WorldWideScience

Sample records for chirped-pulse seed laser

  1. FY07 LDRD Final Report Precision, Split Beam, Chirped-Pulse, Seed Laser Technology

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, J W; Messerly, M J; Phan, H H; Crane, J K; Beach, R J; Siders, C W; Barty, C J

    2009-11-12

    The goal of this LDRD ER was to develop a robust and reliable technology to seed high-energy laser systems with chirped pulses that can be amplified to kilo-Joule energies and recompressed to sub-picosecond pulse widths creating extremely high peak powers suitable for petawatt class physics experiments. This LDRD project focused on the development of optical fiber laser technologies compatible with the current long pulse National Ignition Facility (NIF) seed laser. New technologies developed under this project include, high stability mode-locked fiber lasers, fiber based techniques for reduction of compressed pulse pedestals and prepulses, new compact stretchers based on chirped fiber Bragg gratings (CFBGs), new techniques for manipulation of chirped pulses prior to amplification and new high-energy fiber amplifiers. This project was highly successful and met virtually all of its goals. The National Ignition Campaign has found the results of this work to be very helpful. The LDRD developed system is being employed in experiments to engineer the Advanced Radiographic Capability (ARC) front end and the fully engineered version of the ARC Front End will employ much of the technology and techniques developed here.

  2. Chirped pulse inverse free-electron laser vacuum accelerator

    Science.gov (United States)

    Hartemann, Frederic V.; Baldis, Hector A.; Landahl, Eric C.

    2002-01-01

    A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.

  3. Chirped pulse amplification in an extreme-ultraviolet free-electron laser

    Science.gov (United States)

    Gauthier, David; Allaria, Enrico; Coreno, Marcello; Cudin, Ivan; Dacasa, Hugo; Danailov, Miltcho Boyanov; Demidovich, Alexander; di Mitri, Simone; Diviacco, Bruno; Ferrari, Eugenio; Finetti, Paola; Frassetto, Fabio; Garzella, David; Künzel, Swen; Leroux, Vincent; Mahieu, Benoît; Mahne, Nicola; Meyer, Michael; Mazza, Tommaso; Miotti, Paolo; Penco, Giuseppe; Raimondi, Lorenzo; Ribič, Primož Rebernik; Richter, Robert; Roussel, Eléonore; Schulz, Sebastian; Sturari, Luca; Svetina, Cristian; Trovò, Mauro; Walker, Paul Andreas; Zangrando, Marco; Callegari, Carlo; Fajardo, Marta; Poletto, Luca; Zeitoun, Philippe; Giannessi, Luca; de Ninno, Giovanni

    2016-12-01

    Chirped pulse amplification in optical lasers is a revolutionary technique, which allows the generation of extremely powerful femtosecond pulses in the infrared and visible spectral ranges. Such pulses are nowadays an indispensable tool for a myriad of applications, both in fundamental and applied research. In recent years, a strong need emerged for light sources producing ultra-short and intense laser-like X-ray pulses, to be used for experiments in a variety of disciplines, ranging from physics and chemistry to biology and material sciences. This demand was satisfied by the advent of short-wavelength free-electron lasers. However, for any given free-electron laser setup, a limit presently exists in the generation of ultra-short pulses carrying substantial energy. Here we present the experimental implementation of chirped pulse amplification on a seeded free-electron laser in the extreme-ultraviolet, paving the way to the generation of fully coherent sub-femtosecond gigawatt pulses in the water window (2.3-4.4 nm).

  4. Chirped pulse amplification in an extreme-ultraviolet free-electron laser.

    Science.gov (United States)

    Gauthier, David; Allaria, Enrico; Coreno, Marcello; Cudin, Ivan; Dacasa, Hugo; Danailov, Miltcho Boyanov; Demidovich, Alexander; Di Mitri, Simone; Diviacco, Bruno; Ferrari, Eugenio; Finetti, Paola; Frassetto, Fabio; Garzella, David; Künzel, Swen; Leroux, Vincent; Mahieu, Benoît; Mahne, Nicola; Meyer, Michael; Mazza, Tommaso; Miotti, Paolo; Penco, Giuseppe; Raimondi, Lorenzo; Ribič, Primož Rebernik; Richter, Robert; Roussel, Eléonore; Schulz, Sebastian; Sturari, Luca; Svetina, Cristian; Trovò, Mauro; Walker, Paul Andreas; Zangrando, Marco; Callegari, Carlo; Fajardo, Marta; Poletto, Luca; Zeitoun, Philippe; Giannessi, Luca; De Ninno, Giovanni

    2016-12-01

    Chirped pulse amplification in optical lasers is a revolutionary technique, which allows the generation of extremely powerful femtosecond pulses in the infrared and visible spectral ranges. Such pulses are nowadays an indispensable tool for a myriad of applications, both in fundamental and applied research. In recent years, a strong need emerged for light sources producing ultra-short and intense laser-like X-ray pulses, to be used for experiments in a variety of disciplines, ranging from physics and chemistry to biology and material sciences. This demand was satisfied by the advent of short-wavelength free-electron lasers. However, for any given free-electron laser setup, a limit presently exists in the generation of ultra-short pulses carrying substantial energy. Here we present the experimental implementation of chirped pulse amplification on a seeded free-electron laser in the extreme-ultraviolet, paving the way to the generation of fully coherent sub-femtosecond gigawatt pulses in the water window (2.3-4.4 nm).

  5. X-ray Chirped Pulse Amplification: towards GW Soft X-ray Lasers

    Directory of Open Access Journals (Sweden)

    Marta Fajardo

    2013-07-01

    Full Text Available Extensive modeling of the seeding of plasma-based soft X-ray lasers is reported in this article. Seminal experiments on amplification in plasmas created from solids have been studied in detail and explained. Using a transient collisional excitation scheme, we show that a 18 µJ, 80 fs fully coherent pulse is achievable by using plasmas pumped by a compact 10 Hz laser. We demonstrate that direct seeding of plasmas created by nanosecond lasers is not efficient. Therefore, we propose and fully study the transposition to soft X-rays of the Chirped Pulse Amplification (CPA technique. Soft X-ray pulses with energy of 6 mJ and 200 fs duration are reachable by seeding plasmas pumped by compact 100 J, sub-ns, 1 shot/min lasers. These soft X-ray lasers would reach GW power, corresponding to an increase of 100 times as compared to the highest peak power achievable nowadays in the soft X-ray region (30 eV–1 keV. X-ray CPA is opening new horizon for soft x-ray ultra-intense sources.

  6. Flashlamp pumped Ti-sapphire laser for ytterbium glass chirped pulse amplification

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Akihiko; Ohzu, Akira; Sugiyama, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1998-03-01

    A flashlamp pumped Ti:sapphire laser is designed for ytterbium glass chirped pulse amplification. A high quality Ti:sapphire rod and a high energy long pulse discharging power supply are key components. The primary step is to produce the output power of 10 J per pulse at 920 nm. (author)

  7. Coherent chirped pulse laser network with Mickelson phase-conjugator

    CERN Document Server

    Okulov, A Yu

    2013-01-01

    The mechanisms of nonlinear phase-locking of a large fiber amplifier array are analyzed. The preference is given to configuration most suitable for a coherent coupling of a thousands of a fundamental spatial mode fiber beams into a single smooth beam ready for chirped pulse compression. It is shown that Michelson phase conjugating configuration with double passage through array of fiber amplifiers have the definite advantages compared to one-way fiber array coupled in a Mach-Zehnder configuration. Regardless to amount of synchronized fiber amplifiers Michelson phase-conjugating interferometer is expected to do a perfect compensation of the phase-piston errors and collimation of backwardly amplified fiber beams on entrance/output beamsplitter. In both configurations the nonlinear transformation of the stretched pulse envelope due to gain saturation is capable to randomize the position of chirp inside envelope thus it may reduce the visibility of interference pattern at output beamsplitter. A certain advantages...

  8. Nonlinear images of scatterers in chirped pulsed laser beams

    Institute of Scientific and Technical Information of China (English)

    Hu Yong-Hua; Wang You-Wen; Wen Shuang-Chun; Fan Dian-Yuan

    2010-01-01

    The bandwidth and the duration of incident pulsed beam are proved to play important roles in modifying the nonlinear image of amplitude-type scatterer.It is found that the initially positive chirp-type bandwidth can suppress the nonlinear image,while the negative one can enhance it,and that both effects are inversely proportional to the incident pulse duration.Numerical simulations further demonstrate that the location of nonlinear image is at the conjugate plane of the scatterer and that,for negatively pre-chirped pulsed beam,the nonlinear image peak intensity can be higher than that in the corresponding monochromatic case under certain conditions.Moreover the effect of group velocity dispersion on nonlinear image is found to be similar to that of chirp-type bandwidth.

  9. Coherent chirped pulse laser network with Mickelson phase conjugator.

    Science.gov (United States)

    Okulov, A Yu

    2014-04-10

    The mechanisms of nonlinear phase-locking of a large fiber amplifier array are analyzed. The preference is given to the most suitable configuration for a coherent coupling of thousands of fundamental spatial mode fiber beams into a single smooth beam ready for chirped pulse compression. It is shown that a Michelson phase-conjugating configuration with double passage through an array of fiber amplifiers has the definite advantage compared to a one-way fiber array coupled in a Mach-Zehnder configuration. Regardless of the amount of synchronized fiber amplifiers, the Michelson phase-conjugating interferometer is expected to do a perfect compensation of the phase-piston errors and collimation of backwardly amplified fiber beams on an entrance/output beam splitter. In both configurations, the nonlinear transformation of the stretched pulse envelope, due to gain saturation, is capable of randomizing the position of chirp inside an envelope; thus it may reduce the visibility of the interference pattern at an output beam splitter. Certain advantages are inherent to the sech-form temporal envelope because of the exponential precursor and self-similar propagation in gain medium. The Gaussian envelope is significantly compressed in a deep gain saturation regime, and the frequency chirp position inside pulse envelope is more deformed.

  10. Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers.

    Science.gov (United States)

    Riedel, R; Stephanides, A; Prandolini, M J; Gronloh, B; Jungbluth, B; Mans, T; Tavella, F

    2014-03-15

    Optical parametric chirped-pulse amplifiers with high average power are possible with novel high-power Yb:YAG amplifiers with kW-level output powers. We demonstrate a compact wavelength-tunable sub-30-fs amplifier with 11.4 W average power with 20.7% pump-to-signal conversion efficiency. For parametric amplification, a beta-barium borate crystal is pumped by a 140 W, 1 ps Yb:YAG InnoSlab amplifier at 3.25 MHz repetition rate. The broadband seed is generated via supercontinuum generation in a YAG crystal.

  11. Multiplexed Chirped Pulse Quantum Cascade Laser Measurements of Ammonia and Other Small Molecules

    Science.gov (United States)

    Picken, Craig; Langford, Nigel; Duxbury, Geoffrey

    2014-06-01

    Spectrometers based on Quantum Cascade (QC) lasers can be run in either continuous or pulsed operation. Although the instrumentation based upon the most recent versions of continuously operating QC lasers can have higher resolution than chirped lasers, using chirped pulse QC lasers can give an advantage when rapid changes in gas composition occur. For example, when jet engines are being tested, a variety of temperature dependent effects on the trace gas concentrations of the plume may be observed. Most pulsed QC lasers are operated in the down chirped mode, in which the chirp rate slows during the pulse. In our spectrometer the changes in frequency are recorded using two Ge etalons, one with a free spectral range of 0.0495 cm-1, and the other with a fringe spacing of 0.0195 cm-1.They can also be deployed in multiplex schemes in which two or more down-chirped lasers are used. In this paper we wish to show examples of the use of multiplexed chirped pulse lasers to allow overlapping spectra to be recorded. The examples of multiplex methods used are taken partly from measurements of 14NH3 and 15NH3 in the region from 1630 to 1622 cm-1, and partly from the use of other chirped pulse lasers operating in the 8 μm region. Among the effects seen are rapid passage effects caused by the rapid down-chirp, and the use of gases such as nitrogen to cause variation in the shape of the collisional broadened absorption lines.

  12. a Chirped-Pulse Fourier Transform Microwave Spectrometer Combined with a Laser Ablation Source

    Science.gov (United States)

    Mata, S.; Pena, I.; Cabezas, C.; López, J. C.; Alonso, J. L.; Pate, B. H.

    2011-06-01

    The design of a chirped-pulse Fourier transform microwave spectrometer CP-FTMW combined with a laser ablation LA source is presented. The spectrometer is capable of measuring the 6.5-18 GHz region. Rotational spectra of solid samples of proline (m.p. 228° C) and alanine (m.p. 290° C) vaporized by laser ablation has been recorded. Four low-energy conformers of proline and two in alanine have been detected. 13C species of alanine in their natural abundance have been also observed. The performance of this spectrometer is compared to a LA-MB-FTMW spectrometer.

  13. Green and ultraviolet pulse generation with a compact, fiber laser, chirped-pulse amplification system for aerosol fluorescence measurements

    Science.gov (United States)

    Lou, Janet W.; Currie, Marc; Sivaprakasam, Vasanthi; Eversole, Jay D.

    2010-10-01

    We use a compact chirped-pulse amplified system to harmonically generate ultrashort pulses for aerosol fluorescence measurements. The seed laser is a compact, all-normal dispersion, mode-locked Yb-doped fiber laser with a 1050 nm center wavelength operating at 41 MHz. Average powers of more than 1.2 W at 525 nm and 350 mW at 262 nm are generated with biofluorescence measurements as it allows faster sampling rates as well as the higher peak powers as compared to previously demonstrated Q-switched systems while maintaining a pulse period that is longer than the typical fluorescence lifetimes. Thus, the fluorescence excitation can be considered to be quasicontinuous and requires no external synchronization and triggering.

  14. Components for monolithic fiber chirped pulse amplification laser systems

    Science.gov (United States)

    Swan, Michael Craig

    The first portion of this work develops techniques for generating femtosecond-pulses from conventional fabry-perot laser diodes using nonlinear-spectral-broadening techniques in Yb-doped positive dispersion fiber ampliers. The approach employed an injection-locked fabry-perot laser diode followed by two stages of nonlinear-spectral-broadening to generate sub-200fs pulses. This thesis demonstrated that a 60ps gain-switched fabry-perot laser-diode can be injection-locked to generate a single-longitudinal-mode pulse and compressed by nonlinear spectral broadening to 4ps. Two problems have been identified that must be resolved before moving forward with this approach. First, gain-switched pulses from a standard diode-laser have a number of characteristics not well suited for producing clean self-phase-modulation-broadened pulses, such as an asymmetric temporal shape, which has a long pulse tail. Second, though parabolic pulse formation occurs for any arbitrary temporal input pulse profile, deviation from the optimum parabolic input results in extensively spectrally modulated self-phase-modulation-broadened pulses. In conclusion, the approach of generating self-phase-modulation-broadened pulses from pulsed laser diodes has to be modified from the initial approach explored in this thesis. The first Yb-doped chirally-coupled-core ber based systems are demonstrated and characterized in the second portion of this work. Robust single-mode performance independent of excitation or any other external mode management techniques have been demonstrated in Yb-doped chirally-coupled-core fibers. Gain and power efficiency characteristics are not compromised in any way in this novel fiber structure up to the 87W maximum power achieved. Both the small signal gain at 1064nm of 30.3dB, and the wavelength dependence of the small signal gain were comparable to currently deployed large-mode-area-fiber technology. The efficiencies of the laser and amplifier were measured to be 75% and 54

  15. 200 TW 45 fs laser based on optical parametric chirped pulse amplification.

    Science.gov (United States)

    Lozhkarev, V V; Freidman, G I; Ginzburg, V N; Katin, E V; Khazanov, E A; Kirsanov, A V; Luchinin, G A; Mal'shakov, A N; Martyanov, M A; Palashov, O V; Poteomkin, A K; Sergeev, A M; Shaykin, A A; Yakovlev, I V; Garanin, S G; Sukharev, S A; Rukavishnikov, N N; Charukhchev, A V; Gerke, R R; Yashin, V E

    2006-01-01

    200 TW peak power has been achieved experimentally using a Cr:forsterite master oscillator at 1250 nm, a stretcher, three optical parametrical amplifiers based on KD*P (DKDP) crystals providing 14.5 J energy in the chirped pulse at 910 nm central wavelength, and a vacuum compressor. The final parametrical amplifier and the compressor are described in detail. Scaling of such architecture to multipetawatt power is discussed.

  16. Generation of few-cycle terawatt light pulses using optical parametric chirped pulse amplification

    NARCIS (Netherlands)

    Witte, S.; Zinkstok, R.T.; Hogervorst, W.; Eikema, K.S.E.

    2005-01-01

    We demonstrate the generation of 9.8 +/- 0.3 fs laser pulses with a peak power exceeding one terawatt at 30 Hz repetition rate, using optical parametric chirped pulse amplification. The amplifier is pumped by 140 mJ, 60 ps pulses at 532 nm, and amplifies seed pulses from a Ti: Sapphire oscillator to

  17. Generation of synchronized signal and pump pulses for an optical parametric chirped pulse amplification based multi-terawatt Nd:glass laser system

    Indian Academy of Sciences (India)

    M Raghuramaiah; R K Patidar; R A Joshi; P A Naik; P D Gupta

    2010-11-01

    Synchronized signal (650 ps) and pump (1.3 ns) pulses were generated using 4-pass geometry in a grating pair based pulse stretcher unit. The pump pulse has been further amplified in a high gain regenerative amplifier. This amplified pulse was used as the pump in an optical parametric chirped pulse amplification based Nd:glass laser system. As the chirped signal pulse and the pump pulse originated from the same oscillator, the time jitter between the pump pulse and the signal pulse can be <50 ps.

  18. Multi-channel, fiber-based seed pulse distribution system for femtosecond-level synchronized chirped pulse amplifiers

    Science.gov (United States)

    Horáček, Martin; Indra, Lukáš; Green, Jonathan T.; Naylon, Jack A.; Tykalewicz, Boguslaw; Novák, Jakub; Batysta, František; Mazanec, Tomáš; Horáček, Jakub; Antipenkov, Roman; Hubka, Zbyněk; Boge, Robert; Bakule, Pavel; Rus, Bedřich

    2017-01-01

    We report on the design and performance of a fiber-based, multi-channel laser amplifier seed pulse distribution system. The device is designed to condition and distribute low energy laser pulses from a mode-locked oscillator to multiple, highly synchronized, high energy amplifiers integrated into a laser beamline. Critical functions such as temporal pulse stretching well beyond 100 ps/nm, pulse picking, and fine control over the pulse delay up to 300 ps are all performed in fiber eliminating the need for bulky and expensive grating stretchers, Pockels cells, and delay lines. These functions are characterized and the system as a whole is demonstrated by seeding two high energy amplifiers in the laser beamline. The design of this system allows for complete computer control of all functions, including tuning of dispersion, and is entirely hands-free. The performance of this device and its subsystems will be relevant to those developing lasers where reliability, size, and cost are key concerns in addition to performance; this includes those developing large-scale laser systems similar to ours and also those developing table-top experiments and commercial systems.

  19. Demonstration of a diode pumped Nd,Y co-doped SrF2 crystal based, high energy chirped pulse amplification laser system

    Science.gov (United States)

    Chen, Junchi; Peng, Yujie; Zhang, Zongxin; Su, Hongpeng; Leng, Yuxin; Jiang, Dapeng; Ma, Fengkai; Qian, Xiaobo; Tang, Fei; Su, Liangbi

    2017-01-01

    We report, to the best of our knowledge, a chirped pulse amplification laser system based on the Nd,Y:SrF2 crystal for the first time. The incorporation of Y3+ nonactive ions can significantly improve laser properties of Nd:SrF2 crystal, including broader emission linewidth, larger cross-section as well as longer fluorescence lifetime. Pulse laser with 5.1 mJ (uncompressed), 3.7 mJ (compressed) energy, 1.6 ps duration at 5 Hz repetition rate is demonstrated. The results indicate that the Nd,Y:SrF2 crystal is a potential candidate with excellent laser and thermal performance for developing ultra-intense laser with high repetition rate.

  20. Millijoule pulse energy picosecond fiber chirped-pulse amplification system

    Institute of Scientific and Technical Information of China (English)

    Zhi Yang; Xiaohong Hu; Yishan Wang; Wei Zhang; Wei Zhao

    2011-01-01

    @@ The efficient generation of a 1.17-mJ laser pul8e with 360 ps duration using an ytterbium (Yb)-doped fiber amplifier chain seeded by a homemade mode-locked fiber laser is demonstrated experimentally.A specially designed figure-of-eight fiber laser acts as the seed source of a chirped-pulse amplification (CPA) system and generates mode-locked pulse8 with hundreds of picosecond widths.Two kinds of large-mode-area (LMA) double-clad Yb-doped fibers are employed to construct the pre-amplifier and main amplifier, All of the adopted instruments help avoid severe nonlinearity in fibers to raise sub-nanosecond pulse energy with acceptable signal-to-noise ratio (SNR).The output spectrum of this fiber-based CPA system shows that amplified spontaneous emission (ASE) is suppressed to better than 30 dB, and the onset of stimulated Raman scattering is excluded.%The efficient generation of a 1.17-mJ laser pulse with 360 ps duration using an ytterbium (Yb)-doped fiber amplifier chain seeded by a homemade mode-locked fiber laser is demonstrated experimentally. A specially designed figure-of-eight fiber laser acts as the seed source of a chirped-pulse amplification (CPA) system and generates mode-locked pulses with hundreds of picosecond widths. Two kinds of large-mode-area (LMA) double-clad Yb-doped fibers are employed to construct the pre-amplifier and main amplifier. All of the adopted instruments help avoid severe nonlinearity in fibers to raise sub-nanosecond pulse energy with acceptable signal-to-noise ratio (SNR). The output spectrum of this fiber-based CPA system shows that amplified spontaneous emission (ASE) is suppressed to better than 30 dB, and the onset of stimulated Raman scattering is excluded.

  1. Performance scaling via passive pulse shaping in cavity-enhanced optical parametric chirped-pulse amplification.

    Science.gov (United States)

    Siddiqui, Aleem M; Moses, Jeffrey; Hong, Kyung-Han; Lai, Chien-Jen; Kärtner, Franz X

    2010-06-15

    We show that an enhancement cavity seeded at the full repetition rate of the pump laser can automatically reshape small-signal gain across the interacting pulses in an optical parametric chirped-pulse amplifier for close-to-optimal operation, significantly increasing both the gain bandwidth and the conversion efficiency, in addition to boosting gain for high-repetition-rate amplification. Applied to a degenerate amplifier, the technique can provide an octave-spanning gain bandwidth.

  2. Next generation Chirped Pulse Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Nees, J.; Biswal, S.; Mourou, G. [Univ. Michigan, Center for Ultrafast Optical Science, Ann Arbor, MI (United States); Nishimura, Akihiko; Takuma, Hiroshi

    1998-03-01

    The limiting factors of Chirped Pulse Amplification (CPA) are discussed and experimental results of CPA in Yb:glass regenerative amplifier are given. Scaling of Yb:glass to the petawatt level is briefly discussed. (author)

  3. Fourth-order-dispersion limitations of aberration-free chirped-pulse amplification systems

    Energy Technology Data Exchange (ETDEWEB)

    Kane, S. [Center for Ultrafast Optical Science, University of Michigan, 2200 Bonisteel Boulevard, Room 1006, Institute for Science and Technology Building, Ann Arbor, Michigan 48109-2099 (United States); Squier, J. [Institute for Nonlinear Science, University of California, San Diego, Urey Hall, Mail Code 0339, La Jolla, California 92093-0339 (United States)

    1997-05-01

    To obtain shorter pulses in chirped-pulse-amplification lasers, researchers have recently proposed several designs for aberration-free pulse stretchers. We examine the limitations of two aberration-free chirped-pulse-amplification systems and show that comparable results can be obtained with simpler, conventional pulse stretchers. In addition, we present a simple, quintic-phase-limited, aberration-free chirped-pulse-amplification system that can support ultrashort, high-contrast pulses. {copyright} 1997 Optical Society of America

  4. Generation of intense femtosecond optical vortex pulses with blazed-phase grating in chirped-pulse amplification system of Ti:sapphire laser

    Science.gov (United States)

    Lin, Yu-Chieh; Nabekawa, Yasuo; Midorikawa, Katsumi

    2016-11-01

    We demonstrate the generation of an intense femtosecond optical vortex (OV) pulse by employing an OV converter set between two laser amplifiers in a chirped-pulse amplification (CPA) system of a Ti:sapphire laser. The OV converter is composed of a liquid-crystal spatial light modulator (LC-SLM) exhibiting a blazed-phase computer-generated hologram, a concave mirror, and a flat mirror in the 4f setup. Owing to the intrinsic nature of the 4f setup, the OV converter is free from chromatic and topological-charge dispersions, which are always induced in a spiral phase plate conventionally used to convert an intense Gaussian laser pulse to an OV pulse, while we can avoid damage to the LC-SLM by the irradiation of a low-energy pulse before the second amplifier. We have increased the throughput of the OV converter to 42% by systematically investigating the diffraction efficiency of the blazed-phase hologram on the LC-SLM, which relaxes the gain condition required for the second amplifier. The combination of the high-throughput OV converter and the two-stage amplification enables us to generate OV pulses with an energy of 1.63 mJ and a pulse duration of 60 fs at a wavelength of 720 nm, at which the gain of the Ti:sapphire laser is only 60% of the peak gain around 800 nm.

  5. High contrast, 86  fs, 35  mJ pulses from a diode-pumped, Yb:glass, double-chirped-pulse amplification laser system.

    Science.gov (United States)

    Liebetrau, Hartmut; Hornung, Marco; Keppler, Sebastian; Hellwing, Marco; Kessler, Alexander; Schorcht, Frank; Hein, Joachim; Kaluza, Malte C

    2016-07-01

    We demonstrate the generation of 86 fs, 35 mJ, high-contrast laser pulses at 1030 nm with a repetition rate of 1 Hz from a diode-pumped double chirped-pulse amplification setup. The pulses exhibit a spectral bandwidth exceeding 27 nm full width at half-maximum. This could be achieved by using a laser architecture comprising two stages of chirped pulse amplification with a cross-polarized wave generation filter in between, by applying spectral shaping and by increasing the spectral hard-clip of the second stretcher. These are, to the best of our knowledge, the shortest pulses at the mJ level with ultra-high contrast generated with a diode-pumped front end at 1030 nm.

  6. Broadening and Amplification of an Infrared Femtosecond Pulse for Optical Parametric Chirped-Pulse Amplification

    Institute of Scientific and Technical Information of China (English)

    WANG He-Lin; YANG Ai-Jun; LENG Yu-Xin

    2011-01-01

    A high-average-power diode-pumped narrowband regenerative chirped pulse amplifier is developed using the thin-rod Nd:YAG laser architecture for optical parametric chirped-pulse amplification (OPCPA).The effect of the etalons on the amplified pulse in the regenerative cavity is studied experimentally and theoretically.By inserting glass etalons of thickness 1 mm and 5 mm into the regenerative cavity,the pre-stretching pulse from an (O)ffner stretcher is further broadened to above 200ps,which matches the amplification windows of the signal pulses in OPCPA and is suitable for use as a pump source in the OPCPA system.The bandwidth of the amplified pulse is 1.5 nm,and an output energy of 2mJ is achieved at a repetition rate of 10 Hz.Optical parametric chirped pulse amplification (OPCPA)[1-4] has attracted a great deal of attention as the most promising technique for generating ultrashort ultrahigh-peak-power laser pulses because of its very broad gain bandwidth,negligible thermal load on the nonlinear crystal,and extremely high singlepass gain as compared to amplifiers based on laser gain media.For efficient amplification and high fidelity of dispersion compensation in OPCPA,a femtosecond seed pulse is first stretched to several tens of picoseconds with a bulk grating stretcher or a fiber stretcher.%A high-average-power diode-pumped narrowband regenerative chirped pulse amplifier is developed using the thin-rod Nd:YAG laser architecture for optical parametric chirped-pulse amplification (OPCPA). The effect of the etalons on the amplified pulse in the regenerative cavity is studied experimentally and theoretically. By inserting glass etalons of thickness 1 mm and 5 mm into the regenerative cavity, the pre-stretching pulse from an (O)finer stretcher is further broadened to above 200 ps, which matches the amplification windows of the signal pulses in OPCPA and is suitable for use as a pump source in the OPCPA system. The bandwidth of the amplified pulse is 1.5 nm, and an

  7. Dispersion compensation in chirped pulse amplification systems

    Science.gov (United States)

    Bayramian, Andrew James; Molander, William A.

    2014-07-15

    A chirped pulse amplification system includes a laser source providing an input laser pulse along an optical path. The input laser pulse is characterized by a first temporal duration. The system also includes a multi-pass pulse stretcher disposed along the optical path. The multi-pass pulse stretcher includes a first set of mirrors operable to receive input light in a first plane and output light in a second plane parallel to the first plane and a first diffraction grating. The pulse stretcher also includes a second set of mirrors operable to receive light diffracted from the first diffraction grating and a second diffraction grating. The pulse stretcher further includes a reflective element operable to reflect light diffracted from the second diffraction grating. The system further includes an amplifier, a pulse compressor, and a passive dispersion compensator disposed along the optical path.

  8. Combined Yb/Nd driver for optical parametric chirped pulse amplifiers.

    Science.gov (United States)

    Michailovas, Kirilas; Baltuska, Andrius; Pugzlys, Audrius; Smilgevicius, Valerijus; Michailovas, Andrejus; Zaukevicius, Audrius; Danilevicius, Rokas; Frankinas, Saulius; Rusteika, Nerijus

    2016-09-19

    We report on the developed front-end/pump system for optical parametric chirped pulse amplifiers. The system is based on a dual output fiber oscillator/power amplifier which seeds and assures all-optical synchronization of femtosecond Yb and picosecond Nd laser amplifiers operating at a central wavelength of 1030 nm and 1064 nm, respectively. At the central wavelength of 1030 nm, the fiber oscillator generates partially stretched 4 ps pulses with the spectrum supporting a scaling currently is prevented by limited dimensions of the diffraction gratings, which, because of the fast progress in MLD grating manufacturing technologies is only a temporary obstacle.

  9. Generation of few-cycle terawatt light pulses using optical parametric chirped pulse amplification.

    Science.gov (United States)

    Witte, S; Zinkstok, R; Hogervorst, W; Eikema, K

    2005-06-27

    We demonstrate the generation of 9.8+/-0.3 fs laser pulses with a peak power exceeding one terawatt at 30 Hz repetition rate, using optical parametric chirped pulse amplification. The amplifier is pumped by 140 mJ, 60 ps pulses at 532 nm, and amplifies seed pulses from a Ti:Sapphire oscillator to 23 mJ/pulse, resulting in 10.5 mJ/pulse after compression while amplified fluorescence is kept below 1%. We employ grating-based stretching and compression in combination with an LCD phase-shaper, allowing compression close to the Fourier limit of 9.3 fs.

  10. Upconversion chirped pulse amplification of ultrashort pulses using a multimode Tm:ZBLAN fiber

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L.M.; Sosnowski, T.; Stock, M.L.; Norris, T.B.; Squier, J.; Mourou, G. [Univ. of Michigan, Ann Arbor, MI (United States). Center for Ultrafast Optical Science; Dennis, M.L.; Duling, I.N. III [Naval Research Lab., Washington, DC (United States)

    1995-11-01

    Microjoule pulse energies are achieved from a single stage upconversion fiber amplifier for the first time in this demonstration of chirped pulse amplification using a multimode TM:ZBLAN fiber. A Ti:sapphire laser system provides the seed pulse for the upconversion fiber amplifier which produces subpicosecond pulse trains with energies as great as 16 {micro}J at repetition rate of 4.4 kHz. The compressed, pulse peak power is more than 1 MW, and the pulse is characterized both temporally and spatially.

  11. Population inversion by chirped pulses

    Energy Technology Data Exchange (ETDEWEB)

    Lu Tianshi [Department of Mathematics and Statistics, Wichita State University, Wichita, Kansas 67260-0033 (United States)

    2011-09-15

    In this paper, we analyze the condition for complete population inversion by a chirped pulse over a finite duration. The nonadiabatic transition probability is mapped in the two-dimensional parameter space of coupling strength and detuning amplitude. Asymptotic forms of the probability are derived by the interference of nonadiabatic transitions for sinusoidal and triangular pulses. The qualitative difference between the maps for the two types of pulses is accounted for. The map is used for the design of stable inversion pulses under specific accuracy thresholds.

  12. Pulse Distortion in Saturated Fiber Optical Parametric Chirped Pulse Amplification

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Da Ros, Francesco; Rottwitt, Karsten

    2012-01-01

    Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation.......Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation....

  13. Coherent addition of gratings for chirped-pulse-amplified lasers based on near-field and far-field measurements

    Institute of Scientific and Technical Information of China (English)

    Yuchuan Yang; Hui Luo; Xiao Wang; Fuquan Li; Xiaojun Huang; Bin Feng; Feng Jing

    2011-01-01

    @@ The development of phased-array grating compressor is a crucial issue for high-energy, ultra-short pulse petawatt-class lasers.Almost all systems have adopted a tiled-grating approach to meet the size require-ments for the compression gratings.We present a computer-control test system utilizing near-field interfer-ence and far-field focusing capable of monitoring and fast correcting tiled errors of the grating compressor.In this system, the tilt/tip errors between the two gratings are determined by the Fourier transform (FT)of the individual inteiference fringe, and the piston errors are determined by the ratio of the two primary peaks formed in the far-field pattern as a function of the piston difference.Monochromatic grating phasing is achieved experimentally and pulse compression is demonstrated with a tiled grating system.%The development of phased-array grating compressor is a crucial issue for high-energy, ultra-short pulse petawatt-class lasers. Almost all systems have adopted a tiled-grating approach to meet the size requirements for the compression gratings. We present a computer-control test system utilizing near-field interference and far-field focusing capable of monitoring and fast correcting tiled errors of the grating compressor.In this system, the tilt/tip errors between the two gratings are determined by the Fourier transform (FT)of the individual inter ference fringe, and the piston errors are determined by the ratio of the two primary peaks formed in the far-field pattern as a function of the piston difference. Monochromatic grating phasing is achieved experimentally and pulse compression is demonstrated with a tiled grating system.

  14. High gain broadband amplification of ultraviolet pulses in optical parametric chirped pulse amplifier.

    Science.gov (United States)

    Wnuk, Paweł; Stepanenko, Yuriy; Radzewicz, Czesław

    2010-04-12

    We report on a high gain amplification of broadband ultraviolet femtosecond pulses in an optical parametric chirped pulse amplifier. Broadband ultraviolet seed pulses were obtained by an achromatic frequency doubling of the output from a femtosecond Ti:Sapphire oscillator. Stretched seed pulses were amplified in a multipass parametric amplifier with a single BBO crystal pumped by a ns frequency quadrupled Nd:YAG laser. A noncollinear configuration was used for a broadband amplification. The total (after compression) amplification of 2.510(5) was achieved, with compressed pulse energy of 30 microJ and pulse duration of 24 fs. We found that the measured gain was limited by thermal effects induced by the absorption of the pump laser by color centers created in the BBO crystal.

  15. Design of efficient single stage chirped pulse difference frequency generation at 7 {\\mu}m driven by a dual wavelength Ti:sapphire laser

    CERN Document Server

    Erny, Christian

    2013-01-01

    We present a design for a high-energy single stage mid-IR difference frequency generation adapted to a two-color Ti:sapphire amplifier system. The optimized mixing process is based on chirped pulse difference frequency generation (CP-DFG), allowing for a higher conversion efficiency, larger bandwidth and reduced two photon absorption losses. The numerical start-to-end simulations include stretching, chirped pulse difference frequency generation and pulse compression. Realistic design parameters for commercially available non linear crystals (GaSe, AgGaS2, LiInSe2, LiGaSe2) are considered. Compared to conventional un-chirped DFG directly pumped by Ti:sapphire technology we report a threefold increase of the quantum efficiency. Our CP-DFG scheme provides up to 340 {\\mu}J pulse energy directly at 7.2 {\\mu}m when pumped with 3 mJ and supports a bandwidth of up to 350 nm. The resulting 240 fs mid-IR pulses are inherently phase stable.

  16. Experimental and Theoretical Analysis of Nondegenerate Ultrabroadband Chirped Pulse Optical Parametric Amplification

    Institute of Scientific and Technical Information of China (English)

    刘红军; 赵卫; 陈国夫; 王屹山; 于连君; 阮驰; 卢克清

    2004-01-01

    Experimental investigations of nondegenerate ultrabroadband chirped pulse optical parametric amplification have been carried out. The general mathematical expressions for evaluating parametric bandwidth, gain and gain bandwidth for arbitrary three-wave mixing parametric amplifiers are presented. In our experiments, a type-I noncollinear phase-matched optical parametric amplifier based on lithium triborate, which was pumped by a 5-ns second harmonic pulses from a Q-switched Nd:YAG operating at 10 Hz, seeded by a 14-rs Ti:sapphire laser at 800nm, was presented. The 0.85nJ energy of input chirped signal pulse with 57-FWHM has been amplified to 3.1 μJ at pump intensity 3 G W/cm2, the corresponding parametric gain reached 3.6 × 103, the 53 nm-FWHM gain spectrum bandwidth of output signal has been obtained. The large gain and broad gain bandwidth, which have been confirmed experimentally, provide great potentials to amplify efficiently the broad bandwidth femtosecond light pulses to generate new extremes in power, intensity, and pulse duration using optical parametric chirped pulse amplifiers pumped by powerful nanosecond systems.

  17. The nonparaxial property of chirped pulsed beam

    Institute of Scientific and Technical Information of China (English)

    Daquan Lu(陆大全); Wei Hu(胡巍); Yizhou Zheng(郑一周); Zhenjun Yang(杨振军)

    2003-01-01

    The nonparaxial property of the chirped pulsed beam is analyzed both quantitatively and qualitatively.Through the qualitative investigation of the paraxial approximation condition, we show there are chirpinduced changes in the nonparaxial propagation of the chirped pulsed beam. A quantitative nonparaxial correction was developed by use of the perturbational technic and the Fourier transform for a few-cycle chirped pulsed beam with relative small chirp parameter. It was shown that the nonparaxial corrections were enhanced near the leading or trailing edge of pulse depending on weather the chirp parameter is positive or negative. An example for pulsed Gaussian beam driven by a chirped Gaussian pulse is shown in the numerical result to confirm our analysis.

  18. Chirped pulse amplification in an all-normal-dispersion erbium-doped fiber amplifier

    Science.gov (United States)

    Wang, Yiqin; Li, Lei; Zhao, Luming

    2017-03-01

    Chirped pulse amplification in an all-normal-dispersion erbium-doped fiber amplifier is presented. Wavelength dependent amplification is examined. It is found that gain dispersion limits the spectral profile of the amplified pulse. If the central wavelength of the seed pulse is far away from that of the gain profile of the amplifier, the gain profile partially shapes the spectrum of the amplified pulse while maintaining the characteristic steep spectral edge at one side. If the optical spectrum of the seed pulse is most covered by the gain profile, the characteristic steep spectral edges will be both maintained. The amplified pulse becomes deformed ultimately with increasing pump power, no matter whether the seed pulse is a transform-limited pulse or a chirped pulse.

  19. Pulse distortion in single-mode fibers. 3: Chirped pulses.

    Science.gov (United States)

    Marcuse, D

    1981-10-15

    The theory of pulse distortion in single-mode fibers is extended to include laser sources that suffer a linear wavelength sweep (chirp) during the duration of the pulse. The transmitted pulse is expressed as a Fourier integral whose spectral function is given by an analytical expression in closed form. The rms width of the transmitted pulse is also expressed in closed form. Numerical examples illustrate the influence of the chirp on the shape and rms width of the pulse. A somewhat paradoxical situation exists. A given input pulse can be made arbitrarily short by a sufficiently large amount of chirping, and, after a given fiber length, this chirped pulse returns to its original width. But at this particular distance an unchirped pulse would be only [equiation] times longer. Thus chirping can improve the rate of data transmission by only 40%.

  20. Generation of Frequency-Chirped Pulses in the Far-Infrared by Means of a Subpicosecond Free-Electron Laser and an External Pulse Shaper

    NARCIS (Netherlands)

    Knippels, G.M.H.; van der Meer, A. F. G.; Mols, Rfxam; van Amersfoort, P. W.; Vrijen, R. B.; Maas, D. J.; Noordam, L. D.

    1995-01-01

    The generation of frequency-chirped optical pulses in the far-infrared is reported. The pulses are produced by the free-electron laser FELIX. The chirp is induced by means of an external shaping device consisting of a grating and a telescope. The shaper is based on reflective optics to permit operat

  1. Time dependent Doppler shifts in high-order harmonic generation in intense laser interactions with solid density plasma and frequency chirped pulses

    Energy Technology Data Exchange (ETDEWEB)

    Welch, E. C.; Zhang, P.; He, Z.-H. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109-2104 (United States); Dollar, F. [JILA, University of Colorado, Boulder, Colorado 80309 (United States); Krushelnick, K.; Thomas, A. G. R., E-mail: agrt@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109-2104 (United States); Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109-2104 (United States)

    2015-05-15

    High order harmonic generation from solid targets is a compelling route to generating intense attosecond or even zeptosecond pulses. However, the effects of ion motion on the generation of harmonics have only recently started to be considered. Here, we study the effects of ion motion in harmonics production at ultrahigh laser intensities interacting with solid density plasma. Using particle-in-cell simulations, we find that there is an optimum density for harmonic production that depends on laser intensity, which scales linearly with a{sub 0} with no ion motion but with a reduced scaling if ion motion is included. We derive a scaling for this optimum density with ion motion and also find that the background ion motion induces Doppler red-shifts in the harmonic structures of the reflected pulse. The temporal structure of the Doppler shifts is correlated to the envelope of the incident laser pulse. We demonstrate that by introducing a frequency chirp in the incident pulse we are able to eliminate these Doppler shifts almost completely.

  2. Generation of near transform-limited ultrashort laser pulses in kilohertz chirped-pulse amplification system by compensating high order phase distortions

    Institute of Scientific and Technical Information of China (English)

    Yongliang Jiang; Bing Zhou; Yuxin Leng; Xiaowei Chen; Ruxin Li; Zhizhan Xu

    2006-01-01

    The effects of gain narrowing and high order dispersions on the pulse duration in our kilohertz chirpedpulse amplification system have been compensated experimentally. Using an acousto-optic programmable dispersive filter (AOPDF), the spectral full-width at half-maximum (FWHM) is expanded from 30 to50 nm. Stable laser pulses with the duration of 30 fs (FWHM), which is 1.07 times Fourier-transformlimitation, have been acquired by pre-compensating the high order phase distortions using the phase measured by spectral phase interferometry for direct electric-field reconstruction (SPIDER).

  3. Generation of frequency-chirped pulses in the far-infrared by means of a sub-picosecond free-electron laser and an external pulse shaper

    Science.gov (United States)

    Knippels, G. M. H.; van der Meer, A. F. G.; Mols, R. F. X. A. M.; van Amersfoort, P. W.; Vrijen, R. B.; Maas, D. J.; Noordam, L. D.

    1995-02-01

    The generation of frequency-chirped optical pulses in the far-infrared is reported. The pulses are produced by the free-electron laser FELIX. The chirp is induced by means of an external shaping device consisting of a grating and a telescope. The shaper is based on reflective optics to permit operation in a wide spectral range. The present experiments were made at 8.2 μm wavelength. The fwhm duration of the incident pulse was 0.50 ps, which corresponds to a bandwidth of 2.2%. It has been checked that a linear chirp is produced, for the case that the frequency increases from the leading edge of the pulse to the trailing edge, as well as for the reverse case. This is accompanied by an increase of the fwhm pulse duration which ranges up to 16.5 ps.

  4. Highly Efficient Tabletop Optical Parametric Chirped Pulse Amplifier at 1 (micron)m

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, I.; Ebbers, C.A.; Comaskey, B.J.; Bonner, R.A.; Morse, E.C.

    2001-12-04

    Optical parametric chirped pulse amplification (OPCPA) is a scalable technology, for ultrashort pulse amplification. Its major advantages include design simplicity, broad bandwidth, tunability, low B-integral, high contrast, and high beam quality. OPCPA is suitable both for scaling to high peak power as well as high average power. We describe the amplification of stretched 100 fs oscillator pulses in a three-stage OPCPA system pumped by a commercial, single-longitudinal-mode, Q-switched Nd:YAG laser. The stretched pulses were centered around 1054 nm with a FWHM bandwidth of 16.5 nm and had an energy of 0.5 nJ. Using our OPCPA system, we obtained an amplified pulse energy of up to 31 mJ at a 10 Hz repetition rate. The overall conversion efficiency from pump to signal is 6%, which is the highest efficiency obtained With a commercial tabletop pump laser to date. The overall conversion efficiency is limited due to the finite temporal overlap of the seed (3 ns) with respect to the duration of the pump (8.5 ns). Within the temporal window of the seed pulse the pump to signal conversion efficiency exceeds 20%. Recompression of the amplified signal was demonstrated to 310 fs, limited by the aberrations initially present in the low energy seed imparted by the pulse stretcher. The maximum gain in our OPCPA system is 6 x 10{sup 7}, obtained through single passing of 40 mm of beta-barium borate. We present data on the beam quality obtained from our system (M{sup 2}=1.1). This relatively simple system replaces a significantly more complex Ti:sapphire regenerative amplifier based CPA system used in the front end of a high energy short pulse laser. Future improvement will include obtaining shorter amplified pulses and higher average power.

  5. Ultrahigh contrast from a frequency-doubled chirped-pulse-amplification beamline.

    Science.gov (United States)

    Hillier, David; Danson, Colin; Duffield, Stuart; Egan, David; Elsmere, Stephen; Girling, Mark; Harvey, Ewan; Hopps, Nicholas; Norman, Michael; Parker, Stefan; Treadwell, Paul; Winter, David; Bett, Thomas

    2013-06-20

    This paper describes frequency-doubled operation of a high-energy chirped-pulse-amplification beamline. Efficient type-I second-harmonic generation was achieved using a 3 mm thick 320 mm aperture KDP crystal. Shots were fired at a range of energies achieving more than 100 J in a subpicosecond, 527 nm laser pulse with a power contrast of 10(14).

  6. Development of optical parametric chirped-pulse amplifiers and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Nobuhisa

    2006-11-21

    In this work, optical pulse amplification by parametric chirped-pulse amplification (OPCPA) has been applied to the generation of high-energy, few-cycle optical pulses in the near-infrared (NIR) and infrared (IR) spectral regions. Amplification of such pulses is ordinarily difficult to achieve by existing techniques of pulse amplification based on standard laser gain media followed by external compression. Potential applications of few-cycle pulses in the IR have also been demonstrated. The NIR OPCPA system produces 0.5-terawatt (10 fs,5 mJ) pulses by use of noncollinearly phase-matched optical parametric amplification and a down-chirping stretcher and up-chirping compressor pair. An IR OPCPA system was also developed which produces 20-gigawatt (20 fs,350 {mu}J) pulses at 2.1 {mu}m. The IR seed pulse is generated by optical rectification of a broadband pulse and therefore it exhibits a self-stabilized carrier-envelope phase (CEP). In the IR OPCPA a common laser source is used to generate the pump and seed resulting in an inherent sub-picosecond optical synchronization between the two pulses. This was achieved by use of a custom-built Nd:YLF picosecond pump pulse amplifier that is directly seeded with optical pulses from a custom-built ultrabroadband Ti:sapphire oscillator. Synchronization between the pump and seed pulses is critical for efficient and stable amplification. Two spectroscopic applications which utilize these unique sources have been demonstrated. First, the visible supercontinuum was generated in a solid-state media by the infrared optical pulses and through which the carrier-envelope phase (CEP) of the driving pulse was measured with an f-to-3f interferometer. This measurement confirms the self-stabilization mechanism of the CEP in a difference frequency generation process and the preservation of the CEP during optical parametric amplification. Second, high-order harmonics with energies extending beyond 200 eV were generated with the few

  7. Parametric amplification of 100 fs mid-infrared pulses in ZnGeP2 driven by a Ho:YAG chirped-pulse amplifier.

    Science.gov (United States)

    Kanai, Tsuneto; Malevich, Pavel; Kangaparambil, Sarayoo Sasidharan; Ishida, Kakuta; Mizui, Makoto; Yamanouchi, Kaoru; Hoogland, Heinar; Holzwarth, Ronald; Pugzlys, Audrius; Baltuska, Andrius

    2017-02-15

    We report on the parametric generation of 100 fs sub-6-cycle 40 μJ pulses with the center wavelength at 5.2 μm using a 1 ps 2.1 μm pump laser and a dispersion management scheme based on bulk material. Our optically synchronized amplifier chain consists of a Ho:YAG chirped-pulse amplifier and white-light-seeded optical parametric amplifiers providing simultaneous passive carrier-envelope phase locking of three ultrashort longwave pulses at the pump, signal, and idler wavelengths corresponding, respectively, to 2.1, 3.5, and 5.2 μm. We also demonstrate bandwidth enhancement and efficient control over nonlinear spectral phase in the regime of cascaded χ2 nonlinearity in ZnGeP2.

  8. Optimal control of quantum systems by chirped pulses

    DEFF Research Database (Denmark)

    Amstrup, Bjarne; Doll, J. D.; Sauerbrey, R. A.

    1993-01-01

    Research on optimal control of quantum systems has been severely restricted by the lack of experimentally feasible control pulses. Here, to overcome this obstacle, optimal control is considered with the help of chirped pulses. Simulated annealing is used as the optimizing procedure. The examples ...

  9. Shock-Accelerated Flying Foil Diagnostic with a Chirped Pulse Spectral Interferometry

    Institute of Scientific and Technical Information of China (English)

    陈建平; 李儒新; 曾志男; 王兴涛; 程传福; 徐至展

    2003-01-01

    A shock-accelerated flying foil is diagnosed with a chirped pulse spectral interferometry. The shock is pumped by a 1.2ps chirped laser pulse with a power of~1014 W/cm2 at 785nm irradiating on a 500nm aluminium film and detected by a probe pulse split from the pump based on a Michelson spectral interferometry. A flying foil of~5.595×10-6 g in~400 μm diameter was accelerated to~165 nm away from the initial target rear surface at~1.83 km/s before ablation.

  10. Single quantum path control by a fundamental chirped pulse combined with a subharmonic control pulse

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Liqiang [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Chu, Tianshu, E-mail: tschu008@163.com [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Institute for Computational Sciences and Engineering, Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer HHG spectra and attosecond pulse generation from a model He atom. Black-Right-Pointing-Pointer Two-color laser field of a chirped fundamental pulse and a subharmonics control pulse. Black-Right-Pointing-Pointer Single quantum path selection by {beta} = 4.55 chirp pulse and the zero-phase 2000 nm control pulse. Black-Right-Pointing-Pointer Formation of 337 eV supercontinuum region and generation of 39 as pulse. -- Abstract: In this paper, we study the issue of single quantum path control and its role in attosecond pulse generation. By carrying out the time-dependent Schroedinger equation analysis for the harmonic emission from a single He atom irradiated by the two-color laser field, consisting of a short 800 fundamental chirped pulse and a subharmonic 800-2400 nm control pulse, we find that the most favorable condition for attosecond generation is at the fundamental chirp parameter {beta} = 4.55 together with the zero-phase 2000 nm control pulse, in which the single quantum path (short quantum path) is selected to contribute to the harmonic spectrum exhibiting an ultrabroad supercontinuum of a 337 eV bandwidth. Finally, an isolated attosecond pulse as short as 39 as is thus generated directly.

  11. Decoherence control in quantum computing with simple chirped pulses

    Indian Academy of Sciences (India)

    Debabrata Goswami

    2002-08-01

    We show how the use of optimally shaped pulses to guide the time evolution of a system (‘coherent control’) can be an effective approach towards quantum computation logic. We demonstrate this with selective control of decoherence for a multilevel system with a simple linearly chirped pulse. We use a multiphoton density-matrix approach to explore the effects of ultrafast shaped pulses for two-level systems that do not have a single photon resonance, and show that many multiphoton results are surprisingly similar to the single-photon results. Finally, we choose two specific chirped pulses: one that always generates inversion and the other that always generates self-induced transparency to demonstrate an ensemble CNOT gate.

  12. A direct digital synthesis chirped pulse Fourier transform microwave spectrometer.

    Science.gov (United States)

    Finneran, Ian A; Holland, Daniel B; Carroll, P Brandon; Blake, Geoffrey A

    2013-08-01

    Chirped pulse Fourier transform microwave (CP-FTMW) spectrometers have become the instrument of choice for acquiring rotational spectra, due to their high sensitivity, fast acquisition rate, and large bandwidth. Here we present the design and capabilities of a recently constructed CP-FTMW spectrometer using direct digital synthesis (DDS) as a new method for chirped pulse generation, through both a suite of extensive microwave characterizations and deep averaging of the 10-14 GHz spectrum of jet-cooled acetone. The use of DDS is more suited for in situ applications of CP-FTMW spectroscopy, as it reduces the size, weight, and power consumption of the chirp generation segment of the spectrometer all by more than an order of magnitude, while matching the performance of traditional designs. The performance of the instrument was further improved by the use of a high speed digitizer with dedicated signal averaging electronics, which facilitates a data acquisition rate of 2.1 kHz.

  13. Hyper dispersion pulse compressor for chirped pulse amplification systems

    Science.gov (United States)

    Barty, Christopher P. J.

    2011-11-29

    A grating pulse compressor configuration is introduced for increasing the optical dispersion for a given footprint and to make practical the application for chirped pulse amplification (CPA) to quasi-narrow bandwidth materials, such as Nd:YAG. The grating configurations often use cascaded pairs of gratings to increase angular dispersion an order of magnitude or more. Increased angular dispersion allows for decreased grating separation and a smaller compressor footprint.

  14. Spectral Phase Modulation and chirped pulse amplification in High Gain Harmonic Generation

    CERN Document Server

    Wu, Zilu; Krinsky, Sam; Loos, Henrik; Murphy, James; Shaftan, Timur; Sheehy, Brian; Shen, Yuzhen; Wang, Xijie; Yu Li Hua

    2004-01-01

    High Gain Harmonic Generation (HGHG), because it produces longitudinally coherent pulses derived from a coherent seed, presents remarkable possibilities for manipulating FEL pulses. If spectral phase modulation imposed on the seed modulates the spectral phase of the HGHG in a deterministic fashion, then chirped pulse amplification, pulse shaping, and coherent control experiments at short wavelengths become possible. In addition, the details of the transfer function will likely depend on electron beam and radiator dynamics and so prove to be a useful tool for studying these. Using the DUVFEL at the National Synchrotron Light Source at Brookhaven National Laboratory, we present spectral phase analyses of both coherent HGHG and incoherent SASE ultraviolet FEL radiation, applying Spectral Interferometry for Direct Electric Field Reconstruction (SPIDER), and assess the potential for employing compression and shaping techniques.

  15. Analysis of ultra-broadband high-energy optical parametric chirped pulse amplifier based on YCOB crystal

    Institute of Scientific and Technical Information of China (English)

    Meizhi Sun; Lailin Ji; Qunyu Bi; Nannan Wang; Jun Kang; Xinglong Xie; Zunqi Lin

    2011-01-01

    A new type of optical parametric chirped pulse amplifier is designed and analyzed for the amplification of pulse centered at 808 nm.A novel crystal,yttrium calcium oxyborate YCa4O(BO3)3 (YCOB),is utilized in the power amplification stage of optical parametric amplification (OPA).Noncollinear phase matching parameters in the xoz principle plane of YCOB,compared with those in BBO and DKDP,are analyzed by numerical simulation.The results show that YCOB rather than DKDP can be used in the power amplification stage of OPA to realize the amplification of chirped pulse to several joules with a gain bandwidth exceeding 100 nm.This can be used to gain a high intensity pulse of ~10 fs after the compressor.The amplification of the femtosecond pulse is an important branch of ultra-intense laser technology,with Ti:sapphire as the medium for its large gain bandwidth.From the perspective of technical features and applications,such femtosecond pulses are used to study high field physics and other related areas in ultrashort time[1,2];however,the pursuit of higher energy femtosecond pulse should not be abandoned.Optical parametric chirped pulse amplification (OPCPA) has been successfully used in the front end of high intensity lasers[3-8],indicating the possibility of femtosecond pulse amplification.This has been verified by an increasing number of fine crystals being invented,such as YCa4O(BO3)3 (YCOB)[9-12].%A new type of optical parametric chirped pulse amplifier is designed and analyzed for the amplification of pulse centered at 808 nm. A novel crystal, yttrium calcium oxyborate YCa4O(BO3)3 (YCOB), is utilized in the power amplification stage of optical parametric amplification (OPA). Noncollinear phase matching parameters in the xoz principle plane of YCOB, compared with those in BBO and DKDP, are analyzed by numerical simulation. The results show that YCOB rather than DKDP can be used in the power amplification stage of OPA to realize the amplification of chirped pulse to

  16. Plasma absorption evidence via chirped pulse spectral transmission measurements

    Energy Technology Data Exchange (ETDEWEB)

    Jedrkiewicz, Ottavia, E-mail: ottavia.jedrkiewicz@ifn.cnr.it [Istituto di Fotonica e Nanotecnologie, CNR and CNISM UdR Como, Via Valleggio 11, I-22100 Como (Italy); Minardi, Stefano [Institute of Applied Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Couairon, Arnaud; Jukna, Vytautas [Centre de Physique Theorique, CNRS, Ecole Polytechnique, F-91128 Palaiseau (France); Selva, Marco; Di Trapani, Paolo [Dipartimento di Scienza e Alta Tecnologia, University of Insubria and CNISM UdR Como, Via Valleggio 11, I-22100 Como (Italy)

    2015-06-08

    This work aims at highlighting the plasma generation dynamics and absorption when a Bessel beam propagates in glass. We developed a simple diagnostics allowing us to retrieve clear indications of the formation of the plasma in the material, thanks to transmission measurements in the angular and wavelength domains. This technique featured by the use of a single chirped pulse having the role of pump and probe simultaneously leads to results showing the plasma nonlinear absorption effect on the trailing part of the pulse, thanks to the spectral-temporal correspondence in the measured signal, which is also confirmed by numerical simulations.

  17. Optical parametric chirped pulse amplification and spectral shaping of a continuum generated in a photonic band gap fiber.

    Science.gov (United States)

    Hugonnot, E; Somekh, M; Villate, D; Salin, F; Freysz, E

    2004-05-31

    A chirped pulse, spectrally broadened in a photonic bandgap optical fiber by 120 fs Ti:Sapphire laser pulses, is parametrically amplified in a BBO crystal pumped by a frequency doubled nanosecond Nd:YAG laser pulse. Without changing the frequency of the Ti:Sapphire, a spectral tunability of the amplified pulses is demonstrated. The possibility to achieve broader spectral range amplification is confirmed for a non-collinear pump-signal interaction geometry. For optimal non-collinear interaction geometry, the pulse duration of the original and amplified pulse are similar. Finally, we demonstrate that the combination of two BBO crystals makes it possible to spectrally shape the amplified pulses.

  18. Chirped Pulse Microwave Spectroscopy in Pulsed Uniform Supersonic Flows

    Science.gov (United States)

    Abeysekera, Chamara; Oldham, James; Prozument, Kirill; Joalland, Baptiste; Park, Barratt; Field, Robert W.; Sims, Ian; Suits, Arthur; Zack, Lindsay

    2014-06-01

    We present preliminary results describing the development of a new instrument that combines two powerful techniques: Chirped Pulse-Fourier Transform MicroWave (CP-FTMW) spectroscopy and pulsed uniform supersonic flows. It promises a nearly universal detection method that can deliver quantitative isomer, conformer, and vibrational level specific detection, characterization of unstable reaction products and intermediates and perform unique spectroscopic, kinetics and dynamics measurements. We have constructed a new high-power K_a-band, 26-40 GHz, chirped pulse spectrometer with sub-MHz resolution, analogous to the revolutionary CP-FTMW spectroscopic technique developed in the Pate group at University of Virginia. In order to study smaller molecules, the E-band, 60-90 GHz, CP capability was added to our spectrometer. A novel strategy for generating uniform supersonic flow through a Laval nozzle is introduced. High throughput pulsed piezo-valve is used to produce cold (30 K) uniform flow with large volumes of 150 cm^3 and densities of 1014 molecules/cm3 with modest pumping facilities. The uniform flow conditions for a variety of noble gases extend as far as 20 cm from the Laval nozzle and a single compound turbo-molecular pump maintains the operating pressure. Two competing design considerations are critical to the performance of the system: a low temperature flow is needed to maximize the population difference between rotational levels, and high gas number densities are needed to ensure rapid cooling to achieve the uniform flow conditions. At the same time, collision times shorter than the chirp duration will give inaccurate intensities and reduced signal levels due to collisional dephasing of free induction decay. Details of the instrument and future directions and challenges will be discussed.

  19. High-energy femtosecond Yb-doped all-fiber monolithic chirped-pulse amplifier at repetition rate of 1 MHz

    Science.gov (United States)

    Lv, Zhi-Guo; Teng, Hao; Wang, Li-Na; Wang, Jun-Li; Wei, Zhi-Yi

    2016-09-01

    A high-energy femtosecond all ytterbium fiber amplifier based on a chirped-pulse amplification (CPA) technique at a repetition rate of 1 MHz seeded by a dispersion-management mode-locked picosecond broadband oscillator is studied. We find that the compressed pulse duration is dependent on the amplified energy, the pulse duration of 804 fs corresponds to the maximum amplified energy of 10.5 μJ, while the shortest pulse duration of 424 fs corresponds to the amplified energy of 6.75 μJ. The measured energy fluctuation is approximately 0.46% root mean square (RMS) over 2 h. The low-cost femtosecond fiber laser source with super-stability will be widely used in industrial micromachines, medical therapy, and scientific studies. Project supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2012BAC23B03), the National Key Basic Research Program of China (Grant No. 2013CB922401), and the National Natural Science Foundation of China (Grant No. 11474002).

  20. Fiber Optical Parametric Chirped Pulse Amplification of Sub-Picosecond Pulses

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Da Ros, Francesco

    2013-01-01

    We demonstrate experimentally, for the first time to our knowledge, fiber optical parametric chirped pulse amplification of 400-fs pulses. The 400-fs signal is stretched, amplified by 26 dB and compressed back to 500 fs.......We demonstrate experimentally, for the first time to our knowledge, fiber optical parametric chirped pulse amplification of 400-fs pulses. The 400-fs signal is stretched, amplified by 26 dB and compressed back to 500 fs....

  1. Dynamic Characterization of Fiber Optical Chirped Pulse Amplification for Sub-ps Pulses

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Rishøj, Lars Søgaard

    2013-01-01

    We investigate experimentally the propagation of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers, showing a significant broadening of the pulses from 450 fs up to 720 fs due to dispersion and self-phase modulation.......We investigate experimentally the propagation of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers, showing a significant broadening of the pulses from 450 fs up to 720 fs due to dispersion and self-phase modulation....

