a significant and long-lasting enhancement of hot-plate latencies comparable with that obtained with sCT. The antinociceptive activity induced by ECT is compatible with the topographical distribution of binding sites for the peptide and is a further indication that fish CTs are active in the mammalian brain

  7. Development and evaluation of 5-fluorouracil loaded chitin nanogels for treatment of skin cancer.

    Science.gov (United States)

    Sabitha, M; Sanoj Rejinold, N; Nair, Amrita; Lakshmanan, Vinoth-Kumar; Nair, Shantikumar V; Jayakumar, R

    2013-01-02

    This study focuses on development and evaluation of 5-fluorouracil (5-FU) loaded chitin nanogels (FCNGs). It formed good, stable aqueous dispersion with spherical particles in 120-140 nm size range and showed pH responsive swelling and drug release. The FCNGs showed toxicity on melanoma (A375) in a concentration range of 0.4-2.0mg/mL, but less toxicity toward human dermal fibroblast (HDF) cells by MTT assay. Confocal analysis revealed uptake of FCNGs by both cells. From skin permeation experiments, FCNGs showed almost same steady state flux as that of control 5-FU but the retention in the deeper layers of skin was found to be 4-5 times more from FCNGs. Histopathological evaluation revealed loosening of the horny layer of epidermis by interaction of cationically charged chitin, with no observed signs of inflammation and so FCNGs can be a good option for treatment of skin cancers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Binding of Nickel to Testicular Glutamate–Ammonia Ligase Inhibits Its Enzymatic Activity

    Science.gov (United States)

    SUN, YINGBIAO; OU, YOUNG; CHENG, MIN; RUAN, YIBING; VAN DER HOORN, FRANS A.

    2016-01-01

    SUMMARY Exposure to nickel has been shown to cause damage to the testis in several animal models. It is not known if the testis expresses protein(s) that can bind nickel. To test this, we used a nickel-binding assay to isolate testicular nickel-binding proteins. We identified glutamate–ammonia ligase (GLUL) as a prominent nickel-binding protein by mass spectrometry. Protein analysis and reverse transcriptase polymerase chain reaction showed that GLUL is expressed in the testis, predominantly in interstitial cells. We determined that GLUL has a higher affinity for nickel than for its regular co-factor manganese. We produced an enzymatically active, recombinant GLUL protein. Upon binding, nickel interferes with the manganese-catalyzed enzymatic activity of recombinant GLUL protein. We also determined that GLUL activity in testes of animals exposed to nickel sulfate is reduced. Our results identify testicular GLUL as the first testicular protein shown to be affected by nickel exposure. PMID:21254280

  9. Retro-binding thrombin active site inhibitors: identification of an orally active inhibitor of thrombin catalytic activity.

    Science.gov (United States)

    Iwanowicz, Edwin J; Kimball, S David; Lin, James; Lau, Wan; Han, W-C; Wang, Tammy C; Roberts, Daniel G M; Schumacher, W A; Ogletree, Martin L; Seiler, Steven M

    2002-11-04

    A series of retro-binding inhibitors of human alpha-thrombin was prepared to elucidate structure-activity relationships (SAR) and optimize in vivo performance. Compounds 9 and 11, orally active inhibitors of thrombin catalytic activity, were identified to be efficacious in a thrombin-induced lethality model in mice.

  10. Expression and purification of Nod factor receptors - Initial characterization of ligand binding

    DEFF Research Database (Denmark)

    Broghammer, Angelique

    Carbohydrate signals have been shown to regulate defence, growth and development in plants. Decorated chitin molecules, lipochitooligosaccharides, synthesized and secreted by rhizobia are the major signal molecules initiating the plant processes establishing legume-rhizobia symbiosis. Lipochitool......Carbohydrate signals have been shown to regulate defence, growth and development in plants. Decorated chitin molecules, lipochitooligosaccharides, synthesized and secreted by rhizobia are the major signal molecules initiating the plant processes establishing legume-rhizobia symbiosis...... and LjNFR5 ectodomains were glycosylated; 3) LjNFR1 retained its in vitro kinase activity and 4) LjNFR1 and LjNFR5 were localized to the plasma membrane. In depth mass spectroscopy analysis of the N-glycan structure of LjNFR5 resulted in identification of two different glycan structures with identical...

  11. Aluminium fluoride and magnesium, activators of heterotrimeric GTP-binding proteins, affect high-affinity binding of the fungal toxin fusicoccin to the fusicoccin-binding protein in oat root plasma membranes.

    NARCIS (Netherlands)

    de Boer, A.H.; Van der Molen, G.W.; Prins, H.B.A.; Korthout, H.A.A.J.; van der Hoeven, P.C.J.

    1994-01-01

    The fusicoccin-binding protein was solubilised from purified oat root plasma membranes. The solubilised protein retained full binding activity, provided that protease inhibitors were included. Sodium fluoride reduced the high-affinity [H-3]fusicoccin binding to almost zero in a

  12. Key structural features of nonsteroidal ligands for binding and activation of the androgen receptor.

    Science.gov (United States)

    Yin, Donghua; He, Yali; Perera, Minoli A; Hong, Seoung Soo; Marhefka, Craig; Stourman, Nina; Kirkovsky, Leonid; Miller, Duane D; Dalton, James T

    2003-01-01

    The purposes of the present studies were to examine the androgen receptor (AR) binding ability and in vitro functional activity of multiple series of nonsteroidal compounds derived from known antiandrogen pharmacophores and to investigate the structure-activity relationships (SARs) of these nonsteroidal compounds. The AR binding properties of sixty-five nonsteroidal compounds were assessed by a radioligand competitive binding assay with the use of cytosolic AR prepared from rat prostates. The AR agonist and antagonist activities of high-affinity ligands were determined by the ability of the ligand to regulate AR-mediated transcriptional activation in cultured CV-1 cells, using a cotransfection assay. Nonsteroidal compounds with diverse structural features demonstrated a wide range of binding affinity for the AR. Ten compounds, mainly from the bicalutamide-related series, showed a binding affinity superior to the structural pharmacophore from which they were derived. Several SARs regarding nonsteroidal AR binding were revealed from the binding data, including stereoisomeric conformation, steric effect, and electronic effect. The functional activity of high-affinity ligands ranged from antagonist to full agonist for the AR. Several structural features were found to be determinative of agonist and antagonist activities. The nonsteroidal AR agonists identified from the present studies provided a pool of candidates for further development of selective androgen receptor modulators (SARMs) for androgen therapy. Also, these studies uncovered or confirmed numerous important SARs governing AR binding and functional properties by nonsteroidal molecules, which would be valuable in the future structural optimization of SARMs.

  13. Selective metal binding to Cys-78 within endonuclease V causes an inhibition of catalytic activities without altering nontarget and target DNA binding

    International Nuclear Information System (INIS)

    Prince, M.A.; Friedman, B.; Gruskin, E.A.; Schrock, R.D. III; Lloyd, R.S.

    1991-01-01

    T4 endonuclease V is a pyrimidine dimer-specific DNA repair enzyme which has been previously shown not to require metal ions for either of its two catalytic activities or its DNA binding function. However, we have investigated whether the single cysteine within the enzyme was able to bind metal salts and influence the various activities of this repair enzyme. A series of metals (Hg2+, Ag+, Cu+) were shown to inactivate both endonuclease Vs pyrimidine dimer-specific DNA glycosylase activity and the subsequent apurinic nicking activity. The binding of metal to endonuclease V did not interfere with nontarget DNA scanning or pyrimidine dimer-specific binding. The Cys-78 codon within the endonuclease V gene was changed by oligonucleotide site-directed mutagenesis to Thr-78 and Ser-78 in order to determine whether the native cysteine was directly involved in the enzyme's DNA catalytic activities and whether the cysteine was primarily responsible for the metal binding. The mutant enzymes were able to confer enhanced ultraviolet light (UV) resistance to DNA repair-deficient Escherichia coli at levels equal to that conferred by the wild type enzyme. The C78T mutant enzyme was purified to homogeneity and shown to be catalytically active on pyrimidine dimer-containing DNA. The catalytic activities of the C78T mutant enzyme were demonstrated to be unaffected by the addition of Hg2+ or Ag+ at concentrations 1000-fold greater than that required to inhibit the wild type enzyme. These data suggest that the cysteine is not required for enzyme activity but that the binding of certain metals to that amino acid block DNA incision by either preventing a conformational change in the enzyme after it has bound to a pyrimidine dimer or sterically interfering with the active site residue's accessibility to the pyrimidine dimer

  14. Flavonoids with M1 Muscarinic Acetylcholine Receptor Binding Activity

    Directory of Open Access Journals (Sweden)

    Meyyammai Swaminathan

    2014-06-01

    Full Text Available Muscarinic acetylcholine receptor-active compounds have potential for the treatment of Alzheimer’s disease. In this study, a series of natural and synthetic flavones and flavonols was assayed in vitro for their ability to inhibit radioligand binding at human cloned M1 muscarinic receptors. Several compounds were found to possess competitive binding affinity (Ki = 40–110 µM, comparable to that of acetylcholine (Ki = 59 µM. Despite the fact that these compounds lack a positively-charged ammonium group under physiological conditions, molecular modelling studies suggested that they bind to the orthosteric site of the receptor, mainly through non-polar interactions.

  15. Comparative study of selenite adsorption on carbon based adsorbents and activated alumina.

    Science.gov (United States)

    Jegadeesan, G; Mondal, K; Lalvani, S B

    2003-08-01

    The sorption characteristics of carbon-based adsorbents such as activated carbon and chitin for the removal of selenite, Se (IV), an anionic, hazardous contaminant, are compared with those of alpha and gamma alumina. Batch experiments were conducted to determine the influence of pH, concentration of adsorbate, adsorbent loading and temperature on the sorption characteristics of the adsorbents. Generally, low pH of the solution resulted in favorable selenium removal. With the exception of activated carbon, uptakes decreased with increase in temperature. In comparison, chitin was found to be far less effective for the removal of Se (IV) from aqueous solutions. The data also showed that gamma alumina provided higher selenium removal percentages (99%) compared to alpha alumina (94%), activated carbon (87%) and chitin (49%). The selenite removal was found to decrease with increasing initial Se (IV) concentration in the solution. Adsorption capacities of the adsorbents are reported in terms of their Langmuir adsorption isotherms. The adsorption capacity (on unit mass basis) of the adsorbents for selenite is in the order: chitin (specific area (sa) = 9.58 m2 g(-1)) activated carbon (sa = 96.37 m2 g(-1)) < alpha alumina (sa = 6 m2 g(-1)) < gamma alumina (sa = 150 m2 g(-1)).

  16. Comparative anti-psoriatic efficacy studies of clobetasol loaded chitin nanogel and marketed cream.

    Science.gov (United States)

    Panonnummal, Rajitha; Jayakumar, R; Sabitha, M

    2017-01-01

    In the present study chitin nanogel loaded with anti-psoriatic drug clobetasol was developed (CLCNG) for its topical delivery in psoriasis. CLCNG had the particle size of 132±14nm, with gel like consistency, stability in refrigerator, having higher drug release properties at acidic pH. CLCNG exhibited significant toxicity towards HaCaT and THP-1cell lines by MTT assay. The uptake of nanogel by HaCaT cell lines was confirmed by fluorescent microscopy. CLCNG at 0.35mg/ml exhibited significant anti-inflammatory activity with an average of 65% and 70% inhibition in COX and LOX activities expressed in THP-1 cells. In vitro skin permeation studies revealed the increased transdermal flux with fragmented stratum corneum and loosened epidermal layers in CLCNG treated samples, compared with control drug solution. The in vivo anti-psoriatic studies done on imiquimod model confirmed the potential benefits of the nanogel for the topical delivery of clobetasol in psoriasis. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Monoclonal antibodies to meningococcal factor H binding protein with overlapping epitopes and discordant functional activity.

    Science.gov (United States)

    Giuntini, Serena; Beernink, Peter T; Reason, Donald C; Granoff, Dan M

    2012-01-01

    Meningococcal factor H binding protein (fHbp) is a promising vaccine candidate. Anti-fHbp antibodies can bind to meningococci and elicit complement-mediated bactericidal activity directly. The antibodies also can block binding of the human complement down-regulator, factor H (fH). Without bound fH, the organism would be expected to have increased susceptibility to bacteriolysis. Here we describe bactericidal activity of two anti-fHbp mAbs with overlapping epitopes in relation to their different effects on fH binding and bactericidal activity. Both mAbs recognized prevalent fHbp sequence variants in variant group 1. Using yeast display and site-specific mutagenesis, binding of one of the mAbs (JAR 1, IgG3) to fHbp was eliminated by a single amino acid substitution, R204A, and was decreased by K143A but not by R204H or D142A. The JAR 1 epitope overlapped that of previously described mAb (mAb502, IgG2a) whose binding to fHbp was eliminated by R204A or R204H substitutions, and was decreased by D142A but not by K143A. Although JAR 1 and mAb502 appeared to have overlapping epitopes, only JAR 1 inhibited binding of fH to fHbp and had human complement-mediated bactericidal activity. mAb502 enhanced fH binding and lacked human complement-mediated bactericidal activity. To control for confounding effects of different mouse IgG subclasses on complement activation, we created chimeric mAbs in which the mouse mAb502 or JAR 1 paratopes were paired with human IgG1 constant regions. While both chimeric mAbs showed similar binding to fHbp, only JAR 1, which inhibited fH binding, had human complement-mediated bactericidal activity. The lack of human complement-mediated bactericidal activity by anti-fHbp mAb502 appeared to result from an inability to inhibit binding of fH. These results underscore the importance of inhibition of fH binding for anti-fHbp mAb bactericidal activity.

  18. Mechanisms of Expression and Internalisation of FIBCD1; a novel Pattern Recognition Receptor in the Gut Mucosa

    DEFF Research Database (Denmark)

    Hammond, Mark; Schlosser, Anders; Dubey, Lalit Kumar

    2012-01-01

    is a carbohydrate recognition domain also expressed by the ficolins, which are pattern recognition molecules that activate the complement system via the lectin pathway. Chitin is a highly ace¬tylated homopolymer of β-1,4-N-acetyl-glucosamine carbohydrate found abundantly in nature in organisms such as fungi...... pattern recognition receptor that binds chitin and directs acetylated structures for de¬gradation in the endosome via clathrin-mediated endocytosis. The localisation of FIBCD1 in the intestinal mucosal epithelia points towards a functional role in innate immunity and/or gut homeostasis....

  19. Regulation of activity of the yeast TATA-binding protein through intra ...

    Indian Academy of Sciences (India)

    Unknown

    Abbreviations used: BMH, Bismaleimidohexane; TBP, TATA-binding protein; yTBP, yeast TBP. J. Biosci. | Vol. ... Therefore for full-length TBP, intra-molecular interactions can regulate its activity via a similar ..... simulations (Miaskeiwicz and Ornstein 1996). .... box binding protein (TBP): A molecular dynamics computa-.

  20. Traffic of chitin synthase 1 (CHS-1) to the Spitzenkörper and developing septa in hyphae of Neurospora crassa: actin dependence and evidence of distinct microvesicle populations.

    Science.gov (United States)

    Sánchez-León, Eddy; Verdín, Jorge; Freitag, Michael; Roberson, Robert W; Bartnicki-Garcia, Salomon; Riquelme, Meritxell

    2011-05-01

    We describe the subcellular location of chitin synthase 1 (CHS-1), one of seven chitin synthases in Neurospora crassa. Laser scanning confocal microscopy of growing hyphae showed CHS-1-green fluorescent protein (GFP) localized conspicuously in regions of active wall synthesis, namely, the core of the Spitzenkörper (Spk), the apical cell surface, and developing septa. It was also present in numerous fine particles throughout the cytoplasm plus some large vacuoles in distal hyphal regions. Although the same general subcellular distribution was observed previously for CHS-3 and CHS-6, they did not fully colocalize. Dual labeling showed that the three different chitin synthases were contained in different vesicular compartments, suggesting the existence of a different subpopulation of chitosomes for each CHS. CHS-1-GFP persisted in the Spk during hyphal elongation but disappeared from the septum after its development was completed. Wide-field fluorescence microscopy and total internal reflection fluorescence microscopy revealed subapical clouds of particles, suggestive of chitosomes moving continuously toward the Spk. Benomyl had no effect on CHS-1-GFP localization, indicating that microtubules are not strictly required for CHS trafficking to the hyphal apex. Conversely, actin inhibitors caused severe mislocalization of CHS-1-GFP, indicating that actin plays a major role in the orderly traffic and localization of CHS-1 at the apex.

  1. Unusual binding of ursodeoxycholic acid to ileal bile acid binding protein: role in activation of FXRα[S

    Science.gov (United States)

    Fang, Changming; Filipp, Fabian V.; Smith, Jeffrey W.

    2012-01-01

    Ursodeoxycholic acid (UDCA, ursodiol) is used to prevent damage to the liver in patients with primary biliary cirrhosis. The drug also prevents the progression of colorectal cancer and the recurrence of high-grade colonic dysplasia. However, the molecular mechanism by which UDCA elicits its beneficial effects is not entirely understood. The aim of this study was to determine whether ileal bile acid binding protein (IBABP) has a role in mediating the effects of UDCA. We find that UDCA binds to a single site on IBABP and increases the affinity for major human bile acids at a second binding site. As UDCA occupies one of the bile acid binding sites on IBABP, it reduces the cooperative binding that is often observed for the major human bile acids. Furthermore, IBABP is necessary for the full activation of farnesoid X receptor α (FXRα) by bile acids, including UDCA. These observations suggest that IBABP may have a role in mediating some of the intestinal effects of UDCA. PMID:22223860

  2. Presence of a large β(1-3)glucan linked to chitin at the Saccharomyces cerevisiae mother-bud neck suggests involvement in localized growth control.

    Science.gov (United States)

    Cabib, Enrico; Blanco, Noelia; Arroyo, Javier

    2012-04-01

    Previous results suggested that the chitin ring present at the yeast mother-bud neck, which is linked specifically to the nonreducing ends of β(1-3)glucan, may help to suppress cell wall growth at the neck by competing with β(1-6)glucan and thereby with mannoproteins for their attachment to the same sites. Here we explored whether the linkage of chitin to β(1-3)glucan may also prevent the remodeling of this polysaccharide that would be necessary for cell wall growth. By a novel mild procedure, β(1-3)glucan was isolated from cell walls, solubilized by carboxymethylation, and fractionated by size exclusion chromatography, giving rise to a very high-molecular-weight peak and to highly polydisperse material. The latter material, soluble in alkali, may correspond to glucan being remodeled, whereas the large-size fraction would be the final cross-linked structural product. In fact, the β(1-3)glucan of buds, where growth occurs, is solubilized by alkali. A gas1 mutant with an expected defect in glucan elongation showed a large increase in the polydisperse fraction. By a procedure involving sodium hydroxide treatment, carboxymethylation, fractionation by affinity chromatography on wheat germ agglutinin-agarose, and fractionation by size chromatography on Sephacryl columns, it was shown that the β(1-3)glucan attached to chitin consists mostly of high-molecular-weight material. Therefore, it appears that linkage to chitin results in a polysaccharide that cannot be further remodeled and does not contribute to growth at the neck. In the course of these experiments, the new finding was made that part of the chitin forms a noncovalent complex with β(1-3)glucan.

  3. A glycosylphosphatidylinositol anchor is required for membrane localization but dispensable for cell wall association of chitin deacetylase 2 in Cryptococcus neoformans.

    Science.gov (United States)

    Gilbert, Nicole M; Baker, Lorina G; Specht, Charles A; Lodge, Jennifer K

    2012-01-01

    serious fungal pathogen that kills over 600,000 people annually. It converts most of its chitin, a cell wall polysaccharide, to chitosan, which is necessary for virulence. Chitin deacetylase enzymes have been identified in the cell wall, and our studies were undertaken to understand how the deacetylase is linked to the wall and where it has activity. Our results have implications for the current model of chitosan biosynthesis and further challenge the paradigm of covalent linkages between cell wall proteins and polysaccharides through a lipid modification of the protein.

  4. Chitin nanofibrils for rapid and efficient removal of metal ions from water system.

    Science.gov (United States)

    Liu, Dagang; Zhu, Yi; Li, Zehui; Tian, Donglin; Chen, Lei; Chen, Peng

    2013-10-15

    Joint mechanical defibrillation was successfully used to downsize chitin micro-particles (CMP) into nanofibrils without changing its chemical or crystalline structure. The fine chitin nanofibrils (CNF) bearing width of about 50 nm and length of more than 1 μm were then developed as heavy metal ion sorbents. The uptake performance of CNF dependent on pH, ionic concentration, time, and temperature was investigated. Results show that fixation amount of Cd(II), Ni(II), Cu(II), Zn(II), Pb(II), Cr(III) on CNF was up to 2.94, 2.30, 2.22, 2.06, 1.46, and 0.31 mmol/g, respectively, much higher than CMP due to high specific surface area and widely distributed pores of CNF. Adsorption kinetics of CMP and CNF followed pseudo-second-order model and Freundlich isotherm although CNF exhibited higher rate constant and sorption capacity than that of CMP. The defibrillated CNF is renewable, feasible, easily recyclable, and is thought as good candidate for heavy metal ion treatment due to their low sorption energy, rapid and efficient uptake capacity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Binding of acyl CoA by fatty acid binding protein and the effect on fatty acid activation

    International Nuclear Information System (INIS)

    Burrier, R.E.; Manson, C.R.; Brecher, P.

    1987-01-01

    The ability of purified rat liver and heart fatty acid binding proteins (FABPs) to bind oleoyl CoA and modulate acyl CoA synthesis by microsomal membranes was investigated. Using binding assays employing either Lipidex 1000 or multilamellar liposomes to sequester unbound ligand, rat liver but not rat heart FABP was shown to bind radiolabeled acyl CoA. Binding studies suggest that liver FABP has a single binding site for acyl CoA which is separate from the two binding sites for fatty acids. Experiments were then performed to determine how binding may influence acyl CoA metabolism by liver microsomes or heart sarcoplasmic reticulum. Using liposomes as fatty acid donors, liver FABP stimulated acyl CoA production whereas heart FABP did not stimulate production over control values. 14 C-Fatty acid-FABP complexes were prepared, incubated with membranes and acyl CoA synthetase activity was determined. Up to 70% of the fatty acid could be converted to acyl CoA in the presence of liver FABP but in the presence of heart FABP, only 45% of the fatty acid was converted. The amount of product formed was not changed by additional membrane, enzyme cofactor, or incubation time. Liver but not heart FABP bound the acyl CoA formed and removed it from the membranes. These studies suggest that liver FABP can increase the amount of acyl CoA by binding this ligand thereby removing it from the membrane and possibly aiding transport within the cell

  6. Binding of acyl CoA by fatty acid binding protein and the effect on fatty acid activation

    Energy Technology Data Exchange (ETDEWEB)

    Burrier, R.E.; Manson, C.R.; Brecher, P.

    1987-05-01

    The ability of purified rat liver and heart fatty acid binding proteins (FABPs) to bind oleoyl CoA and modulate acyl CoA synthesis by microsomal membranes was investigated. Using binding assays employing either Lipidex 1000 or multilamellar liposomes to sequester unbound ligand, rat liver but not rat heart FABP was shown to bind radiolabeled acyl CoA. Binding studies suggest that liver FABP has a single binding site for acyl CoA which is separate from the two binding sites for fatty acids. Experiments were then performed to determine how binding may influence acyl CoA metabolism by liver microsomes or heart sarcoplasmic reticulum. Using liposomes as fatty acid donors, liver FABP stimulated acyl CoA production whereas heart FABP did not stimulate production over control values. /sup 14/C-Fatty acid-FABP complexes were prepared, incubated with membranes and acyl CoA synthetase activity was determined. Up to 70% of the fatty acid could be converted to acyl CoA in the presence of liver FABP but in the presence of heart FABP, only 45% of the fatty acid was converted. The amount of product formed was not changed by additional membrane, enzyme cofactor, or incubation time. Liver but not heart FABP bound the acyl CoA formed and removed it from the membranes. These studies suggest that liver FABP can increase the amount of acyl CoA by binding this ligand thereby removing it from the membrane and possibly aiding transport within the cell.

  7. Chitinolytic Streptomyces vinaceusdrappus S5MW2 isolated from Chilika lake, India enhances plant growth and biocontrol efficacy through chitin supplementation against Rhizoctonia solani.

    Science.gov (United States)

    Yandigeri, Mahesh S; Malviya, Nityanand; Solanki, Manoj Kumar; Shrivastava, Pooja; Sivakumar, G

    2015-08-01

    A chitinolytic actinomycete Streptomyces vinaceusdrappus S5MW2 was isolated from water sample of Chilika lake, India and identified using 16S rRNA gene sequencing. It showed in vitro antifungal activity against the sclerotia producing pathogen Rhizoctonia solani in a dual culture assay and by chitinase enzyme production in a chitin supplemented minimal broth. Moreover, isolate S5MW2 was further characterized for biocontrol (BC) and plant growth promoting features in a greenhouse experiment with or without colloidal chitin (CC). Results of greenhouse experiment showed that CC supplementation with S5MW2 showed a significant growth of tomato plants and superior disease reduction as compared to untreated control and without CC treated plants. Moreover, higher accumulation of chitinase also recovered in the CC supplemented plants. Significant effect of CC also concurred with the Analysis of Variance of greenhouse parameters. These results show that the a marine antagonist S5MW2 has BC efficiency against R. solani and chitinase enzyme played important role in plant resistance.

  8. The Latex Protein MLX56 from Mulberry (Morus multicaulis Protects Plants against Insect Pests and Pathogens

    Directory of Open Access Journals (Sweden)

    Ying-Ping Gai

    2017-08-01

    Full Text Available Biotic stresses are major constraints limiting the leaf quality and productivity of mulberry. MLX56 is a unique chitin-binding protein isolated from Shin-Ichinose (Morus alba latex that displays toxicity against lepidopteran caterpillars. In this study, the full-length cDNA encoding MLX56 was isolated from Husang 32 (M. multicaulis and designated HMLX56. Amino acid sequence analysis and protein modeling of three MLX56 proteins showed that they were highly conserved among Morus species. Tissue expression pattern analysis showed that the HMLX56 gene was strongly expressed in mulberry bark and leaves but only slightly expressed in fruits. In addition, analysis of GUS expression indicated that the promoter of HMLX56 showed higher transcriptional activity along the vascular strands, and its activity can be regulated by various environmental factors. Like the MLX56 protein from M. alba, the HMLX56 protein showed toxicity to Plutella xylostella. Moreover, when the HMLX56 gene was ectopically expressed in Arabidopsis, the transgenic plants showed enhanced resistance to aphids, the fungal pathogen Botrytis cinerea and the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Our data suggest that the HMLX56 protein has a lectin-like molecular structure consisting of two hevein-like chitin-binding domains which provide not only chitin-binding activities but also other mechanisms of defense. The information provided here improves our understanding of the potential functions and defense mechanisms of MLX56 proteins, enabling in-depth functional analysis of latex exudates and perhaps facilitating mulberry genetic improvement in the future.

  9. [Basic Studies on Locoregional Injection of a Newly Designed Chitin Sol].

    Science.gov (United States)

    Chiba, Takehiro; Sugitachi, Akio; Kume, Kouhei; Segawa, Takenori; Nishinari, Yutaka; Ishida, Kaoru; Noda, Hironobu; Nishizuka, Satoshi; Kimura, Yusuke; Koeda, Keisuke; Sasaki, Akira

    2015-11-01

    Systemic chemotherapy in advanced cancer cases often provokes serious adverse events. We aimed to examine the fundamental properties and efficacy of a novel chitin sol, an anti-cancer agent with minor side effects designed to avoid the adverse effects of chemotherapy and enhance the QOL and ADL of patients. DAC-70 was used to create the novel agent termed DAC-70 sol. The anti-proliferative activity was assayed by the WST method using different types of cell lines. The anti-cancer efficacy of the novel agent was examined using cancer-bearing mice. DAC-70 sol was easily injectable through a 21-G needle. The sol suppressed proliferation of the cells in vitro. Intra-tumor injection of DAC-70 sol inhibited the rapid growth of solid tumors in the mice. CDDP-loaded DAC-70 sol, CDDP/DAC-70 sol, successfully controlled malignant ascites in the mice (psol and CDDP/DAC-70 sol is clinically useful as novel cancer chemotherapy for advanced cases. This warrants further clinical studies in cancer chemotherapy.

  10. Transthyretin-Binding Activity of Contaminants in Blood from Polar Bear (Ursus maritimus) Cubs

    NARCIS (Netherlands)

    Bytingsvik, J.; Simon, E.; Leonards, P.E.G.; Lamoree, M.H.; Lie, E.; Aars, J.; Derocher, A. E.; Wiig, O.; Jenssen, B.M.; Hamers, T.

    2013-01-01

    We determined the transthyretin (TTR)-binding activity of blood-accumulating contaminants in blood plasma samples of approximately 4-months-old polar bear (Ursus maritimus) cubs from Svalbard sampled in 1998 and 2008. The TTR-binding activity was measured as thyroxine (T4)-like equivalents (T4-EQ

  11. Adenovirus DNA binding protein inhibits SrCap-activated CBP and CREB-mediated transcription

    International Nuclear Information System (INIS)

    Xu Xiequn; Tarakanova, Vera; Chrivia, John; Yaciuk, Peter

    2003-01-01

    The SNF2-related CBP activator protein (SrCap) is a potent activator of transcription mediated by CBP and CREB. We have previously demonstrated that the Adenovirus 2 DNA Binding Protein (DBP) binds to SrCap and inhibits the transcription mediated by the carboxyl-terminal region of SrCap (amino acids 1275-2971). We report here that DBP inhibits the ability of full-length SrCap (1-2971) to activate transcription mediated by Gal-CREB and Gal-CBP. In addition, DBP also inhibits the ability of SrCap to enhance Protein Kinase A (PKA) activated transcription of the enkaphalin promoter. DBP was found to dramatically inhibit transcription of a mammalian two-hybrid system that was dependent on the interaction of SrCap and CBP binding domains. We also found that DBP has no effect on transcription mediated by a transcriptional activator that is not related to SrCap, indicating that our reported transcriptional inhibition is specific for SrCap and not due to nonspecific effects of DBP's DNA binding activity on the CAT reporter plasmid. Taken together, these results suggest a model in which DBP inhibits cellular transcription mediated by the interaction between SrCap and CBP

  12. Regulation of natural competence by the orphan two-component system sensor kinase ChiS involves a non-canonical transmembrane regulator in Vibrio cholerae.

    Science.gov (United States)

    Yamamoto, Shouji; Mitobe, Jiro; Ishikawa, Takahiko; Wai, Sun Nyunt; Ohnishi, Makoto; Watanabe, Haruo; Izumiya, Hidemasa

    2014-01-01

    In Vibrio cholerae, 41 chitin-inducible genes, including the genes involved in natural competence for DNA uptake, are governed by the orphan two-component system (TCS) sensor kinase ChiS. However, the mechanism by which ChiS controls the expression of these genes is currently unknown. Here, we report the involvement of a novel transcription factor termed 'TfoS' in this process. TfoS is a transmembrane protein that contains a large periplasmic domain and a cytoplasmic AraC-type DNA-binding domain, but lacks TCS signature domains. Inactivation of tfoS abolished natural competence as well as transcription of the tfoR gene encoding a chitin-induced small RNA essential for competence gene expression. A TfoS fragment containing the DNA-binding domain specifically bound to and activated transcription from the tfoR promoter. Intracellular TfoS levels were unaffected by disruption of chiS and coexpression of TfoS and ChiS in Escherichia coli recovered transcription of the chromosomally integrated tfoR::lacZ gene, suggesting that TfoS is post-translationally modulated by ChiS during transcriptional activation; however, this regulation persisted when the canonical phosphorelay residues of ChiS were mutated. The results presented here suggest that ChiS operates a chitin-induced non-canonical signal transduction cascade through TfoS, leading to transcriptional activation of tfoR. © 2013 John Wiley & Sons Ltd.

  13. A High Diversity in Chitinolytic and Chitosanolytic Species and Enzymes and Their Oligomeric Products Exist in Soil with a History of Chitin and Chitosan Exposure.

    Science.gov (United States)

    Nampally, Malathi; Rajulu, M B Govinda; Gillet, Dominique; Suryanarayanan, T S; Moerschbacher, Bruno B

    2015-01-01

    Chitin is one of the most abundant biomolecules on earth, and its partially de-N-acetylated counterpart, chitosan, is one of the most promising biotechnological resources due to its diversity in structure and function. Recently, chitin and chitosan modifying enzymes (CCMEs) have gained increasing interest as tools to engineer chitosans with specific functions and reliable performance in biotechnological and biomedical applications. In a search for novel CCME, we isolated chitinolytic and chitosanolytic microorganisms from soils with more than ten-years history of chitin and chitosan exposure and screened them for chitinase and chitosanase isoenzymes as well as for their patterns of oligomeric products by incubating their secretomes with chitosan polymers. Of the 60 bacterial strains isolated, only eight were chitinolytic and/or chitosanolytic, while 20 out of 25 fungal isolates were chitinolytic and/or chitosanolytic. The bacterial isolates produced rather similar patterns of chitinolytic and chitosanolytic enzymes, while the fungal isolates produced a much broader range of different isoenzymes. Furthermore, diverse mixtures of oligosaccharides were formed when chitosan polymers were incubated with the secretomes of select fungal species. Our study indicates that soils with a history of chitin and chitosan exposure are a good source of novel CCME for chitosan bioengineering.

  14. A High Diversity in Chitinolytic and Chitosanolytic Species and Enzymes and Their Oligomeric Products Exist in Soil with a History of Chitin and Chitosan Exposure

    Science.gov (United States)

    Nampally, Malathi; Rajulu, M. B. Govinda; Gillet, Dominique; Suryanarayanan, T. S.; Moerschbacher, Bruno B.

    2015-01-01

    Chitin is one of the most abundant biomolecules on earth, and its partially de-N-acetylated counterpart, chitosan, is one of the most promising biotechnological resources due to its diversity in structure and function. Recently, chitin and chitosan modifying enzymes (CCMEs) have gained increasing interest as tools to engineer chitosans with specific functions and reliable performance in biotechnological and biomedical applications. In a search for novel CCME, we isolated chitinolytic and chitosanolytic microorganisms from soils with more than ten-years history of chitin and chitosan exposure and screened them for chitinase and chitosanase isoenzymes as well as for their patterns of oligomeric products by incubating their secretomes with chitosan polymers. Of the 60 bacterial strains isolated, only eight were chitinolytic and/or chitosanolytic, while 20 out of 25 fungal isolates were chitinolytic and/or chitosanolytic. The bacterial isolates produced rather similar patterns of chitinolytic and chitosanolytic enzymes, while the fungal isolates produced a much broader range of different isoenzymes. Furthermore, diverse mixtures of oligosaccharides were formed when chitosan polymers were incubated with the secretomes of select fungal species. Our study indicates that soils with a history of chitin and chitosan exposure are a good source of novel CCME for chitosan bioengineering. PMID:26273652

  15. Cloning and sequence analysis of chitin synthase gene fragments of Demodex mites.

    Science.gov (United States)

    Zhao, Ya-e; Wang, Zheng-hang; Xu, Yang; Xu, Ji-ru; Liu, Wen-yan; Wei, Meng; Wang, Chu-ying

    2012-10-01

    To our knowledge, few reports on Demodex studied at the molecular level are available at present. In this study our group, for the first time, cloned, sequenced and analyzed the chitin synthase (CHS) gene fragments of Demodex folliculorum, Demodex brevis, and Demodex canis (three isolates from each species) from Xi'an China, by designing specific primers based on the only partial sequence of the CHS gene of D. canis from Japan, retrieved from GenBank. Results show that amplification was successful only in three D. canis isolates and one D. brevis isolate out of the nine Demodex isolates. The obtained fragments were sequenced to be 339 bp for D. canis and 338 bp for D. brevis. The CHS gene sequence similarities between the three Xi'an D. canis isolates and one Japanese D. canis isolate ranged from 99.7% to 100.0%, and those between four D. canis isolates and one D. brevis isolate were 99.1%-99.4%. Phylogenetic trees based on maximum parsimony (MP) and maximum likelihood (ML) methods shared the same clusters, according with the traditional classification. Two open reading frames (ORFs) were identified in each CHS gene sequenced, and their corresponding amino acid sequences were located at the catalytic domain. The relatively conserved sequences could be deduced to be a CHS class A gene, which is associated with chitin synthesis in the integument of Demodex mites.

  16. LH-RH binding to purified pituitary plasma membranes: absence of adenylate cyclase activation.

    Science.gov (United States)

    Clayton, R N; Shakespear, R A; Marshall, J C

    1978-06-01

    Purified bovine pituitary plasma membranes possess two specific LH-RH binding sites. The high affinity site (2.5 X 10(9) l/mol) has low capacity (9 X 10(-15) mol/mg membrane protein) while the low affinity site 6.1 X 10(5) l/mol) has a much higher capacity (1.1 X 10(-10) mol/mg). Specific LH-RH binding to plasma membranes is increased 8.5-fold during purification from homogenate whilst adenylate cyclase activity is enriched 7--8-fold. Distribution of specific LH-RH binding to sucrose density gradient interface fractions parallels that of adenylate cyclase activity. Mg2+ and Ca2+ inhibit specific [125I]LH-RH binding at micromolar concentrations. Synthetic LH-RH, up to 250 microgram/ml, failed to stimulate adenylase cyclase activity of the purified bovine membranes. Using a crude 10,800 g rat pituitary membrane preparation, LH-RH similarly failed to activate adenylate cyclase even in the presence of guanyl nucleotides. These data confirm the presence of LH-RH receptor sites on pituitary plasma membranes and suggest that LH-RH-induced gonadotrophin release may be mediated by mechanisms other than activation of adenylate cyclase.

  17. Fabrication of thermoplastic ductile films of chitin butyrate/poly(ɛ-caprolactone) blends and their cytocompatibility.

    Science.gov (United States)

    Hashiwaki, Hiroki; Teramoto, Yoshikuni; Nishio, Yoshiyuki

    2014-12-19

    We fabricate thermoplastic films of chitin burtyrate (ChB)/poly(ɛ-caprolactone) (PCL) blends with different degree of miscibility (miscible (M), partially miscible (PM), and immiscible (IM)), and examined the feasibility as a cell scaffold system through evaluating mechanical properties and cytocompatibility. We found a remediation of the brittleness and an increase in ductility of ChB by blending PCL for the M and PM blends. The blend films were subjected to alkaline hydrolysis (2-M NaOH/37°C/48 h) with expectation of the improvement of the surface hydrophilicity and cell accessibility. ATR-FTIR spectroscopy of the alkaline-treated PM and IM films revealed that PCL component and ester side-chains of acyl chitin were selectively removed from the surface domain. L929 fibroblast cells well adhered and proliferated on these films. Therefore, the materials possess a great potential for the utilization as a thermoplastic cell scaffold in tissue engineering by adequate selection of the degree of miscibility and post treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Activation of the ATR kinase by the RPA-binding protein ETAA1

    DEFF Research Database (Denmark)

    Haahr, Peter; Hoffmann, Saskia; Tollenaere, Maxim A X

    2016-01-01

    Activation of the ATR kinase following perturbations to DNA replication relies on a complex mechanism involving ATR recruitment to RPA-coated single-stranded DNA via its binding partner ATRIP and stimulation of ATR kinase activity by TopBP1. Here, we discovered an independent ATR activation pathway...... in vertebrates, mediated by the uncharacterized protein ETAA1 (Ewing's tumour-associated antigen 1). Human ETAA1 accumulates at DNA damage sites via dual RPA-binding motifs and promotes replication fork progression and integrity, ATR signalling and cell survival after genotoxic insults. Mechanistically...

  19. Cloning and sequence analysis of chitin synthase gene fragments of Demodex mites*

    OpenAIRE

    Zhao, Ya-e; Wang, Zheng-hang; Xu, Yang; Xu, Ji-ru; Liu, Wen-yan; Wei, Meng; Wang, Chu-ying

    2012-01-01

    To our knowledge, few reports on Demodex studied at the molecular level are available at present. In this study our group, for the first time, cloned, sequenced and analyzed the chitin synthase (CHS) gene fragments of Demodex folliculorum, Demodex brevis, and Demodex canis (three isolates from each species) from Xi’an China, by designing specific primers based on the only partial sequence of the CHS gene of D. canis from Japan, retrieved from GenBank. Results show that amplification was succe...

  20. Preparation of High Purity, High Molecular-Weight Chitin from Ionic Liquids for Use as an Adsorbate for the Extraction of Uranium from Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Robin [Univ. of Alabama, Tuscaloosa, AL (United States)

    2013-12-21

    Ensuring a domestic supply of uranium is a key issue facing the wider implementation of nuclear power. Uranium is mostly mined in Kazakhstan, Australia, and Canada, and there are few high-grade uranium reserves left worldwide. Therefore, one of the most appealing potential sources of uranium is the vast quantity dissolved in the oceans (estimated to be 4.4 billion tons worldwide). There have been research efforts centered on finding a means to extract uranium from seawater for decades, but so far none have resulted in an economically viable product, due in part to the fact that the materials that have been successfully demonstrated to date are too costly (in terms of money and energy) to produce on the necessary scale. Ionic Liquids (salts which melt below 100{degrees}C) can completely dissolve raw crustacean shells, leading to recovery of a high purity, high molecular weight chitin powder and to fibers and films which can be spun directly from the extract solution suggesting that continuous processing might be feasible. The work proposed here will utilize the unprecedented control this makes possible over the chitin fiber a) to prepare electrospun nanofibers of very high surface area and in specific architectures, b) to modify the fiber surfaces chemically with selective extractant capacity, and c) to demonstrate their utility in the direct extraction and recovery of uranium from seawater. This approach will 1) provide direct extraction of chitin from shellfish waste thus saving energy over the current industrial process for obtaining chitin; 2) allow continuous processing of nanofibers for very high surface area fibers in an economical operation; 3) provide a unique high molecular weight chitin not available from the current industrial process, leading to stronger, more durable fibers; and 4) allow easy chemical modification of the large surface areas of the fibers for appending uranyl selective functionality providing selectivity and ease of stripping. The

  1. Preparation of High Purity, High Molecular-Weight Chitin from Ionic Liquids for Use as an Adsorbate for the Extraction of Uranium from Seawater

    International Nuclear Information System (INIS)

    Rogers, Robin

    2013-01-01

    Ensuring a domestic supply of uranium is a key issue facing the wider implementation of nuclear power. Uranium is mostly mined in Kazakhstan, Australia, and Canada, and there are few high-grade uranium reserves left worldwide. Therefore, one of the most appealing potential sources of uranium is the vast quantity dissolved in the oceans (estimated to be 4.4 billion tons worldwide). There have been research efforts centered on finding a means to extract uranium from seawater for decades, but so far none have resulted in an economically viable product, due in part to the fact that the materials that have been successfully demonstrated to date are too costly (in terms of money and energy) to produce on the necessary scale. Ionic Liquids (salts which melt below 100 deg C) can completely dissolve raw crustacean shells, leading to recovery of a high purity, high molecular weight chitin powder and to fibers and films which can be spun directly from the extract solution suggesting that continuous processing might be feasible. The work proposed here will utilize the unprecedented control this makes possible over the chitin fiber a) to prepare electrospun nanofibers of very high surface area and in specific architectures, b) to modify the fiber surfaces chemically with selective extractant capacity, and c) to demonstrate their utility in the direct extraction and recovery of uranium from seawater. This approach will 1) provide direct extraction of chitin from shellfish waste thus saving energy over the current industrial process for obtaining chitin; 2) allow continuous processing of nanofibers for very high surface area fibers in an economical operation; 3) provide a unique high molecular weight chitin not available from the current industrial process, leading to stronger, more durable fibers; and 4) allow easy chemical modification of the large surface areas of the fibers for appending uranyl selective functionality providing selectivity and ease of stripping. The resulting

  2. Structure and interactions of calcite spherulites with α-chitin in the brown shrimp (Penaeus aztecus) shell

    International Nuclear Information System (INIS)

    Heredia, A.; Aguilar-Franco, M.; Magana, C.; Flores, C.; Pina, C.; Velazquez, R.; Schaeffer, T.E.; Bucio, L.; Basiuk, V.A.

    2007-01-01

    White spots form in the brown shrimp (Penaeus aztecus, Decapoda) shell during frozen storage. The mineral formed consists of calcite incorporated into an amorphous α-chitin matrix. We studied mechanisms of interaction of amorphous α-chitin macromolecules with hkl crystal planes to form highly ordered structures, as well as the role of specific sites in the biopolymer, which can be related to nucleation and spheroidal crystal growth. We used low vacuum scanning electron microscopy (LVSEM), X-ray powder diffraction (XRD), atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FT-IR), and molecular mechanics modeling (MM+ method). AFM images showed fingerprint distances in the biopolymer and a highly layered structure in the crystalline material. The presence of α-chitin, with a specific spatial distribution of radicals, is thought to be responsible for nucleation and to thermodynamically stabilize ions to form the spherulite crystalline phase, which are usually oval to spherical (0.10 to 200 μm in diameter). Our models of crystal-biopolymer interaction found high affinity of CO 3 2- anions in the (104) crystalline plane (the main plane in calcite monocrystals) to NH- groups of the biopolymer, as well as of the C=O in the biopolymer to Ca 2+ cations in the crystalline structure. These interactions explain the spherical growth and inhibition in some planes. The specific physicochemical interactions (docking of groups depending on their geometrical distribution) suggest that the biomineral structure is controlled by the biopolymer on a local scale. This information is useful for further design and improvement of (hybrid) materials for versatile application, from nanotechnology to biomedicine and engineering

  3. Structure and interactions of calcite spherulites with {alpha}-chitin in the brown shrimp (Penaeus aztecus) shell

    Energy Technology Data Exchange (ETDEWEB)

    Heredia, A. [Instituto de Ciencias Nucleares, Departamento de Quimica de Radiaciones y Radioquimica, UNAM, Circuito Exterior C.U. Apdo., Postal 70-543, 04510 Mexico, D.F. (Mexico); Physikalisches Institut and Center for Nanotechnology, Universitaet Muenster, Gievenbecker Weg 11, 48149 Muenster (Germany); Aguilar-Franco, M. [Instituto de Fisica, Depto de Fisicoquimica, UNAM, Circuito Exterior s/n, Ciudad Universitaria Apartado Postal 20-364 01000 Mexico D.F. (Mexico); Magana, C. [Instituto de Fisica, Depto de Estado Solido, UNAM, Circuito Exterior s/n, Ciudad Universitaria Apartado Postal 20-364 01000 Mexico D.F. (Mexico); Flores, C. [Instituto de Investigaciones en Materiales, Depto de Estado Solido, Laboratorio de Biomateriales, UNAM, Circuito Exterior C.U. S/N CP 04510 Mexico, D.F. (Mexico); Pina, C. [Instituto de Investigaciones en Materiales, Depto de Estado Solido, Laboratorio de Biomateriales, UNAM, Circuito Exterior C.U. S/N CP 04510 Mexico, D.F. (Mexico); Velazquez, R. [Centro de Fisica Aplicada Tecnologia Avanzada, UNAM, Km. 15 Carretera Queretaro-San Luis Potosi, C.P. 76230, Queretaro, Qro. (Mexico); Schaeffer, T.E. [Physikalisches Institut and Center for Nanotechnology, Universitaet Muenster, Gievenbecker Weg 11, 48149 Muenster (Germany); Bucio, L. [Instituto de Fisica, Depto de Estado Solido, UNAM, Circuito Exterior s/n, Ciudad Universitaria Apartado Postal 20-364 01000 Mexico D.F. (Mexico); Basiuk, V.A. [Instituto de Ciencias Nucleares, Departamento de Quimica de Radiaciones y Radioquimica, UNAM, Circuito Exterior C.U. Apdo., Postal 70-543, 04510 Mexico, D.F. (Mexico)

    2007-01-15

    White spots form in the brown shrimp (Penaeus aztecus, Decapoda) shell during frozen storage. The mineral formed consists of calcite incorporated into an amorphous {alpha}-chitin matrix. We studied mechanisms of interaction of amorphous {alpha}-chitin macromolecules with hkl crystal planes to form highly ordered structures, as well as the role of specific sites in the biopolymer, which can be related to nucleation and spheroidal crystal growth. We used low vacuum scanning electron microscopy (LVSEM), X-ray powder diffraction (XRD), atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FT-IR), and molecular mechanics modeling (MM+ method). AFM images showed fingerprint distances in the biopolymer and a highly layered structure in the crystalline material. The presence of {alpha}-chitin, with a specific spatial distribution of radicals, is thought to be responsible for nucleation and to thermodynamically stabilize ions to form the spherulite crystalline phase, which are usually oval to spherical (0.10 to 200 {mu}m in diameter). Our models of crystal-biopolymer interaction found high affinity of CO{sub 3} {sup 2-} anions in the (104) crystalline plane (the main plane in calcite monocrystals) to NH- groups of the biopolymer, as well as of the C=O in the biopolymer to Ca{sup 2+} cations in the crystalline structure. These interactions explain the spherical growth and inhibition in some planes. The specific physicochemical interactions (docking of groups depending on their geometrical distribution) suggest that the biomineral structure is controlled by the biopolymer on a local scale. This information is useful for further design and improvement of (hybrid) materials for versatile application, from nanotechnology to biomedicine and engineering.

  4. The Duffy binding protein (PkDBPαII) of Plasmodium knowlesi from Peninsular Malaysia and Malaysian Borneo show different binding activity level to human erythrocytes.

    Science.gov (United States)

    Lim, Khai Lone; Amir, Amirah; Lau, Yee Ling; Fong, Mun Yik

    2017-08-11

    The zoonotic Plasmodium knowlesi is a major cause of human malaria in Malaysia. This parasite uses the Duffy binding protein (PkDBPαII) to interact with the Duffy antigen receptor for chemokines (DARC) receptor on human and macaque erythrocytes to initiate invasion. Previous studies on P. knowlesi have reported distinct Peninsular Malaysia and Malaysian Borneo PkDBPαII haplotypes. In the present study, the differential binding activity of these haplotypes with human and macaque (Macaca fascicularis) erythrocytes was investigated. The PkDBPαII of Peninsular Malaysia and Malaysian Borneo were expressed on the surface of COS-7 cells and tested with human and monkey erythrocytes, with and without anti-Fy6 (anti-Duffy) monoclonal antibody treatment. Binding activity level was determined by counting the number of rosettes formed between the transfected COS-7 cells and the erythrocytes. Anti-Fy6 treatment was shown to completely block the binding of human erythrocytes with the transfected COS-7 cells, thus verifying the specific binding of human DARC with PkDBPαII. Interestingly, the PkDBPαII of Peninsular Malaysia displayed a higher binding activity with human erythrocytes when compared with the Malaysian Borneo PkDBPαII haplotype (mean number of rosettes formed = 156.89 ± 6.62 and 46.00 ± 3.57, respectively; P < 0.0001). However, no difference in binding activity level was seen in the binding assay using M. fascicularis erythrocytes. This study is the first report of phenotypic difference between PkDBPαII haplotypes. The biological implication of this finding is yet to be determined. Therefore, further studies need to be carried out to determine whether this differential binding level can be associated with severity of knowlesi malaria in human.

  5. Lectins as endocytic ligands: an assessment of lectin binding and uptake to rabbit conjunctival epithelial cells.

    Science.gov (United States)

    Qaddoumi, Mohamed; Lee, Vincent H L

    2004-07-01

    To investigate the binding and uptake pattern of three plant lectins in rabbit conjunctival epithelial cells (RCECs) with respect to their potential for enhancing cellular macromolecular uptake. Three fluorescein-labeled plant lectins (Lycoperison esculentum, TL; Solanum tuberosum, STL; and Ulex europaeus 1, UEA-1) were screened with respect to time-, concentration-, and temperature-dependent binding and uptake. Chitin (30 mg/ml) and L-alpha-fucose (10 mM) were used as inhibitory sugars to correct for nonspecific binding of TL or STL and UEA-1, respectively. Confocal microscopy was used to confirm internalization of STL. The binding and uptake of all three lectins in RCECs was time-dependent (reaching a plateau at 1-2 h period) and saturable at 1-h period. The rank order of affinity constants (km) was STL>TL>UEA-1 with values of 0.39>0.48>4.81 microM, respectively. However, maximal, specific binding/uptake potential was in the order UEA-1>STL>TL with values of 53.7, 52.3, and 15.0 nM/mg of cell protein, respectively. Lectins showed temperature dependence in their uptake, with STL exhibiting the highest endocytic capacity. Internalized STL was visualized by confocal microscopy to be localized to the cell membrane and cytoplasm. Based on favorable binding and uptake characteristics, potato lectin appears to be a useful candidate for further investigation as an ocular drug delivery system.

  6. High-level expression and characterization of two chitinases, ChiCH and ChiCW, of Bacillus cereus 28-9 in Escherichia coli

    International Nuclear Information System (INIS)

    Huang, C.-J.; Chen, C.-Y.

    2005-01-01

    Many chitinase genes have been cloned and sequenced from prokaryotes and eukaryotes but overexpression of chitinases in Escherichia coli cells was less reported. ChiCH and ChiCW of Bacillus cereus 28-9 belong to two distinct groups based on their amino acid sequences of catalytic domains, and in addition, domain structures of two enzymes are different. In this study, we established an ideal method for high-level expression of chitinases in E. coli as glutathione-S-transferase fusion proteins using pGEX-6P-1 vector. Both ChiCH and ChiCW were successfully highly expressed in E. coli cells as soluble GST-chitinase fusion proteins, and recombinant native ChiCH and ChiCW could be purified after cleavage with PreScission protease to remove GST tag. Purified chitinases were used for biochemical characterization of kinetics, hydrolysis products, and binding activities. The results indicate that ChiCW is an endo-chitinase and effectively hydrolyzes chitin and chito-multimers to chito-oligomers and the end product chitobiose, and ChiCH is an exo-chitinase and degrades chito-oligomers to produce chitobiose. Furthermore, due to higher affinity of ChiCW toward colloidal chitin than Avicel, C-terminal domain of ChiCW should be classified as a chitin-binding domain not a cellulose-binding domain although that was revealed as a cellulose-binding domain by conserved domain analysis. Therefore, the method of high-level expression of chitinases is helpful to studies and applications of chitinases

  7. Effects from additives on deacetylation of chitin

    International Nuclear Information System (INIS)

    Campana Filho, Sergio P.; Signini, Roberta

    2001-01-01

    Deacetylation reactions of commercial chitin were carried out in aqueous sodium hydroxide solution at 115 deg C for 6 hours. The effect from additives (sodium borohydride or anthraquinone) and of bubbling inert gas (nitrogen or argon) on the characteristics of deacetylated samples were evaluated. Average degrees of acetylation and intrinsic viscosity were determined by 1 H NMR spectroscopy and capillary viscometry, respectively. X-ray diffraction was employed to evaluate changes in crystallinity and infrared spectroscopy was used to monitor structural changes due to deacetylation. The bubbling of inert gas during the deacetylation reaction resulted in more crystalline samples of chitosan. Deacetylation carried out without any additive produced slightly more deacetylated chitosan but they were severely depolymerized. The depolymerization process was much less important when sodium borohydride was added to the reaction medium but the addition of anthraquinone and the bubbling of nitrogen, or argon, did not have any effect, this suggests that oxygen is not required for depolymerization. (author)

  8. Aspirin and salicylate bind to immunoglobulin heavy chain binding protein (BiP) and inhibit its ATPase activity in human fibroblasts.

    Science.gov (United States)

    Deng, W G; Ruan, K H; Du, M; Saunders, M A; Wu, K K

    2001-11-01

    Salicylic acid (SA), an endogenous signaling molecule of plants, possesses anti-inflammatory and anti-neoplastic actions in human. Its derivative, aspirin, is the most commonly used anti-inflammatory and analgesic drug. Aspirin and sodium salicylate (salicylates) have been reported to have multiple pharmacological actions. However, it is unclear whether they bind to a cellular protein. Here, we report for the first time the purification from human fibroblasts of a approximately 78 kDa salicylate binding protein with sequence identity to immunoglobulin heavy chain binding protein (BiP). The Kd values of SA binding to crude extract and to recombinant BiP were 45.2 and 54.6 microM, respectively. BiP is a chaperone protein containing a polypeptide binding site recognizing specific heptapeptide sequence and an ATP binding site. A heptapeptide with the specific sequence displaced SA binding in a concentration-dependent manner whereas a control heptapeptide did not. Salicylates inhibited ATPase activity stimulated by this specific heptapeptide but did not block ATP binding or induce BiP expression. These results indicate that salicylates bind specifically to the polypeptide binding site of BiP in human cells that may interfere with folding and transport of proteins important in inflammation.