  2. Hundred-picosecond narrowband chirped-pulse generation in an Yb:YAG regenerative amplifier using transmission gratings

    Science.gov (United States)

    Hwang, SungIn; Tokita, Shigeki; Kawashima, Toshiyuki; Nishioka, Hajime; Kawanaka, Junji

    2016-12-01

    We have demonstrated a seed source for an optical parametric chirped pulse amplification pumping source through a cryogenically cooled Yb:YAG regenerative amplifier, which can vary the pulse duration depending on the number of passes and generate a very high chirp rate. The Fourier-transform-limited pulse duration of 10 ps was extended to a few hundred picoseconds (109 to 165 ps) to prevent damage to the gain medium in the subsequent high-pulse-energy pumping source, which was seeded by the regenerative amplifier. This was achieved by inserting a transmission diffraction grating pair inside the cavity of the regenerative amplifier. The variable pulse duration could be set between 109 and 165 ps by electronically adjusting the pass number of pulses inside the cavity. The stretched pulse duration and the spectral width as functions of the pass number were characterized by considering the dispersion from the grating stretcher as well as the gain narrowing effect.

  3. Enhancing High-Order Harmonic Generation in Light Molecules by Using Chirped Pulses

    Science.gov (United States)

    Lara-Astiaso, M.; Silva, R. E. F.; Gubaydullin, A.; Rivière, P.; Meier, C.; Martín, F.

    2016-08-01

    One of the current challenges in high-harmonic generation is to extend the harmonic cutoff to increasingly high energies while maintaining or even increasing the efficiency of the high-harmonic emission. Here we show that the combined effect of down-chirped pulses and nuclear dynamics in light molecules allows one to achieve this goal, provided that long enough IR pulses are used to allow the nuclei to move well outside the Franck-Condon region. We also show that, by varying the duration of the chirped pulse or by performing isotopic substitution while keeping the pulse duration constant, one can control the extension of the harmonic plateau.

  4. Numerical simulation of extremely chirped pulse formation with an optical fiber

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Tamitake; Nishimura, Akihiko; Tei, Kazuyoku; Matoba, Tohru; Takuma, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Yamashita, Mikio; Morita, Ryuji

    1998-03-01

    A nonlinear propagation code which used a symmetric split-step Fourier method as an algorithm was improved to simulate a propagation behavior of extremely chirped pulse in a long fiber. The performances of pulse propagation in noble gases cored hollow fibers and a pulse stretcher using a nonlinear and normal silicate fibers have been simulated by the code. The calculation results in the case of the hollow fiber are consistent with their experimental results. We estimated that this pulse stretcher could give a extremely chirped pulse whose spectral width was 84.2 nm and temporal duration was 1.5 ns. (author)

  5. Enhancing High-Order Harmonic Generation in Light Molecules by Using Chirped Pulses.

    Science.gov (United States)

    Lara-Astiaso, M; Silva, R E F; Gubaydullin, A; Rivière, P; Meier, C; Martín, F

    2016-08-26

    One of the current challenges in high-harmonic generation is to extend the harmonic cutoff to increasingly high energies while maintaining or even increasing the efficiency of the high-harmonic emission. Here we show that the combined effect of down-chirped pulses and nuclear dynamics in light molecules allows one to achieve this goal, provided that long enough IR pulses are used to allow the nuclei to move well outside the Franck-Condon region. We also show that, by varying the duration of the chirped pulse or by performing isotopic substitution while keeping the pulse duration constant, one can control the extension of the harmonic plateau.

  6. Photodissociation of Isoxazole and Pyridine Studied Using Chirped Pulse Microwave Spectroscopy in Pulsed Uniform Supersonic Flows

    Science.gov (United States)

    Ariyasingha, Nuwandi M.; Joalland, Baptiste; Mebel, Alexander M.; Suits, Arthur

    2016-06-01

    Chirped - Pulse Fourier-transform microwave spectroscopy in uniform supersonic flows (Chirped- Pulse/Uniform Flow: CPUF) has been applied to study the photodissociation of two atmospherically relevant N containing heterocyclic compounds; pyridine and isoxazole. Products were detected using rotational spectroscopy. HC3N, HCN were observed for pyridine and CH3CN, HCO and HCN were observed for isoxazole and we report the first detection of HNC for both of the systems. Key points in potential energy surface were explored and compared with the experimental observations. Branching ratios were calculated for all the possible channels and will be presented.

  7. Laser pulse spectral shaping based on electro-optic modulation

    Institute of Scientific and Technical Information of China (English)

    Yanhai Wang; Jiangfeng Wang; You'en Jiang; Yan Bao; Xuechun Li; Zunqi Lin

    2008-01-01

    A new spectrum shaping method, based on electro-optic modulation, to alleviate gain narrowing in chirped pulse amplification (CPA) system, is described and numerically simulated. Near-Fourier transform-limited seed laser pulse is chirped linearly through optical stretcher. Then the chirped laser pulse is coupled into integrated waveguide electro-optic modulator driven by an aperture-coupled-stripline (ACSL) electricalwaveform generator, and the pulse shape and amplitude are shaped in time domain. Because of the directrelationship between frequency interval and time interval of the linearly chirped pulse, the laser pulse spectrum is shaped correspondingly. Spectrum-shaping examples are modeled numerically to determine the spectral resolution of this technique. The phase error introduced in this method is also discussed.

  8. Optical parametric chirped pulse amplifier at 1600 nm with all-optical synchronization

    Directory of Open Access Journals (Sweden)

    Leitenstorfer Alfred

    2013-03-01

    Full Text Available We demonstrate the amplification of 1.6 μm pulses by a KTA optical parametric chirped-pulse amplifier based on an all-optical synchronization scheme as a scalable approach to generation of high power tunable mid infrared.

  9. X-band photoinjector for a chirped-pulse FEL

    Energy Technology Data Exchange (ETDEWEB)

    Landahl, E.C.; Alvis, R.M.; Troha, A.L.; Hartemann, F.V.; Baldis, H.A.; Luhmann, N.C. Jr. [Applied Science Department, University of California, Davis , California 95616 (United States); Landahl, E.C.; Alvis, R.M.; Troha, A.L.; Hartemann, F.V.; Baldis, H.A. [Institute for Laser Science and Applications, LLNL, Livermore, California 94550 (United States); Le Sage, G.P.; White, W.E. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Bennett, C.V. [Electrical Engineering Department, University of California, Los Angeles, California 90024 (United States); Li, K.; Heritage, J.P. [Electrical and Computer Engineering Department, University of California, Davis, California (United States); Ho, C.H. [Synchrotron Radiation Research Center (Taiwan)

    1999-05-01

    The phase noise and jitter characteristics of the laser and rf systems of a high gradient X-band photoinjector have been measured experimentally. The laser oscillator is a self-modelocked Titanium:Sapphire system operating at the 108th subharmonic of the rf gun. The X-band signal is produced from the laser by a phase-locked dielectric resonance oscillator, and amplified by a pulsed TWT and klystron. A comparison between the klystron and TWT amplifier phase noise and the fields excited in the rf gun demonstrates the filtering effect of the high Q structure, thus indicating that the rf gun can be used as a master oscillator, and could be energized by either a rf oscillator such as a magnetron or a compact source such as a cross-field amplifier. In particular, the rf gun can play the role of a pulsed rf clock to synchronize the photocathode laser system: direct drive of a synchronously modelocked AlGaAs quantum well laser has been achieved using the X-band gun rf fields. This novel, GHz repetition rate, laser system is being developed to replace the more conventional femtosecond Ti:Al{sub 2}O{sub 3} system. Some advantages include pumping this laser with a stabilized current source instead of a costly, low efficiency pump laser. Finally, dark current measurements and initial photoelectron measurements are reported. {copyright} {ital 1999 American Institute of Physics.}

  10. Coherent population transfer in molecules coupled with a dissipative environment by an intense ultrashort chirped pulse

    Science.gov (United States)

    Fainberg, B. D.; Gorbunov, V. A.

    2002-10-01

    We have studied the intense chirped pulse excitation of a molecule coupled with a dissipative environment taking into account electronic coherence effects. We considered a two-state electronic system with relaxation treated as a diffusion on electronic potential energy surfaces. This relaxation model enables us to trace continuously the transition from a coherent population transfer to incoherent one. An inhomogeneously broadened system with frozen nuclear motion is invoked to model a purely coherent transfer. We show that the type of population transfer (coherent or incoherent) strongly depends on the pulse chirp, its sign, and the detunings of the exciting pulse carrier frequency with respect to the frequency of the Franck-Condon transition. For positive chirped pulses and moderate detunings, relaxation does not hinder a coherent population transfer. Moreover, under these conditions the relaxation favors more efficient population transfer with respect to the "coherent" system with frozen nuclear motion.

  11. Perspective: The first ten years of broadband chirped pulse Fourier transform microwave spectroscopy

    Science.gov (United States)

    Park, G. Barratt; Field, Robert W.

    2016-05-01

    Since its invention in 2006, the broadband chirped pulse Fourier transform spectrometer has transformed the field of microwave spectroscopy. The technique enables the collection of a ≥10 GHz bandwidth spectrum in a single shot of the spectrometer, which allows broadband, high-resolution microwave spectra to be acquired several orders of magnitude faster than what was previously possible. We discuss the advantages and challenges associated with the technique and look back on the first ten years of chirped pulse Fourier transform spectroscopy. In addition to enabling faster-than-ever structure determination of increasingly complex species, the technique has given rise to an assortment of entirely new classes of experiments, ranging from chiral sensing by three-wave mixing to microwave detection of multichannel reaction kinetics. However, this is only the beginning. Future generations of microwave experiments will make increasingly creative use of frequency-agile pulse sequences for the coherent manipulation and interrogation of molecular dynamics.

  12. Perspective: The first ten years of broadband chirped pulse Fourier transform microwave spectroscopy.

    Science.gov (United States)

    Park, G Barratt; Field, Robert W

    2016-05-28

    Since its invention in 2006, the broadband chirped pulse Fourier transform spectrometer has transformed the field of microwave spectroscopy. The technique enables the collection of a ≥10 GHz bandwidth spectrum in a single shot of the spectrometer, which allows broadband, high-resolution microwave spectra to be acquired several orders of magnitude faster than what was previously possible. We discuss the advantages and challenges associated with the technique and look back on the first ten years of chirped pulse Fourier transform spectroscopy. In addition to enabling faster-than-ever structure determination of increasingly complex species, the technique has given rise to an assortment of entirely new classes of experiments, ranging from chiral sensing by three-wave mixing to microwave detection of multichannel reaction kinetics. However, this is only the beginning. Future generations of microwave experiments will make increasingly creative use of frequency-agile pulse sequences for the coherent manipulation and interrogation of molecular dynamics.

  13. Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression.

    Science.gov (United States)

    Moses, J; Huang, S-W; Hong, K-H; Mücke, O D; Falcão-Filho, E L; Benedick, A; Ilday, F O; Dergachev, A; Bolger, J A; Eggleton, B J; Kärtner, F X

    2009-06-01

    We present a 9 GW peak power, three-cycle, 2.2 microm optical parametric chirped-pulse amplification source with 1.5% rms energy and 150 mrad carrier envelope phase fluctuations. These characteristics, in addition to excellent beam, wavefront, and pulse quality, make the source suitable for long-wavelength-driven high-harmonic generation. High stability is achieved by careful optimization of superfluorescence suppression, enabling energy scaling.

  14. 90 mJ parametric chirped pulse amplification of 10 fs pulses.

    Science.gov (United States)

    Tavella, Franz; Marcinkevicius, Andrius; Krausz, Ferenc

    2006-12-25

    We demonstrate the amplification of broadband pulses from a Ti:Sapphire oscillator by non-collinear optical parametric chirped-pulse amplification technique in a type-I BBO crystal to energies of 90 mJ. Partial compression of the amplified pulses is demonstrated down to a 10 fs duration. These parameters come in combination with good spatial quality and focusability of the amplified beam.

  15. Dynamic Time-Resolved Chirped-Pulse Rotational Spectroscopy of Vinyl Cyanide Photoproducts in a Room Temperature Flow Reactor

    Science.gov (United States)

    Zaleski, Daniel P.; Prozument, Kirill

    2017-06-01

    Chirped-pulsed (CP) Fourier transform rotational spectroscopy invented by Brooks Pate and coworkers a decade ago is an attractive tool for gas phase chemical dynamics and kinetics studies. A good reactor for such a purpose would have well-defined (and variable) temperature and pressure conditions to be amenable to accurate kinetic modeling. Furthermore, in low pressure samples with large enough number of molecular emitters, reaction dynamics can be observable directly, rather than mediated by supersonic expansion. In the present work, we are evaluating feasibility of in situ time-resolved CP spectroscopy in a room temperature flow tube reactor. Vinyl cyanide (CH_2CHCN), neat or mixed with inert gasses, flows through the reactor at pressures 1-50 μbar (0.76-38 mTorr) where it is photodissociated by a 193 nm laser. Millimeter-wave beam of the CP spectrometer co-propagates with the laser beam along the reactor tube and interacts with nascent photoproducts. Rotational transitions of HCN, HNC, and HCCCN are detected, with ≥10 μs time-steps for 500 ms following photolysis of CH_2CHCN. The post-photolysis evolution of the photoproducts' rotational line intensities is investigated for the effects of rotational and vibrational thermalization of energized photoproducts. Possible contributions from bimolecular and wall-mediated chemistry are evaluated as well.

  16. Laser Phase Errors in Seeded FELs

    Energy Technology Data Exchange (ETDEWEB)

    Ratner, D.; Fry, A.; Stupakov, G.; White, W.; /SLAC

    2012-03-28

    Harmonic seeding of free electron lasers has attracted significant attention from the promise of transform-limited pulses in the soft X-ray region. Harmonic multiplication schemes extend seeding to shorter wavelengths, but also amplify the spectral phase errors of the initial seed laser, and may degrade the pulse quality. In this paper we consider the effect of seed laser phase errors in high gain harmonic generation and echo-enabled harmonic generation. We use simulations to confirm analytical results for the case of linearly chirped seed lasers, and extend the results for arbitrary seed laser envelope and phase.

  17. Cpuf: Chirped-Pulse Microwave Spectroscopy in Pulsed Uniform Supersonic Flows

    Science.gov (United States)

    Suits, Arthur; Abeysekera, Chamara; Zack, Lindsay N.; Joalland, Baptiste; Ariyasingha, Nuwandi M.; Park, Barratt; Field, Robert W.; Sims, Ian

    2015-06-01

    Chirped-pulse Fourier-transform microwave spectroscopy has stimulated a resurgence of interest in rotational spectroscopy owing to the dramatic reduction in spectral acquisition time it enjoys when compared to cavity-based instruments. This suggests that it might be possible to adapt the method to study chemical reaction dynamics and even chemical kinetics using rotational spectroscopy. The great advantage of this would be clear, quantifiable spectroscopic signatures for polyatomic products as well as the possibility to identify and characterize new radical reaction products and transient intermediates. To achieve this, however, several conditions must be met: 1) products must be thermalized at low temperature to maximize the population difference needed to achieve adequate signal levels and to permit product quantification based on the rotational line strength; 2) a large density and volume of reaction products is also needed to achieve adequate signal levels; and 3) for kinetics studies, a uniform density and temperature is needed throughout the course of the reaction. These conditions are all happily met by the uniform supersonic flow produced from a Laval nozzle expansion. In collaboration with the Field group at MIT we have developed a new instrument we term a CPUF (Chirped-pulse/Uniform Flow) spectrometer in which we can study reaction dynamics, photochemistry and kinetics using broadband microwave and millimeter wave spectroscopy as a product probe. We will illustrate the performance of the system with a few examples of photodissociation and reaction dynamics, and also discuss a number of challenges unique to the application of chirped-pulse microwave spectroscopy in the collisional environment of the flow. Future directions and opportunities for application of CPUF will also be explored.

  18. Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier.

    Science.gov (United States)

    Tavella, Franz; Nomura, Yutaka; Veisz, Laszlo; Pervak, Vladimir; Marcinkevicius, Andrius; Krausz, Ferenc

    2007-08-01

    We report the amplification of three-cycle, 8.5 fs optical pulses in a near-infrared noncollinear optical parametric chirped-pulse amplifier (OPCPA) up to energies of 80 mJ. Improved dispersion management in the amplifier by means of a combination of reflection grisms and a chirped-mirror stretcher allowed us to recompress the amplified pulses to within 6% of their Fourier limit. The novel ultrabroad, ultraprecise dispersion control technology presented in this work opens the way to scaling multiterawatt technology to even shorter pulses by optimizing the OPCPA bandwidth.

  19. Negative Kerr Nonlinearity of Graphene as seen via Chirped-Pulse-Pumped Self-Phase Modulation

    Science.gov (United States)

    Vermeulen, Nathalie; Castelló-Lurbe, David; Cheng, JinLuo; Pasternak, Iwona; Krajewska, Aleksandra; Ciuk, Tymoteusz; Strupinski, Wlodek; Thienpont, Hugo; Van Erps, Jürgen

    2016-10-01

    We experimentally demonstrate a negative Kerr nonlinearity for quasiundoped graphene. Hereto, we introduce the method of chirped-pulse-pumped self-phase modulation and apply it to graphene-covered silicon waveguides at telecom wavelengths. The extracted Kerr-nonlinear index for graphene equals n2 ,gr=-10-13 m2 /W . Whereas the sign of n2 ,gr turns out to be negative in contrast to what has been assumed so far, its magnitude is in correspondence with that observed in earlier experiments. Graphene's negative Kerr nonlinearity strongly impacts how graphene should be exploited for enhancing the nonlinear response of photonic (integrated) devices exhibiting a positive nonlinearity. It also opens up the possibility of using graphene to annihilate unwanted nonlinear effects in such devices, to develop unexplored approaches for establishing Kerr processes, and to extend the scope of the "periodic poling" method often used for second-order nonlinearities towards third-order Kerr processes. Because of the generic nature of the chirped-pulse-pumped self-phase modulation method, it will allow fully characterizing the Kerr nonlinearity of essentially any novel (2D) material.

  20. a KA-BAND Chirped-Pulse Fourier Transform Microwave Spectrometer.

    Science.gov (United States)

    Zaleski, Daniel P.; Neill, Justin L.; Muckle, Matthew T.; Pate, Brooks H.; Carroll, P. Brandon; Weaver, Susanna L. Widicus

    2010-06-01

    The design and performance of a new chirped-pulse Fourier transform microwave (CP-FTMW) spectrometer operating from 25-40 GHz will be discussed. A 10.5-3 GHz linear frequency sweep, generated by a 24 GS/s arbitrary waveform generator, is upconverted by a 23.00 GHz phase-locked oscillator, then fed into an active doubler to create a 25-40 GHz chirped pulse. After amplification with a 60-80 W pulsed traveling wave tube amplifier, the pulse is broadcast across a molecular beam chamber where it interacts with a molecular sample. The molecular FID signal is downconverted with the 23 GHz oscillator so that it can be digitized on a 50 GS/s oscilloscope with 16 GHz hardware bandwidth. The sensitivity and phase stability of this spectrometer is comparable to that of the previously reported 6.5-18.5 CP-FTMW spectrometer. On propyne (μ=0.78 D), a single-shot signal to noise ratio of approximately 200:1 is observed on the J=2-1 rotational transition at 34183 MHz when the full bandwidth is swept; optimal excitation is observed for this transition with a 250 MHz bandwidth sweep. The emission has a T_2 lifetime of 4 μs. Early results from this spectrometer, particularly in the study of species of astrochemical interest, will be presented. G.G. Brown et al., Rev. Sci. Instrum. 79 (2008) 053103.

  1. Energy and average power scalable optical parametric chirped-pulse amplification in yttrium calcium oxyborate.

    Science.gov (United States)

    Liao, Zhi M; Jovanovic, Igor; Ebbers, Chris A; Fei, Yiting; Chai, Bruce

    2006-05-01

    Optical parametric chirped-pulse amplification (OPCPA) in nonlinear crystals has the potential to produce extremes of peak and average power but is limited either in energy by crystal growth issues or in average power by crystal thermo-optic characteristics. Recently, large (7.5 cm diameter x 25 cm length) crystals of yttrium calcium oxyborate (YCOB) have been grown and utilized for high-average-power second-harmonic generation. Further, YCOB has the necessary thermo-optic properties required for scaling OPCPA systems to high peak and average power operation for wavelengths near 1 microm. We report what is believed to be the first use of YCOB for OPCPA. Scalability to higher peak and average power is addressed.

  2. Thermal properties of borate crystals for high power optical parametric chirped-pulse amplification.

    Science.gov (United States)

    Riedel, R; Rothhardt, J; Beil, K; Gronloh, B; Klenke, A; Höppner, H; Schulz, M; Teubner, U; Kränkel, C; Limpert, J; Tünnermann, A; Prandolini, M J; Tavella, F

    2014-07-28

    The potential of borate crystals, BBO, LBO and BiBO, for high average power scaling of optical parametric chirped-pulse amplifiers is investigated. Up-to-date measurements of the absorption coefficients at 515 nm and the thermal conductivities are presented. The measured absorption coefficients are a factor of 10-100 lower than reported by the literature for BBO and LBO. For BBO, a large variation of the absorption coefficients was found between crystals from different manufacturers. The linear and nonlinear absorption coefficients at 515 nm as well as thermal conductivities were determined for the first time for BiBO. Further, different crystal cooling methods are presented. In addition, the limits to power scaling of OPCPAs are discussed.

  3. Nonlinear chirped-pulse propagation and supercontinuum generation in photonic crystal fibers.

    Science.gov (United States)

    Hu, Xiaohong; Wang, Yishan; Zhao, Wei; Yang, Zhi; Zhang, Wei; Li, Cheng; Wang, Hushan

    2010-09-10

    Based on the generalized nonlinear Schrödinger equation and waveguiding properties typical of the photonic crystal fiber structure, nonlinear chirped-pulse propagation and supercontinua generation in the femtosecond and picosecond regimes are investigated numerically. The simulation results indicate that an input chirp parameter mainly affects the initial stage of spectral broadening caused by the self-phase modulation (SPM) effect. In the femtosecond regime where the SPM effect plays an important role in the process of spectral broadening, an input positive chirp can enhance the supercontinuum bandwidth through a modified pulse compression phase and a decreased propagation distance required by soliton fission. In the picosecond regime, where the SPM effect contributes less to the continuum bandwidth and four-wave mixing process or modulational instability dominates the initial stage of spectral and temporal evolution, the output spectral shape and bandwidths are less sensitive to the input chirp parameters.

  4. Chirped-Pulse Broadband Microwave Spectra and Structures of the OCS Trimer and Tetramer

    Science.gov (United States)

    Evangelisti, Luca; Perez, Cristobal; Seifert, Nathan A.; Pate, Brooks; Dehghany, Mehdi; Moazzen-Ahmadi, Nasser; McKellar, Bob

    2014-06-01

    Structure determination of weakly bound OCS clusters is a challenging problem due to many low energy isomers on the potential energy surface. The premier tool for studying these clusters is high-resolution infrared spectroscopy, as it can be used to analyze non-polar clusters. Following the analysis of high-resolution IR spectra of clusters formed in a molecular beam expansion of OCS there were some outstanding questions about the structures of the observed clusters. The chirped-pulse Fourier transform microwave spectrum in the 3-9 GHz frequency range was measured for a pulsed molecular beam of OCS in neon (1%). All 13C, 18O and 34S isotopologues of the previously detected OCS trimer have been observed in natural abundance in the 3-9 GHz band using chirped-pulse Fourier transform microwave spectroscopy. The structure of this trimer features a barrel-shaped structure with two aligned and one anti-aligned OCS monomers. A new OCS trimer is also observed for the first time, and its structure is consistent with a barrel-shaped structure with 3 aligned monomers. Using the infrared spectrum for guidance, a spectrum corresponding to a polar OCS tetramer has been assigned. This cluster has a similar barrel-like structure but with an additional tilted OCS monomer added to the top of the barrel. All 13C and 34S isotopologues have been assigned for the tetramer. However, due to sign ambiguities in Kraitchman's equations, and small rotational constant differences between aligned and anti-aligned combinations of OCS molecules in the trimer barrel, absolute structural assignment is indeterminate without additional constraints. Therefore a combinatoric approach was used to compute the most reasonable tetramer structure using distance and sign constraints between pairs of carbon and sulfur coordinates, assuming the experimental OCS monomer structure. Results of this approach will be presented, as well as a comparison of the experimental results with the most recent ab initio

  5. Isotopologue-Sensitive Detection Using Chirped-Pulse Ft-Mw Spectroscopy: Minor Species of Propofol

    Science.gov (United States)

    Lesarri, Alberto; Neill, Justin; Muckle, Matt; Shipman, Steven T.; Pate, Brooks H.; Suenram, Richard D.; Caminati, Walther

    2009-06-01

    The capabilities of chirped-pulse FT-microwave spectroscopy to achieve full-bandwidth (11 GHz) isotopologue-sensitive detection have been tested on the 13-heavy atoms molecule of propofol (2,6-diisopropylphenol). The analysis of the rotational spectrum using moderate signal averaging (10 k FIDs) had previously detected the presence of two conformers arising from the combined internal rotations of the hydroxyl and the two isopropyl groups. In the new experiment reported here 600 k FID's were coherently averaged, using three pulsed nozzle sources and reading multiple FIDs per sample injection cycle to reduce the total acquisition time and sample consumption. The new spectrum revealed a very large number of weak transitions, suggesting that full-band ^{13}C sensitivity had been surpassed. The new data have resulted in the assignment of a third conformer of propofol, followed by all twelve ^{13}C-monosubstituted species in natural abundance for the most stable conformer. The isotopic information confirmed the molecular structure for the preferred conformation of propofol, validating the ab initio predictions for this compound. The potential function for the OH internal rotation has been determined using a flexible model. A. Lesarri, S. T. Shipman, G. G. Brown, L. Alvarez-Valtierra, R. D. Suenram and B. H. Pate, 63^rd OSU Int. Symp. On Mol. Spectrosc., Columbus, OH, 2008, RH07 In the

  6. Negative Kerr nonlinearity of graphene as seen via chirped-pulse-pumped self-phase modulation

    CERN Document Server

    Vermeulen, Nathalie; Cheng, JinLuo; Pasternak, Iwona; Krajewska, Aleksandra; Ciuk, Tymoteusz; Strupinski, Wlodek; Thienpont, Hugo; Van Erps, Jurgen

    2016-01-01

    We experimentally demonstrate a negative Kerr nonlinearity for quasi-undoped graphene. Hereto, we introduce the method of chirped-pulse-pumped self-phase modulation and apply it to graphene-covered silicon waveguides at telecom wavelengths. The extracted Kerr-nonlinear index for graphene equals n2,gr = -10^(-13) m^2/W. Whereas the sign of n2,gr turns out to be negative in contrast to what has been assumed so far, its magnitude is in correspondence with that observed in earlier experiments. Graphene's negative Kerr nonlinearity strongly impacts how graphene should be exploited for enhancing the nonlinear response of photonic (integrated) devices exhibiting a positive nonlinearity. It also opens up the possibility of using graphene to annihilate unwanted nonlinear effects in such devices, to develop unexplored approaches for establishing Kerr processes, and to extend the scope of the "periodic poling" method often used for second-order nonlinearities towards third-order Kerr processes. Because of the generic na...

  7. Chirped Pulse-Fourier Transform Microwave Spectroscopy of Ethyl 3-METHYL-3-PHENYLGLYCIDATE (strawberry Aldehyde)

    Science.gov (United States)

    Shipman, Steven T.; Neill, Justin L.; Muckle, Matt T.; Suenram, Richard D.; Pate, Brooks H.

    2009-06-01

    Strawberry aldehyde (C_{12} O_3 H_{14}), a common artificial flavoring compound, has two non-interconvertible conformational families defined by the relative stereochemistry around its epoxide carbons. In one family, referred to as the trans because the two large substituents (a phenyl ring and an ethyl ester) are on opposite sides of the epoxide ring, these two substituents are unable to interact with each other. However, in the cis family, there is a long-range interaction that is difficult to accurately capture in electronic structure calculations. Three trans and two cis conformations have been assigned by broadband chirped pulse Fourier transform microwave spectroscopy, along with the C-13 isotopomers in natural abundance for one conformer from each of the families. The agreement of the rotational constants, relative dipole moments, and relative energies between theory and experiment is excellent, even at relatively crude levels of theory, for the trans family, but is quite poor for the cis conformers. In addition, due to the reactivity of strawberry aldehyde and the high temperature to which it must be heated to yield a suitable vapor pressure, several decomposition products have been assigned, and more, as of yet unassigned, are likely to be present. This project demonstrates some of the challenges in performing large-molecule rotational spectroscopy.

  8. Perfluorobutyric Acid and its Monohydrate: a Chirped Pulse and Cavity Based Fourier Transform Microwave Spectroscopic Study

    Science.gov (United States)

    Thomas, Javix; Serrato, Agapito, III; Lin, Wei; Jaeger, Wolfgang; Xu, Yunjie

    2014-06-01

    Perfluorobutyric acid (PFBA) is highly soluble in water and is a molecule of environmental importance. Rotational spectra of PFBA and its monohydrate were studied using a broadband chirped pulse and a narrow band cavity based Fourier transform microwave spectrometers and high level ab initio calculations. Extensive conformational search was performed for both the acid and its monohydrate at the MP2/6-311++G(2d,p) level of theory. Two and three conformers were predicted for PFBA and its monohydrate, respectively. One set of rotational transitions of PFBA and its mono-hydrate in each case was observed and assigned. Based on the broadband spectra obtained, one can confidently conclude that only one dominate conformer exists in each case. The orientation of the hydroxyl group in PFBA was determined using isotopic analysis. Comparison of the observed transition intensities and the calculated electric dipole moment components allowed one to identify the most stable monohydrate conformation which takes on the insertion hydrogen-bonding topology. Comparison to the shorter chain analogues, i.e. trifluoroacetic acid, perfluoropropionic acid, and their monohydrates, was made to elucidate the general trend in their conformational preference and binding topologies.

  9. Perfluorobutyric acid and its monohydrate: a chirped pulse and cavity based fourier transform microwave spectroscopic study.

    Science.gov (United States)

    Thomas, Javix; Serrato, Agapito; Lin, Wei; Jäger, Wolfgang; Xu, Yunjie

    2014-05-12

    Rotational spectra of perfluorobutyric acid (PFBA) and its monohydrate were studied with a broadband chirped pulse and a narrow-band cavity based Fourier transform microwave spectrometer, and high-level ab initio calculations. Extensive conformational searches were performed for both the acid and its monohydrate at the MP2/6-311++G(2d,p) level of theory. Two and three conformers were predicted to exist for PFBA and its monohydrate, respectively. One set of rotational transitions was observed and assigned for each, PFBA and its monohydrate. Based on the measured broadband spectra, we confidently conclude that only one dominant conformer exists in each case. The orientation of the hydroxyl group in PFBA was determined by using isotopic analysis. Comparison of the observed transition intensities and the calculated electric dipole moment components allowed us to identify the most stable monohydrate conformation, which takes on an insertion hydrogen-bonding topology. Comparisons to the shorter chain analogues, that is, trifluoroacetic acid, perfluoropropionic acid, and their monohydrates, are made to elucidate the general trend in their conformational preference and binding topologies.

  10. Compact 2 Micron Seed Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of new compact, high power and extremely reliable 2 micron seed laser using newly developed Tm3+ doped germanate glass fibers,...

  11. Compact 2 Micron Seed Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of innovative compact, high power and extremely reliable 2 micron seed laser using newly developed Tm3+ doped germanate glass...

  12. Chirped Pulse Rotational Spectroscopy of a Single THUJONE+WATER Sample

    Science.gov (United States)

    Kisiel, Zbigniew; Perez, Cristobal; Schnell, Melanie

    2016-06-01

    Rotational spectroscopy of natural products dates over 35 years when six different species including thujone were investigated. Nevertheless, the technique of low-resolution microwave spectroscopy employed therein allowed determination of only a single conformational parameter. Advances in sensitivity and resolution possible with supersonic expansion techniques of rotational spectroscopy made possible much more detailed studies such that, for example, the structures of first camphor, and then of multiple clusters of camphor with water were determined. We revisited the rotational spectrum of the well known thujone molecule by using the chirped pulse spectrometer in Hamburg. The spectrum of a single thujone sample was recorded with an admixture of 18O enriched water and was successively analysed using an array of techniques, including the AUTOFIT program, the AABS package and the STRFIT program. We have, so far, been able to assign rotational transitions of α-thujone, β-thujone, another thujone isomer, fenchone, and several thujone-water clusters in the spectrum of this single sample. Natural abundance molecular populations were sufficient to determine precise heavy atom backbones of thujone and fenchone, and H_218O enrichment delivered water molecule orientations in the hydrated clusters. An overview of these results will be presented. Z.Kisiel, A.C.Legon, JACS 100, 8166 (1978) Z.Kisiel, O.Desyatnyk, E.Białkowska-Jaworska, L.Pszczółkowski, PCCP 5 820 (2003) C.Pérez, A.Krin, A.L.Steber, J.C.López, Z.Kisiel, M.Schnell, J.Phys.Chem.Lett. 7 154 (2016) N.A.Seifert, I.A.Finneran, C.Perez, et al. J.Mol.Spectrosc. 312, 12 (2015) Z.Kisiel, L.Pszczółkowski, B.J.Drouin, et al. J.Mol.Spectrosc. 280, 134 (2012). Z.Kisiel, J.Mol.Spectrosc. 218, 58 (2003)

  13. High-gain Yb:YAG amplifier for ultrashort pulse laser at high-average power

    Science.gov (United States)

    Vetrovec, John; Copeland, Drew A.; Litt, Amardeep S.; Du, Detao

    2016-03-01

    We report on a Yb:YAG laser amplifier for ultrashort pulse applications at kW-class average power. The laser uses two large-aperture, disk-type gain elements fabricated from composite ceramic YAG material, and a multi-pass extraction architecture to obtain high gain in a chirped-pulse amplification system. The disks are edge-pumped, thus allowing for reduced doping of host material with laser ions, which translates to lower lasing threshold and lower heat dissipation in the Yb:YAG material. The latter makes it possible to amplify a near diffraction-limited seed without significant thermo-optical distortions. This work presents results of testing the laser amplifier with relay optics configured for energy extraction with up to 40 passes through the disks. Applications for the ultrashort pulse laser amplifier include producing laser-induced plasma channel, laser material ablation, and laser acceleration of atomic particles.

  14. High-gain multipassed Yb:YAG amplifier for ultrashort pulse laser

    Science.gov (United States)

    Vetrovec, John; Copeland, Drew A.; Litt, Amardeep S.; Du, Detao

    2016-05-01

    We report on a Yb:YAG laser amplifier for ultrashort pulse applications at kW-class average power. The laser uses two large-aperture, disk-type gain elements fabricated from composite ceramic YAG material, and a multi-pass extraction architecture to obtain high gain in a chirped-pulse amplification system. The disks are edge-pumped, thus allowing for reduced doping of the host material with laser ions, which translates to lower lasing threshold and lower heat dissipation in the Yb:YAG material. The latter makes it possible to amplify a near diffraction-limited seed without significant thermo-optical distortions. This work presents results of testing the laser amplifier with relay optics and passive polarization switching configured for energy extraction with up to 40 passes through the disks. Applications for the ultrashort pulse laser amplifier include producing a laser-induced plasma channel, laser material ablation, and laser acceleration of atomic particles.

  15. A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. II. Performance and applications for reaction dynamics.

    Science.gov (United States)

    Abeysekera, Chamara; Zack, Lindsay N; Park, G Barratt; Joalland, Baptiste; Oldham, James M; Prozument, Kirill; Ariyasingha, Nuwandi M; Sims, Ian R; Field, Robert W; Suits, Arthur G

    2014-12-01

    This second paper in a series of two reports on the performance of a new instrument for studying chemical reaction dynamics and kinetics at low temperatures. Our approach employs chirped-pulse Fourier-transform microwave (CP-FTMW) spectroscopy to probe photolysis and bimolecular reaction products that are thermalized in pulsed uniform flows. Here we detail the development and testing of a new K(a)-band CP-FTMW spectrometer in combination with the pulsed flow system described in Paper I [J. M. Oldham, C. Abeysekera, B. Joalland, L. N. Zack, K. Prozument, I. R. Sims, G. B. Park, R. W. Field, and A. G. Suits, J. Chem. Phys. 141, 154202 (2014)]. This combination delivers broadband spectra with MHz resolution and allows monitoring, on the μs timescale, of the appearance of transient reaction products. Two benchmark reactive systems are used to illustrate and characterize the performance of this new apparatus: the photodissociation of SO2 at 193 nm, for which the vibrational populations of the SO product are monitored, and the reaction between CN and C2H2, for which the HCCCN product is detected in its vibrational ground state. The results show that the combination of these two well-matched techniques, which we refer to as chirped-pulse in uniform flow, also provides insight into the vibrational and rotational relaxation kinetics of the nascent reaction products. Future directions are discussed, with an emphasis on exploring the low temperature chemistry of complex polyatomic systems.

  16. Efficient chirped-pulse amplification of sub-20 fs laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Shinichi; Yamakawa, Koichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    We have developed a model for ultrabroadband and ultrashort pulse amplification including the effects of a pulse shaper for regenerative pulse shaping, gain narrowing and gain saturation in the amplifiers. Thin solid etalons are used to control both gain narrowing and gain saturation during amplification. This model has been used to design an optimized Ti:sapphire amplifier system for producing efficiently pulses of < 20-fs duration with approaching peak and average powers of 100 TW and 20 W. (author)

  17. Computationally efficient method for Fourier transform of highly chirped pulses for laser and parametric amplifier modeling.

    Science.gov (United States)

    Andrianov, Alexey; Szabo, Aron; Sergeev, Alexander; Kim, Arkady; Chvykov, Vladimir; Kalashnikov, Mikhail

    2016-11-14

    We developed an improved approach to calculate the Fourier transform of signals with arbitrary large quadratic phase which can be efficiently implemented in numerical simulations utilizing Fast Fourier transform. The proposed algorithm significantly reduces the computational cost of Fourier transform of a highly chirped and stretched pulse by splitting it into two separate transforms of almost transform limited pulses, thereby reducing the required grid size roughly by a factor of the pulse stretching. The application of our improved Fourier transform algorithm in the split-step method for numerical modeling of CPA and OPCPA shows excellent agreement with standard algorithms.

  18. Chirped Pulse Microwave Spectroscopy in Pulsed Uniform Supersonic Flows: Observation of K-Dependent Rates in the CL + Propyne Reaction

    Science.gov (United States)

    Ariyasingha, Nuwandi M.; Broderick, Bernadette M.; Thompson, James O. F.; Suits, Arthur

    2016-06-01

    Chirped-Pulse Fourier-transform microwave spectroscopy in uniform supersonic flows (CPUF) has been applied to study the reaction of Cl atoms with propyne. The approach utilizes broad-band microwave spectroscopy to extract structural information with MHz resolution and near universal detection, in conjunction with a Laval flow system, which offers thermalized conditions at low temperatures and high number densities. Our previous studies have exploited this approach to obtain multichannel product branching fractions in a number of polyatomic systems, with isomer and often vibrational level specificity. This report highlights an additional capability of the CPUF technique: here, the state-specific reactant depletion is directly monitored on a microsecond timescale. In doing so, a clear dependence on the rotational quantum number K in the rate of the reaction between Cl atoms and propyne is revealed. Future prospects for the technique will be discussed.

  19. Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification.

    Science.gov (United States)

    Herrmann, Daniel; Veisz, Laszlo; Tautz, Raphael; Tavella, Franz; Schmid, Karl; Pervak, Vladimir; Krausz, Ferenc

    2009-08-15

    We present a two-stage noncollinear optical parametric chirped-pulse amplification system that generates 7.9 fs pulses containing 130 mJ of energy at an 805 nm central wavelength and 10 Hz repetition rate. These 16 TW light pulses are compressed to within 5% of their Fourier limit and are carefully characterized by the use of home-built pulse diagnostics. The contrast ratio before the main pulse has been measured as 10(-4), 10(-8), and 10(-11) at t=-3.3 ps, t=-5 ps, and t=-30 ps, respectively. This source allows for experiments in a regime of relativistic light-matter interactions and attosecond science.

  20. A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. I. The low-temperature flow system.

    Science.gov (United States)

    Oldham, James M; Abeysekera, Chamara; Joalland, Baptiste; Zack, Lindsay N; Prozument, Kirill; Sims, Ian R; Park, G Barratt; Field, Robert W; Suits, Arthur G

    2014-10-21

    We report the development of a new instrument that combines chirped-pulse microwave spectroscopy with a pulsed uniform supersonic flow. This combination promises a nearly universal detection method that can deliver isomer and conformer specific, quantitative detection and spectroscopic characterization of unstable reaction products and intermediates, product vibrational distributions, and molecular excited states. This first paper in a series of two presents a new pulsed-flow design, at the heart of which is a fast, high-throughput pulsed valve driven by a piezoelectric stack actuator. Uniform flows at temperatures as low as 20 K were readily achieved with only modest pumping requirements, as demonstrated by impact pressure measurements and pure rotational spectroscopy. The proposed technique will be suitable for application in diverse fields including fundamental studies in spectroscopy, kinetics, and reaction dynamics.

  1. A High-Energy, 100 Hz, Picosecond Laser for OPCPA Pumping

    Directory of Open Access Journals (Sweden)

    Hongpeng Su

    2017-09-01

    Full Text Available A high-energy diode-pumped picosecond laser system centered at 1064 nm for optical parametric chirped pulse amplifier (OPCPA pumping was demonstrated. The laser system was based on a master oscillator power amplifier configuration, which contained an Nd:YVO4 mode-locked seed laser, an LD-pumped Nd:YAG regenerative amplifier, and two double-pass amplifiers. A reflecting volume Bragg grating with a 0.1 nm reflective bandwidth was used in the regenerative amplifier for spectrum narrowing and pulse broadening to suit the pulse duration of the optical parametric amplifier (OPA process. Laser pulses with an energy of 316.5 mJ and a pulse duration of 50 ps were obtained at a 100 Hz repetition rate. A top-hat beam distribution and a 0.53% energy stability (RMS were achieved in this system.

  2. Finite-Difference Time-Domain Modeling of Free Induction Decay Signal in Chirped Pulse Millimeter Wave Spectroscopy

    Science.gov (United States)

    Heifetz, Alexander; Bakhtiari, Sasan; Chien, Hual-Teh; Prozument, Kirill; Gray, Stephen K.; Williams, Richard M.

    2016-06-01

    We have developed computational electrodynamics model of free induction decay (FID) signal in chirped pulse millimeter wave (CPMMW) spectroscopy. The computational model is based on finite-difference time-domain (FDTD) solution of Maxwell's equations in 1-D. Molecular medium is represented by two-level system derived using density matrix (DM) formulation. Each cell in the grid is assigned an independent set of DM equations, and thus acts as an independent source of induced polarization. Computer simulations with our 1-D model have shown that FID signal is propagating entirely in the forward direction. Intensity of FID radiation increases linearly along the cell length. These results can be explained analytically by considering phases of electromagnetic field radiated by each independent region of induced polarization. We show that there is constructive interference in the forward in forward direction, and destructive interference in backscattering direction. Results in this study are consistent with experimental observations that FID has been measured in the forward scattering direction, but not in backscattering direction.

  3. Microwave spectral taxonomy: A semi-automated combination of chirped-pulse and cavity Fourier-transform microwave spectroscopy

    Science.gov (United States)

    Crabtree, Kyle N.; Martin-Drumel, Marie-Aline; Brown, Gordon G.; Gaster, Sydney A.; Hall, Taylor M.; McCarthy, Michael C.

    2016-03-01

    Because of its structural specificity, rotational spectroscopy has great potential as an analytical tool for characterizing the chemical composition of complex gas mixtures. However, disentangling the individual molecular constituents of a rotational spectrum, especially if many of the lines are entirely new or unknown, remains challenging. In this paper, we describe an empirical approach that combines the complementary strengths of two techniques, broadband chirped-pulse Fourier transform microwave spectroscopy and narrowband cavity Fourier transform microwave spectroscopy, to characterize and assign lines. This procedure, called microwave spectral taxonomy, involves acquiring a broadband rotational spectrum of a rich mixture, categorizing individual lines based on their relative intensities under series of assays, and finally, linking rotational transitions of individual chemical compounds within each category using double resonance techniques. The power of this procedure is demonstrated for two test cases: a stable molecule with a rich spectrum, 3,4-difluorobenzaldehyde, and products formed in an electrical discharge through a dilute mixture of C2H2 and CS2, in which spectral taxonomy has enabled the identification of propynethial, HC(S)CCH.

  4. Thulium-doped fiber chirped-pulse amplification system with 2 GW of peak power.

    Science.gov (United States)

    Gaida, C; Gebhardt, M; Stutzki, F; Jauregui, C; Limpert, J; Tünnermann, A

    2016-09-01

    Thulium-doped fibers with ultra large mode-field areas offer new opportunities for the power scaling of mid-IR ultrashort-pulse laser sources. Here, we present a laser system delivering a pulse-peak power of 2 GW and a nearly transform-limited pulse duration of 200 fs in combination with 28.7 W of average power. This performance level has been achieved by optimizing the pulse shape, reducing the overlap with atmospheric absorption lines, and incorporating a climate chamber to reduce the humidity of the atmospheric environment.

  5. Hybrid high power femtosecond laser system

    Science.gov (United States)

    Trunov, V. I.; Petrov, V. V.; Pestryakov, E. V.; Kirpichnikov, A. V.

    2006-01-01

    Design of a high-power femtosecond laser system based on hybrid chirped pulse amplification (CPA) technique developed by us is presented. The goal of the hybrid principle is the use of the parametric and laser amplification methods in chirped pulse amplifiers. It makes it possible to amplify the low-cycle pulses with a duration of <= fs to terawatt power with a high contrast and high conversion efficiency of the pump radiation. In a created system the Ti:Sapphire laser with 10 fs pulses at 810 nm and output energy about 1-3 nJ will be used like seed source. The oscillator pulses were stretched to duration of about 500 ps by an all-reflective grating stretcher. Then the stretched pulses are injected into a nondegenerate noncollinear optical parametric amplifier (NOPA) on the two BBO crystals. After amplification in NOPA the residual pump was used in a bow-tie four pass amplifier with hybrid active medium (based on Al II0 3:Ti 3+ and BeAl IIO 4:Ti 3+ crystals). The final stage of the amplification system consists of two channels, namely NIR (820 nm) and short-VIS (410 nm). Numerical simulation has shown that the terawatt level of output power can be achieved also in a short-VIS channel at the pumping of the double-crystal BBO NOPA by the radiation of the fourth harmonic of the Nd:YAG laser at 266 nm. Experimentally parametric amplification in BBO crystals of 30-50 fs pulses were investigated and optimized using SPIDER technique and single-shot autocomelator for the realization of shortest duration 40 fs.

  6. Grism-pair stretcher{endash}compressor system for simultaneous second- and third-order dispersion compensation in chirped-pulse amplification

    Energy Technology Data Exchange (ETDEWEB)

    Kane, S. [Center for Ultrafast Optical Science, University of Michigan, Room 1006, Institute for Science and Technology Building, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109-2099 (United States); Squier, J. [Department of Electrical and Computer Engineering, University of California, San Diego, Urey Hall, Mail Code 0339, La Jolla, California 92093-0339 (United States)

    1997-03-01

    We present a grating pair based on Carpenter prisms whose third-order dispersion is opposite that of a traditional grating pair. A properly designed stretcher{endash}compressor system with these gratings has the unique characteristic that it simultaneously compensates for second- and third-order dispersion as a function of grating separation, as opposed to traditional systems, which require an additional grating angle mismatch. The applicability of this design to 30-fs, millijoule-level chirped-pulse amplification is discussed. {copyright} 1997 Optical Society of America

  7. High-average-power 2 μm few-cycle optical parametric chirped pulse amplifier at 100 kHz repetition rate.

    Science.gov (United States)

    Shamir, Yariv; Rothhardt, Jan; Hädrich, Steffen; Demmler, Stefan; Tschernajew, Maxim; Limpert, Jens; Tünnermann, Andreas

    2015-12-01

    Sources of long wavelengths few-cycle high repetition rate pulses are becoming increasingly important for a plethora of applications, e.g., in high-field physics. Here, we report on the realization of a tunable optical parametric chirped pulse amplifier at 100 kHz repetition rate. At a central wavelength of 2 μm, the system delivered 33 fs pulses and a 6 W average power corresponding to 60 μJ pulse energy with gigawatt-level peak powers. Idler absorption and its crystal heating is experimentally investigated for a BBO. Strategies for further power scaling to several tens of watts of average power are discussed.

  8. Time of Arrival Based on Chirp Pulses as a means to Perform Localization in IEEE 802.15.4a Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    NAUWELAERS, B.

    2010-05-01

    Full Text Available This paper introduces the technology Time of Arrival (TOA based on chirp pulses (according to IEEE 802.15.4a as a means to perform localization in Wireless Sensor Networks (WSN's active at 2.4 GHz. Advantages and disadvantages of the technology are discussed and act as a guideline for improving localization accuracy. Tests concerning TOA are performed by means of the location engine of Nanotron. Adapting this engine leads to improved localization results. It is shown that TOA measurements are susceptible to reflections and dynamic environments.

  9. Iodine Stabilized Seed Laser for Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of this SBIR effort is development of a space qualifiable, compact, frequency stabilized seed laser with low SWaP for routine use in NASA LaRC's...

  10. Lasers, extreme UV and soft X-ray

    Energy Technology Data Exchange (ETDEWEB)

    Nilsen, Joseph [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-20

    Three decades ago, large ICF lasers that occupied entire buildings were used as the energy sources to drive the first X-ray lasers. Today X-ray lasers are tabletop, spatially coherent, high-repetition rate lasers that enable many of the standard optical techniques such as interferometry to be extended to the soft X-ray regime between wavelengths of 10 and 50 nm. Over the last decade X-ray laser performance has been improved by the use of the grazing incidence geometry, diode-pumped solid-state lasers, and seeding techniques. The dominant X-ray laser schemes are the monopole collisional excitation lasers either driven by chirped pulse amplification (CPA) laser systems or capillary discharge. The CPA systems drive lasing in neon-like or nickel-like ions, typically in the 10 – 30 nm range, while the capillary system works best for neon-like argon at 46.9 nm. Most researchers use nickel-like ion lasers near 14 nm because they are well matched to the Mo:Si multilayer mirrors that have peak reflectivity near 13 nm and are used in many applications. As a result, the last decade has seen the birth of the X-ray free electron laser (XFEL) that can reach wavelengths down to 0.15 nm and the inner-shell Ne laser at 1.46 nm.

  11. Wide-bandgap nonlinear crystal LiGaSsub>2sub> for femtosecond mid-infrared spectroscopy with chirped-pulse upconversion.

    Science.gov (United States)

    Nakamura, Ryosuke; Inagaki, Yoshizumi; Hata, Hidefumi; Hamada, Norio; Umemura, Nobuhiro; Kamimura, Tomosumi

    2016-11-20

    Femtosecond time-resolved mid-infrared (MIR) spectroscopy based on chirped-pulse upconversion is a promising method for observing molecular vibrational dynamics. A quantitative study on nonlinear media for upconversion is still essential for wide applications, particularly at the frequencies below 2000  cm-1. We evaluate wide-bandgap nonlinear crystals of Li-containing ternary chalcogenides based on their performance as the upconversion medium for femtosecond MIR spectroscopy. The upconversion efficiency is measured as a function of the MIR pulse frequency and the chirped pulse energy. LiGaSsub>2sub> is found to be an efficient crystal for the upconversion of MIR pulses in a wide frequency range of 1100-2700  cm-1, especially below 2000  cm-1. By using LiGaSsub>2sub> as an efficient upconversion crystal, we develop a MIR pump-probe spectroscopy system with a spectral resolution of 2.5  cm-1, a time resolution of 0.2 ps, and a probe window of 120  cm-1. Vibrational relaxation dynamics of CO stretching modes of Mnsub>2sub>(CO)sub>10sub> in cyclohexane and bovine serum albumin in Dsub>2sub>O are demonstrated with a high signal-to-noise ratio.

  12. Seeded QED cascades in counter propagating laser pulses

    CERN Document Server

    Grismayer, Thomas; Martins, Joana L; Fonseca, Ricardo; Silva, Luís O

    2015-01-01

    The growth rates of seeded QED cascades in counter propagating lasers are calculated with 2D/3D QED-PIC simulations. The dependence of the growth rate on laser polarisation and intensity are compared with analytical models that support simulations results. The models provide an insight regarding the qualitative trend of the cascade growth when the intensity of the laser field is varied. The results suggest that relativistic pair plasmas and efficient conversion from laser photons to gamma rays can be created with the typical intensities planned to operate on future ultra-intense laser facilities such as ELI or VULCAN.

  13. The Marriage of Spectroscopy and Dynamics: Chirped-Pulse Fourier-Transform Mm-Wave Cp-Ft Spectroscopy in Pulsed Uniform Supersonic Flows

    Science.gov (United States)

    Abeysekera, Chamara; Oldham, James M.; Suits, Arthur G.; Park, G. Barratt; Field, Robert W.

    2012-06-01

    A new experimental scheme is presented that combines two powerful emerging technologies: chirped-pulse Fourier-transform mm-Wave spectroscopy and pulsed uniform supersonic flows. It promises a nearly universal detection method that can deliver quantitative isomer, conformer, and vibrational level specific detection, characterization of unstable reaction products and intermediates, and perform unique spectroscopic, kinetics, and dynamics measurements. Chirped-pulse Fourier-transform microwave (CP-FTMW) spectroscopy, pioneered by Pate and coworkers, allows rapid acquisition of broadband microwave spectrum through advancements in waveform generation and oscilloscope technology. This revolutionary approach has successfully been adapted to higher frequencies by the Field group at MIT. Our new apparatus will exploit amplified chirped pulses in the range of 26-40 GHz, in combination with a pulsed uniform supersonic flow from a Laval nozzle. This nozzle source, pioneered by Rowe, Sims, and Smith for low temperature kinetics studies, produces thermalized reactants at high densities and low temperatures perfectly suitable for reaction dynamics experiments studied using the CP-mmW approach. This combination of techniques shall enhance the thousand-fold improvement in data acquisition rate achieved in the CP method by a further 2-3 orders of magnitude. A pulsed flow alleviates the challenges of continuous uniform flow, e.g. large gas loads and reactant consumption rates. In contrast to other pulsed Laval systems currently in use, we will use a fast piezo valve and small chambers to achieve the desired pressures while minimizing the gas load, so that a 10 Hz repetition rate can be achieved with one turbomolecular pump. The proposed technique will be suitable for many diverse fields, including fundamental studies in spectroscopy and reaction dynamics, reaction kinetics, combustion, atmospheric chemistry, and astrochemistry. We expect a significant advancement in the ability to

  14. Slippage effect on laser phase error amplification in seeded harmonic generation free-electron lasers

    CERN Document Server

    Feng, Chao; Wang, Guanglei; Wang, Dong; Xiang, Dao; Zhao, Zhentang

    2013-01-01

    Free-electron lasers (FELs) seeded with external lasers hold great promise for generating high power radiation with nearly transform-limited bandwidth in soft x-ray region. However, it has been pointed out that the initial seed laser noise will be amplified by the frequency up-conversion process, which may degrade the quality of the output radiation produced by a harmonic generation scheme. In this paper, theoretical and simulation studies for laser phase error amplification in seeded FEL schemes with slippage effect taken into account are presented. It is found that, the seed laser imperfection experienced by the electron beam can be significantly smoothed by the slippage effect in the modulator when the slippage length is comparable to the laser pulse length. This smoothing effect allows one to preserve the excellent temporal coherence of seeded FELs in presence of large laser phase errors. For ultra-short UV seed lasers with FWHM around 16 fs, the slippage length in a modulator with ~30 undulator periods i...

  15. Injection Seeded Laser for Formaldehyde Differential Fluorescence Lidar

    Directory of Open Access Journals (Sweden)

    Schwemmer G.

    2016-01-01

    Full Text Available We describe the design and development of an injection seeded Nd:YVO4 laser for use in a differential fluorescence lidar for measuring atmospheric formaldehyde profiles. A high repetition rate Q-switched laser is modified to accept injection seed input to spectrally narrow and tune the output. The third harmonic output is used to excite formaldehyde (HCHO fluorescence when tuned to a HCHO absorption line. Spectral confirmation is made with the use of a photoacoustic cell and grating spectrometer.

  16. Ultrafast, laser-based, x-ray science: the dawn of atomic-scale cinematography

    Energy Technology Data Exchange (ETDEWEB)

    Barty, C.P.J. [University of California, Department of Applied Mechanics and Engineering Science, Urey Hall, Mali Code 0339, San Diego, La Jolla, CA (United States)

    2000-03-01

    The characteristics of ultrafast chirped pulse amplification systems are reviewed. Application of ultrafast chirped pulse amplification to the generation of femtosecond, incoherent, 8-keV line radiation is outlined and the use of femtosecond laser-based, x-rays for novel time-resolved diffraction studies of crystalline dynamics with sub-picosecond temporal resolution and sub-picometer spatial resolution is reviewed in detail. Possible extensions of laser-based, x-ray technology and evaluation of alternative x-ray approaches for time-resolved studies of the atomic scale dynamics are given. (author)

  17. Compact, Low-Cost, Frequency-Locked Semiconductor Laser for Injection Seeding High Power Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Small Business Innovative Research Phase II project will develop a compact, low-cost, wavelength locked seed laser for injection locking high powered...

  18. Study on mutagenic effects of rice seeds irradiated by CO2 laser

    Institute of Scientific and Technical Information of China (English)

    LUORongting; ZHANGMingring

    1998-01-01

    Seeds of japonica rice (cv. Zhenuo 2) at two different physiotogical states (dry seeds with water content 13% and wet seeds soaked inthe water for 36 h) were irradiated by CO2 laser in four different power-densities. The seeds rradiated by 200GY of 60Co γ rays and no radiated seeds were used as the controls.

  19. Dispersion-managed semiconductor mode-locked ring laser.

    Science.gov (United States)

    Resan, Bojan; Archundia, Luis; Delfyett, Peter J; Alphonse, Gerard

    2003-08-01

    A novel breathing-mode external sigma-ring-cavity semiconductor mode-locked laser is developed. Intracavity pulse compression and stretching produce linearly chirped pulses with an asymmetric exponential temporal profile. External dispersion compensation reduces the pulse duration to 274 fs (within 10% of the bandwidth limit).

  20. Expanding the plasmonic response of bimetallic nanoparticles by laser seeding.

    Science.gov (United States)

    Peláez, R J; Rodríguez, C E; Afonso, C N

    2016-03-11

    This work explores a cost-effective route to enhance the tuning range of the optical response of metal nanostructures on substrates beyond the ranges that are achievable through the nanostructure dimensions, composition or dewetting processes. The new route (laser seeding) uses single nanosecond laser pulses to induce dewetting in regions of a metal layer deposited on a glass substrate followed by the deposition of a second metal layer, both layers being deposited by pulsed laser deposition. In order to show the possibilities of this new route, we have chosen that the two metals were different, namely Ag and Au. The comparison of the optical response of these regions to those that were laser irradiated after deposition of the second metal layer shows that while nanoalloyed nanoparticles (NPs) are formed in the latter case, the NPs produced in the former case have a heterogeneous structure. The interface between the two metals is either sharp or a narrow region where they have mixed depending on the laser fluence used. While the nanoalloyed NPs exhibit a single, narrow surface plasmon resonance (SPR), the heterogeneous NPs show broader SPRs that peak in the near infrared and depending on conditions exhibit even two clear SPRs. The laser seeding approach in the conditions used in this work allows for the expansion of the tuning range of the color to the blue-green region, i.e. beyond the region that can be achieved through nanoalloyed NPs (yellow-red region). In addition, the results presented foresee the laser seeding route as a means to produce round and almost isolated NPs in an enhanced range of diameters.

  1. Fast ion energy flux enhancement from ultra thin foils irradiated by intense and high contrast short laser pulses

    NARCIS (Netherlands)

    Andreev, A.; Levy, A.; Ceccotti, T.; Thaury, C.; Platonov, K.; Loch, R.A.; Martin, Ph.

    2008-01-01

    Recent significant improvements of the contrast ratio of chirped pulse amplified pulses allows us to extend the applicability domain of laser accelerated protons to very thin targets. In this framework, we propose an analytical model particularly suitable to reproducing ion laser acceleration

  2. LASER TECHNOLOGY FOR PRECISION MONOENERGETIC GAMMA-RAY SOURCE R&D AT LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Shverdin, M Y; Bayramian, A; Albert, F; Anderson, S G; Betts, S M; Chu, T S; Cross, R R; Gibson, D J; Marsh, R; Messerly, M; Phan, H; Prantil, M; Wu, S; Ebbers, C; Scarpetti, R D; Hartemann, F V; Siders, C W; McNabb, D P; Bonanno, R E; Barty, C P

    2010-04-20

    Generation of mono-energetic, high brightness gamma-rays requires state of the art lasers to both produce a low emittance electron beam in the linac and high intensity, narrow linewidth laser photons for scattering with the relativistic electrons. Here, we overview the laser systems for the 3rd generation Monoenergetic Gamma-ray Source (MEGa-ray) currently under construction at Lawrence Livermore National Lab (LLNL). We also describe a method for increasing the efficiency of laser Compton scattering through laser pulse recirculation. The fiber-based photoinjector laser will produce 50 {micro}J temporally and spatially shaped UV pulses at 120 Hz to generate a low emittance electron beam in the X-band RF photoinjector. The interaction laser generates high intensity photons that focus into the interaction region and scatter off the accelerated electrons. This system utilizes chirped pulse amplification and commercial diode pumped solid state Nd:YAG amplifiers to produce 0.5 J, 10 ps, 120 Hz pulses at 1064 nm and up to 0.2 J after frequency doubling. A single passively mode-locked Ytterbium fiber oscillator seeds both laser systems and provides a timing synch with the linac.

  3. All solid-state, injection-seeded Ti: sapphire ring laser

    Institute of Scientific and Technical Information of China (English)

    Ting Yu; Weibiao Chen; Jun Zhou; Jinzi Bi; Junwen Cui

    2005-01-01

    @@ In this letter, we present an all solid-state, injection-seeded Ti:sapphire laser. The laser is pumped by a laser diode pumped frequency-doubled Nd:YAG laser, and injection-seeded by an external cavity laser diode with the wavelength between 770 and 780 nm. The single longitude mode and the doubling efficiency of the laser are obtained after injection seeding. The experimental setup and relative results are reported.It is a good candidate laser source for mobile differential absorption lidar (DIAL) system.