  9. Calculation of Relative Binding Free Energy in the Water-Filled Active Site of Oligopeptide-Binding Protein A.

    Science.gov (United States)

    Maurer, Manuela; de Beer, Stephanie B A; Oostenbrink, Chris

    2016-04-15

    The periplasmic oligopeptide binding protein A (OppA) represents a well-known example of water-mediated protein-ligand interactions. Here, we perform free-energy calculations for three different ligands binding to OppA, using a thermodynamic integration approach. The tripeptide ligands share a high structural similarity (all have the sequence KXK), but their experimentally-determined binding free energies differ remarkably. Thermodynamic cycles were constructed for the ligands, and simulations conducted in the bound and (freely solvated) unbound states. In the unbound state, it was observed that the difference in conformational freedom between alanine and glycine leads to a surprisingly slow convergence, despite their chemical similarity. This could be overcome by increasing the softness parameter during alchemical transformations. Discrepancies remained in the bound state however, when comparing independent simulations of the three ligands. These difficulties could be traced to a slow relaxation of the water network within the active site. Fluctuations in the number of water molecules residing in the binding cavity occur mostly on a timescale larger than the simulation time along the alchemical path. After extensive simulations, relative binding free energies that were converged to within thermal noise could be obtained, which agree well with available experimental data.

  10. Lipid-binding proteins modulate ligand-dependent trans-activation by peroxisome proliferator-activated receptors and localize to the nucleus as well as the cytoplasm

    DEFF Research Database (Denmark)

    Helledie, T; Antonius, M; Sorensen, R V

    2000-01-01

    Peroxisome proliferator-activated receptors (PPARs) are activated by a variety of fatty acids, eicosanoids, and hypolipidemic and insulin-sensitizing drugs. Many of these compounds bind avidly to members of a family of small lipid-binding proteins, the fatty acid-binding proteins (FABPs). Fatty...

  11. Avidin/PSS membrane microcapsules with biotin-binding activity.

    Science.gov (United States)

    Endo, Yoshihiro; Sato, Katsuhiko; Sugimoto, Kentaro; Anzai, Jun-ichi

    2011-08-15

    Polyelectrolyte microcapsules with avidin-poly(styrene sulfonate) (PSS) membrane were prepared by a layer-by-layer deposition technique. The uptake and release of biotin-labeled fluorescein (b-FITC) as well as immobilization of biotin-labeled glucose oxidase (b-GOx) to the microcapsule were studied. The polyelectrolyte microcapsules were prepared by coating the surface of calcium carbonate (CaCO(3)) microparticles with an avidin/PSS multilayer membrane, followed by dissolution of CaCO(3) core in an ethylenediaminetetraacetic acid solution. Inner and outer poly(allylamine)/PSS films were required to isolate the microcapsules, whereas microcapsules could not be formed without the support. The uptake of b-FITC into the microcapsule was highly enhanced through a strong binding of b-FITC to avidin as compared with the uptake of biotin-free FITC. Release of b-FITC from the microcapsule was accelerated upon addition of biotin due to a competitive binding of the added biotin to the binding site of avidin. Similarly, the surface of microcapsule was modified with b-GOx with retaining its catalytic activity. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Phospho-Pon Binding-Mediated Fine-Tuning of Plk1 Activity.

    Science.gov (United States)

    Zhu, Kang; Shan, Zelin; Zhang, Lu; Wen, Wenyu

    2016-07-06

    In Drosophila neuroblasts (NBs), the asymmetrical localization and segregation of the cell-fate determinant Numb are regulated by its adaptor Partner of Numb (Pon) and the cell-cycle kinase Polo. Polo phosphorylates the Pon localization domain, thus leading to its basal distribution together with Numb, albeit through an unclear mechanism. Here, we find that Cdk1 phosphorylates Pon at Thr63, thus creating a docking site for the Polo-box domain (PBD) of Polo-like kinase 1 (Plk1). The crystal structure of the Plk1 PBD/phospho-Pon complex reveals that two phospho-Pon bound PBDs associate to form a dimer of dimers. We provide evidence that phospho-Pon binding-induced PBD dimerization relieves the autoinhibition of Plk1. Moreover, we demonstrate that the priming Cdk1 phosphorylation of Pon is important for sequential Plk1 phosphorylation. Our results not only provide structural insight into how phosphoprotein binding activates Plk1 but also suggest that binding to different phosphoproteins might mediate the fine-tuning of Plk1 activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Ligand binding reduces SUMOylation of the peroxisome proliferator-activated receptor γ (PPARγ activation function 1 (AF1 domain.

    Directory of Open Access Journals (Sweden)

    Rolf Diezko

    Full Text Available Peroxisome proliferator-activated receptor gamma (PPARγ is a ligand-activated nuclear receptor regulating adipogenesis, glucose homeostasis and inflammatory responses. The activity of PPARγ is controlled by post-translational modifications including SUMOylation and phosphorylation that affects its biological and molecular functions. Several important aspects of PPARγ SUMOylation including SUMO isoform-specificity and the impact of ligand binding on SUMOylation remain unresolved or contradictory. Here, we present a comprehensive study of PPARγ1 SUMOylation. We show that PPARγ1 can be modified by SUMO1 and SUMO2. Mutational analyses revealed that SUMOylation occurs exclusively within the N-terminal activation function 1 (AF1 domain predominantly at lysines 33 and 77. Ligand binding to the C-terminal ligand-binding domain (LBD of PPARγ1 reduces SUMOylation of lysine 33 but not of lysine 77. SUMOylation of lysine 33 and lysine 77 represses basal and ligand-induced activation by PPARγ1. We further show that lysine 365 within the LBD is not a target for SUMOylation as suggested in a previous report, but it is essential for full LBD activity. Our results suggest that PPARγ ligands negatively affect SUMOylation by interdomain communication between the C-terminal LBD and the N-terminal AF1 domain. The ability of the LBD to regulate the AF1 domain may have important implications for the evaluation and mechanism of action of therapeutic ligands that bind PPARγ.

  14. Rac1 GTPase activates the WAVE regulatory complex through two distinct binding sites

    Science.gov (United States)

    Brautigam, Chad A; Xing, Wenmin; Yang, Sheng; Henry, Lisa; Doolittle, Lynda K; Walz, Thomas

    2017-01-01

    The Rho GTPase Rac1 activates the WAVE regulatory complex (WRC) to drive Arp2/3 complex-mediated actin polymerization, which underpins diverse cellular processes. Here we report the structure of a WRC-Rac1 complex determined by cryo-electron microscopy. Surprisingly, Rac1 is not located at the binding site on the Sra1 subunit of the WRC previously identified by mutagenesis and biochemical data. Rather, it binds to a distinct, conserved site on the opposite end of Sra1. Biophysical and biochemical data on WRC mutants confirm that Rac1 binds to both sites, with the newly identified site having higher affinity and both sites required for WRC activation. Our data reveal that the WRC is activated by simultaneous engagement of two Rac1 molecules, suggesting a mechanism by which cells may sense the density of active Rac1 at membranes to precisely control actin assembly. PMID:28949297

  15. An assay for the mannan-binding lectin pathway of complement activation

    DEFF Research Database (Denmark)

    Petersen, Steen Vang; Thiel, S; Jensen, L

    2001-01-01

    activation. Therefore, in a generally applicable complement activation assay specific for the MBL pathway, the activity of the classical pathway must be inhibited. This can be accomplished by exploiting the finding that high ionic strength buffers inhibit the binding of C1q to immune complexes and disrupt...

  16. Activator Protein-1: redox switch controlling structure and DNA-binding

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhou; Machius, Mischa; Nestler, Eric J.; Rudenko, Gabby (Texas-MED); (Icahn)

    2017-09-07

    The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a ‘redox switch’ centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the ‘OFF’ state, and show that the mid-point redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins.

  17. Cloning and sequence analysis of chitin synthase gene fragments of Demodex mites*

    Science.gov (United States)

    Zhao, Ya-e; Wang, Zheng-hang; Xu, Yang; Xu, Ji-ru; Liu, Wen-yan; Wei, Meng; Wang, Chu-ying

    2012-01-01

    To our knowledge, few reports on Demodex studied at the molecular level are available at present. In this study our group, for the first time, cloned, sequenced and analyzed the chitin synthase (CHS) gene fragments of Demodex folliculorum, Demodex brevis, and Demodex canis (three isolates from each species) from Xi’an China, by designing specific primers based on the only partial sequence of the CHS gene of D. canis from Japan, retrieved from GenBank. Results show that amplification was successful only in three D. canis isolates and one D. brevis isolate out of the nine Demodex isolates. The obtained fragments were sequenced to be 339 bp for D. canis and 338 bp for D. brevis. The CHS gene sequence similarities between the three Xi’an D. canis isolates and one Japanese D. canis isolate ranged from 99.7% to 100.0%, and those between four D. canis isolates and one D. brevis isolate were 99.1%–99.4%. Phylogenetic trees based on maximum parsimony (MP) and maximum likelihood (ML) methods shared the same clusters, according with the traditional classification. Two open reading frames (ORFs) were identified in each CHS gene sequenced, and their corresponding amino acid sequences were located at the catalytic domain. The relatively conserved sequences could be deduced to be a CHS class A gene, which is associated with chitin synthesis in the integument of Demodex mites. PMID:23024043

  18. Molecular modeling studies of novel retro-binding tripeptide active-site inhibitors of thrombin.

    Science.gov (United States)

    Lau, W F; Tabernero, L; Sack, J S; Iwanowicz, E J

    1995-08-01

    A novel series of retro-binding tripeptide thrombin active-site inhibitors was recently developed (Iwanowicz, E. I. et al. J. Med. Chem. 1994, 37, 2111(1)). It was hypothesized that the binding mode for these inhibitors is similar to that of the first three N-terminal residues of hirudin. This binding hypothesis was subsequently verified when the crystal structure of a member of this series, BMS-183,507 (N-[N-[N-[4-(Aminoiminomethyl)amino[-1-oxobutyl]-L- phenylalanyl]-L-allo-threonyl]-L-phenylalanine, methyl ester), was determined (Taberno, L.J. Mol. Biol. 1995, 246, 14). The methodology for developing the binding models of these inhibitors, the structure-activity relationships (SAR) and modeling studies that led to the elucidation of the proposed binding mode is described. The crystal structure of BMS-183,507/human alpha-thrombin is compared with the crystal structure of hirudin/human alpha-thrombin (Rydel, T.J. et al. Science 1990, 249,227; Rydel, T.J. et al. J. Mol Biol. 1991, 221, 583; Grutter, M.G. et al. EMBO J. 1990, 9, 2361) and with the computational binding model of BMS-183,507.

  19. Loosenin, a novel protein with cellulose-disrupting activity from Bjerkandera adusta.

    Science.gov (United States)

    Quiroz-Castañeda, Rosa E; Martínez-Anaya, Claudia; Cuervo-Soto, Laura I; Segovia, Lorenzo; Folch-Mallol, Jorge L

    2011-02-11

    Expansins and expansin-like proteins loosen cellulose microfibrils, possibly through the rupture of intramolecular hydrogen bonds. Together with the use of lignocellulolytic enzymes, these proteins are potential molecular tools to treat plant biomass to improve saccharification yields. Here we describe a new type of expansin-related fungal protein that we have called loosenin. Its corresponding gene, loos1, from the basidiomycete Bjerkandera adusta, was cloned and heterologously expressed in Saccharomyces cerevisiae. LOOS1 is distantly related to plant expansins through the shared presence of a DPBB domain, however domain II found in plant expansins is absent. LOOS1 binds tightly to cellulose and chitin, and we demonstrate that cotton fibers become susceptible to the action of a commercial cellulase following treatment with LOOS1. Natural fibers of Agave tequilana also become susceptible to hydrolysis by cellulases after loosenin treatment. LOOS1 is a new type of protein with disrupting activity on cellulose. LOOS1 binds polysaccharides, and given its enhancing properties on the action of hydrolytic enzymes, LOOS1 represents a potential additive in the production of fermentable sugars from lignocellulose.

  20. Number of active transcription factor binding sites is essential for the Hes7 oscillator

    Directory of Open Access Journals (Sweden)

    de Angelis Martin

    2006-02-01

    Full Text Available Abstract Background It is commonly accepted that embryonic segmentation of vertebrates is regulated by a segmentation clock, which is induced by the cycling genes Hes1 and Hes7. Their products form dimers that bind to the regulatory regions and thereby repress the transcription of their own encoding genes. An increase of the half-life of Hes7 protein causes irregular somite formation. This was shown in recent experiments by Hirata et al. In the same work, numerical simulations from a delay differential equations model, originally invented by Lewis, gave additional support. For a longer half-life of the Hes7 protein, these simulations exhibited strongly damped oscillations with, after few periods, severely attenuated the amplitudes. In these simulations, the Hill coefficient, a crucial model parameter, was set to 2 indicating that Hes7 has only one binding site in its promoter. On the other hand, Bessho et al. established three regulatory elements in the promoter region. Results We show that – with the same half life – the delay system is highly sensitive to changes in the Hill coefficient. A small increase changes the qualitative behaviour of the solutions drastically. There is sustained oscillation and hence the model can no longer explain the disruption of the segmentation clock. On the other hand, the Hill coefficient is correlated with the number of active binding sites, and with the way in which dimers bind to them. In this paper, we adopt response functions in order to estimate Hill coefficients for a variable number of active binding sites. It turns out that three active transcription factor binding sites increase the Hill coefficient by at least 20% as compared to one single active site. Conclusion Our findings lead to the following crucial dichotomy: either Hirata's model is correct for the Hes7 oscillator, in which case at most two binding sites are active in its promoter region; or at least three binding sites are active, in which

  1. Kinetic characterization of Aspergillus niger chitinase CfcI using a HPAEC-PAD method for native chitin oligosaccharides

    NARCIS (Netherlands)

    van Munster, Jolanda M.; Sanders, Peter; ten Kate, Geralt A.; Dijkhuizen, Lubbert; van der Maarel, Marc J. E. C.

    2015-01-01

    The abundant polymer chitin can be degraded by chitinases (EC 3.2.1.14) and beta-N-acetyl-hexosaminidases (EC 3.2.1.52) to oligosaccharides and N-acetyl-glucosamine (GlcNAc) monomers. Kinetic characterization of these enzymes requires product quantification by an assay method with a low detection

  2. Synthesis, X-ray crystal structure, DNA binding and Nuclease activity ...

    Indian Academy of Sciences (India)

    s12039-016-1125-x. Synthesis, X-ray crystal structure, DNA binding and Nuclease activity of lanthanide(III) complexes of 2-benzoylpyridine acetylhydrazone. KARREDDULA RAJA, AKKILI SUSEELAMMA and KATREDDI HUSSAIN REDDY. ∗.

  3. The Tomato Nucleotide-binding Leucine-rich Repeat Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide Exchange*

    Science.gov (United States)

    Fenyk, Stepan; Dixon, Christopher H.; Gittens, William H.; Townsend, Philip D.; Sharples, Gary J.; Pålsson, Lars-Olof; Takken, Frank L. W.; Cann, Martin J.

    2016-01-01

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognize and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception. However, it is unknown whether other NLR proteins are also able to bind DNA. Nor is it known how DNA binding relates to the ATPase activity intrinsic to NLR switch function required to immune activation. Here we investigate these issues using a recombinant protein corresponding to the N-terminal coiled-coil and nucleotide-binding domain regions of the I-2 NLR of tomato. Wild type I-2 protein bound nucleic acids with a preference of ssDNA ≈ dsDNA > ssRNA, which is distinct from Rx1. I-2 induced bending and melting of DNA. Notably, ATP enhanced DNA binding relative to ADP in the wild type protein, the null P-loop mutant K207R, and the autoactive mutant S233F. DNA binding was found to activate the intrinsic ATPase activity of I-2. Because DNA binding by I-2 was decreased in the presence of ADP when compared with ATP, a cyclic mechanism emerges; activated ATP-associated I-2 binds to DNA, which enhances ATP hydrolysis, releasing ADP-bound I-2 from the DNA. Thus DNA binding is a general property of at least a subset of NLR proteins, and NLR activation is directly linked to its activity at DNA. PMID:26601946

  4. The Tomato Nucleotide-binding Leucine-rich Repeat Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide Exchange.

    Science.gov (United States)

    Fenyk, Stepan; Dixon, Christopher H; Gittens, William H; Townsend, Philip D; Sharples, Gary J; Pålsson, Lars-Olof; Takken, Frank L W; Cann, Martin J

    2016-01-15

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognize and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception. However, it is unknown whether other NLR proteins are also able to bind DNA. Nor is it known how DNA binding relates to the ATPase activity intrinsic to NLR switch function required to immune activation. Here we investigate these issues using a recombinant protein corresponding to the N-terminal coiled-coil and nucleotide-binding domain regions of the I-2 NLR of tomato. Wild type I-2 protein bound nucleic acids with a preference of ssDNA ≈ dsDNA > ssRNA, which is distinct from Rx1. I-2 induced bending and melting of DNA. Notably, ATP enhanced DNA binding relative to ADP in the wild type protein, the null P-loop mutant K207R, and the autoactive mutant S233F. DNA binding was found to activate the intrinsic ATPase activity of I-2. Because DNA binding by I-2 was decreased in the presence of ADP when compared with ATP, a cyclic mechanism emerges; activated ATP-associated I-2 binds to DNA, which enhances ATP hydrolysis, releasing ADP-bound I-2 from the DNA. Thus DNA binding is a general property of at least a subset of NLR proteins, and NLR activation is directly linked to its activity at DNA. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Immobilization of metal hexa-cyanoferrates in chitin beads for cesium sorption: synthesis and characterization

    International Nuclear Information System (INIS)

    Vincent, T.; Guibal, E.; Vincent, C.; Barre, Y.; Guari, Y.; Le Saout, G.

    2014-01-01

    Five metal-potassium hexacyanoferrate/chitin composites (based on Cu, Ni, Zn, Co or Fe co-metal) have been prepared and characterized, using SEM-EDX, TEM, X-ray diffraction and FT-IR, before being compared for Cs(I) and 137 Cs(I) sorption. The Zn-ion exchanger was characterized by a much larger crystal size of about 250 nm compared with a few tens of nm for other ion-exchangers. The ion exchangers are well distributed in the whole mass of the composite and they are fully accessible to Cs(I), as evidenced by Cs(I) distribution after metal sorption. Uptake kinetics can be modeled using both the pseudo-second order rate equation and the Crank equation (resistance to intra-particle diffusion coefficient). Sorption isotherms showed substantial differences in the sorbents that can be ranked as Cu ≥ Ni ≥ Zn ≥ Co ≥ Fe. However, based on 137 Cs K d values, the sorbents can be ranked as Co≥≥Fe≥≥Cu≥≥Ni≥Zn. Taking into account the cost and toxicity of metals (both in terms of manufacturing and potential metal release) a Prussian Blue based sorbent (i.e., iron-potassium hexacyanoferrate/chitin composite) sounds to be a good composite for Cs(I) recovery from radionuclide-containing effluents. (authors)

  6. Detergent activation of the binding protein in the folate radioassay

    International Nuclear Information System (INIS)

    Hansen, S.I.; Holm, J.; Lyngbye, J.

    1982-01-01

    A minor cow's whey protein associated with β-lactoglobulin is used as binding protein in the competitive radioassay for serum and erythrocyte folate. Seeking to optimize the assay, we tested the performance of binder solutions of increasing purity. The folate binding protein was isolated from cow's whey by means of CM-Sepharose CL-6B cation-exchange chromatography, and further purified on a methotrexate-AH-Sepharose 4B affinity matrix. In contrast to β-lactoglobulin, the purified protein did not bind folate unless the detergents cetyltrimethylammonium (10 mmol/Ll) or Triton X-100 (1 g/L) were present. Such detergent activation was not needed in the presence of serum. There seems to be a striking analogy between these phenomena and the well-known reactivation of certain purified membrane-derived enzymes by surfactants

  7. Benzodiazepines: rat pinealocyte binding sites and augmentation of norepinephrine-stimulated N-acetyltransferase activity

    Energy Technology Data Exchange (ETDEWEB)

    Matthew, E.; Parfitt, A.G.; Sugden, D.; Engelhardt, D.L.; Zimmerman, E.A.; Klein, D.C.

    1984-02-01

    Studies of (/sup 3/H)diazepam binding to intact rat pineal cells were carried out in tissue culture preparations. The binding was saturable, reversible and proportional to the number of cells used. Scatchard analysis resulted in a linear plot (Kd . 23 nM, maximum binding sites (Bmax) . 1.56 pmol/mg of protein for cells in monolayer culture; Kd . 7 nM, Bmax . 1.3 pmol/mg of protein for cells in suspension culture). Inhibition constants (Ki) for clonazepam (500 nM), flunitrazepam (38 nM) and Ro-5-4864 (5 nM) indicated that the binding sites were probably of the ''peripheral'' type. In addition, the effects of diazepam on norepinephrine-stimulated N-acetyltransferase (NAT) activity were studied in organ culture and dissociated cell culture. Diazepam (10-50 microM) both prolonged and increased the magnitude of the norepinephrine-induced increase in NAT activity but did not affect the initial rate of rise of enzyme activity. The effect was dose-dependent and was also seen with clonazepam, flunitrazepam and Ro-5-4864, but not with Ro-15-1788. Diazepam, by itself, at these concentrations, had no effect on NAT, but enzyme activity was increased by higher concentrations (0.1-1 mM). Although a relationship between the (/sup 3/H)diazepam binding sites described here and the effect of benzodiazepines on NAT cannot be established from these studies, the data suggest that the benzodiazepines may alter melatonin levels through their action on NAT.

  8. Chiral halogenated Schiff base compounds: green synthesis, anticancer activity and DNA-binding study

    Science.gov (United States)

    Ariyaeifar, Mahnaz; Amiri Rudbari, Hadi; Sahihi, Mehdi; Kazemi, Zahra; Kajani, Abolghasem Abbasi; Zali-Boeini, Hassan; Kordestani, Nazanin; Bruno, Giuseppe; Gharaghani, Sajjad

    2018-06-01

    Eight enantiomerically pure halogenated Schiff base compounds were synthesized by reaction of halogenated salicylaldehydes with 3-Amino-1,2-propanediol (R or S) in water as green solvent at ambient temperature. All compounds were characterized by elemental analyses, NMR (1H and 13C), circular dichroism (CD) and FT-IR spectroscopy. FS-DNA binding studies of these compounds carried out by fluorescence quenching and UV-vis spectroscopy. The obtained results revealed that the ligands bind to DNA as: (Rsbnd ClBr) > (Rsbnd Cl2) > (Rsbnd Br2) > (Rsbnd I2) and (Ssbnd ClBr) > (Ssbnd Cl2) > (Ssbnd Br2) > (Ssbnd I2), indicating the effect of halogen on binding constant. In addition, DNA-binding constant of the Ssbnd and R-enantiomers are different from each other. The ligands can form halogen bonds with DNA that were confirmed by molecular docking. This method was also measured the bond distances and bond angles. The study of obtained data can have concluded that binding affinity of the ligands to DNA depends on strength of halogen bonds. The potential anticancer activity of ligands were also evaluated on MCF-7 and HeLa cancer cell lines by using MTT assay. The results showed that the anticancer activity and FS-DNA interaction is significantly dependent on the stereoisomers of Schiff base compounds as R-enantiomers displayed significantly higher activity than S-enantiomers. The molecular docking was also used to illustrate the specific DNA-binding of synthesized compounds and groove binding mode of DNA interaction was proposed for them. In addition, molecular docking results indicated that there are three types of bonds (Hsbnd and X-bond and hX-bond) between synthesized compounds and base pairs of DNA.

  9. Obtenção e caracterização de α-quitina e quitosanas de cascas de Macrobrachium rosembergii Preparation and characterization of α-chitin and chitosan from the shells of Macrobrachium rosembergii

    Directory of Open Access Journals (Sweden)

    Marcos Valério Battisti

    2008-01-01

    Full Text Available The shells of Macrobrachium rosenbergii were submitted to deproteinization (Dp and demineralization (Dm aiming the extraction of α-chitin. The different parts of the shells were processed independently by carrying out sequence 1 (Dp/Dm and sequence 2 (Dm/Dp. Both sequences allowed the extraction of chitins with low contents of calcium and magnesium, regardless of the part being processed. The sequence 1 lead to higher extraction yields while sequence 2 resulted in lower contents of inorganic compounds. Extensively deacetylated chitosans (GA<10% of medium molecular weight (0,9 x 10(5 < Mv < 2 x 10(5 g/mol resulted from the deacetylation of chitin.

  10. Chitin and stress induced protein kinase activation

    DEFF Research Database (Denmark)

    Kenchappa, Chandra Shekar; Azevedo da Silva, Raquel; Bressendorff, Simon

    2017-01-01

    The assays described here are pertinent to protein kinase studies in any plant. They include an immunoblot phosphorylation/activation assay and an in-gel activity assay for MAP kinases (MPKs) using the general protein kinase substrate myelin basic protein. They also include a novel in-gel peptide...... substrate assay for Snf1-related kinase family 2 members (SnRK2s). This kinase family-specific assay overcomes some limitations of in-gel assays and permits the identification of different types of kinase activities in total protein extracts....

  11. Activator Protein-1: redox switch controlling structure and DNA-binding.

    Science.gov (United States)

    Yin, Zhou; Machius, Mischa; Nestler, Eric J; Rudenko, Gabby

    2017-11-02

    The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a 'redox switch' centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the 'OFF' state, and show that the mid-point redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Synergistic inhibition of the intrinsic factor X activation by protein S and C4b-binding protein

    NARCIS (Netherlands)

    Koppelman, S.J.

    1995-01-01

    The complement protein C4b-binding protein plays an important role in the regulation of the protein C anticoagulant pathway. C4b-binding protein can bind to protein S, thereby inhibiting the cofactor activity of protein S for activated protein C. In this report, we describe a new role for

  13. Binding of tissue plasminogen activator to human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Beebe, D.P.

    1987-01-01

    The binding of purified, recombinant tissue plasminogen activator (tPA) to human umbilical vein endothelial cells (HUVEC) was studied in vitro using immunofluorescence as well as radiolabeled tPA. Immunofluorescence was performed on HUVEC grown on round glass coverslips using rabbit anti-human tPA and fluorescein-conjugated anti-rabbit immunoglobulin. Positive fluorescence was observed only after incubation of HUVEC with tPA. HUVEC were grown to confluence in 24-well tissue culture plates, washed, and incubated with a constant amount of 125 I-tPA and various concentrations of unlabeled tPA. The binding of tPA to HUVEC was found to be specific, saturable, and reversible. Scatchard analysis yielded as equilibrium constant (K/sub eq/) of 4.2 x 10 6 M -1 and 1.2 x 10 7 binding sites per cell. Binding was inhibited by positively charged amino acids and by D-phenylalanyl-L-prolyl-L-arginine chloromethyl ketone but not by carbohydrates including mannose, galactose, N-acetyl glucosamine and N-acetyl galactosamine. Neat human plasma abrogates but does not totally inhibit binding of tPA to HUVEC. Binding was neither enhanced nor inhibited by fibronectin. Although the affinity of binding of tPA to HUVEC is low, the endothelial cell may be involved in regulating plasma levels of tPA in vivo which may have therapeutic significance

  14. Mannan-binding lectin activates C3 and the

    DEFF Research Database (Denmark)

    Selander, B.; Martensson, U.; Weintraub, A.

    2006-01-01

    Lectin pathway activation of C3 is known to involve target recognition by mannan-binding lectin (MBL) or ficolins and generation of classical pathway C3 convertase via cleavage of C4 and C2 by MBL-associated serine protease 2 (MASP-2). We investigated C3 activation in C2-deficient human sera...... and in sera with other defined defects of complement to assess other mechanisms through which MBL might recruit complement. The capacity of serum to support C3 deposition was examined by ELISA using microtiter plates coated with O antigen-specific oligosaccharides derived from Salmonella typhimurium, S...

  15. Sulfhydryl group content of chicken progesterone receptor: effect of oxidation on DNA binding activity

    International Nuclear Information System (INIS)

    Peleg, S.; Schrader, W.T.; O'Malley, B.W.

    1988-01-01

    DNA binding activity of chicken progesterone receptor B form (PRB) and A form (PRA) has been examined. This activity is strongly dependent upon the presence of thiols in the buffer. Stability studies showed that PRB was more sensitive to oxidation that was PRA. Receptor preparations were fractionated by DNA-cellulose chromatography to DNA-positive and DNA-negative subpopulations, and sulfhydryl groups were quantified on immunopurified receptor by labeling with [ 3 H]-N-ethylmaleimide. Labeling of DNA-negative receptors with [ 3 H]-N-ethylmaleimide showed 21-23 sulfhydryl groups on either PRA or PRB form when the proteins were reduced and denatured. A similar number was seen without reduction if denatured DNA-positive receptor species were tested. In contrast, the DNA-negative PRB had only 10-12 sulfhydryl groups detectable without reduction. A similar number (12-13 sulfhydryl groups) was found for PRA species that lost DNA binding activity after exposure to a nonreducing environment in vitro. The authors conclude that the naturally occurring receptor forms unable to bind to DNA, as well as receptor forms that have lost DNA binding activity due to exposure to nonreducing environment in vitro, contain 10-12 oxidized cysteine residues, likely present as disulfide bonds. Since they were unable to reduce the disulfide bonds when the native DNA-negative receptor proteins were treated with dithiothreitol (DTT), they speculate that irreversible loss of DNA binding activity of receptor in vitro is due to oxidation of cysteine residues that are not accessible to DTT in the native state

  16. Phytochrome regulates GTP-binding protein activity in the envelope of pea nuclei

    Science.gov (United States)

    Clark, G. B.; Memon, A. R.; Thompson, G. A. Jr; Roux, S. J.

    1993-01-01

    Three GTP-binding proteins with apparent molecular masses of 27, 28 and 30 kDa have been detected in isolated nuclei of etiolated pea plumules. After LDS-PAGE and transfer to nitrocellulose these proteins bind [32P]GTP in the presence of excess ATP, suggesting that they are monomeric G proteins. When nuclei are disrupted, three proteins co-purify with the nuclear envelope fraction and are highly enriched in this fraction. The level of [32P]GTP-binding for all three protein bands is significantly increased when harvested pea plumules are irradiated by red light, and this effect is reversed by far-red light. The results indicate that GTP-binding activity associated with the nuclear envelope of plant cells is photoreversibly regulated by the pigment phytochrome.

  17. CINPA1 binds directly to constitutive androstane receptor and inhibits its activity.

    Science.gov (United States)

    Cherian, Milu T; Chai, Sergio C; Wright, William C; Singh, Aman; Alexandra Casal, Morgan; Zheng, Jie; Wu, Jing; Lee, Richard E; Griffin, Patrick R; Chen, Taosheng

    2018-03-31

    The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic sensors that regulate the expression of drug-metabolizing enzymes and efflux transporters. CAR activation promotes drug elimination, thereby reducing therapeutic effectiveness, or causes adverse drug effects via toxic metabolites. CAR inhibitors could be used to attenuate these adverse drug effects. CAR and PXR share ligands and target genes, confounding the understanding of the regulation of receptor-specific activity. We previously identified a small-molecule inhibitor, CINPA1, that inhibits CAR (without activating PXR at lower concentrations) by altering CAR-coregulator interactions and reducing CAR recruitment to DNA response elements of regulated genes. However, solid evidence was not presented for the direct binding of CINPA1 to CAR. In this study, we demonstrate direct interaction of CINPA1 with the CAR ligand-binding domain (CAR-LBD) and identify key residues involved in such interactions through a combination of biophysical and computational methods. We found that CINPA1 resides in the ligand-binding pocket to stabilize the CAR-LBD in a more rigid, less fluid state. Molecular dynamics simulations, together with our previously reported docking model, enabled us to predict which CAR residues were critical for interactions with CINPA1. The importance of these residues for CINPA1 binding were then validated by directed mutations and testing the mutant CAR proteins in transcription reporter and coregulatory interaction assays. We demonstrated strong hydrogen bonding of CINPA1 with N165 and H203 and identified other residues involved in hydrophobic contacts with CINPA1. Overall, our data confirm that CINPA1 directly binds to CAR. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Plant carbohydrate binding module enhances activity of hybrid microbial cellulase enzyme

    Directory of Open Access Journals (Sweden)

    Caitlin Siobhan Byrt

    2012-11-01

    Full Text Available A synthetic, highly active cellulase enzyme suitable for in planta production may be a valuable tool for biotechnological approaches to develop transgenic biofuel crops with improved digestibility. Here, we demonstrate that the addition of a plant derived carbohydrate binding module (CBM to a synthetic glycosyl hydrolase (GH improved the activity of the hydrolase in releasing sugar from plant biomass. A CEL-HYB1-CBM enzyme was generated by fusing a hybrid microbial cellulase, CEL-HYB1, with the carbohydrate-binding module (CBM of the tomato (Solanum lycopersicum SlCel9C1 cellulase. CEL-HYB1 and CEL-HYB1-CBM enzymes were produced in vitro using Pichia pastoris and the activity of these enzymes was tested using CMC, MUC and native crystalline cellulose assays. The presence of the CBM substantially improved the endo-glucanase activity of CEL-HYB1, especially against the native crystalline cellulose encountered in Sorghum plant cell walls. These results indicate that addition of an endogenous plant derived CBM to cellulase enzymes may enhance hydrolytic activity.

  19. The dual exo/endo-type mode and the effect of ionic strength on the mode of catalysis of chitinase 60 (CHI60) from Serratia sp. TU09 and its mutants.

    Science.gov (United States)

    Kuttiyawong, K; Nakapong, S; Pichyangkura, R

    2008-11-03

    Mutations of the tryptophan residues in the tryptophan-track of the N-terminal domain (W33F/Y and W69F/Y) and in the catalytic domain (W245F/Y) of Serratia sp. TU09 Chitinase 60 (CHI60) were constructed, as single and double point substitutions to either phenylalanine or tyrosine. The enzyme-substrate interaction and mode of catalysis, exo/endo-type, of wild type CHI60 and mutant enzymes on soluble (partially N-acetylated chitin), amorphous (colloidal chitin), and crystalline (β-chitin) substrates were studied. All CHI60 mutants exhibited a reduced substrate binding activity on colloidal chitin. CHI60 possesses a dual mode of catalysis with both exo- and endo-type activities allowing the enzyme to work efficiently on various substrate types. CHI60 preferentially uses the endo-type mode on soluble and amorphous substrates and the exo-type mode on crystalline substrate. However, the prevalent mode of hydrolysis mediated by CHI60 is regulated by ionic strength. Slightly elevated ionic strength, 0.1-0.2M NaCl, which promotes enzyme-substrate interactions, enhances CHI60 hydrolytic activity on amorphous substrate and, interestingly, on partially N-acetylated chitin. High ionic strength, 0.5-2.0M NaCl, prevents the enzyme from dissociating from amorphous substrate, occupying the enzyme in an enzyme-substrate non-productive complex. However, on crystalline substrates, the activity of CHI60 was only inhibited approximately 50% at high ionic strength, suggesting that the enzyme hydrolyzes crystalline substrates with an exo-type mode processively while remaining tightly bound to the substrate. Moreover, substitution of Trp-33 to either phenylalanine or tyrosine reduced the activity of the enzyme at high ionic strength, suggesting an important role of Trp-33 on enzyme processivity.

  20. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity

    International Nuclear Information System (INIS)

    Shimomura, Tadanori; Miyamura, Norio; Hata, Shoji; Miura, Ryota; Hirayama, Jun; Nishina, Hiroshi

    2014-01-01

    Highlights: •Loss of the PDZ-binding motif inhibits constitutively active YAP (5SA)-induced oncogenic cell transformation. •The PDZ-binding motif of YAP promotes its nuclear localization in cultured cells and mouse liver. •Loss of the PDZ-binding motif inhibits YAP (5SA)-induced CTGF transcription in cultured cells and mouse liver. -- Abstract: YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains a highly conserved PDZ-binding motif that regulates YAP’s functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP’s co-activation of TEAD-mediated CTGF transcription

  1. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, Tadanori; Miyamura, Norio; Hata, Shoji; Miura, Ryota; Hirayama, Jun, E-mail: hirayama.dbio@mri.tmd.ac.jp; Nishina, Hiroshi, E-mail: nishina.dbio@mri.tmd.ac.jp

    2014-01-17

    Highlights: •Loss of the PDZ-binding motif inhibits constitutively active YAP (5SA)-induced oncogenic cell transformation. •The PDZ-binding motif of YAP promotes its nuclear localization in cultured cells and mouse liver. •Loss of the PDZ-binding motif inhibits YAP (5SA)-induced CTGF transcription in cultured cells and mouse liver. -- Abstract: YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains a highly conserved PDZ-binding motif that regulates YAP’s functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP’s co-activation of TEAD-mediated CTGF transcription.

  2. A novel salt-tolerant chitobiosidase discovered by genetic screening of a metagenomic library derived from chitin-amended agricultural soil

    NARCIS (Netherlands)

    Cretoiu, Mariana Silvia; Berini, Francesca; Kielak, Anna Maria; Marinelli, Flavia; van Elsas, Jan Dirk

    2015-01-01

    Here, we report on the construction of a metagenomic library from a chitin-amended disease-suppressive agricultural soil and its screening for genes that encode novel chitinolytic enzymes. The library, constructed in fosmids in an Escherichia coli host, comprised 145,000 clones containing inserts of

  3. Evaluación analítica de óvulos de quitina Analytical evaluation of chitin pessaries

    Directory of Open Access Journals (Sweden)

    Yania Suárez Pérez

    2008-12-01

    Full Text Available Los óvulos de quitina constituyen nuevos productos en fase de investigación. Para la evaluación analítica de estos, se desarrolló un método gravimétrico directo para supositorios vaginales de diferente dosificación. La técnica se basa en la separación de la quitina de los demás componentes de la formulación según sus diferencias de solubilidad, con el empleo de la filtración al vacío. El método se validó para control de calidad, y se obtuvieron resultados satisfactorios en los parámetros evaluados: linealidad, precisión, exactitud y selectividad.Chitin pessaries are new products under research. For their analytical evaluation, a direct gravimetric method for vaginal suppositories of various dosing was designed. This technique was based on separation of chitin from the rest of the formulation components according to their solubility characteristics, by using vacuum filtering. The method was validated for quality control and the results were satisfactory in terms of the evaluated parameters such as linearity, precision, accuracy and selectivity.

  4. Abscisic Acid Regulates Inflammation via Ligand-binding Domain-independent Activation of Peroxisome Proliferator-activated Receptor γ*

    Science.gov (United States)

    Bassaganya-Riera, Josep; Guri, Amir J.; Lu, Pinyi; Climent, Montse; Carbo, Adria; Sobral, Bruno W.; Horne, William T.; Lewis, Stephanie N.; Bevan, David R.; Hontecillas, Raquel

    2011-01-01

    Abscisic acid (ABA) has shown efficacy in the treatment of diabetes and inflammation; however, its molecular targets and the mechanisms of action underlying its immunomodulatory effects remain unclear. This study investigates the role of peroxisome proliferator-activated receptor γ (PPAR γ) and lanthionine synthetase C-like 2 (LANCL2) as molecular targets for ABA. We demonstrate that ABA increases PPAR γ reporter activity in RAW 264.7 macrophages and increases ppar γ expression in vivo, although it does not bind to the ligand-binding domain of PPAR γ. LANCL2 knockdown studies provide evidence that ABA-mediated activation of macrophage PPAR γ is dependent on lancl2 expression. Consistent with the association of LANCL2 with G proteins, we provide evidence that ABA increases cAMP accumulation in immune cells. ABA suppresses LPS-induced prostaglandin E2 and MCP-1 production via a PPAR γ-dependent mechanism possibly involving activation of PPAR γ and suppression of NF-κB and nuclear factor of activated T cells. LPS challenge studies in PPAR γ-expressing and immune cell-specific PPAR γ null mice demonstrate that ABA down-regulates toll-like receptor 4 expression in macrophages and T cells in vivo through a PPAR γ-dependent mechanism. Global transcriptomic profiling and confirmatory quantitative RT-PCR suggest novel candidate targets and demonstrate that ABA treatment mitigates the effect of LPS on the expression of genes involved in inflammation, metabolism, and cell signaling, in part, through PPAR γ. In conclusion, ABA decreases LPS-mediated inflammation and regulates innate immune responses through a bifurcating pathway involving LANCL2 and an alternative, ligand-binding domain-independent mechanism of PPAR γ activation. PMID:21088297

  5. Abscisic acid regulates inflammation via ligand-binding domain-independent activation of peroxisome proliferator-activated receptor gamma.

    Science.gov (United States)

    Bassaganya-Riera, Josep; Guri, Amir J; Lu, Pinyi; Climent, Montse; Carbo, Adria; Sobral, Bruno W; Horne, William T; Lewis, Stephanie N; Bevan, David R; Hontecillas, Raquel

    2011-01-28

    Abscisic acid (ABA) has shown efficacy in the treatment of diabetes and inflammation; however, its molecular targets and the mechanisms of action underlying its immunomodulatory effects remain unclear. This study investigates the role of peroxisome proliferator-activated receptor γ (PPAR γ) and lanthionine synthetase C-like 2 (LANCL2) as molecular targets for ABA. We demonstrate that ABA increases PPAR γ reporter activity in RAW 264.7 macrophages and increases ppar γ expression in vivo, although it does not bind to the ligand-binding domain of PPAR γ. LANCL2 knockdown studies provide evidence that ABA-mediated activation of macrophage PPAR γ is dependent on lancl2 expression. Consistent with the association of LANCL2 with G proteins, we provide evidence that ABA increases cAMP accumulation in immune cells. ABA suppresses LPS-induced prostaglandin E(2) and MCP-1 production via a PPAR γ-dependent mechanism possibly involving activation of PPAR γ and suppression of NF-κB and nuclear factor of activated T cells. LPS challenge studies in PPAR γ-expressing and immune cell-specific PPAR γ null mice demonstrate that ABA down-regulates toll-like receptor 4 expression in macrophages and T cells in vivo through a PPAR γ-dependent mechanism. Global transcriptomic profiling and confirmatory quantitative RT-PCR suggest novel candidate targets and demonstrate that ABA treatment mitigates the effect of LPS on the expression of genes involved in inflammation, metabolism, and cell signaling, in part, through PPAR γ. In conclusion, ABA decreases LPS-mediated inflammation and regulates innate immune responses through a bifurcating pathway involving LANCL2 and an alternative, ligand-binding domain-independent mechanism of PPAR γ activation.

  6. Fluorescence microscopical studies on chitin distribution in the cell wall of giant cells of Saccharomyces uvarum, grown following X-radiaiton treatment. Fluoreszenzmikroskopische Untersuchungen zur Chitinverteilung in der Zellwand von Riesenzellen von Saccharomyces uvarum, gewachsen nach Roentgenbestrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Hoschka, L

    1982-01-01

    Teast cells are synchronized and modiated with X-rays (1.0 kGy) in the Cr, phase. Their growth behaviour is observed in suspension cultures and the formation of giant cells noted. The chitin structures are selectively stained with the fluorescent dye Calcofluor white. In the unradiated cells the chitin is deposited at the bud constriction site in the form of rings in the mother cell wall, whereas for irradiated cells only one chitin ring of normal appearance is formed between the mother cell and first bud equivalent. Between further bud equivalents an intensification of fluorescence is occasionally noted, however the organisation of the chitin into a regular ring arrangement is disturbed. In giant cells the facility for primary and secondary septa formation is missing and these are essential for successful cell division. By further experiments it was possible to identify the cause of disturbance in the cell cycle of irradiated cells. Giant cells only form one chitin ring because its DNA is replicated one time only. The major cause triggering the actual formation of giant cells must be considered the missing distribution of the once-rephicated DNA. All processes in the cell cycle dependent on this step are therefore stopped and only bud formation which occurs independently continues along its rhytmical path.

  7. Fluorescence microscopical studies on chitin distribution in the cell wall of giant cells of Saccharomyces uvarum, grown following X-radiation treatment. Fluoreszenzmikroskopische Untersuchungen zur Chitinverteilung in der Zellwand von Riesenzellen von Saccharomyces uvarum, gewachsen nach Roentgenbestrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Hoschka, L

    1982-01-01

    Yeast cells are synchronized and modiated with X-rays (1.0 kGy) in the Cr, phase. Their growth behaviour is observed in suspension cultures and the formation of giant cells noted. The chitin structures are selectively stained with the fluorescent dye Calcofluor white. In the unradiated cells the chitin is deposited at the bud constriction site in the form of rings in the mother cell wall, whereas for irradiated cells only one chitin ring of normal appearance is formed between the mother cell and first bud equivalent. Between further bud equivalents an intensification of fluorescence is occasionally noted, however the organisation of the chitin into a regular ring arrangement is disturbed. In giant cells the facility for primary and secondary septa formation is missing and these are essential for successful cell division. By further experiments it was possible to identify the cause of disturbance in the cell cycle of irradiated cells. Giant cells only form one chitin ring because its DNA is replicated one time only. The major cause triggering the actual formation of giant cells must be considered the missing distribution of the once-rephicated DNA. All processes in the cell cycle dependent on this step are therefore stopped and only bud formation which occurs independently continues along its rhythmical path.

  8. Binding of ferric ions is essential for the biological activity of glycine-extended gastrin

    International Nuclear Information System (INIS)

    Baldwin, G.S.; Pannequin, J.; Hollande, F.; Shulkes, A.

    2002-01-01

    Full text: Non-amidated gastrins, such as glycine-extended gastrin17 (Ggly), are now known to be biologically active. Ggly stimulates cell proliferation and migration, and was recently shown to bind two ferric ions with high affinity. The objective of the present work was to define the structure of Ggly for the first time, and to investigate the role of ferric ions in biological activity. Methods: The structure of Ggly, and the identity of the ammo acids that act as ferric ion ligands, were determined by NMR and fluorescence spectroscopy. The effect on the gastric epithelial cell line IMGE-5 of Ggly fragments, and of Ggy mutants with some or all of the five consecutive glutamate residues replaced by alanine, was measured in terms of cell proliferation, cell migration and phosphorylation of focal adhesion kinase. Results: Ggly adopts a well-defined loop stabilised by hydrophobic interactions between Leu5, Tyrl2, Trp 14 and Phe17. Studies with Ggly fragments indicated that ferric ions bind via the pentaglutamate sequence, which is necessary but not sufficient for full activity Selective replacement of some or all of the glutamates results in a reduction in ferric ion binding, and complete loss of biological activity. Conclusion: Our results are consistent with the hypothesis that ferric ion binding is necessary for biological activity

  9. Resilin and chitinous cuticle form a composite structure for energy storage in jumping by froghopper insects

    Directory of Open Access Journals (Sweden)

    Shaw Stephen R

    2008-09-01

    Full Text Available Abstract Background Many insects jump by storing and releasing energy in elastic structures within their bodies. This allows them to release large amounts of energy in a very short time to jump at very high speeds. The fastest of the insect jumpers, the froghopper, uses a catapult-like elastic mechanism to achieve their jumping prowess in which energy, generated by the slow contraction of muscles, is released suddenly to power rapid and synchronous movements of the hind legs. How is this energy stored? Results The hind coxae of the froghopper are linked to the hinges of the ipsilateral hind wings by pleural arches, complex bow-shaped internal skeletal structures. They are built of chitinous cuticle and the rubber-like protein, resilin, which fluoresces bright blue when illuminated with ultra-violet light. The ventral and posterior end of this fluorescent region forms the thoracic part of the pivot with a hind coxa. No other structures in the thorax or hind legs show this blue fluorescence and it is not found in larvae which do not jump. Stimulating one trochanteral depressor muscle in a pattern that simulates its normal action, results in a distortion and forward movement of the posterior part of a pleural arch by 40 μm, but in natural jumping, the movement is at least 100 μm. Conclusion Calculations showed that the resilin itself could only store 1% to 2% of the energy required for jumping. The stiffer cuticular parts of the pleural arches could, however, easily meet all the energy storage needs. The composite structure therefore, combines the stiffness of the chitinous cuticle with the elasticity of resilin. Muscle contractions bend the chitinous cuticle with little deformation and therefore, store the energy needed for jumping, while the resilin rapidly returns its stored energy and thus restores the body to its original shape after a jump and allows repeated jumping.

  10. Cholesterol Crystals Activate the Lectin Complement Pathway via Ficolin-2 and Mannose-Binding Lectin

    DEFF Research Database (Denmark)

    Pilely, Katrine; Rosbjerg, Anne; Genster, Ninette

    2016-01-01

    Cholesterol crystals (CC) play an essential role in the formation of atherosclerotic plaques. CC activate the classical and the alternative complement pathways, but the role of the lectin pathway is unknown. We hypothesized that the pattern recognition molecules (PRMs) from the lectin pathway bind...... CC and function as an upstream innate inflammatory signal in the pathophysiology of atherosclerosis. We investigated the binding of the PRMs mannose-binding lectin (MBL), ficolin-1, ficolin-2, and ficolin-3, the associated serine proteases, and complement activation products to CC in vitro using...... recognize CC and provides evidence for an important role for this pathway in the inflammatory response induced by CC in the pathophysiology of atherosclerosis....

  11. Papain incorporated chitin dressings for wound debridement sterilized by gamma radiation

    International Nuclear Information System (INIS)

    Singh, Durgeshwer; Singh, Rita

    2012-01-01

    Wound debridement is essential for the removal of necrotic or nonviable tissue from the wound surface to create an environment conducive to healing. Nonsurgical enzymatic debridement is an attractive method due to its effectiveness and ease of use. Papain is a proteolytic enzyme derived from the fruit of Carica papaya and is capable of breaking down a variety of necrotic tissue substrates. The present study was focused on the use of gamma radiation for sterilization of papain dressing with wound debriding activity. Membranes with papain were prepared using 0.5% chitin in lithium chloride/dimethylacetamide solvent and sterilized by gamma radiation. Fluid absorption capacity of chitin–papain membranes without glycerol was 14.30±6.57% in 6 h. Incorporation of glycerol resulted in significant (p 2 /24 h at 24 h. Gamma irradiation at 25 kGy was found suitable for sterilization of the dressings. Infrared (IR) spectral scanning has shown that papain was stable on gamma irradiation at 25–35 kGy. The irradiated chitin–papain membranes were impermeable to different bacterial strains and also exhibited strong bactericidal action against both Gram-positive and Gram-negative bacteria. The fluid handling characteristics and the antimicrobial properties of chitin–papain membranes sterilized by gamma radiation were found suitable for use as wound dressing with debriding activity. - Highlight: ► Use of gamma radiation for sterilization of papain wound dressing was studied. ► Fluid handling and antimicrobial properties of irradiated dressings was evaluated. ► Gamma irradiation at 25 kGy was found suitable for sterilization of the dressings.

  12. Adsorption of TNT, DNAN, NTO, FOX7, and NQ onto cellulose, chitin, and cellulose triacetate. Insights from Density Functional Theory calculations

    Science.gov (United States)

    Todde, Guido; Jha, Sanjiv K.; Subramanian, Gopinath; Shukla, Manoj K.

    2018-02-01

    Insensitive munitions (IM) compounds such as DNAN (2,4-dinitroanisole), NTO (3-nitro-1,2,4-triazol-5-one), NQ (nitroguanidine), and FOX7 (1,1-diamino-2,2-dinitroethene) reduce the risk of accidental explosions due to shock and high temperature exposure. These compounds are being used as replacements for sensitive munition compounds such as TNT (2,4,6-trinitromethylbenzene) and RDX (1,3,5-hexahydro-1,3,5-trinitro-1,3,5-triazine). NTO and NQ in IM compounds are more soluble than TNT or RDX, hence they can easily spread in the environment and get dissolved if exposed to precipitation. DNAN solubility is comparable to TNT solubility. Cellulosic biomass, due to its abundance in the environment and its chemical structure, has a high probability of adsorbing these IM compounds, and thus, it is important to investigate the interactions between cellulose and cellulose like biopolymers (e.g. cellulose triacetate and chitin) with IM compounds. Using Density Functional Theory methods, we have studied the adsorption of TNT, DNAN, NTO, NQ, and FOX7 onto cellulose Iα and Iβ, chitin, and cellulose triacetate I (CTA I). Solvent effects on the adsorption were also investigated. Our results show that all contaminants are more strongly adsorbed onto chitin and cellulose Iα than onto CTA I and cellulose Iβ. Dispersion forces were found to be the predominant contribution to the adsorption energies of all contaminants.

  13. Photo-Activated Localization Microscopy of Single Carbohydrate Binding Modules on Cellulose Nanofibers

    Science.gov (United States)

    Hor, Amy; Dagel, Daryl; Luu, Quocanh; Savaikar, Madhusudan; Ding, Shi-You; Smith, Steve

    2015-03-01

    Photo Activated Localization Microscopy (PALM) is used to conduct an in vivo study of the binding affinity of polysaccharide-specific Carbohydrate Binding Modules (CBMs) to insoluble cellulose substrates. Two families of CBMs, namely TrCBM1 and CtCBM3, were modified to incorporate photo-activatable mCherry fluorescent protein (PAmCherry), and exposed to highly crystalline Valonia cellulose nano-fibrils. The resulting PALM images show CBMs binding along the nano-fibril long axis in a punctuated linear array, localized with, on average, 10 nm precision. Statistical analysis of the binding events results in nearest neighbor distributions between CBMs. A comparison between TrCBM1 and CtCBM3 reveals a similarity in the nearest neighbor distribution peaks but differences in the overall binding density. The former is attributed to steric hindrance among the CBMs on the nano-fibril whereas the latter is attributed to differences in the CBMs' binding strength. These results are compared to similar distributions derived from TEM measurements of dried samples of CtCBM3-CdSs quantum dot bioconjugates and AFM images of CtCBM3-GFP bound to similar Valonia nano-fibrils. Funding provided by NSF MPS/DMR/BMAT Award # 1206908.

  14. Application of gamma radiation and physicochemical treatment to improve the bioactive properties of chitosan extracted from shrimp shell

    Directory of Open Access Journals (Sweden)

    Aktar Jesmin

    2017-12-01

    Full Text Available The aim of this study is to exploit a suitable chitosan extraction method from the chitin of indigenous shrimp shells by employing different physicochemical treatments and to improve different bioactive properties of this extracted chitosan (CS by applying gamma radiation. Chitin was prepared from shrimp shell by pretreatment (deproteination, demineralization and oxidation. Chitosan was extracted from chitin by eight different methods varying different physicochemical parameters (reagent concentration, temperature and time and assessed with respect to the degree of deacetylation, requirement of time and reagents. The method where chitin was repeatedly treated with 121°C for 30 min with 20 M NaOH, produced the highest degree of deacetylation (DD value (92% as measured by potentiometric titration, with the least consumption of time and chemicals, and thus, selected as the best suitable extraction method. For further quality improvement, chitosan with highest DD value was irradiated with different doses (i.e., 5, 10, 15, 20 and 50 kGy of gamma radiation from cobalt-60 gamma irradiator. As the radiation dose was increased, the molecular weight of the wet irradiated chitosan, as measured by the viscosimetric method, decreased from 1.16 × 105 to 1.786 × 103, 1.518 × 103, 1.134 × 103, 1.046 × 103 and 8.23 × 102 dalton, respectively. The radiation treatment of chitosan samples increased the antimicrobial activity significantly in concentration dependent manner on both gram-positive (Staphylococcus aureus and gram-negative (Escherichia coli bacteria, as determined by the well-diffusion method. Four to five percent wet chitosan treated with a radiation dose range of 5.0–10.0 kGy rendered the highest antimicrobial activity with least energy and time consumption. Solubility, water binding capacity (WBC and fat binding capacity (FBC also improved due to irradiation of chitosan.

  15. Biochemical investigation of yttrium(III) complex containing 1,10-phenanthroline: DNA binding and antibacterial activity.