  4. Spectrotemporal shaping of seeded free-electron laser pulses.

    Science.gov (United States)

    Gauthier, David; Ribič, Primož Rebernik; De Ninno, Giovanni; Allaria, Enrico; Cinquegrana, Paolo; Danailov, Miltcho Bojanov; Demidovich, Alexander; Ferrari, Eugenio; Giannessi, Luca; Mahieu, Benoît; Penco, Giuseppe

    2015-09-11

    We demonstrate the ability to control and shape the spectrotemporal content of extreme-ultraviolet (XUV) pulses produced by a seeded free-electron laser (FEL). The control over the spectrotemporal properties of XUV light was achieved by precisely manipulating the linear frequency chirp of the seed laser. Our results agree with existing theory, which allows us to retrieve the temporal properties (amplitude and phase) of the FEL pulse from measurements of the spectra as a function of the FEL operating parameters. Furthermore, we show the first direct evidence of the full temporal coherence of FEL light and generate Fourier limited pulses by fine-tuning the FEL temporal phase. The possibility of tailoring the spectrotemporal content of intense short-wavelength pulses represents the first step towards efficient nonlinear optics in the XUV to x-ray spectral region and will enable precise manipulation of core-electron excitations using the methods of coherent quantum control.

  5. Longitudinal space charge assisted echo seeding of a free-electron laser with laser-spoiler noise suppression

    Directory of Open Access Journals (Sweden)

    Kirsten Hacker

    2014-09-01

    Full Text Available Seed lasers are employed to improve the temporal coherence of free-electron laser (FEL light. However, when these seed pulses are short relative to the particle bunch, the noisy, temporally incoherent radiation from the unseeded electrons can overwhelm the coherent, seeded radiation. In this paper, a technique to seed a particle bunch with an external laser is presented in which a new mechanism to improve the contrast between coherent and incoherent free electron laser radiation is employed together with a novel, simplified echo-seeding method. The concept relies on a combination of longitudinal space charge wakes and an echo-seeding technique to make a short, coherent pulse of FEL light together with noise background suppression. Several different simulation codes are used to illustrate the concept with conditions at the soft x-ray free-electron laser in Hamburg, FLASH.

  6. Investigation of two-beam-pumped noncollinear optical parametric chirped-pulse amplification for the generation of few-cycle light pulses.

    Science.gov (United States)

    Herrmann, Daniel; Tautz, Raphael; Tavella, Franz; Krausz, Ferenc; Veisz, Laszlo

    2010-03-01

    We demonstrate a new and compact Phi-plane-pumped noncollinear optical parametric chirped-pulse amplification (NOPCPA) scheme for broadband pulse amplification, which is based on two-beam-pumping (TBP) at 532 nm. We employ type-I phase-matching in a 5 mm long BBO crystal with moderate pump intensities to preserve the temporal pulse contrast. Amplification and compression of the signal pulse from 675 nm - 970 nm is demonstrated, which results in the generation of 7.1-fs light pulses containing 0.35 mJ energy. In this context, we investigate the pump-to-signal energy conversion efficiency for TBP-NOPCPA and outline details for few-cycle pulse characterization. Furthermore, it is verified, that the interference at the intersection of the two pump beams does not degrade the signal beam spatial profile. It is theoretically shown that the accumulated OPA phase partially compensates for wave-vector mismatch and leads to extended broadband amplification. The experimental outcome is supported by numerical split-step simulations of the parametric signal gain, including pump depletion and parametric fluorescence.

  7. A Study of the Monohydrate and Dihydrate Complexes of Perfluoropropionic Acid Using Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectroscopy.

    Science.gov (United States)

    Grubbs, G S; Obenchain, Daniel A; Frank, Derek S; Novick, Stewart E; Cooke, S A; Serrato, Agapito; Lin, Wei

    2015-10-22

    This work reports the first known spectroscopic observation of the monohydrate and dihydrate complexes of perfluoropropionic acid (PFPA). The spectra have been observed using a chirped-pulse Fourier transform microwave (CP-FTMW) spectrometer in the 7750 to 14,250 MHz region. The structures of the species have been confirmed with the aid of ab initio quantum chemical calculations. Rotational constants A, B, and C have been determined and reported for both species along with centrifugal distortion constants ΔJ, ΔJK, ΔK, δJ, δK for H2O-PFPA and ΔJ, ΔJK, and δJ for (H2O)2-PFPA. Effects due to large amplitude motions were not observable in these experiments. Structures of the complexes have been determined using a combination of experimental second moment values and ab initio results. The complexation of the -OH of one or two water molecules has been found to occur in the plane of the carboxylic acid group forming a six- or eight-member ring.

  8. Design and evaluation of modelocked semiconductor lasers for low noise and high stability

    DEFF Research Database (Denmark)

    Yvind, Kresten; Larsson, David; Christiansen, Lotte Jin;

    2005-01-01

    We present work on design of monolithic mode-locked semiconductor lasers with focus on the gain medium. The use of highly inverted quantum wells in a low-loss waveguide enables both low quantum noise, low-chirped pulses and a large stability region. Broadband noise measurements are performed...

  9. Self-induced white-light seeding laser in a femtosecond laser filament

    CERN Document Server

    Chu, Wei; Xie, Hongqiang; Ni, Jielei; Yao, Jinping; Zeng, Bin; Zhang, Haisu; Jing, Chenrui; Xu, Huailiang; Cheng, Ya; Xu, Zhizhan

    2013-01-01

    We report, for what we believe to be the first time, on the generation of remote self-seeding laser amplification by using only one 800 nm Ti:Sapphire femtosecond laser pulse. The laser pulse (~ 40 fs) is first used to generate a filament either in pure nitrogen or in ambient air in which population inversion between ground and excited states of nitrogen molecular ions is realized. Self-induced white light inside the filament is then serving as the seed to be amplified. The self-induced narrow-band laser at 428 nm has a pulse duration of ~2.6 ps with perfect linear polarization property. This finding opens new possibilities for remote detection in the atmosphere.

  10. 530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system.

    Science.gov (United States)

    Klenke, Arno; Breitkopf, Sven; Kienel, Marco; Gottschall, Thomas; Eidam, Tino; Hädrich, Steffen; Rothhardt, Jan; Limpert, Jens; Tünnermann, Andreas

    2013-07-01

    We report on a femtosecond fiber laser system comprising four coherently combined large-pitch fibers as the main amplifier. With this system, a pulse energy of 1.3 mJ and a peak power of 1.8 GW are achieved at 400 kHz repetition rate. The corresponding average output power is as high as 530 W. Additionally, an excellent beam quality and efficiency of the combination have been obtained. To the best of our knowledge, such a parameter combination, i.e., gigawatt pulses with half a kilowatt average power, has not been demonstrated so far with any other laser architecture.

  11. Fiber laser pumped burst-mode operated picosecond mid-infrared laser

    Institute of Scientific and Technical Information of China (English)

    魏凯华; 姜培培; 吴波; 陈滔; 沈永行

    2015-01-01

    We demonstrate a compact periodically poled MgO-doped lithium niobate (MgO:PPLN)-based optical parametric oscillator (OPO) quasi-synchronously pumped by a fiber laser system with burst-mode operation. The pump source is a peak-power-selectable pulse-multiplied picosecond Yb fiber laser. The chirped pulses from a figure of eight-cavity mode-locked fiber laser seed are narrowed to a duration of less than 50 ps using an FBG refl ector and a circulator. The narrowed pulses are directed to pass through a pulse multiplier and to form pulse bunches, each of which is composed of 13 sub-pulses. The obtained pulse bunches are amplified by two-stage fiber pre-amplifiers:one-stage is core-pumped and the other is cladding-pumped. A fiberized acousto–optic modulator is inserted to control the pulse repetition rate (PRR) of the pulse bunches before they are power-amplified in the final amplifier stage with a large mode area (LMA) PM Yb-doped fiber. The maximum average powers from the final amplifier are 85 W, 60 W, and 45 W respectively, corresponding to the PRR of 2.72 MHz, 1.36 MHz, and 0.68 MHz. The amplified pulses are directed to pump an MgO:PPLN-based optical parametric oscillator (OPO). A maximum peak power at 3.45 µm is obtained approximately to be 8.4 kW. Detailed performance characteristics are presented.

  12. Influence of He-Ne laser irradiation of soybean seeds on seed mycoflora, growth, nodulation, and resistance to Fusarium solani.

    Science.gov (United States)

    Ouf, S A; abdel-Hady, N F

    1999-01-01

    Laser irradiation of soybean seeds for 3 min caused a clear reduction in the number of seed-borne fungi which became more pronounced as the irradiation time was extended. Pretreatment of the seeds with methylene blue, methyl red and carmine enhanced the effect of laser. Rhizoctonia solani, Alternaria tenuissima, Cercospora kikuchii and Colletotrichum truncatum were completely eliminated when the seeds were pretreated with a dye and irradiated for 10 min. Seed germination was stimulated on exposure of the seed to 1-min irradiation. At such dose, most of the dyes were accelerators while the higher doses were inhibitory to seed germination. Chlorophyll a, chlorophyll b and carotenoid content of developed plants differed, depending on the irradiation dose and dye treatment of the seeds. In seeds irradiated for 1 or 3 min, chlorophyll a formation was less affected than chlorophyll b formation. In seeds irradiated for 10 min, both the chlorophyll contents were decreased especially in the presence of some applied dyes. On the other hand, there was an increase in carotenoid content of soybean leaves when the laser dose increased. The number and dry mass of nodules were mostly greater (as compared to the corresponding control), when the seeds irradiated for 1 or 3 min were pretreated with methyl red, chlorophenol red, crystal violet and methylene blue. Irradiation of pre-sowing seeds greatly protected soybean stands against F. solani. The disease incidence differed somewhat when the irradiated seeds were pretreated with dyes. The reduction in disease incidence was accompanied by accumulation of high proline and phenol levels in the infected root tissues of soybean, suggesting that these compounds have a certain role in the prevention of disease development.

  13. Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation

    Science.gov (United States)

    Cunha, Alexandre; Elie, Anne-Marie; Plawinski, Laurent; Serro, Ana Paula; Botelho do Rego, Ana Maria; Almeida, Amélia; Urdaci, Maria C.; Durrieu, Marie-Christine; Vilar, Rui

    2016-01-01

    The aim of the present work was to investigate the possibility of using femtosecond laser surface texturing as a method to reduce the colonization of Grade 2 Titanium alloy surfaces by Staphylococcus aureus and the subsequent formation of biofilm. The laser treatments were carried out with a Yb:KYW chirped-pulse-regenerative amplification laser system with a central wavelength of 1030 nm and a pulse duration of 500 fs. Two types of surface textures, consisting of laser-induced periodic surface structures (LIPSS) and nanopillars, were produced. The topography, chemical composition and phase constitution of these surfaces were investigated by atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy, and X-ray diffraction. Surface wettability was assessed by the sessile drop method using water and diiodomethane as testing liquids. The response of S. aureus put into contact with the laser treated surfaces in controlled conditions was investigated by epifluorescence microscopy and scanning electron microscopy 48 h after cell seeding. The results achieved show that the laser treatment reduces significantly the bacterial adhesion to the surface as well as biofilm formation as compared to a reference polished surfaces and suggest that femtosecond laser texturing is a simple and promising method for endowing dental and orthopedic titanium implants with antibacterial properties, reducing the risk of implant-associated infections without requiring immobilized antibacterial substances, nanoparticles or coatings.

  14. Cross-correlation frequency-resolved optical gating of white-light continuum (500-900 nm) generated in bulk media by 1053 nm laser pulses

    Science.gov (United States)

    Imran, T.; Hussain, M.; Figueira, G.

    2016-06-01

    We have efficiently characterized the white-light continuum (WLC) generation covering 500-900 nm in a bulk sapphire plate using 280 fs pulse duration, 1053 nm center-wavelength seed laser pulses. We have acquired the well-optimized smoother region of the WLC spectrum successfully by using an FGS-900 color glass filter (Edmund Optics, Inc.). We have suppressed the spectral components below 500 nm and over 900 nm including an intense 1053 nm residual seed laser peak of the WLC spectrum. The experimental artifacts have been avoided by suppressing the intense 1053 nm seed laser. We employed the sum frequency generation cross-correlation frequency-resolved optical gating (SFG-XFROG) technique for characterization. The XFROG measurement was carried out by introducing the crystal dithering method up to 10° in 2° intervals to obtain the phase matching effectively over the filtered and smoother region of the WLC spectrum. This well-optimized WLC region covering 500-900 nm has significant importance for use as a seed pulse in an optical parametric chirped pulse amplification (OPCPA) system.

  15. Single chirped pulse control of hyperfine states population in Rb atom in the framework of the four-level system

    Science.gov (United States)

    Zakharov, Vladislav; Malinovskaya, Svetlana

    2012-06-01

    Electron population dynamics within the hyperfine structure in the Rb atom induced by a single ns pulse is theoretically investigated. The aim is to develop a methodology of the implementation of linearly chirped laser pulses for the desired excitations in the Rb atoms resulting in the creation of predetermined non-equilibrium states. A semi-classical model of laser pulse interaction with a four-level system representing the hyperfine energy levels of the Rb atom involved into dynamics has been developed. The equations for the probability amplitudes were obtained from the Schrodinger equation with the Hamiltonian that described the time evolution of the population of the four states in the field interaction representation. A code was written in Fortran for a numerical analysis of the time evolution of probability amplitudes as a function of the field parameters. The dependence of the quantum yield on the pulse duration, the linear chirp parameter and the Rabi frequency was studied to reveal the conditions for the entire population transfer to the upper hyperfine state of the 5S1/2 electronic level. The results may provide a robust tool for quantum operations in the alkali atoms.

  16. Short Wavelength Seeding through Compression for Fee Electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Ji

    2010-03-29

    In this paper, we propose a seeding scheme that compresses an initial laser modulation in the longitudinal phase space of an electron beam by using two opposite sign bunch compressors and two opposite sign energy chirpers. This scheme could potentially reduce the initial modulation wavelength by a factor of C and increase the energy modulation amplitude by a factor of C , where Cis the compression factor of the first bunch compressor. Using two lasers as energy chirpers, such a modulation compression scheme can generate kilo-Ampershort wavelength current modulation with significant bunching factor from an initial a few tens Amper current. This compression scheme can also be used togenerate a prebunched single atto-second short wavelength current modulation and prebunched two color, two atto-second modulations.

  17. Quantum key distribution without detector vulnerabilities using optically seeded lasers

    Science.gov (United States)

    Comandar, L. C.; Lucamarini, M.; Fröhlich, B.; Dynes, J. F.; Sharpe, A. W.; Tam, S. W.-B.; Yuan, Z. L.; Penty, R. V.; Shields, A. J.

    2016-05-01

    Security in quantum cryptography is continuously challenged by inventive attacks targeting the real components of a cryptographic set-up, and duly restored by new countermeasures to foil them. Owing to their high sensitivity and complex design, detectors are the most frequently attacked components. It was recently shown that two-photon interference from independent light sources can be used to remove any vulnerability from detectors. This new form of detection-safe quantum key distribution (QKD), termed measurement-device-independent (MDI), has been experimentally demonstrated but with modest key rates. Here, we introduce a new pulsed laser seeding technique to obtain high-visibility interference from gain-switched lasers and thereby perform MDI-QKD with unprecedented key rates in excess of 1 megabit per second in the finite-size regime. This represents a two to six orders of magnitude improvement over existing implementations and supports the new scheme as a practical resource for secure quantum communications.

  18. Characterization of Intermolecular Interactions at Play in the 2,2,2-TRIFLUOROETHANOL Trimers Using Cavity and Chirped-Pulse Microwave Spectroscopy

    Science.gov (United States)

    Seifert, Nathan A.; Thomas, Javix; Jäger, Wolfgang; Xu, Yunjie

    2017-06-01

    2,2,2-trifluoroethanol (TFE) is a common aqueous co-solvent in biological chemistry which may induce or destabilize secondary structures of proteins and polypeptides, thanks to its diverse intermolecular linkages originating from the hydrogen bonding potential of both the hydroxyl and perfluoro groups. Theoretically, the TFE monomer is predicted to have two stable gauche (gauche^{+}/gauche^{-}) conformations whereas the trans form is unstable or is supported only by a very shallow potential. Only the gauche conformers have been identified in the gas phase, whereas liquid phase studies suggest a trans:gauche ratio of 2:3. The question at which sample (cluster) size the trans form of TFE would appear was one major motivation for our study. Here, we report the detection of three trimers of TFE using Balle-Flygare cavity and chirped-pulse Fourier transform microwave spectroscopy (CP-FTMW) techniques. The most stable observed trimer features one trans- and two gauche-TFE subunits. The other two trimers, observed using a newly constructed 2-6 GHz CP-FTMW spectrometer, consist of only the two gauche conformers of TFE. Quantum Theory of Atoms in Molecules (QTAIM) and non-covalent interactions (NCI) analyses give detailed insights into which intermolecular interactions are at play to stabilize the trans form of TFE in the most stable trimer. M. Buck, Q. Rev. Biophys. 1998, 31, 297-335. I. Bakó, T. Radnai, M. Claire, B. Funel, J. Chem. Phys. 2004, 121, 12472-12480. R. F. W. Bader, Chem. Rev. 1991, 91, 893-928. E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-Garcia, A. J. Cohen, W. Yang, J. Am. Chem. Soc., 2010, 132, 6498-6506.

  19. Influence of laser radiation on the growth and development of seeds of agricultural plants

    Science.gov (United States)

    Grishkanich, Alexander; Zhevlakov, Alexander; Polyakov, Vadim; Kascheev, Sergey; Sidorov, Igor; Ruzankina, Julia; Yakovlev, Alexey; Mak, Andrey

    2016-04-01

    The experimental results presented in this study focused on the study of biological processes caused by exposure to the coating layers of the laser green light seed (λ = 532 nm) range for the larch, violet (λ = 405 nm) and red (λ = 640 nm) for spruce. Spend a series of experiments to study the dependence of crop seed quality (spruce and larch from the pine family) from exposure to laser radiation under different conditions. In all the analyzed groups studied seed germination and growth of seedlings exposed to laser exposure, compared with the control group. The results showed that the higher percentage of germination than seeds of the control group.

  20. Carrier-envelope-phase stabilized terawatt class laser at 1 kHz with a wavelength tunable option.

    Science.gov (United States)

    Langdon, Benjamin; Garlick, Jonathan; Ren, Xiaoming; Wilson, Derrek J; Summers, Adam M; Zigo, Stefan; Kling, Matthias F; Lei, Shuting; Elles, Christopher G; Wells, Eric; Poliakoff, Erwin D; Carnes, Kevin D; Kumarappan, Vinod; Ben-Itzhak, Itzik; Trallero-Herrero, Carlos A

    2015-02-23

    We demonstrate a chirped-pulse-amplified Ti:Sapphire laser system operating at 1 kHz, with 20 mJ pulse energy, 26 femtosecond pulse duration (0.77 terawatt), and excellent long term carrier-envelope-phase (CEP) stability. A new vibrational damping technique is implemented to significantly reduce vibrational noise on both the laser stretcher and compressor, thus enabling a single-shot CEP noise value of 250 mrad RMS over 1 hour and 300 mrad RMS over 9 hours. This is, to the best of our knowledge, the best long term CEP noise ever reported for any terawatt class laser. This laser is also used to pump a white-light-seeded optical parametric amplifier, producing 6 mJ of total energy in the signal and idler with 18 mJ of pumping energy. Due to preservation of the CEP in the white-light generated signal and passive CEP stability in the idler, this laser system promises synthesized laser pulses spanning multi-octaves of bandwidth at an unprecedented energy scale.

  1. Extending the high-order harmonic generation cutoff by means of self-phase-modulated chirped pulses

    Science.gov (United States)

    Neyra, E.; Videla, F.; Pérez-Hernández, J. A.; Ciappina, M. F.; Roso, L.; Torchia, G. A.

    2016-11-01

    In this letter we propose a complementary approach to extend the cutoff in high-order harmonic generation (HHG) spectra beyond the well established limits. Inspired by techniques normally used in the compression of ultrashort pulses and supercontinuum generation, we show this extension can be achieved by means of a nonlinear phenomenon known as self-phase-modulation (SPM). We demonstrated that relatively long optical pulses, around 100 fs full-width half maximum (FWHM), non linearly chirped by SPM, are able to produce a considerable extension in the HHG cutoff. We have also shown it is possible control this extension by setting the length of the nonlinear medium. Our study was supported by the numerical integration of the time-dependent Schrödinger equation joint with a complete classical analysis of the electron dynamic. Our approach can be considered as an alternative to the utilization of optical parametric amplification (OPA) and it can be easily implemented in usual facilities with femtosecond laser systems. This technique also preserves the harmonic yield in the zone of the plateau delimited by I p   +  3.17Up law, even when the driven pulses contain larger wavelength components.

  2. Phase-stable, multi-µJ femtosecond pulses from a repetition-rate tunable Ti:Sa-oscillator-seeded Yb-fiber amplifier

    Science.gov (United States)

    Saule, T.; Holzberger, S.; De Vries, O.; Plötner, M.; Limpert, J.; Tünnermann, A.; Pupeza, I.

    2017-01-01

    We present a high-power, MHz-repetition-rate, phase-stable femtosecond laser system based on a phase-stabilized Ti:Sa oscillator and a multi-stage Yb-fiber chirped-pulse power amplifier. A 10-nm band around 1030 nm is split from the 7-fs oscillator output and serves as the seed for subsequent amplification by 54 dB to 80 W of average power. The µJ-level output is spectrally broadened in a solid-core fiber and compressed to 30 fs with chirped mirrors. A pulse picker prior to power amplification allows for decreasing the repetition rate from 74 MHz by a factor of up to 4 without affecting the pulse parameters. To compensate for phase jitter added by the amplifier to the feed-forward phase-stabilized seeding pulses, a self-referencing feed-back loop is implemented at the system output. An integrated out-of-loop phase noise of less than 100 mrad was measured in the band from 0.4 Hz to 400 kHz, which to the best of our knowledge corresponds to the highest phase stability ever demonstrated for high-power, multi-MHz-repetition-rate ultrafast lasers. This system will enable experiments in attosecond physics at unprecedented repetition rates, it offers ideal prerequisites for the generation and field-resolved electro-optical sampling of high-power, broadband infrared pulses, and it is suitable for phase-stable white light generation.

  3. Enhancement of proton acceleration by frequency-chirped laser pulse in radiation pressure mechanism

    Science.gov (United States)

    Vosoughian, H.; Riazi, Z.; Afarideh, H.; Yazdani, E.

    2015-07-01

    The transition from hole-boring to light-sail regime of radiation pressure acceleration by frequency-chirped laser pulses is studied using particle-in-cell simulation. The penetration depth of laser into the plasma with ramped density profile increases when a negatively chirped laser pulse is applied. Because of this induced transparency, the laser reflection layer moves deeper into the target and the hole-boring stage would smoothly transit into the light-sail stage. An optimum chirp parameter which satisfies the laser transparency condition, a 0 ≈ π n e l / n c λ , is obtained for each ramp scale length. Moreover, the efficiency of conversion of laser energy into the kinetic energy of particles is maximized at the obtained optimum condition. A relatively narrow proton energy spectrum with peak enhancement by a factor of 2 is achieved using a negatively chirped pulse compared with the un-chirped pulse.

  4. The Effect of Chirped Intense Femtosecond Laser Pulses on the Argon Cluster

    Directory of Open Access Journals (Sweden)

    H. Ghaforyan

    2016-01-01

    Full Text Available The interaction of intense femtosecond laser pulses with atomic Argon clusters has been investigated by using nanoplasma model. Based on the dynamic simulations, ionization process, heating, and expansion of a cluster after irradiation by femtosecond laser pulses at intensities up to 2 × 1017 Wcm−2 are studied. The analytical calculation provides ionization rate for different mechanisms and time evolution of the density of electrons for different pulse shapes. In this approach, the strong dependence of laser intensity, pulse duration, and laser shape on the electron energy, the electron density, and the cluster size is presented using the intense chirped laser pulses. Based on the presented theoretical modifications, the effect of chirped laser pulse on the complex dynamical process of the interaction is studied. It is found that the energy of electrons and the radius of cluster for the negatively chirped pulses are improved up to 20% in comparison to the unchirped and positively chirped pulses.

  5. Generation of a few femtoseconds pulses in seeded FELs using a seed laser with small transverse size

    Science.gov (United States)

    Li, Heting; Jia, Qika

    2016-09-01

    We propose a simple method to generate a few femtosecond pulses in seeded FELs. We use a longitudinal energy-chirped electron beam passing through a dogleg where transverse dispersion will generate a horizontal energy chirp, then in the modulator, a seed laser with narrow beam radius will only modulate the center portion of the electron beam and then short pulses at high harmonics will be generated in the radiator. Using a representative realistic set of parameters, we show that 30 nm XUV pulse based on the HGHG scheme and 9 nm soft x-ray pulse based on the EEHG scheme with duration of about 8 fs (FWHM) and peak power of GW level can be generated from a 180 nm UV seed laser with beam waist of 75 μm. This new scheme can provide an optional operation mode for the existing seeded FEL facilities to meet the requirement of short-pulse FEL.

  6. Ultrashort Laser Retinal Damage Threshold Mechanisms

    Science.gov (United States)

    2010-01-15

    Strickland and Mourou [1] introduced a technique called ‘‘chirped pulse amplification’’ to produce ultrashort laser pulses with extraordinary peak powers...photocoagula- tion of the retinal layers as had been seen in longer exposure studies. Thompson et al. [22] examined in detail the thermal response of...Gewebeveränderungen. Schlüsselwörter: Ultrakurz; Retina; Sicherheit; Femtosekunde; Melanin; Laserinduzierter Durchbruch; Ultraschnell References [1] Strickland D

  7. Influence of laser diode red beams on germination rate of tomato seeds

    Science.gov (United States)

    Niculita, P.; Danaila-Guidea, Silvana; Livadariu, Oana; Popa, M.; Ristici, M.; Ristici, Esofina

    2007-08-01

    Laser diodes are lighting devices in which the light is generated by stimulated emission rather than spontaneous emission, with high generation efficiency. A device using 20 red laser diodes is presented. Emission wavelengths are in the 650-670 nm range. Emission power for each laser diode is about 4 mW. This device is used to irradiate the tomato seeds with three different irradiating doses. There were three Petri vessels for each dose having 25 seeds each of them. Results show that the germination rate increases for irradiated seeds. The red light has a positive effect for vegetable cultivated in protected area.

  8. Fast Polarization Switching Demonstration Using Crossed-Planar Undulator in a Seeded Free Electron Laser

    CERN Document Server

    Deng, Haixiao; Feng, Lie; Feng, Chao; Chen, Jianhui; Liu, Bo; Wang, Xingtao; Lan, Taihe; Wang, Guanglei; Zhang, Wenyan; Liu, Xiaoqing; Zhang, Meng; Lin, Guoqiang; Zhang, Miao; Wang, Dong; Zhao, Zhentang

    2013-01-01

    Fast polarization switching of light sources is required over a wide spectral range to investigate the symmetry of matter. In this Letter, we report the first experimental demonstration of the crossed-planar undulator technique at a seeded free-electron laser, which holds great promise for the full control and fast switching of the polarization of short-wavelength radiation. In the experiment, the polarization state of the coherent radiation at the 2nd harmonic of the seed laser is switched successfully. The experiment results confirm the theory, and pave the way for applying the crossed-planar undulator technique for the seeded X-ray free electron lasers.

  9. Changes in the germination process and growth of pea in effect of laser seed irradiation

    Science.gov (United States)

    Podleśna, Anna; Gładyszewska, Bożena; Podleśny, Janusz; Zgrajka, Wojciech

    2015-10-01

    The aim of this study was to determine the effect of pre-sowing helium-neon (He-Ne) laser irradiation of pea seeds on changes in seed biochemical processes, germination rate, seedling emergence, growth rate, and yield. The first experimental factor was exposure to laser radiation: D0 - no irradiation, D3 - three exposures, D5 - five exposures, and the harvest dates were the second factor. Pre-sowing treatment of pea seeds with He-Ne laser light increased the concentrations of amylolytic enzymes and the content of indole-3-acetic acid (IAA) in pea seeds and seedlings. The exposure of seeds to He-Ne laser light improved the germination rate and uniformity and modified growth stages, which caused acceleration of flowering and ripening of pea plants. Laser light stimulation improved the morphological characteristics of plants by increasing plant height and leaf surface area. Irradiation improved the yield of vegetative and reproductive organs of pea, although the effects varied at the different growth stages. The increase in the seed yield resulted from a higher number of pods and seeds per plant, whereas no significant changes were observed in the number of seeds per pod. Both radiation doses exerted similarly stimulating effects on pea growth, development, and yield.

  10. Analytical studies of constraints on the performance for EEHG FEL seed lasers

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-11-15

    Laser seeding technique have been envisioned to produce nearly transform-limited pulses at soft X-ray FELs. Echo-Enabled Harmonic Generation (EEHG) is a promising, recent technique for harmonic generation with an excellent up-conversion to very high harmonics, from the standpoint of electron beam physics. This paper explores the constraints on seed laser performance for reaching wavelengths of 1 nm. We show that the main challenge in implementing the EEHG scheme at extreme harmonic factors is the requirement for accurate control of temporal and spatial quality of the seed laser pulse. For example, if the phase of the laser pulse is chirped before conversion to an UV seed pulse, the chirp in the electron beam microbunch turns out to be roughly multiplied by the harmonic factor. In the case of a Ti:Sa seed laser, such factor is about 800. For such large harmonic numbers, generation of nearly transform-limited soft X-ray pulses results in challenging constraints on the Ti:Sa laser. In fact, the relative discrepancy of the time-bandwidth product of the seed-laser pulse from the ideal transform-limited performance should be no more than one in a million. The generated electron beam microbunching is also very sensitive to distortions of the seed laser wavefront, which are also multiplied by the harmonic factor. In order to have minimal reduction of the FEL input coupling factor, it is desirable that the size-angular bandwidth product of the UV seed laser beam be very close to the ideal i.e. diffraction-limited performance in the waist plane at the middle of the modulator undulator. (orig.)

  11. Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Alexandre [Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Bordeaux University, Institute of Chemistry & Biology of Membranes & Nanoobjects (CBMN UMR 5248, CNRS), European Institute of Chemistry and Biology, 2 Rue Robert Escarpit, 33607 Pessac (France); Elie, Anne-Marie [Bordeaux University, CBMN UMR 5248, CNRS, Bordeaux Science Agro, 1 Rue du G. de Gaulle, 33170 Gradignan (France); Plawinski, Laurent [Bordeaux University, Institute of Chemistry & Biology of Membranes & Nanoobjects (CBMN UMR 5248, CNRS), European Institute of Chemistry and Biology, 2 Rue Robert Escarpit, 33607 Pessac (France); Serro, Ana Paula [Instituto Superior Técnico, Universidade de Lisboa, CQE-Centro de Química Estrutural, Av. Rovisco Pais 1, 1049-001 Lisbon (Portugal); Botelho do Rego, Ana Maria [Instituto Superior Técnico, Universidade de Lisboa, CQFM-Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology - IN, Av. Rovisco Pais 1, 1049-001 Lisbon (Portugal); Almeida, Amélia [Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Urdaci, Maria C. [Bordeaux University, CBMN UMR 5248, CNRS, Bordeaux Science Agro, 1 Rue du G. de Gaulle, 33170 Gradignan (France); Durrieu, Marie-Christine [Bordeaux University, Institute of Chemistry & Biology of Membranes & Nanoobjects (CBMN UMR 5248, CNRS), European Institute of Chemistry and Biology, 2 Rue Robert Escarpit, 33607 Pessac (France); Vilar, Rui, E-mail: rui.vilar@tecnico.ulisboa.pt [Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2016-01-01

    Graphical abstract: - Highlights: • The short-term adhesion of Staphylococcus aureus onto femtosecond laser textured surfaces of titanium was investigated. • The laser textured surfaces consist of laser-induced periodic surface structures (LIPSS) and nanopillars. • The laser treatment enhances the hydrophilicity and the surface free energy of the material. • The laser treatment reduces significantly the adhesion of S. aureus and biofilm formation. • Femtosecond laser surface texturing of titanium is a simple and promising method for endowing dental and orthopedic implants with antibacterial properties. - Abstract: The aim of the present work was to investigate the possibility of using femtosecond laser surface texturing as a method to reduce the colonization of Grade 2 Titanium alloy surfaces by Staphylococcus aureus and the subsequent formation of biofilm. The laser treatments were carried out with a Yb:KYW chirped-pulse-regenerative amplification laser system with a central wavelength of 1030 nm and a pulse duration of 500 fs. Two types of surface textures, consisting of laser-induced periodic surface structures (LIPSS) and nanopillars, were produced. The topography, chemical composition and phase constitution of these surfaces were investigated by atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy, and X-ray diffraction. Surface wettability was assessed by the sessile drop method using water and diiodomethane as testing liquids. The response of S. aureus put into contact with the laser treated surfaces in controlled conditions was investigated by epifluorescence microscopy and scanning electron microscopy 48 h after cell seeding. The results achieved show that the laser treatment reduces significantly the bacterial adhesion to the surface as well as biofilm formation as compared to a reference polished surfaces and suggest that femtosecond laser texturing is a simple and promising method

  12. Ultra-high contrast frontend for high peak power fs-lasers at 1030 nm.

    Science.gov (United States)

    Liebetrau, Hartmut; Hornung, Marco; Seidel, Andreas; Hellwing, Marco; Kessler, Alexander; Keppler, Sebastian; Schorcht, Frank; Hein, Joachim; Kaluza, Malte C

    2014-10-01

    We present the results from a new frontend within a double-chirped pulse amplification architecture (DCPA) utilizing crossed-polarized wave generation (XPW) for generating ultra-high contrast, 150 μJ-level, femtosecond seed pulses at 1030 nm. These pulses are used in the high energy class diode-pumped laser system Polaris at the Helmholtz Institute in Jena. Within this frontend, laser pulses from a 75 MHz oscillator-pulse train are extracted at a repetition rate of 1 Hz, temporally stretched, amplified and then recompressed reaching a pulse energy of 2 mJ, a bandwidth of 12 nm and 112 fs pulse duration at a center wavelength of 1030 nm. These pulses are temporally filtered via XPW in a holographic-cut BaF₂ crystal, resulting in 150 μJ pulse energy with an efficiency of 13 %. Due to this non-linear filtering, the relative intensity of the amplified spontaneous emission preceding the main pulse is suppressed to 2×10⁻¹³. This is, to the best of our knowledge, the lowest value achieved in a high peak power laser system operating at 1030 nm center wavelength.

  13. Four-wave-mixing experiments with seeded free electron lasers.

    Science.gov (United States)

    Bencivenga, F; Calvi, A; Capotondi, F; Cucini, R; Mincigrucci, R; Simoncig, A; Manfredda, M; Pedersoli, E; Principi, E; Dallari, F; Duncan, R A; Izzo, M G; Knopp, G; Maznev, A A; Monaco, G; Di Mitri, S; Gessini, A; Giannessi, L; Mahne, N; Nikolov, I P; Passuello, R; Raimondi, L; Zangrando, M; Masciovecchio, C

    2016-12-16

    The development of free electron laser (FEL) sources has provided an unprecedented bridge between the scientific communities working with ultrafast lasers and extreme ultraviolet (XUV) and X-ray radiation. Indeed, in recent years an increasing number of FEL-based applications have exploited methods and concepts typical of advanced optical approaches. In this context, we recently used a seeded FEL to demonstrate a four-wave-mixing (FWM) process stimulated by coherent XUV radiation, namely the XUV transient grating (X-TG). We hereby report on X-TG measurements carried out on a sample of silicon nitride (Si3N4). The recorded data bears evidence for two distinct signal decay mechanisms: one occurring on a sub-ps timescale and one following slower dynamics extending throughout and beyond the probed timescale range (100 ps). The latter is compatible with a slower relaxation (time decay > ns), that may be interpreted as the signature of thermal diffusion modes. From the peak intensity of the X-TG signal we could estimate a value of the effective third-order susceptibility which is substantially larger than that found in SiO2, so far the only sample with available X-TG data. Furthermore, the intensity of the time-coincidence peak shows a linear dependence on the intensity of the three input beams, indicating that the measurements were performed in the weak field regime. However, the timescale of the ultrafast relaxation exhibits a dependence on the intensity of the XUV radiation. We interpreted the observed behaviour as the generation of a population grating of free-electrons and holes that, on the sub-ps timescale, relaxes to generate lattice excitations. The background free detection inherent to the X-TG approach allowed the determination of FEL-induced electron dynamics with a sensitivity largely exceeding that of transient reflectivity and transmissivity measurements, usually employed for this purpose.

  14. Analytical studies of constraints on the performance for EEHG FEL seed lasers

    CERN Document Server

    Geloni, Gianluca; Saldin, Evgeni

    2011-01-01

    Laser seeding technique have been envisioned to produce nearly transform-limited pulses at soft X-ray FELs. Echo-Enabled Harmonic Generation (EEHG) is a promising, recent technique for harmonic generation with an excellent up-conversion to very high harmonics, from the standpoint of electron beam physics. This paper explores the constraints on seed laser performance for reaching wavelengths of 1 nm. We show that the main challenge in implementing the EEHG scheme at extreme harmonic factors is the requirement for accurate control of temporal and spatial quality of the seed laser pulse. For example, if the phase of the laser pulse is chirped before conversion to an UV seed pulse, the chirp in the electron beam microbunch turns out to be roughly multiplied by the harmonic factor. In the case of a Ti:Sa seed laser, such factor is about 800. For such large harmonic numbers, generation of nearly transform-limited soft X-ray pulses results in challenging constraints on the Ti:Sa laser. In fact, the relative discrepa...

  15. Generation of energetic, picosecond seed pulses for CO2 laser using Raman shifter

    Science.gov (United States)

    Welch, Eric; Tochitsky, Sergei; Joshi, Chan

    2017-03-01

    We present a new concept for generating 3 ps seed pulses for a high-power CO2 laser amplifier that are multiple orders more energetic than seed pulses generated by slicing from a nanosecond CO2 laser pulse. We propose to send a 1 µm picosecond laser through a C6D6 Raman shifter and mix both the pump and shifted components in a DFG crystal to produce pulses at 10.6 µm. Preliminary results of a proof-of-principle experiment are presented.

  16. Generation of Phase-Locked Pulses from a Seeded Free-Electron Laser.

    Science.gov (United States)

    Gauthier, David; Ribič, Primož Rebernik; De Ninno, Giovanni; Allaria, Enrico; Cinquegrana, Paolo; Danailov, Miltcho Bojanov; Demidovich, Alexander; Ferrari, Eugenio; Giannessi, Luca

    2016-01-15

    In a coherent control experiment, light pulses are used to guide the real-time evolution of a quantum system. This requires the coherence and the control of the pulses' electric-field carrier waves. In this work, we use frequency-domain interferometry to demonstrate the mutual coherence of time-delayed pulses generated by an extreme ultraviolet seeded free-electron laser. Furthermore, we use the driving seed laser to lock and precisely control the relative phase between the two free-electron laser pulses. This new capability opens the way to a multitude of coherent control experiments, which will take advantage of the high intensity, short wavelength, and short duration of the pulses generated by seeded free-electron lasers.

  17. An analysis on optimization of undulator in self-seeding free electron laser

    CERN Document Server

    Qika, Jia

    2013-01-01

    A simple analysis is given for optimum length of undulator in self-seeding free electron laser (FEL). The obtained relations show the correlation between the undulator length and the system parameters. The power required for the seeding in the second part undulator and overall efficiency to monochromatizating the seeding settle on the length of the first part undulator; the magnitude of seeding power dominates the length of the second part undulator; the whole length of the undulators in self-seeding FEL is determined by the overall efficiency to get coherent seed, it is about half as long again as that of SASE, not including the dispersion section. The requirement of the dispersion section strength is also analyzed.

  18. a Chirped Pulse Fourier Transform Microwave Cp-Ftmw Spectrometer with Laser Ablation Source to Search for Actinide-Containing Molecules and Noble Metal Clusters

    Science.gov (United States)

    Marshall, Frank E.; Gillcrist, David Joseph; Persinger, Thomas D.; Moon, Nicole; Grubbs, G. S., II

    2016-06-01

    Microwave spectroscopic techniques have traditionally been part of the foundation of molecular structure and this conference. Instrumental developments by Brooks Pate and sourcing developments by Steve Cooke on these instruments have allowed for the dawning of a new era in modern microwave spectroscopic techniques. With these advances and the growth of powerful computational approaches, microwave spectroscopists can now search for molecules and/or cluster systems of actinide and noble metal-containing species with increasing certainty in molecular assignment even with the difficulties presented with spin-orbit coupling and relativistic effects. Spectrometer and ablation design will be presented along with any preliminary results on actinide-containing molecules or noble metal clusters or interactions. G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, B. H. Pate, Rev. Sci. Instrum. 79 (2008) 053103-1 - 053103-13 G. S. Grubbs II, C. T. Dewberry, K. C. Etchison, K. E. Kerr, S. A. Cooke, Rev. Sci. Instrum. 78 (2007) 096106-1 - 096106-3

  19. ORION laser target diagnostics.

    Science.gov (United States)

    Bentley, C D; Edwards, R D; Andrew, J E; James, S F; Gardner, M D; Comley, A J; Vaughan, K; Horsfield, C J; Rubery, M S; Rothman, S D; Daykin, S; Masoero, S J; Palmer, J B; Meadowcroft, A L; Williams, B M; Gumbrell, E T; Fyrth, J D; Brown, C R D; Hill, M P; Oades, K; Wright, M J; Hood, B A; Kemshall, P

    2012-10-01

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

  20. ORION laser target diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bentley, C. D.; Edwards, R. D.; Andrew, J. E.; James, S. F.; Gardner, M. D.; Comley, A. J.; Vaughan, K.; Horsfield, C. J.; Rubery, M. S.; Rothman, S. D.; Daykin, S.; Masoero, S. J.; Palmer, J. B.; Meadowcroft, A. L.; Williams, B. M.; Gumbrell, E. T.; Fyrth, J. D.; Brown, C. R. D.; Hill, M. P.; Oades, K. [Plasma Physics Department, Atomic Weapons Establishment, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); and others

    2012-10-15

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

  1. Ion Acceleration by Short Chirped Laser Pulses

    Directory of Open Access Journals (Sweden)

    Jian-Xing Li

    2015-02-01

    Full Text Available Direct laser acceleration of ions by short frequency chirped laser pulses is investigated theoretically. We demonstrate that intense beams of ions with a kinetic energy broadening of about 1% can be generated. The chirping of the laser pulse allows the particles to gain kinetic energies of hundreds of MeVs, which is required for hadron cancer therapy, from pulses of energies in the order of 100 J. It is shown that few-cycle chirped pulses can accelerate ions more efficiently than long ones, i.e., higher ion kinetic energies are reached with the same amount of total electromagnetic pulse energy.

  2. Ion Acceleration by Short Chirped Laser Pulses

    CERN Document Server

    Li, Jian-Xing; Keitel, Christoph H; Harman, Zoltán

    2015-01-01

    Direct laser acceleration of ions by short frequency-chirped laser pulses is investigated theoretically. We demonstrate that intense beams of ions with a kinetic energy broadening of about 1 % can be generated. The chirping of the laser pulse allows the particles to gain kinetic energies of hundreds of MeVs, which is required for hadron cancer therapy, from pulses of energies of the order of 100 J. It is shown that few-cycle chirped pulses can accelerate ions more efficiently than long ones, i.e. higher ion kinetic energies are reached with the same amount of total electromagnetic pulse energy.

  3. Narrow-band injection seeding of a terahertz frequency quantum cascade laser: Selection and suppression of longitudinal modes

    Energy Technology Data Exchange (ETDEWEB)

    Nong, Hanond, E-mail: Nong.Hanond@rub.de; Markmann, Sergej; Hekmat, Negar; Jukam, Nathan, E-mail: Nathan.Jukam@rub.de [Arbeitsgruppe Terahertz Spektroskopie und Technologie, Ruhr-Universität Bochum, Bochum 44780 (Germany); Pal, Shovon [Arbeitsgruppe Terahertz Spektroskopie und Technologie, Ruhr-Universität Bochum, Bochum 44780 (Germany); Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Bochum 44780 (Germany); Mohandas, Reshma A.; Dean, Paul; Li, Lianhe; Linfield, Edmund H.; Giles Davies, A. [School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Wieck, Andreas D. [Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Bochum 44780 (Germany)

    2014-09-15

    A periodically poled lithium niobate (PPLN) crystal with multiple poling periods is used to generate tunable narrow-bandwidth THz pulses for injection seeding a quantum cascade laser (QCL). We demonstrate that longitudinal modes of the quantum cascade laser close to the gain maximum can be selected or suppressed according to the seed spectrum. The QCL emission spectra obtained by electro-optic sampling from the quantum cascade laser, in the most favorable case, shows high selectivity and amplification of the longitudinal modes that overlap the frequency of the narrow-band seed. Proper selection of the narrow-band THz seed from the PPLN crystal discretely tunes the longitudinal mode emission of the quantum cascade laser. Moreover, the THz wave build-up within the laser cavity is studied as a function of the round-trip time. When the seed frequency is outside the maximum of the gain spectrum the laser emission shifts to the preferential longitudinal mode.

  4. Photoacoustic spectroscopy applied to the study of the influence of laser irradiation on corn seeds

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Aguilar, C.; Michtchenko, A. [Instituto Politecnico Nacional (Mexico); Carballo, A. [Colegio de Postgraduados, Programa de Semillas (IREGEP) (Mexico); Cruz-Orea, A. [Centro de Investigacion y de Estudios Avanzados-IPN (Mexico); Ivanov, R. [Universidad Autonoma de Zacatecas, Unidad Academia de Fisica (Mexico); San Martin Martinez, E. [Centro de Investigacion en ciencia Aplicada y Tecnologia Avanzada-IPN (Mexico)

    2005-06-01

    In the present study we were interested in the effects of low intensity laser irradiation on hybrid corn seeds CL{sub 1} x CL{sub 4} when these seeds were exposed to different laser intensities and irradiation times. In order to observe qualitative differences in chlorophyll a and b optical absorption spectra of seedling's leaves, whose seeds were irradiated and non irradiated, were obtained by using photoacoustic spectroscopy (PAS). A randomized complete blocks experimental design with three replications was used. The experimental unit included 10 seeds, from which we randomly choose three seedlings. The variance analysis (ANOVA) for both chlorophylls revealed significant (P < 0.05) differences among treatments. (authors)

  5. Femtosecond Laser Pumped Conical Emission and Seeded Ring Amplification in BBO Crystals

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jia-Sen; LI Feng-Ming; WANG Shu-Feng; GONG Qi-Huang

    2005-01-01

    @@ The characteristics of femtosecond laser pumped conical emission in quadratic media of β-barium borate (BBO)crystals are analysed. A minimized dispersion phase-matching angle, by which a wide-range spectrum can be obtained, is used for broadband amplification. When a seed of a chirped supercontinuum pulse is input, it is found that the seed in wavelength 500nm-750nm is amplified and time resolved.

  6. Laser induced nuclear reactions

    Science.gov (United States)

    Ledingham, Ken; McCanny, Tom; Graham, Paul; Fang, Xiao; Singhal, Ravi; Magill, Joe; Creswell, Alan; Sanderson, David; Allott, Ric; Neely, David; Norreys, Peter; Santala, Marko; Zepf, Matthew; Watts, Ian; Clark, Eugene; Krushelnick, Karl; Tatarakis, Michael; Dangor, Bucker; Machecek, Antonin; Wark, Justin

    1998-12-01

    Dramatic improvements in laser technology since 1984 have revolutionised high power laser technology. Application of chirped-pulse amplification techniques has resulted in laser intensities in excess of 1019W/cm2. In the mid to late eighties, C. K. Rhodes and K. Boyer discussed the possibility of shining laser light of this intensity onto solid surfaces and to cause nuclear transitions. In particular, irradiation of a uranium target could induce electro- and photofission in the focal region of the laser. In this paper it is shown that μCi of 62Cu can be generated via the (γ,n) reaction by a laser with an intensity of about 1019Wcm-2.

  7. Gigawatt mid-IR (4-5 μm) femtosecond hybrid Fe2+:ZnSe laser system

    Science.gov (United States)

    Potemkin, F. V.; Migal, E. A.; Pushkin, A. V.; Bravy, B. G.; Sirotkin, A. A.; Kozlovsky, V. I.; Korostelin, Yu. V.; Podmar'kov, Yu. P.; Firsov, V. V.; Frolov, M. P.; Gordienko, V. M.

    2017-05-01

    We demonstrate a first-of-its-kind efficient chirped pulse amplification of broadband mid-IR (4-5 μm) femtosecond seed pulse (230 ps, 4μJ) generated in AgGaS2 based OPA driven by Cr:forsterite laser in multi-pass Fe2+:ZnSe amplifier optically pumped by solid-state Q-switched Cr:Yb:Ho:YSGG laser (2.85 μm, 30mJ, 5Hz, 0.6 J/cm2). The system delivers 1.2 mJ at pulse duration of 230 ps. Straightforward compression to 150 fs pulse is achievable with 70% efficiency using diffraction grating pair with peak power of about 6 GW. Further non-linear compression in a bulk CaF2 due to the SPM and anomalous GVD should provide the enhancement of peak power up to 20 GW. Possible routes to reach sub-TW and even TW power level in mid-IR are discussed.

  8. Phase-locking of two self-seeded tapered amplofier lasers

    CERN Document Server

    Tackmann, G; Schubert, Ch; Berg, P; Wendrich, T; Ertmer, W; Rasel, E M

    2010-01-01

    We report on the phase-locking of two diode lasers based on self-seeded tapered amplifiers. In these lasers, a reduction of linewidth is achieved using narrow-band high-transmission interference filters for frequency selection. The lasers combine a compact design with a Lorentzian linewidth below 200 kHz at an output power of 300 mW. We characterize the phase noise of the phase-locked laser system and study its potential for coherent beam-splitting in atom interferometers.

  9. Pulsed laser deposition of gadolinia doped ceria layers at moderate temperature – a seeding approach

    DEFF Research Database (Denmark)

    Rodrigo, Katarzyna Agnieszka; Heiroth, Sebastian; Pryds, Nini

    ), to the growth of dense, gas impermeable 10 mol% gadolinia-doped ceria (CGO10) solid electrolyte can be overcome by the seeding process. In order to evaluate the seed layer preparation, the effects of different thermal annealing treatments on the morphology, microstructure and surface roughness of ultrathin CGO...... the preparation of ultrathin seed layers in the first stage of the deposition process is often envisaged to control the growth and physical properties of the subsequent coating. This work suggests that the limitations of conventional pulsed laser deposition (PLD), performed at moderate temperature (400°C...

  10. Jones calculus modeling and analysis of the thermal distortion in a Ti:sapphire laser amplifier.

    Science.gov (United States)

    Cho, Seryeyohan; Jeong, Jihoon; Yu, Tae Jun

    2016-06-27

    The mathematical modeling of an anisotropic Ti:sapphire crystal with a significant thermal load is performed. The model is expressed by the differential Jones matrix. A thermally induced distortion in the chirped-pulse amplification process is shown by the solution of the differential Jones matrix. Using this model, the thermally distorted spatio-temporal laser beam shape is calculated for a high-power and high-repetition-rate Ti:sapphire amplifier.

  11. Single-grating laser pulse stretcher and compressor.

    Science.gov (United States)

    Lai, M; Lai, S T; Swinger, C

    1994-10-20

    Stretching and compressing of laser pulses is demonstrated with a single-grating apparatus. A laser pulse of 110 fs is stretched to 250 ps and then recompressed to 115 fs. The apparatus exploits a two-level structure: one level for stretching and the other for compressing. This single-grating configuration shows significant simplification in structure and alignment over existing multiple-grating systems. Such a stretcher-compressor is particularly suitable for use with chirped-pulse amplification in which laser wavelength tuning is desirable. Only one rotational adjustment is rquired to restore the alignment of the entire stretcher and compressor when the laser wavelength is changed.

  12. Towards jitter-free pump-probe measurements at seeded free electron laser facilities.

    Science.gov (United States)

    Danailov, Miltcho B; Bencivenga, Filippo; Capotondi, Flavio; Casolari, Francesco; Cinquegrana, Paolo; Demidovich, Alexander; Giangrisostomi, Erika; Kiskinova, Maya P; Kurdi, Gabor; Manfredda, Michele; Masciovecchio, Claudio; Mincigrucci, Riccardo; Nikolov, Ivaylo P; Pedersoli, Emanuele; Principi, Emiliano; Sigalotti, Paolo

    2014-06-02

    X-ray free electron lasers (FEL) coupled with optical lasers have opened unprecedented opportunities for studying ultrafast dynamics in matter. The major challenge in pump-probe experiments using FEL and optical lasers is synchronizing the arrival time of the two pulses. Here we report a technique that benefits from the seeded-FEL scheme and uses the optical seed laser for nearly jitter-free pump-probe experiments. Timing jitter as small as 6 fs has been achieved and confirmed by measurements of FEL-induced transient reflectivity changes of Si3N4 using both collinear and non-collinear geometries. Planned improvements of the experimental set-up are expected to further reduce the timing jitter between the two pulses down to fs level.

  13. Three-dimensional manipulation of electron beam phase space for seeding soft x-ray free-electron lasers

    CERN Document Server

    Feng, Chao; Deng, Haixiao; Zhao, Zhentang

    2014-01-01

    In this letter, a simple technique is proposed to induce strong density modulation into the electron beam with small energy modulation. By using the combination of a transversely dispersed electron beam and a wave-front tilted seed laser, three-dimensional manipulation of the electron beam phase space can be utilized to significantly enhance the micro-bunching of seeded free-electron laser schemes, which will improve the performance and extend the short-wavelength range of a single-stage seeded free-electron laser. Theoretical analysis and numerical simulations demonstrate the capability of the proposed technique in a soft x-ray free-electron laser.

  14. Three-dimensional manipulation of electron beam phase space for seeding soft x-ray free-electron lasers

    Directory of Open Access Journals (Sweden)

    Chao Feng

    2014-07-01

    Full Text Available In this paper, a simple technique is proposed to induce strong density modulation into the electron beam with small energy modulation. By using the combination of a transversely dispersed electron beam and a wave-front tilted seed laser, three-dimensional manipulation of the electron beam phase space can be utilized to significantly enhance the microbunching of seeded free-electron laser schemes, which will improve the performance and extend the short-wavelength range of a single-stage seeded free-electron laser. Theoretical analysis and numerical simulations demonstrate the capability of the proposed technique in a soft x-ray free-electron laser.

  15. Laser Initiation and Radiofrequency Sustainment of Seeded Air Plasmas

    Science.gov (United States)

    2006-04-01

    pressure plasma that projects well away from the antenna by this means that could not be obtained by RF alone. The initial plasma ionization also...a much lower RF power levels and with more enhanced axial projection away from the antenna with laser initiation than without. Power densities of 1...SCIENTECH ( Astral AD30). In order to account for the laser attenuation by the UV window, the UV window is placed in front of the energy meter. A laser

  16. Continuously tunable pulsed Ti:Sa laser self-seeded by an extended grating cavity

    CERN Document Server

    Li, Ruohong; Rothe, Sebastian; Teigelhöfer, Andrea; Mostamand, Maryam

    2016-01-01

    A continuously tunable titanium:sapphire (Ti:Sa) laser self-seeded by an extended grating cavity was demonstrated and characterized. By inserting a partially reflecting mirror inside the cavity of a classic single-cavity grating laser, two oscillators are created: a broadband power oscillator, and a narrowband oscillator with a prism beam expander and a diffraction grating in Littrow configuration. By coupling the grating cavity oscillation into the power oscillator, a power-enhanced narrow-linewidth laser oscillation is achieved. Compared to the classic grating laser, this simple modification significantly increases the laser output power without considerably broadening the linewidth. With most of the oscillating laser power confined inside the broadband power cavity and lower power incident onto the grating, the new configuration also allows higher pump power, which is typically limited by the thermal deformation of the grating coating at high oscillation power.

  17. Twenty-watt average output power, picosecond thin-rod Yb:YAG regenerative chirped pulse amplifier with 200 mJ pulse energy

    OpenAIRE

    MATSUBARA, Shinichi; TANAKA, Motoharu; TAKAMA, Masaki; KAWATO, Sakae; Kobayashi, Takao

    2008-01-01

    A high-average power, laser-diode-pumped, picosecond-pulse regenerative chirpedpulse amplifier was developed by using the thin-rod Yb:YAG laser architecture. An averageoutput power of 20 W was achieved at a repetition rate of 100 kHz with an output pulse width of 2ps.

  18. Self-seeded single-frequency laser peening method

    Science.gov (United States)

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2009-08-11

    A method of operating a laser to obtain an output pulse having a single wavelength, comprises inducing an intracavity loss into a laser resonator having an amount that prevents oscillation during a time that energy from the pump source is being stored in the gain medium. Gain is built up in the gain medium with energy from the pump source until formation of a single-frequency relaxation oscillation pulse in the resonator. Upon detection of the onset of the relaxation oscillation pulse, the intracavity loss is reduced, such as by Q-switching, so that the built-up gain stored in the gain medium is output from the resonator in the form of an output pulse at a single frequency. An electronically controllable output coupler is controlled to affect output pulse characteristics. The laser acts a master oscillator in a master oscillator power amplifier configuration. The laser is used for laser peening.

  19. Laser Light Stimulation Effects on Scorzonera hispanica L. Seeds Germination, Field Emergence and Photosynthetic Pigments Content

    Directory of Open Access Journals (Sweden)

    Dziwulska-Hunek Agata

    2016-06-01

    Full Text Available The study presented herein concerns the effect of pre-sowing stimulation of scorzonera seeds with He–Ne laser on germination capacity, field emergence of seedlings and the content of chlorophylls and carotenoids. Seeds of scorzonera cv. ‘Duplex’, from harvests of various years, dis-played variable quality expressed by their germination capacity. They were subjected to pre-sowing stimulation with He–Ne laser light of the power of 40 mW and wavelength of 632.8 nm, surface power density of 5 mW·cm−2 and different exposure times. Germination capacity on Petri dish test increased only in one lot of seeds after exposure for 1 and 5 min. Increase in seedling emergence in the field experiment in the result of laser treatment occurred only in one seed lot. One-min laser treatment increased contents of chlorophylls and carotenoids in 8-day cotyledons (laboratory test and in the second true leaves (field experiment.

  20. Optimization of a seeding option for the VUV free electron laser at DESY

    CERN Document Server

    Saldin, E L; Yurkov, M V

    2000-01-01

    In order to get fully coherent radiation from the Free Electron Laser (FEL) amplifier starting from the shot noise, it is foreseen to implement a seeding option into the VUV FEL being under construction at DESY (DESY print TESLA-FEL 95-03, Hamburg, DESY, 1995, Seeding option for the VUV free electron laser at DESY: joint DESY and GKSS proposal; Available at DESY upon request only). It consists of an additional undulator, a bypass for electrons and an X-ray monochromator. This paper presents the results of optimization of the seeding option for the VUV FEL providing maximal spectral brightness at minimal shot-to-shot intensity fluctuations. Calculations are performed with three-dimensional, time-dependent simulation code FAST (Nucl. Instr. and Meth. A 429 (1999) 233).

  1. Development of Advanced Seed Laser Modules for Lidar and Spectroscopy Applications

    Science.gov (United States)

    Prasad, Narasimha S.; Rosiewicz, Alex; Coleman, Steven M.

    2013-01-01

    We report on recent progress made in the development of highly compact, single mode, distributed feedback laser (DFB) seed laser modules for lidar and spectroscopy applications from space based platforms. One of the intended application of this technology is in the NASA's Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The DFB laser modules operating at 1571 nm and 1262 nm have advanced current and temperature drivers built into them. A combination of temperature and current tuning allows coarse and fine adjustment of the diode wavelengths.

  2. Investigations of a Dual Seeded 1178 nm Raman Laser System

    Science.gov (United States)

    2016-01-14

    constructed using slab1-3 or fiber laser technology4-15. Slab technology generally involves sum-frequency mixing of 1064 and 1319 nm in a lithium...triborate crystal to obtain 589 nm. Another way of achieving the desired output wavelength of 589 nm for sodium guidestar laser applications is through...been obtained from an ytterbium-doped photonic band gap fiber laser with a 320 kHz linewidth13. Finally, 85 W of single frequency (1 MHz) 1178 nm was

  3. Mode-locked semiconductor laser system with intracavity spatial light modulator for linear and nonlinear dispersion management.

    Science.gov (United States)

    Balzer, Jan C; Döpke, Benjamin; Brenner, Carsten; Klehr, Andreas; Erbert, Götz; Tränkle, Günther; Hofmann, Martin R

    2014-07-28

    We analyze the influence of second and third order intracavity dispersion on a passively mode-locked diode laser by introducing a spatial light modulator (SLM) into the external cavity. The dispersion is optimized for chirped pulses with highest possible spectral bandwidth that can be externally compressed to the sub picosecond range. We demonstrate that the highest spectral bandwidth is achieved for a combination of second and third order dispersion. With subsequent external compression pulses with a duration of 437 fs are generated.

  4. Space-Qualified 1064 nm Seed and Metrology Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Several instruments that are potential candidates for future space-based NASA missions require a highly stable, single frequency laser oscillator that is wavelength...

  5. Iodine Stabilized Seed Laser for Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort proposes to establish the feasibility of leveraging advances in compact laser technology with integration of space qualified techniques into...

  6. Femtosecond Optical Parametric Amplifier for Petawatt Nd:Glass Lasers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-Min; QIAN Lie-Jia; YUAN Peng; LUO Hang; ZHU He-Yuan; ZHU Qi-Hua; WEI Xiao-Feng; FAN Dian-Yuan

    2006-01-01

    @@ We study a femtosecond Ti:sapphire laser pumped optical parametric amplifier (OPA) at 1053nm. The OPA generates stable signal pulses with duration smaller than 100 fs, wavelength drift smaller than 0.5nm, and pulse-to-pulse fluctuation of about ±4%, by employing an external seeder. In a terawatt laser pumped large-aperture LiNbO3 OPA, pulse energy at signal has been scaled up to 4mJ. This m J-class femtosecond OPA at 1053nm presents a feasible alternative to optical parametric chirped-pulse amplification, and is ready to be applied to petawatt lasers.

  7. Hybrid mid-infrared optical parametric chirped-pulse amplification system with a broadband non-collinear quasi-phase-matched power amplifier

    CERN Document Server

    Mayer, Benedikt W; Gallmann, Lukas; Keller, Ursula

    2014-01-01

    We report a hybrid OPCPA system with the capability of generating broadband mid-infrared idler pulses from a non-collinear quasi-phase-matched power amplifier on the basis of periodically poled MgO:LiNbO3. It is seeded by the idler generated from a two-stage collinear pre-amplifier based on aperiodically poled MgO:LiNbO3. The amplification and pulse compression scheme we use does not require any angular dispersion to be introduced or compensated for on either the seed or the generated idler pulses. The mid-IR idler output has a bandwidth of 800 nm centered at 3.4 $\\mu$m. After compression, we obtain a pulse duration of 43.1 fs (FWHM; 41.4-fs transform limit) and a pulse energy of 17.2 $\\mu$J at a repetition rate of 50 kHz.