    Science.gov (United States)

    Khorasani-Motlagh, Mozhgan; Noroozifar, Meissam; Moodi, Asieh; Niroomand, Sona

    2013-03-05

    Characterization of the interaction between yttrium(III) complex containing 1,10-phenanthroline as ligand, [Y(phen)2Cl(OH2)3]Cl2⋅H2O, and DNA has been carried out by UV absorption, fluorescence spectra and viscosity measurements in order to investigate binding mode. The experimental results indicate that the yttrium(III) complex binds to DNA and absorption is decreasing in charge transfer band with the increase in amount of DNA. The binding constant (Kb) at different temperatures as well as thermodynamic parameters, enthalpy change (ΔH°) and entropy change (ΔS°), were calculated according to relevant fluorescent data and Vant' Hoff equation. The results of interaction mechanism studies, suggested that groove binding plays a major role in the binding of the complex and DNA. The activity of yttrium(III) complex against some bacteria was tested and antimicrobial screening tests shown growth inhibitory activity in the presence of yttrium(III) complex. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Zinc binding activity of human metapneumovirus M2-1 protein is indispensable for viral replication and pathogenesis in vivo.

    Science.gov (United States)

    Cai, Hui; Zhang, Yu; Ma, Yuanmei; Sun, Jing; Liang, Xueya; Li, Jianrong

    2015-06-01

    Human metapneumovirus (hMPV) is a member of the Pneumovirinae subfamily in the Paramyxoviridae family that causes respiratory tract infections in humans. Unlike members of the Paramyxovirinae subfamily, the polymerase complex of pneumoviruses requires an additional cofactor, the M2-1 protein, which functions as a transcriptional antitermination factor. The M2-1 protein was found to incorporate zinc ions, although the specific role(s) of the zinc binding activity in viral replication and pathogenesis remains unknown. In this study, we found that the third cysteine (C21) and the last histidine (H25) in the zinc binding motif (CCCH) of hMPV M2-1 were essential for zinc binding activity, whereas the first two cysteines (C7 and C15) play only minor or redundant roles in zinc binding. In addition, the zinc binding motif is essential for the oligomerization of M2-1. Subsequently, recombinant hMPVs (rhMPVs) carrying mutations in the zinc binding motif were recovered. Interestingly, rhMPV-C21S and -H25L mutants, which lacked zinc binding activity, had delayed replication in cell culture and were highly attenuated in cotton rats. In contrast, rhMPV-C7S and -C15S strains, which retained 60% of the zinc binding activity, replicated as efficiently as rhMPV in cotton rats. Importantly, rhMPVs that lacked zinc binding activity triggered high levels of neutralizing antibody and provided complete protection against challenge with rhMPV. Taken together, these results demonstrate that zinc binding activity is indispensable for viral replication and pathogenesis in vivo. These results also suggest that inhibition of zinc binding activity may serve as a novel approach to rationally attenuate hMPV and perhaps other pneumoviruses for vaccine purposes. The pneumoviruses include many important human and animal pathogens, such as human respiratory syncytial virus (hRSV), hMPV, bovine RSV, and avian metapneumovirus (aMPV). Among these viruses, hRSV and hMPV are the leading causes of acute

  17. New perspectives on mannan-binding lectin-mediated complement activation

    DEFF Research Database (Denmark)

    Degn, Søren Egedal; Thiel, Steffen; Jensenius, Jens Christian

    2007-01-01

    The complement system is an important part of the innate immune system, mediating several major effector functions and modulating adaptive immune responses. Three complement activation pathways exist: the classical pathway (CP), the alternative pathway (AP), and the lectin pathway (LP). The LP......, allowing C3 activation in the absence of components otherwise believed critical. The classical bypass pathways are dependent on C1 and components of the AP. A recent study has shown the existence also of a lectin bypass pathway dependent on mannan-binding lectin (MBL) and AP components. The emerging...

  18. Preparation, characterization and environmental/electrochemical energy storage testing of low-cost biochar from natural chitin obtained via pyrolysis at mild conditions

    Science.gov (United States)

    Magnacca, Giuliana; Guerretta, Federico; Vizintin, Alen; Benzi, Paola; Valsania, Maria C.; Nisticò, Roberto

    2018-01-01

    Chitin (a biopolymer obtained from shellfish industry) was used as precursor for the production of biochars obtained via pyrolysis treatments performed at mild conditions (in the 290-540 °C range). Biochars were physicochemical characterized in order to evaluate the pyrolysis-induced effects in terms of both functional groups and material structure. Moreover, such carbonaceous materials were tested as adsorbent substrates for the removal of target molecules from aqueous environment as well as in solid-gas experiments, to measure the adsorption capacities and selectivity toward CO2. Lastly, biochars were also investigated as possible cathode materials in sustainable and low-cost electrochemical energy storage devices, such as lithium-sulphur (Li-S) batteries. Interestingly, experimental results evidenced that such chitin-derived biochars obtained via pyrolysis at mild conditions are sustainable, low-cost and easy scalable alternative materials suitable for both environmental and energetic applications.

  19. Carboxymethyl chitin-glucan (CM-CG) protects human HepG2 and HeLa cells against oxidative DNA lesions and stimulates DNA repair of lesions induced by alkylating agents.

    Science.gov (United States)

    Slamenová, Darina; Kováciková, Ines; Horváthová, Eva; Wsólová, Ladislava; Navarová, Jana

    2010-10-01

    A large number of functional foods, including those that contain β-d-glucans, have been shown to prevent human DNA against genotoxic effects and associated development of cancer and other chronic diseases. In this paper, carboxymethyl chitin-glucan (CM-CG) isolated from Aspergillus niger was investigated from two standpoints: (1) DNA-protective effects against oxidative DNA damage induced by H(2)O(2) and alkylating DNA damage induced by MMS and MNNG, and (2) a potential effect on rejoining of MMS- and MNNG-induced single strand DNA breaks. The results obtained by the comet assay in human cells cultured in vitro showed that CM-CG reduced significantly the level of oxidative DNA lesions induced by H(2)O(2) but did not change the level of alkylating DNA lesions induced by MMS or MNNG. On the other side, the efficiency of DNA-rejoining of single strand DNA breaks induced by MMS and MNNG was significantly higher in HepG2 cells pre-treated with CM-CG. The antioxidative activity of carboxymethyl chitin-glucan was confirmed by the DPPH assay. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Complementary three-dimensional quantitative structure-activity relationship modeling of binding affinity and functional potency

    DEFF Research Database (Denmark)

    Tosco, Paolo; Ahring, Philip K; Dyhring, Tino

    2009-01-01

    Complementary 3D-QSAR modeling of binding affinity and functional potency is proposed as a tool to pinpoint the molecular features of the ligands, and the corresponding amino acids in the receptor, responsible for high affinity binding vs those driving agonist behavior and receptor activation. Th...

  1. Autodisplay of an avidin with biotin-binding activity on the surface of Escherichia coli.

    Science.gov (United States)

    Pardavé-Alejandre, H D; Alvarado-Yaah, J E; Pompa-Mera, E N; Muñoz-Medina, J E; Sárquiz-Martínez, B; Santacruz-Tinoco, C E; Manning-Cela, R G; Ortíz-Navarrete, V; López-Macías, C; González-Bonilla, C R

    2018-03-01

    To display a recombinant avidin fused to the autotransporter ShdA to bind biotinylated molecules on the surface of Escherichia coli. Two chimeric protein constructs containing avidin fused to the autotransporter ShdA were expressed on the surface of Escherichia coli DH5α. One fusion protein contained 476 amino acids of the ShdA α and β domains, whereas the second consisted of a 314 amino acid from α and truncated β domains. Protein production was verified by SDS-PAGE using an antibody to the molecular FLAG-tag. The surface display of the avidin-shdA fusion protein was confirmed by confocal microscopy and flow cytometry analysis, and the biotin-binding activity was evaluated by fluorescence microscopy and flow cytometry using biotin-4-fluorescein and biotinylated-ovalbumin (OVA). Expression of a recombinant avidin with biotin-binding activity on the surface of E. coli was achieved using the autotransporter ShdA. This system is an alternative to bind biotinylated molecules to E. coli.

  2. Silver nanoparticles-loaded activated carbon fibers using chitosan as binding agent: Preparation, mechanism, and their antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chengli, E-mail: tcl-lily@mail.zjxu.edu.cn [College of Mechanical and Electrical Engineering, Jiaxing University, Jiaxing 314001 (China); Hu, Dongmei [College of Mechanical Science and Engineering, Jilin University, Changchun 130022 (China); Cao, Qianqian [College of Mechanical and Electrical Engineering, Jiaxing University, Jiaxing 314001 (China); Yan, Wei [Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Xing, Bo [College of Mechanical and Electrical Engineering, Jiaxing University, Jiaxing 314001 (China)

    2017-02-01

    Highlights: • Chitosan was firstly introduced as binding agent for AgNPs loading on ACF surface. • Molecular dynamics simulation was used to explore the AgNPs loading mechanism. • Loading mechanism was proposed based on the experimental and simulation results. • Antibacterial AgNPs-loaded ACF showed use potential for water disinfection. - Abstract: The effective and strong adherence of silver nanoparticles (AgNPs) to the substrate surface is pivotal to the practical application of those AgNPs-modified materials. In this work, AgNPs were synthesized through a green and facile hydrothermal method. Chitosan was introduced as the binding agent for the effective loading of AgNPs on activated carbon fibers (ACF) surface to fabricate the antibacterial material. Apart from conventional instrumental characterizations, i. e., scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), zeta potential and Brunauer-Emmett-Teller (BET) surface area measurement, molecular dynamics simulation method was also applied to explore the loading mechanism of AgNPs on the ACF surface. The AgNPs-loaded ACF material showed outstanding antibacterial activity for S. aureus and E. coli. The combination of experimental and theoretical calculation results proved chitosan to be a promising binding agent for the fabrication of AgNPs-loaded ACF material with excellent antibacterial activity.

  3. Nuclear AP4A-binding activity of sea urchin embryos changes in relation to the initiation of S phase

    International Nuclear Information System (INIS)

    Morioka, M.; Shimada, H.

    1986-01-01

    The AP 4 A-binding activity of sea urchin embryos was studied using radioactively labelled diadenosine 5', 5'''-P 1 ,P 4 -tetraphosphate (Ap 4 A). Among various subcellular components that can bind [ 3 H]AP 4 A, nuclei alone showed the highly specific Ap 4 A-binding activity which was not influenced by the presence of AP 4 A, AP 5 A and GP 4 G. The addition of an excess amount of ATP only slightly reduced the binding of [ 3 H]AP 4 A to the nuclei. It was found that AP 4 A binds to the residual proteinaceous structure of nuclei which was resistant to the extraction with 2 M NaCl. The nuclear AP 4 A-binding activity fluctuated cyclically during each cell cycle, with at transient increase at the beginning of S phase followed by an abrupt-decrease within 10 min. When the initiation of S phase was blocked, the increase in the AP 4 A-binding activity was also prevented. It seems that the binding of AP 4 A to the nuclear structural protein is involved in the initiation of S phase

  4. Loosenin, a novel protein with cellulose-disrupting activity from Bjerkandera adusta

    Directory of Open Access Journals (Sweden)

    Segovia Lorenzo

    2011-02-01

    Full Text Available Abstract Background Expansins and expansin-like proteins loosen cellulose microfibrils, possibly through the rupture of intramolecular hydrogen bonds. Together with the use of lignocellulolytic enzymes, these proteins are potential molecular tools to treat plant biomass to improve saccharification yields. Results Here we describe a new type of expansin-related fungal protein that we have called loosenin. Its corresponding gene, loos1, from the basidiomycete Bjerkandera adusta, was cloned and heterologously expressed in Saccharomyces cerevisiae. LOOS1 is distantly related to plant expansins through the shared presence of a DPBB domain, however domain II found in plant expansins is absent. LOOS1 binds tightly to cellulose and chitin, and we demonstrate that cotton fibers become susceptible to the action of a commercial cellulase following treatment with LOOS1. Natural fibers of Agave tequilana also become susceptible to hydrolysis by cellulases after loosenin treatment. Conclusions LOOS1 is a new type of protein with disrupting activity on cellulose. LOOS1 binds polysaccharides, and given its enhancing properties on the action of hydrolytic enzymes, LOOS1 represents a potential additive in the production of fermentable sugars from lignocellulose.

  5. Structural insights into Cydia pomonella pheromone binding protein 2 mediated prediction of potentially active semiochemicals

    Science.gov (United States)

    Tian, Zhen; Liu, Jiyuan; Zhang, Yalin

    2016-03-01

    Given the advantages of behavioral disruption application in pest control and the damage of Cydia pomonella, due progresses have not been made in searching active semiochemicals for codling moth. In this research, 31 candidate semiochemicals were ranked for their binding potential to Cydia pomonella pheromone binding protein 2 (CpomPBP2) by simulated docking, and this sorted result was confirmed by competitive binding assay. This high predicting accuracy of virtual screening led to the construction of a rapid and viable method for semiochemicals searching. By reference to binding mode analyses, hydrogen bond and hydrophobic interaction were suggested to be two key factors in determining ligand affinity, so is the length of molecule chain. So it is concluded that semiochemicals of appropriate chain length with hydroxyl group or carbonyl group at one head tended to be favored by CpomPBP2. Residues involved in binding with each ligand were pointed out as well, which were verified by computational alanine scanning mutagenesis. Progress made in the present study helps establish an efficient method for predicting potentially active compounds and prepares for the application of high-throughput virtual screening in searching semiochemicals by taking insights into binding mode analyses.

  6. In vitro binding and receptor-mediated activity of terlipressin at vasopressin receptors V1 and V2.

    Science.gov (United States)

    Jamil, Khurram; Pappas, Stephen Chris; Devarakonda, Krishna R

    2018-01-01

    Terlipressin, a synthetic, systemic vasoconstrictor with selective activity at vasopressin-1 (V 1 ) receptors, is a pro-drug for the endogenous/natural porcine hormone [Lys 8 ]-vasopressin (LVP). We investigated binding and receptor-mediated cellular activities of terlipressin, LVP, and endogenous human hormone [Arg 8 ]-vasopressin (AVP) at V 1 and vasopressin-2 (V 2 ) receptors. Cell membrane homogenates of Chinese hamster ovary cells expressing human V 1 and V 2 receptors were used in competitive binding assays to measure receptor-binding activity. These cells were used in functional assays to measure receptor-mediated cellular activity of terlipressin, LVP, and AVP. Binding was measured by [ 3 H]AVP counts, and the activity was measured by fluorometric detection of intracellular calcium mobilization (V 1 ) and cyclic adenosine monophosphate (V 2 ). Binding potency at V 1 and V 2 was AVP>LVP>terlipressin. LVP and terlipressin had approximately sixfold higher affinity for V 1 than for V 2 . Cellular activity potency was also AVP>LVP>terlipressin. Terlipressin was a partial agonist at V 1 and a full agonist at V 2 ; LVP was a full agonist at both V 1 and V 2 . The in vivo response to terlipressin is likely due to the partial V 1 agonist activity of terlipressin and full V 1 agonist activity of its metabolite, LVP. These results provide supportive evidence for previous findings and further establish terlipressin pharmacology for vasopressin receptors.

  7. Membrane-associated 41-kDa GTP-binding protein in collagen-induced platelet activation

    International Nuclear Information System (INIS)

    Walker, G.; Bourguignon, L.Y.

    1990-01-01

    Initially we established that the binding of collagen to human blood platelets stimulates both the rapid loss of PIP2 and the generation of inositol-4,5-bisphosphate (IP2) and inositol-1,4,5-triphosphate (IP3). These results indicate that the binding of collagen stimulates inositol phospholipid-specific phospholipase C during platelet activation. The fact that GTP or GTP-gamma-S augments, and pertussis toxin inhibits, collagen-induced IP3 formation suggests that a GTP-binding protein or (or proteins) may be directly involved in the regulation of phospholipase C-mediated phosphoinositide turnover in human platelets. We have used several complementary techniques to isolate and characterize a platelet 41-kDa polypeptide (or polypeptides) that has a number of structural and functional similarities to the regulatory alpha i subunit of the GTP-binding proteins isolated from bovine brain. This 41-kDa polypeptide (or polypeptides) is found to be closely associated with at least four membrane glycoproteins (e.g., gp180, gp110, gp95, and gp75) in a 330-kDa complex that can be dissociated by treatment with high salt plus urea. Most important, we have demonstrated that antilymphoma 41-kDa (alpha i subunit of GTP-binding proteins) antibody cross-reacts with the platelet 41-kDa protein (or proteins) and the alpha i subunit of bovine brain Gi alpha proteins, and blocks GTP/collagen-induced IP3 formation. These data provide strong evidence that the 41-kDa platelet GTP-binding protein (or proteins) is directly involved in collagen-induced signal transduction during platelet activation

  8. Membrane-associated 41-kDa GTP-binding protein in collagen-induced platelet activation

    Energy Technology Data Exchange (ETDEWEB)

    Walker, G.; Bourguignon, L.Y. (Univ. of Miami Medical School, FL (USA))

    1990-08-01

    Initially we established that the binding of collagen to human blood platelets stimulates both the rapid loss of PIP2 and the generation of inositol-4,5-bisphosphate (IP2) and inositol-1,4,5-triphosphate (IP3). These results indicate that the binding of collagen stimulates inositol phospholipid-specific phospholipase C during platelet activation. The fact that GTP or GTP-gamma-S augments, and pertussis toxin inhibits, collagen-induced IP3 formation suggests that a GTP-binding protein or (or proteins) may be directly involved in the regulation of phospholipase C-mediated phosphoinositide turnover in human platelets. We have used several complementary techniques to isolate and characterize a platelet 41-kDa polypeptide (or polypeptides) that has a number of structural and functional similarities to the regulatory alpha i subunit of the GTP-binding proteins isolated from bovine brain. This 41-kDa polypeptide (or polypeptides) is found to be closely associated with at least four membrane glycoproteins (e.g., gp180, gp110, gp95, and gp75) in a 330-kDa complex that can be dissociated by treatment with high salt plus urea. Most important, we have demonstrated that antilymphoma 41-kDa (alpha i subunit of GTP-binding proteins) antibody cross-reacts with the platelet 41-kDa protein (or proteins) and the alpha i subunit of bovine brain Gi alpha proteins, and blocks GTP/collagen-induced IP3 formation. These data provide strong evidence that the 41-kDa platelet GTP-binding protein (or proteins) is directly involved in collagen-induced signal transduction during platelet activation.

  9. Binding among Select Episodic Elements Is Altered via Active Short-Term Retrieval

    Science.gov (United States)

    Bridge, Donna J.; Voss, Joel L.

    2015-01-01

    Of the many elements that comprise an episode, are any disproportionately bound to the others? We tested whether active short-term retrieval selectively increases binding. Individual objects from multiobject displays were retrieved after brief delays. Memory was later tested for the other objects. Cueing with actively retrieved objects facilitated…

  10. Ice nucleation activity of polysaccharides

    Science.gov (United States)

    Bichler, Magdalena; Felgitsch, Laura; Haeusler, Thomas; Seidl-Seiboth, Verena; Grothe, Hinrich

    2015-04-01

    Heterogeneous ice nucleation is an important process in the atmosphere. It shows direct impact on our climate by triggering ice cloud formation and therefore it has much influence on the radiation balance of our planet (Lohmann et al. 2002; Mishchenko et al. 1996). The process itself is not completely understood so far and many questions remain open. Different substances have been found to exhibit ice nucleation activity (INA). Due to their vast differences in chemistry and morphology it is difficult to predict what substance will make good ice nuclei and which will not. Hence simple model substances must be found and be tested regarding INA. Our work aims at gaining to a deeper understanding of heterogeneous ice nucleation. We intend to find some reference standards with defined chemistry, which may explain the mechanisms of heterogeneous ice nucleation. A particular focus lies on biological carbohydrates in regards to their INA. Biological carbohydrates are widely distributed in all kingdoms of life. Mostly they are specific for certain organisms and have well defined purposes, e.g. structural polysaccharides like chitin (in fungi and insects) and pectin (in plants), which has also water-binding properties. Since they are widely distributed throughout our biosphere and mostly safe to use for nutrition purposes, they are well studied and easily accessible, rendering them ideal candidates as proxies. In our experiments we examined various carbohydrates, like the already mentioned chitin and pectin, as well as their chemical modifications. Lohmann U.; A Glaciation Indirect Aerosol Effect Caused by Soot Aerosols; J. Geoph. Res.; Vol. 24 No.4; pp 11-1 - 11-4; 2002 Mishchenko M.I., Rossow W.B., Macke A., Lacis A. A.; Sensitivity of Cirrus Cloud Albedo, Bidirectional Reflectance and Optical Thickness Retrieval Accuracy to Ice Particle Shape, J. Geoph. Res.; Vol. 101, No D12; pp. 16,973 - 16,985; 1996

  11. Structural insights into human peroxisome proliferator activated receptor delta (PPAR-delta selective ligand binding.

    Directory of Open Access Journals (Sweden)

    Fernanda A H Batista

    Full Text Available Peroxisome proliferator activated receptors (PPARs δ, α and γ are closely related transcription factors that exert distinct effects on fatty acid and glucose metabolism, cardiac disease, inflammatory response and other processes. Several groups developed PPAR subtype specific modulators to trigger desirable effects of particular PPARs without harmful side effects associated with activation of other subtypes. Presently, however, many compounds that bind to one of the PPARs cross-react with others and rational strategies to obtain highly selective PPAR modulators are far from clear. GW0742 is a synthetic ligand that binds PPARδ more than 300-fold more tightly than PPARα or PPARγ but the structural basis of PPARδ:GW0742 interactions and reasons for strong selectivity are not clear. Here we report the crystal structure of the PPARδ:GW0742 complex. Comparisons of the PPARδ:GW0742 complex with published structures of PPARs in complex with α and γ selective agonists and pan agonists suggests that two residues (Val312 and Ile328 in the buried hormone binding pocket play special roles in PPARδ selective binding and experimental and computational analysis of effects of mutations in these residues confirms this and suggests that bulky substituents that line the PPARα and γ ligand binding pockets as structural barriers for GW0742 binding. This analysis suggests general strategies for selective PPARδ ligand design.

  12. Inter-domain Synergism Is Required for Efficient Feeding of Cellulose Chain into Active Site of Cellobiohydrolase Cel7A.

    Science.gov (United States)

    Kont, Riin; Kari, Jeppe; Borch, Kim; Westh, Peter; Väljamäe, Priit

    2016-12-09

    Structural polysaccharides like cellulose and chitin are abundant and their enzymatic degradation to soluble sugars is an important route in green chemistry. Processive glycoside hydrolases (GHs), like cellobiohydrolase Cel7A of Trichoderma reesei (TrCel7A) are key components of efficient enzyme systems. TrCel7A consists of a catalytic domain (CD) and a smaller carbohydrate-binding module (CBM) connected through the glycosylated linker peptide. A tunnel-shaped active site rests in the CD and contains 10 glucose unit binding sites. The active site of TrCel7A is lined with four Trp residues with two of them, Trp-40 and Trp-38, in the substrate binding sites near the tunnel entrance. Although addressed in numerous studies the elucidation of the role of CBM and active site aromatics has been obscured by a complex multistep mechanism of processive GHs. Here we studied the role of the CBM-linker and Trp-38 of TrCel7A with respect to binding affinity, on- and off-rates, processivity, and synergism with endoglucanase. The CBM-linker increased the on-rate and substrate affinity of the enzyme. The Trp-38 to Ala substitution resulted in increased off-rates and decreased processivity. The effect of the Trp-38 to Ala substitution on on-rates was strongly dependent on the presence of the CBM-linker. This compensation between CBM-linker and Trp-38 indicates synergism between CBM-linker and CD in feeding the cellulose chain into the active site. The inter-domain synergism was pre-requisite for the efficient degradation of cellulose in the presence of endoglucanase. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Delivery of rifampicin-chitin nanoparticles into the intracellular compartment of polymorphonuclear leukocytes.

    Science.gov (United States)

    Smitha, K T; Nisha, N; Maya, S; Biswas, Raja; Jayakumar, R

    2015-03-01

    Polymorphonuclear leukocytes (PMNs) provide the primary host defence against invading pathogens by producing reactive oxygen species (ROS) and microbicidal products. However, few pathogens can survive for a prolonged period of time within the PMNs. Additionally their intracellular lifestyle within the PMNs protect themselves from the additional lethal action of host immune systems such as antibodies and complements. Antibiotic delivery into the intracellular compartments of PMNs is a major challenge in the field of infectious diseases. In order to deliver antibiotics within the PMNs and for the better treatment of intracellular bacterial infections we synthesized rifampicin (RIF) loaded amorphous chitin nanoparticles (RIF-ACNPs) of 350±50 nm in diameter. RIF-ACNPs nanoparticles are found to be non-hemolytic and non-toxic against a variety of host cells. The release of rifampicin from the prepared nanoparticles was ∼60% in 24 h, followed by a sustained pattern till 72 h. The RIF-ACNPs nanoparticles showed 5-6 fold enhanced delivery of RIF into the intracellular compartments of PMNs. The RIF-ACNPs showed anti-microbial activity against Escherichia coli, Staphylococcus aureus and a variety of other bacteria. In summary, our results suggest that RIF-ACNPs could be used to treat a variety of intracellular bacterial infections. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Annexin A5 binds to lipopolysaccharide and reduces its endotoxin activity.

    Science.gov (United States)

    Rand, Jacob H; Wu, Xiao-Xuan; Lin, Elaine Y; Griffel, Alexander; Gialanella, Philip; McKitrick, John C

    2012-01-01

    Annexin A5 (AnxA5) has a high affinity for phosphatidylserine. The protein is widely used to detect apoptotic cells because phosphatidylserine, a phospholipid that is normally present in the inner leaflets of cytoplasmic membranes, becomes translocated to the outer leaflets during programmed cell death. Here we report the novel observation that AnxA5 binds to Gram-negative bacteria via the lipid A domain of lipopolysaccharide (LPS). Binding of AnxA5 to bacteria was measured quantitatively, confirmed by fluorescence microscopy, and found to be inhibited by antibodies against lipid A. AnxA5 also bound to purified dot-blotted LPS and lipid A. Through ellipsometry, we found that the binding of AnxA5 to purified LPS was calcium dependent and rapid and showed a high affinity-characteristics similar to those of AnxA5 binding to phosphatidylserine. Initial functional studies indicated that AnxA5 can affect LPS activities. AnxA5 inhibited LPS-mediated gelation in the Limulus amebocyte lysate assay. Incubation of LPS with the protein reduced the quantity of tumor necrosis factor alpha (TNF-α) released by cultured monocytes compared to that released upon incubation with LPS alone. Initial in vivo experiments indicated that injection of mice with LPS preincubated with AnxA5 produced serum TNF-α levels lower than those seen after injection of LPS alone. These data demonstrate that AnxA5 binds to LPS and open paths to investigation of the potential biological and therapeutic implications of this interaction. AnxA5 is highly expressed in cells that have a barrier function-including, among others, vascular endothelium, placental trophoblasts, and epithelial cells lining bile ducts, renal tubules, mammary ducts, and nasal epithelium. The protein has been well characterized for its binding to phospholipid bilayers that contain phosphatidylserine. This report of a previously unrecognized activity of AnxA5 opens the door to investigation of the possibility that this binding may have

  15. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity.

    Science.gov (United States)

    Petzold, Christine; Marceau, Aimee H; Miller, Katherine H; Marqusee, Susan; Keck, James L

    2015-06-05

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity*

    Science.gov (United States)

    Petzold, Christine; Marceau, Aimee H.; Miller, Katherine H.; Marqusee, Susan; Keck, James L.

    2015-01-01

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome. PMID:25903123

  17. Hyphal walls of isolated lichen fungi

    International Nuclear Information System (INIS)

    Galun, M.; Braun, A.; Frensdorff, A.; Galun, E.

    1976-01-01

    The hyphal walls of three mycobionts, isolated from the lichens Xanthoria parietina, Tornabenia intricata and Sarcogyne sp. were investigated by two techniques: microaudiography of fungal colonies exposed to radioactive carbohydrate precursors; and binding, in vivo, of fluorescein conjugated lectins to hyphal walls of such colonies. N-( 3 H) acetylglucosamine was readily incorporated into tips, young hyphal walls and septa of the three mycobionts and the free-living fungus Trichoderma viride, but not into Phytophthora citrophthora, indicating that chitin is a major component of the mycobionts' hyphal walls. All three mycobionts, but neither of the free-living fungi, incorporated ( 3 H) mannose and ( 3 H) mannitol into their hyphal walls. Fluorescein-conjugated wheat germ agglutinin was bound to the hyphal walls of the three mycobionts and T. viride, but not to the walls of P. citrophthora; the binding pattern was similar to the grain pattern obtained in audiographs after short N-( 3 H) acetylglucosamine labelling. As wheat germ agglutinin binds specifically to chitin oligomers, the lectin binding tests further confirmed that chitin is a mycobiont hyphal wall component. Binding characteristics of several fluorescein-conjugated lectins to the three mycobionts indicated that this technique can yield useful information concerning the chemical composition of hyphal wall surfaces. (orig./AJ) [de

  18. Characterization of DNA binding, transcriptional activation, and regulated nuclear association of recombinant human NFATp

    Directory of Open Access Journals (Sweden)

    Seto Anita G

    2000-11-01

    Full Text Available Abstract Background NFATp is one member of a family of transcriptional activators whose nuclear accumulation and hence transcriptional activity is regulated in mammalian cells. Human NFATp exists as a phosphoprotein in the cytoplasm of naive T cells. Upon antigen stimulation, NFATp is dephosphorylated, accumulates in nuclei, and functions to regulate transcription of genes including those encoding cytokines. While the properties of the DNA binding domain of NFATp have been investigated in detail, biochemical studies of the transcriptional activation and regulated association with nuclei have remained unexplored because of a lack of full length, purified recombinant NFATp. Results We developed methods for expressing and purifying full length recombinant human NFATp that has all of the properties known to be associated with native NFATp. The recombinant NFATp binds DNA on its own and cooperatively with AP-1 proteins, activates transcription in vitro, is phosphorylated, can be dephosphorylated by calcineurin, and exhibits regulated association with nuclei in vitro. Importantly, activation by recombinant NFATp in a reconstituted transcription system required regions of the protein outside of the central DNA binding domain. Conclusions We conclude that NFATp is a bona fide transcriptional activator. Moreover, the reagents and methods that we developed will facilitate future studies on the mechanisms of transcriptional activation and nuclear accumulation by NFATp, a member of an important family of transcriptional regulatory proteins.

  19. Analysis of fluorescently labeled substance P analogs: binding, imaging and receptor activation

    Directory of Open Access Journals (Sweden)

    Simmons Mark A

    2001-06-01

    Full Text Available Abstract Background Substance P (SP is a peptide neurotransmitter found in central and peripheral nerves. SP is involved in the control of smooth muscle, inflammation and nociception. The amino acid sequence of SP is Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-NH2. Five different forms of fluorescently labeled SP have recently been synthesized, in which Alexa 488, BODIPY Fl, fluorescein, Oregon Green 488 or tetramethylrhodamine has been covalently linked to SP at Lys3. Here, these novel analogs are characterized as to their ligand binding, receptor activation and fluorescence labeling properties. Results Competition binding studies, using radiolabeled [125I] SP, revealed that all of the labeled forms of SP, except for Alexa 488-SP, effectively competed with radiolabeled SP for binding at the rat SP receptor. With the exception of Alexa 488-SP, all of the SP analogs produced Ca++ elevations and fluorescence labeling of the SP receptor expressed in Chinese hamster ovary cells. In SP-responsive neurons, BODIPY Fl-SP and Oregon Green 488-SP were as effective as unlabeled SP in producing a reduction of the M-type K+ current. Fluorescein-SP produced variable results, while tetramethylrhodamine-SP was less potent and Alexa 488-SP was less effective on intact neurons. Conclusions The above results show that fluorescent labeling of SP altered the biological activity and the binding properties of the parent peptide. Oregon Green 488 and BODIPY FL-SP are the most useful fluorophores for labeling SP without affecting its biological activity. Given these results, these probes can now be utilized in further investigations of the mechanisms of SPR function, including receptor localization, internalization and recycling.

  20. 4-Aminoquinoline-pyrimidine hybrids: synthesis, antimalarial activity, heme binding and docking studies.

    Science.gov (United States)

    Kumar, Deepak; Khan, Shabana I; Tekwani, Babu L; Ponnan, Prija; Rawat, Diwan S

    2015-01-07

    A series of novel 4-aminoquinoline-pyrimidine hybrids has been synthesized and evaluated for their antimalarial activity. Several compounds showed promising in vitro antimalarial activity against both CQ-sensitive and CQ-resistant strains with high selectivity index. All the compounds were found to be non-toxic to the mammalian cell lines. Selected compound 7g exhibited significant suppression of parasitemia in the in vivo assay. The heme binding studies were conducted to determine the mode of action of these hybrid molecules. These compounds form a stable 1:1 complex with hematin suggesting that heme may be one of the possible targets of these hybrids. The interaction of these conjugate hybrids was also investigated by the molecular docking studies in the binding site of PfDHFR. The pharmacokinetic property analysis of best active compounds was also studied using ADMET prediction. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. Combinatorial binding in human and mouse embryonic stem cells identifies conserved enhancers active in early embryonic development.

    Directory of Open Access Journals (Sweden)

    Jonathan Göke

    2011-12-01

    Full Text Available Transcription factors are proteins that regulate gene expression by binding to cis-regulatory sequences such as promoters and enhancers. In embryonic stem (ES cells, binding of the transcription factors OCT4, SOX2 and NANOG is essential to maintain the capacity of the cells to differentiate into any cell type of the developing embryo. It is known that transcription factors interact to regulate gene expression. In this study we show that combinatorial binding is strongly associated with co-localization of the transcriptional co-activator Mediator, H3K27ac and increased expression of nearby genes in embryonic stem cells. We observe that the same loci bound by Oct4, Nanog and Sox2 in ES cells frequently drive expression in early embryonic development. Comparison of mouse and human ES cells shows that less than 5% of individual binding events for OCT4, SOX2 and NANOG are shared between species. In contrast, about 15% of combinatorial binding events and even between 53% and 63% of combinatorial binding events at enhancers active in early development are conserved. Our analysis suggests that the combination of OCT4, SOX2 and NANOG binding is critical for transcription in ES cells and likely plays an important role for embryogenesis by binding at conserved early developmental enhancers. Our data suggests that the fast evolutionary rewiring of regulatory networks mainly affects individual binding events, whereas "gene regulatory hotspots" which are bound by multiple factors and active in multiple tissues throughout early development are under stronger evolutionary constraints.

  2. Morphological study of chitin from Xiphopenaeus kroyeri exoskeletons by using atomic force microscopy (AFM) and CPMAS {sup 13} C NMR; Estudo morfologico de quitina da exocuticula de Xiphopenaeus kroyeri por AFM e por CPMAS {sup 13} C NMR

    Energy Technology Data Exchange (ETDEWEB)

    Silva, K.M.; Tavares, M.I.; Andrade, C.T. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas; Simao, R.A. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Metalurgica e de Materiais

    1999-07-01

    A sample of {alpha} chitin was isolated from exoskeletons of Xiphopenaeus kroyeri. This sample ws dissolved in phosphoric acid and recovered as a fibrous precipitate. Atomic force microscopy was used in noncontact mode to obtain images of the native chitin sample. Different morphological features were observed, including rigid rod crystals 200-300 nm wide. Solid state {sup 13} C NMR techniques were used to investigate chitin samples, and revealed molecular order in both samples. The differences observed in the proton spin-lattice relaxation times in the rotating frame, T{sup H1}{sub p} were attributed to the formation of hydrogen bonds in preferential sites in the samples. (author)

  3. Identification of a polyoxometalate inhibitor of the DNA binding activity of Sox2.

    Science.gov (United States)

    Narasimhan, Kamesh; Pillay, Shubhadra; Bin Ahmad, Nor Rizal; Bikadi, Zsolt; Hazai, Eszter; Yan, Li; Kolatkar, Prasanna R; Pervushin, Konstantin; Jauch, Ralf

    2011-06-17

    Aberrant expression of transcription factors is a frequent cause of disease, yet drugs that modulate transcription factor protein-DNA interactions are presently unavailable. To this end, the chemical tractability of the DNA binding domain of the stem cell inducer and oncogene Sox2 was explored in a high-throughput fluorescence anisotropy screen. The screening revealed a Dawson polyoxometalate (K(6)[P(2)Mo(18)O(62)]) as a direct and nanomolar inhibitor of the DNA binding activity of Sox2. The Dawson polyoxometalate (Dawson-POM) was found to be selective for Sox2 and related Sox-HMG family members when compared to unrelated paired and zinc finger DNA binding domains. [(15)N,(1)H]-Transverse relaxation optimized spectroscopy (TROSY) experiments coupled with docking studies suggest an interaction site of the POM on the Sox2 surface that enabled the rationalization of its inhibitory activity. The unconventional molecular scaffold of the Dawson-POM and its inhibitory mode provides strategies for the development of drugs that modulate transcription factors.

  4. Combined roles of human IgG subclass, alternative complement pathway activation, and epitope density in the bactericidal activity of antibodies to meningococcal factor h binding protein.

    Science.gov (United States)

    Giuntini, Serena; Reason, Donald C; Granoff, Dan M

    2012-01-01

    Meningococcal vaccines containing factor H binding protein (fHbp) are in clinical development. fHbp binds human fH, which enables the meningococcus to resist complement-mediated bacteriolysis. Previously, we found that chimeric human IgG1 mouse anti-fHbp monoclonal antibodies (MAbs) had human complement-mediated bactericidal activity only if the MAb inhibited fH binding. Since IgG subclasses differ in their ability to activate complement, we investigated the role of human IgG subclasses on antibody functional activity. We constructed chimeric MAbs in which three different murine fHbp-specific binding domains were each paired with human IgG1, IgG2, or IgG3. Against a wild-type group B isolate, all three IgG3 MAbs, irrespective of their ability to inhibit fH binding, had bactericidal activity that was >5-fold higher than the respective IgG1 MAbs, while the IgG2 MAbs had the least activity. Against a mutant with increased fHbp expression, the anti-fHbp MAbs elicited greater C4b deposition (classical pathway) and greater bactericidal activity than against the wild-type strain, and the IgG1 MAbs had similar or greater activity than the respective IgG3 MAbs. The bactericidal activity against both wild-type and mutant strains also was dependent, in part, on activation of the alternative complement pathway. Thus, at lower epitope density in the wild-type strain, the IgG3 anti-fHbp MAbs had the greatest bactericidal activity. At a higher epitope density in the mutant, the IgG1 MAbs had similar or greater bactericidal activity than the IgG3 MAbs, and the activity was less dependent on the inhibition of fH binding than at a lower epitope density.

  5. Transcriptional switching by the MerR protein: Activation and repression mutants implicate distinct DNA and mercury(II) binding domains

    International Nuclear Information System (INIS)

    Shewchuk, L.M.; Helmann, J.D.; Ross, W.; Park, S.J.; Summers, A.O.; Walsh, C.T.

    1989-01-01

    Bacterial resistance to mercuric compounds is controlled by the MerR metalloregulatory protein. The MerR protein functions as both a transcriptional repressor and a mercuric ion dependent transcriptional activator. Chemical mutagenesis of the cloned merR structural gene has led to the identification of mutant proteins that are specifically deficient in transcriptional repression, activation, or both. Five mutant proteins have been overproduced, purified to homogeneity, and assayed for ability to dimerize, bind mer operator DNA, and bind mercuric ion. A mutation in the recognition helix of a proposed helix-turn-helix DNA binding motif (E22K) yields protein deficient in both activation and repression in vivo (a - r - ) and deficient in operator binding in vitro. In contrast, mutations in three of the four MerR cysteine residues are repression competent but activation deficient (a - r + ) in vivo. In vitro, the purified cysteine mutant proteins bind to the mer operator site with near wild-type affinity but are variable deficient in binding the in vivo inducer mercury(II) ion. A subset of the isolated proteins also appears compromised in their ability to form dimers at low protein concentrations. These data support a model in which DNA-bound MerR dimer binds one mercuric ion and transmits this occupancy information to a protein region involved in transcriptional activation

  6. Picomolar-affinity binding and inhibition of adenylate cyclase activity by melatonin in Syrian hamster hypothalamus

    International Nuclear Information System (INIS)

    Niles, L.P.; Hashemi, F.

    1990-01-01

    1. The effect of melatonin on forskolin-stimulated adenylate cyclase activity was measured in homogenates of Syrian hamster hypothalamus. In addition, the saturation binding characteristics of the melatonin receptor ligand, [ 125 I]iodomelatonin, was examined using an incubation temperature (30 degree C) similar to that used in enzyme assays. 2. At concentrations ranging from 10 pM to 1 nM, melatonin caused a significant decrease in stimulated adenylate cyclase activity with a maximum inhibition of approximately 22%. 3. Binding experiments utilizing [ 125 I]iodomelatonin in a range of approximately 5-80 pM indicated a single class of high-affinity sites: Kd = 55 +/- 9 pM, Bmax = 1.1 +/- 0.3 fmol/mg protein. 4. The ability of picomolar concentrations of melatonin to inhibit forskolin-stimulated adenylate cyclase activity suggests that this affect is mediated by picomolar-affinity receptor binding sites for this hormone in the hypothalamus

  7. Antihelminthic benzimidazoles are novel HIF activators that prevent oxidative neuronal death via binding to tubulin.

    Science.gov (United States)

    Aleyasin, Hossein; Karuppagounder, Saravanan S; Kumar, Amit; Sleiman, Sama; Basso, Manuela; Ma, Thong; Siddiq, Ambreena; Chinta, Shankar J; Brochier, Camille; Langley, Brett; Haskew-Layton, Renee; Bane, Susan L; Riggins, Gregory J; Gazaryan, Irina; Starkov, Anatoly A; Andersen, Julie K; Ratan, Rajiv R

    2015-01-10

    Pharmacological activation of the adaptive response to hypoxia is a therapeutic strategy of growing interest for neurological conditions, including stroke, Huntington's disease, and Parkinson's disease. We screened a drug library with known safety in humans using a hippocampal neuroblast line expressing a reporter of hypoxia-inducible factor (HIF)-dependent transcription. Our screen identified more than 40 compounds with the ability to induce hypoxia response element-driven luciferase activity as well or better than deferoxamine, a canonical activator of hypoxic adaptation. Among the chemical entities identified, the antihelminthic benzimidazoles represented one pharmacophore that appeared multiple times in our screen. Secondary assays confirmed that antihelminthics stabilized the transcriptional activator HIF-1α and induced expression of a known HIF target gene, p21(cip1/waf1), in post-mitotic cortical neurons. The on-target effect of these agents in stimulating hypoxic signaling was binding to free tubulin. Moreover, antihelminthic benzimidazoles also abrogated oxidative stress-induced death in vitro, and this on-target effect also involves binding to free tubulin. These studies demonstrate that tubulin-binding drugs can activate a component of the hypoxic adaptive response, specifically the stabilization of HIF-1α and its downstream targets. Tubulin-binding drugs, including antihelminthic benzimidazoles, also abrogate oxidative neuronal death in primary neurons. Given their safety in humans and known ability to penetrate into the central nervous system, antihelminthic benzimidazoles may be considered viable candidates for treating diseases associated with oxidative neuronal death, including stroke.

  8. Direct binding and activation of protein kinase C isoforms by steroid hormones.

    LENUS (Irish Health Repository)

    Alzamora, Rodrigo

    2008-10-01

    The non-genomic action of steroid hormones regulates a wide variety of cellular responses including regulation of ion transport, cell proliferation, migration, death and differentiation. In order to achieve such plethora of effects steroid hormones utilize nearly all known signal transduction pathways. One of the key signalling molecules regulating the non-genomic action of steroid hormones is protein kinase C (PKC). It is thought that rapid action of steroids hormones results from the activation of plasma membrane receptors; however, their molecular identity remains elusive. In recent years, an increasing number of studies have pointed at the selective binding and activation of specific PKC isoforms by steroid hormones. This has led to the hypothesis that PKC could act as a receptor as well as a transducer of the non-genomic effects of these hormones. In this review we summarize the current knowledge of the direct binding and activation of PKC by steroid hormones.

  9. Identification of GIG1, a GlcNAc-induced gene in Candida albicans needed for normal sensitivity to the chitin synthase inhibitor nikkomycin Z.

    Science.gov (United States)

    Gunasekera, Angelo; Alvarez, Francisco J; Douglas, Lois M; Wang, Hong X; Rosebrock, Adam P; Konopka, James B

    2010-10-01

    The amino sugar N-acetylglucosamine (GlcNAc) is known to be an important structural component of cells from bacteria to humans, but its roles in cell signaling are less well understood. GlcNAc induces two pathways in the human fungal pathogen Candida albicans. One activates cyclic AMP (cAMP) signaling, which stimulates the formation of hyphal cells and the expression of virulence genes, and the other pathway induces genes needed to catabolize GlcNAc. Microarray analysis of gene expression was carried out under four different conditions in order to characterize the transcriptional changes induced by GlcNAc. The most highly induced genes include those that encode a GlcNAc transporter (NGT1) and the GlcNAc catabolic enzymes (HXK1, DAC1, and NAG1). GlcNAc also activated most of the genes whose expression is increased when cells are triggered with other stimuli to form hyphae. Surprisingly, GlcNAc also induced a subset of genes that are regulated by galactose (GAL1, GAL7, and GAL10), which may be due to cross talk between signaling pathways. A novel GlcNAc-induced gene, GIG1, which is not essential for GlcNAc catabolism or the induction of hyphae, was identified. However, a Gig1-green fluorescent protein (GFP) fusion protein was specifically induced by GlcNAc, and not by other sugars. Gig1-GFP localized to the cytoplasm, where GlcNAc metabolism occurs. Significantly, a gig1Δ mutant displayed increased resistance to nikkomycin Z, which inhibits chitin synthase from converting UDP-GlcNAc into cell wall chitin. Gig1 is highly conserved in fungi, especially those that contain GlcNAc catabolic genes. These results implicate Gig1 in GlcNAc metabolism.

  10. Appropriate Usage Level of Shrimp Waste Meal as Chitin Source for Feeding Young Crayfish (Astacus leptodactylus Esch. 1823

    Directory of Open Access Journals (Sweden)

    Seval Bahadır Koca*, Nalan Ozgur Yigit, Arife Dulluc, Gonca Erol1, Nihal Cılbız1 and Ramazan Kucukkara1

    2011-06-01

    Full Text Available This study was conducted to determine effects of shrimp waste meal as natural chitin source at different rates (0 (control, 10, 20, 30 and 40% on growth, feed conversion ratio (FCR, survival of young crayfish (1.61±0.04 g and 3.74±0.03 cm for 60 days. Fifteen glass aquariums (70x30x40 cm were used in the experiment and 20 individuals were stocked per aquarium (95/m2. The highest of final weight and weight gain were obtained in feed with 10% shrimp waste meal group (3.29±0.23 and 1.66±0.23 g, while the lowest of final weight and weight gain was obtained in fed with 40% shrimp waste meal group (2.75±0.35 and 1.18±0.37 g, respectively. However, non-significant differences were found between final weight, weight gain, specific growth rate, final total length, feed conversion ratio, survival percentage among groups at the end of experimental period. It was concluded that shrimp waste meal as natural chitin source can be used in young crayfish diets up to 40% without adverse effect influence on growth.

  11. Glucostatic regulation of (+)-[3H]amphetamine binding in the hypothalamus: correlation with Na+, K+-ATPase activity

    International Nuclear Information System (INIS)

    Angel, I.; Hauger, R.L.; Luu, M.D.; Giblin, B.; Skolnick, P.; Paul, S.M.

    1985-01-01

    Preincubation of rat hypothalamic slices in glucose-free Krebs-Ringer buffer (37 0 C) resulted in a time-dependent decrease in specific (+)-[ 3 H]amphetamine binding in the crude synaptosomal fraction prepared from these slices. The addition of D-glucose resulted in a dose- and time-dependent stimulation of (+)-[ 3 H]amphetamine binding, whereas incubations with L-glucose, 2-deoxy-D-glucose, or 3-O-methyl-D-glucose failed to increase the number of (+)-[ 3 H]amphetamine binding sites. Ouabain potently inhibited the glucose-induced stimulation of (+)-[ 3 H]amphetamine binding, suggesting the involvement of Na + , K + -ATPase. Preincubation of hypothalamic slices with glucose also resulted in an increase in Na + ,K + -ATPase activity and the number of specific high-affinity binding sites for [ 3 H]ouabain, and a good correlation was observed between the glucose-stimulated increase in (+)-[ 3 H]amphetamine and [ 3 H]ouabain binding. These data suggest that the (+)-[ 3 H]amphetamine binding site in hypothalamus, previously linked to the anorectic actions of various phenylethylamines, is regulated both in vitro and in vivo by physiological concentrations of glucose. Glucose and amphetamine appear to interact at common sites in the hypothalamus to stimulate Na + ,K + -ATPase activity, and the latter may be involved in the glucostatic regulation of appetite

  12. Functional importance of the DNA binding activity of Candida albicans Czf1p.

    Directory of Open Access Journals (Sweden)

    Ivana Petrovska

    Full Text Available The human opportunistic pathogen Candida albicans undergoes a reversible morphological transition between the yeast and hyphal states in response to a variety of signals. One such environmental trigger is growth within a semisolid matrix such as agar medium. This growth condition is of interest because it may mimic the growth of C. albicans in contact with host tissue during infection. During growth within a semisolid matrix, hyphal growth is positively regulated by the transcriptional regulator Czf1p and negatively by a second key transcriptional regulator, Efg1p. Genetic studies indicate that Czf1p, a member of the zinc-cluster family of transcriptional regulators, exerts its function by opposing the inhibitory influence of Efg1p on matrix-induced filamentous growth. We examined the importance of the two known activities of Czf1p, DNA-binding and interaction with Efg1p. We found that the two activities were separable by mutation allowing us to demonstrate that the DNA-binding activity of Czf1p was essential for its role as a positive regulator of morphogenesis. Surprisingly, however, interactions with Efg1p appeared to be largely dispensable. Our studies provide the first evidence of a key role for the DNA-binding activity of Czf1p in the morphological yeast-to-hyphal transition triggered by matrix-embedded growth.

  13. Actin Immobilization on Chitin for Purifying Myosin II: A Laboratory Exercise That Integrates Concepts of Molecular Cell Biology and Protein Chemistry

    Science.gov (United States)

    de Souza, Marcelle Gomes; Grossi, Andre Luiz; Pereira, Elisangela Lima Bastos; da Cruz, Carolina Oliveira; Mendes, Fernanda Machado; Cameron, Luiz Claudio; Paiva, Carmen Lucia Antao

    2008-01-01

    This article presents our experience on teaching biochemical sciences through an innovative approach that integrates concepts of molecular cell biology and protein chemistry. This original laboratory exercise is based on the preparation of an affinity chromatography column containing F-actin molecules immobilized on chitin particles for purifying…

  14. Antioxidant activity and calcium binding of isomeric hydroxybenzoates

    Directory of Open Access Journals (Sweden)

    Zichen Zhao

    2018-04-01

    Full Text Available The association constant for calcium binding to hydroxybenzoates in aqueous 0.16 M NaCl at 25 °C was found electrochemically to have the value Kass = 280 mol L−1 with ΔHo = −51 kJ mol−1, ΔSo = −122 J mol−1 K−1 for the 2-isomer (salicylate, Kass = 7 mol L−1 with ΔHo = −39 kJ mol−1, ΔSo = −116 J mol−1 K−1 for the 3-isomer, and Kass = 8 mol L−1 with ΔHo = −51 kJ mol−1, ΔSo = −155 J mol−1 K−1 for the 4-isomer. The 3- and 4-isomers were found more efficient as antioxidants than the 2-isomer in decreasing oxygen consumption rate in a peroxidating methyl linoleate emulsion and less sensitive to presence of calcium. All isomers were found prooxidative for iron-catalyzed initiation of oxidation due to enhanced radical formation as shown by electron spin resonance spectroscopy. Calcium salicylate was found to have low solubility with a solubility product Ksp = 4.49·10−6 based on activity with ΔHo = 67 kJ mol−1, ΔSo = 123 J mol−1 K−1 for dissolution in water, when corrected for the strong complex formation. Calcium in food and beverages may thus lower antioxidant activity of plant phenols through complexation or by precipitation. Keywords: Antioxidant activity, Calcium binding, 2-Hydroxybenzoate, 3-Hydroxybenzoate, 4-Hydroxybenzoate

  15. Enhanced exo-inulinase activity and stability by fusion of an inulin-binding module.

    Science.gov (United States)

    Zhou, Shun-Hua; Liu, Yuan; Zhao, Yu-Juan; Chi, Zhe; Chi, Zhen-Ming; Liu, Guang-Lei

    2016-09-01

    In this study, an inulin-binding module from Bacillus macerans was successfully fused to an exo-inulinase from Kluyveromyces marxianus, creating a hybrid functional enzyme. The recombinant exo-inulinase (rINU), the hybrid enzyme (rINUIBM), and the recombinant inulin-binding module (rIBM) were, respectively, heterologously expressed and biochemically characterized. It was found that both the inulinase activity and the catalytic efficiency (k cat/K m(app)) of the rINUIBM were considerably higher than those of rINU. Though the rINU and the rINUIBM shared the same optimum pH of 4.5, the optimum temperature of the rINUIBM (60 °C) was 5 °C higher than that of the rINU. Notably, the fused IBM significantly enhanced both the pH stability and the thermostability of the rINUIBM, suggesting that the rINUIBM obtained would have more extensive potential applications. Furthermore, the fusion of the IBM could substantially improve the inulin-binding capability of the rINUIBM, which was consistent with the determination of the K m(app). This meant that the fused IBM could play a critical role in the recognition of polysaccharides and enhanced the hydrolase activity of the associated inulinase by increasing enzyme-substrate proximity. Besides, the extra supplement of the independent non-catalytic rIBM could also improve the inulinase activity of the rINU. However, this improvement was much better in case of the fusion. Consequently, the IBM could be designated as a multifunctional domain that was responsible for the activity enhancement, the stabilization, and the substrate binding of the rINUIBM. All these features obtained in this study make the rINUIBM become an attractive candidate for an efficient inulin hydrolysis.

  16. The chitinolytic activity of Listeria monocytogenes EGD is regulated by carbohydrates but also by the virulence regulator PrfA

    DEFF Research Database (Denmark)

    Larsen, Marianne Halberg; Leisner, Jørgen; Ingmer, Hanne

    2010-01-01

    Chitin, an insoluble polymer of N-acetyl-D-glucosamine (GlcNAc), is one of the most abundant carbohydrate polymers in marine and terrestrial environments. Chitin hydrolysis by Listeria monocytogenes depends on two chitinase-encoding genes, chiA and chiB, and the aim of this study was to investigate...... their regulation. Chitin induces the expression of both chitinases in late exponential growth phase, and chiA but not chiB is furthermore induced by the monomer GlcNAc. Furthermore, their expression is subjected to catabolite control. Chitinases expressed by bacterial pathogens have proven to be important not only...... in wild-type cells. In agreement with this, Northern blot analysis showed that the amounts of chiA and chiB transcripts upon induction by chitin were significantly lower in the prfA mutant than in the wild type. The chitinolytic activity and chiA and chiB expression were reduced in the absence of the sig...