  8. Microbunching-instability-induced sidebands in a seeded free-electron laser

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2016-05-01

    Full Text Available Measurements of the multishot-averaged, soft x-ray, self-seeding spectrum at the LCLS free-electron laser often have a pedestal-like distribution around the seeded wavelength, which limits the spectral purity and can negatively affect some user applications not employing a post-undulator monochromator. In this paper, we study the origins of such pedestals, focusing on longitudinal phase space modulations produced by the microbunching instability upstream of the free-electron laser (FEL undulator. We show from theory and numerical simulation that both energy and density modulations can induce sidebands in a high-gain, seeded FEL whose fractional strength typically grows as the square of the undulator length. The results place a tight constraint on the longitudinal phase space uniformity of the electron beam for a seeded FEL, possibly requiring the amplitude of long-wavelength modulations to be much smaller than the typical incoherent energy spread if the output sideband power is to remain only a couple percent or less of the amplified seed power.

  9. Subcycle engineering of laser filamentation in gas by harmonic seeding

    CERN Document Server

    Béjot, P; Billard, F; Doussot, J; Hertz, E; Lavorel, B; Faucher, O

    2014-01-01

    Manipulating at will the propagation dynamics of high power laser pulses is a long-standing dream whose accomplishment would lead to the control of a plethora of fascinating physical phenomena emerging from laser-matter interaction. The present work represents a significant step towards such an ideal control by manipulating the nonlinear optical properties of the gas medium at the quantum level. This is accomplished by engineering the intense laser pulse experiencing filamentation at the subcycle level with a relatively weak (about 1%) third-harmonic radiation. The control results from quantum interferences between a single and a two-color (mixing the fundamental frequency with its 3rd harmonic) ionization channel. This mechanism, which depends on the relative phase between the two electric fields, is responsible for wide refractive index modifications in relation with significant enhancement or suppression of the ionization rate. As a first application, we demonstrate the production and control of an axially...

  10. High energy picosecond Yb:YAG CPA system at 10 Hz repetition rate for pumping optical parametric amplifiers.

    Science.gov (United States)

    Klingebiel, Sandro; Wandt, Christoph; Skrobol, Christoph; Ahmad, Izhar; Trushin, Sergei A; Major, Zsuzsanna; Krausz, Ferenc; Karsch, Stefan

    2011-03-14

    We present a chirped pulse amplification (CPA) system based on diode-pumped Yb:YAG. The stretched ns-pulses are amplified and have been compressed to less than 900 fs with an energy of 200 mJ and a repetition rate of 10 Hz. This system is optically synchronized with a broadband seed laser and therefore ideally suited for pumping optical parametric chirped pulse amplification (OPCPA) stages on a ps-timescale.

  11. Feasibility Study of a Laser Beat-Wave Seeded THz FEL at the Neptune Laboratory

    CERN Document Server

    Reiche, Sven; Pellegrini, Claudio; Rosenzweig, James E; Shvets, Gennady; Tochitsky, Sergei Ya

    2005-01-01

    Free-Electron Laser in the THz range can be used to generate high output power radiation or to modulate the electron beam longitudinally on the radiation wavelength scale. Microbunching on the scale of 1-5 THz is of particular importance for potential phase-locking of a modulated electron beam to a laser-driven plasma accelerating structure. However the lack of a seeding source for the FEL at this spectral range limits operation to a SASE FEL only, which denies a subpicosecond synchronization of the current modulation or radiation with an external laser source. One possibility to overcome this problem is to seed the FEL with two external laser beams, which difference (beat-wave) frequency is matched to the resonant FEL frequency in the THz range. In this presentation we study feasibility of an experiment on laser beat-wave injection in the THz FEL considered at the UCLA Neptune Laboratory, where both a high brightness photoinjector and a two-wavelength, TW-class CO2 laser system exist. By incorporating the en...

  12. Start-to-end simulations for a seeded harmonic generation free electron laser

    Directory of Open Access Journals (Sweden)

    S. Thorin

    2007-11-01

    Full Text Available This paper shows how the MAX linac injector and transport system can be efficiently retuned to suit free electron laser (FEL performance. In a collaboration between MAX-lab and BESSY, a seeded harmonic generation free electron laser is being constructed at MAX-lab. The setup uses the existing MAX-lab facility upgraded with a new low emittance photocathode gun, a Ti∶Sa 266 nm laser system used for both the gun and seeding and an FEL undulator system. To produce the high quality electron beam needed, it is shown how the magnet optics in an achromatic dogleg can be tuned to create an optimum bunch compression and how a good quality beam can be maintained through the beam transport and delivered to the FEL undulators. In extensive start-to-end simulations from the cathode of the gun to the generation of photons in the undulators, FEL performance and stability has been calculated using simulation tools like ASTRA, ELEGANT, and GENESIS. This has been done for both the third and fifth harmonic of the seed laser. The results from the calculation are 30 fs light pulses with a power of 11 MW at 88 nm and 1.4 MW at 53 nm.

  13. Frequency mixing in accelerator based sources and application to tunable seeded free-electron lasers

    Directory of Open Access Journals (Sweden)

    C. Evain

    2014-12-01

    Full Text Available In this article we address the problem of tunability of seeded free-electron lasers (FELs, working typically in the domain of the vacuum ultraviolet. The seeding of FELs with an external laser permits us to obtain FEL pulses with both good longitudinal coherence and good stability properties (contrary to an amplification starting from noise. However, with a fixed external laser wavelength, only amplification at harmonics of this wavelength is possible. If full tunability is wanted, it is necessary to have a tunable external source; but this type of source has much less power, hence it is much harder to reach high harmonics numbers. Here we propose the so-called frequency mixing scheme (from its analogy with the similar process in nonlinear optics, based on two laser/electron interactions. Numerical and analytic studies show that it permits to increase significantly the tunability at short wavelengths using a low-energy tunable source. Numerical simulations are made with the parameters of FERMI-FEL 1, the first seeded FEL for user operation.

  14. Distributed seeding for narrow-line width hard x-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Anisimov, Petr Mikhaylovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewellen, IV, John W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Marksteiner, Quinn R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-09

    We describe a new FEL line-narrowing technique called distributed seeding (DS), using Si(111) Bragg crystal monochromators to enhance the spectral brightness of the MaRIE hard X-ray freeelectron laser. DS differs from self-seeding in three important aspects. First, DS relies on spectral filtering of the radiation at multiple locations along the undulator, with a monochromator located every few power gain lengths. Second, DS performs filtering early in the exponential gain region before SASE spikes start to appear in the radiation longitudinal profile. Third, DS provides the option to select a wavelength longer than the peak of the SASE gain curve, which leads to improved spectral contrast of the seeded FEL over the SASE background. Timedependent Genesis simulations show the power-vs-z growth curves for DS exhibit behaviors of a seeded FEL amplifier, such as exponential growth region immediately after the filters. Of the seeding approaches considered, the two-stage DS spectra produce the highest contrast of seeded FEL over the SASE background and that the three-stage DS provides the narrowest linewidth with a relative spectral FWHM of 8 X 10-5 .

  15. Wakefield evolution and electron acceleration in interaction of frequency-chirped laser pulse with inhomogeneous plasma

    Science.gov (United States)

    Rezaei-Pandari, M.; Niknam, A. R.; Massudi, R.; Jahangiri, F.; Hassaninejad, H.; Khorashadizadeh, S. M.

    2017-02-01

    The nonlinear interaction of an ultra-short intense frequency-chirped laser pulse with an underdense plasma is studied. The effects of plasma inhomogeneity and laser parameters such as chirp, pulse duration, and intensity on plasma density and wakefield evolutions, and electron acceleration are examined. It is found that a properly chirped laser pulse could induce a stronger laser wakefield in an inhomogeneous plasma and result in higher electron acceleration energy. It is also shown that the wakefield amplitude is enhanced by increasing the slope of density in the inhomogeneous plasma.

  16. Self-Seeded RSOA-Fiber Cavity Lasers vs. ASE Spectrum-Sliced or Externally Seeded Transmitters—A Comparative Study

    OpenAIRE

    Simon A. Gebrewold; Romain Bonjour; Sophie Barbet; Anaelle Maho; Romain Brenot; Philippe Chanclou; Marco Brunero; Lucia Marazzi; Paola Parolari; Angelina Totovic; Dejan Gvozdic; David Hillerkuss; Christian Hafner; Juerg Leuthold

    2015-01-01

    Reflective semiconductor optical amplifier fiber cavity lasers (RSOA-FCLs) are appealing, colorless, self-seeded, self-tuning and cost-efficient upstream transmitters. They are of interest for wavelength division multiplexed passive optical networks (WDM-PONs) based links. In this paper, we compare RSOA-FCLs with alternative colorless sources, namely the amplified spontaneous emission (ASE) spectrum-sliced and the externally seeded RSOAs. We compare the differences in output power, signal-to-...

  17. Laser-Pulse-Shape Control of Seeded QED Cascades

    CERN Document Server

    Tamburini, Matteo; Keitel, Christoph H

    2015-01-01

    The emergence of electron-positron cascades via ultrastrong electromagnetic fields constitutes a prominent manifestation of the complex interplay between strong-field QED processes and multiparticle dynamics. Here the onset and development of electron-positron cascades are investigated in the head-on collision of two realistic tightly focused ultraintense optical laser pulses in a tenuous gas. As a consequence of the large ponderomotive forces expelling all electrons of the gas from the focal volume, we demonstrate that the onset of QED cascades may be prevented even at intensities around $10^{26}\\;\\text{W/cm$^2$}$ by focusing the laser energy almost down to the diffraction limit. Alternatively, a well controlled development of a QED cascade may be facilitated at laser intensities below $10^{24}\\;\\text{W/cm$^2$}$ per beam by enlarged focal areas and a rapid rise of the pulse or at total powers near $20\\;\\text{PW}$ by employing suitable high-$Z$ gases.

  18. Superluminescent diode versus Fabry-Perot laser diode seeding in pulsed MOPA fiber laser systems for SBS suppression

    Science.gov (United States)

    Melo, M.; Sousa, J. M.; Salcedo, J. R.

    2015-03-01

    We demonstrate the use of a pulsed superluminescent diode (SLD) through direct current injection modulation as seeding source in a master oscillator power amplifier (MOPA) configuration when compared to a Fabry-Perot (FP) laser diode in the same system. The performance limitations imposed by the use of the Fabry-Perot lasers, caused by the backward high peak power pulses triggered due to stimulated Brillouin scattering (SBS) are not observed in the case of the SLD. Compared to conventional Fabry-Perot laser diodes, the SLD provides a smooth and broad output spectrum which is independent of the input pulse parameters. Moreover, the spectrum can be sliced and tailored to the application. Thus, free SBS operation is shown when using the SLD seeder in the same system, allowing for a significant increase on the extractable power and energy.

  19. Impact of presowing laser irradiation of seeds on sugar beet properties

    Science.gov (United States)

    Sacała, E.; Demczuk, A.; Grzyś, E.; Prośba-Białczyk, U.; Szajsner, H.

    2012-07-01

    The aim of the experiment was to establish the influence of biostimulation on the sugar beet seeds. The seeds came from the specialized breeding program energ'hill or were irradiated by the laser in two doses. The impact of the biostimulation was analyzed by determining the nitrate reductase activity and the nitrate, chlorophyll and carotenoids contents in leaves, as well as, the dry matter and sugar concentration in mature roots. The field experiment was established for two sugar beet cultivars. Biostimulation by irradiation and a special seed breeding program energ'hill had a positive influence on some examined parameters (particularly on nitrate reductase activity in Ruveta and in numerous cases on photosynthetic pigments in both cultivars). Regarding the dry matter accumulation and sugar concentration this impact was more favourable for Tiziana than for Ruveta cultivar.

  20. Effects of different doses of low power continuous wave he-ne laser radiation on some seed thermodynamic and germination parameters, and potential enzymes involved in seed germination of sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Perveen, Rashida; Ali, Qasim; Ashraf, Muhammad; Al-Qurainy, Fahad; Jamil, Yasir; Raza Ahmad, Muhammad

    2010-01-01

    In this study, water-soaked seeds of sunflower were exposed to He-Ne laser irradiation of different energies to determine whether or not He-Ne laser irradiation caused changes to seed thermodynamic and germination parameters as well as effects on the activities of germination enzymes. The experiment comprised four energy levels: 0 (control), 100, 300 and 500mJ of laser energy and each treatment replicated four times arranged in a completely randomized design. The experimentation was performed under the greenhouse conditions in the net-house of the Department of Botany, University of Agriculture, Faisalabad. The seed thermodynamic parameters were calculated according to seed germination thermograms determined with a calorimeter at 25.8°C for 72h. Various thermodynamic parameters of seed (ΔH, (ΔS)(e), (ΔS)(c), (ΔS)(e) /Δt and (ΔS)(c) /Δt) were affected significantly due to presowing laser treatment. Significant changes in seed germination parameters and enzyme activities were observed in seeds treated with He-Ne laser. The He-Ne laser seed treatment resulted in increased activities of amylase and protease. These results indicate that the low power continuous wave He-Ne laser light seed treatment has considerable biological effects on seed metabolism. This seed treatment technique can be potentially employed to enhance agricultural productivity.

  1. Spectro-temporal shaping of seeded free-electron laser pulses

    CERN Document Server

    Gauthier, David; De Ninno, Giovanni; Allaria, Enrico; Cinquegrana, Paolo; Danailov, Miltcho Boyanov; Demidovich, Alexander; Ferrari, Eugenio; Giannessi, Luca; Mahieu, Benoît; Penco, Giuseppe

    2015-01-01

    We demonstrate the ability to control and shape the spectro-temporal content of extreme-ultraviolet (XUV) pulses produced by a seeded free-electron laser (FEL). The control over the spectro-temporal properties of XUV light was achieved by precisely manipulating the linear frequency chirp of the seed laser. Our results agree with existing theory, which allows retrieving the temporal properties (amplitude and phase) of the FEL pulse from measurements of the spectra as a function of the FEL operating parameters. Furthermore, we show the first direct evidence of the full temporal coherence of FEL light and generate Fourier limited pulses by fine-tuning the FEL temporal phase. The possibility to tailor the spectro-temporal content of intense short-wavelength pulses represents the first step towards efficient nonlinear optics in the XUV to X-ray spectral region and will enable precise manipulation of core-electron excitations using the methods of coherent quantum control.

  2. Two-colour generation in a chirped seeded Free-Electron Laser

    CERN Document Server

    Mahieu, B; Castronovo, D; Danailov, M B; Demidovich, A; De Ninno, G; Di Mitri, S; Fawley, W M; Ferrari, E; Fröhlich, L; Gauthier, D; Giannessi, L; Mahne, N; Penco, G; Raimondi, L; Spampinati, S; Spezzani, C; Svetina, C; Trovò, M; Zangrando, M

    2013-01-01

    We present the experimental demonstration of a method for generating two spectrally and temporally separated pulses by an externally seeded, single-pass free-electron laser operating in the extreme-ultraviolet spectral range. Our results, collected on the FERMI@Elettra facility and confirmed by numerical simulations, demonstrate the possibility of controlling both the spectral and temporal features of the generated pulses. A free-electron laser operated in this mode becomes a suitable light source for jitter-free, two-colour pump-probe experiments.

  3. Two-colour generation in a chirped seeded free-electron laser: a close look.

    Science.gov (United States)

    Mahieu, Benoît; Allaria, Enrico; Castronovo, Davide; Danailov, Miltcho B; Demidovich, Alexander; De Ninno, Giovanni; Di Mitri, Simone; Fawley, William M; Ferrari, Eugenio; Fröhlich, Lars; Gauthier, David; Giannessi, Luca; Mahne, Nicola; Penco, Giuseppe; Raimondi, Lorenzo; Spampinati, Simone; Spezzani, Carlo; Svetina, Cristian; Trovò, Mauro; Zangrando, Marco

    2013-09-23

    We present the experimental demonstration of a method for generating two spectrally and temporally separated pulses by an externally seeded, single-pass free-electron laser operating in the extreme-ultraviolet spectral range. Our results, collected on the FERMI@Elettra facility and confirmed by numerical simulations, demonstrate the possibility of controlling both the spectral and temporal features of the generated pulses. A free-electron laser operated in this mode becomes a suitable light source for jitter-free, two-colour pump-probe experiments.

  4. Gain dynamics measurement in injection-seeded soft x-ray laser plasma amplifiers

    Science.gov (United States)

    Wang, Yong; Wang, S.; Li, L.; Oliva, E.; Thuy Le, T. T.; Ros, D.; Berrill, M.; Dunn, J.; Zeitoun, Ph.; Yin, L.; Luther, B.; Rocca, J. J.

    2013-10-01

    Herein we report the first measurement of the gain dynamics in a soft x-ray plasma amplifier seeded by high harmonic pulses. A sequence of two time-delayed spatially-overlapping high harmonic pulses was injected into a λ = 18.9 nm Ni-like Mo plasma amplifier to measure the regeneration of the population inversion that follows the gain depletion caused by the amplification of the first seed pulse. Collisional excitation is observed to re-establish population inversion depleted during the amplification of the seed pulse in about ~1.75 ps. The measured gain-recovery time is compared to model simulations to gain insight on the population inversion mechanisms that create the transient gain in these amplifiers. This result supports the concept of a soft x-ray laser amplification scheme based on the continuous extraction of energy from a soft x-ray plasma-based amplifier by an stretched seed pulse has the potential to generate ultra-intense fully phase-coherent soft x-ray laser pulses. Work supported by AMOS program, Office of Basic Energy Sciences of the US DoE, and the NSF ERC Program with equipment developed under NSF Award MRI-ARRA 09-561, and by LASERLAB3-INREX European project and SHYLAX plus CIBORG RTRA `Triangle de la Physique.'

  5. Dynamics of the cavity radiation of a correlated emission laser initially seeded with a thermal light

    Energy Technology Data Exchange (ETDEWEB)

    Tesfa, Sintayehu, E-mail: sint_tesfa@yahoo.com [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Street 38, 01187 Dresden (Germany); Physics Department, Dilla University, PO Box 419, Dilla (Ethiopia)

    2011-10-15

    A detailed analysis of the time evolution of the two-mode squeezing, entanglement and intensity of the cavity radiation of a two-photon correlated emission laser initially seeded with a thermal light is presented. The dependences of the degree of two-mode squeezing and entanglement on the intensity of the thermal light and time are found to have a more or less similar nature, although the actual values differ, especially in the early stages of the process and when the atoms are initially prepared with nearly 50:50 probability to be in the upper and lower energy levels. Seeding the cavity degrades the nonclassical features significantly, particularly in the vicinity of t=0. It is also shown that the mean photon number in a wider time span has a dip when mode b is seeded but a peak when mode a is seeded. Moreover, it turns out that the effect of the seed light on the nonclassical features and intensity of the cavity radiation decreases significantly with time, an outcome essentially attributed to the pertinent emission-absorption mechanism. This can be taken as an encouraging aspect in the practical utilization of this model as a source of a bright entangled light.

  6. Investigation of Gas Seeding for Planar Laser-Induced Fluorescence in Hypersonic Boundary Layers

    Science.gov (United States)

    Arisman, C. J.; Johansen, C. T.; Bathel, B. F.; Danehy, P. M.

    2015-01-01

    Numerical simulations of the gas-seeding strategies required for planar laser-induced fluorescence in a Mach 10 (approximately Mach 8.2 postshock) airflow were performed. The work was performed to understand and quantify the adverse effects associated with gas seeding and to assess various types of seed gas that could potentially be used in future experiments. In prior experiments, NO and NO2 were injected through a slot near the leading edge of a flatplate wedge model used in NASA Langley Research Center's 31 in. Mach 10 air tunnel facility. In this paper, nitric oxide, krypton, and iodine gases were simulated at various injection rates. Simulations showing the deflection of the velocity boundary layer for each of the cases are presented. Streamwise distributions of velocity and concentration boundary-layer thicknesses, as well as vertical distributions of velocity, temperature, and mass distributions, are presented for each of the cases. A comparison between simulated streamwise velocity profiles and experimentally obtained molecular tagging velocimetry profiles using a nitric oxide seeding strategy is performed to verify the influence of such a strategy on the boundary layer. The relative merits of the different seeding strategies are discussed. The results from a custom solver based on OpenFOAM version 2.2.1 are compared against results obtained from ANSYS® Fluent version 6.3.

  7. Demonstration of Single-Crystal Self-Seeded Two-Color X-Ray Free-Electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Lutman, A. A.; Decker, F. -J; Arthur, J.; Chollet, M.; Feng, Y.; Hastings, J.; Huang, Z.; Lemke, H.; Nuhn, H. -D.; Marinelli, A.; Turner, J. L.; Wakatsuki, S.; Welch, J.; Zhu, D.

    2014-12-18

    A scheme for generating two simultaneous hard-x-ray free-electron laser pulses with a controllable difference in photon energy is described and then demonstrated using the self-seeding setup at the Linac Coherent Light Source (LCLS). The scheme takes advantage of the existing LCLS equipment, which allows two independent rotations of the self-seeding diamond crystal. The two degrees of freedom are used to select two nearby crystal reflections, causing two wavelengths to be present in the forward transmitted seeding x-ray pulse. The free-electron laser system must support amplification at both desired wavelengths.

  8. 40-$\\mu$J passively CEP-stable seed source for ytterbium-based high-energy optical waveform synthesizers

    OpenAIRE

    Cankaya, Huseyin; Calendron, Anne-Laure; Zhou, Chun; Chia, Shih-Hsuan; Muecke, Oliver D.; Cirmi, Giovanni; Kärtner, Franz X.

    2016-01-01

    We demonstrate experimentally for the first time a ~40-µJ two-octave-wide passively carrier-envelope phase (CEP)-stable parametric front-end for seeding an ytterbium (Yb)-pump-based, few-optical-cycle, high-energy optical parametric waveform synthesizer. The system includes a CEP-stable white-light continuum and two-channel optical parametric chirped pulse amplifiers (OPCPAs) in the near- and mid-infrared spectral regions spanning altogether a two-octave-wide spectrum driven by a regenerative...

  9. Simulation of the fundamental and nonlinear harmonic output from an FEL amplifier with a soft x-ray seed laser

    Energy Technology Data Exchange (ETDEWEB)

    Biedron, S. G.; Freund, H. P.; Li, Y.; Milton, S. V.

    2000-07-05

    A single-pass, high-gain free-electron laser (FEL) x-ray amplifier was simulated using the 3D, polychromatic simulation code MEDUSA. The seed for the system is a table-top, soft x-ray laser. The simulated fundamental and nonlinear harmonic x-ray output wavelengths are discussed.

  10. Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas.

    Science.gov (United States)

    Gotchev, O V; Knauer, J P; Chang, P Y; Jang, N W; Shoup, M J; Meyerhofer, D D; Betti, R

    2009-04-01

    A compact, self-contained magnetic-seed-field generator (5 to 16 T) is the enabling technology for a novel laser-driven flux-compression scheme in laser-driven targets. A magnetized target is directly irradiated by a kilojoule or megajoule laser to compress the preseeded magnetic field to thousands of teslas. A fast (300 ns), 80 kA current pulse delivered by a portable pulsed-power system is discharged into a low-mass coil that surrounds the laser target. A >15 T target field has been demonstrated using a capacitor bank, a laser-triggered switch, and a low-impedance (<1 Omega) strip line. The device has been integrated into a series of magnetic-flux-compression experiments on the 60 beam, 30 kJ OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The initial application is a novel magneto-inertial fusion approach [O. V. Gotchev et al., J. Fusion Energy 27, 25 (2008)] to inertial confinement fusion (ICF), where the amplified magnetic field can inhibit thermal conduction losses from the hot spot of a compressed target. This can lead to the ignition of massive shells imploded with low velocity-a way of reaching higher gains than is possible with conventional ICF.

  11. QCL seeded, ns-pulse, multi-line, CO2 laser oscillator for laser-produced-plasma extreme-UV source

    Science.gov (United States)

    Nowak, Krzysztof Michał; Suganuma, Takashi; Kurosawa, Yoshiaki; Ohta, Takeshi; Kawasuji, Yasufumi; Nakarai, Hiroaki; Saitou, Takashi; Fujimoto, Junichi; Mizoguchi, Hakaru; Sumitani, Akira; Endo, Akira

    2017-01-01

    Successful merger of state-of-the-art, semiconductor quantum-cascade lasers (QCL), with the mature CO2 laser technology, resulted in a delivery of highly-desired qualities of CO2 laser output that were not available previously without much effort. These qualities, such as multi-line operation, excellent spectro-temporal stability and pulse waveform control, became available from a single device of moderate complexity. This paper describes the operation principle and the unique properties of the solid{state seeded CO2 laser, invented for an application in laser-produced-plasma (LPP), extreme-UV (EUV) light source.

  12. Generation of scaled protogalactic seed magnetic fields in laser-produced shock waves

    Science.gov (United States)

    Gregori, G.; Ravasio, A.; Murphy, C. D.; Schaar, K.; Baird, A.; Bell, A. R.; Benuzzi-Mounaix, A.; Bingham, R.; Constantin, C.; Drake, R. P.; Edwards, M.; Everson, E. T.; Gregory, C. D.; Kuramitsu, Y.; Lau, W.; Mithen, J.; Niemann, C.; Park, H.-S.; Remington, B. A.; Reville, B.; Robinson, A. P. L.; Ryutov, D. D.; Sakawa, Y.; Yang, S.; Woolsey, N. C.; Koenig, M.; Miniati, F.

    2012-01-01

    The standard model for the origin of galactic magnetic fields is through the amplification of seed fields via dynamo or turbulent processes to the level consistent with present observations. Although other mechanisms may also operate, currents from misaligned pressure and temperature gradients (the Biermann battery process) inevitably accompany the formation of galaxies in the absence of a primordial field. Driven by geometrical asymmetries in shocks associated with the collapse of protogalactic structures, the Biermann battery is believed to generate tiny seed fields to a level of about 10-21 gauss (refs 7, 8). With the advent of high-power laser systems in the past two decades, a new area of research has opened in which, using simple scaling relations, astrophysical environments can effectively be reproduced in the laboratory. Here we report the results of an experiment that produced seed magnetic fields by the Biermann battery effect. We show that these results can be scaled to the intergalactic medium, where turbulence, acting on timescales of around 700 million years, can amplify the seed fields sufficiently to affect galaxy evolution.

  13. Laser acceleration

    Science.gov (United States)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  14. Low power continuous wave-laser seed irradiation effect on Moringa oleifera germination, seedling growth and biochemical attributes.

    Science.gov (United States)

    Urva; Shafique, Hina; Jamil, Yasir; Haq, Zia Ul; Mujahid, Tamveel; Khan, Aman Ullah; Iqbal, Munawar; Abbas, Mazhar

    2017-05-01

    Recently, laser application in agriculture has gained much attention since plant characteristics were improved significantly in response of pre-sowing seed treatment. Pre-sowing laser seed treatment effects on germination, seedling growth and mineral profile were studied in Moringa olifera. M. olifera healthy seeds were exposed to 25, 50, 75mJ low power continuous wave laser light and grown under greenhouse conditions. The seedling growth and biochemical attributes were evaluated from 10-day-old seedlings. The germination parameters (percentage, mean germination time), vigor index, seedling growth (root length, seedling length, shoot fresh weight, root fresh weight, shoot dry weight, root dry weight) enhanced considerably. The laser energy levels used for seed irradiation showed variable effects on germination, seedling growth and mineral profile. The mineral contents were recorded to be higher in seedling raised from laser treated seeds, which were higher in roots versus shoots and leaves. The effect of laser treatment on seedling fat, nitrogen and protein content was insignificant and at higher energy level both nitrogen and protein contents decreased versus control. Results revealed that M. olifera germination, seedling growth and mineral contents were enhanced and optimum laser energy level has more acceleratory effect since at three laser energy levels the responses were significantly different. Overall the laser energy levels effect on germination and seedling growth was found in following order; 75mJ>50mJ>25mJ, where as in case of fat, protein and nitrogen contents the trend was as; 25mJ>50mJ and 75mJ. However, this technique could possibly be used to improve the M. olifera germination, seedling growth, and minerals contents where germination is low due to unfavorable conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Narrow-linewidth chirped frequency comb from a frequency-shifted feedback Ti:sapphire laser seeded by a phase-modulated single-frequency fiber laser.

    Science.gov (United States)

    Brandl, Matthias F; Mücke, Oliver D

    2010-12-15

    Frequency-shifted feedback (FSF) lasers have emerged as powerful tools for precision distance metrology. At the output of a Michelson interferometer, the detected rf spectra of the FSF laser light contain a length-dependent heterodyne beat signal whose linewidth ultimately limits the achievable accuracy of length measurements. Here, we demonstrate a narrow-linewidth chirped frequency comb from an FSF Ti:sapphire ring laser seeded by a phase-modulated, ultra-low-phase-noise, single-frequency fiber laser. We experimentally investigate the influence of the seed laser linewidth on the resulting width and shape of the length-dependent rf beat signal. An ultranarrow heterodyne beat linewidth of <20 Hz is observed.

  16. Matter under extreme conditions probed by a seeded free-electron-laser

    Energy Technology Data Exchange (ETDEWEB)

    Bencivenga, F.; Principi, E.; Cucini, R.; Danailov, M. B.; Demidovich, A.; D’Amico, F.; Di Fonzo, S.; Gessini, A.; Kurdi, N.; Mahne, N.; Raimondi, L.; Zangrando, M.; Masciovecchio, C. [Elettra-Sincrotrone Trieste S.C.p.A., S.S. 14 km 163,5 in AREA Science Park, 34149 Basovizza (Italy); Giangrisostomi, E.; Battistoni, A.; Svetina, C. [Elettra-Sincrotrone Trieste S.C.p.A., S.S. 14 km 163,5 in AREA Science Park, 34149 Basovizza (Italy); Dipartimento di Fisica, Universita di Trieste, Piazzale Europa, 34127 Trieste (Italy); Di Cicco, A.; Gunnella, R.; Hatada, K. [CNISM, Dipartimento di Fisica, Universita' di Camerino, Via Madonna delle Carceri, 62032 Camerino (Italy); Filipponi, A. [Dipartimento di Scienze Fisiche e Chimiche, Universita' dell’Aquila, Via Vetoio, 67100 L’Aquila (Italy); and others

    2015-08-17

    FERMI is the first user dedicated seeded free-electron-laser (FEL) working in the extreme ultraviolet (XUV) and soft x-ray range. The EIS-TIMEX experimental end-station was availabe to external users since from the beginning of the user operation of the facility, in Dicember 2012. EIS-TIMEX has been conceived to exploit the unique properties of the FERMI source to study matter under extreme and metastable thermodynamic conditions. We hereby report on its basic parameters and applications, which includes very low jitter (i.e., high time resolution) pump-probe measurements.

  17. Tunable Seed Lasers for Laser Remote Sensing of CO2 and O2 Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Vescent Photonics propose to develop a chip-sized narrow linewidth (< 50 kHz), widely tunable (> 10 nm's) diode laser that will be suitable for a wide variety...

  18. Monolithic micro-laser with KTP ridge waveguides for injection seeding high power lasers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Small Business Innovation Research Phase I project will develop a technique to greatly improve the direct coupling of a diode laser to an optical waveguide...

  19. Maximizing spectral flux from self-seeding hard x-ray free electron lasers

    Directory of Open Access Journals (Sweden)

    Xi Yang

    2013-12-01

    Full Text Available Fully coherent x rays can be generated by self-seeding x-ray free electron lasers (XFELs. Self-seeding by a forward Bragg diffraction (FBD monochromator has been recently proposed [G. Geloni, V. Kocharyan, and E. Saldin, J. Mod. Opt. 58, 1391 (2011JMOPEW0950-034010.1080/09500340.2011.586473] and demonstrated [J. Amann et al., Nat. Photonics 6, 693 (2012NPAHBY1749-488510.1038/nphoton.2012.180]. Characteristic time T_{0} of FBD determines the power, spectral, and time characteristics of the FBD seed [Yu. Shvyd’ko and R. Lindberg, Phys. Rev. ST Accel. Beams 15, 100702 (2012PRABFM1098-440210.1103/PhysRevSTAB.15.100702]. Here we show that for a given electron bunch with duration σ_{e} the spectral flux of the self-seeding XFEL can be maximized, and the spectral bandwidth can be respectively minimized by choosing T_{0}∼σ_{e}/π and by optimizing the electron bunch delay τ_{e}. The choices of T_{0} and τ_{e} are not unique. In all cases, the maximum value of the spectral flux and the minimum bandwidth are primarily determined by σ_{e}. Two-color seeding takes place if T_{0}≪σ_{e}/π. The studies are performed, for a Gaussian electron bunch distribution with the parameters, close to those used in the short-bunch (σ_{e}≃5  fs and long-bunch (σ_{e}≃20  fs operation modes of the Linac Coherent Light Source XFEL.

  20. Maximizing spectral flux from self-seeding hard x-ray free electron lasers

    Science.gov (United States)

    Yang, Xi; Shvyd'ko, Yuri

    2013-12-01

    Fully coherent x rays can be generated by self-seeding x-ray free electron lasers (XFELs). Self-seeding by a forward Bragg diffraction (FBD) monochromator has been recently proposed [G. Geloni, V. Kocharyan, and E. Saldin, J. Mod. Opt. 58, 1391 (2011)JMOPEW0950-034010.1080/09500340.2011.586473] and demonstrated [J. Amann , Nat. Photonics 6, 693 (2012)NPAHBY1749-488510.1038/nphoton.2012.180]. Characteristic time T0 of FBD determines the power, spectral, and time characteristics of the FBD seed [Yu. Shvyd’ko and R. Lindberg, Phys. Rev. ST Accel. Beams 15, 100702 (2012)PRABFM1098-440210.1103/PhysRevSTAB.15.100702]. Here we show that for a given electron bunch with duration σe the spectral flux of the self-seeding XFEL can be maximized, and the spectral bandwidth can be respectively minimized by choosing T0˜σe/π and by optimizing the electron bunch delay τe. The choices of T0 and τe are not unique. In all cases, the maximum value of the spectral flux and the minimum bandwidth are primarily determined by σe. Two-color seeding takes place if T0≪σe/π. The studies are performed, for a Gaussian electron bunch distribution with the parameters, close to those used in the short-bunch (σe≃5fs) and long-bunch (σe≃20fs) operation modes of the Linac Coherent Light Source XFEL.

  1. Ultraintense lasers and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Mourou, G.A. [University of Michigan, Center for Ultrafast Optical Science, Ann Arbor, MI (United States)

    2001-10-01

    Traditional optics concerns physical phenomena in the electron-volt regime. The new frontier will address giga-electron-volt energy scales. In the last decade, lasers have undergone orders-of-magnitude jumps in peak power, with the invention of the technique of chirped pulse amplification (CPA) and the refinement of femtosecond techniques. Modern CPA lasers can produce intensities greater than 10{sup 21} W/cm{sup 2}, one million times greater than previously possible. These ultraintense lasers give researchers a tool to produce unprecedented pressures (terabars), magnetic fields (gigagauss), temperatures (10{sup 10} K), and accelerations (10{sup 25} g) with applications in fusion energy, nuclear physics, high-energy physics, astrophysics, and cosmology. (author)

  2. Development of the Seeding System Used for Laser Velocimeter Surveys of the NASA Low-Speed Centrifugal Compressor Flow Field

    Science.gov (United States)

    Wasserbauer, C. A.; Hathaway, M. D.

    1994-01-01

    Consideration is given to an atomizer-based system for distributing high-volume rates of polystyrene latex (PSL) seed material developed to support laser velocimeter investigations of the NASA Low-Speed Compressor flow field. Complete evaporation of the liquid carrier before the flow entering the compressor was of primary concern for the seeder system design. It is argued that the seed nozzle should incorporate a needle valve that can mechanically dislodge accumulated PSL seed material when the nozzle is turned off. Water is less expensive as the liquid carrier and should be used whenever adequate residence times are available to ensure complete evaporation. PSL agglomerates over time and needs to be mixed or blended before use. Arrangement of the spray nozzles needs to be adjustable to provide maximum seeding at the laser probe volume.

  3. A high repetition rate XUV seeding source for FLASH2

    Energy Technology Data Exchange (ETDEWEB)

    Willner, Arik

    2012-05-15

    Improved performance of free-electron laser (FEL) light sources in terms of timing stability, pulse shape and spectral properties of the amplified FEL pulses is of interest in material science, the fields of ultrafast dynamics, biology, chemistry and even special branches in industry. A promising scheme for such an improvement is direct seeding with high harmonic generation (HHG) in a noble gas target. A free-electron laser seeded by an external extreme ultraviolet (XUV) source is planned for FLASH2 at DESY in Hamburg. The requirements for the XUV/soft X-ray source can be summarized as follows: A repetition rate of at least 100 kHz in a 10 Hz burst is needed at variable wavelengths from 10 to 40 nm and pulse energies of several nJ within a single laser harmonic. This application requires a laser amplifier system with exceptional parameters, mJ-level pulse energy, 10-15 fs pulse duration at 100 kHz (1 MHz) burst repetition rate. A new optical parametric chirped-pulse amplification (OPCPA) system is under development in order to meet these requirements, and very promising results have been achieved in the last three years. In parallel to this development, a new HHG concept is necessary to sustain high average power of the driving laser system and to generate harmonics with high conversion efficiencies. Currently, the highest conversion efficiency with HHG has been demonstrated using gas-filled capillary targets. For our application, only a free-jet target can be used for HHG, in order to overcome damage threshold limitations of HHG target optics at a high repetition rate. A novel dual-gas multijet gas target has been developed and first experiments show remarkable control of the degree of phase matching forming the basis for improved control of the harmonic photon flux and the XUV pulse characteristics. The basic idea behind the dual-gas concept is the insertion of matching zones in between multiple HHG sources. These matching sections are filled with hydrogen which

  4. APPLICATION OF LASER TREATMENT WITH RADIATION STIMULATION IN ANNUAL SPECIES OF SEED GERMINATION DIANTHUS CARYOPHYLLUS - VAR CHABAUD AND PETUNIA HYBRIDA

    Directory of Open Access Journals (Sweden)

    Petru Niculita

    2012-04-01

    Full Text Available Additional illumination with red light produced by laser diodes in continuous and different exposure times, was applied to seeds from two species of annual flowers: Garofita Dianthus caryophyllus - var. CHABAUD; FEUER KONING and romanian Petunia hybrid variety "WHITE CASCADE. The experimental results presented in the present study are a continuation of research initiated in 2009 ((P. Niculita , S. Danaila-Guidea, O. Livadariu , M. Ristici, J. Ristici si F. Burnichi, 2009 and were aimed at testing the germination of seeds and development morphology induced by treatment effect based on laser radiation fields in the early stages of development of seeds under the effect of intensity light in the spectral range 640 nm - 660nm. Sets of seeds were irradiated once mounted on the first day of the experiment at different energy doses by changing exposure time. Thus the experiences of dry seeds were irradiated with different doses four lots in 2009 and 2010 corresponding variants V1-V4 (5-20 minutes. The experimental results were analyzed in parallel with a control group of seeds that did not apply to treatment of red laser diodes. In all the seeds analyzed from the two flower species studied germination capacity and that the growth of seedlings, determining germination percentages every two days for 3 weeks. Results have shown a percentage of germination higher than control group of seeds (75% for all repetitions of variant V4 (95%, with exposure time of 20 minutes (1.53 joules / cm ² to treatment with red light produced by laser modulated at audio frequency.

  5. Ultrafast, ultrahigh-peak power Ti:sapphire laser system

    Energy Technology Data Exchange (ETDEWEB)

    Yamakawa, Koichi; Aoyama, Makoto; Matsuoka, Shinichi; Akahane, Yutaka; Kase, Teiji; Nakano, Fumihiko; Sagisaka, Akito [Advanced Photon Research Center, Kansai Research Establishment, Japan Atomic Energy Research Inst., Kizu, Kyoto (Japan)

    2001-01-01

    We review progress in the generation of multiterawatt optical pulses in the 10-fs range. We describe a design, performance and characterization of a Ti:sapphire laser system based on chirped-pulse amplification, which has produced a peak power in excess of 100-TW with sub-20-fs pulse durations and an average power of 19-W at a 10-Hz repetition rate. We also discuss extension of this system to the petawatt power level and potential applications in the relativistic, ultrahigh intensity regimes. (author)

  6. Strongly aligned gas-phase molecules at Free-Electron Lasers

    CERN Document Server

    Kierspel, Thomas; Mullins, Terry; Robinson, Joseph; Aquila, Andy; Barty, Anton; Bean, Richard; Boll, Rebecca; Boutet, Sébastien; Bucksbaum, Philip; Chapman, Henry N; Christensen, Lauge; Fry, Alan; Hunter, Mark; Koglin, Jason E; Liang, Mengning; Mariani, Valerio; Morgan, Andrew; Natan, Adi; Petrovic, Vladimir; Rolles, Daniel; Rudenko, Artem; Schnorr, Kirsten; Stapelfeldt, Henrik; Stern, Stephan; Thøgersen, Jan; Yoon, Chun Hong; Wang, Fenglin; Trippel, Sebastian; Küpper, Jochen

    2015-01-01

    We demonstrate a novel experimental implementation to strongly align molecules at full repetition rates of free-electron lasers. We utilized the available in-house laser system at the coherent x-ray imaging beamline at the Linac Coherent Light Source. Chirped laser pulses, i. e., the direct output from the regenerative amplifier of the Ti:Sa chirped pulse amplification laser system, were used to strongly align 2,5-diiodothiophene molecules in a molecular beam. The alignment laser pulses had pulse energies of a few mJ and a pulse duration of 94 ps. A degree of alignment of $\\left$ = 0.85 was measured, limited by the intrinsic temperature of the molecular beam rather than by the available laser system. With the general availability of synchronized chirped-pulse-amplified near-infrared laser systems at short-wavelength laser facilities, our approach allows for the universal preparation of molecules tightly fixed in space for experiments with x-ray pulses.

  7. Stable single-mode operation of injection-seeded Q-switched Nd:YAG laser by sine voltage modulation

    Institute of Scientific and Technical Information of China (English)

    Yongfei Gao; Junxuan Zhang; Huaguo Zang; Xiaolei Zhu; Yingjie Yu; Weibiao Chen

    2016-01-01

    Based on the modified ramp and fire technique,a novel injection seeding approach with real-time resonance tracking is successfully demonstrated in a single-frequency Nd:YAG pulsed laser.Appling a high-frequency sinusoidal modulation voltage to one piezo actuator and an adjustable DC voltage to another piezo actuator for active feedback,single-mode laser output with high-frequency stability is obtained,and the effect of the piezo hysteresis on the frequency stability can be eliminated for a laser diode pumped Q-switched Nd:YAG laser at a repetition rate of 400 Hz.

  8. Characterization of phase and contrast of high peak power, ultrashort laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Sagisaka, Akito; Aoyama, Makoto; Matsuoka, Sinichi; Akahane, Yutaka; Nakano, Fumihiko; Yamakawa, Koichi [Advanced Photon Research Center, Kansai Research Establishment, Japan Atomic Energy Research Inst., Kizu, Kyoto (Japan)

    2000-03-01

    We fully characterize a high-peak power, ultrashort laser pulse in a Ti:sapphire chirped-pulse amplification laser system. The phase and contrast of the 20 fs pulse are determined by using frequency-resolved optical gating and high dynamic range cross-correlation techniques. The result of the phase measurement of the pulse indicate that the predominant phase distortion is quartic. The measured contrast of the pulse is of the order of 10{sup -6} limited by amplified spontaneous emission coming from the amplifiers. (author)

  9. Chaine laser à base d’OPCPA pour des impulsions de peu de cycles optiques

    OpenAIRE

    Ramirez, Lourdes Patricia

    2013-01-01

    The Apollon-10 PW laser chain is a large-scale project aimed at delivering 10 PW pulses to reach intensities of 10^22 W/cm^2. State of the art, high intensity lasers based solely on chirped pulse amplification (CPA) and titanium sapphire (Ti:Sa) crystals are limited to peak powers reaching 1.3 PW with 30-fs pulses as a result of gain narrowing in the amplifiers. To access the multipetawatt regime, gain narrowing can be suppressed with an alternative amplification technique called optical para...

  10. Effect of laser pretreatment on germination and membrane lipid peroxidation of Chinese pine seeds under drought stress

    Institute of Scientific and Technical Information of China (English)

    WU Junlin; GAO Xuehong; ZHANG Sheqi

    2007-01-01

    The germination of laser-irradiated Chinese pine seeds was carried out under drought stress.The activities of superoxide dismutase (SOD) and peroxidase (POD),and the content of malondialdehyde (MDA) were determined.Results showed notably increased germination percentage,root length,vitality index and fresh weight.The SOD and POD protective enzyme system activity of the Chinese pine seedlings obviously rose.It can be concluded that the germination and juvenile resistance of Chinese pine seeds under drought stress are enhanced after laser processing.

  11. Spectral-phase interferometry for direct electric-field reconstruction applied to seeded extreme-ultraviolet free-electron lasers

    CERN Document Server

    Mahieu, Benoît; De Ninno, Giovanni; Dacasa, Hugo; Lozano, Magali; Rousseau, Jean-Philippe; Zeitoun, Philippe; Garzella, David; Merdji, Hamed

    2015-01-01

    We present a setup for complete characterization of femtosecond pulses generated by seeded free-electron lasers (FEL's) in the extreme-ultraviolet spectral region. Two delayed and spectrally shifted replicas are produced and used for spectral phase interferometry for direct electric field reconstruction (SPIDER). We show that it can be achieved by a simple arrangement of the seed laser. Temporal shape and phase obtained in FEL simulations are well retrieved by the SPIDER reconstruction, allowing to foresee the implementation of this diagnostic on existing and future sources. This will be a significant step towards an experimental investigation and control of FEL spectral phase.

  12. Evidence of High Harmonics from Echo-Enabled Harmonic Generation for Seeding X-ray Free Electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, D.; Colby, E.; Dunning, M.; Gilevich, S.; Hast, C.; Jobe, K.; McCormick, D.; Nelson, J.; Raubenheimer, T.O.; Soong, K.; Stupakov, G.; Szalata, Z.; Walz, D.; Weathersby, S.; Woodle, M.; /SLAC

    2012-02-15

    Echo-enabled harmonic generation free electron lasers hold great promise for the generation of fully coherent radiation in x-ray wavelengths. Here we report the first evidence of high harmonics from the echo-enabled harmonic generation technique in the realistic scenario where the laser energy modulation is comparable to the beam slice energy spread. In this experiment, coherent radiation at the seventh harmonic of the second seed laser is generated when the energy modulation amplitude is about 2-3 times the slice energy spread. The experiment confirms the underlying physics of echo-enabled harmonic generation and may have a strong impact on emerging seeded x-ray free electron lasers that are capable of generating laserlike x rays which will advance many areas of science.

  13. Dual sub-picosecond and sub-nanosecond laser system

    Institute of Scientific and Technical Information of China (English)

    Xinglong Xie (谢兴龙); Guanlong Huang (黄关龙); Yifei Zhuang (庄亦飞); Aimei Han (韩爱妹); Zunqi Lin (林尊琪); Fengqiao Liu (刘凤翘); Jingxin Yang (杨镜新); Xin Yang (杨鑫); Meirong Li (李美荣); Zhiling Xue (薛之玲); Qi Gao (高奇); Fuyi Guan (管富义); Weiqing Zhang (张伟清)

    2003-01-01

    A high power laser system delivering a 20-TW, 0.5 - 0.8 ps ultra-short laser pulse and a 20-J, 500-ps long pulse simultaneously in one shot is completed. This two-beam laser operates at the wavelength of 1053 nm and uses Nd doped glass as the gain media of the main amplification chain. The chirped-pulse amplification (CPA) technology is used to compress the stretched laser pulse. After compression, the ultrashort laser pulse is measured: energy above 16.0 J, S/N contrast ratio ~ 105: 1, filling factor ~>52.7%.Another long pulse beam is a non-compressed chirped laser pulse, which is measured: energy ~ 20 J, pulse duration 500 ps. The two beams are directed onto the target surface at an angle of 15°.

  14. Influence of an imperfect energy profile on a seeded free electron laser performance

    Directory of Open Access Journals (Sweden)

    Botao Jia

    2010-06-01

    Full Text Available A single-pass high-gain x-ray free electron laser (FEL calls for a high quality electron bunch. In particular, for a seeded FEL amplifier and for a harmonic generation FEL, the electron bunch initial energy profile uniformity is crucial for generating an FEL with a narrow bandwidth. After the acceleration, compression, and transportation, the electron bunch energy profile entering the undulator can acquire temporal nonuniformity. We study the influence of the electron bunch initial energy profile nonuniformity on the FEL performance. Intrinsically, for a harmonic generation FEL, the harmonic generation FEL in the final radiator starts with an electron bunch having energy modulation acquired in the previous stages, due to the FEL interaction at those FEL wavelengths and their harmonics. The influence of this electron bunch energy nonuniformity on the harmonic generation FEL in the final radiator is then studied.

  15. Extreme ultraviolet resonant inelastic X-ray scattering (RIXS) at a seeded free-electron laser

    Science.gov (United States)

    Dell’Angela, M.; Hieke, F.; Malvestuto, M.; Sturari, L.; Bajt, S.; Kozhevnikov, I. V.; Ratanapreechachai, J.; Caretta, A.; Casarin, B.; Glerean, F.; Kalashnikova, A. M.; Pisarev, R. V.; Chuang, Y.-D.; Manzoni, G.; Cilento, F.; Mincigrucci, R.; Simoncig, A.; Principi, E.; Masciovecchio, C.; Raimondi, L.; Mahne, N.; Svetina, C.; Zangrando, M.; Passuello, R.; Gaio, G.; Prica, M.; Scarcia, M.; Kourousias, G.; Borghes, R.; Giannessi, L.; Wurth, W.; Parmigiani, F.

    2016-12-01

    In the past few years, we have been witnessing an increased interest for studying materials properties under non-equilibrium conditions. Several well established spectroscopies for experiments in the energy domain have been successfully adapted to the time domain with sub-picosecond time resolution. Here we show the realization of high resolution resonant inelastic X-ray scattering (RIXS) with a stable ultrashort X-ray source such as an externally seeded free electron laser (FEL). We have designed and constructed a RIXS experimental endstation that allowed us to successfully measure the d-d excitations in KCoF3 single crystals at the cobalt M2,3-edge at FERMI FEL (Elettra-Sincrotrone Trieste, Italy). The FEL-RIXS spectra show an excellent agreement with the ones obtained from the same samples at the MERIXS endstation of the MERLIN beamline at the Advanced Light Source storage ring (Berkeley, USA). We established experimental protocols for performing time resolved RIXS experiments at a FEL source to avoid X ray-induced sample damage, while retaining comparable acquisition time to the synchrotron based measurements. Finally, we measured and modelled the influence of the FEL mixed electromagnetic modes, also present in externally seeded FELs, and the beam transport with ~120 meV experimental resolution achieved in the presented RIXS setup.

  16. Beam energy distribution influences on density modulation efficiency in seeded free-electron lasers

    CERN Document Server

    Wang, Guanglei; Deng, Haixiao; Zhang, Weiqing; Wu, Guorong; Dai, Dongxu; Wang, Dong; Zhao, Zhentang; Yang, Xueming

    2015-01-01

    The beam energy spread at the entrance of undulator system is of paramount importance for efficient density modulation in high-gain seeded free-electron lasers (FELs). In this paper, the dependences of high harmonic micro-bunching in the high-gain harmonic generation (HGHG), echo-enabled harmonic generation (EEHG) and phase-merging enhanced harmonic generation (PEHG) schemes on the electron energy spread distribution are studied. Theoretical investigations and multi-dimensional numerical simulations are applied to the cases of uniform and saddle beam energy distributions and compared to a traditional Gaussian distribution. It shows that the uniform and saddle electron energy distributions significantly enhance the performance of HGHG-FELs, while they almost have no influence on EEHG and PEHG schemes. A numerical example demonstrates that, with about 84keV RMS uniform and/or saddle slice energy spread, the 30th harmonic radiation can be directly generated by a single-stage seeding scheme for a soft x-ray FEL f...

  17. BESTIA (Brookhaven Experimental Supra-Terawatt Infrared at ATF) laser: A status report

    Science.gov (United States)

    Polyanskiy, Mikhail N.; Babzien, Marcus; Pogorelsky, Igor V.

    2017-03-01

    Development of a next-generation CO2 laser aiming at 100 TW peak power at a wavelength of 10 µm ts underway at the Brookhaven Accelerator Test Facility (ATF). A new laser facility is being deployed as part of the ATF-II upgrade. New high-pressure power amplifiers are being fabricated and assembled, while R&D continues with ATF's present 2 TW CO2 laser system. Our plan for increasing the peak laser power envisions several discrete steps in the upgrade. First will be demonstration of a 10 TW capability utilizing chirped pulse amplification, with an extended power amplifier chain filled with high-pressure isotopic gas. Further development aimed at a demonstration of 25 TW operation will require the addition of a nonlinear compressor system to shrink the pulse width below the nominal gain-bandwidth limit. These upgrades will then enable a longer-term R&D effort to achieve the 100 TW goal. Over the last two years, significant R&D effort has been focused on the development of chirped-pulse amplification, the study of the behavior of optical materials under the action of high-peak-power mid-IR pulses, and the optimization of the beam quality, which is required for nonlinear pulse compression. The results of this R&D have been implemented into the ongoing operation of the ATF's CO2 laser and have already benefited our users in their experimental programs.

  18. Beam energy distribution influences on density modulation efficiency in seeded free-electron lasers

    Directory of Open Access Journals (Sweden)

    Guanglei Wang

    2015-06-01

    Full Text Available The beam energy spread at the entrance of an undulator system is of paramount importance for efficient density modulation in high-gain seeded free-electron lasers (FELs. In this paper, the dependences of high harmonic bunching efficiency in high-gain harmonic generation (HGHG, echo-enabled harmonic generation (EEHG and phase-merging enhanced harmonic generation (PEHG schemes on the electron beam energy spread distribution are studied. Theoretical investigations and multidimensional numerical simulations are applied to the cases of uniform and saddle beam energy distributions and compared to a traditional Gaussian distribution. It shows that the uniform and saddle electron energy distributions significantly enhance the bunching performance of HGHG FELs, while they almost have no influence on EEHG and PEHG schemes. A further start-to-end simulation example demonstrated that, with the saddle distribution of sliced beam energy spread controlled by a laser heater, the 30th harmonic can be directly generated by a single-stage HGHG scheme for a soft x-ray FEL facility.

  19. Spectral modification of the laser emission of a terahertz quantum cascade laser induced by broad-band double pulse injection seeding

    Energy Technology Data Exchange (ETDEWEB)

    Markmann, Sergej, E-mail: sergej.markmann@ruhr-uni-bochum.de; Nong, Hanond, E-mail: nong.hanond@ruhr-uni-bochum.de; Hekmat, Negar; Jukam, Nathan [AG Terahertz Spektroskopie und Technologie, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Pal, Shovon [AG Terahertz Spektroskopie und Technologie, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Scholz, Sven; Kukharchyk, Nadezhda; Ludwig, Arne; Wieck, Andreas D. [Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Dhillon, Sukhdeep; Tignon, Jérôme [Laboratoire Pierre Aigrain, Ecole Normale Supérieure, UMR 8551 CNRS, UPMC, Univ. Paris 6, 75005 Paris (France); Marcadet, Xavier [Alcatel-Thales III-V Lab, Route Départementale 128, 91767 Palaiseau Cedex (France); Bock, Claudia; Kunze, Ulrich [Lehrstuhl für Werkstoffe und Nanoelektronik, Ruhr-Universität Bochum, D-44780 Bochum (Germany)

    2015-09-14

    We demonstrate by injection seeding that the spectral emission of a terahertz (THz) quantum cascade laser (QCL) can be modified with broad-band THz pulses whose bandwidths are greater than the QCL bandwidth. Two broad-band THz pulses delayed in time imprint a modulation on the single THz pulse spectrum. The resulting spectrum is used to injection seed the THz QCL. By varying the time delay between the THz pulses, the amplitude distribution of the QCL longitudinal modes is modified. By applying this approach, the QCL emission is reversibly switched from multi-mode to single mode emission.

  20. Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers.

    Science.gov (United States)

    Ancona, A; Döring, S; Jauregui, C; Röser, F; Limpert, J; Nolte, S; Tünnermann, A

    2009-11-01

    The influence of pulse duration on the laser drilling of metals at repetition rates of up to 1 MHz and average powers of up to 70 W has been experimentally investigated using an ytterbium-doped-fiber chirped-pulse amplification system with pulses from 800 fs to 19 ps. At a few hundred kilohertz particle shielding causes an increase in the number of pulses for breakthrough, depending on the pulse energy and duration. At higher repetition rates, the heat accumulation effect overbalances particle shielding, but significant melt ejection affects the hole quality. Using femtosecond pulses, heat accumulation starts at higher repetition rates, and the ablation efficiency is higher compared with picosecond pulses.

  1. Simulation of the relativistic electron dynamics and acceleration in a linearly-chirped laser pulse

    CERN Document Server

    Jisrawi, Najeh M; Salamin, Yousef I

    2014-01-01

    Theoretical investigations are presented, and their results are discussed, of the laser acceleration of a single electron by a chirped pulse. Fields of the pulse are modeled by simple plane-wave oscillations and a $\\cos^2$ envelope. The dynamics emerge from analytic and numerical solutions to the relativistic Lorentz-Newton equations of motion of the electron in the fields of the pulse. All simulations have been carried out by independent Mathematica and Python codes, with identical results. Configurations of acceleration from a position of rest as well as from injection, axially and sideways, at initial relativistic speeds are studied.

  2. Fiber-Coupled Planar Light-Wave Circuit for Seed Laser Control in High Spectral Resolution Lidar Systems

    Science.gov (United States)

    Cook, Anthony; McNeil, Shirley; Switzer, Gregg; Battle, Philip

    2010-01-01

    Precise laser remote sensing of aerosol extinction and backscatter in the atmosphere requires a high-power, pulsed, frequency doubled Nd:YAG laser that is wavelength- stabilized to a narrow absorption line such as found in iodine vapor. One method for precise wavelength control is to injection seed the Nd:YAG laser with a low-power CW laser that is stabilized by frequency converting a fraction of the beam to 532 nm, and to actively frequency-lock it to an iodine vapor absorption line. While the feasibility of this approach has been demonstrated using bulk optics in NASA Langley s Airborne High Spectral Resolution Lidar (HSRL) program, an ideal, lower cost solution is to develop an all-waveguide, frequency-locked seed laser in a compact, robust package that will withstand the temperature, shock, and vibration levels associated with airborne and space-based remote sensing platforms. A key technology leading to this miniaturization is the integration of an efficient waveguide frequency doubling element, and a low-voltage phase modulation element into a single, monolithic, planar light-wave circuit (PLC). The PLC concept advances NASA's future lidar systems due to its compact, efficient and reliable design, thus enabling use on small aircraft and satellites. The immediate application for this technology is targeted for NASA Langley's HSRL system for aerosol and cloud characterization. This Phase I effort proposes the development of a potassium titanyl phosphate (KTP) waveguide phase modulator for future integration into a PLC. For this innovation, the proposed device is the integration of a waveguide-based frequency doubler and phase modulator in a single, fiber pigtail device that will be capable of efficient second harmonic generation of 1,064-nm light and subsequent phase modulation of the 532 nm light at 250 MHz, providing a properly spectrally formatted beam for HSRL s seed laser locking system. Fabrication of the integrated PLC chip for NASA Langley, planned for

  3. High power dissipative soliton in an Erbium-doped fiber laser mode-locked with a high modulation depth saturable absorber mirror.

    Science.gov (United States)

    Cabasse, A; Martel, G; Oudar, J L

    2009-06-08

    We report on a passively mode-locked erbium-doped fiber laser, using a high nonlinear modulation depth saturable absorber mirror, in a Fabry-Perot cavity. A segment of dispersion compensation fiber is added inside the cavity in order to build a high-positive dispersion regime. The setup produced highly chirped pulses with an energy of 1.8 nJ at a repetition rate of 33.5 MHz. Numerical simulations accurately reflect our experimental results and show that pulse-shaping in this laser could be interpreted as producing 'dissipative solitons'.

  4. Stabilization of a high-order harmonic generation seeded extreme ultraviolet free electron laser by time-synchronization control with electro-optic sampling

    Institute of Scientific and Technical Information of China (English)

    H.Tomizawa; T.Sato; K.Ogawa; K.Togawa; T.Tanaka; T.Hara; M.Yabashi; H.Tanaka; T.Ishikawa; T.Togashi; S.Matsubara; Y.Okayasu; T.Watanabe; E.J.Takahashi; K.Midorikawa; M.Aoyama; K.Yamakawa; S.Owada; A.Iwasaki; K.Yamanouchi

    2015-01-01

    A fully coherent free electron laser(FEL) seeded with a higher-order harmonic(HH) pulse from high-order harmonic generation(HHG) is successfully operated for a sufficiently prolonged time in pilot user experiments by using a timing drift feedback. For HHG-seeded FELs, the seeding laser pulses have to be synchronized with electron bunches. Despite seeded FELs being non-chaotic light sources in principle, external laser-seeded FELs are often unstable in practice because of a timing jitter and a drift between the seeding laser pulses and the accelerated electron bunches. Accordingly,we constructed a relative arrival-timing monitor based on non-invasive electro-optic sampling(EOS). The EOS monitor made uninterrupted shot-to-shot monitoring possible even during the seeded FEL operation. The EOS system was then used for arrival-timing feedback with an adjustability of 100 fs for continual operation of the HHG-seeded FEL. Using the EOS-based beam drift controlling system, the HHG-seeded FEL was operated over half a day with an effective hit rate of 20%–30%. The output pulse energy was 20 μJ at the 61.2 nm wavelength. Towards seeded FELs in the water window region, we investigated our upgrade plan to seed high-power FELs with HH photon energy of 30–100 e V and lase at shorter wavelengths of up to 2 nm through high-gain harmonic generation(HGHG) at the energy-upgraded SPring-8Compact SASE Source(SCSS) accelerator. We studied a benefit as well as the feasibility of the next HHG-seeded FEL machine with single-stage HGHG with tunability of a lasing wavelength.

  5. Trace isotope analysis of Ricinus communis seed core for provenance determination by laser ablation-ICP-MS.

    Science.gov (United States)

    Bagas, Christina K; Scadding, Rachel L; Scadding, Cameron J; Watling, R John; Roberts, Warren; Ovenden, Simon P B

    2017-01-01

    The castor bean plant, Ricinus communis, grows wild throughout many regions of Australia. The seeds of the plant contain the schedule 1 chemical agent ricin, a type II ribosomal inhibiting protein. Currently there are limited analytical techniques that can be applied in analysis of the seeds to establish attribution. In this study, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for the analysis of seeds collected from 68 plants across 38 locations around Australia. Of the 92 elemental isotopes measured, fifteen ((24)Mg, (27)Al, (44)Ca, (53)Cr, (55)Mn, (57)Fe, (60)Ni, (65)Cu, (66)Zn, (75)As, (85)Rb, (88)Sr, (98)Mo, (138)Ba and (202)Hg) yielded data that were relevant to all collection sites. Data were further analysed using multivariate statistical analysis which facilitated the potential for the identification of unique provenance isotopes. Furthermore, this analysis indicated that (59)Co was present at significant levels in Victorian and Sydney specimens only.