  17. A radioreceptor assay for measurement of plasma glucocorticoid binding activity

    International Nuclear Information System (INIS)

    Fan Jie

    1990-01-01

    A radioreceptor assay (RRA) for plasma glucocorticoid binding activity (GCBA) has been developed using glucocorticoid receptor in rat thymocytes. Unlike other assays for natural and certain synthetic corticosteroids, RRA measures the GCBA of all natural and synthetic GC in plasma. The range of standard curve was 0 ∼ 1.00 mg/L. The sensitivity was 0.01 mg/l. The recovery rate was 92.1%, and the intra and inter assay CV was 0.7% (n = 3) and 4.4% (n = 3) respectively. The level of corticosterone in 9 rat plasma samples was determined by RRA and CBG-isotope binding assay. There was a general correlation over a wide range between the values determined by the two assays (r = 0.95; P < 0.001). The measuring condition was described in detail

  18. Cost effective purification of intein based syntetic cationic antimicrobial peptide expressed in cold shock expression system using salt inducible E. coli GJ1158

    Directory of Open Access Journals (Sweden)

    Seetha Ram Kotra

    2014-03-01

    Full Text Available Objective:Synthetic cationic antimicrobial peptide (SC-AMP is an important and upcoming therapeutic molecule against onventional antibiotics. In this study, an attempt was made to purify the SC-AMP without the enzymatic cleavage of the affinity tag, by using an intein-based system. Methods:The intein sequence was amplified from pTYB11 vector using PCR methodologies and the N-terminal of intein was ligated with SC-AMP. The designed construct, intein-SC-AMP was cloned into MCS region of cold shock expression vector, pCOLDI and the recombinant peptide was purified on a chitin affinity column by cleaving intein with 50 mM DTT without applying enzymatic cleavage. Later the peptide was quantified and its antibacterial activity of the purified peptide was studied using well diffusion method. Results: Initially, intein-SC-AMP was expressed as a fusion protein in both IPTG inducible E. coli BL21(DE3 and salt inducible E. coli GJ1158. Single step purification using CBD (chitin binding domain - intein tag in salt inducible E. coli GJ1158, yields the SC-AMP in the soluble form at a oncentration of 208 mg/L. The antibacterial activity and minimal inhibitory concentration (MIC of the purified SC-AMP was studied against both Gram positive and Gram negative microorganisms. Conclusion: For the first time, single step purification of soluble SC-AMP was carried out using chitin-binding domain affinity tag in salt inducible E. coli GJ1158 without an application of enzymatic cleavage. J Microbiol Infect Dis 2014;4(1:13-19

  19. Regulatory Interactions of Csr Components: the RNA Binding Protein CsrA Activates csrB Transcription in Escherichia coli

    OpenAIRE

    Gudapaty, Seshagirirao; Suzuki, Kazushi; Wang, Xin; Babitzke, Paul; Romeo, Tony

    2002-01-01

    The global regulator CsrA (carbon storage regulator) of Escherichia coli is a small RNA binding protein that represses various metabolic pathways and processes that are induced in the stationary phase of growth, while it activates certain exponential phase functions. Both repression and activation by CsrA involve posttranscriptional mechanisms, in which CsrA binding to mRNA leads to decreased or increased transcript stability, respectively. CsrA also binds to a small untranslated RNA, CsrB, f...

  20. Analyzing Activities of Lytic Polysaccharide Monooxygenases by Liquid Chromatography and Mass Spectrometry

    DEFF Research Database (Denmark)

    Westereng, Bjørge; Arntzen, Magnus Ø.; Wittrup Agger, Jane

    2017-01-01

    Lytic polysaccharide monooxygenases perform oxidative cleavage of glycosidic bonds in various polysaccharides. The majority of LMPOs studied so far possess activity on either cellulose or chitin and analysis of these activities is therefore the main focus of this review. Notably, however, the num...

  1. Chitin Fiber and Chitosan 3D Composite Rods

    International Nuclear Information System (INIS)

    Wang, Z.; Hu, Q.; Cai, L.

    2010-01-01

    Chitin fiber (CHF) and chitosan (CS) 3D composite rods with layer-by-layer structure were constructed by in situ precipitation method. CHF could not be dissolved in acetic acid aqueous solution, but CS could be dissolved due to the different deacetylation degree (D.D) between CHF and CS. CHF with undulate surfaces could be observed using SEM to demonstrate that the sufficiently rough surfaces and edges of the fiber could enhance the mechanical combining stress between fiber and matrix. XRD indicated that the crystallinity of CHF/CS composites decreased and CS crystal plane d-spacing of CHF/CS composites became larger than that of pure CS rod. TG analysis showed that mixing a little amount of CHF could enhance thermal stability of CS rod, but when the content of CHF was higher than the optimum amount, its thermal stability decreased. When 0.5% CHF was added into CS matrix, the bending strength and bending modulus of the composite rods arrived at 114.2 MPa and 5.2 GPa, respectively, increased by 23.6% and 26.8% compared with pure CS rods, indicating that CHF/CS composite rods could be a better candidate for bone fracture internal fixation.

  2. Structures of BmrR-Drug Complexes Reveal a Rigid Multidrug Binding Pocket And Transcription Activation Through Tyrosine Expulsion

    Energy Technology Data Exchange (ETDEWEB)

    Newberry, K.J.; Huffman, J.L.; Miller, M.C.; Vazquez-Laslop, N.; Neyfakh, A.A.; Brennan, R.G.

    2009-05-22

    BmrR is a member of the MerR family and a multidrug binding transcription factor that up-regulates the expression of the bmr multidrug efflux transporter gene in response to myriad lipophilic cationic compounds. The structural mechanism by which BmrR binds these chemically and structurally different drugs and subsequently activates transcription is poorly understood. Here, we describe the crystal structures of BmrR bound to rhodamine 6G (R6G) or berberine (Ber) and cognate DNA. These structures reveal each drug stacks against multiple aromatic residues with their positive charges most proximal to the carboxylate group of Glu-253 and that, unlike other multidrug binding pockets, that of BmrR is rigid. Substitution of Glu-253 with either alanine (E253A) or glutamine (E253Q) results in unpredictable binding affinities for R6G, Ber, and tetraphenylphosphonium. Moreover, these drug binding studies reveal that the negative charge of Glu-253 is not important for high affinity binding to Ber and tetraphenylphosphonium but plays a more significant, but unpredictable, role in R6G binding. In vitro transcription data show that E253A and E253Q are constitutively active, and structures of the drug-free E253A-DNA and E253Q-DNA complexes support a transcription activation mechanism requiring the expulsion of Tyr-152 from the multidrug binding pocket. In sum, these data delineate the mechanism by which BmrR binds lipophilic, monovalent cationic compounds and suggest the importance of the redundant negative electrostatic nature of this rigid drug binding pocket that can be used to discriminate against molecules that are not substrates of the Bmr multidrug efflux pump.

  3. AN INTEGRATIVE WAY OF TEACHING MOLECULAR CELL BIOLOGY AND PROTEIN CHEMISTRY USING ACTIN IMMOBILIZATION ON CHITIN FOR PURIFYING MYOSIN II.

    Directory of Open Access Journals (Sweden)

    M.G. Souza

    2007-05-01

    Full Text Available Our intent is to present our experience on teaching Molecular Cell Biology andProtein Chemistry at UNIRIO through an innovative approach that includes myosin IIextraction and purification. We took advantage of the properties of muscle contractionand propose a simple method for purifying myosin II by affinity chromatography. Thisoriginal method is based on the preparation of an affinity column containing actinmolecules covalently bound to chitin particles. We propose a three-week syllabus thatincludes lectures and bench experimental work. The syllabus favors the activelearning of protein extraction and purification, as well as, of scientific concepts suchas muscle contraction, cytoskeleton structure and its importance for the living cell. Italso promotes the learning of the biotechnological applications of chitin and theapplications of protein immobilization in different industrial fields. Furthermore, theactivities also target the development of laboratorial technical abilities, thedevelopment of problem solving skills and the ability to write up a scientific reportfollowing the model of a scientific article. It is very important to mention that thissyllabus can be used even in places where a facility such as ultra-centrifugation islacking.

  4. Characterization of tissue plasminogen activator binding proteins isolated from endothelial cells and other cell types

    International Nuclear Information System (INIS)

    Beebe, D.P.; Wood, L.L.; Moos, M.

    1990-01-01

    Human tissue plasminogen activator (t-PA) was shown to bind specifically to human osteosarcoma cells (HOS), and human epidermoid carcinoma cells (A-431 cells). Crosslinking studies with DTSSP demonstrated high molecular weight complexes (130,000) between 125 I-t-PA and cell membrane protein on human umbilical vein endothelial cells (HUVEC), HOS, and A-431 cells. A 48-65,000 molecular weight complex was demonstrated after crosslinking t-PA peptide (res. 7-20) to cells. Ligand blotting of cell lysates which had been passed over a t-PA affinity column revealed binding of t-PA to 54,000 and 95,000 molecular weight proteins. Several t-PA binding proteins were identified in immunopurified cell lysates, including tubulin beta chain, plasminogen activator inhibitor type 1 and single chain urokinase

  5. A point mutation in the DNA-binding domain of HPV-2 E2 protein increases its DNA-binding capacity and reverses its transcriptional regulatory activity on the viral early promoter

    Directory of Open Access Journals (Sweden)

    Gao Chen

    2012-02-01

    Full Text Available Abstract Background The human papillomavirus (HPV E2 protein is a multifunctional DNA-binding protein. The transcriptional activity of HPV E2 is mediated by binding to its specific binding sites in the upstream regulatory region of the HPV genomes. Previously we reported a HPV-2 variant from a verrucae vulgaris patient with huge extensive clustered cutaneous, which have five point mutations in its E2 ORF, L118S, S235P, Y287H, S293R and A338V. Under the control of HPV-2 LCR, co-expression of the mutated HPV E2 induced an increased activity on the viral early promoter. In the present study, a series of mammalian expression plasmids encoding E2 proteins with one to five amino acid (aa substitutions for these mutations were constructed and transfected into HeLa, C33A and SiHa cells. Results CAT expression assays indicated that the enhanced promoter activity was due to the co-expressions of the E2 constructs containing A338V mutation within the DNA-binding domain. Western blots analysis demonstrated that the transiently transfected E2 expressing plasmids, regardless of prototype or the A338V mutant, were continuously expressed in the cells. To study the effect of E2 mutations on its DNA-binding activity, a serial of recombinant E2 proteins with various lengths were expressed and purified. Electrophoresis mobility shift assays (EMSA showed that the binding affinity of E2 protein with A338V mutation to both an artificial probe with two E2 binding sites or HPV-2 and HPV-16 promoter-proximal LCR sequences were significantly stronger than that of the HPV-2 prototype E2. Furthermore, co-expression of the construct containing A338V mutant exhibited increased activities on heterologous HPV-16 early promoter P97 than that of prototype E2. Conclusions These results suggest that the mutation from Ala to Val at aa 338 is critical for E2 DNA-binding and its transcriptional regulation.

  6. Spectroscopic study of drug-binding characteristics of unmodified and pNPA-based acetylated human serum albumin: Does esterase activity affect microenvironment of drug binding sites on the protein?

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Nastaran [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Faculty of Pharmaceutical Sciences, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Ashrafi-Kooshk, Mohammad Reza [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Ghobadi, Sirous [Department of Biology, Faculty of Sciences, Razi University, Kermanshah (Iran, Islamic Republic of); Shahlaei, Mohsen [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Faculty of Pharmaceutical Sciences, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Khodarahmi, Reza, E-mail: rkhodarahmi@mbrc.ac.ir [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Faculty of Pharmaceutical Sciences, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of)

    2015-04-15

    Human serum albumin (HSA) is the most prominent extracellular protein in blood plasma. There are several binding sites on the protein which provide accommodation for structurally-unrelated endogenous and exogenous ligands and a wide variety of drugs. “Esterase-like” activity (hydrolysis of p-nitrophenyl esters) by the protein has been also reported. In the current study, we set out to investigate the interaction of indomethacin and ibuprofen with the unmodified and modified HSA (pNPA-modified HSA) using various spectroscopic techniques. Fluorescence data showed that 1:1 binding of drug to HSA is associated with quenching of the protein intrinsic fluorescence. Decrease of protein surface hydrophobicity (PSH), alteration in drug binding affinity and change of the protein stability, after esterase-like activity and permanent acetylation of HSA, were also documented. Analysis of the quenching and thermodynamic parameters indicated that forces involved in drug–HSA interactions change upon the protein modification. - Highlights: • Binding propensity of indomethacin extremely decreased upon the protein acetylation. • There is no ibuprofen binding after protein acetylation. • Protein stability changes upon drug binding as well as protein acetylation. • Drug pharmacokinetics may be influenced under co-administration of HSA-modifier drugs.

  7. Spectroscopic study of drug-binding characteristics of unmodified and pNPA-based acetylated human serum albumin: Does esterase activity affect microenvironment of drug binding sites on the protein?

    International Nuclear Information System (INIS)

    Moradi, Nastaran; Ashrafi-Kooshk, Mohammad Reza; Ghobadi, Sirous; Shahlaei, Mohsen; Khodarahmi, Reza

    2015-01-01

    Human serum albumin (HSA) is the most prominent extracellular protein in blood plasma. There are several binding sites on the protein which provide accommodation for structurally-unrelated endogenous and exogenous ligands and a wide variety of drugs. “Esterase-like” activity (hydrolysis of p-nitrophenyl esters) by the protein has been also reported. In the current study, we set out to investigate the interaction of indomethacin and ibuprofen with the unmodified and modified HSA (pNPA-modified HSA) using various spectroscopic techniques. Fluorescence data showed that 1:1 binding of drug to HSA is associated with quenching of the protein intrinsic fluorescence. Decrease of protein surface hydrophobicity (PSH), alteration in drug binding affinity and change of the protein stability, after esterase-like activity and permanent acetylation of HSA, were also documented. Analysis of the quenching and thermodynamic parameters indicated that forces involved in drug–HSA interactions change upon the protein modification. - Highlights: • Binding propensity of indomethacin extremely decreased upon the protein acetylation. • There is no ibuprofen binding after protein acetylation. • Protein stability changes upon drug binding as well as protein acetylation. • Drug pharmacokinetics may be influenced under co-administration of HSA-modifier drugs

  8. Substrate binding in the active site of cytochrome P450cam

    NARCIS (Netherlands)

    Swart, M.; Groenhof, A.R.; Ehlers, A.W.; Lammertsma, K.

    2005-01-01

    We have studied the binding of camphor in the active site of cytochrome P450cam with density functional theory (DFT) calculations. A strong hydrogen bond (>6 kcal/mol) to a tyrosine residue (Tyr96) is observed, that may account for the high specificity of the reaction taking place. The DFT

  9. Sequence of ligand binding and structure change in the diphtheria toxin repressor upon activation by divalent transition metals.

    Science.gov (United States)

    Rangachari, Vijayaraghavan; Marin, Vedrana; Bienkiewicz, Ewa A; Semavina, Maria; Guerrero, Luis; Love, John F; Murphy, John R; Logan, Timothy M

    2005-04-19

    The diphtheria toxin repressor (DtxR) is an Fe(II)-activated transcriptional regulator of iron homeostatic and virulence genes in Corynebacterium diphtheriae. DtxR is a two-domain protein that contains two structurally and functionally distinct metal binding sites. Here, we investigate the molecular steps associated with activation by Ni(II)Cl(2) and Cd(II)Cl(2). Equilibrium binding energetics for Ni(II) were obtained from isothermal titration calorimetry, indicating apparent metal dissociation constants of 0.2 and 1.7 microM for two independent sites. The binding isotherms for Ni(II) and Cd(II) exhibited a characteristic exothermic-endothermic pattern that was used to infer the metal binding sequence by comparing the wild-type isotherm with those of several binding site mutants. These data were complemented by measuring the distance between specific backbone amide nitrogens and the first equivalent of metal through heteronuclear NMR relaxation measurements. Previous studies indicated that metal binding affects a disordered to ordered transition in the metal binding domain. The coupling between metal binding and structure change was investigated using near-UV circular dichroism spectroscopy. Together, the data show that the first equivalent of metal is bound by the primary metal binding site. This binding orients the DNA binding helices and begins to fold the N-terminal domain. Subsequent binding at the ancillary site completes the folding of this domain and formation of the dimer interface. This model is used to explain the behavior of several mutants.

  10. Identification of GIG1, a GlcNAc-Induced Gene in Candida albicans Needed for Normal Sensitivity to the Chitin Synthase Inhibitor Nikkomycin Z▿§

    Science.gov (United States)

    Gunasekera, Angelo; Alvarez, Francisco J.; Douglas, Lois M.; Wang, Hong X.; Rosebrock, Adam P.; Konopka, James B.

    2010-01-01

    The amino sugar N-acetylglucosamine (GlcNAc) is known to be an important structural component of cells from bacteria to humans, but its roles in cell signaling are less well understood. GlcNAc induces two pathways in the human fungal pathogen Candida albicans. One activates cyclic AMP (cAMP) signaling, which stimulates the formation of hyphal cells and the expression of virulence genes, and the other pathway induces genes needed to catabolize GlcNAc. Microarray analysis of gene expression was carried out under four different conditions in order to characterize the transcriptional changes induced by GlcNAc. The most highly induced genes include those that encode a GlcNAc transporter (NGT1) and the GlcNAc catabolic enzymes (HXK1, DAC1, and NAG1). GlcNAc also activated most of the genes whose expression is increased when cells are triggered with other stimuli to form hyphae. Surprisingly, GlcNAc also induced a subset of genes that are regulated by galactose (GAL1, GAL7, and GAL10), which may be due to cross talk between signaling pathways. A novel GlcNAc-induced gene, GIG1, which is not essential for GlcNAc catabolism or the induction of hyphae, was identified. However, a Gig1-green fluorescent protein (GFP) fusion protein was specifically induced by GlcNAc, and not by other sugars. Gig1-GFP localized to the cytoplasm, where GlcNAc metabolism occurs. Significantly, a gig1Δ mutant displayed increased resistance to nikkomycin Z, which inhibits chitin synthase from converting UDP-GlcNAc into cell wall chitin. Gig1 is highly conserved in fungi, especially those that contain GlcNAc catabolic genes. These results implicate Gig1 in GlcNAc metabolism. PMID:20675577

  11. Mycobacterium tuberculosis cAMP Receptor Protein (Rv3676) Differs from the Escherichia coli Paradigm in Its cAMP Binding and DNA Binding Properties and Transcription Activation Properties*

    Science.gov (United States)

    Stapleton, Melanie; Haq, Ihtshamul; Hunt, Debbie M.; Arnvig, Kristine B.; Artymiuk, Peter J.; Buxton, Roger S.; Green, Jeffrey

    2010-01-01

    The pathogen Mycobacterium tuberculosis produces a burst of cAMP upon infection of macrophages. Bacterial cyclic AMP receptor proteins (CRP) are transcription factors that respond to cAMP by binding at target promoters when cAMP concentrations increase. Rv3676 (CRPMt) is a CRP family protein that regulates expression of genes (rpfA and whiB1) that are potentially involved in M. tuberculosis persistence and/or emergence from the dormant state. Here, the CRPMt homodimer is shown to bind two molecules of cAMP (one per protomer) at noninteracting sites. Furthermore, cAMP binding by CRPMt was relatively weak, entropy driven, and resulted in a relatively small enhancement in DNA binding. Tandem CRPMt-binding sites (CRP1 at −58.5 and CRP2 at −37.5) were identified at the whiB1 promoter (PwhiB1). In vitro transcription reactions showed that CRP1 is an activating site and that CRP2, which was only occupied in the presence of cAMP or at high CRPMt concentrations in the absence of cAMP, is a repressing site. Binding of CRPMt to CRP1 was not essential for open complex formation but was required for transcription activation. Thus, these data suggest that binding of CRPMt to the PwhiB1 CRP1 site activates transcription at a step after open complex formation. In contrast, high cAMP concentrations allowed occupation of both CRP1 and CRP2 sites, resulting in inhibition of open complex formation. Thus, M. tuberculosis CRP has evolved several distinct characteristics, compared with the Escherichia coli CRP paradigm, to allow it to regulate gene expression against a background of high concentrations of cAMP. PMID:20028978

  12. Involvement of histidine residues in the pH-dependent β-galactoside binding activity of human galectin-1.

    Science.gov (United States)

    Hiramatsu, Hirotsugu; Takeuchi, Katsuyuki; Takeuchi, Hideo

    2013-04-02

    The pH dependence of the β-galactoside binding activity of human galectin-1 (hGal-1) was investigated by fluorescence spectroscopy using lactose as a ligand. The obtained binding constant Kb was 2.94 ± 0.10 mM(-1) at pH 7.5. The Kb value decreased at acidic pH with a midpoint of transition at pH 6.0 ± 0.1. To elucidate the molecular mechanism of the pH dependence, we investigated the structures of hGal-1 and its two His mutants (H44Q and H52Q) using fluorescence, circular dichroism, UV absorption, and UV resonance Raman spectroscopy. Analysis of the spectra has shown that the pKa values of His44 and His52 are 5.7 ± 0.2 and 6.3 ± 0.1, respectively. The protonation of His52 below pH 6.3 induces a small change in secondary structure and partly reduces the galactoside binding activity. On the other hand, the protonation of His44 below pH 5.7 exerts a cation-π interaction with Trp68 and largely diminishes the galactoside binding activity. With reference to the literature X-ray structures at pH 7.0 and 5.6, protonated His52 is proposed to move slightly away from the galactoside-binding region with a partial unfolding of the β-strand containing His52. On the other hand, protonated His44 becomes unable to form a hydrogen bond with galactoside and additionally induces a reorientation and/or displacement of Trp68 through cation-π interaction, leading to a loosening of the galactoside-binding pocket. These structural changes associated with His protonation are likely to be the origin of the pH dependence of the galactoside binding activity of hGal-1.

  13. Tentacles of in vitro-grown round-leaf sundew (Drosera rotundifolia L.) show induction of chitinase activity upon mimicking the presence of prey

    OpenAIRE

    Matusikova, I.; Salaj, J.; Moravcikova, J.; Mlynarova, L.; Nap, J.P.H.; Libantova, J.

    2005-01-01

    Induction of plant-derived chitinases in the leaves of a carnivorous plant was demonstrated using aseptically grown round-leaf sundew (Drosera rotundifolia L.). The presence of insect prey was mimicked by placing the chemical inducers gelatine, salicylic acid and crustacean chitin on leaves. In addition, mechanical stirring of tentacles was performed. Chitinase activity was markedly increased in leaf exudates upon application of notably chitin. Application of gelatine increased the proteolyti...

  14. Autolytic Activity and Plasma Binding Study of Aap, a Novel Minor Autolysin of Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    Ramina Mahboobi

    2016-04-01

    Full Text Available Pneumococcal autolysins are enzymes involved in cell wall turnover and cellular division physiologically. They have been found to be involved in the pneumococcus pathogenesis. The aim of this study was to identify the autolytic activity of Spr1754 as a novel protein of Streptococcus pneumoniae. Moreover, the binding of the recombinant protein to plasma proteins was also determined. The spr1754 gene was amplified by PCR and cloned into the pET21a(+ prokaryotic expression vector. The constructed pET21a(+/spr1754 recombinant plasmid was transformed into E. coli Origami (DE3 and induced using IPTG. The recombinant protein of Spr1754 was purified by Ni-NTA affinity chromatography and confirmed by SDS-PAGE and Western blot analysis using anti-His tag monoclonal antibody. Autolytic activity and the ability of the recombinant protein in binding to plasma proteins were performed using zymogram analysis and western blot, respectively. The spr1754 with expected size was cloned and overexpressed in Escherichia coli Origami (DE3, successfully. After purification of the Spr1754 recombinant protein, the autolytic activity was observed by zymography. Of the four plasma proteins used in this study, binding of lactoferrin to Spr1754 recombinant protein was shown. The Spr1754 recombinant protein has a bifunctional activity, i.e., as being autolysin and lactoferrin binding and designated as Aap (autolytic/ adhesion/ pneumococcus. Nevertheless, characterization of the Aap needs to be followed using gene inactivation and cell wall localization.

  15. Resveratrol post-transcriptionally regulates pro-inflammatory gene expression via regulation of KSRP RNA binding activity

    Science.gov (United States)

    Bollmann, Franziska; Art, Julia; Henke, Jenny; Schrick, Katharina; Besche, Verena; Bros, Matthias; Li, Huige; Siuda, Daniel; Handler, Norbert; Bauer, Florian; Erker, Thomas; Behnke, Felix; Mönch, Bettina; Härdle, Lorena; Hoffmann, Markus; Chen, Ching-Yi; Förstermann, Ulrich; Dirsch, Verena M.; Werz, Oliver; Kleinert, Hartmut; Pautz, Andrea

    2014-01-01

    Resveratrol shows beneficial effects in inflammation-based diseases like cancer, cardiovascular and chronic inflammatory diseases. Therefore, the molecular mechanisms of the anti-inflammatory resveratrol effects deserve more attention. In human epithelial DLD-1 and monocytic Mono Mac 6 cells resveratrol decreased the expression of iNOS, IL-8 and TNF-α by reducing mRNA stability without inhibition of the promoter activity. Shown by pharmacological and siRNA-mediated inhibition, the observed effects are SIRT1-independent. Target-fishing and drug responsive target stability experiments showed selective binding of resveratrol to the RNA-binding protein KSRP, a central post-transcriptional regulator of pro-inflammatory gene expression. Knockdown of KSRP expression prevented resveratrol-induced mRNA destabilization in human and murine cells. Resveratrol did not change KSRP expression, but immunoprecipitation experiments indicated that resveratrol reduces the p38 MAPK-related inhibitory KSRP threonine phosphorylation, without blocking p38 MAPK activation or activity. Mutation of the p38 MAPK target site in KSRP blocked the resveratrol effect on pro-inflammatory gene expression. In addition, resveratrol incubation enhanced KSRP-exosome interaction, which is important for mRNA degradation. Finally, resveratrol incubation enhanced its intra-cellular binding to the IL-8, iNOS and TNF-α mRNA. Therefore, modulation of KSRP mRNA binding activity and, thereby, enhancement of mRNA degradation seems to be the common denominator of many anti-inflammatory effects of resveratrol. PMID:25352548

  16. Virulence and the Environment: a Novel Role for Vibrio cholerae Toxin-Coregulated Pili in Biofilm Formation on Chitin

    Science.gov (United States)

    Reguera, Gemma; Kolter, Roberto

    2005-01-01

    The toxin-coregulated pilus (TCP) of Vibrio cholerae is required for intestinal colonization and cholera toxin acquisition. Here we report that TCP mediates bacterial interactions required for biofilm differentiation on chitinaceous surfaces. We also show that undifferentiated TCP− biofilms have reduced ecological fitness and, thus, that chitin colonization may represent an ecological setting outside the host in which selection for a host colonization factor may take place. PMID:15866944

  17. Synthesis, DNA Binding and Topoisomerase I Inhibition Activity of Thiazacridine and Imidazacridine Derivatives

    Directory of Open Access Journals (Sweden)

    Elizabeth Almeida Lafayette

    2013-12-01

    Full Text Available Thiazacridine and imidazacridine derivatives have shown promising results as tumors suppressors in some cancer cell lines. For a better understanding of the mechanism of action of these compounds, binding studies of 5-acridin-9-ylmethylidene-3-amino-2-thioxo-thiazolidin-4-one, 5-acridin-9-ylmethylidene-2-thioxo-thiazolidin-4-one, 5-acridin-9-ylmethylidene-2-thioxo-imidazolidin-4-one and 3-acridin-9-ylmethyl-thiazolidin-2,4-dione with calf thymus DNA (ctDNA by electronic absorption and fluorescence spectroscopy and circular dichroism spectroscopy were performed. The binding constants ranged from 1.46 × 104 to 6.01 × 104 M−1. UV-Vis, fluorescence and circular dichroism measurements indicated that the compounds interact effectively with ctDNA, both by intercalation or external binding. They demonstrated inhibitory activities to human topoisomerase I, except for 5-acridin-9-ylmethylidene-2-thioxo-1,3-thiazolidin-4-one. These results provide insight into the DNA binding mechanism of imidazacridines and thiazacridines.

  18. Characteristics of chemical binding to alpha 2u-globulin in vitro--evaluating structure-activity relationships

    International Nuclear Information System (INIS)

    Borghoff, S.J.; Miller, A.B.; Bowen, J.P.; Swenberg, J.A.