  6. Widely tunable two-colour seeded free-electron laser source for resonant-pump resonant-probe magnetic scattering.

    Science.gov (United States)

    Ferrari, Eugenio; Spezzani, Carlo; Fortuna, Franck; Delaunay, Renaud; Vidal, Franck; Nikolov, Ivaylo; Cinquegrana, Paolo; Diviacco, Bruno; Gauthier, David; Penco, Giuseppe; Ribič, Primož Rebernik; Roussel, Eleonore; Trovò, Marco; Moussy, Jean-Baptiste; Pincelli, Tommaso; Lounis, Lounès; Manfredda, Michele; Pedersoli, Emanuele; Capotondi, Flavio; Svetina, Cristian; Mahne, Nicola; Zangrando, Marco; Raimondi, Lorenzo; Demidovich, Alexander; Giannessi, Luca; De Ninno, Giovanni; Danailov, Miltcho Boyanov; Allaria, Enrico; Sacchi, Maurizio

    2016-01-13

    The advent of free-electron laser (FEL) sources delivering two synchronized pulses of different wavelengths (or colours) has made available a whole range of novel pump-probe experiments. This communication describes a major step forward using a new configuration of the FERMI FEL-seeded source to deliver two pulses with different wavelengths, each tunable independently over a broad spectral range with adjustable time delay. The FEL scheme makes use of two seed laser beams of different wavelengths and of a split radiator section to generate two extreme ultraviolet pulses from distinct portions of the same electron bunch. The tunability range of this new two-colour source meets the requirements of double-resonant FEL pump/FEL probe time-resolved studies. We demonstrate its performance in a proof-of-principle magnetic scattering experiment in Fe-Ni compounds, by tuning the FEL wavelengths to the Fe and Ni 3p resonances.

  7. Self-Seeded RSOA-Fiber Cavity Lasers vs. ASE Spectrum-Sliced or Externally Seeded Transmitters—A Comparative Study

    Directory of Open Access Journals (Sweden)

    Simon A. Gebrewold

    2015-12-01

    Full Text Available Reflective semiconductor optical amplifier fiber cavity lasers (RSOA-FCLs are appealing, colorless, self-seeded, self-tuning and cost-efficient upstream transmitters. They are of interest for wavelength division multiplexed passive optical networks (WDM-PONs based links. In this paper, we compare RSOA-FCLs with alternative colorless sources, namely the amplified spontaneous emission (ASE spectrum-sliced and the externally seeded RSOAs. We compare the differences in output power, signal-to-noise ratio (SNR, relative intensity noise (RIN, frequency response and transmission characteristics of these three sources. It is shown that an RSOA-FCL offers a higher output power over an ASE spectrum-sliced source with SNR, RIN and frequency response characteristics halfway between an ASE spectrum-sliced and a more expensive externally seeded RSOA. The results show that the RSOA-FCL is a cost-efficient WDM-PON upstream source, borrowing simplicity and cost-efficiency from ASE spectrum slicing with characteristics that are, in many instances, good enough to perform short-haul transmission. To substantiate our statement and to quantitatively compare the potential of the three schemes, we perform data transmission experiments at 5 and 10 Gbit/s.

  8. External injection and acceleration of electron bunch in front of the plasma wakefield produced by a periodic chirped laser pulse

    Science.gov (United States)

    Eslami, Esmaeil; Afhami, Saeedeh

    2017-01-01

    Herein, we present the analytical results on the behavior of the electron bunch injected in front of the plasma wakefield produced by a chirped laser pulse. In particular, a periodic chirped pulse may produce an ultra-relativistic electron bunch with a relatively small energy spread. The electrons are trapped near the region of the first accelerating maximum of the wakefield and are compressed in both the longitudinal and transverse directions (betatron oscillation). Our results are in good agreement with the one-dimensional results recently published.

  9. Coherent control of ultracold molecule dynamics in a magneto-optical trap using chirped femtosecond laser pulses

    CERN Document Server

    Brown, B L; Walmsley, I A; Brown, Benjamin L.; Dicks, Alexander J.; Walmsley, Ian A.

    2005-01-01

    We have studied the effects of chirped femtosecond laser pulses on the formation of ultracold molecules in a Rb magneto-optical trap. We have found that application of chirped femtosecond pulses suppressed the formation of 85Rb-2 and 87Rb-2 lowest triplet state molecules in contrast to comparable non-chirped pulses, cw illumination, and background formation rates. Variation of the amount of chirp indicated that this suppression is coherent in nature, suggesting that coherent control is likely to be useful for manipulating the dynamics of ultracold quantum molecular gases.

  10. A broadband Fourier-transform microwave spectrometer with laser ablation source: The rotational spectrum of nicotinic acid

    Science.gov (United States)

    Mata, S.; Peña, I.; Cabezas, C.; López, J. C.; Alonso, J. L.

    2012-10-01

    A chirped pulse Fourier transform microwave spectrometer (CP-FTMW) has been combined with a laser ablation source to investigate the broadband rotational spectra of solid biomolecules in the 6.0-18 GHz region. This technique has been successfully applied to the conformational study of nicotinic acid for which two conformers have been characterized for the first time in the gas phase. The quadrupole hyperfine structure originated by a 14N nucleus has been completely resolved for both rotamers using a LA-MB-FTMW spectrometer.

  11. First operation of a harmonic lasing self-seeded free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Schneidmiller, E.A.; Faatz, B.; Kuhlmann, M.; Roensch-Schulenburg, J.; Schreiber, S.; Tischer, M.; Yurkov, M.V.

    2016-12-15

    Harmonic lasing is a perspective mode of operation of X-ray FEL user facilities that allows to provide brilliant beams of higher energy photons for user experiments. Another useful application of harmonic lasing is so called Harmonic Lasing Self-Seeded Free Electron Laser (HLSS FEL) that allows to improve spectral brightness of these facilities. In the past, harmonic lasing has been demonstrated in the FEL oscillators in infrared and visible wavelength ranges, but not in high-gain FELs and not at short wavelengths. In this paper we report on the first evidence of the harmonic lasing and the first operation of the HLSS FEL at the soft X-ray FEL user facility FLASH in the wavelength range between 4.5 nm and 15 nm. Spectral brightness was improved in comparison with Self-Amplified Spontaneous emission (SASE) FEL by a factor of six in the exponential gain regime. A better performance of HLSS FEL with respect to SASE FEL in the post-saturation regime with a tapered undulator was observed as well. The first demonstration of harmonic lasing in a high-gain FEL and at short wavelengths paves the way for a variety of applications of this new operation mode in X-ray FELs.

  12. First operation of a harmonic lasing self-seeded free electron laser

    Directory of Open Access Journals (Sweden)

    E. A. Schneidmiller

    2017-02-01

    Full Text Available Harmonic lasing is a possible mode of operation of X-ray FEL user facilities that allows us to provide brilliant beams of higher energy photons for user experiments. Another useful application of harmonic lasing is the so-called harmonic lasing self-seeded free electron laser (HLSS FEL that allows the improvement of spectral brightness of these facilities. In the past, harmonic lasing has been demonstrated in the FEL oscillators in infrared and visible wavelength ranges, but not in high-gain FELs and not at short wavelengths. In this paper we report on the first evidence of the harmonic lasing and the first operation of the HLSS FEL at the soft X-ray FEL user facility FLASH in the wavelength range between 4.5 nm and 15 nm. Spectral brightness was improved in comparison with self-amplified spontaneous emission (SASE FEL by a factor of six in the exponential gain regime. A better performance of HLSS FEL with respect to SASE FEL in the post-saturation regime with a tapered undulator was observed as well. The first demonstration of harmonic lasing in a high-gain FEL and at short wavelengths paves the way for a variety of applications of this new operation mode in X-ray FELs.

  13. The effect of chirped intense femtosecond laser pulses on the Argon cluster

    CERN Document Server

    Ghaforyan, H; Irani, E

    2016-01-01

    The interaction of intense femtosecond laser pulses with atomic Argon clusters has been investigated by using nano-plasma model. Based on the dynamic simulations, ionization process, heating and expansion of a cluster after irradiation by femtosecond laser pulses at intensities up to 2*1017 Wcm-2 are studied. The analytical calculation provides ionization ratefor different mechanisms and time evolution of the density of electrons for different pulse shapes. In this approach the strong dependence of laser intensity, pulse duration and laser shape on the electron energy, the electron density and the cluster size are presented using the intense chirped laser pulses. Based on the presented theoretical modifications, the effect of chirped laser pulse on the complex dynamical process of the interaction is studied. It is found that the energy of electrons and the radius of cluster for the negatively chirped pulsesare improved up to 20% in comparison to the unchirped and positively chirped pulses.

  14. 1  J, 0.5  kHz repetition rate picosecond laser.

    Science.gov (United States)

    Baumgarten, Cory; Pedicone, Michael; Bravo, Herman; Wang, Hanchen; Yin, Liang; Menoni, Carmen S; Rocca, Jorge J; Reagan, Brendan A

    2016-07-15

    We report the demonstration of a diode-pumped chirped pulse amplification Yb:YAG laser that produces λ=1.03  μm pulses of up to 1.5 J energy compressible to sub-5 ps duration at a repetition rate of 500 Hz (750 W average power). Amplification to high energy takes place in cryogenically cooled Yb:YAG active mirrors designed for kilowatt average power laser operation. This compact laser system will enable new advances in high-average-power ultrashort-pulse lasers and high-repetition-rate tabletop soft x-ray lasers. As a first application, the laser was used to pump a 400 Hz λ=18.9  nm laser.

  15. 1.2 MW peak power, all-solid-state picosecond laser with a microchip laser seed and a high gain single-passing bounce geometry amplifier

    Science.gov (United States)

    Wang, Chunhua; Shen, Lifeng; Zhao, Zhiliang; Liu, Bin; Jiang, Hongbo; Chen, Jun; Liu, Chong

    2016-11-01

    A semiconductor saturable absorber mirror (SESAM) based passively Q-switched microchip Nd:YVO4 seed laser with pulse duration of 90 ps at repetition rate of 100 kHz is amplified by single-passing a Nd:YVO4 bounce amplifier with varying seed input power from 20 μW to 10 mW. The liquid pure metal greasy thermally conductive material is used to replace the traditional thin indium foil as the thermal contact material for better heat load transfer of the Nd:YVO4 bounce amplifier. Temperature distribution at the pump surface is measured by an infrared imager to compare with the numerically simulated results. A highest single-passing output power of 11.3 W is obtained for 10 mW averaged seed power, achieving a pulse peak power of ~1.25 MW and pulse energy of ~113 μJ. The beam quality is well preserved with M2 ≤1.25. The simple configuration of this bounce laser amplifier made the system flexible, robust and cost-effective, showing attractive potential for further applications.

  16. Laser Induced breakdown spectroscopy: A rapid tool for the identification and quantification of minerals in cucurbit seeds.

    Science.gov (United States)

    Singh, Jyotsana; Kumar, Rohit; Awasthi, Shikha; Singh, Vinti; Rai, A K

    2017-04-15

    Laser-induced breakdown spectroscopy (LIBS) was investigated to estimate the viability as a simple and rapid method for analysis of nutrient elements in seed kernels of cucurbits. LIBS spectra were recorded in the range of 200-975nm by using Q-switched Nd:YAG laser at 532nm (4ns, 10Hz) attached to echelle spectrometer with intensified charged coupled device (ICCD). The spectral analysis revealed the presence of several elements like C, O, N, Mg, Ca, Na and K in seeds. The quantification of elements (Mg, Ca, Na and K) through LIBS was done using calibration curve method in which all calibration curve shows good linearity (r>0.95). The result obtained through LIBS was in reasonable agreement with that obtained through atomic absorption spectroscopy (AAS). Principal Component Analysis (PCA) was also applied to the LIBS data for rapid categorization of seed samples belonging to same species although samples have similar nutrient elements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Dissipative soliton mode-locked all-fiber laser with a broad spectral bandwidth

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seolwon; Yeom, Dongil [Ajou University, Suwon (Korea, Republic of)

    2014-12-15

    We demonstrate an all-fiber dissipative soliton fiber laser (DSFL) with a very broad spectral bandwidth by optimizing the cavity design of the fiber laser. Two different cavity schemes of the DSFL with simple cavity structures were built by employing a hybrid component, and their properties were investigated while varying the net cavity dispersion of the laser. By optimizing the cavity dispersion of the fiber laser, we achieved a DSFL that stably deliver linear chirped pulses with a pulse duration of 912.5 fs at a repetition rate of 52.2 MHz without additional pulse compression. The measured spectral bandwidth of the laser was 68 nm, which is the largest value ever reported for Er-doped DSFL oscillators.

  18. The EIS beamline at the seeded free-electron laser FERMI

    Science.gov (United States)

    Simoncig, A.; Mincigrucci, R.; Principi, E.; Bencivenga, F.; Calvi, A.; Foglia, L.; Kurdi, G.; Raimondi, L.; Manfredda, M.; Mahne, N.; Gobessi, R.; Gerusina, S.; Fava, C.; Zangrando, M.; Matruglio, A.; Dal Zilio, S.; Masciotti, V.; Masciovecchio, C.

    2017-05-01

    Among the fourth-generation light sources, the Italian free-electron laser (FEL) FERMI is the only one operating in the high-gain harmonic generation (HGHG) seeding mode. FERMI delivers pulses characterized by a quasi transform limited temporal structure, photon energies lying in the extreme ultra-violet (EUV) region, supreme transversal and longitudinal coherences, high peak brilliance, and full control of the polarization. Such state of the art performances recently opened the doors to a new class of time-resolved spectroscopies, difficult or even impossible to be performed using self-amplified spontaneous sources (SASE) light sources. FERMI is currently equipped with three operating beamlines opened to external users (DiProI, LDM and EIS), while two more are under commissioning (MagneDYN and TeraFERMI). Here, we present the recent highlights of the EIS (Elastic and Inelastic Scattering) beamline, which has been purposely designed to take full advantage from the coherence, the intensity, the harmonics content, and the temporal duration of the pulses. EIS is a flexible experimental facility for time-resolved EUV scattering experiments on condensed matter systems, consisting of two independent end-stations. The first one (EIS-TIMEX) aims to study materials in metastable and warm dense matter (WDM) conditions, while the second end-station (EIS-TIMER) is fully oriented to the extension of four-wave mixing (FWM) spectroscopies towards the EUV spectral regions, trying to reveal the behavior of matter in portions of the mesoscopic regime of exchanged momentum impossible to be probed using conventional light sources.

  19. Single-shot spectro-temporal characterization of XUV pulses from a seeded free-electron laser.

    Science.gov (United States)

    De Ninno, Giovanni; Gauthier, David; Mahieu, Benoît; Ribič, Primož Rebernik; Allaria, Enrico; Cinquegrana, Paolo; Danailov, Miltcho Bojanov; Demidovich, Alexander; Ferrari, Eugenio; Giannessi, Luca; Penco, Giuseppe; Sigalotti, Paolo; Stupar, Matija

    2015-08-20

    Intense ultrashort X-ray pulses produced by modern free-electron lasers (FELs) allow one to probe biological systems, inorganic materials and molecular reaction dynamics with nanoscale spatial and femtoscale temporal resolution. These experiments require the knowledge, and possibly the control, of the spectro-temporal content of individual pulses. FELs relying on seeding have the potential to produce spatially and temporally fully coherent pulses. Here we propose and implement an interferometric method, which allows us to carry out the first complete single-shot spectro-temporal characterization of the pulses, generated by an FEL in the extreme ultraviolet spectral range. Moreover, we provide the first direct evidence of the temporal coherence of a seeded FEL working in the extreme ultraviolet spectral range and show the way to control the light generation process to produce Fourier-limited pulses. Experiments are carried out at the FERMI FEL in Trieste.

  20. Laser light and magnetic field stimulation effect on biochemical, enzymes activities and chlorophyll contents in soybean seeds and seedlings during early growth stages.

    Science.gov (United States)

    Asghar, Tehseen; Jamil, Yasir; Iqbal, Munawar; Zia-Ul-Haq; Abbas, Mazhar

    2016-12-01

    Laser and magnetic field bio-stimulation attracted the keen interest of scientific community in view of their potential to enhance seed germination, seedling growth, physiological, biochemical and yield attributes of plants, cereal crops and vegetables. Present study was conducted to appraise the laser and magnetic field pre-sowing seed treatment effects on soybean sugar, protein, nitrogen, hydrogen peroxide (H2O2) ascorbic acid (AsA), proline, phenolic and malondialdehyde (MDA) along with chlorophyll contents (Chl "a" "b" and total chlorophyll contents). Specific activities of enzymes such as protease (PRT), amylase (AMY), catalyst (CAT), superoxide dismutase (SOD) and peroxides (POD) were also assayed. The specific activity of enzymes (during germination and early growth), biochemical and chlorophyll contents were enhanced significantly under the effect of both laser and magnetic pre-sowing treatments. Magnetic field treatment effect was slightly higher than laser treatment except PRT, AMY and ascorbic acid contents. However, both treatments (laser and magnetic field) effects were significantly higher versus control (un-treated seeds). Results revealed that laser and magnetic field pre-sowing seed treatments have potential to enhance soybean biological moieties, chlorophyll contents and metabolically important enzymes (degrade stored food and scavenge reactive oxygen species). Future study should be focused on growth characteristics at later stages and yield attributes.

  1. Single-passband microwave photonic filter based on a self-seeded multiwavelength Brillouin-erbium fiber laser

    Science.gov (United States)

    Xu, Ronghui; Zhang, Xuping; Hu, Junhui; Xia, Lan

    2015-03-01

    In this paper, a single-passband microwave photonic filter based on a self-seeded multiwavelength Brillouin-erbium fiber laser is demonstrated experimentally. In the filter, the multiwavelength Brillouin comb generated from the laser is used as the filter taps. The Brillouin comb is with the feature of quasi-Gaussian continuous distribution, which can ensure the filter realizes single-passband characteristic. The baseband response is suppressed effectively with the help of phase modulation. The single-passband filter has an out-of-band rejection of 25 dB. By adjusting the Brillouin multiwavelengh, the 3-dB bandwidth and the center frequency of the filter can be changed.

  2. Ultrahigh-intensity laser: physics of the extreme on a tabletop

    Energy Technology Data Exchange (ETDEWEB)

    Mourou, G.A.; Barty, C.P.; Perry, M.D.

    1997-10-10

    This paper reviews the development of ultrahigh-intensity laser technology from the early 1960`s to the present, explaining the obstacles to each increase in intensity and the technical means used to overcome them. These included the shortening of pulses, mode locking, and chirped pulse amplification (CPA). The particular technical advances that make CPA possible included the invention of matched pulse stretchers and compressors and the development of ultrabroadband gain media. The paper then discusses the generation of ultrashort pulses and their characteristics. It then moves on to the Petawatt laser, which incorporates the CPA technology. It then addresses the question of whether it is possible to forecast the ultimate peak power that can be achieved by a laser system of a given size. Applications of ultrahigh-intensity lasers in different physical regimes are discussed.

  3. Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast lasers.

    Science.gov (United States)

    Alessi, David A; Rosso, Paul A; Nguyen, Hoang T; Aasen, Michael D; Britten, Jerald A; Haefner, Constantin

    2016-12-26

    Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. Combining this technique with low absorption multilayer dielectric gratings developed in our group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.

  4. Energy reduction: a technique for seed-injection locking of single-axial-mode Q-switched Nd:YAG laser

    Institute of Scientific and Technical Information of China (English)

    Sui Chen; Wenxiong Lin; Fei Shi; Jianhong Huang; Jinhui Li; Hui Zheng; Jipeng Lin; Canhua Xu

    2007-01-01

    A new technique for seed-injection locking of single-axial-mode (SAM) Q-switched Nd:YAG laser is reported. The technique called energy reduction (ER) is utilized when SAM operation is locked to design its feedback scheme. This method ensures long-term 100% seed-injection locking performance and the pulsed SAM output energy can reach as high as 200 mJ. Both temporal and spatial interferometric experiments have been executed to confirm the SAM oscillation.

  5. DFB diode seeded low repetition rate fiber laser system operating in burst mode

    Science.gov (United States)

    Šajn, M.; Petelin, J.; Agrež, V.; Vidmar, M.; Petkovšek, R.

    2017-02-01

    A distributed feedback (DFB) diode, gain switched to produce pulses from 60 ps at high peak power of over 0.5 W, is used in burst mode to seed a fiber amplifier chain. High seed power, spectral filtering between amplifier stages and pulsed pumping are used to mitigate amplified spontaneous emission (ASE). The effect of pulse pumping synchronized with the seed on the ASE is explored for the power amplifier at low repetition. Different input and output energies at different burst repetition rates are examined and up to 85% reduction in ASE is achieved compared to continuous pumping. Finally, a numerical model is used to predict further reduction of ASE.

  6. Relativistic Tennis with Photons: Demonstration of Frequency Upshifting by a Relativistic Flying Mirror through Two Colliding Laser Pulses

    CERN Document Server

    Kando, M; Pirozhkov, A S; Ma, J; Daito, I; Chen, L -M; Esirkepov, T Zh; Ogura, K; Homma, T; Hayashi, Y; Kotaki, H; Sagisaka, A; Mori, M; Koga, J K; Daido, H; Bulanov, S V; Kimura, T; Kato, Y; Tajima, T

    2007-01-01

    Since the advent of chirped pulse amplification1 the peak power of lasers has grown dramatically and opened the new branch of high field science, delivering the focused irradiance, electric fields of which drive electrons into the relativistic regime. In a plasma wake wave generated by such a laser, modulations of the electron density naturally and robustly take the shape of paraboloidal dense shells, separated by evacuated regions, moving almost at the speed of light. When we inject another counter-propagating laser pulse, it is partially reflected from the shells, acting as relativistic flying (semi-transparent) mirrors, producing an extremely time-compressed frequency-multiplied pulse which may be focused tightly to the diffraction limit. This is as if the counterstreaming laser pulse bounces off a relativistically swung tennis racket, turning the ball of the laser photons into another ball of coherent X-ray photons but with a form extremely relativistically compressed to attosecond and zeptosecond levels....

  7. Seeding the FEL of the SCSS Phase 1 Facility with the 13th Laser Harmonic of a Ti-Sa Laser Produced in Xe Gas

    CERN Document Server

    Lambert, G

    2005-01-01

    In order to reach very short wavelengths in systems based on Free Electrons Laser (FEL), and to have a more compact, fully coherent and tunable source, a particular seeding configuration is studied here. It is foreseen to test it as a demonstration experiment in 2006 into the SCSS phase 1 facility (Spring-8 Compact Sase Source, Japan). SCSS phase 1 is a linac-based FEL project, providing a compact SASE source with high brightness in the X-ray range. The external laser source, which is employed, is straightfully in the XUV range, the 13th harmonic of a Ti:Sa femtosecond laser (61.5 nm), generated in Xe gas. This harmonic can be now easily generated by focusing the Ti: Sa laser (25 mJ, 10 Hz, 100 fs) on a 10 Hz pulsed Xe gas cell. This High order Harmonics Generation (HHG) process provides us with a VUV beam with intense (1 μJ) and ultra-short (50 fs) properties.

  8. A Novel Femtosecond Laser System for Attosecond Pulse Generation

    Directory of Open Access Journals (Sweden)

    Jianqiang Zhu

    2012-01-01

    Full Text Available We report a novel ultrabroadband high-energy femtosecond laser to be built in our laboratory. A 7-femtosecond pulse is firstly stretched by an eight-pass offner stretcher with a chirp rate 15 ps/nm, and then energy-amplified by a two-stage optical parametric chirped pulse amplification (OPCPA. The first stage as preamplification with three pieces of BBO crystals provides the majority of the energy gain. At the second stage, a YCOB crystal with the aperture of ~50 mm is used instead of the KDP crystal as the gain medium to ensure the shortest pulse. After the completion, the laser will deliver about 8 J with pulse duration of about 10 femtoseconds, which should be beneficial to the attosecond pulse generation and other ultrafast experiments.

  9. Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar.

    Science.gov (United States)

    Wulfmeyer, V; Bösenberg, J

    1996-08-01

    A major improvement of a differential absorption lidar (DIAL) system for measurements of tropospheric water vapor and temperature is introduced. A Q-switched unidirectional alexandrite ring laser is injection seeded by a cw Ti:sapphire ring laser. Using an especially developed single-mode electronic, one starts the Q switch when the slave resonator is in resonance with the frequency of the Ti:sapphire laser. Long-term single-mode operation of the alexandrite laser is achieved. A single-shot spectral linewidth of system in the near infrared is presented.

  10. Wavefront measurement of single-mode quantum cascade laser beam for seed application in laser-produced plasma extreme ultraviolet system.

    Science.gov (United States)

    Nowak, Krzysztof M; Ohta, Takeshi; Suganuma, Takashi; Yokotsuka, Toshio; Fujimoto, Junichi; Mizoguchi, Hakaru

    2012-12-01

    Quantum cascade laser (QCL) is a very attractive seed source for a multikilowatt pulsed CO2 lasers applied for driving extreme ultraviolet emitting plasmas. In this Letter, we investigate output beam properties of a QCL designed to address P18 and P20 lines of 10.6 micron band of CO2 molecule. In particular, output beam quality and stability are investigated for the first time. A well-defined linear polarization and a single-mode operation enabled a use of phase retrieval method for full description of QCL output beam. A direct, multi-image numerical phase retrieval technique was developed and successfully applied to the measured intensity patterns of a QCL beam. Very good agreement between the measured and reconstructed beam profiles was observed at distances ranging from QCL aperture to infinity, proving a good understanding of the beam propagation. The results also confirm a high spatial coherence and high stability of the beam parameters, the features expected from an excellent seed source.

  11. Two-colour pump–probe experiments with a twin-pulse-seed extreme ultraviolet free-electron laser

    Science.gov (United States)

    Allaria, E.; Bencivenga, F.; Borghes, R.; Capotondi, F.; Castronovo, D.; Charalambous, P.; Cinquegrana, P.; Danailov, M. B.; De Ninno, G.; Demidovich, A.; Di Mitri, S.; Diviacco, B.; Fausti, D.; Fawley, W. M.; Ferrari, E.; Froehlich, L.; Gauthier, D.; Gessini, A.; Giannessi, L.; Ivanov, R.; Kiskinova, M.; Kurdi, G.; Mahieu, B.; Mahne, N.; Nikolov, I.; Masciovecchio, C.; Pedersoli, E.; Penco, G.; Raimondi, L.; Serpico, C.; Sigalotti, P.; Spampinati, S.; Spezzani, C.; Svetina, C.; Trovò, M.; Zangrando, M.

    2013-01-01

    Exploring the dynamics of matter driven to extreme non-equilibrium states by an intense ultrashort X-ray pulse is becoming reality, thanks to the advent of free-electron laser technology that allows development of different schemes for probing the response at variable time delay with a second pulse. Here we report the generation of two-colour extreme ultraviolet pulses of controlled wavelengths, intensity and timing by seeding of high-gain harmonic generation free-electron laser with multiple independent laser pulses. The potential of this new scheme is demonstrated by the time evolution of a titanium-grating diffraction pattern, tuning the two coherent pulses to the titanium M-resonance and varying their intensities. This reveals that an intense pulse induces abrupt pattern changes on a time scale shorter than hydrodynamic expansion and ablation. This result exemplifies the essential capabilities of the jitter-free multiple-colour free-electron laser pulse sequences to study evolving states of matter with element sensitivity. PMID:24048228

  12. Two-colour pump-probe experiments with a twin-pulse-seed extreme ultraviolet free-electron laser.

    Science.gov (United States)

    Allaria, E; Bencivenga, F; Borghes, R; Capotondi, F; Castronovo, D; Charalambous, P; Cinquegrana, P; Danailov, M B; De Ninno, G; Demidovich, A; Di Mitri, S; Diviacco, B; Fausti, D; Fawley, W M; Ferrari, E; Froehlich, L; Gauthier, D; Gessini, A; Giannessi, L; Ivanov, R; Kiskinova, M; Kurdi, G; Mahieu, B; Mahne, N; Nikolov, I; Masciovecchio, C; Pedersoli, E; Penco, G; Raimondi, L; Serpico, C; Sigalotti, P; Spampinati, S; Spezzani, C; Svetina, C; Trovò, M; Zangrando, M

    2013-01-01

    Exploring the dynamics of matter driven to extreme non-equilibrium states by an intense ultrashort X-ray pulse is becoming reality, thanks to the advent of free-electron laser technology that allows development of different schemes for probing the response at variable time delay with a second pulse. Here we report the generation of two-colour extreme ultraviolet pulses of controlled wavelengths, intensity and timing by seeding of high-gain harmonic generation free-electron laser with multiple independent laser pulses. The potential of this new scheme is demonstrated by the time evolution of a titanium-grating diffraction pattern, tuning the two coherent pulses to the titanium M-resonance and varying their intensities. This reveals that an intense pulse induces abrupt pattern changes on a time scale shorter than hydrodynamic expansion and ablation. This result exemplifies the essential capabilities of the jitter-free multiple-colour free-electron laser pulse sequences to study evolving states of matter with element sensitivity.

  13. Multi-dimensional optimization of a terawatt seeded tapered Free Electron Laser with a Multi-Objective Genetic Algorithm

    Science.gov (United States)

    Wu, Juhao; Hu, Newman; Setiawan, Hananiel; Huang, Xiaobiao; Raubenheimer, Tor O.; Jiao, Yi; Yu, George; Mandlekar, Ajay; Spampinati, Simone; Fang, Kun; Chu, Chungming; Qiang, Ji

    2017-02-01

    There is a great interest in generating high-power hard X-ray Free Electron Laser (FEL) in the terawatt (TW) level that can enable coherent diffraction imaging of complex molecules like proteins and probe fundamental high-field physics. A feasibility study of producing such X-ray pulses was carried out employing a configuration beginning with a Self-Amplified Spontaneous Emission FEL, followed by a "self-seeding" crystal monochromator generating a fully coherent seed, and finishing with a long tapered undulator where the coherent seed recombines with the electron bunch and is amplified to high power. The undulator tapering profile, the phase advance in the undulator break sections, the quadrupole focusing strength, etc. are parameters to be optimized. A Genetic Algorithm (GA) is adopted for this multi-dimensional optimization. Concrete examples are given for LINAC Coherent Light Source (LCLS) and LCLS-II-type systems. Analytical estimate is also developed to cross check the simulation and optimization results as a quick and complimentary tool.

  14. Influence of deviation in central wavelengths of both a seed laser and a pump LD on the output features of a DPAL-MOPA system

    Science.gov (United States)

    Jiang, Zhigang; Wang, You; Cai, He; Han, Juhong; Gao, Ming; An, Guofei; Wang, Shunyan; Zhang, Wei; Xue, Liangping; Zhou, Jie; Wang, Hongyuan

    2016-10-01

    A master oscillator power amplifier (MOPA) is thought to be a suitable equipment to realize the power scaling for a diode pumped alkali laser (DPAL). In fact, the characteristics of a DPAL-MOPA system strongly depend on the central wavelengths of both a seed laser and a pump laser due to the extremely narrow nature linewidth for atomic alkali. In this report, a theoretical model of an end-pumped DPAL-MOPA system is first developed to study the influence of deviations in central wavelengths on the output features. Then, the relationship between the environmental parameters and the output linewidth as well as the output power is analyzed. The results reveal that the deviation in central wavelengths of both a seed laser and a pump LD will lead to a dramatic decrease of the output power for a DPAL-MOPA system. The conclusions are thought to be helpful for design of an end-pumped DPAL with high powers.

  15. Testing relativity again, laser, laser, laser, laser

    NARCIS (Netherlands)

    Einstein, A.

    2015-01-01

    laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser,

  16. Picosecond laser damage performance assessment of multilayer dielectric gratings in vacuum.

    Science.gov (United States)

    Alessi, David A; Carr, C Wren; Hackel, Richard P; Negres, Raluca A; Stanion, Kenneth; Fair, James E; Cross, David A; Nissen, James; Luthi, Ronald; Guss, Gabe; Britten, Jerald A; Gourdin, William H; Haefner, Constantin

    2015-06-15

    Precise assessment of the high fluence performance of pulse compressor gratings is necessary to determine the safe operational limits of short-pulse high energy lasers. We have measured the picosecond laser damage behavior of multilayer dielectric (MLD) diffraction gratings used in the compression of chirped pulses on the Advanced Radiographic Capability (ARC) kilojoule petawatt laser system at the Lawrence Livermore National Laboratory (LLNL). We present optical damage density measurements of MLD gratings using the raster scan method in order to estimate operational performance. We also report results of R-on-1 tests performed with varying pulse duration (1-30 ps) in air, and clean vacuum. Measurements were also performed in vacuum with controlled exposure to organic contamination to simulate the grating use environment. Results show sparse defects with lower damage resistance which were not detected by small-area damage test methods.

  17. High-energy femtosecond Yb-doped dispersion compensation free fiber laser.

    Science.gov (United States)

    Ortaç, B; Schmidt, O; Schreiber, T; Limpert, J; Tünnermann, A; Hideur, A

    2007-08-20

    We report on a mode-locked high energy fiber laser operating in the dispersion compensation free regime. The sigma cavity is constructed with a saturable absorber mirror and short-length large-mode-area photonic crystal fiber. The laser generates positively-chirped pulses with an energy of 265 nJ at a repetition rate of 10.18 MHz in a stable and self-starting operation. The pulses are compressible down to 400 fs leading to a peak power of 500 kW. Numerical simulations accurately reflect the experimental results and reveal the mechanisms for self consistent intracavity pulse evolution. With this performance mode-locked fiber lasers can compete with state-of-the-art bulk femtosecond oscillators for the first time and pulse energy scaling beyond the muJ-level appears to be feasible.

  18. Front-end of the ILE Project: A design study for a 100 mJ sub-10 fs laser

    Science.gov (United States)

    Papadopoulos, Dimitris N.; Ramirez, Patricia; Pellegrina, Alain; Druon, Frédéric; Georges, Patrick; Chen, Xiaowei; Canova, Lorenzo; Malvache, Arnaud; Jullien, Aurélie; Lopez-Martens, Rodrigo

    2010-04-01

    Within the development of the ILE French project aiming on the building of a 10 PW, 150 J/15 fs laser chain (named APOLLON), a design study for a sub-10-fs, 100 mJ pilot laser operating at 800 nm have been conceived. This system is based on a non-collinear optical parametric chirped-pulse amplification (NOPCPA) of the spectrally broadened and compressed pulses of a Ti:Sapphire laser system providing 1.5-mJ, 25-fs, pumped at 515 nm by a high-energy diode-pumped Yb-doped-based laser chain. The envisioned system, based on a novel combined architecture of picosecond and nanosecond NOPCPA stages, will finally deliver carrier envelope phased (CEP) stabilized 1 ns pulses (compressible to less than 10 fs) at 800 nm with 100 mJ energy and at a repetition rate in the range of 10-100 Hz.

  19. Passively mode-locked stretched-pulse erbium-doped fiber ring laser with a regenerative feedback

    Science.gov (United States)

    Roy, Vincent; Lamonde, Martin; Babin, Francois; Piche, Michel

    2003-02-01

    A polarization additive pulse mode-locked stretched-pulse erbium-doped fiber ring laser with a regenerative feedback producing near transform-limited femtosecond pulses is reported. The regenerative feedback makes use of an intensity modulator driven at twice the fundamental repetition rate of the passively mode-locked fiber laser. The laser is self-starting for a limited range of pump power. The de-chirped pulses have a duration of 90 fs (FWHM) and a pulse time-bandwidth product of 0.44. The pulse energy amounts to 0.3 nJ. Pulses with nearly twice that energy could be obtained, though without self-starting capability. The laser RF power spectrum measurement yields an amplitude noise as low as 0.15% (rms) and a pulse timing jitter of 150 fs (rms). In addition, RF spectra show no relaxation oscillation in the self-starting regime.

  20. Laser-plasma interactions from thin tapes for high-energy electron accelerators and seeding compact FELs

    Science.gov (United States)

    Shaw, Brian Henry

    This thesis comprises a detailed investigation of the physics of using a plasma mirror (PM) from a tape by reflecting ultrashort pulses from a laser-triggered surface plasma. The tapes used in the characterization of the PM are VHS and computer data storage tape. The tapes are 6.6 m (computer storage tape) and 15 m (VHS) thick. Each tape is 0.5 inches wide, and 10s of meters of tape are spooled using a tape drive; providing thousands of shots on a single reel of tape. The amount of reflected energy of the PM was studied for different input intensities. The fluence was varied by translating the focus of the laser upstream and downstream of the tape, which changed the spot size on the tape surface and hence changed the fluence. This study measured reflectances from both sides of the two tapes, and for input light of both s and p-polarizations. Lastly, an analytic model was developed to understand the reflectance as a function of fluence for each tape material and polarization. Another application that benefits from the advancements of LPA technology is an LPAbased FEL. By sending a high quality electron bunch through an undulator (a periodic structure of positive and negative magnetic poles), the electrons oscillate transversely to the propagation axis and produce radiation. The 1.5 m THUNDER undulator at the BELLA Center has been commissioned using electron beams of 400MeV beams with broad energy spread (35%). To produce a coherent LPA-based FEL, the beam quality would need to improve to sub-percent level energy spread. A seed source could be used to help induce bunching of the electron beam within the undulator. This thesis described the experimental investigation of the physics of using solid-based surface high-harmonic generation (SHHG) from a thin tape as a possible seed source for an FEL. A thin tape placed within centimeters of the undulator's entrance could act as a harmonic generating source, while simultaneously transmitting an electron beam. This removes

  1. Self-seeded single-frequency solid-state ring laser and system using same

    Science.gov (United States)

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2007-02-20

    A method of operating a laser to obtain an output pulse having a single wavelength, comprises inducing an intracavity loss into a laser resonator having an amount that prevents oscillation during a time that energy from the pump source is being stored in the gain medium. Gain is built up in the gain medium with energy from the pump source until formation of a single-frequency relaxation oscillation pulse in the resonator. Upon detection of the onset of the relaxation oscillation pulse, the intracavity loss is reduced, such as by Q-switching, so that the built-up gain stored in the gain medium is output from the resonator in the form of an output pulse at a single frequency. An electronically controllable output coupler is controlled to affect output pulse characteristics. The laser acts a master oscillator in a master oscillator power amplifier configuration. The laser is used for laser peening.

  2. Experimental and numerical evaluation of freely spacing-tunable multiwavelength fiber laser based on two seeding light signals

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Yijun [Department of Electronic and Information Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, Guangdong 518055 (China); College of Physics Science and Engineering Technology, Yichun University, Yichun, Jiangxi 336000 (China); Yao, Yong, E-mail: yaoyong@hit.edu.cn; Guo, Bo; Yang, Yanfu; Tian, JiaJun [Department of Electronic and Information Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, Guangdong 518055 (China); Yi, Miao [College of Physics Science and Engineering Technology, Yichun University, Yichun, Jiangxi 336000 (China)

    2015-03-28

    A model of multiwavelength erbium-doped fiber laser (MEFL), which takes into account the impact of fiber attenuation on the four-wave-mixing (FWM), is proposed. Using this model, we numerically study the output characteristics of the MEFL based on FWM in a dispersion shift fiber with two seeding light signals (TSLS) and experimentally verify these characteristics. The numerical and experimental results show that the number of output channels can be increased with the increase of the erbium-doped fiber pump power. In addition, by decreasing the spacing of TSLS and increasing the power of TSLS, the number of output channels can be increased. However, when the power of TSLS exceeds a critical value, the number of output channels decreases. The results by numerical simulation are consistent with experimental observations from the MEFL.

  3. Physical design of a wavelength tunable fully coherent VUV source using self-seeding free electron laser

    CERN Document Server

    He-Ting, Li

    2013-01-01

    In order to meet requirements of the synchrotron radiation users, a fully coherent VUV free electron laser (FEL) has been preliminarily designed. One important goal of this design is that the radiation wavelength can be easily tuned in a broad range (70-170 nm). In the light of the users' demand and our actual conditions, the self-seeding scheme is adopted for this proposal. Firstly, we attempt fixing the electron energy and only changing the undulator gap to varying the radiation wavelength, but the analysis implies that it is difficult because of the great difference of the power gain length and FEL efficiency at different wavelength. Therefore, dividing the wavelength range into three subareas is considered. In each subarea, a constant electron energy is used and the wavelength tuning is realized only by adjusting the undulator gap. The simulation results shows that this scheme has an acceptable performance.

  4. Harmonic-seeded remote laser emissions in N2-Ar, N2-Xe and N2-Ne mixtures: a comparative study

    CERN Document Server

    Ni, Jielei; Zhang, Haisu; Jing, Chenrui; Yao, Jinping; Xu, Huailiang; Zeng, Bin; Li, Guihua; Zhang, Chaojin; Chin, See Leang; Cheng, Ya; Xu, Zhizhan

    2012-01-01

    We report on the investigation on harmonic-seeded remote laser emissions at 391 nm wavelength from strong-field ionized nitrogen molecules in three different gas mixtures, i.e., N2-Ar, N2-Xe and N2-Ne. We observed a decrease in the remote laser intensity in the N2-Xe mixture because of the decreased clamped intensity in the filament; whereas in the N2-Ne mixture, the remote laser intensity slightly increases because of the increased clamped intensity within the filament. Remarkably, although the clamped intensity in the filament remains nearly unchanged in the N2-Ar mixture because of the similar ionization potentials of N2 and Ar, a significant enhancement of the lasing emission is realized in the N2-Ar mixture. The enhancement is attributed to the stronger third harmonic seed, and longer gain medium due to the extended filament.

  5. Generation And Measurement Of High Contrast Ultrashort Intense Laser Pulses

    CERN Document Server

    Konoplev, O A

    2000-01-01

    In this thesis, the generation and measurement of high contrast, intense, ultrashort pulses have been studied. Various factors affecting the contrast and pulse shape of ultrashort light pulses from a chirped pulse amplification (CPA) laser system are identified. The level of contrast resulting from influence of these factors is estimated. Methods for improving and controlling the pulse shape and increasing the contrast are discussed. Ultrahigh contrast, 1-ps pulses were generated from a CPA system with no temporal structure up to eleven orders of magnitude. This is eight orders of magnitude higher contrast than the original pulse. This contrast boost was achieved using two techniques. One is the optical pulse cleaning based on the nonlinear birefringence of the chirping fiber and applied to the pulses before amplification. The other is the fast saturable absorber. The fast saturable absorber was placed after amplification and compression of the pulse. The measurements of high-contrast, ultrashort pulse with h...

  6. Sub 100-fs, 5.2-$\\mu$m ZGP Parametric Amplifier Driven by a ps Ho:YAG Chirped Pulse Amplifier and its application to high harmonic generation

    CERN Document Server

    Kanai, Tsuneto; Kangaparambil, Sarayoo Sasidharan; Hoogland, Heinar; Holzwarth, Ronald; Pugžlys, Audrius; Baltuška, Andrius

    2016-01-01

    We report a 1 kHz repetition-rate mid-IR (MIR) optical parametric amplifier (OPA) system operating at a central wavelength of 5.2 $\\mu$m with the tail-to-tail spectrum extending over 1.5 $\\mu$m and delivering 40 $\\mu$J pulses that are compressed to 99 fs (5.6 optical cycles). Also we develop a novel pulse compression scheme for further pulse compression and wavelength tunability. As the first application of this laser system, we generated high harmonics in bulk ZnSe above the bandgap, dense exciton generation after 10-photon absorption, high order sum- and difference-frequency generation, ultrafast transition in the conduction band, which reflects the structure of conduction bands.

  7. A quantitative approach for Cd, Cu, Fe and Mn through laser ablation imaging for evaluating the translocation and accumulation of metals in sunflower seeds.

    Science.gov (United States)

    Pessôa, Gustavo de S; Lopes Júnior, Cícero A; Madrid, Katherine C; Arruda, Marco A Z

    2017-05-15

    The uptake and accumulation of Cd in sunflower seeds represents an important pathway for imputing potentially toxic metals into human and animal food. In this way, bioimaging of Cd and micronutrients (Cu, Fe and Mn) in the seeds of sunflower grown in soil contaminated with Cd are performed. For this task, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is used in quantitative approach, considering four groups: precursor, control, Cd-low (50mg) and Cd-high (700mg). For attaining our proposals, ICP-MS (nebulizer and auxiliary flow rates and radiofrequency power) and LA (laser intensity, frequency and spot size) parameters were optimized, and the analytical signal improved to 197%, 217%, 232%, and 283%, for (57)Fe, (112)Cd, (55)Mn and (63)Cu, respectively. The accuracy of proposed method using LA-ICP-MS is evaluated comparing the CRM results (Tomato leaves, NIST SRM 1573a). No difference is found at 95% confidence level. Regarding Cd accumulation in sunflower seeds, the results indicated that cadmium is translocated to seeds, and the cotyledons showed the highest concentration (Cd-high group), ranging from 10 to 20µgg(-1). Considering both total concentration and the distribution in the seeds, Cd uptake is responsible to the homeostasis misbalance of micronutrients, which play an essential role in the sunflower metabolism. Such results highlight the importance of bioimaging evaluation, in the translocation and accumulation of metals, contributing to expand the information available of this culture.

  8. 16.6 J chirped femtosecond laser pulses from a diode-pumped Yb:CaF2 amplifier.

    Science.gov (United States)

    Kessler, Alexander; Hornung, Marco; Keppler, Sebastian; Schorcht, Frank; Hellwing, Marco; Liebetrau, Hartmut; Körner, Jörg; Sävert, Alexander; Siebold, Mathias; Schnepp, Matthias; Hein, Joachim; Kaluza, Malte C

    2014-03-15

    We report the amplification of laser pulses at a center wavelength of 1034 nm to an energy of 16.6 J from a fully diode-pumped amplifier using Yb:CaF2 as the active medium. Pumped by a total optical power of 300 kW from high-power laser diodes, a gain factor of g=6.1 was achieved in a nine-pass amplifier configuration agreeing with numerical simulations. A measured spectral bandwidth of 10 nm full width at half-maximum promises a bandwidth-limited compression of the pulses down to a duration of 150 fs. These are, to our knowledge, the most energetic laser pulses achieved from a diode-pumped chirped-pulse amplifier so far.

  9. Implementation of a SVWP-based laser beam shaping technique for generation of 100-mJ-level picosecond pulses.

    Science.gov (United States)

    Adamonis, J; Aleknavičius, A; Michailovas, K; Balickas, S; Petrauskienė, V; Gertus, T; Michailovas, A

    2016-10-01

    We present implementation of the energy-efficient and flexible laser beam shaping technique in a high-power and high-energy laser amplifier system. The beam shaping is based on a spatially variable wave plate (SVWP) fabricated by femtosecond laser nanostructuring of glass. We reshaped the initially Gaussian beam into a super-Gaussian (SG) of the 12th order with efficiency of about 50%. The 12th order of the SG beam provided the best compromise between large fill factor, low diffraction on the edges of the active media, and moderate intensity distribution modification during free-space propagation. We obtained 150 mJ pulses of 532 nm radiation. High-energy, pulse duration of 85 ps and the nearly flat-top spatial profile of the beam make it ideal for pumping optical parametric chirped pulse amplification systems.

  10. Femtosecond laser ablation of enamel

    Science.gov (United States)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  11. Highly-stable monolithic femtosecond Yb-fiber laser system based on photonic crystal fibers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2010-01-01

    of around 297 fs duration. Our laser shows exceptional stability. No Q-switched modelocking events were detected during 4-days long observation. An average fluctuation of only 7.85 · 10−4 over the mean output power was determined as a result of more than 6-hours long measurement. The laser is stable towards......A self-starting, passively stabilized, monolithic all polarizationmaintaining femtosecond Yb-fiber master oscillator / power amplifier with very high operational and environmental stability is demonstrated. The system is based on the use of two different photonic crystal fibers. One is used...... in the oscillator cavity for dispersion balancing and nonlinear optical limiting, and another one is used for low nonlinearity final pulse recompression. The chirped-pulse amplification and recompression of the 232-fs, 45-pJ/pulse oscillator output yields a final direct fiber-end delivery of 7.3-nJ energy pulses...

  12. Supercontinuum generation based on all-normal-dispersion Yb-doped fiber laser mode-locked by nonlinear polarization rotation: Influence of seed's output port

    Science.gov (United States)

    Xiao, Xiaosheng; Hua, Yi

    2016-10-01

    All-normal-dispersion (ANDi) mode-locked Yb-doped fiber laser is a promising seed source for supercontinuum (SC) generation, due to its compact structure and broadband output. The influences of output ports of the ANDi laser mode-locked by nonlinear polarization rotation (NPR), on the generated SC are investigated. Two output ports of ANDi laser are considered, one of which is the conventional nonlinear polarization rotation (NPR) port and the other is extracted from a coupler after the NPR port. It is found that, the SC originated from the coupler port is much broader than that from the NPR port, which is validated by lots of experiments with different output parameters. Furthermore, the conclusion is verified and generalized to general ANDi lasers by numerical simulations, because the output pulse from coupler port could be cleaner than that from NPR port. Besides, there are no significant differences in the phase coherence and temporal stability between the SCs generated from both ports. Hence for the SC generation based on ANDi laser, it is preferred to use the pulse of coupler port (i.e. pulse after NPR port) serving as the seed source.

  13. A novel procedure for the quantitative analysis of metabolites, storage products and transcripts of laser microdissected seed tissues of Brassica napus

    Directory of Open Access Journals (Sweden)

    Radchuk Ruslana

    2011-06-01

    Full Text Available Abstract Background The biology of the seed is complicated by the extensive non-homogeneity (spatial gradients in gene expression, metabolic conversions and storage product accumulation. The detailed understanding of the mechanisms underlying seed growth and storage therefore requires the development of means to obtain tissue-specific analyses. This approach also represents an important priority in the context of seed biotechnology. Results We provide a guideline and detailed procedures towards the quantitative analysis of laser micro-dissected (LM tissues in oilseed rape (Brassica napus. This includes protocols for laser microdissection of the seed, and the subsequent extraction and quantitative analysis of lipids, starch and metabolites (sugars, sugar phosphates, nucleotides, amino acids, intermediates of glycolysis and citric acid cycle. We have also developed a protocol allowing the parallel analysis of the transcriptome using Brassica-specific microarrays. Some data are presented regarding the compartmentation of metabolites within the oilseed rape embryo. Conclusion The described methodology allows for the rapid, combined analysis of metabolic intermediates, major storage products and transcripts in a tissue-specific manner. The protocols are robust for oilseed rape, and should be readily adjustable for other crop species. The suite of methods applied to LM tissues represents an important step in the context of both the systems biology and the biotechnology of oilseeds.

  14. Relative Determination of Micronutrients of Different Species of Teff (Eragrestis Seeds of Ethiopia Origin by Calibration Free Laser Induced Breakdown Spectroscopy Techniques

    Directory of Open Access Journals (Sweden)

    M. Dilbetigle Assefa

    2013-03-01

    Full Text Available The laser-induced breakdown spectroscopy techniques has been used to analysis the multi-component of three different species of Teff seeds (Red, White and Sirgegna of Ethiopia origin using a second harmonic (532 nm of a nanosecond Q-switched Nd: YAG laser focused on the surface of the pelletized powder of Teff seeds. Based on the idea of the plasma is homogeneous. The seven essential micronutrients in three species of Teff seeds are identified carbon as a matrix element. Electron density and plasma temperature are calculated applying Saha-Boltzmann equation and Boltzmann plot method. And making use of the semi-quantitative method the three species relative concentrations of (Ca, Mg, Al, Si, Mn, Fe and K are obtained using Calibration Free Laser Induced Breakdown Spectroscopy (CF-LIBS technique. The result demonstrated that the relative concentrations of the some elements in the species are different. In Red Teff species Ca is more, but Mg is least. On the contrary Mg is high in Sirgegna and White Teff as compared to Red Teff And High content of Calcium, Magnesium and Iron micronutrients are found in the three species.

  15. Seeding the FEL of the SCSS Phase 1 Facility with the 13th Laser Harmonic of a Ti Sa Laser (61.5 nm) Produced in Xe Gas

    CERN Document Server

    Lambert, G; Boutu, W; Breger, P; Couprie, M E; Garzella, D; Merdji, H; Monchicourt, P; Salieres, P

    2005-01-01

    In order to reach very short wavelengths in FEL, and to have a more compact, fully coherent and tunable source, a particular seeding configuration is foreseen to be tested as a demonstration experiment in 2006 into the SCSS phase 1 facility (Spring-8 Compact Sase Source, Japan). The external source is the 13th harmonic (61.5 nm) of a Ti: Sa laser (25 mJ, 10 Hz, 100 fs) generated in 10 Hz pulsed Xe gas cell. The harmonic generation process provides us with a intense (1 μJ) and ultra-short (50 fs) VUV beam. The design of the experiment implantation is discussed, taken into account the performances of the generation process, the focusing of the selected harmonic into the modulator, and the resistance of the optical components. Besides one should consider the vacuum needs, the geometrical problems and the mechanics for the under UHV mirrors translation. One first chamber is dedicated to the harmonic generation. A second one is used for spectral selection and adaptation of the harmonic in the modulator. F...

  16. Numerical modeling of laser-driven experiments of colliding jets: Turbulent amplification of seed magnetic fields

    Science.gov (United States)

    Tzeferacos, Petros; Fatenejad, Milad; Flocke, Norbert; Graziani, Carlo; Gregori, Gianluca; Lamb, Donald; Lee, Dongwook; Meinecke, Jena; Scopatz, Anthony; Weide, Klaus

    2014-10-01

    In this study we present high-resolution numerical simulations of laboratory experiments that study the turbulent amplification of magnetic fields generated by laser-driven colliding jets. The radiative magneto-hydrodynamic (MHD) simulations discussed here were performed with the FLASH code and have assisted in the analysis of the experimental results obtained from the Vulcan laser facility. In these experiments, a pair of thin Carbon foils is placed in an Argon-filled chamber and is illuminated to create counter-propagating jets. The jets carry magnetic fields generated by the Biermann battery mechanism and collide to form a highly turbulent region. The interaction is probed using a wealth of diagnostics, including induction coils that are capable of providing the field strength and directionality at a specific point in space. The latter have revealed a significant increase in the field's strength due to turbulent amplification. Our FLASH simulations have allowed us to reproduce the experimental findings and to disentangle the complex processes and dynamics involved in the colliding flows. This work was supported in part at the University of Chicago by DOE NNSA ASC.

  17. Multi-dimensional simulations of Magnetic Field Seeding of Plasma via Laser Beatwave Interaction

    Science.gov (United States)

    Welch, Dale; Thoma, Carsten; Bruner, Nichelle; Hwang, David; Hsu, Scott

    2011-10-01

    Assembling magnetized plasma for inertial fusion permits longer duration and smaller density-radius product fuel implosions by reducing the energy transport significantly. For fusion energy, however, the field must be created with a significant standoff distance. A promising technique for magnetic field production is the beat-wave interaction. Some theoretical results have been confirmed by microwave experiments. Recently, fully-kinetic 2D and 3D simulations of the interaction have been simulated using the LSP particle-in-cell code. We inject 2 CO2 100-micron transverse-extent lasers both with 1013 W/cm2 intensity into a peak 3 × 1016 cm-3 density plasma at various angles. The calculated interaction produces beatwaves at the predicted wavelength and frequency and drives magnetic fields up to 2.5 kG. We will examine the sensitivity of the efficiency of magnetic field production to laser parameters and plasma density scale length and discuss the application to the Plasma Liner eXperiment at LANL. Work supported by US DOE, OFES.

  18. 88 W 0.5 mJ femtosecond laser pulses from two coherently combined fiber amplifiers.

    Science.gov (United States)

    Seise, Enrico; Klenke, Arno; Breitkopf, Sven; Limpert, Jens; Tünnermann, Andreas

    2011-10-01

    The generation of 0.5 mJ femtosecond laser pulses by coherent combining of two high power high energy fiber chirped-pulse amplifiers is reported. The system is running at a repetition frequency of 175 kHz producing 88 W of average power after the compressor unit. Polarizing beam splitters have been used to realize an amplifying Mach-Zehnder interferometer, which has been stabilized with a Hänsch-Couillaud measurement system. The stabilized system possesses a measured residual rms phase difference fluctuation between the two branches as low as λ/70 rad at the maximum power level. The experiment proves that coherent addition of femtosecond fiber lasers can be efficiently and reliably performed at high B-integral and considerable thermal load in the individual amplifiers.

  19. Coupling dynamics for a photonic crystal fib er femtosecond laser nonlinear amplification system%光子晶体光纤飞秒激光非线性放大系统的耦合动力学过程研究∗

    Institute of Scientific and Technical Information of China (English)

    石俊凯; 柴路; 赵晓薇; 李江; 刘博文; 胡明列; 栗岩锋; 王清月

    2015-01-01

    构建了掺镱大模场面积单偏振光子晶体光纤飞秒激光非线性放大系统.讨论了腔内净色散量和抽运功率对振荡级输出参数的影响和振荡级参数对放大级输出参数的影响.在本实验条件下,当腔内净色散量取较大负色散时,振荡级直接输出的脉冲更宽,且携带更少的啁啾.当振荡级抽运4.53 W时,选择最接近变换极限的脉冲作为种子脉冲,放大级在60 W抽运时输出压缩后无基底的短脉冲,宽度为45.7 fs,平均功率28 W.振荡级抽运功率增加到5.08 W,放大级抽运70 W时,获得最高输出功率34.5 W,对应脉宽53.5 fs.%A femtosecond laser single-stage nonlinear amplification system composed of Yb-doped large-mode-area single-polarization photonic crystal fibers is demonstrated. Effects of net cavity dispersion and pump power on oscillator output parameters and the evolution dynamics of the amplified pulse after compression are discussed for different seed pulse parameters. Under the experimental conditions in this paper, the longer and less chirped pulses are obtained with a larger negative net intracavity dispersion in the oscillator. When a nearly-transform-limited pulse is chosen as seed pulse nder the condition of oscillator pump power of 4.53 W, the shortest nearly-pedestal-free amplified pulse is achieved under the amplifier pump power of 60 W after the dispersion is compensated by a grating pair, in which the pulse duration is 45.7 fs with an average power of 28 W at a repetition frequency of 42 MHz. When the oscillator pump power is increased to 5.08 W and most nearly-transform-limited pulses under the pump condition are selected as the seed pulses, the maximum average power of 34.5 W with a duration of 53.5 fs is obtained at an amplifier pump power of 70 W.

  20. Generation of tunable multi-wavelength optical short pulses using self-seeded Fabry-Perot laser diode and tilted multimode fiber Bragg grating

    Institute of Scientific and Technical Information of China (English)

    Tongjian Cai; Yunqi Liu; Xiaobei Zhang; Tingyun Wang

    2011-01-01

    We experimentally demonstrate the simultaneous generation of tunable multi-wavelength picosecond laser pulses using a self-seeding configuration that consists of a gain-switched Fabry-Perot laser diode (FPLD)with an external cavity formed by a tilted multimode fiber Bragg grating.Dual- and triple-wavelength pulses are obtained and tuned in a flexible manner by changing the temperature of the FPLD.The side mode suppression ratio larger than 25 dB is achieved at different dual- and triple-wavelengths and the typical pulsewidth of the output pulses is ~70 ps.In the experiment, the wavelength separation can be narrowed to 0.57 nm.%@@ We experimentally demonstrate the simultaneous generation of tunable multi-wavelength picosecond laser pulses using a self-seeding configuration that consists of a gain-switched Fabry-Perot laser diode (FPLD)with an external cavity formed by a tilted multimode fiber Bragg grating.Dual-and triple-wavelength pulses are obtained and tuned in a flexible manner by changing the temperature of the FPLD.The side mode suppression ratio larger than 25 dB is achieved at different dual-and triple-wavelength8 and the typical pulsewidth of the output pulses is~70 ps.In the experiment, the wavelength separation can be narrowed to 0.57 nm.

  1. Seeded free-electron and inverse free-electron laser techniques for radiation amplification and electron microbunching in the terahertz range

    Directory of Open Access Journals (Sweden)

    C. Sung

    2006-12-01

    Full Text Available A comprehensive analysis is presented that describes amplification of a seed THz pulse in a single-pass free-electron laser (FEL driven by a photoinjector. The dynamics of the radiation pulse and the modulated electron beam are modeled using the time-dependent FEL code, GENESIS 1.3. A 10-ps (FWHM electron beam with a peak current of 50–100 A allows amplification of a ∼1  kW seed pulse in the frequency range 0.5–3 THz up to 10–100 MW power in a relatively compact 2-m long planar undulator. The electron beam driving the FEL is strongly modulated, with some inhomogeneity due to the slippage effect. It is shown that THz microbunching of the electron beam is homogeneous over the entire electron pulse when saturated FEL amplification is utilized at the very entrance of an undulator. This requires seeding of a 30-cm long undulator buncher with a 1–3 MW of pump power with radiation at the resonant frequency. A narrow-band seed pulse in the THz range needed for these experiments can be generated by frequency mixing of CO_{2} laser lines in a GaAs nonlinear crystal. Two schemes for producing MW power pulses in seeded FELs are considered in some detail for the beam parameters achievable at the Neptune Laboratory at UCLA: the first uses a waveguide to transport radiation in the 0.5–3 THz range through a 2-m long FEL amplifier and the second employs high-gain third harmonic generation using the FEL process at 3–9 THz.

  2. CIDME: Short distances measured with long chirp pulses

    Science.gov (United States)

    Doll, Andrin; Qi, Mian; Godt, Adelheid; Jeschke, Gunnar

    2016-12-01

    Frequency-swept pulses have recently been introduced as pump pulses into double electron-electron resonance (DEER) experiments. A limitation of this approach is that the pump pulses need to be short in comparison to dipolar evolution periods. The "chirp-induced dipolar modulation enhancement" (CIDME) pulse sequence introduced in this work circumvents this limitation by means of longitudinal storage during the application of one single or two consecutive pump pulses. The resulting six-pulse sequence is closely related to the five-pulse "relaxation-induced dipolar modulation enhancement" (RIDME) pulse sequence: While dipolar modulation in RIDME is due to stochastic spin flips during longitudinal storage, modulation in CIDME is due to the pump pulse during longitudinal storage. Experimentally, CIDME is examined for Gd-Gd and nitroxide-nitroxide distance determination using a high-power Q-band spectrometer. Since longitudinal storage results in a 50% signal loss, comparisons between DEER using short chirp pump pulses of 64 ns duration and CIDME using longer pump pulses are in favor of DEER. While the lower sensitivity restrains the applicability of CIDME for routine distance determination on high-power spectrometers, this result is not to be generalized to spectrometers having lower power and to specialized "non-routine" applications or different types of spin labels. In particular, the advantage of prolonged CIDME pump pulses is demonstrated for experiments at large frequency offset between the pumped and observed spins. At a frequency separation of 1 GHz, where broadening due to dipolar pseudo-secular contributions becomes largely suppressed, a Gd-Gd modulation depth larger than 10% is achieved. Moreover, a CIDME experiment at deliberately reduced power underlines the potential of the new technique for spectrometers with lower power, as often encountered at higher microwave frequencies. With longitudinal storage times T below 10 μs, however, CIDME appears rather susceptible to artifacts. For nitroxide-nitroxide experiments, these currently inhibit a faithful data analysis. To facilitate further developments, the artifacts are characterized experimentally. In addition, effects that are specific to the high spin of S = 7 / 2 Gd-centers are examined. Herein, population transfer within the observer spin's multiplet due to the pump pulse as well as excitation of dipolar harmonics are discussed.

  3. Intensity-Resolved Above Threshold Ionization of Xenon with Short Laser Pulses

    CERN Document Server

    Hart, Nathan A; Kaya, Gamze; Kaya, Necati; Kolomenskii, Alexandre A; Schuessler, Hans A

    2014-01-01

    We present intensity-resolved above threshold ionization (ATI) spectra of xenon using an intensity scanning and deconvolution technique. Experimental data were obtained with laser pulses of 58 fs and central wavelength of 800 nm from a chirped-pulse amplifier. Applying a deconvolution algorithm, we obtained spectra that have higher contrast and are in excellent agreement with characteristic 2 $U_p$ and 10 $U_p$ cutoff energies contrary to that found for raw data. The retrieved electron ionization probability is consistent with the presence of a second electron from double ionization. This recovered ionization probability is confirmed with a calculation based on the PPT tunneling ionization model [Perelomov, Popov, and Terent'ev, Sov. Phys. JETP 23, 924 (1966)]. Thus, the measurements of photoelectron yields and the proposed deconvolution technique allowed retrieval of more accurate spectroscopic information from the ATI spectra and ionization probability features that are usually concealed by volume averaging...

  4. Degradation of picosecond temporal contrast of Ti:sapphire lasers with coherent pedestals.

    Science.gov (United States)

    Khodakovskiy, Nikita; Kalashnikov, Mikhail; Gontier, Emilien; Falcoz, Franck; Paul, Pierre-Mary

    2016-10-01

    Recompressed pulses from Ti:sapphire chirped-pulse lasers are accompanied by a slowly decaying post-pulse pedestal that is coherent with the main pulse. The pedestal typically consists of numerous pulses with temporal separation in the picosecond range. The source of this artifact lies in the Ti:sapphire active medium itself, both in the Kerr-lens mode-locked oscillator and in subsequent amplifiers. In the presence of substantial self-phase modulation, after recompression the post-pedestal generates a mirror-symmetric pre-pulse pedestal. This pedestal severely degrades the leading edge of the output pulse. This degradation is far more limiting than the original post-pedestal and severely lowers the achievable temporal contrast.

  5. The behavior of iron under ultrafast shock loading driven by a femtosecond laser

    Science.gov (United States)

    Ashitkov, S. I.; Zhakhovsky, V. V.; Inogamov, N. A.; Komarov, P. S.; Agranat, M. B.; Kanel, G. I.

    2017-01-01

    The results of experimental and theoretical investigations of shock-wave propagation in bcc iron under ultra-short loads driven by femtosecond laser pulses are presented. Chirped pulse interferometry was used for continuous diagnostics of movement in a picosecond range of the rear-side surface of thin iron films. The evolution of ultra-short elastic-plastic shock waves in samples with different thicknesses and purity has been studied. The obtained HEL and spall strength are close to ultimate values of shear and tensile stresses. Response of single-crystal iron to ultra-short shock loading/unloading was also explored in micron-sized films by molecular dynamics simulations. The experimental and simulation results on shock-induced elastic-plastic transformation and phase transition from bcc to hcp iron in a picosecond range of loading are discussed.

  6. High Energy, Short Pulse Fiber Injection Lasers at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, J W; Messerly, M J; Phan, H H; Crane, J K; Beach, R J; Siders, C W; Barty, C J

    2008-09-10

    A short pulse fiber injection laser for the Advanced Radiographic Capability (ARC) on the National Ignition Facility (NIF) has been developed at Lawrence Livermore National Laboratory (LLNL). This system produces 100 {micro}J pulses with 5 nm of bandwidth centered at 1053 nm. The pulses are stretched to 2.5 ns and have been recompressed to sub-ps pulse widths. A key feature of the system is that the pre-pulse power contrast ratio exceeds 80 dB. The system can also precisely adjust the final recompressed pulse width and timing and has been designed for reliable, hands free operation. The key challenges in constructing this system were control of the signal to noise ratio, dispersion management and managing the impact of self phase modulation on the chirped pulse.

  7. Optical terminal analysis of a multigrating tiled compressor in a PW-class CPA-laser

    Institute of Scientific and Technical Information of China (English)

    Yang Yu-Chuan; Luo Hui; Wang Xiao; Li Fu-Quan; Huang Xiao-Jun; Jing Feng

    2012-01-01

    In the highest-power chirped-pulse amplification lasers,the pulse must be stretched in time,amplified,compressed in a grating compressor and subsequently focused by off-axis parabola to obtain a high peak power.In the optical terminal,the temporal and spatial effects of mismatched multigrating tiled compressor on the far-field pulse axe critical factors to be analysed.In this paper,a k-space raytracing model is proposed for the temporal and spatial analyses of possible errors in a four-grating single-pass tiled compressor.The results show that the last grating affects mainly the partial focal spot,while the middle two gratings affect the temporal waveform,and the partial focal spot needs much higher error control than that in the temporal domain in a picosecond pulse compression.

  8. Multi-stage ytterbium fiber-amplifier seeded by a gain-switched laser diode

    CERN Document Server

    Ryser, Manuel; Burn, Andreas; Romano, Valerio

    2014-01-01

    We demonstrated all-fiber amplification of 11 ps pulses from a gain-switched laser diode at 1064 nm. The diode was driven at a repetition rate of 40 MHz and delivered 13 $\\mu$W of fiber-coupled average output power. For the low output pulse energy of 325 fJ we have designed a multi-stage core pumped pre-amplifier in order to keep the contribution of undesired amplified spontaneous emission as low as possible. By using a novel time-domain approach for determining the power spectral density ratio (PSD) of signal to noise, we identified the optimal working point for our pre-amplifier. After the pre-amplifier we reduced the 40 MHz repetition rate to 1 MHz using a fiber coupled pulse-picker. The final amplification was done with a cladding pumped Yb-doped large mode area fiber and a subsequent Yb-doped rod-type fiber. With our setup we reached a total gain of 73 dB, resulting in pulse energies of >5.6 $\\mu$J and peak powers of >0.5 MW. The average PSD-ratio of signal to noise we determined to be 18/1 at the output...

  9. Optical diagnostics for laser wakefields in plasma channels

    Science.gov (United States)

    Gaul, E. W.; Le Blanc, S. P.; Downer, M. C.

    1998-11-01

    Laser wakefield accelerators can excite large amplitude electrostatic fields (E >= 100 GV/m) which are potentially suitable for compact accelerators and advanced high energy colliders. An accurate diagnostic tool is necessary to test the physical effects in the wakefield predicted by theory and numerical simulations, and to have control over experiments. Frequency domain interferometry (FDI) (C. W. Siders et. al.), Phys. Rev. Lett. 76, 3570 (1995) has been developed in previous work. We experimentally demonstrate single-shot FDI as a sensitive diagnostic technique for probing laser wakefields. To generate wakefields longer than the diffraction limit, optical guiding of the laser pulse is necessary. An optical guide is formed by the hydrodynamic expansion of a cylindrical shock wave driven by a laser heated plasma, which is generated by laser pulse focused with an axicon lens (C. G. Durfee and H. M. Milchberg, Phys. Rev. Lett. 71, 2409 (1993)) to intensities of ~= 10^13 W/cm^2. These are too low to reach multi-photon ionization or significant collisional ionization in <= 1 atm helium. We preionize Helium gas with an electrical discharge for efficient inverse bremsstrahlung absorption of the laser pulse and formation of a plasma channel. Spatially resolved chirped pulse interferometry is used to measure the radial electron density profile of the channel.

  10. Influence of helium-neon laser irradiation on seed germination in vitro and physico-biochemical characters in seedlings of brinjal (Solanum melongena L.) var. Mattu Gulla.

    Science.gov (United States)

    Muthusamy, Annamalai; Kudwa, Prathibha P; Prabhu, Vijendra; Mahato, Krishna K; Babu, Vidhu Sankar; Rao, Mattu Radhakrishna; Gopinath, Puthiya Mandyat; Satyamoorthy, Kapaettu

    2012-01-01

    In the present study, the seeds of brinjal (Solanum melongena L.) var. Mattu Gulla were irradiated with single exposure of He-Ne laser at different doses of 5-40 J cm(-2) and germinated aseptically. Thirty day old seedlings were harvested and the germination, growth, physiological and biochemical parameters were estimated and compared with un-irradiated control seedlings. A significant enhancement in growth characters were noted with respect to length, fresh and dry weight of shoots and roots. In addition, chlorophyll (a and b), carotenoid content, anthocyanin and amylases (α and β) activities were found to be altered. Significant alterations in percentage of seed germination (P < 0.001) and time to 50% germination (P < 0.001) were observed in the irradiated seeds compared with the un-irradiated controls. In conclusion, the results of the present study demonstrated that low dose (5-30 J cm(-2) ) of He-Ne laser irradiation enhanced the germination process and altered growth, by positively influencing physiological and biochemical parameters of the brinjal seedlings compared with un-irradiated control under in vitro conditions.

  11. Picosecond pulses in deep ultraviolet (257.5 nm and 206 nm) and mid-IR produced by a high-power 100 kHz solid-state thin-disk laser

    Science.gov (United States)

    Turčičová, Hana; Novák, Ondřej; Smrž, Martin; Miura, Taisuke; Endo, Akira; Mocek, TomáÅ.¡

    2016-04-01

    We report on the generation of picosecond deep ultraviolet pulses at 257.5 nm and 206 nm produced as the fourth and fifth harmonic frequencies of the diode-pumped Yb:YAG thin-disk laser at the fundamental wavelength of 1030 nm. We present a proposal for a picosecond pulse mid-IR source tunable between 2 and 3 μm. The laser at the fundamental wavelength is based on a chirped-pulse amplification of pulses of a sub-ps laser oscillator in a regenerative amplifier with a thin-disk active medium. The diode pumping at the zero phonon line is used. The output beam is close to the fundamental spatial mode and the pulses are characterized by a 100 kHz repetition frequency, less than 4 ps pulse duration and Picosecond output pulses tunable between 2 and 3 μm at an average power of 10 W are proposed.

  12. Low-temperature (˜180 °C) position-controlled lateral solid-phase crystallization of GeSn with laser-anneal seeding

    Science.gov (United States)

    Matsumura, Ryo; Chikita, Hironori; Kai, Yuki; Sadoh, Taizoh; Ikenoue, Hiroshi; Miyao, Masanobu

    2015-12-01

    To realize next-generation flexible thin-film devices, solid-phase crystallization (SPC) of amorphous germanium tin (GeSn) films on insulating substrates combined with seeds formed by laser annealing (LA) has been investigated. This technique enables the crystallization of GeSn at controlled positions at low temperature (˜180 °C) due to the determination of the starting points of crystallization by LA seeding and Sn-induced SPC enhancement. The GeSn crystals grown by SPC from LA seeds showed abnormal lateral profiles of substitutional Sn concentration. These lateral profiles are caused by the annealing time after crystallization being a function of distance from the LA seeds. This observation of a post-annealing effect also indicates that GeSn with a substitutional Sn concentration of up to ˜10% possesses high thermal stability. These results will facilitate the fabrication of next-generation thin-film devices on flexible plastic substrates with low softening temperatures (˜250 °C).

  13. All-optical clock recovery based on simultaneous external injection-locking and self-seeding of a Fabry-Perot laser diode

    Science.gov (United States)

    Fang, Xiaohui; Wai, Ping Kong A.; Lu, Chao; Tam, Hwa Yaw; Qureshi, Khurram K.

    2011-02-01

    We proposed and demonstrated a novel, simple, and low cost method for all-optical clock recovery based on the switching between two injection-locked longitudinal modes in a dc-biased multi-quantum-well Fabry-Perot laser diode (FP-LD). The dc biased FP-LD is simultaneously injection-locked by a return-to-zero data signal at one of the longitudinal modes of the FP-LD and self-seeded at another longitudinal mode by using a uniform fiber Bragg grating as a feedback component. The powers and detunes of the data signal and self-seeding signal are chosen such that self-seeding is realized in the FP-LD only when data signal power is low. Clock signals of data streams at different data rates can be obtained by tuning the optical delay line in the external self-seeding loop. We have demonstrated all-optical clock recovery at 10 GHz. The pulse width, time-bandwidth product, side mode suppression ration, root mean square timing jitter, and average power of the recovered clock signals are 50 ps, 0.5, 50 dB, 248 fs, and 3.6 dBm, respectively. Clock recovery is possible at wavelength within the gain band of the FP-LD. We also find and explore in the experiment the influence of detune between the external data signal and the nearest FP-LD longitudinal mode to the recovered clock.

  14. Tunable sub-20 fs pulses from a 500 kHz OPCPA with 15 W average power based on an all-ytterbium laser

    CERN Document Server

    Puppin, Michele; Prochnow, Oliver; Ahrens, Jan; Binhammer, Thomas; Morgner, Uwe; Krenz, Marcel; Wolf, Martin; Ernstorfer, Ralph

    2014-01-01

    An optical parametric chirped pulse amplifier fully based on Yb lasers at 500 kHz is described. Passive optical-synchronization is achieved between a fiber laser-pumped white-light and a 515 nm pump produced with a 200 W picosecond Yb:YAG InnoSlab amplifier. An output power up to 19.7 W with long-term stability of 0.3% is demonstrated for wavelength tunable pulses between 680 nm and 900 nm and spectral stability of 0.2%; 16.5 W can be achieved with a bandwidth supporting 5.4 fs pulses. We demonstrate compression of 30 microjoule pulses to sub-20 fs duration with a prism compressor, suitable for high harmonic generation.

  15. Generating coherent soft x-ray pulses in the water window with a high-brightness seeded free-electron laser

    CERN Document Server

    Zhou, Kaishang; Deng, Haixiao; Wang, Dong

    2016-01-01

    We propose a new scheme to generate high-brightness and temporal coherent soft x-ray radiation in a seeded free-electron laser. The proposed scheme is based the coherent harmonic generation (CHG) and superradiant principles. A CHG scheme is first used to generate coherent signal at ultra-high harmonics of the seed. This coherent signal is then amplified by a series of chicane-undulator modules via the fresh bunch and superradiant processes in the following radiator. Using a representative of realistic set of parameters, three-dimensional simulations have been carried out and the simulations results demonstrated that 10 GW-level ultra-short coherent radiation pulses in the water window can be achieved by using the proposed technique.

  16. Generating high-brightness and coherent soft x-ray pulses in the water window with a seeded free-electron laser

    Directory of Open Access Journals (Sweden)

    Kaishang Zhou

    2017-01-01

    Full Text Available We propose a new scheme to generate high-brightness and temporal coherent soft x-ray radiation in a seeded free-electron laser. The proposed scheme is based on the coherent harmonic generation (CHG and superradiant principles. A CHG scheme is first used to generate a coherent signal at ultrahigh harmonics of the seed. This coherent signal is then amplified by a series of chicane-undulator modules via the fresh bunch and superradiant processes in the following radiator. Using a representative of a realistic set of parameters, three-dimensional simulations have been carried out and the simulations results demonstrated that 10 GW-level ultrashort (∼20  fs coherent radiation pulses in the water window can be achieved by using a 1.6 GeV electron beam based on the proposed technique.

  17. Comparison of HeNe laser and sinusoidal non-uniform magnetic field seed pre-sowing treatment effect on Glycine max (Var 90-I) germination, growth and yield.

    Science.gov (United States)

    Asghar, Tehseen; Iqbal, Munawar; Jamil, Yasir; Zia-Ul-Haq; Nisar, Jan; Shahid, Muhammad

    2017-01-01

    Recently, laser and magnetic field pre-sowing seed treatments attracted the attention of the scientific community in response to their positive effect on plant characteristics and the present study was exemplified for Glycine max Var 90-I. Seeds were exposed to laser (HeNe-wave length 632nm and density power of 1mW/cm(2)) and magnetic field (sinusoidal non-uniform-50, 75 and 100mT for 3, 5min with exposure) and seed germination, seedling growth and yield attributes were compared. The germination (mean germination, germination percentage, emergence index, germination speed, relative germination coefficient, emergence coefficient of uniformity) growth (root dry weight, root length, shoot fresh weight and shoot dry weight, leaf dry & fresh weight, root fresh weight, leaf area, shoot length, plant total dry weight at different stages, stem diameter, number of leaves, vigor index I & II), biochemical (essential oil) and yield attributes (seed weight, count) were enhanced significantly in response to both laser and magnetic field treatments. However, magnetic field treatment furnished slightly higher response versus laser except relative water contents, whole plant weight and shoot length. Results revealed that both laser and magnetic field pre-sowing seed treatments affect the germination, seedling growth, and yield characteristics positively and could possibly be used to enhance Glycine max productivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Comparison of natural and forced amplification regimes in plasma-based soft-x-ray lasers seeded by high-order harmonics

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, Eduardo; Zeitoun, Philippe; Lambert, Guillaume; Sebban, Stephane [Laboratoire d' Optique Appliquee, ENSTA ParisTech, Ecole Polytechnique Paris Tech, CNRS, UMR 7639, F-91761 Palaiseau Cedex (France); Fajardo, Marta [GoLP, Instituto de Plasmas e Fusao Nuclear, Laboratorio Associado, Instituto Superior Tecnico, Lisbon (Portugal); Ros, David [Laboratoire de Physique des Gaz et Plasmas, Universite Paris Sud 11, Orsay (France); Velarde, Pedro [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, Madrid (Spain)

    2011-07-15

    The amplification of high-order harmonics (HOH) in a plasma-based amplifier is a multiscale, temporal phenomenon that couples plasma hydrodynamics, atomic processes, and HOH electromagnetic fields. We use a one-dimensional, time-dependent Maxwell-Bloch code to compare the natural amplification regime and another regime where plasma polarization is constantly forced by the HOH. In this regime, a 10-MW (i.e., 100 times higher than current seeded soft x-ray laser power), 1.5-{mu}J, 140-fs pulse free from the parasitic temporal structures appearing on the natural amplification regime can be obtained.

  19. Direct generation of intense extreme ultraviolet supercontinuum with chirped 11-mJ pulses from a femtosecond laser amplifier

    CERN Document Server

    Zeng, Bin; Li, Guihua; Yao, Jinping; Ni, Jielei; Zhang, Haisu; Cheng, Ya; Xu, Zhizhan

    2011-01-01

    We report on the generation of intense extreme ultraviolet (EUV) supercontinuum with photon energies spanning from 35 eV to 50 eV (i. e., supporting an isolated attosecond pulse with a duration of ~271 as) by loosely focusing 11-mJ chirped pulses from a femtosecond laser amplifier into a 10-mm long gas cell filled with krypton gas. We observe that when high-order harmonics are generated with transformed-limited ~35 fs pulses, only discrete harmonics can be produced; whereas for negatively chirped 188 fs pulses, EUV supercontinuum can be observed in single-shot harmonic spectrum. The dramatic change of spectral and temporal properties of the driver pulses after passing through the gas cell indicates that propagation effects play a significant role in promoting the generation of the EUV supercontinuum.

  20. The Nexawatt: A Strategy for Exawatt Peak Power Lasers Based on NIF and NIF-like Beam Lines

    Science.gov (United States)

    Barty, C. P. J.

    2016-05-01

    An exawatt-scale, short-pulse amplification architecture based upon a novel pulse compressor arrangement and amplification of long-duration chirped beam pulses is described. This architecture is capable of extracting the full, stored energy of a NIF or NIF-like beam line and in doing so produce from one beam line a near-diffraction-limited, laser pulse whose peak power would exceed 0.2 EW. The architecture is well suited to either low-f-number focusing or to multi-beam, dipole focusing concepts that in principle enable focused intensities in the range of 1026 W/cm2 or 5 orders of magnitude beyond that possible from present PW systems based on chirped pulse amplification.

  1. Cultivable Methylobacterium species diversity in rice seeds identified with whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis.

    Science.gov (United States)

    Okumura, Marie; Fujitani, Yoshiko; Maekawa, Masahiko; Charoenpanich, Jittima; Murage, Hunja; Kimbara, Kazuhide; Sahin, Nurettin; Tani, Akio

    2017-02-01

    Methylobacterium species are methylotrophic bacteria that widely inhabit plant surfaces. In addition to studies on methylotrophs as model organisms, research has also been conducted on their mechanism of plant growth promotion as well as the species-species specificity of plant-microbe interaction. We employed whole-cell matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (WC-MS) analysis, which enables the rapid and accurate identification of bacteria at the species level, to identify Methylobacterium isolates collected from the rice seeds of different cultivars harvested in Japan, Thailand, and Kenya. Rice seeds obtained from diverse geographical locations showed different communities of Methylobacterium species. We found that M. fujisawaense, M. aquaticum, M. platani, and M. radiotolerans are the most frequently isolated species, but none were isolated as common species from 18 seed samples due to the highly biased communities in some samples. These findings will contribute to the development of formulations containing selected species that promote rice growth, though it may be necessary to customize the formulations depending on the cultivars and farm conditions.

  2. Mode-Locked Multichromatic X-Rays in a Seeded Free-Electron Laser for Single-Shot X-Ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Dao; Ding, Yuantao; Raubenheimer, Tor; Wu, Juhao; /SLAC

    2012-05-10

    We present the promise of generating gigawatt mode-locked multichromatic x rays in a seeded free-electron laser (FEL). We show that, by using a laser to imprint periodic modulation in electron beam phase space, a single-frequency coherent seed can be amplified and further translated to a mode-locked multichromatic output in an FEL. With this configuration the FEL output consists of a train of mode-locked ultrashort pulses which span a wide frequency gap with a series of equally spaced sharp lines. These gigawatt multichromatic x rays may potentially allow one to explore the structure and dynamics of a large number of atomic states simultaneously. The feasibility of generating mode-locked x rays ranging from carbon K edge ({approx}284 eV) to copper L{sub 3} edge ({approx}931 eV) is confirmed with numerical simulation using the realistic parameters of the linac coherent light source (LCLS) and LCLS-II. We anticipate that the mode-locked multichromatic x rays in FELs may open up new opportunities in x-ray spectroscopy (i.e. resonant inelastic x-ray scattering, time-resolved scattering and spectroscopy, etc.).

  3. Mode-Locked Multichromatic X-Rays in a Seeded Free-Electron Laser for Single-Shot X-Ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Dao; Ding, Yuantao; Raubenheimer, Tor; Wu, Juhao; /SLAC

    2012-05-10

    We present the promise of generating gigawatt mode-locked multichromatic x rays in a seeded free-electron laser (FEL). We show that, by using a laser to imprint periodic modulation in electron beam phase space, a single-frequency coherent seed can be amplified and further translated to a mode-locked multichromatic output in an FEL. With this configuration the FEL output consists of a train of mode-locked ultrashort pulses which span a wide frequency gap with a series of equally spaced sharp lines. These gigawatt multichromatic x rays may potentially allow one to explore the structure and dynamics of a large number of atomic states simultaneously. The feasibility of generating mode-locked x rays ranging from carbon K edge ({approx}284 eV) to copper L{sub 3} edge ({approx}931 eV) is confirmed with numerical simulation using the realistic parameters of the linac coherent light source (LCLS) and LCLS-II. We anticipate that the mode-locked multichromatic x rays in FELs may open up new opportunities in x-ray spectroscopy (i.e. resonant inelastic x-ray scattering, time-resolved scattering and spectroscopy, etc.).

  4. Pulsed laser deposition of YBCO coated conductor using Y{sub 2}O{sub 3} as the seed and cap layer

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, P N; Nekkanti, R M; Haugan, T J; Campbell, T A; Yust, N A; Evans, J M [Propulsion Directorate, Air Force Research Laboratory, WPAFB, OH 45433 (United States)

    2004-08-01

    Although a variety of buffer layers have been routinely reported, a standard architecture commonly used for the Y Ba{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) coated conductor is Y BCO/CeO{sub 2}/Y SZ/CeO{sub 2}/substrate or Y BCO/CeO{sub 2}/Y SZ/Y{sub 2}O{sub 3}/substrate where ceria is typically the cap layer. CeO{sub 2} is generally used as only a seed (or cap layer) since cracking within the film occurs in thicker CeO{sub 2} layers due to the stress of lattice mismatching. Y{sub 2}O{sub 3} has been proposed as a seed and as a cap layer but usually not for both in a given architecture, especially with all layers deposited in situ. Yttrium oxide films grown on nickel by electron beam evaporation processes were found to be dense and crack free with good epitaxy. In this report, pulsed laser deposition (PLD) of Y{sub 2}O{sub 3} is given where Y{sub 2}O{sub 3} serves as both the seed and cap layer in the YBCO architecture. A comparison to PLD CeO{sub 2} is provided. Deposited layers of the YBCO coated conductor are also grown by laser ablation. Initial deposition resulted in specimens on textured Ni substrates with current densities of more than 1 MA cm{sup -2} at 77 K, self-field.

  5. Time Integrated Soft X-ray Imaging in High Intensity Laser Experiments (thesis)

    Energy Technology Data Exchange (ETDEWEB)

    Stafford, David [Univ. of California, Davis, CA (United States)

    2009-01-01

    2009 marks a significant achievement and the dawn of a new era in high intensity laser research with the final commissioning of all 192 beams at the National Ignition Facility (NIF). NIF is a department of energy (DOE) funded project more than 10 years in the making located at the Lawrence Livermore National Laboratory (LLNL). The following research was done as one of many preliminary experiments done to prepare for these historic events. The primary focus of the experimental campaign this paper addresses is to test and develop a thermal x-radiation source using a short pulse laser. This data is hoped to provide information about the thermal transport mechanisms important in the development of prediction models in High Energy Density (HED) science. One of several diagnostics fielded was a soft x-ray imager (SXRI) which is detailed in this paper. The SXRI will be used to measure the relative size of the heated region and also the relative level of specific x-ray emissions among several shot and target configurations. The laser system used was the Titan laser located in the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). Titan uses the JLF Janus Nd:glass laser west frontend system with a Optical Parametric Chirped Pulse Amplification (OPCPA) in place of the nanosecond oscillator. The system is capable of producing laser intensities of over a petawatt with several tens of joules delivered in the beam.

  6. Minimization of the impact of a broad bandwidth high-gain nonlinear preamplifier to the amplified spontaneous emission pedestal of the Vulcan petawatt laser facility.

    Science.gov (United States)

    Musgrave, I O; Hernandez-Gomez, C; Canny, D; Collier, J; Heathcote, R

    2007-10-01

    To generate petawatt pulses using the Vulcan Nd:glass laser requires a broad bandwidth high-gain preamplifier. The preamplifier used is an optical parametric amplifier that provides a total gain of 10(8) in three amplification stages. We report on a detailed investigation of the effect of the Vulcan optical parametric chirped pulse amplification (OPCPA) preamplifier on contrast caused by the amplified spontaneous emission (ASE) pedestal that extends up to 2 ns before the arrival of the main pulse. The contrast after compression is improved to 4x10(8) of the intensity of the main pulse using near-field apertures between the stages of the OPCPA preamplifier. Further reduction of the level of the ASE pedestal can be achieved at the cost of a reduction in amplified bandwidth by solely phosphate glass amplification after initial preamplification rather than a mixed glass amplification scheme.

  7. Nitric-oxide planar laser-induced fluorescence at 10 kHz in a seeded flow, a plasma discharge, and a flame.

    Science.gov (United States)

    Hammack, Stephen D; Carter, Campbell D; Gord, James R; Lee, Tonghun

    2012-12-20

    This study demonstrates high-repetition-rate planar laser-induced fluorescence (PLIF) imaging of both cold (~300 K) and hot (~2400 K) nitric oxide (NO) at a framing rate of 10 kHz. The laser system is composed of a frequency-doubled dye laser pumped by the third harmonic of a 10 kHz Nd:YAG laser to generate continuously pulsed laser radiation at 226 nm for excitation of NO. The laser-induced fluorescence signal is detected using a high-frame rate, intensified CMOS camera, yielding a continuous cinematographic propagation of the NO plume where data acquisition duration is limited only by camera memory. The pulse energy of the beam is ~20 μJ with a spectral width ~0.15 cm(-1), though energies as high as 40 μJ were generated. Hot NO is generated by passing air through a DC transient-arc plasma torch that dissociates air. The plasma torch is also used to ignite and sustain a CH(4)/air premixed flame. Cold NO is imaged from a 1% NO flow (buffered by nitrogen). The estimated signal-to-noise ratio (SNR) for the cold seeded flow and air plasma exceeds 50 with expected NO concentrations of 6000-8000 parts per million (ppm, volume basis). Images show distinct, high-contrast boundaries. The plasma-assisted flame images have an SNR of less than 10 for concentrations reaching 1000 ppm. For many combustion applications, the pulse energy is insufficient for PLIF measurements. However, the equipment and strategies herein could be applied to high-frequency line imaging of NO at concentrations of 10-100 ppm. Generation of 226 nm radiation was also performed using sum-frequency mixing of the 532 nm pumped dye laser and 355 nm Nd:YAG third harmonic but was limited in energy to 14 μJ. Frequency tripling a 532 nm pumped dye laser produced 226 nm radiation at energies comparable to the 355 nm pumping scheme.

  8. A Tunable Dual-Wavelength Fiber Ring Laser with a Fabry-Perot Laser Diode in an External Injection Seeding Scheme

    Institute of Scientific and Technical Information of China (English)

    Peng-Chun Peng; Hong-Yih Tseng; Sien Chi

    2003-01-01

    A tunable dual-wavelength fiber ring laser with a Fabry-Perot laser diode is proposed and demonstrated. The dual-wavelength outputs have the optical side-mode-suppression-ratio (SMSR) over 31 dB. The wavelength tuning range can be up to 9 nm.

  9. A Tunable Dual-Wavelength Fiber Ring Laser with a Fabry-Perot Laser Diode in an External Injection Seeding Scheme

    Institute of Scientific and Technical Information of China (English)

    Hong-Yih; Tseng; Sien; Chi

    2003-01-01

    A tunable dual-wavelength fiber ring laser with a Fabry-Perot laser diode is proposed and demonstrated. The dual-wavelength outputs have the optical side-mode-suppression-ratio (SMSR) over 31 dB. The wavelength tuning range can be up to 9 run.

  10. Chirped seeded free-electron lasers: self-standing light sources for two-colour pump-probe experiments

    CERN Document Server

    De Ninno, Giovanni; Mahieu, Benoit

    2012-01-01

    We demonstrate the possibility to run a single-pass free-electron laser in a new dynamical regime, which can be exploited to perform two-colour pump-probe experiments in the VUV/X-ray domain, using the free-electron laser emission both as a pump and as a probe. The studied regime is induced by triggering the free-electron laser process with a powerful laser pulse, carrying a significant and adjustable frequency chirp. As a result, the emitted light is eventually split in two sub-pulses, whose spectral and temporal separations can be independently controlled. We provide a theoretical description of this phenomenon, which is found in good agreement with experiments performed on the FERMI@Elettra free-electron laser.

  11. Multi-mJ mid-infrared kHz OPCPA and Yb-doped pump lasers for tabletop coherent soft x-ray generation

    Science.gov (United States)

    Lai, Chien-Jen; Hong, Kyung-Han; Siqueira, Jonathas P.; Krogen, Peter; Chang, Chun-Lin; Stein, Gregory J.; Liang, Houkun; Keathley, Phillip D.; Laurent, Guillaume; Moses, Jeffrey; Zapata, Luis E.; Kärtner, Franz X.

    2015-09-01

    We present our recent progress on the development of a mid-infrared (mid-IR), multi-mJ, kHz optical parametric chirped-pulse amplification (OPCPA) system, pumped by a homebuilt picosecond cryogenic Yb:YAG chirped-pulse amplifier, and its application to soft x-ray high-order harmonic generation. The cryogenic Yb:YAG laser operating at 1 kHz repetition rate delivers 42 mJ, 17 ps, 1.03 μm pulses to pump the OPCPA system. Efficient second and fourth harmonic generations from the Yb:YAG system are demonstrated, which provide the pumping capability for OPCPA at various wavelengths. The mid-IR OPCPA system produces 2.6 mJ, 39 fs, 2.1 μm pulses with good beam quality (M 2 = ∼1.5) at 1 kHz repetition rate. The output pulses of the OPCPA are used to generate high-order harmonics in both gas cell and hollow-core fiber targets. A photon flux of ∼2 × 108 photon/s/1% bandwidth at 160 eV in Ar is measured while the cutoff is 190 eV. The direct measurements of the photon flux from x-ray photodiodes have confirmed the generation of water-window soft x-ray photons with a flux ∼106 photon/s/1% bandwidth at 330 eV in Ne. The demonstrated OPCPA and Yb:YAG pump laser technologies provide an excellent platform of energy and power scalable few-cycle mid-IR sources that are suitable for high-flux tabletop coherent soft x-ray generation.

  12. Efficient Spherical Wavefront Correction near the Focus for the 0.89 PW/29.0 fs Ti:Sapphire Laser Beam

    Institute of Scientific and Technical Information of China (English)

    REN Zhi-Jun; LIANG Xiao-Yan; YU Liang-Hong; LU Xiao-Ming; LENG Yu-Xin; LI Ru-Xin; XU Zhi-Zhan

    2011-01-01

    We demonstrate a new loop system of the spherical wavefront (SW) correction near the beam focus to effectively improve the focusability of 0.89 PW/29.0 fs Ti:sapphire chirped pulse amplification laser. After wavefront correction, the Strehl ratio is improved to reach 0.91, and the focal spot size using the fl4 off-axis parabola is reduced to 6.34 × 6.94μm2 (corresponding to 1.63 × 1.78 times diffraction limitation). With full peak power of 0.89 PW,the peak intensity of 2.59 × 1021 W/cm2 is obtained. The experimental results show that the SW correction scheme near the beam focus is comparatively simple, economic and high-efficient.%@@ We demonstrate a new loop system of the spherical wavefront (SW) correction near the beam focus to effectively improve the focusability of 0.89 PW/29.0 fs Ti:sapphire chirped pulse amplification laser.After wavefront correction, the Strehl ratio is improved to reach 0.91, and the focal spot size using the f/4 off-axis parabola is reduced to 6.34 x 6.94μm2 (corresponding to 1.63 x 1.78 times diffraction limitation).With full peak power of 0.89 PW, the peak intensity of 2.59 x 1021 W/cm2 is obtained.The experimental results show that the SW correction scheme near the beam focus is comparatively simple, economic and high-efficient.

  13. Generation of Ultra-high Intensity Laser Pulses

    Energy Technology Data Exchange (ETDEWEB)

    N.J. Fisch; V.M. Malkin

    2003-06-10

    Mainly due to the method of chirped pulse amplification, laser intensities have grown remarkably during recent years. However, the attaining of very much higher powers is limited by the material properties of gratings. These limitations might be overcome through the use of plasma, which is an ideal medium for processing very high power and very high total energy. A plasma can be irradiated by a long pump laser pulse, carrying significant energy, which is then quickly depleted in the plasma by a short counterpropagating pulse. This counterpropagating wave effect has already been employed in Raman amplifiers using gases or plasmas at low laser power. Of particular interest here are the new effects which enter in high power regimes. These new effects can be employed so that one high-energy optical system can be used like a flashlamp in what amounts to pumping the plasma, and a second low-power optical system can be used to extract quickly the energy from the plasma and focus it precisely. The combined system can be very compact. Thus, focused intensities more than 10{sup 25} W/cm{sup 2} can be contemplated using existing optical elements. These intensities are several orders of magnitude higher than what is currently available through chirped pump amplifiers.

  14. Single-Shot Wavefront Measurement of an Injection-seeded Plasma-based Soft X-Ray Laser

    Science.gov (United States)

    Wang, S.; Li, L.; Wang, Y.; Oliva, E.; Yin, L.; Luther, B.; Maynard, G.; Ros, D.; Rocca, J. J.; Zeitoun, Ph.

    2013-10-01

    The wavefront of a λ = 18.9 nm soft x-ray beam from an injection-seeded plasma amplifier created by irradiation of a solid target was measured using a Hartmann wavefront sensor with an accuracy of λ/32 in a single shot. A significant improvement in wavefront aberrations from 0.51 +/- 0.06 λ rms of high harmonic seed to 0.23 +/- 0.01 λ rms for the amplified seeded beam was observed. The variation of wavefront characteristic as a function of time delay between the injection of the seed and peak of soft x-ray amplifier pump was studied. The wavefront sensor allows for the independent measurement of the different aberrations. The strongest improvement of the wavefront as it exits the amplifier is observed for coma, with values improve by more than a factor of 2, from 0.4l λ to 0.18 λ rms. The measurements were used to reconstruct the soft x-ray source and confirm its high peak brightness of about 1 ×1026 photons/(s.mm2.mrad2. 0.01 % bandwidth). Work supported by AMOS program, Office of Basic Energy Sciences of the US DoE, and the NSF ERC Program with equipment developed under NSF Award MRI-ARRA 09-561, and by LASERLAB3-INREX European project and SHYLAX plus CIBORG RTRA `Triangle de la Physique.'

  15. Diagnostics for advanced laser acceleration experiments

    Energy Technology Data Exchange (ETDEWEB)

    Misuri, Alessio [Univ. of Pisa (Italy)

    2002-01-01

    The first proposal for plasma based accelerators was suggested by 1979 by Tajima and Dawson. Since then there has been a tremendous progress both theoretically and experimentally. The theoretical progress is particularly due to the growing interest in the subject and to the development of more accurate numerical codes for the plasma simulations (especially particle-in-cell codes). The experimental progress follows from the development of multi-terawatt laser systems based on the chirped-pulse amplification technique. These efforts have produced results in several experiments world-wide, with the detection of accelerated electrons of tens of MeV. The peculiarity of these advanced accelerators is their ability to sustain extremely large acceleration gradients. In the conventional radio frequency linear accelerators (RF linacs) the acceleration gradients are limited roughly to 100 MV/m; this is partially due to breakdown which occurs on the walls of the structure. The electrical breakdown is originated by the emission of the electrons from the walls of the cavity. The electrons cause an avalanche breakdown when they reach other metal parts of the RF linacs structure.

  16. Diagnostics for advanced laser acceleration experiments

    Energy Technology Data Exchange (ETDEWEB)

    Misuri, Alessio

    2002-06-01

    The first proposal for plasma based accelerators was suggested by 1979 by Tajima and Dawson. Since then there has been a tremendous progress both theoretically and experimentally. The theoretical progress is particularly due to the growing interest in the subject and to the development of more accurate numerical codes for the plasma simulations (especially particle-in-cell codes). The experimental progress follows from the development of multi-terawatt laser systems based on the chirped-pulse amplification technique. These efforts have produced results in several experiments world-wide, with the detection of accelerated electrons of tens of MeV. The peculiarity of these advanced accelerators is their ability to sustain extremely large acceleration gradients. In the conventional radio frequency linear accelerators (RF linacs) the acceleration gradients are limited roughly to 100 MV/m; this is partially due to breakdown which occurs on the walls of the structure. The electrical breakdown is originated by the emission of the electrons from the walls of the cavity. The electrons cause an avalanche breakdown when they reach other metal parts of the RF linacs structure.

  17. Amplification of femtosecond pulses in Ti:Al2O3 using an injection-seeded laser

    Science.gov (United States)

    Lagasse, M. J.; Schoenlein, R. W.; Fujimoto, J. G.; Schulz, P. A.

    1989-12-01

    A 440-fsec, 0.1-pJ pulse from a dye laser is injected into a high-repetition-rate Ti:Al2O3 laser pumped by a copper-vapor laser to study the amplification and pulse broadening of femtosecond pulses in Ti:Al2O3. Gains of 2 x 10 to the 7th are achieved with output pulse durations of 1.1 psec. After recompression with a grating pair to compensate dispersion broadening, pulses as short as 275 fsec are obtained.

  18. Multi-band multiwavelength fiber laser based on the combined effects of four wave mixing and self-seeding stimulated Brillouin scattering

    Science.gov (United States)

    Yuan, Yijun; Yi, Miao; Yao, Yong

    2017-07-01

    A multi-band multiwavelength erbium-doped fiber laser (MBMEFL) based on the combined four wave mixing effect (FWM) and self-seeding stimulated Brillouin scattering (SSBS) effect has been studied experimentally. We use two ring cavities which consist of a large and a small cavity to build up this MBMEFL. The output multiple bands and multiple wavelengths are depended on the EDFA power and the length of the single mode fiber (SMF). With a proper length of SMF, we can achieve multi-band lasing by FWM effect and multiwavelength lasing in these bands by SSBS. By increasing the EDFA power, the multi-band multiwavelength lasing signals from the MBMEFL decrease.

  19. mJ range all-fiber MOPA prototype with hollow-core fiber beam delivery designed for large scale laser facilities seeding (Conference Presentation)

    Science.gov (United States)

    Scol, Florent; Gouriou, Pierre; Perrin, Arnaud; Gleyze, Jean-François; Valentin, Constance; Bouwmans, Géraud; Hugonnot, Emmanuel

    2017-03-01

    The Laser megajoule (LMJ) is a French large scale laser facility dedicated to inertial fusion research. Its front-ends are based on fiber laser technology and generate highly controlled beams in the nanojoule range. Scaling the energy of those fiber seeders to the millijoule range is a way explored to upgrade LMJ's architecture. We report on a fully integrated narrow line-width all-fiber MOPA prototype at 1053 nm designed to meet stringent requirements of large-scale laser facilities seeding. We achieve 750 µJ temporally-shaped pulses of few nanoseconds at 1 kHz. Thanks to its original longitudinal geometry and its wide output core (26µm MFD), the Yb-doped tapered fiber used in the power amplifier stage ensures a single-mode operation and negligible spectro-temporal distortions. The transport of 30 kW peak power pulses (from tapered fiber) in a 17 m long large mode area (39µm) hollow-core (HC) fiber is presented and points out frequency modulation to amplitude modulation conversion management issues. A S² measurement of this fiber allows to attribute this conversion to a slightly multimode behavior (< 13dB of extinction between the fundamental mode and higher order modes). Other HC fibers exhibiting a really single-mode behavior (<20 dB) have been tested and the comparison will be presented in the conference. Finally, fiber spatial beam shaping from coherent Gaussian beam to coherent top-hat intensity profile beam in the mJ range with a specifically designed and fabricated fiber will also be presented.

  20. Development of a Prototype 2 mm Fiber-Coupled Seed Laser for Integration in Lidar Transmitter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Optimize the performance of Gallium Antimonide (GaSb)-based 2.05 mm lasers (previously developed under JPL’s Research and Technology Development (R&TD)...

  1. Development of a two arm, high energy, high power laser for plasma research in India

    Science.gov (United States)

    Joshi, A. S.; Kamath, M. P.; Sharma, A. K.; Raghuramaiah, M. R.; Patidar, R. K.; Ansari, M. S.; Sreedhar, N.; Chandra, R.; Navathe, C. P.; Naik, P. A.; Gupta, P. D.

    2013-11-01

    We report here work done towards development of a two arm, high energy, high power Nd:phosphate glass laser system. One arm of the laser is proposed to be operated in a long pulse (˜1.5ns pulse duration) with an energy of ˜400 J. Presently, this arm of the laser is operating at energy of ˜100 J after a disc amplifier that amplifies the laser beam of diameter ˜94 mm. After the addition of two more disc amplifiers which are nearing completion, the laser beam will have energy of ˜400 J, with a beam diameter 140 mm, at an intensity of ˜2 GW/cm2. This beam will be converted to its second harmonic using a 2 × 2 array KDP crystals. The second arm, under development, will operate with a hybrid amplification scheme using optical parametric chirped pulse amplification (OPCPA) and conventional amplification using the existing Nd:glass amplifiers to produce 50 TW, 25 J, 500 fs pulse. A tiled triangular pulse compressor is under development for compressing the stretched pulse.

  2. Seed quality in informal seed systems

    NARCIS (Netherlands)

    Biemond, P.C.

    2013-01-01

    Keywords:     informal seed systems, seed recycling, seed quality, germination, seed pathology, seed health, seed-borne diseases, mycotoxigenic fungi, Fusarium verticillioides, mycotoxins, Vigna unguiculata, Zea mays, Nigeria.   Seed is a crucial input for agricultural producti

  3. Seed quality in informal seed systems

    NARCIS (Netherlands)

    Biemond, P.C.

    2013-01-01

    Keywords:     informal seed systems, seed recycling, seed quality, germination, seed pathology, seed health, seed-borne diseases, mycotoxigenic fungi, Fusarium verticillioides, mycotoxins, Vigna unguiculata, Zea mays, Nigeria.   Seed is a crucial input for agricultural

  4. Chlorophyll in tomato seeds: marker for seed performance?

    NARCIS (Netherlands)

    Suhartanto, M.R.

    2002-01-01

    Using Xe-PAM, laser induced fluorometry and high performance liquid chromatography we found that chlorophyll was present in young tomato (cv. Moneymaker) seeds and was degraded during maturation. Fluorescence microscopy and imaging showed that the majority of chlorophyll is located in the seed coat

  5. STREAK CAMERA MEASUREMENTS OF THE APS PC GUN DRIVE LASER

    Energy Technology Data Exchange (ETDEWEB)

    Dooling, J. C.; Lumpkin, A. H.

    2017-06-25

    We report recent pulse-duration measurements of the APS PC Gun drive laser at both second harmonic and fourth harmonic wavelengths. The drive laser is a Nd:Glass-based chirped pulsed amplifier (CPA) operating at an IR wavelength of 1053 nm, twice frequency-doubled to obtain UV output for the gun. A Hamamatsu C5680 streak camera and an M5675 synchroscan unit are used for these measurements; the synchroscan unit is tuned to 119 MHz, the 24th subharmonic of the linac s-band operating frequency. Calibration is accomplished both electronically and optically. Electronic calibration utilizes a programmable delay line in the 119 MHz rf path. The optical delay uses an etalon with known spacing between reflecting surfaces and is coated for the visible, SH wavelength. IR pulse duration is monitored with an autocorrelator. Fitting the streak camera image projected profiles with Gaussians, UV rms pulse durations are found to vary from 2.1 ps to 3.5 ps as the IR varies from 2.2 ps to 5.2 ps.

  6. The Optoelectronic Swept-Frequency Laser and Its Applications in Ranging, Three-Dimensional Imaging, and Coherent Beam Combining of Chirped-Seed Amplifiers

    Science.gov (United States)

    Vasilyev, Arseny

    This thesis explores the design, construction, and applications of the optoelectronic swept-frequency laser (SFL). The optoelectronic SFL is a feedback loop designed around a swept-frequency (chirped) semiconductor laser (SCL) to control its instantaneous optical frequency, such that the chirp characteristics are determined solely by a reference electronic oscillator. The resultant system generates precisely controlled optical frequency sweeps. In particular, we focus on linear chirps because of their numerous applications. We demonstrate optoelectronic SFLs based on vertical-cavity surface-emitting lasers (VCSELs) and distributed-feedback lasers (DFBs) at wavelengths of 1550 nm and 1060 nm. We develop an iterative bias current predistortion procedure that enables SFL operation at very high chirp rates, up to 1016 Hz/sec. We describe commercialization efforts and implementation of the predistortion algorithm in a stand-alone embedded environment, undertaken as part of our collaboration with Telaris, Inc. We demonstrate frequency-modulated continuous-wave (FMCW) ranging and three-dimensional (3-D) imaging using a 1550 nm optoelectronic SFL. We develop the technique of multiple source FMCW (MS-FMCW) reflectometry, in which the frequency sweeps of multiple SFLs are "stitched" together in order to increase the optical bandwidth, and hence improve the axial resolution, of an FMCW ranging measurement. We demonstrate computer-aided stitching of DFB and VCSEL sweeps at 1550 nm. We also develop and demonstrate hardware stitching, which enables MS-FMCW ranging without additional signal processing. The culmination of this work is the hardware stitching of four VCSELs at 1550 nm for a total optical bandwidth of 2 THz, and a free-space axial resolution of 75 microns. We describe our work on the tomographic imaging camera (TomICam), a 3-D imaging system based on FMCW ranging that features non-mechanical acquisition of transverse pixels. Our approach uses a combination of

  7. Characterization of electrons and x-rays produced using chirped laser pulses in a laser wakefield accelerator

    Science.gov (United States)

    Zhao, T. Z.; Behm, K.; He, Z.-H.; Maksimchuk, A.; Nees, J. A.; Yanovsky, V.; Thomas, A. G. R.; Krushelnick, K.

    2016-11-01

    The electron injection process into a plasma-based laser wakefield accelerator can be influenced by modifying the parameters of the driver pulse. We present an experimental study on the combined effect of the laser pulse duration, pulse shape, and frequency chirp on the electron injection and acceleration process and the associated radiation emission for two different gas types—a 97.5% He and 2.5% N2 mixture and pure He. In general, the shortest pulse duration with minimal frequency chirp produced the highest energy electrons and the most charge. Pulses on the positive chirp side sustained electron injection and produced higher charge, but lower peak energy electrons, compared with negatively chirped pulses. A similar trend was observed for the radiant energy. The relationship between the radiant energy and the electron charge remained linear over a threefold change in the electron density and was independent of the drive pulse characteristics. X-ray spectra showed that ionization injection of electrons into the wakefield generally produced more photons than self-injection for all pulse durations/frequency chirp and had less of a spread in the number of photons around the peak x-ray energy.

  8. Generation of an extreme ultraviolet supercontinuum with a multicycle chirped laser and a static electric field

    Institute of Scientific and Technical Information of China (English)

    Zhang Gang-Tai; Bai Ting-Ting; Zhang Mei-Guang

    2012-01-01

    We theoretically present a method for generating an ultrabroad extreme ultraviolet (XUV) supercontinuum by using the combination of a multicycle chirped laser and a static electric field.At a low laser intensity,the spectral cutoff is extended to the 495th order harmonic,and the bandwidth of the supercontinuum spectrum is broadened to 535 eV.At a high laser intensity,the harmonic cutoff is enlarged to the 667th order,and a supercontinuum covering a bandwidth of 1035 eV is generated.In these two cases,the long quantum path is removed,and the short quantum path is selected.Especially for the relatively high laser intensity,an isolated 23-attosecond pulse with a bandwidth of about 170.6 eV is directly obtained.Finally,we also analyze the influences of the chirp parameter and the duration of the chirped pulse as well as the static field strength on the supercontinuum.

  9. Development of a kilowatt-class, joule-level ultrafast laser for driving compact high average power coherent EUV/soft x-ray sources

    Science.gov (United States)

    Reagan, Brendan A.; Baumgarten, Cory M.; Pedicone, Michael A.; Bravo, Herman; Yin, Liang; Woolston, Mark; Wang, Hanchen; Menoni, Carmen S.; Rocca, Jorge J.

    2016-03-01

    Our recent progress in the development of high energy / high average power, chirped pulse amplification laser systems based on diode-pumped, cryogenically-cooled Yb:YAG amplifiers is discussed, including the demonstration of a laser that produces 1 Joule, sub-10 picosecond duration, λ = 1.03μm pulses at 500 Hz repetition rate. This compact, all-diodepumped laser combines a mode-locked Yb:KYW oscillator and a water-cooled Yb:YAG preamplifer with two cryogenic power amplification stages to produce 1.5 Joule pulses with high beam quality which are subsequently compressed. This laser system occupies an optical table area of less than 1.5x3m2. This laser was employed to pump plasma-based soft x-ray lasers at λ = 10-20nm at repetition rates >=100 Hz. To accomplish this, temporally-shaped pulses were focused at grazing incidence into a high aspect ratio line focus using cylindrical optics on a high shot capacity rotating metal target. This results in an elongated plasma amplifier that produces microjoule pulses at several narrow-linewidth EUV wavelengths between λ = 109Å and 189Å. The resulting fraction of a milliwatt average powers are the highest reported to date for a compact, coherent source operating at these wavelengths, to the best of our knowledge.

  10. Pulsewidth dependence of laser-induced periodic surface structure formed on yttria-stabilized zirconia polycrystal

    Science.gov (United States)

    Kakehata, Masayuki; Yashiro, Hidehiko; Oyane, Ayako; Ito, Atsuo; Torizuka, Kenji

    2016-03-01

    Three-mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) is a fine engineering ceramic that offers high fracture resistance and flexural strength. Thus, it is often applied in mechanical components and medical implants. The surface roughness can be controlled to improve the device characters in some applications. Ultrashort pulse lasers can form laser-induced periodic surface structures (LIPSS) on 3Y-TZP, which have never been investigated in detail. Therefore, this paper reports the formation and characteristics of LIPSS formed on 3Y-TZP, focusing on the pulsewidth dependence. The LIPSS was formed by a Ti:sapphire chirped-pulse amplification system, which generates 810 nmcentered 80-fs pulses at a 570 Hz repetition rate. The measured ablation threshold peak fluence was ~1.5 J/cm2 and the LIPSS was formed at the peak fluence of 2.7-7.7 J/cm2. For linearly polarized pulses, the lines of the LIPSS were oriented parallel to the polarization direction, and their period was comparable to or larger than the center wavelength of the laser. These characteristics differ from the reported characteristics of LIPSS on metals and dielectrics. The pulsewidth dependence of the ablation and LIPSS was investigated for different pulsewidths and signs of chirp. Under the investigated fluence condition, the LIPSS period increased with increasing pulsewidth for both signs of chirp. Similar pulsewidth dependencies were observed for circularly polarized pulses.

  11. Single fiber laser based wavelength tunable excitation for CRS spectroscopy.

    Science.gov (United States)

    Su, Jue; Xie, Ruxin; Johnson, Carey K; Hui, Rongqing

    2013-06-01

    We demonstrate coherent Raman spectroscopy (CRS) using a tunable excitation source based on a single femtosecond fiber laser. The frequency difference between the pump and the Stokes pulses was generated by soliton self-frequency shifting (SSFS) in a nonlinear optical fiber. Spectra of C-H stretches of cyclohexane were measured simultaneously by stimulated Raman gain (SRG) and coherent anti-Stokes Raman scattering (CARS) and compared. We demonstrate the use of spectral focusing through pulse chirping to improve CRS spectral resolution. We analyze the impact of pulse stretching on the reduction of power efficiency for CARS and SRG. Due to chromatic dispersion in the fiber-optic system, the differential pulse delay is a function of Stokes wavelength. This differential delay has to be accounted for when performing spectroscopy in which the Stokes wavelength needs to be scanned. CARS and SRG signals were collected and displayed in two dimensions as a function of both the time delay between chirped pulses and the Stokes wavelength, and we demonstrate how to find the stimulated Raman spectrum from the two-dimensional plots. Strategies of system optimization consideration are discussed in terms of practical applications.

  12. High-power ultrafast Yb:fiber laser frequency combs using commercially available components and basic fiber tools

    Science.gov (United States)

    Li, Xinlong; Reber, Melanie A. R.; Corder, Christopher; Chen, Yuning; Zhao, Peng; Allison, Thomas K.

    2016-09-01

    We present a detailed description of the design, construction, and performance of high-power ultrafast Yb:fiber laser frequency combs in operation in our laboratory. We discuss two such laser systems: an 87 MHz, 9 W, 85 fs laser operating at 1060 nm and an 87 MHz, 80 W, 155 fs laser operating at 1035 nm. Both are constructed using low-cost, commercially available components, and can be assembled using only basic tools for cleaving and splicing single-mode fibers. We describe practical methods for achieving and characterizing low-noise single-pulse operation and long-term stability from Yb:fiber oscillators based on nonlinear polarization evolution. Stabilization of the combs using a variety of transducers, including a new method for tuning the carrier-envelope offset frequency, is discussed. High average power is achieved through chirped-pulse amplification in simple fiber amplifiers based on double-clad photonic crystal fibers. We describe the use of these combs in several applications, including ultrasensitive femtosecond time-resolved spectroscopy and cavity-enhanced high-order harmonic generation.

  13. Autocorrelation measurement of femtosecond laser pulses based on two-photon absorption in GaP photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Chong, E. Z.; Watson, T. F.; Festy, F., E-mail: frederic.festy@kcl.ac.uk [Biomaterials, Biomimetics and Biophotonics Division, King' s College London—Dental Institute, SE1 9RT London (United Kingdom)

    2014-08-11

    Semiconductor materials which exhibit two-photon absorption characteristic within a spectral region of interest can be useful in building an ultra-compact interferometric autocorrelator. In this paper, we report on the evidence of a nonlinear absorption process in GaP photodiodes which was exploited to measure the temporal profile of femtosecond Ti:sapphire laser pulses with a tunable peak wavelength above 680 nm. The two-photon mediated conductivity measurements were performed at an average laser power of less than a few tenths of milliwatts. Its suitability as a single detector in a broadband autocorrelator setup was assessed by investigating the nonlinear spectral sensitivity bandwidth of a GaP photodiode. The highly favourable nonlinear response was found to cover the entire tuning range of our Ti:sapphire laser and can potentially be extended to wavelengths below 680 nm. We also demonstrated the flexibility of GaP in determining the optimum compensation value of the group delay dispersion required to restore the positively chirped pulses inherent in our experimental optical system to the shortest pulse width possible. With the rise in the popularity of nonlinear microscopy, the broad two-photon response of GaP and the simplicity of this technique can provide an alternative way of measuring the excitation laser pulse duration at the focal point of any microscopy systems.

  14. High-power ultrafast Yb:fiber laser frequency combs using commercially available components and basic fiber tools

    CERN Document Server

    Li, X L; Corder, C; Chen, Y; Zhao, P; Allison, T K

    2016-01-01

    We present a detailed description of the design, construction, and performance of high-power ultrafast Yb:fiber laser frequency combs in operation in our laboratory. We discuss two such laser systems: an 87 MHz, 9 W, 85 fs laser operating at 1060 nm and an 87 MHz, 80 W, 155 fs laser operating at 1035 nm. Both are constructed using low-cost, commercially available components, and can be assembled using only basic tools for cleaving and splicing single-mode fibers. We describe practical methods for achieving and characterizing low-noise single-pulse operation and long-term stability from Yb:fiber oscillators based on nonlinear polarization evolution. Stabilization of the combs using a variety of transducers, including a new method for tuning the carrier-envelope offset frequency, is discussed. High average power is achieved through chirped-pulse amplification in simple fiber amplifiers based on double-clad photonic crystal fibers. We describe the use of these combs in several applications, including ultrasensit...

  15. [Lasers].

    Science.gov (United States)

    Passeron, T

    2012-11-01

    Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  16. Lasers.

    Science.gov (United States)

    Passeron, T

    2012-12-01

    Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  17. Seed quality in informal seed systems

    OpenAIRE

    Biemond, P.C.

    2013-01-01

    Keywords:     informal seed systems, seed recycling, seed quality, germination, seed pathology, seed health, seed-borne diseases, mycotoxigenic fungi, Fusarium verticillioides, mycotoxins, Vigna unguiculata, Zea mays, Nigeria.   Seed is a crucial input for agricultural production. Approximately 80% of the smallholder farmers in Africa depend for their seed on the informal seed system, consisting of farmers involved in selection, production and dissemination of seed. The la...

  18. Status of the High Average Power Diode-Pumped Solid State Laser Development at HiLASE

    Directory of Open Access Journals (Sweden)

    Ondřej Novák

    2015-09-01

    Full Text Available An overview of the latest developments of kilowatt-level diode pumped solid state lasers for advanced applications at the HiLASE Centre is presented. An overview of subcontracted and in-house-developed laser beamlines is presented. The aim of development is to build kW-class beamlines delivering picosecond pulses between 1- and 100-kHz repetition rates and high-energy nanosecond pulses at 10 Hz. The picosecond beamlines are based on Yb:YAG thin-disk amplifiers and chirped pulse amplification. The current status of the beamlines’ performance is reported. The advantages of zero-phonon line and pulsed pumping are demonstrated with respect to efficiency, thin disk temperature and beam quality. New diagnostics methods supporting the high average power lasers’ development, such as the high-resolution spectroscopy of Yb-doped materials, in situ thin disk deformation measurements, single-shot M2 measurement, realization of wavefront correction by a deformable mirror and the laser performance of a new mixed garnet ceramics, are described. The energetic, thermal and fluid-mechanical numerical modeling for the optimization of the multi-slab amplifiers is also described.

  19. Investigations of sacrificial and plasma mirrors on the HELEN laser CPA beam

    Science.gov (United States)

    Andrew, James E.; Comley, Andrew J.

    2007-01-01

    The performance of sacrificial and plasma mirrors has been investigated on the HELEN laser chirped pulse amplification [CPA] beam line. Sacrificial mirrors are initially highly reflective surfaces that degrade during the course of a pulsed laser experiment. They are being considered for protecting the off axis parabolic surfaces used to focus CPA lasers from plasma physics target generated debris and shrapnel. Plasma mirrors are initially low reflectivity surfaces that transmit low intensity beams but produce a reflecting plasma surface during the course of the laser pulse. They are being investigated to prevent prepulse effects in plasma physics experiments and increase the contrast ratio of the incident laser beam.The sacrificial mirrors were operated at 45 degrees angle of incidence and an average input beam diameter of ~14 mm with intensities in the range 8 TW/cm2 to 44 TW/cm2. Dielectric protected silver and gold coatings as well as dielectric multi layers were studied as the mirror surfaces for directing all of the short pulse [500fs] laser beams onto tantalum foil targets of 10 microns thickness. Proton emissions from the foils monitored by radiochromic film were used to evaluate the beam irradiance achieved from the mirror surfaces. Glass witness plates were used to evaluate debris and shrapnel emissions from the mirror surfaces, the diagnostics and the target foils. The plasma mirrors were operated in a similar configuration but with beam diameters of ~8mm and irradiances of 57 TW/cm2 to 235 TW/cm2. Uncoated and sol gel anti-reflection coated fused silica were used as the high intensity mirror surfaces. The influence of surface coating on laser damage morphology will be described as well as post shot inspection of debris distributions.

  20. High-energy ultra-short pulse thin-disk lasers: new developments and applications

    Science.gov (United States)

    Michel, Knut; Klingebiel, Sandro; Schultze, Marcel; Tesseit, Catherine Y.; Bessing, Robert; Häfner, Matthias; Prinz, Stefan; Sutter, Dirk; Metzger, Thomas

    2016-03-01

    We report on the latest developments at TRUMPF Scientific Lasers in the field of ultra-short pulse lasers with highest output energies and powers. All systems are based on the mature and industrialized thin-disk technology of TRUMPF. Thin Yb:YAG disks provide a reliable and efficient solution for power and energy scaling to Joule- and kW-class picosecond laser systems. Due to its efficient one dimensional heat removal, the thin-disk exhibits low distortions and thermal lensing even when pumped under extremely high pump power densities of 10kW/cm². Currently TRUMPF Scientific Lasers develops regenerative amplifiers with highest average powers, optical parametric amplifiers and synchronization schemes. The first few-ps kHz multi-mJ thin-disk regenerative amplifier based on the TRUMPF thindisk technology was developed at the LMU Munich in 20081. Since the average power and energy have continuously been increased, reaching more than 300W (10kHz repetition rate) and 200mJ (1kHz repetition rate) at pulse durations below 2ps. First experiments have shown that the current thin-disk technology supports ultra-short pulse laser solutions >1kW of average power. Based on few-picosecond thin-disk regenerative amplifiers few-cycle optical parametric chirped pulse amplifiers (OPCPA) can be realized. These systems have proven to be the only method for scaling few-cycle pulses to the multi-mJ energy level. OPA based few-cycle systems will allow for many applications such as attosecond spectroscopy, THz spectroscopy and imaging, laser wake field acceleration, table-top few-fs accelerators and laser-driven coherent X-ray undulator sources. Furthermore, high-energy picosecond sources can directly be used for a variety of applications such as X-ray generation or in atmospheric research.