    1991-01-01

    alpha 2u-Globulin (alpha 2u) has been shown to accumulate in the kidneys of male rats treated with 2,2,4-trimethylpentane (TMP). 2,4,4-Trimethyl-2-pentanol (TMP-2-OH), a metabolite of TMP, is found reversibly bound to alpha 2u isolated from the kidneys of these treated rats. The objectives of the following study were to characterize the ability of [3H]TMP-2-OH to bind to alpha 2u in vitro and to determine whether other compounds that cause this protein to accumulate have the same binding characteristics. Although compounds that have been shown to cause the accumulation of alpha 2u in male rat kidneys compete in vitro with [3H]TMP-2-OH for binding to alpha 2u, they do so to varying degrees. The binding affinity (Kd) of the [3H]TMP-2-OH-alpha 2u complex was calculated to be on the order of 10(-7) M. The inhibition constant values (Ki) determined for d-limonene, 1,4-dichlorobenzene, and 2,5-dichlorophenol were all in the range 10(-4) M, whereas the Ki values for isophorone, 2,4,4- or 2,2,4-trimethyl-1-pentanol, and d-limonene oxide were determined to be in the range 10(-6) and 10(-7) M, respectively. TMP and 2,4,4- and 2,2,4-trimethylpentanoic acid did not compete for binding. This suggests that other factors, besides binding, are involved in the accumulation of alpha 2u. In this study the ability of a chemical to bind to alpha 2u was used as a measure of biological activity to assess structure-activity relationships among the chemicals tested and known to cause the accumulation of alpha 2u. The results so far suggest that binding is dependent on both hydrophobic interactions and hydrogen bonding

  19. Tetranectin Binds to the Kringle 1-4 Form of Angiostatin and Modifies Its Functional Activity

    DEFF Research Database (Denmark)

    Mogues, Tirsit; Etzerodt, Michael; Hall, Crystal

    2004-01-01

    influence cancer progression is by altering activities of plasminogen or the plasminogen fragment, angiostatin. Tetranectin was found to bind to the kringle 1-4 form of angiostatin (AST $;{\\text{K1-4}}$ ). In addition, tetranectin inhibited binding of plasminogen or AST $;{\\text{K1-4}}$ to extracellular...... matrix (ECM) deposited by endothelial cells. Finally, tetranectin partially counteracted the ability of AST $;{\\text{K1-4}}$ to inhibit proliferation of endothelial cells. This latter effect of tetranectin was specific for AST $;{\\text{K1-4}}$ since it did not counteract the antiproliferative activities...

  20. Identification of an estrogen receptor α non covalent ubiquitin-binding surface: role in 17β-estradiol-induced transcriptional activity.

    Science.gov (United States)

    Pesiri, Valeria; La Rosa, Piergiorgio; Stano, Pasquale; Acconcia, Filippo

    2013-06-15

    Ubiquitin (Ub)-binding domains (UBDs) located in Ub receptors decode the ubiquitination signal by non-covalently engaging the Ub modification on their binding partners and transduce the Ub signalling through Ub-based molecular interactions. In this way, inducible protein ubiquitination regulates diverse biological processes. The estrogen receptor alpha (ERα) is a ligand-activated transcription factor that mediates the pleiotropic effects of the sex hormone 17β-estradiol (E2). Fine regulation of E2 pleiotropic actions depends on E2-dependent ERα association with a plethora of binding partners and/or on the E2 modulation of receptor ubiquitination. Indeed, E2-induced ERα polyubiquitination triggers receptor degradation and transcriptional activity, and E2-dependent reduction in ERα monoubiquitination is crucial for E2 signalling. Monoubiquitinated proteins often contain UBDs, but whether non-covalent Ub-ERα binding could occur and play a role in E2-ERα signalling is unknown. Here, we report an Ub-binding surface within the ERα ligand binding domain that directs in vitro the receptor interaction with both ubiquitinated proteins and recombinant Ub chains. Mutational analysis reveals that ERα residues leucine 429 and alanine 430 are involved in Ub binding. Moreover, impairment of ERα association to ubiquitinated species strongly affects E2-induced ERα transcriptional activity. Considering the importance of UBDs in the Ub-based signalling network and the central role of different ERα binding partners in the modulation of E2-dependent effects, our discoveries provide novel insights into ERα activity that could also be relevant for ERα-dependent diseases.

  1. Reinforcement of poly (vinyl alcohol films with alpha-chitin nanowhiskers

    Directory of Open Access Journals (Sweden)

    Hugo Lisboa

    2018-03-01

    Full Text Available Abstract Composites Films were produced using Poly (Vinyl Alcohol as the soft material and reinforced with Chitin Nanowhiskers(NWCH as the rigid material. The present work studies the reinforcing mechanisms of NWCH in PVA films, made through a solvent casting technique and characterized for their calorimetric, swelling and mechanical properties. DSC tests revealed a sharp increase of 45 °C in glass transition temperatures with only 1.5% NWCH, while melting temperature had a small increases suggesting an anti-plasticizing effect. Swelling tests revealed decreasing hygoscopy when NWCH volume fraction increases. Estimates for elastic tensile modulus using a model that predicts the formation of a percolating network were not consistent with the experimental data of tensile tests suggesting that contrary to the reinforcement with cellulose nanowhiskers the percolating network is not primarily responsible for the reinforcement of the films. By adjusting the Halpin-Tsai equations, modified by Nielsen it was found that the mechanical properties were mainly influenced by the packing of the NWCH.

  2. Chitin butyrate coated electrospun nylon-6 fibers for biomedical applications

    Science.gov (United States)

    Pant, Hem Raj; Kim, Han Joo; Bhatt, Lok Ranjan; Joshi, Mahesh Kumar; Kim, Eun Kyo; Kim, Jeong In; Abdal-hay, Abdalla; Hui, K. S.; Kim, Cheol Sang

    2013-11-01

    In this study, we describe the preparation and characterizations of chitin butyrate (CB) coated nylon-6 nanofibers using single-spinneret electrospinning of blends solution. The physicochemical properties of nylon-6 composite fibers with different proportions of CB to nylon-6 were determined using FE-SEM, TEM, FT-IR spectroscopy, and water contact angle measurement. FE-SEM and TEM images revealed that the nylon-6 and CB were immiscible in the as-spun nanofibers, and phase separated nanofiber morphology becomes more pronounced with increasing amounts of CB. The bone formation ability of composite fibers was evaluated by incubating in biomimetic simulated body fluid. In order to assay the cytocompatibility and cell behavior on the composite scaffolds, osteoblast cells were seeded on the matrix. Results suggest that the deposition of CB layer on the surface of nylon-6 could increase its cell compatibility and bone formation ability. Therefore, as-synthesized nanocomposite fibrous mat has great potentiality in hard tissue engineering.

  3. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Petzold, Christine; Marceau, Aimee H.; Miller, Katherine H.; Marqusee, Susan; Keck, James L. (UW-MED); (UCB)

    2015-04-22

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome.

  4. Surface binding sites in carbohydrate active enzymes: An emerging picture of structural and functional diversity

    DEFF Research Database (Denmark)

    Svensson, Birte; Cockburn, Darrell

    2013-01-01

    is not universal and is in fact rare among some families of enzymes. In some cases an alternative to possessing a CBM is for the enzyme to bind to the substrate at a site on the catalytic domain, but away from the active site. Such a site is termed a surface (or secondary) binding site (SBS). SBSs have been...

  5. Effects of heparin on insulin binding and biological activity

    International Nuclear Information System (INIS)

    Kriauciunas, K.M.; Grigorescu, F.; Kahn, C.R.

    1987-01-01

    The effect of heparin, a polyanionic glycosaminoglycan known to alter the function of many proteins, on insulin binding and bioactivity was studied. Cultured human lymphocytes (IM-9) were incubated with varying concentrations of heparin, then extensively washed, and 125 I-labeled insulin binding was measured. Heparin at concentrations used clinically for anticoagulation (1-50 U/ml) inhibited binding in a dose-dependent manner; 50% inhibition of binding occurred with 5-10 U/ml. Scatchard analysis indicated that the decrease in binding was due to a decrease in both the affinity and the apparent number of available insulin receptors. The effect occurred within 10 min at 22 degrees C and persisted even after the cells were extensively washed. Inhibition of insulin binding also occurred when cells were preincubated with heparinized plasma or heparinized serum but not when cells were incubated with normal serum or plasma from blood anticoagulated with EDTA. By contrast, other polyanions and polycations, e.g., poly-L-glutamic acid, poly-L-lysine, succinylated poly-L-lysine, and histone, did not inhibit binding. Heparin also inhibited insulin binding in Epstein-Barr (EB) virus-transformed lymphocytes but had no effect on insulin binding to isolated adipocytes, human erythrocytes, or intact hepatoma cells. When isolated adipocytes were incubated with heparin, there was a dose-dependent inhibition of insulin-stimulated glucose oxidation and, to a lesser extent, of basal glucose oxidation. Although heparin has no effect on insulin binding to intact hepatoma cells, heparin inhibited both insulin binding and insulin-stimulated autophosphorylation in receptors solubilized from these cells

  6. A class III chitinase without disulfide bonds from the fern, Pteris ryukyuensis: crystal structure and ligand-binding studies.

    Science.gov (United States)

    Kitaoku, Yoshihito; Umemoto, Naoyuki; Ohnuma, Takayuki; Numata, Tomoyuki; Taira, Toki; Sakuda, Shohei; Fukamizo, Tamo

    2015-10-01

    We first solved the crystal structure of class III catalytic domain of a chitinase from fern (PrChiA-cat), and found a structural difference between PrChiA-cat and hevamine. PrChiA-cat was found to have reduced affinities to chitin oligosaccharides and allosamidin. Plant class III chitinases are subdivided into enzymes with three disulfide bonds and those without disulfide bonds. We here referred to the former enzymes as class IIIa chitinases and the latter as class IIIb chitinases. In this study, we solved the crystal structure of the class IIIb catalytic domain of a chitinase from the fern Pteris ryukyuensis (PrChiA-cat), and compared it with that of hevamine, a class IIIa chitinase from Hevea brasiliensis. PrChiA-cat was found to adopt an (α/β)8 fold typical of GH18 chitinases in a similar manner to that of hevamine. However, PrChiA-cat also had two large loops that extruded from the catalytic site, and the corresponding loops in hevamine were markedly smaller than those of PrChiA-cat. An HPLC analysis of the enzymatic products revealed that the mode of action of PrChiA-cat toward chitin oligosaccharides, (GlcNAc) n (n = 4-6), differed from those of hevamine and the other class IIIa chitinases. The binding affinities of (GlcNAc)3 and (GlcNAc)4 toward the inactive mutant of PrChiA-cat were determined by isothermal titration calorimetry, and were markedly lower than those toward other members of the GH18 family. The affinity and the inhibitory activity of allosamidin toward PrChiA-cat were also lower than those toward the GH18 chitinases investigated to date. Several hydrogen bonds found in the crystal structure of hevamine-allosamidin complex were missing in the modeled structure of PrChiA-cat-allosamidin complex. The structural findings for PrChiA-cat successfully interpreted the functional data presented.

  7. Specific phosphopeptide binding regulates a conformational change in the PI 3-kinase SH2 domain associated with enzyme activation.

    Science.gov (United States)

    Shoelson, S E; Sivaraja, M; Williams, K P; Hu, P; Schlessinger, J; Weiss, M A

    1993-01-01

    SH2 (src-homology 2) domains define a newly recognized binding motif that mediates the physical association of target phosphotyrosyl proteins with downstream effector enzymes. An example of such phosphoprotein-effector coupling is provided by the association of phosphatidylinositol 3-kinase (PI 3-kinase) with specific phosphorylation sites within the PDGF receptor, the c-Src/polyoma virus middle T antigen complex and the insulin receptor substrate IRS-1. Notably, phosphoprotein association with the SH2 domains of p85 also stimulates an increase in catalytic activity of the PI 3-kinase p110 subunit, which can be mimicked by phosphopeptides corresponding to targeted phosphoprotein phosphorylation sites. To investigate how phosphoprotein binding to the p85 SH2 domain stimulates p110 catalytic activation, we have examined the differential effects of phosphotyrosine and PDGF receptor-, IRS-1- and c-Src-derived phosphopeptides on the conformation of an isolated SH2 domain of PI 3-kinase. Although phosphotyrosine and both activating and non-activating phosphopeptides bind to the SH2 domain, activating phosphopeptides bind with higher affinity and induce a qualitatively distinct conformational change as monitored by CD and NMR spectroscopy. Amide proton exchange and protease protection assays further show that high affinity, specific phosphopeptide binding induces non-local dynamic SH2 domain stabilization. Based on these findings we propose that specific phosphoprotein binding to the p85 subunit induces a change in SH2 domain structure which is transmitted to the p110 subunit and regulates enzymatic activity by an allosteric mechanism. Images PMID:8382612

  8. The arginine residue within the C-terminal active core of Bombyx mori pheromone biosynthesis-activating neuropeptide (PBAN is essential for receptor binding and activation

    Directory of Open Access Journals (Sweden)

    Takeshi eKawai

    2012-03-01

    Full Text Available In most lepidopteran insects, the biosynthesis of sex pheromones is regulated by pheromone biosynthesis activating neuropeptide (PBAN. Bombyx mori PBAN (BomPBAN consists of 33 amino acid residues and contains a C-terminus FSPRLamide motif as the active core. Among neuropeptides containing the FXPRLamide motif, the arginine (Arg, R residue two positions from the C-terminus is highly conserved across several neuropeptides, which can be designated as RXamide peptides. The purpose of this study was to reveal the role of the Arg residue in the BomPBAN active core. We synthesized a ten-residue peptide corresponding to the C-terminal part of BomPBAN with a series of point mutants at the 2nd position (ie, Arg from the C-terminus, termed the C2 position, and measured their efficacy in stimulating Ca2+ influx in insect cells concomitantly expressing a fluorescent PBAN receptor chimera (PBANR-EGFP and loaded with the fluorescent Ca2+ indicator, Fura Red-AM. PBAN analogs with the C2 position replaced with alanine (Ala, A, aspartic acid (Asp, D, serine (Ser, S or L-2-aminooctanoic acid (Aoc decreased PBAN-like activity. RC2A (SKTRYFSPALamide and RC2D (SKTRYFSPDLamide had the lowest activity and could not inhibit the activity of PBAN C10 (SKTRYFSPRLamide. We also prepared Rhodamine Red-labeled PBAN analogs of the mutants and examined their ability to bind PBANR. In contrast to 100 nM Rhodamine Red-PBAN C10, none of the mutants at the same concentration exhibited PBANR binding. Taken together, our results demonstrate that the C2 Arg residue in BomPBAN is essential for PBANR binding and activation.

  9. Transcriptional activation of the mouse obese (ob) gene by CCAAT/enhancer binding protein alpha

    DEFF Research Database (Denmark)

    Hwang, C S; Mandrup, S; MacDougald, O A

    1996-01-01

    Like other adipocyte genes that are transcriptionally activated by CCAAT/enhancer binding protein alpha (C/EBP alpha) during preadipocyte differentiation, expression of the mouse obese (ob) gene is immediately preceded by the expression of C/EBP alpha. While the 5' flanking region of the mouse ob...... gene contains several consensus C/EBP binding sites, only one of these sites appears to be functional. DNase I cleavage inhibition patterns (footprinting) of the ob gene promoter revealed that recombinant C/EBP alpha, as well as a nuclear factor present in fully differentiated 3T3-L1 adipocytes...... to a consensus C/EBP binding site at nucleotides -55 to -47 generated a specific protein-oligonucleotide complex that was supershifted by antibody against C/EBP alpha. Probes corresponding to two upstream consensus C/EBP binding sites failed to generate protein-oligonucleotide complexes. Cotransfection of a C...

  10. Increased anticoagulant activity of thrombin-binding DNA aptamers by nanoscale organization on DNA nanostructures

    DEFF Research Database (Denmark)

    Rangnekar, Abhijit; Zhang, Alex M.; Shiyuan Li, Susan

    2012-01-01

    Control over thrombin activity is much desired to regulate blood clotting in surgical and therapeutic situations. Thrombin-binding RNA and DNA aptamers have been used to inhibit thrombin activity and thus the coagulation cascade. Soluble DNA aptamers, as well as two different aptamers tethered by...

  11. Trans-Binding Mechanism of Ubiquitin-like Protein Activation Revealed by a UBA5-UFM1 Complex

    Directory of Open Access Journals (Sweden)

    Walaa Oweis

    2016-09-01

    Full Text Available Modification of proteins by ubiquitin or ubiquitin-like proteins (UBLs is a critical cellular process implicated in a variety of cellular states and outcomes. A prerequisite for target protein modification by a UBL is the activation of the latter by activating enzymes (E1s. Here, we present the crystal structure of the non-canonical homodimeric E1, UBA5, in complex with its cognate UBL, UFM1, and supporting biochemical experiments. We find that UBA5 binds to UFM1 via a trans-binding mechanism in which UFM1 interacts with distinct sites in both subunits of the UBA5 dimer. This binding mechanism requires a region C-terminal to the adenylation domain that brings UFM1 to the active site of the adjacent UBA5 subunit. We also find that transfer of UFM1 from UBA5 to the E2, UFC1, occurs via a trans mechanism, thereby requiring a homodimer of UBA5. These findings explicitly elucidate the role of UBA5 dimerization in UFM1 activation.

  12. Synthetic protease substrate n-benzoyl-L-argininyl-p-nitroanilide activates specific binding of [3H]estradiol to a protein in rat pancreas: relationship of structure to activity

    International Nuclear Information System (INIS)

    Grossman, A.

    1984-01-01

    N-benzoyl-L-argininyl-p-nitroanilide (BAN), a synthetic substrate for trypsin-like proteolytic enzymes, is a potent activator of [ 3 H]estradiol-binding to a protein present in rat pancreas. When partially purified, this protein is almost devoid of [ 3 H]estradiol-binding activity in the absence of an endogenous accessory factor. BAN can mimic the natural coligand in this steroid binding reaction. The effect of BAN is specific since a number of derivatives of this substance are inactive or may even inhibit steroid binding. It is unlikely that BAN exerts this stimulatory action indirectly, possibly by preventing proteolytic inactivation of the [ 3 H]estradiol-binding protein, since preincubation of the protein in the absence of BAN resulted neither in reduced rate, nor extent, of steroid binding following BAN addition. Also, a number of protease inhibitors had no effect on the binding reaction. Of those inhibitors tested, only antipain significantly enhanced binding of [ 3 H]estradiol, but only about 20 percent as effectively as BAN. 13 references, 1 figure, 2 tables

  13. The Pseudomonas aeruginosa catabolite repression control protein Crc is devoid of RNA binding activity.

    Science.gov (United States)

    Milojevic, Tetyana; Grishkovskaya, Irina; Sonnleitner, Elisabeth; Djinovic-Carugo, Kristina; Bläsi, Udo

    2013-01-01

    The Crc protein has been shown to mediate catabolite repression control in Pseudomonas, leading to a preferential assimilation of carbon sources. It has been suggested that Crc acts as a translational repressor of mRNAs, encoding functions involved in uptake and breakdown of different carbon sources. Moreover, the regulatory RNA CrcZ, the level of which is increased in the presence of less preferred carbon sources, was suggested to bind to and sequester Crc, resulting in a relief of catabolite repression. Here, we determined the crystal structure of Pseudomonas aeruginosa Crc, a member of apurinic/apyrimidinic (AP) endonuclease family, at 1.8 Å. Although Crc displays high sequence similarity with its orthologs, there are amino acid alterations in the area corresponding to the active site in AP proteins. Unlike typical AP endonuclease family proteins, Crc has a reduced overall positive charge and the conserved positively charged amino-acid residues of the DNA-binding surface of AP proteins are partially substituted by negatively charged, polar and hydrophobic residues. Crc protein purified to homogeneity from P. aeruginosa did neither display DNase activity, nor did it bind to previously identified RNA substrates. Rather, the RNA chaperone Hfq was identified as a contaminant in His-tagged Crc preparations purified by one step Ni-affinity chromatography from Escherichia coli, and was shown to account for the RNA binding activity observed with the His-Crc preparations. Taken together, these data challenge a role of Crc as a direct translational repressor in carbon catabolite repression in P. aeruginosa.

  14. Molecular characterization of the receptor binding structure-activity relationships of influenza B virus hemagglutinin.

    Science.gov (United States)

    Carbone, V; Kim, H; Huang, J X; Baker, M A; Ong, C; Cooper, M A; Li, J; Rockman, S; Velkov, T

    2013-01-01

    Selectivity of α2,6-linked human-like receptors by B hemagglutinin (HA) is yet to be fully understood. This study integrates binding data with structure-recognition models to examine the impact of regional-specific sequence variations within the receptor-binding pocket on selectivity and structure activity relationships (SAR). The receptor-binding selectivity of influenza B HAs corresponding to either B/Victoria/2/1987 or the B/Yamagata/16/88 lineages was examined using surface plasmon resonance, solid-phase ELISA and gel-capture assays. Our SAR data showed that the presence of asialyl sugar units is the main determinant of receptor preference of α2,6 versus α2,3 receptor binding. Changes to the type of sialyl-glycan linkage present on receptors exhibit only a minor effect upon binding affinity. Homology-based structural models revealed that structural properties within the HA pocket, such as a glyco-conjugate at Asn194 on the 190-helix, sterically interfere with binding to avian receptor analogs by blocking the exit path of the asialyl sugars. Similarly, naturally occurring substitutions in the C-terminal region of the 190-helix and near the N-terminal end of the 140-loop narrows the horizontal borders of the binding pocket, which restricts access of the avian receptor analog LSTa. This study helps bridge the gap between ligand structure and receptor recognition for influenza B HA; and provides a consensus SAR model for the binding of human and avian receptor analogs to influenza B HA.

  15. Films of chitin, chitosan and cellulose obtained from aqueous suspension treated by irradiation of high intensity ultrasound; Filmes de quitina, quitosana e celullose de sisal obtidos a partir de suspensoes aquosas tratadas com irradiacao de ultrassom de alta intensidade

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Erika V.R.; Mariano, Mario S.; Campana-Filho, Sergio P., E-mail: erikavi@iqsc.usp.br [Universidade de Sao Paulo (IQSC/USP), Instituto de Quimica de Sao Carlos, Sao Carlos, SP (Brazil)

    2011-07-01

    Films of chitin, chitin/chitosan and chitin/sisal cellulose were obtained by casting their aqueous suspensions previously treated with irradiation of high intensity ultrasound. The films were characterized for surface morphology by scanning electron microscopy and it is possible notice that the films containing chitosan are much more homogeneous. The thermal behavior of the films was evaluated by dynamic mechanical thermal analysis, differential scanning calorimetry, and thermogravimetric analysis and revealing similarity in comparison with the thermal behavior of polysaccharide isolated. The tensile strength was determined and the film containing chitosan showed the best result when compared to other films. The crystallinity index of the films analyzed by X-ray diffraction showed that the films are amorphous material. The analysis by infrared spectroscopy showed that treatment of aqueous suspensions of polysaccharides with irradiation of high intensity ultrasound did not change the chemical structure of polymers. The crystallinity index was determined by X-ray diffraction, revealing that the films are amorphous materials. The results of this study indicate the possibility of processing of chitin, chitosan and cellulose, polysaccharides whose solubilities are limited to a few solvent systems, by treating their aqueous suspensions with high intensity ultrasound. (author)

  16. Effect of deletion of chitin synthase genes on mycelial morphology and culture viscosity in Aspergillus oryzae

    DEFF Research Database (Denmark)

    Müller, Christian; Hansen, K.; Szabo, Peter

    2003-01-01

    The objective of this study was to quantify the effect of disrupting two chitin synthases, chsB and csmA, on the morphology and rheology during batch cultivation of Aspergillus oryzae. The rheological properties were characterized in batch cultivations at different biomass concentrations (from 3...... broth was significantly affected by the biomass concentration, the morphology, and also by pH. The chsB disruption strain had lower consistency index K values for all biomass concentrations investigated, which is a desirable trait for industrial Aspergillus fermentations. (C) 2003 Wiley Periodicals, Inc....

  17. Interaction of chemokines with their receptors--from initial chemokine binding to receptor activating steps

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Rosenkilde, Mette Marie

    2014-01-01

    and surveillance. Chemokines are a group of 8-12 kDa large peptides with a secondary structure consisting of a flexible N-terminus and a core-domain usually stabilized by two conserved disulfide bridges. They mainly interact with the extracellular domains of their cognate 7TM receptors. Affinityand activity......-contributing interactions are attributed to different domains and known to occur in two steps. Here, knowledge on chemokine and receptor domains involved in the first binding-step and the second activation-step is reviewed. A mechanism comprising at least two steps seems consistent; however, several intermediate...... interactions possibly occur, resulting in a multi-step process, as recently proposed for other 7TM receptors. Overall, the N-terminus of chemokine receptors is pivotal for binding of all chemokines. During receptor activation, differences between the two major chemokine subgroups occur, as CC-chemokines mainly...

  18. Synthesis of Chitin Oligosaccharides Using Dried Stenotrophomonas maltophilia Cells Containing a Transglycosylation Reaction-Catalyzing β-N-Acetylhexosaminidase as a Whole-Cell Catalyst.

    Science.gov (United States)

    Uehara, Asaki; Takahashi, Narumi; Moriyama, Mei; Hirano, Takako; Hakamata, Wataru; Nishio, Toshiyuki

    2018-02-01

    Bacterial strain NYT501, which we previously isolated from soil, was identified as Stenotrophomonas maltophilia, and it was confirmed that this strain produces an intracellular β-N-acetylhexosaminidase exhibiting transglycosylation activity. Several properties of this enzyme were characterized using a partially purified enzyme preparation. Using N,N'-diacetylchitobiose (GlcNAc) 2 and N,N',N″-triacetylchitotriose (GlcNAc) 3 as substrates and dried cells of this bacterium as a whole-cell catalyst, chitin oligosaccharides of higher degrees of polymerization were synthesized. (GlcNAc) 3 was generated from (GlcNAc) 2 as the major transglycosylation product, and a certain amount of purified sample of the trisaccharide was obtained. By contrast, in the case of the reaction using (GlcNAc) 3 as a substrate, the yield of higher-degree polymerization oligosaccharides was comparatively low.

  19. Integrin activation dynamics between the RGD-binding site and the headpiece hinge.

    Science.gov (United States)

    Puklin-Faucher, Eileen; Vogel, Viola

    2009-12-25

    Integrins form mechanical links between the extracellular matrix and the cytoskeleton. Although integrin activation is known to be regulated by an allosteric conformational change, which can be induced from the extracellular or intracellular end of the molecule, little is known regarding the sequence of structural events by which signals propagate between distant sites. Here, we reveal with molecular dynamics simulations of the FnIII(10)-bound alpha(V)beta(3) integrin headpiece how the binding pocket and interdomain betaA/hybrid domain hinge on the distal end of the betaA domain are allosterically linked via a hydrophobic T-junction between the middle of the alpha1 helix and top of the alpha7 helix. The key results of this study are: 1) that this T-junction is induced by ligand binding and hinge opening, and thus displays bidirectionality; 2) that formation of this junction can be accelerated by ligand-mediated force; and 3) how formation of this junction is inhibited by Ca(2+) in place of Mg(2+) at the site adjacent to the metal ion-dependent adhesion site ("ADMIDAS"). Together with recent experimental evidence that integrin complexes can form catch bonds (i.e. become strengthened under force), as well as earlier evidence that Ca(2+) at the ADMIDAS results in lower binding affinity, these simulations provide a common structural model for the dynamic process by which integrins become activated.

  20. The changes in drug binding activity of GABA receptor and animal neural-behavior after gamma irradiation

    International Nuclear Information System (INIS)

    Zheng Hui; Zhen Rong; Zhao Naikun; Xue Hong; Wang Zihui

    2004-01-01

    Objective: The purpose of this study was to investigate the effect of irradiation on gamma-aminobutyric-acid receptor (GABA-R) as well as behavioral changes after brain 60 Co γ-irradiation. Methods: The mice were irradiated with gamma rays (20 Gy; 10 Gy and 5 Gy) . The drug binding activity of GABA receptor in brain receptor was measured by fluorescence anisotropy (FA) and equilibrium dissociation constants. The behavioral changes were observed by the locomotor activity test, elevated plus-maze test and hole-board test at 1, 10, 24 and 48 hr after irradiation. Results: 1. The drug binding activity of the GABA receptor was decreased and the equilibrium dissociation constant (K d ) was significantly increased compared with the negative control group 2 hr after irradiation, and a spike value appeared at 24 hr. It showed that the irradiation might damage or decrease the binding activity and the bio-activity of GABA receptor. 2. The animal experiment confirmed that the irradiated animal model showed neural-behavioral changes of anxiety or depression. 3. The decreased binding activity of GABA receptor and changes in behavior of irradiated animal were dependent on radiation intensity. 4. The changes of behavior was similar to the blocked GABA receptor group. It suggests the relationship of radiation and GABA receptor. Conclusion: These results suggest that GABA receptor may be involved in radiation injury. The functional changes of GABA receptor may be an induction factor of behavioral disorder. The article also discussed the effect of anxiety and results obtained from the point of view of GABA receptor system involvement in the changes observed after irradiation. (authors)