  1. Review of laser-driven ion sources and their applications.

    Science.gov (United States)

    Daido, Hiroyuki; Nishiuchi, Mamiko; Pirozhkov, Alexander S

    2012-05-01

    For many years, laser-driven ion acceleration, mainly proton acceleration, has been proposed and a number of proof-of-principle experiments have been carried out with lasers whose pulse duration was in the nanosecond range. In the 1990s, ion acceleration in a relativistic plasma was demonstrated with ultra-short pulse lasers based on the chirped pulse amplification technique which can provide not only picosecond or femtosecond laser pulse duration, but simultaneously ultra-high peak power of terawatt to petawatt levels. Starting from the year 2000, several groups demonstrated low transverse emittance, tens of MeV proton beams with a conversion efficiency of up to several percent. The laser-accelerated particle beams have a duration of the order of a few picoseconds at the source, an ultra-high peak current and a broad energy spectrum, which make them suitable for many, including several unique, applications. This paper reviews, firstly, the historical background including the early laser-matter interaction studies on energetic ion acceleration relevant to inertial confinement fusion. Secondly, we describe several implemented and proposed mechanisms of proton and/or ion acceleration driven by ultra-short high-intensity lasers. We pay special attention to relatively simple models of several acceleration regimes. The models connect the laser, plasma and proton/ion beam parameters, predicting important features, such as energy spectral shape, optimum conditions and scalings under these conditions for maximum ion energy, conversion efficiency, etc. The models also suggest possible ways to manipulate the proton/ion beams by tailoring the target and irradiation conditions. Thirdly, we review experimental results on proton/ion acceleration, starting with the description of driving lasers. We list experimental results and show general trends of parameter dependences and compare them with the theoretical predictions and simulations. The fourth topic includes a review of

  2. TruMicro Series 2000 sub-400 fs class industrial fiber lasers: adjustment of laser parameters to process requirements

    Science.gov (United States)

    Kanal, Florian; Kahmann, Max; Tan, Chuong; Diekamp, Holger; Jansen, Florian; Scelle, Raphael; Budnicki, Aleksander; Sutter, Dirk

    2017-02-01

    The matchless properties of ultrashort laser pulses, such as the enabling of cold processing and non-linear absorption, pave the way to numerous novel applications. Ultrafast lasers arrived in the last decade at a level of reliability suitable for the industrial environment.1 Within the next years many industrial manufacturing processes in several markets will be replaced by laser-based processes due to their well-known benefits: These are non-contact wear-free processing, higher process accuracy or an increase of processing speed and often improved economic efficiency compared to conventional processes. Furthermore, new processes will arise with novel sources, addressing previously unsolved challenges. One technical requirement for these exciting new applications will be to optimize the large number of available parameters to the requirements of the application. In this work we present an ultrafast laser system distinguished by its capability to combine high flexibility and real time process-inherent adjustments of the parameters with industry-ready reliability. This industry-ready reliability is ensured by a long experience in designing and building ultrashort-pulse lasers in combination with rigorous optimization of the mechanical construction, optical components and the entire laser head for continuous performance. By introducing a new generation of mechanical design in the last few years, TRUMPF enabled its ultrashort-laser platforms to fulfill the very demanding requirements for passively coupling high-energy single-mode radiation into a hollow-core transport fiber. The laser architecture presented here is based on the all fiber MOPA (master oscillator power amplifier) CPA (chirped pulse amplification) technology. The pulses are generated in a high repetition rate mode-locked fiber oscillator also enabling flexible pulse bursts (groups of multiple pulses) with 20 ns intra-burst pulse separation. An external acousto-optic modulator (XAOM) enables linearization

  3. 激光对油松种子萌发、生长的 影响及作用机理%Study of laser function and influence on germination and growth of the Chinese pine seed

    Institute of Scientific and Technical Information of China (English)

    吴俊林; 袁胜利; 张宗权

    2001-01-01

    从植物生理学观点出发,用物理学方法讨论了He_Ne激光 对生物细胞膜的渗透性影响.结果表明,用He_Ne激光场辐照油松种子,有利于其细胞膜渗 透能力的提高,从而可产生有益的生物效应.%From the point of plant of physiology, by using phys ical methods, the paper presents a discussion the He_Ne laser affects the bio_me mbrane of permeability. The result shows that, if we use He_Ne laser field radia tes the Chinese pine seeds, it will be good for the improvement of cell membrane ′s permeability, and also it will have good effect on the biological effect.

  4. Soft x-ray generation in gases with an ultrashort pulse laser

    Energy Technology Data Exchange (ETDEWEB)

    Ditmire, Todd Raymond [Univ. of California, Davis, CA (United States)

    1996-01-08

    An experimental investigation of soft x-ray production resulting from the interaction of intense near infra-red laser radiation with gases is presented in this thesis. Specifically, soft x-ray generation through high order harmonic generation or exploiting intense inverse bremsstrahlung heating is examined. Most of these studies are conducted with femtosecond, terawatt class Cr:LiSrAlF6 (LiSAF) laser, though results derived from studies with other laser systems are presented as well. The majority of this work is devoted to experimental investigations, however, theoretical and computational models are developed to interpret the data. These studies are motivated by the possibility of utilizing the physics of intense laser/matter interactions as a potential compact source of bright x-rays. Consequently, the thrust of many of the experiments conducted is aimed at characterizing the x-rays produced for possible use in applications. In general, the studies of this manuscript fall into three categories. First, a unique 130 fs, 8 TW laser that is based on chirped pulse amplification, is described, and its performance is evaluated. The generation of x-rays through high order harmonics is then discussed with emphasis on characterizing and optimizing harmonic generation. Finally, the generation of strong, incoherent x-ray radiation by the intense irradiation of large (>1,000 atom) clusters in gas jets, is explored. The physics of laser energy absorption by clusters illuminated with intensities of 1015 to 1017 W/cm2 is considered in detail. X-ray spectroscopy of the hot plasmas that result from the irradiation of the clusters is conducted, and energy transport and kinetics issues in these plasmas are discussed.

  5. Influence of external cooling on the femtosecond laser ablation of dentin.

    Science.gov (United States)

    Le, Q T; Vilar, R; Bertrand, C

    2017-07-11

    In the present work, the influence of external cooling on the temperature rise in the tooth pulpal chamber during femtosecond laser ablation was investigated. The influence of the cooling method on the morphology and constitution of the laser-treated surfaces was studied as well. The ablation experiments were performed on dentin specimens using an Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs, 1030 nm). Cavities were created by scanning the specimens at a velocity of 5 mm/s while pulsing the stationary laser beam at 1 kHz and with fluences in the range of 2-14 J/cm(2). The experiments were performed in air and with surface cooling by a lateral air jet and by a combination of an air jet and water irrigation. The temperature in the pulpal chamber of the tooth was measured during the laser experiments. The ablation surfaces were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The temperature rise reached 17.5 °C for the treatments performed with 14 J/cm(2) and without cooling, which was reduced to 10.8 ± 1.0 and 6.6 ± 2.3 °C with forced air cooling and water cooling, respectively, without significant reduction of the ablation rate. The ablation surfaces were covered by ablation debris and resolidified droplets containing mainly amorphous calcium phosphate, but the amount of redeposited debris was much lower for the water-cooled specimens. The redeposited debris could be removed by ultrasonication, revealing that the structure and constitution of the tissue remained essentially unaltered. The present results show that water cooling is mandatory for the femtosecond laser treatment of dentin, in particular, when high fluences and high pulse repetition rates are used to achieve high material removal rates.

  6. On the features of the Optical Rogue Waves observed in the Kerr lens mode locked Ti:Sapphire laser

    CERN Document Server

    Hnilo, Alejandro A; Tredicce, Jorge R

    2014-01-01

    Kerr lens-mode-locked Ti:Sapphire lasers are known to display three coexistent modes of operation, that can be described as: continuous wave (CW), transform limited pulses (P1) and positive chirped pulses (P2). Optical rogue waves, in the form of pulses of high energy appearing much often than expected in a Gaussian distribution, are observed in the chaotic regime of the mode P2, but not of P1. These high energy pulses appear in an unpredictable way, but it is observed that their separation (if measured in number of round trips) can take only some definite values, which received the name of "magic numbers". The existence of optical rogue waves in P2 and not in P1, and also of the magic numbers, are correctly reproduced by a numerical simulation based on a five-variables iterative map. But, a successful numerical simulation provides limited insight on the physical causes of the observed phenomena. We present evidence that optical rogue waves in this laser follow a modulational instability, and that an initial ...

  7. The all-diode-pumped laser system POLARIS——an experimentalist’s tool generating ultra-high contrast pulses with high energy

    Institute of Scientific and Technical Information of China (English)

    Marco; Hornung; Hartmut; Liebetrau; Andreas; Seidel; Sebastian; Keppler; Alexander; Kessler; Jrg; Krner; Marco; Hellwing; Frank; Schorcht; Diethard; Klpfel; Ajay; K.Arunachalam; Georg; A.Becker; Alexander; Svert; Jens; Polz; Joachim; Hein; Malte; C.Kaluza

    2014-01-01

    The development,the underlying technology and the current status of the fully diode-pumped solid-state laser system POLARIS is reviewed.Currently,the POLARIS system delivers 4 J energy,144 fs long laser pulses with an ultra-high temporal contrast of 5 × 1012 for the ASE,which is achieved using a so-called double chirped-pulse amplification scheme and cross-polarized wave generation pulse cleaning.By tightly focusing,the peak intensity exceeds 3.5 × 1020 W cm-2.These parameters predestine POLARIS as a scientific tool well suited for sophisticated experiments,as exemplified by presenting measurements of accelerated proton energies.Recently,an additional amplifier has been added to the laser chain.In the ramp-up phase,pulses from this amplifier are not yet compressed and have not yet reached the anticipated energy.Nevertheless,an output energy of 16.6 J has been achieved so far.

  8. Seed regulations and local seed systems

    NARCIS (Netherlands)

    Louwaars, N.

    2000-01-01

    Seed regulations have been introduced in most countries based on the development of formal seed production. Concerns about seed quality and about the varietal identity of the seeds have commonly led to seed laws. However, formal regulations are often inappropriate for informal seed systems, which

  9. Tunable high-harmonic generation by chromatic focusing of few-cycle laser pulses

    Science.gov (United States)

    Holgado, W.; Hernández-García, C.; Alonso, B.; Miranda, M.; Silva, F.; Varela, O.; Hernández-Toro, J.; Plaja, L.; Crespo, H.; Sola, I. J.

    2017-06-01

    In this work we study the impact of chromatic focusing of few-cycle laser pulses on high-order-harmonic generation (HHG) through analysis of the emitted extreme ultraviolet (XUV) radiation. Chromatic focusing is usually avoided in the few-cycle regime, as the pulse spatiotemporal structure may be highly distorted by the spatiotemporal aberrations. Here, however, we demonstrate it as an additional control parameter to modify the generated XUV radiation. We present experiments where few-cycle pulses are focused by a singlet lens in a Kr gas jet. The chromatic distribution of focal lengths allows us to tune HHG spectra by changing the relative singlet-target distance. Interestingly, we also show that the degree of chromatic aberration needed for this control does not degrade substantially the harmonic conversion efficiency, still allowing for the generation of supercontinua with the chirped-pulse scheme, demonstrated previously for achromatic focusing. We back up our experiments with theoretical simulations reproducing the experimental HHG results depending on diverse parameters (input pulse spectral phase, pulse duration, and focus position) and proving that, under the considered parameters, the attosecond pulse train remains very similar to the achromatic case, even showing cases of isolated attosecond pulse generation for near-single-cycle driving pulses.

  10. 40 Gb/s Pulse Generation Using Gain Switching of a Commercially Available Laser Module

    DEFF Research Database (Denmark)

    Nørregaard, Jesper; Hanberg, Jesper; Franck, Thorkild

    1999-01-01

    between the microwave substrate and the RF feed-through in the wall of the module. The module is build as a 14 pin butterfly package with the RF feed-through designed as a coplanar 50 ohm impedance port. Included in the module are a built-in optical isolator, a thermistor, a thermo-electric cooler...... to ease RF connection. The laser die is connected to a gold plated AlN microwave substrate that also acts as a heat spreader. The microwave substrate contains an impedance matching resistor for the RF signal as well as a bias-T for the DC bias. 50 ohm Flexguide technology is used for the interconnection......, and a photodiode for optical power monitoring.The RF input port was connected to the driver circuit using a coplanar microwave probe. A DC bias and a large signal modulation at 10 GHz was applied to the module to generate chirped pulses. A linear as well as a non-linear soliton compression was used with optical...

  11. Effect of seed stimulation on germination and sugar beet yield

    Science.gov (United States)

    Prośba-Białczyk, U.; Szajsner, H.; Grzyś, E.; Demczuk, A.; Sacała, E.; Bąk, K.

    2013-03-01

    Germination and sugar beet yield after seed stimulation were investigated. The seeds came from the energ'hill technology and were subject to laser irradiation. The experiments were conducted in the laboratory and field conditions. Lengthening of germinal roots and hypocotyls was observed. A positive effect of the stimulation on the morphological features was observed for the Eh seeds and laser irradiation applied in a three-fold dose. The energ'hill seeds exhibited a significantly higher content of carotenoids in seedlings and an increase in the content of chlorophylls. Laser light irradiation favourably modified the ratio of chlorophyll a to b. The leaves and roots of plants developed from the energ'hill and irradiated seeds were characterized by higher dry matter content thanin non-stimulated seeds. Seed stimulation had a positive influence on yielding and the saccharose content.

  12. Fiscal 1999 achievement report. Venture seed pickup type international cooperative research project (Development of multi-beam semiconductor laser-aided preparation system for photogravure printing using water-based ink); 1999 nendo venture seeds hakkutsugata kokusai kyodo kenkyu jigyo seika hokokusho - venture seeds No.8. Suisei ink wo mochiita gurabia (oban) insatsuyo multi beam handotai laser seihan system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the prevention of environmental contamination due to oil-based ink used in the photogravure printing process, efforts were exerted to develop a technique of laser-aided photogravure printing using a water-based ink. It was learned that the laser optical system technology of CR Corporation of Canada was practical and high in quality, and a delay occurred in the development of an evaporation type resin for use under this project. Then the initially planned design was abandoned for a type using a new optical system manufactured by CR Corporation. In the development of plate making materials, it was found that resin evaporation was incomplete in a 1-layer structure design. A 2-layer structure design was then employed instead, and the evaporation goal was achieved. Now that the optical system was changed, the resin was also replaced with a thermosensitive type, which enhanced work efficiency. The CR Corporation-manufactured laser optical system was installed on a mount, the processor system was controlled and adjusted, and a printing test was conducted using a water-based ink of German make. It was found that the product of the new system was higher in quality than that printed by the conventional mechanical perforation type printer using an oil-based ink. (NEDO)

  13. Seed planting

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes prairie seed plantings on Neal Smith National Wildlife Refuge (formerly Walnut Creek National Wildlife Refuge) between 1992 and 2009.

  14. Measurement and interpretation of laser accelerated protons at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Al-Omari, Husam

    2014-04-28

    generated by the Matlab program, while the TraceWin code is employed to study the tracking through magnetic elements. - Chapter 6 describes the PHELIX laser parameters at GSI with chirp pulse amplification technique (CPA), and Gafchromic Radiochromic film (RCF) as a spatial energy resolver film detector. The results of experiments with laser proton acceleration, which were performed in two experimental areas at GSI (Z6 area and PHELIX Laser Hall (PLH)), are presented in section 6.3. - Chapter 7 includes the main results of this work, conclusions and gives a perspective for future experimental activities.

  15. Investigation of the near-field structure of jet diffusion flame by the laser sheet method. 1st Report. New seeding method of scattering particles and its application; Laser sheet ho ni yoru funryu kakusan kaen no kibu kozo no kaimei. 1. Atarashii sanran ryushi tenkaho no teian to sono oyo

    Energy Technology Data Exchange (ETDEWEB)

    Noda, S.; Onodera, K.; Kamitakahara, Y.; Onuma, Y. [Toyohashi University of Technology, Aichi (Japan)

    1997-02-25

    The new seeding method of MgO scattering particles based on a laser sheet method was developed, and the near-field structure of jet diffusion flame was studied. This method adds MgO particles (0.2-1.0{mu}m in size) produced by oxidation reaction as scattering particles through combustion of a Mg ribbon in a passage. Since this seeding method of scattering particles can add extreme-densely particles, this method is applicable to not only laser sheet visualization but also laser Doppler velocimeter and concentration measurement. In non-combustion jet formed over a contraction nozzle, coherent vortices are formed in the near field within nearly 8000 in Reynolds number, and the coherent vortices enhance mixing of fuel and air in the process of their linear and nonlinear growth. In the case over 8000 in Reynolds number, the small-scale short-lifetime coherent vortices are formed in the initial development stage of mixed layers, and the whole jet is dominated by irregular turbulent mixing after collapse of the coherent vortices. 14 refs., 8 figs., 1 tab.

  16. Laser Science and Technology Program Update 2002

    Energy Technology Data Exchange (ETDEWEB)

    Hackel, L A; Chen, H L

    2003-03-01

    The Laser Science and Technology (LS&T) Program's mission is to develop advanced lasers, optics, materials technologies, and applications to solve problems and create new capabilities of importance to the nation and the Laboratory. A top, near-term priority is to provide technical support in the deployment and upgrade of the National Ignition Facility (NIF). Our other program activities synergistically develop technologies that are of interest to the NIF Directorate but outside the scope of the NIF funding. The primary objectives of LS&T activities in 2002 have been fourfold--(a) to support deployment of hardware and to enhance laser and optics performance for NIF, (b) to develop high-energy petawatt laser science and technology for the Department of Energy (DOE), (c) to develop advanced solid-state laser systems and optical components for the Department of Defense (DoD), and to invent develop, and deliver improved concepts and hardware for other government agencies and industry. Special efforts have been devoted to building and maintaining our capabilities in three technology areas: high-power short-pulse solid-state lasers, high-power optical materials, and applications of advanced lasers. LS&T activities during 2002 focused on seven major areas: (1) NIF Project--LS&T led major advances in the deployment of NIF Final Optics Assembly (FOA) and the development of 3{omega} optics processing and treatment technologies to enhance NIF's operations and performance capabilities. (2) Stockpile Stewardship Program (SSP)--LS&T personnel continued development of ultrashort-pulse lasers and high-power, large-aperture optics for applications in SSP, extreme-field science and national defense. To enhance the high-energy petawatt (HEPW) capability in NIF, LS&T continued development of advanced compressor-grating and front-end laser technologies utilizing optical-parametric chirped-pulse amplification (OPCPA). (3) High-energy-density physics and inertial fusion energy

  17. Laser Science and Technology Program Update 2002

    Energy Technology Data Exchange (ETDEWEB)

    Hackel, L A; Chen, H L

    2003-03-01

    The Laser Science and Technology (LS&T) Program's mission is to develop advanced lasers, optics, materials technologies, and applications to solve problems and create new capabilities of importance to the nation and the Laboratory. A top, near-term priority is to provide technical support in the deployment and upgrade of the National Ignition Facility (NIF). Our other program activities synergistically develop technologies that are of interest to the NIF Directorate but outside the scope of the NIF funding. The primary objectives of LS&T activities in 2002 have been fourfold--(a) to support deployment of hardware and to enhance laser and optics performance for NIF, (b) to develop high-energy petawatt laser science and technology for the Department of Energy (DOE), (c) to develop advanced solid-state laser systems and optical components for the Department of Defense (DoD), and to invent develop, and deliver improved concepts and hardware for other government agencies and industry. Special efforts have been devoted to building and maintaining our capabilities in three technology areas: high-power short-pulse solid-state lasers, high-power optical materials, and applications of advanced lasers. LS&T activities during 2002 focused on seven major areas: (1) NIF Project--LS&T led major advances in the deployment of NIF Final Optics Assembly (FOA) and the development of 3{omega} optics processing and treatment technologies to enhance NIF's operations and performance capabilities. (2) Stockpile Stewardship Program (SSP)--LS&T personnel continued development of ultrashort-pulse lasers and high-power, large-aperture optics for applications in SSP, extreme-field science and national defense. To enhance the high-energy petawatt (HEPW) capability in NIF, LS&T continued development of advanced compressor-grating and front-end laser technologies utilizing optical-parametric chirped-pulse amplification (OPCPA). (3) High-energy-density physics and inertial fusion energy

  18. Experimental capabilities of the GARPUN MTW Ti : sapphire - KrF laser facility for investigating the interaction of subpicosecond UV pulses with targets

    Science.gov (United States)

    Zvorykin, V. D.; Goncharov, S. A.; Ionin, A. A.; Mokrousova, D. V.; Ryabchuk, S. V.; Seleznev, L. V.; Sunchugasheva, E. S.; Ustinovskii, N. N.; Shutov, A. V.

    2017-05-01

    This paper describes the first experiments carried out on the GARPUN MTW Ti : sapphire - KrF hybrid laser facility and aimed at gaining insight into the interaction of subpicosecond UV pulses with solid and structured low-density carbon nanotube targets at peak intensities of ~1016 W cm-2 in a focal spot ~70 μm in size. Using X-ray absorbers, the plasma electron temperature has been measured to be ~850 eV. In our experiments, we used an optimal configuration: direct double-pass ultrashort-pulse (USP) amplification in KrF amplifier stages, with multiple laser beam filamentation suppression in a xenon-filled cell. The highest energy on a target was 0.25 J at a USP contrast relative to amplified spontaneous emission of ~3 × 1010 for intensities and ~3 × 105 for fluences. Owing to two-photon resonance in the UV spectral region, the use of xenon, with a negative nonlinear refractive index, allowed us to make the cross-sectional fluence distribution more uniform and reduce the beam divergence to 0.14 mrad (at the 10 % intensity level). Reducing the USP duration via negatively chirped pulse amplification and filamentation suppression and reducing the focal spot size on a target by using parabolic short-focus optics are expected to ensure an increase in the intensity incident on the target by one to two orders of magnitude. Presented at the ECLIM 2016 conference (Moscow, 18 - 23 September 2016.

  19. Study of the transverse lasing in big size crystals of Ti:Sa. Application to the design of the peta-watt high-energy amplifier of the pilot laser of the LASERIX facility; Etude de l'amplification parasite transverse de la fluorescence dans les cristaux de Ti:Sa de grandes dimensions. Application a la realisation de l'amplificateur petawatt haute energie du laser pilote de la station LASERIX

    Energy Technology Data Exchange (ETDEWEB)

    Ple, F

    2007-11-15

    This manuscript presents experimental and theoretical works accomplished for the development of the LASERIX laser driver. The main goal of this thesis work was to design a high energy and high repetition rate titanium doped sapphire amplifier (Ti:Sa) allowing to reach an energy of 40 J at a repetition rate of 0.1 Hz before compression. After a general description of amplification in chirped pulse amplification Ti:Sa laser systems (Chapter 1), I present the two particular developments we made during this work for high energy amplification (Chapter 2). First, the spatial shaping and the homogenization based on micro-lens array (MLA) systems of the eight Nd-Glass pump lasers dedicated to the pumping of the last booster amplifier.Secondly, the suppression of parasitic effects due to transverse amplification of the fluorescence in the last booster amplifier Ti:Sa crystal. The developments performed as part of this thesis allowed us to amplify an impulsion of 2 J of energy up to 39 J in a crystal of 10 cm diameter. I also present the simulation program I developed (Chapter 3) in order to simulate the three dimensional parasitic lasing effect and fluorescence transverse amplification phenomena in large Ti:Sa crystals. A parametric study of these parasitic effects is also presented. Finally, the last part of this manuscript (Chapter 4) gives prospects of this work as part of the large future ELI and ILE projects. (author)

  20. Experimental study on the chirped structure of the white-light continuum generation by femtosecond laser spectroscopy

    Institute of Scientific and Technical Information of China (English)

    全冬晖; 刘世林; 张蕾; 杨健; 汪力; 杨国桢; 翁羽翔

    2003-01-01

    The chirped structure of the white-light continuum generation(WLCG)pulse produced by focusing 800nm laser pulse with a pulse duration of 150fs(FWHM:full-width-at-half-maximum)onto a 2.4 mm thick sapphire plate was investigated by the optical Kerr gate technique with normal hexane as the optical Kerr gate medium.The observed WLCG was positively chirped,the measured anti-Stokes spectrum of WLCG ranges from 449 to 580nm with a temporal span of 2.56ps.When using metal reflecting mirrors to eliminate the group velocity dispersion(GVD)effect,we found that a span of 1.3ps still remained,indicating that the chirped pulse cannot be accounted for simply by GVD of the pulse propagation in the dispersive media.Our results suggest that the light-induced refractive index change due to the third-order nonlinear optical effect leads to an additional positive group velocity dispersion,which contributes to an important portion of the observed temporal broadening of the chirped WLCG.In addition to using reflective optical elements instead of dispersive optical elements,an effective way of reducing the chirp is to minimize the optical path length of the WLCG medium.

  1. High energy high repetition rate compact picosecond Holmium YLF laser for mid-IR OPCPA pumping

    Science.gov (United States)

    Sanchez, Daniel; Biegert, Jens; Matras, Guillaume; Simon-Boisson, Christophe

    2017-02-01

    Holmium YLF laser developed in order to be used as the puming laser for the first mid-IR optical parametric chirped pulse amplifier (OPCPA) operating at a center wavelength of 7 μm with output parameters suitable already for strong-field experiments. It is also the first demonstration of an Optical Parametric Chirped Pulse Amplifier (OPCPA) using a 2 μm laser pump source which enables the use of nonoxide nonlinear crystals with typically limited transparency at 1 mm wavelength. This new OPCPA system is alloptically synchronized and generates 0.2 mJ energy, CEP stable optical pulses. The pulses are currently compressed to sub-8 optical cycles but support a sub-4 cycle pulse duration. The discrepancy in compression is due to uncompensated higher order phase from the grating compressor which will be addressed in the future.

  2. Superimposed chirped pulse parameter estimation based on the extended Kalman filter (EKF)

    CSIR Research Space (South Africa)

    Olivier, JC

    2009-05-01

    Full Text Available Gaussian with covariance Qk−1 and Rk respectively, then the time iterations are performed as [7] xˆk|k−1 = fk−1(xˆk−1|k−1) (1) Pk|k−1 = Qk−1 + ˆFk−1Pk−1|k−1 ˆFTk−1 xˆk|k = xˆk|k−1 +Kk(zk − hk(xˆk|k−1)) Pk|k = Pk|k−1 −KkSkKTk where Sk = ˆHkPk|k−1 ˆHTk... +Rk (2) Kk = Pk|k−1 ˆHTk S−1k and ˆFk−1 and ˆHk are the local linearization of nonlinear functions fk−1 and hk respectively. These are defined as Jacobians evaluated at xˆk−1|k−1 and xˆk|k−1 respectively. I.e. ˆFk−1 = [∇xk−1 fTk−1(xk−1)]T |xk−1...

  3. An Improved Analysis of the Sevoflurane-Benzene Structure by Chirped Pulse Ftmw Spectroscopy

    Science.gov (United States)

    Seifert, Nathan A.; Perez, Cristobal; Zaleski, Daniel P.; Neill, Justin L.; Pate, Brooks H.; Lesarri, Alberto; Vallejo, Montserrat; Cocinero, Emilio J.; Castano, Fernando; Kleiner, Isabelle

    2013-06-01

    Recent improvements to the 2-8 GHz CP-FTMW spectrometer at University of Virginia have improved the structural and spectroscopic analysis of the sevoflurane-benzene cluster. Previously reported results, although robust, were limited to a fit of the a-type transitions of the normal species in the determination of the six-fold barrier to benzene internal rotation. Structural analysis was limited to the benzene hydrogen atom positions using benzene-d_{1}. The increased sensitivity of the new 2-8 GHz setup allows for a full internal rotation analysis of the a- and c-type transitions of the normal species, which was performed with BELGI. A fit value for V_{6} of 32.868(11) cm^{-1} is determined. Additionally, a full substitution structure of the benzene carbon atom positions was determined in natural abundance. Also, new measurements of a sevoflurane/benzene-d_{1} mixture enabled detection of 33 of the 60 possible ^{2}D / ^{13}C double isotopologues. This abundance of isotopic data, a total of 45 isotopologues, enabled a full heavy atom least-squares r_{0} structure fit for the complex, including positions for all seven fluorines in sevoflurane. N. A. Seifert, D. P. Zaleski, J. L. Neill, B. H. Pate, A. Lesarri, M. Vallejo, E. J. Cocinero, F. Castańo. 67th OSU Int. Symp. On Mol. Spectrosc., Columbus, OH, 2012, MH13.

  4. Experimental photonic generation of chirped pulses using nonlinear dispersion-based incoherent processing.

    Science.gov (United States)

    Rius, Manuel; Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2015-05-18

    We experimentally demonstrate, for the first time, a chirped microwave pulses generator based on the processing of an incoherent optical signal by means of a nonlinear dispersive element. Different capabilities have been demonstrated such as the control of the time-bandwidth product and the frequency tuning increasing the flexibility of the generated waveform compared to coherent techniques. Moreover, the use of differential detection improves considerably the limitation over the signal-to-noise ratio related to incoherent processing.

  5. Dynamic characterization and amplification of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Rishøj, Lars Søgaard

    2013-01-01

    We show a first-time demonstration of amplification of 400 fs pulses in a fiber optical parametric amplifier. The 400 fs signal is stretched in time, amplified by 26 dB and compressed back to 500 fs. A significant broadening of the pulses is experimentally shown due to dispersion and limited gain...

  6. High-dispersive mirrors for femtosecond lasers.

    Science.gov (United States)

    Pervak, V; Teisset, C; Sugita, A; Naumov, S; Krausz, F; Apolonski, A

    2008-07-07

    We report on the development of highly dispersive mirrors for chirped-pulse oscillators (CPO) and amplifiers (CPA). In this proof-of-concept study, we demonstrate the usability of highly dispersive multilayer mirrors for high-energy femtosecond oscillators, namely for i) a chirped-pulse Ti:Sa oscillator and ii) an Yb:YAG disk oscillator. In both cases a group delay dispersion (GDD) of the order of 2x10(4) fs(2) was introduced, accompanied with an overall transmission loss as low as approximately 2 per cent. This unprecedented combination of high dispersion and low loss over a sizeable bandwidth with multilayer structures opens the prospects for femtosecond CPA systems equipped with a compact, alignment-insensitive all-mirror compressors providing compensation of GDD as well as higher-order dispersion.

  7. Advanced ultrafast fiber laser sources enabled by fiber nonlinearities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei

    2017-05-15

    Development of high power/energy ultrafast fiber lasers for scientific research and industrial applications is one of the most exciting fields in ultrafast optics. This thesis demonstrated new means to improve two essential properties - which are indispensable for novel applications such as high-harmonic generation (HHG) and multiphoton microscopy (MPM) - of an ultrafast fiber laser system: energy scaling capability and wavelength tunability. High photon-flux extreme ultraviolet sources enabled by HHG desire high power (>100 W), high repetition-rate (>1 MHz) ultrafast driving laser sources. We have constructed from scratch a high-power Yb-fiber laser system using the well-known chirped-pulse amplification (CPA) technique. Such a CPA system capable of producing ∝200-W average power consists of a monolithic Yb-fiber oscillator, an all-fiber stretcher, a pre-amplifier chain, a main amplifier constructed from rode-type large pitch fiber, and a diffraction-grating based compressor. To increase the HHG efficiency, ultrafast pulses with duration <60 fs are highly desired. We proposed and demonstrated a novel amplification technique, named as pre-chirp managed amplification (PCMA). We successfully constructed an Yb-fiber based PCMA system that outputs 75-MHz spectrally broadened pulses with >130-W average power. The amplified pulses are compressed to 60-fs pulses with 100-W average power, constituting a suitable HHG driving source. MPM is a powerful biomedical imaging tool, featuring larger penetration depth while providing the capability of optical sectioning. Although femtosecond solid-state lasers have been widely accepted as the standard option as MPM driving sources, fiber-based sources have received growing research efforts due to their superior performance. In the second part of this thesis, we both theoretically and experimentally demonstrated a new method of producing wavelength widely tunable femtosecond pulses for driving MPM. We employed self-phase modulation

  8. Advanced backward Raman amplification seeding

    Science.gov (United States)

    Malkin, Vladimir; Fisch, Nathaniel

    2010-11-01

    Next generations of ultrapowerful laser pulses, reaching exawatt and zetawatt powers within reasonably compact facilities, might be based on the backward Raman amplification (BRA) in plasmas. Amplified pulse intensities hundreds times higher than the pump intensity are already observed experimentally. More advanced BRA stages should produce even higher intensities. The largest nonfocused intensity, limited primarily by instabilities associated with the relativistic electron nonlinearity of the amplified laser pulse, is, roughly speaking, 0.1 of the fully relativistic value. It corresponds to the amplified pulse final (and shortest) duration be about the electron plasma wave period. The needed seed pulse should be at least that short then to stay ahead of the amplified pulse, rather than be shadowed by it (which would much reduce the seeding efficiency). However, at earlier BRA stages, when the amplified pulse is longer, the optimal duration of the seed pulse is also longer. This work proposes the use of self-contracting seed pulses for further optimizing the advanced BRA.

  9. The role of phase coherence in seeded supercontinuum generation

    DEFF Research Database (Denmark)

    Sørensen, Simon Toft; Larsen, Casper; Møller, Uffe

    2012-01-01

    The noise properties of a supercontinuum can be controlled by modulating the pump with a seed pulse. In this paper, we numerically investigate the influence of seeding with a partially phase coherent weak pulse or continuous wave. We demonstrate that the noise properties of the generated...... supercontinuum are highly sensitive to the degree of phase noise of the seed and that a nearly coherent seed pulse is needed to achieve a coherent pulse break-up and low noise supercontinuum. The specific maximum allowable linewidth of the seed laser is found to decrease with increasing pump power....

  10. The effect of frequency chirping on electron-positron pair production in the one- and two-color laser pulse fields

    CERN Document Server

    Abdukerim, Nuriman; Xie, Bai-Song

    2016-01-01

    The effect of the frequency chirping on momentum spectrum and pair production rate in one- and two-color laser pulse fields is investigated by solving the quantum Vlasov equation. A small frequency chirp shifts the momentum spectrum along the momentum axis. The positive and negative frequency chirp parameters play the same role in increasing the pair number density. The sign change of frequency chirp parameter at the moment $t=0$ leads pulse shape and momentum spectrum to be symmetric, and the number density to be increased. The number density of produced pairs in the two-color pulse field is much higher than that in the one-color pulse field and the larger frequency chirp pulse field dominates more strongly. In the two-color pulse fields, the relation between the frequency ratio of two colors and the number density is not sensitive to the parameters of small frequency chirp added in either low frequency strong field or high frequency weak field but sensitive to the parameters of large frequency chirp added i...

  11. Supersonic micro-jets and their application to few-cycle laser-driven electron acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Karl

    2009-07-23

    This thesis covers the few-cycle laser-driven acceleration of electrons in a laser-generated plasma. The laser system employed in this work is a new development based on optical parametric chirped pulse amplification and is the only multi-TW few-cycle laser in the world. In the experiment, the laser beam is focused onto a supersonic helium gas jet which leads to the formation of a plasma channel. The laser pulse, having an intensity of 10{sup 19} W/cm{sup 2} propagates through the plasma with an electron density of 2 x 10{sup 19} cm{sup -3} and forms via a highly nonlinear interaction a strongly anharmonic plasma wave. The amplitude of the wave is so large that the wave breaks, thereby injecting electrons from the background plasma into the accelerating phase. The energy transfer from the laser pulse to the plasma is so strong that the maximum propagation distance is limited to the 100 m range. Therefore, gas jets specifically tuned to these requirements have to be employed. The properties of microscopic supersonic gas jets are thoroughly analyzed in this work. Based on numeric flow simulation, this study encompasses several extensive parameter studies that illuminate all relevant features of supersonic flows in microscopic gas nozzles. This allowed the optimized design of de Laval nozzles with exit diameters ranging from 150 {mu}m to 3 mm. The employment of these nozzles in the experiment greatly improved the electron beam quality. After these optimizations, the laser-driven electron accelerator now yields monoenergetic electron pulses with energies up to 50 MeV and charges between one and ten pC. The electron beam has a typical divergence of 5 mrad and comprises an energy spectrum that is virtually free from low energetic background. The electron pulse duration could not yet be determined experimentally but simulations point towards values in the range of 1 fs. The acceleration gradient is estimated from simulation and experiment to be approximately 0.5 TV/m. The

  12. Understanding and controlling laser-matter interactions: From solvated dye molecules to polyatomic molecules in gas phase

    Science.gov (United States)

    Konar, Arkaprabha

    The goal of my research is to obtain a better understanding of the various processes that occur during and following laser-matter interactions from both the physical and chemical point of view. In particular I focused my research on understanding two very important aspects of laser-matter interaction; 1) Intense laser-matter interactions for polyatomic molecules in the gas phase in order to determine to what extent processes like excitation, ionization and fragmentation can be controlled by modifying the phase and amplitude of the laser field according to the timescales for electronic, vibrational and rotational energy transfer. 2) Developing pulse shaping based single beam methods aimed at studying solvated molecules in order to elucidate processes like inhomogeneous broadening, solvatochromic shift and to determine the electronic coherence lifetimes of solvated molecules. The effect of the chirped femtosecond pulses on fluorescence and stimulated emission from solvated dye molecules was studied and it was observed that the overall effect depends quadratically on pulse energy, even where excitation probabilities range from 0.02 to 5%, in the so-called "linear excitation regime". The shape of the chirp dependence is found to be independent of the energy of the pulse. It was found that the chirp dependence reveals dynamics related to solvent rearrangement following excitation and also depends on electronic relaxation of the chromophore. Furthermore, the chirped pulses were found to be extremely sensitive to solvent environment and that the complementary phases having the opposite sign provide information about the electronic coherence lifetimes. Similar to chirped pulses, the effects of a phase step on the excitation spectrum and the corresponding changes to the stimulated emission spectrum were also studied and it was found that the coherent feature on the spectrum is sensitive to the dephasing time of the system. Therefore a single phase scanning method can

  13. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds.

    Science.gov (United States)

    Van Bael, S; Chai, Y C; Truscello, S; Moesen, M; Kerckhofs, G; Van Oosterwyck, H; Kruth, J-P; Schrooten, J

    2012-07-01

    The specific aim of this study was to gain insight into the influence of scaffold pore size, pore shape and permeability on the in vitro proliferation and differentiation of three-dimensional (3-D) human periosteum-derived cell (hPDC) cultures. Selective laser melting (SLM) was used to produce six distinct designed geometries of Ti6Al4V scaffolds in three different pore shapes (triangular, hexagonal and rectangular) and two different pore sizes (500 μm and 1000 μm). All scaffolds were characterized by means of two-dimensional optical microscopy, 3-D microfocus X-ray computed tomography (micro-CT) image analysis, mechanical compression testing and computational fluid dynamical analysis. The results showed that SLM was capable of producing Ti6Al4V scaffolds with a broad range of morphological and mechanical properties. The in vitro study showed that scaffolds with a lower permeability gave rise to a significantly higher number of cells attached to the scaffolds after seeding. Qualitative analysis by means of live/dead staining and scanning electron micrography showed a circular cell growth pattern which was independent of the pore size and shape. This resulted in pore occlusion which was found to be the highest on scaffolds with 500 μm hexagonal pores. Interestingly, pore size but not pore shape was found to significantly influence the growth of hPDC on the scaffolds, whereas the differentiation of hPDC was dependent on both pore shape and pore size. The results showed that, for SLM-produced Ti6Al4V scaffolds with specific morphological and mechanical properties, a functional graded scaffold will contribute to enhanced cell seeding and at the same time can maintain nutrient transport throughout the whole scaffold during in vitro culturing by avoiding pore occlusion.

  14. Seed Treatment. Bulletin 760.

    Science.gov (United States)

    Lowery, Harvey C.

    This manual gives a definition of seed treatment, the types of seeds normally treated, diseases and insects commonly associated with seeds, fungicides and insecticides used, types of equipment used for seed treatment, and information on labeling and coloring of treated seed, pesticide carriers, binders, stickers, and safety precautions. (BB)

  15. Laser-driven proton acceleration enhancement by the optimized intense short laser pulse shape

    Science.gov (United States)

    Souri, S.; Amrollahi, R.; Sadighi-Bonabi, R.

    2017-05-01

    Interactions of two distinct shapes of the pulses namely positive/negative chirped pulse and fast/slow rising-edge pulse with plasma are studied using particle-in-cell simulation. It is found that, for a pulse duration of 34 fs and intensity a0 = 12, proton acceleration could be enhanced by asymmetric pulses with either pulse envelope or pulse frequency modification. The number of accelerated protons, as well as the proton energy cut-off, is increased by asymmetric pulses. In this work, for positive chirped pulse, electrostatic field at the rear side of the target is improved by about 30%, which in turns leads to an increase in the proton energy cut-off more than 40%. Moreover, in contrary to the fast pulses, the slow one could enhance the proton energy cut-off up to 65% for 34 fs pulse with 20 fs rising-edge.

  16. Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chubar, Oleg [Brookhaven National Laboratory, Upton, NY 11973 (United States); Geloni, Gianluca [European X-ray Free-Electron Laser, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Kocharyan, Vitali [Deutsches Elektronen-Synchrotron, 22761 Hamburg (Germany); Madsen, Anders [European X-ray Free-Electron Laser, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Saldin, Evgeni; Serkez, Svitozar [Deutsches Elektronen-Synchrotron, 22761 Hamburg (Germany); Shvyd’ko, Yuri, E-mail: shvydko@aps.anl.gov [Argonne National Laboratory, Argonne, IL 60439 (United States); Sutter, John [Diamond Light Source Ltd, Didcot OX11 0DE (United Kingdom)

    2016-02-12

    This article explores novel opportunities for ultra-high-resolution inelastic X-ray scattering (IXS) at high-repetition-rate self-seeded XFELs. These next-generation light sources are promising a more than three orders of magnitude increase in average spectral flux compared with what is possible with storage-ring-based radiation sources. In combination with the advanced IXS spectrometer described here, this may become a real game-changer for ultra-high-resolution X-ray spectroscopies, and hence for the studies of dynamics in condensed matter systems. Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm{sup −1} spectral and momentum-transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm{sup −1} are required to close the gap in energy–momentum space between high- and low-frequency probes. It is shown that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a 100-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than what is possible with storage-ring-based radiation sources. Wave-optics calculations show that about 7 × 10{sup 12} photons s{sup −1} in a 90 µeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS.

  17. Nonlinear compression of ultrafast industrial lasers in hypocyloid-core Kagome hollow-core fiber

    Science.gov (United States)

    Giree, A.; Guichard, F.; Machinet, G.; Zaouter, Y.; Hagen, Y.; Debords, B.; Dupriez, P.; Gérôme, F.; Hanna, M.; Benabid, F.; Hönninger, C.; Georges, P.; Mottay, E.

    2015-03-01

    The duration of energetic ultrashort pulses is usually limited by the available gain bandwidth of ultrashort amplifiers used to amplify nJ or pJ level seed to hundreds of μμJ or even several mJ. In the case of Ytterbium-doped fiber amplifiers, the available bandwidth is of the order of 40 nm, typically limiting the pulse duration of high-energy fiber chirped-pulse amplifiers to durations above 300 fs. In the case of solid-state amplifier based on Yb:YAG crystals, the host matrix order restricts the amplification bandwidth even more leading to pulses in the low picosecond range. Both architecture would greatly benefit from pulse durations well-below what is allowed by their respective gain bandwidth e.g. sub-100 fs for fiber amplifier and sub-300 fs for solid-state Yb:YAG amplifier. In this contribution, we report on the post-compression of two high energy industrial ultrashort fiber and thin-disk amplifiers using an innovative and efficient hollow core fiber structure, namely the hypocycloid-core Kagome fiber. This fiber exhibits remarkably low propagation losses due to the unique inhibited guidance mechanism that minimize that amount of light propagating in the silica cladding surrounding the hollow core. Spectral broadening is realized in a short piece of Kagome fiber filled with air at 1 atmosphere pressure. For both amplifiers, we were able to demonstrate more than 200 μJ of energy per pulse with duration <100 fs in the case of the fiber amplifier and <300 fs in the case of the thin disk amplifier. Limitations and further energy scaling will also be discussed.

  18. Compact, simple and robust cross polarized wave generation source of few-cycle, high-contrast pulses for seeding petawatt-class laser systems

    OpenAIRE

    Ramirez, Patricia; Papadopoulos, Dimitris N.; Hanna, Marc; Pellegrina, Alain; Friebel, Florence; Georges, Patrick; Druon, Frédéric

    2013-01-01

    International audience; A compact and robust, dual-crystal cross polarized wave generation setup combined with a hollow waveguide filter is implemented to deliver few-cycle, high-contrast laser pulses sourced from a commercial multipass Ti:Sa amplifier. The initial 25-fs pulses with a temporal contrast of 108 are shortened to 10 fs with an improved contrast of at least 10^10. The single nonlinear stage for spectral broadening and contrast enhancement of a commercial amplifier serves as an ide...

  19. Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers.

    Science.gov (United States)

    Chubar, Oleg; Geloni, Gianluca; Kocharyan, Vitali; Madsen, Anders; Saldin, Evgeni; Serkez, Svitozar; Shvyd'ko, Yuri; Sutter, John

    2016-03-01

    Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm(-1) spectral and momentum-transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm(-1) are required to close the gap in energy-momentum space between high- and low-frequency probes. It is shown that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a 100-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than what is possible with storage-ring-based radiation sources. Wave-optics calculations show that about 7 × 10(12) photons s(-1) in a 90 µeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS.

  20. Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chubar, Oleg; Geloni, Gianluca; Kocharyan, Vitali; Madsen, Anders; Saldin, Evgeni; Serkez, Svitozar; Shvyd' ko, Yuri; Sutter, John

    2016-02-12

    Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm-1spectral and momentum-transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm-1 are required to close the gap in energy–momentum space between high- and low-frequency probes. It is shown that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a 100-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than what is possible with storage-ring-based radiation sources. Wave-optics calculations show that about 7 × 1012 photons s-1 in a 90 µeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS.

  1. Novel opportunities for sub-meV inelastic X-ray scattering at high-repetition rate self-seeded X-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chubar, Oleg [Brookhaven National Laboratory, Upton, NY (United States). National Synchrotron Light Source II; Geloni, Gianluca; Madsen, Anders [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni; Serkez, Svitozar [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Shvyd' ko, Yuri [Argonne National Laboratory, IL (United States). Advanced Photon Source; Sutter, John [Diamond Light Source Ltd., Didcot (United Kingdom)

    2015-08-15

    Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm{sup -1} spectral and momentum transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm{sup -1} are required to close the gap in energy-momentum space between high and low frequency probes. We show that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a hundred-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than possible with storage-ring based radiation sources. Wave-optics propagation shows that about 7 x 10{sup 12} ph/s in a 90-μeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS.

  2. Novel opportunities for sub-meV inelastic X-ray scattering at high-repetition rate self-seeded X-ray free-electron lasers

    CERN Document Server

    Chubar, Oleg; Kocharyan, Vitali; Madsen, Anders; Saldin, Evgeni; Serkez, Svitozar; Shvyd'ko, Yuri; Sutter, John

    2015-01-01

    Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6~meV and 0.25~nm$^{-1}$ spectral and momentum transfer resolutions, respectively. However, further improvements down to 0.1~meV and 0.02~nm$^{-1}$ are required to close the gap in energy-momentum space between high and low frequency probes. We show that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a hundred-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than possible with storage-ring based radiation sources. Wave-optics propagation shows that about $7\\times 10^{12}$~ph/s in a $90$-$\\mu$e...

  3. Exawatt-Zettawatt Pulse Generation and Applications

    OpenAIRE

    Mourou, G. A.; Fisch, N. J.; Malkin, V. M.; Toroker, Z.; Khazanov, E. A.; Sergeev, A. M.; TAJIMA, T.

    2011-01-01

    A new amplification method, weaving the three basic compression techniques, Chirped Pulse Amplification (CPA), Optical Parametric Chirped Pulse Amplification (OPCPA) and Plasma Compression by Backward Raman Amplification (BRA) in plasma, is proposed. It is called C3 for Cascaded Conversion Compression. It has the capability to compress with good efficiency kilojoule to megajoule, nanosecond laser pulses into femtosecond pulses, to produce exawatt and beyond peak power. In the future, C3 could...

  4. Application of Bio-speckle Activity to Assess Seed Viability

    Directory of Open Access Journals (Sweden)

    Sen Men

    2015-05-01

    Full Text Available This study presents an assessment method for seed viability, using bio-speckle technique. Bio-speckle is caused by moving of the biological material under highly coherent light. If this phenomenon can be measured by successive speckle patterns during the period of germination, it is possible to identify different activities of the seeds. Viable and non-viable pisumsativum seeds were illuminated by a helium-neon laser source of 7mW with wavelength of 632.8 nm. The speckle patterns were recorded by a digital colour charge-couple device camera and stored in the host computer for further analysis using Matlab. Two methods were used to obtain information of biological activities from these speckle patterns. It was observed that the seeds activities can be distinguished as viable seeds and non-viable seeds. The results indicate that bio-speckle can be used to assess seed viability.

  5. 100 kW peak power picosecond thulium-doped fiber amplifier system seeded by a gain-switched diode laser at 2 μm.

    Science.gov (United States)

    Heidt, A M; Li, Z; Sahu, J; Shardlow, P C; Becker, M; Rothhardt, M; Ibsen, M; Phelan, R; Kelly, B; Alam, S U; Richardson, D J

    2013-05-15

    We report on the generation of picosecond pulses at 2 μm directly from a gain-switched discrete-mode diode laser and their amplification in a multistage thulium-doped fiber amplifier chain. The system is capable of operating at repetition rates in the range of 2 MHz-1.5 GHz without change of configuration, delivering high-quality 33 ps pulses with up to 3.5 μJ energy and 100 kW peak power, as well as up to 18 W of average power. These results represent a major technological advance and a 1 order of magnitude increase in peak power and pulse energy compared to existing picosecond sources at 2 μm.

  6. Transverse beam diagnostics for the XUV seeding experiment at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Boedewadt, Joern

    2011-12-15

    High-gain free-electron lasers (FEL) offer intense, transversely coherent, and ultra short radiation pulses in the extreme ultraviolet, the soft- and the hard-X-ray spectral range. Undulator radiation from spontaneous emission is amplified. Due to the stochastic emission process, the radiation exhibits a low temporal coherence, and the structure of the amplified radiation in the temporal and in the spectral domain shows large shot-to-shot fluctuations. In order to improve the temporal coherence, an external radiation pulse is used to induce (or seed) the FEL process. With this, only a defined wavelength range within the FEL bandwidth is amplified provided that the irradiance of the external radiation exceeds the noise level of the FEL amplifier. In addition to the improved longitudinal coherence, a seeded FEL provides the possibility to perform pump-probe experiments with an expected temporal resolution of the order of the pulse durations. In order to experimentally proof this statement, a test experiment for direct HHG-seeding at wavelength below 40 nm was installed at the free-electron laser facility FLASH at DESY. Crucial for the seeded operation of an FEL is the six-dimensional laser-electron overlap of the seed laser pulses with the electron bunches. Hence, dedicated diagnostics to measure and mechanisms to control the overlap are essential. Within this thesis, a transport beamline for the seed laser beam and the transverse diagnostics for seed laser- and the electron-beam were developed and commissioned. Results of the performance of the seed injection beamline are presented, and first measurements of the seeded operation of the FEL are analyzed and evaluated. (orig.)

  7. Epoxy resins used to seal brachytherapy seed

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Natalia Carolina Camargos; Ferraz, Wilmar Barbosa; Reis, Sergio Carneiro dos; Santos, Ana Maria Matildes dos, E-mail: nccf@cdtn.br, E-mail: ferrazw@cdtn.br, E-mail: reissc@cdtn.br, E-mail: amms@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, BH (Brazil)

    2013-07-01

    Prostate cancer treatment with brachytherapy is recommended for patients with cancer at an early stage. In this treatment, small radioactive seeds are implanted directly in the prostate gland. These seeds are composed at least of one radionuclide carrier and an X-ray marker enclosed within a metallic tube usually sealed by laser process. This process is expensive and, furthermore, it can provoke a partial volatilization of the radionuclide and change the isotropy in dose distribution around the seed. In this paper, we present a new sealing process using epoxy resin. Three kinds of resins were utilized and characterized by scanning electron microscopy (SEM), energy dispersive X ray (EDS) and by differential scanning calorimetry (DSC) after immersion in simulated body fluid (SBF) and in sodium iodine solution (NaI). The sealing process showed excellent potential to replace the sealing laser usually employed. (author)

  8. Organic Leek Seed Production - Securing Seed Quality

    DEFF Research Database (Denmark)

    Deleuran, L C; Boelt, B

    2011-01-01

    To maintain integrity in organic farming, availability of organically produced GM-free seed of varieties adapted to organic production systems is of vital impor-tance. Despite recent achievements, organic seed supply for a number of vegetable species is insufficient. Still, in many countries...... organic vegetable growers can get derogations to use non-organic seeds in their productions. Potentially, this could lead to the organic consumers’ loss of faith and interest in organic products. The pre-requisite for an organic vegetable production is the presence of organically produced high quality...... seeds. Tunnel production is a means of securing seed of high genetic purity and quality, and organic leek (Allium porrum L.) seed production was tested in tunnels in Denmark. The present trial focused on steckling size and in all years large stecklings had a positive effect on both seed yield...

  9. Organic Leek Seed Production - Securing Seed Quality

    DEFF Research Database (Denmark)

    Deleuran, L C; Boelt, B

    2011-01-01

    To maintain integrity in organic farming, availability of organically produced GM-free seed of varieties adapted to organic production systems is of vital impor-tance. Despite recent achievements, organic seed supply for a number of vegetable species is insufficient. Still, in many countries...... organic vegetable growers can get derogations to use non-organic seeds in their productions. Potentially, this could lead to the organic consumers’ loss of faith and interest in organic products. The pre-requisite for an organic vegetable production is the presence of organically produced high quality...... seeds. Tunnel production is a means of securing seed of high genetic purity and quality, and organic leek (Allium porrum L.) seed production was tested in tunnels in Denmark. The present trial focused on steckling size and in all years large stecklings had a positive effect on both seed yield...

  10. Organic leek seed production - securing seed quality

    DEFF Research Database (Denmark)

    Deleuran, Lise Christina; Boelt, Birte

    2011-01-01

    To maintain integrity in organic farming, availability of organically produced GM-free seed of varieties adapted to organic production systems is of vital impor-tance. Despite recent achievements, organic seed supply for a number of vegetable species is insufficient. Still, in many countries...... organic vegetable growers can get derogations to use non-organic seeds in their productions. Potentially, this could lead to the organic consumers’ loss of faith and interest in organic products. The pre-requisite for an organic vegetable production is the presence of organically produced high quality...... seeds. Tunnel production is a means of securing seed of high genetic purity and quality, and organic leek (Allium porrum L.) seed production was tested in tunnels in Denmark. The present trial focused on steckling size and in all years large stecklings had a positive effect on both seed yield...

  11. Barley seed aging

    NARCIS (Netherlands)

    Nagel, Manuela; Kodde, Jan; Pistrick, Sibylle; Mascher, Martin; Börner, Andreas; Groot, Steven P.C.

    2016-01-01

    Experimental seed aging approaches intend to mimic seed deterioration processes to achieve a storage interval reduction. Common methods apply higher seed moisture levels and temperatures. In contrast, the “elevated partial pressure of oxygen” (EPPO) approach treats dry seed stored at ambient temp

  12. Optimization of plasma amplifiers

    Science.gov (United States)

    Sadler, James D.; Trines, Raoul M. Â. G. Â. M.; Tabak, Max; Haberberger, Dan; Froula, Dustin H.; Davies, Andrew S.; Bucht, Sara; Silva, Luís O.; Alves, E. Paulo; Fiúza, Frederico; Ceurvorst, Luke; Ratan, Naren; Kasim, Muhammad F.; Bingham, Robert; Norreys, Peter A.

    2017-05-01

    Plasma amplifiers offer a route to side-step limitations on chirped pulse amplification and generate laser pulses at the power frontier. They compress long pulses by transferring energy to a shorter pulse via the Raman or Brillouin instabilities. We present an extensive kinetic numerical study of the three-dimensional parameter space for the Raman case. Further particle-in-cell simulations find the optimal seed pulse parameters for experimentally relevant constraints. The high-efficiency self-similar behavior is observed only for seeds shorter than the linear Raman growth time. A test case similar to an upcoming experiment at the Laboratory for Laser Energetics is found to maintain good transverse coherence and high-energy efficiency. Effective compression of a 10 kJ , nanosecond-long driver pulse is also demonstrated in a 15-cm-long amplifier.

  13. Gain-switched laser diode seeded Yb-doped fiber amplifier delivering 11-ps pulses at repetition rates up to 40-MHz

    CERN Document Server

    Ryser, Manuel; Pilz, Soenke; Burn, Andreas; Romano, Valerio

    2014-01-01

    Here, we demonstrate all-fiber direct amplification of 11 picosecond pulses from a gain-switched laser diode at 1063nm. The diode was driven at a repetition rate of 40MHz and delivered 13$\\mu$W of fiber-coupled average output power. For the low output pulse energy of 0.33pJ we have designed a multi-stage core pumped preamplifier based on single clad Yb-doped fibers in order to keep the contribution of undesired amplified spontaneous emission as low as possible and to minimize temporal and spectral broadening. After the preamplifier we reduced the 40MHz repetition rate to 1MHz using a fiber coupled pulse-picker. The final amplification was done with a cladding pumped Yb-doped large mode area fiber and a subsequent Yb-doped rod-type fiber. With our setup we achieved amplification of 72dBs to an output pulse energy of 5.7$\\mu$J, pulse duration of 11ps and peak power of >0.6MW.

  14. High quality interconnected core/shell ZnO nanorod architectures grown by pulsed laser deposition on ZnO-seeded Si substrates

    Science.gov (United States)

    Inguva, Saikumar; Vijayaraghavan, Rajani K.; McGlynn, Enda; Mosnier, Jean-Paul

    2017-01-01

    We report the production of vertically aligned and interconnected ZnO core/shell nanorods using pulsed laser deposition (PLD) in a continuous two-step growth process. X-ray diffraction studies showed wurtzite structure and c-axis orientation with a high degree of verticality. Scanning electron microscopy showed a characteristic interconnection morphology between the nanorod tips uniformly present over the entire sample surface area, while transmission electron microscopy revealed crystalline core/amorphous shell architecture. Strong bands at 98.7 cm-1 and 437.2 cm-1 (wurtzite ZnO low and high non-polar E2 modes) were the main features of the nanorod Raman spectra, again showing the high sample quality. Low-temperature PL data exhibited strong I6 emission and structured green band showing high optical quality. Electrical studies indicated n-type material with ohmic behaviour. The results are discussed in the context of the advantages offered by interconnected architectures of core/shell ZnO nanostructures for various applications.

  15. Seed vigour and seed lot quality

    Directory of Open Access Journals (Sweden)

    Lekić Slavoljub S.

    2001-01-01

    Full Text Available This paper discusses seed vigour as the most important seed characteristic the seed lot quality depends on. In Serbian, the terms such as vigor, viability and germ inability are used in various ways, depending on the author, which leaves room to possible misunderstanding in interpretation of research results and misuse of expert terminology. The modest lexical fund, compared to that of the English language, for instance, greatly contributes to the problem, and so does the absence of terminological standardization. Since the current technology and research level in seed science and technology requires appropriate terminology, this article offers an outline of basic seed traits related expert terminology as a foundation of future seed research and technology development. .

  16. The Effects of Physical Primings of Seeds on Agronomical Characteristics and Alkaloid Content of Datura

    Directory of Open Access Journals (Sweden)

    S Baser kouchebagh

    2015-08-01

    Full Text Available To study the effects of physical seed primings on yield and alkaloid content of datura an experiment in a randomized complete block design with three replications and 10 different treatments was conducted at the Agricultural Research Station of Islamic Aazd University, Tabriz branch, Iran, during growing season of 2013. Treatments of moist seeds were: ultrasonic treatment of seeds with a maximum of 3 watts, gamma and beta irradiations of seeds at 2 microcurie (µc for 10 minutes, laser irradiation at 6328 angstrom (A° and magnetic field of seeds with 40 microtesla (mt each for 5, 10, 15 minutes respectively and control. Results indicated that seeds treated with gamma irradiation increased plant height over the control by 45%. Highest (206 g.m-2 and lowest (108.3 g.m-2 biological yields were produced when seeds treated with magnetic field for 10 minutes and laser for 5 minutes respectively. Similarly, highest (27.27 g.m-2 and lowest (14.96 g.m-2 seed yields were obtained by treating seeds with magnetic field for 15 minutes and ultrasonic respectively. Alkaloid content in the above ground plant parts was highest when seeds treated with gamma irradiation and lowest with the magnetic field irradiation for 5 minutes. It may be concluded that physical primings of seeds with magnetic field, gamma and laser irradiations would result in higher seed yields.

  17. Theory and Modeling of Petawatt Laser Pulse Propagation in Low Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Shadwick, Bradley A. [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Physics and Astronomy; Kalmykov, S. Y. [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Physics and Astronomy

    2016-12-08

    Report describing accomplishments in all-optical control of self-injection in laser-plasma accelerators and in developing advanced numerical models of laser-plasma interactions. All-optical approaches to controlling electron self-injection and beam formation in laser-plasma accelerators (LPAs) were explored. It was demonstrated that control over the laser pulse evolution is the key ingredient in the generation of low-background, low-phase-space-volume electron beams. To this end, preserving a smooth laser pulse envelope throughout the acceleration process can be achieved through tuning the phase and amplitude of the incident pulse. A negative frequency chirp compensates the frequency red-shift accumulated due to wake excitation, preventing evolution of the pulse into a relativistic optical shock. This reduces the ponderomotive force exerted on quiescent plasma electrons, suppressing expansion of the bubble and continuous injection of background electrons, thereby reducing the charge in the low-energy tail by an order of magnitude. Slowly raising the density in the pulse propagation direction locks electrons in the accelerating phase, boosting their energy, keeping continuous injection at a low level, tripling the brightness of the quasi-monoenergetic component. Additionally, propagating the negatively chirped pulse in a plasma channel suppresses diffraction of the pulse leading edge, further reducing continuous injection. As a side effect, oscillations of the pulse tail may be enhanced, leading to production of low-background, polychromatic electron beams. Such beams, consisting of quasi-monoenergetic components with controllable energy and energy separation, may be useful as drivers of polychromatic x-rays based on Thomson backscattering. These all-optical methods of electron beam quality control are critically important for the development of future compact, high-repetition-rate, GeV-scale LPA using 10 TW-class, ultra-high bandwidth pulses and mm-scale, dense

  18. Effect of Genotypes and Seed Production Environments on Seed ...

    African Journals Online (AJOL)

    Key words: Genotypes. plant popUlation, seed production. seed quality. sesame. ..... (68%). Greater standard gennination and EWSG occurred in seed produced in 2001 .... Table 7: Heritability (H2B) and genetic advance (GA) of seed quality ...

  19. Seeds as biosocial commons

    NARCIS (Netherlands)

    Patnaik, Archana

    2016-01-01

    This research investigates and describes the conservation and use of Plant Genetic Resources (PGRs), especially seeds through processes of commonisation. Seeds form an important element for sustaining human life (through food production) and social relations (by maintaining agricultural socialities)

  20. Seeds as biosocial commons

    NARCIS (Netherlands)

    Patnaik, Archana

    2016-01-01

    This research investigates and describes the conservation and use of Plant Genetic Resources (PGRs), especially seeds through processes of commonisation. Seeds form an important element for sustaining human life (through food production) and social relations (by maintaining agricultural

  1. Grape Seed Extract

    Science.gov (United States)

    ... to reduce inflammation. Grape seed extract contains the antioxidant compound oligomeric proanthocyanidin (OPC), which has been studied for a variety of health conditions. OPCs are found in extracts of grape skin and seeds, which are by-products of the ...

  2. Seed dispersal in fens

    NARCIS (Netherlands)

    Middleton, Beth; van Diggelen, Rudy; Jensen, Kai

    2006-01-01

    Question: How does seed dispersal reduce fen isolation and contribute to biodiversity? Location: European and North American fens. Methods: This paper reviews the literature on seed dispersal to fens. Results: Landscape fragmentation may reduce dispersal opportunities thereby isolating fens and

  3. Seed development and carbohydrates

    NARCIS (Netherlands)

    Wittich, P.E.

    1998-01-01

    Seeds assure the plant the onset of a next generation and a way of dispersal. They consist of endosperm and an embryo (originating from gametophytic tissue), enveloped by a seed coat (sporophytic tissue). Plants generate different types of seeds. For instance, the endosperm may either be

  4. Seed Development and Germination

    Science.gov (United States)

    Seed is the fertilized and matured ovule of angiosperms and gymnosperms and represents a crucial stage in the life cycle of plants. Seeds of diverse plant species may display differences in size, shape and color. Despite apparent morphological variations, most mature seeds consist of three major com...

  5. Seed development and carbohydrates.

    NARCIS (Netherlands)

    Wittich, P.E.

    1998-01-01

    Seeds assure the plant the onset of a next generation and a way of dispersal. They consist of endosperm and an embryo (originating from gametophytic tissue), enveloped by a seed coat (sporophytic tissue). Plants generate different types of seeds. For instance, the endosperm may either be consumed by

  6. Seeds and Varieties

    OpenAIRE

    Hunt, Sara; Sorenson, Crista; Heineman, Bethany; Workman, Ashley Walker

    2010-01-01

    To be certified organic you must order organic seed. If for some reason organic seed is not available for a certain plant or variety, you have to write a paragraph stating that organic seed is not available and why that the certain plant or variety is needed for your system.

  7. The seed nuclear proteome.

    Science.gov (United States)

    Repetto, Ombretta; Rogniaux, Hélène; Larré, Colette; Thompson, Richard; Gallardo, Karine

    2012-01-01

    Understanding the regulatory networks coordinating seed development will help to manipulate seed traits, such as protein content and seed weight, in order to increase yield and seed nutritional value of important food crops, such as legumes. Because of the cardinal role of the nucleus in gene expression, sub-proteome analyses of nuclei from developing seeds were conducted, taking advantage of the sequences available for model species. In this review, we discuss the strategies used to separate and identify the nuclear proteins at a stage when the seed is preparing for reserve accumulation. We present how these data provide an insight into the complexity and distinctive features of the seed nuclear proteome. We discuss the presence of chromatin-modifying enzymes and proteins that have roles in RNA-directed DNA methylation and which may be involved in modifying genome architecture in preparation for seed filling. Specific features of the seed nuclei at the transition between the stage of cell divisions and that of cell expansion and reserve deposition are described here which may help to manipulate seed quality traits, such as seed weight.

  8. Status of the Seeding Experiment at SPARC

    CERN Document Server

    Giannessi, L; Ciocci, F; Dattoli, Giuseppe; Dipace, A; Doria, A; Gallerano, G P; Giovenale, E; Parisi, G; Quattromini, M; Renieri, A; Ronsivalle, C; Sabia, Elio; Spampinati, S; Spassovsky, I P

    2005-01-01

    Sources based on high order harmonics generated in gas with high power Ti:Sa lasers pulses represent promising candidates as seed for FEL amplifiers for several reasons, as spatial and temporal coherence, wavelength tunability and spectral range, which extends down to the 10(-9)m wavelength scale. This communication is devoted to the description of a research work plan that will be implemented at the SPARC FEL facility in the framework of the EUROFEL programme. The main goal of the collaboration is to study and test the amplification and the FEL harmonic generation process of an input seed signal obtained as higher order harmonics generated both in crystal (400nm and 266 nm) and in gas (266nm, 160nm, 114nm) from a high intensity Ti:Sa laser pulse.

  9. EFFECT OF SOYBEAN SEED SIZE ON SEED QUALITY

    Directory of Open Access Journals (Sweden)

    Atin Yulyatin

    2015-07-01

    Full Text Available Soybean seed is a seed that is rapidly deteriorate or decrease in viability and vigor, especially if stored in conditions that are less optimum savings. Soybean seed size can affect the quality of the seed. Seed quality is characterized by germination of seeds. Grain size effect on soybean utilization. Large seed size tends to be used as an industrial raw material utilization while small seed size as a seed planted back. Purpose of this study was to determine whether soybean seed size can affect the quality of the seeds while in storage. The experimental design used a Completely Randomized Design (CRD using soybean seed size is a large size (Grobogan, medium (Kaba, and small (Willis is repeated four times. Parameter observations are normal seeds, dirt seed, weight of 100 grains, moisture content, germination. Data were tabulated and analyzed using the F test, if significantly different then tested further by DMRT level of 5 percent. Large size seed has the normal number of seeds, seed dirt, moisture content higher than medium and small seed size. But has a lower germination than seeds of medium and small size. To maintain the water content of <11 percent should be larger seed size is more frequent than the dried seed medium and small sizes.

  10. Improved Thermoelectrically Cooled Laser-Diode Assemblies

    Science.gov (United States)

    Glesne, Thomas R.; Schwemmer, Geary K.; Famiglietti, Joe

    1994-01-01

    Cooling decreases wavelength and increases efficiency and lifetime. Two improved thermoelectrically cooled laser-diode assemblies incorporate commercial laser diodes providing combination of both high wavelength stability and broad wavelength tuning which are broadly tunable, highly stable devices for injection seeding of pulsed, high-power tunable alexandrite lasers used in lidar remote sensing of water vapor at wavelengths in vicinity of 727 nanometers. Provide temperature control needed to take advantage of tunability of commercial AlGaAs laser diodes in present injection-seeding application.

  11. Multi-mJ, 200-fs, cw-pumped, cryogenically cooled, Yb,Na:CaF2 amplifier.

    Science.gov (United States)

    Pugzlys, A; Andriukaitis, G; Baltuska, A; Su, L; Xu, J; Li, H; Li, R; Lai, W J; Phua, P B; Marcinkevicius, A; Fermann, M E; Giniūnas, L; Danielius, R; Alisauskas, S

    2009-07-01

    Using a novel (to our knowledge) broadband Yb-doped Yb3+,Na+:CaF2 crystal cooled in a closed loop to 130 K we demonstrate a chirped pulse regenerative laser amplifier delivering the energy of up to 3 mJ at a repetition rate of 1 kHz and an average output power of 6 W at 20 kHz. The gain narrowing in the laser crystal is compensated by shaping the amplitude of the seed pulse spectrum. As the result, at the highest amplified pulse energy we obtain a 12 nm FWHM bandwidth supporting a 130 fs pulse duration, assuming ideal compression. Amplified pulses were recompressed from 250 ps to 195 fs with a 1700 lines/mm transmission grating compressor.

  12. Efficient Seeds Computation Revisited

    CERN Document Server

    Christou, Michalis; Iliopoulos, Costas S; Kubica, Marcin; Pissis, Solon P; Radoszewski, Jakub; Rytter, Wojciech; Szreder, Bartosz; Walen, Tomasz

    2011-01-01

    The notion of the cover is a generalization of a period of a string, and there are linear time algorithms for finding the shortest cover. The seed is a more complicated generalization of periodicity, it is a cover of a superstring of a given string, and the shortest seed problem is of much higher algorithmic difficulty. The problem is not well understood, no linear time algorithm is known. In the paper we give linear time algorithms for some of its versions --- computing shortest left-seed array, longest left-seed array and checking for seeds of a given length. The algorithm for the last problem is used to compute the seed array of a string (i.e., the shortest seeds for all the prefixes of the string) in $O(n^2)$ time. We describe also a simpler alternative algorithm computing efficiently the shortest seeds. As a by-product we obtain an $O(n\\log{(n/m)})$ time algorithm checking if the shortest seed has length at least $m$ and finding the corresponding seed. We also correct some important details missing in th...

  13. Hot seeding using large Y-123 seeds

    Energy Technology Data Exchange (ETDEWEB)

    Scruggs, S J; Putman, P T; Zhou, Y X; Fang, H; Salama, K [Department of Mechanical Engineering, University of Houston, 4800 Calhoun Road, Houston, TX 77204 (United States)

    2006-07-15

    There are several motivations for increasing the diameter of melt textured single domain discs. The maximum magnetic field produced by a trapped field magnet is proportional to the radius of the sample. Furthermore, the availability of trapped field magnets with large diameter could enable their use in applications that have traditionally been considered to require wound electromagnets, such as beam bending magnets for particle accelerators and electric propulsion. We have investigated the possibility of using large area epitaxial growth instead of the conventional point nucleation growth mechanism. This process involves the use of large Y123 seeds for the purpose of increasing the maximum achievable Y123 single domain size. The hot seeding technique using large Y-123 seeds was employed to seed Y-123 samples. Trapped field measurements indicate that single domain samples were indeed grown by this technique. Microstructural evaluation indicates that growth can be characterized by a rapid nucleation followed by the usual peritectic grain growth which occurs when large seeds are used. Critical temperature measurements show that no local T{sub c} suppression occurs in the vicinity of the seed. This work supports the suggestion of using an iterative method for increasing the size of Y-123 single domains that can be grown.

  14. Oil palm seed distribution

    Directory of Open Access Journals (Sweden)

    Durand-Gasselin Tristan

    2005-03-01

    Full Text Available For a tropical plant, the oil palm commodity chain has the peculiarity of possessing a major seed production sector for reasons that are primarily genetic. This seed sector has numerous original aspects. Breeders are also propagators and usually also distribute their seeds. Oil palm seeds are semi-recalcitrant: they display pseudo-dormancy. Achieving seed germination is difficult and requires lengthy treatments and special installations. This restriction greatly influences seed distribution and the role of the different stakeholders in the commodity chain. It was only once it had been discovered how the “sh” gene functioned, which controls shell thickness, and when it became necessary to produce “tenera” seeds derived from exclusively “dura x pisifera” crosses, that a true seed market developed. In addition it is difficult to organize seed distribution to smallholders. This is partly due to difficulties that the profession, or a State-run organization, has in controlling middlemen networks, and partly to the absence of any protective systems (UPOV, plant breeder certificate, etc. that generally oblige breeders to preserve and propagate parents in their own installations. In fact there are major inequalities in the access to seeds between agroindustry and smallholders. Another peculiarity of the oil palm seed market is the virtually total absence of guarantees for buyers: the quality of the research conducted by breeders, the seed production strategies necessary for transferring genetic progress, and the technical quality of production. The only guarantee today comes from the relations of confidence established year after year between breeders/distributors and growers. In this fields, research can lead to some proposals: molecular biology offers some interesting prospects for certifying seed quality and social science develop effective communication methods.

  15. Does the informal seed system threaten cowpea seed health?

    NARCIS (Netherlands)

    Biemond, P.C.; Oguntade, O.; Lava Kumar, P.; Stomph, T.J.; Termorshuizen, A.J.; Struik, P.C.

    2013-01-01

    Most smallholder farmers in developing countries depend on an informal Seed System (SS) for their seed. The informal SS is often criticized because farmer-produced seed samples are not tested for seed health, thus accepting the risk of planting infected seeds. Here we aimed at assessing the quality

  16. Does the informal seed system threaten cowpea seed health?

    NARCIS (Netherlands)

    Biemond, P.C.; Oguntade, O.; Lava Kumar, P.; Stomph, T.J.; Termorshuizen, A.J.; Struik, P.C.

    2013-01-01

    Most smallholder farmers in developing countries depend on an informal Seed System (SS) for their seed. The informal SS is often criticized because farmer-produced seed samples are not tested for seed health, thus accepting the risk of planting infected seeds. Here we aimed at assessing the quality

  17. Influences of seed size and number on agglomeration in synthetic Bayer liquors

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bin; ZHOU Ke-chao; CHEN Qi-yuan

    2006-01-01

    By means of Malvern laser particle size analyzer and scanning electron microscopy, the influences of seed size and number on agglomeration in Bayer process were investigated. Agglomeration is almost finished in 8 h,seeds, below 5 μm, especially below 2 μm, gather together rapidly and almost disappear in 8 h. In the same supersaturation of aluminate solution and seed size, the smaller the number of seed is, the bigger the degree of agglomeration is. With the same primary number of seed, the agglomeration of larger seed is superior to that of small seed,and the agglomeration does not happen among the coarse seeds. The agglomeration mainly happens among fine particles, and the combinations among the fine particles are unconsolidated.

  18. LDA seeding system for the Langley Low Turbulence Pressure Tunnel

    Science.gov (United States)

    Scheiman, J.; Kubendran, L. R.

    1985-01-01

    A Laser Velocimetry (LV) seeding system was specifically developed for the Langley Low Turbulence Wind Tunnel (LTPT), and it has been successfully used for LV measurements in two major tests (Juncture Flow Experiment and Gortler Experiment). The LTPT is capable of operating at Mach numbers from 0.05 to 0.50 and unit Reynolds numbers from 100,000 to 15,000,000 per foot. The test section is 3 feet wide and 7.5 feet high. The turbulence level in the test section is relatively low because of the high contraction ratio and because of the nine turbulence reduction screens in the settling chamber. A primary requirement of the seeding system was that the seeding material not contaminate or damage in any way these screens. Both solid and liquid seeding systems were evaluated, and the results are presented. They can provide some guidelines for setting up seeding systems in other similar tunnels.

  19. Micro-bubbles seeding for flow characterization

    Science.gov (United States)

    Aumelas, V.; Lecoffre, Y.; Maj, G.; Franc, J.-P.

    2016-11-01

    Micro-bubbles injection has long been used in hydrodynamic facilities for the control of dissolved and free air. In some cavitation tunnels [9], very large quantities of microbubbles (billions per second) are injected for rapid degassing and, in smaller quantities (millions per second), for cavitation nuclei seeding. Micro-bubbles can also be used as tracers for optical measurements including visualization, LDV or PIV. For these applications, bubbles must be sufficiently small to faithfully follow the flow. Depending on the quality and spatial characteristics of the micro-bubbles seeding, several optical methods can be applied: simple visualization gives access to semi-quantitative information on the behaviour of flows; LASER velocimetry provides information on the mean velocity and other temporal local characteristics of the flow. This paper presents some new micro-bubbles seeding devices recently developed by YLEC Consultants. These devices have been designed to fulfill specific requirements related to integration into cavitation tunnels and permit optical velocimetry measurement techniques such as Particle Image Velocimetry (PIV). The LEGI cavitation tunnel is the first tunnel which has been equipped with these microbubbles seeding systems dedicated to optical velocimetry. This paper presents the final integration schemes selected for micro-bubbles seeding into LEGI tunnel and discuss about practical concerns related to the use of the injection system for optical velocimetry.

  20. A role for seed storage proteins in Arabidopsis seed longevity

    Science.gov (United States)

    Nguyen, Thu-Phuong; Cueff, Gwendal; Hegedus, Dwayne D; Rajjou, Loïc; Bentsink, Leónie

    2015-01-01

    Proteomics approaches have been a useful tool for determining the biological roles and functions of individual proteins and identifying the molecular mechanisms that govern seed germination, vigour and viability in response to ageing. In this work the dry seed proteome of four Arabidopsis thaliana genotypes, that carry introgression fragments at the position of seed longevity quantitative trait loci and as a result display different levels of seed longevity, was investigated. Seeds at two physiological states, after-ripened seeds that had the full germination ability and aged (stored) seeds of which the germination ability was severely reduced, were compared. Aged dry seed proteomes were markedly different from the after-ripened and reflected the seed longevity level of the four genotypes, despite the fact that dry seeds are metabolically quiescent. Results confirmed the role of antioxidant systems, notably vitamin E, and indicated that protection and maintenance of the translation machinery and energy pathways are essential for seed longevity. Moreover, a new role for seed storage proteins (SSPs) was identified in dry seeds during ageing. Cruciferins (CRUs) are the most abundant SSPs in Arabidopsis and seeds of a triple mutant for three CRU isoforms (crua crub cruc) were more sensitive to artificial ageing and their seed proteins were highly oxidized compared with wild-type seeds. These results confirm that oxidation is involved in seed deterioration and that SSPs buffer the seed from oxidative stress, thus protecting important proteins required for seed germination and seedling formation. PMID:26184996

  1. Crystallization on prestructured seeds.

    Science.gov (United States)

    Jungblut, Swetlana; Dellago, Christoph

    2013-01-01

    The crystallization transition of an undercooled monodisperse Lennard-Jones fluid in the presence of small prestructured seeds is studied with transition path sampling combined with molecular dynamics simulations. Compared to the homogeneous crystallization, clusters of a few particles arranged into a face- and body-centered cubic structure enhance the crystallization, while icosahedrally ordered seeds do not change the reaction rate. We identify two distinct nucleation regimes-close to the seed and in the bulk. Crystallites form close to the face- and body-centered structures and tend to stay away from the icosahedrally ordered seeds.

  2. Producing the target seed: Seed collection, treatment, and storage

    Science.gov (United States)

    Robert P. Karrfalt

    2011-01-01

    The role of high quality seeds in producing target seedlings is reviewed. Basic seed handling and upgrading techniques are summarized. Current advances in seed science and technology as well as those on the horizon are discussed.

  3. Effects of tallowtree seed coat on seed germination

    Institute of Scientific and Technical Information of China (English)

    LI Shu-xian; GU Hong-biao; MAO Yan; YIN Tong-ming; GAO Han-dong

    2012-01-01

    We measured physiological parameters including water uptake,in-vitro embryo germination ratio,and seed coat structure observed by scanning electron microscopy (SEM) to explore the influence of seed coat on the germination of seeds of tallow tree (Sapium sebiferum (Linn) Roxb.).Tallow tree seeds had good water permeability.We found that germination of cabbage seeds was inhibited when cabbage seeds were soaked in extracted solutions from tallow tree seed coat.Seed coat structure at the side of the radicle appeared to be a barrier to seed germination.We tested methods to break tallow tree seed dormancy.Dormancy of tallow tree seeds was overcome by soaking the seeds in 500 mg·L-1 or 1000 mg·L-1 GA3,followed by 100 days of cold stratification.

  4. Compact, Wavelength Stabilized Seed Source for Multi-Wavelength Lidar Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort proposes to establish the feasibility of developing a compact, high performance laser source for integration into the next generation seed...

  5. Efectos de Activación e Inhibición en el Crecimiento del Coleoptilo y del Sistema Radicular de Semillas de Trigo Provocados por Radiación Láser Ultravioleta Effects of Activation and Inhibition on the Growth of the Coleoptile and on the Root System of Wheat Seeds caused by Infrared Laser Radiation

    Directory of Open Access Journals (Sweden)

    Mauricio Hernández

    2012-01-01

    Full Text Available Se ha investigado los efectos de la radiación láser infrarroja sobre el crecimiento del coleoptilo y del sistema radicular en semillas de trigo de la variedad Náhuatl (Triticum aestivum L. Se usó un láser de diodo con longitud de onda A=980nm y se realizaron quince tratamientos con diferentes densidades de potencia y tiempos de exposición. Cada tratamiento láser se aplicó una vez antes de la siembra en experimentos elaborados bajo condiciones de laboratorio. El análisis estadístico mostró activaciones e inhibiciones importantes en el crecimiento del coleoptilo y del sistema radicular. Los resultados muestran que pese a que el coleoptilo sufrió modificaciones en su crecimiento el sistema radicular fue el más susceptible a la radiación láser, mostrando una activación máxima de 15.2% y una inhibición máxima de 17%.In this study the effects of infrared laser radiation on the growth of coleoptile and root system in wheat seeds Nahuatl variety (Triticum aestivum L were investigated. A laser diode with wavelength A = 980nm was used and fifteen laser treatments were performed with different power densities and exposure times. Vach laser treatment was applied once before sowing in experiments carried on under laboratory conditions. The statistical analysis showed important activations and inhibitions in the growth of coleoptile and root system. The results showed that although the growth of the coleoptile was modified the root system was more susceptible to laser radiation, showing a maximum activation of 15.2% and a maximum inhibition of 17%.

  6. 2 micron femtosecond fiber laser

    Science.gov (United States)

    Liu, Jian; Wan, Peng; Yang, Lihmei

    2014-07-29

    Methods and systems for generating femtosecond fiber laser pulses are disclose, including generating a signal laser pulse from a seed laser oscillator; using a first amplifier stage comprising an input and an output, wherein the signal laser pulse is coupled into the input of the first stage amplifier and the output of the first amplifier stage emits an amplified and stretched signal laser pulse; using an amplifier chain comprising an input and an output, wherein the amplified and stretched signal laser pulse from the output of the first amplifier stage is coupled into the input of the amplifier chain and the output of the amplifier chain emits a further amplified, stretched signal laser pulse. Other embodiments are described and claimed.

  7. Muskmelon seed priming in relation to seed vigor

    OpenAIRE

    Nascimento Warley Marcos; Aragão Fernando Antônio Souza de

    2004-01-01

    A number of important factors may affect seed priming response, including seed quality. Effects of seed vigor on seed priming response were investigated using seed lots of two muskmelon (Cucumis melo L.) cultivars. Seeds of muskmelon, cvs. Mission and Top Net SR were artificially aged at 43°C for 0, 20 and 40 hours. Seeds were primed for six days in darkness at 25°C in KNO3 (0.35 mol L-1) aerated solution. Aged seeds germinated poorly at 17°C. Priming increased germination rate at 17 and 25°C...

  8. What Are Chia Seeds?

    Science.gov (United States)

    ... diet? Chia seeds come from the desert plant Salvia hispanica , a member of the mint family. Salvia hispanica seed is often sold under its common name "chia" as well as several trademarked names. Its origin is believed to be in ... plant, Salvia columbariae (golden chia), were used primarily by Native ...

  9. Seed thioredoxin h

    DEFF Research Database (Denmark)

    Hägglund, Per; Finnie, Christine; Yano, Hiroyuki

    2016-01-01

    , for example chloroplastic f- and m-type thioredoxins involved in regulation of the Calvin-Benson cycle. The cytosolic h-type thioredoxins act as key regulators of seed germination and are recycled by NADPH-dependent thioredoxin reductase. The present review on thioredoxin h systems in plant seeds focuses...

  10. Seed dispersal in fens

    NARCIS (Netherlands)

    Middleton, Beth; van Diggelen, Rudy; Jensen, Kai

    2006-01-01

    Question: How does seed dispersal reduce fen isolation and contribute to biodiversity? Location: European and North American fens. Methods: This paper reviews the literature on seed dispersal to fens. Results: Landscape fragmentation may reduce dispersal opportunities thereby isolating fens and redu

  11. Experimental Characterization of the Seeded FEL Amplifier at the BNL SDL

    CERN Document Server

    Watanabe, T; Murphy, J B; Rose, J; Shaftan, T V; Tsang, Thomas; Wang, X J; Yu, L H

    2005-01-01

    A laser seeded near IR FEL amplifier experiment was initiated at the BNL SDL [1] to explore various schemes of FEL efficiency improvement and generation of short Rayleigh length (SRL) FEL output. The FEL achieved first SASE lasing at 0.8 μm on May 6, 2005. The experimental characterization of the laser seeded FEL output power, spectrum and transverse mode structure evolution will be presented.

  12. Seed germination and vigor.

    Science.gov (United States)

    Rajjou, Loïc; Duval, Manuel; Gallardo, Karine; Catusse, Julie; Bally, Julia; Job, Claudette; Job, Dominique

    2012-01-01

    Germination vigor is driven by the ability of the plant embryo, embedded within the seed, to resume its metabolic activity in a coordinated and sequential manner. Studies using "-omics" approaches support the finding that a main contributor of seed germination success is the quality of the messenger RNAs stored during embryo maturation on the mother plant. In addition, proteostasis and DNA integrity play a major role in the germination phenotype. Because of its pivotal role in cell metabolism and its close relationships with hormone signaling pathways regulating seed germination, the sulfur amino acid metabolism pathway represents a key biochemical determinant of the commitment of the seed to initiate its development toward germination. This review highlights that germination vigor depends on multiple biochemical and molecular variables. Their characterization is expected to deliver new markers of seed quality that can be used in breeding programs and/or in biotechnological approaches to improve crop yields.

  13. The earliest seeds

    Science.gov (United States)

    Gillespie, W.H.; Rothwell, G.W.; Scheckler, S.E.

    1981-01-01

    Lagenostomalean-type seeds in bifurcating cupule systems have been discovered in the late Devonian Hampshire Formation of Randolph County, West Virginia, USA (Fig. 1). The associated megaflora, plants from coal balls, and vertebrate and invertebrate faunas demonstrate that the material is Famennian; the microflora indicates a more specific Fa2c age. Consequently, these seeds predate Archaeosperma arnoldii1 from the Fa2d of northeastern Pennsylvania, the oldest previously reported seed. By applying precision fracture, transfer, de??gagement, and thin-section techniques to selected cupules from the more than 100 specimens on hand, we have determined the three-dimensional morphology and histology of the seeds (Fig. 2a-h, k) and cupule systems. A comparison with known late Devonian to early Carboniferous seeds reveals that ours are more primitively organized than all except Genomosperma2,3. ?? 1981 Nature Publishing Group.

  14. a New 2.0-6.0 GHz Chirped Pulse Fourier Transform Microwave Spectrometer: Instrumental Analysis and Initial Molecular Results

    Science.gov (United States)

    Seifert, Nathan A.; Thomas, Javix; Jäger, Wolfgang; Xu, Yunjie

    2017-06-01

    Low frequency microwave spectroscopy (generation 7.5-18.0 GHz spectrometer at the University of Alberta will be presented using the microwave spectrum of methyl lactate as a benchmark. Finally, initial results for several novel molecular systems studied using this new spectrometer, including the tetramer of 2-fluoroethanol, will be presented. C. Perez, S. Lobsiger, N. A. Seifert, D. P. Zaleski, B. Temelso, G. C. Shields, Z. Kisiel, B. H. Pate, Chem. Phys. Lett., 2013, 571, 1-15.

  15. Single-Frequency Semiconductor Lasers Operating at 1.5 and 2.0 microns Project

    Data.gov (United States)

    National Aeronautics and Space Administration — While conventional injection seeding sources (such as DFB diode lasers and rare-earth doped solid-state microchip lasers) are available at 1.5 microns, these sources...

  16. Generation of Low Jitter Laser Diode Pulse With External Pulse Injection

    Institute of Scientific and Technical Information of China (English)

    Wang Yuncai; Olaf Reimann; Dieter Huhse; Dieter Bimberg

    2003-01-01

    One gain-switched laser diode(LD) was used as external injection seeding source, to reduce the timing jitter of another gain-switched LD, This technique can generate low jitter, frequency-free and wavelength tunable laser pulse.

  17. Single-Frequency Semiconductor Lasers Operating at 1.5 and 2.0 microns Project

    Data.gov (United States)

    National Aeronautics and Space Administration — While conventional injection seeding sources (such as DFB diode lasers and rare-earth doped solid-state microchip lasers) are available at 1.5 microns, these sources...

  18. Magnetic stimulation of marigold seed

    Science.gov (United States)

    Afzal, I.; Mukhtar, K.; Qasim, M.; Basra, S. M. A.; Shahid, M.; Haq, Z.

    2012-10-01

    The effects of magnetic field treatments of French marigold seeds on germination, early seedling growth and biochemical changes of seedlings were studied under controlled conditions. For this purpose, seeds were exposed to five different magnetic seed treatments for 3 min each. Most of seed treatments resulted in improved germination speed and spread, root and shoot length, seed soluble sugars and a-amylase activity. Magnetic seed treatment with 100 mT maximally improved germination, seedling vigour and starch metabolism as compared to control and other seed treatments. In emergence experiment, higher emergence percentage (4-fold), emergence index (5-fold) and vigorous seedling growth were obtained in seeds treated with 100 mT. Overall, the enhancement of marigold seeds by magnetic seed treatment with 100 mT could be related to enhanced starch metabolism. The results suggest that magnetic field treatments of French marigold seeds have the potential to enhance germination, early growth and biochemical parameters of seedlings.

  19. Magnetic seeding sedimentation (MSS) of coal slimes

    Science.gov (United States)

    Wu, Xiqing; Yue, Tao; Dai, Liang

    2017-01-01

    Magnetic seeding sedimentation (MSS), i.e. adding magnetic seeds and pre-magnetization for sedimentation, is a technique especially for sedimentation of fine slimes, improving the sedimentation performance by introducing the magnetic interactions between particles in a suspension and enlarging the apparent size of the fine particles. The fine coal slimes with a size of 66.68%-38μm were investigated by the MSS. Sedimentation tests were conducted, and some measurements, such as laser size analysis, magnetic susceptibility by vibrating sample magnetometer (VSM), were also applied in order to probe the mechanism of the MSS. Based on the tests, measurements and calculations it was demonstrated that the sedimentation of coal slimes increased with the additions of the magnetic seeds, and in the presence of the polyacrylamide, and also there appeared a relatively large apparent size of slimes after additions of magnetic seeds and/or polyacrylamide. So, the reason for the influence of MSS lies in fact that the presence of the polyacrylamide intensified the adsorption of magnetic seeds on the coal particles and the coverage of the magnetic seeds on the coal surface from 0.2% wt. to1.3% wt., resulting in increased magnetic susceptibility of coal particles from 9.13×10-9m3/kg to 22.17×10-9m3/kg and thus a low magnetic field strength of pre-magnetization needed for the magnetic agglomeration to happen among the coal particles (the threshold of magnetic field strength for agglomeration) from 602mT to 24mT prior to proper sedimentation.

  20. Physalis peruviana seed storage

    Directory of Open Access Journals (Sweden)

    Cíntia L. M. de Souza

    2016-03-01

    Full Text Available ABSTRACT Physalis peruviana belongs to Solanaceae family and has a high nutritional and nutraceutical potential. The production is intended for fruit consumption and the propagation is mainly by seeds. This study aimed to evaluate the influence of priming on the kinetics of germination of P. peruviana seeds stored at different temperatures. The seeds were stored at 5 and 25 °C in a chamber saturated with zinc chloride solution and in liquid nitrogen (-196 °C. Every 4 months, the seeds were removed from storage for evaluation of germination and moisture content in the laboratory and emergence and development of seedlings in greenhouse. During the last evaluation at 16 months, the seeds under the same conditions were subjected to salt stress. The moisture content varied during the storage period, but was always higher for seeds kept at -196 ºC. These seeds kept high germination percentage in water until 16 months, regardless of the tested temperature; however, in salt solution the germination percentage was significantly reduced.

  1. Glioblastoma with spinal seeding

    Energy Technology Data Exchange (ETDEWEB)

    Fakhrai, N.; Fazeny-Doerner, B.; Marosi, C. [Clinical Div. of Oncology, Dept. of Medicine I, Univ. of Vienna (Austria); Czech, T. [Dept. of Neurosurgery, Univ. of Vienna (Austria); Diekmann, K. [Dept. of Radiooncology, Univ. of Vienna (Austria); Birner, P.; Hainfellner, J.A. [Clinical Inst. for Neurology, Univ. of Vienna (Austria); Prayer, D. [Dept. of Neuroradiology, Univ. of Vienna (Austria)

    2004-07-01

    Background: extracranial seeding of glioblastoma multiforme (GBM) is very rare and its development depends on several factors. This case report describes two patients suffering from GBM with spinal seeding. In both cases, the anatomic localization of the primary tumor close to the cerebrospinal fluid (CSF) was the main factor for spinal seeding. Case reports: two patients with GBM and spinal seeding are presented. After diagnosis of spinal seeding, both patients were highly symptomatic from their spinal lesions. Case 1 experienced severe pain requiring opiates, and case 2 had paresis of lower limbs as well as urinary retention/incontinence. Both patients were treated with spinal radiation therapy. Nevertheless, they died 3 months after diagnosis of spinal seeding. Results: in both patients the diagnosis of spinal seeding was made at the time of cranial recurrence. Both tumors showed close contact to the CSF initially. Even though the patients underwent intensive treatment, it was not possible to keep them in a symptom-free state. Conclusion: because of short survival periods, patients deserve optimal pain management and dedicated palliative care. (orig.)

  2. Seeded quantum FEL at 478 keV

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Marc [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Thirolf, Peter; Seggebrock, Thorben [Ludwig-Maximilians-Universitaet Muenchen, Garching (Germany); Habs, Dietrich [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Ludwig-Maximilians-Universitaet Muenchen, Garching (Germany)

    2012-07-01

    We present for the first time a concept for a seeded {gamma} quantum Free Electron Laser (QFEL) at 478 keV (transition in {sup 7}Li). To produce a highly intense and coherent {gamma} beam, we intend to use a seeded FEL scheme. Important for the production of a highly brilliant and coherent {gamma} beam are novel refractive {gamma} lenses for focusing and an efficient monochromator, allowing to generate a very intense and coherent seed beam. To realize such a coherent {gamma} beam at 478 keV (1/38 A), it is suitable to use a quantum FEL design based on a new ''asymmetric'' laser-electron Compton back scattering scheme as pursued for the MeGaRay and ELI-NP facilities. Here the pulse length of the laser is much longer than the electron bunch length, equivalent to a {gamma}-FEL with laser wiggler. The coherence of a seeded QFEL can open up totally new areas of fundamental physics and applications. Especially, 478 keV can be attractive for ''green energy'' and life-science research, such as the detection of Li deposition in the brain for manic-depressive psychosis treatment with high spatial resolution or isotope-specific nuclear waste management and treatment.

  3. Element Colocalization in Wheat Seed Revealed by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)%用激光剥蚀电感耦合等离子体质谱研究小麦籽粒元素的共分布

    Institute of Scientific and Technical Information of China (English)

    王云霞; 杨连新; WalterJ.HORST

    2012-01-01

    For enhancement of micronutrient concentrations in edible parts of food crops, element uptake and partition in plants, especially in seeds, should be better understanded. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a recently developed technology for examining mineral elements distribution in plant tissues. By using this technique, we quantitatively measured distributions of manganese (Mn), copper (Cu), zinc (Zn), and phosphorus (P) in different parts of wheat seeds. The concentrations of Cu, Zn, and P were the highest in aleurone layer and the lowest in endosperm with the difference of 15, 42, and 33 folds, respectively. The Mn concentration was the highest in embryo, which was 9-fold higher than the lowest concentration in endosperm. The concentration gradients of measured elements were also found in same parts of wheat grain. The concentrations of P, Mn, Cu, and Zn in endosperm close to aleurone layer were higher than those in the middle of wheat seed. Similarly, the element concentrations in scutellum were higher than those in embryo axis. The four elements had similar distribution pattern in wheat seed with a clear synchronization. This phenomenon suggested the colocalization of these elements in wheat seeds. Therefore, the translocations and accumulations of P, Mn, Cu, and Zn in wheat seeds might be closely related to each other, and the finding is useful for wheat biofortification programs in the future.%增加粮食可食用部分微量营养元素的浓度,需要更好地了解其在植株,特别是籽粒内的运输和分布规律.激光剥蚀电感耦合等离子体质谱(laser ablation inductively coupled plasma mass spectrometry,LA-ICP-MS)是一种测定植物组织中元素空间分布的新技术.采用该技术对成熟小麦籽粒中锰(Mn)、铜(Cu)、锌(Zn)和磷(P)的空间分布及其关联程度定量研究.结果表明,所测元素在籽粒不同部位的浓度分布差异很大.Cu、Zn和P浓度均以糊粉

  4. Starch Mobilization in Ultradried Seed of Maize (Zea mays L.) During Germination

    Institute of Scientific and Technical Information of China (English)

    Xiao-Feng WANG; Xin-Ming JING; Jian LIN

    2005-01-01

    The effects of ultradry storage on the starch mobilization in maize (Zea mays L.) seed after aging were investigated. The results indicated that there were no significant differences in the content of ATP,starch, and soluble sugar, as well as the activity of amylase, between ultradried seeds and seeds stored at -20 ℃ during germination. These results were consistent with the higher level of vigor of the ultradried seed. Sieve tube introduction of a fluorescence dye (carboxyl fluoresceindiacetate) and laser confocal microscopy were used to study the development of plasmodesmata in the ultradried seeds. The results indicated that plasmodesmata developed well in ultradried seeds. Fluorescence analysis also showed that the fluorescence intensity in the radicle of ultradried seeds was stronger than that in seeds with a higher moisture content. This suggests that ultradry treatment has no adverse effects on the seeds. After seed imbibition, cell orgaelles could be resumed. It is concluded that ultradry seed storage is beneficial for maintaining seed vigor and that starchy mobilization proceeds regularly during germination.

  5. Healthy food trends -- chia seeds

    Science.gov (United States)

    Chia seeds are tiny, brown, black or white seeds. They are almost as small as poppy seeds. They come from a plant in the mint ... minerals. Chia seeds are also rich in essential fatty acids, omega-3 and omega-6. Essential fatty ...

  6. Finite-duration Seeding Effects in Powerful Backward Raman Amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    N.A. Yampolsky; V.M. Malkin; N.J. Fisch

    2003-07-14

    In the process of backward Raman amplification (BRA), the leading layers of the seed laser pulse can shadow the rear layers, thus weakening the effective seeding power and affecting parameters of output pulses in BRA. We study this effect numerically and also analytically by approximating the pumped pulse by the ''*-pulse'' manifold of self-similar solutions. We determine how the pumped pulse projection moves within the *-pulse manifold, and describe quantitatively the effective seeding power evolution. Our results extend the quantitative theory of BRA to regimes where the effective seeding power varies substantially during the amplification. These results might be of broader interest, since the basic equations, are general equations for resonant 3-wave interactions.

  7. Seed collection notes

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document contains tables, lists, and notes related to tallgrass prairie seed collection on Neal Smith National Wildlife Refuge in 1992.

  8. on oil palm seeds

    African Journals Online (AJOL)

    User

    germinating seeds in improper sealed/ broken storage polyethylene bags attracted adult flies which gained ... an alcoholic beverage or processed into various types of ... MATERIALS AND METHODS. The study ..... The life history of Megaselia.

  9. Tomato seeds for LDEF

    Science.gov (United States)

    1983-01-01

    Tomato seeds are prepared for their launch aboard the Langley's Long Duration Exposure Facility. Photograph published in Winds of Change, 75th Anniversary NASA publication (page 119), by James Schultz.

  10. Prescribed seed plantings

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document contains memos, notes, and tables related to tallgrass prairie seed harvesting on Neal Smith National Wildlife Refuge in 1995.

  11. Seed dispersal in fens

    Science.gov (United States)

    Middleton, B.; Van Diggelen, R.; Jensen, K.

    2006-01-01

    Question: How does seed dispersal reduce fen isolation and contribute to biodiversity? Location: European and North American fens. Methods: This paper reviews the literature on seed dispersal to fens. Results: Landscape fragmentation may reduce dispersal opportunities thereby isolating fens and reducing genetic exchange. Species in fragmented wetlands may have lower reproductive success, which can lead to biodiversity loss. While fens may have always been relatively isolated from each other, they have become increasingly fragmented in modern times within agricultural and urban landscapes in both Europe and North America. Dispersal by water, animals and wind has been hampered by changes related to development in landscapes surrounding fens. Because the seeds of certain species are long-lived in the seed bank, frequent episodes of dispersal are not always necessary to maintain the biodiversity of fens. However, of particular concern to restoration is that some dominant species, such as the tussock sedge Carex stricta, may not disperse readily between fens. Conclusions: Knowledge of seed dispersal can be used to maintain and restore the biodiversity of fens in fragmented landscapes. Given that development has fragmented landscapes and that this situation is not likely to change, the dispersal of seeds might be enhanced by moving hay or cattle from fens to damaged sites, or by reestablishing lost hydrological connections. ?? IAVS; Opulus Press.

  12. Storage of sunflower seeds

    Directory of Open Access Journals (Sweden)

    Denise de Castro Lima

    Full Text Available The sunflower is among the top five crops in the world for the production of edible vegetable oil. The species displays rustic behavior, with an excellent edaphic and climatic adaptability index, being able to be cultivated throughout Brazil. Seed quality is the key to increasing production and productivity in the sunflower. The objective of this work was to monitor the viability of sunflower seeds with a view to their conservation when stored in different environments and packaging. The seeds were packed in paper bags, multilayered paper, black polyethylene and PET bottles; and stored for a period of twelve months in the following environments: dry cold room (10 ºC and 55% RH, the ambient conditions of Fortaleza, Ceará, Brazil (30-32 ºC and 75% RH, refrigerator (4 ºC and 38-43% RH and freezer (-20 ºC. Every three months, the water content of the seeds was determined and germination, accelerated ageing, speed of emergence index, and seedling dry weight were evaluated. The experimental design was completely randomized, in a scheme of split-lots, with four replications. It can be concluded that the natural environment is not suitable for the storage of sunflower seeds. Sunflower seeds remain viable for 12 months when stored in a dry cold room, refrigerator or freezer, irrespective of the type of packaging used.

  13. Geometrical characteristics and damage morphology of nodules grown from artificial seeds in multilayer coating.

    Science.gov (United States)

    Shan, Yongguang; He, Hongbo; Wei, Chaoyang; Li, Shuhong; Zhou, Ming; Li, Dawei; Zhao, Yuan'an

    2010-08-01

    Nodules have been planted in an HfO(2)/SiO(2) multilayer system with absorptive gold nanoparticle seeds located on the surface of a substrate. The topography of nodules was scanned by an atomic force microscope and imaged by a scanning electron microscope. The underlying characteristics of nodules were revealed by a focused ion beam. The cross-sectional profiles reveal that nodules grown from small seeds have a continuous boundary and better mechanical stability. A laser-induced damage test shows that nodules decrease the laser-induced damage threshold by up to 3 times. The damage pits are exclusively caused by nodular ejection and triggered by the absorptive seeds. The distribution of electric field and average temperature rise in the nodules were analyzed. Theoretical results met experimental results very well. The strong absorptive seed and microlens effect of the nodule play important roles in laser-induced damage of a planted nodule.

  14. Muskmelon seed priming in relation to seed vigor

    Directory of Open Access Journals (Sweden)

    Nascimento Warley Marcos

    2004-01-01

    Full Text Available A number of important factors may affect seed priming response, including seed quality. Effects of seed vigor on seed priming response were investigated using seed lots of two muskmelon (Cucumis melo L. cultivars. Seeds of muskmelon, cvs. Mission and Top Net SR were artificially aged at 43°C for 0, 20 and 40 hours. Seeds were primed for six days in darkness at 25°C in KNO3 (0.35 mol L-1 aerated solution. Aged seeds germinated poorly at 17°C. Priming increased germination rate at 17 and 25°C and germination percentage at 17°C. An interaction effect on germination performance between vigor and priming was observed, especially at low temperature. Priming increased germination performance in seeds of low vigor, and the response was cultivar dependent.

  15. Seed coat color and seed weight contribute differential responses of targeted metabolites in soybean seeds.

    Science.gov (United States)

    Lee, Jinwook; Hwang, Young-Sun; Kim, Sun Tae; Yoon, Won-Byong; Han, Won Young; Kang, In-Kyu; Choung, Myoung-Gun

    2017-01-01

    The distribution and variation of targeted metabolites in soybean seeds are affected by genetic and environmental factors. In this study, we used 192 soybean germplasm accessions collected from two provinces of Korea to elucidate the effects of seed coat color and seeds dry weight on the metabolic variation and responses of targeted metabolites. The effects of seed coat color and seeds dry weight were present in sucrose, total oligosaccharides, total carbohydrates and all measured fatty acids. The targeted metabolites were clustered within three groups. These metabolites were not only differently related to seeds dry weight, but also responded differentially to seed coat color. The inter-relationship between the targeted metabolites was highly present in the result of correlation analysis. Overall, results revealed that the targeted metabolites were diverged in relation to seed coat color and seeds dry weight within locally collected soybean seed germplasm accessions.

  16. Ion acceleration by petawatt class laser pulses and pellet compression in a fast ignition scenario

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, C. [Dipartimento di Fisica, Universita di Bologna, INFN sezione di Bologna (Italy)], E-mail: benedetti@bo.infn.it; Londrillo, P. [Dipartimento di Astronomia, Universita di Bologna, INAF sezione di Bologna, INFN sezione di Bologna (Italy); Liseykina, T.V. [Institute for Computational Technologies, SD-RAS, Novosibirsk (Russian Federation); Max-Planck-Institute for Nuclear Physics, Heidelberg (Germany); Macchi, A. [polyLAB, CNR-INFM, Pisa (Italy); Sgattoni, A.; Turchetti, G. [Dipartimento di Fisica, Universita di Bologna, INFN sezione di Bologna (Italy)

    2009-07-11

    Ion drivers based on standard acceleration techniques have faced up to now several difficulties. We consider here a conceptual alternative to more standard schemes, such as HIDIF (Heavy Ion Driven Inertial Fusion), which are still beyond the present state of the art of particle accelerators, even though the requirements on the total beam energy are lowered by fast ignition scenarios. The new generation of petawatt class lasers open new possibilities: acceleration of electrons or protons for the fast ignition and eventually light or heavy ions acceleration for compression. The pulses of chirped pulse amplification (CPA) lasers allow ions acceleration with very high efficiency at reachable intensities (I{approx}10{sup 21}W/cm{sup 2}), if circularly polarized light is used since we enter in the radiation pressure acceleration (RPA) regime. We analyze the possibility of accelerating carbon ion bunches by interaction of a circularly polarized pulses with an ultra-thin target. The advantage would be compactness and modularity, due to identical accelerating units. The laser efficiency required to have an acceptable net gain in the inertial fusion process is still far from the presently achievable values both for CPA short pulses and for long pulses used for direct illumination. Conversely the energy conversion efficiency from the laser pulse to the ion bunch is high and grows with the intensity. As a consequence the energy loss is not the major concern. For a preliminary investigation of the ions bunch production we have used the PIC code ALaDyn developed to analyze the results of the INFN-CNR PLASMONX experiment at Frascati National Laboratories (Rome, Italy) where the 0.3 PW laser FLAME will accelerate electrons and protons. We present the results of some 1D simulations and parametric scan concerning the acceleration of carbon ions that we suppose to be fully ionized. Circularly polarized laser pulses of 50 J and 50-100 fs duration, illuminating a 100{mu}m{sup 2} area

  17. Dynamic parabolic pulse generation using temporal shaping of wavelength to time mapped pulses.

    Science.gov (United States)

    Nguyen, Dat; Piracha, Mohammad Umar; Mandridis, Dimitrios; Delfyett, Peter J

    2011-06-20

    Self-phase modulation in fiber amplifiers can significantly degrade the quality of compressed pulses in chirped pulse amplification systems. Parabolic pulses with linear frequency chirp are suitable for suppressing nonlinearities, and to achieve high peak power pulses after compression. In this paper, we present an active time domain technique to generate parabolic pulses for chirped pulse amplification applications. Pulses from a mode-locked laser are temporally stretched and launched into an amplitude modulator, where the drive voltage is designed using the spectral shape of the input pulse and the transfer function of the modulator, resulting in the generation of parabolic pulses. Experimental results of pulse shaping with a pulse train from a mode-locked laser are presented, with a residual error of less than 5%. Moreover, an extinction ratio of 27 dB is achieved, which is ideal for chirped pulse amplification applications.

  18. Laser influence to biosystems

    Directory of Open Access Journals (Sweden)

    Jevtić Sanja D.

    2015-01-01

    Full Text Available In this paper a continous (cw lasers in visible region were applied in order to study the influence of quantum generator to certain plants. The aim of such projects is to analyse biostimulation processes of living organizms which are linked to defined laser power density thresholds (exposition doses. The results of irradiation of corn and wheat seeds using He-Ne laser in the cw regime of 632.8nm, 50mW are presented and compared to results for other laser types. The dry and wet plant seeds were irradiated in defined time intervals and the germination period plant was monitored by days. Morphological data (stalk thickness, height, cob lenght for chosen plants were monitored. From the recorded data, for the whole vegetative period, we performed appropriate statistical data processing. One part of experiments were the measurements of coefficient of reflection in visible range. Correlation estimations were calculated and discussed for our results. Main conclusion was that there were a significant increments in plant's height and also a cob lenght elongation for corn.

  19. Tunable THz Generation by the Interaction of a Super-luminous Laser Pulse with Biased Semiconductor Plasma

    Science.gov (United States)

    Papadopoulos, K.; Zigler, A.

    2006-01-01

    Terahertz (THz) radiation is electromagnetic radiation in the range between several hundred and a few thousand GHz. It covers the gap between fast-wave electronics (millimeter waves) and optics (infrared). This spectral region offers enormous potential for detection of explosives and chemical/biological agents, non-destructive testing of non-metallic structural materials and coatings of aircraft structures, medical imaging, bio-sensing of DNA stretching modes and high-altitude secure communications. The development of these applications has been hindered by the lack of powerful, tunable THz sources with controlled waveform. The need for such sources is accentuated by the strong, but selective absorption of THz radiation during transmission through air with high vapor content. The majority of the current experimental work relies on time-domain spectroscopy using fast electrically biased photoconductive sources in conjunction with femto-second mode-locked Ti:Sapphire lasers. These sources known as Large Aperture Photoconductive Antennas (LAPA) have very limited tunability, relatively low upper bound of power and no bandwidth control. The paper presents a novel source of THz radiation known as Miniature Photoconductive Capacitor Array (MPCA). Experiments demonstrated tunability between .1 - 2 THz, control of the relative bandwidth Δf/f between .5-.01, and controlled pulse length and pulse waveform (temporal shape, chirp, pulse-to-pulse modulation etc.). Direct scaling from the current device indicates efficiency in excess of 30% at 1 THz with 1/f2 scaling at higher frequencies, peak power of 100 kW and average power between .1-1 W. The physics underlying the MPCA is the interaction of a super-luminous ionization front generated by the oblique incidence of a Ti:Sapphire laser pulse on a semiconductor crystal (ZnSe) biased with an alternating electrostatic field, similar to that of a frozen wave generator. It is shown theoretically and experimentally that the

  20. Magnetic-seeding filtration

    Energy Technology Data Exchange (ETDEWEB)

    Ying, T.Y.; Chin, C.J.; Lu, S.C.; Yiacoumi, S. [Georgia Institute of Technology, Atlanta, GA (United States). School of Civil and Environmental Engineering] [and others

    1997-10-01

    Magnetic-seeding filtration consists of two steps: heterogeneous particle flocculation of magnetic and nonmagnetic particles in a stirred tank and high-gradient magnetic filtration (HGMF). The effects of various parameters affecting magnetic-seeding filtration (HGMF). The effects of various parameters affecting magnetic seeding filtration are theoretically and experimentally investigated. A trajectory model that includes hydrodynamic resistance, van der Waals, and electrostatic forces is developed to calculate the flocculation frequency in a turbulent-shear regime. Fractal dimension is introduced to simulate the open structure of aggregates. A magnetic-filtration model that consists of trajectory analysis, a particle build-up model, a breakthrough model, and a bivariate population-balance model is developed to predict the breakthrough curve of magnetic-seeding filtration. A good agreement between modeling results and experimental data is obtained. The results show that the model developed in this study can be used to predict the performance of magnetic-seeding filtration without using empirical coefficients or fitting parameters. 35 refs., 7 figs., 1 tab.

  1. High-order harmonic generation driven by chirped laser pulses induced by linear and non linear phenomena

    CERN Document Server

    Neyra, E; Pérez-Hernández, J A; Ciappina, M F; Roso, L; Torchia, G A

    2016-01-01

    We present a theoretical study of high-order harmonic generation (HHG) driven by ultrashort optical pulses with different kind of chirps. The goal of the present work is perform a detailed study to clarify the relevant parameters in the chirped pulses to achieve a noticeable cut-off extensions in HHG. These chirped pulses are generated using both linear and nonlinear dispersive media.The description of the origin of the physical mechanisms responsible of this extension is, however, not usually reported with enough detail in the literature. The study of the behaviour of the harmonic cut-off with these kind of pulses is carried out in the classical context, by the integration of the Newton-Lorentz equation complemented with the quantum approach, based on the integration of the time dependent Schr\\"odinger equation in full dimensions (TDSE-3D), we are able to understand the underlying physics.

  2. Seed-Derived Second Harmonic source for in situ alignment and calibration of trace gas measurement instruments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort will demonstrate the feasibility of developing a tunable, high-power, narrowband seed laser source integrated with a broadband,...

  3. Magnetic-seeding filtration

    Energy Technology Data Exchange (ETDEWEB)

    Depaoli, D. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    This task will investigate the capabilities of magnetic-seeding filtration for the enhanced removal of magnetic and nonmagnetic particulates from liquids. This technology appies to a wide range of liquid wastes, including groundwater, process waters, and tank supernatant. Magnetic-seeding filtration can be used in several aspects of treatment, such as (1) removal of solids, particularly those in the colloidal-size range that are difficult to remove by conventional means; (2) removal of contaminants by precipitation processes; and (3) removal of contaminants by sorption processes.

  4. Accomplishments of the Oak Ridge National Laboratory Seed Money program

    Science.gov (United States)

    1986-09-01

    In 1974, a modest program for funding new, innovative research was initiated at ORNL. It was called the "Seed Money" program and has become part of a larger program, called Exploratory R and D, which is being carried out at all DOE national laboratories. This report highlights 12 accomplishments of the Seed Money Program: nickel aluminide, ion implantation, laser annealing, burn meter, Legionnaires' disease, whole-body radiation counter, the ANFLOW system, genetics and molecular biology, high-voltage equipment, microcalorimeter, positron probe, and atom science. (DLC)

  5. Accomplishments of the Oak Ridge National Laboratory Seed Money program

    Energy Technology Data Exchange (ETDEWEB)

    1986-09-01

    In 1974, a modest program for funding new, innovative research was initiated at ORNL. It was called the ''Seed Money'' program and has become part of a larger program, called Exploratory R and D, which is being carried out at all DOE national laboratories. This report highlights 12 accomplishments of the Seed Money Program: nickel aluminide, ion implantation, laser annealing, burn meter, Legionnaires' disease, whole-body radiation counter, the ANFLOW system, genetics and molecular biology, high-voltage equipment, microcalorimeter, positron probe, and atom science. (DLC)

  6. Farmers, seeds and varieties : supporting informal seed supply in Ethiopia

    NARCIS (Netherlands)

    Thijssen, M.H.; Bishaw, Z.; Beshir, A.; Boef, de W.S.

    2008-01-01

    Ethiopia is characterized by an enormous diversity in agro-ecosystems, crops and varieties, with the informal seed systems dominant in seed supply for almost all crops. The book addresses strategies and approaches through which professionals can support informal seed supply, and links these with the

  7. Restoration seed reserves for assisted gene flow within seed orchards

    Science.gov (United States)

    C.S. Echt; B.S. Crane

    2017-01-01

    Changing climate and declining forest populations imperil the future of certain forest tree species. To complement forest management and genetic conservation plans, we propose a new paradigm for seedling seed orchards: foster genetic mixing among a variety of seed sources to increase genetic diversity and adaptive potential of seed supplies used for forest restoration...

  8. Quantifying seed dispersal kernels from truncated seed-tracking data

    NARCIS (Netherlands)

    Hirsch, Ben T.; Visser, Marco D.; Kays, Roland; Jansen, Patrick A.

    2012-01-01

    1. Seed dispersal is a key biological process that remains poorly documented because dispersing seeds are notoriously hard to track. While long-distance dispersal is thought to be particularly important, seed-tracking studies typically yield incomplete data sets that are biased against long-distance

  9. Seeds of confusion : the impact of policies on seed systems

    NARCIS (Netherlands)

    Louwaars, N.P.

    2007-01-01

    Seed is basic to crop production. Next to its importance in production, food security and rural development, seed is a key element in many debates about technology development and transfer, biodiversity, globalisation and equity. The sustainable availability of good quality seed is thus an important

  10. Seeds of confusion : the impact of policies on seed systems

    NARCIS (Netherlands)

    Louwaars, N.P.

    2007-01-01

    Seed is basic to crop production. Next to its importance in production, food security and rural development, seed is a key element in many debates about technology development and transfer, biodiversity, globalisation and equity. The sustainable availability of good quality seed is thus an important

  11. Quantifying seed dispersal kernels from truncated seed-tracking data

    NARCIS (Netherlands)

    Hirsch, Ben T.; Visser, Marco D.; Kays, Roland; Jansen, Patrick A.

    1. Seed dispersal is a key biological process that remains poorly documented because dispersing seeds are notoriously hard to track. While long-distance dispersal is thought to be particularly important, seed-tracking studies typically yield incomplete data sets that are biased against long-distance

  12. Quantifying seed dispersal kernels from truncated seed-tracking data

    NARCIS (Netherlands)

    Hirsch, B.T.; Visser, M.D.; Kays, R.; Jansen, P.A.

    2012-01-01

    1. Seed dispersal is a key biological process that remains poorly documented because dispersing seeds are notoriously hard to track. While long-distance dispersal is thought to be particularly important, seed-tracking studies typically yield incomplete data sets that are biased against long-distance

  13. Fiber and seed loss from seed cotton cleaning machinery

    Science.gov (United States)

    Fiber and seed loss from seed cotton cleaning equipment in cotton gins occurs, but the quantity of material lost, factors affecting fiber and seed loss, and the mechanisms that cause material loss are not well understood. Two experiments were conducted to evaluate the effects of different factors on...

  14. The importance of good seed

    Science.gov (United States)

    Robert P. Karrfalt

    2013-01-01

    The importance of seed to human culture and conservation of the natural world is briefly discussed. The effect of seed on seedling quality and cost is described through several examples and illustrations.

  15. Resonance ionization spectroscopy using ultraviolet laser

    CERN Document Server

    Han, J M; Ko, D K; Park, H M; Rhee, Y J

    2002-01-01

    In this study, Ti:sapphire laser which is pumped by the enhanced Nd:YAG laser using laser diode, was designed and manufactured. The AO Q-switched CW Nd:YAG laser was converted into a high repetition plus-type laser using the AO Q-switch, and two heads were installed inside the cavity in order to improve the laser beam quality. The Nd:YAG laser enhancement was completed by optimization using a simulation for the cavity length, structure and thermal lens effect that greatly effected the laser beam output and quality. As the result of the enhancement, a 30W laser at 532nm and at 5k-Hz was successfully made. Also, the Ti:sapphire laser that will be used for atomic spectroscopy which is pumped by the Nd:YAG laser, was completely designed. As a basic experiment for laser oscillation. We measured the tunability of the laser, and it turned out that the wave tunability range was 730 850 nm. A self-seeding type tunable laser using grating for narrow line width, is planned to be designed due to the fact that the Ti:sapp...

  16. Genetics and Forest Seed Handling

    DEFF Research Database (Denmark)

    Schmidt, Lars Holger

    2016-01-01

    High genetic quality seed is obtained from seed sources that match the planting site, have a good outcrossing rate, and are superior in some desirable characters. Non-degraded natural forests and plantations may be used as untested seed sources, which can sometimes be managed to promote outbreedi...

  17. Characterization of amaranth seed oils

    NARCIS (Netherlands)

    Gamel, T.H.; Mesallam, A.S.; Damir, A.A.; Shekib, L.A.; Linssen, J.P.H.

    2007-01-01

    The oil fractions of Amaranthus caudatus L. and Amaranthus cruentus L. seeds were studied after different treatments of the seeds. The oil contents were 7.1 and 8.5% for raw A. caudatus L. and A. cruentus L. seeds, and consisted of 80.3¿82.3% of triacylglycerols (TAGs). Phospholipids represented 9.1

  18. Genetics of Forest Seed Handling

    DEFF Research Database (Denmark)

    Schmidt, Lars Holger

    2016-01-01

    High genetic quality seed is obtained from seed sources that match the planting site, have a good outcrossing rate, and are superior in some desirable characters. Non-degraded natural forests and plantations may be used as untested seed sources, which can sometimes be managed to promote outbreeding...

  19. Characterization of amaranth seed oils

    NARCIS (Netherlands)

    Gamel, T.H.; Mesallam, A.S.; Damir, A.A.; Shekib, L.A.; Linssen, J.P.H.

    2007-01-01

    The oil fractions of Amaranthus caudatus L. and Amaranthus cruentus L. seeds were studied after different treatments of the seeds. The oil contents were 7.1 and 8.5% for raw A. caudatus L. and A. cruentus L. seeds, and consisted of 80.3¿82.3% of triacylglycerols (TAGs). Phospholipids represented

  20. Magnetic-seeding filtration

    Energy Technology Data Exchange (ETDEWEB)

    DePaoli, D.W.; Tsouris, C. [Oak Ridge National Lab., TN (United States); Yiacoumi, Sotira

    1997-10-01

    Magnetic-seeding filtration is a technology under development for the enhanced removal of magnetic and non-magnetic particulates from liquids. This process involves the addition of a small amount of magnetic seed particles (such as naturally occurring iron oxide) to a waste suspension, followed by treatment with a magnetic filter. Non-magnetic and weakly magnetic particles are made to undergo nonhomogeneous flocculation with the seed particles, forming flocs of high magnetic susceptibility that are readily removed by a conventional high-gradient magnetic filter. This technology is applicable to a wide range of liquid wastes, including groundwater, process waters, and tank supernatants. Magnetic-seeding filtration may be used in several aspects of treatment, such as (1) removal of solids, particularly those in the colloidal size range that are difficult to remove by conventional means; (2) removal of contaminants by precipitation processes; and (3) removal of contaminants by sorption processes. Waste stream characteristics for which the technology may be applicable include (1) particle sizes ranging from relatively coarse (several microns) to colloidal particles, (2) high or low radiation levels, (3) broad-ranging flow rates, (4) low to moderate solids concentration, (5) cases requiring high decontamination factors, and (6) aqueous or non-aqueous liquids. At this point, the technology is at the bench-scale stage of development; laboratory studies and fundamental modeling are currently being employed to determine the capabilities of the process.